
Oracle® Application Development Framework
Developer’s Guide For Forms/4GL Developers

10g Release 3 (10.1.3.0)

B25947-02

June 2008

Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers, 10g Release 3
(10.1.3.0)

B25947-02

Copyright © 2008, Oracle. All rights reserved.

Contributing Author: Ken Chu, Orlando Cordero, Ralph Gordon, Rosslynne Hefferan, Mario Korf, Robin
Merrin, Steve Muench, Kathryn Munn, Barbara Ramsey, Jon Russell, Deborah Steiner, Odile Sullivan-Tarazi,
Poh Lee Tan, Robin Whitmore, Martin Wykes

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

 Preface ... xxxvii

Audience.. xxxvii
Documentation Accessibility .. xxxvii
Related Documents ... xxxviii
Conventions ... xxxviii

Part I Getting Started with Oracle ADF Applications

1 Introduction to Oracle ADF Applications

1.1 Introduction to Oracle ADF... 1-1
1.2 Framework Architecture and Supported Technologies.. 1-1
1.2.1 View Layer Technologies Supported.. 1-2
1.2.2 Controller Layer Technologies Supported... 1-3
1.2.3 Business Services Technologies Supported by ADF Model .. 1-3
1.2.4 Recommended Technologies for Enterprise 4GL Developers 1-3
1.3 Declarative Development with Oracle ADF and JavaServer Faces..................................... 1-4
1.3.1 Declarative Data Access and Validation with ADF Business Components................ 1-4
1.3.2 Declarative User Interface Design and Page Navigation with JavaServer Faces....... 1-5
1.3.2.1 Declarative User Interface Design with JSF.. 1-5
1.3.2.2 Declarative Page Navigation with JSF... 1-7
1.3.3 Declarative Data Binding with Oracle ADF Model Layer... 1-8
1.3.4 Simple, Event-Driven Approach to Add Custom Logic .. 1-9
1.3.4.1 Simple-to-Handle Events in the Controller Layer .. 1-10
1.3.4.2 Simple-to-Handle Events in the Business Service Layer 1-11
1.3.4.3 Simple to Globally Extend Basic Framework Functionality 1-12
1.4 Highlights of Additional ADF Features ... 1-13
1.4.1 Comprehensive JDeveloper Design-Time Support ... 1-14
1.4.2 Sophisticated AJAX-Style Web Pages Without Coding .. 1-16
1.4.3 Centralized, Metadata-Driven Functionality.. 1-17
1.4.4 Generation of Complete Web Tier Using Oracle JHeadstart 1-17

2 Overview of Development Process with Oracle ADF and JSF

2.1 Introduction to the Development Process... 2-1
2.2 Creating an Application Workspace to Hold Your Files .. 2-2
2.3 Thinking About the Use Case and Page Flow .. 2-3

iv

2.4 Designing the Database Schema... 2-5
2.5 Creating a Layer of Business Domain Objects for Tables ... 2-5
2.5.1 Dragging and Dropping to Reverse-Engineer Entity Objects for Tables 2-6
2.5.2 Adding Business Validation Rules to Your Entity Object ... 2-6
2.5.3 Defining UI Control Hints for Your Entity Objects .. 2-9
2.6 Building the Business Service to Handle the Use Case ... 2-9
2.6.1 Creating a Application Module to Manage Technicians ... 2-9
2.6.2 Creating View Objects to Query Appropriate Data for the Use Case....................... 2-10
2.6.3 Using View Objects in the Application Module's Data Model 2-13
2.6.4 Testing Your Service... 2-15
2.6.5 The Data Control for Your Application Module Enables Data Binding 2-17
2.7 Dragging and Dropping Data to Create a New JSF Page .. 2-18
2.8 Examining the Binding Metadata Files Involved.. 2-21
2.9 Understanding How Components Reference Bindings via EL... 2-22
2.10 Configuring Binding Properties If Needed.. 2-23
2.11 Understanding How Bindings Are Created at Runtime.. 2-24
2.12 Making the Display More Data-Driven.. 2-24
2.12.1 Hiding and Showing Groups of Components Based on Binding Properties 2-24
2.12.2 Toggling Between Alternative Sets of Components Based on Binding Properties. 2-25
2.13 Adding the Edit Page and Finishing the Use Case ... 2-27
2.13.1 Adding Another View Object to the Data Model .. 2-27
2.13.2 Creating the Edit Page ... 2-28
2.13.3 Synchronizing the Search and Edit Page... 2-29
2.13.4 Controlling Whether Data Appears Initially .. 2-30
2.13.5 Running the Final Result ... 2-30
2.14 Considering How Much Code Was Involved ... 2-31

3 Oracle ADF Service Request Demo Overview

3.1 Introduction to the Oracle ADF Service Request Demo ... 3-1
3.1.1 Requirements for Oracle ADF Service Request Application... 3-2
3.1.2 Overview of the Schema ... 3-2
3.2 Setting Up the Oracle ADF Service Request Demo ... 3-4
3.2.1 Downloading and Installing the Oracle ADF Service Request Application............... 3-4
3.2.2 Installing the Oracle ADF Service Request Schema ... 3-5
3.2.3 Creating the Oracle JDeveloper Database Connection .. 3-7
3.2.4 Running the Oracle ADF Service Request Demo in JDeveloper 3-8
3.2.5 Running the Oracle ADF Service Request Demo Unit Tests in JDeveloper 3-10
3.3 Quick Tour of the Oracle ADF Service Request Demo .. 3-11
3.3.1 Customer Logs In and Reviews Existing Service Requests .. 3-12
3.3.2 Customer Creates a Service Request.. 3-14
3.3.3 Manager Logs In and Assigns a Service Request... 3-17
3.3.4 Manager Views Reports and Updates Technician Skills .. 3-19
3.3.5 Technician Logs In and Updates a Service Request .. 3-22

Part II Building Your Business Services

v

4 Overview of ADF Business Components

4.1 Prescriptive Approach and Reusable Code for Business Services....................................... 4-1
4.2 What are ADF Business Components and What Can They Do? ... 4-2
4.3 Relating ADF Business Components to Familiar 4GL Tools.. 4-4
4.3.1 Familiar Concepts for Oracle Forms Developers .. 4-4
4.3.2 Familiar Concepts for PeopleTools Developers .. 4-6
4.3.3 Familiar Concepts for SiebelTools Developers.. 4-7
4.3.4 Familiar Functionality for ADO.NET Developers .. 4-8
4.4 Overview of ADF Business Components Implementation Architecture 4-8
4.4.1 Based on Standard Java and XML... 4-8
4.4.2 Works with Any Application Server or Database .. 4-9
4.4.3 Implements All of the J2EE Design Patterns You Need... 4-9
4.4.4 Components are Organized into Packages .. 4-9
4.4.5 Architecture of the Base ADF Business Components Layer 4-11
4.4.6 Components Are Metadata-Driven With Optional Custom Java Code 4-11
4.4.6.1 Example of an XML-Only Component... 4-11
4.4.6.2 Example of a Component with Custom Java Class .. 4-12
4.4.7 Recommendations for Configuring ADF Business Components Design Time

Preferences 4-13
4.4.7.1 Recommendation for Initially Disabling Custom Java Generation 4-13
4.4.7.2 Recommendation for Disabling Use of Package XML File 4-14
4.4.8 Basic Datatypes ... 4-14
4.4.9 Generic Versus Strongly-Typed APIs.. 4-15
4.4.10 Client-Accessible Components Can Have Custom Interfaces 4-16
4.4.10.1 Framework Client Interfaces for Components.. 4-16
4.4.10.2 Custom Client Interfaces for Components .. 4-16
4.5 Understanding the Active Data Model... 4-17
4.5.1 What is an Active Data Model? .. 4-17
4.5.2 Examples of the Active Data Model In Action ... 4-17
4.5.3 Active Data Model Allows You to Eliminate Most Client-Side Code 4-18
4.6 Overview of ADF Business Components Design Time Facilities..................................... 4-19
4.6.1 Choosing a Connection, SQL Flavor, and Type Map.. 4-19
4.6.2 Creating New Components Using Wizards ... 4-20
4.6.3 Quick-Creating New Components Using the Context Menu 4-20
4.6.4 Editing Components Using the Component Editor .. 4-21
4.6.5 Visualizing, Creating, and Editing Components Using UML Diagrams 4-21
4.6.6 Testing Application Modules Using the Business Components Browser................ 4-21
4.6.7 Refactoring Components ... 4-21

5 Querying Data Using View Objects

5.1 Introduction to View Objects .. 5-1
5.2 Creating a Simple, Read-Only View Object .. 5-2
5.2.1 How to Create a Read-Only View Object... 5-2
5.2.2 What Happens When You Create a Read-Only View Object 5-5
5.2.3 What You May Need to Know About View Objects .. 5-5
5.2.3.1 Editing an Existing View Object Definition.. 5-5

vi

5.2.3.2 Working with Queries That Include SQL Expressions ... 5-5
5.2.3.3 Controlling the Length, Precision, and Scale of View Object Attributes 5-6
5.3 Using a View Object in an Application Module's Data Model .. 5-6
5.3.1 How to Create an Application Module .. 5-7
5.3.1.1 Understanding the Difference Between View Object Components and View Object

Instances 5-8
5.3.2 What Happens When You Create an Application Module .. 5-10
5.3.3 What You May Need to Know About Application Modules..................................... 5-11
5.3.3.1 Editing an Application Module's Runtime Configuration Properties............... 5-11
5.4 Defining Attribute Control Hints .. 5-12
5.4.1 How to Add Attribute Control Hints .. 5-12
5.4.2 What Happens When You Add Attribute Control Hints ... 5-13
5.4.3 What You May Need to Know About Message Bundles.. 5-14
5.5 Testing View Objects Using the Business Components Browser 5-14
5.5.1 How to Test a View Object Using the Business Components Browser 5-14
5.5.2 What Happens When You Use the Business Components Browser......................... 5-15
5.5.3 What You May Need to Know About the Business Components Browser 5-16
5.5.3.1 Customizing Configuration Options for the Current Run.................................. 5-16
5.5.3.2 Enabling ADF Business Components Debug Diagnostics 5-17
5.6 Working Programmatically with View Object Query Results .. 5-18
5.6.1 Common Methods for Working with the View Object’s Default RowSet 5-18
5.6.2 Counting the Number of Rows in a RowSet... 5-19
5.7 How to Create a Command-Line Java Test Client.. 5-19
5.7.1 What Happens When You Run a Test Client Program... 5-21
5.7.2 What You May Need to Know About Running a Test Client.................................... 5-22
5.8 Filtering Results Using Query-By-Example View Criteria .. 5-22
5.8.1 How to Use View Criteria to Filter View Object Results .. 5-22
5.8.2 What Happens When You Use View Criteria to Filter View Object Results........... 5-24
5.8.3 What You May Need to Know About Query-By-Example Criteria.......................... 5-24
5.8.3.1 Use Attribute Names in View Criteria, Column Names in WHERE Clause.... 5-24
5.8.3.2 Testing View Criteria in the Business Component Browser 5-25
5.8.3.3 Altering Compound Search Conditions Using Multiple View Criteria Rows . 5-25
5.8.3.4 Searching for a Row Whose Attribute Value is NULL Value 5-26
5.8.3.5 Searching Case-Insensitively ... 5-26
5.8.3.6 Clearing View Criteria in Effect .. 5-26
5.8.3.7 Applying View Criteria Causes Query to be Re-parsed...................................... 5-26
5.9 Using Named Bind Variables... 5-26
5.9.1 Adding a Named Bind Variable ... 5-26
5.9.2 What Happens When You Add Named Bind Variables... 5-27
5.9.3 What You May Need to Know About Named Bind Variables 5-28
5.9.3.1 Errors Related to Bind Variables ... 5-28
5.9.3.2 Bind Variables Default to NULL If No Default Supplied.................................... 5-29
5.9.3.3 Setting Existing Bind Variable Values at Runtime ... 5-29
5.9.3.4 Adding a Named Bind Variable at Runtime ... 5-30
5.9.3.5 Understanding the Default Use of Inline Views for Read-Only Queries.......... 5-32
5.10 Working with Master/Detail Data.. 5-33
5.10.1 How to Create a Read-Only View Object Joining Tables ... 5-34
5.10.1.1 Using the Query Builder to Simplify Creating Joins .. 5-34

vii

5.10.1.2 Testing the Join View .. 5-36
5.10.2 How to Create Master/Detail Hierarchies Using View Links................................... 5-36
5.10.3 What Happens When You Create Master/Detail Hierarchies Using View Links.. 5-38
5.10.4 What You May Need to Know About View Links .. 5-38
5.10.4.1 View Link Accessor Attributes Return a RowSet ... 5-39
5.10.4.2 How to Access a Detail Collection Using the View Link Accessor.................... 5-39
5.10.4.3 How to Enable Active Master/Detail Coordination in the Data Model 5-41
5.11 Generating Custom Java Classes for a View Object ... 5-43
5.11.1 How To Generate Custom Classes... 5-43
5.11.1.1 Generating Bind Variable Accessors... 5-44
5.11.1.2 Generating View Row Attribute Accessors ... 5-45
5.11.1.3 Exposing View Row Accessors to Clients.. 5-45
5.11.1.4 Configuring Default Java Generation Preferences ... 5-46
5.11.2 What Happens When You Generate Custom Classes... 5-46
5.11.2.1 Seeing and Navigating to Custom Java Files .. 5-47
5.11.3 What You May Need to Know About Custom Classes .. 5-47
5.11.3.1 About the Framework Base Classes for a View Object .. 5-47
5.11.3.2 You Can Safely Add Code to the Custom Component File 5-48
5.11.3.3 Attribute Indexes and InvokeAccessor Generated Code 5-48

6 Creating a Business Domain Layer Using Entity Objects

6.1 Introduction to Entity Objects... 6-1
6.2 Creating Entity Objects and Associations ... 6-2
6.2.1 How to Create Entity Objects and Associations from Existing Tables 6-2
6.2.2 What Happens When You Create Entity Objects and Associations from Existing Tables

6-4
6.2.2.1 What Happens When a Table Has No Primary Key ... 6-5
6.2.3 Creating Entity Objects Using the Create Entity Wizard... 6-6
6.2.4 Creating an Entity Object for a Synonym or View ... 6-6
6.2.5 Editing an Existing Entity Object or Association .. 6-6
6.2.6 Creating Database Tables from Entity Objects.. 6-6
6.2.6.1 Using Database Key Constraints for an Association... 6-7
6.2.7 Synchronizing an Entity with Changes to Its Database Table 6-7
6.2.8 What You May Need to Know About Creating Entities.. 6-7
6.3 Creating and Configuring Associations .. 6-8
6.3.1 How to Create an Association ... 6-8
6.3.1.1 Changing Entity Association Accessor Names ... 6-10
6.3.1.2 Renaming and Moving Associations to a Different Package.............................. 6-10
6.3.2 What Happens When You Create an Association ... 6-11
6.3.3 What You May Need to Know About Composition Associations 6-11
6.4 Creating an Entity Diagram for Your Business Layer .. 6-12
6.4.1 How to Create an Entity Diagram.. 6-12
6.4.1.1 Publishing the Business Entity Diagram.. 6-13
6.4.2 What Happens When You Create an Entity Diagram .. 6-13
6.4.3 What You May Need to Know About Creating Entities On a Diagram................... 6-14
6.4.3.1 UML Diagram is Actively Synchronized with Business Components.............. 6-14
6.4.3.2 UML Diagram Adds Extra Metadata to XML Component Descriptors 6-14

viii

6.5 Defining Attribute Control Hints .. 6-15
6.5.1 How to Add Attribute Control Hints .. 6-15
6.5.2 What Happens When You Add Attribute Control Hints ... 6-16
6.5.3 Internationalizing the Date Format.. 6-16
6.6 Configuring Declarative Runtime Behavior .. 6-17
6.6.1 How To Configure Declarative Runtime Behavior ... 6-17
6.6.2 What Happens When You Configure Declarative Runtime Behavior 6-18
6.6.3 About the Declarative Entity Object Features .. 6-19
6.6.3.1 Legal Database and Java Data types for an Entity Object Attribute 6-19
6.6.3.2 Indicating Datatype Length, Precision, and Scale .. 6-20
6.6.3.3 Controlling the Updatability of an Attribute .. 6-20
6.6.3.4 Making an Attribute Mandatory... 6-20
6.6.3.5 Defining the Primary Key for the Entity .. 6-21
6.6.3.6 Defining a Static Default Value ... 6-21
6.6.3.7 Synchronization with Trigger-Assigned Values... 6-21
6.6.3.8 Trigger-Assigned Primary Key Values from a Database Sequence 6-22
6.6.3.9 Lost Update Protection ... 6-23
6.6.3.10 History Attributes.. 6-23
6.6.3.11 Setting the Discriminator Attribute for Entity Object Inheritance Hierarchies 6-24
6.6.3.12 Understanding and Configuring Composition Behavior.................................... 6-24
6.7 Using Declarative Validation Rules .. 6-26
6.7.1 How to Add a Validation Rule ... 6-26
6.7.2 What Happens When You Add a Validation Rule .. 6-27
6.7.3 What You May Need to Know About Validation Rules... 6-28
6.7.3.1 Understanding the Built-in Entity-Level Validators .. 6-29
6.7.3.2 Understanding the Built-in Attribute-Level Validators....................................... 6-29
6.7.3.3 Caveat About the List Validator.. 6-29
6.8 Working Programmatically with Entity Objects and Associations 6-30
6.8.1 Finding an Entity Object by Primary Key ... 6-30
6.8.2 Accessing an Associated Entity Using the Accessor Attribute 6-31
6.8.3 Updating or Removing an Existing Entity Row... 6-33
6.8.4 Creating a New Entity Row .. 6-34
6.8.5 Testing Using a Static Main Method.. 6-36
6.9 Generating Custom Java Classes for an Entity Object.. 6-38
6.9.1 How To Generate Custom Classes... 6-38
6.9.1.1 Choosing to Generate Entity Attribute Accessors .. 6-39
6.9.2 What Happens When You Generate Custom Classes... 6-40
6.9.3 Seeing and Navigating to Custom Java Files.. 6-40
6.9.4 What You May Need to Know About Custom Java Classes...................................... 6-41
6.9.4.1 About the Framework Base Classes for an Entity Object 6-41
6.9.4.2 You Can Safely Add Code to the Custom Component File 6-41
6.9.4.3 Configuring Default Java Generation Preferences ... 6-41
6.9.4.4 Attribute Indexes and InvokeAccessor Generated Code 6-41
6.9.5 Programmatic Example for Comparison Using Custom Entity Classes 6-44
6.10 Adding Transient and Calculated Attributes to an Entity Object 6-47
6.10.1 How to Add a Transient Attribute... 6-47
6.10.2 What Happens When You Add Transient Attribute... 6-48

ix

6.10.3 Adding Java Code in the Entity Class to Perform Calculation 6-48

7 Building an Updatable Data Model With Entity-Based View Objects

7.1 Introduction to Entity-Based View Objects... 7-1
7.2 Creating an Entity-Based View Object... 7-2
7.2.1 How to Create an Entity-Based View Object... 7-2
7.2.1.1 Creating a View Object Having All Attributes of an Entity Object 7-5
7.2.2 What Happens When You Create an Entity-Based View Object.................................. 7-6
7.2.3 Editing an Existing Entity-Based View Object Definition ... 7-6
7.2.4 What You May Need to Know About View Objects .. 7-6
7.2.4.1 View Object Attributes Inherit Properties from Underlying Entity Object

Attributes 7-6
7.3 Including Reference Entities in Join View Objects... 7-7
7.3.1 How to Include Reference Entities in a View Object.. 7-8
7.3.1.1 Adding Additional Reference Entity Usages to the View Object.......................... 7-8
7.3.1.2 Selecting Additional Attributes from Reference Entity Usages 7-9
7.3.1.3 Renaming Attributes from Reference Entity Usages ... 7-10
7.3.1.4 Removing Unnecessary Key Attributes from Reference Entity Usages............ 7-10
7.3.1.5 Hiding the Primary Key Attributes from Reference Entity Usages................... 7-11
7.3.2 What Happens When You Reference Entities in a View Object 7-11
7.3.3 What You May Need to Know About Join View Objects ... 7-12
7.3.3.1 Showing View Objects in a Business Components Diagram.............................. 7-12
7.3.3.2 Modify Default Join Clause to Be Outer Join When Appropriate...................... 7-13
7.4 Creating an Association-Based View Link... 7-13
7.4.1 How to Create an Association-Based View Link ... 7-14
7.4.2 What Happens When You Create an Association-Based View Link........................ 7-15
7.5 Testing Entity-Based View Objects Interactively .. 7-16
7.5.1 Overview of Business Component Browser Functionality for an Updatable Data Model

7-16
7.5.2 Adding View Object Instances to the Data Model... 7-16
7.5.3 How to Test Entity-Based View Objects Interactively .. 7-17
7.5.4 What Happens When You Test Entity-Based View Objects Interactively 7-17
7.5.5 Simulating End-User Interaction with Your Application Module Data Model 7-19
7.5.5.1 Testing Master/Detail Coordination.. 7-19
7.5.5.2 Testing UI Control Hints .. 7-19
7.5.5.3 Testing View Objects That Reference Entity Usages.. 7-19
7.5.5.4 Testing Business Domain Layer Validation... 7-20
7.5.5.5 Testing Alternate Language Message Bundles and Control Hints 7-20
7.5.5.6 Testing Row Creation and Default Value Generation ... 7-20
7.5.5.7 Testing New Detail Rows Have Correct Foreign Keys.. 7-20
7.6 Adding Calculated and Transient Attributes to an Entity-Based View Object 7-21
7.6.1 How to Add a SQL-Calculated Attribute.. 7-21
7.6.2 What Happens When You Add a SQL-Calculated Attribute 7-22
7.6.3 How to Add a Transient Attribute... 7-22
7.6.3.1 Adding an Entity-Mapped Transient Attribute to a View Object...................... 7-23
7.6.4 What Happens When You Add a Transient Attribute.. 7-23
7.6.5 Adding Java Code in the View Row Class to Perform Calculation 7-24

x

7.6.6 What You May Need to Know About Transient Attributes....................................... 7-24
7.7 Understanding How View Objects and Entity Objects Cooperate at Runtime 7-24
7.7.1 Each View Row or Entity Row Has a Related Key .. 7-25
7.7.2 What Role Does the Entity Cache Play in the Transaction ... 7-26
7.7.3 Metadata Ties Together Cleanly Separated Roles of Data Source and Data Sink... 7-27
7.7.4 What Happens When a View Object Executes Its Query ... 7-28
7.7.5 What Happens When You Modify a View Row Attribute... 7-29
7.7.6 What Happens When You Change a Foreign Key Attribute 7-31
7.7.7 What Happens When You Re-query Data .. 7-31
7.7.7.1 Unmodified Attributes in Entity Cache are Refreshed During Re-query......... 7-32
7.7.7.2 Modified Attributes in Entity Cache are Left Intact During Re-query.............. 7-32
7.7.7.3 Overlapping Subsets of Attributes are Merged During Re-query 7-33
7.7.8 What Happens When You Commit the Transaction... 7-33
7.7.9 Interactively Testing Multiuser Scenarios... 7-34
7.8 Working Programmatically with Entity-Based View Objects ... 7-34
7.8.1 Example of Iterating Master/Detail/Detail Hierarchy... 7-34
7.8.2 Example of Finding a Row and Updating a Foreign Key Value 7-36
7.8.3 Example of Creating a New Service Request ... 7-38
7.8.4 Example of Retrieving the Row Key Identifying a Row... 7-39
7.9 Summary of Difference Between Entity-Based View Objects and Read-Only View Objects ..

7-40
7.9.1 Runtime Features Unique to Entity-Based View Objects ... 7-40
7.9.2 View Objects with No Entity Usage Are Read-Only... 7-40
7.9.3 What You May Need to Know About Enabling View Object Key Management for

Read-Only View Objects 7-41

8 Implementing Business Services with Application Modules

8.1 Introduction to Application Modules .. 8-1
8.2 Creating an Application Module.. 8-2
8.2.1 Creating an Application Module... 8-3
8.2.2 What Happens When You Create an Application Module ... 8-3
8.2.3 Editing an Existing Application Module.. 8-3
8.2.4 Configuring Your Application Module Database Connection 8-3
8.2.4.1 Using a JDBC URL Connection Type .. 8-4
8.2.4.2 Using a JDBC Datasource Connection Type... 8-4
8.2.5 Managing Your Application Module's Runtime Configurations................................. 8-6
8.2.6 What You Might Need to Know About Application Module Connections................ 8-6
8.2.6.1 The Business Components Browser Requires a JDBC URL Connection.............. 8-6
8.2.6.2 Testing the SRService Application Module in the Business Components Browser ...

8-6
8.3 Adding a Custom Service Method ... 8-6
8.3.1 How to Generate a Custom Class for an Application Module 8-7
8.3.2 What Happens When You Generate a Custom Class for an Application Module 8-7
8.3.3 What You May Need to Know About Default Code Generation................................. 8-8
8.3.4 Debugging the Application Module Using the Business Components Tester 8-9
8.3.5 How to Add a Custom Service Method to an Application Module............................. 8-9
8.4 Publishing Custom Service Methods to Clients .. 8-10

xi

8.4.1 How to Publish Custom Service Methods to Clients .. 8-11
8.4.2 What Happens When You Publish Custom Service Methods to Clients 8-11
8.4.3 How to Generate Client Interfaces for View Objects and View Rows...................... 8-12
8.4.4 What You May Need to Know About Method Signatures on the Client Interface 8-13
8.4.5 What You May Need to Know About Passing Information from the Data Model 8-13
8.5 Working Programmatically with an Application Module's Client Interface.................. 8-14
8.5.1 How to Work Programmatically with an Application Module's Client Interface .. 8-14
8.5.2 What Happens When You Work with an Application Module's Client Interface.. 8-16
8.5.3 How to Access an Application Module Client Interface... 8-16
8.5.3.1 How to Access an Application Module Client Interface in a JSF Web Application ...

8-17
8.5.3.2 How to Access an Application Module Client Interface in a JSP/Struts Web

Application 8-19
8.5.3.3 How to Access an Application Module Client Interface in an ADF Swing

Application 8-19
8.6 Overriding Built-in Framework Methods .. 8-19
8.6.1 How to Override a Built-in Framework Method ... 8-20
8.6.2 What Happens When You Override a Built-in Framework Method........................ 8-20
8.6.3 How to Override prepareSession() to Set Up an Application Module for a New User

Session 8-21
8.7 Creating an Application Module Diagram for Your Business Service 8-23
8.7.1 How to Create an Application Module Diagram... 8-23
8.7.2 What Happens When You Create an Application Module Diagram 8-23
8.7.3 What You May Need to Know About Application Module Diagrams 8-24
8.7.3.1 Using the Diagram for Editing the Application Module..................................... 8-24
8.7.3.2 Controlling Display Options.. 8-24
8.7.3.3 Filtering Method Names... 8-25
8.7.3.4 Show Related Objects and Implementation Files ... 8-25
8.7.3.5 Publishing the Application Module Diagram... 8-26
8.7.3.6 Testing the Application Module From the Diagram.. 8-26
8.8 Supporting Multipage Units of Work... 8-26
8.8.1 Overview of Application Module Pooling and State Management.......................... 8-26
8.8.2 Experimenting with State Management in the Business Components Browser 8-27
8.9 Deciding on the Granularity of Application Modules ... 8-28
8.9.1 Use Cases Assist in Planning Your Application Modules.. 8-28
8.9.2 Application Modules Are Designed to Support Assembly.. 8-29
8.9.3 Root Application Modules Versus Nested Application Module Usages 8-30

9 Implementing Programmatic Business Rules in Entity Objects

9.1 Introduction to Programmatic Business Rules ... 9-1
9.2 Understanding the Validation Cycle ... 9-2
9.2.1 Types of Entity Object Validation Rules .. 9-2
9.2.1.1 Attribute-Level Validation Rules ... 9-3
9.2.1.2 Entity-Level Validation Rules... 9-3
9.2.2 Understanding Commit Processing and Validation .. 9-3
9.2.3 Avoiding Infinite Validation Cycles ... 9-4
9.2.4 What Happens When Validations Fail ... 9-4

xii

9.2.5 Understanding Entity Objects Row States ... 9-4
9.3 Using Method Validators... 9-5
9.3.1 How to Create an Attribute-Level Method Validation .. 9-5
9.3.2 What Happens When You Create an Attribute-Level Method Validator................... 9-6
9.3.3 How to Create an Entity-Level Method Validator.. 9-7
9.3.4 What Happens When You Create an Entity-Level Method Validator 9-8
9.3.5 What You Might Need To Know About Translating Validation Rule Error Messages

9-8
9.3.6 What You May Need to Know About Referencing the Invalid Value in an

Attribute-Level Validation Error Message 9-8
9.4 Assigning Programmatically-Derived Attribute Values... 9-8
9.4.1 Defaulting Values for New Rows at Create Time... 9-8
9.4.1.1 Choosing Between create() and initDefaults() Methods... 9-9
9.4.1.2 Eagerly Defaulting an Attribute Value from a Database Sequence 9-9
9.4.2 Assigning Derived Values Before Saving .. 9-9
9.4.3 Assigning Derived Values When an Attribute Value is Set 9-10
9.5 Undoing Pending Changes to an Entity Using the Refresh Method 9-11
9.5.1 Controlling What Happens to New Rows During a Refresh..................................... 9-11
9.5.2 Cascading Refresh to Composed Children Entity Rows .. 9-11
9.6 Using View Objects for Validation.. 9-11
9.6.1 Creating View Objects at Runtime for Validation ... 9-11
9.6.2 Implementing an Efficient Existence Check ... 9-13
9.6.3 Validating Conditions Related to All Entities of a Given Type 9-14
9.7 How to Access Related Entity Rows Using Association Accessors.................................. 9-15
9.8 How to Reference Information About the Authenticated User .. 9-16
9.8.1 Referencing Role Information About the Authenticated User................................... 9-16
9.8.2 Referencing the Name of the Authenticated User ... 9-17
9.9 How to Access Original Attribute Values .. 9-18
9.10 How to Store Information About the Current User Session.. 9-18
9.11 How to Access the Current Date and Time.. 9-19
9.12 How to Send Notifications Upon a Successful Commit... 9-20
9.13 How to Conditionally Prevent an Entity Row from Being Removed 9-20
9.14 How to Implement Conditional Updatability for Attributes .. 9-20
9.15 Additional Resources .. 9-21

10 Overview of Application Module Data Binding

10.1 Overview of Data Controls and Declarative Bindings ... 10-1
10.1.1 Data Controls Abstract the Implementation Technology of a Business Service 10-1
10.1.2 Bindings Connect UI Controls to Data Collections and Operations 10-2
10.2 Understanding the Application Module Data Control .. 10-3
10.3 How an Application Module Appears in the Data Control Palette 10-3
10.3.1 Overview of the SRService Application Module ... 10-4
10.3.2 How to Change the Data Control Name Before You Begin Building Pages............ 10-4
10.3.3 How the Data Model and Service Methods Appear in the Data Control Palette ... 10-5
10.3.4 How to Change View Instance Names Before You Begin Building Pages............... 10-6
10.3.5 How Transaction Control Operations Appear in the Data Control Palette............. 10-7
10.3.6 How View Objects Appear in the Data Control Palette.. 10-7

xiii

10.3.6.1 Built-in Operations for View Object Data Collections ... 10-8
10.3.7 How Nested Application Modules Appear in the Data Control Palette.................. 10-9
10.4 How to Add a Create Button on a Page.. 10-10
10.4.1 What Happens When You Drop a Create Button on a Web Page........................... 10-10
10.4.2 What Happens When You Drop a Create Operation Onto a Swing Panel 10-11
10.4.3 When to Use CreateInsert Instead of Create... 10-11
10.4.4 What You May Need to Know About Create and CreateInsert 10-11
10.5 Application Module Databinding Tips and Techniques.. 10-12
10.5.1 How to Create a Record Status Display .. 10-12
10.5.2 How to Work with Named View Object Bind Variables .. 10-13
10.5.3 How to Use Find Mode to Implement Query-by-Example...................................... 10-15
10.5.4 How to Customize the ADF Page Lifecycle to Work Programmatically with Bindings ..

10-16
10.5.4.1 Globally Customizing the ADF Page Lifecycle... 10-16
10.5.4.2 Customizing the Page Lifecycle for a Single Page.. 10-17
10.5.4.3 Using Custom ADF Page Lifecycle to Invoke an onPageLoad Backing Bean

Method 10-17
10.5.5 How to Use Refresh Correctly for InvokeAction and Iterator Bindings 10-19
10.5.5.1 Correctly Configuring the Refresh Property of Iterator Bindings.................... 10-19
10.5.5.2 Refreshing an Iterator Binding Does Not Forcibly Re-Execute Query 10-20
10.5.5.3 Correctly Configuring Refresh Property of InvokeAction Executables 10-20
10.5.6 Understanding the Difference Between setCurrentRowWithKey and

setCurrentRowWithKeyValue 10-21
10.5.7 Understanding Bundled Exception Mode .. 10-23
10.6 Overview of How SRDemo Pages Use the SRService .. 10-23
10.6.1 The SRList Page... 10-23
10.6.1.1 Overview of Data Binding in the SRList Page .. 10-23
10.6.1.2 Business Service Notes for the SRList Page ... 10-24
10.6.2 The SRMain Page .. 10-24
10.6.2.1 Overview of Data Binding in the SRMain Page.. 10-24
10.6.2.2 Business Service Notes for the SRMain Page .. 10-25
10.6.3 The SREdit Page.. 10-26
10.6.3.1 Overview of Data Binding in the SREdit Page.. 10-26
10.6.3.2 Business Service Notes for the SREdit Page .. 10-27
10.6.4 The SRSearch Page.. 10-28
10.6.4.1 Overview of Data Binding in the SRSearch Page ... 10-28
10.6.4.2 Business Service Notes for the SRSearch Page.. 10-29
10.6.5 The SRStaffSearch Page ... 10-29
10.6.5.1 Overview of Data Binding in the SRStaffSearch Page 10-29
10.6.5.2 Business Service Notes for the SRStaffSearch Page.. 10-30
10.6.6 The SRManage Page ... 10-31
10.6.6.1 Overview of Data Binding in the SRManage Page... 10-31
10.6.6.2 Business Service Notes for the SRManage Page ... 10-32
10.6.7 The SRSkills Page.. 10-32
10.6.7.1 Overview of Data Binding in the SRSkills Page.. 10-32
10.6.7.2 Business Service Notes for the SRSkills Page .. 10-33
10.6.8 The SRCreate Page.. 10-35

xiv

10.6.8.1 Overview of Data Binding in the SRCreate Page.. 10-35
10.6.8.2 Business Service Notes for the SRCreate Page .. 10-36
10.6.9 The SRConfirmCreate Page... 10-36
10.6.9.1 Overview of Data Binding in the SRConfirmCreate Page................................. 10-36
10.6.9.2 Business Service Notes for the SRCreate Page .. 10-37

Part III Building Your Web Interface

11 Getting Started with ADF Faces

11.1 Introduction to ADF Faces.. 11-1
11.2 Setting Up a Workspace and Project ... 11-3
11.2.1 What Happens When You Use an Application Template to Create a Workspace . 11-4
11.2.1.1 Starter web.xml File... 11-5
11.2.1.2 Starter faces-config.xml File ... 11-7
11.2.2 What You May Need to Know About the ViewController Project 11-8
11.2.3 What You May Need to Know About Multiple JSF Configuration Files 11-9
11.3 Creating a Web Page ... 11-10
11.3.1 How to Add a JSF Page.. 11-10
11.3.2 What Happens When You Create a JSF Page ... 11-12
11.3.3 What You May Need to Know About Using the JSF Navigation Diagram 11-13
11.3.4 What You May Need to Know About ADF Faces Dependencies and Libraries... 11-14
11.4 Laying Out a Web Page... 11-14
11.4.1 How to Add UI Components to a JSF Page .. 11-15
11.4.2 What Happens When You First Insert an ADF Faces Component 11-16
11.4.2.1 More About the web.xml File .. 11-18
11.4.2.2 More About the faces-config.xml File... 11-19
11.4.2.3 Starter adf-faces-config.xml File .. 11-20
11.4.3 What You May Need to Know About Creating JSF Pages 11-21
11.4.3.1 Editing in the Structure Window .. 11-22
11.4.3.2 Displaying Errors... 11-23
11.4.4 Using the PanelPage Component... 11-24
11.4.4.1 PanelPage Facets.. 11-26
11.4.4.2 Page Body Contents .. 11-29
11.5 Creating and Using a Backing Bean for a Web Page .. 11-30
11.5.1 How to Create and Configure a Backing Bean... 11-31
11.5.2 What Happens When You Create and Configure a Backing Bean.......................... 11-32
11.5.3 How to Use a Backing Bean in a JSF Page... 11-33
11.5.4 How to Use the Automatic Component Binding Feature .. 11-33
11.5.5 What Happens When You Use Automatic Component Binding in JDeveloper... 11-34
11.5.6 What You May Need to Know About Backing Beans and Managed Beans.......... 11-35
11.5.7 Using ADF Data Controls and Backing Beans ... 11-37
11.6 Best Practices for ADF Faces .. 11-38

12 Displaying Data on a Page

12.1 Introduction to Displaying Data on a Page.. 12-1
12.2 Using the Data Control Palette .. 12-2

xv

12.2.1 How to Understand the Items on the Data Control Palette 12-3
12.2.2 How to Use the Data Control Palette... 12-6
12.2.3 What Happens When You Use the Data Control Palette ... 12-7
12.2.4 What Happens at Runtime.. 12-8
12.3 Working with the DataBindings.cpx File .. 12-9
12.3.1 How to Create a DataBindings.cpx File .. 12-9
12.3.2 What Happens When You Create a DataBindings.cpx File 12-10
12.4 Configuring the ADF Binding Filter ... 12-10
12.4.1 How to Configure the ADF Binding Filter.. 12-10
12.4.2 What Happens When You Configure an ADF Binding Filter.................................. 12-11
12.4.3 What Happens at Runtime.. 12-12
12.5 Working with Page Definition Files .. 12-12
12.5.1 How to Create a Page Definition File .. 12-12
12.5.2 What Happens When You Create a Page Definition File ... 12-13
12.5.2.1 Binding Objects Defined in the parameters Element ... 12-14
12.5.2.2 Binding Objects Defined in the executables Element... 12-15
12.5.2.3 Binding Objects Defined in the bindings Element.. 12-18
12.5.3 What Happens at Runtime.. 12-19
12.5.4 What You May Need to Know About Binding Container Scope 12-19
12.6 Creating ADF Data Binding EL Expressions ... 12-20
12.6.1 How to Create an ADF Data Binding EL Expression.. 12-20
12.6.2 How to Use the Expression Builder ... 12-21
12.6.3 What Happens When You Create ADF Data Binding Expressions 12-24
12.6.3.1 EL Expressions That Reference Attribute Binding Objects 12-24
12.6.3.2 EL Expressions That Reference Table Binding Objects...................................... 12-24
12.6.3.3 EL Expressions That Reference Action Binding Objects.................................... 12-25
12.6.4 What You May Need to Know About ADF Binding Properties.............................. 12-27

13 Creating a Basic Page

13.1 Introduction to Creating a Basic Page... 13-1
13.2 Using Attributes to Create Text Fields.. 13-2
13.2.1 How to Use the Data Control Palette to Create a Text Field 13-2
13.2.2 What Happens When You Use the Data Control Palette to Create a Text Field..... 13-3
13.2.2.1 Creating and Using Iterator Bindings ... 13-3
13.2.2.2 Creating and Using Value Bindings ... 13-4
13.2.2.3 Using EL Expressions to Bind UI Components ... 13-5
13.2.3 What Happens at Runtime: The JSF and ADF Lifecycles ... 13-6
13.3 Creating a Basic Form.. 13-9
13.3.1 How to Use the Data Control Palette to Create a Form .. 13-9
13.3.2 What Happens When You Use the Data Control Palette to Create a Form........... 13-11
13.3.2.1 Using Facets.. 13-11
13.4 Incorporating Range Navigation into Forms... 13-12
13.4.1 How to Insert Navigation Controls into a Form .. 13-13
13.4.2 What Happens When Command Buttons Are Created Using the Data Control Palette..

13-14
13.4.2.1 Using Action Bindings for Built-in Navigation Operations.............................. 13-14
13.4.2.2 Iterator RangeSize Attribute .. 13-14

xvi

13.4.2.3 Using EL Expressions to Bind to Navigation Operations 13-15
13.4.3 What Happens at Runtime: About Action Events and Action Listeners 13-16
13.4.4 What You May Need to Know About the Browser Back Button............................. 13-17
13.5 Creating a Form to Edit an Existing Record .. 13-18
13.5.1 How to Use the Data Control Palette to Create Edit Forms 13-18
13.5.2 What Happens When You Use Built-in Operations to Change Data 13-19
13.6 Creating an Input Form .. 13-21
13.6.1 How to Create an Input Form... 13-21
13.6.2 What Happens When You Create an Input Form.. 13-22
13.6.3 What You May Need to Know About Displaying Sequence Numbers.................. 13-23
13.6.4 What You May Need to Know About Create Forms and the RefreshCondition.. 13-24
13.7 Modifying the UI Components and Bindings on a Form .. 13-25
13.7.1 How to Modify the UI Components and Bindings.. 13-25
13.7.1.1 Changing the Value Binding for a UI Component ... 13-26
13.7.1.2 Changing the Action Binding for a UI Component.. 13-26
13.7.2 What Happens When You Modify Attributes and Bindings 13-27

14 Adding Tables

14.1 Introduction to Adding Tables .. 14-1
14.2 Creating a Basic Table ... 14-2
14.2.1 How to Create a Basic Table.. 14-2
14.2.2 What Happens When You Use the Data Control Palette to Create a Table 14-4
14.2.2.1 Iterator and Value Bindings for Tables .. 14-5
14.2.2.2 Code on the JSF Page for an ADF Faces Table .. 14-5
14.3 Incorporating Range Navigation into Tables... 14-7
14.3.1 How to Use Navigation Controls in a Table... 14-8
14.3.2 What Happens When You Use Navigation Controls in a Table................................ 14-8
14.3.3 What Happens at Runtime.. 14-9
14.3.4 What You May Need to Know About the Browser Back Button............................... 14-9
14.4 Modifying the Attributes Displayed in the Table ... 14-9
14.4.1 How to Modify the Displayed Attributes .. 14-10
14.4.2 How to Change the Binding for a Table.. 14-11
14.4.3 What Happens When You Modify Bindings or Displayed Attributes 14-12
14.5 Adding Hidden Capabilities to a Table.. 14-12
14.5.1 How to Use the DetailStamp Facet .. 14-12
14.5.2 What Happens When You Use the DetailStamp Facet ... 14-13
14.5.3 What Happens at Runtime.. 14-14
14.6 Enabling Row Selection in a Table .. 14-14
14.6.1 How to Use the TableSelectOne Component in the Selection Facet 14-16
14.6.2 What Happens When You Use the TableSelectOne Component 14-17
14.6.3 What Happens at Runtime.. 14-17
14.6.4 What You May Need to Know About Using Links Instead of the Selection Facet............

14-17
14.6.5 How to Use the TableSelectMany Component in the Selection Facet 14-18
14.6.6 What Happens When You Use the TableSelectMany Component 14-19
14.6.7 What Happens at Runtime.. 14-21
14.7 Setting the Current Object Using a Command Component .. 14-22

xvii

14.7.1 How to Manually Set the Current Row... 14-23
14.7.2 What Happens When You Set the Current Row.. 14-23
14.7.3 What Happens At Runtime... 14-24

15 Displaying Master-Detail Data

15.1 Introduction to Displaying Master-Detail Data... 15-1
15.2 Identifying Master-Detail Objects on the Data Control Palette .. 15-2
15.3 Using Tables and Forms to Display Master-Detail Objects ... 15-4
15.3.1 How to Display Master-Detail Objects in Tables and Forms 15-5
15.3.2 What Happens When You Create Master-Detail Tables and Forms 15-6
15.3.2.1 Code Generated in the JSF Page .. 15-6
15.3.2.2 Binding Objects Defined in the Page Definition File.. 15-7
15.3.3 What Happens at Runtime.. 15-8
15.3.4 What You May Need to Know About Master-Detail on Separate Pages 15-9
15.4 Using Trees to Display Master-Detail Objects ... 15-9
15.4.1 How to Display Master-Detail Objects in Trees... 15-10
15.4.2 What Happens When You Create ADF Databound Trees 15-13
15.4.2.1 Code Generated in the JSF Page .. 15-13
15.4.2.2 Binding Objects Defined in the Page Definition File.. 15-14
15.4.3 What Happens at Runtime.. 15-15
15.4.4 What You May Need to Know About Adding Command Links to Tree Nodes .. 15-15
15.5 Using Tree Tables to Display Master-Detail Objects .. 15-17
15.5.1 How to Display Master-Detail Objects in Tree Tables .. 15-18
15.5.2 What Happens When You Create a Databound Tree Table..................................... 15-18
15.5.2.1 Code Generated in the JSF Page .. 15-19
15.5.2.2 Binding Objects Defined in the Page Definition File.. 15-19
15.5.3 What Happens at Runtime.. 15-19
15.6 Using an Inline Table to Display Detail Data in a Master Table..................................... 15-20
15.6.1 How to Display Detail Data Using an Inline Table ... 15-21
15.6.2 What Happens When You Create an Inline Detail Table .. 15-22
15.6.2.1 Code Generated in the JSF Page .. 15-23
15.6.2.2 Binding Objects Defined in the Page Definition File.. 15-23
15.6.3 What Happens at Runtime ... 15-24

16 Adding Page Navigation

16.1 Introduction to Page Navigation ... 16-1
16.2 Creating Navigation Rules ... 16-2
16.2.1 How to Create Page Navigation Rules .. 16-2
16.2.1.1 About Navigation Rule Elements ... 16-2
16.2.1.2 Using the Navigation Modeler to Define Navigation Rules 16-3
16.2.1.3 Using the JSF Configuration Editor .. 16-5
16.2.2 What Happens When You Create a Navigation Rule ... 16-8
16.2.3 What Happens at Runtime.. 16-10
16.2.4 What You May Need to Know About Navigation Rules and Cases....................... 16-11
16.2.4.1 Defining Rules in Multiple Configuration Files.. 16-11
16.2.4.2 Overlapping Rules... 16-11

xviii

16.2.4.3 Conflicting Navigation Rules .. 16-12
16.2.4.4 Splitting Navigation Cases Over Multiple Rules.. 16-12
16.2.5 What You May Need to Know About the Navigation Modeler.............................. 16-13
16.3 Using Static Navigation .. 16-14
16.3.1 How to Create Static Navigation.. 16-14
16.3.2 What Happens When You Create Static Navigation... 16-15
16.4 Using Dynamic Navigation.. 16-16
16.4.1 How to Create Dynamic Navigation ... 16-17
16.4.2 What Happens When You Create Dynamic Navigation .. 16-18
16.4.3 What Happens at Runtime.. 16-19
16.4.4 What You May Need to Know About Using Default Cases 16-20
16.4.5 What You May Need to Know About Action Listener Methods 16-20
16.4.6 What You May Need to Know About Data Control Method Outcome Returns .. 16-21

17 Creating More Complex Pages

17.1 Introduction to More Complex Pages... 17-1
17.2 Using a Managed Bean to Store Information... 17-2
17.2.1 How to Use a Managed Bean to Store Information ... 17-2
17.2.2 What Happens When You Create a Managed Bean.. 17-3
17.3 Creating Command Components to Execute Methods ... 17-4
17.3.1 How to Create a Command Component Bound to a Service Method...................... 17-5
17.3.2 What Happens When You Create Command Components Using a Method 17-5
17.3.2.1 Using Parameters in a Method .. 17-5
17.3.2.2 Using EL Expressions to Bind to Methods .. 17-6
17.3.3 What Happens at Runtime.. 17-7
17.4 Setting Parameter Values Using a Command Component ... 17-7
17.4.1 How to Set Parameters Using Command Components.. 17-7
17.4.2 What Happens When You Set Parameters ... 17-8
17.4.3 What Happens at Runtime.. 17-8
17.5 Overriding Declarative Methods... 17-8
17.5.1 How to Override a Declarative Method.. 17-9
17.5.2 What Happens When You Override a Declarative Method..................................... 17-12

18 Creating a Search Form

18.1 Introduction to Creating Search Forms .. 18-1
18.2 Creating a EnterQuery/ExecuteQuery Search Form.. 18-3
18.2.1 How to Create an EnterQuery/ExecuteQuery Search Page 18-4
18.2.2 What Happens When You Create a Search Form.. 18-5
18.3 Creating a Web-type Search Form... 18-6
18.3.1 How to Create a Search Form and Separate Results Page.. 18-6
18.3.2 What Happens When You Create A Web-type Search Form..................................... 18-7
18.3.3 What You May Need to Know.. 18-8
18.3.4 About Creating Search and Results on the Same Page ... 18-8
18.3.5 How To Create Search and Results on the Same Page.. 18-8
18.3.6 What Happens When Search and Results are on the Same Page 18-9
18.4 Creating Search Page Using Named Bind Variables .. 18-10
18.4.1 How to Create a Parameterized Search Form .. 18-11

xix

18.4.2 What Happens When You Use Parameter Methods ... 18-11
18.4.3 What Happens at Runtime.. 18-13
18.5 Conditionally Displaying the Results Table on a Search Page.. 18-14
18.5.1 How to Add Conditional Display Capabilities .. 18-15
18.5.2 What Happens When you Conditionally Display the Results Table...................... 18-16

19 Using Complex UI Components

19.1 Introduction to Complex UI Components ... 19-1
19.2 Using Dynamic Menus for Navigation... 19-2
19.2.1 How to Create Dynamic Navigation Menus .. 19-3
19.2.1.1 Creating a Menu Model.. 19-3
19.2.1.2 Creating the JSF Page for Each Menu Item.. 19-13
19.2.1.3 Creating the JSF Navigation Rules.. 19-16
19.2.2 What Happens at Runtime.. 19-17
19.2.3 What You May Need to Know About Menus .. 19-18
19.3 Using Popup Dialogs... 19-19
19.3.1 How to Create Popup Dialogs .. 19-21
19.3.1.1 Defining a JSF Navigation Rule for Launching a Dialog................................... 19-22
19.3.1.2 Creating the JSF Page That Launches a Dialog .. 19-23
19.3.1.3 Creating the Dialog Page and Returning a Dialog Value.................................. 19-24
19.3.1.4 Handling the Return Value .. 19-27
19.3.1.5 Passing a Value into a Dialog .. 19-28
19.3.2 How the SRDemo Popup Dialogs Are Created ... 19-29
19.3.3 What You May Need to Know About ADF Faces Dialogs....................................... 19-33
19.3.4 Other Information... 19-33
19.4 Enabling Partial Page Rendering... 19-33
19.4.1 How to Enable PPR .. 19-35
19.4.2 What Happens at Runtime.. 19-36
19.4.3 What You May Need to Know About PPR and Screen Readers 19-36
19.5 Creating a Multipage Process .. 19-37
19.5.1 How to Create a Process Train.. 19-38
19.5.1.1 Creating a Process Train Model .. 19-39
19.5.1.2 Creating the JSF Page for Each Train Node... 19-43
19.5.1.3 Creating the JSF Navigation Rules.. 19-45
19.5.2 What Happens at Runtime.. 19-46
19.5.3 What You May Need to Know About Process Trains and Menus.......................... 19-46
19.6 Providing File Upload Capability ... 19-47
19.6.1 How to Support File Uploading on a Page ... 19-49
19.6.2 What Happens at Runtime.. 19-52
19.6.3 What You May Need to Know About ADF Faces File Upload 19-53
19.6.4 Configuring File Uploading Initialization Parameters ... 19-53
19.6.5 Configuring a Custom Uploaded File Processor ... 19-54
19.7 Creating Selection Lists ... 19-55
19.7.1 How to Create a List with a Fixed List of Values... 19-55
19.7.2 What Happens When You Create a List Bound to a Fixed List of Values 19-58
19.7.3 How to Create a List with a Dynamic List of Values .. 19-59
19.7.4 What Happens When You Create a List Bound to a Dynamic List of Values 19-61

xx

19.7.5 How to Create a List with Navigation List Binding .. 19-63
19.7.6 What Happens When You Create a List With Navigation List Binding 19-64
19.8 Creating a Shuttle... 19-65
19.8.1 How to Create a Shuttle... 19-67
19.8.2 What Happens at Runtime.. 19-71

20 Using Validation and Conversion

20.1 Introduction to Validation and Conversion... 20-1
20.2 Validation, Conversion, and the Application Lifecycle ... 20-2
20.3 Adding Validation ... 20-3
20.3.1 How to Add Validation ... 20-4
20.3.1.1 Adding ADF Faces Validation... 20-4
20.3.1.2 Adding ADF Model Validation .. 20-8
20.3.2 What Happens When You Create Input Fields Using the Data Control Palette..... 20-9
20.3.3 What Happens at Runtime.. 20-10
20.3.4 What You May Need to Know.. 20-12
20.4 Creating Custom JSF Validation.. 20-12
20.4.1 How to Create a Backing Bean Validation Method... 20-12
20.4.2 What Happens When You Create a Backing Bean Validation Method.................. 20-13
20.4.3 How to Create a Custom JSF Validator ... 20-13
20.4.4 What Happens When You Use a Custom JSF Validator... 20-16
20.5 Adding Conversion ... 20-16
20.5.1 How to Use Converters.. 20-17
20.5.2 What Happens When You Create Input Fields Using the Data Control Palette... 20-18
20.5.3 What Happens at Runtime.. 20-19
20.6 Creating Custom JSF Converters... 20-19
20.6.1 How to Create a Custom JSF Converter.. 20-19
20.6.2 What Happens When You Use a Custom Converter .. 20-21
20.7 Displaying Error Messages... 20-21
20.7.1 How to Display Server-Side Error Messages on a Page.. 20-22
20.7.2 What Happens When You Choose to Display Error Messages 20-23
20.8 Handling and Displaying Exceptions in an ADF Application.. 20-23
20.8.1 How to Change Exception Handling... 20-24
20.8.2 What Happens When You Change the Default Error Handling 20-26

21 Adding ADF Bindings to Existing Pages

21.1 Introduction to Adding ADF Bindings to Existing Pages ... 21-1
21.2 Designing Pages for ADF Bindings... 21-2
21.2.1 Creating the Page.. 21-2
21.2.2 Adding Components to the Page ... 21-3
21.2.3 Other Design Considerations.. 21-4
21.2.3.1 Creating Text Fields in Forms.. 21-4
21.2.3.2 Creating Tables .. 21-4
21.2.3.3 Creating Buttons and Links ... 21-4
21.2.3.4 Creating Lists ... 21-5
21.2.3.5 Creating Trees or Tree Tables .. 21-5
21.3 Using the Data Control Palette to Bind Existing Components ... 21-5

xxi

21.3.1 How to Add ADF Bindings Using the Data Control Palette...................................... 21-5
21.3.2 What Happens When You Use the Data Control Palette to Add ADF Bindings.... 21-7
21.4 Adding ADF Bindings to Text Fields.. 21-7
21.4.1 How to Add ADF Bindings to Text Fields.. 21-7
21.4.2 What Happens When You Add ADF Bindings to a Text Field 21-8
21.5 Adding ADF Bindings to Tables.. 21-8
21.5.1 How to Add ADF Bindings to Tables ... 21-8
21.5.2 What Happens When You Add ADF Bindings to a Table 21-10
21.6 Adding ADF Bindings to Actions ... 21-11
21.6.1 How to Add ADF Bindings to Actions ... 21-11
21.6.2 What Happens When You Add ADF Bindings to an Action................................... 21-12
21.7 Adding ADF Bindings to Selection Lists.. 21-12
21.7.1 How to Add ADF Bindings to Selection Lists ... 21-13
21.7.2 What Happens When You Add ADF Bindings to a Selection List.......................... 21-13
21.8 Adding ADF Bindings to Trees and Tree Tables .. 21-14
21.8.1 How to Add ADF Bindings to Trees and Tree Tables... 21-14
21.8.2 What Happens When You Add ADF Bindings to a Tree or Tree Table................. 21-15

22 Changing the Appearance of Your Application

22.1 Introduction to Changing ADF Faces Components ... 22-1
22.2 Changing the Style Properties of a Component .. 22-2
22.2.1 How to Set a Component’s Style Attributes .. 22-2
22.2.2 What Happens When You Format Text .. 22-3
22.3 Using Skins to Change the Look and Feel.. 22-3
22.3.1 How to Use Skins.. 22-5
22.3.1.1 Creating a Custom Skin.. 22-6
22.3.1.2 Configuring an Application to Use a Skin... 22-9
22.4 Internationalizing Your Application... 22-10
22.4.1 How to Internationalize an Application.. 22-14
22.4.2 How to Configure Optional Localization Properties for ADF Faces 22-18

23 Optimizing Application Performance with Caching

23.1 About Caching.. 23-1
23.2 Using ADF Faces Cache to Cache Content .. 23-2
23.2.1 How to Add Support for ADF Faces Cache.. 23-6
23.2.2 What Happens When You Cache Fragments ... 23-6
23.2.2.1 Logging ... 23-6
23.2.2.2 AFC Statistics Servlet .. 23-7
23.2.2.3 Visual Diagnostics ... 23-8
23.2.3 What You May Need to Know.. 23-8

24 Testing and Debugging Web Applications

24.1 Getting Started with Oracle ADF Model Debugging ... 24-1
24.2 Correcting Simple Oracle ADF Compilation Errors ... 24-2
24.3 Correcting Simple Oracle ADF Runtime Errors.. 24-4
24.4 Understanding a Typical Oracle ADF Model Debugging Session 24-6

xxii

24.4.1 Turning on Diagnostic Logging.. 24-7
24.4.2 Creating an Oracle ADF Debugging Configuration.. 24-7
24.4.3 Understanding the Different Kinds of Breakpoints... 24-8
24.4.4 Editing Breakpoints to For Improved Control ... 24-9
24.4.5 Filtering Your View of Class Members.. 24-10
24.4.6 Communicating Stack Trace Information to Someone Else 24-10
24.5 Debugging the Oracle ADF Model Layer .. 24-10
24.5.1 Correcting Failures to Display Pages... 24-12
24.5.1.1 Fixing Binding Context Creation Errors .. 24-12
24.5.1.2 Fixing Binding Container Creation Errors... 24-13
24.5.2 Correcting Failures to Display Data... 24-16
24.5.2.1 Fixing Executable Errors... 24-16
24.5.2.2 Fixing Render Value Errors Before Submit.. 24-18
24.5.3 Correcting Failures to Invoke Actions and Methods .. 24-20
24.6 Tracing EL Expressions... 24-23

Part IV Advanced Topics

25 Advanced Business Components Techniques

25.1 Globally Extending ADF Business Components Functionality .. 25-1
25.1.1 What Are ADF Business Components Framework Extension Classes?................... 25-2
25.1.2 How To Create a Framework Extension Class... 25-2
25.1.3 What Happens When You Create a Framework Extension Class............................. 25-3
25.1.4 How to Base an ADF Component on a Framework Extension Class 25-3
25.1.5 What Happens When You Base a Component on a Framework Extension Class.. 25-4
25.1.5.1 Basing an XML-Only Component on a Framework Extension Class................ 25-4
25.1.5.2 Basing a Component with a Custom Java Class on a Framework Extension Class ...

25-5
25.1.6 What You May Need to Know.. 25-6
25.1.6.1 Don't Update the Extends Clause in Custom Component Java Files By Hand 25-6
25.1.6.2 You Can Have Multiple Levels of Framework Extension Classes..................... 25-7
25.1.6.3 Setting up Project-Level Preferences for Framework Extension Classes 25-7
25.1.6.4 Setting Up Framework Extension Class Preferences at the IDE Level 25-8
25.2 Creating a Layer of Framework Extensions... 25-8
25.2.1 How to Create Your Layer of Framework Extension Layer Classes......................... 25-8
25.2.2 How to Package Your Framework Extension Layer in a JAR File 25-9
25.2.3 How to Create a Library Definition for Your Framework Extension JAR File........ 25-9
25.3 Customizing Framework Behavior with Extension Classes.. 25-10
25.3.1 How to Access Runtime Metadata For View Objects and Entity Objects 25-10
25.3.2 Implementing Generic Functionality Using Runtime Metadata 25-11
25.3.3 Implementing Generic Functionality Driven by Custom Properties 25-12
25.3.4 What You May Need to Know.. 25-13
25.3.4.1 Determining the Attribute Kind at Runtime ... 25-13
25.3.4.2 Configuring Design Time Custom Property Names.. 25-13
25.3.4.3 Setting Custom Properties at Runtime ... 25-13
25.4 Creating Generic Extension Interfaces.. 25-14
25.5 Invoking Stored Procedures and Functions... 25-16

xxiii

25.5.1 Invoking Stored Procedures with No Arguments ... 25-16
25.5.2 Invoking Stored Procedure with Only IN Arguments.. 25-16
25.5.3 Invoking Stored Function with Only IN Arguments .. 25-18
25.5.4 Calling Other Types of Stored Procedures ... 25-19
25.6 Accessing the Current Database Transaction .. 25-21
25.7 Working with Libraries of Reusable Business Components ... 25-21
25.7.1 How To Create a Reusable Library of Business Components 25-22
25.7.2 How To Import a Package of Reusable Components from a Library..................... 25-23
25.7.3 What Happens When You Import a Package of Reusable Components from a Library..

25-24
25.7.4 What You May Need to Know.. 25-24
25.7.4.1 Adding Other Directories of Business Components to Project Source Path .. 25-24
25.7.4.2 Have to Close/Reopen to See Changes from a JAR... 25-24
25.7.4.3 How to Remove an Imported Package from a Project 25-25
25.8 Customizing Business Components Error Messages ... 25-25
25.8.1 How to Customize Base ADF Business Components Error Messages 25-25
25.8.2 What Happens When You Customize Base ADF Business Components Error Messages

25-26
25.8.3 How to Customize Error Messages for Database Constraint Violations 25-27
25.8.4 How to Implement a Custom Constraint Error Handling Routine 25-27
25.8.4.1 Creating a Custom Database Transaction Framework Extension Class 25-27
25.8.4.2 Configuring an Application Module to Use a Custom Database Transaction Class .

25-28
25.9 Creating Extended Components Using Inheritance ... 25-29
25.9.1 How To Create a Component That Extends Another ... 25-30
25.9.2 What Happens When You Create a Component That Extends Another 25-30
25.9.2.1 Understanding an Extended Component's XML Descriptor............................ 25-30
25.9.2.2 Understanding Java Code Generation for an Extended Component 25-31
25.9.3 What You May Need to Know.. 25-31
25.9.3.1 You Can Use Parent Classes and Interfaces to Work with Extended Components ...

25-31
25.9.3.2 Class Extends is Disabled for Extended Components 25-33
25.9.3.3 Interesting Aspects You Can Extend for Key Component Types 25-33
25.9.3.4 Extended Components Have Attribute Indices Relative to Parent.................. 25-34
25.9.3.5 Design Time Limitations for Changing Extends After Creation 25-34
25.10 Substituting Extended Components In a Delivered Application 25-35
25.10.1 Extending and Substituting Components Is Superior to Modifying Code............ 25-35
25.10.2 How To Substitute an Extended Component... 25-35
25.10.3 What Happens When You Substitute .. 25-36
25.10.4 Enabling the Substituted Components in the Base Application.............................. 25-37

26 Advanced Entity Object Techniques

26.1 Creating Custom, Validated Data Types Using Domains ... 26-1
26.1.1 What Are Domains? ... 26-2
26.1.2 How To Create a Domain.. 26-2
26.1.3 What Happens When You Create a Domain.. 26-2
26.1.4 What You May Need to Know.. 26-3

xxiv

26.1.4.1 Using Domains for Entity and View Object Attributes 26-3
26.1.4.2 Validate Method Should Throw DataCreationException If Sanity Checks Fail

26-3
26.1.4.3 String Domains Aggregate a String Value... 26-4
26.1.4.4 Other Domains Extend Existing Domain Type... 26-4
26.1.4.5 Simple Domains are Immutable Java Classes ... 26-5
26.1.4.6 Creating Domains for Oracle Object Types When Useful................................... 26-5
26.1.4.7 Quickly Navigating to the Domain Class .. 26-6
26.1.4.8 Domains Get Packaged in the Common JAR .. 26-6
26.1.4.9 Entity and View Object Attributes Inherit Custom Domain Properties............ 26-7
26.1.4.10 Domain Settings Cannot Be Less Restrictive at Entity or View Level 26-7
26.2 Updating a Deleted Flag Instead of Deleting Rows.. 26-7
26.2.1 How to Update a Deleted Flag When a Row is Removed.. 26-7
26.2.2 Forcing an Update DML Operation Instead of a Delete ... 26-8
26.3 Advanced Entity Association Techniques.. 26-8
26.3.1 Modifying Association SQL Clause to Implement Complex Associations.............. 26-8
26.3.2 Exposing View Link Accessor Attributes at the Entity Level 26-9
26.3.3 Optimizing Entity Accessor Access By Retaining the Row Set 26-9
26.4 Basing an Entity Object on a PL/SQL Package API ... 26-10
26.4.1 How to Create an Entity Object Based on a View.. 26-11
26.4.2 What Happens When You Create an Entity Object Based on a View 26-11
26.4.3 Centralizing Details for PL/SQL-Based Entities into a Base Class 26-11
26.4.4 Implementing the Stored Procedure Calls for DML Operations............................. 26-12
26.4.5 Adding Select and Lock Handling ... 26-13
26.4.5.1 Updating PLSQLEntityImpl Base Class to Handle Lock and Select................ 26-13
26.4.5.2 Implementing Lock and Select for the Product Entity....................................... 26-14
26.5 Basing an Entity Object on a Join View or Remote DBLink .. 26-17
26.6 Using Inheritance in Your Business Domain Layer.. 26-17
26.6.1 Understanding When Inheritance Can be Useful .. 26-18
26.6.2 How To Create Entity Objects in an Inheritance Hierarchy..................................... 26-19
26.6.2.1 Start By Identifying the Discriminator Column and Distinct Values 26-19
26.6.2.2 Identify the Subset of Attributes Relevant to Each Kind of Entity................... 26-20
26.6.2.3 Creating the Base Entity Object in an Inheritance Hierarchy 26-20
26.6.2.4 Creating a Subtype Entity Object in an Inheritance Hierarchy 26-21
26.6.3 How to Add Methods to Entity Objects in an Inheritance Hierarchy 26-22
26.6.3.1 Adding Methods Common to All Entity Objects in the Hierarchy 26-22
26.6.3.2 Overriding Common Methods in a Subtype Entity ... 26-22
26.6.3.3 Adding Methods Specific to a Subtype Entity .. 26-22
26.6.4 What You May Need to Know.. 26-23
26.6.4.1 Sometimes You Need to Introduce a New Base Entity...................................... 26-23
26.6.4.2 Finding Subtype Entities by Primary Key ... 26-23
26.6.4.3 You Can Create View Objects with Polymorphic Entity Usages 26-23
26.7 Controlling Entity Posting Order to Avoid Constraint Violations................................. 26-24
26.7.1 Understanding the Default Post Processing Order ... 26-24
26.7.2 How Compositions Change the Default Processing Ordering 26-24
26.7.3 Overriding postChanges() to Control Post Order.. 26-24
26.7.3.1 Observing the Post Ordering Problem First Hand... 26-24
26.7.3.2 Forcing the Product to Post Before the ServiceRequest 26-26

xxv

26.7.3.3 Understanding Associations Based on DBSequence-Valued Primary Keys .. 26-27
26.7.3.4 Refreshing References to DBSequence-Assigned Foreign Keys 26-28
26.8 Implementing Automatic Attribute Recalculation ... 26-29
26.9 Implementing Custom Validation Rules.. 26-31
26.9.1 How To Create a Custom Validation Rule ... 26-31
26.9.2 Adding a Design Time Bean Customizer for Your Rule... 26-33
26.9.3 Registering and Using a Custom Rule in JDeveloper ... 26-34

27 Advanced View Object Techniques

27.1 Advanced View Object Concepts and Features .. 27-1
27.1.1 Using a Max Fetch Size to Only Fetch the First N Rows... 27-1
27.1.2 Consistently Displaying New Rows in View Objects Based on the Same Entity.... 27-2
27.1.2.1 How View Link Consistency Mode Works ... 27-2
27.1.2.2 Understanding the Default View Link Consistency Setting and How to Change It..

27-2
27.1.2.3 Using a RowMatch to Qualify Which New, Unposted Rows Get Added to a Row

Set 27-3
27.1.2.4 Setting a Dynamic Where Clause Disables View Link Consistency 27-4
27.1.2.5 New Row from Other View Objects Added at the Bottom................................. 27-4
27.1.2.6 New, Unposted Rows Added to Top of RowSet when Re-Executed 27-4
27.1.3 Understanding View Link Accessors Versus Data Model View Link Instances..... 27-4
27.1.3.1 Enabling a Dynamic Detail Row Set with Active Master/Detail Coordination

27-4
27.1.3.2 Accessing a Stable Detail Row Set Using View Link Accessor Attributes........ 27-5
27.1.3.3 Accessor Attributes Create Distinct Row Sets Based on an Internal View Object......

27-5
27.1.4 Presenting and Scrolling Data a Page at a Time Using the Range 27-6
27.1.5 Efficiently Scrolling Through Large Result Sets Using Range Paging...................... 27-7
27.1.5.1 Understanding How to Oracle Supports "TOP-N" Queries................................ 27-7
27.1.5.2 How to Enable Range Paging for a View Object .. 27-8
27.1.5.3 What Happens When You Enable Range Paging ... 27-8
27.1.5.4 How are View Rows Cached When Using Range Paging?................................. 27-9
27.1.5.5 How to Scroll to a Given Page Number Using Range Paging 27-9
27.1.5.6 Estimating the Number of Pages in the Row Set Using Range Paging 27-9
27.1.5.7 Accommodating Inserts and Deletes Using Auto Posting 27-9
27.1.5.8 Understanding the Tradeoffs of Using Range Paging Mode.............................. 27-9
27.1.6 Setting Up a Data Model with Multiple Masters ... 27-10
27.1.7 Understanding When You Can Use Partial Keys with findByKey()....................... 27-11
27.1.8 Creating Dynamic Attributes to Store UI State .. 27-12
27.1.9 Working with Multiple Row Sets and Row Set Iterators.. 27-12
27.1.10 Optimizing View Link Accessor Access By Retaining the Row Set 27-13
27.2 Tuning Your View Objects for Best Performance ... 27-13
27.2.1 Use Bind Variables for Parameterized Queries.. 27-14
27.2.1.1 Use Bind Variables to Avoid Re-parsing of Queries .. 27-14
27.2.1.2 Use Bind Variables to Prevent SQL-Injection Attacks 27-14
27.2.2 Use Read-Only View Objects When Entity-Based Features Not Required............ 27-15
27.2.3 Use SQL Tracing to Identify Ill-Performing Queries... 27-15

xxvi

27.2.4 Consider the Appropriate Tuning Settings for Every View Object 27-16
27.2.4.1 Set the Database Retrieval Options Appropriately .. 27-16
27.2.4.2 Consider Whether Fetching One Row at a Time is Appropriate 27-16
27.2.4.3 Specify a Query Optimizer Hint if Necessary... 27-17
27.2.5 Creating View Objects at Design Time.. 27-17
27.2.6 Use Forward Only Mode to Avoid Caching View Rows.. 27-17
27.3 Using Expert Mode for Full Control Over SQL Query .. 27-18
27.3.1 How to Enable Expert Mode for Full SQL Control.. 27-18
27.3.2 What Happens When You Enable Expert Mode.. 27-18
27.3.3 What You May Need to Know.. 27-19
27.3.3.1 You May Need to Perform Manual Attribute Mapping.................................... 27-19
27.3.3.2 Disabling Expert Mode Loses Any Custom Edits .. 27-20
27.3.3.3 Once In Expert Mode, Changes to SQL Expressions Are Ignored................... 27-20
27.3.3.4 Don't Map Incorrect Calculated Expressions to Entity Attributes................... 27-21
27.3.3.5 Expert Mode SQL Formatting is Retained... 27-22
27.3.3.6 Expert Mode Queries Are Wrapped as Inline Views... 27-22
27.3.3.7 Disabling the Use of Inline View Wrapping at Runtime................................... 27-23
27.3.3.8 Enabling Expert Mode May Impact Dependent Objects 27-23
27.4 Working with Multiple Named View Criteria .. 27-23
27.4.1 Defining Named View Criteria... 27-24
27.4.2 Applying One or More Named View Criteria.. 27-25
27.4.3 Removing All Applied Named View Criteria.. 27-25
27.4.4 Using the Named Criteria at Runtime... 27-26
27.5 Performing In-Memory Sorting and Filtering of Row Sets.. 27-26
27.5.1 Understanding the View Object's Query Mode ... 27-27
27.5.2 Sorting View Object Rows In Memory .. 27-27
27.5.2.1 Combining setSortBy and setQueryMode for In-Memory Sorting.................. 27-28
27.5.2.2 Extensibility Points for In-Memory Sorting... 27-30
27.5.3 Performing In-Memory Filtering with View Criteria.. 27-30
27.5.4 Performing In-Memory Filtering with RowMatch .. 27-32
27.5.4.1 Applying a RowMatch to a View Object.. 27-32
27.5.4.2 Using RowMatch to Test an Individual Row .. 27-34
27.5.4.3 How a RowMatch Affects Rows Fetched from the Database 27-34
27.6 Using View Objects to Work with Multiple Row Types.. 27-34
27.6.1 What is a Polymorphic Entity Usage? ... 27-34
27.6.2 How To Create a View Object with a Polymorphic Entity Usage........................... 27-35
27.6.3 What Happens When You Create a View Object with a Polymorphic Entity Usage........

27-35
27.6.4 What You May Need to Know.. 27-36
27.6.4.1 Your Query Must Limit Rows to Expected Entity Subtypes 27-36
27.6.4.2 Exposing Selected Entity Methods in View Rows Using Delegation 27-36
27.6.4.3 Creating New Rows With the Desired Entity Subtype...................................... 27-37
27.6.5 What are Polymorphic View Rows? .. 27-38
27.6.6 How to Create a View Object with Polymorphic View Rows.................................. 27-39
27.6.7 What You May Need to Know.. 27-40
27.6.7.1 Selecting Subtype-Specific Attributes in Extended View Objects 27-40
27.6.7.2 Delegating to Subtype-Specific Methods After Overriding the Entity Usage 27-41
27.6.7.3 Working with Different View Row Interface Types in Client Code 27-41

xxvii

27.6.7.4 View Row Polymorphism and Polymorphic Entity Usage are Orthogonal... 27-42
27.7 Reading and Writing XML ... 27-43
27.7.1 How to Produce XML for Queried Data ... 27-43
27.7.2 What Happens When You Produce XML ... 27-44
27.7.3 What You May Need to Know.. 27-46
27.7.3.1 Controlling XML Element Names... 27-46
27.7.3.2 Controlling Element Suppression for Null-Valued Attributes......................... 27-46
27.7.3.3 Printing or Searching the Generated XML Using XPath 27-46
27.7.3.4 Using the Attribute Map For Fine Control Over Generated XML 27-47
27.7.3.5 Use the Attribute Map Approach with Bi-Directional View Links.................. 27-48
27.7.3.6 Transforming Generated XML Using an XSLT Stylesheet 27-48
27.7.3.7 Generating XML for a Single Row .. 27-50
27.7.4 How to Consume XML Documents to Apply Changes.. 27-50
27.7.5 What Happens When You Consume XML Documents.. 27-50
27.7.5.1 How ViewObject.readXML() Processes an XML Document 27-50
27.7.5.2 Using readXML() to Processes XML for a Single Row....................................... 27-51
27.8 Using Programmatic View Objects for Alternative Data Sources 27-54
27.8.1 How to Create a Read-Only Programmatic View Object ... 27-54
27.8.2 How to Create an Entity-Based Programmatic View Object.................................... 27-54
27.8.3 Key Framework Methods to Override for Programmatic View Objects................ 27-55
27.8.4 How to Create a View Object on a REF CURSOR ... 27-56
27.8.4.1 The Overridden create() Method .. 27-56
27.8.4.2 The Overridden executeQueryForCollection() Method 27-57
27.8.4.3 The Overridden createRowFromResultSet() Method .. 27-57
27.8.4.4 The Overridden hasNextForCollectionMethod() ... 27-58
27.8.4.5 The Overridden releaseUserDataForCollection() Method 27-58
27.8.4.6 The Overridden getQueryHitCount() Method ... 27-58
27.8.5 Populating a View Object from Static Data .. 27-59
27.8.5.1 Basing Lookup View Object on SRStaticDataViewObjectImpl 27-61
27.8.5.2 Creating a View Object Based on Static Data from a Properties File............... 27-61
27.8.5.3 Creating Your Own View Object with Static Data ... 27-63
27.9 Creating a View Object with Multiple Updatable Entities .. 27-63
27.10 Declaratively Preventing Insert, Update, and Delete ... 27-65

28 Application Module State Management

28.1 Understanding Why State Management is Necessary ... 28-1
28.1.1 Examples of Multi-Step Tasks... 28-1
28.1.2 Stateless HTTP Protocol Complicates Stateful Applications...................................... 28-2
28.1.3 How Cookies Are Used to Track a User Session.. 28-2
28.1.4 Performance and Reliability Impact of Using HttpSession .. 28-3
28.2 The ADF Business Components State Management Facility .. 28-4
28.2.1 Basic Architecture of the State Management Facility .. 28-5
28.2.2 Understanding When Passivation and Activation Occurs... 28-6
28.2.3 How Passivation Changes When Optional Failover Mode is Enabled 28-7
28.3 Controlling the State Management Release Level... 28-7
28.3.1 Supported Release Levels.. 28-8
28.3.2 Setting the Release Level at Runtime... 28-9

xxviii

28.3.2.1 Setting Release Level in a JSF Backing Bean.. 28-9
28.3.2.2 Setting Release Level in an ADF PagePhaseListener ... 28-10
28.3.2.3 Setting Release Level in an ADF PageController.. 28-11
28.3.2.4 Setting Release Level in an Custom ADF PageLifecycle 28-11
28.4 What State Is Saved and When is It Cleaned Up?... 28-12
28.4.1 What State is Saved?... 28-12
28.4.2 Where is the State Saved? .. 28-13
28.4.2.1 How Database-Backed Passivation Works .. 28-13
28.4.2.2 Controlling the Schema Where the State Management Table Resides 28-13
28.4.2.3 Configuring the Type of Passivation Store .. 28-14
28.4.3 When is the State Cleaned Up?... 28-14
28.4.3.1 Previous Snapshot Removed When Next One Taken.. 28-14
28.4.3.2 Passivation Snapshot Removed on Unmanaged Release.................................. 28-15
28.4.3.3 Passivation Snapshot Retained in Failover Mode .. 28-15
28.4.4 Approaches for Timing Out the HttpSession ... 28-15
28.4.4.1 Configuring the Implicit Timeout Due to User Inactivity................................. 28-15
28.4.4.2 Coding an Explicit HttpSession Timeout... 28-16
28.4.5 Cleaning Up Temporary Storage Tables ... 28-16
28.5 Managing Custom User Specific Information ... 28-17
28.6 Managing State for Transient View Objects... 28-19
28.7 Using State Management for Middle-Tier Savepoints ... 28-20
28.8 Testing to Ensure Your Application Module is Activation-Safe..................................... 28-20
28.8.1 Understanding the jbo.ampool.doampooling Configuration Parameter 28-20
28.8.2 Disabling Application Module Pooling to Test Activation 28-20
28.9 Caveats Regarding Pending Database State .. 28-21
28.9.1 Web Applications Should Use Optimistic Locking ... 28-21
28.9.2 Use PostChanges Only During the Current Request .. 28-21
28.9.3 Pending Database State Across Requests Requires Reserved Level 28-22
28.9.4 Connection Pooling Prevents Pending Database State ... 28-22

29 Understanding Application Module Pooling

29.1 Overview of Application Module Pooling... 29-1
29.2 Lifecycle of a Web Page Request Using Oracle ADF and JSF ... 29-2
29.3 Understanding Configuration Property Scopes.. 29-4
29.4 Setting Pool Configuration Parameters .. 29-5
29.4.1 Setting Configuration Properties Declaratively ... 29-5
29.4.2 Setting Configuration Properties as System Parameters .. 29-7
29.4.3 Programmatically Setting Configuration Properties ... 29-7
29.5 How Many Pools are Created, and When? .. 29-9
29.5.1 Application Module Pools... 29-9
29.5.2 Database Connection Pools ... 29-9
29.5.3 Understanding Application Module and Connection Pools.................................... 29-10
29.5.3.1 Single Oracle Application Server Instance, Single OC4J Container, Single JVM........

29-10
29.5.3.2 Multiple Oracle Application Server Instances, Single OC4J Container, Multiple

JVMs 29-11
29.6 Application Module Pool Parameters... 29-12

xxix

29.6.1 Pool Behavior Parameters ... 29-12
29.6.2 Pool Sizing Parameters .. 29-13
29.6.3 Pool Cleanup Parameters .. 29-13
29.7 Database Connection Pool Parameters ... 29-15
29.8 How Database and Application Module Pools Cooperate... 29-17
29.9 Database User State and Pooling Considerations ... 29-18
29.9.1 How Often prepareSession() Fires When jbo.doconnectionpooling = false 29-18
29.9.2 Setting Database User State When jbo.doconnectionpooling = true....................... 29-18
29.9.3 Understanding How the SRDemo Application Sets Database State....................... 29-19

30 Adding Security to an Application

30.1 Introduction to Security in Oracle ADF Web Applications... 30-1
30.2 Specifying the JAZN Resource Provider .. 30-2
30.2.1 How To Specify the Resource Provider... 30-2
30.2.2 What You May Need to Know About Oracle ADF Security and Resource Providers......

30-3
30.3 Configuring Authentication Within the web.xml File.. 30-4
30.3.1 How to Enable J2EE Container-Managed Authentication ... 30-4
30.3.2 What Happens When You Use Security Constraints without Oracle ADF Security.........

30-8
30.3.3 How to Enable Oracle ADF Authentication ... 30-9
30.3.4 What Happens When You Use Security Constraints with Oracle ADF................. 30-11
30.4 Configuring the ADF Business Components Application to Use Container-Managed

Security 30-12
30.4.1 How to Configure Security in an Oracle ADF Business Components Application...........

30-12
30.4.2 What Happens When You Configure Security in an ADF Business Components

Application 30-14
30.4.3 What You May Need to Know About the ADF Business Components Security

Property 30-14
30.5 Creating a Login Page ... 30-15
30.5.1 Wiring the Login and Error Pages.. 30-18
30.5.2 What Happens When You Wire the Login and Error Pages.................................... 30-19
30.6 Creating a Logout Page... 30-19
30.6.1 Wiring the Logout Action.. 30-21
30.6.2 What Happens When You Wire the Logout Action.. 30-22
30.7 Implementing Authorization Using Oracle ADF Security .. 30-23
30.7.1 Configuring the Application to Use Oracle ADF Security Authorization 30-25
30.7.1.1 How to Configure Oracle ADF Security Authorization 30-25
30.7.1.2 What Happens When You Configure An Application to Use Oracle ADF Security .

30-25
30.7.1.3 What You May Need to Know About the Authorization Property................. 30-26
30.7.2 Setting Authorization on ADF Binding Containers .. 30-26
30.7.3 Setting Authorization on ADF Iterator Bindings... 30-26
30.7.4 Setting Authorization on ADF Attribute and MethodAction Bindings 30-27
30.7.5 What Happens When Oracle ADF Security Handles Authorization...................... 30-27
30.8 Implementing Authorization Programmatically .. 30-28
30.8.1 Making User Information EL Accessible... 30-29

xxx

30.8.1.1 Creating a Class to Manage Roles ... 30-29
30.8.1.2 Creating a Managed Bean for the Security Information 30-31

31 Creating Data Control Adapters

31.1 Introduction to the Simple CSV Data Control Adapter ... 31-1
31.2 Overview of Steps to Create a Data Control Adapter .. 31-2
31.3 Implement the Abstract Adapter Class .. 31-3
31.3.1 Location of JAR Files .. 31-3
31.3.2 Abstract Adapter Class Outline.. 31-3
31.3.3 Complete Source for the SampleDCAdapter Class ... 31-4
31.3.4 Implementing the initialize Method .. 31-7
31.3.5 Implementing the invokeUI Method ... 31-7
31.3.6 Implementing the getDefinition Method .. 31-8
31.4 Implement the Data Control Definition Class ... 31-9
31.4.1 Location of JAR Files .. 31-9
31.4.2 Data Control Definition Class Outline .. 31-9
31.4.3 Complete Source for the SampleDCDef Class.. 31-10
31.4.4 Creating a Default Constructor... 31-13
31.4.5 Collecting Metadata from the User .. 31-13
31.4.6 Defining the Structure of the Data Control... 31-14
31.4.7 Creating an Instance of the Data Control.. 31-15
31.4.8 Setting the Metadata for Runtime .. 31-16
31.4.9 Setting the Name for the Data Control .. 31-17
31.5 Implement the Data Control Class .. 31-18
31.5.1 Location of JAR Files .. 31-18
31.5.2 Data Control Class Outline ... 31-19
31.5.3 Complete Source for the SampleDataControl Class .. 31-19
31.5.4 Implementing the invokeOperation Method.. 31-22
31.5.4.1 About Calling processResult.. 31-24
31.5.4.2 Return Value for invokeOperation ... 31-24
31.5.5 Implementing the getName Method ... 31-24
31.5.6 Implementing the release Method ... 31-25
31.5.7 Implementing the getDataProvider Method .. 31-25
31.6 Create any Necessary Supporting Classes ... 31-25
31.7 Create an XML File to Define Your Adapter ... 31-26
31.8 Build Your Adapter ... 31-27
31.9 Package and Deploy Your Adapter to JDeveloper ... 31-28
31.10 Location of Javadoc Information ... 31-30
31.11 Contents of Supporting Files.. 31-30
31.11.1 sampleDC.xsd ... 31-30
31.11.2 CSVHandler Class .. 31-30
31.11.3 CSVParser .. 31-37

32 Working Productively in Teams

32.1 Using CVS with an ADF Project .. 32-1
32.1.1 Choice of Internal or External CVS Client .. 32-1
32.1.2 Preference Settings.. 32-1

xxxi

32.1.3 File Dependencies... 32-1
32.1.4 Use Consistent Connection Definition Names ... 32-2
32.1.5 General Advice for Committing ADF Work to CVS ... 32-2
32.1.5.1 Other Version Control Tips and Techniques... 32-2
32.1.6 Check Out or Update from the CVS Repository .. 32-3
32.1.7 Special Consideration when Manually Adding Navigation Rules to the

faces-config.xml File 32-3
32.2 General Advice for Using CVS with JDeveloper .. 32-3
32.2.1 Team-Level Activities .. 32-3
32.2.2 Developer-Level Activities .. 32-4
32.2.2.1 Typical Workflow When Checking Your Work Into CVS................................... 32-4
32.2.2.2 Handling CVS Repository Configuration Files... 32-5
32.2.2.3 Advice for Merge Conflicts in ADF Business Components Projects 32-5

33 Working with Web Services

33.1 What are Web Services.. 33-1
33.1.1 SOAP .. 33-2
33.1.2 WSDL.. 33-2
33.1.3 UDDI... 33-2
33.1.4 Web Services Interoperability ... 33-3
33.2 Creating Web Service Data Controls... 33-4
33.2.1 How to Create a Web Service Data Control.. 33-4
33.3 Securing Web Service Data Controls .. 33-5
33.3.1 WS-Security Specification.. 33-5
33.3.2 Creating and Using Keystores .. 33-6
33.3.2.1 How to Create a Keystore .. 33-6
33.3.2.2 How to Request a Certificate ... 33-7
33.3.2.3 How to Export a Public Key Certificate ... 33-8
33.3.3 Defining Web Service Data Control Security ... 33-9
33.3.3.1 How to Set Authentication... 33-9
33.3.3.2 How to Set Digital Signatures.. 33-12
33.3.3.3 How to Set Encryption and Decryption... 33-13
33.3.3.4 How to Use a Key Store.. 33-13
33.4 Publishing Application Modules as Web Services.. 33-14
33.4.1 How to Enable the J2EE Web Service Option for an Application Module 33-14
33.4.2 What Happens When You Enable the J2EE Web Service Option............................ 33-15
33.4.3 What You May Need to Know About Deploying an Application Module as a Web

Service 33-16
33.4.4 What You May Need to Know About Data Types Supported for Web Service Methods

33-16
33.5 Calling a Web Service from an Application Module.. 33-16
33.5.1 Understanding the Role of the Web Services Description Language Document.. 33-16
33.5.2 Understanding the Role of the Web Service Proxy Class ... 33-17
33.5.3 How to Call a Web Service from an Application Module .. 33-17
33.5.3.1 Creating a Web Service Proxy Class for a Web Service 33-17
33.5.3.2 Understanding the Generated Web Service Proxy... 33-18
33.5.3.3 Calling a Web Service Method Using the Web Service Proxy Class................ 33-19

xxxii

33.5.4 What Happens When You Call a Web Service from an Application Module....... 33-19
33.5.5 What You May Need to Know.. 33-19
33.5.5.1 Use a Try/Catch Block to Handle Web Service Exceptions.............................. 33-19
33.5.5.2 Web Services are Do Not Share a Transaction with the Application Module 33-20
33.5.5.3 Setting Browser Proxy Information .. 33-20

34 Deploying ADF Applications

34.1 Introduction to Deploying ADF Applications... 34-1
34.2 Deployment Steps .. 34-2
34.3 Deployment Techniques ... 34-8
34.4 Deploying Applications Using Ant... 34-9
34.5 Deploying the SRDemo Application... 34-9
34.6 Deploying to Oracle Application Server .. 34-9
34.6.1 Oracle Application Server Versions Supported ... 34-10
34.6.2 Oracle Application Server Release 2 (10.1.2) Deployment Notes 34-10
34.6.3 Oracle Application Server Deployment Methods.. 34-11
34.6.4 Oracle Application Server Deployment to Test Environments ("Automatic

Deployment") 34-11
34.6.5 Oracle Application Server Deployment to Clustered Topologies 34-12
34.7 Deploying to JBoss ... 34-12
34.7.1 JBoss Versions Supported.. 34-12
34.7.2 JBoss Deployment Notes ... 34-12
34.7.3 JBoss Deployment Methods .. 34-14
34.8 Deploying to WebLogic .. 34-14
34.8.1 WebLogic Versions Supported ... 34-14
34.8.2 WebLogic Versions 8.1 and 9.0 Deployment Notes... 34-14
34.8.3 WebLogic 8.1 Deployment Notes... 34-15
34.8.4 WebLogic 9.0 Deployment Notes... 34-15
34.8.5 WebLogic Deployment Methods.. 34-15
34.9 Deploying to WebSphere.. 34-16
34.9.1 WebSphere Versions Supported... 34-16
34.9.2 WebSphere Deployment Notes .. 34-16
34.9.3 WebSphere Deployment Methods ... 34-16
34.10 Deploying to Tomcat ... 34-17
34.10.1 Tomcat Versions Supported.. 34-17
34.10.2 Tomcat Deployment Notes.. 34-17
34.11 Deploying to Application Servers That Support JDK 1.4 .. 34-17
34.11.1 Switching Embedded OC4J to JDK 1.4 .. 34-18
34.12 Installing ADF Runtime Library on Third-Party Application Servers 34-18
34.12.1 Installing the ADF Runtime Libraries from JDeveloper ... 34-18
34.12.2 Configuring WebSphere 6.0.1 to Run ADF Applications ... 34-21
34.12.2.1 Source for install_adflibs_1013.sh Script.. 34-22
34.12.2.2 Source for install_adflibs_1013.cmd Script .. 34-24
34.12.3 Installing the ADF Runtime Libraries Manually ... 34-26
34.12.3.1 Installing the ADF Runtime Libraries from a Zip File 34-28
34.12.4 Deleting the ADF Runtime Library.. 34-29
34.13 Verifying Deployment and Troubleshooting ... 34-29

xxxiii

34.13.1 How to Test Run Your Application ... 34-30
34.13.2 "Class Not Found" or "Method Not Found" Errors ... 34-30
34.13.3 Application Is Not Using data-sources.xml File on Target Application Server 34-30
34.13.4 Using jazn-data.xml with the Embedded OC4J Server ... 34-31
34.13.5 Error "JBO-30003: The application pool failed to check out an application module due

to the following exception" 34-31

Part V Appendices

A Reference ADF XML Files

A.1 About the ADF Metadata Files .. A-1
A.2 ADF File Overview Diagram ... A-2
A.2.1 Oracle ADF Data Control Files ... A-2
A.2.2 Oracle ADF Data Binding Files... A-3
A.2.3 Oracle ADF Faces and Web Configuration Files.. A-3
A.3 ADF File Syntax Diagram... A-4
A.4 bc4j.xcfg ... A-5
A.5 DataBindings.cpx ... A-6
A.5.1 DataBindings.cpx Syntax... A-7
A.5.2 DataBindings.cpx Sample.. A-8
A.6 <pageName>PageDef.xml... A-8
A.6.1 PageDef.xml Syntax.. A-9
A.6.2 PageDef.xml Sample for Attributes of a View Object ... A-18
A.6.3 PageDef.xml Sample for the Entire View Object.. A-19
A.7 web.xml ... A-20
A.7.1 Tasks Supported by the web.xml File.. A-21
A.7.1.1 Configuring for State Saving ... A-21
A.7.1.2 Configuring for Application View Caching .. A-22
A.7.1.3 Configuring for Debugging ... A-22
A.7.1.4 Configuring for File Uploading... A-23
A.7.1.5 Configuring for ADF Model Binding ... A-24
A.7.1.6 Other Context Configuration Parameters for JSF ... A-24
A.7.1.7 What You May Need to Know .. A-25
A.8 j2ee-logging.xml ... A-25
A.8.1 Tasks Supported by the j2ee-logging.xml ... A-25
A.8.1.1 Change the Logging Level for Oracle ADF Packages .. A-25
A.8.1.2 Redirect the Log Output... A-26
A.8.1.3 Change the Location of the Log File ... A-26
A.9 faces-config.xml.. A-26
A.9.1 Tasks Supported by the faces-config.xml.. A-27
A.9.1.1 Registering a Render Kit for ADF Faces Components... A-27
A.9.1.2 Registering a Phase Listener for ADF Binding.. A-27
A.9.1.3 Registering a Message Resource Bundle.. A-28
A.9.1.4 Configuring for Supported Locales .. A-28
A.9.1.5 Creating Navigation Rules and Cases .. A-29
A.9.1.6 Registering Custom Validators and Converters ... A-30
A.9.1.7 Registering Managed Beans... A-30

xxxiv

A.10 adf-faces-config.xml... A-32
A.10.1 Tasks Supported by adf-faces-config.xml ... A-33
A.10.1.1 Configuring Accessibility Levels... A-33
A.10.1.2 Configuring Currency Code and Separators for Number Groups and Decimals

A-33
A.10.1.3 Configuring For Enhanced Debugging Output .. A-34
A.10.1.4 Configuring for Client-Side Validation and Conversion..................................... A-34
A.10.1.5 Configuring the Language Reading Direction.. A-34
A.10.1.6 Configuring the Skin Family.. A-35
A.10.1.7 Configuring the Output Mode .. A-35
A.10.1.8 Configuring the Number of Active ProcessScope Instances............................... A-35
A.10.1.9 Configuring the Time Zone and Year Offset ... A-35
A.10.1.10 Configuring a Custom Uploaded File Processor .. A-36
A.10.1.11 Configuring the Help Site URL ... A-36
A.10.1.12 Retrieving Configuration Property Values From adf-faces-config.xml A-36
A.11 adf-faces-skins.xml .. A-37
A.11.1 Tasks Supported by adf-faces-skins.xml ... A-37

B Reference ADF Binding Properties

B.1 EL Properties of Oracle ADF Bindings ... B-1

C ADF Equivalents of Common Oracle Forms Triggers

C.1 Validation & Defaulting (Business Logic) .. C-1
C.2 Query Processing ... C-2
C.3 Database Connection... C-3
C.4 Transaction "Post" Processing (Record Cache) .. C-3
C.5 Error Handling ... C-4

D Most Commonly Used ADF Business Components Methods

D.1 Most Commonly Used Methods in the Client Tier... D-1
D.1.1 ApplicationModule Interface.. D-2
D.1.2 Transaction Interface .. D-3
D.1.3 ViewObject Interface .. D-3
D.1.4 RowSet Interface ... D-5
D.1.5 RowSetIterator Interface .. D-5
D.1.6 Row Interface... D-7
D.1.7 StructureDef Interface .. D-7
D.1.8 AttributeDef Interface .. D-8
D.1.9 AttributeHints Interface... D-9
D.2 Most Commonly Used Methods In the Business Service Tier .. D-9
D.2.1 Controlling Custom Java Files For Your Components.. D-9
D.2.2 ApplicationModuleImpl Class.. D-10
D.2.2.1 Methods You Typically Call on ApplicationModuleImpl................................... D-10
D.2.2.2 Methods You Typically Write in Your Custom ApplicationModuleImpl Subclass...

D-11
D.2.2.3 Methods You Typically Override in Your Custom ApplicationModuleImpl

Subclass D-11

xxxv

D.2.3 DBTransactionImpl2 Class .. D-12
D.2.3.1 Methods You Typically Call on DBTransaction.. D-13
D.2.3.2 Methods You Typically Override in Your Custom DBTransactionImpl2 Subclass ...

D-13
D.2.4 EntityImpl Class.. D-14
D.2.4.1 Methods You Typically Call on EntityImpl... D-14
D.2.4.2 Methods You Typically Write in Your Custom EntityImpl Subclass D-15
D.2.4.3 Methods You Typically Override on EntityImpl.. D-15
D.2.5 EntityDefImpl Class ... D-17
D.2.5.1 Methods You Typically Call on EntityDefImpl .. D-17
D.2.5.2 Methods You Typically Write on EntityDefImpl.. D-17
D.2.5.3 Methods You Typically Override on EntityDefImpl ... D-18
D.2.6 ViewObjectImpl Class.. D-18
D.2.6.1 Methods You Typically Call on ViewObjectImpl... D-18
D.2.6.2 Methods You Typically Write in Your Custom ViewObjectImpl Subclass D-19
D.2.6.3 Methods You Typically Override in Your Custom ViewObjectImpl Subclass D-20
D.2.7 ViewRowImpl Class ... D-20
D.2.7.1 Methods You Typically Call on ViewRowImpl .. D-20
D.2.7.2 Methods You Typically Write on ViewRowImpl ... D-21
D.2.7.3 Methods You Typically Override in Your Custom ViewRowImpl Subclass ... D-21
D.2.8 Setting Up Your Own Layer of Framework Base Classes .. D-22

E ADF Business Components J2EE Design Pattern Catalog

E.1 J2EE Design Patterns Implemented by ADF Business Components.................................. E-1

Index

xxxvi

xxxvii

 Preface

Welcome to the Oracle Application Development Framework Developer’s Guide for
Forms/4GL Developers!

Audience
This manual is intended for enterprise developers who are familiar with 4GL tools like
Oracle Forms, PeopleTools, SiebelTools, and Visual Studio, and who need to create and
deploy database-centric J2EE applications with a service-oriented architecture using
the Oracle Application Development Framework (Oracle ADF). This guide explains
how to build these applications using ADF Business Components, JavaServer Faces,
and ADF Faces: the same technology stack Oracle employs to build the web-based
Oracle EBusiness Suite.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Note: If you are already an advanced J2EE developer and
maximally declarative development is not a top priority, Oracle
offers a parallel developer's guide for Oracle ADF that may be more
appropriate for you. In particular, if you prefer building your
business service layer using EJB session beans, POJO classes, an
O/R mapping layer, and your own J2EE design pattern code, this
other guide helps you understand how to use Oracle ADF with
these business service implementation technologies. You can access
this alternative guide from JDeveloper 10g product center on OTN
at http://otn.oracle.com/jdev/.

http://otn.oracle.com/jdev/

xxxviii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents:

■ Oracle Application Development Framework Developer’s Guide, an alternative guide for
advanced J2EE developers who wish to work with EJB seesion beans in their
application’s business service layer, among other technologies.

■ Oracle JDeveloper 10g Release Notes, included with your JDeveloper 10g installation,
and on Oracle Technology Network

■ Oracle JDeveloper 10g Online Help

■ Oracle Application Server 10g Release Notes

■ Oracle Application Server 10g Documentation Library available on CD-ROM and on
Oracle Technology Network

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Getting Started with Oracle ADF

Applications

Part I contains the following chapters:

■ Chapter 1, "Introduction to Oracle ADF Applications"

■ Chapter 2, "Overview of Development Process with Oracle ADF and JSF"

■ Chapter 3, "Oracle ADF Service Request Demo Overview"

Introduction to Oracle ADF Applications 1-1

1
Introduction to Oracle ADF Applications

This chapter describes the architecture and key functionality of the Oracle Application
Development Framework (Oracle ADF).

This chapter includes the following sections:

■ Section 1.1, "Introduction to Oracle ADF"

■ Section 1.2, "Framework Architecture and Supported Technologies"

■ Section 1.3, "Declarative Development with Oracle ADF and JavaServer Faces"

■ Section 1.4, "Highlights of Additional ADF Features"

1.1 Introduction to Oracle ADF
The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on J2EE standards and open-source technologies to
simplify and accelerate implementing service-oriented applications. If you develop
enterprise solutions that search, display, create, modify, and validate data using web,
wireless, desktop, or web services interfaces, Oracle ADF can simplify your job. Used
in tandem, Oracle JDeveloper 10g and Oracle ADF give you an environment that
covers the full development lifecycle from design to deployment, with drag-and-drop
data binding, visual UI design, and team development features built-in.

1.2 Framework Architecture and Supported Technologies
In line with community best practices, applications you build using Oracle ADF
achieve a clean separation of business logic, page navigation, and user interface by
adhering to a model, view, controller architecture. As shown in Figure 1–1, in an MVC
architecture:

■ The model layer represents the data values related to the current page

■ The view layer contains the UI pages used to view/modify that data

■ The controller layer processes user input and determines page navigation

■ The business service layer handles data access and encapsulates business logic

Framework Architecture and Supported Technologies

1-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 1–1 MVC Architecture Cleanly Separates UI, Business Logic and Page Navigation

Figure 1–2 illustrates where each ADF module fits in this architecture. The core
module in the framework is Oracle ADF Model, a declarative data binding facility that
implements the JSR-227 specification. The Oracle ADF Model layer enables a unified
approach to bind any user interface to any business service with no code. The other
modules Oracle ADF comprises are:

■ Oracle ADF Business Components, which simplifies building business services for
developers familiar with 4GL tools like Oracle Forms, PeopleTools, SiebelTools,
Visual Studio, and others

■ Oracle ADF Faces, which offers a rich library of UI components for web
applications built with JavaServer Faces (JSF)

■ Oracle ADF Swing, which extends Oracle ADF Model to desktop applications
built with Swing

■ Oracle ADF Controller, which integrates Struts and JSF with Oracle ADF Model

Figure 1–2 Simple ADF Architecture

1.2.1 View Layer Technologies Supported
In the view layer of your application, where you design the web user interface, you
can develop using either classic JavaServer Pages (JSP) or the latest JavaServer Faces
(JSF) standard. Alternatively, you can choose the polish and interactivity of a desktop
UI, and develop using any off-the-shelf Swing components or libraries to ensure just
the look and feel you need. Whatever your choice, you work with WYSIWYG visual
designers and drag-and-drop data binding. One compelling reason to choose JSF is the
comprehensive library of nearly one hundred JSF components that the ADF Faces
module provides.

Framework Architecture and Supported Technologies

Introduction to Oracle ADF Applications 1-3

ADF Faces components include sophisticated features like look and feel "skinning"
and the ability to incrementally update only the bits of the page that have changed
using the latest AJAX programming techniques. The component library supports
multiple JSF render kits to allow interfacing with web browsers and PDA telnet
devices. In short, these components dramatically simplify building highly attractive
and functional web and wireless UIs without getting your hands "dirty" with HTML
and JavaScript.

1.2.2 Controller Layer Technologies Supported
In the controller layer, where handling page flow of your web applications is a key
concern, Oracle ADF integrates both with the popular Apache Struts framework and
the built-in page navigation functionality included in JSF. In either case, JDeveloper
offers visual page flow diagrammers to design your page flow, and the ADF Controller
module provides appropriate plug-ins to integrate the ADF Model data binding
facility with the controller layer's page processing lifecycle.

1.2.3 Business Services Technologies Supported by ADF Model
In the model layer, Oracle ADF Model implements the JSR-227 service abstraction
called the data control and provides out-of-box data control implementations for the
most common business service technologies. Whichever ones you employ, JDeveloper
and Oracle ADF work together to provide you a declarative, drag-and-drop data
binding experience as you build your user interfaces. Supported technologies include:

■ ADF application modules

These service components expose an updateable dataset of SQL query results with
automatic business rules enforcement.

■ Web Services

When the services your application requires expose standard web services
interfaces, just supply Oracle ADF with the URL to the relevant Web Services
Description Language (WSDL) for the service endpoints and begin building user
interfaces that interact with them and present their results.

■ XML

If your application needs to interact with XML or comma-separated values (CSV)
data that is not exposed as a web service, you need only supply the provider URL
and optional parameters and you can work with the data.

■ JavaBeans and Enterprise JavaBeans (EJB) Session Beans

When necessary, you can easily work with any Java-based service classes as well,
including EJBs that support transactions.

1.2.4 Recommended Technologies for Enterprise 4GL Developers
For enterprise 4GL developers building new web applications, Oracle recommends
using JavaServer Faces for the view and controller layers, and ADF Business
Components for the business service implementation. This combination offers you the
same productive J2EE technology stack that over 4000 of Oracle's own enterprise 4GL
developers use every day to build the Oracle E-Business Suite. Since its initial release
in 1999, several thousand external customers and partners have built and deployed
successful Oracle ADF-based applications as well. Both now and in the future, Oracle
and others are betting their business on Oracle ADF with ADF Business Components.

Declarative Development with Oracle ADF and JavaServer Faces

1-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

1.3 Declarative Development with Oracle ADF and JavaServer Faces
Even as a seasoned user of rapid application development tools like Oracle Forms,
PeopleTools, SiebelTools, or Visual Basic, you've likely already had some exposure to
Java 2 Enterprise Edition. Maybe your interest in J2EE began as it did for Oracle's own
E-Business Suite division, while evaluating standards-based architectures for
self-service web applications to complement traditional desktop UIs for professional
users. Or perhaps you've simply been studying in your spare time to expand your skill
set and reinforce your resume.

Whatever your point of departure, initial impressions of your J2EE experience
probably parallel those of fellow 4GL users. You understand how J2EE can increase
flexibility, reuse, and choice, but its many "moving parts" leave you a little puzzled.
Accustomed to banging out screen after screen with your familiar 4GL tools, you fear
it's more likely your head you'll be banging if you have to write all that J2EE code by
hand. You'll be glad to learn that all of the 4GL features you are familiar with have an
analog in JDeveloper 10g with Oracle ADF, including:

■ Declarative data access and validation

■ Declarative user interface design and page navigation

■ Declarative data binding

■ Simple, event-driven approach to add custom logic where needed

When you use Oracle ADF’s XML- and Java-based declarative development facilities
in Oracle JDeveloper 10g, you also benefit from design-time error highlighting,
context-sensitive editing assistance, and compile-time error checking.

1.3.1 Declarative Data Access and Validation with ADF Business Components
When building service-oriented J2EE applications, you implement your core business
logic as one or more business services. These backend services provide clients a way to
query, insert, update, and delete business data as required while enforcing appropriate
business rules. ADF Business Components are prebuilt application objects that
accelerate the job of delivering and maintaining high performance, richly-functional,
data-centric services. They provide you a ready-to-use implementation of all the J2EE
design patterns and best practices that Oracle's own application developers have
found are needed to do the job right. By leveraging this road-tested code, you focus on
your own application-specific logic instead of reinventing the wheel.

As illustrated in Figure 1–3, Oracle ADF provides the following key components to
simplify building database-centric business services:

■ Entity object

An entity object represents a row in a database table and simplifies modifying its
data by handling all DML operations for you. It can encapsulate business logic for
the row to ensure your business rules are consistently enforced. You associate an
entity object with others to reflect relationships in the underlying database schema
to create a layer of business domain objects to reuse in multiple applications.

■ Application module

An application module is the transactional component that UI clients use to work
with application data. It defines an updateable data model and top-level
procedures and functions (called service methods) related to a logical unit of work
related to an end-user task.

Declarative Development with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-5

■ View object

A view object represents a SQL query and simplifies working with its results. You
use the full power of the familiar SQL language to join, project, filter, sort, and
aggregate data into exactly the "shape" required by the end-user task at hand. This
includes the ability to link a view object with others to create master/detail
hierarchies of any complexity. When end users modify data in the user interface,
your view objects collaborate with entity objects to consistently validate and save
the changes.

Figure 1–3 ADF Business Components Simplify Data Access and Validation

1.3.2 Declarative User Interface Design and Page Navigation with JavaServer Faces
JavaServer Faces simplifies building web user interfaces by introducing web UI
components that have attributes, events, and a consistent runtime API. Instead of
wading knee-high through tags and script, you assemble web pages from libraries of
off-the-shelf, data-aware components that adhere to the JSF standard.

1.3.2.1 Declarative User Interface Design with JSF
The industry experts who collaborated on the JavaServer Faces standard incorporated
numerous declarative development techniques into the design. For example, in JSF
you use a simple expression language to work with the information you want to present.
Example expressions look like #{UserList.selectedUsers} to reference a set of
selected users, #{user.name} to reference a particular user's name, or #{user.role
== 'manager'} to evaluate whether a user is a manager or not. At runtime, a generic
expression evaluator returns the List, String, and boolean value of these

Tip: Oracle Forms developers will immediately recognize this
combined functionality as the same set of data-centric features
provided by the form, data blocks, record manager, and form-level
procedures/functions. The key difference in ADF is that the user
interface is cleanly separated from data access and validation
functionality. For more information, see Section 4.3.1, "Familiar
Concepts for Oracle Forms Developers"

Declarative Development with Oracle ADF and JavaServer Faces

1-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

respective expressions, automating access to the individual objects and their properties
without requiring code. This declarative expression language, nicknamed "EL,"
originally debuted as part of the JSTL tag library and an improved version is now
incorporated in the current JSP and JSF standards.

At runtime, the value of a JSF UI component is determined by its value attribute.
While a component can have static text as its value, typically the value attribute will
contain an EL expression that the runtime infrastructure evaluates to determine what
data to display. For example, an outputText component that displays the name of
the currently logged-in user might have its value attribute set to the expression
#{UserInfo.name}. Since any attribute of a component can be assigned a value
using an EL expression, it's easy to build dynamic, data-driven user interfaces. For
example, you could hide a component when a set of objects you need to display is
empty by using a boolean-valued expression like #{not empty
UserList.selectedUsers} in the UI component's rendered attribute. If the list of
selected users in the object named UserList is empty, the rendered attribute
evaluates to false and the component disappears from the page.

To simplify maintenance of controller-layer application logic, JSF offers a declarative
object creation mechanism. To use it, you configure the Java objects you need to use in
a JSF faces-config.xml file. These objects are known as managed beans since they
have properties that follow the JavaBeans specification and since the JSF runtime
manages instantiating them on demand when any EL expression references them for
the first time. JSF also offers a declarative mechanism to set the properties of these
beans as they are first created. Managed beans can have managed properties whose
runtime value is assigned by the JSF runtime based on a developer-supplied EL
expression. Managed properties can depend on other beans that, in turn, also have
managed properties of their own, and the JSF runtime will guarantee that the "tree" of
related beans is created in the proper order.

Figure 1–4 shows how JSF managed beans serve two primary roles.

Figure 1–4 Basic Architecture of a JSF Application

Declarative Development with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-7

Request-scoped managed beans that are tightly related to a given page are known
colloquially as backing beans, since they support the page at runtime with properties
and methods. The relationship between a UI component in the page and the backing
bean properties and methods is established by EL expressions in appropriate attributes
of the component like:

■ value="#{expr}"

References a property with data to display or modify

■ action="#{expr}"

References a method to handle events

■ binding="#{expr}"

References a property holding a corresponding instance of the UI component that
you need to manipulate programmatically — show/hide, change color, and so on.

Think of managed beans that aren't playing the role of a page's backing bean simply as
"application logic beans." They contain code and properties that are not specific to a
single page. While not restricted to this purpose, they sometimes function as business
service wrappers to cache method results in the controller layer beyond a single
request and to centralize pre- or post-processing of business service methods that
might be used from multiple pages.

In addition to using managed beans, you can also write application code in a
PhaseListener class to augment any of the standard processing phases involved in
handling a request for a JSF page. These standard steps that the JSF runtime goes
through for each page are known as the "lifecycle" of the page. Most real-world JSF
applications will end up customizing the lifecycle by implementing a custom phase
listener of some kind, typically in order to perform tasks like preparing model data for
rendering when a page initially displays.

1.3.2.2 Declarative Page Navigation with JSF
In addition to declarative UI design, JSF also provides a mechanism to declaratively
define page navigation rules. Developers define these rules by specifying logical
names for the legal navigation "outcomes" of a user's interaction with a page. For
example, while on a UserDetails.jspx page modifying details of an account, an
end user may interact with the page by clicking a Save button. The logical navigation
outcomes of this interaction might be to go to a MoreDetails.jspx page to see more
details, or else go back to a BrowseUsers.jspx page to see a list of user accounts. As
shown in Figure 1–5, you might pick names like GotoMoreDetailsPage and
BackToBrowsePage to describe these two outcomes. The navigation rule information
is saved along with other configuration information in the faces-config.xml file,
and at runtime JSF handles the page navigation based on these logical outcome names.

Figure 1–5 Visualizing JSF Navigation Rules in JDeveloper's Page Flow Diagram

Declarative Development with Oracle ADF and JavaServer Faces

1-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

1.3.3 Declarative Data Binding with Oracle ADF Model Layer
The Oracle ADF Model layer uses XML configuration files to drive generic data
binding features. It implements the two concepts in JSR-227 that enable decoupling the
user interface technology from the business service implementation: data controls and
declarative bindings.

Data controls abstract the implementation technology of a business service by using
standard metadata interfaces to describe the service’s operations and data collections,
including information about the properties, methods, and types involved. At design
time, visual tools like JDeveloper can leverage the standard service metadata to
simplify binding UI components to any data control operation or data collection. At
runtime, the generic Oracle ADF Model layer reads the information describing your
data controls and bindings from appropriate XML files and implements the two-way
"wiring" that connects your user interface to your business service. This combination
enables three key benefits:

■ You write less code, so there are fewer lines to test and debug.

■ You work the same way with any UI and business service technologies.

■ You gain useful runtime features that you don't have to code yourself.

Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations. There are three basic kinds of declarative
binding objects that automate the key aspects of data binding that all enterprise
applications require:

■ Iterator bindings to bind to an iterator that tracks the current row in a data
collection

■ Value bindings to connect UI components to attributes in a data collection

■ Action bindings to invoke custom or built-it operations on a data control or its
data collections

Iterator bindings simplify building user interfaces that allow scrolling and paging
through collections of data and drilling-down from summary to detail information. UI
components that display data use value bindings. Value bindings range from the most
basic variety that work with a simple text field to more sophisticated list, table, and
tree bindings that support the additional needs of list, table, and tree UI controls. An
action binding is used by UI components like hyperlinks or buttons to invoke built-in
or custom operations on data collections or a data control without writing code.

Figure 1–6 illustrates the architecture of a JSF application when you leverage ADF
Model for declarative data binding. By combining Oracle ADF Model with JavaServer
Faces, you avoid having to write a lot of the typical managed bean code (shown above
in Figure 1–4) that would be required for real-world applications.

Declarative Development with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-9

Figure 1–6 Architecture of a JSF Application Using ADF Model Data Binding

In fact, many pages you build won't require a backing bean at all, unless you perform
programmatic controller logic that can't be handled by a built-in action or service
method invocation (which ADF Model can do without code for you). You can also
avoid having to write any application logic beans that wrap your business service,
since the ADF Model's data control implements this functionality for you. And finally,
you can often avoid the need to write any custom JSF phase listeners because ADF
Model offers a generic JSF phase listener that performs most of the common operations
you need in a declarative way based on information in your page definition metadata.

1.3.4 Simple, Event-Driven Approach to Add Custom Logic
Oracle ADF provides you a lot of declarative functionality and spares you from having
to master and implement all the J2EE design patterns required for enterprise J2EE
applications. The Java code you do write, as has always been the case in your familiar
4GL tools, is only the code that's unique to your specific business application or user
interface interactions. The web-based applications you'll build using Oracle ADF have
a cleanly layered architecture consisting of:

■ JSF pages with UI components in the view layer

■ JSF backing beans containing UI event handling and page flow logic in the
controller layer

■ ADF Model declarative data binding in model layer

■ ADF Business Components implementing data access and validation in the
business services layer

In practice, since the UI components are represented as nested tags in a JSP page, and
declarative bindings are captured in the XML page definition file, the two layers in
which you will write application-specific code are the controller layer and the business
services layer.

Declarative Development with Oracle ADF and JavaServer Faces

1-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

1.3.4.1 Simple-to-Handle Events in the Controller Layer
When the end user interacts with JSF UI components in the browser, they raise events
you can handle. For example, the user might:

■ Click on a button or a hyperlink

■ Change the selection in a dropdown list

■ Expand or collapse a level in a tree display

You can write event-handling code in a JSF backing bean for a page that is triggered
when these kind of UI events occur. These event handlers will look like the following:

Example 1–1 Handling a button click event in a backing bean

public String saveButton_onClick() {
// Add event code here...
if (userRequiresMoreDetailsPage()) {
return "GotoMoreDetailsPage";

else {
return "BackToBrowsePage";

}
}

Example 1–2 Handling a dropdown list's value change event in a backing bean

public void roleList_onListChanged(ValueChangeEvent event) {
// Add event code here...

}

Example 1–3 Handling a tree control's expand/collapse event in a backing bean

public void mgmtChainTree_onExpandCollapse(DisclosureEvent event) {
// Add event code here...

}

The code you add inside these methods gets automatically triggered by the JSF
runtime to handle the event when the user interacts with the related UI component.
They will typically contain code that manipulates UI components on the page —
hiding/showing them, changing colors, and so on — or that performs conditional
page navigation logic. Should you want to handle some logic completely in the
browser client, in addition to server-side JSF event-handling code, you can associate
client-side JavaScript with UI components as well.

Tip: These three JSF event handling methods are similar to the
UI-related triggers in Oracle Forms named
WHEN-BUTTON-PRESSED, WHEN-LIST-CHANGED, and
WHEN-TREE-NODE-EXPANDED respectively.

Declarative Development with Oracle ADF and JavaServer Faces

Introduction to Oracle ADF Applications 1-11

1.3.4.2 Simple-to-Handle Events in the Business Service Layer
When the user works with data in the UI, the ADF Model layer coordinates any
changes with the appropriate data collection in the data control. For example, in a
web-based customer service portal application like the one you’ll study in this guide,
end-users of the system with different roles might:

■ Create a new service request to ask for assistance in resolving a problem

■ Update a service request to assign it to a new technician

■ Try to delete a service request

In response to these events, your business requirements might demand that:

■ The request date of the service request be defaulted to the current time, rounded to
the nearest ten-minute interval

■ An appropriate technician be assigned based on availability and area of expertise
when the service request is first saved to the database

■ A technician assignment is validated to ensure that the technician has the
appropriate expertise to work on the current request

■ Only managers are allowed to delete a service request

Regardless of which view object the end user's action affects, if it relates to data from
the SERVICE_REQUESTS table, then your central ServiceRequest entity object
handles the validation and saving of those changes. The event handling code that you
might write in this entity object's custom Java class get triggered at the appropriate
time. These event handlers will look something like this:

Example 1–4 Handing the create event in an entity object

protected void create(AttributeList attrs) {
// First perform the default "built-in" functionality
super.create(attrs);
// Add custom creation-time defaulting logic here...
// Default the request date to the current date
setRequestDate(currentTimeRoundedToNearestTenMinutes());

}

Example 1–5 Handling the DML event for INSERT in an entity object

protected void prepareForDML(int operation, TransactionEvent event) {
// First perform the default "built-in" functionality
super.prepareForDML(operation, event);
// If we're doing an INSERT, then default the technican id
if (operation == DML_INSERT) {
// Auto-assign the new service request
setAssignedTo(determineDefaultTechnicianId());

}
}

Example 1–6 Handling an attribute validation event for AssignedTo

public boolean validateAssignedTo(Number newTechnicianId) {
// Add custom validation code here for AssignedTo attribute
// return true if valid, and false if not.
return doesTechnicianHaveAppropriateExpertise(newTechnicianId);

}

Declarative Development with Oracle ADF and JavaServer Faces

1-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 1–7 Handling the remove event for an entity object

public void remove() {
// Add custom remove-time logic here...
if (isUserAllowedToDeleteRequest() == false) {
throw new JboException("You aren't allowed to remove a service request.");

}
super.remove();

}

To ensure modular and encapsulated code, the helper functions called by these sample
event handlers like currentTimeRoundedToNearestTenMinutes(),
determineDefaultTechnicianId(),
doesTechnicianHaveAppropriateExpertise(), and
isUserAllowedToDeleteRequest() are written as private methods in the same
entity object class.

1.3.4.3 Simple to Globally Extend Basic Framework Functionality
Since all of Oracle ADF is implemented itself in Java, it's not only possible but quite
straightforward to extend the basic functionality of the framework or globally change
the default behavior to be more like what your organization needs. In other words,
rather than waiting for Oracle to implement your favorite enhancement request, you
can just implement it yourself in a class that extends the appropriate base ADF class.

Consider the example above of defaulting a Date attribute to the current time
rounded to the nearest ten minutes. The create() event handler method is what you
would write when you encounter the first entity object that requires this functionality
during your development. However, if you discover over time that your application is
requiring this facility in many different entity objects, you can choose to globally add a
new feature to the entity object base class. Example 1–8 shows a custom
OurCompanyEntityImpl class that extends the base ADF entity object class
(EntityImpl) and overrides the same create() event handling method, but this
time in a global way.

After calling the super.create() method to perform the default functionality, the
code performs the following steps:

1. Loop over all attribute definitions for this entity row.

2. If the type of an attribute is Date and a custom property named TenMinuteDate
has been set on it by the developer, default the attribute value to the current time
rounded to nearest 10 minutes.

Tip: These four event handler methods are similar to the
data-related triggers in Oracle Forms named
WHEN-CREATE-RECORD, PRE-INSERT, WHEN-VALIDATE-ITEM,
and WHEN-REMOVE-RECORD respectively.

Highlights of Additional ADF Features

Introduction to Oracle ADF Applications 1-13

Example 1–8 Extending the Oracle ADF Entity Object with a New Feature of Your Own

package com.yourcompany.fwkext;
public class OurCompanyEntityImpl extends EntityImpl {
protected void create(AttributeList attrs) {
super.create(attrs); // First perform the default "built-in" functionality
// 1. Then loop over all attribute definitions for this entity row
for (AttributeDef attr : getEntityDef().getAttributeDefs()) {
// 2. If attr is a Date and "TenMinuteDate" custom property is set
if (attr.getJavaType().equals(Date.class)

 && attr.getProperty("TenMinuteDate") != null) {
// 3. Default attr value to current time rounded to nearest 10 min
setAttribute(attr.getIndex(),currentTimeRoundedToNearestTenMinutes());

}
}

}
}

This is an example in the business service layer, but you can perform similar kinds of
global framework customizations in virtually any layer of the Oracle ADF architecture.
In practice, most Oracle ADF customers create themselves a layer of classes that
extend each of the base ADF classes, then they configure Oracle JDeveloper to use
their customized framework base classes instead of the ADF default class names. By
doing this once, it becomes a "set it and forget it" policy that JDeveloper enforces for
you as you use all of the Oracle ADF editors. Even if you initially have no need to
extend the framework, just setting up the layer of framework extension classes puts
you in the position to add code to those classes at any time — to work around a bug
you encounter, or to implement a new or augmented framework feature — without
having to revisit all of your existing applications.

1.4 Highlights of Additional ADF Features
ADF has additional functionality that can greatly improve your development
productivity. These features include:

■ Section 1.4.1, "Comprehensive JDeveloper Design-Time Support"

■ Section 1.4.2, "Sophisticated AJAX-Style Web Pages Without Coding"

■ Section 1.4.3, "Centralized, Metadata-Driven Functionality"

■ Section 1.4.4, "Generation of Complete Web Tier Using Oracle JHeadstart"

Note: Full source for Oracle ADF is available to supported
customers through Oracle Worldwide Support. The full source code
for the framework can be an important tool to assisting you in
diagnosing problems and in correctly extending the base
framework functionality for your needs.

Highlights of Additional ADF Features

1-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

1.4.1 Comprehensive JDeveloper Design-Time Support
The Studio Edition of JDeveloper includes all of the following facilities that simplify
development of enterprise solutions using Oracle ADF and JavaServer Faces:

Facilities for Business Services Development
■ Business Components wizards and editors

Quickly create and modify the components that comprise your business services
using productive wizards and editors. Reverse-engineer components from existing
tables. Synchronize your components with changes that you (or the DBA) have
made to the underlying database schema.

■ Business Components Browser

Interactively test your business service's data model even before you build a user
interface. The Business Components Browser can also help isolate where problems
in your application occur, as it runs your data model without running your user
interface.

■ Business Components Diagrammer

Visualize, create, or modify your business service and business domain layer
components using UML diagrams. Publish the diagrams to numerous formats for
reference or inclusion in system documentation.

Facilities for Declarative Data Binding
■ Data control wizards

ADF application modules are automatically exposed as data controls. Should your
needs call for working with web services, XML or CSV data from a URL,
JavaBeans, or EJB session beans, handy data control wizards guide you step by
step.

■ Data Control Palette

Visualize all application modules and other business services and drag their data
collections, properties, methods, method parameters, and method results to create
appropriate bound user interface elements. Easily create read-only and editable
forms, tables, master/detail displays, and individual bound UI components
including single and multiselect lists, checkboxes, radio groups, and so on.
Creating search forms, data creation pages, and parameter forms for invoking
methods is just as easy. If your process involves collaboration with page designers
in another team, you can drop attributes onto existing components on the page to
bind them after the fact. In addition to the UI components created, appropriate
declarative bindings are created and configured for you in the page definition file
with robust undo support so that you can modify your user interface with
confidence that your bindings and UI components will stay in sync.

■ Page Definition Editor

Visualize page definition metadata in the Structure window and configure
declarative binding properties using the appropriate editor or the Property
Inspector. Create new bindings by inserting them into the structure where desired.
Edit binding metadata with context-sensitive, XML schema-driven assistance on
the structure and valid values.

Highlights of Additional ADF Features

Introduction to Oracle ADF Applications 1-15

■ Service method invocation

Configure business service method invocations with EL expression-based
parameter passing. You can have methods invoked by the click of a command
component like a link or button, or configure your page definition to automatically
invoke the method at an appropriate phase of the JSF lifecycle

■ Page lifecycle control

Declaratively configure an iterator binding to refresh its data during a specific JSF
lifecycle phase, and optionally provide a conditional EL expression for finer
control over when that refresh is desired. You have the same control over when
any automatic method invocation should invoke its method as well.

■ Centralized error reporting

Customize the error reporting approach for your application in a single point
instead of on each page.

Facilities for Visual Web Page Design
■ Visual Web Page Designer

Design your web pages visually using the visual web page designer. The designer
is integrated with the Data Control Palette to support both drag and drop creation
of user interfaces, and UI-first page design with subsequent data binding applied
to an initial page mockup. The visual editor supports both JavaServer Faces and
traditional JSP development.

■ Page Flow Diagrammer

Design your web page navigation visually using the visual page flow diagram.
The diagrammer supports both JavaServer Faces as well as Apache Struts.

Facilities for Visual Design for Desktop-Fidelity UI's with Swing
■ Visual Form Designer

JDeveloper fully supports developing desktop-fidelity user interfaces using Forms
and Panels that use the standard Swing controls provided as part of Java itself. All
of the Oracle ADF declarative data binding and ADF Business Components
facilities work to make building either client/server or three-tier Swing
applications easy.

Note: This edition of the developer's guide focuses exclusively on
Web development with JSF. The development of desktop-fidelity
user interfaces using Oracle ADF and ADF Swing will be covered
in a separate, follow-on developer's guide dedicated to that subject.

Highlights of Additional ADF Features

1-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

1.4.2 Sophisticated AJAX-Style Web Pages Without Coding
The JSF reference implementation provides a bare-bones set of basic UI components
which includes basic HTML input field types and a simple table display, but these
won't take you very far when building real-world applications. The ADF Model layer
implements several features that work hand-in-hand with the more sophisticated UI
components in the Oracle ADF Faces library to make quick work of the rich
functionality your end users crave, including:

■ Declarative partial page refreshing for interactive UIs

For any UI component in your pages, you can indicate declaratively which other
components should trigger its being "repainted" with fresh data without causing
the entire browser page to refresh. This type of more interactive web experience is
known popularly as "Web 2.0" or "AJAX"-style pages.

■ Sophisticated table model

Tables are a critical element of enterprise application UIs. By default, JSF doesn't
support paging or sorting in tables. The ADF Faces table and the ADF Model table
binding cooperate to display pageable, editable or read-only, tables with sorting
on any column.

■ Key-based current selection tracking

One of the most common tasks of web user interfaces is presenting lists of
information and allowing the user to scroll through them or to select one or more
entries in the list. The ADF Model iterator binding simplifies tracking the selected
row in a robust way, using row keys instead of relying on positional indicators that
can change when data is refreshed. In concert with the ADF Faces table and
multiselection components, it's easy to work with single or multiple selections,
and build screens that navigate master/detail information.

■ Declarative hierarchical tree components and grids

Much of the information in enterprise applications is hierarchical, but JSF doesn't
support displaying or manipulating hierarchical data out of the box. The ADF
Model layer provides hierarchical bindings that you can configure declaratively
and use with the ADF Faces tree or hierarchical grid components to implement
interactive user interfaces that present data in the most intuitive way to your
users.

■ Flexible models for common UI components

Even simple components like the checkbox can be improved upon. By default, JSF
supports binding a checkbox only to boolean properties. ADF Model adds the
ability to map the checkbox to any combination of true or valid values your data
may present. List components are another area where ADF Model excels. The
valid values for the list can come from any data collection in a data control and the
list can perform updates or be used for row navigation, depending on your needs.
The ADF Model list binding also makes null-handling easy by optionally adding a
translatable "<No Selection>" choice to the list.

Highlights of Additional ADF Features

Introduction to Oracle ADF Applications 1-17

1.4.3 Centralized, Metadata-Driven Functionality
Oracle ADF improves the reuse of several aspects of application functionality by
allowing you to associate layered metadata with either your ADF Business
Components or, for other data control types, the data control structure definitions that
describe the data collections. These can then be reused by any page presenting their
information. Examples of this functionality are:

■ Easily localizable prompts, tooltips, and format masks

JSF supports a simple mechanism to reference translatable strings in resource
bundles, but it has no knowledge of what the strings are used for and no way to
associate the strings with specific business domain objects. ADF Business
Components improves on this by allowing your JSF pages to reference translatable
prompts, tooltips, and format masks that you can associate with any attribute of
any entity object or view object component. In this way, data is presented in a
consistent, locale-sensitive way on every page where it appears.

■ Declarative validation

JSF supports validators that can be associated with a UI component. These offer
the ability to perform basic syntactic checks on the data value. However, JSF offers
no mechanism to simplify enterprise, database-centric validation nor to easily
validate the same business domain data in a consistent way on every screen where
it's used. ADF Business Components improves on this by allowing you to
associate an extensible set of validator objects with your entity objects, and
supplement that with validation code you write in event handlers as shown in
Section 1.3.4, "Simple, Event-Driven Approach to Add Custom Logic". In this way,
the validations are enforced consistently, regardless of which page the user
employs to enter or modify the object's data.

■ Declarative security

JSF has no mechanism for integrating authorization information with UI
components. With ADF Business Components, you can associate user or role
authorization information with each attribute in an entity object so that your JSF
pages can easily display data only to users authorized to see it.

1.4.4 Generation of Complete Web Tier Using Oracle JHeadstart
As you’ll learn throughout the rest of this guide, Oracle JDeveloper 10g and Oracle
ADF give you a productive, visual environment for building richly functional,
database-centric J2EE applications with a maximally declarative development
experience. However, if you are used to working with tools like Oracle Designer that
offer complete user interface generation based on a higher-level application structure
definition, you may be looking for a similar facility for your J2EE development. If so,
then the Oracle JHeadstart 10g application generator may be of interest to you. It is an
additional extension for JDeveloper that stands on the shoulders of Oracle ADF’s
built-in features to offer complete web-tier generation for your application modules.
Starting with the data model you’ve designed for your ADF business service, you use
the integrated editors JHeadstart adds to the JDeveloper environment to iteratively
refine a higher-level application structure definition. This controls the functionality
and organization of the view objects’ information in your generated web user
interface. By checking boxes and choosing various options from dropdown lists, you
describe a logical hierarchy of pages that can include multiple styles of search regions,
List of Values (LOVs) with validation, shuttle controls, nested tables, and other
features. These declarative choices use terminology familiar to Oracle Forms and
Designer users, further simplifying web development. Based on the application
structure definition, you generate a complete web application that automatically

Highlights of Additional ADF Features

1-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

implements the best practices described in this guide, easily leveraging the most
sophisticated features that Oracle ADF and JSF have to offer.

Whenever you run the JHeadstart application generator, rather than generating code, it
creates (or regenerates) all of the declarative view and controller layer artifacts of your
ADF-based web application. These use the ADF Model layer and work with your ADF
application module as their business service. The generated files are the same kinds
you produce when using JDeveloper’s built-in visual editors. The key difference is that
JHeadstart creates them in bulk based on a higher-level definition that you can
iteratively refine until the generated pages match your end-users’ requirements as
closely as possible. The generated files include:

■ JSF Pages with data-bound ADF Faces UI components

■ ADF Model page definition XML files describing each page’s data bindings

■ JSF navigation rules to handle page flow

■ Resource files containing localizable UI strings

Once you’ve generated a maximal amount of your application's web user interface,
you can spend your time using JDeveloper's productive environment to tailor the
results or to concentrate your effort on additional showcase pages that need special
attention. Once you’ve modified a generated page, you can adjust a setting to avoid
regenerating that page on subsequent runs of the application generator. Of course,
since both the generated pages and your custom designed ones leverage the same
ADF Faces UI components, all of your pages automatically inherit a consistent look
and feel. For more information on how to get a fully-functional trial of JHeadstart for
evaluation, including details on pricing, support, and additional services, see
http://otn.oracle.com/consulting/9iServices/JHeadstart.html.

http://otn.oracle.com/consulting/9iServices/JHeadstart.html

Overview of Development Process with Oracle ADF and JSF 2-1

2
Overview of Development Process with

Oracle ADF and JSF

This chapter highlights the typical development process for using Oracle JDeveloper
10g Release 3 (10.1.3) to build web applications using Oracle ADF and JSF, using
Oracle ADF Business Components to implement the business service layer.

This chapter includes the following sections:

■ Section 2.1, "Introduction to the Development Process"

■ Section 2.2, "Creating an Application Workspace to Hold Your Files"

■ Section 2.3, "Thinking About the Use Case and Page Flow"

■ Section 2.4, "Designing the Database Schema"

■ Section 2.5, "Creating a Layer of Business Domain Objects for Tables"

■ Section 2.6, "Building the Business Service to Handle the Use Case"

■ Section 2.7, "Dragging and Dropping Data to Create a New JSF Page"

■ Section 2.8, "Examining the Binding Metadata Files Involved"

■ Section 2.9, "Understanding How Components Reference Bindings via EL"

■ Section 2.10, "Configuring Binding Properties If Needed"

■ Section 2.11, "Understanding How Bindings Are Created at Runtime"

■ Section 2.12, "Making the Display More Data-Driven"

■ Section 2.13, "Adding the Edit Page and Finishing the Use Case"

■ Section 2.14, "Considering How Much Code Was Involved"

2.1 Introduction to the Development Process
The simplest way to appreciate how easy J2EE development can be using JDeveloper
and Oracle ADF is to walk through a typical, end-to-end development process. Using
Oracle ADF, enterprise J2EE application development can be a visual, code free
experience. Of course, you eventually write code in a real-world application, but
importantly Oracle ADF allows you to focus your efforts on the code that is directly
related to your application's business requirements.

Creating an Application Workspace to Hold Your Files

2-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In the Service Request tracking system used as the real-world example application
throughout the remainder of this guide, external users log service requests for
technical assistance with products they’ve purchased. Internal users try to assist the
customers in the area in which they have expertise. This walkthrough highlights the
typical steps involved in implementing a solution for one small use case related to that
overall system’s functionality. In the walkthrough you'll create a small system to
managing the profiles of technician users and their areas of technical expertise.

While this overview tries to give you the essence of the typical development process
with Oracle ADF, it doesn't provide the click-by-click guidance of a tutorial. For a list
of all the available Oracle ADF tutorials, go to the Oracle ADF product center on OTN
at http://otn.oracle.com/products/adf.

2.2 Creating an Application Workspace to Hold Your Files
The first step in building a new application is to assign it a name and to specify the
directory where its source files will be saved. Selecting Application from the
JDeveloper New Gallery launches the Create Application dialog shown in Figure 2–1.
Here you give the application a name like ADFInfo, set a working directory, and
provide a package prefix for the classes you’ll create in the application. You'll typically
enter a package prefix like oracle.srdemo so that, by default, all of the components
comprising the application will be created in packages whose names will begin with
oracle.srdemo.*. Since you will be building a web application using JSF and ADF
Business Components, Figure 2–1 shows the corresponding application template
selected from the list. This application template is set up to create separate projects
named Model and ViewController with appropriate technologies selected to build
the respective layers of the application.

Figure 2–1 Creating an Application Workspace to Hold Your Files

Note: After reading the chapter, if you want to experiment with a
completed version of the small application described here, download
the ADFIntro workspace from the Example Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01/.

http://otn.oracle.com/documentation/jdev/b25947_01/
http://otn.oracle.com/documentation/jdev/b25947_01/

Thinking About the Use Case and Page Flow

Overview of Development Process with Oracle ADF and JSF 2-3

If you want to inspect the default technologies included in each project, you can open
the Technology Scope page in the Project Properties dialog. Figure 2–2 shows what this
page looks like after you add additional Database and UML technologies to the list in
the Model project. By specifying exactly which technologies you intend to use in each
project, you help JDeveloper simplify the available choices presented to the developer
in the New Gallery and other dialogs to only those relevant to the current project's
technologies.

Figure 2–2 The Technology Scope Defines the Technologies Used in That Project

2.3 Thinking About the Use Case and Page Flow
After creating an application workspace, you might begin the development process by
doing some use case modeling to capture and communicate end-user requirements for
the system to be built. Figure 2–3 shows a simple diagram created the use case
diagrammer, one of a number of built-in UML diagramming tools. The diagram
represents the simple technician management system that your managers are asking
you to build. It consists of two related use cases: "Search for Technician by Name" and
"Update Technician Profile." Using diagram annotations, you can capture particular
requirements about what end users might need to see on the screens that will
implement the use case. For example, you might note that managers want to see
product names and technician expertise levels while browsing the search results.

Thinking About the Use Case and Page Flow

2-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–3 Use Case Diagram for a Simple Technician Management System

By modeling the use cases, you begin to understand the kinds of user interface pages
that will be required to implement end-user requirements. As shown in Figure 2–4,
using the JSF page flow diagrammer, you can create a skeleton page flow for the
system. Since the page flow is related to the user interface, this work happens in the
context of the ViewController project in the workspace.

Using the Component Palette, you drop pages and named navigation rules to connect
them. You should be able to implement the requirements using the combination of a
searchtechnicians page and an updateprofile page. After using the
searchtechnicians page to find the technician to update, the manager will
proceed to updateprofile page to modify that technician's profile. After saving the
changes, she'll return back to the searchtechnicians page. The navigation lines on
the page diagram reflect this flow. The warning symbols you see are no reason for
alarm. They indicate that you still have to create the page that the page icon
represents. You'll see that in a later step of the walkthrough.

Figure 2–4 Skeleton JSF Page Flow Diagram in the ViewController Project

Creating a Layer of Business Domain Objects for Tables

Overview of Development Process with Oracle ADF and JSF 2-5

2.4 Designing the Database Schema
If you already have the database tables for USERS, PRODUCTS, and EXPERTISE_
AREAS that store information about users with a technician role and the expertise they
have for particular products, you can begin working with them immediately. Seeing
them in a data diagram can help you understand whether the schema might require
any changes to support the new use case.

After creating a named connection in the Connection Navigator to browse your
database schema objects, you can see your existing tables under a Tables folder. Using
the New Gallery, you can create a new database diagram, select the USERS,
PRODUCTS, and EXPERTISE_AREAS tables from the Connection Navigator, and drop
them onto the diagram. Figure 2–5 shows what the database diagram would look like.

Of course, if the tables didn't already exist, you could use the same diagrammer to
design them and generate the DDL scripts to create the tables from scratch.

Figure 2–5 Database Diagram Showing Schema for Technician Management System

2.5 Creating a Layer of Business Domain Objects for Tables
With the database tables in place, you can create a set of Java components that
represents them and simplifies modifying the data they contain. Using entity objects to
encapsulate data access and validation related to the tables, any pages you build today
or in the future that work with these tables get consistently validated. Since this task is
related to the data access and business logic for your application, you'll do it in the
context of the Model project. As you work, JDeveloper automatically configures your
project to reference any necessary Oracle ADF libraries your application will need at
runtime.

Note: JDeveloper supports the ability to do "UI first" development to
mock up web page displays using unbound UI components, and then
bind them to data later. However, in this walkthrough you'll be
following a more traditional bottom up approach that is most similar
to the way traditional 4GL tools attack the problem. Both styles of
development are possible, or you can develop simultaneously and
meet in the middle.

Creating a Layer of Business Domain Objects for Tables

2-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

2.5.1 Dragging and Dropping to Reverse-Engineer Entity Objects for Tables
You can create business components by using wizards or a diagram. On one hand, the
wizards can be faster to use since you can create many components at the same time.
For example, in a single step you can create entity objects, related view objects, and an
application module to use as your business service with the Business Components
from Tables wizard. On the other hand, creating business components on a diagram is
often more intuitive and allows you to understand the roles each different kind of
business component plays. Since creating business components using the wizards is
covered in later chapters, for this walkthrough it is best to take things one steps at a
time and work in a visual way.

To create a business components diagram, open the New Gallery and select Business
Components Diagram. After creating a new diagram, just drop the tables from the
Connection Navigator onto the diagram surface to create entity objects for them. By
default, the entity objects get named Users, ExpertiseAreas, and Products based
on the names of the tables. Since an entity object represents a single element of
business domain data, it's best practice to name them with singular names. You can
use the diagram's in-place editing support to rename the entity objects to User,
ExpertiseArea, and Product. JDeveloper has extensive support for refactoring to
automate changing any related files to use the new names. In addition to the entity
objects that were created, the tool also created associations that reflect the foreign keys
relating the underlying tables. To help communicate how your entity objects are
related to the tables, you can add the tables themselves to the same diagram and draw
dependency lines between them, as shown in Figure 2–6.

Figure 2–6 Business Components Diagram Showing Entity Objects and Related Tables

2.5.2 Adding Business Validation Rules to Your Entity Object
Your set of associated entity objects represents a reusable layer of business domain
components. Any business validation rules you enforce at this level are enforced
consistently throughout any applications you build that satisfy use cases related to
Users, ExpertiseAreas, and Products. This applies regardless of the user
interface technology that you use. This guide focuses attention on developing web
applications with JSF, but validation rules encapsulated in your business domain layer
work the same whether used through web, wireless, or Swing user interfaces, as well
as through web services. The validation rules can range from the simplest syntactic
value-checking to the most complicated enterprise database-backed programmatic
rules.

Creating a Layer of Business Domain Objects for Tables

Overview of Development Process with Oracle ADF and JSF 2-7

By double-clicking the Users entity object in the diagram, you can access the Entity
Object Editor to define declarative validation rules for users. Open the Validation page
of the editor to add validation rules. Click New to add a new rule, and add a
UniqueKey Validator that will ensure that the primary key for new User rows is
unique. As shown in Figure 2–7, you can enter a validation error message that the
manager will see if she enters a new user whose ID is already taken. JDeveloper saves
the error message in a standard Java message bundle to simplify localizing it for
different languages.

Figure 2–7 Adding a New UniqueKey Validator

Next, you could add a regular expression validator on the Email attribute to ensure
that managers only enter email address in the expected 8-character, lowercase format.
Selecting the Email attribute in the Declarared Validation Rules tree and clicking
New again, you can add a Regular Expression Validator. Figure 2–8 shows the regular
expression to match from three to eight lowercase characters, and the error message
that will appear if the manager enters an email in the wrong format.

Figure 2–8 The Regular Expression Validator Ensures That Email Address Is Correctly
Formatted

Select the UserRole attribute and click New to add a List Validator as shown in
Figure 2–9 to ensure that the role of a new user can only be user, technician, or
manager. Again, you can enter the error message the manager will see if she enters
the data incorrectly.

Creating a Layer of Business Domain Objects for Tables

2-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–9 The List Validator Ensures That UserRole Has One of Three Legal Values

After doing this, you can see, as shown in Figure 2–10, that all the validation rules in
effect are summarized on the Validation page of the Entity Object Editor.

Figure 2–10 The Validation Page Provides One Place to See All Validation Rules in
Effect

In a real-world application, you would go on to add a number of method validators
that invoke custom validation event handlers that you write in Java. Like the built-in
validations, these can be attribute-level rules if they are related just to one specific
attribute, or entity-level validation rules if they are more complex and involve
consulting multiple attribute values or other entities to determine validity. The code
you would write inside the validation events can easily access the properties of any
entity object in your business domain layer, or easily perform any SQL query, as part
of determining if the method-based validation rule should succeed or fail the
validation check.

Building the Business Service to Handle the Use Case

Overview of Development Process with Oracle ADF and JSF 2-9

If you notice a pattern in the kind of custom Java-based validations your team is
performing, you can extend the set of built-in validation rules in JDeveloper with
custom, parameter-driven rules of your own. Custom rules allow other developers on
your team to reuse the common validation patterns in their future work without
writing code themselves. Instead they pick your custom validation rule from a list and
set a few properties. Either way, whether business rules are implemented declaratively
or using validation event handlers written in Java, they all appear in the Validation
page of the Entity Object Editor, so that you have a single place to see all business rules
in effect for that object.

2.5.3 Defining UI Control Hints for Your Entity Objects
In addition to business rules, other useful resources you can centralize in your entity
object layer are the standard UI labels and format masks that your business
information will use throughout all applications you build. By opening the Entity
Object Editor and selecting individual attributes, you can use the Control Hints tab to
define the Label Text, Tooltip Text, Format Type, Format mask and other hints. Since
these user-visible labels and format masks need to be sensitive to the preferred
language of the end user, JDeveloper manages them for you in a standard Java
resource bundle. This way, they are straightforward to translate into other locales for
creating multilingual applications.

Assume you've edited the User, ExpertiseArea, and Product entities to define
label text hints for all the attributes. You'll see later in the walkthrough how these
centralized UI label hints are automatically leveraged in the pages you build that work
with data related to these entity objects.

2.6 Building the Business Service to Handle the Use Case
Once the reusable layer of entity objects is created, you can implement the specific
business service to satisfy the needs of the use case at hand. Since this task is related to
the data access and business logic for your application, you'll do it in the context of the
Model project.

2.6.1 Creating a Application Module to Manage Technicians
An application module is the transactional component in Oracle ADF that UI clients
use to work with application data. It defines an updatable data model and top-level
procedures and functions (called service methods) for a logical unit of work related to an
end-user task.

After adjusting the diagram's visual properties to turn off the grid display, you can use
the Component Palette to drop a new application module onto the business
component diagram, as shown in Figure 2–11. Since it will be a service concerned with
technicians, you could call it TechnicianService to reflect this role.

Building the Business Service to Handle the Use Case

2-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–11 Creating a New Application Module on the Business Components Diagram

The application module's data model is composed of SQL queries that define what
data the end user will see on the screen. To work with SQL query results, you'll define
view object components that encapsulate the necessary queries. When the end user
needs to update the data, your view objects reference entity objects in your reusable
business domain layer. These entity objects ensure any data the end user modifies is
validated and saved in a consistent way.

2.6.2 Creating View Objects to Query Appropriate Data for the Use Case
Start by considering the data required by the "Search for Technician by Name" use
case. For certain, you'll need a query that involves User information, since technicians
are a kind of user whose data resides in the USERS table. So, drop a new view object
component onto the diagram and name it SearchTechniciansByName. Drag the
User entity object and drop it onto the new SearchTechniciansByName view
object component in the diagram. By creating a view object in this manner, JDeveloper
updates the view object's SQL query to include all of that entity object's data.

For the search page, imagine that you only need to display the UserId, Email,
FirstName, and LastName attributes. You can use the diagram to select the other
attributes in the SearchTechniciansByName view object and remove them using
the Delete key. By including only the data you need in the query, you make your
application more efficient by retrieving only the information required by the task at
hand.

To save space, you can display a view object in standard mode, and you can adjust the
colors to distinguish different types of business components on the diagram.
Figure 2–12 shows how a well organized business components diagram might look for
the steps you’ve seen so far.

Building the Business Service to Handle the Use Case

Overview of Development Process with Oracle ADF and JSF 2-11

Figure 2–12 Business Components Diagram Including SearchTechniciansByName View
Object

You want the SearchTechniciansByName view object to:

■ Only find users with the 'technician' role

■ Be searchable by a user-supplied name parameter

To accomplish this you need to edit the view object to configure these features.
Double-clicking the view object on the diagram to opens the View Object Editor.

To add a bind variable to support searching technicians by name, you can open the
Bind Variables page of the editor as shown in Figure 2–13, and define one called
TechName of type String with null as its default value. On the Control Hints tab
you can define a Label Text hint for the bind variable of "Name Contains". This label
will appear in any pages you build using this bind variable for searching.

Figure 2–13 Adding a Named Bind Variable to Search by Name

Building the Business Service to Handle the Use Case

2-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Next, you can open the SQL Statement page and fine-tune the SELECT statement. As
shown in Figure 2–14, you can enter an appropriate WHERE clause to search only for
technicians whose first name or last name matches the value of the TechName bind
variable in a case-insensitive way. You can also enter an ORDER BY clause to sort the
results first by last name, then by first name.

Figure 2–14 Adjusting the Query's Where and Order By Clauses

Recall from the use case diagram that the managers asked to see the related set of
technician expertise information while browsing search results. They also indicated
that they wanted to see the product name information related to the expertise level.
You can drop a second view object onto the diagram and call it TechnicianSkills.
Since it will need to include information from both the ExpertiseArea and
Product entity objects, you can multiselect both of these entities and drop them
together onto the new view object. Double-clicking the TechnicianSkills view
object, you can see that the join query has been automatically determined, and you can
use the Attributes page to remove the attributes you don't need.

Lastly, since you'll need a master/detail display between the results in the
SearchTechniciansByName query and the TechnicianSkills query, you can
use the View Link tool in the palette to connect the master view object to the detail
view object. Figure 2–15 shows the results of having created the new detail
TechnicianSkills view object and linking it master/detail with
SearchTechniciansByName.

Building the Business Service to Handle the Use Case

Overview of Development Process with Oracle ADF and JSF 2-13

Figure 2–15 Master/Detail View Objects in the Business Components Diagram

2.6.3 Using View Objects in the Application Module's Data Model
The last step to complete the TechnicianService application module is to use your
view objects to define its data model. Like entity objects, view objects are reusable
components that you can use in multiple application modules when their queries
make sense in multiple use cases. Selecting both the SearchTechniciansByName
and TechnicianSkills view objects in the diagram and dropping them onto the
application module accomplishes the task. You can rename the view object instances
used in the data model to have shorter names. These names will be used by the client
to identify the data collections produced by the view object's queries at runtime. In
Figure 2–16, you can see what it would look like if you chose the shorter names
Technicians and Skills to name the master/detail collections in the
TechnicianService's data model. The dotted lines are dependency lines you can
add to further clarify how components on a UML diagram depend on each other.

Building the Business Service to Handle the Use Case

2-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–16 TechnicianService Application Module Containing Named Instances of Two
View Objects

Whether you use wizards and editors or the visual diagrammers to work on your
application components, as shown in Figure 2–17, the Application Navigator displays
all of the components you've created. Selecting a particular component like the
TechnicianService application module, you can see additional information about
it in the Structure window.

You'll notice in the Structure window that the TechnicianService component has
only an XML file in its Sources folder. Using ADF Business Components for your
business service layer, each component has a related XML component definition file. If
you don't have any need to write custom Java code to extend the behavior of a given
component or to handle its events, you can just use the component in an XML-only
mode. A class provided by the base framework gets used at runtime instead, and its
behavior is determined by the metadata in its XML component definition file.

Building the Business Service to Handle the Use Case

Overview of Development Process with Oracle ADF and JSF 2-15

Figure 2–17 The Application Navigator Displays the Components Comprising Your
Application

2.6.4 Testing Your Service
Even before building a user interface, you can interactively test your
TechnicianService component using the integrated Business Components
Browser. To launch this testing tool, select the application module in either the
Application Navigator or the diagram and choose Test... from the context menu.
When the Business Components Browser Connect dialog appears, click Connect.

As shown in Figure 2–18, the Technicians and Skills master/detail view object
instances that comprise the data model of the TechnicianService component
appear in the tree at the left. Double-click the ViewLink11 node that links the two in
the tree and a Bind Variables dialog appears to prompt you for a value for the
TechName bind variable. Entering a value like "an" and clicking OK executes the
Technicians view object query, and the tester tool shows you the results. Any
technicians whose first name or last name contains the letters "an" in the name appear.
Notice that the UI controls appear with the labels that you defined in the UI control
hints for the entity objects in your business domain layer.

Building the Business Service to Handle the Use Case

2-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–18 Interactively Testing the TechnicianService Application Module

Using the toolbar buttons you can scroll through the master data to observe the
automatic master/detail coordination. If you try updating the email address of
Alexander Hunold to ahunold@srdemo.com and click into a different field, you'll
receive the validation exception shown in Figure 2–19. Recall that this was one of the
business rules that you encapsulated inside your User entity object in the business
domain layer. The exception verifies the automatic coordination that occurs between
updatable rows in view objects and the underlying entity objects that they reference.

Figure 2–19 The Business Components Browser Showing Failed Entity Object
Validation Rule

While doing development with Oracle ADF, you will find the Business Components
Browser is very useful. It allows you to exercise all of the data model of your business
service component without having to build — or without having to use — your
end-user UI pages. This can save you a lot of time when trying to diagnose problems,
or just test out the latest queries or business rules you've added to your business
service layer.

Building the Business Service to Handle the Use Case

Overview of Development Process with Oracle ADF and JSF 2-17

2.6.5 The Data Control for Your Application Module Enables Data Binding
With the business service in place, it's time to think about creating the user interface.
Application modules you build are automatically exposed as JSR-227-compliant data
controls to enable drag-and-drop data binding using JDeveloper's rich design-time
support for this specification. Figure 2–20 shows the Data Control Palette and the
TechnicianServicesDataControl that is automatically kept in sync with your
application module definition as you create and modify it. You can see the
Technicians and Skills data collections that represent the view object instances in
the TechnicianService's data model. The Skills data collection appears as a
child of Technicians, reflecting the master/detail relationship you set up while
building the business service. The attributes available in each row of the respective
data collections appear as child nodes. The data collection level Operations folders,
shown collapsed in the figure, contains the built-in operations that the ADF Model
layer supports on data collections like Previous, Next, First, Last, and so on.

Figure 2–20 The Data Control Palette Displays Business Services for Declarative Data
Binding

Note: If you create other kinds of data controls for working with
web services, XML data retrieved from a URL, JavaBeans, or EJBs,
they would also appear in the Data Control Palette with an appropriate
display. The first time you create one of these data controls in a
project, JDeveloper creates a DataControls.dcx file that contains
configuration information about them. In addition, it creates XML
structure definition files for each data type involved in the service
interface.

These additional files are not needed when you are working with
application modules since application modules are already
metadata-driven components whose XML component definition files
contain all the information necessary to be exposed automatically as
JSR 227 data controls.

Dragging and Dropping Data to Create a New JSF Page

2-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

2.7 Dragging and Dropping Data to Create a New JSF Page
Now that you're familiar with the basics of the Data Control Palette, you can begin
doing drag-and-drop data binding to create your page. Since you’ll be using ADF
Faces components in your page, first ensure that the project’s tag libraries are
configured to use them. Double-clicking the ViewController project in the
Application Navigator brings up the Project Properties dialog where you can see what
libraries are configured on the JSP Tag Libraries page, as shown in Figure 2–21. If the
ADF Faces Components and ADF Faces HTML libraries are missing, you can add
them from here.

Figure 2–21 Configuring ViewController Project Tag Libraries to Use ADF Faces

Next, you can select the ViewController project in the Application Navigator and
choose Open JSF Navigation from the context menu to return to the skeleton JSF page
flow you created earlier. Double-click the /searchtechnicians.jspx page icon in
the diagram to launch the Create JSF JSP wizard shown in Figure 2–22, which you use
to create the file representing the searchtecnicians.jspx web page.

Figure 2–22 Creating a New JSF JSP Page

Dragging and Dropping Data to Create a New JSF Page

Overview of Development Process with Oracle ADF and JSF 2-19

You may be more familiar working with JSP pages that have a *.jsp extension, but
using a standard XML-based JSP "Document" instead is a best practice for JSF
development since it:

■ Simplifies treating your page as a well-formed tree of UI component tags

■ Discourages you from mixing Java code and component tags

■ Allows you to easily parse the page to create documentation or audit reports

You can click Finish on the first page of the wizard, taking all defaults. After
completing the Create JSF JSP wizard, a new page opens in the visual editor. From
there, creating the databound page shown in Figure 2–23 is a completely
drag-and-drop experience. As you drop elements from the Data Control Palette onto
the page, a popup menu appears to show the sensible options for UI elements you can
create for that element.

Figure 2–23 Browse Users JSF Page in the Visual Designer

The basic steps to create this page are:

1. Drop a panelHeader component from the ADF Faces Core page of the
Component Palette onto the page and set its text attribute in the Property
Inspector to "Search Technicians".

2. Drop the ExecuteWithParams built-in operation for the Technicians data
collection in the Data Control Palette to create an ADF parameter form. This step
creates a panelForm component containing the label, field, and button to collect
the value of the TechName bind variable and pass it to the view object when the
button is clicked. Use the Property Inspector to set the text on the command
button created to "Go".

3. Drop the Technicians data collection from the Data Control Palette to create an
ADF read-only form. This operation creates a panelForm component containing
the label and fields for the attributes in a row of the Technicians data collection.
In the Edit Form Fields dialog that appears, you can delete the UserId attribute
from the list so that it doesn't appear on the page.

Dragging and Dropping Data to Create a New JSF Page

2-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. Again from the Operations folder of the Technicians data collection, drop the
built-in Previous operation to the page as a command button. Repeat to drop a
Next button to the right of it for the built-in Next operation.

5. Drop the detail Skills data collection in the Data Control Palette as an ADF
read-only table. In the Edit Table Columns dialog that appears, include columns in
the table only for the ExpertiseLevel and Name attributes, and use the Up and
Down buttons to reorder them so that Name comes first. Select the Enable sorting
checkbox to enable sorting the data by clicking the column headers.

6. Drop a commandButton from the Component Palette at the bottom of the page
and change its Text property to "Update Profile". Set its Action property to
"UpdateProfile" by picking it from the list to have the button follow the
"UpdateProfile" navigation rule you created in the JSF page flow diagram earlier.

At any time you can run or debug your page to try out the user interface that you’ve
built. Notice that the UI control hints you set up on your entity object attributes in the
business domain layer automatically appear in the user interface. Searching by name
finds technicians whose last name or first name contains the string you've entered
(case-insensitively). The Previous and Next buttons navigate among the technicians
found by the search, and each technician's related set of skills display, along with the
product name to which the expertise applies. A simple master/detail search page is
illustrated in Figure 2–24.

Figure 2–24 Simple Search Technicians Page with Master/Detail Data

Note: Producing the exact look of the page in Figure 2–23 involves a
few additional drags and drops to group the default components, add
an object separator between them, and dropping some read-only text
fields bound to the current row count and total rows using EL. These
steps are explained in a later section of this walkthrough.

Examining the Binding Metadata Files Involved

Overview of Development Process with Oracle ADF and JSF 2-21

2.8 Examining the Binding Metadata Files Involved
The group of bindings supporting the UI components on a page are described in a
page-specific XML file called the page definition file. The first time you drop a
databound component from the Data Control Palette on a page, JDeveloper will create
the page definition file for it. Figure 2–25 shows the contents of the
searchtechniciansPageDef.xml file in the Structure window. Each time you add
components to the page using the Data Control Palette JDeveloper adds appropriate
declarative binding entries into this page definition file.

For example, after performing the steps in the previous section to create the
databound UI components on the searchtechnicians.jspx page, you can see in
the figure that JDeveloper added an action binding named ExecuteWithParams to
invoke the built-in data control operation of the same name. Iterator bindings named
TechniciansIterator and SkillsIterator were added to handle the data
collection of rows from the Technicians and Skills view object instances,
respectively. Action bindings named Next and Previous were added to support the
buttons that were dropped. And, finally, value bindings of appropriate names were
added to support the read-only outputText fields and the table.

Figure 2–25 Page Definition XML File for searchtechnicians.jspx

The very first time you perform Oracle ADF Model data binding in a project,
JDeveloper creates one additional XML file called DataBindings.cpx that stores
information about the mapping between page names and page definition names and
that lists the data controls that are in use in the project. Figure 2–26 shows what the
DataBindings.cpx file looks like in the Structure window. At runtime, this file is
used to create the overall Oracle ADF Model binding context. In addition, page map
and page definition information from this file are used to instantiate the binding
containers for pages as they are needed by the pages the user visits in your
application.

Understanding How Components Reference Bindings via EL

2-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–26 Structure of DataBindings.cpx

For complete details on the structure and contents of the DataControls.dcx,
DataBindings.cpx, and PageDef.xml metadata files, see Appendix A, "Reference
ADF XML Files".

2.9 Understanding How Components Reference Bindings via EL
As you perform drag-and-drop data binding operations, JDeveloper creates the
required ADF Model binding metadata in the page definition file and creates tags
representing the JSF UI components you’ve requested. Importantly, it also ties the two
together by configuring various properties on the components to have EL expression
values that reference the bindings. Figure 2–27 summarizes how the page’s UI
components reference the bindings in its page definition. At runtime, these bindings
are contained in a binding container related to the page.

Figure 2–27 EL Expressions Relate UI Components in a Page to Bindings

As a simple example, take the (Previous) button. When you drop this built-in operation
as a button, an action binding named Previous is created in the page definition file,
and two properties of the commandButton component are set:

■ actionListener="#{bindings.Previous.execute}"

■ disabled="#{!bindings.Previous.enabled}"

The first EL expression "wires" the button to execute the action binding named
Previous in the binding container bound to the built-in Previous operation of the
related data collection. The second EL expression automatically disables the button
when the Previous operation does not make sense, such as when the user has
navigated to the first row in the data collection.

Configuring Binding Properties If Needed

Overview of Development Process with Oracle ADF and JSF 2-23

Studying another example in the page, like the read-only outputText field that
displays the user’s email address and the panelLabelAndMessage component that
contains it, you would see that JDeveloper sets up the following properties on these
components to refer to the Email value binding:

■ value="#{bindings.Email.inputValue}"

on the outputText component

■ label="#{bindings.Email.label}"

on panelLabelAndMessage component

The combination of these settings "wires" the outputText component to pull its
value from the Email binding, and the panelLabelAndMessage component to use
the Email binding’s label property as a display label. Since you configured UI
controls hints for the attributes of your entity objects in the business domain layer, the
control hints are inherited by the view object's attributes. The bindings expose this
information at runtime so that components can easily refer to the control hints, such as
labels and format masks using EL expressions.

The drag-and-drop data binding just completed did not account for how the current
record display (for example "N of M") appeared on the page. To create it, you will
need to reference properties for:

■ The current range of visible rows

■ The starting row in the range

■ The total number of rows in the collection

Since the bindings expose properties for these, it is easy to create a current record
display like this. Just drop three outputText components from the Component
Palette and set each component’s value attribute to an appropriate EL expression.
The first one needs to show the current row number in the range of results from the
Technicians data collection, so set its value attribute to an EL expression that
references the (zero-based) rangeStart property on the TechniciansIterator
binding.

#{bindings.TechniciansIterator.rangeStart + 1}

The second outputText component just needs to show the word "of", so setting its
value property to the constant string "of" will suffice. The third outputText
component needs to show the total number of rows in the collection. Here, make a
reference to the iterator binding's estimatedRowCount property:

#{bindings.TechniciansIterator.estimatedRowCount}

2.10 Configuring Binding Properties If Needed
Any time you want to see or set properties on bindings in the page definition, you can
choose Go to Page Definition in the context menu on the page. For example, you
would do this to change the number of rows displayed per page for each iterator
binding by setting its RangeSize property. As shown in Figure 2–27, after opening
the page definition, the Property Inspector was used to set the RangeSize of the
TechniciansIterator binding to 1 and the same property of the
SkillsIterator to 2. Setting the RangeSize property for each iterator this way
causes one user and two expertise areas to display at a time on the page.

Understanding How Bindings Are Created at Runtime

2-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

2.11 Understanding How Bindings Are Created at Runtime
To round out this basic introduction of ADF Model binding for JSF pages, it is good to
understand how your data controls and declarative bindings are created at runtime.
As part of configuring your project for working with Oracle ADF data binding,
JDeveloper registers an additional handler that is triggered whenever a client requests
a JSP page. This handler is listed in the standard J2EE web application configuration
file (web.xml) of your ViewController project. It sets up the correct binding
container for the current page based on the related ADF Model XML configuration
files, and makes it accessible using the EL expression #{bindings}. During the
subsequent handling of the web page request, the JSF standard dictates a predictable
set of processing steps known as the page "lifecycle". Oracle ADF uses standard
mechanisms to plug into these processing steps to automate preparing data for
display, invoking built-in operations or custom service methods, as well as updating
and validating data against the view objects in your application module’s data model.

2.12 Making the Display More Data-Driven
After you have a basic page working, you will likely notice some aspects that you’d
like to make more sophisticated. For example, you can reference the properties of ADF
bindings to hide or show groups of components or to toggle between alternative sets
of components.

2.12.1 Hiding and Showing Groups of Components Based on Binding Properties
If the manager enters a name in the searchtechnicians.jspx page that matches a
single user, the disabled Next and Previous navigation buttons the "1 of 1" record
counter are superfluous. Instead, you might want a result like what you see in
Figure 2–28, where these components disappear when only a single row is returned.

Figure 2–28 Hiding Panel with Navigation Buttons When Not Relevant

Note: If your curiosity already craves step-by-step details on how a
page request is handled when using JSF and Oracle ADF, see the
annotated sequence diagram in Section 29.2, "Lifecycle of a Web Page
Request Using Oracle ADF and JSF"

Making the Display More Data-Driven

Overview of Development Process with Oracle ADF and JSF 2-25

Luckily, this is easy to accomplish. You start by organizing the navigation buttons and
the record counter display into a containing panel component like
panelHorizontal. After creating the panel to contain them, you can drag and drop
in the visual editor or in the Structure window to place the existing controls inside the
new container component. Then, to hide or show all the components in the panel, you
just need to set the value of the panel’s rendered attribute to a data-driven EL
expression.

Recall that the number of rows in an iterator binding’s data collection can be obtained
using its estimatedRowCount property. Figure 2–29 shows the EL picker dialog that
appears when you select the panelHorizontal component, click in the Property
Inspector on its rendered attribute, and click the (...) button. If you expand the ADF
Bindings folder as well as the bindings node to see the bindings in the current page's
binding container, you will see the TechniciansIterator. You can then expand
this iterator binding further to see the most common properties that developers
reference in EL. By picking estimatedRowCount and clicking the (>) button, you can
then change the expression to a boolean expression by introducing a comparison
operator to compare the row count to see if it is greater than one. When you set such
an expression, the panel will be rendered at runtime only when there are two or more
rows in the result.

Figure 2–29 Setting a Panel’s Rendered Attribute Based on Binding Properties

2.12.2 Toggling Between Alternative Sets of Components Based on Binding Properties
Consider another situation in the sample page. When no rows are returned, by default
the read-only form would display its prompts next to empty space where the data
values would normally be, and the table of experience areas would display the column
headings and a blank row containing the words "No rows yet". To add a little more
polish to the application, you might decide to display something different when no
rows are returned in the iterator binding’s result collection. For example, you might
simply display a "No matches. Try again" message as shown in Figure 2–30.

Making the Display More Data-Driven

2-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–30 Alternative Display If Search Produces Empty Collection

JSF provides a basic feature called a facet that allows a UI component to contain one or
more named, logical groups of other components that become rendered in a specific
way at runtime. ADF Faces supplies a handy switcher component that can evaluate an
EL expression in its FacetName attribute to determine which of its facets becomes
rendered at runtime. Using this component effectively lets you switch between any
groups of components in a dynamic and declarative way. If you group the
components that present the user information and experience area table into a panel,
you can use the switcher component to switch between showing that panel and a
simple message, depending on the number of rows returned.

Figure 2–31 shows the Structure window for the searchtechnicians.jspx page
reflecting the hierarchical containership of JSF components after the switcher
component is introduced. First, you would set up two JSF facets and give them
meaningful names like found and notfound. Then you can organize the existing
components into the appropriate facet using drag and drop in the Structure window.
In the found facet, you want a panel containing all of the components that show the
technician and experience area information. In the notfound facet, you want just an
outputText component that displays the "No matches. Try again" message. Finally,
you set the DefaultFacet property on the switcher component to found so that
facet displays by default.

Figure 2–31 Switcher Component Containing 'found' and 'notfound' Facets

Adding the Edit Page and Finishing the Use Case

Overview of Development Process with Oracle ADF and JSF 2-27

Set the facetName attribute of switcher to the following EL expression so that the
found facet will be used when the row count is greater than zero, and the notfound
facet will be used when the row count equals zero:

#{bindings.TechniciansIterator.estimatedRowCount > 0 ? 'found' : 'notfound'}

The combination of Oracle ADF declarative bindings, ADF Faces components, and EL
expressions is another situation in which tedious, repetitive coding can be handled
with ease.

2.13 Adding the Edit Page and Finishing the Use Case
With the page for the "Search Technicians by Name" use case implemented, you can
turn your attention to the "Update Technician Profile" use case. Assuming you want
the manager to be able to view all the attributes of the technician user when they go to
update the profile, you'll need to create a view object that includes all the User entity
object's attributes to support the updateprofile.jspx page. Once you add this new
view object to the TechnicianService's data model, you'll see it appear in the Data
Control Palette, from where you can then drop it onto the updateprofile.jspx
page to create an edit form in one step.

2.13.1 Adding Another View Object to the Data Model
To add a view object with all of the User entity object's attribute, open the business
component diagram again in the Model project and drop a new view object from the
Component Palette. Name the new view object Technicians since it will be used to
show all the data about technicians. Drop the User entity object onto the new view
object in the diagram, and double-click the view object to open the View Object Editor.
Using the editor you can:

■ Add the same WHERE clause you did for the SearchTechniciansByName view
object to query rows only where user_role = 'technician'

■ Set the UserId attribute to be Updatable only While New to prevent the end user
from updating the values of UserId values in existing rows.

Back on the diagram drop the Technicians view object onto the
TechnicianService to use it in the data model, and name the view object instance
UpdateProfile. Figure 2–32 shows the updated business service model. You'll
notice that the corresponding UpdateProfile data collection appears immediately in
the Data Control Palette.

Adding the Edit Page and Finishing the Use Case

2-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 2–32 Updated Business Service Diagram

2.13.2 Creating the Edit Page
To open the visual editor for the updateprofile.jspx page, open the JSF page flow
diagram, double-click the /updateprofile.jspx page and click Finish in the
Create JSF JSP wizard.

You can build the edit form shown in Figure 2–33 with the following steps:

■ Drop a panelHeader component from the ADF Faces Core page of the
Component Palette onto the page and set its text attribute in the Property
Inspector to "Update Technician Profile".

■ Drop the UpdateProfile data collection from the Data Control Palette and drop
it onto the page as an ADF Form.

■ Expand the Operations folder of the TechnicianService data control in the Data
Control Palette and drop its Commit built-in operation in the "footer" facet folder
of the panelForm in the Structure window. Change its Text property to "Save".
Set its Disabled property to "false". Set its Action property to "BackToSearch"
by picking it from the list to have the button follow the "BackToSearch" navigation
rule you created in the JSF page flow diagram earlier.

■ Drop a Rollback built-in operation to the "footer" facet of the panelForm in the
Structure window. Change its Text property to "Cancel". Set its Disabled
property to "false". As with the Save button, set this button's Action property to
"BackToSearch".

Adding the Edit Page and Finishing the Use Case

Overview of Development Process with Oracle ADF and JSF 2-29

Figure 2–33 Update Technician Profile

2.13.3 Synchronizing the Search and Edit Page
When a manager finds the technician whose profile she wants to update, clicking the
UpdateProfile button will take her to the updateprofile.jspx page. In order for
the updateprofile.jspx page to know which technician to edit, you can use a
declarative technique to set an attribute to the value of key that represents the current
technician's row. Figure 2–34 shows the Structure window after a declarative
setActionListener component is added as a child of the Update Profile command
button. This setActionListener component evaluates one EL expression to
determine the value to copy and another EL expression to determine the property to
which to assign this value. The Property Inspector shows the EL expressions
indicating that it should copy the value from the rowKeyStr property of the Email
binding, and set it into the value of an attribute named rowKeyStr in the request
scope.

Figure 2–34 Declaratively Setting a Request Attribute

In the page definition of the updateprofile.jspx page, you can use another
declarative technique to invoke an action binding for the built-in
setCurrentRowWithKey operation whenever the page is rendered. This action
binding accepts a parameter whose value you can provide using the
#{requestScope.rowKeyStr} expression. In this way, without writing code you
can use the key of the current row from the browse page to set the current row for
editing in the UpdateProfile data collection. These steps allow you to synchronize
the two pages without writing code.

Adding the Edit Page and Finishing the Use Case

2-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

2.13.4 Controlling Whether Data Appears Initially
For a page like searchtechnicians.jspx, sometimes you want the end user to
immediately see results from the view object's query when they see the page for the
first time. On other occasions, you might want the user to first have a chance to enter
some search criteria before performing the query. Assuming you want the
searchtechnicians.jspx page to behave like this, you can conditionalize the
initial display of data based on an EL expression. The expression that will come in
handy for this tasks allows you to detect whether the page is being displayed for the
first time, or whether the end-user has subsequently clicked a button or link on the
page, causing the browser to post a request back to the server to handle the event. As
shown in Figure 2–35, by setting the RefreshCondition property on the
TechniciansIterator binding to the EL expression:

${adfFacesContext.postback == true}

you cause the iterator to present data only after the user has interacted with the page.
When the page first renders, this postback property will be false, and the related data
collection will be empty.

Figure 2–35 Declaratively Controlling When an Iterator Displays Data

2.13.5 Running the Final Result
If you run the pages now you will see that they are working. A manager can search for
technicians, browse their skills, update a technician's profile, and save changes. If the
manager accidentally updates a piece of data that violates a business rule that you've
encapsulated inside your domain business layer of entity objects, she will
automatically see the error messages. Figure 2–36 shows the results of trying to update
the email address to a value that contains the domain name. Similar errors would
appear if you tried to violate the other business rules you added to the User entity, or
if you had additional view objects that referenced the same entity objects. When
multiple managers use the application simultaneously, the ADF components
comprising the business service automatically handle multi-user concurrency through
row locking, lost-update protection, and application module pooling.

Considering How Much Code Was Involved

Overview of Development Process with Oracle ADF and JSF 2-31

Figure 2–36 Automatic Presentation of Failed Entity Object Business Rules

2.14 Considering How Much Code Was Involved
In this walkthrough, you've seen the steps to build a simple, yet complete J2EE
application with an MVC architecture using:

■ Oracle ADF Model for declarative data binding for the model layer

■ JavaServer Faces with Oracle ADF Faces components for the view layer

■ JavaServer Faces page flow and declarative handlers for the controller layer, and

■ Oracle ADF Business Components for the business service layer

The experience was both visual and declarative: you didn't have to write any Java
code to achieve the results shown here. In fact, if you were to search the workspace
directory for all *.java files created during the course of the walkthrough, you
would see the results shown in Figure 2–37. Assuming you follow the recommended
practices for ADF beginners of only generating Java code when you need it, you see
that JDeveloper only created four *.java files. And these files don’t even count as
"code", since all they contain are the translatable strings related to your ADF business
components.

Figure 2–37 Only Java Files Required for This Walkthrough Are Java Message Bundles

Considering How Much Code Was Involved

2-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

If you were to peek into one of the message bundle files like
UserImplMsgBundle.java, Example 2–1 shows what you would see. It contains the
UI control hints you defined for the attributes of the User entity object, along with the
error message strings for the business rule validators. By automatically maintaining
these standard Java message bundle files for you, JDeveloper simplifies creating
multilingual applications. JavaServer Faces provides a similar mechanism to cleanly
separate your translatable strings into separate resource files. At runtime, both JSF and
ADF use the most appropriate version of the message resources based on the user's
browser language settings.

Example 2–1 UserImplMsgBundle Translatable Control Hints and Errors Messages

public class UserImplMsgBundle extends JboResourceBundle {
static final Object[][] sMessageStrings = {
{ "UserRole_LABEL", "Role" },
{ "PostalCode_TOOLTIP", "Zip" },
{ "UserRole_Rule_0",

"Role must be user, technician, or manager" },
{ "Email_Rule_0",
"Please use the 8-character username without the domain name" },

{ "User_Rule_0",
"This user id is already taken. Please choose another." },

{ "CountryId_TOOLTIP", "Country" },
{ "City_TOOLTIP", "City" },
{ "LastName_LABEL", "Last Name" },
{ "StateProvince_TOOLTIP", "State" },
{ "FirstName_LABEL", "First Name" },
{ "Email_LABEL", "Email Address" },
{ "StreetAddress_TOOLTIP", "Address" },
{ "UserId_LABEL", "User Id" }

};
// etc.
}

So discounting these message bundle files, you developed the entire walkthrough
without writing or generating a line of Java code. This is a testament to the depth and
breadth of declarative functionality that the combination of JSF and Oracle ADF can
offer you, especially when using the ADF Business Components technology for your
business service layer. This concludes the introduction to building J2EE applications
with Oracle ADF. The rest of this guide describes the details of building a real-world
sample application using Oracle ADF, ADF Business Components, and JSF.

Oracle ADF Service Request Demo Overview 3-1

3
Oracle ADF Service Request Demo Overview

Before examining the individual web pages and their source code in depth, you may
find it helpful to become familiar with the functionality of the Oracle ADF Service
Request demo (SRDemo) application.

This chapter contains the following sections:

■ Section 3.1, "Introduction to the Oracle ADF Service Request Demo"

■ Section 3.2, "Setting Up the Oracle ADF Service Request Demo"

■ Section 3.3, "Quick Tour of the Oracle ADF Service Request Demo"

3.1 Introduction to the Oracle ADF Service Request Demo
The SRDemo application is a simplified, yet complete customer relationship
management sample application that lets customers of a household appliance
servicing company attempt to resolve service issues over the web. The application,
which consists of sixteen web pages, manages the customer-generated service request
through the following flow:

1. A customer enters the service request portal on the web and logs in.

2. A manager logs in and assigns the request to a technician.

Additionally, while logged in, managers can view and adjust the list of products
that technicians are qualified to service.

3. The technician logs in and reviews their assigned requests, then supplies a
solution or solicits more information from the customer.

4. The customer returns to the site to check their service request and either provides
further information or confirms that the technician’s solution resolved their
problem.

5. The technician returns to view their open service requests and closes any
confirmed by the customer as resolved.

6. While a request is open, managers can review an existing request for a technician
and if necessary reassign it to another technician.

After the user logs in, they see only the application functionality that fits their role as a
customer, manager, or technician.

Introduction to the Oracle ADF Service Request Demo

3-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Technically, the application design adheres to the Model-View-Controller (MVC)
architectural design pattern and is implemented using these existing J2EE application
frameworks:

■ Oracle ADF Business Components application module to encapsulate the business
service interface and data model

■ Oracle ADF Business Components entity objects representing database tables

■ JavaServer Faces navigation handler and declarative navigation rules

■ Oracle ADF Faces user interface components in standard JSF web pages

■ Oracle ADF Model layer components to provide data binding

As with all MVC-style web applications, the SRDemo application has the basic
architecture illustrated in Chapter One, "Introduction to Oracle ADF Applications".

This developer’s guide describes in detail the implementation of each of these layers.
Each chapter describes features of Oracle JDeveloper 10g and how these features can
be used to build J2EE web applications using techniques familiar to enterprise 4GL
developers.

3.1.1 Requirements for Oracle ADF Service Request Application
The SRDemo application has the following basic requirements:

■ An Oracle database (any edition) is required for the sample schema.

■ You must create a database connection named "SRDemo" to connect to the
SRDemo application schema. If you install the SRDemo application using the
Update Center, this connection will have been created for you (see Section 3.2.3,
"Creating the Oracle JDeveloper Database Connection").

■ The JUnit extension for JDeveloper must be installed. If you install the SRDemo
application using the Update Center, this extension will also be installed for you
(see Section 3.2.5, "Running the Oracle ADF Service Request Demo Unit Tests in
JDeveloper").

3.1.2 Overview of the Schema
Figure 3–1 shows the schema for the SRDemo application.

Introduction to the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-3

Figure 3–1 Schema Diagram for the SRDemo Application

The schema consists of five tables, three database sequences, and one PL/SQL
package. The tables include:

■ USERS: This table stores all the users who interact with the system, including
customers, technicians, and managers. The e-mail address, first and last name,
street address, city, state, postal code, and country of each user is stored. A user is
uniquely identified by an ID.

■ SERVICE_REQUESTS: This table represents both internal and external requests for
activity on a specific product. In all cases, the requests are for a solution to a
problem with a product. When a service request is created, the date of the request,
the name of the individual who opened it, and the related product are all
recorded. A short description of the problem is also stored. After the request is
assigned to a technician, the name of the technician and date of assignment are
also recorded. All service requests are uniquely identified by a sequence-assigned
ID.

■ SERVICE_HISTORIES: For each service request, there may be many events
recorded. The date the request was created, the name of the individual who
created it, and specific notes about the event are all recorded. Any internal
communications related to a service request are also tracked. The service request
and its sequence number uniquely identify each service history.

■ PRODUCTS: This table stores all of the products handled by the company. For
each product, the name and description are recorded. If an image of the product is
available, that too is stored. All products are uniquely identified by a
sequence-assigned ID.

■ EXPERTISE_AREAS: This table defines specific areas of expertise of each
technician. The areas of expertise allow service requests to be assigned based on
the technician’s expertise.

Setting Up the Oracle ADF Service Request Demo

3-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The sequences include:

■ USERS_SEQ: Populates the ID for new users.

■ PRODUCTS_SEQ: Populates the ID for each product.

■ SERVICE_REQUESTS_SEQ: Populates the ID for each new service request.

The PL/SQL package CONTEXT_PKG contains a procedure SET_APP_USER_NAME()
and a function APP_USER_NAME(), used to illustrate a simple example of how to set
per-user database state from inside an application module.

3.2 Setting Up the Oracle ADF Service Request Demo
These instructions assume that you are running Oracle JDeveloper 10g, Studio Edition,
version 10.1.3.x. The application will not work with earlier versions of JDeveloper. To
obtain JDeveloper, you may download it from the Oracle Technology Network (OTN):

http://www.oracle.com/technology/software/products/jdev/index.ht
ml

To complete the following instructions, you must have access to an Oracle database,
and privileges to create new user accounts to set up the sample data.

3.2.1 Downloading and Installing the Oracle ADF Service Request Application
The SRDemo application is available for you to install as a JDeveloper extension. In
JDeveloper, you use the Check for Updates wizard to begin the process of installing
the extension.

To install the SRDemo application from the Update Center:
1. If you are using JDeveloper, save your work and close. You will be asked to restart

JDeveloper to complete the update.

2. Open JDeveloper and choose Help > Check for Updates.

3. In the wizard, click Next and make sure that Search Update Centers and Internal
Automatic Updates are both selected. Click Next.

4. Among the available updates, locate Oracle ADF SRDemo Application (ADF BC
Version) and select it. Click Next to initiate the download.

Note that the Update Center may display two versions of the SRDemo application.
Only the one labeled "ADF BC" uses the technology stack described in this guide.

5. When prompted, restart JDeveloper.

6. When JDeveloper restarts, select Yes to open the SRDemo application workspace
in the Application Navigator.

7. JDeveloper displays the SRDemo Application Schema Install dialog to identify the
database to use for the sample data.

Setting Up the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-5

Figure 3–2 SRDemo Application Schema Dialog

8. If you want to install the sample data and have access to a SYSTEM DBA account,
enter the connection information in the Sample Install dialog.

Note: The connection information you provide may be for either a local or a
remote database, and that database may be installed with or without an existing
SRDemo schema.

The SRDemo application will appear in the directory <JDEV_
INSTALL>/jdev/samples/SRDemoSampleADFBC. The Update Center also installs
the extension JAR file <JDEV_
INSTALL>/jdev/extensions/oracle.jdeveloper.srdemo.bc.10.1.3.jar
which allows JDeveloper to create the SRDemo application workspace.

3.2.2 Installing the Oracle ADF Service Request Schema
The SRDemo schema is defined in a series of SQL scripts stored in the <JDEV_
INSTALL>/jdev/samples/SRDemoSampleADFBC/DatabaseSchema/scripts
directory. The schema will automatically be created when you install the application
using the Update Center; however, for manual purposes, you can install or reinstall
the schema in several ways.

Note: You may skip the following procedure if you installed the
SRDemo application using the Update Center in JDeveloper and
proceeded with the schema installer. For details, see Section 3.2.1,
"Downloading and Installing the Oracle ADF Service Request
Application".

Setting Up the Oracle ADF Service Request Demo

3-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Follow these instructions to manually create the SRDemo schema.

To manually install the SRDemo schema:
■ In JDeveloper, open the ANT build file build.xml in the BuildAndDeploy

project of the SRDemoSampleADFBC workspace and run the setupDBOracle
task by choosing Run Ant Target from the task’s context menu.

or

■ From SQL*Plus, run the build.sql script when connected as a DBA such as
SYSTEM.

To manually refresh data in the SRDemo schema:
■ In JDeveloper, open the ANT build file build.xml in the BuildAndDeploy

project of the SRDemoSampleADFBC workspace and run the resetData task by
choosing Run Ant Target from the task’s context menu.

If the schema already exists, you can use the above tasks to refresh the SRDemo
sample data. You can either recreate the schema and data entirely (using the
setupDBOracle task) or you can avoid recreating the schema and merely repopulate
the SRDemo data (resetData task). Repopulating the schema is the easiest way to
refresh the sample data since you will not need to log in as a SYS user. If you decide to
reinstall the schema manually, you will be required to enter the SYSTEM DBA account
password before the task recreates the schema.

When you install the schema manually, using the setupDBOracle task, the following
questions and answers will appear:

SRDemo Database Schema Install 10.1.3
(c) Copyright 2006 Oracle Corporation. All rights reserved.

This script installs the SRDemo database schema into an
Oracle database.
The script uses the following defaults:

Schema name: SRDEMO
Schema password: ORACLE
Default tablespace for SRDEMO: USERS
Temp tablespace for SRDEMO: TEMP
DBA account used to create the Schema: SYSTEM
If you wish to change these defaults update the file
BuildAndDeploy/build.properties with your values

What happens next depends on how the demo was installed and what kind of
JDeveloper installation yours is (either FULL or BASE).

■ If the SRDemo application was installed manually and is not in the expected
<JDEV_HOME>/jdev/samples/SRDemoSample directory, you will be prompted
for the JDeveloper home directory.

■ If JDeveloper is a BASE install (one without a JDK), then you will be prompted for
the location of the JDK (1.5).

■ If the SRDemo application was installed using the Update Center into a FULL
JDeveloper install. The task proceeds.

Setting Up the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-7

You will next be prompted to enter database information. Two default choices are
given, or you can supply the information explicitly:

Information about your database:

Select one of the following database options:
1. Default local install of Oracle Personal, Standard or Enterprise edition
 Host=localhost, Port=1521, SID=ORCL
2. Default local install of Oracle Express Edition
 Host=localhost, Port=1521, SID=XE
3. Any other non-default or remote database install
Choice [1]:
If you choose 1 or 2, the install proceeds to conclusion. If you choose 3, then you will
need to supply the following information: (defaults shown in brackets)

Host Name or IP Address for your database machine [localhost]:
Database Port [1521]:
Database SID [orcl]:
The final question is for the DBA Account password:

Enter password for the SYSTEM DBA account [manager]:
The install continues.

3.2.3 Creating the Oracle JDeveloper Database Connection
You must create a database connection called "SRDemo" to connect to the sample data
schema. If you installed the SRDemo application using the Update Center, this
connection will have been created for you.

Follow these instructions to manually create a new database connection to the Service
Request schema.

To manually create a database connection for the SRDemo application:
1. In JDeveloper, choose View > Connections Navigator.

2. Right-click the Database node and choose New Database Connection from the
context menu.

3. Click Next on the Welcome page.

4. In the Connection Name field, type the connection name SRDemo. Then click
Next.

Note: The name of the connection (SRDemo) is case sensitive and must be typed
exactly to match the SRDemo application’s expected connection name.

5. On the Authentication page, enter the following values. Then click Next.

Username: SRDEMO

Password: Oracle

Deploy Password: Select the checkbox.

Note: You may skip the following procedure if you installed the
SRDemo application using the Update Center in JDeveloper. In that
case, the database connection will automatically be created when you
download the application.

Setting Up the Oracle ADF Service Request Demo

3-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6. On the Connection page, enter the following values. Then click Next.

Host Name: localhost

JDBC Port: 1521

SID: ORCL (or XE)

Note: If you are using Oracle 10g Express Edition, then the default SID is "XE"
instead of "ORCL".

7. Click Test Connection. If the database is available and the connection details are
correct, then continue. If not, click the Back button and check the values.

8. Click Finish. The connection now appears below the Database Connection node
in the Connections Navigator.

You can now examine the schema from JDeveloper. In the Connections Navigator,
expand Database > SRDemo. Browse the database elements for the schema and
confirm that they match the schema definition described in Section 3.1.2, "Overview of
the Schema".

3.2.4 Running the Oracle ADF Service Request Demo in JDeveloper
If you installed the SRDemo application using the Update Center, choose Help > Open
SRDemo Application Workspace to open the application workspace.

■ Run the application in JDeveloper by selecting the UserInterface project in the
Application Navigator and choosing Run from the context menu, as shown in
Figure 3–3.

Figure 3–3 Running the SRDemo Application in JDeveloper

Setting Up the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-9

Running the index.jspx page from inside JDeveloper will start the embedded
Oracle Application Server 10g Oracle Containers for J2EE (OC4J) server, launch your
default browser, and cause it to request the following URL:

http://130.35.103.198:8988/SRDemoADFBC/faces/app/SRWelcome.jspx

If everything is working correctly, the index.jspx page’s simple scriptlet
response.sendRedirect("faces/app/SRWelcome.jspx"), will redirect to
display the login page of the SRDemo application, as shown in Figure 3–4.

Figure 3–4 SRWelcome.jspx: SRDemo Login Page

Tip: The UserInterface project defines index.jspx to be the default
run target. This information appears in the Runner page of the Project
Properties dialog for the UserInterface project. This allows you to
simply click the Run icon in the JDeveloper toolbar when this project
is active, or right-click the project and choose Run. To see the project’s
properties, select the project in the navigator, right-click, and choose
Property Properties.

Tip: If your machine uses DHCP to get an automatically-assigned IP
address, then after JDeveloper launches your default browser and
starts embedded OC4J you may see an HTTP error stating that the
web page does not exist. To correct this issue, you can specify the host
name, localhost. Choose Embedded OC4J Preferences from the
Tools menu and on the Startup tab set the Host Name or IP Address
Used to Refer to the Embedded OC4J preference to use the Specify
Host Name option, and enter the value localhost. Then, edit the
URL above to use localhost instead of 130.35.103.198.

Setting Up the Oracle ADF Service Request Demo

3-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

See Section 3.3, "Quick Tour of the Oracle ADF Service Request Demo" to become
familiar with the web pages that are the subject of this developer’s guide.
Additionally, read the tour to learn about ADF functionality used in the SRDemo
application and to find links to the implementation details documented in this guide.

3.2.5 Running the Oracle ADF Service Request Demo Unit Tests in JDeveloper
JUnit is a popular framework for building regression tests for Java applications. Oracle
JDeveloper 10g features native support for creating and running JUnit tests, but this
feature is installed as a separately downloadable JDeveloper extension. You can tell if
you already have the JUnit extension installed by choosing File > New from the
JDeveloper main menu and verifying that you have a Unit Tests (JUnit) category
under the General top-level category in the New Gallery.

 If you do not already have the JUnit extension installed, then use the Update Center in
JDeveloper to install it.

To install the JUnit extension from the Update Center:
1. If you are using JDeveloper, save your work and close. You will be asked to restart

JDeveloper to complete the update.

2. Open JDeveloper and choose Help > Check for Updates.

3. In the wizard, click Next and make sure that Search Update Centers and Internal
Automatic Updates are both selected. Click Next.

4. Among the available updates, locate JUnit Integration 10.1.3.xx and select it. Click
Next to initiate the download.

5. When prompted, restart JDeveloper.

6. When JDeveloper restarts, the new extension will be visible in the Unit Tests
category in the New Gallery.

Note: You may skip the following procedure if you installed the
SRDemo application using the Update Center in JDeveloper. In that
case, the JUnit extension will automatically be installed when you
download the application.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-11

The UnitTests project in the SRDemo application workspace contains a suite of
JUnit tests that are configured in the SRServiceAllTests.java class shown in
Figure 3–5. To run the regression test suite, select the SRServiceAllTests.java
class in the Application Navigator and choose Run from the context menu. Since this
class is configured as the default run target of the UnitTests project, alternatively
you can select the project itself in the Application Navigator and choose Run from its
context menu.

Figure 3–5 Running the SRDemo Unit Tests in JDeveloper

JDeveloper opens the JUnit Test Runner window to show you the results of running all
the unit tests in the suite. Each test appears in a tree display at the left, grouped into
test cases. Green checkmark icons appear next to each test in the suite that has
executed successfully, and a progress indicator gives you visual feedback on the
percentage of your testiest that is passing.

3.3 Quick Tour of the Oracle ADF Service Request Demo
The SRDemo application is a realistic web portal application that allows customers to
obtain appliance servicing information from qualified technicians. After the customer
opens a new service request, a service manager assigns the request to a technician with
suitable expertise. The technician sees the open request and updates the customer’s
service request with information that may help the customer solve their problem.

The application recognizes three user roles (customer, manager, and technician). As the
following sections show, the application features available to the user depend on the
user’s role.

Tip: You can find more details on JUnit on the web at
http://www.junit.org/index.htm.

Note: The remainder of this chapter provides an overview of the
web pages you will see when you run the SRDemo application. You
can quickly find implementation details in this guide from the list at
the end of each section. For an overview of the underlying business
logic, read the chapters listed in Part II of this guide.

Quick Tour of the Oracle ADF Service Request Demo

3-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, the SRDemo application implements the following business logic:

ServiceRequest Entity Object

■ Assigned Date must be in the current month

■ Assigned Date must be after Request Date

■ Request Date defaults to current date

■ Status attribute Must be ’Open’, ’Pending’, or ’Closed’

■ ProdId value must be a valid product id in the PRODUCTS table

■ Cannot remove a service request if you are not a manager

■ Service Request status transitions to "Open" when customer adds a note

■ Service Request status transitions to "Pending" when technician adds a note

ServiceHistory Entity Object

■ Line Number and Service Request ID defaulted for new service request notes

■ Only staff can mark a service request note hidden

■ Type of service request note defaults based on current user role

3.3.1 Customer Logs In and Reviews Existing Service Requests
Enter the log in information for a customer:

■ User name: dfaviet

■ Password: welcome

Click the Sign On button to proceed to the web portal home page.

To enter the web portal click the Start button.

This action displays the customer’s list of open service requests, as shown in
Figure 3–6.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-13

Figure 3–6 SRList.jspx: List Page for a Customer

When you log in as the customer, the list page displays a menu with only two tabs,
with the subtabs for My Service Requests selected.

Note that additional tabs will be visible when you log in as the manager or technician.

Select the menu subtab All Requests to display both closed and open requests.

To browse the description of any request, select the radio button corresponding to the
row of the desired request and click View.

The same operation can also be performed by clicking on the service request link in
Request column.

The customer uses the resulting page to update the service request with their response.
To append a note to the current service request, click Add a note.

Figure 3–7 shows an open service request selected by a customer and the note they are
about to append. Notice that the buttons above the text input field appear disabled to
prevent the user from selecting those operations until the task is completed. Below the
note field, is the list of previous notes for this master service request.

Quick Tour of the Oracle ADF Service Request Demo

3-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 3–7 SRMain.jspx: Main Page for a Customer

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Using dynamic navigation menus: The menu tabs and subtabs which let the user
access the desired pages of the application, are created declaratively by binding
each menu component to a menu model object and using the menu model to
display the appropriate menu items. See Section 19.2, "Using Dynamic Menus for
Navigation".

■ Displaying data items in tables: The list of service requests is formatted by a UI
table component bound to a collection. The Data Control Palette lets you easily
drop databound components into your page. See Section 14.2, "Creating a Basic
Table".

■ Displaying master-detail information: The user can browse the service history for
a single service request in one form. The enter form can be created using the Data
Control Palette. See Section 15.3, "Using Tables and Forms to Display
Master-Detail Objects".

3.3.2 Customer Creates a Service Request
To create a new service request, select the New Service Request tab.

This action displays the first page of a two-step process train for creating the service
request. Figure 3–8 shows the first page.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-15

Figure 3–8 SRCreate.jspx: Step One, Create-Service-Request Page

You can see how the application handles validation errors by clicking the Continue
button before entering a problem description.

Figure 3–9 shows the validation error that displays within a dialog when the problem
description is not entered.

Figure 3–9 SRCreate.jspx: Step One Validation Error in Separate Dialog

To proceed to the next page of the process train, first type some text into the problem
description field, then either choose Confirm from the dropdown menu or click the
Continue button.

In the next step, the customer confirms that the information is correct before
submitting the request. Figure 3–10 shows the final page. Notice that the progress bar
at the top of the page identifies Confirm is the last step in this two-page
create-service-request process chain.

Quick Tour of the Oracle ADF Service Request Demo

3-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 3–10 SRCreateConfirm.jspx: Step Two, Create-Service-Request Page

Click the Submit Request button to enter the new service request into the database. A
confirmation page displays after the new entry is created, showing the service request
ID assigned to the newly created request.

To continue the application as the manager role, click the Logout menu item to return
to the login page.

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Creating a new record: The user adds a note to a service request using a form that
commits the data to the data source. JDeveloper lets you invoke the built-in Create
operation on the application module as an easy way to drop record creation forms.
See Section 13.6, "Creating an Input Form".

■ Multipage process: The ADF Faces components processTrain and
processChoiceBar guide the user through the process of creating a new service
request. See Section 19.5, "Creating a Multipage Process".

■ Showing validation errors in the page: There are several ways to handle data-entry
validation in an ADF application. You can take advantage of validation rules
provided by the ADF Model layer. See Section 20.3, "Adding Validation".

■ Handling page navigation using a command button: The application displays the
appropriate page when the user chooses the Cancel or Submit button. Navigation
rules, with defined outcomes, determine which pages is displayed after the button
click. See Section 16.1, "Introduction to Page Navigation".

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-17

3.3.3 Manager Logs In and Assigns a Service Request
Enter the log in information for a manager:

■ User name: sking

■ Password: welcome

Click the Sign On button to proceed to the web portal home page.

Click the Start button.

This action displays the manager’s list of open service requests. The list page displays
four menu tabs, with the subtabs for the My Service Requests tab selected.

To see a description of any request, select a radio button corresponding to the row of
the desired request and click View.

Figure 3–11 shows an open service request. Notice that when logged in as the manager,
the page displays an Edit button and a Delete Service History Record button. These
two operations are role-based and only available to the manager.

Figure 3–11 SRMain.jspx: Main Page for a Manager

To edit the current service request, click Edit.

Quick Tour of the Oracle ADF Service Request Demo

3-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 3–12 shows the detail edit page for a service request. Unlike the page displayed
for the technician, the manager can change the status and the assigned technician.

Figure 3–12 SREdit.jspx: Edit Page for a Manager

To find another technician to assign, click the symbol next to the assigned person’s
name.

Figure 3–13 shows the query by criteria search page that allows the manager to search
for staff members (managers and technicians). This type of search allows wild card
characters, such as the % and * symbols.

Figure 3–13 SRStaffSearch.jspx: Staff Search Page for a Manager

To assign another staff member to this service request, click the selection button next to
the desired staff’s name.

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-19

To update the open service request with the selected staff member, click the Select
button.

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Databound dropdown lists: The ADF Faces component selectOneChoice
allows the user to change the status of the service request or to pick the type of
service request to perform a search on. See Section 19.7, "Creating Selection Lists".

■ Searching for a record: The user can search existing service requests using a
query-by-example search form. In this type of query, the user enters criteria info a
form based on known attributes of an object. Wildcard search is supported. See
Section 18.3, "Creating a Web-type Search Form".

■ Using a popup dialog: At times you may prefer to display information in a
separate dialog that lets the user postback information to the page. The search
window uses a popup dialog rather than display the search function in the page.
See Section 20.7, "Displaying Error Messages" and Section 19.3, "Using Popup
Dialogs".

■ Using Partial Page Rendering: When the user clicks the flashlight icon (which is a
commandLink component with an objectImage component), a popup dialog
displays to allow the user to search and select a name. After selecting a name, the
popup dialog closes and the Assigned to display-only fields are refreshed with the
selected name; other parts of the edit page are not refreshed. See Section 19.4,
"Enabling Partial Page Rendering".

■ Using managed bean to store information: Pages often require information from
other pages in order to display correct information. Instead of setting this
information directly on a page, which essentially hardcodes the information, you
can store this information on a managed bean. For example, the managed bean
allows the application to save the page which displays the SREdit page and to use
the information in order to determine where to navigate for the Cancel action. See
Section 17.2, "Using a Managed Bean to Store Information".

3.3.4 Manager Views Reports and Updates Technician Skills
To access the manager-only page, select the Management tab.

This action displays the staff members and their service requests in a master-detail
ADF Faces tree table component. Figure 3–14 shows the tree table with an expanded
technician node.

Quick Tour of the Oracle ADF Service Request Demo

3-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 3–14 SRManage.jspx: Management Reporting Page

Each child node in the tree table is linked to a detail service request report. Click the
child node link Defroster is not working properly to display the detail:

Each staff name is linked to a detail of the staff member’s assigned skills. Click the
staff name link Alexander Hunold to display the list of assigned skills:

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-21

To access the skills assignment page, select the Technician Skills subtab.

This action displays a staff selection dropdown list and an ADF Faces shuttle
component. Figure 3–15 shows the shuttle component populated with the skills of the
selected staff member.

Figure 3–15 SRSkills.jspx: Technician Skills Assignment Page

Use the supplied Move, Move All, Remove, or Remove All links to shuttle items
between the two lists. The manager can make multiple changes to the Assigned Skills
list before committing the changes. No changes to the list are committed until the Save
skill changes button is clicked.

To continue the application as the technician role, click the Logout menu item to return
to the login page.

Quick Tour of the Oracle ADF Service Request Demo

3-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Where to Find Implementation Details
The Oracle ADF Developers Guide describes the following major features of this
section.

■ Creating a shuttle control: The ADF Faces component selectManyShuttle lets
managers assign product skills to a technician. The component renders two list
boxes, and buttons that allow the user to select multiple items from the leading (or
"available") list box and move or shuttle the items over to the trailing (or
"selected") list box, and vice versa. See Section 19.8, "Creating a Shuttle".

■ Role-based authorization: You can set authorization policies against resources and
users. For example, you can allow only certain groups of users the ability to view,
create or change certain data or invoke certain methods. Or you can prevent
components from rendering based on the group a user belongs to. See Section 30.8,
"Implementing Authorization Programmatically".

3.3.5 Technician Logs In and Updates a Service Request
Enter the log in information for a technician:

■ User name: ahunold

■ Password: welcome

Click the Sign On button to proceed to the web portal home page.

Click the Start button.

This action displays the technician’s list of open service requests. The list page displays
two tabs, with the subtabs for the My Service Requests tab selected.

To open a request, select a radio button corresponding to the row with the desired
request and click View.

The technician uses the displayed page to update the service request with their
response. To attach a document to the current service request, click Upload a
document.

Figure 3–16 shows the file upload window. (Please note the SRDemo application
currently provides no means to view the contents of the uploaded document.)

Quick Tour of the Oracle ADF Service Request Demo

Oracle ADF Service Request Demo Overview 3-23

Figure 3–16 SRFileUpload.jspx: File Upload Page Displayed for a Technician

Where to Find Implementation Details
File uploading: Standard J2EE technologies such as Servlets and JSP, and JSF 1.1.x, do
not directly support file uploading. The ADF Faces framework, however, has
integrated file uploading support at the component level via the inputFile
component. See Section 19.6, "Providing File Upload Capability".

Changing application look and feel: Skins allow you to globally change the appearance
of ADF Faces components within an application. A skin is a global style sheet that
only needs to be set in one place for the entire application. Instead of having to style
each component, or having to insert a style sheet on each page, you can create one skin
for the entire application. See Section 22.3, "Using Skins to Change the Look and Feel".

Automatic locale-specific UI translation: ADF Faces components provide automatic
translation. The resource bundle used for the components’ skin (which determines
look and feel, as well as the text within the component) is translated into 28 languages.
For example, if a user sets the browser to use the German language, any text contained
within the components will automatically display in German. See Section 22.4,
"Internationalizing Your Application".

Quick Tour of the Oracle ADF Service Request Demo

3-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Part II
Building Your Business Services

Part II contains the following chapters:

■ Chapter 4, "Overview of ADF Business Components"

■ Chapter 5, "Querying Data Using View Objects"

■ Chapter 6, "Creating a Business Domain Layer Using Entity Objects"

■ Chapter 7, "Building an Updatable Data Model With Entity-Based View Objects"

■ Chapter 8, "Implementing Business Services with Application Modules"

■ Chapter 9, "Implementing Programmatic Business Rules in Entity Objects"

■ Chapter 10, "Overview of Application Module Data Binding"

Overview of ADF Business Components 4-1

4
Overview of ADF Business Components

This chapter provides an overview of the ADF Business Components layer of Oracle
ADF, including a description of the key features they provide for building your
business services.

This chapter includes the following sections:

■ Section 4.1, "Prescriptive Approach and Reusable Code for Business Services"

■ Section 4.2, "What are ADF Business Components and What Can They Do?"

■ Section 4.3, "Relating ADF Business Components to Familiar 4GL Tools"

■ Section 4.4, "Overview of ADF Business Components Implementation
Architecture"

■ Section 4.5, "Understanding the Active Data Model"

■ Section 4.6, "Overview of ADF Business Components Design Time Facilities"

4.1 Prescriptive Approach and Reusable Code for Business Services
The J2EE platform defines a server-side model for development and deployment of
services. However, the task of writing, reusing, and customizing the robust
functionality needed for real-world business applications is left as an exercise for the
members of each development team to figure out for themselves. In particular, the
J2EE specifications do not prescribe an approach for:

■ writing and enforcing business application logic in a central way

■ reusing business logic in multiple applications

■ accessing updatable views of business data tailored specifically to the task at hand

■ maintaining and customizing the business functionality once the application is
delivered.

From years of experience in building the E-Business Suite applications on the J2EE
platform, Oracle knows that these are the activities where you'll spend the bulk of your
time and effort when you build your own J2EE solutions. ADF Business Components
is designed to provide a prescriptive approach to address the these challenging tasks,
and offers a reusable library of software components and design time "plugins" to
JDeveloper that make it easy to follow the time-tested approach they prescribe.

The ADF Business Components technology in Oracle ADF is the culmination of years
of joint design and development work between the Oracle Applications, Oracle Tools,
and Oracle Server Technologies divisions to pragmatically implement Oracle's vision
for how well-architected, database-centric enterprise J2EE applications will be built
now and in the future.

What are ADF Business Components and What Can They Do?

4-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Along with the other layers of the overall Oracle ADF, ADF Business Components is
the technology used daily by over 4000 of Oracle's own internal applications
developers, and by several thousand external customers including Oracle partners.
This means it is a proven solution you can count on, too.

4.2 What are ADF Business Components and What Can They Do?
ADF Business Components are "building-blocks" that provide the most productive
way to create, deploy, and maintain a business service. ADF Business Components
dramatically simplifies the development, delivery, and customization of enterprise
J2EE business applications by providing you with a set of intelligent software
building-blocks that save development time by making many of the most typical
development task declarative. They cooperate "out-of-the-box" to manage all of the
common facilities required to:

■ Productively author and test business logic in components which automatically
integrate with databases,

■ Flexibly reuse business logic through multiple SQL-based views of data,
supporting different application tasks,

■ Efficiently access and update the views from browser, desktop, mobile, and web
service clients

■ Easily customize application functionality in layers without requiring
modification of the delivered application.

By eliminating the substantial coding and testing work related to common "application
plumbing" facilities, ADF Business Components lets application developers focus
full-time on implementing business solutions. ADF Business Components provides a
foundation of Java classes that your business-tier application components extend to
leverage a robust implementation of the numerous design patterns you need in the
following areas:

Simplifying Data Access
■ Design a data model for client displays, including only necessary data

■ Include master/detail hierarchies of any complexity as part of the data model

■ Implement end-user query-by-example data filtering without code

■ Automatically coordinate data model changes with business domain object layer

■ Automatically validate and save any changes to the database

Enforcing Business Domain Validation and Business Logic
■ Declaratively enforce required fields, primary key uniqueness, data

precision/scale, and foreign key references

■ Easily capture and enforce both simple and complex business rules,
programmatically or declaratively, with multi-level validation support

■ Navigate relationships between business domain objects and enforce constraints
related to compound components

What are ADF Business Components and What Can They Do?

Overview of ADF Business Components 4-3

Supporting Sophisticated UIs with Multi-Page Units of Work
■ Automatically reflect changes made by business service application logic in the

user interface,

■ Retrieve reference information from related tables, and automatically maintain the
information when user changes foreign-key values

■ Simplify multi-step web-based business transactions with automatic web-tier state
management

■ Handle images, video, sound, and documents with no code

■ Synchronize pending data changes across multiple views of data

■ Consistently apply prompts, tooltips, format masks, and error messages in any
application

■ Define custom metadata for any business components to support metadata-driven
user interface or application functionality.

■ Add dynamic attributes at runtime to simplify per-row state management.

Implementing Best Practice, High-Performance Service-Oriented Architecture
■ Enforce best-practice interface-based programming style

■ Simplify application security with automatic JAAS integration and audit
maintenance

■ "Write once, deploy any": use the same business service as plain Java class, EJB
session bean, or web service

■ Switch from 2-tier to 3-tier deployment with no client code changes

■ Reduce network traffic for remote clients through efficient batch operations

Streamlining Application Customization
■ Extend component functionality after delivery without modifying source code

■ Globally substitute delivered components with extended ones without modifying
the application.

■ Deliver application upgrades without losing or having to reapply downstream
customizations manually

All of these features can be summarized by saying that using ADF Business
Components for your J2EE business service layer makes your life a lot easier. The key
ADF Business Components components that cooperate to provide the business service
implementation are:

■ Entity Object

An entity object represents a row in a database table and simplifies modifying its
data by handling all DML operations for you. It can encapsulate business logic for
the row to ensure your business rules are consistently enforced. You associate an
entity object with others to reflect relationships in the underlying database schema
to create a layer of business domain objects to reuse in multiple applications.

■ Application Module

An application module is the transactional component that UI clients use to work
with application data. It defines an updatable data model and top-level
procedures and functions (called service methods) related to a logical unit of work
related to an end-user task.

Relating ADF Business Components to Familiar 4GL Tools

4-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ View Object

A view object represents a SQL query and simplifies working with its results. You
use the full power of the familiar SQL language to join, project, filter, sort, and
aggregate data into exactly the "shape" required by the end-user task at hand. This
includes the ability to link a view object with others to create master/detail
hierarchies of any complexity. When end users modify data in the user interface,
your view objects collaborate with entity objects to consistently validate and save
the changes.

While the base components handle all the common cases with their sophisticated
built-in behavior, taking advantage of their benefits does not compromise your ability
to have it your way whenever necessary. Since any automatic behavior provided by
the base components can be easily overridden with a few strategic lines of code, you're
never locked in to a certain way of doing things for all cases.

4.3 Relating ADF Business Components to Familiar 4GL Tools
ADF Business Components provides components that implement functionality similar
to what you are used to in the enterprise 4GL tools you have used prior to embarking
on J2EE development. This section will assist you in understanding how the key
components in ADF Business Components map conceptually to the ones you have
used in other 4GL tools.

4.3.1 Familiar Concepts for Oracle Forms Developers
ADF Business Components implements all of the data-centric aspects of the familiar
Oracle Forms runtime functionality in a way that they can be used with any kind of
user interface. In Oracle Forms, each form contains both visual objects like canvases,
windows, alerts, and LOVs, as well as non-visual objects like data blocks, relations,
and record groups. Individual data block items have both visual properties like
Foreground Color and Bevel as well as non-visual properties like Data Type
and Maximum Length. Even the different event-handling triggers that Forms defines
fall into visual and non-visual categories. For example, it's clear that triggers like
WHEN-BUTTON-PRESSED and WHEN-MOUSE-CLICKED are visual in nature, relating to
the front-end UI, while triggers like WHEN-VALIDATE-ITEM and ON-INSERT are
more related to the back-end data processing. While merging visual and non-visual
aspects definitely simplifies the learning curve, the flip side is that it can complicate
reuse. With a cleaner separation of UI-related and data-related elements, it would be
easier to redesign the user interface without disturbing back-end business logic and
easier to repurpose back-end business logic in multiple different forms.

In order to imagine this separation of UI and data, consider lopping a form as you
know it today in half, keeping only its non-visual, data-related aspects. What's left
would be a container of data blocks, relations, and record groups. This container
would continue to provide a database connection for the data blocks to share and be
responsible for coordinating transaction commits or rollbacks. Of course, you could
still use the non-visual validation and transactional triggers to augment or change the
default data-processing behavior as well. This non-visual object your considering is a
kind of a "smart data model" or a generic application module, with data and business
logic, but no user interface elements. The goal of separating this application module
from anything visual is to allow any kind of user interface you need in the future to
use it as a data service.

Relating ADF Business Components to Familiar 4GL Tools

Overview of ADF Business Components 4-5

Focus a moment on the role the data blocks would play in this application module.
They would query rows of data from the database using SQL, coordinate
master/detail relationships with other data blocks, validate user data entry with
WHEN-VALIDATE-RECORD and WHEN-VALIDATE-ITEM triggers, and communicate
valid user changes back to the database with INSERT, UPDATE, and DELETE
statements when you commit the data service's transaction.

Experience tells you that you need to filter, join, order, and group data for your
end-users in many different ways depending on the task at hand. On the other hand,
the validation rules that you apply to your business domain data remain basically the
same over time. Given these observations, it would be genuinely useful to write
business entity validation exactly once, and leverage it consistently anywhere that data
is manipulated by users in your applications.

Enabling this flexibility requires further "factoring" of your data block functionality.
You need one kind of "SQL query" object to represent each of the many different views
of data your application requires, and another kind of "business entity" object that will
enforce business rules and communicate changes to your base table in a consistent
way. By splitting things again like this, you can have multiple different "view objects"
working with the same underlying "entity object" when their SQL queries present the
same business data.

Oracle ADF breathes life into the UI/data split you imagined above by providing
ready-to-use Java components that implement the Forms-inspired functionality you're
familiar with in the Java world, with responsibilities divided along the
cleanly-separated functional lines you just hypothesized.

Application Module is a "headless" Form Module
The ApplicationModule component is the "data half of the form" you considered
above. It's a smart data service containing a data model of master/detail-related queries
that your client interface needs to work with. It also provides a transaction and
database connection used by the components it contains. It can contain form-level
procedures and functions called service methods, that are encapsulated within the
service implementation. You can decide which of these procedures and functions
should be private and which ones should be public.

The Entity Object validates and saves rows like the Forms Record Manager
The EntityObject implements the "validation and database changes half" of the
data block functionality from above. In the Forms runtime, this duty is performed by
the record manager. It is responsible for keeping track of which of the rows in a data
block have changed, for firing the validation triggers in a data block and its data items,
and for coordinating the saving of changes to the database. This is exactly what an
entity object does for you. Related to an underlying base table, it's a component that
represents your business domain entity and gives you a single place to encapsulate
business logic related to validation, defaulting, and database modification behavior for
that business object.

The View Object queries data like a Data Block
The ViewObject component performs the "data retrieval half" of the data block
functionality above. Each view object encapsulates a SQL query, and at runtime each
one manages its own query result set. If you connect two or more view objects in
master/detail relationships, that coordination is handled automatically. While
defining a view object, you can link any of its query columns to underlying entity
objects. By capturing this information, the view object and entity object can cooperate
automatically for you at runtime to enforce your domain business logic regardless of
the "shape" of the business data needed by the user for the task at hand.

Relating ADF Business Components to Familiar 4GL Tools

4-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4.3.2 Familiar Concepts for PeopleTools Developers
If you have developed solutions in the past with PeopleTools, you are familiar with
the PeopleTools Component structure. ADF Business Components implement the data
access functionality you are familiar with from PeopleTools.

Application Module is a “headless” Component
ADF adheres to an MVC pattern and separates the Model from the View. Pages as you
are familiar with in the PeopleTools Component are defined in the view layer, using
standard technologies like with JSF and ADF Faces components for web-based
applications or Swing for desktop-fidelity client displays.

The ADF Application Module defines the data structure, just like the PeopleTools
Component Buffer. By defining master/detail relationships between ADF query
components that produce row sets of data, you ensure that any Application Module
that works with the data can reuse the natural hierarchy as required, similar to the
scroll levels in the Component Buffer.

Similar to the Component Interface you are familiar with, the Application Module is a
service object that provides access to standard methods as well as additional
developer-defined business logic. In order to present a "headless" data service for a
particular user interface, the Component Interface restricts a number of PeopleTools
functions that are related to UI interaction. The Application Module is similar to the
Component Interface in that it provides a "headless" data service, but in contrast it
does not do this by wrapping a restricted view of an existing user interface. Instead,
the Application Module is architected to deal exclusively with business logic and data
access. Rather than building a Component Interface on top of the Component, with
ADF you first build the Application Module service that is independent of user
interface, and then build one or more pages on top of this service to accomplish some
end-user task in your application.

The Application Module is associated with a Transaction object in the same way that
the PeopleTools Component Buffer is. The Application Module also provides a
database connection for the components it contains. Any logic you associate today
with the transaction as Component PeopleCode, in ADF you would define as logic on
the Application Module.

Logic associated with records in the transaction, that today you write as Component
Record PeopleCode or Component Record Field PeopleCode, should probably not be
defined on the Application Module. ADF has View Objects (see below) that allow for
better re-use when the same Record appears in different Components.

Entity Object is a Record Definition
The Entity Object is the mapping to the underlying data structure, just like the
PeopleTools Record Definition maps to the underlying table or view. You'll often
create one Entity Object for each of the tables that you need to manipulate your
application.

Similar to how you declare a set of valid values for fields like 'Customer Status' using
PeopleTools' translate values, in ADF you can add declarative validations to the
individual Attributes of an Entity Object. Any logic you associate with the record that
applies throughout your applications, which today you write as Record PeopleCode or
Record Field PeopleCode, can be defined in ADF on the Entity Object.

Relating ADF Business Components to Familiar 4GL Tools

Overview of ADF Business Components 4-7

View Object Queries Data Like a Row Set
Just like a PeopleTools row set, a View Object can be populated by a SQL query.
Unlike a row set, a View Object definition can contain business logic.

Any logic, which you would find in Component Record PeopleCode, is a likely
candidate to define on the View Object. Component Record PeopleCode is directly
tied to the Component, but a View Object can be associated with different Application
Modules. While you can use the same Record Definition in many PeopleTools
Components, Oracle ADF allows you to reuse the business logic across multiple
applications.

The View Object queries data in exactly the "shape" that is useful for the current
application. Many View Objects can be built on top of the same Entity Object.

You can define relationships between View Objects to create master-detail structures
just like you find them in the scroll levels in the PeopleTools Component.

4.3.3 Familiar Concepts for SiebelTools Developers
If you have developed solutions in the past with SiebelTools version 7.0 or earlier, you
will find that ADF Business Components implements all of the familiar data access
functionality you are familiar with, with numerous enhancements.

Entity Object is a Table Object with Encapsulated Business Logic
Like the Siebel Table object, the ADF Entity Object describes the physical
characteristics of a single table, including column names and physical data types. Both
objects contain sufficient information to generate the DDL to create the physical tables
in the DB. In ADF you define Associations between Entity Objects to reflect the foreign
keys present in the underlying tables, and these associations are used automatically
join business information in the view object queries used by user interface pages or
screens. List of values objects that you reference from data columns today are handled
in ADF through a combination of declarative entity validation rules and view object
queries. You can also encapsulate other declarative or programmatic business logic
with these entity object "table" handlers that is automatically reused in any view of the
data you create.

View Object is a Business Component
Like the Siebel Business Component, the ADF View Object describes a logical
mapping on top of the underlying physical table representation. They both allow you
to provide logical field names, data, and calculated fields that match the needs of the
user interface. As with the Business Component, you can define View Objects that join
information from various underlying tables. The related ADF View Link is similar to
the Siebel Link object and allows you to define master/detail relationships. In ADF,
your view object definitions can exploit the full power of the SQL language to shape
the data as required by the user interface.

Application Module is a Business Object With Connection and Transaction
The Siebel Business Object lets you define a collection of Business Components. The
ADF Application Module performs a similar task, allowing you to create a collection
of master/detail View Objects that act as a "data model" for a set of related user
interface pages. In addition, the Application Module provides a transaction and
database connection context for this group of data views. You can make multiple
requests to objects obtained from the Application Module and these participate in the
same transaction.

Overview of ADF Business Components Implementation Architecture

4-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4.3.4 Familiar Functionality for ADO.NET Developers
If you have developed solutions in the past with Visual Studio 2003 or 2005, you are
familiar with using the ADO.NET framework for data access. ADF Business
Components implements all of the data access functionality you are familiar with from
ADO.NET, with numerous enhancements.

Application Module is an enhanced DataSet
The ApplicationModule component plays the same role as the ADO.NET
DataSet. It is a strongly-typed service component that represents a collection of row
sets called view objects, which as described below, are similar to ADO.NET
DataTables. The application module works with a related Transaction object to
provide the context for queries the SQL queries the view objects execute and the
modifications saved to the database by the entity objects, which play the role of the
ADO.NET DataAdapter.

The Entity Object is an enhanced, strongly-typed DataAdapter
The EntityObject is like a strongly-typed ADO.NET DataAdapter. It represents
the rows in a particular table and handles the find-by-primary-key, insert, update,
delete, and lock operations for those rows. In ADF, you don't have to specify these
statements yourself, but you can override them if you need to. The entity object
encapsulates validation or other business logic related to attributes or entire rows in
the underlying table. This validation is enforced when data is modified and saved by
the end-user using any view object query that references the underlying entity object.

The View Object is an enhanced DataTable
The ViewObject component encapsulates a SQL query and manages the set of
resulting rows. It can be related to an underlying entity object to automatically
coordinate validation and saving of modifications made by the user to those rows.
This cooperation between a view object's queried data and an entity objects
encapsulated business logic offers all of the benefits of the DataTable with the clean
encapsulation of business logic into a layer of business domain objects. Like ADO.NET
data tables, you can easily work with a view object's data as XML or have a view
object read XML data to automatically insert, update, or delete rows based on the
information it contains.

4.4 Overview of ADF Business Components Implementation Architecture
Before diving into each of the key components in subsequent chapters, it's good at the
outset to understand a few guiding principles that have gone into the design and
implementation of this layer of Oracle ADF.

4.4.1 Based on Standard Java and XML
Like the rest of Oracle ADF, the ADF Business Components technology is
implemented in Java. The base components implement a large amount of generic,
metadata-driven functionality to save you development time by standing on the
shoulders of a rich layer of working, tested code. The metadata for ADF Business
Components follow J2EE community best practice of using cleanly-separated XML
files to hold the metadata that configures each component's runtime behavior.

Overview of ADF Business Components Implementation Architecture

Overview of ADF Business Components 4-9

Since ADF Business Components is often used for bet-your-business applications, it's
important to understand that full source for Oracle ADF, including the ADF Business
Components layer, is available to supported customers through Oracle Worldwide
Support. The full source code for the framework can be an important tool to assist you
in diagnosing problems and in correctly extending the base framework functionality
for your needs.

4.4.2 Works with Any Application Server or Database
Because your business components are implemented using plain Java classes and XML
files, you can use them in any runtime environment where a Java Virtual Machine is
present. This means that services built using ADF Business Components are easy to
use both inside a J2EE server — known as the "container" of your application at
runtime — as well as outside. Customers routinely use application modules in such
diverse configurations as command-line batch programs, web services, custom
servlets, JSP pages, desktop-fidelity clients built using Swing, and others.

Applications built using ADF Business Components can run on any Java-capable
application server, including any J2EE-compliant application server. As described in
Section 4.6.1, "Choosing a Connection, SQL Flavor, and Type Map", in addition to
building applications that target Oracle databases with numerous optimizations, you
can also build applications that work with non-Oracle databases.

4.4.3 Implements All of the J2EE Design Patterns You Need
The ADF Business Components layer implements all of the popular J2EE design
patterns that you would normally need to understand, implement, and debug yourself
to create a real-world enterprise J2EE application. If it is important to you to
cross-reference the names of some of these design patterns you might have read about
in J2EE literature with how they are implemented by ADF Business Components, you
can refer to Appendix E, "ADF Business Components J2EE Design Pattern Catalog".

4.4.4 Components are Organized into Packages
Since ADF Business Components is implemented in Java, it is implemented in Java
classes and interfaces that are organized into packages. Java packages are identified by
dot-separated names that developers use to arrange code into a hierarchical naming
structure. To ensure your code won't clash with reusable code from other
organizations, best practice dictates choosing package names that begin with your
organization's name or web domain name. So, for example, the Apache organization
chose org.apache.tomcat for a package name related to its Tomcat web server,
while Oracle picked oracle.xml.parser as a package name for its XML parser.
Components you create for an your own applications will live in a packages with
names like com.yourcompany.yourapp and subpackages of these.

As a specific example, the ADF Business Components that make up the main business
service for the SRDemo application are organized into the oracle.srdemo.model
package, and subpackages. As shown in Figure 4–1, these components reside in the
DataModel project in the workspace, and are organized broadly as follows:

■ oracle.srdemo.model contains the SRService application module

■ oracle.srdemo.model.queries contains the view objects

■ oracle.srdemo.model.entities contains the entity objects

■ oracle.srdemo.model.design contains UML diagrams documenting the
service

Overview of ADF Business Components Implementation Architecture

4-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 4–1 Organization of ADF Business Components in the SRDemo Application

In your own applications, you can choose any package organization that you believe
best organizes them. In particular, keep in mind that you are not constrained to
organize components of the same type into a single package as the creators of the
SRDemo application have done.

Due to JDeveloper's support for refactoring, you can easily rename or move
components to a different package structure at any time. In other words, you don't
need to necessarily get the structure right the first time. Your business service's
package structure will almost certainly evolve over time as you gain more experience
with the ADF environment.

There is no "magic" number that describes the optimal number of components in a
package. However, with experience, you'll realize that the correct structure for your
team falls somewhere between the two extremes of:

■ All components in a single package

■ Each component in its own, separate package

As described in more detail in Section 25.7, "Working with Libraries of Reusable
Business Components", since a package of ADF Business Components is the unit of
granularity that JDeveloper supports importing for reuse in other projects, sometimes
you'll also factor this consideration into how you choose to organize components.

Overview of ADF Business Components Implementation Architecture

Overview of ADF Business Components 4-11

4.4.5 Architecture of the Base ADF Business Components Layer
The classes and interfaces that comprise the pre-built code provided by the ADF
Business Components layer live in the oracle.jbo package and numerous
subpackages, however in your day to day work with ADF Business Components
you'll mostly be working with classes and interfaces in the two key packages
oracle.jbo and oracle.jbo.server. The oracle.jbo package contains all of
the interfaces that are designed for the business service client to work with, while the
oracle.jbo.server package contains the classes that implement these interfaces.

Figure 4–2 shows a concrete example of the application module component. The client
interface for the application module is the ApplicationModule interface in the
oracle.jbo package. This interface defines the names and signatures of methods
that clients can use while working with the application module, but it does not include
any specifics about the implementation of that functionality. The class that implements
the base functionality of the application module component lives in the
oracle.jbo.server package and is named ApplicationModuleImpl.

Figure 4–2 Oracle ADF Business Components Separate Interface and Implementation

4.4.6 Components Are Metadata-Driven With Optional Custom Java Code
Each kind of component in ADF Business Components comes with built-in runtime
functionality that you control through declarative settings. These settings are stored in
an XML component definition file with the same name as the component that it
represents. When you need to write custom code for a component, you can enable an
optional custom Java class for the component in question.

4.4.6.1 Example of an XML-Only Component
Figure 4–3 illustrates the XML component definition file for an application-specific
component like an application module named YourService that you create in a
package named com.yourcompany.yourapp. The corresponding XML component
definition resides in a ./com/yourcompany/yourapp subdirectory of the
JDeveloper's project's source path root directory. That XML file records the name of
the Java class it should use at runtime to provide the application module
implementation. In this case, the XML records the name of the base
oracle.jbo.server.ApplicationModuleImpl class provided by Oracle ADF.

Note: The term "client" here means any code in the model, view or
controller layers that accesses the application module component as a
business service.

Overview of ADF Business Components Implementation Architecture

4-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 4–3 XML Component Definition File for an Application Module

If you have no need to extend the built-in functionality of a component in ADF
Business Components, and no need to write any custom code to handle its built-in
events, you can use the component in this XML-only fashion. This means your
component is completely defined by its XML component definition and be
fully-functionality without requiring any custom Java code or even a Java class file
related to the component at all.

4.4.6.2 Example of a Component with Custom Java Class
When you need to add custom code to extend the base functionality of a component or
to handle events, you can enable a custom Java class for any of the key types of ADF
Business Components you create. You enable custom classes for a component on the
Java panel of its respective component editor in JDeveloper. This creates a Java source
file for a custom class related to the component whose name follows a configurable
naming standard. This class, whose name is recorded in the component's XML
component definition, provides a place where you can write the custom Java code
required by that component. Once you’ve enabled a custom Java class for a
component, you can navigate to it at any time using a corresponding Go To... Class
option in the component’s Application Navigator context menu.

Figure 4–4 illustrates what occurs when you enable a custom Java class for the
YourService application module considered above. A YourServiceImpl.java
source code file is created in the same directory in the source path as your
component's XML component definition file. The YourService.xml file is updated
to reflect the fact that at runtime the component should use the
com.yourcompany.yourapp.YourServiceImpl class instead of the base
ApplicationModuleImpl class.

Figure 4–4 Component with Custom Java Class

Overview of ADF Business Components Implementation Architecture

Overview of ADF Business Components 4-13

4.4.7 Recommendations for Configuring ADF Business Components Design Time
Preferences

You can configure whether JDeveloper generates custom Java files by default for each
component type that supports it, as well as whether JDeveloper maintains a list of
Oracle ADF business components in each package using a package XML file. This
section describes Oracle's recommendations to developers getting started with ADF
Business Components on how to configure these options.

4.4.7.1 Recommendation for Initially Disabling Custom Java Generation
Your applications can freely mix XML-only components with components that have
related custom Java files. For example, you can define a completely functional,
updatable data model with declaratively enforced business rules using XML-only
components. On the other end of the spectrum, some developers prefer to proactively
generate Java classes for each component they create as part of their team's coding
style.

For developers getting started with ADF Business Components, Oracle recommends
initially configuring JDeveloper to not generate any custom Java classes by default.
This way, you learn the reasons why custom Java is needed and you consciously
enable it for the components that require it in your application. Over time, you will
develop a personal preference of your own.

Note that this recommended setting is not the default, so you need to perform the
following steps to configure the Java generation preferences as recommended here:

■ Choose Tools | Preferences... from the JDeveloper main menu

■ Select the Business Components preference category in the tree at the left

■ Ensure all of the checkboxes are unchecked as shown in Figure 4–5, then click OK.

Figure 4–5 Setting Business Components Preferences to Generate No Java By Default

Note: The examples in this guide use default settings for generated
names of custom component classes and interfaces. If you want to
change these defaults for your own applications, use the Business
Components: Class Naming page of the JDeveloper Tools Preferences
dialog. Changes you make only affect newly created components.

Overview of ADF Business Components Implementation Architecture

4-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4.4.7.2 Recommendation for Disabling Use of Package XML File
By default, for upward compatibility with previously releases of Oracle ADF,
JDeveloper maintains an XML file in each directory containing the names of the Oracle
ADF business components that reside in that package. While previously required by
the ADF runtime classes, this package XML file is optional in this version. Since
maintaining this "package XML" file can complicate team development, Oracle
recommends you disable the use of any package XML files by setting the Copy
Package XML Files to Class Path option off in the Business Components: General
panel of the IDE preferences as shown in Figure 4–6.

Figure 4–6 Disabling the Use of the Optional Package XML File for ADF Business
Components

4.4.8 Basic Datatypes
The Java language provides a number of built-in data types for working with strings,
dates, numbers, and other data. When working with ADF Business Components, you
can use these types, but by default you'll use an optimized set of types in the
oracle.jbo.domain and oracle.ord.im packages. These types, shown in
Table 4–1, improve the performance of working with data from the Oracle database by
allowing the data to remain in its native, internal format avoiding costly type
conversions when they are not necessary. For working with string-based data, by
default ADF Business Components uses the regular java.lang.String type.

Note: To disable the use of package XML files in an existing project
containing ADF Business Components, you can visit the Project
Properties dialog, select the Business Components: Options panel,
and uncheck the same checkbox as shown above.

Table 4–1 Basic Data Types in the oracle.jbo.domain and oracle.ord.im Packages

Data Type Represents

Number Any numerical data

Date Date with optional time

DBSequence Sequential integer assigned by a database
trigger

RowID Oracle database ROWID

Timestamp Timestamp value

TimestampTZ Timestamp value with Timezone information

BFileDomain Binary File (BFILE) object

BlobDomain Binary Large Object (BLOB)

ClobDomain Character Large Object (CLOB)

OrdImageDomain Oracle Intermedia Image (ORDIMAGE)

OrdAudioDomain Oracle Intermedia Audio (ORDAUDIO)

Overview of ADF Business Components Implementation Architecture

Overview of ADF Business Components 4-15

4.4.9 Generic Versus Strongly-Typed APIs
When working with application modules, view objects, and entity objects, you can
choose to use a set of generic APIs or can have JDeveloper generate code into a custom
Java class to enable a strongly-typed API for that component. For example, when
working with an view object, you can access the value of an attribute in any row of its
result using a generic API like:

Row row = serviceRequestVO.getCurrentRow();
Date requestDate = (Date)row.getAttribute("RequestDate");

Notice that using the generic APIs, you pass string names for parameters, and you
have to cast the return type to the expected type like Date shown in the example.

Alternatively, if you enable the strongly-typed style of working you can write code
like this:

ServiceRequestsRow row = (ServiceRequestRow)serviceRequestVO.getCurrentRow();
Date requestDate = row.getRequestDate();

In this case, you work with generated method names whose return type is known at
compile time, instead of passing string names and having to cast the results.
Subsequent chapters explain how to enable this strongly-typed style of working if you
prefer it.

OrdVideoDomain Oracle Intermedia Video (ORDVIDEO)

OrdDocDomain Oracle Intermedia Document (ORDDOC)

Struct User-defined object type

Array User-defined collection type (e.g. VARRAY)

Note: The oracle.jbo.domain.Number class has the same class
name as the built-in java.lang.Number type. Since the Java
compiler implicitly imports java.lang.* into every class, you need
to explicitly import the oracle.jbo.domain.Number class into any
class that references this. Typically, JDeveloper will do this
automatically for you, but when you begin to write more custom code
of your own, you'll learn to recognize compiler or runtime errors
related to "Number is an abstract class" mean that you are
inadvertently using java.lang.Number instead of
oracle.jbo.domain.Number. Adding the:

import oracle.jbo.domain.Number;

line at the top of your class, after the package line, avoids these kinds
of errors.

Table 4–1 (Cont.) Basic Data Types in the oracle.jbo.domain and oracle.ord.im Packages

Data Type Represents

Overview of ADF Business Components Implementation Architecture

4-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4.4.10 Client-Accessible Components Can Have Custom Interfaces
By design, the entity objects in the business domain layer of business service
implementation are not designed to be referenced directly by clients. Instead, clients
work with the data queried by view objects as part of an application module's data
model. Behind the scenes, as you'll learn in Section 7.7, "Understanding How View
Objects and Entity Objects Cooperate at Runtime", the view object cooperates
automatically with entity objects in the business domain layer to coordinate validating
and saving the data the user changes.

Therefore, the client-visible components of your business service are the:

■ Application Module — representing the service itself

■ View Objects — representing the query components

■ View Rows — representing each row in a given query component's results

4.4.10.1 Framework Client Interfaces for Components
The oracle.jbo package provides client-accessible API for your business service as a
set of Java interfaces. In line with the design mentioned above, this package does not
contain any Entity interface, or any methods that allow the client to directly work
with entity objects. Instead, client code works with interfaces like:

■ ApplicationModule — to work with the application module

■ ViewObject — to work with the view object

■ Row — to work with the view rows

4.4.10.2 Custom Client Interfaces for Components
When you begin adding custom code to your Oracle ADF business components that
you want clients to be able to call, you can "publish" that functionality to clients for
any client-visible component. For each of your components that publishes at least one
custom method to clients on its client interface, JDeveloper automatically maintains
the related Java interface file. So, assuming you were working with an application
module like the SRService module used in the SRDemo application, you can have
custom interfaces like:

■ Custom Application Module Interface

SRService extends ApplicationModule

■ Custom View Object Interface

StaffListByEmailNameRole extends ViewObject

■ Custom View Row Interface

StaffListRowClient extends Row

Client code can then cast one of the generic client interfaces to the more specific one
that includes the selected set of client-accessible methods you've selected for your
particular component.

Understanding the Active Data Model

Overview of ADF Business Components 4-17

4.5 Understanding the Active Data Model
One of the key simplifying benefits of using ADF Business Components for your
business service implementation is the application module's support for an "active
data model" of row sets. For developers coming from a Forms/4GL background, it
works just like you are used to in previous tools.

4.5.1 What is an Active Data Model?
Using a typical J2EE business service implementation puts the burden on the client
layer developer to be responsible for:

■ Invoking service methods to return data to present,

■ Tracking what data the client has created, deleted, or modified, and

■ Passing the changes back to one or more different service methods to validate and
save them.

The architects that designed the ADF application module recognized that this retrieve,
create, edit, delete, and save cycle is so common in enterprise business applications
that a smarter, more generic solution was required. Using the application module for
your business service, you simply bind client UI controls like fields, tables and trees to
the active view object instances in the application module’s data model. Your UI
displays automatically update to reflect any changes to the rows in the view object
row sets in that data model. This includes displays you create using JSP or JSF pages
for the web or mobile devices, as well as desktop-fidelity UI's comprising windows
and panels using Swing. This "active" data notification includes changes to the data
model that are the result of work performed directly or indirectly by your custom
business service methods, too.

Under the covers the application module component implements a set of generic
service methods to enable the active data model facility in a Service Oriented
Architecture (SOA). The client layer simply uses the ADF Business Components
interfaces in the oracle.jbo package. These interfaces provide a higher-level API
that lets you think in terms of row sets of rows in the data model whose contents your
end-user needs to search for, create, delete, modify and save. They hide all of the
lower-level generic SOA-method calling complexity. What's more, when you build UI
displays that take advantage of the ADF Model layer for declarative data binding, you
generally don't need to write client-side code at all to work with the active data model.
Your displays are bound declaratively to view objects in the data model, and to
custom business service methods when you need to perform any other kind of logic
business service function.

4.5.2 Examples of the Active Data Model In Action
Consider the following three simple, concrete examples of the active data model in
action:

New data appears in relevant displays without re-querying
A customer logs into the SRDemo application and sees their list of open service
requests. They visit some wizard pages and create a new service request, when they
return back to their home page, the new service request appears in their list of open
requests without re-querying the database.

Understanding the Active Data Model

4-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Changes caused by business domain layer logic automatically reflected
A manager edits a service request and assigns a technician to the case by picking their
name from a poplist list of values page. Business logic encapsulated in the
ServiceRequest entity object in the business domain layer behind the data model
contains a simple rule that updates the assigned date to the current date and time
whenever the service request's assigned to attribute is changed. The user interface
updates to automatically reflect the assigned date that was changed by the logic in the
business domain layer.

Invocation of a business service method re-queries data and sets current rows
In a tree display, the user clicks on a specific node in a tree. This declaratively invokes
a business service method on your application module that re-queries master detail
information and sets the current rows to an appropriate row in the row set. The
display updates to reflect the new master/detail data and current row displayed.

Without an active data model, the developer using a less clever business service
implementation approach is forced to write more code in the client to handle the
straightforward, everyday CRUD-style operations. In addition, to keep pages up to
date, they are forced to manage "refresh flags" that clue the controller layer in to
requesting a "repull" of data from the business service to reflect data that might have
been modified. When using an ADF application module to implement your business
service, you can focus on the business logic at hand, instead of the plumbing to make
your business work as your end users expect.

4.5.3 Active Data Model Allows You to Eliminate Most Client-Side Code
Because the application module's active data model feature ensures your client user
interface is always up to date, you can typically avoid writing code in the client that is
related to setting up or manipulating the data model. Oracle recommends
encapsulating any code of this kind inside custom methods of your application
module component. Whenever the programmatic code that manipulates view objects
is a logical aspect of implementing your complete business service functionality you
should encapsulate the details by writing a custom method in your application
module's Java class. This includes, but is not limited to, code that:

■ Configures view object properties to query the correct data to display

■ Iterates over view object rows to return an aggregate calculation

■ Performs any kind of multi-step procedural logic with one or more view objects.

By centralizing these implementation details in your application module, you gain the
following benefits:

■ You make the intent of your code more clear to clients

■ You allow multiple client pages to easily call the same code if needed

■ You simplify regression testing your complete business service functionality

■ You keep the option open to improve your implementation without affecting
clients, and

■ You enable declarative invocation of logical business functionality in your pages.

Another typical type of client-side code you no longer have to write using ADF
Business Components is code that coordinates detail data collections when a row in
the master changes. By linking the view objects as you'll learn in the next chapter, you
can have the coordination performed automatically for you.

Overview of ADF Business Components Design Time Facilities

Overview of ADF Business Components 4-19

4.6 Overview of ADF Business Components Design Time Facilities
JDeveloper offer broad design time support for ADF Business Components. This
section highlights the facilities you'll be using throughout the guide to work with your
business components.

4.6.1 Choosing a Connection, SQL Flavor, and Type Map
The first time you create a component, you'll see the Initialize Business Components
Project dialog shown in Figure 4–7. You use this dialog to select a design time database
connection to work with while working on your business components in this project.
The Connection dropdown list shows a list of all the named connection definitions
you've created, or clicking New... allows you to create a new one if you don't see the
one you need.

Figure 4–7 Initialize Business Components Project Dialog

The SQL Flavor setting controls the syntax of the SQL statements your view objects
will use and the syntax of the DML statements your entity objects will use. If
JDeveloper detects you are using an Oracle database driver, it defaults this setting to
the Oracle SQL flavor. The supported SQL flavors include:

■ Oracle — the default, for working with Oracle

■ OLite — for the Oracle Lite database

■ SQLServer — for working with a Microsoft SQLServer database

■ DB2 — for working with an IBM DB2 database

■ SQL92 — for working with any other supported SQL92- compliant database

Overview of ADF Business Components Design Time Facilities

4-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The Type Map setting controls whether you want this project to use the optimized set
of Oracle data types, or use only the basic Java data types. If JDeveloper detects you
are using an Oracle database driver, it defaults this setting to the Oracle Type map.
The supported type maps are:

■ Oracle — use optimized types in the oracle.jbo.domain package

■ Java — use basic Java types only

4.6.2 Creating New Components Using Wizards
In the New Gallery in the ADF Business Components category, JDeveloper offers a
wizard to create each kind of business component. Each wizard allows you to specify
the component name for the new component and to select the package into which
you'd like to organize the component. If the package does not yet exist, the new
component becomes the first component in that new package. The wizard presents a
series of panels that capture the necessary information to create the component type.
When you click Finish, JDeveloper creates the new component by saving its XML
component definition file. If you have set your Java generation options to prefer their
generation by default, JDeveloper also creates the initial custom Java class files.

4.6.3 Quick-Creating New Components Using the Context Menu
Once a package exists in the Application Navigator, you can quickly create additional
business components of any type in the package by selecting it in the Application
Navigator and using one of the options on the right-mouse context menu as shown in
Figure 4–8.

Figure 4–8 Context Menu Options on a Package to Create Any Kind of Business
Component

Note: If you plan to have your application run against both Oracle
and non-Oracle databases, you should select the SQL92 SQL Flavor
when you begin building your application, not later. While this makes
the application portable to both Oracle and non-Oracle databases, it
sacrifices using some of the Oracle-specific optimizations that are
inherent in using the Oracle SQL Flavor.

Overview of ADF Business Components Design Time Facilities

Overview of ADF Business Components 4-21

4.6.4 Editing Components Using the Component Editor
Once a component exists, you can edit it using the respective component editor that
you access by either double-clicking on the component in the Application Navigator or
selecting it and choosing the Edit option from the right-mouse context menu. The
component editor presents a superset of the panels available in the wizard, and allows
you to change any aspect of the component. When you click OK, JDeveloper updates
the components XML component definition file and if necessary any of its related
custom Java files.

4.6.5 Visualizing, Creating, and Editing Components Using UML Diagrams
As highlighted in the walkthrough in Chapter 2, "Overview of Development Process
with Oracle ADF and JSF", JDeveloper offers extensive UML diagramming support for
ADF Business Components. You can drop existing components you've already created
onto a business components diagram to visualize them, use the diagram to create and
modify components, or a mixture of the two. The diagrams are kept in sync with
changes you make in the editors.

To create a new business components diagram, use the Business Components
Diagram item in the ADF Business Components category of the JDeveloper New
Gallery. This category is part of the Business Tier choices.

4.6.6 Testing Application Modules Using the Business Components Browser
Once you have created an application module component, you can test it interactively
using the built-in Business Components Browser. To launch the Business Components
Browser, select the application module in the Application Navigator or business
components diagram and choose Test... from the right-mouse context menu.

This tool presents the view object instances in the application module's data model
and allows you to interact with them using a dynamically generated user interface.
This tool is invaluable for testing or debugging your business service both before and
after you create the view layer of pages or Swing panels.

4.6.7 Refactoring Components
At any time, you can select a component in the Application Navigator and choose
Refactor > Rename from the right-mouse context menu to rename the component.
You can also select one or more components in the navigator — by holding down the
[Ctrl] key while you select with the mouse click — and choose Refactor > Move to
move the selected components to a new package. References to the old component
names or packages in the current project are adjusted automatically.

Overview of ADF Business Components Design Time Facilities

4-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Querying Data Using View Objects 5-1

5
Querying Data Using View Objects

This chapter describes how to query from the database using SQL queries
encapsulated by ADF view objects.

This chapter includes the following sections:

■ Section 5.1, "Introduction to View Objects"

■ Section 5.2, "Creating a Simple, Read-Only View Object"

■ Section 5.3, "Using a View Object in an Application Module's Data Model"

■ Section 5.4, "Defining Attribute Control Hints"

■ Section 5.5, "Testing View Objects Using the Business Components Browser"

■ Section 5.6, "Working Programmatically with View Object Query Results"

■ Section 5.7, "How to Create a Command-Line Java Test Client"

■ Section 5.8, "Filtering Results Using Query-By-Example View Criteria"

■ Section 5.9, "Using Named Bind Variables"

■ Section 5.10, "Working with Master/Detail Data"

■ Section 5.11, "Generating Custom Java Classes for a View Object"

5.1 Introduction to View Objects
A view object is Oracle ADF component that encapsulates a SQL query and simplifies
working with its results. By the end of this chapter, you'll understand all the concepts
illustrated in Figure 5–1:

■ You define a view object by providing a SQL query

■ You use view object instances in the context of an application module that
provides the database transaction for their queries

■ You can link a view object to one or more others to create master/detail
hierarchies

■ At runtime, the view object executes your query and produces a row set of rows

■ Each row is identified by a corresponding row key

■ You iterate through the rows in a row set using a row set iterator

■ You can filter the row set a view object produces by applying a set of
query-by-example criteria rows

Creating a Simple, Read-Only View Object

5-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 5–1 A View Object Defines a Query and Produces a RowSet of Rows

5.2 Creating a Simple, Read-Only View Object
View objects can be used for reading data as well as updating data. This chapter
focuses on working with read-only data using view objects. In Chapter 7, "Building an
Updatable Data Model With Entity-Based View Objects", you'll learn how to create
view objects that can handle updating data.

5.2.1 How to Create a Read-Only View Object
To create a view object, use the Create View Object wizard. The wizard is available
from the New Gallery in the Business Tier > ADF Business Components category. If
it's the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.
These examples assume that you are working with a connection named SRDemo for
the SRDEMO schema.

As shown in Figure 5–2, provide a package name, a view object name, and indicate
that you want this view object to manage data with read-only access. The figure
illustrates creating a view object named Users in the devguide.examples package.

Note: To experiment with a working version of the examples in this
chapter, download the DevGuideExamples workspace from the
Example Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01/
and see the QueryingDataWithViewObjects project.

http://otn.oracle.com/documentation/jdev/b25947_01/

Creating a Simple, Read-Only View Object

Querying Data Using View Objects 5-3

Figure 5–2 Defining the Package and Component Name for a New View Object

In step 2 of the wizard (the SQL Statement page), paste in any valid SQL statement
into the Query Statement box or click Query Builder to use the interactive query
builder. Figure 5–3 shows a query to retrieve a few columns of user information from
the USERS table ordered by EMAIL.

Figure 5–3 Defining the SQL Query for a Read-Only View Object

Note: If you see an Entity Objects page instead of the SQL
Statement page shown here, go back to step 1 and ensure that you've
selected Read-only Access.

Creating a Simple, Read-Only View Object

5-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Since the query does not reference any bind variables, you can skip step 3 Bind
Variables page for now. In Section 5.9, "Using Named Bind Variables", you'll add a
bind variable and see how to work with it in the query.

In addition to the SQL query information, a view object captures information about the
names and datatypes of each expression in its query's SELECT list. As you'll see in
Section 5.6, "Working Programmatically with View Object Query Results", you can use
these view object attribute names to access the data from any row in the view object's
result set by name. You could directly use the SQL column names as attribute names in
Java, but typically the SQL names are all uppercase and often comprised of multiple,
underscore-separated words. The view object wizard converts these SQL-friendly
names to Java-friendly ones.

In step 4 on the Attribute Mappings page, as shown in Figure 5–4 you can see how the
SELECT list column names correspond to the more Java-friendly view object attribute
names that the wizard has created by default. Each part of an underscore-separated
column name like SOME_COLUMN_NAME is turned into a capitalized word in the
attribute name like SomeColumnName. While the view object attribute names
correspond to the underlying query columns in the SELECT list, the attribute names at
the view object level need not match necessarily. You can later rename the view object
attributes to any names that might be more appropriate without changing the
underlying query.

Figure 5–4 Wizard Creates Default Java-Friendly Attribute Names for Each Column in
Select List

Click Finish at this point to create the view object.

Note: You'll see throughout the ADF Business Components wizards
and editors, that the default convention is to use "CamelCapped"
attribute names, beginning with a capital letter and using upper-case
letters in the middle of the name to improve readability when the
name comprises multiple words.

Creating a Simple, Read-Only View Object

Querying Data Using View Objects 5-5

5.2.2 What Happens When You Create a Read-Only View Object
When you create a view object, JDeveloper first describes the query to infer the
following from the columns in the SELECT list:

■ The Java-friendly view attribute names (e.g. USER_ID -> UserId)

■ The SQL and Java data types of each attribute

JDeveloper then creates the XML component definition file that represents the view
objects's declarative settings and saves it in the directory that corresponds to the name
of its package. In the example above, the view object was named Users in the
devguide.examples package, so that the XML file created will be
./devguide/examples/Users.xml under the project's source path. This XML file
contains the SQL query you entered, along with the names, datatypes, and other
properties of each attribute. If you're curious to see its contents, you can see the XML
file for the view object by selecting the view object in the Application Navigator and
looking in the corresponding Sources folder in the Structure window. Double-clicking
the Users.xml node will open the XML in an editor so that you can inspect it.

5.2.3 What You May Need to Know About View Objects
Typically you create one view object for each SQL query your application will
perform.

5.2.3.1 Editing an Existing View Object Definition
After you've created a view object, you can edit any of its settings by using the View
Object Editor. Choose the Edit menu option on the context menu in the Application
Navigator, or double-click the view object, to launch the dialog. By opening the
different panels of the editor, you can adjust the SQL query, change the attribute
names, add named bind variables, add UI controls hints, control Java generation
options, and other settings that are described in later chapters.

5.2.3.2 Working with Queries That Include SQL Expressions
If your SQL query includes a calculated expression like this:

select USER_ID, EMAIL,
SUBSTR(FIRST_NAME,1,1)||'. '||LAST_NAME

from USERS
order by EMAIL

use a SQL alias to assist the Create View Object wizard in naming the column with a
Java-friendly name:

select USER_ID, EMAIL,
SUBSTR(FIRST_NAME,1,1)||'. '||LAST_NAME AS USER_SHORT_NAME

from USERS
order by EMAIL

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
view object class UsersImpl.java and/or a custom view row class
UsersRowImpl.java class.

Using a View Object in an Application Module's Data Model

5-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5.2.3.3 Controlling the Length, Precision, and Scale of View Object Attributes
As shown in Figure 5–5, by selecting a particular attribute name in the View Object
Editor, you can see and change the values of the declarative settings that control its
runtime behavior. One important property is the Type in the Query Column section.
This property records the SQL type of the column, including the length information
for VARCHAR2 columns and the precision/scale information for NUMBER columns.
The JDeveloper editors try to infer the type of the column automatically, but for some
SQL expressions the inferred value might be VARCHAR2(255). You can update the
Type value for such attributes to reflect the correct length if you know it. For example,
VARCHAR2(30) which shows as the Type for the FirstName attribute in Figure 5–5
means that it has a maximum length of 30 characters. For a NUMBER column, you
would indicate a Type of NUMBER(7,2) for an attribute that you want to have a
precision of 7 digits and a scale of 2 digits after the decimal.

Figure 5–5 Editing the Settings for a View Object Attribute

5.3 Using a View Object in an Application Module's Data Model
Any view object you create is a reusable component that can be used in the context of
one or more application modules to perform the query it encapsulates in the context of
that application module's transaction. The set of view objects used by an application
module defines its data model, in other words, the set of data that a client can display
and manipulate through a user interface. To start simple, create an application module
and use the single view object you created above in the application module's data
model.

Using a View Object in an Application Module's Data Model

Querying Data Using View Objects 5-7

5.3.1 How to Create an Application Module
To create an application module, use the Create Application Module wizard. The
wizard is available from the New Gallery in the Business Tier > ADF Business
Components category. As shown in Figure 5–6, provide a package name, and an
application module name. The figure shows creating an application module
UserService in the devguide.examples package.

Figure 5–6 Defining the Package and Component Name for a New Application Module

In step 2 on the Data Model page, Figure 5–7 illustrates that initially the data model is
empty. That is, it contains no view object instances yet. The Available View Objects
list shows all available view objects in your project, organized by package.

Figure 5–7 Defining the Data Model For a New Application Module

Using a View Object in an Application Module's Data Model

5-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To add an instance of a view object to the data model, first select it in the Available
list. The Name field below the list shows the name that will be used to identify the
next instance of that view object that you add to the data model. By typing in a
different name before pressing the add instance button >, you can change the name to
be anything you like. Finally, to add an instance of the selected view object to the data
model, identified by the instance name shown below, click the add instance button (>).

Assuming you decide on the instance name of UserList, Figure 5–8 shows what the
Data Model page would look like after adding the instance. The Instance Name field
below the selected view object instance in the Data Model list allows you to see and
change the instance name if necessary. The Definition field displays the
fully-qualified name of the view object component that will be used to create this view
object instance at runtime. You see as expected that the definition that will be used is
devguide.examples.Users view object.

Figure 5–8 Data Model With One Instance Named UserList of the Users View Object

5.3.1.1 Understanding the Difference Between View Object Components and View
Object Instances
It is important to understand the distinction between a view object component and a
view object instance. The easiest way to understand the distinction is to first consider a
visual example. Imagine that you need to build a Java user interface containing two
buttons. Using JDeveloper's visual editor, you might create the page shown in
Figure 5–9 by using the Component Palette to select the JButton component and
click to add a JButton component to your panel. Repeating that same step a second
time, you can drop another button onto the panel. You are designing a custom
JPanel component that uses two instances of the JButton component. The panel
does not own the JButton class, it's just using two instances of it.

Using a View Object in an Application Module's Data Model

Querying Data Using View Objects 5-9

Figure 5–9 Designing a Panel That Contains Two Instances of the JButton Component

If you were to peek into the Java code of this new panel you're designing, you'd notice
that there are two member fields of type JButton to hold a reference to the two
instances of the button the panel is using. To distinguish the two instances in the code,
one member field is named myButton, and the other member field is named
anotherButton:

Example 5–1 Two Instances of a JButton Component

public class Panel1 extends JPanel implements JUPanel {
private JButton myButton = new JButton(); // First instance
private JButton anotherButton = new JButton(); // Second instance
// etc.

}

Even though the application module is a nonvisual component, you can still apply this
same intuition about components, instances, and distinct member names to help
understand the concept better. While designing an application module, you use
instances of a view object component to define its data model. Figure 5–10 shows a
JDeveloper business components diagram of a UserService application module.
Just as the panel in Example 5–1 contained two instances of the JButton component
with member names of myButton and anotherButton to distinguish them, your
application module contains two instances of the Users view object component, with
member names of UserList and AnotherUserList to distinguish them. At
runtime, the two JButton instances are both based on the same definition — which
explains why they both have the same set of properties and both exhibit JButton-like
behavior. However the values of their properties like Position and Text are
different. So too for the different instances of the Users view object in your
UserService application module. At runtime, both instances share the same Users
view object component definition — ensuring they have the same attribute structure
and Users view object behavior — however, each might be used independently to
retrieve data about different users. For example, some of the runtime properties like an
additional filtering WHERE clause or the value of a bind variable might be different
on the two distinct instances.

Using a View Object in an Application Module's Data Model

5-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 5–10 Designing an Application Module That Contains Two Instances of the Users
View Object Component

Besides the obvious fact that one example is a visual panel while the other is a
nonvisual data model component, the only logical difference is how the instances and
member names are defined. In the visual panel in Example 5–1, you saw that the two
member fields holding the distinct JButton instances were declared in code. In
contrast, the UserService application module defines its member view object
instances in its XML component definition file:

Example 5–2 Application Modules Define Member View Objects in XML

<AppModule Name="UserService">
<ViewUsage Name="UserList" ViewObjectName="devguide.examples.Users"/>
<ViewUsage Name="AnotherUserList" ViewObjectName="devguide.examples.Users"/>

</AppModule>

5.3.2 What Happens When You Create an Application Module
When you create an application module, JDeveloper creates the XML component
definition file that represents its declarative settings and saves it in the directory that
corresponds to the name of its package. In the example in Figure 5–6, the application
module was named UserService in the devguide.examples package, so the XML
file created will be ./devguide/examples/UserService.xml under the project's
source path. This XML file contains the information needed at runtime to recreate the
view object instances in the application module's data model. If you're curious to see
its contents, you can see the XML file for the application module by selecting the view
object in the Application Navigator and looking in the corresponding Sources folder
in the Structure window. Double-clicking the UsersService.xml node will open the
XML in an editor so that you can inspect it.

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
application module class UsersServiceImpl.java.

Using a View Object in an Application Module's Data Model

Querying Data Using View Objects 5-11

5.3.3 What You May Need to Know About Application Modules
After you've created an application module, you can edit any of its settings by using
the Application Module Editor. Select the Edit menu option on the context menu in
the Application Navigator to launch the application module. By opening the different
panels of the editor, you can adjust the view object instances in the data model, control
Java generation options, and other settings you'll learn about in later chapters.

5.3.3.1 Editing an Application Module's Runtime Configuration Properties
Since it can be convenient to define and use multiple sets of runtime configuration
properties each application module supports multiple, named runtime configurations.
When you create an application module, JDeveloper creates a default set of runtime
configuration properties for the application module. For an application module named
YourService, its default set of configuration properties will be named
YourServiceLocal. These settings are stored in an XML file named bc4j.xcfg in a
subdirectory named common, relative to where the application module's XML
component definition resides. For example, when you created the UserService
application module above in the devguide.examples package, JDeveloper creates
the file bc4j.xcfg in the ./devguide/examples/common directory under the
project's source path.

You can use the application module configuration manager to edit existing
configurations or create new ones. To access the configuration manager, select the
desired application module in the Application Navigator and choose
Configurations...from the context menu. The Configuration Manager dialog appears,
as shown in Figure 5–11. You can see the default UserServiceLocal configuration
for the UserService application module. Any additional configurations you create,
or any configuration properties you edit, are saved in the same bc4j.xcfg.

Figure 5–11 Application Module Configuration Manager

Click the Edit button in the Configuration Manager to edit a specific configuration. As
shown in Figure 5–12, this editor allows you to configure the database connection
information, a number of pooling and scalability settings, and a final tab of remaining
properties that aren't covered by the first two tabs. All of the runtime properties and
their meanings are covered in the JDeveloper online help.

Defining Attribute Control Hints

5-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 5–12 Oracle Business Component Configuration Editor

5.4 Defining Attribute Control Hints
One of the many powerful, built-in features of the ADF Business Components is the
ability to define control hints on attributes. Control hints are additional attribute
settings that the view layer can use to automatically display the queried information to
the user in a consistent, locale-sensitive way. JDeveloper manages storing the hints in a
way that is easy to localize for multi-lingual applications.

5.4.1 How to Add Attribute Control Hints
To add attribute control hints for the attributes of the UserList view object, open the
View Object Editor and expand the Attributes node in the left-side tree to reveal the
list of the view object's attributes. As shown in Figure 5–13, by selecting a particular
attribute name like UserId and selecting the Control Hints tab, you can enter a value
for its Label Text hint like "Id". You can also set the Format Type to Number, and
enter a Format mask of 00000. You could select the other attributes in turn to define
Label Text hints like "Email Address", "Given Name", and "Surname" for the Email,
FirstName, and LastName attributes respectively.

Note: When building web applications, set the jbo.locking.mode
property to optimistic. The default value is pessimistic, which
is not the correct value for web applications. You can find this
property listed alphabetically in the Properties tab of the
Configuration Editor.

Note: Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's SQL
and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and
java.text.SimpleDateFormat classes.

Defining Attribute Control Hints

Querying Data Using View Objects 5-13

Figure 5–13 Setting UI Control Hints for View Object Attributes

5.4.2 What Happens When You Add Attribute Control Hints
When you define attribute control hints for a view object, JDeveloper creates a
standard Java message bundle file in which to store them. The file is specific to the
view object component to which it's related, and it is named accordingly. For the
UserList view object in the devguide.examples package, the message bundle file
created will be named UserListRowImplMsgBundle.java and it will be created in
the devguide.examples.common subpackage. By selecting the UserList
component in the Application Navigator, you'll see that this new file gets added to the
Sources folder in the Structure window that shows the group of implementation files
for each business component. Example 5–3 shows how the control hint information
appears in the message bundle file. The first entry in each String array is a message
key; the second entry is the locale-specific String value corresponding to that key.

Example 5–3 View Object Component Message Bundle Class Stores Locale-Sensitive
Control Hints

package devguide.examples.common;
import oracle.jbo.common.JboResourceBundle;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// ---
public class UsersRowImplMsgBundle extends JboResourceBundle {
static final Object[][] sMessageStrings =
{
{ "UserId_LABEL", "Id" },
{ "UserId_FMT_FORMATTER", "oracle.jbo.format.DefaultNumberFormatter" },
{ "UserId_FMT_FORMAT", "00000" },
{ "Email_LABEL", "Email Address" },
{ "FirstName_LABEL", "Given Name" },
{ "LastName_LABEL", "Surname" }

};

Testing View Objects Using the Business Components Browser

5-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5.4.3 What You May Need to Know About Message Bundles
Internationalizing the model layer of an application built using ADF Business
Components entails producing translated versions of each component message bundle
file. For example, the Italian version of the UsersRowImplMsgBundle message
bundle would be a class named UsersRowImplMsgBundle_it, and a more specific
Swiss Italian version would have the name UsersRowImplMsgBundle_it_ch. These
classes typically extend the base message bundle class, and contain entries for the
message keys that need to be localized, together with their localized translation. For
example, assuming you didn't want to translate the number format mask for the
Italian locale, the Italian version of the UserList view object message bundle would
look like what you see in Example 5–4. Notice the overridden getContents()
method. It returns an array of messages with the more specific translated strings
merged together with those that are not overridden from the superclass bundle. At
runtime, the appropriate message bundles are used automatically, based on the
current user's locale settings.

Example 5–4 Localized View Object Component Message Bundle for Italian

package devguide.examples.common;
import oracle.jbo.common.JboResourceBundle;
public class UsersRowImplMsgBundle_it extends UsersRowImplMsgBundle {
static final Object[][] sMessageStrings =
{
{ "UserId_LABEL", "Codice Utente" },
{ "Email_LABEL", "Indirizzo Email" },
{ "FirstName_LABEL", "Nome" },
{ "LastName_LABEL", "Cognome" }

 };
 // merge this message bundles messages with those in superclass bundle
 public Object[][] getContents() {
 return super.getMergedArray(sMessageStrings, super.getContents());
 }
}

5.5 Testing View Objects Using the Business Components Browser
JDeveloper includes an interactive application module testing tool that enables you to
to test all aspects of its data model without having to use your application user
interface or write a test client program. It can often be the quickest way of exercising
the data functionality of your business service during development.

5.5.1 How to Test a View Object Using the Business Components Browser
To test an application module, select it in the Application Navigator and choose Test
from the context menu. The Business Component Browser Connect dialog appears as
shown in Figure 5–14. In the upper right corner of the dialog, the Configuration Name
list allows you to choose any of your application module's configurations for the
current run of the tester tool. Click Connect to start the application module using the
selected configuration.

Testing View Objects Using the Business Components Browser

Querying Data Using View Objects 5-15

Figure 5–14 Business Component Browser

5.5.2 What Happens When You Use the Business Components Browser
When you launch the Business Components Browser, JDeveloper starts the tester tool
in a separate process and the Business Components Browser appears. The tree at the
left of the dialog displays all of the view object instances in your application module's
data model. Figure 5–15 has only one instance called UserList. Double-clicking the
UserList view object instance in the tree executes the view object — if it has not been
executed so far in the testing session — and displays a panel to inspect the query
results as shown in Figure 5–15. Additional context menu items on the view object
node allow you to re-execute the query if needed, to remove the tester panel, and to
perform other tasks.

Figure 5–15 Testing the Data Model in the Business Component Browser

Testing View Objects Using the Business Components Browser

5-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

You can see that the fields in the test panel for the view object are disabled for the
UserList view object instance, because the view object is read only. In Section 7.5,
"Testing Entity-Based View Objects Interactively", you'll see that the tester tool
becomes even more valuable by allowing you to experiment with inserting, updating,
and deleting rows in view objects, too. But even for a read-only view object, the tool
affords some useful features. Firstly, you can validate that the UI hints and format
masks are defined correctly. The attributes display with their defined Label Text
control hints as the prompt, and the UserId field is displayed as 00303 due to the
00000 format mask defined in Section 5.4.1, "How to Add Attribute Control Hints".
Secondly, you can scroll through the data using the toolbar buttons.

Thirdly, you can enter query-by-example criteria to find a particular row whose data
you want to inspect. By clicking the Specify View Criteria button in the toolbar, the
View Criteria dialog displays as shown in Figure 5–16. You can enter a query criteria
like "H%" in the LastName attribute and click Find to narrow the search to only those
users with a last name that begins with the letter H (Hunold, Himuro, Hartstein, and
Higgins).

Figure 5–16 Exercising Built-in Query-by-Example Functionality

5.5.3 What You May Need to Know About the Business Components Browser
When using the Business Components Browser you can customize configuration
options for the current run. You can also enable ADF Business Component debug
diagnostics to output messages to the console. Both of these features can help you test
various portions of your application or find problems.

5.5.3.1 Customizing Configuration Options for the Current Run
As described in Figure 5–14, on the Connect dialog of the Business Component
Browser you can select a predefined configuration to run the tool using that named set
of runtime configuration properties. The Connect dialog also features a Properties tab
that allows you to see the selected configurations settings and to override any of the
configuration's settings for the current run of the browser. For example, you could test
the Italian language translations of the UI control hints for a single Business
Components Browser run by opening the Properties tab and setting the following two
properties:

■ jbo.default.country = IT

■ jbo.default.language = it

Testing View Objects Using the Business Components Browser

Querying Data Using View Objects 5-17

If you wanted to make the changes permanent, you could use the Configuration
Manager to copy the current UserServiceLocal configuration and create a new
UserServiceLocalItalian which had these two additional properties set. This
way, anytime you wanted to test in Italian you could simply choose to use the
UserServiceLocalItalian configuration instead of the default
UserServiceLocal one.

5.5.3.2 Enabling ADF Business Components Debug Diagnostics
When launching the Business Components Browser, if your project's current run
configuration is set to include the Java System parameter
jbo.debugoutput=console, you can enable ADF Business Components debug
diagnostics with messages directed to the console. These will display in the JDeveloper
Log window.

To set the system property described above, open the Run/Debug page in the Project
Properties dialog for your model project. Click Edit to edit the chosen run
configuration, and add the string:

-Djbo.debugoutput=console

to the Java Options field in the panel. The next time you run the Business Component
Browser and double-click on the UserList view object, you'll see detailed diagnostic
output in the console.

Example 5–5 Diagnostic Output of Business Component Browser

:
[234] Created root application module: 'devguide.examples.UserService'
[235] Stringmanager using default locale: 'en_US'
[236] Locale is: 'en_US'
[237] ApplicationPoolImpl.resourceStateChanged wasn't release related.
[238] Oracle SQLBuilder: Registered driver: oracle.jdbc.driver.OracleDriver
[239] Creating a new pool resource
[240] Trying connection/2: url='jdbc:oracle:thin:@localhost:1521:XE' ...
[241] Successfully logged in
[242] JDBCDriverVersion: 10.1.0.5.0
[243] DatabaseProductName: Oracle
[244] DatabaseProductVersion: Oracle Database 10g Release 10.2.0.1.0
[245] Column count: 4
[246] ViewObject: UserList Created new QUERY statement
[247] UserList>#q computed SQLStmtBufLen: 110, actual=70, storing=100
[248] select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
order by EMAIL
:

Note: Despite the similar name, the JDeveloper project's run
configurations are different from the ADF application module's
configurations. The former are part of the project properties, the latter
are defined along with your application module component in its
bc4j.xcfg file and edited using the configuration editor.

Working Programmatically with View Object Query Results

5-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Using the diagnostics, you can see everything the framework components are doing
for your application.

Other legal values for this property are silent (the default, if not specified) and
file. If you choose the file option, diagnostics are written to the system temp
directory. One best practice is to create multiple JDeveloper run configurations, one
with the ADF Business Components debug diagnostics set on, and another without it,
so you can easily flip between seeing and not seeing debug diagnostics by choosing
the appropriate project run configuration.

5.6 Working Programmatically with View Object Query Results
Now that you have a working application module containing an instance named
UserList, you can build a simple test client program to illustrate the basics of
working programmatically with the data in the UserList view object instance.

5.6.1 Common Methods for Working with the View Object’s Default RowSet
The ViewObject interface in the oracle.jbo package provides the methods to
make quick work of any data-retrieval task. Some of these methods used in the
example include:

■ executeQuery(), to execute the view object's query and populate its row set
of results

■ setWhereClause(), to add a dynamic predicate at runtime to narrow a search

■ setNamedWhereClauseParam(), to set the value of a named bind variable

■ hasNext(), to test whether the row set iterator has reached the last row of results

■ next(), to advance the row set iterator to the next row in the row set

■ getEstimatedRowCount(), to count the number of rows a view object's query
would return

Chapter 27, "Advanced View Object Techniques" presents situations when you might
want a single view object to produce multiple distinct row sets of results; however,
most of the time you'll work only with a single row set of results at a time for a view
object. That same later chapter, also describes scenarios when you might want to
create multiple distinct row set iterators for a row set, however again most of the time
you'll need only a single iterator. To simplify this overwhelmingly common use case,
as shown in Figure 5–17, the view object contains a default RowSet, which, in turn,
contains a default RowSetIterator. As you'll see in the examples below, the default
RowSetIterator allows you to call all of the methods above directly on the
ViewObject component itself, knowing that they will apply automatically to its
default row set.

Figure 5–17 ViewObject Contains a Default RowSet and RowSetIterator

How to Create a Command-Line Java Test Client

Querying Data Using View Objects 5-19

With the concepts in place, you can create a test client program to put them into
practice.

5.6.2 Counting the Number of Rows in a RowSet
The getEstimatedRowCount() method is used on a RowSet to determine how
many rows it contains:

long numReqs = reqs.getEstimatedRowCount();

The implementation of the getEstimatedRowCount() initially issues a SELECT
COUNT(*) query to calculate the number of rows that the query will return. The query
is formulated by "wrapping" your view object's entire query in a statement like:

SELECT COUNT(*) FROM (... your view object's SQL query here ...)

This approach allows you to access the count of rows for a view object without
necessarily retrieving all the rows themselves which is an important optimization for
working with queries that return a large number of rows, or proactively testing how
many rows a query would return before proceeding to work with the results of the
query.

Once the estimated row count is calculated, subsequent calls to the method do not
re-execute the COUNT(*) query. The value is cached until the next time the view
object's query is executed, since the fresh query result set returned from the database
could potentially contain more, fewer, or different rows compared with the last time
the query was run. The estimated row count is automatically adjusted to account for
pending changes in the current transaction, adding the number of relevant new rows
and subtracting the number of removed rows from the count returned.

5.7 How to Create a Command-Line Java Test Client
To create a test client program, create a new Java class using the Create Java Class
wizard. This is available in the New Gallery under the General category. Enter a class
name like TestClient, a package name like devguide.examples.client, and
ensure the Extends field says java.lang.Object. In the Optional Attributes,
deselect the Generate Default Constructor and select the Generate Main Method
checkbox. Then click OK to create the TestClient.java file. The file opens in the
source editor to show you the skeleton code:

Example 5–6 Skeleton Code for TestClient.java

package devguide.examples.client;
public class TestClient {
public static void main(String[] args) {

}
}

Note: Throughout this guide, whenever you encounter the phrase
"working with the rows in a view object," what this means more
precisely is working with the rows in the view object’s default row set.
Similarly, when you read "iterate over the rows in a view object," what
this means more precisely is that you'll use the default row set iterator
of the view object's default row set to loop over its rows.

How to Create a Command-Line Java Test Client

5-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Place the cursor on a blank line inside the body of the main() method and use the
bc4jclient code template to create the few lines of necessary code. To use this
predefined code template, type the characters bc4jclient followed by a
[Ctrl]+[Enter] to expands the code template so that the class now should look like this:

Example 5–7 Expanded Skeleton Code for TestClient.java

package devguide.examples.client;
import oracle.jbo.client.Configuration;
import oracle.jbo.*;
import oracle.jbo.domain.Number;
import oracle.jbo.domain.*;
public class TestClient {
public static void main(String[] args) {
String amDef = "test.TestModule";
String config = "TestModuleLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);

ViewObject vo = am.findViewObject("TestView");
// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule(am,true);

}
}

Adjust the values of the amDef andconfig variables to reflect the names of the
application module definition and the configuration that you want to use,
respectively. For the Example 5–7, you would change these two lines to read:

String amDef = "devguide.examples.UserService";
String config = "UserServiceLocal";

Finally, change view object instance name in the call to findViewObject() to be the
one you want to work with. Specify the name exactly as it appears in the Data Model
tree on the Data Model panel of the Application Module editor. Here, the view object
instance is named UserList, so you need to change the line to:

ViewObject vo = am.findViewObject("UserList");

At this point, you have a working skeleton test client for the UserService
application module whose source code looks like what you see in Example 5–8.

Note: Section 8.5, "Working Programmatically with an Application
Module's Client Interface" expands this test client sample code to
illustrate calling custom application module service methods, too.

How to Create a Command-Line Java Test Client

Querying Data Using View Objects 5-21

Example 5–8 Working Skeleton Code for an Application Module Test Client Program

package devguide.examples.client;
import oracle.jbo.client.Configuration;
import oracle.jbo.*;
import oracle.jbo.domain.Number;
import oracle.jbo.domain.*;
public class TestClient {
public static void main(String[] args) {
String amDef = "devguide.examples.UserService";
String config = "UserServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);

ViewObject vo = am.findViewObject("UserList");
// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule(am,true);

}
}

To execute the view object's query, display the number of rows it will return, and loop
over the result to fetch the data and print it out to the console, replace // Work with
your appmodule and view object here , with the code in Example 5–9

Example 5–9 Looping Over a View Object and Printing the Results to the Console

System.out.println("Query will return "+
vo.getEstimatedRowCount()+" rows...");

vo.executeQuery();
while (vo.hasNext()) {
Row curUser = vo.next();
System.out.println(vo.getCurrentRowIndex()+". "+

curUser.getAttribute("UserId")+" "+
curUser.getAttribute("Email"));

}

The first line calls getEstimatedRowCount() to show how many rows the query
will retrieve. The next line calls the executeQuery() method to execute the view
object's query. This produces a row set of zero or more rows that you can loop over
using a while statement that iterates until the view object's hasNext() method
returns false. Inside the loop, the code puts the current Row in a variable named
curUser, then invokes the getAttribute() method twice on that current Row
object to get the value of the UserId and Email attributes to print them to the
console.

5.7.1 What Happens When You Run a Test Client Program
When you run the TestClient class by choosing Run from the context menu of the
source editor, you'll see the results of the test in the log window. Notice that the
getCurrentRowIndex() used in Example 5–10 shows that the row index in a row
set is a zero-based count of the rows:

Filtering Results Using Query-By-Example View Criteria

5-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 5–10 Log Output from Running a Test Client

Query will return 27 rows...
0. 303 ahunold
1. 315 akhoo
:
25. 306 vpatabal
26. 326 wgietz

The call to createRootApplicationModule() on the Configuration object
returns an instance of the UserService application module to work with. As you
might have noticed in the debug diagnostic output, the ADF Business Components
runtime classes load XML component definitions as necessary to instantiate the
application module and the instance of the view object component that you've defined
in its data model at design time. The findViewObject() method on the application
module finds a view object instance by name from the application module's data
model. After the loop described in Example 5–9, the call to
releaseRootApplicationModule() on the Configuration object signals that
you're done using the application module and allows the framework to clean up
resources, like the database connection that was used by the application module.

5.7.2 What You May Need to Know About Running a Test Client
The createRootApplicationModule() and
releaseRootApplicationModule() methods are very useful for command-line
access to application module components, however you won't typically ever need to
write these two lines of code in the context of an ADF-based web or Swing application.
The ADF Model data binding layer cooperates automatically with the ADF Business
Components layer to acquire and release application module components for you in
those scenarios.

5.8 Filtering Results Using Query-By-Example View Criteria
When you need to filter the query results that a view object produces based on search
criteria provided at runtime by the end user, you can apply a ViewCriteria to the
view object. The view criteria is a row set of one or more view criteria rows, whose
attributes mirror those in the view object. The key difference between a view row of
query results and a view criteria row is that the data type of each attribute in the view
criteria row is String to allow query-by-example operators to be entered like ">
304", for example.

5.8.1 How to Use View Criteria to Filter View Object Results
To use a view criteria, follow the steps illustrated in the TestClientViewCriteria
class in Example 5–11 to call:

1. createViewCriteria() on the view object, to be filtered to create an empty
view criteria row set

2. createViewCriteriaRow() on the view criteria, to create one or more empty
view criteria rows

3. setAttribute() as appropriate on the view criteria rows, to set attribute values
to filter on

4. add() on the view criteria, to add the view criteria rows to the view criteria row
set

Filtering Results Using Query-By-Example View Criteria

Querying Data Using View Objects 5-23

5. applyViewCriteria(), to apply the view criteria to the view object

6. executeQuery() on the view criteria, to execute the query with the applied filter
criteria

The last step to execute the query is important since a newly applied view criteria is
only applied to the view object's SQL query at its next execution.

Example 5–11 Creating and Applying a View Criteria

package devguide.examples.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.ViewCriteria;
import oracle.jbo.ViewCriteriaRow;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
public class TestClientViewCriteria {
public static void main(String[] args) {
String amDef = "devguide.examples.UserService";
String config = "UserServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef, config);
ViewObject vo = am.findViewObject("UserList");
// 1. Create a view criteria rowset for this view object
ViewCriteria vc = vo.createViewCriteria();
// 2. Use the view criteria to create one or more view criteria rows
ViewCriteriaRow vcr1 = vc.createViewCriteriaRow();
ViewCriteriaRow vcr2 = vc.createViewCriteriaRow();
// 3. Set attribute values to filter on in appropriate view criteria rows
vcr1.setAttribute("UserId","> 304");
vcr1.setAttribute("Email","d%");
vcr1.setAttribute("UserRole","technician");
vcr2.setAttribute("UserId","IN (324,326)");
vcr2.setAttribute("LastName","Baer");
// 4. Add the view criteria rows to the view critera rowset
vc.add(vcr1);
vc.add(vcr2);
// 5. Apply the view criteria to the view object
vo.applyViewCriteria(vc);
// 6. Execute the query
vo.executeQuery();
while (vo.hasNext()) {
Row curUser = vo.next();
System.out.println(curUser.getAttribute("UserId") + " " +

curUser.getAttribute("Email"));
}
Configuration.releaseRootApplicationModule(am, true);

}
}

Running the TestClientViewCriteria example in Example 5–11 produces the
output:

305 daustin
307 dlorentz
324 hbaer

Filtering Results Using Query-By-Example View Criteria

5-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5.8.2 What Happens When You Use View Criteria to Filter View Object Results
When you apply a view criteria containing one or more view criteria rows to a view
object, the next time it is executed it augments its SQL query with an additional
WHERE clause predicate corresponding the query-by-example criteria that you've
populated in the view criteria rows. As shown in Figure 5–18, when you apply a view
criteria containing multiple view criteria rows, the view object augments its design
time WHERE clause by adding an additional runtime WHERE clause based on the
non-null example criteria attributes in each view criteria row.

Figure 5–18 View Object Automatically Translates View Criteria Rows into Additional
Runtime WHERE Filter

5.8.3 What You May Need to Know About Query-By-Example Criteria
There are several things you may need to know about query-by-example criteria,
including how to test view criteria in the Business Components Browser, altering
compound search conditions using multiple view criteria rows, searching for a row
whose attribute value is NULL, searching case insensitively, clearing view criteria in
effect, and how applying view criteria causes a query to be re-parsed.

5.8.3.1 Use Attribute Names in View Criteria, Column Names in WHERE Clause
In Section 5.6.1, "Common Methods for Working with the View Object’s Default
RowSet", you saw that the setWhereClause() method allows you to add a dynamic
WHERE clause to a view object. As you’ll see in later examples in this chapter, when
you use setWhereClause() you pass a string that contains literal database column
names like this:

vo.setWhereClause("LAST_NAME LIKE UPPER(:NameToFind)");

In contrast, when you use the view criteria mechanism, you saw in Example 5–11
above that you reference the view object attribute name instead like this:

criteriaRow.setAttribute("LastName","B%");

As explained above, the view criteria rows are then translated by the view object into
corresponding WHERE clause predicates that reference the corresponding column
names.

Filtering Results Using Query-By-Example View Criteria

Querying Data Using View Objects 5-25

5.8.3.2 Testing View Criteria in the Business Component Browser
As shown in Figure 5–19, for any view object instance that you browse, clicking the
Specify View Criteria toolbar icon brings up the Business Component View Criteria
dialog. The dialog allows you to create a view criteria comprising one or more view
criteria rows. To apply criteria attributes from a single view criteria row, enter
query-by-example criteria in the desired fields and click Find. To add additional view
criteria rows, click OR and use the additional tabs that appear to switch between
pages, each representing a distinct view criteria row. When you click Find the
Business Components Browser uses the same APIs described above to create and
apply the view criteria to filter the result.

Figure 5–19 Creating a View Criteria with One or More Rows in the Business Component
Browser

5.8.3.3 Altering Compound Search Conditions Using Multiple View Criteria Rows
When you add multiple view criteria rows, you can call the setConjunction()
method on a view criteria row to alter the conjunction used between the predicate
corresponding to that row and the one for the previous view criteria row. The legal
constants to pass as an argument are:

■ ViewCriteriaRow.VCROW_CONJ_AND

■ ViewCriteriaRow.VCROW_CONJ_NOT

■ ViewCriteriaRow.VCROW_CONJ_OR (default)

The NOT value can be combined with AND or OR to create filter criteria like:

(PredicateForViewCriteriaRow1) AND (NOT(
PredicateForViewCriteriaRow2))

or

(PredicateForViewCriteriaRow1) OR (NOT(
PredicateForViewCriteriaRow2))

The syntax to achieve these requires using Java's bitwise OR operator like this:

vcr2.setConjunction(ViewCriteriaRow.VCROW_CONJ_AND | ViewCriteriaRow.VCROW_CONJ_
NOT);

Using Named Bind Variables

5-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5.8.3.4 Searching for a Row Whose Attribute Value is NULL Value
To search for a row containing a NULL value in a column, populate a corresponding
view criteria row attribute with the value "IS NULL".

5.8.3.5 Searching Case-Insensitively
To search case-insensitively, call setUpperColumns(true)on the view criteria row
to which you want the case-insensitivity to apply. This affects the WHERE clause
predicate generated for String-valued attributes in the view object to use
UPPER(COLUMN_NAME) instead of COLUMN_NAME in the predicate. Note that
the value of the supplied view criteria row attributes for these String-valued
attributes must be uppercase or the predicate won't match.

5.8.3.6 Clearing View Criteria in Effect
To clear any view criteria in effect, you can call getViewCriteria() on a view
object and then delete all the view criteria rows from it using the remove() method,
passing the zero-based index of the criteria row you want to remove. If you don't plan
to add back other view criteria rows, you can also clear all the view criteria in effect by
simply calling applyViewCriteria(null) on the view object.

5.8.3.7 Applying View Criteria Causes Query to be Re-parsed
A corollary of the view criteria feature described above is that each time you apply a
new view criteria (or remove an existing one), the text of the view object's SQL query
is effectively changed. Changing the SQL query causes the database to re-parse the
statement again the next time it is executed. If you plan to use the view criteria
filtering feature to apply different criteria values for fundamentally the same criteria
attributes each time, you will get better performance by using a view object whose
WHERE clause contains named bind variables as described in Section 5.9, "Using
Named Bind Variables". In contrast to the view criteria filtering feature, using named
bind variables you can change the values of the search criteria without changing the
text of the view object's SQL statement each time those values change.

5.9 Using Named Bind Variables
Whenever the WHERE clause of your query includes values that might change from
execution to execution, you can use named bind variables. These are place holders in
the SQL string whose value you can easily change at runtime without altering the text
of the SQL string itself. Since the query doesn't change, the database can efficiently
reuse the same parsed representation of the query across multiple executions which
leads to higher runtime performance of your application.

5.9.1 Adding a Named Bind Variable
To add a named bind variable to a view object, use the Bind Variables tab of the
Create View Object wizard or the View Object Editor. You can add as many named
bind variables as you need. As shown in Figure 5–20, for each bind variable you
specify its name, data type, and default value. You can name the variables as you like,
but since they share the same namespace as view object attributes you need to choose
names that don't conflict with existing view object attribute names. As with view
objects attributes, by convention bind variable names are created with an initial capital
letter.

Using Named Bind Variables

Querying Data Using View Objects 5-27

On the Control Hints tab, you can also specify UI hints like Label Text, Format Type,
Format mask and others, just as you did above with the view object attributes. These
bind variable control hints are used automatically by the view layer when you build
user interfaces like search pages that allow the user to enter values for the named bind
variables. The Updatable checkbox controls whether the end user will be allowed to
change the bind variable value through the user interface. If a bind variable is not
updatable, then its value can only be changed programmatically by the developer.

Figure 5–20 Defining Named Bind Variables for a View Object

After defining the bind variables, the next step is to reference them in the SQL
statement. While SQL syntax allows bind variables to appear both in the SELECT list
and in the WHERE clause, you'll typically use them in the latter context, as part of
your WHERE clause. You could edit the UserList view object created above, and
open the SQL Statement page to introduce your named bind variables like this:

select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and USER_ID between :LowUserId and :HighUserId

order by EMAIL

Notice that you reference the bind variables in the SQL statement by prefixing their
name with a colon like :TheName or :LowUserId. You can reference the bind
variables in any order and repeat them as many times as needed within the SQL
statement.

5.9.2 What Happens When You Add Named Bind Variables
Once you've added one or more named bind variables to a view object, you gain the
ability to easily see and set the values of these variables at runtime. Information about
the name, type, and default value of each bind variable is saved in the view object's
XML component definition file. If you have defined UI control hints for the bind
variables, this information is saved in the view object's component message bundle file
along with other control hints for the view object.

Using Named Bind Variables

5-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The Business Components Browser allows you to interactively inspect and change the
values of the named bind variables for any view object, which can really simplify
experimenting with your application module's data model when named bind
parameters are involved. The first time you execute a view object in the tester, a Bind
Variables dialog will appear, as shown in Figure 5–21. By selecting a particular bind
variable in the list, you can see its name as well as both the default and current values.
To change the value of any bind variable, just update its corresponding Value field
before clicking OK to set the bind variable values and execute the query. Using the
Edit Bind Parameters button in the toolbar — whose icon looks like ":id" — you can
inspect and set the bind variables for the view object in the current panel.

Figure 5–21 Setting Bind Variables in the Tester

If you've defined the Label Text, Format Type, or Format control hints, the Bind
Variables dialog helps you verify they are correctly setup by showing the label text
hint in the Bind Variables list and formatting the Value attribute using the respective
format mask. You can see in Figure 5–21 that the label text hints are showing for the
three bind variables in the list.

5.9.3 What You May Need to Know About Named Bind Variables
There are several things you may need to know about named bind variables, including
the runtime errors that are displayed when bind variables have mismatched names,
the default value for bind variables, how to set existing bind variable values at
runtime, and how to add a new named bind variable at runtime.

5.9.3.1 Errors Related to Bind Variables
You need to ensure that the list of named bind variables that you reference in your
SQL statement matches the list of named bind variables that you've defined on the
Bind Variables page of the View Object Editor. Failure to have these two agree
correctly can result in one of the following two errors at runtime.

If you use a named bind variable in your SQL statement but have not defined it, you'll
receive an error like this:

(oracle.jbo.SQLStmtException) JBO-27122: SQL error during statement preparation.
Detail 0
(java.sql.SQLException) Missing IN or OUT parameter at index:: 1

Using Named Bind Variables

Querying Data Using View Objects 5-29

On the other hand, if you have defined a named bind variable, but then forgotten to
reference it or mistyped its name in the SQL, then you will see an error like this:

oracle.jbo.SQLStmtException: JBO-27122: SQL error during statement preparation.
Detail 0
java.sql.SQLException: Attempt to set a parameter name that does not occur in the
SQL: LowUserId

The resolution in both cases is to double-check that the list of named bind variables in
the SQL matches the list of named bind variables on the Bind Variables page.

5.9.3.2 Bind Variables Default to NULL If No Default Supplied
If you do not supply a default value for your named bind variable, it defaults to the
NULL value at runtime. This means that if you have a WHERE clause like:

USER_ID = :TheUserId

and you do not provide a default value for the TheUserId bind variable, it will
default to having a NULL value and cause the query to return no rows. Where it
makes sense for your application, you can leverage SQL functions like NVL(), CASE,
DECODE(), or others to handle the situation as you require. In fact, the UserList
view object uses a WHERE clause fragment like:

upper(FIRST_NAME) like upper(:TheName)||'%'

so that the query will match any name if the value of :TheName is null.

5.9.3.3 Setting Existing Bind Variable Values at Runtime
To set named bind variables at runtime, use the setNamedWhereClauseParam()
method on the ViewObject interface. You can use JDeveloper's Refactor >
Duplicate... feature to create a new TestClientBindVars class based on the
existing TestClient.java class from Section 5.7, "How to Create a Command-Line
Java Test Client". In this new test client class, you can set the values of the
HighUserId and TheName bind variables using the few additional lines of code
shown in Example 5–12.

Example 5–12 Setting the Value of Named Bind Variables Programmatically

// changed lines in TestClient class
ViewObject vo = am.findViewObject("UserList");
vo.setNamedWhereClauseParam("TheName","alex%");
vo.setNamedWhereClauseParam("HighUserId", new Number(315));
vo.executeQuery();
// etc.

Running the TestClientBindVars class shows that your bind variables are filtering
the data, and the resulting rows are only the two matching ones for Alexander Hunold
and Alexander Khoo:

303 ahunold
315 akhoo

Using Named Bind Variables

5-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Whenever a view object's query is executed, the runtime debug diagnostics show you
the actual bind variable values that get used like this:

[256] Bind params for ViewObject: UserList
[257] Binding param "LowUserId": 0
[258] Binding param "HighUserId": 315
[259] Binding param "TheName": alex%

This information that can be invaluable in isolating problems in your applications.
Notice that since the code did not set the value of the LowUserId bind variable, it
took on the design-time specified default value of 0 (zero). Also notice that the use of
the UPPER() function in the WHERE clause and around the bind variable ensured that
the match using the bind variable value for TheName was performed
case-insensitively. The example code set the bind variable value to "alex%" with a
lowercase "a", and the results show that it matched Alexander.

5.9.3.4 Adding a Named Bind Variable at Runtime
Using the view object's setWhereClause() method, you can add an additional
filtering clause at runtime. This runtime-added WHERE clause predicate does not
replace the design-time one, but rather further narrows the query result by getting
applied in addition to any existing design-time WHERE clause. Whenever the
dynamically added clause refers to a value that might change during the life of the
application, you should use a named bind variable instead of concatenating the literal
value into the WHERE clause predicate.

For example, assume you want to further filter the UserList view object at runtime
based on the value of the USER_ROLE column in the table. Also assume that you plan
to search sometimes for rows where USER_ROLE = 'technician' and other times
where USER_ROLE = 'User'. While slightly fewer lines of code, it would be bad
practice to do the following because it changes the where clause twice just to query
two different values of the same USER_ROLE column:

// Don't use literal strings if you plan to change the value!
vo.setWhereClause("user_role = 'technician'");
// execute the query and process the results, and then later...
vo.setWhereClause("user_role = 'user'");

Instead, add a WHERE clause predicate that references named bind variables that you
define at runtime like this:

vo.setWhereClause("user_role = :TheUserRole");
vo.defineNamedWhereClauseParam("TheUserRole", null, null);
vo.setNamedWhereClauseParam("TheUserRole","technician");
// execute the query and process the results, and then later...
vo.setNamedWhereClauseParam("TheUserRole","user");

This allows the text of the SQL statement to stay the same, regardless of the value of
USER_ROLE you need to query on. When the query text stays the same across
multiple executions, the database give you the results without having to reparse the
query.

 If you later need to remove the dynamically added WHERE clause and bind variable,
you can use code like this:

vo.setWhereClause(null);
vo.removeNamedWhereClauseParam("TheUserRole");

Using Named Bind Variables

Querying Data Using View Objects 5-31

An updated TestClientBindVars class illustrating these techniques would look
like what you see in Example 5–13. In this case, the functionality that loops over the
results several times has been refactored into a separate
executeAndShowResults() method. The program first adds an additional WHERE
clause of user_id = :TheUserId and then later replaces it with a second clause of
user_role = :TheUserRole.

Example 5–13 TestClient Program Exercising Named Bind Variable Techniques

package devguide.examples.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.Number;
public class TestClient {
public static void main(String[] args) {
String amDef = "devguide.examples.UserService";
String config = "UserServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);
ViewObject vo = am.findViewObject("UserList");
// Set the two design time named bind variables
vo.setNamedWhereClauseParam("TheName","alex%");
vo.setNamedWhereClauseParam("HighUserId", new Number(315));
executeAndShowResults(vo);
// Add an extra where clause with a new named bind variable
vo.setWhereClause("user_id = :TheUserId");
vo.defineNamedWhereClauseParam("TheUserId", null, null);
vo.setNamedWhereClauseParam("TheUserId",new Number(303));
executeAndShowResults(vo);
vo.removeNamedWhereClauseParam("TheUserId");
// Add an extra where clause with a new named bind variable
vo.setWhereClause("user_role = :TheUserRole");
vo.defineNamedWhereClauseParam("TheUserRole", null, null);
vo.setNamedWhereClauseParam("TheUserRole","user");
// Show results when :TheUserRole = 'user'
executeAndShowResults(vo);
vo.setNamedWhereClauseParam("TheUserRole","technician");
// Show results when :TheUserRole = 'technician'
executeAndShowResults(vo);
Configuration.releaseRootApplicationModule(am,true);

}
private static void executeAndShowResults(ViewObject vo) {
System.out.println("---");
vo.executeQuery();
while (vo.hasNext()) {
Row curUser = vo.next();
System.out.println(curUser.getAttribute("UserId")+" "+

curUser.getAttribute("Email"));
}

}
}

Using Named Bind Variables

5-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

However, if you run this test program, you actually get a runtime error like this:

oracle.jbo.SQLStmtException: JBO-27122: SQL error during statement preparation.
Statement:
SELECT * FROM (select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and USER_ID between :LowUserId and :HighUserId

order by EMAIL) QRSLT WHERE (user_role = :TheUserRole)
Detail 0
java.sql.SQLException: ORA-00904: "USER_ROLE": invalid identifier

The root cause, which appears after the ## Detail 0 ## in the stack trace, is a SQL
parsing error from the database reporting that USER_ROLE column does not exist.
That's odd, since the USERS table definitely has a USER_ROLE column. The problem
occurs due to the mechanism that ADF view objects use by default to apply additional
runtime WHERE clauses on top of read-only queries. Section 5.9.3.5, "Understanding
the Default Use of Inline Views for Read-Only Queries", explains a resolution for this
issue.

5.9.3.5 Understanding the Default Use of Inline Views for Read-Only Queries
If you dynamically add an additional WHERE clause at runtime to a read-only view
object, its query gets nested into an inline view before applying the additional WHERE
clause. For example, suppose your query was defined as:

select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and USER_ID between :LowUserId and :HighUserId

order by EMAIL

At runtime, when you set an additional WHERE clause like user_role =
:TheUserRole as the test program did in Example 5–13, the framework nests the
original query into an inline view like this:

SELECT * FROM(
select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and USER_ID between :LowUserId and :HighUserId

order by EMAIL) QRSLT

and then adds the dynamic WHERE clause predicate at the end, so that the final query
the database sees is:

SELECT * FROM(
select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and USER_ID between :LowUserId and :HighUserId

order by EMAIL) QRSLT
WHERE user_role = :TheUserRole

Working with Master/Detail Data

Querying Data Using View Objects 5-33

This query "wrapping" is necessary in the general case since the original query could
be arbitrarily complex, including SQL UNION, INTERSECT, MINUS, or other
operators that combine multiple queries into a single result. In those cases, simply
"gluing" the additional runtime onto the end of the query text could produce
unexpected results since, for example, it might only apply to the last of several
UNION'ed statements. By nesting the original query verbatim into an inline view, the
view object guarantees that your additional WHERE clause is correctly used to filter
the results of the original query, regardless of how complex it is. The downside that
you're seeing here with the ORA-904 error is that the dynamically added WHERE
clause can refer only to columns that have been selected in the original query.

Section 27.3.3.7, "Disabling the Use of Inline View Wrapping at Runtime" explains how
to disable this query nesting when you don't require it, but for now the simplest
solution is to edit the UserList view object and add the USER_ROLE column to the
end of its query's SELECT list on the SQL Statement page. Just adding the new column
name at the end of the existing SELECT list — of course, preceded by a comma — is
enough to do the job: the View Object Editor will automatically keep your view
object's attribute list in sync with the query statement.

The modified test program in Example 5–13 now produces the expected results:

303 ahunold
315 akhoo

303 ahunold

315 akhoo

303 ahunold

5.10 Working with Master/Detail Data
So far you've worked with a single view object that queries a single USERS table. In
practice, many queries you'll need to work with will involve multiple tables that are
related by foreign keys. There are two ways you can use view objects to handle this
situation, you can either:

■ Join them in the main query to show additional descriptive information in each
row of the main query result

■ Create separate view objects that query the related information and then link a
"source" view object to one or more "target" view objects to form a master/detail
hierarchy.

Figure 5–22 illustrates the different "shape" that these two options produce. The join is
a single "flattened" result. The master/detail linked queries produce a multilevel
result.

Working with Master/Detail Data

5-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 5–22 Difference Between Join Query Result and Linked Master/Detail Queries

5.10.1 How to Create a Read-Only View Object Joining Tables
To create a read-only view object joining two tables, use the Create View Object
wizard. As an example, you'll create a view object named
OpenOrPendingServiceRequests that joins the SERVICE_REQUEST and USER
tables. For each service request, you'll display the email of the user who created the
request.

In step 1 ensure that you've selected Read-only Access, and in step 2 on the SQL
Statement page, enter the SQL query statement that joins the desired tables. If you
want interactive assistance to build up the right SQL statement, you can click on the
Query Builder button.

5.10.1.1 Using the Query Builder to Simplify Creating Joins
As shown in Figure 5–23, on the Quick-pick objects page of the query builder dialog,
you can see the tables in your schema, including the foreign keys that relate them to
other tables. To include columns in the select list of the query, click on them in the
Available list and shuttle them to the Selected list. Figure 5–23 shows the result of
selecting the SVR_ID, PROBLEM_DESCRIPTION, and ASSIGNED_TO columns from
the SERVICE_REQUESTS table, along with the EMAIL column from the USERS table.
In the SERVICE_REQUESTS table, beneath the SVR_CREATED_BY_USR_FK foreign
key, select the EMAIL column from the USERS table and the query builder
automatically determines the required join clause for you.

Working with Master/Detail Data

Querying Data Using View Objects 5-35

Figure 5–23 Using the View Object Query Builder to Define a Join

On the WHERE Clause page of the query builder, shuttle the STATUS column into the
WHERE clause box, and complete the job by adding the IN ('Open','Pending')
yourself. Click OK in the query builder to create the following query:

Example 5–14 Creating a Query Using SQL Builder

SELECT
SERVICE_REQUESTS.SVR_ID SVR_ID,
SERVICE_REQUESTS.PROBLEM_DESCRIPTION PROBLEM_DESCRIPTION,
SERVICE_REQUESTS.ASSIGNED_TO ASSIGNED_TO,
USERS.EMAIL EMAIL

FROM
SERVICE_REQUESTS INNER JOIN USERS
ON SERVICE_REQUESTS.CREATED_BY = USERS.USER_ID

WHERE
SERVICE_REQUESTS.STATUS IN ('Open', 'Pending')

Notice the EMAIL column in the query. It represents the email of the person who
created the service request, but its column name is not as descriptive as it could be. In
Section 5.2.3.2, "Working with Queries That Include SQL Expressions", you learned
one way to affect the default Java-friendly name of the view object attributes by
assigning a column alias. Here you can adopt an alternative technique. You'll use one
of the later panels in the Create View Object wizard to rename the view object
attribute directly as part of the creation process. Renaming the view object here saves
you from having to edit the view object again, when you already know the different
attribute names that you'd like to use.

Click Next four times to get to the Attributes Settings page. Select the Email attribute
in the Select Attribute dropdown list at the top of the page and change the value in
the Name field to CreatedByEmail. Then click Finish to create the
OpenOrPendingServiceRequests view object. An
OpenOrPendingServiceRequests.xml component definition file is created to
save the view object's declarative settings.

Working with Master/Detail Data

5-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5.10.1.2 Testing the Join View
To test the new view object, edit the UserService application module and on the
Data Model page, add an instance of the OpenOrPendingServiceRequests to the
data model. Instead of accepting the default OpenOrPendingServiceRequests1
instance name, change the instance name to AllOpenOrPendingServiceRequests.
After doing this, you can launch the Business Components Browser and verify that the
join query is working as expected.

5.10.2 How to Create Master/Detail Hierarchies Using View Links
When your needs call for showing the user a set of master rows, and for each master
row a set of coordinated detail rows, then you can create view links to define how you
want the master and detail view objects to relate. Assume you want to link the
UserList view object to the OpenOrPendingServiceRequests view object to
create a master/detail hierarchy of users and the related set of open or pending service
requests that have been assigned to them.

To create the view link, use the Create View Link wizard. The wizard is available
from the New Gallery in the Business Tier > ADF Business Components category. In
step 1, on the Name page provide a name for the view link and a package where its
definition will reside. Given its purpose, a name like RequestsAssignedTo is a fine
name, and for simplicity keep it in the same devguide.examples package as the
view objects.

In step 2, on the View Objects page, select a "source" attribute to use from the view
object that will act as the master. Figure 5–24 shows selecting the UserId attribute
from the Users view object in this role. Next, select a corresponding destination
attribute from the view object that will act as the detail. Since you want the detail
query to show service requests that are assigned to the currently selected user, select
the AssignedTo attribute in the OpenOrPendingServiceRequests to play this
role. Finally, click Add to add the matching attribute pair to the table of source and
destination attribute pairs below. If there were multiple attribute pairs required to
define the link between master and detail, you could repeat these steps to add
additional source/target attribute pairs. For this example, the one
(UserId,AssignedTo) pair is all that's required.

Working with Master/Detail Data

Querying Data Using View Objects 5-37

Figure 5–24 Defining Source/Target Attribute Pairs While Creating a View Link

In step 3, on the View Link SQL page, you can preview the view link SQL predicate
that will be used at runtime to access the correlated detail rows from the destination
view object for the current row in the source view object.

In step 4, on the View Link Properties page you control whether the view link
represents a one-way relationship or a bidirectional one. Notice in Figure 5–25 that in
the Destination group box for the OpenOrPendingServiceRequests view object,
the Generate Accessor In View Object: Users box is checked. In contrast, in the
Source group box for the Users view object, the Generate Accessor In View Object:
OpenOrPendingServiceRequests box is not checked. By default, a view link is a
one-way relationship that allows the current row of the source (master) to access a set
of related rows in the destination (detail) view object. These checkbox settings indicate
that you'll be able to access a detail collection of rows from the
OpenOrPendingServiceRequests for the current row in the Users view object,
but not vice versa. For this example, a default one-way view link will be fine, so leave
the other checkbox unchecked.

Figure 5–25 View Link Properties Control Name and Direction of Accessors

Working with Master/Detail Data

5-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The Accessor Name field in the destination group box indicates the name you can use
to programmatically access the related collection of
OpenOrPendingServiceRequests rows for the current row in Users. By default
the accessor name will be OpenOrPendingServiceRequests, matching the name of
the destination view object. To make it more clear that the related collection of service
requests is a collection of requests that are assigned to the current user, as you can see
in Figure 5–25 you can change the name of the accessor to AssignedRequests.

To create the view link, click Finish.

5.10.3 What Happens When You Create Master/Detail Hierarchies Using View Links
When you create a view link, JDeveloper creates the XML component definition file
that represents its declarative settings and saves it in the directory that corresponds to
the name of its package. In Section 5.10.2, the view link was named
RequestsAssignedTo in the devguide.examples package, so the XML file
created will be ./devguide/examples/RequestsAssignedTo.xml under the
project's source path. This XML file contains the declarative information about the
source and target attribute pairs you've specified.

In addition to saving the view link component definition itself, JDeveloper also
updates the XML definition of the source view object in the view link relationship to
add information about the view link accessor you've defined. As a confirmation of
this, you can select the Users view object in the Application Navigator and inspect its
details in the Structure window. As illustrated in Figure 5–26, you now see the new
AssignedRequests accessor in the ViewLink Accessor category.

Figure 5–26 Structure Window Showing Details of the Users View Object

5.10.4 What You May Need to Know About View Links
To work with view links effectively, there are a few more things you may need to
know, including: that view link accessor attributes return a RowSet, how to access a
detail collection using the view link accessor, and how to enable active master/detail
coordination in the date model.

Working with Master/Detail Data

Querying Data Using View Objects 5-39

5.10.4.1 View Link Accessor Attributes Return a RowSet
At runtime the getAttribute() method on a Row allows you to access the value of
any attribute of a row in the view object's result set by name. The view link accessor
behaves like an additional attribute in the current row of the source view object, so
you can use the same getAttribute() method to retrieve its value. The only
practical difference between a regular view attribute and a view link accessor attribute
is its data type. Whereas a regular view attribute typically has a scalar data type with a
value like 303 or ahunold, the value of a view link accessor attribute is a row set of
zero or more correlated detail rows. Assuming that curUser is a Row from some
instance of the Users view object, you can write a line of code to retrieve the detail
row set of open or pending assigned requests:

RowSet reqs = (RowSet)curUser.getAttribute("AssignedRequests");

5.10.4.2 How to Access a Detail Collection Using the View Link Accessor
Once you've retrieved the RowSet of detail rows using a view link accessor, you can
loop over the rows it contains using the same pattern used the view object's row set of
results:step

while (reqs.hasNext()) {
Row curReq = reqs.next();
System.out.println("--> (" + curReq.getAttribute("SvrId") + ") " +

curReq.getAttribute("ProblemDescription"));
}

If you use JDeveloper's Refactor > Duplicate... functionality on the existing
TestClient.java class, you can easily "clone" it to create a TestClient2.java
class that you'll modify as shown in Example 5–15 to make use of these new
techniques. Notice that the lines left in the main() method are setting a dynamic
WHERE clause to restrict the UserList view object instance to show only users
whose USER_ROLE has the value technician. The second change was enhancing the
executeAndShowResults() method to access the view link accessor attribute and
print out the request number (SvrId) and ProblemDescription attribute for each
one.

Note: If you generate the custom Java class for your view row, the
type of the view link accessor will be RowIterator. Since at runtime
the return value will always be a RowSet, it is safe to cast the view
link attribute value to a RowSet.

Working with Master/Detail Data

5-40 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 5–15 Programmatically Accessing Detail Rows Using the View Link Accessor

package devguide.examples.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
public class TestClient2 {
public static void main(String[] args) {
String amDef = "devguide.examples.UserService";
String config = "UserServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef, config);
ViewObject vo = am.findViewObject("UserList");
// Add an extra where clause with a new named bind variable
vo.setWhereClause("user_role = :TheUserRole");
vo.defineNamedWhereClauseParam("TheUserRole", null, null);
vo.setNamedWhereClauseParam("TheUserRole", "technician");
// Show results when :TheUserRole = 'technician'
executeAndShowResults(vo);
Configuration.releaseRootApplicationModule(am, true);

}
private static void executeAndShowResults(ViewObject vo) {
System.out.println("---");
vo.executeQuery();
while (vo.hasNext()) {
Row curUser = vo.next();
// Access the row set of details using the view link accessor attribute
RowSet reqs = (RowSet)curUser.getAttribute("AssignedRequests");
long numReqs = reqs.getEstimatedRowCount();
System.out.println(curUser.getAttribute("UserId") + " " +

curUser.getAttribute("Email")+" ["+
numReqs+" requests]");

while (reqs.hasNext()) {
Row curReq = reqs.next();
System.out.println("--> (" + curReq.getAttribute("SvrId") + ") " +

curReq.getAttribute("ProblemDescription"));
}

}
}

}

Running TestClient2 shows the following results in the Log window. Each
technician is listed, and for each technician that has some open or pending service
requests, the information about those requests appears beneath their name.

303 ahunold [0 requests]
304 bernst [2 requests]
--> (102) Washing Machine does not turn on
--> (108) Freezer full of frost
305 daustin [1 requests]
--> (104) Spin cycle not draining
307 dlorentz [0 requests]
306 vpatabal [2 requests]
--> (107) Fridge is leaking
--> (112) My Dryer does not seem to be getting hot

Working with Master/Detail Data

Querying Data Using View Objects 5-41

If you run TestClient2 with debug diagnostics enabled, you will see the SQL
queries that the view object performed. The view link WHERE clause predicate is used
to automatically perform the filtering of the detail service request rows for the current
row in the UserList view object.

5.10.4.3 How to Enable Active Master/Detail Coordination in the Data Model
You've seen that the process of defining a view link introduces a view link attribute in
the source view object, which enables programmatic navigation to a row set of
correlated details. In this scenario, the view link plays a passive role, simply defining
the information necessary to retrieve the coordinated detail row set when your code
requests it. The view link accessor attribute is present and programmatically accessible
in any result rows from any instance of the view link's source view object. In other
words, programmatic access does not require modifying the UserService
application module's data model.

However, since master/detail user interfaces are such a frequent occurrence in
enterprise applications, the view link can be also used in a more active fashion to avoid
having to coordinate master/detail screen programmatically. You opt to have this
active master/detail coordination performed by explicitly adding an instance of a
view-linked view object to your application module's data model.

To accomplish this, edit the UserService application module and open the Data
Model page. As shown in Figure 5–27, you'll see that the Available View Objects list
now shows the OpenOrPendingServiceRequests view object twice: once on its
own, and once as a detail view object via the RequestsAssignedTo view link.

Figure 5–27 Adding a Detail View Object to the Data Model

To add a detail instance of a view object:
1. In the Data Model list on the right, select the instance of the Users view object in

the Data Model list that you want to be the actively-coordinating master

The data model has only one instance of the Users view object named UserList,
so select the UserList instance.

2. In the Available View Objects list, select the
OpenOrPendingServiceRequests node that is indented beneath the Users
view object.

3. Enter a name for the detail instance you're about to create in the Name field below
the Available View Objects list. As shown in Figure 5–27, call the instance
RequestsAssigned.

4. Click the Add Instance button > to add the detail instance to the currently selected
master instance in the data model, with the name you've chosen.

Working with Master/Detail Data

5-42 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

After following these steps, your Data Model list will look like what you see in
Figure 5–28.

Figure 5–28 UserService Data Model with View Linked View Object

The easiest way to see the effect of this active master/detail coordination is to launch
the Business Components Browser on the UserService by choosing Test from its
context menu in the Application Navigator. Figure 5–29 shows the browser window
you will see. The data model tree shows the view link instance that is actively
coordinating the UserList view object instance with the RequestsAssigned view
object instance. It has the default view link instance name of RequestsAssignedTo1.
Double-clicking this view link instance node in the tree opens the master/detail panel
that you see in Figure 5–29. You'll see that when you use the toolbar buttons to
navigate in the master view object — changing the view object's current row as a result
— the coordinated set of details is automatically refreshed and the user interface stays
in sync.

Figure 5–29 Experimenting with Active Data Model Master/Detail Coordination

If you also double-click on the AllOpenOrPendingServiceRequests view object
instance that you added earlier, a second tab will open to show its data. Notice that it
is another instance of the same devguide.examples.Users view object; however,
since it is not being actively coordinated by a view link, its query is not constrained by
the current row in the UserList.

Generating Custom Java Classes for a View Object

Querying Data Using View Objects 5-43

So far you've seen a view link that defines a basic master/detail relationship between
two view objects. Keep in mind that by creating more view links you can achieve
master/detail hierarchies of any complexity, including:

■ Multilevel master/detail/detail

■ Master with multiple (peer) details

■ Detail with multiple masters

The steps to define these more complex hierarchies are the same as the ones covered
here, you just need to create it one view link at time.

5.11 Generating Custom Java Classes for a View Object
As you've seen, all of the basic querying functionality of a view object can be achieved
without using custom Java code. Clients can retrieve and iterate through the data of
any SQL query without resorting to any custom code on the view object developer's
part. In short, for many read-only view objects, once you've defined the SQL
statement, you're done. However, it's important to understand how to enable custom
Java generation for a view object when your needs might require it. Appendix D,
"Most Commonly Used ADF Business Components Methods" provides a quick
reference to the most common code that you will typically write, use, and override in
your custom view object and view row classes. Later chapters discuss specific
examples of how the SRDemo application uses custom code in these classes as well.

5.11.1 How To Generate Custom Classes
To enable the generation of custom Java classes for a view object, use the Java page of
the View Object Editor. As shown in Figure 5–30, there are three optional Java classes
that can be related to a view object. The first two in the list are the most commonly
used:

■ View object class, which represents the component that performs the query

■ View row class, which represents each row in the query result

Figure 5–30 View Object Custom Java Generation Options

Generating Custom Java Classes for a View Object

5-44 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5.11.1.1 Generating Bind Variable Accessors
When you enable the generation of a custom view object class, if you also select the
Bind Variable Accessors checkbox, then JDeveloper generates getter and setter
methods in your view object class. Since the Users view object had three named bind
variables (TheName, LowUserId, and HighUserId), the custom UsersImpl.java
view object class would have corresponding methods like this:

public Number getLowUserId() {...}
public void setLowUserId(Number value) {...}
public Number getHighUserId(){...}
public void setHighUserId(Number value) {...}
public String getTheName() {...}
public void setTheName(String value){...}

These methods allow you to set a bind variable with compile-time type-checking to
ensure you are setting a value of the appropriate type. That is, instead of writing a line
like this to set the value of the LowUserId:

vo.setNamedWhereClauseParam("LowUserId",new Number(150));

You can write the code like:

vo.setLowUserId(new Number(150));

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed setLowUserName instead of
setLowUserId:

// spelling name wrong gives compile error
vo.setLowUserName(new Number(150));

Or if you were to incorrectly pass a value of the wrong data type, like "ABC" instead of
Number value:

// passing String where number expected gives compile error
vo.setLowUserId("ABC");

Without the generated bind variable accessors, an incorrect line of code like the
following cannot be caught by the compiler:

// Both variable name and value wrong, but compiler cannot catch it
vo.setNamedWhereClauseParam("LowUserName","ABC");

It contains both an incorrectly spelled bind variable name, as well as a bind variable
value of the wrong datatype. If you use the generic APIs on the ViewObject
interface, errors of this sort will raise exceptions at runtime instead of being caught at
compile time.

Generating Custom Java Classes for a View Object

Querying Data Using View Objects 5-45

5.11.1.2 Generating View Row Attribute Accessors
When you enable the generation of a custom view row class, if you also select the
Accessors checkbox, then JDeveloper generates getter and setter methods for each
attribute in the view row. For the Users view object, the corresponding custom
UsersRowImpl.java class would have methods like this generated in it:

public Number getUserId() {...}
public void setUserId(Number value) {...}
public String getEmail() {...}
public void setEmail(String value) {...}
public String getFirstName() {...}
public void setFirstName(String value) {...}
public String getLastName() {...}
public void setLastName(String value) {...}
public String getUserRole() {...}
public void setUserRole(String value) {...}

These methods allow you to work with the row data with compile-time checking of
the correct datatype usage. That is, instead of writing a line like this to get the value of
the UserId attribute:

Number userId = (Number)row.getAttribute("UserId");

you can write the code like:

Number userId = row.getUserId();

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed UserIdentifier instead of UserId:

// spelling name wrong gives compile error
Number userId = row.getUserIdentifier();

Without the generated view row accessor methods, an incorrect line of code like the
following cannot be caught by the compiler:

// Both attribute name and type cast are wrong, but compiler cannot catch it
String userId = (String)row.getAttribute("UserIdentifier");

It contains both an incorrectly spelled attribute name, as well as an incorrectly-typed
cast of the getAttribute() return value. Using the generic APIs on the Row
interface, errors of this kind will raise exceptions at runtime instead of being caught at
compile time.

5.11.1.3 Exposing View Row Accessors to Clients
When enabling the generation of a custom view row class, if you choose to generate
the view row attribute accessor, you can also optionally select the Expose Accessor to
the Client checkbox. This causes an additional custom row interface to be generated
which application clients can use to access custom methods on the row without
depending directly on the implementation class. As you learned in Chapter 4,
"Overview of ADF Business Components", having client code work with business
service tier interfaces instead of concrete classes is a best practice which ensures that
client code does not need to change when your server-side implementation does.

Generating Custom Java Classes for a View Object

5-46 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In the case of the Users view object, exposing the accessors to the client will generate
a custom row interface named UsersRow. This interface is created in the common
subpackage of the package in which the view object resides. Having the row interface
allows clients to write code that accesses the attributes of query results in a strongly
typed manner. Example 5–16 shows a TestClient3 sample client program that casts
the results of the next() method to the UsersRow interface so that it can call
getUserId() and getEmail().

Example 5–16 Simple Example of Using Client Row Interface with Accessors

package devguide.examples.client;
import devguide.examples.common.UsersRow;
import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.Number;
public class TestClient3 {
public static void main(String[] args) {
String amDef = "devguide.examples.UserService";
String config = "UserServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef, config);

ViewObject vo = am.findViewObject("UserList");
vo.executeQuery();
while (vo.hasNext()) {
// Cast next() to a strongly-typed UsersRow interface
UsersRow curUser = (UsersRow)vo.next();
Number userId = curUser.getUserId();
String email = curUser.getEmail();
System.out.println(userId+ " " + email);

}
Configuration.releaseRootApplicationModule(am, true);

}
}

5.11.1.4 Configuring Default Java Generation Preferences
You've seen how to generate custom Java classes for your view objects when you need
to customize their runtime behavior, or if you simply prefer to have strongly typed
access to bind variables or view row attributes.

To configure the default settings for ADF Business Components custom Java
generation, choose Tools | Preferences and open the Business Components page to
set your preferences to be used for business components created in the future. Oracle
recommends that developers getting started with ADF Business Components set their
preference to generate no custom Java classes by default. As you run into specific
needs, you can enable just the bit of custom Java you need for that one component.
Over time, you'll discover which set of defaults works best for you.

5.11.2 What Happens When You Generate Custom Classes
When you choose to generate one or more custom Java classes, JDeveloper creates the
Java file(s) you've indicated. For a view object named devguide.examples.Users,
the default names for its custom Java files will be UsersImpl.java for the view
object class and UsersRowImpl.java for the view row class. Both files get created in
the same ./devguide/examples directory as the component's XML component
definition file.

Generating Custom Java Classes for a View Object

Querying Data Using View Objects 5-47

The Java generation options for the view object are continue to be reflected on the Java
page on subsequent visits to the View Object Editor. Just as with the XML definition
file, JDeveloper keeps the generated code in your custom java classes up to date with
any changes you make in the editor. If later you decide you didn't require a custom
Java file for any reason, unchecking the relevant options in the Java page causes the
custom Java files to be removed.

5.11.2.1 Seeing and Navigating to Custom Java Files
As with all ADF components, when you select a view object in the Application
Navigator, the Structure window displays all of the implementation files that comprise
it. The only required file is the XML component definition file. You saw above that
when translatable UI control hints are defined for a component, it will have a
component message bundle file as well. As shown in Figure 5–31, when you've
enabled generation of custom Java classes, they also appear under the Sources folder
for the view object. When you need to see or work with the source code for a custom
Java file, there are two ways to open the file in the source editor:

■ Choose the relevant Go to option in the context menu as shown in Figure 5–31

■ Double-click on a file in the Sources folder in the Structure window

Figure 5–31 Seeing and Navigating to Custom Java Classes for a View Object

5.11.3 What You May Need to Know About Custom Classes
See the following sections for additional information to help you use custom Java
classes.

5.11.3.1 About the Framework Base Classes for a View Object
When you use an "XML-only" view object, at runtime its functionality is provided by
the default ADF Business Components implementation classes. Each custom Java class
that gets generated will automatically extend the appropriate ADF Business
Components base class so that your code inherits the default behavior and can easily
add or customize it. A view object class will extend ViewObjectImpl, while the view
row class will extend ViewRowImpl (both in the oracle.jbo.server package).

Generating Custom Java Classes for a View Object

5-48 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5.11.3.2 You Can Safely Add Code to the Custom Component File
Based perhaps on previous negative experiences, some developers are hesitant to add
their own code to generated Java source files. Each custom Java source code file that
JDeveloper creates and maintains for you includes the following comment at the top of
the file to clarify that it is safe to add your own custom code to this file:

// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---

JDeveloper does not blindly regenerate the file when you click the OK or Apply
button in the component editor. Instead, it performs a smart update to the methods
that it needs to maintain, leaving your own custom code intact.

5.11.3.3 Attribute Indexes and InvokeAccessor Generated Code
As you've seen, the view object is designed to function either in an XML-only mode or
using a combination of an XML component definition and a custom Java class. Since
attribute values are not stored in private member fields of a view row class, such a
class is not present in the XML-only situation. Instead, in addition to a name, attributes
are also assigned a numerical index in the view object's XML component definition, on
a zero-based, sequential order of the <ViewAttribute> and association-related
<ViewLinkAccessor> tags in that file. At runtime, the attribute values in an view row
are stored in a structure that is managed by the base ViewRowImpl class, indexed by
the attribute's numerical position in the view object's attribute list.

For the most part this private implementation detail is unimportant. However, when
you enable a custom Java class for your view row, this implementation detail is related
to some of the generated code that JDeveloper automatically maintains in your view
row class, and you may want to understand what that code is used for. For example, in
the custom Java class for the Users view row, Example 5–17 shows that each attribute
or view link accessor attribute has a corresponding generated integer constant.
JDeveloper ensures that the values of these constants correctly reflect the ordering of
the attributes in the XML component definition.

Example 5–17 Attribute Constants Are Automatically Maintained in the Custom View
Row Java Class

public class UsersRowImpl extends ViewRowImpl implements UsersRow {
public static final int USERID = 0;
public static final int EMAIL = 1;
public static final int FIRSTNAME = 2;
public static final int LASTNAME = 3;
public static final int USERROLE = 4;
public static final int ASSIGNEDREQUESTS = 5;
// etc.

You'll also notice that the automatically maintained, strongly typed getter and setter
methods in the view row class use these attribute constants like this:

// In devguide.examples.UsersRowImpl class
public String getEmail() {
return (String) getAttributeInternal(EMAIL); // <-- Attribute constant

}
public void setEmail(String value) {
setAttributeInternal(EMAIL, value);// <-- Attribute constant

}

Generating Custom Java Classes for a View Object

Querying Data Using View Objects 5-49

The last two aspects of the automatically maintained code related to view row
attribute constants are the getAttrInvokeAccessor() and
setAttrInvokeAccessor() methods. These methods optimize the performance of
attribute access by numerical index, which is how generic code in the ViewRowImpl
base class typically accesses attribute values. An example of the
getAttrInvokeAccessor() method looks like the following from the
ServiceRequestImpl.java class. The companion setAttrInvokeAccessor()
method looks similar.

// In devguide.examples.UsersRowImpl class
protected Object getAttrInvokeAccessor(int index,AttributeDefImpl attrDef)
throws Exception {
switch (index) {
case USERID: return getUserId();
case EMAIL: return getEmail();
case FIRSTNAME: return getFirstName();
case LASTNAME: return getLastName();
case USERROLE: return getUserRole();
case ASSIGNEDREQUESTS: return getAssignedRequests();
default:
return super.getAttrInvokeAccessor(index, attrDef);

}
}

The rules of thumb to remember about this generated attribute-index related code are
the following.

The Do’s
■ Add custom code if needed inside the strongly typed attribute getter and setter

methods

■ Use the View Object Editor to change the order or type of view object attributes

JDeveloper will change the Java signature of getter and setter methods, as well as
the related XML component definition for you.

The Don'ts
■ Don’t modify the getAttrInvokeAccessor() and

setAttrInvokeAccessor() methods

■ Don't change the values of the attribute index numbers by hand

Note: If you need to manually edit the generated attribute constants,
perhaps due to source control merge conflicts, you must ensure that
the zero-based ordering reflects the sequential ordering of the
<ViewAttribute> and <ViewLinkAccessor> tags in the corresponding
view object XML component definition.

Generating Custom Java Classes for a View Object

5-50 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Creating a Business Domain Layer Using Entity Objects 6-1

6
Creating a Business Domain Layer Using

Entity Objects

This chapter describes how to use entity objects to create a reusable layer of business
domain objects for use in your J2EE applications.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Entity Objects"

■ Section 6.2, "Creating Entity Objects and Associations"

■ Section 6.3, "Creating and Configuring Associations"

■ Section 6.4, "Creating an Entity Diagram for Your Business Layer"

■ Section 6.5, "Defining Attribute Control Hints"

■ Section 6.6, "Configuring Declarative Runtime Behavior"

■ Section 6.7, "Using Declarative Validation Rules"

■ Section 6.8, "Working Programmatically with Entity Objects and Associations"

■ Section 6.9, "Generating Custom Java Classes for an Entity Object"

■ Section 6.10, "Adding Transient and Calculated Attributes to an Entity Object"

6.1 Introduction to Entity Objects
An entity object is the ADF Business Components component that represents a row in
a database table and simplifies modifying its data. Importantly, it allows you to
encapsulate domain business logic for those rows to ensure that your business policies
and rules are consistently validated. By the end of this chapter, you'll understand the
concepts shown in Figure 6–1:

■ You define an entity object by specifying the database table whose rows it will
represent.

■ You can associate an entity object with others to reflect relationships between
underlying database tables.

■ At runtime, entity rows are managed by a related entity definition object.

■ Each entity rows is identified by a related row key.

■ You retrieve and modify entity rows in the context of an application module that
provides the database transaction.

Creating Entity Objects and Associations

6-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 6–1 Entity Object Encapsulates Business Logic for a Table

When your application module creates, modifies, or removes entity objects and
commits the transaction, changes are saved automatically. When you need to work
together with a ServiceRequest and the User who created it, or the
ServiceHistory entries it logically contains, then associations between entities
simplify the task. Entity objects support numerous declarative business logic features
to enforce the validity of your data as well. As you'll see in more detail in later
chapters, you will typically complement declarative validation with additional custom
application logic and business rules to cleanly encapsulate a maximum amount of
domain business logic into each entity object. Your associated set of entity objects
forms a reusable business domain layer that you can exploit in multiple applications.

6.2 Creating Entity Objects and Associations
The simplest way to create entity objects and associations is to reverse-engineer them
from existing tables. Since often you will already have a database schema to work
with, the simplest way is also the most common approach that you'll use in practice.
When needed, you can also create an entity object from scratch, and then generate a
table for it later as well.

6.2.1 How to Create Entity Objects and Associations from Existing Tables
To create an entity object, use the Business Components from Tables wizard. The
wizard is available from the New Gallery in the Business Tier > ADF Business
Components category. If it's the first component you're creating in the project, the
Initialize Business Components Project dialog appears to allow you to select a
database connection before the wizard will appear. These examples assume that you're
working with an connection named SRDemo for the SRDEMO schema.

Note: To experiment with a working version of the examples in this
chapter, download the DevGuideExamples workspace from the
Example Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01/
and see the BusinessLayerWithEntityObjects project.

http://otn.oracle.com/documentation/jdev/b25947_01/

Creating Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 6-3

In step 1 on the Entity Objects page, you select a list of tables from the Available list
for which you want to create entity objects. The Package field at the top allows you to
indicate the package in which all of the entity objects will be created. If the
Auto-Query checkbox is checked, then the list of available tables appears immediately,
otherwise you need to click the Query button to retrieve the list after optionally
providing a name filter. Once you have selected a table from the Available list, the
proposed entity object name for that table appears in the Selected list with the related
table name in parenthesis. Clicking an entity object name in the Selected list, you can
use the Entity Name field below to change the default entity object name. Since each
entity object instance represents a single row in a particular table, it is best practice to
name the entity objects with a singular noun like User, Product, and
ServiceHistory instead of their plural counterparts. Figure 6–2 shows what the
wizard page looks like after selecting all five tables in the SRDEMO schema, setting a
package name of devguide.model.entities, and renaming each proposed entity
object to have a singular name.

Figure 6–2 Creating Entity Objects for Existing Tables

Click Finish to create the entity objects. A progress dialog appears while the
components are created, and then you can see the resulting components in the
Application Navigator as shown in Figure 6–3. You can experiment with the Flat
Level control and the Sort by Type button to see the effect they have on the display.

Note: Since an entity object represents a database row, it seems
natural to call it an entity row. Alternatively, since at runtime the
entity row is an instance of a Java object that encapsulates business
logic for that database row, the more object-oriented term entity
instance is also appropriate. Therefore, these two terms are
interchangeable.

Creating Entity Objects and Associations

6-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 6–3 New Entity Objects in Application Navigator Using Flat Level 1 and Sorted By
Type

6.2.2 What Happens When You Create Entity Objects and Associations from Existing
Tables

When you create an entity object from an existing table, first JDeveloper interrogates
the data dictionary to infer the following information:

■ The Java-friendly entity attribute names from the names of the table's columns
(e.g. USER_ID -> UserId)

■ The SQL and Java data types of each attribute based on those of the underlying
column

■ The length and precision of each attribute

■ The primary and unique key attributes

■ The mandatory flag on attributes, based on NOT NULL constraints

■ The relationships between the new entity object and other entities based on
foreign key constraints

JDeveloper then creates the XML component definition file that represents its
declarative settings and saves it in the directory that corresponds to the name of its
package. One of the entities created above was named User in the
devguide.model.entities package, so the XML file created will be
./devguide/model/entities/User.xml under the project's source path. This
XML file contains the name of the table, the names and data types of each entity
attribute, and the column name for each attribute. If you're curious to see its contents,
you can see the XML file for the entity object by selecting it in the Application
Navigator and looking in the corresponding Sources folder in the Structure window.
Double-clicking the User.xml node will open the XML in an editor so you can inspect
it.

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
entity object class UserImpl.java.

Creating Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 6-5

In addition to the entity objects whose names you decided, the wizard also generates
named association components that capture information about the relationships
between entity objects. A quick glance at the database diagram in Figure 6–4 confirms
that the default association names like SvrAssignedToUsrFkAssoc and
SvrCreatedByUsrFkAssoc are derived by converting the foreign key constraint
names to a Java-friendly name and adding the Assoc suffix. For each association
created, JDeveloper creates an appropriate XML component definition file and saves it
in the directory that corresponds to the name of its package. By default the
associations reverse-engineered from foreign keys get created in the same package as
the entities, so, for example, one of the association XML file will be named
./devguide/model/entities/SvrAssignedToUsrFkAssoc.xml.

Figure 6–4 USERS and SERVICE_REQUESTS Tables Are Related By Foreign Keys

6.2.2.1 What Happens When a Table Has No Primary Key
If a table has no primary key constraint, then JDeveloper cannot infer the primary key
for the entity object. Since every entity object must have at least one attribute marked
as a primary key, the wizard will create an attribute named RowID and use the
database ROWID value as the primary key for the entity. If appropriate, you can edit
the entity object later to mark a different attribute as a primary key and remove the
RowID attribute. If you use the Create Entity Object wizard, you will be prompted to
use RowID as the primary key, if you have not set any other attribute as primary key.

Creating Entity Objects and Associations

6-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.2.3 Creating Entity Objects Using the Create Entity Wizard
To create a single entity object, you can use the Create Entity Object wizard. The
wizard is available from the New Gallery in the Business Tier > ADF Business
Components category. By selecting the name of an existing table in step 1, on the
Name page, JDeveloper will infer all of the same information for the new entity that it
would have done using the Business Components from Tables wizard. If you enter a
name of a table that does not exist, you will need to define each attribute one by one
on the Attributes page of the wizard. You can later create the table manually, or
generate it, as described in Section 6.2.6, "Creating Database Tables from Entity
Objects".

6.2.4 Creating an Entity Object for a Synonym or View
When creating an entity object using the Business Components from Tables wizard
or the Create Entity Object wizard, an entity object can represent an underlying table,
synonym, or view. You've seen in Section 6.2.2.1, "What Happens When a Table Has
No Primary Key", that the framework can infer the primary key and related
associations by inspecting database primary and foreign key constraints in the data
dictionary. However, if the schema object you select is a database view then neither the
primary key, nor associations can be inferred since database views do not have
database constraints. In this case, if you use the Business Components from Tables
wizard, the primary key defaults to RowID. If you use the Create Entity Object
wizard, you'll need to specify the primary key manually by marking at least one of its
attributes as a primary key.

If the schema object you choose is a synonym, then there are two possible outcomes. If
the synonym is a synonym for a table, then the wizard and editor will behave as if you
had specified a table. If instead the synonym refers to a database view, then they will
behave as if you had specified the a view.

6.2.5 Editing an Existing Entity Object or Association
After you've created a new entity object, you can edit any of its settings by using the
Entity Object Editor. Select the Edit menu option on the context menu in the
Application Navigator, or double-click on the entity object, to launch the editor. By
opening the different panels of the editor, you can adjust the settings that define the
entity and govern its runtime behavior. Later sections of this chapter cover many of
these settings.

6.2.6 Creating Database Tables from Entity Objects
To create database tables based on entity objects, select the package in the Application
Navigator that contains the entity objects and choose Create Database Objects... from
the context menu. A dialog appears to let you select the entities whose tables you'd
like to create. This tool can be used to generate a table for an entity object you created
from scratch, or to drop and re-create an existing table.

Caution: This feature does not generate a DDL script to run later; it
performs its operations directly against the database and will drop
existing tables. A dialog appears to confirm that you want to do this
before proceeding. For entities based on existing tables, use with
prudence.

Creating Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 6-7

6.2.6.1 Using Database Key Constraints for an Association
In the Association editor, the Use Database Key Constraints checkbox on the
Association Properties page controls whether the related foreign key constraint will
be generated when creating the tables for entity objects. Selecting this option does not
have any runtime implications.

6.2.7 Synchronizing an Entity with Changes to Its Database Table
Inevitably you (or your DBA) might alter a table for which you've already created an
entity object. Your existing entity will not be disturbed by the presence of additional
attributes in its underlying table; however, if you want to access the new column in the
table in your J2EE application, you'll need to synchronize the entity object with the
database table. To perform this synchronization automatically, select the entity object
in question and choose Synchronize with Database... from the context menu. For
example, suppose you had done the following at the SQL*Plus command prompt to
add a new SECURITY_QUESTION column to the USERS table:

ALTER TABLE USERS ADD (security_question VARCHAR2(60));

After you use the synchronize feature on the existing User entity, the Synchronize
with Database dialog would appear as shown in Figure 6–5

Figure 6–5 Synchronizing an Entity Object with Its Underlying Table

The dialog proposes the changes that it can perform for you automatically, and by
clicking the desired synchronize button you can carry out the synchronization.

6.2.8 What You May Need to Know About Creating Entities
The Business Components from Tables wizard makes it easy to quickly generate a lot
of business components at the same time. In practice, this does not mean that you
should use it to immediately create entity objects for every table in your database
schema just because you can. If your application will be using all of those tables, that
may be appropriate, but since you can use the wizard whenever needed, Oracle
recommends creating the entity objects for the tables you know will be involved in the
application. Section 8.9, "Deciding on the Granularity of Application Modules"
outlines some thoughts on use case-driven design for your business services that can
assist you in understanding which entity objects are required to support your
application's business logic needs. You can always add more entity objects later as
necessary.

Creating and Configuring Associations

6-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.3 Creating and Configuring Associations
If your database tables have no foreign key constraints defined, JDeveloper won't be
able to automatically infer the associations between the entity objects that you create.
Since several interesting runtime features that you'll learn about depend on the
presence of entity associations, Oracle recommends that you create them manually.

6.3.1 How to Create an Association
To create an association, use the Create New Association wizard.

Assuming the association between the ServiceRequest and the ServiceHistory
entities did not already exist, you could create it manually following these steps:

To create an association:
1. Open the Create New Association wizard from the New Gallery in the Business

Tier > ADF Business Components category.

2. In step 1 on the Name page, provide a name for the association component and a
package to contain it.

3. In step 2, on the Entity Objects page, select a "source" attribute from one of the
entity objects that will be involved in the association to act as the master.
Figure 6–6 shows the selected SvrId attribute from the ServiceRequest entity
object as the source entity attribute.

Figure 6–6 Manually Defining the Attribute Pairs That Relate Two Entity Objects

4. Next, select a corresponding destination attribute from the other entity object
involved in the association. Since ServiceHistory rows contain a service
request ID that relates them to a specific ServiceRequest row, select this SvrId
foreign key attribute in the ServiceHistory entity object as the destination
attribute.

Creating and Configuring Associations

Creating a Business Domain Layer Using Entity Objects 6-9

5. Next, click Add to add the matching attribute pair to the table of source and
destination attribute pairs below. If there were multiple attribute pairs required to
define the association, you could repeat these steps to add additional
source/target attribute pairs. For this example, the one (SvrId,SvrId) pair is all
that's required.

6. Finally, ensure that the Cardinality dropdown correctly reflects the cardinality of
the association. Since the relationship between a ServiceRequest and its related
ServiceHistory rows is one-to-many, you can leave the default setting.

7. In step 3, on the Association SQL page, you can preview the association SQL
predicate that will be used at runtime to access the related ServiceHistory
entity objects for a given instance of the ServiceRequest entity object.

8. In step 4, on the Association Properties page, you control whether the association
represents a one-way relationship or a bidirectional one and set other properties
that define the runtime behavior of the association. Notice in Figure 6–7 that the
Expose Accessor checkbox is checked in both the Source and Destination group
boxes. By default, an association is a bi-directional relationship allowing either
entity object to access the related entity row(s) on the other side when needed. In
this example, it means that if you are working with an instance of a
ServiceRequest entity object, you can easily access the collection of its related
ServiceHistory rows. You can also easily access the ServiceRequest to
which it belongs, with any instance of a ServiceHistory entity object.
Bidirectional navigation is more convenient for writing business validation logic,
so in practice, you will typically leave these default checkbox settings.

Figure 6–7 Association Properties Control Runtime Behavior

Creating and Configuring Associations

6-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.3.1.1 Changing Entity Association Accessor Names
You should consider the default settings for the accessor names on the Association
Properties page and decide whether changing the names to something more intuitive
is appropriate. These define the names of the accessor attributes you will use at
runtime to programmatically access the entities on the other side of the relationship.
By default, the accessor names will be the names of the entity object on the other side.
Since the accessor names on an entity must be unique among entity object attributes
and other accessors, if one entity is related to another entity in multiple ways then the
default accessor names are modified with a numeric suffix to make the name unique.
For example, the ServiceRequest entity is associated once to the User entity to
represent the user who created the request, and a second time to reflect the technician
to whom the service request is assigned for resolution. The default accessor names on
the ServiceRequest entity would be User and User1. By opening the respective
Association Properties page for the associations in question, you can rename these
accessors to more intuitive names like CreatedByUser and TechnicianAssigned.

6.3.1.2 Renaming and Moving Associations to a Different Package
Since the names of the default associations are not easy to understand, one of the first
tasks you might want to perform after creating entity objects from tables is to rename
them to something more meaningful. Furthermore, since associations are a component
that you typically configure at the outset of your project and don't really visit
frequently thereafter, you might want to move them to a different package so that your
entity objects are easier to see. Both renaming components and moving them to a
different package is straightforward using JDeveloper's refactoring functionality. To
move a set of business components to a different package, select one or more of the
components in the Application Navigator and choose Refactor > Move... from the
context menu. To rename a component, select it in the navigator and choose Refactor >
Rename from the context menu.

When you refactor ADF Business Components, JDeveloper automatically moves any
XML and/or Java files related to the components, as well as updating any other
components that might reference them. Figure 6–8 shows what the Application
Navigator would look like after renaming all of the associations and moving them to
the devguide.model.entities.associations package. While you can refactor
the associations into any package names you choose, picking a subpackage like this
keeps them logically related to the entities but allows collapsing the package of
associations to avoid seeing them when you don't need to.

Creating and Configuring Associations

Creating a Business Domain Layer Using Entity Objects 6-11

Figure 6–8 Application Navigator After Association Refactoring

6.3.2 What Happens When You Create an Association
When you create an association, JDeveloper creates an appropriate XML component
definition file and saves it in the directory that corresponds to the name of its package.
If you created an association named ServiceHistoriesForServiceRequest in
the devguide.model.entities.associations package, then the association
XML file will be created in the ./devguide/model/entities/associations
directory with the name ServiceHistoriesForServiceRequest.xml. At
runtime, the entity object uses the association information to automate working with
related sets of entities.

6.3.3 What You May Need to Know About Composition Associations
When you create composition associations, it is useful to know about the kinds of
relationships you can represent, and the various options.

Associations between entity objects can represent two styles of relationships
depending on whether the source entity:

■ References the destination entity

■ Contains the destination entity as a logical, nested part

As shown in Figure 6–9, in your SRDemo application business layer you have a
ServiceRequest that references a Product, the requesting User, and the assigned
User (a technician). These relationships represent the first kind of association,
reflecting that a User or a Product entity object can exist independently of a
ServiceRequest. In addition, the removal of a ServiceRequest does not imply
the cascade removal of the Product to which it was referring or the related Users.

In contrast, the relationship between ServiceRequest and its collection of related
ServiceHistory details is stronger than a simple reference. The ServiceHistory
entries comprise a logical part of the overall ServiceRequest. In other words, a
ServiceRequest is composed of ServiceHistory entries. It does not make sense
for a ServiceHistory entity row to exist independently from a ServiceRequest,
and when a ServiceRequest is removed — assuming it is allowed — all of its
composed parts should be removed as well.

Creating an Entity Diagram for Your Business Layer

6-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

This type of logical containership represents the second kind of association, called a
composition. The UML diagram in Figure 6–9 illustrates the stronger composition
relationship using the solid diamond shape on the side of the association which
composes the other.

Figure 6–9 ServiceRequest is Composed of ServiceHistory Entries and References Both
Product and User

The Business Components from Tables wizard creates composition associations by
default for any foreign keys that have the ON DELETE CASCADE option. Using the
Create Association wizard or the Association Editor, to indicate that an association is a
composition association, check the Composition Association checkbox on the
Association Properties page. An entity object offers additional runtime behavior in the
presence of a composition. You'll learn the specifics and the settings that control it in
Section 6.6.3.12, "Understanding and Configuring Composition Behavior".

6.4 Creating an Entity Diagram for Your Business Layer
Since your layer of business domain objects represents a key reusable asset to your
team, it is often convenient to visualize it using a UML model. JDeveloper supports
easily creating a diagram for your business domain layer that you and your colleagues
can use for reference.

6.4.1 How to Create an Entity Diagram
To create a diagram of your entity objects, use the Create Business Components
Diagram dialog. You access it from the New Gallery in the Business Tier > ADF
Business Components category. The dialog prompts you for a diagram name, and a
package name in which the diagram will be created. Enter a diagram name like
"Business Domain Objects" and a name for the package like
devguide.model.design, and click OK to create the empty diagram.

To add your existing entity objects to the diagram, select them all in the Application
Navigator and drop them onto the diagram surface. Use the property inspector to hide
the package name, change the font, turn off the grid and page breaks, and display the
name of the two associations that might have been otherwise ambiguous. The diagram
should now look like what you see in: Figure 6–10:

Creating an Entity Diagram for Your Business Layer

Creating a Business Domain Layer Using Entity Objects 6-13

Figure 6–10 UML Diagram of Business Domain Layer

6.4.1.1 Publishing the Business Entity Diagram
To publish the diagram to PNG, JPG, SVG, or compressed SVG format, choose Publish
Diagram... from the context menu on the diagram surface.

6.4.2 What Happens When You Create an Entity Diagram
When you create a business components diagram, JDeveloper creates an XML file
representing the diagram in a subdirectory of the project's model path that matches the
package name in which the diagram resides. For the Business Domain Objects
diagram in Figure 6–10, it would create a matching *.oxd_bc4j file in the
./devguide/model/design subdirectory of the model path. By default, the
Application Navigator unifies the display of the project contents paths so that ADF
components and Java files in the source path appear in the same package tree as the
UML model artefacts in the project model path. However, as shown in Figure 6–11,
using the Toggle Directories toolbar button on the navigator, you can see the distinct
project content path root directories when you prefer.

Creating an Entity Diagram for Your Business Layer

6-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 6–11 Toggling the Display of Separate Content Path Folders

6.4.3 What You May Need to Know About Creating Entities On a Diagram

6.4.3.1 UML Diagram is Actively Synchronized with Business Components
The UML diagram of business components is not just a static picture that reflects the
point in time when you dropped the entity objects onto the diagram. Rather, it is a
UML-based rendering of the current component definitions, so it will always reflect
the current state of affairs. What's more, the UML diagram is both a visualization aid
and a visual navigation and editing tool. You can bring up the Entity Object Editor for
any entity object in a diagram by selecting Properties... from the context menu (or
double-clicking). You can also perform some entity object editing tasks directly on the
diagram like renaming entities and entity attributes, as well as adding or removing
attributes.

6.4.3.2 UML Diagram Adds Extra Metadata to XML Component Descriptors
When you include a business component like an entity object a UML diagram,
JDeveloper adds extra metadata to a <Data> section of the component’s XML
component descriptor as shown in Example 6–1. This is additional information is used
at design time only.

Example 6–1 Additional UML Metadata Added to an Entity Object XML Descriptor

<Entity Name="ServiceRequest" ... >
 <Data>
 <Property Name ="COMPLETE_LIBRARY" Value ="FALSE" />
 <Property Name ="ID"
 Value ="ff16fca0-0109-1000-80f2-8d9081ce706f::::EntityObject" />
 <Property Name ="IS_ABSTRACT" Value ="FALSE" />
 <Property Name ="IS_ACTIVE" Value ="FALSE" />
 <Property Name ="IS_LEAF" Value ="FALSE" />
 <Property Name ="IS_ROOT" Value ="FALSE" />
 <Property Name ="VISIBILITY" Value ="PUBLIC" />
 </Data>
 :
</Entity>

Defining Attribute Control Hints

Creating a Business Domain Layer Using Entity Objects 6-15

6.5 Defining Attribute Control Hints
With your basic business domain layer of entity objects in place, you can immediately
add value by defining UI control hints to ensure that your domain data gets displayed
consistently to your end users in locale-sensitive way. JDeveloper manages storing the
hints in a way that is easy to localize for multilingual applications. This section
explores how to define label text, tooltip, and format mask hints for entity object
attributes. As you'll see in Chapter 7, "Building an Updatable Data Model With
Entity-Based View Objects", the UI hints you define on your business domain layer are
automatically inherited by any entity-based view objects.

6.5.1 How to Add Attribute Control Hints
To add attribute control hints to an entity object, open the Entity Object Editor and
expand the Attributes node in the left-side panel to reveal the list of the entity's
attributes. Figure 6–12 shows what this would look like for the ServiceRequest
entity object. Selecting a particular attribute name like RequestDate and selecting the
Control Hints tab, you can set its:

■ Label Text hint to "Requested On"

■ Tooltip Text hint to "The date on which the service request was created"

■ Format Type to Simple Date

■ Format mask of MM/dd/yyyy HH:mm

You can select the other attributes in turn to define appropriate control hints for them
as well.

Figure 6–12 Setting UI Control Hints for Label for Format Mask for Entity Object
Attributes

Note: Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's SQL
and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and
java.text.SimpleDateFormat classes.

Defining Attribute Control Hints

6-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.5.2 What Happens When You Add Attribute Control Hints
When you define attribute control hints for an entity object, JDeveloper creates a
standard Java message bundle file in which to store them. The file is specific to the
entity object component to which its related, and it is named accordingly. For the
ServiceRequest entity in the devguide.model.entities package, the message
bundle file created will be named ServiceRequestImplMsgBundle.java and it
will be created in the devguide.model.entities.common subpackage. By
selecting the ServiceRequest component in the Application Navigator, you'll see
that this new file gets added to the Sources folder in the Structure window that shows
the group of implementation files for each component. Example 6–2 shows how the
control hint information appears in the message bundle file. The first entry in each
String array is a message key, the second entry is the locale-specific String value
corresponding to that key.

Example 6–2 Entity Object Component Message Bundle Class Stores Locale-Sensitive
Control Hints

package devguide.model.entities.common;
import oracle.jbo.common.JboResourceBundle;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// ---
public class ServiceRequestImplMsgBundle extends JboResourceBundle {
static final Object[][] sMessageStrings = {
{ "AssignedDate_FMT_FORMAT", "MM/dd/yyyy HH:mm" },
{ "AssignedDate_FMT_FORMATTER", "oracle.jbo.format.DefaultDateFormatter" },
{ "AssignedDate_LABEL", "Assigned On" },
{ "AssignedTo_LABEL", "Assigned To" },
{ "CreatedBy_LABEL", "Requested By" },
{ "ProblemDescription_DISPLAYWIDTH", "60" },
{ "ProblemDescription_LABEL", "Problem" },
{ "RequestDate_FMT_FORMAT", "MM/dd/yyyy HH:mm" },
{ "RequestDate_FMT_FORMATTER", "oracle.jbo.format.DefaultDateFormatter" },
{ "RequestDate_LABEL", "Requested On" },
{ "RequestDate_TOOLTIP",
"The date on which the service request was created" },

{ "Status_LABEL", "Status" },
{ "SvrId_LABEL", "Request" }
};

// etc.

6.5.3 Internationalizing the Date Format
Internationalizing the model layer of an application built using ADF Business
Components entails producing translated versions of each component message bundle
file. For example, the Italian version of the ServiceRequestImplMsgBundle
message bundle would be a class named ServiceRequestImplMsgBundle_it and
a more specific Swiss Italian version would have the name
ServiceRequestImplMsgBundle_it_ch. These classes typically extend the base
message bundle class, and contain entries for the message keys that need to be
localized, together with their localized translation.

Configuring Declarative Runtime Behavior

Creating a Business Domain Layer Using Entity Objects 6-17

For example, the Italian version of the ServiceRequest entity object message bundle
would look like what you see in Example 6–3. Notice that in the Italian translation, the
format masks for the RequestDate and AssignedDate have been changed to
dd/MM/yyyy HH:mm. This ensures that an Italian user will see a date value like May
3rd, 2006, as 03/05/2006 15:55, instead of 05/03/2006 15:55, which the format
mask in the default message bundle would produce. Notice the overridden
getContents() method. It returns an array of messages with the more specific
translated strings merged together with those that are not overridden from the
superclass bundle. At runtime, the appropriate message bundles are used
automatically, based on the current user's locale settings.

Example 6–3 Localized Entity Object Component Message Bundle for Italian

package devguide.model.entities.common;
import oracle.jbo.common.JboResourceBundle;
public class ServiceRequestImplMsgBundle_it

extends ServiceRequestImplMsgBundle {
static final Object[][] sMessageStrings = {
{ "AssignedDate_FMT_FORMAT", "dd/MM/yyyy HH:mm" },
{ "AssignedDate_LABEL", "Assegnato il" },
{ "AssignedTo_LABEL", "Assegnato a" },
{ "CreatedBy_LABEL", "Aperto da" },
{ "ProblemDescription_LABEL", "Problema" },
{ "RequestDate_FMT_FORMAT", "dd/MM/yyyy HH:mm" },
{ "RequestDate_LABEL", "Aperto il" },
{ "RequestDate_TOOLTIP", "La data in cui il ticket è stato aperto" },
{ "Status_LABEL", "Stato" },
{ "SvrId_LABEL", "Ticket" }

};
 public Object[][] getContents() {
 return super.getMergedArray(sMessageStrings, super.getContents());
 }
}

6.6 Configuring Declarative Runtime Behavior
The entity object offers numerous declarative features to simplify implementing
typical enterprise business applications. Depending on your task, sometimes the
declarative facilities alone may satisfy your needs. However, when you need to go
beyond the declarative behavior to implement more complex business logic or
validation rules for your business domain layer, that is possible as well. This chapter
focuses on giving you a solid understanding of the declarative features. In Chapter 9,
"Implementing Programmatic Business Rules in Entity Objects", you'll study some of
the most typical ways that you extend entity objects with custom code.

6.6.1 How To Configure Declarative Runtime Behavior
To configure the declarative runtime behavior of an entity object, use the Entity Object
Editor. You access the editor by selecting an entity in the Application Navigator and
choosing Edit from the context menu. Figure 6–13 shows what the editor looks like for
the ServiceRequest entity object.

On the Name page, you can see the entity object's name and configure the database
table to which it relates. On the Attributes page, you create or delete the attributes that
represent the data relevant to an entity object. By expanding this node, you can access
the properties of each of the entity object's attributes.

Configuring Declarative Runtime Behavior

6-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

On the Tuning page, you set options to make database operations more efficient when
you create, modify, or delete multiple entities of the same type in a single transaction.
On the Publish page, you define events that your entity object can use to notify others
of interesting changes in its state, optionally including some or all of the entity object's
attributes in the delivered event. On the Subscribe page, you enroll your entity object
to be notified when selected events of other entity objects fire. On the Authorization
page, you define role-based updatability permissions for any or all attributes. And
finally, on the Custom Properties page, you can define custom metadata you can
access at runtime on the entity.

Figure 6–13 Use the Entity Object Editor to Configure Its Declarative Features

6.6.2 What Happens When You Configure Declarative Runtime Behavior
All of the declarative settings that describe and control an entity object's runtime
behavior are stored in its XML component definition file. When you modify settings of
your entity using the editor, pressing OK updates the component's XML definition file
and optional custom java files. If you need to immediately apply changes and continue
working in the editor, use the Apply button. Applying changes while editing is
typically useful only when you enable the generation of a custom Java file for the
component for the first time and you want JDeveloper to generate those files before
you open another page in the editor.

Note: If your entity has a long list of attribute names, there's a quick
way to find the one you're looking for. With the Attributes node in the
tree expanded, you can begin to type the letters of the attribute name
and JDeveloper performs an incremental search to take you to its
name in the tree.

Configuring Declarative Runtime Behavior

Creating a Business Domain Layer Using Entity Objects 6-19

6.6.3 About the Declarative Entity Object Features
Since much of the entity object's declarative functionality is related to the settings of its
attributes, this section covers the important options shown in Figure 6–13 in detail.

6.6.3.1 Legal Database and Java Data types for an Entity Object Attribute
The Persistent property controls whether the attribute value corresponds to a column
in the underlying table, or whether it is just a transient value. If the attribute is
persistent, the Database Column area lets you change the name of the underlying
column that corresponds to the attribute and indicate its column type with precision
and scale information (e.g. VARCHAR2(40) or NUMBER(4,2)). Based on this
information, at runtime the entity object enforces the maximum length and
precision/scale of the attribute value, throwing an exception if a value does not meet
the requirements.

Both the Business Components from Tables wizard and the Create Entity Object
wizard automatically infer the Java type of each entity object attribute from the SQL
type of the database column type of the column to which it is related. The Attribute
Type field allows you to change the Java type of the entity attribute to any type you
might need. The Database Column Type field reflects the SQL type of the underlying
database column to which the attribute is mapped. The value of the Database Column
Name field controls the column to which the attribute is mapped.

Your entity object can handle tables with column types, as listed in Table 6–1. With the
exception of the java.lang.String class, the default Java attribute types are all in
the oracle.jbo.domain and oracle.ord.im packages and support efficiently
working with Oracle database data of the corresponding type. The dropdown list for
the Java Type field includes a number of other common types that are also supported.

Table 6–1 Default Entity Object Attribute Type Mappings

Oracle Column Type Entity Column Type Entity Java Type

NVARCHAR2(n),
VARCHAR2(n), NCHAR
VARYING(n), VARCHAR(n)

VARCHAR2 String

NUMBER NUMBER Number

DATE DATE Date

TIMESTAMP(n),
TIMESTAMP(n) WITH TIME
ZONE, TIMESTAMP(n) WITH
LOCAL TIME ZONE

TIMESTAMP Date

LONG LONG String

RAW(n) RAW Raw

LONG RAW LONG RAW Raw

ROWID ROWID RowID

NCHAR, CHAR CHAR String

NCLOB, CLOB CLOB ClobDomain

BLOB BLOB BlobDomain

BFILE BFILE BFileDomain

ORDSYS.ORDIMAGE ORDSYS.ORDIMAGE OrdImageDomain

ORDSYS.ORDVIDEO ORDSYS.ORDVIDEO OrdVideoDomain

Configuring Declarative Runtime Behavior

6-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.6.3.2 Indicating Datatype Length, Precision, and Scale
When working with types that support defining a maximum length like
VARCHAR2(n), the Database Column Type field includes the maximum attribute
length as part of the value. So, for example, an attribute based on a VARCHAR2(10)
column in the database will initially reflect the maximum length of 10 characters by
showing VARCHAR2(10) as the Database Column Type. If for some reason you want
to restrict the maximum length of the String-valued attribute to fewer characters
than the underlying column will allow, just change the maximum length of the
Database Column Type value. For example, the EMAIL column in the USERS table is
VARCHAR2(50), so by default the Email attribute in the Users entity object defaults
to the same. If you know that the actual email addresses are always 8 characters or
less, you can update the database column type for the Email attribute to be
VARCHAR2(8) to enforce a maximum length of 8 characters at the entity object level.

The same holds for attributes related to database column types that support defining a
precision and scale like NUMBER(p[,s]). So, for example, to restrict an attribute
based on a NUMBER(7,2) column in the database to have a precision of 5 and a scale
of 1 instead, just update the Database Column Type to be NUMBER(5,1).

6.6.3.3 Controlling the Updatability of an Attribute
The Updatable setting controls when the value of a given attribute can be updated. If
set to:

■ Always, the attribute is always updatable

■ Never, the attribute is read-only

■ While New, the attribute can be set during the transaction that creates the entity
row for the first time, but after being successfully committed to the database the
attribute is read-only

6.6.3.4 Making an Attribute Mandatory
The Mandatory property controls whether the field is required.

ORDSYS.ORDAUDIO ORDSYS.ORDAUDIO OrdAudioDomain

ORDSYS.ORDDOC ORDSYS.ORDDOC OrdDocDomain

Note: In addition to the types mentioned here, you can use any Java
object type as an entity object attribute's type, provided it implements
the java.io.Serializable interface.

Table 6–1 (Cont.) Default Entity Object Attribute Type Mappings

Oracle Column Type Entity Column Type Entity Java Type

Configuring Declarative Runtime Behavior

Creating a Business Domain Layer Using Entity Objects 6-21

6.6.3.5 Defining the Primary Key for the Entity
The Primary Key property indicates whether the attribute is part of the key that
uniquely identifies the entity. Typically, you will use a single attribute for the primary
key, but multiattribute primary keys are fully supported.

At runtime, when you access the related Key object for any entity row using the
getKey() method, this Key object contains the value(s) of the primary key
attribute(s) for the entity object. If your entity object has multiple primary key
attributes, the Key object contains each of their values. It is important to understand
that these values appear in the same relative sequential order as the corresponding
primary key attributes in the entity object definition.

For example, the ServiceHistory entity object has multiple primary key attributes
SvrId and LineNo. On the Attributes page of the Entity Object Editor, SvrId is first,
and LineNo is second; an array of values encapsulated by the Key object for a entity
row of type ServiceHistory will have these two attribute values in exactly this
order. The reason why it is crucial to understand this point is that if you try to use
findByPrimaryKey() to find an entity with a multiattribute primary key, and the
Key object you construct has these multiple primary key attributes in the wrong order,
the entity row will not be found as expected.

6.6.3.6 Defining a Static Default Value
The Default field specifies a static default value for the attribute. For example, you
might set the default value of the ServiceRequest entity object's Status attribute
to Open, or set the default value of the User entity object's UserRole attribute to
user.

6.6.3.7 Synchronization with Trigger-Assigned Values
If you know that the underlying column value will be updated by a database trigger
during insert or update operations, you can check the respective Refresh After Insert
or Refresh After Update checkboxes to have the framework automatically retrieve the
modified value to keep the entity object and database row in sync. The entity object
uses the Oracle SQL RETURNING INTO feature, while performing the INSERT or
UPDATE to return the modified column back to your application in a single database
round-trip.

Note: If you create an entity object for a synonym that resolves to a
remote table over a DBLINK, use of this feature will give an error at
runtime like:

JBO-26041: Failed to post data to database during "Update"
Detail 0
ORA-22816: unsupported feature with RETURNING clause

Section 26.5, "Basing an Entity Object on a Join View or Remote
DBLink" describes a technique to circumvent this database limitation.

Configuring Declarative Runtime Behavior

6-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.6.3.8 Trigger-Assigned Primary Key Values from a Database Sequence
One common case where Refresh After Insert comes into play is a primary key
attribute whose value is assigned by a BEFORE INSERT FOR EACH ROW trigger.
Often the trigger assigns the primary key from a database sequence using PL/SQL
logic similar to this:

CREATE OR REPLACE TRIGGER ASSIGN_SVR_ID
BEFORE INSERT ON SERVICE_REQUESTS FOR EACH ROW
BEGIN
IF :NEW.SVR_ID IS NULL OR :NEW.SVR_ID < 0 THEN
SELECT SERVICE_REQUESTS_SEQ.NEXTVAL
INTO :NEW.SVR_ID
FROM DUAL;

END IF;
END;

Set the Attribute Type to the built-in datatype named DBSequence, as shown in
Figure 6–14, and the primary key will be assigned automatically by the database
sequence. Setting this datatype automatically enables the Refresh After Insert
property.

When you create a new entity row whose primary key is a DBSequence, a unique
negative number gets assigned as its temporary value. This value acts as the primary
key for the duration of the transaction in which it is created. If you are creating a set of
interrelated entities in the same transaction, you can assign this temporary value as a
foreign key value on other new, related entity rows. At transaction commit time, the
entity object issues its INSERT operation using the RETURNING INTO clause to
retrieve the actual database trigger-assigned primary key value. Any related new
entities that previously used the temporary negative value as a foreign key will get
that value updated to reflect the actual new primary key of the master.

Figure 6–14 Setting Primary Key Attribute to DBSequence Type Automates
Trigger-Assigned Key Handling

Note: As shown in Figure 6–14, you will typically also set the
Updatable property of a DBSequence-valued primary key to Never.
The entity object assigns the temporary ID, and then refreshes it with
the actual ID value after the INSERT option. The end user never needs
to update this value.

Configuring Declarative Runtime Behavior

Creating a Business Domain Layer Using Entity Objects 6-23

6.6.3.9 Lost Update Protection
At runtime the framework provides automatic "lost update" detection for entity objects
to ensure that a user cannot unknowingly modify data that another user has updated
and committed in the meantime. Typically this check is performed by comparing the
original values of each persistent entity attribute against the corresponding current
column values in the database at the time the underlying row is locked. If an entity
object detects that it would be updating a row that is now inconsistent with the current
state of the database, it raises the RowInconsistentException.

You can make the lost update detection more efficient by identifying an attribute of
your entity whose value you know will get updated whenever the entity gets
modified. Typical candidates include a version number column or an updated date
column in the row. The change indicator attribute value might be assigned by a
database trigger you’ve written and refreshed in the entity object using the Refresh
After Insert and Refresh After Update properties. Alternatively, you can indicate that
the entity object should manage updating the change indicate attribute’s value using
the history attribute feature described in the next section. To detect whether the row
has been modified since the user queried it in the most efficient way, select the Change
Indicator to compare only the change indicator attribute values.

6.6.3.10 History Attributes
Frequently, you'll need to keep track of historical information in your entity object like:

■ Who created this entity?

■ When did they create it?

■ Who last modified this entity?

■ When did they modify it?

■ How many times has this row been modified?

Entity objects store this information in a History Column attribute, as shown in
Figure 6–15.

If an attribute's datatype is Number, String, or Date, and it is not part of the primary
key, then you can enable this property to have your entity automatically maintain the
attribute's value for historical auditing. How the attribute gets handled depends on the
history attribute type that you indicate. If you choose the Version Number type of
history column, ADF will automatically increment the value of the numeric attribute
every time the object is updated. If you choose Created By, Created On, Modified By,
or Modified On, the value will be updated with the current user's username or the
current date, respectively, when the object is created or modified.

Note: The sequence name shown on the Sequence tab only comes
into play at design time when you use the Create Database Tables...
feature described in Section 6.2.6, "Creating Database Tables from
Entity Objects". The sequence indicated here will be created along
with the table on which the entity object is based.

Configuring Declarative Runtime Behavior

6-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 6–15 Defaulting a Date tor the Current Database Time Using a History Attribute

6.6.3.11 Setting the Discriminator Attribute for Entity Object Inheritance
Hierarchies
Sometimes a single database table stores information about several different kinds of
logically related objects. For example, a payroll application might work with hourly,
salaried, and contract employees all stored in a single EMPLOYEES table with an
EMPLOYEE_TYPE column. The value of the EMPLOYEE_TYPE column indicates with a
value like H, S, or C, whether a given row represents an hourly, salaried, or contract
employee respectively. While many employee attributes and behavior are the same for
all employees, certain properties and business logic depends on the type of employee.
In this situation it can be convenient to represent these different types of employees
using an inheritance hierarchy. Attributes and methods common to all employees can
be part of a base Employee entity object, while subtype entity objects like
HourlyEmployee, SalariedEmployee, and ContractEmployee extend the base
Employee object and add additional properties and behavior. The Discriminator
attribute property is used to indicate which attribute's value distinguishes the type of
row. Section 26.6, "Using Inheritance in Your Business Domain Layer" explains how to
set up and use inheritance.

6.6.3.12 Understanding and Configuring Composition Behavior
When an entity object composes other entities, it exhibits additional runtime behavior
to correctly play its role as a logical container of other nested entity object parts. The
following features are always enabled for composing entity objects:

Configuring Declarative Runtime Behavior

Creating a Business Domain Layer Using Entity Objects 6-25

6.6.3.12.1 Orphan-row Protection for New Composed Entities When a composed entity
object is created, it performs an existence check on the value of its foreign key attribute
to ensure that it identifies an existing entity as its owning parent entity. Failure to
provide a value for the foreign key at create time, or providing a value that does not
identify an existing entity object, throws an InvalidOwnerException instead of
allowing an "orphaned" child row to be created with no well-identified parent entity.

6.6.3.12.2 Ordering of Changes Saved to the Database

This feature ensures that the sequence of DML operations performed in a transaction
involving both composing and composed entity objects is performed in the correct
order. For example, an INSERT statement for a new composing parent entity object
will be performed before the DML operations related to any composed children.

6.6.3.12.3 Cascade Update of Composed Details from Refresh-On-Insert Primary Keys

When a new entity row having a Refresh On Insert primary key is saved, after its
trigger-assigned primary value is retrieved, any composed entities will automatically
have their foreign key attribute values updated to reflect the new primary key value.

There are a number of additional composition related features that you can control
through settings on the Association Properties page of the Create Association wizard
or the Association Editor. Figure 6–16 shows this page for the
ServiceHistoriesForServiceRequest association between the
ServiceRequest and ServiceHistory entity objects. These settings are the
defaults that result from reverse-engineering the composition from an ON DELETE
CASCADE foreign key constraint in the database.

Figure 6–16 Composition Settings for ServiceHistoriesForServiceRequest Association

The additional features, and the properties that affect their behavior, include the
following:

Note: The existence check performed finds new pending entities in
the current transaction, as well as existing ones in the database if
necessary.

Using Declarative Validation Rules

6-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.6.3.12.4 Cascade Delete Support

You can either enable or prevent the deletion of a composing parent while composed
children entities exist. When the Implement Cascade Delete is unchecked, the
removal of the composing entity object is prevented if it contains any composed
children. When checked, this option allows the composing entity object to be removed
unconditionally and composed children entities are also removed. If the related
Optimize for Database Cascade Delete option is unchecked, then the composed
entity objects perform their normal DELETE statement at transaction commit time to
make the changes permanent. If the option is checked, then the composed entities do
not perform the DELETE statement on the assumption that the database ON DELETE
CASCADE constraint will handle the deletion of the corresponding rows.

6.6.3.12.5 Cascade Update of Foreign Key Attributes When Primary Key Changes

By checking the Cascade Update Key Attributes option, you can enable the automatic
update of the foreign key attribute values in composed entities when the primary key
value of the composing entity is changed.

6.6.3.12.6 Locking of Composite Parent Entities

Using the Lock Top-Level Container option, you can control whether adding,
removing, or modifying a composed detail entity row should attempt to lock the
composing entity before allowing the changes to be saved.

6.6.3.12.7 Updating of Composing Parent History Attributes

Using the Update Top-Level History Columns option, you can control whether
adding, removing, or modifying a composed detail entity object should update the
Modified By and Modified On history attributes of the composing parent entity.

6.7 Using Declarative Validation Rules
One page of the Entity Object Editor worthy of special attention is the Validation page,
where you can see and manage the declarative validation rules for the entity or any of
its attributes. The framework enforces entity-level validation rules when a user tries to
commit pending changes or simply navigates between rows. Attribute-level validation
rules are enforced when the user changes the value of the related attribute. When you
add a validation rule, you supply an appropriate error message and can later translate
it easily into other languages if needed. Oracle ADF ships with a number of built-in
declarative validation rules that you'll see in this section. Section 9.3, "Using Method
Validators" explains how to use the Method Validator to invoke custom validation
code and in Section 26.9, "Implementing Custom Validation Rules" you’ll learn how to
extend the basic set of declarative rules with custom rules of your own.

6.7.1 How to Add a Validation Rule
To add a validation rule to an entity object, use the Validation page of the Entity
Object Editor, as shown in Figure 6–17. To add an attribute-level validation rule, select
the attribute in the Declared Validation Rules tree, and click New.... Defining an
entity-level validation rule is similar, except that you select the root entity object node
in the tree before clicking New....

Using Declarative Validation Rules

Creating a Business Domain Layer Using Entity Objects 6-27

Figure 6–17 Validation Page of the Entity Object Editor

When you add a new validation rule, the Add Validation Rule dialog appears. Use the
Rule dropdown list to select the kind of validation rule you want, and configure its
declarative settings using the other controls in the page. The controls will change
depending on the kind of validation rule you select. Figure 6–18 illustrates what the
Add Validation Rule dialog would look like when defining a range validation rule for
the ProdId attribute of the ServiceRequest entity object. This validation rule has
been selected to enforce that the value lie between 100 and 999 inclusive. When you
add a validation rule, you also can enter an error message that will be shown to the
user if the validation rule fails.

Figure 6–18 Adding a New Range Validation Rule for the ProdId Attribute

6.7.2 What Happens When You Add a Validation Rule
When you add a validation rule to an entity object, JDeveloper updates its XML
component definition to include an entry describing what rule you've used and what
rule properties you've entered. For example, if you add the range validation rule above
to the ProdId attribute, this results in a RangeValidationBean entry in the XML
file:

Using Declarative Validation Rules

6-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

<Entity Name="ServiceRequest"
<!-- : -->
<Attribute Name="ProdId" IsNotNull="true" Precision="8" Scale="0"

ColumnName="PROD_ID" Type="oracle.jbo.domain.Number"
ColumnType="NUMBER" SQLType="NUMERIC" TableName="SERVICE_REQUESTS" >
<RangeValidationBean

xmlns="http://xmlns.oracle.com/adfm/validation"
ResId="ProdId_Rule_0"
OnAttribute="ProdId"
OperandType="LITERAL"
MinValue="100"
MaxValue="999" >

</RangeValidationBean>
</Attribute>
<!-- : -->

</Entity>

At runtime, the rule is automatically enforced by the entity object based on this
declarative information. The error message is a translatable string and is managed in
the same way as translatable UI control hints in an entity object message bundle class.
The ResId property in the XML component definition entry for the validator
corresponds to the String key in the message bundle. Example 6–4 shows the
relevant bit of the ServiceRequest entity object's message bundle, where the
ProdId_Rule_0 key appears with the error message for the default locale. The
validation errors messages get translated using the same mechanism described above
for UI control hints.

Example 6–4 Entity Object Message Bundle Contains Validation Error Messages

package devguide.model.entities.common;
import oracle.jbo.common.JboResourceBundle;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// ---
public class ServiceRequestImplMsgBundle extends JboResourceBundle {
static final Object[][] sMessageStrings = {
// other strings here
{ "ProdId_Rule_0", "Valid product codes are between 100 and 999" },
// other strings here
};
// etc.

}

6.7.3 What You May Need to Know About Validation Rules
It is important to know that some validators can be used at the entity level, and some
are used on the attribute level. Also, you should be aware the List Validator is
designed for working with a relatively small set.

Using Declarative Validation Rules

Creating a Business Domain Layer Using Entity Objects 6-29

6.7.3.1 Understanding the Built-in Entity-Level Validators
You can use the following built-in validators at the entity object level:

Unique Key Validator
Validates that the primary key for an entity is unique.

Method Validator
Invokes a method in an entity object's custom Java class to evaluate a programmatic
validation.

6.7.3.2 Understanding the Built-in Attribute-Level Validators
You can use the following built-in validators at the entity object attribute level:

Compare Validator
Validates an attribute value against:

■ A literal value,

■ A selected attribute of the first row of a view object query result, or

■ The first column of the first row of a SQL query result

List Validator
Validates that an attribute exists in an in-memory set of values from a:

■ Static list,

■ A selected attribute in the rows of view object's default row set, or

■ The first column value in the rows of a SQL query result.

Range Validator
Validates that an attribute lies between a minimum and maximum value, inclusive.

Length Validator
Validates whether the string length of an attribute's value is less than, equal to, or
greater than a fixed number of characters.

Regular Expression Validator
Validates that an attribute's value matches a regular expression.

Method Validator
Invokes a method in an entity object's custom Java class to evaluate a programmatic
validation.

6.7.3.3 Caveat About the List Validator
The List Validator is designed for validating an attribute against a relatively small set
of values. As shown in Figure 6–19, if you select the Query Result or View Object
Attribute style of list validation, keep in mind the validator will retrieve all of the rows
from the query before performing an in-memory scan to validate whether the attribute
value in question matches an attribute in the list. The query performed by the
Validator’s SQL or view object query does not reference the value being validated in
the WHERE clause of the query.

In other words, this is not the feature to use if you want to validate that a user-entered
product code exists in a table of a million products. Section 9.6, "Using View Objects
for Validation", explains the technique you can use to efficiently perform SQL-based
validations by using a view object to perform a targeted validation query against the
database.

Working Programmatically with Entity Objects and Associations

6-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 6–19 List Validator is Designed for Relatively Small Lists of Values

6.8 Working Programmatically with Entity Objects and Associations
While external client programs can access an application module and work with any
view object in its data model, by design neither UI-based nor programmatic clients
work directly with entity objects. In Chapter 7, "Building an Updatable Data Model
With Entity-Based View Objects", you'll learn how to easily combine the flexible
SQL-querying of view objects with the business logic enforcement and automatic
database interaction of entity objects for an incredibly powerful application-building
combination. The combination enables a fully updatable application module data
model, designed to the needs of the current end-user tasks at hand, that shares the
centralized business logic in your reusable domain business object layer.

However, it is important first to understand how view objects and entity objects can be
used on their own before learning to harness their combined power. By learning about
these objects in greater detail, you will have a better understanding of when you
should use them alone and when to combine them in your own applications.

Since clients don't work directly with entity objects, any code you write that works
programmatically with entity objects will typically be custom code in a custom
application module class or in the custom class of another entity object. This section
illustrates examples of working programmatically with entity objects and associations
from within custom methods of an application module named SRService in the
devguide.model package, manipulating the SRDemo entities you learned how to
create earlier in the chapter.

6.8.1 Finding an Entity Object by Primary Key
To access an entity row, you use a related object called the entity definition. At
runtime, each entity object has a corresponding entity definition object that describes
the structure of the entity and manages the instances of the entity object it describes.
After creating an SRService application module in the devguide.model package
and enabling a custom Java class for it, imagine you wanted to write a method to
return a specific service request’s current status. It might look like the
retrieveServiceRequestStatus() method like in the SRServiceImpl.java
file shown in Example 6–5.

Working Programmatically with Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 6-31

The example breaks down into these basic steps:

1. Find the entity definition.

You obtain the entity definition object for the
devguide.model.entities.ServiceRequest entity by passing its fully
qualified name to the static findDefObject() method on the EntityDefImpl
class. The EntityDefImpl class in the oracle.jbo.server package
implements the entity definition for each entity object.

2. Construct a key.

You build a Key object containing the primary key attribute that you want to look
up. In this case, you're creating a key containing the single requestId value
passed into the method as an argument.

3. Find the entity object using the key.

You use the entity definition's findByPrimaryKey() method to find the entity
object by key, passing in the current transaction object, which you can obtain from
the application module using its getDBTransaction() method. The concrete
class that represents an entity object row is the
oracle.jbo.server.EntityImpl class.

4. Return some of its data to the caller.

You use the getAttribute() method of EntityImpl to return the value of the
Status attribute to the caller.

Example 6–5 Finding a ServiceRequest Entity Object by Key

// Custom method in SRServiceImpl.java
public String findServiceRequestStatus(long requestId) {
String entityName = "devguide.model.entities.ServiceRequest";
// 1. Find the entity definition for the ServiceRequest entity
EntityDefImpl svcReqDef = EntityDefImpl.findDefObject(entityName);
// 2. Create the key
Key svcReqKey = new Key(new Object[]{requestId});
// 3. Find the entity object instance using the key
EntityImpl svcReq = svcReqDef.findByPrimaryKey(getDBTransaction(),svcReqKey);
if (svcReq != null) {
// 4. Return the Status attribute of the ServiceRequest
return (String)svcReq.getAttribute("Status");

}
else {
return null;

}
}

6.8.2 Accessing an Associated Entity Using the Accessor Attribute
In Section 6.3, "Creating and Configuring Associations", you learned that associations
enable easy access from one entity object to another. Here's a simple method that helps
illustrate what that means in practice. You can add a
findServiceRequestTechnician() method that finds a service request, then
accesses the associated User entity object representing the technician assigned to the
request.

Note: The oracle.jbo.Key object constructor takes an Object array
to support creating multiattribute keys, in addition to the more typical
single-attribute value keys.

Working Programmatically with Entity Objects and Associations

6-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

However, since this is the second method in the application module that will be
finding a ServiceRequest entity object by ID, you might first want to refactor this
functionality into the following retrieveServiceRequestById() helper method
that you can then reuse anywhere in the application module that requires finding a
service request by ID:

// Helper method in SRServiceImpl.java
private EntityImpl retrieveServiceRequestById(long requestId) {
String entityName = "devguide.model.entities.ServiceRequest";
EntityDefImpl svcReqDef = EntityDefImpl.findDefObject(entityName);
Key svcReqKey = new Key(new Object[]{requestId});
return svcReqDef.findByPrimaryKey(getDBTransaction(),svcReqKey);

}

Example 6–6 shows the code for findServiceRequestTechnician(). The
example follows three basic steps:

1. Find the ServiceRequest by ID.

Using the retrieveServiceRequestById() helper method, it retrieves the
ServiceRequest entity object by ID.

2. Access the associated entity using the accessor attribute.

In Section 6.3.1.1, "Changing Entity Association Accessor Names" above, you
renamed the association accessor for the ServiceRequestsAssignedToUser
association so that a ServiceRequest entity could access one of its two related
User entity objects with the accessor name of TechnicianAssigned. Using the
same getAttribute() method used to retrieve any entity attribute value, you
can pass in the name of an association accessor and get back the entity object on
the other side of the relationship.

3. Return some of its data to the caller.

Using the getAttribute() method on the returned User entity, it returns the
assigned technician's name by concatenation his first and last names.

Notice that you did not need to write any SQL to access the related User entity. The
relationship information captured in the ADF association between the
ServiceRequest and User entity objects is enough to allow the common task of
data navigation to be automated.

Working Programmatically with Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 6-33

Example 6–6 Accessing an Associated Entity Using the Accessor Attribute

// Custom method in SRServiceImpl.java
public String findServiceRequestTechnician(long requestId) {
// 1. Find the service request entity
EntityImpl svcReq = retrieveServiceRequestById(requestId);
if (svcReq != null) {
// 2. Access the User entity object using the association accessor attribute
EntityImpl tech = (EntityImpl)svcReq.getAttribute("TechnicianAssigned");
if (tech != null) {
// 3. Return some of the User entity object's attributes to the caller
return tech.getAttribute("FirstName")+" "+tech.getAttribute("LastName");

}
else {
return "Unassigned";

}
}
else {
return null;

}
}

6.8.3 Updating or Removing an Existing Entity Row
Once you've got an entity row in hand, it's simple to update it or remove it. You could
add a method like the updateRequestStatus() shown in Example 6–7 to handle
the job. The example has three simple steps:

1. Find the ServiceRequest by ID

Use the retrieveServiceRequestById() helper method to retrieve the
ServiceRequest entity object by ID.

2. Set one or more attributes to new values.

Use the EntityImpl class' setAttribute() method to update the value of the
Status attribute to the new value passed in.

3. Commit the transaction.

Use the application module's getDBTransaction() method to accesses the
current transaction object and call its commit() method to commit the
transaction.

Working Programmatically with Entity Objects and Associations

6-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 6–7 Updating an Existing Entity Row

// Custom method in SRServiceImpl.java
public void updateRequestStatus(long requestId, String newStatus) {
// 1. Find the service request entity
EntityImpl svcReq = retrieveServiceRequestById(requestId);
if (svcReq != null) {
// 2. Set its Status attribute to a new value
svcReq.setAttribute("Status",newStatus);
try {
// 3. Commit the transaction
getDBTransaction().commit();

}
catch (JboException ex) {
getDBTransaction().rollback();
throw ex;

}
}

}

The example for removing an entity row would be the same as this, except that after
finding the existing entity, you would use the following line instead to remove the
entity before committing the transaction:

// Remove the entity instead!
svcReq.remove();

6.8.4 Creating a New Entity Row
In addition to using the entity definition for finding existing entity rows, you can also
use it to create new ones. Changing focus from service requests to products for a
moment, you could write a createProduct()method like the one shown in
Example 6–8 to accept the name and description of a new product, and return the new
product ID assigned to it. Assume that the ProdId attribute of the Product entity
object has been updated to have the DBSequence type discussed in Section 6.6.3.8,
"Trigger-Assigned Primary Key Values from a Database Sequence", so that its value is
automatically refreshed to reflect the value the ASSIGN_PRODUCT_ID trigger on the
PRODUCTS table will assign to it from the PRODUCTS_SEQ sequence in the SRDemo
application schema.

The example follows these steps:

1. Find the entity definition.

Use EntityDefImpl.findDefObject() to find the entity definition for the
Product entity.

2. Create a new instance.

Use the createInstance2() method on the entity definition to create a new
instance of the entity object.

Working Programmatically with Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 6-35

3. Set attribute values.

Use the setAttribute() method on the entity object to assign values for the
Name and Description attributes in the new entity row.

4. Commit the transaction

Call commit() on the current transaction object to commit the transaction.

5. Return the trigger-assigned product ID to the caller

Use getAttribute() to retrieve the ProdId attribute as a DBSequence, then
call getSequenceNumber().longValue() to return the sequence number as a
long value to the caller.

Example 6–8 Creating a New Entity Row

// Custom method in SRServiceImpl.java
public long createProduct(String name, String description) {
String entityName = "devguide.model.entities.Product";
// 1. Find the entity definition for the Product entity
EntityDefImpl productDef = EntityDefImpl.findDefObject(entityName);
// 2. Create a new instance of a Product entity
EntityImpl newProduct = productDef.createInstance2(getDBTransaction(),null);
// 3. Set attribute values
newProduct.setAttribute("Name",name);
newProduct.setAttribute("Description",description);
try {

// 4. Commit the transaction
getDBTransaction().commit();

}
catch (JboException ex) {
getDBTransaction().rollback();
throw ex;

}
// 5. Access the database trigger assigned ProdId value and return it
DBSequence newIdAssigned = (DBSequence)newProduct.getAttribute("ProdId");
return newIdAssigned.getSequenceNumber().longValue();

}

Note: The method name really has a 2 at the end. The regular
createInstance() method has protected access and is designed
to be customized by developers as described Section D.2.5,
"EntityDefImpl Class" of Appendix D, "Most Commonly Used ADF
Business Components Methods". The second argument of type
AttributeList is used to supply attribute values that must be
supplied at create time; it is not used to initialize the values of all
attributes found in the list. For example, when creating a new instance
of a composed child entity row using this API, you must supply the
value of a composing parent entity's foreign key attribute in the
AttributeList object passed as the second argument. Failure to do
so results in an InvalidOwnerException.

Working Programmatically with Entity Objects and Associations

6-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.8.5 Testing Using a Static Main Method
At this point, you are ready to test your custom application module methods. One
common technique to build testing code into an object is to include that code in the
static main() method. Example 6–9 shows a sample main() method you could
add to your SRServiceImpl.java custom application module class to test the
sample methods you wrote above. You'll make use of the same Configuration
object you used in Section 5.7, "How to Create a Command-Line Java Test Client", to
instantiate and work with the application module for testing.

A quick glance through the code shows that it's exercising the four methods created
above to:

1. Retrieve the status of service request 101

2. Retrieve the name of the technician assigned to service request 101

3. Set the status of service request 101 to illegal value "Reopened"

4. Create a new product supplying a null product name

5. Create a new product and display its newly assigned product ID

Note: The fact that this Configuration object resides in the
oracle.jbo.client package suggests its use for accessing an
application module as an application client, and a main() method is a
kind of programmatic, command-line client, so this OK. Furthermore,
even though it is not best practice to cast the return value of
createRootApplicationModule() directly to an application
module's implementation class, it's legal to do in this one situation
since despite its being a client to the application module, the main()
method's code resides right inside the application module
implementation class itself.

Working Programmatically with Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 6-37

Example 6–9 Sample Main Method to Test SRService Application Module from the Inside

// Main method in SRServiceImpl.java
public static void main(String[] args) {
String amDef = "devguide.model.SRService";
String config = "SRServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);

/*
* NOTE: This cast to use the SRServiceImpl class is OK since this
* ---- code is inside a business tier *Impl.java file and not in a
* client class that is accessing the business tier from "outside".
*/
SRServiceImpl service = (SRServiceImpl)am;
// 1. Retrieve the status of service request 101
String status = service.findServiceRequestStatus(101);
System.out.println("Status of SR# 101 = " + status);
// 2. Retrieve the name of the technician assigned to service request 101
String techName = service.findServiceRequestTechnician(101);
System.out.println("Technician for SR# 101 = " + techName);
try {
// 3. Set the status of service request 101 to illegal value "Reopened"
service.updateRequestStatus(101,"Reopened");

}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());

}
long id = 0;
try {
// 4. Create a new product supplying a null product name
id = service.createProduct(null,"Makes Blended Fruit Drinks");

}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());

}
// 5. Create a new product and display its newly assigned product id
id = service.createProduct("Smoothie Maker","Makes Blended Fruit Drinks");
System.out.println("New product created successfully with id = "+id);
Configuration.releaseRootApplicationModule(am,true);

}

Running the SRServiceImpl.java class calls the main() method in Example 6–9,
and shows the following output:

Status of SR# 101 = Closed
Technician for SR# 101 = Bruce Ernst
ERROR: The status must be Open, Pending, or Closed
ERROR: JBO-27014: Attribute Name in Product is required
New product created successfully with id = 209

Notice that the attempt to set the service request status to "Reopened" failed due to the
List Validator failing on the ServiceRequest entity object's Status attribute, shown
in Figure 6–17. That validator was configured to allow only values from the static list
Open, Pending, or Closed. Also notice that the first attempt to call
createProduct() with a null for the product name raises an exception due to the
built-in mandatory validation on the Name attribute of the Product entity object.

Generating Custom Java Classes for an Entity Object

6-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.9 Generating Custom Java Classes for an Entity Object
As you've seen so far in this chapter, all of the database interaction and a large amount
of declarative runtime functionality of an entity object can be achieved without using
custom Java code. When you need to go beyond the declarative features to implement
custom business logic for your entities, you'll need to enable custom Java generation
for the entities that require custom code. Appendix D, "Most Commonly Used ADF
Business Components Methods", provides a quick reference to the most common code
that you will typically write, use, and override in your custom entity object and entity
definition classes. Later chapters discuss specific examples of how the SRDemo
application uses custom code in its entity classes as well.

6.9.1 How To Generate Custom Classes
To enable the generation of custom Java classes for an entity object, use the Java page
of the Entity Object Editor. As shown in Figure 6–20, there are three optional Java
classes that can be related to an entity object. While the Entity Collection Class is
rarely customized in practice, the Entity Object Class is the most frequently
customized, with the Entity Definition Class getting customized less frequently:

■ Entity collection class — rarely customized.

■ Entity object class — the most frequently customized, it represents each row in the
underlying database table.

■ Entity definition class — less frequently customized, it represents the related class
that manages entity rows and defines their structure.

Figure 6–20 Entity Object Custom Java Generation Options

Note: You may be asking yourself, "How would a client application
invoke the custom service methods I've created in my SRService
application module, instead of being called by a main() method in
the same class?" You'll learn the simple steps to enable this in
Section 8.4, "Publishing Custom Service Methods to Clients". You'll see
that it's a straightforward configuration option involving the Client
Interface page of the Application Module Editor

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 6-39

6.9.1.1 Choosing to Generate Entity Attribute Accessors
When you enable the generation of a custom entity object class, if you also select the
Accessors checkbox, then JDeveloper generates getter and setter methods for each
attribute in the entity object. For the ServiceRequest entity object, the
corresponding custom ServiceRequestImpl.java class would have methods like
this generated in it:

public Number getSvrId() {...}
public void setSvrId(Number value) {...}
public String getStatus() {...}
public void setStatus(String value) {...}
public Date getRequestDate() {...}
public void setRequestDate(Date value) {...}
public String getProblemDescription() {...}
public void setProblemDescription(String value) {...}
public Number getProdId() {...}
public void setProdId(Number value) {...}
public Number getCreatedBy() {...}
public void setCreatedBy(Number value) {...}
public Number getAssignedTo() {...}
public void setAssignedTo(Number value) {...}
public Date getAssignedDate() {...}
public void setAssignedDate(Date value) {...}
public ProductImpl getProduct() {...}
public void setProduct(ProductImpl value) {...}
public RowIterator getServiceHistories() {...}
public UserImpl getTechnicianAssigned() {...}
public void setTechnicianAssigned(UserImpl value) {...}
public UserImpl getCreatedByUser() {...}
public void setCreatedByUser(UserImpl value) {...}

These methods allow you to work with the row data with compile-time checking of
the correct datatype usage. That is, instead of writing a line like this to get the value of
the ProdId attribute:

Number prodId = (Number)svcReq.getAttribute("ProdId");

you can write the code like:

Number prodId = svcReq.getProdId();

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed ProductCode instead of ProdId:

// spelling name wrong gives compile error
Number prodId = svcReq.getProductCode();

Without the generated entity object accessor methods, an incorrect line of code like the
following cannot be caught by the compiler:

// Both attribute name and type cast are wrong, but compiler cannot catch it
String prodId = (String)svcReq.getAttribute("ProductCode");

It contains both an incorrectly spelled attribute name, as well as an incorrectly typed
cast of the getAttribute() return value. When you use the generic APIs on the Row
interface, which the base EntityImpl class implements, errors of this kind will raise
exceptions at runtime instead of being caught at compile time.

Generating Custom Java Classes for an Entity Object

6-40 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.9.2 What Happens When You Generate Custom Classes
When you select one or more custom Java classes to generate, JDeveloper creates the
Java file(s) you've indicated. For an entity object named
devguide.model.entities.ServiceRequest, the default names for its custom
Java files will be ServiceRequestImpl.java for the entity object class and
ServiceRequestDefImpl.java for the entity definition class. Both files get created
in the same ./devguide/model/entities directory as the component's XML
component definition file.

The Java generation options for the entity object continue to be reflected on the Java
page on subsequent visits to the View Object Editor. Just as with the XML definition
file, JDeveloper keeps the generated code in your custom Java classes up to date with
any changes you make in the editor. If later you decide you didn't require a custom
Java file for any reason, unchecking the relevant options in the Java page will cause the
custom Java files to be removed.

6.9.3 Seeing and Navigating to Custom Java Files
As with all ADF components, when you select an entity object in the Application
Navigator, the Structure window displays all of its related implementation files. The
only required file is the XML component definition file. You saw above that when
translatable UI control hints are defined for a component, it will have a component
message bundle file as well. As shown in Figure 6–21, when you've enabled generation
of custom Java classes, they also appear under the Sources folder for the entity object.
When you need to see or work with the source code for a custom Java file, there are
two ways to open the file in the source code editor:

■ You can choose the relevant Go to option in the context menu, as shown in
Figure 6–21

■ You can double-click on a file in the Sources folder in the Structure window

Figure 6–21 Seeing and Navigating to Custom Java Classes for an Entity Object

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 6-41

6.9.4 What You May Need to Know About Custom Java Classes
See the following sections for additional information about custom Java classes.

6.9.4.1 About the Framework Base Classes for an Entity Object
When you use an "XML-only" entity object, at runtime its functionality is provided by
the default ADF Business Components implementation classes. Each custom Java class
that gets generated will automatically extend the appropriate ADF Business
Components base class so your code inherits the default behavior and can easily add
or customize it. An entity object class will extend EntityImpl, while the entity
definition class will extend EntityDefImpl (both in the oracle.jbo.server
package).

6.9.4.2 You Can Safely Add Code to the Custom Component File
Based perhaps on previous negative experiences, some developers are hesitant to add
their own code to generated Java source files. Each custom Java source code file that
JDeveloper creates and maintains for you includes the following comment at the top of
the file to clarify that it is safe to add your own custom code to this file.

// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---

JDeveloper does not blindly regenerate the file when you click the OK or Apply
button in the component editor. Instead, it performs a smart update to the methods
that it needs to maintain, leaving your own custom code intact.

6.9.4.3 Configuring Default Java Generation Preferences
You've seen how to generate custom Java classes for your view objects when you need
to customize their runtime behavior or simply prefer to have strongly typed access to
bind variables or view row attributes.

To configure the default settings for ADF Business Components custom Java
generation, you can select the Tools | Preferences... menu and open the Business
Components page to set your preferences to be used for business components created
in the future. Oracle recommends that developers getting started with ADF Business
Components set their preference to generate no custom Java classes by default. As you
run into a specific need for custom Java code, as you've learned in this section, you can
enable just the bit of custom Java you need for that one component. Over time, you'll
discover which set of defaults works best for you.

6.9.4.4 Attribute Indexes and InvokeAccessor Generated Code
As you've seen, the entity object is designed to function either in an XML-only mode
or using a combination of an XML component definition and a custom Java class. Due
to this feature, attribute values are not stored in private member fields of an entity's
class since such a class is not present in the XML-only situation. Instead, in addition to
a name, attributes are also assigned a numerical index in the entity's XML component
definition based on the zero-based, sequential order of the <Attribute> and
association-related <AccessorAttribute> tags in that file. At runtime attribute values in
an entity row are stored in a sparse array structure managed by the base EntityImpl
class, indexed by the attribute's numerical position in the entity's attribute list.

Generating Custom Java Classes for an Entity Object

6-42 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For the most part this private implementation detail is unimportant, since as a
developer using entity objects you are shielded from having to understand this.
However, when you enable a custom Java class for your entity object, this
implementation detail is related to some of the generated code that JDeveloper
automatically maintains in your entity object class. It is sensible to understand what
that code is used for. For example, in the custom Java class for the ServiceRequest
entity object, Example 6–10 shows that each attribute or accessor attribute has a
corresponding generated integer constant. JDeveloper ensures that the values of these
constants correctly reflect the ordering of the attributes in the XML component
definition.

Example 6–10 Attribute Constants are Automatically Maintained in the Custom Entity
Java Class

public class ServiceRequestImpl extends EntityImpl {
public static final int SVRID = 0;
public static final int STATUS = 1;
public static final int REQUESTDATE = 2;
public static final int PROBLEMDESCRIPTION = 3;
public static final int PRODID = 4;
public static final int CREATEDBY = 5;
public static final int ASSIGNEDTO = 6;
public static final int ASSIGNEDDATE = 7;
public static final int TECHNICIANASSIGNED = 8;
public static final int CREATEDBYUSER = 9;
public static final int PRODUCT = 10;
public static final int SERVICEHISTORIES = 11;
// etc.

You'll also notice that the automatically maintained, strongly typed getter and setter
methods in the entity object class use these attribute constants like this:

// In devguide.model.entities.ServiceRequestImpl class
public Number getAssignedTo() {
return (Number)getAttributeInternal(ASSIGNEDTO); // <-- Attribute constant

}
public void setAssignedTo(Number value) {
setAttributeInternal(ASSIGNEDTO, value); // <-- Attribute constant

}

That last aspect of the automatically maintained code related to entity attribute
constants are the getAttrInvokeAccessor() and setAttrInvokeAccessor()
methods. These methods optimize the performance of attribute access by numerical
index, which is how generic code in the EntityImpl base class typically accesses
attribute values when performing generic processing. An example of the
getAttrInvokeAccessor() method looks like the following from the
ServiceRequestImpl.java class. The companion setAttrInvokeAccessor()
method looks similar.

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 6-43

// In devguide.model.entities.ServiceRequestImpl class
/** getAttrInvokeAccessor: generated method. Do not modify. */
protected Object getAttrInvokeAccessor(int index,AttributeDefImpl attrDef)
throws Exception {
switch (index) {
case SVRID: return getSvrId();
case STATUS: return getStatus();
case REQUESTDATE: return getRequestDate();
case PROBLEMDESCRIPTION: return getProblemDescription();
case PRODID: return getProdId();
case CREATEDBY: return getCreatedBy();
case ASSIGNEDTO: return getAssignedTo();
case ASSIGNEDDATE: return getAssignedDate();
case SERVICEHISTORIES: return getServiceHistories();
case TECHNICIANASSIGNED: return getTechnicianAssigned();
case CREATEDBYUSER: return getCreatedByUser();
case PRODUCT: return getProduct();
default:
return super.getAttrInvokeAccessor(index, attrDef);

}
}

The rules of thumb to remember about this generated attribute-index related code are
the following.

The Do’s
■ Add custom code if needed inside the strongly typed attribute getter and setter

methods.

■ Use the Entity Object Editor to change the order or type of entity object attributes.

JDeveloper will change the Java signature of getter and setter methods, as well as
the related XML component definition for you.

The Don'ts
■ Don’t modify the getAttrInvokeAccessor() and

setAttrInvokeAccessor() methods.

■ Don't change the values of the attribute index numbers by hand.

Note: If you need to manually edit the generated attribute constants
because of source control merge conflicts or other reasons, you must
ensure that the zero-based ordering reflects the sequential ordering of
the <Attribute> and <AccessorAttribute> tags in the
corresponding entity object XML component definition.

Generating Custom Java Classes for an Entity Object

6-44 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.9.5 Programmatic Example for Comparison Using Custom Entity Classes
In order to better evaluate the difference of using custom generated entity classes
versus working with the generic EntityImpl class, Example 6–11 shows a version of
the SRServiceImpl.java methods that you implemented above in a second
SRService2Impl.java application module class. A few of the interesting
differences to notice are:

■ Attribute access is performed using strongly typed attribute accessors.

■ Association accessor attributes return the strongly typed entity class on the other
side of the association.

■ Using the getDefinitionObject() method in your custom entity class avoids
working with fully qualified entity definition names as strings.

■ The createPrimaryKey() method in your custom entity class simplifies
creating the Key object for an entity.

Example 6–11 Programmatic Entity Examples Using Strongly Typed Custom Entity
Object Classes

package devguide.model;
import devguide.model.entities.ProductImpl;
import devguide.model.entities.ServiceRequestImpl;
import devguide.model.entities.UserImpl;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.Key;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.DBSequence;
import oracle.jbo.domain.Number;
import oracle.jbo.server.ApplicationModuleImpl;
import oracle.jbo.server.EntityDefImpl;
import oracle.jbo.server.EntityImpl;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
/**
* This custom application module class illustrates the same
* example methods as SRServiceImpl.java, except that here
* we're using the strongly typed custom Entity Java classes
* ServiceRequestImpl, UserImpl, and ProductImpl instead of working
* with all the entity objects using the base EntityImpl class.
*/
public class SRService2Impl extends ApplicationModuleImpl {
/**This is the default constructor (do not remove)
*/
public SRService2Impl() {
}
/*
* Helper method to return a ServiceRequest by Id
*/
private ServiceRequestImpl retrieveServiceRequestById(long requestId) {
EntityDefImpl svcReqDef = ServiceRequestImpl.getDefinitionObject();
Key svcReqKey =
ServiceRequestImpl.createPrimaryKey(new DBSequence(requestId));

return (ServiceRequestImpl)svcReqDef.findByPrimaryKey(getDBTransaction(),

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 6-45

svcReqKey);
}

/*
* Find a ServiceRequest by Id
*/
public String findServiceRequestStatus(long requestId) {
ServiceRequestImpl svcReq = retrieveServiceRequestById(requestId);
if (svcReq != null) {
return svcReq.getStatus();

}
return null;

}

/*
* Create a new Product and Return its new id
*/
public long createProduct(String name, String description) {
EntityDefImpl productDef = ProductImpl.getDefinitionObject();
ProductImpl newProduct = (ProductImpl)productDef.createInstance2(

getDBTransaction(),null);
newProduct.setName(name);
newProduct.setDescription(description);
try {
getDBTransaction().commit();

}
catch (JboException ex) {
getDBTransaction().rollback();
throw ex;

}
DBSequence newIdAssigned = newProduct.getProdId();
return newIdAssigned.getSequenceNumber().longValue();

}
/*
* Update the status of an existing service request
*/
public void updateRequestStatus(long requestId, String newStatus) {
ServiceRequestImpl svcReq = retrieveServiceRequestById(requestId);
if (svcReq != null) {
svcReq.setStatus(newStatus);
try {
getDBTransaction().commit();

}
catch (JboException ex) {
getDBTransaction().rollback();
throw ex;

}
}

}

/*
* Access an associated Used entity from the ServiceRequest entity
*/
public String findServiceRequestTechnician(long requestId) {
ServiceRequestImpl svcReq = retrieveServiceRequestById(requestId);
if (svcReq != null) {
UserImpl tech = (UserImpl)svcReq.getTechnicianAssigned();
if (tech != null) {
return tech.getFirstName()+" "+tech.getLastName();

}

Generating Custom Java Classes for an Entity Object

6-46 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

else {
return "Unassigned";

}
}
else {
return null;

}
}
// Original main() method generated by the application module editor
//
// /**Sample main for debugging Business Components code using the tester.
// */
// public static void main(String[] args) {
// launchTester("devguide.model", /* package name */
// "SRServiceLocal" /* Configuration Name */);
// }
/*
* Testing method
*/
public static void main(String[] args) {
String amDef = "devguide.model.SRService";
String config = "SRServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);

/*
* NOTE: This cast to use the SRServiceImpl class is OK since this
* ---- code is inside a business tier *Impl.java file and not in a
* client class that is accessing the business tier from "outside".
*/
SRServiceImpl service = (SRServiceImpl)am;
String status = service.findServiceRequestStatus(101);
System.out.println("Status of SR# 101 = " + status);
String techName = service.findServiceRequestTechnician(101);
System.out.println("Technician for SR# 101 = " + techName);
try {
service.updateRequestStatus(101,"Reopened");

}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());

}
long id = 0;
try {
id = service.createProduct(null,"Makes Blended Fruit Drinks");

}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());

}
id = service.createProduct("Smoothie Maker","Makes Blended Fruit Drinks");
System.out.println("New product created successfully with id = "+id);
Configuration.releaseRootApplicationModule(am,true);

}
}

Adding Transient and Calculated Attributes to an Entity Object

Creating a Business Domain Layer Using Entity Objects 6-47

6.10 Adding Transient and Calculated Attributes to an Entity Object
In addition to having attributes that map to columns in an underlying table, your
entity objects can include transient attributes that are value holders or that display
values calculated in Java. This section explores a simple example of adding a
FullName transient attribute to the Users entity object that calculates its value by
concatenating the values of the FirstName and LastName attributes.

6.10.1 How to Add a Transient Attribute

To add a transient attribute to an entity object:
1. Open the Attributes page in the Entity Object Editor and click the New... button.

As shown in Figure 6–22:

2. Enter a name for the attribute like FullName,

3. Set the Java Attribute Type like String, and

4. Deselect the Persistent checkbox

5. If the value will be calculated, set Updateable to Never

Then click OK to create the attribute.

Figure 6–22 Adding a New Transient Attribute

Adding Transient and Calculated Attributes to an Entity Object

6-48 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6.10.2 What Happens When You Add Transient Attribute
When you add a transient attribute and finish the Entity Object Editor, JDeveloper
updates the XML component definition for the entity object to reflect the new
attribute. Whereas a persistent entity association looks like this in the XML:

<Attribute
Name="FirstName"
IsNotNull="true"
Precision="30"
ColumnName="FIRST_NAME"
Type="java.lang.String"
ColumnType="VARCHAR2"
SQLType="VARCHAR"
TableName="USERS" >

</Attribute>

a transient attribute's <Attribute> tag looks like this, with no TableName and a
ColumnName of $none$:

<Attribute
Name="FullName"
IsUpdateable="false"
IsQueriable="false"
IsPersistent="false"
ColumnName="$none$"
Type="java.lang.String"
ColumnType="$none$"
SQLType="VARCHAR" >

</Attribute>

6.10.3 Adding Java Code in the Entity Class to Perform Calculation
A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to While New or Always, then the end user can
enter a value for the attribute. If you want the transient attribute to display a
calculated value, then you'll typically leave the Updatable property set to Never and
write custom Java code that calculates the value.

After adding a transient attribute to the entity object, to make it a calculated attribute
you need to:

■ Enable a custom entity object class on the Java page of the Entity Object Editor,
choosing to generate accessor methods

■ Write Java code inside the accessor method for the transient attribute to return the
calculated value

For example, after generating the UserImpl.java view row class, the Java code to
return its calculated value would reside in the getFullName() method like this:

// Getter method for FullName calculated attribute in UserImpl.java
public String getFullName() {
// Commented out original line since we'll always calculate the value
// return (String)getAttributeInternal(FULLNAME);

return getFirstName()+" "+getLastName();
}

Adding Transient and Calculated Attributes to an Entity Object

Creating a Business Domain Layer Using Entity Objects 6-49

To ensure that the FullName calculated attribute is reevaluated whenever the
LastName or FirstName attributes might be changed by the end user, you can add
one line to their respective setter methods to mark FullName as "dirty" whenever
either's value is set.

// Setting method for FirstName attribute in UserImpl.java
public void setFirstName(String value) {
setAttributeInternal(FIRSTNAME, value);
// Notify any clients that the FullName attribute has changed
populateAttribute(FULLNAME,null,true, /* send notification */

false, /* markAsChanged */
false);/* saveCopy */

}

and

public void setLastName(String value) {
setAttributeInternal(LASTNAME, value);
// Notify any clients that the FullName attribute has changed
populateAttribute(FULLNAME,null,true, /* send notification */

false, /* markAsChanged */
false);/* saveCopy */

}

Adding Transient and Calculated Attributes to an Entity Object

6-50 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Building an Updatable Data Model With Entity-Based View Objects 7-1

7
Building an Updatable Data Model With

Entity-Based View Objects

This chapter describes how to build updatable view objects that cooperate
automatically with entity objects to enable a fully updatable data model.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Entity-Based View Objects"

■ Section 7.2, "Creating an Entity-Based View Object"

■ Section 7.3, "Including Reference Entities in Join View Objects"

■ Section 7.4, "Creating an Association-Based View Link"

■ Section 7.5, "Testing Entity-Based View Objects Interactively"

■ Section 7.6, "Adding Calculated and Transient Attributes to an Entity-Based View
Object"

■ Section 7.7, "Understanding How View Objects and Entity Objects Cooperate at
Runtime"

■ Section 7.8, "Working Programmatically with Entity-Based View Objects"

■ Section 7.9, "Summary of Difference Between Entity-Based View Objects and
Read-Only View Objects"

7.1 Introduction to Entity-Based View Objects
An entity-based view object supports updatable rows. The view object queries just the
data needed for the client-facing task at hand, then cooperates with one or more entity
objects in your business domain layer to automatically validate and save changes
made to its view rows. Like the read-only view object, an entity-based view object
encapsulates a SQL query, can be linked into master/detail hierarchies, and can be
used in the data model of your application modules.

By the end of this chapter, you will understand the concepts shown in Figure 7–1:

■ You define an updatable view object by referencing attributes from one or more
entity objects.

■ You can use multiple, associated entity objects to simplify working with reference
information.

■ You can define view links based on underlying entity associations.

Creating an Entity-Based View Object

7-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ You use your entity-based view objects in the context of an application module
that provides the transaction.

■ At runtime, the view row delegates the storage and validation of its attributes to
underlying entity objects.

This chapter explains how instances of entity-based view objects in an application
module's data model enable clients to search for, update, insert, and delete business
domain layer information in a way that combines the full data shaping power of SQL
with the clean, object-oriented encapsulation of reusable, domain business objects.
And all without requiring a line of code.

Figure 7–1 View Objects and Entity Objects Collaborate to Enable an Updatable Data
Model

7.2 Creating an Entity-Based View Object
Creating an entity-based view object is even easier than creating a read-only view
object, since you don't have to type in the SQL statement yourself. An entity-based
view object also offers significantly more runtime functionality than its read-only
counterpart.

7.2.1 How to Create an Entity-Based View Object
To create an entity-based view object, use the Create View Object wizard. The wizard
is available from the New Gallery in the Business Tier > ADF Business Components
category. Assume that you want to create a StaffList view object in the
devguide.model.queries package to retrieve an updatable list of staff members.

Note: The examples in this chapter use the same basic SRDemo
application business domain layer of ServiceRequest,
ServiceHistory Product, User, and ExpertiseArea entity
objects from Chapter 6, "Creating a Business Domain Layer Using
Entity Objects". To experiment with a working version of the
examples, download the DevGuideExamples workspace from the
Example Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01
and see the EntityBasedViewObjects project.

http://otn.oracle.com/documentation/jdev/b25947_01

Creating an Entity-Based View Object

Building an Updatable Data Model With Entity-Based View Objects 7-3

As shown in Figure 7–2, in step 1 on the Name page, provide the view object's name
and package. Keep the default setting to manage data with Updatable Access through
Entity Objects.

Figure 7–2 Providing a Name and Package for an Updatable View Object

In step 2 on the Entity Objects page, select the entity object whose data you want to
use in the view object. Figure 7–3 shows the result after selecting the User entity object
and shuttling it into the Selected list. An entry in this list is known as an entity usage —
since it records the entity objects that the view object will be using. It could also be
thought of as an entity reference, since the view object references attributes from that
entity.

Figure 7–3 Selecting the Entity Objects Whose Data You Want to Include in the View
Object

Creating an Entity-Based View Object

7-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In step 3 on the Attributes page, select the attributes you want to include from the
entity usage in the Available list and shuttle them to the Selected list. In Figure 7–4,
the UserId, Email, FirstName, and LastName attributes have been selected.

Figure 7–4 Selecting the Entity Attributes Whose Data You Want to Include in the View
Object

In step 4 on the Attribute Settings page, you can use the Select Attribute dropdown
to switch between the view object attributes in order to change their names or any of
their initial settings. For this example, you can accept the defaults.

In step 5 on the SQL Statement page, as shown in Figure 7–5, JDeveloper
automatically generates the SELECT statement based on the entity attributes you've
selected. You can add a WHERE and ORDER BY clause to the query to filter and order
the data as required. Since this StaffList view object should display only the rows
in the USERS table that have a value of technician or manager for the USER_ROLE
column, you can include an appropriate WHERE clause predicate in the Where field.
To order the data by last name and first name, included an appropriate ORDER BY
clause in the Order By field. Notice that the Where and Order By field values appear
without the WHERE or ORDER BY keyword. The view object adds those keywords at
runtime when it executes the query.

Creating an Entity-Based View Object

Building an Updatable Data Model With Entity-Based View Objects 7-5

Figure 7–5 Adding Custom Where and Order By Clauses to the Generated SQL
Statement

Click Finish at this point to create the view object.

7.2.1.1 Creating a View Object Having All Attributes of an Entity Object
When you want to allow the client to work with all of the attributes of an underlying
entity object, you can use the Create View Object wizard as described in Section 7.2.1,
"How to Create an Entity-Based View Object". After selecting the entity object, simply
select all of its attributes on the Attributes page. However, for this frequent operation,
there is an even quicker way to perform the same task in the Application Navigator.

To create a new entity-based view object:
1. Select the desired entity object in the Application Navigator.

2. Choose New Default View Object... from the context menu.

3. Provide a package and component name for the new view object in the Create
Default View Object dialog, as shown in Figure 7–6.

Figure 7–6 Shortcut to Creating a Default View Object for an Entity Object

Creating an Entity-Based View Object

7-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The new entity-based view object created will be identical to one you could have
created with the Create View Object wizard. By default, it will have a single entity
usage referencing the entity object you selected in the Application Navigator, and will
include all of its attributes. It will initially have neither a WHERE nor ORDER BY
clause, and you may want to use the View Object Editor to:

■ Remove unneeded attributes

■ Refine its selection with a WHERE clause

■ Order its results with an ORDER BY clause

■ Customize any of the view object properties

7.2.2 What Happens When You Create an Entity-Based View Object
When you create an entity-based view object, JDeveloper creates the XML component
definition file that represents the view object's declarative settings and saves it in the
directory that corresponds to the name of its package. In Figure 7–2, the view object
was named StaffList in the devguide.model.queries package, so the XML file
created will be ./devguide/model/queries/StaffList.xml under the project's
source path. This XML file contains the information about the SQL query, the name of
the entity usage, and the properties of each attribute. If you're curious to see its
contents, you can see the XML file for the view object by selecting the view object in
the Application Navigator and looking in the corresponding Sources folder in the
Structure Window. Double-clicking on the StaffList.xml node will open the XML
in an editor so you can inspect it.

7.2.3 Editing an Existing Entity-Based View Object Definition
After you've created an entity-based view object, you can edit any of its settings by
using the View Object Editor. Select the Edit menu option on the context menu in the
Application Navigator, or double-click on the view object, to launch the view object
editor. By opening the different panels of the editor, you can adjust the WHERE and
ORDER BY clause of the query, change the attribute names, add named bind variables,
add UI controls hints, control Java generation options, and configure other settings.

7.2.4 What You May Need to Know About View Objects
Each view object attribute inherits the properties of the corresponding entity object
attribute.

7.2.4.1 View Object Attributes Inherit Properties from Underlying Entity Object
Attributes
One interesting aspect of entity-based view objects is that each attribute that relates to
an underlying entity object attribute inherits that attributes properties. Figure 7–7
shows the View Object Editor with the UserId attribute selected. You can see that
properties like the Java Attribute Type and the Query Column Type are disabled and
their values are inherited from the related UserId attribute of the User entity object to
which this view object is related. Some properties like the attribute's datatype are
inherited and cannot be changed at the view object level.

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
view object class StaffListImpl.java and/or a custom view row
class StaffListRowImpl.java class.

Including Reference Entities in Join View Objects

Building an Updatable Data Model With Entity-Based View Objects 7-7

Other properties like Queryable and Updatable are inherited but can be overridden
as long as their overridden settings are more restrictive than the inherited settings. For
example, the UserId attribute in the User entity object has an Updatable setting of
Always. As shown Figure 7–7, the View Object Editor would allow you to set the
corresponding view object attribute to a more restrictive setting like While New or
Never. However, if the UserId attribute in the User entity object had instead an
Updatable setting of Never, then the editor would not allow the StaffList's related
view object attribute to have a less restrictive setting like Always.

Figure 7–7 View Object Attributes Inherit Properties from Underlying Entity Object
Attributes

7.3 Including Reference Entities in Join View Objects
It is extremely common in business applications to supplement information from a
primary business domain object with secondary reference information to help the end
user understand what foreign key attributes represent. Take the example of the
ServiceRequest entity object. It contains foreign key attributes of type Number like:

■ CreatedBy, representing the user who created the request

■ AssignedTo, representing the user to whom the request is assigned

■ ProdId, representing the product to which the request pertains

From experience, you know that showing an end user exclusively these "raw"
numerical values won't be very helpful. Ideally, reference information from the related
User and Product entity objects should be displayed to improve the application's
usability. One typical solution involves performing a join query that retrieves the
combination of the primary and reference information. Alternatively, developers
populate "dummy" fields in each queried row with reference information based on
extra queries against the lookup tables. When the end user can change the foreign key
values as she edits the data, this presents an additional challenge.

Including Reference Entities in Join View Objects

7-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, when reassigning a service request from one technician to another, the
end user expects the reference information to stay in sync. Luckily, entity-based view
objects support easily including reference information that's always up to date. The
key requirement to leverage this feature is the presence of associations between the
entity object that act as the view object's primary entity usage and the entity objects
that contribute reference information.

This section describes how to modify the default ServiceRequests view object
created above to include reference information from the User and Product entity
objects.

7.3.1 How to Include Reference Entities in a View Object
To include reference entities in a view object, open the View Object Editor on an
entity-based view object that already has a single entity usage, and open the Entity
Objects page. The first entity usage in the Selected list on this page is known as the
primary entity usage for the view object. The list is not limited to a single entity usage,
however. To use additional entity objects in the view object, select them in the
Available list and shuttle them to the Selected list.

7.3.1.1 Adding Additional Reference Entity Usages to the View Object
Figure 7–8 shows the result of adding three additional reference entity usages to the
existing ServiceRequests view object: one for the Product and two separate
usages of the User entity. When you click on an entity usage in the Selected list, the
state of the Reference checkbox indicates that the second and subsequent entity
usages added to a view object are marked as reference information by default.
Similarly, the secondary entity usages default to being not updatable, as the
unchecked state of their Updatable checkbox confirms.

The Association dropdown list shows you the name of the association that relates the
selected entity usage to the primary one. The Alias field allows you to give a more
meaningful name to the entity usage when the default name is not clear. For example,
after shuttling two entity usages for the User entity object into the Selected list,
initially the alias for the usages was User1 and User2. You can see in the figure that
renaming these to be Technician and Customer instead greatly clarifies what
reference information they are contributing to the view object. Importantly, the figure
also illustrates that when you add multiple entity usages for the same entity, you need
to use the Association dropdown list to select which association represents that
usage's relationship to the primary entity usage. For the Technician entity usage
select the ServiceRequestsAssignedToUser association, and for the Customer
entity usage select the ServiceRequestsCreatedByUser association.

Note: When adding secondary entity usages, they default to having
their Updatable flag false and their Reference flag true. This is by far
the most common usage pattern. In Section 27.9, "Creating a View
Object with Multiple Updatable Entities", you'll explore the less
common, yet still useful, situation of having a join view object with
multiple, updatable entity usages.

Including Reference Entities in Join View Objects

Building an Updatable Data Model With Entity-Based View Objects 7-9

Figure 7–8 Indicating Correct Associations for Multiple Reference Entity Usages

7.3.1.2 Selecting Additional Attributes from Reference Entity Usages
After adding these secondary entity usages, switch to the Attributes page of the View
Object Editor and select the specific, additional attributes from these new usages that
you want to include in the view object. Figure 7–9 illustrates the result of shuttling the
following extra attributes into the Selected list:

■ The Name attribute from the Product entity usage

■ The Email attribute from the Technician entity usage

■ The Email attribute from the Customer entity usage

Notice that even if you didn't intend to include them, JDeveloper automatically
verifies that the primary key attribute from each entity usage is part of the Selected
list. If it's not already present in the list, JDeveloper adds it for you.

Figure 7–9 Selecting Additional Reference Entity Attributes to Include in the View Object

Including Reference Entities in Join View Objects

7-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Selecting the SQL Statement page, you can see that JDeveloper has included the new
columns in the SELECT statement and has updated the Where field to include the
appropriate join clauses of:

((ServiceRequest.PROD_ID = Product.PROD_ID) AND
(ServiceRequest.ASSIGNED_TO = Technician.USER_ID)) AND
(ServiceRequest.CREATED_BY = Customer.USER_ID)

7.3.1.3 Renaming Attributes from Reference Entity Usages
Expanding the Attributes node in the tree at the left of the View Object Editor, you can
see the additional attributes are added at the end of the list. Since the default attribute
names are not as clear as they could be, by selecting each one in turn, you can rename
them as follows:

■ Name -> ProductName

■ ProdId1 -> PKProdId (Primary Key from Product entity usage)

■ Email -> TechnicianEmail

■ UserId -> PKTechnicianUserId (Primary Key from Technician entity
usage)

■ Email1 -> CustomerEmail

■ UserId1 -> PKCustomerUserId (Primary Key from Customer entity usage)

7.3.1.4 Removing Unnecessary Key Attributes from Reference Entity Usages
The view object attribute corresponding to the primary key attribute of the primary
entity usage acts at the primary key for identifying the view row. When you add
secondary entity usages, JDeveloper also marks the view object attributes
corresponding to their primary key attributes as part of the view row key as well.
When your view object consists of a single updatable primary entity usage and a
number of reference entity usages, the primary key attribute from the primary entity
usage already is enough to uniquely identify the view row. These additional key
attributes are unneeded and you should toggle their Key Attribute setting to false.
For the view object created above, toggle this setting to false for the following
attributes so that Key Attribute is no longer checked: PKProdId,
PKTechnicianUserId, and PKCustomerUserId.

Including Reference Entities in Join View Objects

Building an Updatable Data Model With Entity-Based View Objects 7-11

7.3.1.5 Hiding the Primary Key Attributes from Reference Entity Usages
Since you generally won't want to display the primary key attributes that were
automatically added to the view object, you can set their Display Hint property on the
UI Control Hints page to Hide as shown in Figure 7–10.

Figure 7–10 Setting an Attribute Control Hint to Hide Primary Key Attributes from
Reference Entity Usages

Click OK to save your changes to the view object.

7.3.2 What Happens When You Reference Entities in a View Object
When you include secondary entity usages by reference in a view object, JDeveloper
updates the view object's XML component definition to include information about the
additional entity usages. For example, if you look at the ServiceRequests.xml file
for the view object that was enhanced above to include three additional reference
entity usages, you will see this information recorded in the multiple <EntityUsage>
elements in that file. For example, you'll see an entry for the primary entity usage like
this:

<EntityUsage
Name="ServiceRequest"
Entity="devguide.model.entities.ServiceRequest"/>

The secondary reference entity usages will have a slightly different entry like this,
including information about the association that relates it to the primary entity usage:

<EntityUsage
Name="Product"
Entity="devguide.model.entities.Product"
Association=
"devguide.model.entities.associations.ServiceRequestsForProduct"
AssociationEnd=
"devguide.model.entities.associations.ServiceRequestsForProduct.Product"
SourceUsage="devguide.model.queries.ServiceRequests.ServiceRequest"
ReadOnly="true"
Reference="true"/>

Including Reference Entities in Join View Objects

7-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Each attribute entry in the XML indicates which entity usage it references. This entry
for the ProblemDescription attribute shows that it's related to the
ServiceRequest entity usage:

<ViewAttribute
Name="ProblemDescription"
IsNotNull="true"
EntityAttrName="ProblemDescription"
EntityUsage="ServiceRequest"
AliasName="PROBLEM_DESCRIPTION" >

</ViewAttribute>

While the CustomerEmail attribute is related to the Customer entity usage.

<ViewAttribute
Name="CustomerEmail"
IsUpdatable="false"
IsNotNull="true"
EntityAttrName="Email"
EntityUsage="Customer"
AliasName="EMAIL1" >

</ViewAttribute>

The View Object Editor uses this association information at design time to
automatically build the view object's join WHERE clause. It uses the information at
runtime to enable keeping the reference information up to date when the end user
changes foreign key attribute values.

7.3.3 What You May Need to Know About Join View Objects
If your view objects reference multiple entity objects, these are displayed as separate
entity usages on a business components diagram. Note that you can also modify the
default inner join clause to be an outer join when appropriate.

7.3.3.1 Showing View Objects in a Business Components Diagram
Section 6.4, "Creating an Entity Diagram for Your Business Layer" explained how to
create a Business Components Diagram to visualize your business domain layer. In
addition to supporting entity objects, JDeveloper's UML diagramming support allows
you to drop view objects onto diagram as well to visualize their structure and entity
usages. If you create a new Business Components Diagram named SRService
Data Model in the devguide.model.design package, and drag the
ServiceRequests view object from the Application Navigator onto the diagram,
you'll see what's shown in Figure 7–11. When viewed as an expanded node, the
diagram shows a compartment containing the view objects entity usages.

Creating an Association-Based View Link

Building an Updatable Data Model With Entity-Based View Objects 7-13

Figure 7–11 View Object and Its Entity Usages in a Business Components Diagram

7.3.3.2 Modify Default Join Clause to Be Outer Join When Appropriate
When JDeveloper creates the WHERE clause for the join between the table for the
primary entity usage and the tables for secondary entity usages that are related to it,
by default it always creates inner joins. Study the WHERE clause of the
ServiceRequests view object more closely:

((ServiceRequest.PROD_ID = Product.PROD_ID) AND
(ServiceRequest.ASSIGNED_TO = Technician.USER_ID)) AND
(ServiceRequest.CREATED_BY = Customer.USER_ID)

When service requests are not yet assigned to a technician, their AssignedTo
attribute will be null. The default inner join condition generated above will not
retrieve these unassigned service requests. Assuming that you want unassigned
service requests to be viewable and updatable through the ServiceRequests view
object, you'll need to revisit the SQL Statement page of the View Object Editor to
change the query into an outer join to the USER table for the possibly null
ASSIGNED_TO column value. The updated WHERE clause shown below includes the
additional (+) operator on the side of the equals sign for the related table whose data
is allowed to be missing in the join:

((ServiceRequest.PROD_ID = Product.PROD_ID) AND
(ServiceRequest.ASSIGNED_TO = Technician.USER_ID (+))) AND
(ServiceRequest.CREATED_BY = Customer.USER_ID)

7.4 Creating an Association-Based View Link
Just as with read-only view objects, you can link entity-based view objects to other
view objects to form master/detail hierarchies of any complexity. The only difference
in the creation steps involves the case when both the master and detail view objects
are entity-based view objects and their respective entity usages are related by an
association. In this situation, since the association captures the set of source and
destination attribute pairs that relate them, you can create the view link just by
indicating which association it should be based on.

Creating an Association-Based View Link

7-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.4.1 How to Create an Association-Based View Link
To create an association-based view link, you use the Create View Link wizard.

To create an association-based view link
1. From the New Gallery in the Business Tier > ADF Business Components

category, select the Create View Link wizard.

2. In step 1 on the Name page, supply a package and a component name. Assume
you want to create the view link in the devguide.model.queries.viewlinks
package and call it RequestsAssignedToTechnician.

3. In step 2 on the View Objects page, in the Select Source Attribute tree expand the
source StaffList view object in the devguide.model.queries package. In
the Select Destination Attribute tree expand the ServiceRequests view object.
Notice that in addition to the view object attributes, for entity-based view objects
relevant associations also appear in the list. As shown in Figure 7–12, select the
same ServiceRequestsAssignedToUser association in both Source and
Destination trees, then click Add to add the association to the table below. Click
Next and Finish to complete creating the new view link.

Figure 7–12 Selecting an Association Relating the Source View Object's Entity Usage to
the Destination's

4. Next, create another association-based view link between the ServiceRequests
view object and a view object that displays the detail information about the service
request's history entries. You already have the master ServiceRequests view
object, but you need to first create a view object for the detail before you can link
them. Using the shortcut you learned above, in the Application Navigator select
the ServiceHistory entity object in the devguide.model.entities package
and choose New Default View Object... from the context menu to create a view
object named ServiceHistories in the devguide.model.queries based on
this entity.

Creating an Association-Based View Link

Building an Updatable Data Model With Entity-Based View Objects 7-15

5. Finally, repeat the steps used above to create an association-based view link
between the ServiceRequests view object and the new ServiceHistories
view object based on the association that relates their respective primary entity
usages. Name the view link HistoryLinesForRequest in the
devguide.model.queries.viewlinks package. As an additional shortcut, to
avoid having to type in the package name, as shown in Figure 7–13 you can use
the New View Link... on the context menu of the viewlinks package node in the
Application Navigator.

Figure 7–13 Shortcut for Creating a View Link in an Existing Package

7.4.2 What Happens When You Create an Association-Based View Link
When you create an association-based view link, JDeveloper creates the XML
component definition file that represents its declarative settings and saves it in the
directory that corresponds to the name of its package. In the example above, the view
links were named RequestsAssignedToTechnician and
HistoryLinesForRequest in the devguide.model.queries.viewlinks
package, so the XML files created will be /RequestsAssignedToTechnician.xml
and /HistoryLinesForRequest.xml in the
./devguide/model/queries/viewlinks directory under the project's source
path. This XML file contains the declarative information about the association that
relates the source and target view objects you've specified. In addition to saving the
view link component definitions themselves, JDeveloper also updates the XML
definition of the source view objects in the view link relationships to add information
about the view link accessor attribute.

Note: In the Create Default View Object you can use the combobox
to select devguide.model.queries from the list of existing
packages.

Testing Entity-Based View Objects Interactively

7-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.5 Testing Entity-Based View Objects Interactively
You test entity-based view objects interactively in the same way as read-only ones. Just
add instances of the desired view objects to the data model of some application
module, and then test that application module using the Business Components
Browser.

7.5.1 Overview of Business Component Browser Functionality for an Updatable Data
Model

You'll find the Business Components Browser tool invaluable in quickly testing and
debugging your application modules. Figure 7–14 gives an overview of the operations
that all of the Business Components Browser toolbar buttons perform.

Figure 7–14 Business Component Browser Functionality for Updatable Data Models

7.5.2 Adding View Object Instances to the Data Model
Following the same steps as you learned in Section 5.10.4.3, "How to Enable Active
Master/Detail Coordination in the Data Model", add the following view object
instances to the data model of the SRService application module to end up with the
hierarchy of master/detail view objects shown in Figure 7–15:

■ Select existing ServiceRequests view object instance in the Data Model tree
first, then add a detail instance named ServiceHistories of the
ServiceHistories view object that appears as a child of ServiceRequests in
the Available list.

■ Select existing StaffList view object instance in the Data Model tree first, then
add a detail instance named AssignedServiceRequests of the
ServiceRequests view object that appears as a child of StaffList in the
Available list.

■ Select the new AssignedServiceRequests view object instance in the Data
Model tree first, then add a detail instance named
AssignedServiceHistories of the ServiceHistories view object that
appears as a child of ServiceRequests in the Available list.

Testing Entity-Based View Objects Interactively

Building an Updatable Data Model With Entity-Based View Objects 7-17

Figure 7–15 Business Components Browser Showing Editable Results of an
Entity-Based View Object

7.5.3 How to Test Entity-Based View Objects Interactively
Assuming that you've set up the SRService application module's data model as
shown in Figure 7–15, to test it do the following:

To test entity-based view objects:
1. Select the application module in the Application Navigator and choose Test...

from the context menu.

2. Click Connect on the Business Components Browser Connect dialog to use the
default SRServiceLocal configuration for testing.

7.5.4 What Happens When You Test Entity-Based View Objects Interactively
When you launch the Business Components Browser, JDeveloper starts the tester tool
in a separate process and the Business Component Browser appears. As shown in
Figure 7–16 the tree at the left of the display shows the hierarchy of the view object
instances in the data model, and includes additional nodes between a master view
object instance and a detail view object instance that represent the view link instance
that performs the active master/detail coordination as the current row changes in the
master.

Note: By default, an application module has only its default, local
configuration, named AppModuleNameLocal. If you have created
additional configurations for your application module and want to
test it using one of those instead, just select the desired configuration
from the Business Components Configuration dropdown list on the
Connect dialog before clicking Connect.

Testing Entity-Based View Objects Interactively

7-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 7–16 SRService Data Model in the Business Components Tester

Double-clicking on the HistoryLinesForRequest2 view link instance in the tree
executes the master objects — if it has not been executed so far in the testing session —
and displays the master/detail tester panel shown in Figure 7–17. Additional context
menu items on the view object node allow you to reexecute the query if needed,
remove the tester panel, and perform other tasks. You saw a similar master/detail
panel when you used the Business Components Browser in Section 5.5, "Testing View
Objects Using the Business Components Browser". You can see and scroll through the
query results. One important difference is a direct result of using an entity-based view
object this time. Instead of seeing disabled UI controls showing read-only data, you
now see editable fields and are free to experiment with creating, inserting, updating,
validating, committing and rolling back.

Figure 7–17 Instances of Entity-Based View Objects are Fully Editable by the Tester

Try experimenting with the multiple levels of master/detail hierarchies, opening
multiple tester panels at the same time, and using the Display Results in a Window
toolbar button to "pop" a tab out of the frame into a separate window to see multiple
view object's data at the same time.

Testing Entity-Based View Objects Interactively

Building an Updatable Data Model With Entity-Based View Objects 7-19

7.5.5 Simulating End-User Interaction with Your Application Module Data Model
Using the Business Components Browser, you can simulate an end user interacting
with your application module data model before you have started to build any custom
user interface of your own. Even after you have your UI pages constructed, you will
come to appreciate using the Business Components Browser to assist in diagnosing
problems when they arise. You can reproduce the issues in the Business Components
Browser to discover if the issue lies in the view or controller layers of the application,
or is instead a problem in the business service layer application module itself.

Using just the master/detail tester page shown in Figure 7–17, you can test several
functional areas of your application.

7.5.5.1 Testing Master/Detail Coordination
Use the navigation buttons on the toolbar, you can see that the service history rows for
the current service request are correctly co-ordinated.

7.5.5.2 Testing UI Control Hints
The prompts displayed in the testing panels help you see whether you have correctly
defined a user-friendly Label Text control hint for each attribute. For example, the
RequestDate attribute in the ServiceRequests view object instance has the
prompt Requested On. Hovering your mouse over the edit field for the
RequestDate field, you'll shortly see the Tooltip control hint text appear if you've
defined it. The tooltip that appears says, "The date on which the service request was
created", which is how you set up the hint on your entity object back in Section 6.5.1,
"How to Add Attribute Control Hints". Since you didn't specifically define any new
control hints for the ServiceRequests view object, this illustrates that the
entity-based view object attributes inherit their control hints from those on the
underlying entity object attribute.

7.5.5.3 Testing View Objects That Reference Entity Usages
By scrolling through the data — or using Specify View Criteria toolbar button to
search — you can verify whether service requests that have not yet been assigned are
correctly displaying. If you correctly altered the query's WHERE clause to use an outer
join, these row will appear as expected.

By changing the AssignedTo attribute to a different technician's user ID —
double-click on the StaffList view object instance in the Business Components
Browser to browse for some valid staff user ID's — you can verify that the
corresponding reference information is automatically updated to reflect the new
technician.

By observing the values of the ProductName field and the two Email Address fields
in some example rows of the ServiceRequests, you can see the corresponding
user-friendly product name, and the email addresses of both the customer who
created the request, and the technician to whom it is assigned. You can also notice a
problem that both the customer's email address and the technician's email address are
inheriting the Label Text hint from the User entity object of Email Address. It won't
be clear to the end user which email address is which.

Testing Entity-Based View Objects Interactively

7-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To remedy the situation where both the technician's email address and the customer's
email address display with the same, inherited Email Address label, edit the
ServiceRequests view object and define a Label Text control hint for both at the
view object level. Set the Label Text hint to Technician Email Address for the
TechnicianEmail attribute and Customer Email Address for the CustomerEmail
attribute. Use the Business Components Browser to verify that these control hints
defined at the view object level override the ones it would normally inherit from the
underlying entity object.

7.5.5.4 Testing Business Domain Layer Validation
Try to change the Status attribute value of a Closed service request to have a value
of Reopened. When you try to tab out of the field, you'll get an exception:

(oracle.jbo.AttrSetValException) The status must be Open, Pending, or Closed

Based on the other simple declarative validation rules defined in Section 6.7, "Using
Declarative Validation Rules", you can try to update a ProblemDescription value
to contain the word urgent surrounded by spaces, to receive the error:

(oracle.jbo.AttrSetValException)
Problem Description cannot contain the word urgent

Lastly, you can try to enter a ProdId value of 1234 to violate the range validation
rule and see:

(oracle.jbo.AttrSetValException) Valid product codes are between 100 and 999

Click on the rollback button in the toolbar to revert data to the previous state.

7.5.5.5 Testing Alternate Language Message Bundles and Control Hints
By opening the Properties tab on the Connect dialog when you launch the Business
Components Browser, you can override the default locale settings to change:

■ jbo.default.country = IT

■ jbo.default.language = it

With these properties set, you can see whether the Italian language translations of the
ServiceRequest entity object control hints are correctly located. You'll notice Stato,
Aperto Il, and Problema labels instead of Status, Requested On, and Problem
(among others). You also will see that the format of RequestDate changes from a
value like 03/12/2006 16:55 to 12/03/2006 16:55.

7.5.5.6 Testing Row Creation and Default Value Generation
Click on the Create Row button in the toolbar for the ServiceRequests view object
instance to create a new blank row. Any fields that have a declarative default value
will appear with that value in the blank row. The DBSequence-valued SvrId
attribute appears read-only in the new row with its temporary negative number. After
entering all the required fields — try 100 for the ProdId and 300 for the Requested
By field — click on the commit button to commit the transaction. The actual,
trigger-assigned primary key appears in the SvrId field after successful commit.

7.5.5.7 Testing New Detail Rows Have Correct Foreign Keys
If you try adding a new service history row to an existing service request, you'll notice
that the view link automatically ensures the foreign key attribute value for SvrId in
the new ServiceHistories row is set to the value of the current master service
request row.

Adding Calculated and Transient Attributes to an Entity-Based View Object

Building an Updatable Data Model With Entity-Based View Objects 7-21

7.6 Adding Calculated and Transient Attributes to an Entity-Based View
Object

In addition to having attributes that map to underlying entity objects, your view
objects can include calculated attributes that don't map to any entity object attribute
value. The two kinds of calculated attributes are known as:

■ SQL-calculated attributes, when their value is retrieved as an expression in the SQL
query's SELECT list

■ Transient attributes, when their value is not retrieved as part of the query

This section explains how to add both kinds, first illustrating how to add a
SQL-calculated LastCommaFirst attribute and then a transient-calculated attribute
named FirstDotLast to the StaffList view object. Finally, you'll see that a view
object can include an entity-mapped attribute which itself is a transient attribute at the
entity object level just to ensure that all of the supported combinations are clear.

7.6.1 How to Add a SQL-Calculated Attribute

To add a SQL-calculated attribute to an entity-based view object:
1. Open the Attributes page in the View Object Editor and click New.

2. Enter a name for the attribute, such as LastCommaFirst.

3. Set the Java Attribute Type to an appropriate value, like String.

4. Check the Mapped to Column of SQL checkbox.

5. Provide a SQL expression in the Expression field like LAST_NAME||',
'||FIRST_NAME

6. Consider changing the SQL column alias to match the name of the attribute

7. Verify the database Query Column Type and adjust the length (or
precision/scale) as appropriate.

8. Click OK to create the attribute.

Figure 7–18 Adding a New SQL-Calculated Attribute

Adding Calculated and Transient Attributes to an Entity-Based View Object

7-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.6.2 What Happens When You Add a SQL-Calculated Attribute
When you add a SQL-calculated attribute and finish the View Object Editor,
JDeveloper updates the XML component definition for the view object to reflect the
new attribute. Whereas an entity-mapped attribute like LastName looks like this in
the XML, inheriting most of it properties from the underlying entity attribute to which
it is mapped:

<ViewAttribute
Name="LastName"
IsNotNull="true"
EntityAttrName="LastName"
EntityUsage="User1"
AliasName="LAST_NAME" >

</ViewAttribute>

in contrast, a SQL-calculated attribute's <ViewAttribute> tag looks like the following.
As expected, it has no EntityUsage or EntityAttrName property, and includes
datatype information along with the SQL expression:

<ViewAttribute
Name="LastCommaFirst"
IsUpdatable="false"
IsPersistent="false"
Precision="62"
Type="java.lang.String"
ColumnType="VARCHAR2"
AliasName="FULL_NAME"
Expression="LAST_NAME||', '||FIRST_NAME"
SQLType="VARCHAR" >

</ViewAttribute>

7.6.3 How to Add a Transient Attribute

To add a transient attribute to an entity-based view object:
1. Open the Attributes page in the View Object Editor and click New.

2. Enter a name for the attribute, like FirstDotLast.

3. Set the Java Attribute Type to String.

4. Leave the Mapped to Column of SQL checkbox unchecked.

5. Click OK to create the attribute.

Note: The ' is the XML character reference for the apostrophe,
referencing it by its numerical ASCII code of 39 (decimal). Other
characters in literal text that require similar construction in XML are
the less-than, greater-than, and ampersand characters.

Adding Calculated and Transient Attributes to an Entity-Based View Object

Building an Updatable Data Model With Entity-Based View Objects 7-23

Figure 7–19 Adding a New Transient Attribute

7.6.3.1 Adding an Entity-Mapped Transient Attribute to a View Object
To add a transient entity object attribute to an entity-based view object, first ensure
that you have an entity usage for the entity on the Entity Objects page of the View
Object Editor. Then go to Attributes page and the desired attribute from the Available
list into the Selected list. Using these steps, you can add the FullName calculated
attribute from the User entity object to the StaffList view object.

If you use the Business Components Browser to test the SRService data model after
adding these three attributes to the StaffList view object lists, you can see their
effect as shown in Figure 7–20:

Figure 7–20 StaffList View Object with Three Kinds of Calculated Attributes

7.6.4 What Happens When You Add a Transient Attribute
When you add a transient attribute and finish the View Object Editor, JDeveloper
updates the XML component definition for the view object to reflect the new attribute.
A transient attribute's <ViewAttribute> tag in the XML is similar to the SQL-calculated
one, but lacks an Expression property.

Understanding How View Objects and Entity Objects Cooperate at Runtime

7-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.6.5 Adding Java Code in the View Row Class to Perform Calculation
A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to While New or Always, the end user can enter a
value for the attribute. If you want the transient attribute to display a calculated value,
then you'll typically leave the Updatable property set to Never and write custom Java
code that calculates the value.

After adding a transient attribute to the view object, to make it a calculated transient
attribute you need to:

■ Enable a custom view row class on the Java page of the View Object Editor,
choosing to generate accessor methods

■ Write Java code inside the accessor method for the transient attribute to return the
calculated value

For example, after enabling the generation of the StaffListRowImpl.java view
row class, the Java code to return its calculated value would reside in the
getLastCommaFirst() method like this:

// In StaffListRowImpl.java
public String getFirstDotLast() {
// Commented out this original line since we're not storing the value
// return (String) getAttributeInternal(FIRSTDOTLAST);
return getFirstName().substring(0,1)+". "+getLastName();

}

7.6.6 What You May Need to Know About Transient Attributes
The view object includes the SQL expression for your SQL-calculated attribute in the
SELECT list of its query at runtime. The database is the one that evaluates the
expression and it returns the result as the value of that column in the query. The value
gets reevaluated each time you execute the query.

7.7 Understanding How View Objects and Entity Objects Cooperate at
Runtime

On their own, view objects and entity objects simplify two important jobs that every
enterprise application developer needs to do:

■ Work with SQL query results

■ Modify and validate rows in database tables

Note: In Section 26.8, "Implementing Automatic Attribute
Recalculation", you'll learn a coding technique to cause calculated
attributes at the entity row level to be re-calculated when one of the
attribute values on which they depend is modified. You could adopt a
very similar strategy at the view row level to cause automatic
recalculation of calculated view object attributes, too.

Understanding How View Objects and Entity Objects Cooperate at Runtime

Building an Updatable Data Model With Entity-Based View Objects 7-25

Entity-based view objects can query any selection of data your end user needs to see or
modify. Any data they are allowed to change is validated and saved by your reusable
business domain layer. The key ingredients you provide as the developer are the ones
that only you can know:

■ You decide what business logic should be enforced in your business domain layer

■ You decide what queries describe the data you need to put on the screen

These are the things that make your application unique. The built-in functionality of
your entity-based view objects handle the rest of the implementation details. You've
experimented above with entity-based view objects in the Business Components
Browser and witnessed some of the benefits they offer, but now it's time to understand
exactly how they work. This section walks step by step through a scenario of
retrieving and modifying data through an entity-based view object, and points out the
interesting aspects of what's going on behind the scenes. But before diving in deep,
you need a bit of background on row keys and on what role the entity cache plays in
the transaction, after which you'll be ready to understand the entity-based view object
in detail.

7.7.1 Each View Row or Entity Row Has a Related Key
As shown in Figure 7–21, when you work with view rows you use the Row interface in
the oracle.jbo package. It contains a method called getKey() that you can use to
access the Key object that identifies any row. Notice that the Entity interface in the
oracle.jbo.server package extends the Row interface. This relationship provides a
concrete explanation of why the term entity row is so appropriate. Even though an
entity row supports additional features for encapsulating business logic and handling
database access, you can still treat any entity row as a Row.

Recall that both view rows and entity rows support either single-attribute or
multi-attribute keys, so the Key object related to any given Row will encapsulate all of
the attributes that comprise its key. Once you have a Key object, you can use the
findByKey() method on any row set to find a row based on its Key object.

Figure 7–21 Any View Row or Entity Row Supports Retrieving Its Identifying Key

Note: When you define an entity-based view object, by default the
primary key attributes for all of its entity usages are marked with their
Key Attribute property set to true. It is best practice to subsequently
disable the Key Attribute property for the key attributes from
reference entity usages. Since view object attributes related to the
primary keys of updatable entity usages must be part of the composite
view row key, their Key Attribute property cannot be disabled.

Understanding How View Objects and Entity Objects Cooperate at Runtime

7-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.7.2 What Role Does the Entity Cache Play in the Transaction
An application module is a transactional container for a logical unit of work. At
runtime, it acquires a database connection using information from the named
configuration you supply, and it delegates transaction management to a companion
Transaction object. Since a logical unit of work may involve finding and modifying
multiple entity rows of different types, the Transaction object provides an entity
cache as a "work area" to hold entity rows involved in the current user's transaction.
Each entity cache contains rows of a single entity type, so a transaction involving both
the User and ServiceHistory entity objects holds the working copies of those
entity rows in two separate caches.

By using an entity object's related entity definition, you can write code in an
application module to find and modify existing entity rows. As shown in Figure 7–22,
by calling findByPrimaryKey() on the entity definition for the ServiceRequest
entity object, you can retrieve the row with that key. If it is not already in the entity
cache, the entity object executes a query to retrieve it from the database. This query
selects all of the entity object's persistent attributes from its underlying table, and find
the row using an appropriate WHERE clause against the column corresponding to the
entity object's primary key attribute. Subsequent attempts to find the same entity row
by key during the same transaction will find it in the cache, avoiding a trip to the
database. In a given entity cache, entity rows are indexed by their primary key. This
makes finding and entity row in the cache a fast operation.

When you access related entity rows using association accessor methods, they are also
retrieved from the entity cache, or are retrieved from the database if they are not in the
cache. Finally, the entity cache is also the place where new entity rows wait to be
saved. In other words, when you use the createInstance2() method on the entity
definition to create a new entity row, it is added to the entity cache.

Figure 7–22 During the Transaction ServiceRequest, Entity Rows are Stored In
ServiceRequest Entity Cache

When an entity row is created, modified, or removed, it is automatically enrolled in
the transaction's list of pending changes. When you call commit() on the
Transaction object, it processes its pending changes list, validating new or modified
entity rows that might still be invalid. When the entity rows in the pending list are all
valid, the Transaction issues a database SAVEPOINT and coordinates saving the
entity rows to the database. If all goes successfully, it issues the final database COMMIT
statement. If anything fails, the Transaction performs a ROLLBACK TO
SAVEPOINT to allow the user to fix the error and try again.

Understanding How View Objects and Entity Objects Cooperate at Runtime

Building an Updatable Data Model With Entity-Based View Objects 7-27

The Transaction object used by an application module represents the working set of
entity rows for a single end-user transaction. By design, it is not a shared, global cache.
The database engine itself is an extremely efficient shared, global cache for multiple,
simultaneous users. Rather than attempting to duplicate the 30+ years of fine-tuning
that has gone into the database's shared, global cache functionality, ADF Business
Components consciously embraces it. To refresh a single entity object's data from the
database at any time, you can call its refresh() method. You can
setClearCacheOnCommit() or setClearCacheOnRollback() on the
Transaction object to control whether entity caches are cleared at commit or
rollback. The defaults are false and true, respectively. The Transaction object
also provides a clearEntityCache() method you can use to programmatically
clear entity rows of a given entity type (or all types). By clearing an entity cache, entity
rows of that type will be retrieved from the database fresh the next time they are found
by primary key, or retrieved by an entity-based view object, as you'll see in the
following sections.

7.7.3 Metadata Ties Together Cleanly Separated Roles of Data Source and Data Sink
When you want to venture beyond the world of finding an entity row by primary key
and navigating related entities via association accessors, you turn to the entity-based
view object to get the job done. In an entity-based view object, the view object and
entity object play cleanly separated roles:

■ The view object is the data source: it retrieves the data using SQL.

■ The entity object is the data sink: it handles validating and saving data changes.

Because view objects and entity objects have cleanly separated roles, you can build a
hundred different view objects — projecting, filtering, joining, sorting the data in
whatever way your user interfaces require application after application — without any
changes to the reusable entity object. In fact, in some larger development
organizations, the teams responsible for the core business domain layer of entity
objects might be completely separate from the ones who build specific application
modules and view objects to tackle an end-user requirement. This extremely flexible,
symbiotic relationship is enabled by metadata an entity-based view object
encapsulates about how the SELECT list columns related to the attributes of one or
more underlying entity objects.

Imagine a new requirement arises where your end users are demanding a page to
quickly see open and pending service requests. They want to see only the service
request ID, status, and problem description; the technician assigned to resolve the
request; and the number of days the request has been open. It should be possible to
update the status and the assigned technician. Figure 7–23 shows a new entity-based
view object named OpenProblemsAndAssignees that can support this new
requirement.

The dotted lines in the figure represent the metadata captured in the view object's
XML component definition that maps SELECT list columns in the query to attributes
of the entity objects used in the view object.

Understanding How View Objects and Entity Objects Cooperate at Runtime

7-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

A few things to notice about the view object and its query are:

■ It joins data from a primary entity usage (ServiceRequest) with that from a
secondary reference entity usage (User), based on the association related to the
assigned technician you've seen in examples above

■ It's using an outer join of ServiceRequest.ASSIGNED_TO =
Technician.USER_ID (+)

■ It includes a SQL-calculated attribute DaysOpen based on the SQL expression
CEIL(SYSDATE - TRUNC(REQUEST_DATE))

Figure 7–23 View Object Encapsulates a SQL Query and Entity Attribute Mapping
Metadata

7.7.4 What Happens When a View Object Executes Its Query
After adding an instance of OpenProblemsAndAssignees with the same name to
the SRService's data model, you can see what happens at runtime when you execute
the query. Like a read-only view object, an entity-based view object sends its SQL
query straight to the database using the standard Java Database Connectivity (JDBC)
API, and the database produces a result set. In contrast to its read-only counterpart,
however, as the entity-based view object retrieves each row of the database result set,
it partitions the row attributes based on which entity usage they relate to. This
partitioning occurs by creating an entity object row of the appropriate type for each of
the view object's entity usages, populating them with the relevant attributes retrieved
by the query, and storing each of these entity rows in its respective entity cache. Then,
rather than storing duplicate copies of the data, the view row simply points at the
entity row parts that comprise it. As shown in Figure 7–24, the highlighted row in the
result set is partitioned into a User entity row with primary key 306 and a
ServiceRequest entity row with primary key 112. Since the SQL-calculated
DaysOpen attribute is not related to any entity object, its value is stored directly in the
view row.

The ServiceRequest entity row that was brought into the cache above using
findByPrimaryKey() contained all attributes of the ServiceRequest entity
object. In contrast, a ServiceRequest entity row created by partitioning rows from
the OpenProblemsAndAssignees query result contains values only for attributes
that appear in the query. It does not include the complete set of attributes. This
partially populated entity row represents an important runtime performance
optimization.

Understanding How View Objects and Entity Objects Cooperate at Runtime

Building an Updatable Data Model With Entity-Based View Objects 7-29

Since the ratio of rows retrieved to rows modified in a typical enterprise application is
very high, bringing only the attributes into memory that you need to display can
represent a big memory savings over bringing all attributes into memory all the time.

Finally, notice that in the queried row for service request 114 there is no assigned
technician, so in the view row it has a null entity row part for its User entity object.

Figure 7–24 View Rows Are Partitioned into Entity Rows in Entity Caches

By partitioning queried data this way into its underlying entity row constituent parts,
the first benefit you gain is that all of the rows that include some data queried about
the user with UserId = 306 will display a consistent result when changes are made in
the current transaction. In other words, if one view object allows the Email attribute
of user 306 to be modified, then all rows in any entity-based view object showing the
Email attribute for user 306 will update instantly to reflect the change. Since the data
related to user 306 is stored exactly once in the User entity cache in the entity row
with primary key 306, any view row that has queried the user's Email attribute is just
pointing at this single entity row.

Luckily, these implementation details are completely hidden from a client working
with the rows in a view object's row set. Just as you did in the Business Components
Browser, the client works with a view row, getting and setting the attributes, and is
unaware of how those attributes might be related to entity rows behind the scenes.

7.7.5 What Happens When You Modify a View Row Attribute
You see above that among other rows, the OpenProblemsAndAssignees result set
includes a row related to service request 112. When a client attempts to update the
status of service request 112 to the value Closed, ultimately a
setStatus("Closed") method gets called on the view row. Figure 7–25 illustrates
the steps that will occur to automatically coordinate this view row attribute
modification with the underlying entity row:

1. The client attempts to set the Status attribute to the value Closed

2. Since Status is an entity-mapped attribute from the ServiceRequest entity
usage, the view row delegates the attribute set to the appropriate underlying
entity row in the ServiceRequest entity cache having primary key 112.

Understanding How View Objects and Entity Objects Cooperate at Runtime

7-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

3. Any attribute-level validation rules on the Status attribute at the
ServiceRequest entity object get evaluated and will fail the operation if they
don't succeed.

Assume that some validation rule for the Status attribute programmatically
references the RequestDate attribute (for example, to enforce a business rule that
a ServiceRequest cannot be closed the same day it is opened). The
RequestDate was not one of the ServiceRequest attributes retrieved by the
query, so it is not present in the partially populated entity row in the
ServiceRequest entity cache.

4. To ensure that business rules can always reference all attributes of the entity
object, the entity object detects this situation and "faults-in" the entire set of
ServiceRequest entity object attributes for the entity row being modified using
the primary key (which must be present for each entity usage that participates in
the view object.

5. After the attribute-level validations all succeed, the entity object attempts to
acquire a lock on the row in the SERVICE_REQUESTS table before allowing the
first attribute to be modified.

6. If the row can be locked, the attempt to set the Status attribute in the row
succeeds and the value is changed in the entity row.

Figure 7–25 Updating a View Row Attribute Delegates to Entity

Note: The jbo.locking.mode configuration property controls
how rows are locked. The default value is pessimistic, whose
behavior corresponds to the steps described here. In pessimistic
locking mode, the row must be lockable before any change is allowed
to it in the entity cache. Typically, web applications will set this
property to optimistic instead, so that rows aren't locked until
transaction commit time.

Understanding How View Objects and Entity Objects Cooperate at Runtime

Building an Updatable Data Model With Entity-Based View Objects 7-31

7.7.6 What Happens When You Change a Foreign Key Attribute
If the user also updates the technician assigned to service request 112, then something
else interesting occurs. The request is currently assigned to vpatabal, who has user
ID 306. Assume that the end user sets the AssignedTo attribute to 300 to reassign
the request to sking. As shown in Figure 7–26, behind the scenes, the following
occurs:

1. The client attempts to set the AssignedTo attribute to the value 300.

2. Since AssignedTo is an entity-mapped attribute from the ServiceRequest
entity usage, the view row delegates the attribute set to the appropriate
underlying entity row in the ServiceRequest entity cache having primary key
112.

3. Any attribute-level validation rules on the AssignedTo attribute at the
ServiceRequest entity object get evaluated and will fail the operation if they
don't succeed.

4. The row is already locked, so the attempt to set the AssignedTo attribute in the
row succeeds and the value is changed in the entity row.

5. Since the AssignedTo attribute on the ServiceRequest entity usage is
associated to the reference entity usage named Technician to the User entity
object, this change of foreign key value causes the view row to replace its current
entity row part for user 306 with the entity row corresponding to the new UserId
= 300. This effectively makes the view row for service request 112 point to the
entity row for sking, so the value of the Email in the view row updates to reflect
the correct reference information for this newly assigned technician.

Figure 7–26 After Updating a Foreign Key, View Row Points to a New Entity

7.7.7 What Happens When You Re-query Data
When you reexecute a view object's query, by default the view rows in its current row
set are "forgotten" in preparation for reading in a fresh result set. This view object
operation does not directly affect the entity cache, however. The view object then
sends the SQL to the database and the process begins again to retrieve the database
result set rows and partition them into entity row parts.

Understanding How View Objects and Entity Objects Cooperate at Runtime

7-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.7.7.1 Unmodified Attributes in Entity Cache are Refreshed During Re-query
As part of this entity row partitioning process during a re-query, if an attribute on the
entity row is unmodified, then its value in the entity cache is updated to reflect the
newly queried value.

7.7.7.2 Modified Attributes in Entity Cache are Left Intact During Re-query
If the value of an entity row attribute has been modified in the current transaction, then
during a re-query the entity row partitioning process does not refresh its value.
Uncommitted changes in the current transaction are left intact so the end-user’s logical
unit of work is preserved. As with any entity attribute value, these pending
modifications continue to be consistently displayed in any entity-based view object
rows that reference the modified entity rows.

Figure 7–27 illustrates this scenario. Imagine that in the context of the current
transaction's pending changes, a user "drills down" to a different page that uses the
ServiceRequests view object instance to retrieve all details about service request
112. That view object has four entity usages: a primary ServiceRequest usage, and
three reference usages for Product, User (Technician), and User (Customer). When
its query result is partitioned into entity rows, it ends up pointing at the same
ServiceRequest entity row that the previous OpenProblemsAndAssignees view
row had modified. This means the end user will correctly see the pending change, that
the service request is assigned to Steven King in this transaction.

Figure 7–27 Overlapping Sets of Entity Attributes from Different View Objects are
Merged in Entity Cache

Note: Typically when you re-query, you are doing it in order to see
the latest database information. If instead you want to avoid a
database roundtrip by restricting your view object to querying only
over existing entity rows in the cache, or over existing rows already in
the view object’s row set, Section 27.5, "Performing In-Memory
Sorting and Filtering of Row Sets" explains how to do this.

Understanding How View Objects and Entity Objects Cooperate at Runtime

Building an Updatable Data Model With Entity-Based View Objects 7-33

7.7.7.3 Overlapping Subsets of Attributes are Merged During Re-query
Figure 7–27 also illustrates the situation that the ServiceRequests view object's
query retrieves a different subset of reference information about users than the
OpenProblemsAndAssignees did. The ServiceRequests queries up FirstName
and LastName for a user, while the OpenProblemsAndAssignees view object
queried the user's Email. The figure shows what happens at runtime in this scenario.
If while partitioning the retrieved row, the entity row part contains a different set of
attributes than the partially populated entity row that is already in the cache, the
attributes get "merged". The result is a partially populated entity row in the cache with
the union of the overlapping subsets of user attributes. In contrast, for John Chen (user
308) who wasn't in the cache already, the resulting new entity row contains only the
FirstName and LastName attributes, but not the Email.

7.7.8 What Happens When You Commit the Transaction
Suppose the user is happy with her changes, and commits the transaction. As shown
in Figure 7–28, there are two basic steps:

1. The Transaction object validates any invalid entity rows in its pending changes
list.

2. The entity rows in the pending changes list are saved to the database.

The figure depicts a loop in step 1 before the act of validating one modified entity
object might programmatically affect changes to other entity objects. Once the
transaction has processed its list of invalid entities on the pending changes list, if the
list is still nonempty, it will complete another pass through the list of invalid ones. It
will attempt up to ten passes through the list. If by that point there are still invalid
entity rows, it will throw an exception since this typically means you have an error in
your business logic that needs to be investigated.

Figure 7–28 Committing the Transaction Validates Invalid Entities, Then Saves Them

Working Programmatically with Entity-Based View Objects

7-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.7.9 Interactively Testing Multiuser Scenarios
The last aspect to understand about how view objects and entity objects cooperate
involves two exceptions that can occur when working in a multiuser environment.
Luckily, these are easy to simulate for testing purposes by simply starting up the
Business Components Browser two times on the SRService application module
(without exiting from the first instance of course). Try the following two tests to see
how these multiuser exceptions can arises:

■ In one Business Components Browser tester modify the status of an existing
service request and tab out of the field. Then, in the other Business Components
Browser window, try to modify the same service request in some way. You'll see
that the second user gets the oracle.jbo.AlreadyLockedException

Try repeating the test, but after overriding the value of jbo.locking.mode to be
optimistic on the Properties page of the Business Components Browser
Connect dialog. You'll see the error occurs at commit time for the second user
instead of immediately.

■ In one Business Components Browser tester modify the status of an existing
service request and tab out of the field. Then, in the other Business Components
Browser window, retrieve (but don't modify) the same status request. Back in the
first window, commit the change. If the second user then tries to modify that same
service request, you'll see that the second user gets the
oracle.jbo.RowInconsistentException. The row has been modified and
committed by another user since the second user retrieved the row into the entity
cache

7.8 Working Programmatically with Entity-Based View Objects
From the point of view of a client accessing your application module's data model, the
API's to work with a read-only view object and an entity-based view object are
identical. The key functional difference is that entity-based view objects allow the data
in a view object to be fully updatable. The application module that contains the
entity-based view objects defines the unit of work and manages the transaction. This
section presents four simple test client programs that work with the SRService
application module to illustrate:

■ Iterating master/detail/detail hierarchy

■ Finding a row and updating a foreign key value

■ Creating a new service request

■ Retrieving the row Key identifying a row

7.8.1 Example of Iterating Master/Detail/Detail Hierarchy
Example 7–1 performs the following basic steps:

1. Finds the StaffList view object instance

2. Executes the query

3. Iterate over the resulting StaffList rows

4. Print the staff member's full name by getting the value of the calculated
FullName attribute

5. Get related row set of ServiceRequests using a view link accessor attribute

6. Iterate over the ServiceRequests rows

Working Programmatically with Entity-Based View Objects

Building an Updatable Data Model With Entity-Based View Objects 7-35

7. Print out some service request attribute values

8. If the status is not Closed, then get the related row set of ServiceHistories
using a view link accessor attribute

9. Iterate over the ServiceHistories rows

10. Print out some service request history attributes

Example 7–1 Iterating Master/Detail/Detail Hierarchy

package devguide.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
public class TestClient {
public static void main(String[] args) {
String amDef = "devguide.model.SRService";
String config = "SRServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);

// 1. Find the StaffList view object instance.
ViewObject staffList = am.findViewObject("StaffList");
// 2. Execute the query
staffList.executeQuery();
// 3. Iterate over the resulting rows
while (staffList.hasNext()) {
Row staffMember = staffList.next();
// 4. Print the staff member's full name
System.out.println("Staff Member: "+staffMember.getAttribute("FullName"));
// 5. Get related rowset of ServiceRequests using view link accessor
RowSet reqs = (RowSet)staffMember.getAttribute("ServiceRequests");
// 6. Iterate over the ServiceRequests rows
while (reqs.hasNext()) {
Row svcreq = reqs.next();
// 7. Print out some service request attribute values
System.out.println(" ["+svcreq.getAttribute("Status")+"] "+

svcreq.getAttribute("SvrId")+": "+
svcreq.getAttribute("ProblemDescription"));

if(!svcreq.getAttribute("Status").equals("Closed")) {
// 8. Get related rowset of ServiceHistories
RowSet hists = (RowSet)svcreq.getAttribute("ServiceHistories");
// 9. Iterate over the ServiceHistories rows
while (hists.hasNext()) {
Row hist = hists.next();
// 10. Print out some service request history attributes
System.out.println(" "+hist.getAttribute("LineNo")+": "+

hist.getAttribute("Notes"));
}

}
}

}

Note: Other than having one additional level of nesting, this
example uses the same API's that you saw in the TestClient2
program that was iterating over master/detail read-only view objects
in Section 5.10.4.2, "How to Access a Detail Collection Using the View
Link Accessor".

Working Programmatically with Entity-Based View Objects

7-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Configuration.releaseRootApplicationModule(am,true);
}

}

Running the program produces the following output:

Staff Member: David Austin
[Open] 104: Spin cycle not draining
1: Researching issue

Staff Member: Bruce Ernst
[Closed] 101: Agitator does not work
[Pending] 102: Washing Machine does not turn on
1: Called customer to make sure washer was plugged in...
2: We should modify the setup instructions to include...
[Open] 108: Freezer full of frost
1: Researching issue

Staff Member: Alexander Hunold
[Closed] 100: I have noticed that every time I do a...
[Closed] 105: Air in dryer not hot
:

7.8.2 Example of Finding a Row and Updating a Foreign Key Value
Example 7–2 performs the following basic steps:

1. Finds the ServiceRequests view object instance

2. Constructs a Key object to look up the row for service request number 101

3. Uses findByKey() to find the row

4. Prints some service request attribute values

5. Tries to assign the illegal value Reopened to the Status attribute

Since view object rows cooperate with entity objects, the validation rule on the
Status attribute throws an exception, preventing this illegal change.

6. Sets the Status to a legal value of Open

7. Prints the value of the Status attribute to show it was updated successfully

8. Prints the current value of the assigned technician's email

9. Reassigns the service request to technician number 303 (Alexander Hunold) by
setting the AssignedTo attribute

10. Shows the value of the reference information (TechnicianEmail) reflecting a
new technician

11. Cancels the transaction by issuing a rollback

Working Programmatically with Entity-Based View Objects

Building an Updatable Data Model With Entity-Based View Objects 7-37

Example 7–2 Finding and Updating a Foreign Key Value

package devguide.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
public class TestFindAndUpdate {
public static void main(String[] args) {
String amDef = "devguide.model.SRService";
String config = "SRServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);

// 1. Find the ServiceRequests view object instance
ViewObject vo = am.findViewObject("ServiceRequests");
// 2. Construct a new Key to find ServiceRequest# 101
Key svcReqKey = new Key(new Object[]{101});
// 3. Find the row matching this key
Row[] reqsFound = vo.findByKey(svcReqKey,1);
if (reqsFound != null && reqsFound.length > 0) {
Row svcReq = reqsFound[0];
// 4. Print some service request information
String curStatus = (String)svcReq.getAttribute("Status");
System.out.println("Current status is: "+curStatus);
try {
// 5. Try setting the status to an illegal value
svcReq.setAttribute("Status","Reopened");

}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());

}
// 6. Set the status to a legal value
svcReq.setAttribute("Status","Open");
// 7. Show the value of the status was updated successfully
System.out.println("Current status is: "+svcReq.getAttribute("Status"));
// 8. Show the current value of the assigned technician
System.out.println("Assigned: "+svcReq.getAttribute("TechnicianEmail"));
// 9. Reassign the service request to technician # 303
svcReq.setAttribute("AssignedTo",303); // Alexander Hunold (technician)
// 10. Show the value of the reference info reflects new technician
System.out.println("Assigned: "+svcReq.getAttribute("TechnicianEmail"));
// 11. Rollback the transaction
am.getTransaction().rollback();
System.out.println("Transaction cancelled");

}
Configuration.releaseRootApplicationModule(am,true);

}
}

Running this example produces the following output:

Current status is: Closed
ERROR: The status must be Open, Pending, or Closed
Current status is: Open
Assigned: bernst
Assigned: ahunold
Transaction cancelled

Working Programmatically with Entity-Based View Objects

7-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

7.8.3 Example of Creating a New Service Request
Example 7–3 performs the following basic steps:

1. Find the ServiceRequests view object instance

2. Creates a new row and inserts it into the row set

3. Shows the effect of entity object related defaulting for Status attribute

4. Sets values of some required attributes in the new row

5. Commits the transaction

6. Retrieves and displays the trigger-assigned service request ID

Example 7–3 Creating a New Service Request

package devguide.client;
import java.sql.Timestamp;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.DBSequence;
import oracle.jbo.domain.Date;
public class TestCreatingServiceRequest {
public static void main(String[] args) throws Throwable {
String amDef = "devguide.model.SRService";
String config = "SRServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef, config);

// 1. Find the ServiceRequests view object instance.
ViewObject svcReqs = am.findViewObject("ServiceRequests");
// 2. Create a new row and insert it into the row set
Row newSvcReq = svcReqs.createRow();
svcReqs.insertRow(newSvcReq);
// 3. Show effect of entity object defaulting for Status attribute
System.out.println("Status defaults to: "+newSvcReq.getAttribute("Status"));
// 4. Set values for some of the required attributes
newSvcReq.setAttribute("CreatedBy",308); // Nancy Greenberg (user)
Date now = new Date(new Timestamp(System.currentTimeMillis()));
newSvcReq.setAttribute("RequestDate",now);
newSvcReq.setAttribute("ProdId",119); // Ice Maker
newSvcReq.setAttribute("ProblemDescription","Cubes melt immediately");
// 5. Commit the transaction
am.getTransaction().commit();
// 6. Retrieve and display the trigger-assigned service request id
DBSequence id = (DBSequence)newSvcReq.getAttribute("SvrId");
System.out.println("Thanks, reference number is "+id.getSequenceNumber());
Configuration.releaseRootApplicationModule(am, true);

}
}

Running this example produces the following results:

Status defaults to: Open
Thanks, reference number is 200

Working Programmatically with Entity-Based View Objects

Building an Updatable Data Model With Entity-Based View Objects 7-39

7.8.4 Example of Retrieving the Row Key Identifying a Row
Example 7–4 performs the following basic steps:

1. Finds the ServiceRequests view object

2. Constructs a key to find service request number 101

3. Finds the ServiceRequests row with this key

4. Displays the key of the ServiceRequests row

5. Accesses the row set of ServiceHistories using the view link accessor
attribute

6. Iterates overs the ServiceHistories row

7. Displays the key of each ServiceHistories row

Example 7–4 Retrieving the Row Key Identifying a Row

package devguide.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
public class TestFindAndShowKeys {
public static void main(String[] args) {
String amDef = "devguide.model.SRService";
String config = "SRServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef, config);

// 1. Find the ServiceRequests view object
ViewObject vo = am.findViewObject("ServiceRequests");
// 2. Construct a key to find service request number 101
Key svcReqKey = new Key(new Object[] { 101 });
// 3. Find the ServiceRequests row with this key
Row[] reqsFound = vo.findByKey(svcReqKey, 1);
if (reqsFound != null && reqsFound.length > 0) {
Row svcReq = reqsFound[0];
// 4. Display the key of the ServiceRequests row
showKeyFor(svcReq);
// 5. Access row set of ServiceHistories using view link accessor
RowSet histories = (RowSet)svcReq.getAttribute("ServiceHistories");
// 6. Iterate over the ServiceHistories row
while (histories.hasNext()) {
Row historyRow = histories.next();
// 7. Display the key of the current ServiceHistories row
showKeyFor(historyRow);

}
}
Configuration.releaseRootApplicationModule(am, true);

}
private static void showKeyFor(Row r) {
// get the key for the row passed in
Key k = r.getKey();
// format the key as "(val1,val2)"
String keyAttrs=formatKeyAttributeNamesAndValues(k);
// get the serialized string format of the key, too
String keyStringFmt = r.getKey().toStringFormat(false);
System.out.println("Key "+keyAttrs+" has string format "+keyStringFmt);

Summary of Difference Between Entity-Based View Objects and Read-Only View Objects

7-40 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

}
// Build up "(val1,val2)" string for key attributes
private static String formatKeyAttributeNamesAndValues(Key k) {
StringBuffer sb = new StringBuffer("(");
int attrsInKey = k.getAttributeCount();
for (int i = 0; i < attrsInKey;i++) {
if (i > 0) sb.append(",");
sb.append(k.getAttributeValues()[i]);

}
sb.append(")");
return sb.toString();

}
}

Running the example produces the following results. Notice that the serialized string
format of a key is a hexadecimal number that includes information in a single string
that represents all the attributes in a key.

Key (101) has string format 000100000003313031
Key (101,1) has string format 000200000003C2020200000002C102
Key (101,2) has string format 000200000003C2020200000002C103

7.9 Summary of Difference Between Entity-Based View Objects and
Read-Only View Objects

You now know that view objects can either be related to underlying entity objects or
not. This section helps summarize the difference between the runtime behavior of
these two fundamental kinds of view objects.

7.9.1 Runtime Features Unique to Entity-Based View Objects
When a view object has one or more underlying entity usages you can create new
rows, and modify or remove queried rows. The entity-based view object coordinates
with underlying entity objects to enforce business rules and to permanently save the
changes. In addition, you've seen that entity-based view objects:

■ Immediately reflect pending changes made to relevant entity object attributes
made through other view objects in the same transaction

■ Initialize attribute values in newly created rows to the values from the underlying
entity object attributes

■ Reflect updated reference information when foreign key attribute values are
changed

7.9.2 View Objects with No Entity Usage Are Read-Only
View objects with no entity usage are read-only, do not pick up entity-derived default
values, do not reflect pending changes, and do not reflect updated reference
information. You need to decide what kind of functionality your application requires
and design the view object accordingly. Typically view objects used for SQL-based
validation purposes, and for displaying the list of valid selections in a dropdown list,
can be read-only. There is a small amount of runtime overhead associated with the
coordination between view object rows and entity object rows, so if you don't need
any of the functionality offered by an entity-mapped view object, you can slightly
increase performance by using a read-only view object with no related entity objects.

Summary of Difference Between Entity-Based View Objects and Read-Only View Objects

Building an Updatable Data Model With Entity-Based View Objects 7-41

7.9.3 What You May Need to Know About Enabling View Object Key Management for
Read-Only View Objects

An entity-based view object delegates the task of finding rows by key to its underlying
entity row parts. When you use the findByKey() method to find a view row by key,
the view row turns around and uses the entity definition's findByPrimaryKey() to
find each entity row contributing attributes to the view row key.

This scheme is not possible for a read-only view object since it has no underlying
entity row to which to delegate the job. Since you might use read-only view objects to
quickly iterate over query results without needing any of the additional features
provided by the entity-based view object, a read-only view object does not assume you
want to incur the slight additional overhead of managing rows by key at the level of
the view object's row set.

In order to successfully be able to use the findByKey() method on a read-only view
object, you need to perform two additional steps:

1. Ensure that at least one attribute in the view object has the Key Attribute property
set

2. Enable a custom Java class for the view object, and override its create() method
to call setManageRowsByKey(true)after calling super.create() like this:

// In custom Java class for read-only view object
public void create() {
super.create();
setManageRowsByKey(true);

}

Section 25.3.2, "Implementing Generic Functionality Using Runtime Metadata"
describes a generic technique you can use to avoid having to remember to do this on
all of your read-only view objects on which you want findByKey() to work as
expected.

Note: In an application using the ADF Model layer for data binding
to a read-only view object, the successful operation of the ADF Faces
table — or other controls that allow the end user to set the current row
by clicking in the page — require this additional step. This also
applies to the successful use of built-in binding layer actions like
setCurrentRowWithKey or setCurrentRowWithKeyValue on a
read-only view object. These all boil down to calling findByKey()
under the covers.

Summary of Difference Between Entity-Based View Objects and Read-Only View Objects

7-42 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Implementing Business Services with Application Modules 8-1

8
Implementing Business Services with

Application Modules

This chapter describes how to implement the overall functionality of your business
services using the combination of application modules, view objects, and entity
objects.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Application Modules"

■ Section 8.2, "Creating an Application Module"

■ Section 8.3, "Adding a Custom Service Method"

■ Section 8.4, "Publishing Custom Service Methods to Clients"

■ Section 8.5, "Working Programmatically with an Application Module's Client
Interface"

■ Section 8.6, "Overriding Built-in Framework Methods"

■ Section 8.7, "Creating an Application Module Diagram for Your Business Service"

■ Section 8.8, "Supporting Multipage Units of Work"

■ Section 8.9, "Deciding on the Granularity of Application Modules"

8.1 Introduction to Application Modules
An application module is Oracle ADF Business Component component that
encapsulates the business service methods and active data model for a logical unit of
work related to an end-user task.

By the end of this chapter, you'll understand all the concepts illustrated in Figure 8–1,
and more:

■ You use instances of view objects in an application module to define its active data
model.

■ You write service methods to encapsulate task-level business logic.

■ You expose selected methods on the service interface for clients to call.

■ You use application modules from a pool during a logical transaction that can
span multiple web pages.

Creating an Application Module

8-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Your application module works with a Transaction object that acquires a
database connection and coordinates saving or rolling back changes made to entity
objects.

■ The related Session object provides runtime information about the current
application user

Figure 8–1 Application Module Is a Business Service Component Encapsulating a Unit
of Work

Previous chapters explained the details of including view object instances in an
application module's data model and of how client-accessible view objects cooperate
internally with the entity objects in your reusable business domain layer. This chapter
describes how to combine business service methods with that data model to
implement a complete business service.

8.2 Creating an Application Module
In a large application, you typically create one application module to support each
coarse-grained end-user task. In a smaller-sized application like the SRDemo
application, you may decide that creating a single application module is adequate to
handle the needs of the complete set of application functionality. Section 8.9, "Deciding
on the Granularity of Application Modules" provides additional guidance on this
subject.

Note: The examples in this chapter use the same basic SRService
application module from Chapter 7, "Building an Updatable Data
Model With Entity-Based View Objects", including the entity-based
view objects shown in Figure 8–1. To experiment with a working
version, download the DevGuideExamples workspace from Example
Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01
and see the ApplicationModules project.

Creating an Application Module

Implementing Business Services with Application Modules 8-3

8.2.1 Creating an Application Module

To create an application module:
1. Open Create Application Module Wizard. The wizard is available from the New

Gallery in the Business Tier > ADF Business Components category.

2. In step 1 on the Name pane, provide a package name and an application module
name.

3. In step 2 on the Data Model page, include instances of view object you have
previously defined and adjust the view object instance names to be exactly what
you want clients to see. Then click Finish.

For more step by step details, see Section 5.3, "Using a View Object in an Application
Module's Data Model".

8.2.2 What Happens When You Create an Application Module
When you create an application module, JDeveloper creates the XML component
definition file that represents its declarative settings and saves it in the directory that
corresponds to the name of its package. For example, given an application module
named SRService in the devguide.model package, the XML file created will be
./devguide/model/SRService.xml under the project's source path. This XML file
contains the information needed at runtime to re-create the view object instances in the
application module's data model. If you're curious to see its contents, you can see the
XML file for the application module by selecting the view object in the Application
Navigator and looking in the corresponding Sources folder in the Structure Window.
Double-clicking on the SRService.xml node will open the XML in an editor so that
you can inspect it.

8.2.3 Editing an Existing Application Module
After you've created a new application module, you can edit any of its settings by
using the Application Module Editor. Choose the Edit menu option on the
right-mouse context menu in the Application Navigator, or double-click on the
application module, to launch the editor. By visiting the different panels of the editor,
you can adjust the data model, Java generation settings, remote deployment options,
client interface methods, and custom properties.

8.2.4 Configuring Your Application Module Database Connection
You configure your application module to use a database connection by identifying
either a Java Database Connectivity (JDBC) URL or a JDBC Datasource name in the
Connection Type section of the Configuration editor (see Figure 5–12).

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
application module class SRServiceImpl.java.

Creating an Application Module

8-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

8.2.4.1 Using a JDBC URL Connection Type
The default YouAppModuleLocal configuration uses a JDBC URL connection. It is
based on the named connection definition set on the Business Components page of
the Project Properties dialog for the project containing your application module.
Figure 8–2 shows what this section would look like in a configuration using a JDBC
URL connection based on the SRDemo connection name. When you use a JDBC URL
connection type as the SRServiceLocalTesting configuration does in the SRDemo
application, you can use the application module in any context where Java can run. In
other words, it is not restricted to running inside a J2EE application server with this
connection type.

Figure 8–2 Connection Type Setting in Configuration Editor

8.2.4.2 Using a JDBC Datasource Connection Type
The other type of connection you can use is a JDBC datasource. You define a JDBC
datasource as part of your application server configuration information, and then the
application module looks up the resource at runtime using a logical name. You define
the datasource connection details in two parts:

■ a logical part that uses standard J2EE deployment descriptors to define the
datasource name the application will use at runtime,

■ a physical part that is application-server specific which maps the logical
datasource name to the physical connection details.

For example, Example 8–1 shows the <resource-ref> tags in the web.xml file of the
SRDemo application. These define two logical datasources named jdbc/SRDemoDS
and jdbc/SRDemoCoreDS. When you use a JDBC datasource connection for your
application module, you reference this logical connection name after the prefix
java:comp/env. Accordingly, if you inspect the SRServiceLocal configuration for
the SRService application module in the SRDemo application, you’ll see that the
value of its JDBC Datasource Name field is java:comp/env/jdbc/SRDemoDS.

Note: See Section 29.5.2, "Database Connection Pools" and
Section 29.7, "Database Connection Pool Parameters" for more
information on how database connection pools are used and how you
can tune them.

Creating an Application Module

Implementing Business Services with Application Modules 8-5

Example 8–1 Logical Datasource Resource Names Defined in web.xml

 <!-- In web.xml -->
 <resource-ref>
 <res-ref-name>jdbc/SRDemoDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jdbc/SRDemoCoreDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

Once you’ve defined the logical datasource names in web.xml and referenced them in
a configuration, you then need to include additional, server-specific configuration files
to map the logical datasource names to physical connection definitions in the target
application server. Example 8–2 shows the contents of the SRDemo application’s
data-sources.xml file. This file is specific to the Oracle Containers for J2EE (OC4J)
and defines the physical details of the datasource connection pools and connection
names. You would need to provide a similar file for different J2EE application servers,
and the file would have a vendor-specific format.

Example 8–2 Datasource Connection Details Defined External to Application

<data-sources ... >
 <connection-pool name="jdev-connection-pool-SRDemo">
 <connection-factory
 factory-class="oracle.jdbc.pool.OracleDataSource"
 password="->DataBase_User_8PQ34e6j3MDg3UcQD-BZktUAK-QpepGp"
 user="srdemo" url="jdbc:oracle:thin:@localhost:1521:XE"/>
 </connection-pool>
 <managed-data-source name="jdev-connection-managed-SRDemo"
 jndi-name="jdbc/SRDemoDS"
 connection-pool-name="jdev-connection-pool-SRDemo"/>
 <native-data-source name="jdev-connection-native-SRDemo"
 jndi-name="jdbc/SRDemoCoreDS" ... />
</data-sources>

The last step in the process involves mapping the physical connection details to the
logical resource references for the datasource. In the OC4J server, you accomplish this
step using the orion-web.xml file shown in Example 8–3.

Example 8–3 Server-Specific File Maps Logical Datasource to Physical Datasource

<orion-web-app ... >
 <resource-ref-mapping location="jdbc/SRDemoDS" name="jdbc/SRDemoDS"/>
 <resource-ref-mapping location="jdbc/SRDemoCoreDS" name="jdbc/SRDemoCoreDS"/>
</orion-web-app>

Once these datasource configuration details are in place, you can successfully use your
application module in a J2EE application server as part of a web application.

Adding a Custom Service Method

8-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

8.2.5 Managing Your Application Module's Runtime Configurations
In addition to creating the application module XML component definition, JDeveloper
also adds a default configuration named SRServiceLocal to the bc4j.xcfg file in
the subdirectory named common relative to directory containing the SRService.xml
file. To manage your application module's configurations, select it in the Application
Navigator and choose Configurations... from the right-mouse context menu.

8.2.6 What You Might Need to Know About Application Module Connections
When testing your application module with the Business Component Browser, you
should be aware of the connection configuration.

8.2.6.1 The Business Components Browser Requires a JDBC URL Connection
In previous chapters you've learned how valuable the Business Components Browser
tool can be for testing your application module's data model interactively. Since it runs
outside the context of a J2EE application server, it cannot test application modules
using a configuration that depends on a JDBC datasource. The solution is simply to
test the application module by selecting a configuration that uses a JDBC URL
connection. You do this by choosing it from the Business Component Configuration
Name dropdown list on the Connect dialog of the Business Components Browser.

8.2.6.2 Testing the SRService Application Module in the Business Components
Browser
To test the SRDemo application’s SRService application module using the Business
Components Browser, choose the SRServiceLocalTesting configuration.
Incidentally, this is the same configuration used by the JUnit tests in the UnitTests
project in the workspace. The tests also run outside of a J2EE application server so for
the same reason as the Business Components Browser cannot use a configuration with
a JDBC datasource connection type.

8.3 Adding a Custom Service Method
An application module can expose its data model of view objects to clients without
requiring any custom Java code. This allows client code to use the
ApplicationModule, ViewObject, RowSet, and Row interfaces in the
oracle.jbo package to work directly with any view object in the data model.
However, just because you can programmatically manipulate view objects any way
you want to in client code doesn't mean that doing so is always a best practice.

Whenever the programmatic code that manipulates view objects is a logical aspect of
implementing your complete business service functionality, you should encapsulate
the details by writing a custom method in your application module's Java class. This
includes code that:

■ Configures view object properties to query the correct data to display

■ Iterates over view object rows to return an aggregate calculation

■ Performs any kind of multistep procedural logic with one or more view objects

Adding a Custom Service Method

Implementing Business Services with Application Modules 8-7

By centralizing these implementation details in your application module, you gain the
following benefits:

■ You make the intent of your code more clear to clients

■ You allow multiple client pages to easily call the same code if needed

■ You simplify regression-testing your complete business service functionality

■ You keep the option open to improve your implementation without affecting
clients

■ You enable declarative invocation of logical business functionality in your pages.

8.3.1 How to Generate a Custom Class for an Application Module
To add a custom service method to your application module, you must first enable a
custom Java class for it. If you have configured your IDE-level Business Components
Java generation preferences to automatically generate an application module class,
you're set. If you're not sure whether your application module has a custom Java class,
as shown in Figure 8–3, check the context menu for the Go to Application Module
Class option. This option lets you quickly navigate to your application module's
custom class, but if you don't see the option in the menu then that means your
application module is currently an XML-only component.

Figure 8–3 Quickly Navigating to an Application Module's Custom Java Class

To enable the class, open the Application Module Editor, visit the Java page, select the
Generate Java File checkbox for an Application Module Class, then click OK to finish
the wizard.

8.3.2 What Happens When You Generate a Custom Class for an Application Module
For an application module named devguide.model.SRService, the default name
for its custom Java file will be SRServiceImpl.java. The file is created in the same
./devguide/model directory as the component's XML component definition file.

Adding a Custom Service Method

8-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The Java generation options for the application module continue to be reflected on the
Java page on subsequent visits to the Application Module Editor. Just as with the XML
definition file, JDeveloper keeps the generated code in your custom java classes up to
date with any changes you make in the editor. If later you decide you didn't require a
custom Java file for any reason, unchecking the relevant option in the Java page causes
the custom Java file to be removed.

8.3.3 What You May Need to Know About Default Code Generation
By default, the application module Java class will look similar to what you see in
Example 8–4 when you've first enabled it. Of interest, it contains:

■ Getter methods for each view object instance in the data model

■ A main() method allowing you to debug the application module using the
Business Components Browser

Example 8–4 Default Application Module Generated Code

package devguide.model;
import devguide.model.common.SRService;
import oracle.jbo.server.ApplicationModuleImpl;
import oracle.jbo.server.ViewLinkImpl;
import oracle.jbo.server.ViewObjectImpl;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
public class SRServiceImpl extends ApplicationModuleImpl {
/** This is the default constructor (do not remove) */
public SRServiceImpl() { }
/** Sample main for debugging Business Components code using the tester */
public static void main(String[] args) {
launchTester("devguide.model", /* package name */

"SRServiceLocal" /* Configuration Name */);
}
/** Container's getter for YourViewObjectInstance1 */
public ViewObjectImpl getYourViewObjectInstance1() {
return (ViewObjectImpl)findViewObject("YourViewObjectInstance1");

}

// ... Additional ViewObjectImpl getters for each view object instance

// ... ViewLink getters for view link instances here
}

As shown in Figure 8–4, your application module class extends the base ADF
ApplicationModuleImpl class to inherit all the default behavior before adding
your custom code.

Adding a Custom Service Method

Implementing Business Services with Application Modules 8-9

Figure 8–4 Your Custom Application Module Class Extends ApplicationModuleImpl

8.3.4 Debugging the Application Module Using the Business Components Tester
As you learn more about the overall business service role of the application module in
this chapter, you'll find it useful to exercise your application module under the
JDeveloper debugger while using the Business Components Browser as the testing
interface. To debug an application module using the tester, select the application
module in the Application Navigator and then either:

■ In the Application Navigator, right-click the application module and choose Go to
Application Module Class from the context menu.

■ Select Debug from the right-mouse context menu in the code editor

8.3.5 How to Add a Custom Service Method to an Application Module
To add a custom service method to an application module, simply navigate to
application module's custom class and type in the Java code for a new method into the
application module's Java implementation class. Use the following guidelines to
decide on the appropriate visibility for the method. If you will use the method only
inside this component's implementation as a helper method, make the method
private. If you want to allow eventual subclasses of your application module to be
able to invoke or override the method, make it protected. If you need clients to be
able to invoke it, it must be public. See the examples of the SRServiceImpl
methods in previous chapters.

Example 8–5 shows a private retrieveServiceRequestById() helper method
in the SRServiceImpl.java class for the SRService application module. It uses
the static getDefinition() method of the ServiceRequestImpl entity object
class to access its related entity definition, uses the createPrimaryKey() method on
the entity object class to create an appropriate Key object to look up the service
request, then used the findByPrimaryKey() method on the entity definition to find
the entity row in the entity cache. It returns an instance of the strongly typed
ServiceRequestImpl class, the custom Java class for the ServiceRequest entity
object.

Note: The SRService application module in this chapter is using
the strongly typed, custom entity object classes that you saw
illustrated in the SRServiceImpl2.java example at the end of
Chapter 6, "Creating a Business Domain Layer Using Entity Objects".

Publishing Custom Service Methods to Clients

8-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 8–5 Private Helper Method in Custom Application Module Class

// In devguide.model.SRServiceImpl class
/*
* Helper method to return a ServiceRequest by Id
*/
private ServiceRequestImpl retrieveServiceRequestById(long requestId) {
EntityDefImpl svcReqDef = ServiceRequestImpl.getDefinitionObject();
Key svcReqKey =
ServiceRequestImpl.createPrimaryKey(new DBSequence(requestId));

return (ServiceRequestImpl)svcReqDef.findByPrimaryKey(getDBTransaction(),
svcReqKey);

}

Example 8–6 shows a public createProduct()method that allows the caller to
pass in a name and description of a product to be created. It uses the
getDefinition() method of the ProductImpl entity object class to access its
related entity definition, uses the createInstance2() method to create a new
ProductImpl entity row whose Name and Description attributes it populates with
the parameter values passed in before committing the transaction.

Example 8–6 Public Method in Custom Application Module Class

/*
* Create a new Product and Return its new id
*/
public long createProduct(String name, String description) {
EntityDefImpl productDef = ProductImpl.getDefinitionObject();
ProductImpl newProduct =
(ProductImpl)productDef.createInstance2(getDBTransaction(),null);

newProduct.setName(name);
newProduct.setDescription(description);
try {
getDBTransaction().commit();

}
catch (JboException ex) {
getDBTransaction().rollback();
throw ex;

}
DBSequence newIdAssigned = newProduct.getProdId();
return newIdAssigned.getSequenceNumber().longValue();

}

8.4 Publishing Custom Service Methods to Clients
When you add a public custom method to your application module class, if you
want clients to be able to invoke it, you need to include the method on the application
module's client interface.

Publishing Custom Service Methods to Clients

Implementing Business Services with Application Modules 8-11

8.4.1 How to Publish Custom Service Methods to Clients
To include a public method from your application module's custom Java class on the
client interface, use the Client Interface page of the Application Module Editor. As
shown in Figure 8–5, select one or more desired methods from the Available list and
press > to shuttle them into the Selected list. Then click OK to dismiss the editor.

Figure 8–5 Adding a Public Method to an Application Module's Client Interface

8.4.2 What Happens When You Publish Custom Service Methods to Clients
When you publish custom service methods on the client interface, as illustrated in
Figure 8–6, JDeveloper creates a Java interface with the same name as the application
module in the common subpackage of the package in which your application module
resides. For an application module named SRService in the devguide.model
package, this interface will be named SRService and reside in the
devguide.model.common package. The interface extends the base
ApplicationModule interface in the oracle.jbo package, reflecting that a client
can access all of the base functionality that your application module inherits from the
ApplicationModuleImpl class.

Figure 8–6 Custom Service Interface Extends the Base ApplicationModule Interface

As shown in Example 8–7, the SRService interface includes the method signatures of
all of the methods you've selected to be on the client interface of your application
module.

Publishing Custom Service Methods to Clients

8-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 8–7 Custom Service Interface Based on Methods Selected in the Client
Interface Panel

package devguide.model.common;
import oracle.jbo.ApplicationModule;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// ---
public interface SRService extends ApplicationModule {
long createProduct(String name, String description);
String findServiceRequestStatus(long requestId);
String findServiceRequestTechnician(long requestId);
void updateRequestStatus(long requestId, String newStatus);

}

Each time you add or remove methods from the Selected list in the Client Interface
page, the corresponding service interface file is updated automatically. JDeveloper
also generates a companion client proxy class that is used when you deploy your
application module for access by a remote client. For the SRService application
module in this example, the client proxy file is called SRServiceClient and it is
created in the devguide.model.client subpackage.

8.4.3 How to Generate Client Interfaces for View Objects and View Rows
In addition to generating a client interface for your application module, it's also
possible to generate strongly typed client interfaces for working with the other key
client objects that you can customize. In a manner identical to how you have learned to
do for application modules, you can open the Client Interface and Client Row
Interface pages of the View Object Editor to add custom methods to the view object
client interface and the view row client interface, respectively.

If for the ServiceRequests view object in the devguide.model.queries
package you were to enable the generation of a custom view object Java class and add
one or more custom methods to the view object client interface, JDeveloper would
generate the ServiceRequestsImpl class and ServiceRequests interface, as
shown in Figure 8–7. As with the application module custom interface, notice that it
gets generated in the common subpackage.

Figure 8–7 Custom View Object Interface Extends the Base ViewObject Interface

Note: After adding new custom methods to the client interface, if
your new custom methods do not appear to be available using
JDeveloper’s Code Insight context-sensitive statement completion
when trying to use the custom interface from client code, try
recompiling the generated client interface. To do this, select the
application module in the Application Navigator, select the source file
for the interface of the same name in the Structure window, and
choose Rebuild from the context menu. Consider this tip for new
custom methods added to view objects and view rows as well.

Publishing Custom Service Methods to Clients

Implementing Business Services with Application Modules 8-13

Likewise, if for the same view object you were to enable the generation of a custom
view row Java class and add one or more custom methods to the view row client
interface, JDeveloper would generate the ServiceRequestsRowImpl class and
ServiceRequestsRow interface, as shown in Figure 8–8.

Figure 8–8 Custom View Row Interface Extends the Base Row Interface

8.4.4 What You May Need to Know About Method Signatures on the Client Interface
You can include any custom method in the client interface that obeys these rules:

■ If the method has a non-void return type, the type must be serializable.

■ If the method accepts any parameters, all their types must be serializable.

■ If the method signature includes a throws clause, the exception must be an
instance of JboException in the oracle.jbo package.

In other words, all the types in its method signature must implement the
java.io.Serializable interface, and any checked exceptions must be
JboException or its subclass. Your method can throw any unchecked exception —
java.lang.RuntimeException or a subclass of it — without disqualifing the
method from appearing on the application module's client interface.

8.4.5 What You May Need to Know About Passing Information from the Data Model
The private implementation of an application module custom method can easily refer
to any view object instance in the data model using the generated accessor methods.
By calling the getCurrentRow() method on any view object, it can access the same
current row for any view object that the client user interface sees as the current row.
Due to this benefit, in some cases while writing application module business service
methods there is no need to pass in parameters from the client if they would only be
passing in values from the current rows of other view object instances in the same
application module's data model.

Note: If the method you've added to the application module class
doesn't appear in the Available list, first check to see that it doesn't
violate any of the rules above. If it seems like it should be a legal
method to appear in the list, try recompiling the application module
class before visiting the Application Module Editor again.

Working Programmatically with an Application Module's Client Interface

8-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, the createServiceRequest() method in the SRDemo application’s
SRService application module accepts no parameters. Internally it calls
getGlobals().getCurrentRow() to access the current row of the Globals view
object instance. Then it uses the strongly typed accessor methods on the row to access
the values of the ProblemDescription and ProductId attributes to set them as the
values of corresponding attributes in a newly-created ServiceRequest entity object
row.

Example 8–8 Using View Object Accessor Methods to Access a Current Row

// In SRServiceImpl.java, createServiceRequest() method
GlobalsRowImpl globalsRow = (GlobalsRowImpl)getGlobals().getCurrentRow();
newReq.setProblemDescription(globalsRow.getProblemDescription());
newReq.setProdId(globalsRow.getProductId());

8.5 Working Programmatically with an Application Module's Client
Interface

After publishing methods on your application module's client interface, you can
invoke those methods from a client.

8.5.1 How to Work Programmatically with an Application Module's Client Interface
To work programmatically with an application module's client interface, do the
following:

■ Cast ApplicationModule to the more specific client interface.

■ Call any method on the interface.

Example 8–9 illustrates a TestClientCustomInterface class that puts these two
steps into practice. You might recognize it from Section 6.8, "Working
Programmatically with Entity Objects and Associations" where you tested some
example application module methods from within the main() method of the
SRServiceImpl class itself. Here it's calling all of the same methods from the client
using the SRService client interface.

Note: For simplicity, this section focuses on working only with the
custom application module interface; however; the same downcasting
approach works on the client to use a ViewObject interface as a view
object interface like ServiceRequests or a Row interface as a
custom view row interface like ServiceRequestsRow.

Working Programmatically with an Application Module's Client Interface

Implementing Business Services with Application Modules 8-15

The basic logic of the example follows these steps:

1. Acquire the application module instance and cast it to the more specific
SRService client interface.

2. Call findRequestStatus() to find the status of service request 101.

3. Call findServiceRequestTechnician() to find the name of the technician
assigned to service request 101.

4. Call updateRequestStatus() to try updating the status of request 101 to the
illegal value Reopened.

5. Call createProduct() to try creating a product with a missing product name
attribute value, and display the new product ID assigned to it.

Example 8–9 Using the Custom Interface of an Application Module from the Client

package devguide.client;
import devguide.model.common.SRService;
import oracle.jbo.JboException;
import oracle.jbo.client.Configuration;
public class TestClientCustomInterface {
public static void main(String[] args) {
String amDef = "devguide.model.SRService";
String config = "SRServiceLocal";
/*
* This is the correct way to use application custom methods
* from the client, by using the application module's automatically-
* maintained custom service interface.
*/
// 1. Acquire instance of application module, cast to client interface
SRService service =
(SRService)Configuration.createRootApplicationModule(amDef,config);

// 2. Find the status of service request 101
String status = service.findServiceRequestStatus(101);
System.out.println("Status of SR# 101 = " + status);
// 3. Find the name of the technician assigned to service request 101
String techName = service.findServiceRequestTechnician(101);
System.out.println("Technician for SR# 101 = " + techName);
try {
// 4. Try updating the status of service request 101 to an illegal value
service.updateRequestStatus(101,"Reopened");

}
catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());

}
long id = 0;
try {
// 5. Try creating a new product with a missing required attribute
id = service.createProduct(null,"Makes Blended Fruit Drinks");

}
catch (JboException ex) {

Note: If you work with your application module using the default
ApplicationModule interface in the oracle.jbo package, you
won’t have access to your custom methods. Make sure to cast the
application module instance to your more specific custom interface
like the SRService interface in this example.

Working Programmatically with an Application Module's Client Interface

8-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

System.out.println("ERROR: "+ex.getMessage());
}
// 6. Try creating a new product with a missing required attribute
id = service.createProduct("Smoothie Maker","Makes Blended Fruit Drinks");
System.out.println("New product created successfully with id = "+id);
Configuration.releaseRootApplicationModule(service,true);

}
}

8.5.2 What Happens When You Work with an Application Module's Client Interface
If the client layer code using your application module is located in the same tier of the
J2EE architecture, this configuration is known as using your application module in
"local mode." In local mode, the client interface is implemented directly by your
custom application module Java class. Typical situations that use an application
module in local mode are:

■ A JavaServer Faces application, accessing the application module in the web tier

■ A JSP/Struts application, accessing the application module in the web tier

■ A Swing application, accessing the application module in the client tier (2-tier
client/server style)

In contrast, when the client layer code accessing your application module is located in
a different tier of the J2EE architecture, this is known as using the application module
in "remote mode." In remote mode, the generated client proxy class described above
implements your application module service interface on the client side and it handles
all of the communications details of working with the remotely-deployed application
module service. The typical situation that uses "remote mode" is a thin-client Swing
application accessing the application module on a remote application server.

A unique feature of ADF Business Components is that by adhering to the best-practice
interface-only approach for working with client service methods, you can be sure your
client code works unchanged regardless of your chosen deployment mode. Even if
you only plan to work in "local mode", it is still the best practice in the J2EE
development community to adopt an interface-based approach to working with your
services. Using application modules, it's extremely easy to follow this best practice in
your applications.

8.5.3 How to Access an Application Module Client Interface
The Configuration class in the oracle.jbo.client package makes it very easy
to get an instance of an application module for testing. You've seen it used in
numerous test client programs in this guide, and you'll see it again in the chapter on
testing your application module services as part of the JUnit regression testing fixture.
Because it is easy, however, it is tempting for developers to use its
createRootApplicationModule() and releaseApplicationModule()
methods everywhere they want to access an application module.

Note: Whether you plan to use your application modules in local
deployment mode or remote mode, as described in Section 8.4.4,
"What You May Need to Know About Method Signatures on the
Client Interface", the JDeveloper design time enforces that your
custom interface methods use Serializable types. This allows you to
switch at any time between local or remote deployment mode, or to
support both at the same time, with no code changes.

Working Programmatically with an Application Module's Client Interface

Implementing Business Services with Application Modules 8-17

However, for web applications you should resist this temptation because there is an
even easier way.

8.5.3.1 How to Access an Application Module Client Interface in a JSF Web
Application
When working with JSF or Struts/JSP applications using the ADF Model layer for data
binding, JDeveloper configures a servlet filter in your ViewController project called
the ADFBindingFilter. It orchestrates the automatic acquisition and release of an
appropriate application module instance based on declarative binding metadata, and
insures that the service is available to be looked up as a data control. You'll learn more
about the ADF BindingContext and data controls in later chapters, however here
it's enough to remember that you can access the application module's client interface
from this BindingContext. Since the BindingContext is available during each
web page request by referencing the request-scoped attribute named data, you can
reference the binding context in a JSF managed bean.

For instance, if you want to access the custom interface of the
devguide.model.SRService application module, follow these basic steps shown
in Example 8–10:

1. Access the JSF FacesContext.

2. Create value binding for the #{data} EL expression.

3. Evaluate the value binding, casting the result to BindingContext.

4. Find the data control by name from the BindingContext .

5. Access the application module data provider from the data control.

6. Cast the application module to its client interface.

7. Call any method on the client interface.

Working Programmatically with an Application Module's Client Interface

8-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 8–10 Accessing the Application Module Client Interface in a JSF Backing Bean

package demo.view;
import devguide.model.common.SRService;
import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;
import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCDataControl;
import oracle.jbo.ApplicationModule;
public class YourBackingBean {
public String commandButton_action() {
// 1. Access the FacesContext
FacesContext fc = FacesContext.getCurrentInstance();
// 2. Create value binding for the #{data} EL expression
ValueBinding vb = fc.getApplication().createValueBinding("#{data}");
// 3. Evaluate the value binding, casting the result to BindingContext
BindingContext bc = (BindingContext)vb.getValue(fc);
// 4. Find the data control by name from the binding context
DCDataControl dc = bc.findDataControl("SRServiceDataControl");
// 5. Access the application module data provider
ApplicationModule am = (ApplicationModule)dc.getDataProvider();
// 6. Cast the ApplicationModule to its client interface
SRService service = (SRService)am;
// 7. Call a method on the client interface
service.doSomethingInteresting();
return "SomeNavigationRule";

}
}

The SRDemo application includes a JSFUtils class that encapsulates steps of
evaluating an EL expression using a JSF value binding, and you can use the dot
notation in an EL expression to chain method invocations together on successive beans
and to look up beans in maps. So, putting these two ideas together, you can reduce the
above steps to the single line like:

// Access the SRService custom interface with a single EL expression
SomeService service = (SomeService)JSFUtils.resolveExpression("#{data.SRServiceDat
aControl.dataProvider}");

Note: ISection 10.3.2, "How to Change the Data Control Name Before
You Begin Building Pages" explains how to rename the data control
for an application module. If, as done in the SRDemo application, you
use the technique described there to rename the data control for the
SRService from the default name SRServiceDataControl to the
shorter SRService name that matches the name of the application
module itself, then the line of code above becomes the following:

// Access SRService custom interface with a single EL expression
// NOTE: SRService app module data control renamed to "SRService"
SomeService service = (SomeService)JSFUtils.resolveExpression(
 "#{data.SRService.dataProvider}");

Overriding Built-in Framework Methods

Implementing Business Services with Application Modules 8-19

8.5.3.2 How to Access an Application Module Client Interface in a JSP/Struts Web
Application
If you use Struts and JSP for your view and controller layers, you can access the
BindingContext and your application module custom interface from your custom
PageController using code like what you see in Example 8–11. Notice that you can
directly cast the result of getDataProvider() to the application module client
interface without first needing to retrieve it as ApplicationModule.

Example 8–11 Accessing the Application Module Client Interface in ADF Page Controller

package demo.view;
import devguide.model.common.SRService;
import oracle.adf.controller.v2.context.LifecycleContext;
import oracle.adf.controller.v2.lifecycle.PageController;
import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCDataControl;
public class YourPageController extends PageController {
public void prepareModel(LifecycleContext lcContext) {
super.prepareModel(lcContext);
BindingContext bc = lcContext.getBindingContext();
DCDataControl dc = bc.findDataControl("SRServiceDataControl");
SRService service = (SRService)dc.getDataProvider();
service.doSomethingInteresting();

}
}

8.5.3.3 How to Access an Application Module Client Interface in an ADF Swing
Application
If you use Swing to create desktop-fidelity applications, you can access the
BindingContext and your application module custom interface from inside your
Swing panels using code like what you see in Example 8–12.

Example 8–12 Accessing the Application Module Client Interface in ADF Swing Panel

package demo.view.panels;
import devguide.model.common.SRService;
import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCDataControl;
// etc.
public class YourPanel extends JPanel implements JUPanel {
// etc.
private void jButton1_actionPerformed(ActionEvent e) {
BindingContext bc = getPanelBinding().getBindingContext();
DCDataControl dc = bc.findDataControl("SRServiceDataControl");
SRService service = (SRService)dc.getDataProvider();
service.doSomethingInteresting();

}
}

8.6 Overriding Built-in Framework Methods
The ApplicationModuleImpl base class provides a number of built-in methods
that implement its functionality. While Appendix D, "Most Commonly Used ADF
Business Components Methods" provides a quick reference to the most common code
that you will typically write, use, and override in your custom application module
classes, this section focuses on helping you understand the basic steps to override one
of these built-in framework methods to augment the default behavior.

Overriding Built-in Framework Methods

8-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

8.6.1 How to Override a Built-in Framework Method
To override a built-in framework method for an application module, go to the
application module Java class and then choose Source | Override Methods... from the
JDeveloper main menu. As shown in Figure 8–9, the Override Methods dialog
appears. You can scroll the list of methods using the scrollbar, but if you know the
method you want to override, begin typing the first few letters of its name to perform
an incremental search to find it more quickly in the list.

Assume that you want to override the application module's prepareSession()
method to augment the default functionality when a new user session begins working
with an application module service component for the first time. Check the checkbox
next to the prepareSession(oracle.jbo.Session) method, and click OK.

Figure 8–9 Overriding a Built-in Framework Method

8.6.2 What Happens When You Override a Built-in Framework Method
When you dismiss the Override Methods dialog, you return to the code editor with
the cursor focus in the overridden method, as shown in Figure 8–10. Notice that the
method appears with a single line that calls super.prepareSession(). This is the
syntax in Java for invoking the default behavior the base class would have normally
performed for this method. By adding code before or after this line in the custom
application module class, you can augment the default behavior before or after the
default functionality.

Also notice that when you override a method in a base class, the code editor's left
margin displays a small "up arrow" icon. This is a clue that this method is related to an
interface or a base class. Hovering the mouse over the icon as shown in the figure
gives positive feedback that this method has the correct signature to override a
method in the base class.

Note: Here you've only selected one method, but the Override
Methods dialog allows you to select any number of methods to
override simultaneously.

Overriding Built-in Framework Methods

Implementing Business Services with Application Modules 8-21

While this method was generated by the Override Methods dialog, if you begin
typing overridden method names from memory, it's important to have the signature
exactly the same as the base class method you want to override. If you make a spelling
mistake in what you think is an overridden method, or if you have the wrong number
or types of arguments or return value, then you won't get any compile errors but
neither will you be overriding the base class method you anticipated. The positive
feedback makes it clear you got the method name exactly right. To quickly navigate to
the base class to double-check what it's doing when you call the superclass, choose Go
to Overridden Method in the right-mouse context menu menu on the override icon in
the margin.

Figure 8–10 Code Editor Margin Gives Visual Feedback About Overridden Methods

8.6.3 How to Override prepareSession() to Set Up an Application Module for a New
User Session

Since the prepareSession() method gets invoked by the application module when
it is used for the first time by a new user session, it's a nice method to override in your
custom application module class to perform setup tasks that are specific to each new
user that uses your application module. Example 8–13 illustrates an overridden
prepareSession() method in the devguide.model.SRServiceImpl class that
invokes a findLoggedInUserByEmailInStaffList() helper method to initialize
the StaffList view object instance to display the row corresponding to the currently
logged-in user.

The helper method does the following:

1. Calls super.prepareSession() to perform the default processing

2. Accesses the StaffList view object instance using the generated
getStaffList() getter method

3. Calls the getUserPrincipalName() method to get name of the currently
authenticated user

Note: In addition to the design time visual method override
confirmation described above, you can consider adding the JDK 5.0
@Override annotation just before any method in your class whose
intent it is to override its superclass. This causes the compiler to
generate a compile-time error if it does not match the signature of any
method in the superclass.

Note: Until you learn about enabling J2EE security in your
application in Section 30.4, "Configuring the ADF Business
Components Application to Use Container-Managed Security", the
getUserPrincipalName() API in the sample below will return
null instead of the authenticated user's name. So, the example
contains the fallback code that assigns a fixed email ID of sking for
testing purposes.

Overriding Built-in Framework Methods

8-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. Defines a CurrentUser named bind variable, with the currentUserName
member variable as its default value

5. Sets an additional WHERE clause to find the current user's row by email

6. Executes the query to retrieve the StaffList row for the current user

After overriding the prepareSession() method in this way, if you test the
SRService application module using the Business Components Browser, you'll see
that the StaffList view object instance has the single row corresponding to Steven
King (email = 'sking').

Example 8–13 Initializing the StaffList View Object Instance to Display a Current User's
Information

// In devguide.model.SRServiceImpl class
protected void prepareSession(Session session) {
 // 1. Call the superclass to perform the default processing
super.prepareSession(session);
findLoggedInUserByEmailInStaffList();

}
private void findLoggedInUserByEmailInStaffList() {
// 2. Access the StaffList vo instance using the generated getter method
ViewObject staffList = getStaffList();
// 3. Get the name of the currently authenticated user
String currentUserName = getUserPrincipalName();
/*
* Until later when we learn how to integrate J2EE security,
* this API will return null. For testing, we can default it
* to the email of one of the staff members like "sking".
*/
if (currentUserName == null) {
currentUserName = "sking";

}
/*
* We can't use a simple findByKey since the key for the
* StaffList view object is the numerical userid of the staff member
* and we want to find the user by their email address. We could build
* an "EMAIL = :CurrentUser" where clause directly into the view object
* at design time, but here let's illustrate doing it dynamically to
* see this alternative.
*/
// 4. Define named bind variable, with currentUserName as default value
staffList.defineNamedWhereClauseParam("CurrentUser", // bindvar name

currentUserName, // default value
null);

// 5. Set an additional WHERE clause to find the current user's row by email
staffList.setWhereClause("EMAIL = :CurrentUser");
// 6. Execute the query to retrieve the StaffList row for the current user
staffList.executeQuery();
/*
* If the view object needs to be also used during this session
* without the additional where clause, you would use
* setWhereClause(null) and removeNamedWhereClauseParam("CurrentUser") to
* leave the view object instance back in it's original state.
*/

}

Creating an Application Module Diagram for Your Business Service

Implementing Business Services with Application Modules 8-23

8.7 Creating an Application Module Diagram for Your Business Service
Since your business service's data model and service interface are a key asset to your
team, it is often convenient to visualize it using a UML model. JDeveloper supports
easily creating a diagram for your application module that you and your colleagues
can use for reference.

8.7.1 How to Create an Application Module Diagram

To create a diagram of your application module:
1. Open the Create Business Components Diagram dialog from the New Gallery in

the Business Tier > ADF Business Components category.

2. The dialog prompts you for a diagram name, and a package name in which the
diagram will be created. Enter a diagram name like "SRService Data Model"
and a package name like devguide.model.design.

clicking OK creates the empty diagram and opens the diagrammer.

3. To add your existing application module to the diagram, select them all in the
Application Navigator and drop them onto the diagram surface.

4. Use the property inspector to:

■ Hide the package name,

■ Change the font

■ Turn off the grid and page breaks

■ Turn off the display of the role names on the view links ("Master"/"Detail")

After completing these steps, the diagram looks like what you see in: Figure 8–11

Figure 8–11 UML Diagram of Application Module in a Drag and Drop and a Few Clicks

8.7.2 What Happens When You Create an Application Module Diagram
When you create a business components diagram, JDeveloper creates an XML file
representing the diagram in a subdirectory of the project's model path that matches
the package name in which the diagram resides. For the Business Domain
Objects diagram above, it would create a matching *.oxd_bc4j file in the
./devguide/model/design subdirectory of the model path. By default the
Application Navigator unifies the display of the project contents paths so that ADF
components and Java files in the source path appear in the same package tree as the
UML model artefacts in the project model path. You can use the Toggle Directories
toolbar icon in the Application Navigator to switch between the unified directory view
and seeing the distinct project content path folders.

Creating an Application Module Diagram for Your Business Service

8-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

8.7.3 What You May Need to Know About Application Module Diagrams
You can do a number of tasks directly on the diagram, such as editing the application
module, controlling display options, filtering methods names, showing related objects
and files, publishing the application, and launching the Business Components
Browser.

8.7.3.1 Using the Diagram for Editing the Application Module
The UML diagram of business components is not just a static picture that reflects the
point in time when you dropped the application module onto the diagram. Rather, it is
a UML-based rendering of the current component definitions so it will always reflect
the current state of affairs. The UML diagram is both a visualization aid and a visual
navigation and editing tool. You can bring up the Application Module Editor for any
application module in a diagram by selecting Properties... from the right-mouse
context menu (or double-clicking). You can also perform some application module
editing tasks directly on the diagram like renaming view object instances, dropping
view object definitions onto the data model to create a new view object instance, and
removing view object instances by pressing the Delete key.

8.7.3.2 Controlling Display Options
After selecting the application module in the diagram, use the Property Inspector to
control its display options. In the Display category, toggle properties like the
following:

■ Show Stereotype — to display the type of object (e.g. "<<application module>>")

■ Show Operations — to display service methods

■ Show Package — to display the package name

In the Operations category, you will typically consider changing the following
properties depending on the amount of detail you want to provide in the diagram:

■ Show Method Parameters

■ Show Return Types

■ Show Visibility (public, private, etc.)

On the right-mouse context menu, you can also select to View As:

■ Standard — to show service operations

■ Expanded — to show operations and data model (default)

■ Compact — to show only the icon and the name

Note: The term operation is a more generic, UML name for methods.

Creating an Application Module Diagram for Your Business Service

Implementing Business Services with Application Modules 8-25

8.7.3.3 Filtering Method Names
Initially, if you show the operations for the application module the diagram displays
all the methods. Any method it recognizes as overridden framework methods display
in the <<Framework>> operations category. The rest display in the <<Business>>
methods category.

The Exclude Operations Filter property is a regular expression that you can use to
filter out methods you don't want to display on the diagram. For example, by setting
the Exclude Operations Filter property to

findLoggedInUser.*|retrieveService.*|get.*

you can filter out all of the following application module methods:

■ findLoggedInUserByEmailInStaff

■ retrieveServiceRequestById

■ All the generated view object getter methods

8.7.3.4 Show Related Objects and Implementation Files
After selecting the application module on the diagram — or any set of individual view
object instances in its data model — you can choose Show > Related Elements from
the right-mouse context menu to display related component definitions on the
diagram. In a similar fashion, selecting Show > Implementation Files includes the
files that implement the application module on the diagram. You can repeat these
options on the additional diagram elements that appear until the diagram includes the
level of detail you want to convey.

Figure 8–12 illustrates what you'll see if you include the implementation files for the
devguide.model.SRService application module, showing the related elements for
the SRServiceImpl class, and drawing an additional dependency line between the
SRService application module and the SRServiceImpl class. Note the generated
SRService client interface that you used above.

Figure 8–12 Adding Detail to a Diagram Using Show Related Elements and Show
Implementation Files

Note: Deleting components from the diagram only removes their
visual representation on the diagram surface. The components and
classes remain on the file system and in the Application Navigator.

Supporting Multipage Units of Work

8-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

8.7.3.5 Publishing the Application Module Diagram
To publish the diagram to PNG, JPG, SVG, or compressed SVG format, choose Publish
Diagram... from the right-mouse context menu on the diagram surface.

8.7.3.6 Testing the Application Module From the Diagram
To launch the Business Components Browser for an application module in the
diagram, choose Test... from the right-mouse context menu.

8.8 Supporting Multipage Units of Work
During the span of time your end user is interacting with your application, she might:

■ Visit the same pages multiple times, expecting fast response times

■ Perform a logical unit of work that requires visiting many different pages to
complete

■ Need to perform a partial "rollback" of a pending set of changes they've made but
haven't saved yet.

■ Unwittingly be the victim of an application server failure in a server farm before
saving pending changes

This section provides a brief overview of the application module pooling and state
management features that simplify implementing scalable, well-performing
applications that address these requirements.

8.8.1 Overview of Application Module Pooling and State Management
Applications you build that leverage an application module as their business service
take advantage of an automatic application module pooling feature. This facility
manages a configurable set of application module instances that grows and shrinks as
the end user load on your application changes during the day. Due to the natural
"think time" inherent in the end user's interaction with your application user interface,
the number of application module instances in the pool can be smaller than the overall
number of active users using the system.

As shown in Figure 8–13, as a given end user visits multiple pages in your application
to accomplish her logical task, on each page request an application module instance in
the pool is acquired automatically from the pool for the lifetime of that one request. At
the end of the request, the instance is automatically returned to the pool for use by
another user session. In order to protect the end user's work against application server
failure, the application module supports the ability to "dehydrate" the set of pending
changes in its entity caches to a persistent store by saving an XML "snapshot"
describing the change set. For scalability reasons, this state snapshot is typically saved
in a state management schema that is a different database schema than the one
containing the application data.

Supporting Multipage Units of Work

Implementing Business Services with Application Modules 8-27

Figure 8–13 Using Pooled Application Modules Throughout a Multipage, Logical Unit of
Work

The pooling algorithm affords a tunable optimization whereby a certain number of
application module instances will attempt to stay "sticky" to the last user session that
returned them to the pool. The optimization is not an iron-clad guarantee, but when a
user can benefit by the optimization they continue to work with the same application
module instance from the pool as long as system load allows. When load is too high,
the pooling algorithm uses any available instance in the pool to service the user's
request and the dehydrated "snapshot" of their logical unit of work is rehydrated from
the persistent store to allow the new instance of the application module to continue
where the last one left off. The end user continues to work in this way until they
commit or rollback their changes.

Using these facilities, the application module delivers the productivity of a stateful
development paradigm that can easily handle multi-page work flows, in an
architecture that delivers the runtime performance near that of a completely stateless
application. You will learn more about these application module features in
Chapter 28, "Application Module State Management" and about how to tune them in
Chapter 29, "Understanding Application Module Pooling".

8.8.2 Experimenting with State Management in the Business Components Browser
For a quick taste of what the state management functionality does, you can launch the
Business Components Browser on the devguide.model.SRService application
module and try the following steps:

1. Double-click on the OpenProblemsAndAssignees view object instance to query
its data.

2. Make a note of the current values of the Status and the Assigned To attributes for
a few rows.

3. Update those rows to have a different value for Status and Assigned To, but do
not commit the changes.

Note: This application module pooling and state management is also
available for thin-client, desktop-fidelity Swing applications and
web-style user interfaces.

Deciding on the Granularity of Application Modules

8-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. Choose File | Save Transaction State from the Business Components Browser
main menu.

A Passivated Transaction State dialog appears, indicating a numerical transaction
ID number. Make a note of this number.

Exit the Business Components Browser and then restart it.

5. Exit out of the Business Components Browser completely.

6. Restart the Business Components Browser and double-click on the
OpenProblemsAndAssignees view object instance to query its data.

7. Notice that the data is not changed. The queried data from the data reflects the
current state of the database without your changes.

8. Choose File | Restore Transaction State from the Business Components Browser
main menu, and enter the transaction ID you noted in step 4.

At this point you'll see that your pending change set is reflected again in the rows you
modified. If you commit the transaction now, your changes are permanently saved to
the database.

8.9 Deciding on the Granularity of Application Modules
A common question from developers related to application modules is, "How big
should my application module be?" In other words, "Should I build one big
application module to contain the entire data model for my enterprise application, or
many smaller application modules?" The answer is different for different situations.
This section provides some tips about how to answer this question for your own
application.

In general, application modules should be as big as necessary to support the specific
use case you have in mind for them to accomplish. They can be assembled from
finer-grained application module components using a "nesting" feature described
below. Since a complex business application is not really a single use case, a complex
business application implemented using ADF will typically not be just a single
application module.

In the case of a sample like the SRDemo application, there is really only one main use
case that it is implementing which allows users to manage service requests. You could
argue that the application’s functionality of managing technicians skills is a separate
"back-end" use case, and you'd be right. However, in practice, modeling the demo that
way implied having a second application module with just two view object instances
in it, so the SRDemo developers took the liberty of including everything for this
small-sized sample application into a single application module for simplicity's sake.

8.9.1 Use Cases Assist in Planning Your Application Modules
In the early analysis phases of application development, often architects and designers
use UML use case techniques to iteratively refine a high-level description of the
different kinds of end-user functionalities that the system being built will need to
support.

Deciding on the Granularity of Application Modules

Implementing Business Services with Application Modules 8-29

Each high-level, end-user use case identified during this design phase typically
identifies two kinds of logical outputs:

■ The domain business objects involved

What core business data is relevant to the use case?

■ The user-oriented view of business data required

What subset of columns, what filtered set of rows, sorted in what way, grouped in
what way, is needed to support the use case?

The identified domain objects involved in the use case help you know which entity
objects from your business domain layer will participate in the use case. The
user-oriented view of business data required helps developers define the right SQL
queries captured as view objects to retrieve the data for the end user in the exactly way
that they expect. For best performance, this includes retrieving the minimum required
details necessary to support the use case as well. In addition to leveraging view object
queries to shape the data, you've learned how to use view links to setup natural
master/detail hierarchies in your data model to match exactly the kind of end-user
experience you want to offer the user to accomplish the use case.

The application module is the "workunit" container that includes instances of the
reusable view objects required for the use case in question, related through metadata
to the underlying entity objects in your reusable business domain layer whose
information the use case is presenting or modifying.

8.9.2 Application Modules Are Designed to Support Assembly
Use cases map to modular functions. Certain higher-level functions might "reuse" a
"subfunction" that is common to several business work flows. Application modules
support the ability to create software components that mimic this natural modularity
by creating composite application modules that you assemble using instances of other
application modules. When you nest an instance of an application module inside
another, you aggregate not only the view objects in its data model, but also any custom
service methods it defines. While this feature of "nesting" or reusing an instance of one
application module inside of another is not typically the focus of simple sample like
the SRDemo application, it is one of the most powerful design aspects of the ADF
Business Components layer of Oracle ADF for implementing larger-scale, real-world
application systems.

Using the basic logic that an application module represents an end-user use case or
work flow, you can build application modules that cater to the data required by some
shared, modular use case, and then reuse those application modules inside of other
more complicated application modules that are designed to support a more complex
use case. For example, imagine that after creating application modules SRService
and ProductMaintenaceService, you later need to build an application that uses
both of these services as an integral part of a new CompositeService. Figure 8–14
illustrates what this CompositeService would look like in a JDeveloper business
components diagram. Notice that an application module like CompositeService
can contain a combination of view object instances and application module instances.

Deciding on the Granularity of Application Modules

8-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 8–14 Application Module Instances Can Be Reused to Assemble Composite
Services

If you leverage nested application modules in your application, make sure to read
Section 10.3.7, "How Nested Application Modules Appear in the Data Control Palette"
as well to avoid common pitfalls when performing data binding involving them.

8.9.3 Root Application Modules Versus Nested Application Module Usages
At runtime, your application works with a main — or what's known as a root —
application module. Any application module can be used as a root application
module, however in practice the application modules that are used as root application
modules are the ones that map to a more complex end-user use case, assuming you're
not just building a straightforward CRUD application. When a root application
module contains other nested application modules, they all participate in the root
application module's transaction and share the same database connection and a single
set of entity caches. This sharing is handled for you automatically by the root
application module and its Transaction object.

At runtime, each top-level application module that your application uses will get an
application module pool created for it. More sophisticated customers like Oracle
Applications who are building large applications with many, many business functions,
often have written custom code to make more efficient use of a "generic" pool of
container application modules to avoid ending up with hundreds of different
application module pools. Based on the customer workflow that needs to be started,
they have written code that takes a generic application module — which is basically an
application module with no view object instances of its own or any nested application
modules of its own defined at design time — and they programmatically use the
createApplicationModule() API on this "generic" application module to
dynamically nest an instance of the appropriate "use case"-based application module
at runtime. When the user is done, they call remove() on that dynamically nested
application module instance, leaving the generic application module "empty" again,
ready to be used by another end user for whatever "use case" they need to accomplish.

Implementing Programmatic Business Rules in Entity Objects 9-1

9
Implementing Programmatic Business Rules

in Entity Objects

This chapter explains the key entity object events and features for implementing the
most common kinds of business rules.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Programmatic Business Rules"

■ Section 9.2, "Understanding the Validation Cycle"

■ Section 9.3, "Using Method Validators"

■ Section 9.4, "Assigning Programmatically-Derived Attribute Values"

■ Section 9.5, "Undoing Pending Changes to an Entity Using the Refresh Method"

■ Section 9.6, "Using View Objects for Validation"

■ Section 9.7, "How to Access Related Entity Rows Using Association Accessors"

■ Section 9.8, "How to Reference Information About the Authenticated User"

■ Section 9.9, "How to Access Original Attribute Values"

■ Section 9.10, "How to Store Information About the Current User Session"

■ Section 9.11, "How to Access the Current Date and Time"

■ Section 9.12, "How to Send Notifications Upon a Successful Commit"

■ Section 9.13, "How to Conditionally Prevent an Entity Row from Being Removed"

■ Section 9.14, "How to Implement Conditional Updatability for Attributes"

■ Section 9.15, "Additional Resources"

9.1 Introduction to Programmatic Business Rules
Complementing its built-in declarative validation features, entity objects have method
validators and several events you can handle to implement encapsulated business
logic using Java code. By the end of this chapter, you'll understand all the concepts
illustrated in Figure 9–1, and more:

■ Attribute-level method validators trigger validation code when an attribute value
changes.

■ Entity-level method validators trigger validation code when an entity row is
validated.

Understanding the Validation Cycle

9-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ You can override the following key methods in a custom Java class for an entity:

■ create(), to assign default values when a row is created

■ initDefaults(), to assign defaults either when a row is created or when a
new row is refreshed

■ isAttributeUpdateable(), to make attributes conditionally updatable

■ remove(), to conditionally disallow deleting

■ prepareForDML(), to assign attribute values before an entity row is saved

■ beforeCommit(), to enforce rules that must consider all entity rows of a
given type

■ afterCommit(), to send notifications about a change to an entity object's
state

Figure 9–1 Key Entity Objects Features and Events for Programmatic Business Logic

9.2 Understanding the Validation Cycle
Each entity row tracks whether or not its data is valid. When an existing entity row is
retrieved from the database, the entity is assumed to be valid. When the first persistent
attribute of an existing entity row is modified, or when a new entity row is created, the
entity is marked invalid.

In addition, since a composed child entity row is considered an integral part of its
composing parent entity object, any change to composed child entity rows causes the
parent entity to be marked invalid.

When an entity is in an invalid state, the declarative validation you have configured
and the programmatic validation rules you have implemented are evaluated again
before the entity can be consider valid again. You can determine whether a given
entity row is valid at runtime by calling the isValid() method on it.

9.2.1 Types of Entity Object Validation Rules
Entity object validation rules fall into two basic categories: attribute-level and
entity-level.

Understanding the Validation Cycle

Implementing Programmatic Business Rules in Entity Objects 9-3

9.2.1.1 Attribute-Level Validation Rules
Attribute-level validations are triggered for a particular entity object attribute when
either the end user or program code attempts to modify the attribute's value. Since you
cannot determine the order in which attributes will be set, attribute-level validation
rules should be only used when the success or failure of the rule depends exclusively
on the candidate value of that single attribute.

The following examples are attribute-level validations:

■ The value of the AssignedDate of a service request should not be a date in the
past.

■ The ProdId attribute of a service request should represent an existing product.

9.2.1.2 Entity-Level Validation Rules
All other kinds of validation rules are entity-level validation rules. These are rules
whose implementation requires considering two or more entity attributes, or possibly
composed children entity rows, in order to determine the success or failure of the rule.

The following examples are attribute-level validations.

■ The value of the AssignedDate of a service request should be a data that comes
after the RequestDate.

■ The ProdId attribute of a service request should represent an existing product.

Entity-level validation rules are triggered by calling the validate() method on a
Row. This will occur when:

■ You call the method explicitly on the entity object

■ You call the method explicitly on a view row with an entity row part that is invalid

■ A view object's iterator calls the method on the current row in the view object
before allowing the current row to change

■ Transaction commit processing validates an invalid entity in the pending changes
list before proceeding with posting the changes to the database.

9.2.2 Understanding Commit Processing and Validation
Transaction commit processing happens in three basic phases:

1. Ensure any invalid entity rows on the pending changes list are valid.

2. Post the pending changes to the database by performing appropriate DML
operations.

3. Commit the transaction.

If you have business validation logic in your entity objects that executes queries or
stored procedures that depends on seeing the posted changes in the SELECT
statements they execute, they should be coded in the beforeCommit() method
described in Section 9.6.3, "Validating Conditions Related to All Entities of a Given
Type". This method fires after all DML has been applied so queries or stored
procedures invoked from that method can "see" all of the pending changes that have
been saved, but not yet committed.

Understanding the Validation Cycle

9-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

9.2.3 Avoiding Infinite Validation Cycles
If your validation rules contain code that updates attributes of the current entity or
other entities, then the act of validating the entity can cause that or other entities to
become invalid. As part of the transaction commit processing phase that attempts to
validate all invalid entities in the pending changes list, the transaction will perform up
to 10 passes on the pending changes list in an attempt to reach a state where all
pending entity rows are valid.

If after 10 passes, there are still invalid entities in the list, you will see the following
exception:

JBO-28200: Validation threshold limit reached. Invalid Entities still in cache

This is as sign that you need to debug your validation rule code to avoid inadvertently
invalidating entities in a cyclic fashion.

9.2.4 What Happens When Validations Fail
When an entity object's validation rules throw exceptions, the exceptions are bundled
and returned to the client. If the validation failures are thrown by methods you've
overridden to handle events during the transaction postChanges processing, then
the validation failures cause the transaction to rollback any database INSERT, UPDATE,
or DELETE statements that might have been performed already during the current
postChanges cycle.

9.2.5 Understanding Entity Objects Row States
When an entity row is in memory, it has an entity state that reflects the logical state of
the row. Figure 9–2 illustrates the different entity row states and how an entity row can
transition from one state to another. When a entity row is first created, its status is New.
You can use the setNewRowState() method to mark the entity as being
Initialized, which removes it from the transaction's list of pending changes until
the user sets at least one of its attributes, at which time it returns to the New state. The
Unmodified state reflects an entity that has been retrieved from the database and has
not yet been modified. It is also the state that a New or Modified entity transitions too
after the transaction successfully commits. During the transaction in which it is
pending to be deleted, an Unmodified entity row transitions to the Deleted state.
Finally, if a row that was New and got removed before the transaction commits, or
Unmodified and got successfully deleted, the row transition to the Dead state.

Caution: The transaction-level postChanges() method that exists
to force the transaction to post unvalidated changes without
committing them is not recommended for use in web applications
unless you can guarantee that the transaction will definitely be
committed or rolled-back during the same HTTP request. Failure to
heed this advice can lead to strange results in an environment where
both application modules and database connections can be pooled
and shared serially by multiple different clients.

Using Method Validators

Implementing Programmatic Business Rules in Entity Objects 9-5

Figure 9–2 Diagram of Entity Row States and Transitions

You can use the getEntityState() method to access the current state of an entity
row in your business logic code.

9.3 Using Method Validators
Method validators are the primary way Oracle recommends supplementing
declarative validation rules using your own Java code. Method validators trigger Java
code that you write in your own validation methods at the appropriate time during
the entity object validation cycle. You can add any number of attribute-level method
validators or entity-level method validators, provided they each trigger a distinct
method name in your code. All validation method names must begin with the word
validate; however, following that rule you are free to name them in any way that
most clearly identifies there functionality.

9.3.1 How to Create an Attribute-Level Method Validation

To create an attribute-level method validator:
1. Open the Entity Object Editor

2. If your entity object does not yet have a custom Java class, then first open the Java
page and enable the generation of an Entity Object Class, and click Apply to
generate the *.java file.

3. Open the Validation page and select the attribute that you want to validate.

4. Click New to add a validation rule.

5. Select the Method Validator type from the Rule dropdown list, as shown in
Figure 9–3.

Note: If you use the postChanges() method to post pending
changes without committing the transaction yet, the
getPostState() method returns the entity's state from the point of
view of it's being posted to the database or not. For example, a new
entity row that has been inserted into the database due to your calling
the postChanges()method programmatically — but which has not
yet been committed — will have a different value for
getPostState() and getEntityState(). The getPostState()
method will reflect an "Unmodified" status since the new row has
been posted, however the getEntityState() will still reflect that
the entity is New in the current transaction.

Using Method Validators

9-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The Add Validation Rule dialog displays the expected method signature for an
attribute-level validation method. You have two choices:

■ If you already have a method in your entity object's custom Java class of the
appropriate signature, it will appear in the list and you can select it after
unchecking the Create and Select Method checkbox.

■ If you leave the Create and Select Method checked, you can enter any method
name in the Method Name box that begins with the word validate and when
you click OK, JDeveloper will add that method to your entity object's custom Java
class with the appropriate signature.

Finally, supply the text of the error message for the default locale that the end user
should see if this validation rule fails.

Figure 9–3 Adding an Attribute-Level Method Validator

9.3.2 What Happens When You Create an Attribute-Level Method Validator
When you add a new method validator, JDeveloper updates the XML component
definition to reflect the new validation rule. If you asked to have the method created,
the method is added to the entity object's custom Java class. Example 9–1 illustrates a
simple attribute-level validation rule that ensures the AssignedDate of a service
request is a date in the current month. Notice that the method accepts an argument of
the same type as the corresponding attribute, and that its conditional logic is based on
the value of this incoming parameter. When the attribute validator fires, the attribute
value has not yet been set to the new value in question, so calling the
getAssignedDate() method inside the attribute validator for the AssignedDate
attribute would return the attribute’s current value, rather than the candidate value that
the client is attempting to set.

Example 9–1 Simple Attribute-Level Method Validator

// In ServiceRequestImpl.java in SRDemo Sample
public boolean validateAssignedDate(Date data) {
if (data != null && data.compareTo(getFirstDayOfCurrentMonth()) <= 0) {
return false;

}
return true;

}

Using Method Validators

Implementing Programmatic Business Rules in Entity Objects 9-7

9.3.3 How to Create an Entity-Level Method Validator

To create an entity-level method validator:
1. Open the Entity Object Editor.

2. If your entity object does not yet have a custom Java class, then first open the Java
page and enable the generation of an Entity Object Class, and click Apply to
generate the *.java file.

3. Open the Validation page and select root node in the tree that represents the entity
object itself.

4. Click New to add a validation rule.

5. Select the Method Validator type from the Rule dropdown list, as shown in
Figure 9–4.

The Add Validation Rule dialog displays the expected method signature for an
entity-level validation method. You have two choices:

■ If you already have a method in your entity object's custom Java class of the
appropriate signature, it will appear in the list and you can select it after
unchecking the Create and Select Method checkbox

■ If you leave the Create and Select Method checked, you can enter any method
name in the Method Name box that begins with the word validate and when
you click OK JDeveloper will add that method to your entity object's custom Java
class with the appropriate signature.

Finally, supply the text of the error message for the default locale that the end user
should see if this validation rule fails.

Figure 9–4 Adding an Entity-Level Method Validator

Note: The return value of the compareTo() method is zero (0) if the
two dates are equal, negative one (-1) if the first date is less than the
second, or positive one (1) if the first date is greater than the second.

Assigning Programmatically-Derived Attribute Values

9-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

9.3.4 What Happens When You Create an Entity-Level Method Validator
When you add a new method validator, JDeveloper updates the XML component
definition to reflect the new validation rule. If you asked to have the method created,
the method is added to the entity object's custom Java class. Example 9–2 illustrates a
simple entity-level validation rule that ensures the AssignedDate of a service request
comes after the RequestDate.

Example 9–2 Simple Entity-Level Method Validator

public boolean validateAssignedDateAfterRequestDate() {
Date assignedDate = getAssignedDate();
Date requestDate = getRequestDate();
if (assignedDate != null && assignedDate.compareTo(requestDate) < 0) {
return false;

}
return true;

}

9.3.5 What You Might Need To Know About Translating Validation Rule Error Messages
Like the locale-specific UI control hints for entity object attributes, the validation rule
error messages are added to the entity object's component message bundle file. These
represent the strings for the default locale for your application. To provide translated
versions of the validation error messages, follow the same steps as for translating the
UI control hints that you've seen in previous chapters.

9.3.6 What You May Need to Know About Referencing the Invalid Value in an
Attribute-Level Validation Error Message

The validation error message you supply when adding an attribute-level validation
rule can reference the invalid value by referencing the message parameter token "{3}"
in the string. The other error parameters supplied are useful for programmatic
processing of the ValidationException, but not typically useful in the message
string itself.

9.4 Assigning Programmatically-Derived Attribute Values
When declarative defaulting falls short of your needs, you can perform programmatic
defaulting in your entity object:

■ When an entity row is first created

■ When the entity row is first created or when refreshed to blank again

■ When the entity row is saved to the database

■ When an entity attribute value is set

9.4.1 Defaulting Values for New Rows at Create Time
The create() method provides the entity object event you can handle to initialize
default values the first time an entity row is created. Example 9–3 shows the
overridden create method of the ServiceHistory entity object in the SRDemo
application. It calls the attribute setter methods to populate the SvhType, CreatedBy,
and LineNo attributes in a new service history entity row.

Assigning Programmatically-Derived Attribute Values

Implementing Programmatic Business Rules in Entity Objects 9-9

Example 9–3 Programmatically Defaulting Attribute Values for New Rows

// In ServiceHistoryImpl.java in SRDemo sample
protected void create(AttributeList nameValuePair) {
super.create(nameValuePair);
setSvhType(getDefaultNoteType());
setCreatedBy(getCurrentUserId());
setLineNo(new Number(getServiceRequest().getMaxHistoryLineNumber()+1));

}

9.4.1.1 Choosing Between create() and initDefaults() Methods
If an entity row has New status and you call the refresh() method on it, if you do
not supply either the REFRESH_REMOVE_NEW_ROWS or REFRESH_FORGET_NEW_
ROWS flag, then the entity row is returned to an Initialized status. As part of this
process, the entity object's initDefaults() method is invoked, but not its
create() method again. So override the initDefaults() method for
programmatic defaulting logic that you want to fire both when the row is first created,
as well as when it might be refreshed back to initialized status.

9.4.1.2 Eagerly Defaulting an Attribute Value from a Database Sequence
Section 6.6.3.7, "Synchronization with Trigger-Assigned Values" explained how to use
the DBSequence type for primary key attributes whose values need to be populated
by a database sequence at commit time. Sometimes you may want to eagerly allocate a
sequence number at entity row creation time so that the user can see its value and so
that this value does not change when the data is saved. To accomplish this, use the
SequenceImpl helper class in the oracle.jbo.server package in an overridden
create() method as shown in Example 9–4. It shows code from the custom Java class
of the SRDemo application’s Product entity object. After calling super.create(),
it creates a new instance of the SequenceImpl object, passing the sequence name and
the current transaction object. Then it calls the setProdId() attribute setter method
with the return value from SequenceImpl’s getSequenceNumber() method.

Example 9–4 Eagerly Defaulting an Attribute’s Value from a Sequence at Create Time

// In ProductImpl.java
import oracle.jbo.server.SequenceImpl;
// Default ProdId value from PRODUCTS_SEQ sequence at entity row create time
protected void create(AttributeList nameValuePair) {
 super.create(nameValuePair);
 SequenceImpl sequence = new SequenceImpl("PRODUCTS_SEQ",getDBTransaction());
 setProdId(sequence.getSequenceNumber());
}

9.4.2 Assigning Derived Values Before Saving
If you want to assign programmatic defaults for entity object attribute values before a
row is saved, override the prepareForDML() method and call the appropriate
attribute setter methods to populate the derived attribute values. In order to perform
the assignment only during INSERT, UPDATE, or DELETE, you can compare the value
of the operation parameter passed to this method against the integer constants DML_
INSERT, DML_UPDATE, DML_DELETE respectively.

Assigning Programmatically-Derived Attribute Values

9-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 9–5 shows the overridden prepareForDML() method used by the
ServiceHistory entity object in the SRDemo application to automatically change
the status of a service request when a service history note of certain types are created.
When a new service history entry is inserted, this code changes the status of:

■ A pending or closed service request to open if the new history note is added by a
customer

■ An open service request to pending if the new history note is added by a
technician

Example 9–5 Assigning Derived Values Before Saving Using PrepareForDML

// In ServiceHistoryImpl.java
protected void prepareForDML(int operation, TransactionEvent e) {
super.prepareForDML(operation, e);
// If we are inserting a new service history entry...
if (operation == DML_INSERT) {
ServiceRequestImpl serviceReq = getServiceRequest();
String historyType = getSvhType();
// If request is pending or closed and customer adds note, status => Open
if ((serviceReq.isPending() || serviceReq.isClosed())

&& CUSTOMER_TYPE.equals(historyType)) {
serviceReq.setOpen();

}
// If request is open & technician adds a non-hidden note, status => Pending
if (serviceReq.isOpen() && TECHNICIAN_TYPE.equals(historyType)) {

serviceReq.setPending();
}

}
}

9.4.3 Assigning Derived Values When an Attribute Value is Set
To assign derived attribute values whenever another attribute’s value is set, add code
to the latter attribute’s setter method. Example 9–6 shows the setter method for the
AssignedTo attribute in the SRDemo application’s ServiceRequest entity object.
After the call to setAttributeInternal() to set the value of the AssignedTo
attribute, it uses the setter method for the AssignedDate attribute to set its value to
the current date and time.

Example 9–6 Setting the Assigned Date Whenever the AssignedTo Attribute Changes

// In ServiceRequestImpl.java
public void setAssignedTo(Number value) {
 setAttributeInternal(ASSIGNEDTO, value);
 setAssignedDate(getCurrentDateWithTime());
}

Note: It is safe to add custom code to the generated attribute getter
and setter methods as shown here. When JDeveloper modifies code in
your class, it intelligently leaves your custom code in place.

Using View Objects for Validation

Implementing Programmatic Business Rules in Entity Objects 9-11

9.5 Undoing Pending Changes to an Entity Using the Refresh Method
You can use the refresh(int flag) method on any Row to refresh pending
changes it might have. The refresh() method's behavior depends on the flag that
you pass as a parameter. The three key flag values that control its behavior are the
following constants in the Row interface.

■ REFRESH_WITH_DB_FORGET_CHANGES forgets modifications made to the row in
the current transaction and the row's data is refreshed from database. The latest
data from database replaces data in the row regardless of whether the row was
modified or not.

■ REFRESH_WITH_DB_ONLY_IF_UNCHANGED works just like REFRESH_WITH_DB_
FORGET_CHANGES, but for unmodified rows. If a row was already modified by this
transaction, the row is not refreshed.

■ REFRESH_UNDO_CHANGES works the same as REFRESH_WITH_DB_FORGET_
CHANGES for unmodified rows. For a modified row, this mode refreshes the row
with attribute values at the beginning of this transaction. The row remains in a
modified state.

9.5.1 Controlling What Happens to New Rows During a Refresh
By default, any entity rows with New status that you refresh() are reverted back to
blank rows in the Initialized state. Declarative defaults are reset, as well as
programmatic defaults coded in the initDefaults() method, but the entity object's
create() method is not invoked during this blanking-out process.

You can change this default behavior by combining one of the following two flags with
one from the above section (using the bitwise-OR operator):

■ REFRESH_REMOVE_NEW_ROWS, new rows are removed during refresh.

■ REFRESH_FORGET_NEW_ROWS, new rows are marked Dead.

9.5.2 Cascading Refresh to Composed Children Entity Rows
You can cause a refresh() operation to cascade to composed child entity rows by
bitwise-OR'ing the REFRESH_CONTAINEES flag with any of the valid flag
combinations above. This causes the entity to invoke refresh() using the same
mode on any composed child entities it contains.

9.6 Using View Objects for Validation
When your business logic requires performing SQL queries, the natural choice is to use
a view object to perform that task. Keep in mind that SQL statements you execute for
validation will "see" pending changes in the entity cache if they are entity-based view
objects; read-only view objects will only retrieve data that has been posted to the
database.

9.6.1 Creating View Objects at Runtime for Validation
Since entity objects are designed to be reused in any application scenario, they should
not depend directly on a view object instance in any specific application module's data
model. Doing so would prevent them from being reused in other application modules,
which is highly undesirable.

Using View Objects for Validation

9-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Instead, your entity object can access the root application module in which it finds
itself at runtime, and use that application module instances's createViewObject()
method to create an instance of the "validation" view object it requires. As with view
object instances added to the data model at design time, this API allows you to assign
an instance name to the view object so you can use findViewObject() to find it
again when needed.

Since the SQL-based validation code may be executed multiple times, it would not be
the most efficient approach to create the view object instance each time it's needed and
remove it when you are done using it. Instead, you can implement a helper method
like what you see in Example 9–7 to use the view object instance if it already exists, or
otherwise create it the first time it's needed. In order to ensure that the instance name
of the runtime-created view object instance will not clash with the name of any
design-time-specified ones in the data model, you can adopt the convention of
constructing a name based on the view object definition name, prefixed by a string like
"Validation_". This is just one approach. As long as the name doesn't clash with a
design time supplied name, you can use any naming scheme.

Example 9–7 Helper Method to Access View Object for Validation

/**
* Find instance of view object used for validation purposes in the
* root application module. By convention, the instance of the view
* object will be named Validation_your_pkg_YourViewObject.
*
* If not found, create it for the first time.
*
* @return ViewObject to use for validation purposes
* @param viewObjectDefName
*/
protected ViewObject getValidationVO(String viewObjectDefName) {
// Create a new name for the VO instance being used for validation
String name = "Validation_" + viewObjectDefName.replace('.', '_');
// Try to see if an instance of this name already exists
ViewObject vo = getDBTransaction().getRootApplicationModule()

.findViewObject(name);
// If it doesn't already exist, create it using the definition name
if (vo == null) {
vo = getDBTransaction().getRootApplicationModule()

.createViewObject(name,viewObjectDefName);
}
return vo;

}

With a helper method like this in place, your validation code can call
getValidationVO() and pass it the fully qualified name of the view object
definition that it wants to use. Then you can write code like what you see in
Example 9–8.

Using View Objects for Validation

Implementing Programmatic Business Rules in Entity Objects 9-13

Example 9–8 Using a Validation View Object in a Method Validator

// Sample entity-level validation method
public boolean validateSomethingUsingViewObject() {
Number numVal = getSomeEntityAttr();
String stringVal = getAnotherEntityAttr();
// Get the view object instance for validation
ViewObject vo = getValidationVO("devguide.example.SomeViewObjectName");
// Set it's bind variables (which it will typically have!)
vo.setNamedBindWhereClauseParam("BindVarOne",numVal);
vo.setNamedBindWhereClauseParam("BindVarTwo",stringVal);
vo.executeQuery();
if (/* some condition */) {
/*
* code here returns true if the validation succeeds
*/

}
return false;

}

As the sample code suggests, view objects used for validation will typically have one
or more named bind variables in them. Depending on the kind of data your view
object retrieves, the "/* some condition */" expression above will look different.
For example, if your view object's SQL query is selecting a COUNT() or some other
aggregate, the condition will typically use the vo.first() method to access the first
row, then use the getAttribute() method to access the attribute value to see what
the database returned for the count.

If the validation succeeds or fails based on whether the query has returned zero or one
row, the condition might simply test whether vo.first() returns null or not. If
vo.first() returns null, there is no "first" row. In other words, the query retrieved
no rows.

In other cases, you may be iterating over one or more query results retrieved by the
view object to determine whether the validation succeeds or fails.

9.6.2 Implementing an Efficient Existence Check
One common kind of SQL-based validation is a simple test that a candidate foreign
key value exists in a related table. This type of validation can be implemented using
the findByPrimaryKey() method on the entity definition, however that will
retrieve all attributes of the entity if the entity exists. An alternative approach to
perform a lighter-weight existing check involves using a view object for validation.

Example 9–9 shows the exists() method that the SRDemo application’s Product
entity object contains in its custom entity definition class. First, it uses a variant of the
helper method above that accepts a DBTransaction as a parameter to return the
instance of the appropriate validation view object. This is encapsulated inside the
getProductExistsVO() method in the same class.

This read-only view object used for validation is named ProductExistsById in the
oracle.srdemo.model.entities.validationqueries package. Since this
view object has a custom Java class (ProductExistsByIdImpl), the code in the
exists() method can use the strongly-typed setTheProductId() method to set
the named bind variable that the view object defines. Then the code executes the query
and sets the boolean foundIt variable based on whether a row was found, or not.

Using View Objects for Validation

9-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 9–9 Efficient Existence Check Using View Object and Entity Cache

// In ProductDefImpl.java in SRDemo sample
public boolean exists(DBTransaction t, Number productId) {
boolean foundIt = false;
ProductExistsByIdImpl vo = getProductExistsVO(t);
vo.setTheProductId(productId);
vo.setForwardOnly(true);
vo.executeQuery();
foundIt = (vo.first() != null);
/*
* If we didn't find it in the database,
* try checking against any new employees in cache
*/
if (!foundIt) {
Iterator iter = getAllEntityInstancesIterator(t);
while (iter.hasNext()) {
ProductImpl product = (ProductImpl)iter.next();
/*
* NOTE: If you allow your primary key attribute to be modifiable
* then you should also check for entities with entity state
* of Entity.STATUS_MODIFIED here as well.
*/
if (product.getEntityState() == Entity.STATUS_NEW

&& product.getProdId().equals(productId)) {
foundIt = true;
break;

}
}

}
return foundIt;

}

Even though the SRDemo application currently does not allow the end user to create
new products, it's good to implement the validation in a way that assumes the user
might be able to do this in some future screens that are implemented. The code that
follows the executeQuery() tests to see whether the candidate product ID is for a
new Product entity that exists in the cache.

Recall that since the validation view object has no entity usages, its query will only
"see" rows that are currently in the database. So, if the foundIt variable is false after
trying the database, the remaining code gets an iterator for the ProductImpl entity
rows that are currently in the cache and loops over them to see if any new Product
entity row has the candidate product ID. If it does, the exists() method still returns
true.

9.6.3 Validating Conditions Related to All Entities of a Given Type
The beforeCommit() method is invoked on each entity row in the pending changes
list after the changes have been posted to the database, but before they are committed.
This can be a perfect method in which to execute view object-based validations that
must assert some rule over all entity rows of a given type.

How to Access Related Entity Rows Using Association Accessors

Implementing Programmatic Business Rules in Entity Objects 9-15

9.7 How to Access Related Entity Rows Using Association Accessors
Often your validation rules or programmatic defaulting of derived values may require
consulting the values of associated entity rows. The association accessor methods in
your entity object custom Java class make this task extremely easy. By calling the
accessor method, you can easily access any related entity row — or RowSet of entity
rows — depending on the cardinality of the association.

Example 9–10 shows an example of programmatic defaulting logic in use in the
SRDemo application’s ServiceHistory entity object. The line number of the new
service history row is calculated by accessing the containing parent entity row of type
ServiceHistoryImpl, and invoking a helper method called
getMaxHistoryLineNumber() on it, before incrementing that value by one. If the
parent entity row is already in the cache, the association accessor accesses the row
from there. If not, it is brought into the cache using the primary key.

Example 9–10 Accessing Composing Parent Entity Row In a Create Method

// In ServiceHistoryImpl.java in SRDemo sample
protected void create(AttributeList nameValuePair) {
super.create(nameValuePair);
setSvhType(getDefaultNoteType());
setCreatedBy(getCurrentUserId());
setLineNo(new Number(getServiceRequest().getMaxHistoryLineNumber()+1));

}

Example 9–11 illustrates the code for the getMaxHistoryLineNumber() in the
ServiceRequest entity object's custom Java class. It shows another use of an
association accessor to retrieve the RowSet of children ServiceHistory rows (of
type ServiceHistoryImpl) in order to calculate the maximum value of the LineNo
attributes in the existing service history rows.

Note: If your beforeCommit() logic can throw a
ValidationException, you must set the
jbo.txn.handleafterpostexc property to true in your
configuration to have the framework automatically handle rolling
back the in-memory state of the other entity objects that may have
already successfully posted to the database (but not yet been
committed) during the current commit cycle.

How to Reference Information About the Authenticated User

9-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 9–11 Accessing Composed Children Entity Rows in a Calculation Using
Association Accessor

// In ServiceRequestImpl.java in SRDemo Sample
public long getMaxHistoryLineNumber() {
long max = 0;
RowSet histories = (RowSet)getServiceHistories();
if (histories != null) {
while (histories.hasNext()) {
long curLine = ((ServiceHistoryImpl)histories.next()).getLineNo()

.longValue();
if (curLine > max) {
max = curLine;

}
}

}
histories.closeRowSet();
return max;

}

9.8 How to Reference Information About the Authenticated User
If you have set the jbo.security.enforce runtime configuration property to the
value Must or Auth, the oracle.jbo.server.SessionImpl object provides
methods you can use to get information about the name of the authenticated user and
information about the roles of which they are a member. This is the implementation
class for the oracle.jbo.Session interface that clients can access.

9.8.1 Referencing Role Information About the Authenticated User
The oracle.jbo.Session interface provides the two methods:

■ String[] getUserRoles(), returns array of role names to which the user
belongs

■ boolean isUserInRole(String roleName), returns true if user belongs to
specified role

Your entity object code can access the Session by calling:

Session session = getDBTransaction().getSession();

Example 9–12 shows a helper method that uses this technique. It determines whether
the current user is a technician by using the isUserInRole() method to test whether
the user belongs to the technician role.

How to Reference Information About the Authenticated User

Implementing Programmatic Business Rules in Entity Objects 9-17

Example 9–12 Helper Method to Test Whether Authenticated User is in a Given Role

protected boolean currentUserIsTechnician() {
return getDBTransaction().getSession().isUserInRole("technician");

}

After refactoring the constants into a separate SRConstants class, the SRDemo
application contains helper methods like this in its base SREntityImpl class that all
entity objects in the sample extend to inherit this common functionality:

protected boolean currentUserIsTechnician() {
return getDBTransaction().getSession()

.isUserInRole(SRConstants.TECHNICIAN_ROLE);
}
protected boolean currentUserIsManager() {
return getDBTransaction().getSession()

.isUserInRole(SRConstants.MANAGER_ROLE);
}
protected boolean currentUserIsCustomer() {
return getDBTransaction().getSession()

.isUserInRole(SRConstants.USER_ROLE);
}
protected boolean currentUserIsStaffMember() {
return currentUserIsManager() || currentUserIsTechnician();

}

These are then used by the create() method to conditionally default the service
request type based on the role of the current user. The getDefaultNoteType()
helper method:

// In ServiceHistoryImpl.java in SRDemo sample
private String getDefaultNoteType() {
return currentUserIsStaffMember() ? TECHNICIAN_TYPE : CUSTOMER_TYPE;

}

is used by the ServiceHistory entity object's overridden create() method to
default the service history type based on the role of the current user.

// In ServiceHistoryImpl.java in SRDemo sample
protected void create(AttributeList nameValuePair) {
super.create(nameValuePair);
setSvhType(getDefaultNoteType());
setCreatedBy(getCurrentUserId());
setLineNo(new Number(getServiceRequest().getMaxHistoryLineNumber()+1));

}

9.8.2 Referencing the Name of the Authenticated User
In order to access the name of the authenticated user, you need to cast the Session
interface to its SessionImpl implementation class. Then you can use the
getUserPrincipalName() method. Example 9–13 illustrates a helper method you
can use in your entity object to retrieve the current user name.

Example 9–13 Helper Method to Access the Current Authenticated User Name

protected String getCurrentUserName() {
SessionImpl session = (SessionImpl)getDBTransaction().getSession();
return session.getUserPrincipalName();

}

How to Access Original Attribute Values

9-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

9.9 How to Access Original Attribute Values
If an entity attribute's value has been changed in the current transaction, when you call
the attribute getter method for it you will get this pending changed value. Using the
getPostedAttribute() method, your entity object business logic can consult the
original value for any attribute as it was read from the database before the entity row
was modified. The method takes the attribute index as an argument, so pass the
appropriate generated attribute index constants that JDeveloper maintains for you.

9.10 How to Store Information About the Current User Session
If you need to store information related to the current user session in a way that entity
object business logic can reference, you can use the user data hashtable provided by
the Session object. Consider how the SRDemo application is using it. When a new
user accesses an application module for the first time, the prepareSession()
method is called. As shown in Example 9–14, the SRService application module
overrides prepareSession() to automatically retrieve information about the
authenticated user by calling the retrieveUserInfoForAuthenticatedUser()
method on the LoggedInUser view object instance. Then, it calls the
setUserIdIntoUserDataHashtable() helper method to save the user's
numerical ID into the user data hashtable.

Example 9–14 Overriding prepareSession() to Automatically Query User Information

// In SRServiceImpl.java in SRDemo Sample
protected void prepareSession(Session session) {
super.prepareSession(session);
/*
* Automatically query up the correct row in the LoggedInUser VO
* based on the currently logged-in user, using a custom method
* on the LoggedInUser view object component.
*/
getLoggedInUser().retrieveUserInfoForAuthenticatedUser();
setUserIdIntoUserDataHashtable();

}

Example 9–15 shows the code for the LoggedInUser view object's
retrieveUserInfoForAuthenticatedUser() method. It sets its own
EmailAddress bind variable to the name of the authenticated user from the session
and then calls executeQuery() to retrieve the additional user information from the
USERS table.

Example 9–15 Accessing Authenticated User Name to Retrieve Additional User Details

// In LoggedInUserImpl.java
public void retrieveUserInfoForAuthenticatedUser() {
SessionImpl session = (SessionImpl)getDBTransaction().getSession();
setEmailAddress(session.getUserPrincipalName());
executeQuery();
first();

}

One of the pieces of information about the authenticated user that the LoggedInUser
view object retrieves is the user's numerical ID number, which that method returns as
its result. For example, the user sking has the numeric UserId of 300.

How to Access the Current Date and Time

Implementing Programmatic Business Rules in Entity Objects 9-19

Example 9–16 shows the setUserIdIntoUserDataHashtable() helper method —
used by the prepareSession() code above — that stores this numerical user ID in
the user data hashtable, using the key provided by the string constant
SRConstants.CURRENT_USER_ID.

Example 9–16 Setting Information into the UserData Hashtable for Access By Entity
Objects

// In SRServiceImpl.java
private void setUserIdIntoUserDataHashtable() {
Integer userid = getUserIdForLoggedInUser();
Hashtable userdata = getDBTransaction().getSession().getUserData();
if (userdata == null) {
userdata = new Hashtable();

}
userdata.put(SRConstants.CURRENT_USER_ID, userid);

}

Both the ServiceRequest and the ServiceHistory entity objects have an
overridden create() method that references this numerical user ID using a helper
method like the following to set the CreatedBy attribute programmatically to the
value of the currently authenticated user's numerical user ID.

protected Number getCurrentUserId() {
Hashtable userdata = getDBTransaction().getSession().getUserData();
Integer userId = (Integer)userdata.get(SRConstants.CURRENT_USER_ID);
return userdata != null ? Utils.intToNumber(userId):null;

}

9.11 How to Access the Current Date and Time
You might find it useful to reference the current date and time in your entity object
business logic. Example 9–17 shows a helper method you can use to access the current
date without any time information.

Example 9–17 Helper Method to Access the Current Date with No Time

/*
* Helper method to return current date without time
*
* Requires import: oracle.jbo.domain.Date
*/
protected Date getCurrentDate() {
return new Date(Date.getCurrentDate());

}

In contrast, if you need the information about the current time included as part of the
current date, use the helper method shown in Example 9–18.

How to Send Notifications Upon a Successful Commit

9-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 9–18 Helper Method to Access the Current Date with Time

/*
* Helper method to return current date with time
*
* Requires imports: oracle.jbo.domain.Date
* java.sql.Timestamp
*/
protected Date getCurrentDateWithTime() {
return new Date(new Timestamp(System.currentTimeMillis()));

}

9.12 How to Send Notifications Upon a Successful Commit
The afterCommit() method is invoked on each entity row that was in the pending
changes list and got successfully saved to the database. You might use this method to
send an email notification about the change in state of an entity.

9.13 How to Conditionally Prevent an Entity Row from Being Removed
The remove() method is invoked on an entity row before it is removed. You can
conditionally throw a JboException in this method to prevent a row from being
removed if the appropriate conditions are not met.

9.14 How to Implement Conditional Updatability for Attributes
You can override the isAttributeUpdateable() method in your entity object class
to programmatically determine whether a given attribute is updatable or not at
runtime based on appropriate conditions. Example 9–19 shows how the
ServiceHistory entity object in the SRDemo application overrides this method to
enforce that its SvhType attribute is updatable only if the current authenticated user is
a staff member. Notice that when the entity object fires this method, it passes in the
integer attribute index whose updatability is being considered. You implement your
conditional updatability logic for a particular attribute inside an if or switch
statement based on the attribute index. Here SVHTYPE is referencing the integer
attribute index constants that JDeveloper automatically maintains in your entity object
custom Java class.

Example 9–19 Conditionally Determining an Attribute's Updatability at Runtime

// In ServiceHistoryImpl.java
public boolean isAttributeUpdateable(int index) {
if (index == SVHTYPE) {
if (!currentUserIsStaffMember()) {
return super.isAttributeUpdateable(index);

}
return CUSTOMER_TYPE.equals(getSvhType()) ? false : true;

}
return super.isAttributeUpdateable(index);

}

Note: The entity object offers declarative prevention of deleting a
master entity row that has existing, composed children rows. You
configure this option on the Association Properties page of the
Association Editor for the composition.

Additional Resources

Implementing Programmatic Business Rules in Entity Objects 9-21

9.15 Additional Resources
The Business Rules in ADF Business Components whitepaper by Oracle Consulting
outlines a formal approach to classifying and implementing virtually every kind of
real-world business rule they have encountered in their project implementations using
Oracle ADF using ADF Business Components. You can access it from the Oracle
JHeadstart Product Center on OTN.

Note: Entity-based view objects inherit this conditional updatability
as they do everything else encapsulated in your entity objects. Should
you need to implement this type of conditional updatability logic in a
way that is specific to a transient view object attribute, or to enforce
some condition that involves data from multiple entity objects
participating in the view object, you can override this same method in
a view object's view row class to achieve the desired result.

Additional Resources

9-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Overview of Application Module Data Binding 10-1

10
Overview of Application Module Data

Binding

Using the SRDemo application's SRService as an example, this chapter describes
how an application module's active data model and business service interface methods
appear at design time for drag and drop data binding and how they are accessible at
runtime by the ADF Model data binding layer using the application module data
control.

This chapter includes the following sections:

■ Section 10.1, "Overview of Data Controls and Declarative Bindings"

■ Section 10.2, "Understanding the Application Module Data Control"

■ Section 10.3, "How an Application Module Appears in the Data Control Palette"

■ Section 10.5, "Application Module Databinding Tips and Techniques"

■ Section 10.6, "Overview of How SRDemo Pages Use the SRService"

10.1 Overview of Data Controls and Declarative Bindings
The Oracle ADF Model layer is a declarative data binding facility. It implements the
two concepts in the JSR-227 specification that enable decoupling the user interface
technology from the business service implementation: data controls and declarative
bindings. Data controls and declarative bindings enable a unified design time and
runtime approach to bind any user interface to any backend business service without
code.

10.1.1 Data Controls Abstract the Implementation Technology of a Business Service
Data controls abstract the implementation technology of a business service by using
standard metadata interfaces to describe the service's operations and data collections.
This includes information about the properties, methods, and types involved. At
design time, visual tools like JDeveloper can leverage the standard service metadata to
simplify binding UI components any data control operation or data collection. At
runtime, the generic Oracle ADF Model layer reads the information describing your
data controls and bindings from appropriate XML files and implements the two-way
"wiring" that connects your user interface to your business service.

Overview of Data Controls and Declarative Bindings

10-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

10.1.2 Bindings Connect UI Controls to Data Collections and Operations
Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations. There are three basic kinds of declarative
binding objects that automate the key aspects of data binding that all enterprise
applications require:

■ Iterator bindings, which bind to an iterator that tracks the current row in a data
collection

■ Value bindings, which connect UI components to attributes in a data collection

■ Action bindings, which invoke custom or built-it operations on a data control or its
data collections

Iterator bindings simplify building user interfaces that allow scrolling and paging
through collections of data and drilling-down from summary to detail information. UI
components that display data use value bindings. Value bindings range from the most
basic variety that works with a simple text field to more sophisticated list, table, and
tree bindings that support the additional needs of list, table, and tree UI controls. An
action binding is used by UI components like hyperlinks or buttons to invoke
methods. An action binding allows the user to click on the component to invoke a
business service without code. There are two kinds of action bindings: a regular action
binding that invokes a built-in operation, and a method action binding that invokes a
custom operation.

Figure 10–1 Bindings Connect UI Components to Data Control Collections and
Operations

Note: Value bindings are bindings that have a bound attribute value.
All value bindings implement the
oracle.binding.AttributeBinding interface. The interface for
action bindings is oracle.binding.OperationBinding. Since
both of these kinds of binding interfaces are related to UI controls,
they both extend the oracle.binding.ControlBinding interface.
The term control bindings is used in this guide to describe things that
are common to both value bindings and action bindings.

How an Application Module Appears in the Data Control Palette

Overview of Application Module Data Binding 10-3

10.2 Understanding the Application Module Data Control
The application module data control is one of the several data control implementations
supplied with Oracle ADF. Its job is to be a thin adapter over an application module
pool that automatically acquires an available application module instance at the
beginning of the request. During the current request the application module data
control holds a reference to the application module instance on behalf of the current
user session. At the end of the request, the application module data control releases
the application module instance back to the pool. Importantly, the application module
component directly implements the interfaces that the binding objects expect for data
collections, built-in operations, and service methods. This allows the bindings to work
directly with the application modules and the view object instances in its active data
model. Specifically, this optimized interaction allows:

■ Iterator bindings to directly bind to the default row set iterator of the default row
set of any view object instance

■ Action bindings to directly bind to either:

■ Custom methods on the application module's client interface

■ Built-in operations of the application module and view objects

Figure 10–2 illustrates the pool management role the application module data control
plays and highlights the direct link between the bindings and the application module
instance.

Figure 10–2 Bindings Connect Directly to View Objects and Methods of an Application
Module from a Pool

10.3 How an Application Module Appears in the Data Control Palette
At design time, you use the Data Control Palette to perform drag and drop data
binding for JSF, JSP/Struts, and Swing applications. Each application module in the
workspace appears automatically in the Data Control Palette. Using the SRService
application module from the SRDemo application as an example this section
highlights exactly what you'll see in the Data Control Palette when you work with
your own application modules.

How an Application Module Appears in the Data Control Palette

10-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

10.3.1 Overview of the SRService Application Module
Figure 10–3 shows the SRService application module that implements the business
service layer of the SRDemo application. Notice that its data model includes numerous
view object instances, including several master/detail hierarchies. The view layer of
the demo consists of JSF pages whose UI components are bound to data from the view
object instances in the SRService's active data model, and to built-in operations and
service methods on its client interface. In Section 10.6, "Overview of How SRDemo
Pages Use the SRService", you'll find an overview of exactly what aspects of this
application module each page uses.

Figure 10–3 UML Diagram of the SRDemo Application’s oracle.srdemo.model.SRService
Application Module

10.3.2 How to Change the Data Control Name Before You Begin Building Pages
By default, an application module will appear in the Data Control Palette as a data
control named AppModuleNameDataControl. For example, the SRService
originally had the name SRServiceDataControl. To change the default data
control name to a shorter, or simply more preferable name, do the following:

To change the application module name:
1. Open the application module in the Application Module Editor.

2. Open the Custom Properties page.

3. In the Name combobox, select the DATA_CONTROL_NAME property from the
dropdown list.

4. Enter your preferred data control name in the Value field and click OK to close the
wizard.

Figure 10–4 shows the custom property setting that changed the data control name of
the SRService from the default SRServiceDataControl to the shorter
SRService name that matches the name of the application module. You'll notice the
change immediately in the Data Control Palette.

How an Application Module Appears in the Data Control Palette

Overview of Application Module Data Binding 10-5

Figure 10–4 Setting the Custom Application Module Property to Override the Data
Control Name

Note that as you begin to bind data from the application module to your application
pages or panels, the data control name for your application module will appear in the
DataBindings.cpx file in your user interface project and in each data binding page
definition XML file. In addition, you might refer to the data control name in code
when needing to work programmatically with the application module service
interface. For this reason, if you plan to change the name of your application module,
Oracle recommends doing this change before you being building your view layer.

10.3.3 How the Data Model and Service Methods Appear in the Data Control Palette
Figure 10–5 illustrates how the Data Control Palette displays the view object instances
in the SRService's active data model. Each view object instance appears as a named
data collection whose name matches the view object instance name. Note the
hierarchical structure of the data collections, and that for viewing simplicity, the figure
omits some details in the tree that appear for each view object. These additional view
object details are highlighted in Section 10.3.6, "How View Objects Appear in the Data
Control Palette". The Data Control Palette reflects the master/detail hierarchies in your
application module data model by displaying detail data collections nested under
their master data collection.

The Data Control Palette also displays each custom method on the application
module's client interface as a named data control custom operation whose name
matches the method name. If a method accepts arguments, they appear in a
Parameters folder as operation parameters nested inside the operation node.

Note: In JDeveloper Release 3, if you decide to change the
application module's data control name after you have already
referenced it in one or more pages, you will need to open the page
definition files where it is referenced and update the old name to the
new name manually. Future releases of JDeveloper may extend its
refactoring support to make renaming a data control simpler.

How an Application Module Appears in the Data Control Palette

10-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 10–5 How the Active Data Model Appears in the Data Control Palette

10.3.4 How to Change View Instance Names Before You Begin Building Pages
When you initially add a view object instance to the data model, if you haven't typed
in an instance name yourself, it gets added with a name composed of the view object
name with a numeric suffix appended. For example, adding an instance of a
ServiceRequests view object to the data model, the default view object instance
name would be ServiceRequests1. You can easily rename the view object instances
in the Data Model page of the Application Module Editor.

As you begin to bind data from the data collections in the Data Control Palette to your
application pages or panels, in addition to the data control name, the data collection
names will be referenced in the page definition XML files used by the ADF Model data
binding layer. Since the names of your view object instance in the application module
data model are used as the names of these data collections, Oracle recommends
reviewing your view object instance names before using them to build data bound
pages to ensure the names are descriptive.

Note: In JDeveloper Release 3, if you decide to change a view object
instance name after you have already referenced it in one or more
pages, you will need to open the page definition files where it is
referenced and update the old name to the new name manually.
Future releases of JDeveloper may extend its refactoring support to
make renaming a view object instance simpler.

How an Application Module Appears in the Data Control Palette

Overview of Application Module Data Binding 10-7

10.3.5 How Transaction Control Operations Appear in the Data Control Palette
The application module data control exposes two data control built-in operations
named Commit and Rollback as shown in Figure 10–6. At runtime, when these
operations are invoked by the data binding layer, they delegate to the commit() and
rollback() methods of the Transaction object associated with the current
application module instance. Note that the Operations folder in the data controls tree
omits all of the data collections and custom operations for a more streamlined view.

Figure 10–6 How Transaction Control Operations Appear in the Data Control Palette

10.3.6 How View Objects Appear in the Data Control Palette
Figure 10–7 shows how each view object instance in the application module's data
model appears in the Data Control Palette. The view object attributes are displayed as
immediate child nodes of the corresponding data collection. If you have selected any
custom methods to appear on the view object's client interface, like the
performSearch() method in the figure, they appear as custom operations
immediately following the view object attribute at the same level. If the method
accepts arguments, these appear in a nested Parameters folder as operation
parameters.

Note: In an application module with many view object instances and
custom methods, you may need to scroll the Data Control Palette
display to find the Operations folder that is the direct child node of
the data control. This folder is the one that contains its built-in
operations.

How an Application Module Appears in the Data Control Palette

10-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 10–7 How View Objects Appear in the Data Control Palette

10.3.6.1 Built-in Operations for View Object Data Collections
As shown in Figure 10–7, the Operations folder under the data collection displays all
its available built-in operations. If an operation accepts one or more parameters, then
they appear in a nested Parameters folder. At runtime, when one of these data
collection operations is invoked by name by the data binding layer, the application
module data control delegates the call to an appropriate method on the ViewObject
interface to handle the built-in functionality. The built-in operations fall into three
categories: operations that affect the current row, operations that refresh the data
collection, and all other operations.

10.3.6.1.1 Operations that affect the current row

■ Create — creates a new row that becomes the current row

■ Delete — deletes the current row

■ First — sets the current row to the first row in the row set

■ Last — sets the current row to the last row in the row set

■ Previous — sets the current row to the previous row in the row set

■ Next — sets the row to the next row in the row set

■ Previous Set — navigates forward one full page of rows

■ Next Set — navigates backward one full page of rows

■ setCurrentRowWithKey — tries to finds a row using the serialized string
representation of row key passed as a parameter. If found, it becomes the current
row.

■ setCurrentRowWithKeyValue — tries to finds a row using the primary key
attribute value passed as a parameter. If found, it becomes the current row.

How an Application Module Appears in the Data Control Palette

Overview of Application Module Data Binding 10-9

10.3.6.1.2 Operations that refresh the data collection

■ Execute — refreshes the data collection by (re)executing the view object's query,
leaving any bind parameters at their current values.

■ ExecuteWithParams — refreshes the data collection by first assigning new
values to the named bind variables passed as parameters, then (re)executing the
view object's query.

10.3.6.1.3 All other operations

■ removeRowWithKey — tries to finds a row using the serialized string
representation of row key passed as a parameter. If found, the row is removed.

■ Find — toggles "Find Mode" on and off for data collection

10.3.7 How Nested Application Modules Appear in the Data Control Palette
If you build composite application modules, by including nested instances of other
application modules, the Data Control Palette reflects this component assembly in the
tree hierarchy. For example, assume that in addition to the SRDemo application’s
oracle.srdemo.model.SRService application module that you have also created
the following application modules in the same package:

■ An application module named ProductService, and renamed its data control to
ProductService

■ An application module named CompositeService, and renamed its data
control to CompositeService

Then assume that you've added two view object instances named OtherViewObject
and AnotherViewObject to the data model of CompositeService and that on
Application Modules page of the Application Module Editor you have added an
instance of the SRService application module and an instance of the
ProductMaintenance application module to reuse them as part of
CompositeService. Figure 10–8 illustrates how your CompositeService would
appear in the Data Control Palette. The nested instances of SRService and
ProductService appear in the palette tree display nested inside of the
CompositeService data control. The entire data model and set of client methods
that the nested application module instances expose to clients are automatically
available as part of the CompositeService that reuses them.

One possibly confusing point is that even though you have reused nested instances of
SRService and ProductService inside of CompositeService, the SRService
and ProductService application modules also appear themselves as top-level data
control nodes in the palette tree. JDeveloper assumes that you might want to
sometimes use SRService or ProductService on their own as a separate data
controls from CompositeService, so it displays all three of them. You need to be
careful to perform your drag and drop data binding from the correct data control. If
you want your page to use a view object instance from the nested SRService
instance's data model that is an aggregated part of the CompositeService data
control, then ensure you select the data collection that appears as part of the
CompositeService data control node in the palette.

Note: The ExecuteWithParams operation only appears for view
objects that have defined one or more named bind variables at design
time.

How to Add a Create Button on a Page

10-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 10–8 How Nested Application Modules Appear in the Data Control Palette

It is important to do the drag and drop operation that corresponds to your intended
usage. When you drop a data collection from the top-level SRService data control
node in the palette, at runtime your page will use an instance of the SRService
application module acquired from a pool of SRService components. When you drop
a data collection from the nested instance of SRService that is part of
CompositeService, at runtime your page will use an instance of the
CompositeService application module acquired from a pool of
CompositeService components. Since different types of application module data
controls will have distinct transactions and database connections, inadvertently
mixing and matching data collections from both a nested application module and a
top-level data control will lead to unexpected runtime behavior. Forewarned is
forearmed.

10.4 How to Add a Create Button on a Page
To add a Create button, drag and drop a Create operation for a data collection from
the Data Control Palette onto a JSP page or Swing panel.

10.4.1 What Happens When You Drop a Create Button on a Web Page
If you drag a Create operation for a data collection from the Data Control Palette
onto a JSP page — whether using JSF or not — you'll get a Create button on your page
that is declaratively bound to the built-in Create operation. The Create operation
creates a new row for the data collection, but does not insert it into the data collection's
row set. By not inserting the new row into the row set at creation time, it helps avoid
having an unwanted blank row appear in other pages should the user navigate away
from your create page before actually entering any data for the new row. After you've

Note: The built-in Create operation behaves differently in a
web-based application than in a Swing-based desktop application. For
web applications, depending on the situation, you may want to use
CreateInsert instead of Create.

How to Add a Create Button on a Page

Overview of Application Module Data Binding 10-11

invoked a Create operation, the iterator binding temporarily points to this new row
as if it were the current row. When the user successfully submits data for the attributes
in the new row, the new row gets inserted into the row set at that time. This is the
declarative row creation approach that works best for most web application use cases.

10.4.2 What Happens When You Drop a Create Operation Onto a Swing Panel
If you drag a Create operation for a data collection from the Data Control Palette
onto a Swing panel, you'll get a Create button on your panel that is declaratively
bound to a built-in operation called CreateInsert instead. The CreateInsert
operation creates a new row in the data collection and inserts that new row into the
collection just before the current row. CreateInsert is the best approach for Swing
applications.

10.4.3 When to Use CreateInsert Instead of Create
There are some situations in a web application where you need to use CreateInsert
instead of Create. Use CreateInsert when creating:

■ An editable table control

■ A table with a single, current editable row

■ A Master/detail page and want the newly created master row to correctly show
no existing detail rows

CreateInsert is used when a new row needs to be inserted into the row set. Since
only the one Create operation shows in the Data Control Palette, to use a
CreateInsert operation in a web application involves a couple of additional steps.

How to Change a Create Operation to CreateInsert:
1. Drop the Create operation from the Data Control Palette onto your page

2. Select the button in the visual editor and choose Edit Binding... from the context
menu

3. In the Action Binding Editor use the Select an Action dropdown list to change
the action binding from using the Create to using CreateInsert instead.

10.4.4 What You May Need to Know About Create and CreateInsert
When you use the Create or CreateInsert operations to declaratively create a new
row, under the covers they end up performing the following lines of code:

// create a new row for the view object
Row newRow = yourViewObject.createRow();
// mark the row as being "initialized", but not yet new
newRow.setNewRowState(Row.STATUS_INITIALIZED);

In addition, if you are using the CreateInsert operation, it performs the additional
line of code to insert the row into the row set:

// insert the new row into the view object's default rowset
yourViewObject.insertRow(newRow);

When you create a row in an entity-based view object, the Transaction object
associated to the current application module immediately takes note of the fact. The
new entity row that gets created behind the view row is already part of the
Transaction's list of pending changes. When a newly created row is marked as
having the initialized state, it is removed from the Transaction's pending changes

Application Module Databinding Tips and Techniques

10-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

list and is considered a blank row in which the end user has not yet entered any data
values. The term initialized is appropriate since the end user will see the new row
initialized with any default values that the underlying entity object has defined. If the
user never enters any data into any attribute of that initialized row, then it is as if the
row never existed. At transaction commit time, since that row is not part of the
Transaction's pending changes list, no INSERT statement will be attempted for it.

As soon as at least one attribute in an initialized row is set, it automatically transitions
from the initialized status to the new status (Row.STATUS_NEW). At that time, the
underlying entity row gets enrolled in the Transaction's list of pending changes,
and the new row will be permanently saved the next time you commit the transaction.

10.5 Application Module Databinding Tips and Techniques

10.5.1 How to Create a Record Status Display
When building pages you’ll often want to display some kind of record status indicator
like: "Record 5 of 25". If you display multiple rows on a page, then you may also want
to display a variant like "Record 5-10 of 25". You can build a record indicator like this
using simple text components, each of which displays an appropriate value from an
iterator binding or table binding using an EL expression. The iterator binding’s
rangeSize property defines how many rows per page it makes available to display
in the user interface. If your page definition contains either an iterator binding named
SomeViewIter or a table binding named SomeView, you can reference the following
EL expressions:

■ Number of Rows per Page

#{bindings.SomeViewIter.rangeSize}

#{bindings.SomeView.rangeSize}

■ Total Rows

#{bindings.SomeViewIter.estimatedRowCount}

#{bindings.SomeView.estimatedRowCount}

■ First Row on the Current Page

#{bindings.SomeViewIter.rangeStart + 1}

#{bindings.SomeView.rangeStart + 1}

■ Last Row on the Current Page

#{bindings.SomeViewIter.rangeStart +
bindings.SomeViewIter.rangeSize}

#{bindings.SomeView.rangeStart + bindings.SomeView.rangeSize}

Note: If the end user performs steps while using your application
that result in creating many initialized rows but never populating
them, it might seem like a recipe for a slow memory leak. Not to
worry, however. The memory used by an initialized row that never
transitions to the new state will eventually be reclaimed by the Java
virtual machine's garbage collector.

Application Module Databinding Tips and Techniques

Overview of Application Module Data Binding 10-13

■ Current Row Number

#{bindings.SomeViewIter.rangeStart +
bindings.SomeViewIter.currentRowIndexInRange + 1}

#{bindings.SomeView.currentRowIndex + 1}

10.5.2 How to Work with Named View Object Bind Variables
When a view object has named bind variables, an additional ExecuteWithParams
operation appears in the corresponding data collection's Operations folder. As shown
in Figure 10–9, this built-in operation accepts one parameter corresponding to each
named bind variable. For example, the StaffListByEmailNameRole view object in
the figure has four named bind variables — EmailAddress, Role, TheFirstName,
and TheLastName — so the parameters appear for the ExecuteWithParams action
having these same names. At runtime, when the ExecuteWithParams built-in
operation is invoked by name by the data binding layer, each named bind variable
value is set to the respective parameter value passed by the binding layer, and then the
view object's query is executed to refresh its row set of results.

Figure 10–9 Work with Named Bind Variables Using Either a Built-in or Custom
Operation

An alternative approach, also shown in Figure 10–9, involves creating a custom view
object "finder" method that accepts the arguments you want to allow the user to set
and then including this method on the client interface of the view object in the View
Object Editor. Example 10–1 shows what the code for such a custom method would
look like. It is taken from the StaffListByEmailNameRole view object in the
SRDemo application. Notice that due to the application module's active data model,
the method does not need to return the data to the client. The method has a void
return type, sets the bind variable values to the parameter values passed into the
method using the generated bind variable accessor methods setEmailAddress(),
setRole(), setTheFirstName(), and setTheLastName(). Then, it calls
executeQuery() to execute the query to refresh the view object's row set of results.

Application Module Databinding Tips and Techniques

10-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 10–1 Custom View Object Method Sets Named Bind Variables and Executes
Query

// From SRDemo Sample's StaffListByEmailNameRoleImpl.java
public void findStaffByEmailNameRole(String email,

String firstName,
String lastName,
String role)

{
setEmailAddress(email);
setRole(role);
setTheFirstName(firstName);
setTheLastName(lastName);
executeQuery();

}

Both of these approaches accomplish the same end result. Both can be used with equal
ease from the Data Control Palette to create a search form. The key differences
between the approaches are the following:

Using the built-in ExecuteWithParams operation
■ You don't need to write code since it's a built-in feature.

■ You can drop the operation from the Data Control Palette to create an ADF Search
Form to allow users to search the view object on the named bind variable values.

■ Your search fields corresponding to the named bind variables inherit bind
variables UI control hints for their label text that you can define as part of the view
object component.

Using the custom View Object "finder" operation
■ You need to write a little custom code, but you see a top-level operation in the

Data Control Palette whose name can help clarify the intent of the find operation.

■ You can drop the custom operation from the Data Control Palette to create an
ADF Search Form to allow users to search the view object on the parameter
values.

■ Your search fields corresponding to the method arguments do not inherit label
text UI control hints you define on the view object's named bind variables
themselves. Instead, you need to define UI control hints for their label text by
using the Properties... choice from the context menu of the page definition
variable corresponding to the method argument as shown in Figure 10–10.

Figure 10–10 Accessing Properties of Page Definition Variables to Set UI Control Hints

Application Module Databinding Tips and Techniques

Overview of Application Module Data Binding 10-15

In short, it's good to be aware of both approaches and you can decide for yourself
which approach you prefer. As described in Section 10.6.5, "The SRStaffSearch Page",
while the StaffListByEmailNameRole view object contains the above
findStaffByEmailNameRole() custom method for educational purposes, the
demo's JSF page uses the declarative ExecuteWithParams built-in action.

10.5.3 How to Use Find Mode to Implement Query-by-Example
In the ADF Model layer, an iterator binding supports a feature called "find mode"
when working with data collections that support query-by-example. As cited in
Section 5.8, "Filtering Results Using Query-By-Example View Criteria", view objects
support query-by-example when view criteria row set of view criteria rows has been
applied. The view criteria rows have the same structure as the rows in the view object,
but the datatype of each attribute is String to allow criteria like "> 304" or "IN
(314,326)" to be entered as search criteria.

In support of the find mode feature, an iterator binding has a boolean findMode
property that defaults to false. As shown in Figure 10–11, when findMode is false
the iterator binding points at the row set containing the rows of data in the data
collection. In contrast, when you set findMode to true the iterator binding switches
to point at the row set of view criteria rows.

Figure 10–11 When Find Mode is True, Iterator Binding Points at ViewCriteria Row Set
Instead

In the binding layer, action bindings that invoke built-in data control operations are
associated to an iterator binding in the page definition metadata. This enables the
binding layer to apply an operation like Create or Delete, for example, to the
correct data collection at runtime. When an operation like Create or Delete is
invoked for an iterator binding that has findMode set to false, these operations
affect the row set containing the data. In contrast, if the operations are invoked for an
iterator binding that has findMode set to true, then they affect the row set
containing the view criteria row, effectively creating or deleting a row of
query-by-example criteria.

The built-in Find operation allows you to toggle an iterator binding's findMode flag.
If an iterator binding's findMode is false, invoking the Find operation for that
iterator binding sets the flag to true. The UI components that are bound to attribute
bindings related to this iterator switch accordingly to displaying the current view
criteria row in the view criteria row set. If the user modifies the values of UI
components while their related iterator is in find mode, the values are applied to the
view criteria row in the view criteria row set. If you invoke the Execute or
ExecuteWithParams built-in operation on an iterator that is in find mode, each will
first toggle find mode to false, apply the find mode criteria, and refresh the data
collection.

Application Module Databinding Tips and Techniques

10-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

If an iterator binding's findMode is true invoking the Find operation sets it to
false and removes the view criteria rows in the view criteria row set. This effectively
cancels the query-by-example mode.

10.5.4 How to Customize the ADF Page Lifecycle to Work Programmatically with
Bindings

The ADF Controller layer integrates the JSF page lifecycle with the ADF Model data
binding layer. You can customize this integration either globally for your entire
application, or on a per-page basis. This section highlights some tips related to how
the SRDemo application illustrates using both of these techniques.

10.5.4.1 Globally Customizing the ADF Page Lifecycle
To globally customize the ADF Page Lifecycle, do the following:

■ Create a class that extends
oracle.adf.controller.faces.lifecycle.FacesPageLifecycle

■ Create a class that extends ADFPhaseListener and overrides the
createPageLifecycle() method to return an instance of your custom page
lifecycle class.

■ Change your faces-config.xml file to use your subclass of
ADFPhaseListener instead of the default ADFPhaseListener. As shown in
Figure 10–12, you can do this on the Overview tab of the JDeveloper
faces-config.xml editor, in the Life Cycle category.

Figure 10–12 Setting Up a Custom ADFPhaseListener To Install a Custom Page
Lifecycle Globally

The SRDemo application includes a SRDemoPageLifecycle class that globally
overrides the reportErrors() method of the page lifecycle to change the default
way that exceptions caught and cached by the ADF Model layer are reported to JSF.
The changed implementation reduces the exceptions reported to the user to include
only the exceptions that they can directly act upon, suppressing additional "wrapping"
exceptions that will not make much sense to the end user.

Note: Make sure to replace the existing ADFPhaseListener with your
custom subclass of ADFPhaseListener, or everything in the JSF / ADF
lifecycle coordination will happen twice!

Application Module Databinding Tips and Techniques

Overview of Application Module Data Binding 10-17

10.5.4.2 Customizing the Page Lifecycle for a Single Page
You can customize the lifecycle of a single page setting the ControllerClass
attribute of the <pageDefinition> to identify a class that either:

■ Extends oracle.adf.controller.v2.PageController class

■ Implements oracle.adf.controller.v2.PagePhaseListener interface

The value of the page definition's ControllerClass attribute can either be:

■ A fully qualified class name

■ An EL expression that resolves to a class that meets the requirements above

Using an EL expression for the value of the ControllerClass, it is possible to
specify the name of a custom page controller class (or page phase listener
implementation) that you've configured as a managed bean in the
faces-config.xml file. This includes a backing bean for a JSF page, provided that it
either extended PageController or implements PagePhaseListener.

Figure 10–13 illustrates how to select the root node of the page definition in the
Structure window to set.

Figure 10–13 Setting the ControllerClass of a Page Definition

10.5.4.3 Using Custom ADF Page Lifecycle to Invoke an onPageLoad Backing
Bean Method
The SRDemo application contains a OnPageLoadBackingBeanBase class in the
oracle.srdemo.view.util package that implements the PagePhaseListener
interface described above using code like what's shown in Example 10–2. The class
implements the interface's beforePhase() and afterPhase() methods so that in
invokes an onPageLoad() method before the normal ADF prepare model phase, and
an onPagePreRender() method after the normal ADF prepare render phase.

Note: When using an EL expression for the value of the
ControllerClass attribute, the Structure window may show a
warning, saying the "#{YourExpression}" is not a valid class. You
can safely ignore this warning.

Application Module Databinding Tips and Techniques

10-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 10–2 PagePhaseListener to Invoke an onPageLoad() and onPagePreRender()
Method

// In class oracle.srdemo.view.util.OnPageLoadBackingBeanBase
/**
* Before the ADF page lifecycle's prepareModel phase, invoke a
* custom onPageLoad() method. Subclasses override the onPageLoad()
* to do something interesting during this event.
* @param event
*/
public void beforePhase(PagePhaseEvent event) {
FacesPageLifecycleContext ctx =
(FacesPageLifecycleContext)event.getLifecycleContext();

if (event.getPhaseId() == Lifecycle.PREPARE_MODEL_ID) {
bc = ctx.getBindingContainer();
onPageLoad();
bc = null;

}
}
/**
* After the ADF page lifecycle's prepareRender phase, invoke a
* custom onPagePreRender() method. Subclasses override the onPagePreRender()
* to do something interesting during this event.
* @param event
*/
public void afterPhase(PagePhaseEvent event) {
FacesPageLifecycleContext ctx =
(FacesPageLifecycleContext)event.getLifecycleContext();
if (event.getPhaseId() == Lifecycle.PREPARE_RENDER_ID) {
bc = ctx.getBindingContainer();
onPagePreRender();
bc = null;

}
}
public void onPageLoad() {
// Subclasses can override this.

}
public void onPagePreRender() {
// Subclasses can override this.

}

If a managed bean extends the OnPageLoadBackingBeanBase class, then it can be
used as an ADF page phase listener because it inherits the implementation of this
interface from the base class. If that backing bean then overrides either or both of the
onPageLoad() or onPagePreRender() method, that method will be invoked by
the ADF Page Lifecycle at the appropriate time during the page request lifecycle. The
last step in getting such a backing bean to work, is to tell the ADF page definition to
use the backing bean as its page controller for that page. As described above, this is
done by setting the ControllerClass attribute on the page definition in question to
an EL expression that evaluates to the backing bean.

The SRMain page in the SRDemo application uses the technique described in this
section to illustrate writing programmatic code in the onPageLoad() method of the
SRMain backing bean in the oracle.srdemo.view.backing package. Since that
backing bean is named backing_SRMain in faces-config.xml, the
ControllerClass property of the SRMain page's page definition is set to the EL
expression "#{backing_SRMain}".

Application Module Databinding Tips and Techniques

Overview of Application Module Data Binding 10-19

10.5.5 How to Use Refresh Correctly for InvokeAction and Iterator Bindings
Figure 10–14 illustrates how the JSF page lifecycle relates to the extended page
processing phases that the ADF page lifecycle adds. You can use the Refresh
property on iterator bindings and invokeAction executables in your page definition
to control when each are evaluated during the ADF page lifecycle, either during the
prepareModel phase, the prepareRender phase, or both. Since the term "refresh" isn't
exactly second-nature, this section clarifies what it means for each kind of executable
and how you should set their Refresh property correctly to achieve the behavior you
need.

Figure 10–14 How JSF Page Lifecycle and ADF Page Lifecycle Phases Relate

10.5.5.1 Correctly Configuring the Refresh Property of Iterator Bindings
In practice, when working with iterator bindings for view object instances in an
application module, you can simply leave the default setting of Refresh="ifNeeded".
You may complement this with a boolean-valued EL expression in the
RefreshCondition property to conditionally avoid refreshing the iterator if desired.
However, you may still be asking yourself, "What does refreshing an iterator binding
mean anyway?"

An iterator binding, as its name implies, is a binding that points to an iterator. For
scalability reasons, at runtime the iterator bindings in the binding container release
any reference they have to a row set iterator at the end of each request. During the
next request, the iterator bindings are refreshed to again point at a "live" row set
iterator that is tracking the current row of some data collection. The act of refreshing an
ADF iterator binding during the ADF page lifecycle is precisely the operation of
accessing the row set iterator to "reunite" the binding to the row set iterator to which it
is bound.

If an iterator binding is not refreshed during the lifecycle, it is not pointing to any row
set iterator for that request. This results in the value bindings related to that iterator
binding not having any data to display. This can be a desirable result, for example, if
you want a page like a search page to initially show no data. To achieve this, you can
use the RefreshCondition of:

#{adfFacesContext.postback == true}

Application Module Databinding Tips and Techniques

10-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The adfFacesContext.postback boolean property evaluates to false when a
page is first rendered, or rendered due to navigation from another page. It evaluates to
true when the end user has interacted with some UI control on the page, causing a
postback to that page to handle the event. By using this expression as the
RefreshCondition for a particular iterator binding, it will refresh the iterator
binding only when the user interacts with a control on the page.

The valid values for the Refresh property of an iterator binding are as follows. If you
want to refresh the iterator during:

■ Both the prepareModel and prepareRender phases, use Refresh="ifNeeded"
(default)

■ Just during the prepareModel phase, use Refresh="prepareModel"

■ Just during the prepareRender phase, use Refresh="renderModel"

If you only want the iterator binding to refresh when your own code calls
getRowSetIterator() on the iterator binding, set Refresh="never". Other values
of Refresh are either not relevant to iterator bindings, or reserved for future use.

10.5.5.2 Refreshing an Iterator Binding Does Not Forcibly Re-Execute Query
It is important to understand that when working with iterator bindings related to a
view object instance in an application module, refreshing an iterator binding does not
forcibly re-execute its query each time. The first time the view object instance's row set
iterator is accessed during a particular user's unit of work, this will implicitly execute
the view object's query if it was not already executed. Subsequent refreshing of the
iterator binding related to that view object instance on page requests that are part of
the same logical unit of work will only access the row set iterator again, not forcibly
re-execute the query. Should you desire re-executing the query to refresh its data, use
the Execute or ExecuteWithParams built-in operation, or programmatically call
the executeQuery() method on the iterator binding.

10.5.5.3 Correctly Configuring Refresh Property of InvokeAction Executables
Several page definitions in the SRDemo application use the declarative
invokeAction binding to trigger either built-in operations or custom operations
during this extended ADF page processing lifecycle. Each invokeAction has an id
property that give the binding a name, and then three other properties of interest:

■ The Binds property controls what the invokeAction will do if it fires

Its value is the name of an action binding or method action binding in the same
binding container.

■ The Refresh property controls when the invokeAction will invoke the action
binding

To have it fire during the ADF page lifecycle's:

■ prepareModel phase, use Refresh=prepareModel

■ prepareRender phase, use Refresh=renderModel

■ prepareModel and prepareRender phases, use Refresh=ifNeeded

■ The RefreshCondition property can be used to control whether it will fire at all

Its value, if supplied, is a boolean-valued EL expression. If the expression
evaluates to true when the invokeAction is considered during the page
lifecycle, the related action binding is invoked. If it evaluates to false, then the
action binding is not invoked.

Application Module Databinding Tips and Techniques

Overview of Application Module Data Binding 10-21

Notice in Figure 10–14 that the key distinction between the ADF prepareModel phase
and the prepareRender phase is that one comes before JSF's invokeApplication phase,
and one after. Since JSF's invokeApplication phase is when action listeners fire, if you
need your invokeAction to trigger after these action listeners have performed their
processing, you'll want to use the Refresh="renderModel" setting on it.

If the invokeAction binds to a method action binding that accepts parameters, then
two additional values can be supplied for the Refresh property:
prepareModelIfNeeded and renderModelIfNeeded. These have the same
meaning as their companion settings without the *IfNeeded suffix, except that they
perform an optimization to compare the current set of evaluated parameter values
with the set that was used to invoke the method action binding the previous time. If
the parameter values for the current invocation are exactly the same as the ones used
previously, the invokeAction does not invoke its bound method action binding.

10.5.6 Understanding the Difference Between setCurrentRowWithKey and
setCurrentRowWithKeyValue

You can call the getKey() method on any view row get a Key object that
encapsulates the one or more key attributes that identify the row. As you've seen in
various examples, you can also use a Key object like this to find a view row in a row
set using the findByKey(). At runtime, when either the setCurrentRowWithKey
or the setCurrentRowWithKeyValue built-in operations is invoked by name by the
data binding layer, the findByKey() method is used to find the row based on the
value passed in as a parameter before setting the found row as the current row.

Confusingly, as shown in Figure 10–15, the setCurrentRowWithKey and
setCurrentRowWithKeyValue operations both expect a parameter named rowKey,
but they differ precisely by what each expects that rowKey parameter value to be at
runtime:

Note: Other values of the Refresh property not described here are
reserved for future use.

Note: The default value of the Refresh property is ifNeeded. This
means that if you do not supply a RefreshCondition expression to
further refine its firing, the related action binding will be invoked
twice during each request. Oracle recommends either adding an
appropriate RefreshCondition expression (if you want it evaluated
during both phases) or changing the default Refresh setting for
invokeAction bindings to either prepareModel or renderModel,
depending on whether you want your invokeAction to occur before
or after the JSF invokeApplication phase.

Application Module Databinding Tips and Techniques

10-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

setCurrentRowWithKey
setCurrentRowWithKey expects the rowKey parameter value to be the serialized
string representation of a view row key. This is a hexadecimal-encoded string that looks
like this:

000200000002C20200000002C102000000010000010A5AB7DAD9

The serialized string representation of a key encodes all of the key attributes that
might comprise a view row's key in a way that can be conveniently passed as a single
value in a browser URL string or form parameter. At runtime, if you inadvertently
pass a parameter value that is not a legal serialized string key, you may receive
exceptions like oracle.jbo.InvalidParamException or
java.io.EOFException as a result. In your web page, you can access the value of
the serialized string key of a row by referencing the rowKeyStr property of an ADF
control binding (e.g. #{bindings.SomeAttrName.rowKeyStr}) or the row
variable of an ADF Faces table (e.g. #{row.rowKeyStr}).

setCurrentRowWithKeyValue
setCurrentRowWithKeyValue expects the rowKey parameter value to be the literal
value representing the key of the view row. For example, it's value would be simply
"201" to find service request number 201.

Figure 10–15 The setCurrentRowWithKeyValue Operation Expects a Literal Attribute
Value as the Key

Note: If you write custom code in an application module class and
need to find a Row based on a serialized string key passed from the
client, you can use the getRowFromKey() method in the JboUtil
class in the oracle.jbo.client package:

static public Row getRowFromKey(RowSetIterator rsi, String sKey)

Pass the view object instance in which you'd like to find the row as the
first parameter, and the serialized string format of the Key as the
second parameter.

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-23

10.5.7 Understanding Bundled Exception Mode
An application module provides a feature called bundled exception mode which
allows web applications to easily present a maximal set of failed validation exceptions
to the end user, instead of presenting only the first error that gets raised. By default,
the ADF Business Components application module pool enables bundled exception
mode for web applications.

You typically will not need to change this default setting. However it is important to
understand that it is enabled by default since it effects how validation exceptions are
thrown. Since the Java language and runtime only support throwing a single exception
object, the way that bundled validation exceptions are implemented is by wrapping a
set of exceptions as details of a new "parent" exception that contains them. For
example, if multiple attributes in a single entity object fail attribute-level validation,
then these multiple ValidationException objects will be wrapped in a
RowValException. This wrapping exception contains the row key of the row that
has failed validation. At transaction commit time, if multiple rows do not successfully
pass the validation performed during commit, then all of the RowValException
objects will get wrapped in an enclosing TxnValException object.

When writing custom error processing code, as illustrated by the overridden
reportErrors() method in the SRDemoPageLifecycle class in the SRDemo
application, you can use the getDetails() method of the JboException base
exception class to recursively process the bundled exceptions contained inside it.

10.6 Overview of How SRDemo Pages Use the SRService
This section provides a brief overview of how each page in the SRDemo application
uses the SRService application module's view object instances and service methods.

10.6.1 The SRList Page

10.6.1.1 Overview of Data Binding in the SRList Page
Figure 10–16 illustrates the data binding for SRList page.

Iterator Bindings to View Object Instances
ServiceRequestsByStatusIterator for ServiceRequestsByStatus view
object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
setCurrentRowWithKey, ExecuteWithParams related to the
ServiceRequestsByStatusIterator iterator binding

Method Action Bindings to Custom Operations
None

InvokeActions Customizing Page Lifecycle
None

Note: All the exception classes mentioned here are in the
oracle.jbo package.

Overview of How SRDemo Pages Use the SRService

10-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 10–16 View Object for SRList Page

10.6.1.2 Business Service Notes for the SRList Page

View Object Instances
ServiceRequestsByStatus is an instance of the entity-based view object
ServiceRequestsByStatus, which extends the ServiceRequests view object
and adds a named bind variable called StatusCode.

Application Module Custom Methods
None

10.6.2 The SRMain Page

10.6.2.1 Overview of Data Binding in the SRMain Page
Figure 10–17 illustrates the data binding for the SRMain page.

Iterator Bindings to View Object Instances
■ ServiceRequestsIterator for ServiceRequests view object instance

■ ServiceHistoriesIterator for ServiceHistories view object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
■ setCurrentRowWithKey, Delete related to the ServiceRequestsIterator

iterator binding

■ Create, DeleteNewHistory (for Delete built-in) related to the
ServiceHistoriesIterator iterator binding

■ Commit related to the SRService data control

Method Action Bindings to Custom Operations
deleteServiceHistoryNotes invokes deleteServiceHistoryNotes()
method on the SRService client interface

InvokeActions Customizing Page Lifecycle
None

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-25

Figure 10–17 Service Method and View Objects for the SRManage Page

10.6.2.2 Business Service Notes for the SRMain Page

View Object Instances
■ ServiceRequests is an instance of the entity-based view object

ServiceRequests. It joins data from the main ServiceRequest entity usage
and three additional reference entity usages: CreatedByUser (User entity
object), AssignedToUser (User entity object), and Product. The
ServiceRequests view object is linked master/detail to the
ServiceHistories view object.

■ ServiceHistories is an instance of the entity-based view object
ServiceHistories. It joins data from the main ServiceHistory entity usage
and an additional reference entity usage SystemUser (User entity object). It is an
XML-only view object, with no custom Java class.

Application Module Custom Methods
As shown in Example 10–3, the deleteServiceHistoryNotes() method deletes
service history note rows corresponding to the Key objects in the key set passed as an
argument.

Note: The SRMain backing bean for the SRMain page (in the
oracle.srdemo.view.backing package) is using the technique
described in Section 10.5.4.3, "Using Custom ADF Page Lifecycle to
Invoke an onPageLoad Backing Bean Method" to programmatically
accomplish exactly the same thing that the SREdit page is doing
declaratively.

Overview of How SRDemo Pages Use the SRService

10-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 10–3 DeleteServiceHistoryNotes Method in SRServiceImpl.java

public void deleteServiceHistoryNotes(Set keySet) {
if (keySet != null) {
ViewObject histories = getServiceHistories();
for (Key k: (Set<Key>)keySet) {
Row[] rowToDelete = histories.findByKey(k, 1);
if (rowToDelete == null || rowToDelete.length == 0) {
throw new JboException("Failed to find row with serialized key" +

k.toStringFormat(false));
}
rowToDelete[0].remove();
getDBTransaction().commit();

}
}

}

10.6.3 The SREdit Page

10.6.3.1 Overview of Data Binding in the SREdit Page
Figure 10–18 illustrates the data binding in the SREdit page.

Iterator Bindings to View Object Instances
■ ServiceRequestsIterator for ServiceRequests view object instance

■ ServiceRequestStatusListIterator for ServiceRequestStatusList
view object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
■ setCurrentRowWithKey related to the ServiceRequestsIterator iterator

binding

■ Commit related to the SRService data control

Method Action Bindings to Custom Operations
cancelEditsToCurrentServiceRequest invokes
cancelEditsToCurrentServiceRequest() on the SRService client interface

InvokeActions Customizing Page Lifecycle
setRowToEditFromRequestParameter invokes the built-in
setCurrentRowWithKey operation in prepare model phase
(Refresh="prepareModel") when first navigating to the page (i.e. not processing a
postback) and processScope.rowKeyStr attribute is not set
(RefreshCondition="${adfFacesContext.postback == false and not empty
processScope.rowKeyStr}").

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-27

Figure 10–18 Service Method and View Objects for the SREdit Page

10.6.3.2 Business Service Notes for the SREdit Page

View Object Instances
■ ServiceRequests is an instance of the entity-based view object

ServiceRequests. It joins data from the main ServiceRequest entity usage
and three additional reference entity usages: CreatedByUser (User entity
object), AssignedToUser (User entity object), and Product.

■ ServiceRequestStatusList is an instance of the read-only view object
ServiceRequestStatusList. Its data is provided by a static list supplied in
the ServiceRequestStatusListImpl.java class. This class extends a
SRStaticDataViewObjectImpl in the FrameworkExtensions project which
provides the basic support for implementing a view object based on static data.

Application Module Custom Methods
As shown in Example 10–4, the cancelEditsToCurrentServiceRequest()
method uses the refresh() method to cancel edits made in the current transaction to
the current service request row.

Example 10–4 CancelEditsToCurrentServiceRequest Method in SRServiceImpl.java

public void cancelEditsToCurrentServiceRequest() {
Row svReq = getServiceRequests().getCurrentRow();
if (svReq != null) {
svReq.refresh(Row.REFRESH_WITH_DB_FORGET_CHANGES);

}
}

Overview of How SRDemo Pages Use the SRService

10-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

10.6.4 The SRSearch Page

10.6.4.1 Overview of Data Binding in the SRSearch Page
Figure 10–19 illustrates the data binding in the SRSearch page.

Iterator Bindings to View Object Instances
■ SearchServiceRequestsIterator for SearchServiceRequests view

object instance (Forced to stay in find mode by AlwaysFind invokeAction).

■ SearchServiceRequestsResultsIterator for SearchServiceRequests
view object instance

■ ServiceRequestStatusListIterator for ServiceRequestStatusList
view object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
■ Execute, Delete, Create related to the SearchServiceRequestsIterator

iterator binding

■ Find, First, Next, Previous, Last, setCurrentRowWithKey related to the
SearchServiceRequestsResultsIterator iterator binding

Method Action Bindings to Custom Operations
None

InvokeActions Customizing Page Lifecycle
■ AlwaysFind invokes the built-in Find operation (for the

SearchServiceRequestsIterator iterator binding) in either prepare model
or render model phases (Refresh="ifNeeded") when the
SearchServiceRequestsIterator is not in find mode (
${bindings.SearchServiceRequestsIterator.findMode == false})

■ insertBlankViewCriteriaRowIfThereAreNone invokes the built-in
Create operation in either prepare model or render model phases
(Refresh="ifNeeded") when the SearchServiceRequestsIterator is not in
find mode (${bindings.SearchServiceRequestsIterator.findMode ==
false})

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-29

Figure 10–19 View Object for the SRSearch Page

10.6.4.2 Business Service Notes for the SRSearch Page

View Object Instances
■ SearchServiceRequests is an instance of the entity-based view object

ServiceRequests. It joins data from the main ServiceRequest entity usage
and three additional reference entity usages: CreatedByUser (User entity
object), AssignedToUser (User entity object), and Product.

■ ServiceRequestStatusList is an instance of the read-only view object
ServiceRequestStatusList. Its data is provided by a static list supplied in
the ServiceRequestStatusListImpl.java class. This class extends a
SRStaticDataViewObjectImpl in the FrameworkExtensions project which
provides the basic support for implementing a view object based on static data.

Application Module Custom Methods
None

10.6.5 The SRStaffSearch Page

10.6.5.1 Overview of Data Binding in the SRStaffSearch Page
Figure 10–20 illustrates the data binding for the SRStaffSearch page.

Iterator Bindings to View Object Instances
StaffListByEmailNameRoleIterator for StaffListByEmailNameRole view
object instance

Page Definition Variables
StaffListByEmailNameRole_Role, StaffListByEmailNameRole_
EmailAddress, StaffListByEmailNameRole_TheFirstName,
StaffListByEmailNameRole_TheLastName

Overview of How SRDemo Pages Use the SRService

10-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Action Bindings to Built-in Operations
ExecuteWithParams related to StaffListByEmailNameRoleIterator iterator
binding

Method Action Bindings to Custom Operations
None

InvokeActions Customizing Page Lifecycle
None

Figure 10–20 View Objects for the SRStaffSearch Page

10.6.5.2 Business Service Notes for the SRStaffSearch Page

View Object Instances
StaffListByEmailNameRole is an instance of the entity-based view object
StaffListByEmailNameRole, which extends the StaffList view object and adds
name bind variables EmailAddress, Role, TheFirstName, and TheLastName.

Application Module Custom Methods
None

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-31

10.6.6 The SRManage Page

10.6.6.1 Overview of Data Binding in the SRManage Page
Figure 10–21 illustrates the data binding in the SRManage page.

Iterator Bindings to View Object Instances
■ StaffWithOpenRequestsIterator for StaffWithOpenRequests view

object instance

■ ExpertiseAreasIterator for ExpertiseAreas view object instance

■ OpenOrPendingServiceRequestsIterator for
OpenOrPendingServiceRequests view object instance

■ ServiceHistoriesForRequestIterator for
ServiceHistoriesForRequest view object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
setCurrentStaffRowWithKey (for setCurrentRowWithKey built-in) related to
StaffWithOpenRequestsIterator iterator binding

Method Action Bindings to Custom Operations
setCurrentProblemAndAssigneeRows invokes
setCurrentProblemAndAssigneeRows() on the SRService client interface

InvokeActions Customizing Page Lifecycle
None

Figure 10–21 Service Method and View Objects for the SRManage Page

Overview of How SRDemo Pages Use the SRService

10-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

10.6.6.2 Business Service Notes for the SRManage Page

View Object Instances
■ StaffWithOpenRequests is an instance of the read-only view object

StaffWithOpenRequests. It queries information from the USERS and
SERVICE_REQUESTS tables. It is an XML only view object, with no related Java
class. This view object is linked master/detail with the ExpertiseAreas and
OpenOrPendingServiceRequests view objects.

■ ExpertiseAreas is an instance of the entity-based view object
ExpertiseAreas. It joins information from the primary ExpertiseArea entity
usage and a reference Product entity usage. It is an XML only view object, with
no related Java class.

■ OpenOrPendingServiceRequests is an instance of the read-only view object
OpenOrPendingServiceRequests. It queries information from the SERVICE_
REQUESTS table. It is an XML only view object, with no related Java class. This
view object is linked master/detail with the ServiceHistories view object.

■ ServiceHistoriesForRequest is an instance of the entity-based view object
ServiceHistories. It joins data from the main ServiceHistory entity usage
and an additional reference entity usage SystemUser (User entity object). It is an
XML-only view object, with no custom Java class.

Application Module Custom Methods
As shown in Example 10–5, the setCurrentProblemAndAssigneeRows() method
uses a helper method to set the current row in the StaffWithOpenRequests view
object instance and the OpenOrPendingServiceRequests view object instance
based on the serialized string keys passed in.

Example 10–5 SetCurrentProblemAndAssigneeRows Method in SRServiceImpl.java

public void setCurrentProblemAndAssigneeRows(String requestKeyStr,
String staffKeyStr) {

setRowWithKeyString(getStaffWithOpenRequests(), staffKeyStr);
setRowWithKeyString(getOpenOrPendingServiceRequests(), requestKeyStr);

}

10.6.7 The SRSkills Page

10.6.7.1 Overview of Data Binding in the SRSkills Page
Figure 10–21 illustrates the data binding for the SRSkills page.

Iterator Bindings to View Object Instances
■ StaffListIterator for StaffList view object instance

■ StaffExpertiseAreasIterator for StaffExpertiseAreas view object
instance

■ ProductListIterator for ProductList view object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
None

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-33

Method Action Bindings to Custom Operations
updateSkillsForCurrentStaff invokes the
updateSkillsForCurrentStaff() method on the SRService client interface

InvokeActions Customizing Page Lifecycle
None

Figure 10–22 Service Method and View Objects for the SRSkills Page

10.6.7.2 Business Service Notes for the SRSkills Page

View Object Instances
■ StaffList is an instance of the entity-based view object StaffList. It queries

information from the primary entity usage SystemUser (User entity object). This
view object is linked master/detail with the ExpertiseAreas view object.

■ StaffExpertiseAreas is an instance of the entity-based view object
ExpertiseAreas. It joins information from the primary ExpertiseArea entity
usage and a reference Product entity usage. It is an XML only view object, with
no related Java class.

■ ProductList is an instance of the entity-based view object ProductList. It
queries data from the primary entity usage Products (Product entity object). It
is an XML only view object, with no related Java class.

Application Module Custom Methods
As shown in Example 10–6, the updateSkillsForCurrentStaff() method
performs the following steps:

1. Clones the list of product ids

2. Creates a secondary RowSetIterator to do programmatic iteration over the
ExpertiseAreas

3. Removes rows for current user for products that are not in the list of products ids

4. Closes the secondary row set iterator when done iterating

Overview of How SRDemo Pages Use the SRService

10-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5. Adds new rows for the keys that are left

6. Commits the transaction.

Example 10–6 UpdateSkillsForCurrentStaff Method in SRServiceImpl.java

public void updateSkillsForCurrentStaff(List productIds) {
if (productIds != null && productIds.size() > 0) {
// 1. Cone the list of product ids
List<Number> copyOfProductIds = (List<Number>)Utils.cloneList(productIds);
ViewObject skills = getStaffExpertiseAreas();
// 2. Create a secondary rowset iterator for iteration
RowSetIterator rsi = skills.createRowSetIterator(null);
// 3. Remove rows for current user for products not in list of products
while (rsi.hasNext()) {
Row r = rsi.next();
Number productId = (Number)r.getAttribute("ProdId");
// if the existing row is in the list, we're ok, so remove from list.
if (copyOfProductIds.contains(productId)) {
copyOfProductIds.remove(productId);

}
// if the existing row is in not list, remove it.
else {
r.remove();

}
}
// 4. Close the secondary row set iterator when we're done
rsi.closeRowSetIterator();
// 5. Add new rows for the keys that are left
for (Number productIdToAdd: copyOfProductIds) {
Row newRow = skills.createRow();
skills.insertRow(newRow);
newRow.setAttribute("ProdId", productIdToAdd);

}
// 6. Commit the transaction
getDBTransaction().commit();

}
}

Note: Since the iterator bindings in the ADF Model layer bind by
default to the default row set iterator for the default rowset of the
view object instance to which they are related, it's best practice to
create a secondary row set iterator to perform programmatic iteration of
a view object's row set in your application business logic. This way
you do not affect the current row that the user sees in the user
interface. The secondary iterator can have a developer-assigned name,
but if you pass null the system assigns it a name. Since you'll
typically always be closing it as soon as you're done iterating, using
the system-assigned name is fine.

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-35

10.6.8 The SRCreate Page

10.6.8.1 Overview of Data Binding in the SRCreate Page
Figure 10–23 illustrates the data binding for the SRCreate page.

Iterator Bindings to View Object Instances
■ GlobalsIterator for Globals view object instance

■ ProductListIterator for ProductList view object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
None

Method Action Bindings to Custom Operations
cancelNewServiceRequest invokes the cancelNewServiceRequest method on
the SRService client interface

InvokeActions Customizing Page Lifecycle
clearServiceRequestFieldsIfNotInTrain invokes the
cancelNewServiceRequest method action binding during prepare model phase
(Refresh="prepareModel") when the page is not handling postback events and the
requestScope.processChoice attribute is not set
(RefreshCondition="${adfFacesContext.postback == false and empty
requestScope.processChoice}").

Figure 10–23 Service Method and View Objects for the SRCreate Page

Overview of How SRDemo Pages Use the SRService

10-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

10.6.8.2 Business Service Notes for the SRCreate Page

View Object Instances
■ ProductList is an instance of the entity-based view object ProductList. It

queries data from the primary entity usage Products (Product entity object). It
is an XML only view object, with no related Java class.

■ Globals is an instance of the transient view object Globals. It contains transient
attributes to temporarily store information about ProductId, ProductName, and
ProductDescription across pages.

Application Module Custom Methods
As shown in Example 10–7, the cancelNewServiceRequest() method ensures
there is a single blank row in the Globals view object instance.

Example 10–7 CancelNewServiceRequest Method in SRServiceImpl.java

public void cancelNewServiceRequest() {
ViewObject globals = getGlobals();
globals.clearCache();
globals.insertRow(globals.createRow());

}

10.6.9 The SRConfirmCreate Page

10.6.9.1 Overview of Data Binding in the SRConfirmCreate Page
Figure 10–24 illustrates the data binding for the SRConfirmCreate page.

Iterator Bindings to View Object Instances
■ GlobalsIterator for Globals view object instance

■ LoggedInUserIterator for LoggedInUser view object instance

Page Definition Variables
None

Action Bindings to Built-in Operations
None

Method Action Bindings to Custom Operations
■ cancelNewServiceRequest invokes the cancelNewServiceRequest() on

the SRService client interface

■ createServiceRequest invokes the createServiceRequest() on the
SRService client interface

Note: A transient view object is one that has no SQL query and all
transient attributes. It can contain rows that are populated either
programmatically by your application module business logic or
declaratively using action bindings for built-in operations in the ADF
Model layer. For users familiar with Oracle Forms, this is similar to
what you know as a "non database block" in Forms.

Overview of How SRDemo Pages Use the SRService

Overview of Application Module Data Binding 10-37

InvokeActions Customizing Page Lifecycle
None

Figure 10–24 Service Method and View Objects for the SRConfirmCreate Page

10.6.9.2 Business Service Notes for the SRCreate Page

View Object Instances
■ Globals is an instance of the transient view object Globals. It contains transient

attributes to temporarily store information about ProductId, ProductName, and
ProductDescription across pages.

■ LoggedInUser is an instance of the entity-based view object LoggedInUser. It
queries data from the primary entity usage Users (User entity object). The
LoggedInUser view object is linked master/detail with the
ServiceRequestsByStatus view object.

Application Module Custom Methods
As shown in Example 10–8, the createServiceRequest() method performs the
following basic steps:

1. Gets the entity definition for ServiceRequest

2. Creates a new ServiceRequest entity row (ServiceRequestImpl class)

3. Accesses the current row in Globals as a strongly-typed GlobalsRowImpl

4. Set the problem description and product ID for new service request

5. Commits the transaction

6. Returns an Integer representing the database-trigger assigned SR number for the
new service request.

Overview of How SRDemo Pages Use the SRService

10-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 10–8 CreateServiceRequest Method in SRServiceImpl.java

public Integer createServiceRequest() {
// 1. Get the entity definition for ServiceRequest
EntityDefImpl svcReqDef = ServiceRequestImpl.getDefinitionObject();
// 2. Create a new ServiceRequest entity row
ServiceRequestImpl newReq =
(ServiceRequestImpl)svcReqDef.createInstance2(getDBTransaction(),null);

// 3. Access the current row in Globals as a strongly-typed GlobalsRowImpl
GlobalsRowImpl globalsRow = (GlobalsRowImpl)getGlobals().getCurrentRow();
// 4. Set the problem description and product id for new service request
newReq.setProblemDescription(globalsRow.getProblemDescription());
newReq.setProdId(globalsRow.getProductId());
// 5. Commit the transaction
getDBTransaction().commit();
// 6. Return an integer representing the database-assigned SR Number
return newReq.getSvrId().getSequenceNumber().intValue();

}

Part III
Building Your Web Interface

Part III contains the following chapters:

■ Chapter 11, "Getting Started with ADF Faces"

■ Chapter 12, "Displaying Data on a Page"

■ Chapter 13, "Creating a Basic Page"

■ Chapter 14, "Adding Tables"

■ Chapter 15, "Displaying Master-Detail Data"

■ Chapter 16, "Adding Page Navigation"

■ Chapter 17, "Creating More Complex Pages"

■ Chapter 18, "Creating a Search Form"

■ Chapter 19, "Using Complex UI Components"

■ Chapter 20, "Using Validation and Conversion"

■ Chapter 21, "Adding ADF Bindings to Existing Pages"

■ Chapter 22, "Changing the Appearance of Your Application"

■ Chapter 23, "Optimizing Application Performance with Caching"

■ Chapter 24, "Testing and Debugging Web Applications"

Getting Started with ADF Faces 11-1

11
Getting Started with ADF Faces

This chapter describes the process of setting up your user interface project to use ADF
Faces. It also supplies basic information about creating and laying out a web page that
will rely on ADF Faces components for the user interface.

The chapter includes the following sections:

■ Section 11.1, "Introduction to ADF Faces"

■ Section 11.2, "Setting Up a Workspace and Project"

■ Section 11.3, "Creating a Web Page"

■ Section 11.4, "Laying Out a Web Page"

■ Section 11.5, "Creating and Using a Backing Bean for a Web Page"

■ Section 11.6, "Best Practices for ADF Faces"

11.1 Introduction to ADF Faces
Oracle ADF Faces is a 100% JavaServer Faces (JSF) compliant component library that
offers a broad set of enhanced UI components for JSF application development. Based
on the JSF JSR 127 specification, ADF Faces components can be used in any IDE that
supports JSF. More specifically, ADF Faces works with Sun's JSF Reference
Implementation 1.1_01 (or later) and Apache MyFaces 1.0.8 (or later).

ADF Faces ensures a consistent look and feel for your application, allowing you to
focus more on user interface interaction than look and feel compliance. The
component library supports multi–language and translation implementations, and
accessibility features. ADF Faces also supports multiple render kits for HTML, mobile,
and telnet users—this means you can build web pages with the same components,
regardless of the device that will be used to display the pages.

Using the partial-page rendering features of ADF Faces components, you can build
interactive web pages that update the display without requiring a complete page
refresh. In the future, Oracle plans to provide render kits that make even more
sophisticated use of AJAX technologies—JavaScript, XML, and the Document Object
Model (DOM)—to deliver more Rich Internet Applications with interactivity nearing
that of desktop-style applications.

Introduction to ADF Faces

11-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

ADF Faces has many of the framework and component features most needed by JSF
developers today, including:

■ Partial-page rendering

■ Client-side conversion and validation

■ A process scope that makes it easier to pass values from one page to another

■ A hybrid state-saving strategy that provides more efficient client-side state saving

■ Built-in support for label and message display in all input components

■ Built-in accessibility support in components

■ Support for custom skins

■ Support for mobile applications

ADF Faces UI components include advanced tables with column sorting and row
selection capability, tree components for displaying data hierarchically, color and date
pickers, and a host of other components such as menus, command buttons, shuttle
choosers, and progress meters.

ADF Faces out-of-the-box components simplify user interaction, such as the input file
component for uploading files, and the select input components with built-in dialog
support for navigating to secondary windows and returning to the originating page
with the selected values.

For more information about ADF Faces, refer to the following resources:

■ ADF Faces Core tags at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/tagdoc/core/index.html

■ ADF Faces HTML tags at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/tagdoc/html/index.html

■ ADF Faces Javadocs at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/apidocs/index.html

■ ADF Faces developer’s guide at

http://www.oracle.com/technology/products/jdev/htdocs/partner
s/addins/exchange/jsf/doc/devguide/index.html

When you create JSF JSP pages that use ADF Faces components for the UI and use JSF
technology for page navigation, you can leverage the advantages of the Oracle
Application Development Framework (Oracle ADF) by using the ADF Model binding
capabilities for the components in the pages. For information about data controls and
the ADF Model, see Section 1.3, "Declarative Development with Oracle ADF and
JavaServer Faces".

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/html/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/html/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/apidocs/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/apidocs/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/devguide/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/devguide/index.html

Setting Up a Workspace and Project

Getting Started with ADF Faces 11-3

Table 11–1 shows the platforms currently supported for ADF Faces.

* Accessibility and BiDi is only supported on IE on Windows.

** Apple bug fixes provided in Safari 1.3 patch 312.2 and Safari 2.0 patch 412.5
required.

Read this chapter to understand:

■ How to create a workspace using an application template in JDeveloper

■ What files are created for you in the view project when you add a JSF page and
insert UI components

■ How to use panel and layout components to create page layouts

■ What JDeveloper does for you when you work with backing beans

11.2 Setting Up a Workspace and Project
JDeveloper provides application templates that enable you to quickly create the
workspace and project structure with the appropriate combination of technologies
already specified. The SRDemo application uses the Web Application [JSF, ADF BC]
application template, which creates one project for the data model, and one project for
the controller and view (user interface) components in a workspace.

To create a new application workspace in JDeveloper and choose an application
template:
1. Right-click the Applications node in the Application Navigator and choose New

Application.

2. In the Create Application dialog, select the Web Application [JSF, ADF BC]
application template from the list.

You don’t have to use JDeveloper application templates to create an application
workspace—they are provided merely for your convenience.

At times you might already have an existing WAR file and you want to import it into
JDeveloper.

Table 11–1 Supported Platforms for ADF Faces

User Agent Windows Solaris Mac OS X
Red Hat
Linux

Windows
Mobile Palm OS

Internet
Explorer

6.0 * 2003+

Mozilla 1.7.x 1.7.x

Firefox 1.0.x 1.0.x

Safari 1.3, 2.0 **

WebPro
(Mobile)

3.0

Tip: On a UNIX server box, button images may not render as
expected. Assuming you're using JDK 1.4 or later, Oracle strongly
recommends using -Djava.awt.headless=true as a
command-line option with UNIX boxes.

Setting Up a Workspace and Project

11-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To import a WAR file into a new project in JDeveloper:
1. Right-click your application workspace in the Application Navigator and choose

New Project.

2. In the New Gallery, expand General in the Categories tree, and select Projects.

3. In the Items list, double-click Project from WAR File.

4. Follow the wizard instructions to complete creating the project.

11.2.1 What Happens When You Use an Application Template to Create a Workspace
By default, JDeveloper names the project for the data model Model, and the project for
the user interface and controller ViewController. You can rename the projects using
File > Rename after you’ve created them, or you can use Tools > Manage Templates
to change the default names that JDeveloper uses.

Figure 11–1 shows the Application Navigator view of the ViewController project after
you create the workspace.

Figure 11–1 ViewController Project in the Navigator After You Create a Workspace

Figure 11–2 shows the actual folders JDeveloper creates in the <JDEV_
HOME>/jdev/mywork folder in the file system.

Figure 11–2 ViewController Folders in the File System After You Create a Workspace

For example, if you created a workspace named Application1, the ViewController
folder and its subfolders would be located in <JDEV_
HOME>/jdev/mywork/Application1 in the file system.

Note: The illustrations and project names used in this chapter are the
JDeveloper default names. The SRDemo application, however, uses
the project name UserInterface for the JSF view and controller
components, and DataModel for the project that contains ADF
Business Components. The SRDemo application also has additional
projects in the Application Navigator (for example, BuildAndDeploy),
which you create manually to organize your application components
into logical folders.

Setting Up a Workspace and Project

Getting Started with ADF Faces 11-5

When you use the Web Application [JSF, ADF BC] template to create a workspace,
JDeveloper does the following for you:

■ Creates a ViewController project that uses JSF technology. The project properties
include:

– JSP Tag Libraries: JSF Core, JSF HTML. See Table 11–2.

– Libraries: JSF, Commons Beanutils, Commons Digester, Commons Logging,
Commons Collections, JSTL.

– Technology Scope: JSF, JSP and Servlets, Java, HTML, XML.

When you work in the ViewController project, the New Gallery will be filtered to
show standard web technologies (including JSF) in the Web Tier category.

By default, JDeveloper uses JSTL 1.1 and a J2EE 1.4 web container that supports
Servlet 2.4 and JSP 2.0.

■ Creates a starter web.xml file with default settings in /WEB-INF of the
ViewController project. See Section 11.2.1.1, "Starter web.xml File" if you want to
know what JDeveloper adds to web.xml.

■ Creates an empty faces-config.xml file in /WEB-INF of the ViewController
project. See Section 11.2.1.2, "Starter faces-config.xml File" if you want to learn
more about faces-config.xml.

Note that if you double-click faces-config.xml in the Application Navigator to
open the file, JDeveloper creates a model folder in the ViewController folder in the
file system, and adds the file faces-config.oxd_faces in the model folder.
For information about the faces-config.oxd_faces file, see Section 11.3.2,
"What Happens When You Create a JSF Page".

■ Adds jsf-impl.jar in /WEB-INF/lib of the ViewController project.

■ Creates a Model project that uses ADF Business Components technology. For
information about creating a reusable layer of entity objects in the Model project,
see Section 2.5, "Creating a Layer of Business Domain Objects for Tables". For
information about building application modules and view objects, see Section 2.6,
"Building the Business Service to Handle the Use Case".

11.2.1.1 Starter web.xml File
Part of a JSF application's configuration is also determined by the contents of its J2EE
application deployment descriptor, web.xml. The web.xml file defines everything
about your application that a server needs to know (except the root context path,
which is assigned by JDeveloper or the system administrator when the application is
deployed). Typical runtime settings include initialization parameters, custom tag
library location, and security settings.

Example 11–1 shows the starter web.xml file JDeveloper first creates for you.

Setting Up a Workspace and Project

11-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 11–1 Starter web.xml File Created by JDeveloper

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee">
 <description>Empty web.xml file for Web Application</description>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
...
</web-app>

The JSF servlet and servlet mapping configuration settings are automatically added to
the starter web.xml file when you first create a JSF project.

■ JSF servlet: The JSF servlet is javax.faces.webapp.FacesServlet, which
manages the request processing lifecycle for web applications utilizing JSF to
construct the user interface. The configuration setting maps the JSF servlet to a
symbolic name.

■ JSF servlet mapping: The servlet mapping maps the URL pattern to the JSF
servlet’s symbolic name. You can use either a path prefix or an extension suffix
pattern.

By default, JDeveloper uses the path prefix /faces/*. For example, if your web
page is index.jsp or index.jspx, this means that when the URL
http://localhost:8080/SRDemoADFBC/faces/index.jsp or
http://localhost:8080/SRDemoADFBC/faces/index.jspx is issued, the
URL activates the JSF servlet, which strips off the faces prefix and loads the file
/SRDemoADFBC/index.jsp or /SRDemoADFBC/index.jspx.

To edit web.xml in JDeveloper, right-click web.xml in the Application Navigator and
choose Properties from the context menu to open the Web Application Deployment
Descriptor editor. If you’re familiar with the configuration element names, you can
also use the XML editor to modify web.xml.

For reference information about the configuration elements you can use in web.xml
when you work with JSF, see Section A.7, "web.xml".

Note: If you use ADF data controls to build databound web pages,
JDeveloper adds the ADF binding filter and a servlet context
parameter for the application binding container in web.xml. For more
information, see Section 12.4, "Configuring the ADF Binding Filter".

Setting Up a Workspace and Project

Getting Started with ADF Faces 11-7

11.2.1.2 Starter faces-config.xml File
The JSF configuration file is where you register a JSF application's resources such as
custom validators and managed beans, and define all the page-to-page navigation
rules. While an application can have any JSF configuration filename, typically the
filename is faces-config.xml. Example 11–2 shows the starter
faces-config.xml file JDeveloper first creates for you when you create a project
that uses JSF technology.

Small applications usually have one faces-config.xml file. For information about
using multiple configuration files, see Section 11.2.3, "What You May Need to Know
About Multiple JSF Configuration Files".

Example 11–2 Starter faces-config.xml File Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">

</faces-config>

In JDeveloper you can use either editor to edit faces-config.xml:

■ JSF Configuration Editor: Oracle recommends you use the JSF Configuration
Editor because it provides visual editing.

■ XML Source Editor: Use the source editor to edit the file directly, if you’re familiar
with the JSF configuration elements.

To launch the JSF Configuration Editor:
1. In the Application Navigator, double-click faces-config.xml to open the file.

By default JDeveloper opens faces-config.xml in Diagram mode, as indicated
by the active Diagram tab at the bottom of the editor window. When creating or
modifying JSF navigation rules, Oracle suggests you use the Diagram mode of the
JSF Configuration Editor.

In JDeveloper a diagram file, which lets you create and manage page flows
visually, is associated with faces-config.xml. For information about creating
JSF navigation rules, see Chapter 16, "Adding Page Navigation".

2. To create or modify configuration elements other than navigation rules, use the
Overview mode of the JSF Configuration Editor. At the bottom of the editor
window, select Overview.

Both Overview and Diagram modes update the faces-config.xml file.

Tip: JSF allows more than one <application> element in a single
faces-config.xml file. The JSF Configuration Editor only allows
you to edit the first <application> instance in the file. For any
other <application> elements, you'll need to edit the file directly
using the XML editor.

Setting Up a Workspace and Project

11-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For reference information about the configuration elements you can use in
faces-config.xml, see Section A.9, "faces-config.xml".

11.2.2 What You May Need to Know About the ViewController Project
The ViewController project contains the web content that includes the web pages and
other resources of the web application. By default, the JDeveloper web application
template you select adds the word "controller" to the project name to indicate that the
web application will include certain files that define the application’s flow or page
navigation (controller), in addition to the web pages themselves (view).

The technology that you use to create web pages in JDeveloper will determine the
components of the ViewController project and the type of page controller your
application will use. The SRDemo application uses JSF combined with JSP to build the
web pages:

■ JSF provides a component-based framework for displaying dynamic web content.
It also provides its own page controller to manage the page navigation.

■ JSP provides the presentation layer technology for JSF user interfaces. The JSF
components are represented by special JSP custom tags in the JSP pages.

JDeveloper tools will help you to easily bind the JSF components with the Java objects
of the Model project, thus creating databound UI components. As described earlier, the
ViewController project contains the web pages for the user interface. To declaratively
bind UI components in web pages to a data model, the ViewController project must be
able to access data controls in the Model project. To enable the ViewController project
to access the data controls, a dependency on the Model project must be specified. The
first time you drag an item from the Data Control Palette and drop it onto a JSF page,
JDeveloper configures the dependency for you. If you wish to set the dependency on
the Model project manually, use the following procedure.

To set dependency on a Model project for a ViewController project in
JDeveloper:
1. Double-click ViewController in the Application Navigator to open the Project

Properties dialog.

2. Select Dependencies and then select the checkbox next to Model.jpr.

Note: If you use ADF data controls to build databound web pages,
JDeveloper adds the ADF phase listener in faces-config.xml, as
described in Section 12.2.3, "What Happens When You Use the Data
Control Palette".

Note: The concept of separating page navigation from page
display is often referred to as Model 2 to distinguish from earlier
style (Model 1) applications that managed page navigation entirely
within the pages themselves. In a Model 2 style application, the
technology introduces a specialized servlet known as a page
controller to handle page navigation events at runtime.

Setting Up a Workspace and Project

Getting Started with ADF Faces 11-9

11.2.3 What You May Need to Know About Multiple JSF Configuration Files
A JSF application can have more than one JSF configuration file. For example, if you
need individual JSF configuration files for separate areas of your application, or if you
choose to package libraries containing custom components or renderers, you can
create a separate JSF configuration file for each area or library.

To create another JSF configuration file, simply use a text editor or use the JSF Page
Flow & Configuration wizard provided by JDeveloper.

To launch the JSF Page Flow & Configuration wizard:
1. In the Application Navigator, right-click ViewController and choose New.

2. In the New Gallery window, expand Web Tier. Select JSF and then double-click
JSF Page Flow & Configuration (faces-config.xml).

When creating a JSF configuration file for custom components or other JSF classes
delivered in a library JAR:

■ Name the file faces-config.xml if you desire.

■ Store the new file in /META-INF.

■ Include this file in the JAR that you use to distribute your custom components or
classes.

This is helpful for applications that have packaged libraries containing custom
components and renderers.

When creating a JSF configuration file for a separate application area:

■ Give the file a name other than faces-config.xml.

■ Store the file in /WEB-INF.

■ For JSF to read the new JSF configuration file as part of the application’s
configuration, specify the path to the file using the context parameter
javax.faces.CONFIG_FILES in web.xml. The parameter value is a
comma-separated list of the new configuration file names, if there is more than one
file.

If using the JSF Page Flow & Configuration wizard, select the Add Reference to
web.xml checkbox to let JDeveloper register the new JSF configuration file for you
in web.xml. Example 11–3 shows how multiple JSF configuration files are set in
web.xml by JDeveloper if you select the checkbox.

This is helpful for large-scale applications that require separate configuration files for
different areas of the application.

Example 11–3 Configuring for Multiple JSF Configuration Files in the web.xml File

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/faces-config1.xml,/WEB-INF/faces-config2.xml</param-value>
</context-param>

Any JSF configuration file, whether it is named faces-config.xml or not, must
conform to Sun's DTD located at
http://java.sun.com/dtd/web-facesconfig_1_x.dtd. If you use the wizard
to create a JSF configuration file, JDeveloper takes care of this for you.

Creating a Web Page

11-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

If an application uses several JSF configuration files, at runtime JSF finds and loads the
application's configuration settings in the following order:

1. Searches for files named META-INF/faces-config.xml in any JAR files for the
application, and loads each as a configuration resource (in reverse order of the
order in which they are found).

2. Searches for the javax.faces.CONFIG_FILES context parameter set in the
application's web.xml file. JSF then loads each named file as a configuration
resource.

3. Searches for a file named faces-config.xml in the WEB-INF directory and
loads it as a configuration resource.

JSF then instantiates an Application class and populates it with the settings found
in the various configuration files.

11.3 Creating a Web Page
While JSF supports a number of presentation layer technologies, JDeveloper uses JSP
as the presentation technology for creating JSF web pages. When you use JSF with JSP,
the JSF pages can be JSP pages (.jsp) or JSP documents (.jspx). JSP documents are
well-formed XML documents, and the XML standard offers many benefits such as
validation against a document type definition. Hence, Oracle recommends that you
use JSP documents when you build your web pages using ADF Faces components.
Unless otherwise noted, the term JSF page in this guide refers to both JSF JSP pages and
JSF JSP documents.

JDeveloper gives you two ways to create JSF pages that will appear in your
ViewController project:

■ Launch the Create JSF JSP wizard from the JSF category in the New Gallery.

OR

■ Drag a JSF Page from the Component Palette onto the faces-config.xml file
when the file is open in the Diagram mode of the JSF Configuration Editor.

Section 11.3.1, "How to Add a JSF Page" uses the latter technique. It also introduces the
JSF Navigation Modeler, which allows you to plan out your application pages in the
form of a diagram, to define the navigation flow between the pages, and to create the
pages.

11.3.1 How to Add a JSF Page
Oracle recommends using the JSF navigation diagram to plan out and build your
application page flow. Because the JSF navigation diagram visually represents the
pages of the application, it is also an especially useful way to drill down into
individual web pages when you want to edit them in the JSP/HTML Visual Editor.

Creating a Web Page

Getting Started with ADF Faces 11-11

To add a JSF page to your ViewController project using the JSF navigation
diagram:
1. Expand the ViewController - Web Content - WEB-INF folder in the Application

Navigator and double-click faces-config.xml or choose Open JSF Navigation
from the ViewController context menu to open the faces-config.xml file.

By default, JDeveloper opens the file in the Diagram tab, which is the JSF
navigation diagram. If you’ve just started the ViewController project, the
navigation diagram would be an empty drawing surface. If you don’t see a blank
drawing surface when you open faces-config.xml, select Diagram at the
bottom of the editor.

2. In the Component Palette, select JSF Navigation Diagram from the dropdown list,
and then select JSF Page.

3. Click on the diagram in the place where you want the page to appear. A page icon
with a label for the page name appears on the diagram. The page icon has a yellow
warning overlaid–this means you haven’t created the actual page yet, just a
representation of the page.

4. To create the new page, double-click the page icon and use the Create JSF JSP
wizard.

When creating a page in JDeveloper for the first time, be sure to complete all the
steps of the wizard.

5. In Step 1 of the Create JSF JSP wizard, select JSP Document (*.jspx) for the JSP file
Type.

6. Enter a filename and accept the default directory name or choose a new location.
By default, JDeveloper saves files in /ViewController/public_html in the
file system.

7. In Step 2 of the wizard, keep the default selection for not using component
binding automatically.

8. In Step 3 of the wizard, make sure that these libraries are added to the Selected
Libraries list:

■ ADF Faces Components

■ ADF Faces HTML

■ JSF Core

■ JSF HTML

9. Accept the default selection for the remaining page and click Finish.

Your new JSF page will open in the JSP/HTML Visual Editor where you can begin to
lay out the page using ADF Faces components from the Component Palette or
databound components dropped from the Data Control Palette.

If you switch back to the JSF navigation diagram (by clicking the faces-config.xml
editor tab at the top), you will notice that the page icon no longer has the yellow
warning overlaid.

Tip: If you create new JSF pages using the wizard from the New
Gallery, you can drag them from the Application Navigator to the JSF
navigation diagram when designing the application page flow.

Creating a Web Page

11-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

11.3.2 What Happens When You Create a JSF Page
Figure 11–3 shows the Application Navigator view of the ViewController project after
you complete the wizard steps to add a JSF page.

Figure 11–3 ViewController Project in the Navigator After You Add a JSF Page

Figure 11–4 shows the actual folders JDeveloper creates in the <JDEV_
HOME>/jdev/mywork folder in the file system.

Figure 11–4 ViewController Folders in the File System After You Add a JSF Page

JDeveloper does the following when you create your first JSF page in a ViewController
project via the JSF navigation diagram:

■ Adds adf-faces-impl.jar to /WEB-INF/lib.

■ Adds these libraries to the ViewController project properties:

– JSP Tag Libraries: ADF Faces Components, ADF Faces HTML. See Table 11–2.

– Libraries: JSP Runtime, ADF Faces Runtime, ADF Common Runtime

■ Creates the faces-config.oxd_faces file in the file system only, for example,
in <JDEV_
HOME>/jdev/mywork/Application1/ViewController/model/public_
html/WEB-INF. When you plan out and build your page flow in the JSF
navigation diagram, this is the file that holds all the diagram details such as layout
and annotations. JDeveloper always maintains this file alongside its associated
XML file, faces-config.xml. The faces-config.oxd_faces file is not
visible in the Application or System Navigator.

Whether you create JSF pages by launching the Create JSF JSP wizard from the JSF
navigation diagram or the New Gallery, by default JDeveloper creates starter pages
that are JSF JSP 2.0 files, and automatically imports the JSF tag libraries into the starter
pages. If you select to add the ADF Faces tag libraries in step 3 of the wizard,
JDeveloper also imports the ADF Faces tag libraries into the starter pages.
Example 11–4 shows a starter page for a JSF JSP document.

Creating a Web Page

Getting Started with ADF Faces 11-13

Example 11–4 Starter JSF JSP Document Created by JDeveloper

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces"
 xmlns:afh="http://xmlns.oracle.com/adf/faces/html"
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=windows-1252"/>
 <f:view>
 <html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=windows-1252"/>
 <title>untitled1</title>
 </head>
 <body>
 <h:form></h:form>
 </body>
 </html>
 </f:view>
</jsp:root>

11.3.3 What You May Need to Know About Using the JSF Navigation Diagram
In the JSF navigation diagram, you will notice that the label of the page icon has an
initial slash (/), followed by the name of the page. The initial slash is required so that
the page can be run from the diagram. If you remove the slash, JDeveloper will
automatically reinstate it for you.

Be careful when renaming and deleting pages from the JSF navigation diagram:

■ Renaming pages: If you rename a JSF page on a JSF navigation diagram, this is
equivalent to removing a page with the original name from the diagram and
adding a new one with the new name; the page icon changes to a page icon
overlaid with the yellow warning, indicating that the page does not yet exist. If
you have already created the underlying page, that page remains with its original
name in the Application Navigator.

Similarly, if you have a JSF page in the Application Navigator and the page icon is
displayed on the diagram, if you now rename the page in the Application
Navigator, this is equivalent to removing the original file and creating a new file.
The diagram, however, retains the original name, and now displays the page icon
overlaid with the yellow warning, indicating that the page does not exist.

■ Deleting pages: When you delete a page icon in the JSF navigation diagram, the
associated web page is no longer visible in the diagram. If you have created the
actual file, it is still available from the Web Content folder in the ViewController
project in the Application Navigator.

For information about the JSF navigation diagram and creating navigation rules, see
Chapter 16, "Adding Page Navigation".

Laying Out a Web Page

11-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

11.3.4 What You May Need to Know About ADF Faces Dependencies and Libraries
ADF Faces is compatible with JDK 1.4 (and higher), and cannot run on a server that
supports only Sun’s JSF Reference Implementation 1.0. The implementation must be
JSF 1.1_01 (or later) or Apache MyFaces 1.0.8 (or later).

The ADF Faces deliverables are:

■ adf-faces-api.jar: All public APIs of ADF Faces are in the
oracle.adf.view.faces package.

■ adf-faces-impl.jar: All private APIs of ADF Faces are in the
oracle.adfinternal.view.faces package.

ADF Faces provides two tag libraries that you can use in your JSF pages:

■ ADF Faces Core library

■ ADF Faces HTML library

Table 11–2 shows the URIs and default prefixes for the ADF Faces and JSF tag libraries
used in JDeveloper.

JDeveloper also provides the ADF Faces Cache and ADF Faces Industrial tag libraries,
which use the prefix afc and afi, respectively. For information about ADF Faces
Cache, see Chapter 23, "Optimizing Application Performance with Caching". For
information about ADF Faces Industrial, see the JDeveloper online help topic
"Developing ADF Mobile Applications".

All JSF applications must be compliant with the Servlet specification, version 2.3 (or
later) and the JSP specification, version 1.2 (or later). The J2EE web container that you
deploy to must provide the necessary JAR files for the JavaServer Pages Standard Tag
Library (JSTL), namely jstl.jar and standard.jar. The JSTL version to use
depends on the J2EE web container:

■ JSTL 1.0—Requires a J2EE 1.3 web container that supports Servlet 2.3 and JSP 1.2

■ JSTL 1.1—Requires a J2EE 1.4 web container that supports Servlet 2.4 and JSP 2.0

For complete information about ADF Faces and JSF deployment requirements, see
Chapter 34, "Deploying ADF Applications".

11.4 Laying Out a Web Page
Most of the SRDemo pages use the ADF Faces panelPage component to lay out the
entire page. The panelPage component lets you define specific areas on the page for
branding images, navigation menus and buttons, and page-level or application-level
text, ensuring that all web pages in the application will have a consistent look and feel.
Figure 11–5 shows an example of a page created by using a panelPage component.

Table 11–2 ADF Faces and JSF Tag Libraries

Library URI Prefix

ADF Faces Core http://xmlns.oracle.com/adf/faces af

ADF Faces HTML http://xmlns.oracle.com/adf/faces/html afh

JSF Core http://java.sun.com/jsf/core f

JSF HTML http://java.sun.com/jsf/html h

Laying Out a Web Page

Getting Started with ADF Faces 11-15

Figure 11–5 Page Layout Created with a PanelPage Component

After you create a new JSF page using the wizard, JDeveloper automatically opens the
blank page in the JSP/HTML Visual Editor. To edit a page, you can use any
combination of JDeveloper’s page design tools you’re comfortable with, namely:

■ Structure window

■ JSP/HTML Visual Editor

■ XML Source Editor

■ Property Inspector

■ Component Palette

When you make changes to a page in one of the design tools, the other tools are
automatically updated with the changes you made.

11.4.1 How to Add UI Components to a JSF Page
You can use both standard JSF components and ADF Faces components within the
same JSF page. For example, to insert and use the panelPage component in a starter
JSF page created by JDeveloper, you could use the following procedure.

To insert UI components into a JSF page:
1. If not already open, double-click the starter JSF page in the Application Navigator

to open it in the visual editor.

2. In the Component Palette, select ADF Faces Core from the dropdown list.

3. Drag and drop PanelPage from the palette to the page in the visual editor.

As you drag a component on the page in the visual editor, notice that the Structure
window highlights the h:form component with a box outline, indicating that the
h:form component is the target component. The target component is the
component into which the source component will be inserted when it is dropped.

4. In the Structure window, right-click the newly inserted af:panelPage or any of the
PanelPage facets, and choose from the Insert before, Insert inside, or Insert after
menu to add the UI components you desire.

Laying Out a Web Page

11-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

You create your input or search forms, tables, and other page body contents inside
the panelPage component. For more information about panelPage and its
facets, see Section 11.4.4, "Using the PanelPage Component".

5. To edit the attributes for an inserted component, double-click the component in
the Structure window to open a property editor, or select the component and then
use the Property Inspector.

As you build your page layout by inserting components, you can also use the Data
Control Palette to insert databound UI components. Simply drag the item from the
Data Control Palette and drop it into the desired location on the page. For further
information about using the Data Control Palette, see Chapter 12, "Displaying Data on
a Page".

11.4.2 What Happens When You First Insert an ADF Faces Component
Figure 11–6 shows the Application Navigator view of the ViewController project after
adding your first ADF Faces component in a page.

Figure 11–6 ViewController Project in the Navigator After You Insert the First ADF Faces
Component

Tip: Using the context menu in the Structure window to add
components ensures that you are inserting components into the
correct target locations. You can also drag components from the
Component Palette to the Structure window. As you drag a
component on the Structure window, JDeveloper highlights the target
location with a box outline or a line with an embedded arrow to
indicate that the source component will be inserted in that target
location when it is dropped. See Section 11.4.3.1, "Editing in the
Structure Window" for additional information about inserting
components using the Structure window.

Laying Out a Web Page

Getting Started with ADF Faces 11-17

When you first add an ADF Faces component to a JSF page, JDeveloper automatically
does the following:

■ Imports the ADF Faces Core and HTML tag libraries (if not already inserted) into
the page. See Example 11–4.

■ Replaces the html, head, and body tags with afh:html, afh:head, and
afh:body, respectively. See Example 11–5.

■ Adds the ADF Faces filter and mapping configuration settings to web.xml. See
Section 11.4.2.1, "More About the web.xml File".

■ Adds the ADF Faces default render kit configuration setting to
faces-config.xml. See Section 11.4.2.2, "More About the faces-config.xml File".

■ Creates a starter adf-faces-config.xml in /WEB-INF of the ViewController
project. See Section 11.4.2.3, "Starter adf-faces-config.xml File".

■ Creates the /ViewController/public_html/WEB-INF/temp/adf folder in
the file system. This folder contains images and styles that JDeveloper uses for
ADF Faces components. You might not see the folder in the Application Navigator
until you close and reopen the workspace.

Example 11–5 JSF JSP Document After You Add the First ADF Faces Component

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:afh="http://xmlns.oracle.com/adf/faces/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces">
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=windows-1252"/>
 <f:view>
 <afh:html>
 <afh:head title="untitled1">
 <meta http-equiv="Content-Type"
 content="text/html; charset=windows-1252"/>
 </afh:head>

Tip: The WEB-INF/lib and WEB-INF/temp/adf folders are used
by JDeveloper at runtime only. To reduce clutter in the Application
Navigator, you may exclude them from the ViewController project.
Double-click ViewController to open the Project Properties dialog.
Under Project Content, select Web Application and then use the
Excluded tab to add the folders you wish to exclude.

Laying Out a Web Page

11-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 <afh:body>
 <h:form>
 <af:panelPage title="Title 1">
 <f:facet name="menu1"/>
 <f:facet name="menuGlobal"/>
 <f:facet name="branding"/>
 <f:facet name="brandingApp"/>
 <f:facet name="appCopyright"/>
 <f:facet name="appPrivacy"/>
 <f:facet name="appAbout"/>
 </af:panelPage>
 </h:form>
 </afh:body>
 </afh:html>
 </f:view>
</jsp:root>

11.4.2.1 More About the web.xml File
When you insert an ADF Faces component into a JSF page for the first time,
JDeveloper automatically inserts the following ADF Faces configuration settings into
web.xml:

■ ADF Faces filter: Installs
oracle.adf.view.faces.webapp.AdfFacesFilter, which is a servlet filter
to ensure that ADF Faces is properly initialized by establishing a
AdfFacesContext object. AdfFacesFilter is also required for processing file
uploads. The configuration setting maps AdfFacesFilter to a symbolic name.

■ ADF Faces filter mapping: Maps the JSF servlet’s symbolic name to the ADF Faces
filter.

■ ADF Faces resource servlet: Installs
oracle.adf.view.faces.webapp.ResourceServlet, which serves up web
application resources (such as images, style sheets, and JavaScript libraries) by
delegating to a ResourceLoader. The configuration setting maps
ResourceServlet to a symbolic name.

■ ADF Faces resource mapping: Maps the URL pattern to the ADF Faces resource
servlet’s symbolic name.

Example 11–6 shows the web.xml file after you add the first ADF Faces component.

Example 11–6 Configuring for ADF Faces in the web.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee">
 <description>Empty web.xml file for Web Application</description>

 <!-- Installs the ADF Faces filter -- >
 <filter>
 <filter-name>adfFaces</filter-name>
 <filter-class>oracle.adf.view.faces.webapp.AdfFacesFilter</filter-class>
 </filter>

Laying Out a Web Page

Getting Started with ADF Faces 11-19

 <!-- Adds the mapping to ADF Faces filter -- >
 <filter-mapping>
 <filter-name>adfFaces</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 </filter-mapping>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- Installs the ADF Faces ResourceServlet -- >
 <servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>oracle.adf.view.faces.webapp.ResourceServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>

 <!-- Maps URL pattern to the ResourceServlet's symbolic name -->
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
...
</web-app>

For reference information about the configuration elements you can use in web.xml
when you work ADF Faces, see Section A.7.1, "Tasks Supported by the web.xml File".

11.4.2.2 More About the faces-config.xml File
As mentioned earlier, JDeveloper creates one empty faces-config.xml file for you
when you create a new project that uses JSF technology. When you insert an ADF
Faces component into a JSF page for the first time, JDeveloper automatically inserts the
default render kit for ADF components into faces-config.xml, as shown in
Example 11–7.

Tip: If you use multiple filters in your application, make sure that
they are listed in web.xml in the order in which you want to run
them. At runtime, the filters are called in the sequence listed in that
file.

Laying Out a Web Page

11-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 11–7 Configuring for ADF Faces Components in the faces-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- Default render kit for ADF components -->
 <application>
 <default-render-kit-id>oracle.adf.core</default-render-kit-id>
 </application>
 ...
</faces-config>

11.4.2.3 Starter adf-faces-config.xml File
When you create a JSF application using ADF Faces components, you configure ADF
Faces–specific features (such as skin family and level of page accessibility support) in
the adf-faces-config.xml file. The adf-faces-config.xml file has a simple
XML structure that enables you to define element properties using the JSF expression
language (EL) or static values.

In JDeveloper, when you insert an ADF Faces component into a JSF page for the first
time, a starter adf-faces-config.xml file is automatically created for you in the
/WEB-INF directory of your ViewController project. Example 11–8 shows the starter
adf-faces-config.xml file.

Example 11–8 Starter adf-faces-config.xml File Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">

 <skin-family>oracle</skin-family>

</adf-faces-config>

By default JDeveloper uses the Oracle skin family for a JSF application. You can
change this to minimal or use a custom skin. The SRDemo application uses the
srdemo skin. If you wish to use a custom skin, you need to create the
adf-faces-skins.xml configuration file, and modify adf-faces-config.xml to
use the custom skin. For more information, see Section 22.3.1, "How to Use Skins".

To edit the adf-faces-config.xml file in JDeveloper, use the following procedure.

To edit the adf-faces-config.xml file:
1. In the Application Navigator, double-click adf-faces-config.xml to open the file in

the XML editor.

2. If you’re familiar with the element names, enter them in the editor. Otherwise use
the Structure window to help you insert them.

3. To use the Structure window, follow these steps:

a. Right-click any element to choose from the Insert before or Insert after menu,
and click the element you wish to insert.

b. Double-click the newly inserted element in the Structure window to open it in
the properties editor.

c. Enter a value or select one from a dropdown list (if available).

Laying Out a Web Page

Getting Started with ADF Faces 11-21

In most cases you can enter either a JSF EL expression (such as
#{view.locale.language=='en' ? 'minimal' : 'oracle'}) or a
static value (e.g., <debug-output>true</debug-output>). EL
expressions are dynamically reevaluated on each request, and must return an
appropriate object (for example, a Boolean object).

Typically, you would want to configure the following in adf-faces-config.xml:

■ Level of page accessibility support (See Section 11.6, "Best Practices for ADF
Faces")

■ Skin family (See Section 22.3, "Using Skins to Change the Look and Feel")

■ Time zone (See Section 22.4.2, "How to Configure Optional Localization Properties
for ADF Faces")

■ Enhanced debugging output (See Section A.10.1.3, "Configuring For Enhanced
Debugging Output")

■ Oracle Help for the Web (OHW) URL (See Section A.10.1.11, "Configuring the
Help Site URL")

You can also register a custom file upload processor for uploading files. For
information, see Section 19.6.5, "Configuring a Custom Uploaded File Processor".

Once you have configured elements in the adf-faces-config.xml file, you can
retrieve the property values programmatically or by using JSF EL expressions. For
more information, see Appendix A.10.1.12, "Retrieving Configuration Property Values
From adf-faces-config.xml".

11.4.3 What You May Need to Know About Creating JSF Pages
Consider the following when you’re developing JSF web pages:

■ Do not use JSTL and HTML tags in a JSF page. JSTL tags cannot work with JSF at
all prior to J2EE 1.5, and HTML tags inside of JSF tags often mean you need to use
f:verbatim.

For example you can’t use c:forEach around JSF tags at all. When you nest a JSF
tag inside a non-JSF tag that iterates over its body, the first time the page is
processed the nested tag is invoked once for each item in the collection, creating a
new component on each invocation. On subsequent requests because the number
of items might be different, there is no good way to resolve the problem of needing
a new component ID for each iteration: JSP page scoped variables cannot be seen
by JSF; JSF request scoped variables in a previous rendering phase are not
available in the current postback request.

Other non-JSF tags may be used with JSF tags but only with great care. For
example, if you use c:if and c:choose, the id attributes of nested JSF tags must
be set; if you nest non-JSF tags within JSF tags, you must wrap the non-JSF tags in
f:verbatim; if you dynamically include JSP pages that contain JSF content, you
must use f:subview and also wrap all included non-JSF content in f:verbatim.

Note: All elements can appear in any order within the root element
<adf-faces-config>. You can include multiple instances of any
element. For reference information about the configuration elements
you can use in adf-faces-config.xml, see Section A.10,
"adf-faces-config.xml".

Laying Out a Web Page

11-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ In the SRDemo user interface, all String resources (for example, page titles and
field labels) that are not retrieved from the ADF Model are added to a resource
properties file in the ViewController project. If you use a resource properties file to
hold the UI strings, use the f:loadBundle tag to load the properties file in the
JSF page. For more information about resource bundles and the f:loadBundle
tag, see Section 22.4, "Internationalizing Your Application".

■ There is no requirement to use the ADF Faces af:form tag when you're using
ADF Faces components—you can use the standard JSF h:form with all ADF Faces
components. If you do use af:form, note that the af:form component does not
implement the JSF NamingContainer API. This means a component’s ID in the
generated HTML does not include the form's ID as a prefix. For pages with
multiple forms, this implies you can’t reuse ID values among the forms. For
example, this code snippet generates the component ID foo:bar for inputText:

<h:form id="foo">
 <af:inputText id="bar"/>
</h:form>

But the following code snippet generates the component ID bar2 for inputText:

<af:form id="foo2">
 <af:inputText id="bar2"/>
</af:form>

The advantages of using af:form are:

– It is easier to write JavaScript because it does not result in prefixed "name" and
"id" attributes in its contents (as explained above).

– It results in more concise HTML, for example, in cases where you may not
know the form's ID.

– You can use some CSS features on the fields.

– You can set a default command for form submission. Set the
defaultCommand attribute on af:form to the ID of the command button
that is to be used as the default submit button when the Enter key is pressed.
By defining a default command button for a form, when the user presses the
Enter key, an ActionEvent is created and the form submitted. If a default
command button is not defined for a form, pressing Enter will not submit the
form, and the page simply redisplays.

■ The afh:body tag enables partial page rendering (PPR) in a page. If a page
cannot use the afh:body tag and PPR support is desired, use the
af:panelPartialRoot tag in place of the afh:body tag. For information about
PPR, see Section 19.4, "Enabling Partial Page Rendering".

■ The af:document tag generates the standard root elements of an HTML page,
namely html, head, and body, so you can use af:document in place of
afh:html, afh:head, and afh:body.

For more tips on using ADF Faces components, see Section 11.6, "Best Practices for
ADF Faces".

11.4.3.1 Editing in the Structure Window
In the Structure window while inserting, copying, or moving elements, you select an
insertion point on the structure that is shown for the page, in relation to a target
element. JDeveloper provides visual cues to indicate the location of the insertion point
before, after, or contained inside a target element.

Laying Out a Web Page

Getting Started with ADF Faces 11-23

When dragging an element to an insertion point, do one of the following:

■ To insert an element before a target element, drag it towards the top of the element
until you see a horizontal line with an embedded up arrow, and then release the
mouse button.

■ To insert an element after a target element, drag it towards the bottom of the
element until you see a horizontal line with an embedded down arrow, and then
release the mouse button.

■ To insert or contain an element inside a target element, drag it over the element
until it is surrounded by a box outline, and then release the mouse button. If the
element is not available to contain the inserted element, the element will be
inserted after the target element.

11.4.3.2 Displaying Errors
Most of the SRDemo pages use the af:messages tag to display error messages.
When you create databound pages using the Data Control Palette, ADF Faces
automatically inserts the af:messages tag for you at the top of the page. When there
are errors at runtime, ADF Faces automatically displays the messages in a message box
offset by color. For more information about error messages, see Section 20.7,
"Displaying Error Messages".

In addition to reporting errors in a message box, you could use a general JSF error
handling page for displaying fatal errors such as stack traces in a formatted manner. If
you use a general error handling page, use the <error-page> element in web.xml to
specify a type of exception for the error page (as shown in Example 11–9), or specify
the error page using the JSP page directive (as shown in Example 11–10).

Example 11–9 Configuring Error-Page and Exception-Type in the web.xml File

<error-page>
 <exception-type>java.lang.Exception</exception-type>
 <location>/faces/infrastructure/SRError.jspx</location>
</error-page>

Example 11–10 Specifying ErrorPage in a JSF Page Using JSP Directive

<jsp:root ...>
 <jsp:output ...>
 <jsp:directive.page contentType="text/html;charset=windows-1252"
 errorPage="faces/SRError.jspx"/>
 <f:view></f:view>
</jsp:root>

Tip: A disallowed insertion point is indicated when the drag cursor
changes to a circle with a slash.

Laying Out a Web Page

11-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Consider the following if you intend to create and use a general JSF JSP error page:

■ Due to a current limitation in Sun’s JSF reference implementation, if you use the
Create JSF JSP wizard in JDeveloper to create a JSF JSP error page, you need to
replace <f:view></f:view> with <f:subview></f:subview>.

■ In web.xml you need to add the following settings to ADF Faces filter mapping:

<dispatcher>REQUEST</dispatcher>
<dispatcher>ERROR</dispatcher>

■ In the JSF page that uses the error page, <jsp:directive errorPage=""/>
needs to include the faces/ prefix in the errorpage URI, as shown in this code
snippet:

<jsp:directive.page contentType="text/html;charset=windows-1252"
 errorPage="faces/SRError.jspx"/>

11.4.4 Using the PanelPage Component
The SRDemo pages use panelPage as the main ADF Faces layout component, which
lets you lay out an entire page with specific areas for navigation menus, branding
images, and page body contents, as illustrated in Figure 11–5.

The panelPage component uses facets (or JSF f:facet tags) to render children
components in specific, predefined locations on the page. Consider a facet as a
placeholder for one child component. Each facet has a name and a purpose, which
determines where the child component is to be rendered relative to the parent
component. The child component is often a container component for other child
components.

The panelPage component uses menu1, menu2, and menu3 facets for creating
hierarchical, navigation menus that enable users to go quickly to related pages in the
application. In the menu facets you could either:

■ Manually insert the menu components (such menuTabs and menuBar) and their
children menu items. By manually inserting individual children components, you
need a lot of code in your JSF pages, which is time-consuming to create and
maintain.

For example, to create two menu tabs with subtabs, you would need code like this:

<f:facet name="menu1">
 <af:menuTabs>
 <af:commandMenuItem text="Benefits" selected="true"
 action="go.benefits"/>
 <af:commandMenuItem text="Employee Data" action="go.emps"/>
 </af:menuTabs>
</f:facet>
<f:facet name="menu2">
 <af:menuBar>
 <af:commandMenuItem text="Insurance" selected="true"
 action="go.insurance"/>
 <af:commandMenuItem text="Paid Time Off" selected="false"
 action="go.pto"/>
 </af:menuBar>
</f:facet>

Laying Out a Web Page

Getting Started with ADF Faces 11-25

■ Bind the menu components to a MenuModel object, and for each menu component
use a nodeStamp facet to stamp out the menu items (which does not require
having multiple menu item components in each menu component). By binding to
a MenuModel object and using a nodeStamp facet, you use less code in your JSF
pages, and almost any page (regardless of its place in the hierarchy) can be
rendered using the same menu code. For example, to create the same two menu
tabs shown earlier:

<f:facet name="menu1">
 <af:menuTabs var="menutab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menutab.label}"
 action="#{menutab.getOutcome}"/>
 </f:facet>
 </af:menuList>
</f:facet>
<f:facet name="menu2">
 <af:menuBar startDepth="1" var="menusubtab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menusubtab.label}"
 action="#{menusubtab.getOutcome}"/>
 </f:facet>
 </af:menuList>
</f:facet>

In the SRDemo pages, the menu components are bound to a menu model object
that is configured via managed beans. For information about how to create a menu
structure using managed beans, see Section 19.2, "Using Dynamic Menus for
Navigation".

In addition to laying out hierarchical menus, the panelPage component supports
other facets for laying out page-level and application-level text, images, and action
buttons in specific areas, as illustrated in Figure 11–7 and Figure 11–8.

For instructions on how to insert child components into facets or into panelPage
itself, see Section 11.4.1, "How to Add UI Components to a JSF Page".

Laying Out a Web Page

11-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

11.4.4.1 PanelPage Facets
Figure 11–7 shows panelPage facets (numbered 1 to 12) for laying out branding
images, global buttons, menu tabs, bars, and lists, and application-level text.

Figure 11–7 Basic Page Layout with Branding Images, Navigation Menus, and
Application-Level Text

Table 11–3 shows the panelPage facets (as numbered in Figure 11–7), and the
preferred children components that you could use in them. In JDeveloper, when you
right-click a facet in the Structure window, the Insert inside context menu shows the
preferred component to use, if any.

Table 11–3 PanelPage Facets for Branding Images, Navigation Menus, and
Application-Level Text

No. Facet Description

1 branding For a corporate logo or organization branding using
objectImage. Renders its child component at the top
left corner of the page.

2 brandingApp For an application logo or product branding using
objectImage. Renders its child component after a
branding image, if used. If chromeType on
panelPage is set to "expanded", the brandingApp
image is placed below the branding image.

3 brandingAppContextual Typically use with outputFormatted text to show the
application's current branding context. Set the
styleUsage attribute on outputFormatted to
inContextBranding.

4 menuSwitch For a menuChoice component that allows the user to
switch to another application from any active page.
Renders its child component at the top right corner of the
page. The menuChoice component can be bound to a
menu model object.

Laying Out a Web Page

Getting Started with ADF Faces 11-27

5 menuGlobal For a menuButtons component that lays out a series of
menu items as global buttons. Global buttons are buttons
that are always available from any active page in the
application (for example a Help button). Renders its
children components at the top right corner of the page,
before a menuSwitch child if used. A text link version of
a global button is automatically repeated at the bottom of
the page. The menuButtons component can be bound to
a menu model object.

6 menu1 For a menuTabs component that lays out a series of
menu items as tabs. Renders its children components
(right justified) at the top of the page, beneath any
branding images, menu buttons, or menu switch. A text
link version of a tab is automatically repeated at the
bottom of the page. Menu tab text links are rendered
before the text link versions of global buttons. Both types
of text links are centered in the page. The menuTabs
component can be bound to a menu model object.

7 menu2 For a menuBar component that lays out a series of menu
items in a horizontal bar, beneath the menu tabs. The
children components are left justified in the bar, and
separated by vertical lines. The menuBar component can
be bound to a menu model object.

8 menu3 For a menuList component that lays out a bulleted list
of menu items. Renders the children components in an
area offset by color on the left side of a page, beneath a
menu bar. The menuList component can be bound to a
menu model object.

9 search For a search area using an inputText component.
Renders its child component beneath the horizontal
menu bar. A dotted line separates it from the page title
below.

10 appAbout For a link to more information about the application
using commandLink. The link text appears at the bottom
left corner of the page.

11 appCopyright For copyright text using outputText. The text appears
above the appAbout link.

12 appPrivacy For a link to a privacy policy statement for the
application using commandLink. The link text appears
at the bottom right corner of the page.

Tip: Many UI components support facets, not only panelPage. To
quickly add or remove facets on a component, right-click the
component in the Structure window and choose Facets - <component
name>, where <component name> is the name of the UI component.
If the component supports facets, you’ll see a list of facet names. A
checkmark next to a name means the f:facet element for that facet
is already inserted in the page, but it may or not contain a child
component.

Table 11–3 (Cont.) PanelPage Facets for Branding Images, Navigation Menus, and
Application-Level Text

No. Facet Description

Laying Out a Web Page

11-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 11–8 shows panelPage facets (numbered 1 to 7) for laying out page-level
actions and text.

Figure 11–8 Basic Page Layout with Page-Level Actions and Informational Text

Table 11–4 shows the panelPage facets (as numbered in Figure 11–8), and the
preferred children components that you could use in them.

Table 11–4 PanelPage Facets for Page-Level Actions and Informational Text

No. Facet Description

1 actions For page-level actions that operate on the page content.
Typically use with a panelButtonBar to lay out a
series of buttons, a processChoiceBar, or a
selectOneChoice. Renders its children components
below the page title, right-justified. The children
components are also automatically repeated near the
bottom of the page (above any text link versions of menu
tabs and global buttons) on certain devices and skins.

2 contextSwitcher A context switcher lets the user change the contents of
the page based on the context. For example, when a user
is viewing company assets for a department, the user can
use the context switcher to switch to the assets of another
department. All the pages will then change to the
selected context. Typically use with a
selectOneChoice component. The facet renders its
child component on the same level as the page title,
right-justified.

3 infoFootnote For page-level information that is ancillary to the task at
hand. Typically use with an outputFormatted
component, with styleClass or styleUsage set to an
appropriate value. The facet renders its child component
near the bottom of the page, left-justified and above the
infoReturn link.

4 infoReturn For a "Return to X" link using commandLink. For the
user to move quickly back to the default page of the
active menu tab. The facet renders its child component
near the bottom of the page, left-justified and above the
text link versions of menu tabs and global buttons.

Laying Out a Web Page

Getting Started with ADF Faces 11-29

11.4.4.2 Page Body Contents
After you’ve set up the panelPage facets, create your forms, tables, and other page
body contents inside the panelPage component. ADF Faces panel components (and
others) help you to organize content on a page. Use Table 11–5 to decide which
components are suitable for your purposes.

For information about the component attributes you can set on each component, see
the JDeveloper online help. For an image of what each component looks like, see the
ADF Faces Core tag document at

http://www.oracle.com/technology/products/jdev/htdocs/partners/a
ddins/exchange/jsf/doc/tagdoc/core/imageIndex.html

5 infoStatus For page-level status information about the task at hand.
Could also use to provide a key notation. A key notation
is a legend used to define icons, elements, or terms used
within the page contents. Typically use with an
outputFormatted component, with styleClass or
styleUsage set to an appropriate value. The facet
renders its child component below the page title,
left-justified.

6 infoSupplemental For any other additional information. Typically use with
a panelBox to show the information in an area offset by
color. In the panelBox you could use for example
panelList or outputFormatted text to provide
additional information that might help the user, but is
not required for completing a task. The facet renders its
children components on the right side of the page, below
the infoUser facet child component.

7 infoUser For presenting user login and connection information.
Typically use with an outputFormatted component,
with styleClass or styleUsage set to an appropriate
value. The facet renders its child component on the right
side of the page, immediately below the menu bars.

Tip: Like panelPage, the page component also lets you lay out an
entire page with specific content areas. Unlike panelPage, you can
bind the value of page to a menu model object to create the page’s
hierarchical menus—you don't have to bind individual menu
components to a menu model object.

Table 11–5 ADF Faces Layout and Panel Components

To... Use these components...

Align form input components in one or more
columns, with the labels right-justified and the
fields left-justified

panelForm

Arrange components horizontally, optionally
specifying a horizontal or vertical alignment

panelHorizontal

Arrange components consecutively with
wrapping as needed, horizontally in a single
line, or vertically

panelGroup

Create a bulleted list in one or more columns panelList

Table 11–4 (Cont.) PanelPage Facets for Page-Level Actions and Informational Text

No. Facet Description

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/imageIndex.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/imageIndex.html

Creating and Using a Backing Bean for a Web Page

11-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

11.5 Creating and Using a Backing Bean for a Web Page
In JSF, backing beans are JavaBeans used mainly to provide UI logic for handling
events and page flow. Typically you have one backing bean per JSF page. The backing
bean contains any logic and properties for the UI components used on the page. For
example, to programmatically change a UI component as a result of some user activity
or to execute code before or after an ADF declarative action method, you provide the
necessary code in the page’s backing bean and bind the component to the
corresponding property or method in the bean.

If you don’t perform any UI component manipulation or conditional page flow logic,
then you might not even need to use a backing bean for a page. The rest of this section
provides information about using backing beans, if you need to use them for your
pages.

Lay out one or more components with a label,
tip, and message

panelLabelAndMessage

Place multiple panelLabelAndMessage
components in a panelForm

When laying out input component, the
simple attribute on the input component
must be set to true.

Place components in a container offset by
color

panelBox

Typically use a single child inside panelBox
such as panelGroup or panelForm, which
then contains the components for display

Place components in predefined locations
using facets

panelBorder

Lay out a series of buttons panelButtonBar

Display additional page-level or section-level
hints to the user

panelTip

Create page sections and subsections with
headers

panelHeader, showDetailHeader

Add quick links to sections in long pages Set the quickLinksShown attribute on
panelPage to true

Let the user toggle a group of components
between being shown (disclosed) and hidden
(undisclosed)

showDetail

Let the user select and display a group of
contents at a time

A ShowOne component with
showDetailItem components

ShowOne components include showOneTab,
showOneChoice, showOneRadio, and
showOnePanel

Insert separator lines or space in your layout objectSeparator, objectSpacer

Table 11–5 (Cont.) ADF Faces Layout and Panel Components

To... Use these components...

Creating and Using a Backing Bean for a Web Page

Getting Started with ADF Faces 11-31

11.5.1 How to Create and Configure a Backing Bean
For a backing bean to be available when the application starts, you register it as a
managed bean with a name and scope in faces-config.xml. At runtime, whenever
the managed bean is referenced on a page through a JSF EL value or method binding
expression, the JSF implementation automatically instantiates the bean, populates it
with any declared, default values, and places it in the managed bean scope as defined
in faces-config.xml.

The Overview mode of the JSF Configuration Editor lets you create and configure a
backing bean declaratively. Suppose you have a JSF page with the filename
SRDemopage.jspx. Now you want to create a backing bean for the page.

To create and configure a backing bean as a managed bean:
1. In the Application Navigator, double-click faces-config.xml to open it in the

default mode of the JSF Configuration Editor.

2. At the bottom of the editor, select the Overview tab to switch to the Overview
mode, if necessary.

3. In the element list on the left, select Managed Beans.

4. Click New to open the Create Managed Bean dialog.

5. In the dialog, specify the following for a managed bean:

■ Name: Enter a unique identifier for the managed bean (e.g., backing_
SRDemopage). This identifier determines how the bean will be referred to
within the application using EL expressions, instead of using the bean's
fully-qualified class name.

■ Class: Enter the fully qualified class name (e.g.,
oracle.srdemo.view.backing.SRDemopage). This is the JavaBean that
contains the properties that hold the data for the UI components used on the
page, along with the corresponding accessor methods and any other methods
(such as navigation or validation). This can be an existing or a new class.

■ Scope: This determines the scope within which the bean is stored. The valid
scope values are:

– application: The bean is available for the duration of the web application.
This is helpful for global beans such as LDAP directories.

– request: The bean is available from the time it is instantiated until a
response is sent back to the client. This is usually the life of the current
page. Backing beans for pages usually use this scope.

– session: The bean is available to the client throughout the client's session.

– none: The bean is instantiated each time it is referenced.

6. Select the Generate Class If It Does Not Exist checkbox to let JDeveloper create
the Java class for you. If you’ve already created the Java class, don’t select this
checkbox.

Note: At this point, you haven’t defined a strict relationship between
the JSF page and the backing bean. You’ve simply configured a
backing bean in faces-config.xml, which you can now reference
via JSF EL expressions on a page. To define a strict relationship
between a page and a backing bean, see Section 11.5.3, "How to Use a
Backing Bean in a JSF Page".

Creating and Using a Backing Bean for a Web Page

11-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

11.5.2 What Happens When You Create and Configure a Backing Bean
If you select the Generate Class If It Does Not Exist checkbox, JDeveloper creates a
new Java class using the fully qualified class name set as the value of Class. The new
file appears within the Application Sources node of the ViewController project in the
Application Navigator, as illustrated in Figure 11–9.

Figure 11–9 Backing Bean for SRDemopage.jspx in the Navigator

To edit the backing bean class, double-click the file in the Application Navigator (for
example, SRDemopage.java) to open it in the source editor. If it’s a new class, you
would see something similar to Example 11–11.

Example 11–11 Empty Java Class Created by JDeveloper

package oracle.srdemo.view.backing;

public class SRDemopage {
 public SRDemopage() {
 }
}

In faces-config.xml, JDeveloper adds the backing bean configuration using the
<managed-bean> element, as shown in Example 11–12.

Example 11–12 Registering a Managed Bean in the faces-config.xml File

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- Page backing beans typically use request scope-->
 <managed-bean>
 <managed-bean-name>backing_SRDemopage</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRDemopage</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 ...
</faces-config>

Note: For a backing bean to access the ADF Model binding layer at
runtime, the backing bean could inject the ADF binding container. For
information about how this is done, see Section 11.5.7, "Using ADF
Data Controls and Backing Beans".

Creating and Using a Backing Bean for a Web Page

Getting Started with ADF Faces 11-33

11.5.3 How to Use a Backing Bean in a JSF Page
Once a backing bean is defined with the relevant properties and methods, you use JSF
EL expressions such as #{someBean.someProperty} or
#{someBean.someMethod} to bind a UI component attribute to the appropriate
property or method in the bean. For example, the following code snippets illustrate
value binding expressions and method binding expressions:

<af:inputText value="#{someBean.someProperty}"/>
..
<af:inputText disabled="#{someBean.anotherProperty}"/>
..
<af:commandButton action=#{someBean.someMethod}"/>
..
<af:inpuText valueChangeListener="#{someBean.anotherMethod}"/>

When such expressions are encountered at runtime, JSF instantiates the bean if it does
not already exist in the bean scope that was configured in faces-config.xml.

In addition to value and method bindings, you can also bind the UI component’s
instance to a bean property using the binding attribute:

<af:commandButton binding="#{backing_SRDemopage.commandButton1}"

When the binding attribute of a UI component references a property in the bean, the
bean has direct access to the component, and hence, logic in the bean can
programmatically manipulate other attributes of the component, if needed. For
example, you could change the color of displayed text, disable a button or field, or
cause a component not to render, based on some UI logic in the backing bean.

To reiterate, you can bind a component’s value attribute or any other attribute value
to a bean property, or you can bind the component instance to a bean property. Which
you choose depends on how much control you need over the component. When you
bind a component attribute, the bean's associated property holds the value for the
attribute, which can then be updated during the Update Model Values phase of the
component's lifecycle. When you bind the component instance to a bean property, the
property holds the value of the entire component instance, which means you can
dynamically change any other component attribute value.

11.5.4 How to Use the Automatic Component Binding Feature
JDeveloper has a feature that lets you automatically bind a UI component instance on
a JSF page to a backing bean property. When you turn on the Auto Bind feature for a
page, for any UI component that you insert into the page, JDeveloper automatically
adds property code in the page’s backing bean, and binds the component’s binding
attribute to the corresponding property in the backing bean. If your backing bean
doesn’t have to modify the attributes of UI components on a page programmatically,
you don’t need to use the automatic component binding feature.

Creating and Using a Backing Bean for a Web Page

11-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To turn on automatic component binding for a JSF page:
1. Open the JSF page in the visual editor. Select Design at the bottom of the editor

window.

2. Choose Design > Page Properties to display the Page Properties dialog.

3. Select Component Binding.

4. Select Auto Bind.

5. Select a managed bean from the dropdown list or click New to configure a new
managed bean for the page.

11.5.5 What Happens When You Use Automatic Component Binding in JDeveloper
If the Auto Bind feature is turned on for a JSF page, you’ll see a special comment line
near the end of the page:

...
 </f:view>
 <!--oracle-jdev-comment:auto-binding-backing-bean-name:backing_SRDemopage-->
</jsp:root>

In faces-config.xml, a similar comment line is inserted at the end of the page’s
backing bean configuration:

<managed-bean>
 <managed-bean-name>backing_SRDemopage</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRDemopage</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1SRDemopage.jspx-->
</managed-bean>

When you turn on the Auto Bind feature for a page, JDeveloper does the following for
you every time you add a UI component to the page:

Note: By turning on automatic component binding in a JSF page,
you are defining a strict relationship between a page and a backing
bean in JDeveloper.

Creating and Using a Backing Bean for a Web Page

Getting Started with ADF Faces 11-35

■ Adds a property and property accessor methods for the component in the backing
bean. For example, the next code snippet shows the code added for an
inputText and a commandButton component:

 private CoreInputText inputText1;
 private CoreCommandButton commandButton1;
 public void setInputText1(CoreInputText inputText1) {
 this.inputText1 = inputText1;
 }

 public CoreInputText getInputText1() {
 return inputText1;
 }

 public void setCommandButton1(CoreCommandButton commandButton1) {
 this.commandButton1 = commandButton1;
 }

 public CoreCommandButton getCommandButton1() {
 return commandButton1;
 }

■ Binds the component to the corresponding bean property using an EL expression
as the value for the binding attribute, as shown in this code snippet:

<af:inputText binding="#{backing_SRDemopage.inputText1}"
<af:commandButton binding="#{backing_SRDemopage.commandButton1}"

When you turn off the Auto Bind feature for a page, JDeveloper removes the special
comments from the JSF page and faces-config.xml. The binding EL expressions
on the page and the associated backing bean code are not deleted.

11.5.6 What You May Need to Know About Backing Beans and Managed Beans
Managed beans are any application JavaBeans that are registered in the JSF
faces-config.xml file. Backing beans are managed beans that contain logic and
properties for some or all UI components on a JSF page. If you place, for example,
validation and event handling logic in a backing bean, then the code has
programmatic access to the UI components on the page when the UI components are
bound to properties in the backing bean via the binding attribute.

In this guide, the term backing bean might be used interchangeably with the term
managed bean, because all backing beans are managed beans. You can, however, have a
managed bean that is not a backing bean—that is, a JavaBean that does not have
properties and property getter and setter methods for UI components on a page, but
the bean is configured in faces-config.xml, and has code that is not specific to any
single page. Examples of where managed beans that are not backing beans are used in
the SRDemo application include beans to:

■ Access authenticated user information from the container security

■ Create the navigation menu system (such as menu tabs and menu bars).

■ Expose String resources in a bundle via EL expressions

Tip: When Auto Bind is turned on and you delete a UI component
from a page, JDeveloper automatically removes the corresponding
property and accessor methods from the page’s backing bean.

Creating and Using a Backing Bean for a Web Page

11-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Managed bean properties are any properties of a bean that you would like populated
with a value when the bean is instantiated. The set method for each declared property
is run once the bean is constructed. To initialize a managed bean's properties with set
values, use the <managed-property> element in faces-config.xml. When you
configure a managed property for a managed bean, you declare the property name, its
class type, and its default value, as shown in Example 11–13.

Example 11–13 Managed Bean Property Initialization Code in the faces-config.xml File

<managed-bean>
 <managed-bean-name>tax</managed-bean-name>
 <managed-bean-class>com.jsf.databeans.TaxRateBean</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>rate</property-name>
 <property-class>java.lang.Float</property-class>
 <value>5</value>
 </managed-property>
</managed-bean>

In Example 11–13, the rate property is initialized with a value of 5 (converted to a
Float) when the bean is instantiated using the EL expression #{tax.rate}.

Managed beans and managed bean properties can be initialized as lists or maps,
provided that the bean or property type is a List or Map, or implements
java.util.Map or java.util.List. The default types for the values within a list
or map is java.lang.String.

Example 11–14 shows an example of a managed bean that is a List.

Example 11–14 Managed Bean List in the faces-config.xml File

<managed-bean>
 <managed-bean-name>options</managed-bean-name>
 <managed-bean-class>java.util.ArrayList</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <list-entries>
 <value>Text Only</value>
 <value>Text + HTML</value>
 <value>HTML Only</value>
 </list-entries>
</managed-bean>

When the application encounters the EL expression #{options.text}, a List object
is created and initialized with the values from the declared list-entries' values. The
managed-property element is not declared, but the list-entries are child
elements of the managed-bean element instead.

Tip: Managed beans can only refer to managed properties in beans
that have the same scope or a scope with a longer lifespan. For
example a session scope bean cannot refer to a managed property
on a request scoped bean.

Creating and Using a Backing Bean for a Web Page

Getting Started with ADF Faces 11-37

11.5.7 Using ADF Data Controls and Backing Beans
When you create databound UI components by dropping items from the Data Control
Palette on your JSF page, JDeveloper does many things for you, which are
documented in Section 12.2.3, "What Happens When You Use the Data Control
Palette". The databound UI components use ADF data binding EL expressions, such as
#{bindings.ProductName.inputValue}, to reference the associated binding
objects in the page’s binding container, where bindings is the reference to the ADF
binding container of the current page.

In the backing bean of a page that uses ADF data bindings, sometimes you might want
to reference the binding container’s binding objects. To reference the ADF binding
container, you can resolve a JSF value binding to the #{bindings} EL expression and
cast the result to an oracle.binding.BindingContainer interface. Or for
convenience, you can add a managed property named bindings that references the
same #{bindings} EL expression, to the page’s managed bean configuration in
faces-config.xml so that the backing bean can work programmatically with the
ADF binding container at runtime. Example 11–15 shows the bindings managed
property in the backing_SRMain managed bean for the SRMain page.

Example 11–15 Bindings Managed Property in the faces-config.xml File

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <managed-bean>
 <managed-bean-name>backing_SRMain</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRMain</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{bindings}</value>
 </managed-property>
 </managed-bean>
 ...
</faces-config>

In the backing bean, add the getter and setter methods for the binding container.
Example 11–16 shows the part of SRMain.java that contains the relevant code for
bindings.

Example 11–16 Bindings Getter and Setter Methods in a Backing Bean

...
import oracle.binding.BindingContainer;

 private BindingContainer bindings;

 public BindingContainer getBindings() {
 return this.bindings;
 }

 public void setBindings(BindingContainer bindings) {
 this.bindings = bindings;
 }

...

Best Practices for ADF Faces

11-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

At runtime, when the application encounters an ADF data binding EL expression that
refers to the ADF binding container, such as
#{bindings.bindingObject.propertyName}, JSF evaluates the expression and
gets the value from the binding object.

For more information about ADF data binding EL expressions and ADF binding
properties, see Section 12.6, "Creating ADF Data Binding EL Expressions".

For an overview of how you might use JSF backing beans with ADF Model and
ADF Business Components, see Chapter 1, "Introduction to Oracle ADF Applications".

11.6 Best Practices for ADF Faces
Consider the following best practices when developing with ADF Faces:

■ While both JSP documents (.jspx) and JSP pages (.jsp) can be used, Oracle
recommends working with JSP documents (.jspx) when using ADF Faces
components in your JSF pages because JSP documents are well-formed XML
documents. The XML standard offers many benefits such as validating against a
document type definition, and parsing to create documentation or audit reports.

■ Use token-based client-side state saving instead of server-side state saving by
setting the value of javax.faces.STATE_SAVING_METHOD in web.xml to
client (which matches the default server-side behavior that will be provided in
JSF 1.2).

While server-side state saving can provide somewhat better performance,
client-side state saving is recommended as it provides better support for failover
and the back button, and for displaying multiple windows simultaneously.
Token-based client-side state saving results in better server performance because
CPU and I/O consumption is lower.

Note that javax.faces.STATE_SAVING_METHOD must be set to server for
ADF Telnet applications because the Industrial Telnet Server does not currently
support saving state on the client.

■ Remove or disable debug features to improve the performance of deployed
applications:

– In web.xml, disable oracle.adf.view.faces.CHECK_FILE_
MODIFICATION. By default, this parameter is false. If it is set to true, ADF
Faces automatically checks the modification date of your JSPs, and discards
saved state when they change. For testing and debugging in JDeveloper’s
embedded OC4J, you don’t need to explicitly set this parameter to true
because ADF Faces automatically detects the embedded OC4J and runs with
the file modification checks enabled. But when you deploy the application,
you should set the parameter to false.

For testing and debugging in JDeveloper’s embedded OC4J, you don’t need to
explicitly set this parameter to true because ADF Faces automatically detects
the embedded OC4J and runs with the file modification checks enabled.

– In web.xml, disable oracle.adf.view.faces.DEBUG_JAVASCRIPT. The
default value of this parameter is false. This means that by default, ADF
Faces obfuscates JavaScript and removes comments and whitespace to reduce
the size of the JavaScript download to the client. During application
development, you might set the parameter to true (to turn off obfuscation) so
that you can debug JavaScript easier, but when you deploy the application,
you should set the parameter to false.

Best Practices for ADF Faces

Getting Started with ADF Faces 11-39

– In adf-faces-config.xml, set <debug-output> to false. ADF Faces
enhances debugging output when <debug-output> is true, by adding
automatic indenting and extra comments, and detecting for malformed
markup problems, unbalanced elements, and common HTML errors. The
enhanced debug output is not necessary in deployed applications.

■ ADF Faces input components provide support for automatic form submission via
the autoSubmit attribute. When the autoSubmit attribute is set to true, and an
appropriate action takes place (such as a value change), the input component
automatically submits the form it is enclosed in through a partial page submit.
Thus you can update a portion of a page without having to redraw the entire page,
which is known as partial page rendering. For information about using partial page
rendering, see Section 19.4, "Enabling Partial Page Rendering".

■ ADF Faces performs client-side and server-side validation upon an auto submit
execution. But if both autoSubmit and immediate attributes on ADF Faces
input components are set to true, then ADF Faces doesn't perform client-side
validation.

■ When laying out ADF Faces input components inside panelLabelAndMessage
components, you must set the simple attributes on the input components to
true. For accessibility purposes, set the for attribute on
panelLabelAndMessage to the first input component. For proper alignment,
place multiple panelLabelAndMessage components in a panelForm.

■ Although ADF Faces ignores label and message attributes on "simple" input
components, you must set the label attribute on a "simple" component in this
version of ADF Faces for component-generated error messages to display
correctly.

■ If both styleClass and styleUsage attributes are set on a component,
styleClass has precedence over styleUsage.

■ ADF Faces provides three levels of page accessibility support, which is configured
in adf-faces-config.xml using the <accessibility-mode> element. The
acceptable values for <accessibility-mode> are:

– default: By default ADF Faces generates HTML code that is accessible to
disabled users.

– screenReader: ADF Faces generates HTML code that is optimized for the
use of screen readers. The screenReader mode facilitates disabled users, but
it may degrade the output for regular users. For example, access keys are
disabled in screen reader mode.

– inaccessible: ADF Faces removes all code that does not affect sighted
users. This optimization reduces the size of the generated HTML. The
application, however, is no longer accessible to disabled users.

■ Images that are automatically generated by ADF Faces components have built-in
descriptions that can be read by screen readers or nonvisual browsers. For images
generated from user-supplied icons and images, make sure you set the
shortDesc or searchDesc attribute. Those attributes transform into HTML alt
attributes. For images produced by certain ADF Faces components such as
menuTabs and menuButtons, make sure you set the text or icon attribute on
commandMenuItem because ADF Faces uses those values to generate text that
describes the menu name as well as its state.

Best Practices for ADF Faces

11-40 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Similarly for table and outputText components, set the summary and
description attribute, respectively, for user agents rendering to nonvisual
media. If you use frames, provide links to alternative pages without frames using
the alternateContent facet on frameBorderLayout. Within each frame set
the shortDesc and longDescURL attributes.

■ Specify an access key for input, command, and go components such as
inputText, commandButton, and goLink.

– Typically, you use the component’s accessKey attribute to set a keyboard
character. For command and go components, the character specified by the
attribute must exist in the text attribute of the component instance. If it does
not exist, ADF Faces does not display the visual indication that the component
has an access key

– You can also use labelAndAccessKey on input components, or
textAndAccessKey on command and go components. Those attributes let
you set the label or text value, and an access key for the component at the
same time. The conventional ampersand notation to use is & in JSP
documents (.jspx). For example, in this code snippet:

<af:commandButton textAndAccessKey="&Home"/>

... the button text is Home and the access key is H, the letter that is immediately
after the ampersand character.

– Using access keys on goButton and goLink components may immediately
activate them in some browsers. Depending on the browser, if the same access
key is assigned to two or more go components on a page, the browser may
activate the first component instead of cycling among the components that are
accessed by the same key.

– If you use a space as the access key, you need to provide a way to tell the user
that Alt+Space or Alt+Spacebar is the access key because there is no good way
to present a blank or space visually in the component's label or textual label.
For example, you could provide some text in a component tooltip using the
shortDesc attribute.

– Access keys are not displayed if the accessibility mode is set to screen reader
mode.

■ Enable application view caching by setting the value of
oracle.adf.view.faces.USE_APPLICATION_VIEW_CACHE in web.xml to
true.

When application view caching is enabled, the first time a page is viewed by any
user, ADF Faces caches the initial page state at an application level. Subsequently,
all users can reuse the page's cached state coming and going, significantly
improving application performance.

While application view caching can improve a deployed application's
performance, it is difficult to use during development and there are some coding
issues that should be considered. For more detailed information about using
application view caching, see "Configuring ADF Faces for Performance" in the
"Configuring ADF Faces" section of the ADF Faces Developer’s Guide.

Best Practices for ADF Faces

Getting Started with ADF Faces 11-41

■ For ADF Faces deployment best practices, see Chapter 34, "Deploying ADF
Applications".

■ Increase throughput and shorten response times by caching content with the ADF
Faces Cache tag library. Caching stores all or parts of a web page in memory for
use in future responses. It significantly reduces response time to client requests by
reusing cached content for future requests without executing the code that created
it. For more information, see Chapter 23, "Optimizing Application Performance
with Caching".

Best Practices for ADF Faces

11-42 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Displaying Data on a Page 12-1

12
Displaying Data on a Page

This chapter describes how to use the Data Control Palette to create databound UI
components that display data on a page. It also describes how to work with all the
objects that are created when you use the Data Control Palette.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Displaying Data on a Page"

■ Section 12.2, "Using the Data Control Palette"

■ Section 12.3, "Working with the DataBindings.cpx File"

■ Section 12.4, "Configuring the ADF Binding Filter"

■ Section 12.5, "Working with Page Definition Files"

■ Section 12.6, "Creating ADF Data Binding EL Expressions"

The remaining chapters in this part of this guide describe how to create specific types
of pages using databound components.

12.1 Introduction to Displaying Data on a Page
The ADF data controls provide an abstraction of an application’s business services,
giving the ADF binding layer access to the service data. An application module data
control represents a specific application module and exposes instances of that
application module’s view objects. Each application module is automatically available
as a data control. You can bind UI components to application module data controls to
populate a page with data from your active data model at runtime. For more
information about application module data controls, see Chapter 10, "Overview of
Application Module Data Binding".

The JDeveloper Data Control Palette exposes an application’s data controls in the IDE
and enables you to use drag and drop to create a variety of UI components on a JSF
page. The UI components created by the Data Control Palette use declarative data
binding, which means that the data binding expressions are automatically configured
and that, in most cases, you do not have to write any additional code.

Read this chapter to understand:

■ How to use the Data Control Palette to create databound UI components

■ The items that appear on the Data Control Palette

■ The objects that JDeveloper creates for you when you use the Data Control Palette

■ How to construct an ADF data binding EL expression

■ The content of the page definition file and its relationship to EL expressions

Using the Data Control Palette

12-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

12.2 Using the Data Control Palette
You can design a databound user interface by dragging an item from the Data Control
Palette and dropping it on a page as a specific UI component. When you use the Data
Control Palette to create a UI component, JDeveloper automatically creates the various
code and objects needed to bind the component to the data control you selected.

To display the Data Control Palette, open a JSF page in the Design page of the visual
editor and choose View > Data Control Palette. By default, JDeveloper displays the
Data Control Palette in the same window as the Component Palette.

Figure 12–1 shows the Data Control Palette for the SRDemo application, which uses
ADF Business Components as the business service.

Figure 12–1 Data Control Palette

Note: If your Data Control Palette is empty, be sure that you have
created view objects for the data you want to access and have added
those view objects to an application module. For information about
creating view objects and application modules, see Chapter 5,
"Querying Data Using View Objects".

Using the Data Control Palette

Displaying Data on a Page 12-3

12.2.1 How to Understand the Items on the Data Control Palette
The Data Control Palette lists all the data controls that have been created for the
application’s business services and exposes all the collections, methods, and built-in
operations that are available for binding to UI components. A data collection represents
a set of data objects (also known as a rowset) in the data model. Each object in a data
collection represents a specific structured data item (also known as a row) in the data
model. Throughout this guide, the term data collection and collection are used
interchangeably.

Each root node in the Data Control Palette represents a specific data control. Under
each data control is a hierarchical list of objects, collections, methods, and operations.
How this hierarchy appears on the Data Control Palette depends on the type of
business service represented by the data control and how the business services were
defined.

For example, in an application that uses ADF Business Components to define the
business services, each data control on the Data Control Palette represents a specific
application module, and exposes the view object instances in that application’s data
model. The hierarchy of objects in the data control is defined by the view links
between view objects that have specifically been added to the application module data
model. For information about creating view objects and view links, see Chapter 5,
"Querying Data Using View Objects". For information about adding view links to the
data model, see Section 5.10.4.3, "How to Enable Active Master/Detail Coordination in
the Data Model".

In the Data Control Palette, each data control object is represented by a specific icon.
Table 12–1 describes what each icon represents, where it appears in the Data Control
Palette hierarchy, and what components it can be used to create.

Using the Data Control Palette

12-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Table 12–1 The Data Control Palette Icons and Object Hierarchy

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control itself
to create UI components, but you can use any of the child
objects listed under it. Depending on how your business
services were defined, there may be more than one data control.

Usually, there is one data control for each application module.
However, you may have additional data controls that were
created for other types of business services (for example, for
CSV files or web services). For information about creating data
controls for CSV files, see Chapter 31, "Creating Data Control
Adapters". For information about creating data controls for web
services, see Chapter 33, "Working with Web Services".

Not used to create
anything. Serves as a
container for the other
objects.

Method Represents a custom method in the data control that can accept
parameters, perform some action or business logic, and return
single values or data collections.

In application module data controls, custom methods are
defined in the application module itself and usually return
either nothing or a single scalar value. For more information
about creating custom methods, see Chapter 8, "Implementing
Business Services with Application Modules".

For more information about using methods that accept
parameters, see Section 17.3.2.1, "Using Parameters in a
Method".

Command components

For methods that accept
parameters: command
components and
parameterized forms

Method
Return

Represents an object that is returned by a custom method. The
returned object can be a single value or a collection.

If a custom method defined in the application module returns
anything at all, it is usually a single scalar value. Application
module methods do not need to return a set of data to the view
layer, because displaying the latest changes to the data is
handled by the view objects in the active data model (for more
information, see Section 4.5, "Understanding the Active Data
Model". However, custom methods in non-application module
data controls (for example, a data control for a CSV file) can
return collections to the view layer.

A method return appears as a child under the method that
returns it. The objects that appear as children under a method
return can be attributes of the collection, other methods that
perform actions related to the parent collection, and operations
that can be performed on the parent collection.

For single values: text
fields and selection lists

For collections: forms,
tables, trees, and range
navigation components

Using the Data Control Palette

Displaying Data on a Page 12-5

View
Object
Collection

Represents a named data collection, which is the default rowset
contained in a view object instance. The name of the collection
matches the view object instance name.

A data collection represents a set of data objects (also known as a
rowset) in the data model. Each object in a data collection
represents a specific structured data item (also known as a row)
in the data model. Throughout this guide, data collection and
collection are used interchangeably.

A view link creates a master-detail relationship between two
view objects. If you explicitly add an instance of a detail view
object (resulting from a view link) to the application module
data model, the collection contained in that detail view object
appears as a child of the collection contained in the master view
object. For information about adding detail view objects to the
data model, see Section 5.10.4.3, "How to Enable Active
Master/Detail Coordination in the Data Model". For more
information about using master-detail relationships to create UI
components, see Chapter 15, "Displaying Master-Detail Data".

The children under a collection may be attributes of the
collection, other collections that are related by a view link,
custom methods that return a value from the collection, and
built-in operations that can be performed on the collection.

Forms, tables, trees, range
navigation components,
and master-detail
components

Attribute Represents a discrete data element in an object (for example, an
attribute in a view row). Attributes appear as children under the
collections or method returns to which they belong.

Only the attributes that were included in the view object are
shown under a collection. If a view object joins one or more
entity objects, that view object’s collection will contain selected
attributes from all of the underlying entity objects.

Label, text field, and
selection list components.

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are located
in an Operations folder under collections or method returns and
under the root data control node. The operations that are
children of a particular collection or method return operate on
those objects only, while operations under the data control node
operate on all the objects in the data control.

If an operation requires one or more parameters, they are listed
in a Parameters folder under the operation.

UI actions such as buttons
or links.

Parameter Represents a parameter value that is declared by the method or
operation under which it appears. Parameters appear in the
Parameters folder under a method or operation.

Label, text, and selection
list components.

Table 12–1 (Cont.) The Data Control Palette Icons and Object Hierarchy

Icon Name Description Used to Create...

Using the Data Control Palette

12-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

12.2.2 How to Use the Data Control Palette
To create a databound UI component, drag an item from the Data Control Palette and
drop it on a JSF page.

When you drag an item from the Data Control Palette and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for the
item you dropped. From the context menu, select the component you want to create.

Figure 12–2 shows the context menu displayed when a collection from the Data
Control Palette is dropped on a page.

Figure 12–2 Data Control Palette Context Menu

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to look. For
example, if you select ADF Read-only Table from the context menu, the Edit Table
Columns dialog appears. This dialog enables you to define which attributes you want
to display in the table columns, the column labels, what types of text fields you want
use for each column, and what functionality you want to include, such as selection
facets or column sorting. (For more information about creating tables, see Chapter 14,
"Adding Tables".)

The resulting UI component appears in the JDeveloper visual editor. For example, if
you drag a collection from the Data Control Palette, and choose ADF Read-only Table
from the context menu, a read-only table appears in the visual editor, as shown in
Figure 12–3.

Figure 12–3 Databound UI Component: ADF Read-only Table

Notice that the column labels in the sample table contain binding expressions, which
bind each column label to an attribute in the data collection. The default table includes
a selection facet, which is bound to a data collection iterator through an iterator
binding. The selection facet was included by selecting the Enable Selection option in
the Edit Table Columns dialog, which appears after you drop the table component.
(Binding expressions are discussed later in Section 12.6, "Creating ADF Data Binding
EL Expressions".)

Using the Data Control Palette

Displaying Data on a Page 12-7

By default, the UI components created when you use the Data Control Palette use ADF
Faces components, are bound to collections and collection attributes in the ADF data
control, and may have one or more built-in features including:

■ Databound labels

■ Tooltips

■ Formatting

■ Basic navigation buttons

■ Validation (if validation rules are attached to a particular attribute; see Chapter 20,
"Using Validation and Conversion" for information about validation)

The default components are fully functional without any further modifications.
However, you can modify them to suit your particular needs. Each component and its
various features are discussed further in the remaining chapters in this part of this
guide.

12.2.3 What Happens When You Use the Data Control Palette
While an ADF web application is built using the JSF framework, it requires a few
additional application object definitions to render and process a page containing ADF
databound UI components. If you do not use the Data Control Palette, you will have to
manually configure these various files yourself. However, when you use the Data
Control Palette, JDeveloper does all the required steps for you, which are:

■ Create a DataBindings.cpx file in the view package in the Application Sources
directory (if one does not already exist), and add an entry for the page.

The DataBindings.cpx file defines the binding context for the application. It
maps individual pages to the binding definitions in the page definition file and
registers the data controls used by those pages. For more information, see
Section 12.3, "Working with the DataBindings.cpx File".

■ Register the ADF binding filter in the web.xml file.

The ADF binding filter preprocesses any HTTP requests that may require access to
the binding context. For more information about the binding filter configuration,
see Section 12.4, "Configuring the ADF Binding Filter".

■ Register the ADF phase listener in the faces-config.xml file, as shown in
Example 12–1.

Tip: If you want to change the type of ADF databound component
used on a page, the easiest method is to delete the component and
drag and drop a new one from the Data Control Palette. When you
delete a databound component from a page, if the related binding
objects in the page definition file are not referenced by any other
component, JDeveloper automatically deletes those binding objects for
you.

Using the Data Control Palette

12-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 12–1 ADF Phase Listener Entry in the faces-config.xml File

<lifecycle>
 <phase-listener>oracle.adf.controller.faces.lifecycle.ADFPhaseListener
 </phase-listener>
</lifecycle>

The ADF phase listener is used to execute the ADF page lifecycle. It listens for all
the JSF phases before which and after which it needs to execute its own phases,
which are concerned with preparing the model, validating model updates, and
preparing pages to be rendered. For more information about the ADF lifecycle, see
Section 13.2.3, "What Happens at Runtime: The JSF and ADF Lifecycles".

■ Add the following ADF runtime libraries to the project properties of the view
project:

– ADF Model Runtime (adfm.jar)

– ADF Controller (adf-controller.jar)

■ Add a page definition file (if one does not already exist for the page) to the page
definition subpackage, the name of which is defined in the ADFm settings of the
project properties. The default subpackage is view.pageDefs in the
Application Sources directory.

The page definition file (<pageName>PageDef.xml) defines the ADF binding
container for each page in an application’s view layer. The binding container
provides runtime access to all the ADF binding objects. In later chapters, you will
see how the page definition files are used to define and edit the binding object
definitions for specific UI components. For more information about the page
definition file, see Section 12.5, "Working with Page Definition Files".

■ Configure the page definition file, which includes adding definitions of the
binding objects referenced by the page.

■ Add prebuilt components to the JSF page.

These prebuilt components include ADF data binding expression language (EL)
expressions that reference the binding objects in the page definition file. For more
information, see Section 12.6, "Creating ADF Data Binding EL Expressions".

■ Add all the libraries, files, and configuration elements required by ADF Faces
components, if ADF Faces components are used. For more information, see
Section 11.4.2, "What Happens When You First Insert an ADF Faces Component".

12.2.4 What Happens at Runtime
When a page contains ADF bindings, at runtime, the interaction with the business
services initiated from the client or controller is managed by the application through a
single object known as the Oracle ADF binding context. The ADF binding context is a
container object that contains a list of data controls and data binding objects derived
from the Oracle ADF Model layer.

The ADF lifecycle creates the Oracle ADF binding context from the
DataBindings.cpx file and page definition files, as shown in Figure 12–4. The
application modules define the data controls available to the application at design
time, but the DataBindings.cpx file defines what data controls are available to the
application at runtime. The DataBindings.cpx file lists all the data controls that are
being used by pages in the application and maps the binding containers, which
contain the binding objects defined in the page definition files, to web page URLs.

Working with the DataBindings.cpx File

Displaying Data on a Page 12-9

The page definition files define the binding objects used by the application pages.
There is one page definition file for each page. For information about the ADF
lifecycle, see Section 13.2.3, "What Happens at Runtime: The JSF and ADF Lifecycles".

Figure 12–4 ADF Binding File Runtime Usage

12.3 Working with the DataBindings.cpx File
The DataBindings.cpx file defines the Oracle ADF binding context for the entire
application and provides the metadata from which the Oracle ADF binding objects are
created at runtime. It maps individual pages to page definition files and declares
which data controls are being used by the application. At runtime, only the data
controls listed in the DataBindings.cpx file are available to the current application.

12.3.1 How to Create a DataBindings.cpx File
The first time you use the Data Control Palette to add a component to a page in an
application, JDeveloper automatically creates the DataBindings.cpx file in the view
package of the Application Sources directory of the view project. Once the
DataBindings.cpx file is created, JDeveloper adds an entry for the first page. Each
subsequent time you use the Data Control Palette to add a component to a page,
JDeveloper adds an entry to the DataBindings.cpx for that page, if one does not
already exist.

CAUTION: If you change the name of a JSF page, a page definition
file, or a data control, the Databindings.cpx file is not
automatically refactored. You must manually update the page
mapping in the DataBindings.cpx file.

Configuring the ADF Binding Filter

12-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

12.3.2 What Happens When You Create a DataBindings.cpx File
Example 12–2 shows a sample DataBindings.cpx file for the SRDemo application.
The pageMap element maps each JSF page to its corresponding page definition file.
The pageDefintionUsages element identifies each page definition file in the
application. The dataControlUsages element identifies the data controls being used
by the binding objects defined in the page definition files. The BC4JDataControl
elements within the dataControlUsages element identify the data controls
(application modules) being used by the application. The dc elements identify any
data control adaptors (for example, data controls for CSV files) being used by the
application. For more information about the elements and attributes in the
DataBindings.cpx file, see Appendix A, "Reference ADF XML Files".

Example 12–2 DataBindings.cpx File

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="10.1.3.35.65" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.srdemo.view" ClientType="Generic">
 <pageMap>
 <page path="/app/SRList.jspx" usageId="app_SRListPageDef"/>
 <page path="/app/SRCreate.jspx" usageId="app_SRCreatePageDef"/>
 <page path="/app/SRCreateConfirm.jspx" usageId="app_SRCreateConfirmPageDef"/>
 ...
 </pageMap>
 <pageDefinitionUsages>
 <page id="app_SRListPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRListPageDef"/>
 <page id="app_SRCreatePageDef"
 path="oracle.srdemo.view.pageDefs.app_SRCreatePageDef"/>
 <page id="app_SRCreateConfirmPageDef"
 path="oracle.srdemo.view.pageDefs.app_SRCreateConfirmPageDef"/>
 ...
 </pageDefinitionUsages>
 <dataControlUsages>
 <dc id="SRDemoFAQ" path="oracle.srdemo.faq.SRDemoFAQ"/>
 <BC4JDataControl id="SRService" Package="oracle.srdemo.model"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="SRServiceLocal" syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 </dataControlUsages>
</Application>

12.4 Configuring the ADF Binding Filter
The ADF binding filter is a servlet filter that is an instance of the
oracle.adf.model.servlet.ADFBindingFilter class. ADF web applications
use the ADF binding filter to preprocess any HTTP requests that may require access to
the binding context.

12.4.1 How to Configure the ADF Binding Filter
The first time you add a databound component to a page using the Data Control
Palette, JDeveloper automatically configures the filter for you in the application's
web.xml file.

Configuring the ADF Binding Filter

Displaying Data on a Page 12-11

12.4.2 What Happens When You Configure an ADF Binding Filter
To configure the binding filter, JDeveloper adds the following elements to the
web.xml file:

■ A Servlet context parameter: Specifies which DataBindings.cpx file the binding
filter reads at runtime to define the application binding context.

The servlet context parameter is defined in the web.xml file, as shown in
Example 12–3. The param-name element must contain the value CpxFileName,
and the param-value element must contain the fully qualified name of the
application’s DataBindings.cpx file without the .cpx extension.

Example 12–3 Servlet Context Parameter Defined in the web.xml File

<context-param>
 <param-name>CpxFileName</param-name>
 <param-value>oracle.srdemo.view.DataBindings</param-value>
</context-param>

■ An ADF binding filter class: Specifies the name of the binding filter object, which
implements the javax.servlet.Filter interface.

The ADF binding filter is defined in the web.xml file, as shown in Example 12–4.
The filter-name element must contain the value adfBindings, and the
filter-class element must contain the fully qualified name of the binding
filter class, which is oracle.adf.model.servlet.ADFBindingFilter.

Example 12–4 Binding Filter Class Defined in the web.xml File

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>

■ Filter mappings: Link filters to static resources or servlets in the web application.

At runtime, when a mapped resource is requested, a filter is invoked. Filter
mappings are defined in the web.xml file, as shown in Example 12–5. The
filter-name element must contain the value adfBindings. Notice that in the
example there is a filter mapping for both types of page formats: jsp and jspx.

Example 12–5 Filter Mapping Defined in the web.xml File

 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jsp</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jspx</url-pattern>
 </filter-mapping>

Tip: If you have multiple filters defined in the web.xml file, be sure
to list them in the order in which you want them to run. At runtime,
the filters are executed in the sequence they appear in the web.xml
file.

Working with Page Definition Files

12-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

12.4.3 What Happens at Runtime
 At runtime, the ADF binding filter performs the following functions:

■ Overrides the character encoding when the filter is initialized with the name
specified as a filter parameter in the web.xml file. The parameter name of the
filter init-param element is encoding.

■ Instantiates the ADFContext object, which is the execution context for an ADF
application and contains context information about ADF, including the security
context and the environment class that contains the request and response object.

■ Initializes the binding context for a user's HTTP session.

■ Serializes incoming HTTP requests from the same browser (for example, from
framesets) to prevent multithreading problems.

■ Notifies data control instances that they are about to receive a request, allowing
them to do any necessary per-request setup.

■ Notifies data control instances after the response has been sent to the client,
allowing them to do any necessary per-request cleanup.

12.5 Working with Page Definition Files
Page definition files define the binding objects that populate the data in UI
components at runtime. For every page that has ADF bindings, there must be a
corresponding page definition file that defines the binding object used by that page.
Page definition files provide design time access to all the ADF bindings. At runtime,
the binding objects defined by a page definition file are instantiated in a binding
container, which is the runtime instance of the page definition file.

12.5.1 How to Create a Page Definition File
The first time you use the Data Control Palette, JDeveloper automatically creates a
page definition file for that page and adds definitions for each binding object
referenced by the component. For each subsequent databound component you add to
the page, JDeveloper automatically adds the necessary binding object definitions to the
page definition file.

By default, the page definition files are located in the view.PageDefs package in the
Application Sources directory of the view project. You can change the location of
the page definition files using the ADFm Settings page of the project properties.

JDeveloper names the page definition files using the following convention:

<pageName>PageDef.xml

where <pageName> is the name of the JSF page. For example, if the JSF page is named
SRList.jsp, the default page definition filename is SRListPageDef.xml. If you
organize your pages into subdirectories, JDeveloper prefixes the directory name to the
page definition filename using the following convention:

<directoryName>_<pageName>PageDef.xml

For example, in the SRDemo application, the name of the page definition file for the
SRMain page, which is in the app subdirectory of the Web Content folder is
app_SRMainPageDef.xml.

Working with Page Definition Files

Displaying Data on a Page 12-13

To open a page definition file, right-click on the page in the visual editor or in the
Application Navigator, and choose Go to Page Definition.

12.5.2 What Happens When You Create a Page Definition File
Example 12–6 shows a sample page definition file that was created for the SRCreate
page in the SRDemo application. Notice that the page definition file groups the
binding object definitions under the following wrapper elements:

■ parameters (for more information, see Section 12.5.2.1, "Binding Objects Defined
in the parameters Element")

■ executables (for more information, see Section 12.5.2.2, "Binding Objects
Defined in the executables Element")

■ bindings (for more information, see Section 12.5.2.3, "Binding Objects Defined in
the bindings Element")

Each wrapper element contains specific types of binding object definitions. The id
attribute of each binding object definition specifies the name of the binding object.
Each binding object name must be unique within the page definition file. By default,
the binding objects are named after the data control object that was used to create it. If
a data control object is used more than once on a page, JDeveloper adds a number to
the default binding object names to keep them unique. In Section 12.6, "Creating ADF
Data Binding EL Expressions", you will see how the ADF data binding EL expressions
reference the binding object names.

Example 12–6 Page Definition File

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.65" id="app_SRCreatePageDef"
 Package="oracle.srdemo.view.pageDefs">
 <parameters/>
 <executables>
 <invokeAction Binds="cancelNewServiceRequest"
 id="clearServiceRequestFieldsIfNotInTrain"
 Refresh="prepareModel"
 RefreshCondition="${adfFacesContext.postback == false and empty
 requestScope.processChoice}"/>
 <iterator id="ProductListIterator" Binds="ProductList" RangeSize="-1"
 DataControl="SRService"/>
 <iterator id="GlobalsIterator" RangeSize="10" Binds="Globals"
 DataControl="SRService"/>
 </executables>
 <bindings>
 <attributeValues IterBinding="GlobalsIterator" id="ProblemDescription">
 <AttrNames>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </attributeValues>
 <list StaticList="false" ListOperMode="0" IterBinding="GlobalsIterator"

Caution: The DataBindings.cpx file maps JSF pages to their
corresponding page definition files. If you change the name of a page
definition file or a JSF page, JDeveloper does not automatically
refactor the DataBindings.cpx file. You must manually update the
page mapping in the DataBindings.cpx file.

Working with Page Definition Files

12-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 ListIter="ProductListIterator" id="ProductList">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="ProductName"/>
 </AttrNames>
 <ListAttrNames>
 <Item Value="ProdId"/>
 <Item Value="Name"/>
 </ListAttrNames>
 <ListDisplayAttrNames>
 <Item Value="Name"/>
 </ListDisplayAttrNames>
 </list>
 <attributeValues IterBinding="GlobalsIterator" id="ProductId">
 <AttrNames>
 <Item Value="ProductId"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="GlobalsIterator" id="ProductName">
 <AttrNames>
 <Item Value="ProductName"/>
 </AttrNames>
 <methodAction id="cancelNewServiceRequest"
 </attributeValues>
 InstanceName="SRService.dataProvider"
 DataControl="SRService"
 MethodName="cancelNewServiceRequest"
 RequiresUpdateModel="true" Action="999"/>
 </bindings>
</pageDefinition>

In later chapters, you will see how the page definition file is used to define and edit
the bindings for specific UI components. For a description of all the possible elements
and attributes in the page definition file, see Appendix A.6,
"<pageName>PageDef.xml".

12.5.2.1 Binding Objects Defined in the parameters Element
The parameters element of the page definition file defines the parameters for the
page.

The parameter binding objects declare the parameters that the page evaluates at the
beginning of a request (in the Prepare Model phase of the ADF lifecycle). In a web
application, the page parameters are evaluated once during the Prepare Model phase.
(For more information about the ADF lifecycle, see Section 13.2.3, "What Happens at
Runtime: The JSF and ADF Lifecycles".) You can define the value of a parameter in the
page definition file using static values, binding expressions, or EL expressions that
assign a static value.

The SRDemo application does not use parameter bindings. However, Example 12–7
shows how parameter binding objects can be defined in a page definition file.

Example 12–7 The parameters Element of a Page Definition File

<parameters>
 <parameter id="filedBy"
 value="${bindings.userId}"/>
 <parameter id="status"
 value="${param.status != null ? param.status : 'Open'}"/>
</parameters>

Working with Page Definition Files

Displaying Data on a Page 12-15

The value of the filedBy parameter is defined by a binding on the userID data
attribute, which would be an attribute binding defined later in the bindings wrapper
element. The value of the status parameter is defined by an EL expression, which
assigns a static value.

For more information about passing parameters to methods, see Chapter 17, "Creating
More Complex Pages".

12.5.2.2 Binding Objects Defined in the executables Element
The executables element of the page definition file defines the following types of
executable binding objects:

■ iterator: Binds to an iterator that iterates over view object collections.

When you drop a collection or an attribute of a collection on the page, an iterator
binding is automatically added to the executables element.

■ methodIterator: Binds to an iterator that iterates over the collections returned
by custom methods in the data control.

A method iterator binding is always related to a methodAction binding defined
in the bindings element. The methodAction binding encapsulates the details
about how to invoke the method and what parameters (if any) the method is
expecting. For more information about methodAction bindings, see
Section 12.5.2.3, "Binding Objects Defined in the bindings Element".

You will see methodIterator bindings in the executables element only if you
drop a method return collection or an attribute of a method return collection from
a non-application module data control on the page. If you are using only
application module data controls, you will see only iterator bindings.

■ variableIterator: Binds to an iterator that exposes all the variables in the
binding container to the other bindings.

Page variables are local to the binding container and exist only while the binding
container object exists. When you use a data control method or operation that
requires a parameter that is to be collected from the page, JDeveloper
automatically defines a variable for the parameter in the page definition file.
Attribute bindings can reference the page variables.

The variableIterator element can contain one of two types of variable
definitions: variable and variableUsage. A variable type variable is a
simple value holder, while a variableUsage type variable is a value holder that
is related to a view object's named bind parameter. Defining a variable as a
variableUsage type allows it to inherit the default value and UI control hints
from the view object named bind variable to which it is bound.

■ invokeAction: Binds to a method that invokes the operations or methods
defined in action or methodAction bindings during any phase of the page
lifecycle.

Action and method action bindings are defined in the bindings element. For
more information about methodAction objects, see Section 12.5.2.3, "Binding
Objects Defined in the bindings Element".

Tip: By default, JDeveloper uses the dollar sign ($), which is a JSP EL
syntax standard, as the prefix for EL expressions that appear in the
page definition file. However, you can use the hash sign (#) prefix,
which is a JSF EL syntax standard, as well.

Working with Page Definition Files

12-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Iterator binding objects bind to an underlying ADF RowSetIterator object, which
manages the current object and current range information. The iterator binding
exposes the current object and range state to the other binding objects used by the
page. The iterator range represents the current set of objects to be displayed on the
page. The maximum number of objects in the current range is defined in the
rangeSize attribute of the iterator. For example, if a collection in the data control
contains service requests and the iterator range size is 10, the first ten service requests
in the collection are displayed on the page. If the user scrolls down, the next set of 10
service requests are displayed, and so on. If the user scrolls up, the previous set of 10
are displayed.

There is one iterator binding for each collection used on the page, but there is only one
variablesIterator binding for all variables used on the page. (The variables
iterator is like an iterator pointing to a collection that contains only one object whose
attributes are the binding container variables.) All of the value bindings on the page
must refer to an iterator binding to have the component values populated with data at
runtime. (For information about value bindings, see Section 12.5.2.3, "Binding Objects
Defined in the bindings Element".)

At runtime, the bindings in the executables element are refreshed in the order in
which they appear in the page definition file. Refreshing an iterator binding reconnects
it with its underlying RowSetIterator object. Refreshing an invokeAction
binding invokes the action. However, before refreshing any bindings, the ADF runtime
evaluates any Refresh and RefreshCondition attributes specified in the iterator
and invokeAction elements. The Refresh attribute specifies the ADF lifecycle
phase within which the executable should be invoked. The RefreshCondition
attribute specifies the conditions under which the executable should be invoked. You
can specify the RefreshCondition value using a boolean EL expression. If you leave
the RefreshCondition attribute blank, it evaluates to true.

For more information about how bindings are refreshed and how to set the Refresh
and RefreshCondition attributes, see Section 10.5.5, "How to Use Refresh Correctly
for InvokeAction and Iterator Bindings".

Example 12–8 shows an example of an executables element, which defines an
invokeAction binding object and two iterator binding objects.

Tip: Use the Structure window to re-order bindings in the
executables element using drag and drop.

Working with Page Definition Files

Displaying Data on a Page 12-17

Example 12–8 The executables Element in a Page Definition File

<executables>
 <invokeAction Binds="cancelNewServiceRequest"
 id="clearServiceRequestFieldsIfNotInTrain"
 Refresh="prepareModel"
 RefreshCondition="${adfFacesContext.postback == false and empty
 requestScope.processChoice}"/>
 <iterator id="ProductListIterator" Binds="ProductList" RangeSize="-1"
 DataControl="SRService"/>
 <iterator id="GlobalsIterator" RangeSize="10" Binds="Globals"
 DataControl="SRService"/>
</executables>
<bindings>
 <attributeValues IterBinding="GlobalsIterator" id="ProblemDescription">
 <AttrNames>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </attributeValues>
 ...
 <methodAction id="cancelNewServiceRequest"
 InstanceName="SRService.dataProvider"
 DataControl="SRService"
 MethodName="cancelNewServiceRequest"
 RequiresUpdateModel="true" Action="999"/>
</bindings>

The invokeAction object invokes the cancelNewServiceRequest method, which
is named in the Binds attribute. In the bindings wrapper element, the
methodAction binding object encapsulates the details about how to invoke the
method. (For more information about methodAction objects, see Section 12.5.2.3,
"Binding Objects Defined in the bindings Element".) The Refresh attribute specifies
when in the ADF lifecycle the method is executed, while the RefreshCondition
attribute provides a condition for invoking the action. (For more information about the
Refresh and RefreshCondition attributes, see Section A.6,
"<pageName>PageDef.xml".

The iterator binding named ProductListIterator was created by dropping the
ProductId attribute of the Globals collection on the page as a list box. In the
ensuing List Binding Editor, the Add button was used to create a new iterator binding
for the items to display as choices in the list from the ProductList view object
instance in the data model. (For more information, see Section 19.7, "Creating Selection
Lists".)

The Binds attribute of the iterator element defines the collection the iterator will
iterate over, which in this case is the ProductList collection. The RangeSize
attribute defines the number of objects the iterator is to display on the page at one
time. A RangeSize value of -1 causes the iterator to display all the objects from the
collection.

Tip: Normally, an iterator binding’s default range size is 10.
However, when an iterator binding is created from the List Binding
Editor, the range size defaults to -1 so that all choices display in the
list, not just the first 10.

Working with Page Definition Files

12-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The iterator binding named GlobalsIterator was created the first time one of the
attributes from the Globals collection was dropped on the page. In this case, the
RangeSize attribute is set to 10, which means the iterator binding will display a
maximum of 10 objects at a time from the collection. In the bindings wrapper
element, notice that the IterBinding attribute of the attributeValues element
references the GlobalsIterator iterator binding, which populates the
ProblemDescription text field with data.

12.5.2.3 Binding Objects Defined in the bindings Element
The bindings element of the page definition file defines the following types of
binding objects:

■ Value: Display data in UI components by referencing an iterator binding. Each
discrete UI component on a page that will display data from the data control is
bound to a value binding object. Value binding objects include:

– table, which binds an entire table to a data collection

– list, which binds the list items to an attribute in a data collection

– tree, which binds the root node of a tree to a data collection

– attributeValues, which binds text fields to a specific attribute in an object
(also referred to as an attribute binding)

■ methodAction: Bind command components, such as buttons or links, to custom
methods on the data control. A methodAction binding object encapsulates the
details about how to invoke a method and what parameters (if any) the method is
expecting.

■ action: Bind command components, such as buttons or links, to built-in data
control operations (such as, Commit or Rollback) or to built-in collection-level
operations (such as, Create, Delete, Next, Previous, or Save).

Collectively, the binding objects defined in the bindings element are referred to as
control bindings, because each databound control on a page is bound to one of these
objects, which in turn is bound to an object defined in the executables element.

Example 12–9 shows a sample bindings element, which defines one attribute
binding for a text field called ProblemDescription and one methodAction
binding called cancelNewServiceRequest.

Example 12–9 The bindings Element of a Page Definition File

<bindings>
 <attributeValues IterBinding="GlobalsIterator" id="ProblemDescription">
 <AttrNames>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </attributeValues>
 ...
 <methodAction id="cancelNewServiceRequest"
 InstanceName="SRService.dataProvider"
 DataControl="SRService"
 MethodName="cancelNewServiceRequest"
 RequiresUpdateModel="true" Action="999"/>
</bindings>

Working with Page Definition Files

Displaying Data on a Page 12-19

The binding object defined in the methodAction element encapsulates the
information needed to invoke the cancelNewServiceRequest method, which is
identified in the MethodName attribute. The value of true in the
RequiresUpdateModel attribute specifies that the model layer needs to be updated
before the method is executed.

The cancelnewServiceRequest method does not accept parameters. If it did, the
methodAction binding object definition would include one or more NamedData
elements that would define the parameters expected by the method. For more
information about passing parameters to methods, see Chapter 17, "Creating More
Complex Pages".

The attributeValues element defines the value bindings for the text fields on the
page. In the example, only one attribute is displayed on the page,
ProblemDescription, which is defined in the AttrNames element. The
IterBinding attribute references the iterator binding that displays the data in the
text field.

12.5.3 What Happens at Runtime
At runtime, the ADF page lifecycle passes the page URL to the ADF binding context,
which matches the URL to a page definition file using the information in the
DataBindings.cpx file. Next, the binding context instantiates the binding container
if it does not already exist in the current session. The binding container is the runtime
instance object that contains all of the binding objects defined in the page definition
file. All the data that is displayed by a page’s UI components is provided by the
binding objects in the binding container. The ADF data binding expressions used by
components on a page are evaluated at runtime and are replaced by values supplied
by the binding objects when the page is rendered.

12.5.4 What You May Need to Know About Binding Container Scope
By default, the binding container and the binding objects it contains are defined in
session scope. However, the values referenced by value bindings and iterator bindings
are undefined between requests and for scalability reasons do not remain in session
scope. Therefore, the values that binding objects refer to are only valid during a
request in which that binding container has been prepared by the ADF lifecycle. What
stays in session scope are only the binding container and binding objects themselves.

Upon each request, the iterator bindings are refreshed to rebind them to the
underlying RowSetIterator objects. For more information about refreshing iterator
bindings, see Section 10.5.5, "How to Use Refresh Correctly for InvokeAction and
Iterator Bindings". Use the ADF Business Components State Management facility,
described in Chapter 28, "Application Module State Management", to ensure that the
rowset iterator state and any pending changes in the transaction are managed between
requests.

Creating ADF Data Binding EL Expressions

12-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

12.6 Creating ADF Data Binding EL Expressions
In the previous section, you saw how the page definition is used to define the binding
objects that are created in the binding container at runtime. To display data from the
data model, web page UI components, are bound to binding objects using JSF
Expression Language (EL) expressions. These EL expressions reference a specific
binding object in a binding container. At runtime, the JSF runtime evaluates EL
expression and pulls the value from the binding object to populate the component
with data when the page is displayed. If the user updates data in the UI component,
the JSF runtime pushes the value back into the corresponding binding object based on
the same EL expression.

12.6.1 How to Create an ADF Data Binding EL Expression
When you use the Data Control Palette to create a component, the ADF data binding
expressions are created for you. The expressions are added to every component
attribute that will either display data from or reference properties of a binding object.
Each prebuilt expression references the appropriate binding objects defined in the
page definition file. You can edit these binding expressions or create your own, as long
as you adhere to the basic ADF binding expression syntax. ADF data binding
expressions can be added to any component attribute that you want to populate with
data from a binding object.

In JSF pages, a typical ADF data binding EL expression uses the following syntax to
reference any of the different types of binding objects in the binding container:

#{bindings.BindingObject.propertyName}

where:

■ bindings is a variable that identifies that the binding object being referenced by
the expression is located in the binding container of the current page. All ADF
data binding EL expressions must start with the bindings variable.

■ BindingObject is the name of the binding object as it is defined in the page
definition file. The binding object name appears in the id attribute of the binding
object definition in the page definition and is unique to that page definition. An EL
expression can reference any binding object in the page definition file, including
parameters, executables, or value bindings. When you use the Data Control Palette
to create a component, JDeveloper assigns the names to the binding objects based
on the names of the items in the data control.

■ propertyName is a variable that determines the default display characteristics of
each databound UI component and sets properties for the binding object at
runtime. There are different binding properties for each type of binding object. For
more information about binding properties, see Section 12.6.4, "What You May
Need to Know About ADF Binding Properties".

 For example, in the following expression:

#{bindings.SvrId.inputValue}

the bindings variable references a bound value in the current page’s binding
container. The binding object being referenced is SvrId, which is an attribute binding
object. The binding property is inputValue, which returns the value of the first
SvrId attribute.

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 12-21

For more examples of various types of ADF data binding expressions, see
Section 12.6.3, "What Happens When You Create ADF Data Binding Expressions".

To create or edit an ADF Data Binding EL Expression
You can create or edit an expression in JDeveloper using any of the following
techniques:

■ Double-click the UI component in the Structure window, and edit the value field
in the displayed editor. (Click the Bind button to go to the Expression Builder,
where you can select from available binding objects and properties. For more
information, see Section 12.6.2, "How to Use the Expression Builder".)

■ View the web page using the source view of the visual editor and edit the
expression directly in the source. JDeveloper provides Code Insight for EL
expressions in the source editor. Code Insight is also available in the Property
Inspector and the Tag Editor. To invoke Code Insight, type the leading characters
of an EL expression (for example, #{). Code Insight displays a list of valid items
for each segment of the expression from which you can select the one you want.

■ Select a UI component in the visual editor or the Structure window and open the
Property Inspector (View > Property Inspector). You can edit the expression
directly in the Property Inspector, or click the ellipses next the expression to open
the Expression Builder.

12.6.2 How to Use the Expression Builder
The JDeveloper Expression Builder is a dialog that helps you build EL expressions by
providing lists of binding objects defined in the page definition files, as well as lists of
managed beans and binding properties. It is particularly useful when creating or
editing ADF databound expressions because it provides a hierarchical list of ADF
binding objects and their most commonly used properties from which you can select
the ones you want to use in an expression. For information about binding properties,
see Section 12.6.4, "What You May Need to Know About ADF Binding Properties".

You can open the Expression Builder from either the Structure window or the Property
Inspector.

To open the Expression Builder from the Structure window:
1. Double-click an ADF databound UI component in the Structure window.

2. In the ensuing dialog, click the Bind button next to a component property to
display the Expression Builder.

Tip: While the binding expressions in the page definition file can use
either a dollar sign ($) or hash sign (#) prefix, the EL expressions in
JSF pages can use only the hash sign (#) prefix.

Creating ADF Data Binding EL Expressions

12-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To open the Expression Builder from the Property Inspector:
1. Select a UI component in the Structure window or the visual editor and open the

Property Inspector.

2. In the Property Inspector, take one of the following actions to display the
Expression Builder:

■ Click the ellipses next to an existing binding expression.

OR

■ Select a property to which you want to add a binding, and click the Bind to
data button, as shown in Figure 12–5.

(JDeveloper activates the Bind to data button only if it is valid to add a
binding expression to the selected property.)

Figure 12–5 Bind to data Button in the Property Inspector

To use the Expression Builder:
1. Open the Expression Builder dialog.

2. In the Expression Builder, open the: ADF Bindings > bindings node to display the
ADF binding objects for the current page, as shown in Figure 12–6.

Figure 12–6 The Expression Builder Dialog

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 12-23

3. Use the Expression Builder to edit or create ADF binding expressions using the
following features:

■ Use the Variables tree to select items that you want to include in the binding
expression. The tree contains a hierarchical representation of the binding
objects. Each icon in the tree represents various types of binding objects that
you can use in an expression (see Table 12–2 for a description of each icon).
Select an item in the tree and click the shuttle button to move it to the
Expression box.

■ If you are creating a new expression, begin typing the expression in the
Expression box. JDeveloper provides Code Insight in the Expression Builder.
To invoke Code Insight, type the leading characters of an EL expression (for
example, #{) or a period separator. Code Insight displays a list of valid items
for each segment of the expression from which you can select the one you
want.

■ Use the operator buttons under the expression to add logical or mathematical
operators to the expression.

Table 12–2 Icons Under the ADF Bindings Node of the Expression Builder

Icon Description

Represents the bindings container variable, which references
the binding container of the current page. Opening the bindings
node exposes all the binding objects for the current page.

Represents the data binding variable, which references the
entire binding context. Opening the data node exposes all the
page definition files in the application. Opening a page
definition file exposes the binding objects it defines.

Use this node only to view the binding objects defined for other
pages; do not use it to create expressions in the current page. If
you want to include an object in the current page that is defined
in another page, add a binding to that object in the current page
using the Data Control Palette.

Represents a binding container. Each binding container node is
named after the page definition file that defines it. These nodes
appear only under the data node. Opening a binding container
node exposes the binding objects defined for that page.

Use this node only to view the binding objects defined for other
pages; do not use it to create expressions in the current page. If
you want to include an object in the current page that is defined
in another page, add a binding to that object in the current page
using the Data Control Palette.

Represents an action binding object. Opening a node that uses
this icon exposes a list of valid action binding properties.

Represents an iterator binding object. Opening a node that uses
this icon exposes a list of valid iterator binding properties.

Represents an attribute binding object. Opening a node that uses
this icon exposes a list of valid attribute binding properties.

Represents a list binding object. Opening a node that uses this
icon exposes a list of valid list binding properties are displayed.

Represents a table binding object. Opening a node that uses this
icon exposes a list of valid table binding properties.

Creating ADF Data Binding EL Expressions

12-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

12.6.3 What Happens When You Create ADF Data Binding Expressions
As was previously mentioned, when you create a component using the Data Control
Palette, the ADF data binding expressions are added for you. Each expression is
slightly different depending on the type of binding object being referenced.

12.6.3.1 EL Expressions That Reference Attribute Binding Objects
Example 12–10 shows a text field that was created when a data collection was dropped
on a page as an ADF Read-only Form. Each UI component in the form, including the
text field shown in the example, contains an EL expression that references an attribute
binding object on a specific attribute in the data collection.

Example 12–10 EL Expressions That Reference an Attribute Binding Object

<af:inputText value="#{bindings.SvrId.inputValue}"
 label="#{bindings.SvrId.label}"/>

In this example, the UI component is bound to the SvrId binding object, which is a
specific attribute in a data collection. The inputValue binding property returns the
value of the first attribute to which the binding is associated, which in this case is
SvrId. In the label attribute, the EL expression references the label binding
property, which returns the label currently assigned to the data attribute.

The attribute binding object, SvrId, referenced by the EL expressions is defined in the
page definition file, as shown in Example 12–11. The name of the binding object, which
is referenced by the EL expression, is defined in the id attribute of the binding object
definition.

Example 12–11 Attribute Binding Object Defined in the Page Definition File

<attributeValues id="SvrId" IterBinding="ServiceRequestsIterator">
 <AttrNames>
 <Item Value="SvrId"/>
 </AttrNames>
</attributeValues>

12.6.3.2 EL Expressions That Reference Table Binding Objects
When you drag a data collection from the Data Control Palette and drop it on a JSF
page as an ADF Read-only Table, the resulting table tag typically contains a set of EL
expressions that bind the table to a table value-binding object, as shown in
Example 12–12.

Represents a tree binding object. Opening a node that uses this
icon exposes a list of valid tree binding properties.

Represents an ADF binding object property. For more
information about ADF properties, see Section 12.6.4, "What You
May Need to Know About ADF Binding Properties".

Represents a parameter binding object.

Table 12–2 (Cont.) Icons Under the ADF Bindings Node of the Expression Builder

Icon Description

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 12-25

Example 12–12 EL Expression That References a Table Binding Object

<af:table value="#{bindings.ServiceRequests.collectionModel}" var="row"
 rows="#{bindings.ServiceRequests.rangeSize}"
 first="#{bindings.ServiceRequests.rangeStart}"
 emptyText="#{bindings.ServiceRequests.viewable ?

\'No rows yet.\' : \'Access Denied.\'}"

Each attribute of the table tag contains a binding expression that references the table
binding object and an appropriate binding property for that tag attribute. The binding
expression in the rows attribute references the iterator binding rangeSize property
(which defines the number of rows in each page of the iterator) so that the number of
rows rendered in the table matches the number of rows per page defined by the
iterator binding.

The table is bound to the ServiceRequests table binding object, which is defined in
the page definition file as shown in Example 12–13.

Example 12–13 Table Binding Object Defined in the Page Definition File

<table id="ServiceRequests" IterBinding="ServiceRequestsIterator">
 <AttrNames>
 <Item Value="City"/>
 <Item Value="CountryId"/>
 <Item Value="Email"/>
 <Item Value="FirstName"/>
 <Item Value="LastName"/>
 <Item Value="PostalCode"/>
 <Item Value="StateProvince"/>
 <Item Value="StreetAddress"/>
 <Item Value="UserId"/>
 <Item Value="UserRole"/>
 </AttrNames>
</table>

The IterBinding attribute in the table binding object refers to the iterator binding
that will display data in the table.

12.6.3.3 EL Expressions That Reference Action Binding Objects
Example 12–14 shows a command button that was created by dragging a built-in
operation from the Data Control Palette and dropping it on the page. The button
contains an EL expression that binds to a built-in operation, First, which displays the
first data object in the data collection to which the operation belongs.

Example 12–14 EL Expression That References an Action Binding Object for an
Operation

<af:commandButton actionListener="#{bindings.First.execute}"
 text="First"
 disabled="#{!bindings.First.enabled}"/>

The button’s action listener is bound to the execute() method on the action binding
named First in the binding container. When the user clicks the button, the action
listener mechanism resolves the binding expression and then invokes the execute()
method, which executes the operation. By default, the button label contains the name
of the operation being called. You can change the label as needed. The disabled
attribute determines if the button should be disabled on the page. Because of the not
operator (!) at the beginning of the expression, the disabled attribute evaluates to
the negation of the value of the enabled property of the action binding.

Creating ADF Data Binding EL Expressions

12-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In other words, if the enabled property evaluates to false, the disabled attribute
evaluates to true. For example, in an action binding that is bound to the First
operation, if the current data object is the first one, the enabled property evaluates to
false, which causes the disabled attribute to evaluate to true, thus disabling the
button. However, if the current data object is not the first one, the enabled property
evaluates to true, which causes the disabled attribute to evaluate to false, thus
enabling the button.

Example 12–15 shows the action binding object defined in the page definition for the
command button.

Example 12–15 Action Binding Object Defined in the Page Definition File for an
Operation

<bindings>
 <action id="First" IterBinding="ServiceRequestsIterator"
 InstanceName="SRService.ServiceRequests" DataControl="SRService"
 RequiresUpdateModel="true" Action="12"/>
</bindings>

The action element, First, defines the action binding object that is directly
referenced by the EL expression in the command button. The IterBinding attribute
of the action binding references the iterator binding for the data collection being
operated on by the action.

Example 12–16 shows a command button that was created by dragging a method from
the Data Control Palette and dropping it on a JSF page. In this example, the command
button is bound to the deleteServiceHistoryNotes method. The execute
binding property in the EL expression in the actionListener attribute invokes the
method when the user clicks the button

Example 12–16 EL Expression That References an Action Binding Object for a Method

<af:commandButton actionListener="#{bindings.deleteServiceHistoryNotes.execute}"
 text="deleteServiceHistoryNotes"
 disabled="#{!bindings.deleteServiceHistoryNotes.enabled}"/

Example 12–17 shows the binding object created in the page definition file for the
command button. When a command component is bound to a method, only one
binding object is created in the page definition file—a methodAction. The
methodAction binding defines the information needed to invoke the method,
including any parameters, which are defined in the NamedData element.

Example 12–17 Method Action Binding Defined in the Page Definition File

<bindings>
 <methodAction id="deleteServiceHistoryNotes"
 InstanceName="SRService.dataProvider" DataControl="SRService"
 MethodName="deleteServiceHistoryNotes"
 RequiresUpdateModel="true" Action="999">
 <NamedData NDName="keySet" NDType="java.util.Set"/>
 </methodAction>
</bindings>

Tip: The numerical value of the Action attribute of the action
element references the number constants in the
OperationDefinition interface in the oracle.adf.model.meta
package.

Creating ADF Data Binding EL Expressions

Displaying Data on a Page 12-27

12.6.4 What You May Need to Know About ADF Binding Properties
When you create a databound component using the Data Control Palette, the EL
expression references specific ADF binding properties. At runtime, these binding
properties can define such things as the default display characteristics of a databound
UI component or specific parameters for iterator bindings. The ADF binding
properties are defined by Oracle APIs. For a full list of the available properties for each
binding type, see Appendix B, "Reference ADF Binding Properties".

Values assigned to certain properties are defined in the page definition file. For
example, iterator bindings have a property called RangeSize, which specifies the
number of rows the iterator should display at one time. The value assigned to
RangeSize is specified in the page definition file, as shown in Example 12–18.

Example 12–18 Iterator Binding Object with the RangeSize Property

<iterator id="ServiceRequestsIterator" RangeSize="10"
 Binds="ServiceRequests" DataControl="SRService"/>

Use the JDeveloper Expression Builder to display a list of valid binding properties for
each binding object. For information about how to use the Expression builder, see
Section 12.6.2, "How to Use the Expression Builder".

Creating ADF Data Binding EL Expressions

12-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Creating a Basic Page 13-1

13
Creating a Basic Page

This chapter describes how to use the Data Control Palette to create databound forms
using ADF Faces components.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Creating a Basic Page"

■ Section 13.2, "Using Attributes to Create Text Fields"

■ Section 13.3, "Creating a Basic Form"

■ Section 13.4, "Incorporating Range Navigation into Forms"

■ Section 13.5, "Creating a Form to Edit an Existing Record"

■ Section 13.6, "Creating an Input Form"

■ Section 13.7, "Modifying the UI Components and Bindings on a Form"

13.1 Introduction to Creating a Basic Page
You can create UI widgets that allow you to display and collect information using data
controls created for your business services. For example, using the Data Control
Palette, you can drag an attribute for an item, and then choose to display the value as
either read-only text or as an input text field with a label.

Instead of having to drop individual attributes, JDeveloper allows you to drop all
attributes for an object at once as a form. The actual UI components that make up the
form depend on the type of form dropped. You can create forms that display values,
forms that allow users to edit values, forms that collect values (input forms), and
search forms.

Once you drop the UI components, you can then drop built-in operations as command
UI components that allow users to operate on the data. For example, you can create
buttons that allow users to navigate between data objects displayed in the form. You
can also modify the default components to suit your needs.

This chapter explains the following:

■ How to create individual databound text fields

■ How to create a form consisting of multiple text fields

■ How to create different types of forms, such as forms that allow you to edit
existing objects or create new ones.

Using Attributes to Create Text Fields

13-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ How to add operations that allow you to navigate between the data objects
displayed in a form, or that allow you to manipulate data.

■ How to modify the form once it has been created

13.2 Using Attributes to Create Text Fields
To create text fields, you bind ADF Faces text UI components to attributes on a data
control using an attribute binding. JDeveloper allows you to do this declaratively
without the need to write any code. Additionally, JDeveloper provides a complete
WYSIWYG development environment for your JSF pages, meaning you can design
most aspects of your pages without needing to look at the code.

13.2.1 How to Use the Data Control Palette to Create a Text Field
To create a text field that can display or update an attribute, you must bind the UI
component to the attribute using a data control. JDeveloper allows you to do this
declaratively by dragging and dropping an attribute of a collection from the Data
Control Palette.

To create a bound text field:
1. From the Data Control Palette, select an attribute for a collection (for a description

of which icon represents attributes and other objects in the Data Control Palette,
see Section 12.2.1, "How to Understand the Items on the Data Control Palette").

For example, Figure 13–1 shows the ProblemDescription attribute under the
ServiceRequests collection of the SRService data control in the SRDemo
application. This is the attribute to drop to display or enter the problem
description for a service request.

Figure 13–1 Attributes Associated with a Collection in the Data Control Palette

2. Drag the attribute onto the page, and from the context menu choose the type of
widget to display or collect the attribute value. For an attribute, you are given the
following choices:

Using Attributes to Create Text Fields

Creating a Basic Page 13-3

■ Texts

– ADF Output Text with a Label: Creates a panelLabelAndMessage
component that holds an ADF Faces outputText component. The label
attribute on the panelLabelAndMessage component is populated.

– ADF Output Text: Creates an ADF Faces outputText component. No
label is created.

– ADF Input Text with a Label: Creates an ADF Faces inputText
component with a validator. The label attribute is populated.

– ADF Input Text: Creates an ADF Faces inputText component with a
validator. The label attribute is not populated.

– ADF Label: An ADF Faces outputLabel component.

■ Single selections

These widgets display lists. For the purposes of this chapter, only the text
widgets will be discussed. To learn about lists and their bindings, see
Section 19.7, "Creating Selection Lists".

13.2.2 What Happens When You Use the Data Control Palette to Create a Text Field
When you drag an attribute onto a JSF page and drop it as a UI component, among
other things, a page definition file is created for the page (if one does not already
exist), using the name of the JSF page including the page’s directory name, and
appending PageDef as the name of the page definition file. For example, the page
definition file for the SREdit page in the ./app/staff subdirectory of the web root is
app_staff_SREditPageDef.xml. For a complete account of what happens when
you drag an attribute onto a page, see Section 12.2.3, "What Happens When You Use
the Data Control Palette". Bindings for the iterator and attributes are created and
added to the page definition file. Additionally, the necessary JSPX page code for the UI
component is added to the JSF page.

13.2.2.1 Creating and Using Iterator Bindings
Whenever you create UI components on a page by dropping an item that is part of a
collection from the Data Control Palette (or you drop the whole collection as a form or
table), JDeveloper creates an iterator binding if it does not already exist. An iterator
binding references an iterator for the data collection, which facilities iterating over its
data objects. It also manages currency and state for the data objects in the collection.
An iterator binding does not actually access the data. Instead, it simply exposes the
object that can access the data and specify the current data object in the collection.
Other bindings then refer to the iterator binding in order to return data for the current
object or to perform an action on the object’s data. Note that the iterator binding is not
an iterator. it is a binding to an iterator. In the case of ADF Business Components, the
actual iterator is the default row set iterator for the default row set of the view object
instance in the application module’s data model.

Tip: For more information about validators, see Chapter 20, "Using
Validation and Conversion".

Using Attributes to Create Text Fields

13-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, if you drop the ProblemDescription attribute under the
ServiceRequests collection, JDeveloper creates an iterator binding for the
ServiceRequests collection.

The iterator binding’s rangeSize attribute determines how many records will be
available for the page each time the iterator binding is accessed. This attribute gives
you a relative set of 1-N rows positioned at some absolute starting location in the
overall rowset. By default, it is set to 10. For more information about using this
attribute, see Section 13.4.2.2, "Iterator RangeSize Attribute". Example 13–1 shows the
iterator binding created when you drop an attribute from the ServiceRequests
collection.

Example 13–1 Page Definition Code for an Iterator Binding When You Drop an Attribute
from a Collection

<executables>
 <iterator id="ServiceRequestsIterator" RangeSize="10"
 Binds="ServiceRequests" DataControl="SRService"/>
</executables>

For information regarding the iterator binding element attributes, see Section A.2.2,
"Oracle ADF Data Binding Files".

This metadata allows the ADF binding container to access the attribute. Because the
iterator binding is an executable, it is invoked when the page is loaded, thereby
allowing the iterator to access and iterate over the ServiceRequests collection. This
means that the iterator will manage all the service requests in the collection, including
determining the current service request or range of service requests.

13.2.2.2 Creating and Using Value Bindings
When you drop an attribute from the Data Control Palette, JDeveloper creates an
attribute binding that is used to bind the UI component to the attribute’s value. This
type of binding presents the value of an attribute for a single object in the current row
in the collection. Value bindings can be used to both display and collect attribute
values.

For example, if you drop the ProblemDescription attribute under the
ServiceRequests collection as an ADF Output Text w/Label widget onto a page,
JDeveloper creates an attribute binding for the ProblemDescription attribute. This
allows the binding to access the attribute value of the current record. Example 13–2
shows the attribute binding for ProblemDescription created when you drop the
attribute from the ServiceRequests collection. Note that the attribute value
references the iterator named ServiceRequestsIterator.

Tip: There is one iterator binding created for each collection. This
means that when you drop two attributes from the same collection (or
drop the collection twice), they use the same binding. This is fine,
unless you need the binding to behave differently for the different
components. In that case, you will need to manually create separate
iterator bindings. For procedures and an example, see Section 18.5,
"Conditionally Displaying the Results Table on a Search Page".

Using Attributes to Create Text Fields

Creating a Basic Page 13-5

Example 13–2 Page Definition Code for an Attribute Binding

 <bindings>
 ...
 <attributeValues id="ServiceRequestsProblemDescription"
 IterBinding="ServiceRequestsIterator">
 <AttrNames>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </attributeValues>
 </bindings>

For information regarding the attribute binding element attributes, see Section A.2.2,
"Oracle ADF Data Binding Files".

13.2.2.3 Using EL Expressions to Bind UI Components
When you create a text field by dropping an attribute from the Data Control Palette,
JDeveloper creates the UI component associated with the widget dropped by writing
the corresponding code to the JSF page.

For example, when you drop the ProblemDescription attribute as an Output Text
w/Label widget, JDeveloper creates an EL expression that binds the
panelLabelAndMessage label’s attribute to the label property of the
ProblemDescription binding. It creates another expression that binds the
panelLabelAndMessage value attribute to the inputValue property of the
ProblemDescription binding, which in turn is the value of the
ProblemDescription attribute. For more information about binding object
properties, see Section A.2.2, "Oracle ADF Data Binding Files".

Example 13–3 shows the code generated on the JSF page when you drop the
ProblemDescription attribute as an Output Text w/Label widget.

Example 13–3 JSF Page Code for an Attribute Dropped as an Output Text w/Label

<af:panelLabelAndMessage
 label="#{bindings.ServiceRequestsProblemDescription.label}">
 <af:outputText
 value="#{bindings.ServiceRequestsProblemDescription.inputValue}"/>
</af:panelLabelAndMessage>

If instead you drop the ProblemDescription attribute as an Input Text w/Label
widget, JDeveloper creates an inputText component. As Example 13–4 shows,
similar to the output text component, the value is bound to the inputValue property
of the ProblemDescription binding. Additionally, the following properties are also
set:

■ label: bound to the binding’s label property.

■ required: bound to the binding’s mandatory property. See Section 20.3,
"Adding Validation" for more information about this property.

■ columns: bound to the displayWidth property. This determines how wide the
text box will be.

Using Attributes to Create Text Fields

13-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 13–4 JSF Page Code for an Attribute Dropped as an Input Text w/Label

<af:inputText value="#{bindings.ServiceRequestsProblemDescription.inputValue}"
 label="#{bindings.ServiceRequestsProblemDescription.label}"
 required="#{bindings.ServiceRequestsProblemDescription.mandatory}"
 columns="#{bindings.ServiceRequestsProblemDescription.displayWidth}">
 <af:validator
binding="#{bindings.ServiceRequestsProblemDescription.validator}"/>
</af:inputText>

For more information about the properties, see Appendix B, "Reference ADF Binding
Properties".

13.2.3 What Happens at Runtime: The JSF and ADF Lifecycles
When a page is submitted and a new page requested, the application invokes both the
JSF lifecycle and the ADF lifecycle. The JSF lifecycle handles the components at the
view layer, while the ADF lifecycle handles the data at the model layer.

Specifically, the JSF lifecycle handles the submission of values on the page, validation
for components, navigation, and displaying the components on the resulting page and
saving and restoring state. The JSF lifecycle phases use a UI component tree to manage
the display of the faces components. This tree is a runtime representation of a JSF page:
each UI component tag in a page corresponds to a UI Component instance in the tree.
The FacesServlet object manages the request processing lifecycle in JSF
applications. FacesServlet creates an object called FacesContext, which contains
the information necessary for request processing, and invokes an object that executes
the lifecycle.

The ADF lifecycle handles preparing and updating the data model, validating the data
at the model layer, and executing methods on the business layer. The ADF lifecycle
uses the binding container to make data available for easy referencing by the page
during the current page request.

The lifecycles are divided into phases. For the two lifecycles to work together, the ADF
lifecycle phases are integrated with the JSF lifecycle phases using the JSF event listener
mechanism. The ADF lifecycle listens for phase events using the ADF phase listener,
which allows the appropriate ADF phases to be executed before or after the
appropriate JSF phases.

When an ADF Faces component bound to an ADF data control is inserted into a JSF
page for the first time, JDeveloper adds the ADF PhaseListener to
faces-config.xml. Example 13–5 shows the ADF PhaseListener configuration in
faces-config.xml.

Using Attributes to Create Text Fields

Creating a Basic Page 13-7

Example 13–5 Registering the ADF PhaseListener in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
<lifecycle>
 <phase-listener>
 oracle.adf.controller.faces.lifecycle.ADFPhaseListener
 </phase-listener>
</lifecycle>
 ...
</faces-config>

Figure 13–2 shows how the JSF and ADF phases integrate in the lifecycle.

Figure 13–2 The Lifecycle of a Page Request in an ADF Application Using ADF Faces
Components

In a JSF application that uses the ADF Model layer, the lifecycle is as follows:

■ Restore View: The URL for the requested page is passed to the bindingContext,
which finds the page definition that matches the URL. The component tree of the
requested page is newly built or restored. All the component tags, event handlers,
converters, and validators on the submitted page have access to the
FacesContext instance. If it's a new empty tree (that is, there is no data from the
submitted page), the lifecycle proceeds directly to the Render Response phase.
Otherwise, the Restore View phase issues an event which the Initialize Context
phase of the ADF Model layer lifecycle listens for and then executes.

For example, for a page that contains an inputText UI component bound to the
ProblemDescription attribute of a ServiceRequest returned collection,
when the URL is passed in, the page definition is exposed. The UI component is
then built. If data is to be displayed, the Initialize Context phase executes.
Otherwise, the lifecycle jumps to the Render Response phase.

■ Initialize Context: The page definition file is used to create the
bindingContainer object, which is the runtime representation of the page
definition for the requested page. The LifecycleContext class used to persist
information throughout the ADF lifecycle phases is instantiated and initialized.

Using Attributes to Create Text Fields

13-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Prepare Model: The binding container is refreshed, which sets any page
parameters contained in the page definition. Any entries in the executables section
of the page definition are refreshed, depending on the value of the Refresh and
RefreshCondition attributes.

The Refresh and RefreshCondition attributes are used to determine when
and whether to invoke an executable. For example, there maybe an executable that
should only be invoked under certain conditions. Refresh determines the phase in
which to invoke the executable, while the refresh condition determines whether
the condition has been met. Set the Refresh attribute to prepareModel when
your bindings are dependent on the outcome from the operation. If Refresh is set
to prepareModel, or if no value is supplied (meaning it uses the default,
ifneeded), then the RefreshCondition attribute value is evaluated. If no
RefreshCondition value exists, the executable is invoked. If a value for
RefreshCondition exists, then that value is evaluated, and if the return value of
the evaluation is true, then the executable is invoked. If the value evaluates to
false, the executable is not invoked. The default value always enforces execution. If
the incoming request contains no POST data or query parameters, then the
lifecycle forwards to the Render Response phase.

For more information, see Section 10.5.5.1, "Correctly Configuring the Refresh
Property of Iterator Bindings". For details about the refresh attribute, see
Section A.6.1, "PageDef.xml Syntax".

In the problem description example, the bindingContainer invokes the
ServiceRequestsIterator iterator, which returns the ServiceRequests
collection. The iterator then iterates over the data and makes the data for the first
found record available to the UI component by placing it in the binding container.
Because there is a binding for the ProblemDescription attribute in the page
definition that can access the value from the iterator (see Example 13–2), and since
the UI component is bound to the ProblemDescription binding using an EL
expression (#{bindings.problemDescription.inputValue}), that data can
be displayed by that component.

■ Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores it locally. Most associated
events are queued for later processing. If a component has its immediate
attribute set to true, then the validation, conversion, and events associated with
the component are processed during this phase. For more information about
validation and conversion, see Chapter 20, "Using Validation and Conversion".

For example, if a user enters a new value into the inputText component, that
value is stored locally using the setSubmittedValue method on the
inputText component.

■ Process Validations: Local values of components are converted and validated. If
there are errors, the lifecycle jumps to the Render Response phase. At the end of
this phase, new component values are set, any validation or conversion error
messages and events are queued on FacesContext, and any value change events
are delivered.

For a detailed explanation of this and the next two phases of the lifecycle, see
Chapter 20, "Using Validation and Conversion".

■ Update Model Values: The component’s validated local values are moved to the
model and the local copies are discarded.

■ Validate Model Updates: The updated model is now validated against any
validation routines set on the model.

Creating a Basic Form

Creating a Basic Page 13-9

■ Invoke Application: Any action bindings for command components or events are
invoked. For a detailed explanation of this and the next two phases of the lifecycle,
see Section 16.4, "Using Dynamic Navigation". For a description of action bindings
used to invoke business logic, see Section 13.4, "Incorporating Range Navigation
into Forms".

■ Metadata Commit: Changes to runtime metadata are committed. This phase is not
used in this release, but will be used in future releases.

■ Initialize Context (only if navigation occurred in the Invoke Application lifecycle):
The page definition for the next page is initialized.

■ Prepare Model (only if navigation occurred in the Invoke Application lifecycle):
Any page parameters contained in the next page’s definition are set. Any entries in
the executables section of the page definition are used to invoke the corresponding
methods in the order they appear.

■ Prepare Render: The binding container is refreshed to allow for any changes that
may have occurred in the Apply Request Values or Validation phases. The
prepareRender event is sent to all registered listeners.

You should set the Refresh attribute of an executable to renderModel when the
refreshCondition is dependent on the model. For example, if you want to use
the #{adfFacesContext.postback} expression in a RefreshCondition of
an executable, you must set the Refresh property to either renderModel or
renderModelIfNeeded, which will cause the method to be executed during the
prepareRender phase. For more information, see Section 10.5.5.1, "Correctly
Configuring the Refresh Property of Iterator Bindings".

■ Render Response: The components in the tree are rendered as the J2EE web
container traverses the tags in the page. State information is saved for subsequent
requests and the Restore View phase.

13.3 Creating a Basic Form
Instead of dropping individual attributes to create a form, JDeveloper allows you to
drop a complete form that displays or collects data for all the attributes on an object.
For example, the SREdit page was created by dropping the ServiceRequests
collection, which contains all the attributes necessary to edit a given service request.

You can also create forms that provide more functionality than displaying data from a
collection. For information about creating a form that allows a user to update data, see
Section 13.5, "Creating a Form to Edit an Existing Record". For information about
creating forms that allow users to create a new object for the collection, see
Section 13.6, "Creating an Input Form". You can also create search forms. For more
information, see Chapter 18, "Creating a Search Form".

13.3.1 How to Use the Data Control Palette to Create a Form
To create a form using a data control, you bind the UI components to the attributes on
the corresponding object in the data control. JDeveloper allows you to do this
declaratively by dragging and dropping a collection or a structured attribute from the
Data Control Palette.

Note: Instead of displaying prepareRender as a valid phase for a
selection, JDeveloper displays renderModel, which represents the
refresh(RENDER_MODEL) method called on the binding container.

Creating a Basic Form

13-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To create a basic form:
1. From the Data Control Palette, select the collection that represents the data you

wish to display. Figure 13–3 shows the ServiceRequests collection for the
SRService data control.

Figure 13–3 Collections Can Be Used to Create Forms that Display Data

2. Drag the collection onto the page, and from the context menu choose the type of
form to display or collect data for the object. For a form, you are given the
following choices:

– ADF Form: Launches the Edit Form Fields dialog that allows you to select
individual attributes instead of creating a field for every attribute by default. It
also allows you to select the label and UI component used for each attribute.
By default, ADF inputText components are used, except for dates, which
use the selectInputDate component. Each inputText component
contains a validator tag that allows you to set up validation for the attribute.
For more information, see Section 20.3, "Adding Validation".

You can elect to include navigational controls that allow users to navigate
through all the data objects in the collection. For more information, see
Section 13.4, "Incorporating Range Navigation into Forms". You can also elect
to include a Submit button used to submit the form. This button submits the
HTML form and applies the data in the form to the bindings as part of the
JSF/ADF page lifecycle. For additional help in using the dialog, click Help. All
UI components are placed inside a panelForm component.

– ADF Read-Only Form: Same as the ADF Form, but by default, outputText
components are used. Since the form is meant to display data, no validator
tags are added. The label attribute is populated for each component.
Attributes of type Date also use the outputText component. All
components are placed inside panelLabelAndMessage components, which
are in turn placed inside a panelForm component.

– ADF Search Form: Creates a form that can be used to execute a
Query-By-Example (QBE) search. For more information, see Chapter 18,
"Creating a Search Form".

– ADF Creation Form: Creates an input form that allows users to create a new
instance for the collection. For more information, see Section 13.6, "Creating an
Input Form".

3. If you are building a form that allows users to update data, you now need to drag
and drop an operation that will perform the update. For more information, see
Section 13.5, "Creating a Form to Edit an Existing Record".

Creating a Basic Form

Creating a Basic Page 13-11

13.3.2 What Happens When You Use the Data Control Palette to Create a Form
Dropping an object as a form from the Data Control Palette has the same effect as
dropping a single attribute, except that multiple attribute bindings and associated UI
components are created. The attributes on the UI components (such as value) are
bound to properties on that attribute’s binding object (such as inputValue).
Example 13–6 shows the code generated on the JSF page when you drop the
ServiceRequests collection as a default ADF Form.

Example 13–6 Code on a JSF Page for an Input Form

<af:panelForm>
 <af:inputText value="#{bindings.SvrId.inputValue}"
 label="#{bindings.SvrId.label}"
 required="#{bindings.SvrId.mandatory}"
 columns="#{bindings.SvrId.displayWidth}">
 <af:validator binding="#{bindings.SvrId.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.Status.inputValue}"
 label="#{bindings.Status.label}"
 required="#{bindings.Status.mandatory}"
 columns="#{bindings.Status.displayWidth}">
 <af:validator binding="#{bindings.Status.validator}"/>
 </af:inputText>
 <af:selectInputDate value="#{bindings.RequestDate.inputValue}"
 label="#{bindings.RequestDate.label}"
 required="#{bindings.RequestDate.mandatory}">
 <af:validator binding="#{bindings.RequestDate.validator}"/>
 <f:convertDateTime pattern="#{bindings.RequestDate.format}"/>
 </af:selectInputDate>
...
</af:panelForm>

13.3.2.1 Using Facets
JSF components use facet tags to hold other components that require a special
relationship with the parent component, for example, headers and footers for columns
within a table, or the footer facet for the panelForm component. When you use the
Data Control Palette to drop a widget, any preferred facets are included.

Many components use facets, and when you use widgets to create complex
components (such as panelForm), output tags are often automatically created and
inserted into the facets. You can manually edit these components or add other
components to facets.

When you choose to include a Submit button when you drop a collection as an input
form, a command button is added to the panelForm’s footer facet. This command
button causes the form that holds the panelForm to be submitted. By default, the text
is Submit. Figure 13–4 shows the command button in the panelForm’s footer
facet.

Note: For information regarding the validator and converter tag, see
Chapter 20, "Using Validation and Conversion".

Incorporating Range Navigation into Forms

13-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 13–4 Footer Facet for the Panel Form

Example 13–7 shows the corresponding code in the JSF page.

Example 13–7 Facet in a JSF Page

<af:panelForm>
...
 <f:facet name="footer">
 <af:commandButton text="Submit"/>
 </f:facet>
</af:panelForm>

Each facet can hold only one component. If you need a facet to hold more than one
component, then you need to nest those components in a container component, which
can then be nested in the facet. For an example of how the panelGroup and
panelButtonBar components are used to group all buttons in the footer facet of a
form, see Section 13.4.2.3, "Using EL Expressions to Bind to Navigation Operations".

Also note that JDeveloper displays all facets available to the component in the
Structure window. However, only those that contain UI components appear activated.
Any empty facets are "grayed" out. Figure 13–5 shows both full and empty facets for a
panelPage component

Figure 13–5 Empty and Full Facet Folders in the Structure Window

13.4 Incorporating Range Navigation into Forms
When you create an ADF Form, you are given the option of adding navigation. If you
choose to do so, JDeveloper includes ADF Faces command components bound to
existing navigational logic on the data control. This built-in logic allows the user to
navigate through all the data objects in the collection. Figure 13–6 shows a form that
contains navigation buttons.

Incorporating Range Navigation into Forms

Creating a Basic Page 13-13

Figure 13–6 Navigation in a Form

13.4.1 How to Insert Navigation Controls into a Form
By default, when you choose to include navigation when creating a form using the
Data Control Palette, JDeveloper creates First, Last, Previous, and Next buttons that
allow the user to navigate within the collection.

You can also add navigation buttons to an existing form manually.

To manually add navigation buttons:
1. From the Data Control Palette, select the operation associated with the collection

of objects on which you wish the operation to execute, and drag it onto the JSF
page.

For example, if you want to navigate through service requests, you would drag the
Next operation associated with the ServiceRequests collection. Figure 13–7
shows the operations associated with a collection.

Figure 13–7 Navigation Operations Associated With a Collection

2. Choose either Command Button or Command Link from the context menu.

Incorporating Range Navigation into Forms

13-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

13.4.2 What Happens When Command Buttons Are Created Using the Data Control
Palette

When you drop any operation as a command component, JDeveloper:

■ Defines an action binding in the page definition file for the associated operations

■ Inserts code in the JSF page for the command components

13.4.2.1 Using Action Bindings for Built-in Navigation Operations
Action bindings execute business logic. For example, they can invoke built-in methods
on the action binding object. These built-in methods operate on the iterator or on the
data control itself, and are represented as operations in the Data Control Palette.
JDeveloper provides navigation operations that allow users to navigate forward,
backwards, to the last object in the collection, and to the first object.

Like value bindings, action bindings for operations will contain a reference to the
iterator binding when the action binding is bound to one of the iterator-level actions,
such as Next or Previous, as it is used to determine the current object and can
therefore determine the correct object to display when each of the navigation buttons
is clicked (action bindings to other than iterator-level actions, for example for a custom
method on an AM, or for the commit or rollback operations, will not contain this
reference). Example 13–8 shows the action bindings for the navigation operations.

Example 13–8 Page Definition Code for an Operation Action Binding

 <action id="First" RequiresUpdateModel="true" Action="12"
 IterBinding="ServiceRequestsIterator"/>
 <action id="Previous" RequiresUpdateModel="true" Action="11"
 IterBinding="ServiceRequestsIterator"/>
 <action id="Next" RequiresUpdateModel="true" Action="10"
 IterBinding="ServiceRequestsIterator"/>
 <action id="Last" RequiresUpdateModel="true" Action="13"
 IterBinding="ServiceRequestsIterator"/>

13.4.2.2 Iterator RangeSize Attribute
Iterator bindings have a rangeSize attribute used to determine the number of data
objects to make available for the page for each iteration. This attribute helps in
situations when the number of objects in the data source is quite large. Instead of
returning all objects, only a set number are returned and accessible by the other
bindings. Once the iterator reaches the end of the range, it accesses the next set.
Example 13–9 shows the default range size for the ServiceRequestsIterator
iterator.

Tip: The numerical values of the Action attribute in the <action>
tags (as shown in Figure 13–8) are defined in the
oracle.adf.model.meta.OperationDefinition class.
However, when you use the ADF Model layer’s action binding editor,
you never need to set the numerical code by hand.

Note: This rangeSize attribute is not the same as the row attribute
on a table component. For more information, see Table 14–1, " ADF
Faces Table Attributes and Populated Values".

Incorporating Range Navigation into Forms

Creating a Basic Page 13-15

Example 13–9 RangeSize Attribute for an Iterator

<executables>
 <iterator id="ServiceRequestsIterator" RangeSize="10"
 Binds="ServiceRequests" DataControl="SRService"/>
</executables>

By default, the rangeSize attribute is set to 10. This means that a user can view 10
objects, navigating back and forth between them, without needing to access the data
source. The iterator keeps track of the current object. Once a user clicks a button that
requires a new range (for example, clicking the Next button on object number 10), the
binding object executes its associated method against the iterator, and the iterator
retrieves another set of 10 records. The bindings then work with that set. You can
change this setting as needed. You can set it to -1 to have the full record set returned.
The default is -1 for iterator bindings that furnish a list of valid choices for list
bindings.

Table 13–1 shows the built-in navigation operations provided on data controls, along
with the action attribute value set in the page definition, and the result of invoking the
operation or executing an event bound to the operation. For more information about
action events, see Section 13.4.3, "What Happens at Runtime: About Action Events and
Action Listeners".

Every action binding for an operation has an enabled boolean property that the ADF
framework sets to false when the operation should not be invoked. You can then
bind the UI component to this value to determine whether or not the component
should be enabled. For more information about the enabled property, see
Appendix B, "Reference ADF Binding Properties".

13.4.2.3 Using EL Expressions to Bind to Navigation Operations
When you create command components using navigation operations, the components
are placed in a panelButtonBar component. JDeveloper creates an EL expression
that binds a navigational command button’s actionListener attribute to the
execute property of the action binding for the given operation. This expression
causes the binding’s operation to be invoked on the iterator when a user clicks the
button.

Table 13–1 Built-in Navigation Operations

Operation

Action
Attribute
Value When invoked, the associated iterator binding will...

Next 10 Move its current pointer to the next object in the result set. If this
object is outside the current range, the range is scrolled forward a
number of objects equal to the range size.

Previous 11 Move its current pointer to the preceding object in the result set. If
this object is outside the current range, the range is scrolled
backward a number of objects equal to the range size.

First 12 Move its current pointer to the beginning of the result set.

Last 13 Move its current pointer to the end of the result set.

Next Set 14 Move the range forward a number of objects equal to the range
size attribute.

Previous Set 15 Move the range backward a number of objects equal to the range
size attribute.

Incorporating Range Navigation into Forms

13-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For more information about the command button’s actionListener attribute, see
Section 13.4.3, "What Happens at Runtime: About Action Events and Action
Listeners". For example, the First command button’s actionListener attribute is
bound to the execute method on the First action binding.

The disabled attribute is used to determine if the button should be inactivated. For
example, if the user is currently displaying the first record, the First button should not
be able to be clicked. The code uses an EL expression that evaluates to the enabled
property on the action binding. If the property value is not true (for example, if the
current record is the first record, the First operation should not be enabled), then the
button is disabled. Example 13–10 shows the code generated on the JSF page for
navigation operation buttons.

Example 13–10 JSF Code for Navigation Buttons Bound to ADF Operations

<f:facet name="footer">
 <af:panelButtonBar>
 <af:commandButton actionListener="#{bindings.First.execute}"
 text="First"
 disabled="#{!bindings.First.enabled}"/>
 <af:commandButton actionListener="#{bindings.Previous.execute}"
 text="Previous"
 disabled="#{!bindings.Previous.enabled}"/>
 <af:commandButton actionListener="#{bindings.Next.execute}"
 text="Next"
 disabled="#{!bindings.Next.enabled}"/>
 <af:commandButton actionListener="#{bindings.Last.execute}"
 text="Last"
 disabled="#{!bindings.Last.enabled}"/>
 </af:panelButtonBar>
 <af:commandButton text="Submit"/>
 </f:facet>

13.4.3 What Happens at Runtime: About Action Events and Action Listeners
An action event occurs when a command component is activated. For example, when
a user clicks a button, the form the component is enclosed in is submitted, and
subsequently an action event is fired. Action events might affect only the user interface
(for example, a link to change the locale, causing different field prompts to display), or
they might involve some logic processing in the back end (for example, a button to
navigate to the next record).

An action listener is a class that wants to be notified when a command component
fires an action event. An action listener contains an action listener method that
processes the action event object passed to it by the command component.

In the case of the navigation operations, when a user clicks, for example, the Next
button, an action event is fired. This event stores currency information about the
current data object, taken from the iterator. Because the component’s
actionListener attribute is bound to the execute method of the Next action
binding, the Next operation is invoked. This method takes the currency information
passed in the event object to determine what the next data object should be.

Incorporating Range Navigation into Forms

Creating a Basic Page 13-17

13.4.4 What You May Need to Know About the Browser Back Button
When a user clicks the navigation buttons, the iterator determines the next data object
to display. However, when the user clicks the browser’s Back button, the action
and/or event is not shared outside the browser, and the iterator is bypassed.
Therefore, when a user clicks a browser’s Back button instead of using navigation
buttons on the page, the iterator becomes out of sync with the page displayed, causing
unexpected results.

For example, say a user browses to object 103, and then uses the browser’s Back
button. Because the browser shows the page last visited, object 102 is shown. However,
the iterator still thinks the current object is 103 because the iterator was bypassed. If
the user were to then to click the Next button, object 104 would display because that is
what the iterator believes to be the next object, and not 103 as the user would expect.

Because the iterator and the page are out of sync, problems can arise when a user edits
records. For example, if the user were to have edited object 102 after clicking the
browser’s Back button, the changes would have actually been posted to 103, because
this is what the iterator thought was the current object.

To prevent a user making changes to the wrong object instances, you can use token
validation. When you enable token validation for a page, that page is annotated with
the current object for all the iterators used to render that page. This annotation is
encoded onto the HTML payload rendered to the browser and is submitted to the
server along with any data. At that point, the current object of the iterator is compared
with the annotation. If they are different, an exception is thrown.

For example, in the earlier scenario, when the user starts at 103 but then clicks the
browser’s Back button to go to 102, as before, the previous page is displayed.
However, that page was (and still is) annotated with 102. Therefore, when the user
clicks the Next button to submit the page and navigate forward, the annotation (102)
does not match the iterator (which is still at 103), an exception is thrown, and the Next
operation is not executed. The page renders with 103, which is the object the iterator
believed to be current. An error displays on the page stating that 102 was expected,
since the server expected 102 based on the annotation submitted with the data. Since
103 is now displayed, both the annotation and the iterator are now at 103, and are back
in sync.

Token validation is set on the page definition for a JSF page. By default, token
validation is on.

To set token validation:
1. Open the page definition file for the page.

2. In the Structure window, select the root node for the page definition itself.

3. In the Property Inspector, use the dropdown list for the
EnableTokenValidation attribute to set validation to true to turn on token
validation, or false to turn off token validation.

Creating a Form to Edit an Existing Record

13-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 13–11 shows a page definition file after token validation was set to true.

Example 13–11 Enable Token Validation in the Page Definition File

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.29" id="createProductPageDef"
 Package="oracle.srdemo.view.pageDefs"
 EnableTokenValidation="true">

13.5 Creating a Form to Edit an Existing Record
You can create a form that allows a user to edit the current data, and then commit
those changes to the data source. You then use a operations associated with a
collection or the data control itself to create command buttons that can be used to
modify data records. For example, you use the Delete operation to create a button
that allows a user to delete a record from the current range. Or you can use the built-in
Submit button to submit changes.

It is important to note that these operations are executed only against objects in the
ADF cache. You need to use the Commit operation on the root data control to actually
commit any changes to the data source. You use the data control’s Rollback
operation to rollback any changes made to the cached object.

13.5.1 How to Use the Data Control Palette to Create Edit Forms
To use the operations on a form, you follow the same procedures as the navigation
operations (see Section 13.4.1, "How to Insert Navigation Controls into a Form" for
procedures), however you must also create the buttons for the commit and rollback
operations in order for changes to be committed to the data store or to restore the
cache.

To create an edit form:
1. From the Data Control Palette, drag the collection for which you wish to create the

form, and select ADF Form from the context menu.

2. In the Edit Form Fields dialog, if you want the user to be able to change data,
select Include Submit Button.

3. From the Data Control Palette, select the operation associated with the collection
of objects on which you wish the operation to execute, and drag it onto the JSF
page.

For example, if you want to be able delete service requests, you would drag the
Delete operation associated with the ServiceRequests collection. Figure 13–8
shows the operations associated with a collection.

Tip: You can also use the Create operation on a form to create a new
object, however using the ADF Creation Form provides additional
built-in functionality. See Section 13.6, "Creating an Input Form" for
more information.

Creating a Form to Edit an Existing Record

Creating a Basic Page 13-19

Figure 13–8 Operations Associated With a Collection

4. Choose either Command Button or Command Link from the context menu.

5. From the Data Control Palette, drag the Commit and Rollback operations
associated with the root level data control, and drop them as either a command
button or command link. This will allow the changes to be committed to or rolled
back. Figure 13–9 shows the commit and rollback operations for the SRService
data control.

Figure 13–9 Commit and Rollback Operations for a Data Control

13.5.2 What Happens When You Use Built-in Operations to Change Data
Dropping any data control operation as a command button causes the same events as
dropping navigation operations. See Section 13.4.2, "What Happens When Command
Buttons Are Created Using the Data Control Palette" for more information.

Creating a Form to Edit an Existing Record

13-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The only difference is that the action bindings for the Commit and Rollback
operations do not require a reference to the iterator, as they execute a method on the
application module. Example 13–12 shows the action bindings generated in the page
definition file for these operations.

Example 13–12 Action Bindings for Commit and Rollback Operations

<action id="Commit" InstanceName="SRService"
 DataControl="SRService" RequiresUpdateModel="true"
 Action="100"/>
<action id="Rollback" InstanceName="SRService"
 DataControl="SRService" RequiresUpdateModel="false"
 Action="101"/>

The following table shows the built-in non-navigation operations provided on data
controls, along with the result of invoking the operation or executing an event bound
to the operation (see Section 13.4.3, "What Happens at Runtime: About Action Events
and Action Listeners" for more information about action events).

Table 13–2 More Built-in Operations

Operation

Action
Attribute
Value When invoked, the associated iterator binding will...

Create 41 Creates a row directly before the current row, then moves
the current row pointer to the new row. Note that the range
does not move, meaning that the last row in the range may
now be excluded from the range. Also note that this
performs a Create operation and not a CreateInsert
operation. In other words, the record will not be inserted
into the rowset, avoiding a blank row should the user
navigate away without actually creating data. The new row
will be created when the user submits the data.

Delete 30 Deletes the current row from the cache and moves the
current row pointer to the next row in the result set. Note
that the range does not move, meaning that a row may be
added to the end of the range. If the last row is deleted, the
current row pointer moves to the preceding row. If there are
no more rows in the collection, the enabled attribute is set to
"disabled."

SetCurrentRowWith
Key

96 Set the row key as a String converted from the value
specified by the input field. The row key is used to set the
currency of the data object in the bound data collection. For
an example of when this is used, see Section 14.7.1, "How to
Manually Set the Current Row".

SetCurrentRowWith
KeyValue

98 Set the current object on the iterator, given a key’s value.

RemoveRowWithKey 99 Uses the row key as a String converted from the value
specified by the input field to remove the data object in the
bound data collection.

Commit 100 Causes all items currently in the cache to be committed to
the database.

Rollback 101 Clears the cache and returns the transaction and iterator to
the initial state.

Execute and Find These operations are used only in search forms. See
Chapter 18, "Creating a Search Form" for more information.

Creating an Input Form

Creating a Basic Page 13-21

13.6 Creating an Input Form
You can create a form that allows a user to enter information for a new record and then
commit that record into the data source. While you can choose to use the default ADF
Form and then drop the Create operation as a command button, when this type of
form is first rendered, it displays the data for the first instance in the collection. The
ADF Creation form allows users to create new instances in the collection without first
displaying existing instances.

There may be times, however, when you need more control over how a new object is
created. For example, you may want certain attributes to be populated
programmatically. In this case, you might create a custom method on your application
module to handle the creation of objects. To use a custom method to create an input
form, instead of using an ADF Creation form, you use a standard form and then drop
a custom method as a command button. The custom method will execute when the
user clicks the button.

13.6.1 How to Create an Input Form
You create an input form similar to the way you create any other form. However, by
selecting an ADF Creation Form when dropping a collection, JDeveloper provides
additional functionality automatically.

To create an input form:
1. From the Data Control Palette, drag the collection for which you wish to create the

form, and select ADF Creation Form from the context menu.

2. In the Edit Form Fields dialog, do not include the Submit button.

3. From the Data Control Palette, drag the Commit and Rollback operations
associated with the root data control, and drop them as command buttons or links.

4. In the Structure window, select the command button for the commit operation.

5. In the Property Inspector, set the command button’s Disabled property to False.

By default, JDeveloper binds the Disabled attribute of the button to the Enabled
property of the binding, causing the button to be disabled when the Enabled
property is set to False. For this binding, the Enabled property is false until
an update has been posted. For the purposes of an input form, the button should
always be enabled, since there will be no changes posted before the user needs to
create the new object.

Note: When you create a row programmatically, you should call the
NewRow.setNewRowState(RowSet.STATUS_INITIALIZED
method to get the same behavior as the built-in Create action. For
more information, see Section 10.4.4, "What You May Need to Know
About Create and CreateInsert".

Creating an Input Form

13-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

13.6.2 What Happens When You Create an Input Form
When you use an ADF Creation Form to create an input form, JDeveloper:

■ Creates an iterator binding for the collection, an action binding for the Create
operation, and attribute bindings for each of the attributes of the object in the
collection. It also creates an invoke action in the executables section of the page
definition that causes the Create operation to execute during the Render Model
phase. If you created command buttons or links using the Commit and Rollback
operations, JDeveloper also creates an action bindings for those operations.

■ Inserts code in the JSF page for the form using ADF Faces inputText
components, and in the case of the operations, commandButton components.

For example, to create a simple input form for products in the SRDemo application,
you might drop the ProductsList collection from the Data Control Palette as an
ADF Creation Form, and then drop the Commit operation as a button below the form,
as shown in Figure 13–10.

Figure 13–10 A Simple Create Product Form

Example 13–13 shows the page definition file for this input form. When the invoke
action executes during the prepare render lifecycle phase, the Create operation is
invoked, and a new instance for the collection is created. For more information about
the lifecycle, see Chapter 13.2.3, "What Happens at Runtime: The JSF and ADF
Lifecycles"

Example 13–13 Page Definition Code for a Creation Form

<executables>
 <iterator id="ProductListIterator" RangeSize="10" Binds="ProductList"
 DataControl="SRService"/>
 <invokeAction Binds="Create" id="invokeCreate" Refresh="renderModel"
 RefreshCondition="${!adfFacesContext.postback and empty
 bindings.exceptionsList}"/>
</executables>
<bindings>
 <action id="Create" RequiresUpdateModel="true" Action="41"
 IterBinding="ProductListIterator"
 InstanceName="SRServiceDataControl.ProductList"
 DataControl="SRServiceDataControl"/>
 <attributeValues id="ProdId" IterBinding="ProductListIterator">
 <AttrNames>
 <Item Value="ProdId"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="Name" IterBinding="ProductListIterator">

Note: This page is an example only and does not exist in the
SRDemo application.

Creating an Input Form

Creating a Basic Page 13-23

 <AttrNames>
 <Item Value="Name"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="Description" IterBinding="ProductListIterator">
 <AttrNames>
 <Item Value="Description"/>
 </AttrNames>
 </attributeValues>
 <action id="Commit" InstanceName="SRServiceDataControl"
 DataControl="SRServiceDataControl" RequiresUpdateModel="true"
 Action="100"/>
</bindings>

Anytime the Create operation is invoked (for example, when the page is first
rendered), an data object is created. However, since data is cached (which allows the
Create operation to do a postback to the server), and since the Create operation is
invoked whenever the page enters the renderModel phase, the Create operation
will create the same object again when the user revisits the page, perhaps to create
another object. Additionally, if errors occur, when the page is rerendered with the error
message, the object would again be created.

To prevent duplicates, the invoke action’s refreshCondition property is set so that
the Create operation will only be invoked whenever there has been no postback to the
server and as long as there are no error messages (see Example 13–13 for the EL
expression). When the user clicks the Commit button (which is bound to the Commit
action through an action binding), the new object with the data is submitted to the
data source. If you do want the user to be able to stay on the same page to create
multiple objects, see Chapter 13.6.4, "What You May Need to Know About Create
Forms and the RefreshCondition".

13.6.3 What You May Need to Know About Displaying Sequence Numbers
Because the invokeCreate action is executed before the page is displayed, if you are
populating the primary key (in this case the Product ID) using sequences, that number
will appear in the input text field. For example, instead of being blank, the Product ID
in Figure 13–10 displays the product ID number. This is because the product entity
class contains a method that uses an eager fetch to generate a sequence of numbers for
the prodId attribute. This populates the value as the row is created.

However, if instead you’ve configured the attribute’s type to DBSequence (which uses
a database trigger to generate the sequence), the number would not be populated until
the object is committed to the database. In this case, the user would see a negative
number as a placeholder. To avoid this, you can use the following EL expression for
the Rendered attribute of the input text field:

#{bindings.EmployeeId.inputValue.value > 0}

This expression will display the component only when the value is greater than zero,
which will not be the case before it is committed. Similarly, you can simply set the
Rendered attribute to false. However, then the page will never display the input
text field component for the primary key.

Creating an Input Form

13-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

13.6.4 What You May Need to Know About Create Forms and the RefreshCondition
If the Commit button for the input form does not cause the user to navigate off the
page, the page re-renders displaying the data from the last entry. This is because the
refreshCondition on the invokeCreate invoke action
(${!adfFacesContext.postback and empty bindings.exceptionsList})
causes the action to not be invoked when there is a postback, which is the case when
committing the data.

If you want users to be able to stay on the page (for example to create more than one
product at a time), you need to change the refreshCondition so that it will allow
the invokeCreate action to execute after committing a new object. To do this, you
use the setActionListener component within the Commit command component.
The setActionListener component allows the command component to set a value
before navigating. In this case, the command component will set a flag (named
createAnother) on the request scope to true. The refreshCondition can then
evaluate this flag to determine whether or not to execute the invokeCreate action, as
shown in the following procedure. For more information about the
setActionListener component, see Section 17.4.2, "What Happens When You Set
Parameters".

To create an input form that can create multiple objects:
1. Follow the procedure to create an input form.

2. On the JSF page, drag a setActionListener component from the Component
Palette onto the Commit command button.

3. In the Insert setActionListener dialog, set the following:

■ From: #{true}

■ To: #{requestScope.createAnother}

This creates a flag named createAnother on the request scope, and sets it to
true.

4. Open the page definition for the JSF page.

5. Change the refreshCondition for the invokeCreate invoke action from

${!adfFacesContext.postback and empty bindings.exceptionsList}

to:

#{empty bindings.expressionList and (!adfFacesContext.postback or
 requestScope.createAnother)}

This sets the condition to execute the invokeCreate action when the expression
list that contains error messages is empty, and there was not or postback or the
createAnother flag on the request scope is set to true.

Note: This procedure assumes that the user will click this Commit
button and return to the same page to create another entry. You may
wish to change the name of the button to reflect that, for example,
Commit and Create Another. You will need to create a different
button to navigate off the page.

Modifying the UI Components and Bindings on a Form

Creating a Basic Page 13-25

13.7 Modifying the UI Components and Bindings on a Form
Once you use the Data Control Palette to create a form, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute to which they are bound.

13.7.1 How to Modify the UI Components and Bindings
You can modify certain aspects of the default components dropped from the Data
Control Palette. You can use the Structure window to change the order in which
components are displayed, to add new components or change existing components, or
to delete components. You can use the Property Inspector to change or delete bindings,
or to change the label displayed for a component.

To modify default components and bindings:
1. Use the Structure window to do the following:

■ Change the order of the UI components by dragging them up or down the
tree. A black line with an arrowhead denotes where the UI component will be
placed.

■ Add a UI component for a new attribute. Right-click an existing UI component
in the Structure window and choose to place the new component before, after,
or inside the selected component. You then choose from a list of UI
components.

To bind the new component to an attribute, you need to use the Property
Inspector. See the first bullet point in step 2 for details.

■ Delete a UI component. Right-click the component and choose Delete. If you
wish to keep the component, but delete just the binding, you need to use the
Property Inspector. See the second bullet point in step 2.

2. With the UI component selected in the Structure window, you can then do the
following in the Property Inspector:

■ Add a binding for the UI component. Enter an EL expression in the Value
field, or click the ellipsis (...) button in the Value field to open the EL
Expression Builder. To select a binding available from the data control, select
the ADF Bindings > Bindings node. This node shows the operations,
iterators, and attributes available from the collection currently bound, as well
as the binding properties. For more information about using EL expressions,
see Section 12.6, "Creating ADF Data Binding EL Expressions".

■ Delete a binding for the UI component by deleting the EL expression.

■ Change the binding. You can rebind the component to any other attribute, or
any property on another attribute. For procedures, see Section 13.7.1.1,
"Changing the Value Binding for a UI Component".

Note: The setActionListener component executes during the
Invoke Application phase of the lifecycle. Therefore, the refresh
attribute for the invokeCreate action must be set to a subsequent
phase. In this case, it is set to renderModel by default, and should
not be changed.

Modifying the UI Components and Bindings on a Form

13-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Change the label for the UI component. By default, the label is bound to the
binding’s label property (for more information about this property, see
Appendix B, "Reference ADF Binding Properties". This property allows your
page to use the UI control hints for labels that you have defined for your entity
object attributes or view object attributes, where you can change the value
once and have it appear the same on all pages that display the label.

You can also change the label just for the current page. To do so, select the
Label attribute. You can enter text or an EL expression to bind the label value
to something else, for example, a key in a properties or resource file.

For example, the inputText component used to enter the status of a service
request would have the following for its Label attribute:

#{bindings.Status.label}

In this expression, status is the ID for the attribute binding in the page
definition file.

However, you could change the expression to instead bind to a key in a
properties file, for example:

#{srproperties[’sr.status’]}

In this example, srproperties is a variable defined in the JSF page used to
load a properties file. The SREdit page uses a variable named res. The label
for the cancel button has the following value:

#{res['srdemo.cancel']}

For more information about using resource bundles, see Section 22.4,
"Internationalizing Your Application".

13.7.1.1 Changing the Value Binding for a UI Component
Instead of modifying a binding, you can completely change the object to which the UI
component in a form is bound.

To rebind a UI component:
1. From the Data Control palette, drag the collection or attribute that you now want

the component to be bound to, and drop it on the component.

OR

Right-click the UI component in the Structure window and choose Edit Binding.
Either the Attribute, Table, or List Binding Editor launches, depending on the UI
component for which you are changing the binding.

2. In the context menu, select Bind existing <component name>.

13.7.1.2 Changing the Action Binding for a UI Component
When a component is bound to a built-in operation, you can change the action using
the Action Binding Editor.

To rebind a UI Command component:
1. Right-click the command component in the Structure window and choose Edit

Binding, which launches the Action Binding Editor.

2. In the editor, use the dropdown menu to select a different action.

Modifying the UI Components and Bindings on a Form

Creating a Basic Page 13-27

13.7.2 What Happens When You Modify Attributes and Bindings
When you modify how an attribute is displayed by moving the UI component or
changing the UI component, JDeveloper changes the corresponding code on the JSF
page. When you use the binding editors to add or change a binding, JDeveloper adds
the code to the JSF page, and also adds the appropriate elements to the page definition
file.

Modifying the UI Components and Bindings on a Form

13-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Adding Tables 14-1

14
Adding Tables

This chapter describes how to use the Data Control Palette to create databound tables
using ADF Faces components.

This chapter includes the following sections:

■ Section 14.1, "Introduction to Adding Tables"

■ Section 14.2, "Creating a Basic Table"

■ Section 14.3, "Incorporating Range Navigation into Tables"

■ Section 14.4, "Modifying the Attributes Displayed in the Table"

■ Section 14.5, "Adding Hidden Capabilities to a Table"

■ Section 14.6, "Enabling Row Selection in a Table"

■ Section 14.7, "Setting the Current Object Using a Command Component"

14.1 Introduction to Adding Tables
Unlike forms, tables allow you to display more than one data object from a collection
at a time. Figure 14–1 shows the SRList page in the SRDemo application, which uses a
browse table to display the current service requests for a logged in user.

Figure 14–1 The Service Request Table

Once you drop a collection as a table, you can then add row selection components that
allow users to select a specific row. When you add command buttons bound to
actions, users can then click those buttons to execute some logic on the selected row.
For more information, see Section 17.3, "Creating Command Components to Execute
Methods". You can also modify the default components to suit your needs.

Creating a Basic Table

14-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Read this chapter to understand:

■ How to create a basic table

■ How to add navigation between sets of returned objects

■ How to modify the default table once it’s created

■ How to add components that allow users to show or hide data

■ How to include a column that allows users to select one, or one or more, rows in
the table

■ How to manually set the current row in the table

14.2 Creating a Basic Table
Unlike with forms, where you bind the individual UI components that make up a form
to the individual attributes on the collection, with a table you bind the ADF Faces
table component to the complete collection or to a range of N data objects at a time
from the collection. The individual columns in the table are then bound to the
attributes. The iterator binding handles displaying the correct data for each object,
while the table component handles displaying each object in a row. JDeveloper
allows you to do this declaratively, so that you don’t need to write any code.

14.2.1 How to Create a Basic Table
To create a table using a data control, you bind the table component to a view object
collection. JDeveloper allows you to do this declaratively by dragging and dropping a
collection from the Data Control Palette.

To create a databound table:
1. From the Data Control Palette, select a collection.

For example, to create the SRList table in the SRDemo application, you select the
ServiceRequestsByStatus collection that is under the LoggedInUser
collection. Figure 14–2 shows the ServiceRequestsByStatus collection in the
Data Control Palette.

Figure 14–2 ServiceRequestsByStatus Collection in the Data Control Palette

Creating a Basic Table

Adding Tables 14-3

The ServiceRequestsByStatus collection, which extends ServiceRequests,
is a child of the LoggedInUser collection because of the view link
ServiceRequestsForUser. The ServiceRequestsByStatus collection also
has a named bind variable StatusCode that represents the service request status
type (for example, open or pending requests). In the SRList page, when the logged
in user selects a command link in the menu bar to view open, pending, closed, or
all service requests, the requests created by or assigned to the currently logged in
user for the selected status type are returned.

2. Drag the collection onto a JSF page, and from the context menu, choose the
appropriate table.

When you drag the collection, you can choose from the following types of tables:

■ ADF Table: Allows you to select the specific attributes you wish your editable
table columns to display, and what UI components to use to display the data.
By default, each attribute on the collection object is displayed in an
inputText component, thus enabling the table to be editable.

■ ADF Read-Only Table: Same as the ADF Table; however, each attribute is
displayed in an outputText component.

■ ADF Read-Only Dynamic Table: The attributes returned and displayed are
determined dynamically. This component is helpful when the attributes for
the corresponding object are not known until runtime, or you do not wish to
hardcode the column names in the JSF page. For example, if you have a
polymorphic collection (for example, a view object collection that can be a
collection of mammals or a collection of birds), the dynamic table can display
the different attributes accordingly.

■ ADF Master Table, Inline Detail Table: For more information, see
Section 15.6, "Using an Inline Table to Display Detail Data in a Master Table".

3. From the ensuing Edit Table Columns dialog, you can do the following:

■ Change the display label for a column. By default, the label is bound to the
labels property for the attribute on the table binding. For more information
about the labels property, see Appendix B, "Reference ADF Binding
Properties". The bindings to the labels property allow the labels to be
inherited from the UI control hints that you have defined in your business
domain layer, thus enabling you to change the value of a label text once in a
central place, and have the change appear the same on all pages that display
the label. In the Edit Table Columns dialog, you can instead enter text or an EL
expression to bind the label value to something else, for example, a key in a
resource file.

For example, the heading for the Status column in the table on the SRList page
is bound to the labels property that uses the Status key to get the attribute:

#{bindings.LoggedInUserServiceRequests.labels.Status}

However, you could change the heading to instead be bound to a key in a
properties resource file, for example:

#{srlist[’sr.status’]}

In the example, srlist would be a variable defined in the JSF page used to
load a properties file. For more information about using resource bundles, see
Section 22.4, "Internationalizing Your Application".

Creating a Basic Table

14-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Note that the SRDemo pages mainly use the inherited UI control hints for all
attributes, and JSF resource strings for other kinds of labels that are not
directly related to view object attributes.

■ Change the attribute binding for a column.

For example, you can change the status column to instead be bound to the
requestDate attribute. If you simply want to rearrange the columns, you
should use the order buttons, as described later in the section. If you do
change the attribute binding for a column, note the following:

– If you change the binding, the label for the column also changes.

– If you change the binding to an attribute currently bound to another
column, the UI component changes to a component different from that
used for the column currently bound to that attribute.

■ Change the UI component used to display an attribute. The UI components
are either inputText or outputText and are set based on the table you
selected when you dropped the collection onto the page. You can change to
the other component using the dropdown menu. If you want to use a different
component, such as a command link or button, you need to use this dialog to
select the outputText component, and then in the Structure window, replace
the component with the desired UI component (such as a command link).

■ Change the order of the columns using the order buttons. Top moves the
column to the first column at the left of the table. Up moves the column one
column to the left. Down moves the column one to the right. Bottom moves
the column to the very right.

■ Add a column using the New button. There’s no limit to the number of
columns you can add. When you first click New, JDeveloper adds a new
column line at the bottom of the dialog and populates it with default values
from the first attribute in the bound collection; subsequent new columns are
populated with values from the next attribute in the sequence, and so on.

■ Delete a column using the Delete button. Doing so deletes the column from
the table.

■ Add a tableSelectOne component to the table’s selection facet by
selecting Enable selection. For more information, see Section 14.6, "Enabling
Row Selection in a Table".

■ Allow sorting for all columns by selecting Enable sorting.

14.2.2 What Happens When You Use the Data Control Palette to Create a Table
Dropping a table from the Data Control Palette has the same effect as dropping a text
field or form. For more information, see Section 13.2.2, "What Happens When You Use
the Data Control Palette to Create a Text Field". Briefly, JDeveloper does the following:

■ Creates the bindings for the table and adds the bindings to the page definition file.

■ Adds the necessary code for the UI components to the JSF page.

Creating a Basic Table

Adding Tables 14-5

14.2.2.1 Iterator and Value Bindings for Tables
When you drop a table from a the Data Control Palette, a table value binding is
created. Like an attribute binding used in forms, the table value binding references the
iterator binding; the iterator binding references an iterator for the data collection,
which facilities iterating over the data objects in the collection. Instead of creating a
separate binding for each attribute, only the table binding is created. In the table
binding, the AttrNames element contains a a child element for each attribute that you
want to be available for display or reference in each row of the table. Example 14–1
shows the value binding for the table created when you drop the
ServiceRequestsByStatus collection.

Example 14–1 Value Binding Entries for a Table in the Page Definition File

<table id="LoggedInUserServiceRequests"
 IterBinding="ServiceRequestsByStatusIterator">
 <AttrNames>
 <Item Value="SvrId"/>
 <Item Value="Status"/>
 <Item Value="RequestDate"/>
 <Item Value="ProblemDescription"/>
 <Item Value="ProdId"/>
 <Item Value="CreatedBy"/>
 <Item Value="AssignedTo"/>
 <Item Value="AssignedDate"/>
 </AttrNames>
</table>

Only the table value binding is needed because only the table UI component needs
access to the data. The table columns derive their information from the table binding.

14.2.2.2 Code on the JSF Page for an ADF Faces Table
When you use the Data Control Palette to drop a table onto a JSF page, JDeveloper
creates a table that contains a column for each attribute on the object to which it is
bound. To do this, JDeveloper inserts an ADF Faces table component, which
contains an ADF Faces column component for each attribute named in the table
binding. Each column then contains either an input or outputText component
bound to the attribute’s value. Each column’s heading is bound to the labels
property for the attribute on the table binding. Example 14–2 shows a simplified code
excerpt from the table on the SRList page.

Creating a Basic Table

14-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 14–2 Simplified JSF Code for an ADF Faces Table

<af:table value="#{bindings.LoggedInUserServiceRequests.collectionModel}"
 var="row" ..>
 ...
 <af:column headerText="#{bindings.LoggedInUserServiceRequests.labels.Status}"
 sortProperty="Status" sortable="false">
 <af:outputText value="#{row.Status}"/>
 </af:column>
 <af:column

headerText="#{bindings.LoggedInUserServiceRequests.labels.RequestDate}"
 sortProperty="RequestDate" sortable="false">
 <af:outputText value="#{row.RequestDate}">
 <f:convertDateTime

pattern="#{bindings.LoggedInUserServiceRequests.formats.RequestDate}"/>
 </af:outputText>
 </af:column>
 ...
</af:table>

The table binding iterates over the data exposed by the iterator binding. The
FacesCtrlRangeBinding class extends the base JUCtrlRangeBinding class to
add specific methods to the base table binding object; one of the methods is the
getCollectionModel method, which the EL accesses using the collectionModel
property of the table binding. The table wraps the result set from the iterator binding
in an oracle.adf.view.faces.model.CollectionModel object. As the table
binding iterates, it makes each item in the collection available within the table
component using the var attribute.

In the example, the table iterates over the rows in the current range of the
ServiceRequestsByStatusIterator iterator binding. The iterator binding binds
to a row set iterator that keeps track of the current row. When you set the var
attribute on the table to row, each column then accesses the current data object for the
current row presented to the table tag using the row variable, as shown for the value
of the af:outputText tag:

<af:outputText value="#{row.Status}"/>

Table 14–1 shows the other attributes defined by default for ADF Faces tables created
using the Data Control Palette.

Table 14–1 ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

rows Determines how
may rows to
display at one time.

An EL expression that evaluates to the rangeSize
property of the associated iterator binding. For more
information on this attribute, see Section 14.3,
"Incorporating Range Navigation into Tables". Note
that the value of the rows attribute is equal to or less
than the corresponding iterator’s rangeSize value.

first Index of the first
row in a range
(based on 0).

An EL expression that evaluates to the rangeStart
property of the associated iterator binding. For more
information on this attribute, see Section 14.3,
"Incorporating Range Navigation into Tables".

emptyText Text to display
when there are no
rows to return.

An EL expression that evaluates to the viewable
property on the iterator. If the table is viewable,
displays No rows yet when no objects are returned. If
the table is not viewable (for example if there are
authorization restrictions set against the table),
displays Access Denied.

Incorporating Range Navigation into Tables

Adding Tables 14-7

Additionally, a table may also have a selection facet, and selection and
selectionListener attributes if you chose to enable selection when you created
your table. For more information, see Section 14.6, "Enabling Row Selection in a Table".

14.3 Incorporating Range Navigation into Tables
Instead of using built-in operations to perform navigation as forms do, ADF Faces
tables provide built-in navigation using the selectRangeChoiceBar component
that is automatically included with table components. The
selectRangeChoiceBar component renders a dropdown menu and Previous and
Next links for selecting a range of records to display in the current page. Figure 14–3
shows an example of how the selectRangeChoiceBar component might look like
in a table.

Figure 14–3 SelectRangeChoiceBar in a Table

Column
Attributes

sortProperty Determines the
property on which
to sort the column.

Set to the columns corresponding attribute binding
value.

sortable Determines
whether a column
can be sorted

Set to false. When set to true, the table will sort
only the rows returned by the iterator.

Table 14–1 (Cont.) ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

Incorporating Range Navigation into Tables

14-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

14.3.1 How to Use Navigation Controls in a Table
The rows attribute on a table component determines the maximum number of rows
to display in a range. When you use the Data Control Palette to create a table, by
default JDeveloper sets the table to display a range of rows equal to the iterator’s
rangeSize value, as shown in the following code snippet for the rows attribute on
the SRList table:

<af:table rows="#{bindings.LoggedInUserServiceRequests.rangeSize}".../>

The EL expression in the rows attribute evaluates to the iterator’s range size, which is
defined in the page definition file:

<executables>
 <iterator id="ServiceRequestsByStatusIterator" RangeSize="10"
 Binds="ServiceRequestsByStatus" DataControl="SRService"/>
 </executables>

By default, the RangeSize value is 10, which means that 10 records are returned at a
time for display in the current page.

To change the number of records to return for display in the current page, edit the
RangeSize value in the page definition file (instead of editing directly the rows
attribute on the table component).

If you change the rows attribute on the table component directly instead of
changing the RangeSize value on the iterator, make sure the value of rows is equal
to or less than the iterator’s RangeSize value. For additional information about the
RangeSize attribute, see Section 13.4.2.2, "Iterator RangeSize Attribute".

14.3.2 What Happens When You Use Navigation Controls in a Table
The selectRangeChoiceBar component provides navigational links that allow a
user to select the next and previous range of objects in the collection. If the total size of
the collection is known, the component provides a dropdown menu that lets the user
navigate directly to a particular range set in the collection (as illustrated in
Figure 14–3). When you change the RangeSize attribute on the iterator, the
selectRangeChoiceBar component automatically changes to show the new range
sets.

The rows attribute on a table component is used in conjunction with the first
attribute to set the ranges. The first attribute, which is a zero-based index of the
rows in a range, determines the first row in the current range. By default, the rows
attribute uses an EL expression that binds its value to the value of the rangeSize
attribute of the associated iterator. The first attribute also uses an EL expression, but
the expression binds to the value of the iterator’s rangeStart attribute. For example,
the rows and first attribute on the table on the SRList page have the following
values:

<af:table rows="#{bindings.LoggedInUserServiceRequests.rangeSize}"
 first="#{bindings.LoggedInUserServiceRequests.rangeStart}"

Each current range starts with the row identified by first, and contains only as
many rows as indicated by the rows attribute.

Modifying the Attributes Displayed in the Table

Adding Tables 14-9

14.3.3 What Happens at Runtime
To determine the range sets for the selectRangeChoiceBar to use, the view object
retrieves the first "RangeSize" number of rows and then stops, and the table makes a
separate SELECT COUNT(*) FROM (...) query by calling the
getEstimatedRowCount() method, which estimates the total number of rows the
query would retrieve without actually retrieving them all. For more information about
the getEstimatedRowCount() method, see Section 5.6.2, "Counting the Number of
Rows in a RowSet".

Unlike navigation operations which rely on logic in an action binding to provide
navigation, the selectRangeChoiceBar component sends a RangeChangeEvent
event. When a user navigates to a different range by selecting one of the navigation
links provided by the selectRangeChoiceBar component, (such as Previous or
Next), the table generates a RangeChangeEvent event. This event includes the index
of the object that should now be at the top of the range. The table responds to this
event by changing the value of the first attribute to this new index.

The RangeChangeEvent event has an associated listener. You can bind the
RangeChangeListener attribute on the table to a method on a managed bean. This
method will then be invoked in response to the RangeChangeEvent event, in other
words whenever the table has changed the first attribute in response to the user
changing a range on the table. This binding can be helpful when some complementary
action needs to happen in response to user navigation, for example, if you need to
release cached data created for a previous range. For information about adding logic
before or after built-in operations, see Section 17.5, "Overriding Declarative Methods".

14.3.4 What You May Need to Know About the Browser Back Button
Note that using the browser Back button has the same issues as described in
Chapter 13. For more information, see Section 13.4.4, "What You May Need to Know
About the Browser Back Button". Because the iterator keeps track of the current object,
when a user clicks a browser’s Back button instead of using navigation buttons on the
page, the iterator becomes out of sync with the page displayed because the iterator has
been bypassed. Like in forms, in tables the current row (or range or rows) displayed in
the page you see when you use the browser Back button may no longer correspond
with the iterator binding’s notion of the current row and range.

For example, in the SRList page shown in Figure 14–1, if you select the service request
with the ID of 4 and then navigate off the page using either the ID’s link or the View
or Edit buttons, the iterator is set to the object that represents service request 4. If you
set EnableTokenValidation to be true (as described in the procedure in
Section 13.4.4, "What You May Need to Know About the Browser Back Button"), then
the page’s token is also set to 4. When you use the browser’s Back button, everything
seems to be fine, the same range is displayed. However, if you click another button, an
error indicating that the current row is out of sync is shown. This is because the page
displayed is the previous page, whose token was set to 0, while the iterator is at 4.

14.4 Modifying the Attributes Displayed in the Table
Once you use the Data Control Palette to create a table, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute binding for the component. You can also add new
attributes. Before you add new attributes, make sure the table binding includes the
attribute you want to display in the table.

Modifying the Attributes Displayed in the Table

14-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

14.4.1 How to Modify the Displayed Attributes
You can modify the following aspects of a table that was created using the Data
Control Palette.

■ Change the binding for the label of a column

■ Change the attribute to which a UI component is bound

■ Change the UI component bound to an attribute

■ Reorder the columns in the table

■ Delete a column in the table

■ Add a column to the table

To change the attributes for a table:
1. In the Structure window, right-click af:table and choose Edit Columns.

2. In the Edit Table Columns dialog, you can do the following:

■ Change the display label for the column. By default, the label is bound to the
labels property for the attribute on the table binding. For more information
about the labels property, see Appendix B, "Reference ADF Binding
Properties". The bindings to the labels property allow the labels to be
inherited from the UI control hints that you have defined in your business
domain layer, thus enabling you to change the value of a label text once in a
central place, and have the change appear the same on all pages that display
the label. In this dialog, you can instead enter text or an EL expression to bind
the label value to something else, for example, a key in a resource file.

For example, the heading for the Status column in the table on the SRList page
is bound to the labels property that uses the Status key to get the attribute:

#{bindings.LoggedInUserServiceRequests.labels.Status}

However, you could change it to instead be bound to a key in a properties
resource file, for example:

#{srlist[’sr.status’]}

In this example, srlist would be a variable defined in the JSF page used to
load a properties file. For more information about using resource bundles, see
Section 22.4, "Internationalizing Your Application".

■ Change the attribute binding for a column.

For example, you can change the Status column to instead be bound to the
RequestDate attribute. Note the following:

– If you change the binding, the label for the column also changes.

– If you change the binding to an attribute currently bound to another
column, the UI component changes to a component different from that
used for the column currently bound to that attribute.

If you simply want to rearrange the columns, you should use the order
buttons, as described later in the section.

Modifying the Attributes Displayed in the Table

Adding Tables 14-11

■ Change the UI component used to display the attribute. The UI components
are either inputText or outputText and are set based on the composite
component you selected when you dropped the collection onto the page. You
can change to the other UI component using the dropdown menu. If you want
to use an entirely different component, such as a command link or button, you
need to use this dialog to change to an outputText component, and then in
the Structure window, replace the outputText component with the desired
UI component (such as a command link).

■ Change the order of the columns using the order buttons. Top moves the
column to the first column at the left of the table. Up moves the column one
column to the left. Down moves the column one to the right. Bottom moves
the column to the very right.

■ Add a column using the New button. Doing so adds a new column at the
bottom of the dialog and populates it by default with values from the next
sequential attribute in the collection. You then need to edit the values. You can
only select an attribute associated with the object to which the table is bound.

■ Delete a column using the Delete button. Doing so deletes the column from
the table.

■ Add a tableSelectOne component to the table’s selection facet by
selecting Enable selection. For more information, see Section 14.6, "Enabling
Row Selection in a Table".

■ Add sorting capabilities by selecting Enable sorting.

14.4.2 How to Change the Binding for a Table
Instead of modifying a binding, you can completely change the object to which the
table is bound.

To rebind a table:
1. Right-click the table in the Structure window and choose Edit Binding to launch

the Table Binding Editor.

2. In the editor, select the new collection to which you want to bind the table. Note
that changing the binding for the table will also change the binding for all the
columns. You can then use the procedures in Section 14.4.1, "How to Modify the
Displayed Attributes" to modify those bindings.

Tip: You can use the following UI components in a table with the
noted caveats:

■ The selectBooleanCheckbox component can be used inside a
table if it is only handling boolean or java.lang.Boolean
types.

■ The selectOneListbox/Choice/Radio components can be
used inside the table if you manually add the list of choices as an
enumeration. If instead you want to use a list binding, then the
selectOne UI component cannot be used inside a table. For
more information on list bindings, see Section 19.7, "Creating
Selection Lists".

Adding Hidden Capabilities to a Table

14-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

14.4.3 What Happens When You Modify Bindings or Displayed Attributes
When you simply modify how an attribute is displayed, by moving the UI component
or changing the UI component, JDeveloper changes the corresponding code on the JSF
page. When you use the binding editors to add or change a binding, JDeveloper adds
the code to the JSF page, and also adds the appropriate elements to the page definition
file.

14.5 Adding Hidden Capabilities to a Table
You can use the detailStamp facet in a table to include data that can be displayed or
hidden. When you add a component to this facet, the table displays an additional
column labeled Details with a toggle. When the user activates the toggle, the
component added to the facet is shown. When the user clicks on the toggle again, the
component is hidden. For more information about facets in general, see
Section 13.3.2.1, "Using Facets". Figure 14–4 shows how the description of a service
request in an outputText component can be hidden or shown in the table (note that
this functionality does not currently exist in the SRDemo application).

Figure 14–4 Table with an Output UI Component in the DetailStamp Facet

If you wish to show details of another object that has a master-detail relationship (for
example, if you wanted to show the details of the person to whom the service request
is assigned), you could use the Master Table-Inline Detail composite
component. For more information about master-detail relationships and the use of the
master-detail composite component, see Section 15.6, "Using an Inline Table to Display
Detail Data in a Master Table".

14.5.1 How to Use the DetailStamp Facet
To use the detailStamp facet, you insert a component that is bound to the data to be
displayed or hidden into the facet. You can also set an attribute on the table that
creates a link that allows a user to show or hide all details at once.

Adding Hidden Capabilities to a Table

Adding Tables 14-13

To use the detailStamp facet:
1. From the Data Control Palette, drag the attribute to be displayed in the facet onto

the detailStamp facet folder. Figure 14–5 shows how the detailStamp facet folder
appears in the Structure window.

Figure 14–5 The detailStamp Facet Folder in the Structure Window

2. From the ensuing context menu, choose the UI component to display the attribute.

3. If you want a link to allow users to hide or show all details at once, select the table
in the Structure window. Then in the Property Inspector, set the
allDetailsEnabled attribute to true.

4. If the attribute to be displayed is specific to a current record, then you need to
replace the JSF code (which simply binds the component to the attribute), so that it
uses the table’s variable to display the data for the current record.

For example, when you drag an attribute, JDeveloper inserts the following code:

<f:facet name="detailStamp">
 <af:outputText value="#{bindings.<attributename>.inputValue}"/>
</f:facet>

You need to change it to the following:

<f:facet name="detailStamp">
 <af:outputText value="#{row.<attributename>}"/>
</f:facet>

14.5.2 What Happens When You Use the DetailStamp Facet
When you drag an attribute in the detailStamp facet folder, JDeveloper adds the
attribute value binding to the page definition file if it did not already exist, and it also
adds the code for facet to the JSF Page.

For example, say on the SRList page you want the user to be able to optionally hide
the service request description. Since the table was created using the
ServiceRequestsByStatus collection, you can drag the ProblemDescription
attribute and drop it inside the detailStamp facet folder in the Structure window.

Enabling Row Selection in a Table

14-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 14–3 shows the code JDeveloper then adds to the JSF page.

Example 14–3 JSF Code for a detailStamp Facet

<f:facet name="detailStamp">
 <af:outputText
value="#{bindings.ServiceRequestsByStatusProblemDescription.inputValue}"/>
</f:facet>

You then need to change the code so that the component uses the table’s variable to
access the correct problem description for each row. Example 14–4 shows how the code
should appear after using the row variable.

Example 14–4 Modified JSF Code for a detailStamp Facet

<f:facet name="detailStamp">
 <af:outputText value="#{row.ServiceRequestsByStatusProblemDescription}"/>
</f:facet>

14.5.3 What Happens at Runtime
When the user hides or shows the details of a row, the table generates a
DisclosureEvent event (or a DisclosureAllEvent event when the
allDetailsEnabled attribute on the table is set to true). The event tells the table to
toggle the details (that is, either expand or collapse).

The DisclosureEvent event has an associated listener. You can bind the
DisclosureListener attribute on the table to a method on a managed bean. This
method will then be invoked in response to the DisclosureEvent event to execute
any needed post-processing.

14.6 Enabling Row Selection in a Table
When the tableSelectOne component or the tableSelectMany component is
added to the table’s selection facet, the table displays a Select column that allows a
user to select one row, or one or more rows, and then take some action on those rows
via command buttons.

The tableSelectOne component allows the user to select just one row. This
component provides a radio button for each row in the Select column, as shown in
Figure 14–6. For example, the table in the SRList page has a tableSelectOne
component that allows a user to select a row, and then click either the View or Edit
command button to view or edit the details for the selected service request.

Figure 14–6 The SRList Table Uses the TableSelectOne Component

Enabling Row Selection in a Table

Adding Tables 14-15

The tableSelectMany component displays a checkbox for each row in the Select
column, allowing the user to select one or more rows. When you use the
tableSelectMany component, text links are also added that allow the user to select
all or none of the rows, as shown in Figure 14–7. For example, the table on the SRMain
page has a tableSelectMany component that allows a user to select multiple
records, and then click the Delete Service History Record command button to delete
the selected records.

Figure 14–7 The Service History Table Uses the TableSelectMany Component

Both table row selection components have a text attribute whose value can be
instructions for the user. The table row selection components also usually have
command button or command links as children, which are used to perform some
action on the selected rows. For example, the table on the SRList page has command
buttons that allows a user to view or edit the selected service request.

You can set the required attribute on both the tableSelectOne and the
tableSelectMany components to true. This value will cause an error to be thrown
if the user does not select a row. However, if you set the required attribute, you must
also set the summary attribute on the table in order for the required input error
message to display correctly. For more information about the required attribute, see
Section 20.3.1.1.1, "Using Validation Attributes".

You can also set the autoSubmit attribute on the tableSelectOne and the
tableSelectMany components. When the autoSubmit attribute is set to true, the
form that holds the table automatically submits when the user makes a selection. For
more information, see Section 11.6, "Best Practices for ADF Faces".

The procedures for using the tableSelectOne and tableSelectMany are quite
different. In ADF applications, operations (such as methods) work on the current data
object, which the iterator keeps track of. The tableSelectOne component is able to
show the current data object as being selected, and is also able to set a newly selected
row to the current object on the iterator. If the same iterator is used on a subsequent
page (for example, if the user selects a row and then clicks the command button to
navigate to a page where the object can be edited), the selected object will be
displayed. This works because the iterator and the component are working with a
single object; the notion of the current row is the same because the different iterator
bindings in different binding containers are bound to the same row set iterator.

However, with the tableSelectMany component, there are multiple selected objects.
The ADF Model layer has no notion of "selected" as opposed to "current." You must
add logic to the model layer that loops through each of the selected objects, making
each in turn current, so that the operation can be executed against that object.

Enabling Row Selection in a Table

14-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

14.6.1 How to Use the TableSelectOne Component in the Selection Facet
When you drop a collection from the Data Control Palette as a table, you have the
choice to include the selection facet. If you select Enable selection, a
tableSelectOne component is inserted into the selection facet, along with a
Submit commandButton component as a child of tableSelectOne.

If you wish to have the Submit button bound to a method, you need to rebind the
commandButton component to the method or operation of your choice. For rebinding
procedures, see Section 21.6, "Adding ADF Bindings to Actions".

You can also manually add a tableSelectOne component to a selection facet.

To manually use the selection facet:
1. In the Structure window, select af:table and choose Edit Columns from the context

menu.

2. In the Edit Table Columns dialog, select Enable selection and click OK.

JDeveloper adds the tableSelectOne component to the selection facet folder
(plus the needed listener and attribute that work with selection on the table
component).

3. In the Structure window, expand the table’s selection facet folder and select
af:tableSelectOne.

4. In the Property Inspector for the new component, enter a value for the text
attribute that will provide instructions for using any command buttons or links
used to process the selection.

5. (Optional): Rebind the Submit command button to a method or operation of your
choice from the Data Control Palette. For rebinding procedures, see Section 21.6,
"Adding ADF Bindings to Actions". For more information about using methods to
create command buttons, see Section 17.3, "Creating Command Components to
Execute Methods".

Note: You cannot insert a tableSelectMany component when you
create a table using the Data Control Palette. You need to manually
add it after creating the table. Note however, that you must create
additional code in order to use multi-select processing in an ADF
application. For more information, see Section 14.6.5, "How to Use the
TableSelectMany Component in the Selection Facet".

Note: Until you add a command component to the facet, the value
for the text attribute will not display.

Enabling Row Selection in a Table

Adding Tables 14-17

14.6.2 What Happens When You Use the TableSelectOne Component
As Example 14–5 shows, when you elect to enable selection as you first create or later
edit a table, the tableSelectOne component is inserted into the selection facet
with Select and as the value for the text attribute. A Submit command button is
also included as a child.

Example 14–5 Selection Facet Code

<f:facet name="selection">
 <af:tableSelectOne text="Select and">
 <af:commandButton text="Submit"/>
</af:tableSelectOne>

As Example 14–6 shows, the table’s selectionState attribute’s value is an EL
expression that evaluates to the selected row on the collection model created from the
iterator. The selectionListener attribute’s value evaluates to the makeCurrent
method on the collection model. This value is what allows the selection facet to set the
selected row as the current object on the iterator.

Example 14–6 Selection Attributes on a Table

<af:table var="row"
rows="#{bindings.ServiceRequests.rangeSize}"
first="#{bindings.ServiceRequests.rangeStart}"
selectionState="#{bindings.ServiceRequests.collectionModel.selectedRow}"
selectionListener="#{bindings.ServiceRequests.collectionModel.makeCurrent}"...>

14.6.3 What Happens at Runtime
Once the user makes a selection and clicks the associated command button, the
tableSelectOne component updates the RowKeySet obtained by calling the
getSelectionState() method on the table. Since the selection state evaluates to
the selected row on the collection model, that row is marked as selected. This selection
is done prior to calling the ActionListener associated with the command button.

For a tableSelectOne component, because the current row is selected before the
ActionListener is invoked, you can bind the ActionListener on the command
button to a method on a managed bean that provides the corresponding processing on
the data in the row. Or you can simply add the logic to the declarative method. For
more information, see Section 17.5, "Overriding Declarative Methods".

The tableSelectOne component triggers a SelectionEvent event when the
selection state of the table is changed. The SelectionEvent reports which rows were
selected and deselected. Because the SelectionListener attribute is bound to the
makeCurrent method on the collection model, this method is invoked when the
event occurs, and sets the iterator to the new current row.

14.6.4 What You May Need to Know About Using Links Instead of the Selection Facet
As described in Section 14.6.1, "How to Use the TableSelectOne Component in the
Selection Facet", a commandButton component is automatically added as a child of
the tableSelectOne component when you drop a collection as a table and select
Enable selection at the same time, or when you use the Edit Table Columns dialog to
enable selection later. The tableSelectOne component is inserted into the
selection facet on the table component.

Enabling Row Selection in a Table

14-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

When the user makes a selection in the table, the tableSelectOne component sets
the selected row as the current object on the iterator. Then the user can perform some
action on the selected row via the command button.

Instead of using the selection facet components to set the current object and
providing a commandButton to navigate to the next page, you can use a
commandLink component that lets the user click a link to both perform an operation
on a selection and navigate to another page. As shown in Figure 14–6, the second
column of links in the table saves the user the step of having to first select a row and
then click a command button to perform an action and navigate. If you add column
links, you must manually set the current object on the iterator binding. For more
information about manually setting the current object, see Section 14.7, "Setting the
Current Object Using a Command Component".

14.6.5 How to Use the TableSelectMany Component in the Selection Facet
You cannot insert a tableSelectMany component when you create a table using the
Data Control Palette. You need to manually add it after creating the table.

Unlike the tableSelectOne component, with the tableSelectMany component,
there are multiple selected objects.

When you add the tableSelectMany component to a table that uses an ADF table
binding, you need to pass the set of selected Keys to a method that processes each one
in turn.

To use the tableSelectMany component in an ADF application:
1. Create the table as shown in Section 14.2.1, "How to Create a Basic Table" but do

not select Enable selection.

2. In the Structure window, expand the Table facets folder, right-click the selection
facet folder, and choose Insert inside selection > TableSelectMany.

3. In the Structure window, select the af:table node and in the Property Inspector,
delete the values for the SelectionState and SelectionListener attributes, if
necessary. Doing so will keep the component from setting one of the selected rows
to the current object, as you need this logic to be handled through the code you
create.

Tip: If the subsequent page does not use the same iterator, you will
most likely have to manually set the parameter that represents the
selected row for the subsequent page. For example, from the SRList
page, when the user selects a service request and then clicks the Edit
command button, the application navigates to the SREdit page, which
displays the correct data for the selected service request. The Edit
command button, which uses the setCurrentRowWithKey action
binding, includes the af:setActionListener tag to set the
appropriate value into processScope before navigation. The SREdit
page has an invokeAction object that invokes the
setCurrentRowWithKey operation; the value bound to the rowKey
NamedData element is passed in as the parameter, which determines
the current row to display. For more information, see Section 17.4,
"Setting Parameter Values Using a Command Component".

Enabling Row Selection in a Table

Adding Tables 14-19

4. From the Data Control Palette, drag the method that will operate on the selected
objects on top of the af:tableSelectMany node. From the ensuing context menu,
choose Create > ADF Command Button. Doing so drops the method as a
commandButton component. You need to set the parameter value for the method,
if the method accepts parameters.

For example, to create the SRMain page where a user can delete multiple service
history records associated with a service request, you would drag the custom
deleteServiceHistoryNotes(Set) operation onto the af:tableSelectMany
node.

5. In the Action Binding Editor, enter the value for the parameter by clicking the
ellipses button (...) in the Value field to open the EL Expression Builder. Select the
node that represents the value for the parameter.

For example, the table on the SRMain page is bound to the historyTable
property on the managed bean named backing_SRMain. To access the set of
selected rows in the table, you would use the following as the value for the
parameter:

#{backing_SRMain.historyTable.selectionState.keySet}

For more information, see Section 17.3.1, "How to Create a Command Component
Bound to a Service Method".

6. Add logic to allow the declarative method to operate against the set of selected
rows. To add the logic, you override the declarative method created when the
command button was dropped. For instructions, see Section 17.5, "Overriding
Declarative Methods". Briefly, you override the declarative method by binding the
command button’s action attribute to a backing bean method that has the added
logic. Example 14–11 shows the backing bean method onDeleteHistoryRows()
created for the SRMain page.

14.6.6 What Happens When You Use the TableSelectMany Component
When you insert the tableSelectMany component into a table, and then add a
command button bound to a service method, JDeveloper does the following:

■ Adds the tableSelectMany and commandButton components to the
selection facet on the table component

■ Creates a method binding for the bound method in the page definition file,
including a NamedData element to hold the value of the parameter needed for the
method (if any), determined when you dropped the method as a button

Example 14–7 shows the code for the table, tableSelectMany, and
commandButton components.

Enabling Row Selection in a Table

14-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 14–7 JSF Code for a Table That Uses the TableSelectMany Component

<af:table value="#{bindings.ServiceHistories.collectionModel}" var="row"
 rows="#{bindings.ServiceHistories.rangeSize}"
 first="#{bindings.ServiceHistories.rangeStart}"...
 binding="#{backing_SRMain.historyTable}">
 <af:column headerText="#{bindings.ServiceHistories.labels.SvhDate}"
 sortable="false">
 <af:outputText value="#{row.SvhDate}">
 <f:convertDateTime pattern="#{bindings.ServiceHistories.formats.SvhDate}"/>
 </af:outputText>
 </af:column>
 <af:column headerText="#{bindings.ServiceHistories.labels.SvhType}"
 sortable="false">
 <af:outputText value="#{row.SvhType}"/>
 </af:column>
 <af:column headerText="#{bindings.ServiceHistories.labels.Notes}"
 sortable="false">
 <af:outputText value="#{row.Notes}"/>
 </af:column>
 <f:facet name="selection">
 <af:tableSelectMany text="Select items and ...">
 <af:commandButton text="..."

actionListener="#{bindings.deleteServiceHistoryNotes.execute}"
 .../>
 </af:tableSelectMany>
 </f:facet>
</af:table>

When you create a command button using a custom service method, JDeveloper binds
the button to the method using the actionListener attribute. The button is bound
to the execute property of the action binding for the given method. Example 14–8
shows the page definition code that contains the method action binding for the bound
method on the command button.

Example 14–8 DeleteServiceHistoryNotes Method Action Binding

<methodAction id="deleteServiceHistoryNotes"
 InstanceName="SRService.dataProvider" DataControl="SRService"
 MethodName="deleteServiceHistoryNotes"
 RequiresUpdateModel="true" Action="999">
 <NamedData NDName="keySet"
 NDValue="${backing_SRMain.historyTable.selectionState.keySet}"
 NDType="java.util.Set"/>
</methodAction>

The method action binding causes the associated method to be invoked on the
business service, passing in the value bound to the NamedData element as the
parameter.

Instead of binding the command button to the execute method on the action
binding, you can bind the button to a method in a backing bean that overrides the
declarative method. Doing so allows you to add logic before or after the original
method runs. When you override a declarative method, JDeveloper automatically
rebinds the command component to the new method using the action attribute
(instead of the actionListener attribute), as shown in Example 14–9.

Enabling Row Selection in a Table

Adding Tables 14-21

Example 14–9 Command Button Code After You Override the Declarative Method

<af:commandButton text="..."
 action="#{backing_SRMain.onDeleteHistoryRows}"/>

Example 14–10 shows the binding container code that JDeveloper inserts into the
backing bean when you override the declarative method. The code accesses the
binding container and finds the binding for the associated method.

Example 14–10 Binding Container Code Added by JDeveloper in the Backing Bean

private BindingContainer bindings;

public BindingContainer getBindings() {
 return this.bindings;
}

public void setBindings(BindingContainer bindings) {
 this.bindings = bindings;
}

public String onDeleteHistoryRows() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("deleteServiceHistoryNotes");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty()) {
 return null;
 }
 return null;
}

By adding logic before or after the execute() call on the method binding, you can
perform needed logic before or after the declarative method.

14.6.7 What Happens at Runtime
Like the tableSelectOne component, when the user makes multiple selections with
the tableSelectMany component and then clicks the associated command button,
the tableSelectMany component updates the selection state of the table by placing
all the rows selected by the user in a RowKeySet.

Example 14–11 shows the SRMain page backing bean method that overrides the
declarative method created when the deleteServiceHistoryNotes(Set)
operation is dropped as a command button.

Example 14–11 Backing Bean Method for Deleting Service History Records

public String onDeleteHistoryRows() {
 BindingContainer bindings = getBindings();
 Set keySet = getHistoryTable().getSelectionState().getKeySet();
 if (!keySet.isEmpty()) {
 getBindings().getOperationBinding("deleteServiceHistoryNotes").execute();
 keySet.clear();
 }
 return null;
}

Setting the Current Object Using a Command Component

14-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 14–12 shows the code in the backing bean that you need to add for working
with the service history table.

Example 14–12 Backing Bean Code for Working with the Service History Table

private CoreTable historyTable;

public void setHistoryTable(CoreTable historyTable) {
 this.historyTable = historyTable;
}

public CoreTable getHistoryTable() {
 return historyTable;
}

When the user selects multiple rows in the service history table, and then clicks the
Delete Service History Record button, the tableSelectMany component updates
the selection state of the table by placing all the selected rows in a RowKeySet. The
backing bean method onDeleteHistoryRows() accesses the binding container, and
retrieves the selected keys by calling getSelectionState.getKeySet() on the
history table. The backing bean method then executes the
deleteServiceHistoryNotes method action binding (which is bound to the
deleteServiceHistoryNotes() method in the application module’s client
interface) by calling the execute() method on the binding. The service method loops
through the keySet, deleting the row found by each key. Finally, the backing bean
method calls the clear() method on the keySet to remove the keys, after the service
method has deleted all the selected rows.

14.7 Setting the Current Object Using a Command Component
There may be cases where you need to programmatically set the current row for an
object on an iterator. For example, the SRList page in the SRDemo application uses
command links in the second column, as shown in Figure 14–8, which the user can
click to directly edit a service request, without needing to first select the row.

Figure 14–8 Command Links Used in a Table on the SRList Page

While using command links saves a step for the user, command links do not offer the
same functionality as the selection facet, in that they can neither determine nor set
the current row on the iterator. Therefore, you must manually set the current row.

Setting the Current Object Using a Command Component

Adding Tables 14-23

14.7.1 How to Manually Set the Current Row
You use the setCurrentRowWithKey or setCurrentRowWithKeyValue built-in
operations to set the current row. These operations are built-in methods on any
iterator for a collection. The setCurrentRowWithKey operation allows you to set the
current row given "stringified" key. The setCurrentRowWithKeyValue operation
allows you to set the current row given the a primary key’s value. For more
information about the current row operations, see Section 10.5.6, "Understanding the
Difference Between setCurrentRowWithKey and setCurrentRowWithKeyValue".

While you can drop these operations as any type of command component, the
commandLink component is most usually used in this situation. The following
procedure explains how to use this component with the setCurrentRowWithKey
and setCurrentRowWithKeyValue operations.

To set the current row:
1. From the Data Control Palette, drag the setCurrentRowWithKey or

setCurrentRowWithKeyValue operation.

2. From the context menu, choose Operations > ADF Command Link.

JDeveloper creates the command link component on the page, and adds the action
binding to the page definition file. You need to change the value for the rowKey
parameter in the Action Binding Editor.

3. Select the command link component in the Structure window, and choose Edit
Binding from the context menu.

4. In the Action Binding Editor, by default, the value for the rowKey parameter is set
to ${bindings.setCurrentRowWithKey_rowKey}. The actual value should
be something that can be used to determine the current row.

For example, the command link in Figure 14–8 needs to set the current row to the
same row as the link being clicked. To access the "stringified" key of the row for
the setCurrentRowWithKey operation, you can use the rowKeyStr property
on the binding, or #{row.rowKeyStr}.

Alternatively, if you use the setCurrentRowWithKeyValue operation, you
might set the rowKey to the value of the current row, or #{row.svrId}

For more information about the variable used to set the current row on a table (in
this case, row), see Section 14.2.2.2, "Code on the JSF Page for an ADF Faces Table".

14.7.2 What Happens When You Set the Current Row
When you use the setCurrentRowWithKey operation as a command component,
JDeveloper creates an action binding for that operation. Because this operation takes a
parameter (rowKey) to determine the current row, it has a NamedData element used
to set that value (for more information about parameters and the NamedData element,
see Section 17.3, "Creating Command Components to Execute Methods").

Example 14–13 shows the code created in the page definition file when you drop the
setCurrentRowWithKey operation and set #{row.rowKeyStr} as the value for
the rowKey parameter.

Setting the Current Object Using a Command Component

14-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 14–13 Page Definition Code for the SetCurrentRowWithKey Operation

<action id="setCurrentRowWithKey" IterBinding="ServiceRequestsByStatusIterator"
 InstanceName="SRService.ServiceRequestsByStatus"
 DataControl="SRService" RequiresUpdateModel="false"
 Action="96">
 <NamedData NDName="rowKey" NDValue="${row.rowKeyStr}"
 NDType="java.lang.String"/>
</action>

14.7.3 What Happens At Runtime
When a user clicks the command link, the setCurrentRowWithKey operation is
executed on the iterator, using the rowKey parameter to determine the current row.
As with the tableSelectOne component, if you use the same iterator to display the
current record, the correct data will display.

Tip: For functionality similar to that in the SRDemo application, you
may need your command link to pass a parameter value that
represents the current row. This value might be used by the method
used to create the ensuing form. For more information and
procedures, see Section 17.4, "Setting Parameter Values Using a
Command Component".

Displaying Master-Detail Data 15-1

15
Displaying Master-Detail Data

This chapter describes how to create various types of pages that display master-detail
related data.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Displaying Master-Detail Data"

■ Section 15.2, "Identifying Master-Detail Objects on the Data Control Palette"

■ Section 15.3, "Using Tables and Forms to Display Master-Detail Objects"

■ Section 15.4, "Using Trees to Display Master-Detail Objects"

■ Section 15.5, "Using Tree Tables to Display Master-Detail Objects"

■ Section 15.6, "Using an Inline Table to Display Detail Data in a Master Table"

For information about using a selection list to populate a collection with a key value
from a related master or detail collection, see Section 19.7, "Creating Selection Lists".

15.1 Introduction to Displaying Master-Detail Data
In ADF Business Components, a master-detail relationship refers to two view object
instances that are related by a view link. As you may recall from Chapter 5, "Querying
Data Using View Objects", a view link represents the relationship between two view
objects, which is usually, but not necessarily, based on a foreign-key relationship
between the underlying data tables. ADF uses the view link to associate a row of one
view object instance (the master object) with one or more rows of another view object
instance (the detail object).

View links support two different types of master-detail coordination: view link
accessor attributes and data model view link instances (for more information, see
Section 27.1.3, "Understanding View Link Accessors Versus Data Model View Link
Instances"). However, when displaying master-detail data on a page using ADF data
binding, you exclusively use data model view link instances, which support active
data model master-detail coordination. To enable active data model master-detail
coordination, you must add both the master view object and the detail view object
instances to the application module data model (for more information, see
Section 5.10.4.3, "How to Enable Active Master/Detail Coordination in the Data
Model".) For example, in the SRDemo application, there is a view link from the
ServiceRequests view object to the ServiceHistories view object based on the
Svr_Id attribute (service request ID). Both the master and detail view objects have
been added to the application module data model. So, a change in the current row of
the master view object instance causes the rowset of the detail view object instance to
refresh to include the details for the current master.

Identifying Master-Detail Objects on the Data Control Palette

15-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

When objects have a master-detail relationship, you can declaratively create pages that
display the data from both objects simultaneously. For example, the SRDemo
application has a page that displays a service request in a form at the top of the page
and its related service history in a table at the bottom of the page. This is possible
because the service request and service history objects have a master-detail
relationship. In this example, the service request is the master object and the service
history is the detail object. The ADF iterators automatically manage the
synchronization of the detail data objects displayed for a selected master data object.

Read this chapter to understand:

■ Master-detail relationships in ADF

■ How to identify master-detail objects on the Data Control Palette

■ How to display master-detail objects in tables, forms, trees, tree tables, and inline
tables

■ How to display master-detail objects on different pages that are connected by a
navigation component

■ How ADF iterators manage the concurrency of master and detail objects

■ The binding objects created when you use the Data Control Palette to create a
master-detail UI component

15.2 Identifying Master-Detail Objects on the Data Control Palette
JDeveloper enables you to declaratively create pages that display master-detail data
using the Data Control Palette. The Data Control Palette displays master-detail related
objects in a hierarchy that mirrors the one you defined in the application module data
model, where the detail objects are children of the master objects. For information
about adding master-detail objects to the data model, see Section 5.10.4.3, "How to
Enable Active Master/Detail Coordination in the Data Model".

Figure 15–1 shows two master-detail related collections in the Data Control Palette of
the SRDemo application. The ServiceRequests collection is an instance of the
ServiceRequests view object, and the ServiceHistories collection, which
appears as a child of the ServiceRequests collection, is an instance of the
ServiceHistories view object. The master-detail hierarchy on the Data Control
Palette reflects the hierarchy defined in the SRService application module data
model, as shown in Figure 15–2. The hierarchy was established by creating a view link
from the ServiceRequests view object to the ServiceHistories view object.
Next, an instance of the resulting detail view object, ServiceHistories via
ServicesHistoriesForServiceRequest1, has been added to the application
module data model, and named ServiceHistories, as shown in Figure 15–2.

Tip: The master-detail hierarchy displayed in the Data Control
Palette does not reflect the cardinality of the relationship (for example,
one-to-many, one-to-one, many-to-many). The hierarchy simply shows
which collection (the master) is being use to retrieve one or more
objects from another collection (the detail).

Identifying Master-Detail Objects on the Data Control Palette

Displaying Master-Detail Data 15-3

Figure 15–1 Master-Detail Objects on the Data Control Palette

Figure 15–2 Master-Detail Hierarchy Defined in the Application Module Data Model

In the SRDemo application, the view link between the ServiceRequests view object
and ServiceHistories view object is a one-way relationship. If the view link was
bi-directional and both sets of master and detail view objects were added to the
application module data model, then the Data Control Palette would also display the
ServiceHistories collection at the same node level as the ServiceRequests
collection, and the detail instance of the ServiceRequests collection as child of the
ServiceHistories collection.

When creating a page that displays master-detail objects, be sure to correctly identify
which object is the master and which is the detail for your particular purposes.
Otherwise, you may not display the desired data on the page.

Using Tables and Forms to Display Master-Detail Objects

15-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, if you want to display a user and all the related expertise areas to which
the user is assigned, then User would be the master object. However, if you wanted to
display an expertise area and all the users is assigned to it, then expertiseArea
would be the master object. The detail objects displayed on a page depend on which
object is the master.

For more information about the icons displayed on the Data Control Palette, see
Section 12.2.1, "How to Understand the Items on the Data Control Palette".

15.3 Using Tables and Forms to Display Master-Detail Objects
JDeveloper enables you to create a master-detail browse page in a single declarative
action using the Data Control Palette—you do not need to write any extra code, even
the navigation is included. The Data Control Palette provides pre-built master-detail
widgets that display both the master and detail objects on the same page as any
combination of read-only tables and forms. All you have to do is drop the detail
collection on the page and choose the type of widget you want to use.

The pre-built master-detail widgets available from the Data Control Palette include
range navigation that enables the user to scroll through the data objects in collections.
The the table provided by the pre-built master-detail widgets includes a selection facet
and Submit command button. By default, all attributes of the master and detail objects
are included in the master-detail widgets as text fields (in forms) or columns (in
tables). You can delete unwanted attributes by removing the text field or column from
the page.

When you add master-detail components to a page, the iterator bindings are
responsible for exposing data to the components on the page. The iterator bindings
bind to the underlying rowset iterators. At runtime, the active data model and the
rowset iterator for the detail view object instance keep the rowset of the detail view
object refreshed to the correct set of rows for the current master row as that current
row changes.

Figure 15–3 shows an example of a pre-built master-detail widget, which display a
service request in a form at the top of the page and all the related service history in a
table at the bottom of the page. When the user scrolls through the master data, the
page automatically displays the related detail data.

Tip: By default, when you define a view link using the Create View
Link wizard, the source view object is the master and the destination
view object is the detail. However, if you choose to generate accessors
in both the source and the destination view objects, then the
master-detail relationship is bi-directional. If both sets of master-detail
view objects resulting from a bi-directional view link are added to the
application module data model, then instances of both sets of view
objects will appear independently on the Data Control Palette.

Tip: If you do not want to use the pre-built master-detail widgets,
you can drag and drop the master and detail objects individually as
tables and forms on a single page or on separate pages. For more
information about creating individual forms and tables, see
Chapter 13, "Creating a Basic Page" or Chapter 14, "Adding Tables".

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 15-5

Figure 15–3 Pre-Built Data Control Palette Master-Detail Widget

15.3.1 How to Display Master-Detail Objects in Tables and Forms
The Data Control Palette enables you to create both the master and detail widgets on
one page with a single declarative action using pre-built master-detail forms and
tables. For information about displaying master and detail data on separate pages, see
Section 15.3.4, "What You May Need to Know About Master-Detail on Separate Pages".

To create a master-detail page using the pre-built ADF master-detail forms and
tables:
1. From the Data Control Palette, locate the detail object, as was previously described

in Section 15.2, "Identifying Master-Detail Objects on the Data Control Palette".

2. Drag and drop the detail object onto the JSF page.

3. In the context menu, choose one of the following Master-Details widgets:

■ ADF Master Table, Detail Form: Displays the master objects in a table and the
detail objects in a read-only form under the table.

When a specific data object is selected in the master table, the first related
detail data object is displayed in the form below it. The user must use the form
navigation to scroll through each subsequent detail data objects.

■ ADF Master Form, Detail Table: Displays the master objects in a read-only
form and the detail objects in a read-only table under the form.

When a specific master data object is displayed in the form, the related detail
data objects are displayed in a table below it.

■ ADF Master Form, Detail Form: Displays the master and detail objects in
separate forms.

When a specific master data object is displayed in the top form, the first
related detail data object is displayed in the form below it. The user must use
the form navigation to scroll through each subsequent detail data object.

Using Tables and Forms to Display Master-Detail Objects

15-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ ADF Master Table, Detail Table: Displays the master and detail objects in
separate tables.

When a specific master data object is selected in the top table, the first set of
related detail data objects are displayed in the table below it.

If you want to modify the default forms or tables, see Chapter 13, "Creating a Basic
Page" or Chapter 14, "Adding Tables".

15.3.2 What Happens When You Create Master-Detail Tables and Forms
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you, including adding code to the JSF page and corresponding entries in the page
definition file. For a full description of what happens and what is created when you
use the Data Control Palette, see Section 12.2.3, "What Happens When You Use the
Data Control Palette".

15.3.2.1 Code Generated in the JSF Page
The JSF code generated for a pre-built master-detail widget is basically the same as the
JSF code generated when you use the Data Control Palette to create a basic read-only
table or form. For more information, see Chapter 13, "Creating a Basic Page" and
Chapter 14, "Adding Tables". If you are building your own master-detail widgets, you
might want to consider including similar components that are automatically included
in the pre-built master-detail tables and forms.

The tables and forms in the pre-built master-detail widgets include a panelHeader
tag that contains the fully qualified name of the data object populating the form or
table. You can change this label as needed using a string or an EL expression that
binds to a resource bundle.

If there is more than one data object in a collection, a form in a pre-built master-detail
widget includes four commandButton tags for range navigation: First, Previous,
Next, and Last. These range navigation buttons enable the user to scroll through the
data objects in the collection. The actionListener of each button is bound to a data
control operation, which performs the navigation. The execute property used in the
actionListener binding, invokes the operation when the button is clicked. (If the
form displays a single data object, JDeveloper would automatically omit the range
navigation components.) For more information about range navigation, see
Section 13.4, "Incorporating Range Navigation into Forms".

By default, tables in a pre-built master-detail widget include a tableSelectOne
selection facet and a Submit button that enables the user to select a specific object in
the collection. The default button is not automatically bound to a method or operation.
So to get the selection facet to work, you would need to add an action binding to the
button. For example, you could bind the button to a method that enables the user to
edit the selected data object, as was done in the SRMain page of the SRDemo
application. For more information about selection facets, see Section 17.3, "Creating
Command Components to Execute Methods".

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 15-7

15.3.2.2 Binding Objects Defined in the Page Definition File
Example 15–1 shows the page definition file created for a master-detail page that was
created by dropping the ServiceHistories collection, which is a detail object under
the ServiceRequests object, on the page as an ADF Master Form, Detail Table.

The executables element defines two iterators: one for the service requests (which
is the master object) and one for the service history (which is the detail object). The
underlying view link from the master view object to the detail view object establishes
the relationship between the two iterators. At runtime, the active data model and the
rowset iterator for the detail view object instance keep the rowset of the detail view
object refreshed to the correct set of rows for the current master row as that current
row changes.(for more information, see Section 15.3.3, "What Happens at Runtime").

The bindings element defines the value bindings for the form and the table. The
attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element
contains the name of each data attribute, and the IterBinding attribute references
an iterator binding to display data from the master object in the text fields.

The attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element
contains the name of each data attribute, and the IterBinding attribute references
an iterator binding to display data from the master object in the text fields.

The range navigation buttons in the form are bound to the action bindings defined in
the action elements. As in the attribute bindings, the IterBinding attribute of the
action binding references the iterator binding for the master object.

The table, which displays the detail data, is bound to the table binding object defined
in the table element. The IterBinding attribute references the iterator binding for
the detail object.

For more information about the elements and attributes of the page definition file, see
Section A.6, "<pageName>PageDef.xml".

Tip: If you drop an ADF Master Table, Detail Form or ADF Master
Table, Detail Table widget on the page, the parent tag of the detail
component (for example, panelForm tag or table tag) automatically
has the partialTriggers attribute set to the id of the master
component. At runtime, the partialTriggers attribute causes only
the detail component to be re-rendered when the user makes a
selection in the master component, which is called partial rendering.
When the master component is a table, ADF uses partial rendering,
because the table does not need to be re-rendered when the user
simply makes a selection in the facet: only the detail component needs
to be re-rendered to display the new data. For more information about
partial rendering, see Section 19.4, "Enabling Partial Page Rendering".

Using Tables and Forms to Display Master-Detail Objects

15-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 15–1 Binding Objects Defined in the Page Definition for a Master-Detail Page

<executables>
 <iterator id="ServiceRequestsIterator" RangeSize="10"
 Binds="ServiceRequests" DataControl="SRService"/>
 <iterator id="ServiceHistoriesIterator" RangeSize="10"
 Binds="ServiceHistories" DataControl="SRService"/>
 </executables>
 <bindings>
 <attributeValues id="SvrId" IterBinding="ServiceRequestsIterator">
 <AttrNames>
 <Item Value="SvrId"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="Status" IterBinding="ServiceRequestsIterator">
 <AttrNames>
 <Item Value="Status"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="RequestDate" IterBinding="ServiceRequestsIterator">
 <AttrNames>
 <Item Value="RequestDate"/>
 </AttrNames>
 </attributeValues>
 ...
 <action id="First" RequiresUpdateModel="true" Action="12"
 IterBinding="ServiceRequestsIterator"/>
 <action id="Previous" RequiresUpdateModel="true" Action="11"
 IterBinding="ServiceRequestsIterator"/>
 <action id="Next" RequiresUpdateModel="true" Action="10"
 IterBinding="ServiceRequestsIterator"/>
 <action id="Last" RequiresUpdateModel="true" Action="13"
 IterBinding="ServiceRequestsIterator"/>
 <table id="ServiceRequestsServiceHistories"
 IterBinding="ServiceHistoriesIterator">
 <AttrNames>
 <Item Value="SvrId"/>
 <Item Value="LineNo"/>
 ...
 </AttrNames>
 </table>
 </bindings>

15.3.3 What Happens at Runtime
As was previously mentioned in Section 12.5.2.2, "Binding Objects Defined in the
executables Element", ADF iterators are associated with underlying
RowSetIterator objects, which manage which data objects, or rows, are currently
displayed on a page. At runtime, the rowset iterators manage the data displayed in the
master and detail components.

Both the master and detail rowset iterators listen to rowset navigation events, such as
the user selecting a specific row or clicking the range navigation buttons, and display
the appropriate rows in the UI. In the case of the default master-detail components, the
rowset navigation events are the command buttons on a form (First, Previous, Next,
Last) or the selection facet and Submit button on a table.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 15-9

The rowset iterator for the detail collection manages the synchronization of the detail
data with the master data. Because of the underlying view link from the master view
object to the detail view object, the detail rowset iterator listens for row navigation
events in both the master and detail collections. If a rowset navigation event occurs in
the master collection, the detail rowset iterator automatically executes and returns the
detail rows related to the current master row.

15.3.4 What You May Need to Know About Master-Detail on Separate Pages
The default master-detail components display the master-detail data on a single page.
However, using the master and detail objects on the Data Control Palette, you can also
display the collections on separate pages, and still have the binding iterators manage
the synchronization of the master and detail objects.

For example, in the SRDemo application the service requests and service history are
displayed on the SRMain page. However, the page could display the service request
only, and instead of showing the service history, it could provide a button called
Details. If the user clicks the Details button, the application would navigate to a new
page that displays all the related service history in a table. A button on the service
history page would enable the user to return to the service request page.

To display master-detail objects on separate pages, create two pages, one for the
master object and one for the detail object, using the individual tables or forms
available from the Data Control Palette. (For information about using the forms or
tables, see Chapter 13, "Creating a Basic Page" or Chapter 14, "Adding Tables".)
Remember that the detail object iterator manages the synchronization of the master
and detail data. So, be sure to drag the appropriate detail object from the Data Control
Palette when you create the page to display the detail data (see Section 15.2,
"Identifying Master-Detail Objects on the Data Control Palette").

To handle the page navigation, add command buttons or links to each page, or use the
default Submit button available when you create a form or table using the Data
Control Palette. Each button must specify a navigation rule outcome value in the
action attribute. In the faces-config.xml file, add a navigation rule from the
master data page to the detail data page, and another rule to return from the detail
data page to the master data page. The from-outcome value in the navigation rules
must match the outcome value specified in the action attribute of the buttons. For
information about adding navigation between pages, see Chapter 16, "Adding Page
Navigation".

15.4 Using Trees to Display Master-Detail Objects
In addition to tables and forms, you can also display master-detail data in hierarchical
trees. The ADF Faces tree component, available from the Data Control Palette, can
display multiple root nodes that are populated by a binding on a master object. Each
root node in the tree may have any number of branches, which are populated by
bindings on detail objects. A tree can have multiple levels of nodes, each representing
a detail object of the parent node. Each node in the tree is indented to show its level in
the hierarchy.

The tree component includes mechanisms for expanding and collapsing the tree
nodes; however, it does not have focusing capability. If you need to use focusing,
consider using the ADF Faces TreeTable component (for more information, see
Section 15.5, "Using Tree Tables to Display Master-Detail Objects"). By default, the icon
for each node in the tree is a folder; however, you can use your own icons for each
level of nodes in the hierarchy.

Using Trees to Display Master-Detail Objects

15-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 15–4 shows an example of a tree from the SRManage page of the SRDemo
application. The tree displays two levels of nodes: staff members and service requests
assigned to them. The root nodes display staff members. The branch nodes display
open or pending service requests assigned to each staff member.

Figure 15–4 Databound ADF Faces Tree

15.4.1 How to Display Master-Detail Objects in Trees
A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher
level node. Each node level in a databound ADF Faces tree is populated by a
different data collection. In JDeveloper, you define a databound tree using the Tree
Binding Editor, which enables you to define the rules for populating each node level in
the tree. There must be one rule for each node level in the hierarchy. Each rule defines
the following node level properties:

■ The data collection that populates that node level

■ The attributes from the data collection that are displayed at that node level

■ A view link accessor attribute that returns a detail object to be displayed as a
branch of the current node level (for information about view link accessors, see
Chapter 5.10.2, "How to Create Master/Detail Hierarchies Using View Links")

To create the tree on the SRMange page, a view object, StaffWithOpenRequests,
was created to return just the users that have open or pending service requests.
Another view object, OpenOrPendingServiceRequests, was created to return all
the open or pending service requests. A view link was created from the
StaffWithOpenRequests view object to the OpenOrPendingServiceRequests
view object, thus establishing the master-detail relationship. To add a third-level node,
for example, service history, a view link would need to exist from the service request
view object to the service history view object. For more information about creating
view links, see Section 5.10, "Working with Master/Detail Data".

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 15-11

To display master-detail objects in a tree:
1. Drag the master object from the Data Control Palette, and drop it onto the page.

This should be the master data that will represent the root level of the tree.

2. In the context menu, choose Trees > ADF Tree.

JDeveloper displays the Tree Binding Editor, as shown in Figure 15–5.

Figure 15–5 Tree Binding Editor, Edit Rule Tab

3. In the Edit Rule page of the Tree Binding Editor, define a rule for each node level
that you want to appear in the tree. To define a rule you must select the following
items:

■ Data Collection Definition: Select the data collection that will populate the
node level you are defining.

The first rule defines the root node level. So, for the first rule, select the same
collection that you dragged from the Data Control Palette to create the tree,
which was a master collection.

To create a branch node, select the appropriate detail collection. For example,
to create a root node of users, you would select the User collection for the first
(root node) rule; to create a branch that displays services requests, you would
select the ServiceRequest collection in the branch rule.

■ Display Attribute: Select one or more attributes to display at each node level.
For example, for a node of users, you might select both the FirstName and
LastName attributes.

Using Trees to Display Master-Detail Objects

15-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Branch Rule Accessor: Select the view link accessor attribute that returns the
detail collection that you want to appear as a branch under the node level you
are defining. The list displays only the accessor attributes that return the detail
collections for the master collection you selected for the rule. If you select
<none>, the node will not expand to display any detail collections, thus
ending the branch. For example, if you are defining the User node level and
you want to add a branch to the service requests for each user, you would
select the accessor attribute that returns the service request collection. Then,
you must define a new rule for the ServiceRequest node level.

View link accessor attributes, which return data collections, are generated
when you create a view link. The Branch Rule Accessor field displays all
accessor attributes that return detail collections for the master collection
selected in the Data Collection Definition field. For more information about
view objects, view links, and view link accessors, see Chapter 5, "Querying
Data Using View Objects".

■ Polymorphic Restriction: Optionally, you can define a node-populating rule
for an attribute whose value you want to make a discriminator. The rule will
be polymorphic because you can define as many node-populating rules as
desired for the same attribute, as long as each rule specifies a unique
discriminator value. The tree will display a separate branch for each
polymorphic rule, with the node equal to the discriminator value of the
attribute.

4. Use the Show Rules page of the Tree Binding Editor, shown in Figure 15–6, to:

■ Change the order of the rules

The order of the rules should reflect the hierarchy that you want the tree to
display.

■ Delete rules

The first rule listed in the Show Rules page of the Tree Binding Editor, populates
the root node level of the tree. So, be sure that the first rule populates the logical
root node for the tree, depending on the structure of your data model.

For example, in the sample tree previously shown in Figure 15–4, the first rule
would be the one that populates the user nodes. The order of the remaining rules
should follow the hierarchy of the nodes you want to display in the tree.

Tip: Be sure to click Add New Rule after you define each rule. If you
click OK instead, the last rule you defined will not be saved. When
you click Add New Rule, JDeveloper displays the Show Rules tab of
the Tree Binding Editor, where you can verify the rules you have
created.

Note: You cannot change the icon displayed in an ADF Faces or JSF
tree component.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 15-13

Figure 15–6 Tree Binding Editor, Show Rule Tab

15.4.2 What Happens When You Create ADF Databound Trees
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 12.2.3, "What Happens When You Use the Data
Control Palette".

When you create a databound tree using the Data Control Palette, JDeveloper adds
binding objects to the page definition file, and it also adds the tree tag to the JSF Page.
The resulting UI component is fully functional and does not require any further
modification.

15.4.2.1 Code Generated in the JSF Page
Example 15–2 shows the code generated in a JSF page when you use the Data Control
Palette to create a tree. This sample tree displays two levels of nodes: users and service
requests. The LoggedInUser collection was used to populate the root node, which
displays the users.

Example 15–2 Code Generated in the JSF Page for a Databound Tree

<h:form>
 <af:tree value="#{bindings.StaffWithOpenRequests.treeModel}" var="node">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node}"/>
 </f:facet>
 </af:tree>
</h:form>

By default, the af:tree tag is created inside a form. The value attribute of the tree
tag contains an EL expression that binds the tree component to the LoggedInUser
tree binding object in the page definition file. The treeModel property in the binding
expression refers to an ADF class that defines how the tree hierarchy is displayed,
based on the underlying data model. The var attribute provides access to the current
node.

In the f:facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component.

The ADF Faces tree component uses an instance of the
oracle.adf.view.faces.model.PathSet class to display expanded nodes. This
instance is stored as the treeState attribute on the component. You may use this
instance to programmatically control the expanded or collapsed state of an element in

Using Trees to Display Master-Detail Objects

15-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

the hierarchy. Any element contained by the PathSet instance is deemed expanded.
All other elements are collapsed.

15.4.2.2 Binding Objects Defined in the Page Definition File
Example 15–3 shows the binding objects defined in the page definition file for the ADF
databound tree.

Example 15–3 Binding Objects Defined in the Page Definition File for a Databound Tree

<executables>
 <iterator id="StaffWithOpenRequestsIterator" RangeSize="10"
 Binds="StaffWithOpenRequests" DataControl="SRService"/>
</executables>
<bindings>
 <tree id="StaffWithOpenRequests"
 IterBinding="StaffWithOpenRequestsIterator">
 <AttrNames>
 <Item Value="UserId"/>
 <Item Value="FirstName"/>
 <Item Value="LastName"/>
 </AttrNames>
 <nodeDefinition DefName="oracle.srdemo.model.queries.StaffWithOpenRequests"
 id="StaffWithOpenRequestsNode">
 <AttrNames>
 <Item Value="FirstName"/>
 <Item Value="LastName"/>
 </AttrNames>
 <Accessors>
 <Item Value="OpenOrPendingServiceRequests"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition id="OpenOrPendingServiceRequestsNode"
 DefName="oracle.srdemo.model.queries.OpenOrPendingServiceRequests">
 <AttrNames>
 <Item Value="Status"/>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

The page definition file contains the rule information defined in the Tree Binding
Editor. In the executables element, notice that although the tree displays two levels
of nodes, only one iterator binding object is needed. This iterator iterates over the
master collection, which populates the root nodes of the tree. The accessor you
specified in the node rules return the detail data for each branch node.

The tree element is the value binding for all the attributes displayed in the tree. The
iterBinding attribute of the tree element references the iterator binding that
populates the data in the tree. The AttrNames element within the tree element
defines binding objects for all the attributes in the master collection. However, the
attributes that you select to appear in the tree are defined in the AttrNames elements
within the nodeDefinition elements.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 15-15

The nodeDefinition elements define the rules for populating the nodes of the tree.
There is one nodeDefinition element for each node, and each one contains the
following attributes and subelements:

■ DefName: An attribute that contains the fully qualified name of the data collection
that will be used to populate the node.

■ id: An attribute that defines the name of the node.

■ AttrNames: A subelement that defines the attributes that will be displayed in the
node at runtime.

■ Accessors: A subelement that defines the accessor attribute that returns the next
branch of the tree.

The order of the nodeDefintion elements within the page definition file defines the
order or level of the nodes in the tree, were the first nodeDefinition element
defines the root node. Each subsequent nodeDefinition element defines a sub-node
of the one before it.

For more information about the elements and attributes of the page definition file, see
Section A.6, "<pageName>PageDef.xml".

15.4.3 What Happens at Runtime
Tree components use oracle.adf.view.faces.model.TreeModel to access data.
This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree is displayed, the iterator binding on the tree populates the
root nodes. When a user collapses or expands a node to display or hide its branches, a
DisclosureEvent event is sent. The isExpanded method on this event determines
whether the user is expanding or collapsing the node. The DisclosureEvent event
has an associated listener.

The DisclosureListener attribute on the tree is bound to the accessor attribute
specified in the node rule defined in the page definition file. This accessor attribute is
invoked in response to the DisclosureEvent event; in other words, whenever a
user expands the node the accessor attribute populates the branch nodes.

15.4.4 What You May Need to Know About Adding Command Links to Tree Nodes
The tree component on the SRManage page of the SRDemo application, which
displays staff members in the root nodes and service requests in the branch nodes, was
created using the default tree component available from the Data Control Palette.
However, each node of the tree contains a command link that dynamically displays
additional detail data related to that node in a separate UI component. For example, if
the user clicks a staff member, the related expertise areas (detail objects) are displayed
in a table to the right of the tree, as shown in Figure 15–7.

Using Trees to Display Master-Detail Objects

15-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 15–7 SRManage Page Displaying a Tree and Dynamic Detail Table

To achieve this functionality, an ADF Faces switcher component was manually
added to the tree tag’s nodestamp facet to dynamically display the data from detail
objects when the user clicks a command link.

In the switcher component, which is shown in Example 15–4, the facetName
attribute contains a JSF binding on the SRManage backing bean, which is configured
as a managed bean in the faces-config.xml file. The backing bean has a
treeLevel property of type Map that is declaratively defined as a managed property
in the faces-config.xml file.

Example 15–4 ADF Faces switcher Component

<af:switcher facetName="#{backingSRManage.treeLevel[node.hierType.viewDefName]}">
 <f:facet name="StaffNode">
 <af:commandLink text="#{node}"
 action="#{backing_SRManage.staffLinkDrilldown}"
 actionListener="#{bindings.setCurrentStaffRowWithKey.execute}"/>
 </f:facet>
 <f:facet name="ServiceRequestsNode">
 <af:panelGroup>
 <af:outputText value="[#{node.Status}] "/>
 <af:commandLink text="#{node.ProblemDescription}"
 action="#{backing_SRManage.problemLinkDrilldown}"
 actionListener="#{bindings.setCurrentProblemAndAssigneeRows.execute}"/>
 </af:panelGroup>
 </f:facet>
</af:switcher>

The managed property definition in the faces-config.xml contains information
that injects the key-value pairs (viewdefinitionname, facetname) into the
treeLevel Map, as shown in Example 15–5. The Map is used to display a different
presentation in the tree for each different view object type.

Using Tree Tables to Display Master-Detail Objects

Displaying Master-Detail Data 15-17

Example 15–5 The treeLevel Managed Property Definition in the faces-config.xml File

<managed-bean>
 <managed-bean-name>backing_SRManage</managed-bean-name>
 ...
 <managed-property>
 <property-name>treeLevel</property-name>
 <map-entries>
 <key-class>java.lang.String</key-class>
 <value-class>java.lang.String</value-class>
 <map-entry>
 <key>oracle.srdemo.model.queries.StaffWithOpenRequests</key>
 <value>StaffNode</value>
 </map-entry>
 <map-entry>
 <key>oracle.srdemo.model.queries.OpenOrPendingServiceRequests</key>
 <value>ServiceRequestsNode</value>
 </map-entry>
 </map-entries>
 </managed-property>
 </managed-bean>

When you add command links to nodes in a tree, at runtime a user could click a link
that is not the current object in the iterator that is populating the tree. (The current
object in the iterator is the one displayed the last time the user opened a tree node.)
Therefore, to display the correct detail object, the command links must be bound to
operations or methods that programmatically set the current object in the iterator. For
example, in the SRManage page, the command link on the service request node is
bound to the setCurrentProblemAndAssigneeRows method, which
programmatically sets the current object. For more information about manually setting
the current object in a command component, see Section 14.7, "Setting the Current
Object Using a Command Component". For more information about the ADF Faces
switcher component, refer to the ADF Faces Javadoc.

15.5 Using Tree Tables to Display Master-Detail Objects
Use the ADF Faces treeTable component to display a hierarchy of master-detail
collections in a table. The advantage of using a treeTable component rather than a
tree component is that the treeTable component provides a mechanism that
enables users to focus the view on a particular node in the tree.

Figure 15–8 shows an example of a tree table that displays three levels of nodes: users,
service requests, and service history. Each root node represents an individual user. The
branches off the root nodes display the service requests associated with that user. Each
service request node branches to display the service history for each service request.

As with trees, to create a tree table with multiple nodes, it is necessary create view
links between the view objects. The view links establish the master-detail relationships
For example, to create the tree table shown in Figure 15–8, it was necessary to create
view links from the user view object to the service request view object, and another
view link from the service requests view object to the service history view object. For
more information about creating view links, see Section 5.10, "Working with
Master/Detail Data".

Using Tree Tables to Display Master-Detail Objects

15-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 15–8 Databound ADF Faces Tree Table

A databound ADF Faces treeTable displays one root node at a time, but provides
navigation for scrolling through the different root nodes. Each root node can display
any number of branch nodes. Every node is displayed in a separate row of the table,
and each row provides a focusing mechanism in the leftmost column.

The ADF Faces treeTable component includes the following built-in functionality:

■ Range navigation: The user can click the Previous and Next navigation buttons to
scroll through the root nodes.

■ List navigation: The list navigation, which is located between the Previous and
Next buttons, enables the user to navigate to a specific root node in the data
collection using a selection list.

■ Node expanding and collapsing mechanism: The user can open or close each node
individually or use the Expand All or Collapse All command links. By default,
the icon for opening closing the individual nodes is an arrowhead with a plus or
minus sign. You can also use a custom icon of your choosing.

■ Focusing mechanism: When the user clicks on the focusing icon (which is
displayed in the leftmost column) next to a node, the page is redisplayed showing
only that node and its branches. A navigation link is provided to enable the user to
return to the parent node.

15.5.1 How to Display Master-Detail Objects in Tree Tables
The steps for creating an ADF Faces databound tree table are exactly the same as those
for creating an ADF Faces databound tree, except that you drop the data collection as
an ADF Tree Table instead of an ADF Tree. For more information, see Section 15.4.1,
"How to Display Master-Detail Objects in Trees".

15.5.2 What Happens When You Create a Databound Tree Table
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 12.2.3, "What Happens When You Use the Data
Control Palette".

When you create a databound tree table using the Data Control Palette, JDeveloper
adds binding objects to the page definition file, and it also adds the treeTable tag to
the JSF Page. The resulting UI component is fully functional and does not require any
further modification.

Using Tree Tables to Display Master-Detail Objects

Displaying Master-Detail Data 15-19

15.5.2.1 Code Generated in the JSF Page
Example 15–6 shows the code generated in a JSF page when you use the Data Control
Palette to create a tree table. This sample tree table displays three levels of nodes:
users, service requests, and service history.

By default, the treeTable tag is created inside a form. The value attribute of the
tree table tag contains an EL expression that binds the tree component to the binding
object that will populate it with data, which in the example is the LoggedInUser tree
binding object. The treeModel property refers to an ADF class that defines how the
tree hierarchy is displayed, based on the underlying data model. The var attribute
provides access to the current node.

Example 15–6 Code Generated in the JSF Page for a Databound ADF Faces Tree Table

<h:form>
 <af:treeTable value="#{bindings.LoggedInUser.treeModel}" var="node">
 <f:facet name="nodeStamp">
 <af:column>
 <af:outputText value="#{node}"/>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:outputText value="#{node}"/>
 </f:facet>
 </af:treeTable>
</h:form>

In the facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component. The pathStamp facet renders the column and the path links above the
table that enable the user to return to the parent node after focusing on a detail node.

15.5.2.2 Binding Objects Defined in the Page Definition File
The binding objects created in the page definition file for a tree table are exactly the
same as those created for a tree. For more information about tree binding objects, see
Section 15.4.2.2, "Binding Objects Defined in the Page Definition File".

15.5.3 What Happens at Runtime
Tree components use oracle.adf.view.faces.model.TreeModel to access data.
This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree table is displayed, the iterator binding on the treeTable
component populates the root node and listens for a row navigation event (such as the
user clicking the Next or Previous buttons or selecting a row from the range
navigator). When the user initiates a row navigation event, the iterator displays the
appropriate row.

If the user changes the view focus (by clicking on the component’s focus icon), the
treeTable component generates a focus event (FocusEvent). The node to which
the user wants to change focus is made the current node before the event is delivered.
The treeTable component then modifies the focusPath property accordingly. You
can bind the FocusListener attribute on the tree to a method on a managed bean.
This method will then be invoked in response to the focus event.

Using an Inline Table to Display Detail Data in a Master Table

15-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

When a user collapses or expands a node, a disclosure event (DisclosureEvent) is
sent. The isExpanded method on the disclosure event determines whether the user is
expanding or collapsing the node. The disclosure event has an associated listener,
DisclosureListener. The DisclosureListener attribute on the tree table is
bound to the accessor attribute specified in the node rule defined in the page
definition file. This accessor attribute is invoked in response to a disclosure event (for
example, the user expands a node) and returns the collection that populates that node.

The treeTable component includes Expand All and Collapse All links. When a user
clicks one of these links, the treeTable sends a DisclosureAllEvent event. The
isExpandAll method on this event determines whether the user is expanding or
collapsing all the nodes. The table then expands or collapses the nodes that are
children of the root node currently in focus. In large trees, the expand all command
will not expand nodes beyond the immediate children. The ADF Faces treeTable
component uses an instance of the oracle.adf.view.faces.model.PathSet
class to determine expanded nodes. This instance is stored as the treeState attribute
on the component. You can use this instance to programmatically control the
expanded or collapsed state of a node in the hierarchy. Any node contained by the
PathSet instance is deemed expanded. All other nodes are collapsed. This class also
supports operations like addAll() and removeAll().

Like the ADF Faces table component, a treeTable component provides for range
navigation. However, instead of using the rows attribute, the treeTable component
uses a rowsByDepth attribute whose value is a space-separated list of non-negative
numbers. Each number defines the range size for a node level on the tree. The first
number is the root node of the tree, and the last number is for the branch nodes. If
there are more branches in the tree than numbers in the rowsByDepth attribute, the
tree uses the last number in the list for the remaining branches. Each number defines
the limit on the number items displayed at one time in each branch. If you want to
display all items in a branch, specify 0 in that position of the list.

For example, if the rowsByDepth attribute is set to 0 0 3, all root nodes will be
displayed, all direct children of the root nodes will be displayed, but only three nodes
will display per branch after that. The treeTable component includes links to
navigate to additional nodes, enabling the user to display the additional nodes.

For more information about the ADF Faces TreeTable component, refer to the
oracle.adf.view.faces.component.core.data.CoreTreeTable class in the
ADF Faces Javadoc.

15.6 Using an Inline Table to Display Detail Data in a Master Table
As you may recall from Section 14.5, "Adding Hidden Capabilities to a Table", you can
use the detailStamp facet in a table to hide or show additional information about a
specific data object displayed in the table. When you add a component to this facet, the
table displays an additional column labeled Details, which displays the additional
information. It includes a toggle mechanism that enables the user to hide or show the
information displayed in the Details column in a manner similar to the mechanism in
an ADF Faces tree or treeTable component. In the case described in Section 14.5,
"Adding Hidden Capabilities to a Table", the additional information was a single
attribute from the same data collection that populates the table.

Using master-detail collections on the Data Control Palette, you can declaratively add
an inline table to the detailStamp facet that displays additional information from a
detail collection. A master collection is used to populate the main table and a detail
collection is used to populate the inline table.

Using an Inline Table to Display Detail Data in a Master Table

Displaying Master-Detail Data 15-21

Figure 15–9 shows how an inline table of service requests can be embedded in a table
of service request staff. If the user clicks the Show link in the Details column, which is
built into the table facet, an inline table of service requests is displayed under the
selected row of the table. The main table is populated by a master collection of users
and displays the user’s first and last name. The inline table is populated by a detail
collection of service requests and displays the service request problem description and
status.

Figure 15–9 Inline Table Displaying Information from a Detail Collection

15.6.1 How to Display Detail Data Using an Inline Table
Using the Data Control Palette, you can create both the main table and the inline table
in a single declarative action. Since an inline table is similar to a tree table, you use the
Tree Binding Editor to define the rules that populate the main table and the inline
detail table. There must be one rule for the main table and one rule for the inline detail
table. Each rule defines the following properties:

■ The data collection that populates the table

■ The attributes from the data collection that are displayed in the table

The rule for the main table must also specify a view link accessor attribute that returns
the detail collection that will populate the inline table. For information about view
links accessors, see Section 5.10.2, "How to Create Master/Detail Hierarchies Using
View Links".

To create a master table with an inline detail table:
1. Drag a master data object from the Data Control Palette, and drop it on the page.

This should be the master object that you want to populate the main table.

2. In the context menu, choose Tables > ADF Master Table, Inline Detail Table.

JDeveloper displays the Tree Binding Editor (previously shown in Figure 15–5).

3. In the Edit Rule page of the Tree Binding Editor, define a rule for populating the
main table and another rule for populating the inline table. To define a rule you
must select the following items:

Using an Inline Table to Display Detail Data in a Master Table

15-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Data Collection Definition: Select the data collection that will populate the
table you are defining. The first rule defines the main table. So, for the first
rule, select the same data collection that you dragged from the Data Control
Palette (the master collection). When defining the rule for the inline table,
select the appropriate detail collection. For example, to create a main table of
users, you would select the User collection for the first rule; to create an inline
table that displays service requests related to a user, you would select the
ServiceRequest collection in the branch rule.

■ Display Attribute: Select one or more attributes to display in the table you are
defining. Each attribute is a column in the table. For example, if the main table
is displaying users, you might select both the firstName and lastName
attributes.

■ Branch Rule Accessor: If you are defining the rule for the main table, select
the accessor attribute that returns the detail collection that you want to appear
in the inline detail table. The list displays only the accessor attributes that
return the detail collections for the master collection you selected for the rule.
If you are defining the rule for the inline table, select <none>, because you
cannot embed a table inside the inline table.

View link accessor attributes, which return data collections, are generated
when you create view links. The Branch Rule Accessor field displays all view
link accessors that return detail collections for the master collection selected in
the Data Collection Definition field. For more information about view objects
and view links, see Chapter 5, "Querying Data Using View Objects".

4. Use the Show Rules page of the Tree Binding Editor, shown in Figure 15–6, to:

■ Change the order of the rules

The rule that populates the main table must be first in the list

■ Identify the icons you want displayed for the expand and collapse mechanism

Only the main table uses the icons, so if you want to use an icon other than the
default, specify it in the rule for the main table.

The default open icon is a solid down arrow with a minus sign, while the
default closed icon is a solid right arrow with a plus sign

■ Delete rules

15.6.2 What Happens When You Create an Inline Detail Table
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 12.2.3, "What Happens When You Use the Data
Control Palette".

Tip: Be sure to click the Add New Rule button after you define each
rule. If you click the OK button instead, the last rule you defined will
not be saved. When you click Add New Rule, JDeveloper displays the
Show Rules tab of the Tree Binding Editor, where you can verify the
rules you have created.

Using an Inline Table to Display Detail Data in a Master Table

Displaying Master-Detail Data 15-23

15.6.2.1 Code Generated in the JSF Page
When you create a master table and an inline detail table using the Data Control
Palette, JDeveloper adds binding objects to the page definition file, and it also adds the
table and facet to the JSF page. The resulting UI components are fully functional and
do not require any further modification.

Example 15–7 shows the code generated in the JSF page. This sample displays users in
the main table and service requests in the inline detail table. The main table is defined
the same as any other ADF databound table. It is bound to the LoggedInUser
binding object in the page definition file, which is a tree binding object. The columns in
the main table display the user’s first name and last name. The table includes a
detailStamp facet in which the detail table is defined. The detail table is also bound
to the LoggedInUser tree binding object, and the columns are set up to display the
data from the service request collection. As with tree components, the page definition
file defines the accessor attribute that returns the detail collection.

Example 15–7 JSF Code Created for the Master Table with an Inline Detail Table

<af:table rows="#{bindings.LoggedInUser.rangeSize}"
 emptyText="#{bindings.LoggedInUser.viewable ? \'No rows yet.\' :
 \'Access Denied.\'}"
 var="row" value="#{bindings.LoggedInUser.treeModel}">
 <af:column headerText="#{bindings.LoggedInUser.labels.FirstName}"
 sortable="false" sortProperty="FirstName">
 <af:outputText value="#{row.FirstName}"/>
 </af:column>
 <af:column headerText="#{bindings.LoggedInUser.labels.LastName}"
 sortable="false" sortProperty="LastName">
 <af:outputText value="#{row.LastName}"/>
 </af:column>
 <f:facet name="detailStamp">
 <af:table rows="#{bindings.LoggedInUser.rangeSize}"
 emptyText="No rows yet." var="detailRow"
 value="#{row.children}">
 <af:column headerText="#{row.children[0].labels.Status}"
 sortable="false" sortProperty="Status">
 <af:outputText value="#{detailRow.Status}"/>
 </af:column>
 <af:column headerText="#{row.children[0].labels.ProblemDescription}"
 sortable="false" sortProperty="ProblemDescription">
 <af:outputText value="#{detailRow.ProblemDescription}"/>
 </af:column>
 </af:table>
 </f:facet>
</af:table>

15.6.2.2 Binding Objects Defined in the Page Definition File
Example 15–8 shows the binding objects added to the page definition file for a master
table with an inline detail table. The executables element defines an iterator
binding named LoggedInUserIterator, which displays data from the
LoggedInUser collection in the main table. No iterator binding is needed for the
detail collection, because the accessor attribute referenced in the tree binding object
returns the detail data that is related to the currently selected master data.

In the bindings element, the tree binding object populates the data in the master and
detail tables. The nodeDefintion elements define the attributes that are displayed in
the columns of the master and detail tables. The first nodeDefinition element
defines the data in the master table, and the second one defines the data in the inline

Using an Inline Table to Display Detail Data in a Master Table

15-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

detail table. For more information about tree binding objects, see Section 15.4.2, "What
Happens When You Create ADF Databound Trees".

Example 15–8 Binding Objects Added to the Page Definition File for a Master Table with
an Inline Detail Table

<executables>
 <iterator id="LoggedInUserIterator" RangeSize="10" Binds="LoggedInUser"
 DataControl="SRService"/>
</executables>
<bindings>
 <tree id="LoggedInUser" IterBinding="LoggedInUserIterator">
 <AttrNames>
 <Item Value="UserId"/>
 <Item Value="Email"/>
 <Item Value="FirstName"/>
 <Item Value="LastName"/>
 </AttrNames>
 <nodeDefinition DefName="oracle.srdemo.model.queries.LoggedInUser"
 id="LoggedInUserNode">
 <AttrNames>
 <Item Value="FirstName"/>
 <Item Value="LastName"/>
 </AttrNames>
 <Accessors>
 <Item Value="ServiceRequestsByStatus"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="oracle.srdemo.model.queries.ServiceRequestsByStatus"
 id="ServiceRequestsByStatusNode">
 <AttrNames>
 <Item Value="Status"/>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

15.6.3 What Happens at Runtime
When the user hides or shows the details of a row (by clicking the Hide or Show
links), the table generates a DisclosureEvent event, which expands or collapses the
inline detail table. The isExpanded method on this event determines whether the
user is showing or hiding the detail table.

The DisclosureEvent event has an associated listener. The DisclosureListener
attribute on the table is implicitly bound to the accessor attribute specified in the node
rule defined in the page definition file. This accessor attribute is invoked in response to
a DisclosureEvent event. For example, if the user clicks on the Show link, the
accessor attribute is invoked to populate the data in the inline table.

Adding Page Navigation 16-1

16
Adding Page Navigation

This chapter describes how to create navigation rules and cases, and how to create
basic navigation components, such as buttons and links, that trigger navigation rules
using outcomes.

This chapter includes the following sections:

■ Section 16.1, "Introduction to Page Navigation"

■ Section 16.2, "Creating Navigation Rules"

■ Section 16.3, "Using Static Navigation"

■ Section 16.4, "Using Dynamic Navigation"

For information about how to create dynamic navigation menus, see Chapter 19,
"Using Complex UI Components".

16.1 Introduction to Page Navigation
Navigation through a JSF application is defined by navigation rules. These rules
determine, based on outcomes specified by UI components, which page is displayed
next when the UI component is clicked.

Defining page navigation for an application is a two-step process:

■ First, you create navigation rules for all the pages in your application.

In most cases, you define one rule for each page in your application. However, you
can also define pattern-based rules that affect groups of pages or global rules that
affect all pages.

■ Next, in each navigation component on the pages, such as a command button or
link, you specify either a static or dynamic outcome value in the action attribute.

 Static outcome values are an explicit reference to a specific outcome defined in a
navigation rule. Dynamic outcome values are derived from a binding on a backing
bean method that returns an outcome value. In either case, the outcome value
specified in the action attribute must match an outcome defined in the
navigation rules or be handled by a default navigation rule for navigation to occur.

While you can create simple hand-coded navigation links between pages, using
outcomes and navigation rules makes defining and changing application navigation
much easier.

Creating Navigation Rules

16-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Read this chapter to understand:

■ What navigation rules and cases are and how to create them

■ How to create global, pattern-based, and default rules

■ How to create UI components that use static outcome values

■ How to bind navigation components to backing beans that return dynamic
outcomes

16.2 Creating Navigation Rules
With JavaServer Faces, navigation between application pages is defined by a set of
rules. Navigation rules determine the next page to display when a user clicks a
navigation component, such as a button or a hyperlink.

A navigation rule defines the navigation from one page to one or more other pages.
Each navigation rule can have one or more cases, which define where a user can go
from that page. For example, if a page has links to several other pages in the
application, you can create a single navigation rule for that page and one navigation
case for each link to the different pages. The rule itself can define the navigation from:

■ A specific JSF page

■ All pages whose paths match a specified pattern, such as all the pages in one
directory, which is called a pattern-based rule

■ All pages in an application, which is called a global navigation rule

16.2.1 How to Create Page Navigation Rules
Navigation rule definitions are stored in the JSF configuration file
(faces-config.xml). You can define the rules directly in the configuration file, or
you can use the JSF Navigation Modeler and the JSF Configuration Editor in
JDeveloper. Oracle recommends that you use the navigation modeler and the
configuration editor, because these tools:

■ Provide a GUI environment for modeling and editing the navigation between
application pages

■ Enable you to map out your application navigation using a visual diagram of
pages and navigation links

■ Update the faces-config.xml file for you automatically

Use the navigation modeler to initially create navigation rules from specific pages to
one or more other pages in the application. Use the configuration editor to create
global or pattern-based rules for multiple pages, create default navigation cases, and
edit navigation rules.

16.2.1.1 About Navigation Rule Elements
Understanding the elements that define a navigation rule in the faces-config.xml
file helps when creating rules using the navigation modeler and the configuration
editor, or directly in the configuration file. The general syntax of a JSF navigation rule
element in the faces-config.xml file is shown in Example 16–1.

Creating Navigation Rules

Adding Page Navigation 16-3

Example 16–1 JSF Navigation Rule Syntax in the faces-config.xml File

<navigation-rule>
 <from-view-id>page-or-pattern</from-view-id>
 <navigation-case>
 <from-action>action-method</from-action>
 <from-outcome>outcome</from-outcome>
 <to-view-id>destination-page</to-view-id>

<redirect/>
 </navigation-case>
 <navigation-case>
 ...
 </navigation-case>
</navigation-rule>

A navigation rule can consist of the following elements:

■ navigation-rule: A mandatory wrapper element for navigation case elements.

■ from-view-id: An optional element that contains either a complete page
identifier (the context sensitive relative path to the page) or a page identifier prefix
ending with the asterisk (*) wildcard character. If you use the wildcard character,
the rule applies to all pages that match the wildcard pattern. To make a global rule
that applies to all pages, leave this element blank.

■ navigation-case: A mandatory wrapper element for each case in the
navigation rule. Each case defines the different navigation paths from the same
page. A navigation rule must have at least one navigation case.

■ from-action: An optional element that limits the application of the rule only to
outcomes from the specified action method. The action method is specified as an
EL binding expression. For example, #{backing_SRCreate.cancelButton_
action}.

■ from-outcome: A mandatory element that contains an outcome value that is
matched against values specified in the action attribute of UI components. Later
you will see how the outcome value is referenced in a UI component either
explicitly or dynamically through an action method return.

■ to-view-id: A mandatory element that contains the complete page identifier of
the page to which the navigation is routed when the rule is implemented.

■ redirect: An optional element that indicates that the new view is to be
requested through a redirect response instead of being rendering as the response
to the current request. This element requires no value. (For more information, see
Section 16.2.2, "What Happens When You Create a Navigation Rule".)

16.2.1.2 Using the Navigation Modeler to Define Navigation Rules
As a starting point for creating navigation rules, use JDeveloper’s JSF Navigation
Modeler. The navigation modeler is a visual modeling tool for creating application
pages and navigation cases for those pages.

After creating the basic navigation rules using the navigation modeler, you can edit the
rules in the JSF Configuration Editor or directly in the navigation modeler. There is
one navigation modeler diagram for each JSF configuration file that you create.

To define a navigation rule using the JSF Navigation Modeler:
1. In the Application Navigator, double-click the faces-config.xml file located in

the WEB-INF directory to display the configuration file in the visual editor.

Creating Navigation Rules

16-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

2. In the visual editor, click the Diagram tab to display the navigation modeler, as
shown in Figure 16–1.

Notice that the Component Palette automatically displays the JSF Navigation
Modeler components.

Figure 16–1 Navigation Modeler

3. Add application pages to the diagram using one of the following techniques:

■ To create a new page, drag JSF Page from the Component Palette onto the
diagram. Double-click the page icon on the diagram to display the Create JSF
JSP wizard where you can name and define the page characteristics.

■ To add an existing page to the diagram, drag the page from the Application
Navigator onto the diagram.

4. Create the navigation cases between the pages using the following technique:

a. In the Component Palette, select JSF Navigation Case to activate it.

b. On the diagram, click the icon for the source page, then click the icon for the
destination page.

JDeveloper draws the navigation case on the diagram as a solid line ending
with an arrow between the two pages, as shown in Figure 16–2.

Tip: You can view a thumbnail of the entire diagram by clicking the
Thumbnail tab in the Structure window.

Creating Navigation Rules

Adding Page Navigation 16-5

Figure 16–2 Navigation Case

The arrow indicates the direction of the navigation case. A default
from-outcome value is shown as the label on the arrow. JDeveloper
automatically creates the navigation rule for the source page and adds a
default navigation case that references the destination page. If a page is the
source for multiple navigation cases (for example, a page that provides links to
several other pages), JDeveloper creates one rule for the source pages and
adds the multiple cases to that rule.

5. In the diagram, double-click the arrow representing the navigation case to display
the navigation-case Properties dialog, shown in Figure 16–3.

Figure 16–3 The navigation-case Properties Dialog

6. Use the navigation-case Properties dialog to define the elements in the navigation
case. For a description of each element, see Section 16.2.1.1, "About Navigation
Rule Elements".

16.2.1.3 Using the JSF Configuration Editor
Once you have defined your basic navigation between specific pages, you can use the
JSF Configuration Editor to:

■ Define pattern-based navigation rules for a group of pages.

For example, if a group of pages in your application have a set of common links,
such as the links from a menu bar, you can create a pattern-based rule that applies
to all the pages. You identify the pages affected by the rule using a wildcard
pattern, where the wildcard character (*) must be the last item in the pattern. A
typical use of patterns in JSF navigation rules is to identify all the pages in a
certain directory. Example 16–2 shows a sample of a pattern-based navigation rule.
Notice that the from-view-id element contains a pattern instead of a specific
page name. This pattern would cause the rule to apply to all pages in the
management directory whose names start with SR.

Creating Navigation Rules

16-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 16–2 Pattern-Based Navigation Rule

<navigation-rule>
 <from-view-id>/app/management/SR*</from-view-id>
 ...
</navigation-rule>

■ Define global navigation rules that apply to all pages.

For example, an application could define one rule that applies to all pages and
returns users to the application's home page. When you create a global rule, you
exclude the from-view-id element, which causes the rule to apply to all pages.
You can optionally include a from-outcome element, if you want to apply the
rule whenever a UI component on any page returns a specific outcome.
Example 16–3 shows a sample global navigation rule. It causes the home page to
be displayed when any component on any page returns the value gohome.

Example 16–3 Global Navigation Rule

<navigation-rule>
 <navigation-case>
 <to-view-id>home.jsp</to-view-id>

<from-outcome>gohome</from-outcome>
 </navigation-case>
</navigation-rule>

■ Define default navigation cases in which no outcome is specified.

For example, if a navigation component is defined using a dynamic outcome
(where the outcome could be one of multiple values), you may want to create a
navigation case for one or two specific outcomes and a default case for all other
possible outcomes. This way, if a navigation component returns an unexpected
outcome, the page navigates to a specific page. Example 16–4 shows a sample
default navigation rule. It displays the home page whenever any component on
any page returns an outcome that is not handled by any other navigation case.

Example 16–4 Default Navigation Rule

<navigation-rule>
 <navigation-case>
 <to-view-id>home.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

■ Edit existing rules and cases.

To create a navigation rule using the JSF Configuration Editor:
1. In the Application Navigator, double-click the faces-config.xml file located in

the WEB-INF directory to display the configuration file in the visual editor.

2. In the visual editor, click the Overview tab to display the configuration editor.

3. From the element list (in the left corner), select Navigation Rules, as shown in
Figure 16–4.

Tip: Default navigation cases do not apply if a component specifies a
null value in the action attribute. In this case, no navigation occurs;
instead, the same page is redisplayed.

Creating Navigation Rules

Adding Page Navigation 16-7

Figure 16–4 Configuration Editor

4. Define the navigation rule using the following technique:

a. Click the New button to the right of the Navigation Rules box to display the
Create Navigation Rule dialog.

b. Use the Create Navigation Rule dialog to specify the from-view-id element
of the navigation rule using one of the following techniques:

– To create a rule for a single page, enter a fully qualified page name or
select a page from the dropdown list.

– To create a pattern-based rule that applies to a group of pages whose
names match the pattern, enter a pattern that uses the asterisk (*) wildcard
character.

You must use the wildcard character at the end of the pattern. For exam-
ple, the pattern /app/management/SR* would cause the rule to apply to
all pages in the management directory whose names start with SR. A typi-
cal use of patterns in JSF navigation rules is to identify all the pages in a
certain directory.

– To create a global navigation rule that applies to all pages in the
application, select <Global Navigation Rule> from the dropdown list.

When you create a global navigation rule, the from-view-id element to
be excluded from the faces-config.xml file.

Tip: When defining a global navigation rule, you can exclude the
from-view-id element. However, for the sake of clarity in the
faces-config.xml file, you may want to specify the value as either
<from-view-id>* </from-view-id> or
<from-view-id>/*</from-view-id>. All of these styles produce the
same result—the rule is applied to all pages in the application.

Creating Navigation Rules

16-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

When you finish, the new navigation rule appears in the navigation rules in
the configuration editor.

5. Define the navigation cases using the following technique:

a. In the list of navigation rules, select the rule to which you want to define
navigation cases.

b. Click the New button to the right of the Navigation Cases box to display the
Create Navigation Case dialog.

c. Use the Create Navigation Case dialog to specify the elements of the
navigation case, which were previously described in Section 16.2.1.1, "About
Navigation Rule Elements".

You must supply a to-view-id value, to identify the destination of the
navigation case, but can leave either or both the from-action and
from-outcome elements empty. If you leave the from-action element
empty, the case applies to the specified outcome regardless of how the
outcome is returned. If you leave the from-outcome element empty, the case
applies to all outcomes from the specified action method, thus creating a
default navigation case for that method. If you leave both the from-action
and the from-outcome elements empty, the case applies to all outcomes not
identified in any other rules defined for the page, thus creating a default case
for the entire page.

16.2.2 What Happens When You Create a Navigation Rule
When you create a navigation rule using the JSF Navigation Modeler or the JSF
Configuration Editor, JDeveloper automatically adds the navigation rule elements to
the faces-config.xml file for you.

When JDeveloper first creates an empty faces-config.xml file, it also creates a
diagram file (faces.config.oxd_faces) to hold diagram details such as layout
and annotations. JDeveloper always maintains this diagram file alongside the
faces-config.xml file, which holds all the settings needed by your application.
This means that if you are using versioning or source control, the diagram file is
included as well as the faces-config.xml file it represents.

Example 16–5 shows a navigation rule with two cases defined in the
faces-config.xml file for the SRCreate page in the SRDemo application. The first
case navigates to the SRCreateConfirm page when the outcome specified in the
action attribute of an activated navigation component is Continue. The second case
navigates to the SRFaq page when the action attribute of an activated navigation
component is dialog:FAQ. The dialog: outcome prefix causes the page in the
to-view-id element to be launched as a dialog. For more information about creating
dialogs, see Section 19.3, "Using Popup Dialogs".

Tip: If you have already defined the outcome values in the
navigation components on the page, make sure you enter the
from-outcome value exactly the same way, including lowercase and
uppercase letters.

Creating Navigation Rules

Adding Page Navigation 16-9

Example 16–5 Navigation Rule for a Specific Page

<navigation-rule>
 <from-view-id>/app/SRCreate.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Continue</from-outcome>
 <to-view-id>/app/SRCreateConfirm.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>dialog:FAQ</from-outcome>
 <to-view-id>/app/SRFaq.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

Example 16–6 shows a global navigation rule defined in the SRDemo application. The
rule uses the wildcard character in the from-view-id element, which causes the rule
to apply to all pages in the application. The cases defined in this global rule handle the
navigation from the standard menu displayed on all of the pages.

Some of the cases use the redirect element, which causes JSF to send a redirect
response that asks the browser to request the new page. When the browser requests
the new page, the URL shown in the browser’s address field is adjusted to show the
actual URL for the new page. If a navigation case does not use the redirect element,
the new page is rendered as a response to the current request, which means that the
URL in the browser’s address field does not change and that it will contain the address
of the previous page. Direct rendering can be faster than redirection.

Any navigation case can be defined as a redirect. To decide whether to define a
navigation case as a redirect, consider the following factors:

■ If you do not use redirect rendering, when a user bookmarks a page, the
bookmark will not contain the URL of the current page; instead, it will contain the
the address of the previous page.

■ If a user reloads a page, problems may arise if the URL is not refreshed to the new
view. For example, if the page submits orders, reloading the page may submit the
same order again. If any harm might result from not refreshing the URL to the new
view, define the navigation case using the redirect element.

Example 16–6 Navigation Rule Defined with Redirect Rendering

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>GlobalHome</from-outcome>
 <to-view-id>/app/SRList.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 ...
 <navigation-case>
 <from-outcome>GlobalLogout</from-outcome>
 <to-view-id>/app/SRLogout.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>dialog:GlobalContact</from-outcome>
 <to-view-id>/app/SRContact.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

Creating Navigation Rules

16-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

16.2.3 What Happens at Runtime
The Sun JSF Reference Implementation reads the navigation rules in the
faces-config.xml file and calls the NavigationHandler class, which evaluates
the navigation rules and determines which page to display. Knowing how the
navigation rules are evaluated can help in debugging navigation issues.

When evaluating which navigation rules to execute, the navigation handler looks at
three things:

■ The ID of the current page

■ The action method used to handle the link

■ The outcome string value of the action attribute, or the string returned by the
action method

The navigation handler evaluates navigation outcomes and rules in the following
manner:

1. If the outcome returned by an action method is null, it returns immediately and
redisplays the current page.

2. It merges all navigation rules with the same from-view-id value.

3. If a rule exists whose from-view-id value matches the view ID exactly, it uses
that rule.

4. It evaluates all pattern-based navigation rules, and determines whether the prefix
(the section before the wildcard character) is identical to the corresponding prefix
of the ID of the current view.

5. If there are matching rules, it uses the rule whose matching prefix is longest. If
there is a rule without a from-view-id element, it uses that rule.

6. If there is no match at all, it redisplays the current page.

Because the navigation handler merges navigation rules with matching
from-view-id values, there may be several navigation cases from which to choose.
After determining the correct navigation rule, the navigation handler evaluates which
case to use based on a prioritized set of criteria. If no case meets one criteria, the next
criteria is applied until either a case is found or all criteria have been evaluated. The
case evaluation criteria is as follows (shown in order of priority):

1. If both the from-outcome and from-action values of a case match the current
action method and action value, it uses that case.

2. If a case has no from-action element, but the from-outcome value matches the
current action value, it uses that case.

3. If a case has no from-outcome element, but the from-action value matches the
current action method, it uses that case.

4. If there is a case with neither a from-outcome element nor a from-action
element, it uses that case.

5. If no case meets any of the criteria, it redisplays the current page.

Creating Navigation Rules

Adding Page Navigation 16-11

16.2.4 What You May Need to Know About Navigation Rules and Cases
In addition to the basic navigation rules that have been discussed, you can define
navigation rules in more than one JSF configuration file or define rules that overlap.
You can also define overlapping navigation cases and cases that are split among
different rules.

16.2.4.1 Defining Rules in Multiple Configuration Files
In a large application, you might want to define the navigation rules for pages in
specific areas of the application in separate JSF configuration files. However, it is
possible to specify rules in any of the JSF configuration files to apply to any pages in
the application. In particular, each JSF configuration file may define rules for some
general navigation features, such as returning to the home page or displaying help
information. In such a scenario, when a navigation event arises at runtime, the rules
from all the JSF configuration files are considered together. In JDeveloper, there is one
navigation modeler diagram for each separate JSF configuration file.

If your application uses more than one JSF configuration file, JSF finds and loads your
application's configuration settings in a predefined order. (For a description of how the
configuration settings are evaluated, see Chapter 11, "Getting Started with ADF
Faces".)

16.2.4.2 Overlapping Rules
Through the use of global or pattern-based rules, it is possible to define a hierarchy of
overlapping rules.

Defining a hierarchy of rules ensures that particular navigation cases are directed to
specific pages, and that general cases, such as clicking a Home button or a Help
button, are handled in the same way across the whole application.

For example, you could create a hierarchy of rules by defining the from-view-id
values as follows:

■ /products/select.jsp to apply a rule to one page only

■ /product/* to apply a rule to all pages in the product directory, including the
page covered by the first rule

■ /* to apply to all pages, including the ones covered by the previous two rules

Overlapping rules can be defined in a single rule or in multiple rules. When a user
clicks a link, the more specific case is considered first, then the more general case.

Tip: When you are using Oracle ADF bindings in a page’s UI
components, the rowset iterators keep track of the current row. If a
user clicks the browser’s Back button instead of using the page’s
navigation buttons, the iterator becomes out of sync with the page
displayed because the iterator has been bypassed. For more
information about what happens when a user clicks the browser back
button, see Section 13.4.4, "What You May Need to Know About the
Browser Back Button".

Creating Navigation Rules

16-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

16.2.4.3 Conflicting Navigation Rules
Because you can define several navigation rules for the same page, it is possible to
define rules that conflict with one another. Also, because navigation rules can be
defined in more than one JSF configuration file, similar rules may be defined in
different files. Example 16–7 shows an example of conflicting rules in the same
configuration file.

If there is a conflict in which two or more cases have the same from-view-id,
from-action, and from-outcome values, the last case (as they are listed in the
faces-config.xml) is used. If the conflict is among rules defined in different
configuration files, the rule in the last configuration file to be loaded is used.
Configuration files are loaded in the order they appear in the web.xml file.

Example 16–7 Conflicting Navigation Cases

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>globalhelp</from-outcome>
 <to-view-id>/menu/generalHelp.html</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>globalhelp</from-outcome>
 <to-view-id>/menu/help.html</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

16.2.4.4 Splitting Navigation Cases Over Multiple Rules
You can split the navigation cases for the links on one page among different navigation
rules. For example, if your application provides users with a common set of controls
for navigating to particular parts of the application, one rule could define the
navigation cases for all the common controls, while other navigation rules would
define the navigation from other controls.

To define navigation split over multiple rules, you must create separate navigation
rules that would together define all the navigation cases, as shown in Example 16–8.
When these rules are evaluated, the more specific navigation cases are used first, then
the more general case.

Creating Navigation Rules

Adding Page Navigation 16-13

Example 16–8 Navigation Cases Split Over Multiple Rules

<navigation-rule>
 <from-view-id>/order.jsp</from-view-id>
 <navigation-case>
 <from-action>#{backing_home.submit}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/summary.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{backing_home.check}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/check.jsp</to-view-id>
 </navigation-case></navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/order.jsp</from-view-id>
 <to-view-id>/again.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

16.2.5 What You May Need to Know About the Navigation Modeler
When using the navigation modeler to create and maintain page navigation, be aware
of the following features:

■ Changes to navigation rules made directly in the faces-config.xml file using
the XML editor or made in the configuration editor usually refresh the navigation
modeler. Each JSF configuration file has its own navigation modeler diagram. If
the information in a navigation diagram does not match the information in its
faces-config.xml file, you can manually refresh the diagram by right-clicking
on the diagram and choosing Diagram > Refresh diagram from faces-config.

■ When you delete a navigation case on the diagram, the associated
navigation-case element is removed from the faces-config.xml file. If you
remove all the cases in a rule, the navigation-rule element remains in the
faces-config.xml file. You can remove the rule directly in the
faces-config.xml file.

■ When you edit the label for the navigation case on the diagram, the associated
navigation-case element is updated in the faces-config.xml file. You
cannot change the destination of the navigation case in the diagram. You can,
however, change the destination of a navigation case in the JSF Configuration
Editor or directly in the faces-config.xml file itself.

■ When you delete a page icon from the navigation diagram, the associated page file
is not deleted the from the Web Content folder in the ViewController project in the
Application Navigator.

■ When you edit pages manually, JDeveloper does not automatically update the
navigation diagram or the associated faces-config.xml file. Conversely, when
you make changes to a page flow that affect the behavior of an existing page,
JDeveloper does not automatically update the code in the page. To coordinate the
navigation diagram with web page changes, right-click on the page in the
navigation diagram and choose Diagram > Refresh Diagram from All Pages.

Using Static Navigation

16-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ The navigation modeler diagram is the default editor for the faces-config.xml
file. If you have a large or complex application, loading the diagram may be slow,
because the file may be large. If you do not want JSF diagram files to be created for
your JSF configuration files, use the Tools > Preferences > File Types > Default
Editor > JSF Configuration File option to change the default editor. If you change
the default editor before opening the faces-config.xml file for the first time,
no diagram file is created unless you specifically request one.

16.3 Using Static Navigation
When a component is defined using static navigation, the outcome value in the
action attribute is a constant value that always triggers the same navigation case.
When a user clicks a component that is using static navigation, a specific JSF page is
displayed—there are no alternative navigation paths.

To use static navigation, you create the navigation case using a from-outcome value,
but not a from-action value. In the action attribute of the navigation button or
link you specify a constant outcome value that matches the value you entered in the
from-outcome element of the navigation case.

For example, if you create a navigation case with a from-outcome value of Confirm,
as shown in Example 16–9, you would create a button or link on the page that specifies
Confirm as a static value of the action attribute, as shown in Example 16–10. In this
case, when the user clicks the button, the navigation case causes the ConfirmAction
page to be displayed.

Example 16–9 Navigation Case Defined in the faces-config.xml File

<navigation-case>
 <from-outcome>Confirm</from-outcome>
 <to-view-id>/app/ConfirmAction.jspx</to-view-id>
</navigation-case>

Example 16–10 Static Navigation Button Defined in a JSF Page

<af:commandButton text="Continue" action="Confirm"/>

16.3.1 How to Create Static Navigation
To create a navigation component that uses a static outcome, you can create the
component using the Component Palette or the Data Control Palette. If you use the
Data Control Palette, the actionListener attribute of the component will be bound
to a data control operation or method. Once you have created the component, you can
then specify the outcome value in the action attribute. When the user clicks the
component, the application navigates to the page determined by the outcome value
and navigation case. However, if the component is bound to a data control, first the
operation or method is invoked, and then the navigation is performed.

For more information about command components that are bound to data control
methods, see Section 17.3, "Creating Command Components to Execute Methods".

Using Static Navigation

Adding Page Navigation 16-15

To create a navigation component that uses a static outcome:
1. Create a navigation component using one of the following techniques:

■ From the ADF Faces Core page of the Component Palette, drag a
CommandButton or a CommandLink component onto the page.

■ From the Data Control Palette, drag and drop an operation or a method onto
the page and choose ADF Command Button or an ADF Command Link from
the context menu.

If you drag and drop a method that takes parameters, the ADF command
button and command link components appear under Method in the context
menu. JDeveloper displays the Action Binding Editor where you can define
any parameter values you want to pass to the method. For more information
about passing parameters to methods, see Section 17.4, "Setting Parameter
Values Using a Command Component".

2. In the Structure window, select the navigation component and open the Property
Inspector.

3. In the Action field displayed in the Property Inspector, enter the outcome value.

The value must be a constant or an EL expression that evaluates to a string. To
view a list of outcomes already defined in the page’s navigation cases, click the
dropdown in the Action field of the Property Inspector.

16.3.2 What Happens When You Create Static Navigation
When you create a navigation component with static outcomes, JDeveloper adds the
component to the JSF page. If you have not already done so, you will then need to add
a navigation case to the faces-config.xml file to handle the navigation outcome
specified in the component.

Example 16–11 shows a simple navigation component that was created using the ADF
Faces commandLink component, which is available from the Component Palette. This
command link appears on many of the SRDemo application’s pages; it navigates to the
SRAbout page, which displays information about the application.

Since there is only one possible navigation path, the command link is defined with a
static outcome in the action attribute. The outcome value is GlobalAbout, which
matches the from-outcome value of the navigation case shown in Example 16–12.
The navigation case belongs to a global navigation rule that applies to all pages in the
application.

Tip: You can also use the JSF commandButton or commandLink
components.

Tip: The shortcut for opening the Property Inspector is Ctrl+Shift-I.

Tip: If you want to trigger a specific navigation case, the outcome
value you enter in the action attribute must exactly match the
outcome value in the navigation case, including uppercase and
lowercase. If the outcome specified by an action does not match any
outcome in a navigation case, the navigation will be handled by a
default navigation rule (if one exists), or no navigation will occur.

Also, the action attribute must be either an outcome value or an EL
expression that evaluates to an outcome value. You cannot enter a
page URL in the action attribute.

Using Dynamic Navigation

16-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 16–11 Navigation Component That Specifies a Static Outcome Value

<af:commandLink text="#{res['srdemo.about']}" action="GlobalAbout"
 immediate="true"/>

Example 16–12 Navigation Rule Referenced by a Static Outcome Value

<navigation-rule>
<from-view-id>*</from-view-id>
...

 <navigation-case>
 <from-outcome>GlobalAbout</from-outcome>
 <to-view-id>/app/SRAbout.jspx</to-view-id>
 </navigation-case>

...
</navigation-rule>

16.4 Using Dynamic Navigation
Instead of explicitly specifying a static outcome value in a navigation component, you
can dynamically determine the outcome by binding the action attribute of a
navigation component to an action method. An action method is a method in a
backing bean (also known as a managed bean) that can perform an action (such as
saving user input, for example) and return an outcome value. The outcome value
determines the next page that should be displayed after the method performs an
action. For example, an action method that verifies user input on a page might return
one outcome if the input is valid and return another outcome if the input is invalid.
Each of these different outcomes could trigger different navigation cases, causing the
application to navigate to one of two possible target pages. As with static outcomes, a
dynamic outcome triggers a navigation case that contains a matching from-outcome
value or a default navigation case.

The method bound to a navigation component must be a public method with no
parameters, and it must return a string representing the outcome of the action. An
action method can return one of multiple outcomes depending on the processing it
carries out. In other words, you can define conditional outcomes in the method logic.
The outcome returned by the method must be defined in one of the cases in the page’s
navigation rules (unless you are using default rules, which handle all outcomes not
specified in any navigation case).

Tip: If you enabled auto-binding by choosing the Automatically
Expose UI Components in a New Managed Bean option when you
created the page, any navigation component you create will
automatically contain a binding to the managed bean (also known as a
backing bean) defined for the page, even if the binding is not used. In a
simple navigation component that has a static outcome, you may want
to remove the unused binding from the component.

Using Dynamic Navigation

Adding Page Navigation 16-17

16.4.1 How to Create Dynamic Navigation
If you want the outcome of a navigation component to be determined dynamically,
you can bind the component to a method on a backing bean. The backing bean can
execute some application logic and, depending on the results, return an outcome. The
returned outcome will determine the navigation rule that is implemented. For
information about creating backing beans, see Section 11.5, "Creating and Using a
Backing Bean for a Web Page".

To create a navigation component that binds to a backing bean:
1. From the ADF Faces Core page of the Component Palette, drag a

CommandButton or a CommandLink onto the page.

2. In the visual editor double-click the UI component to display the Bind Action
Property dialog, as shown in Figure 16–5.

Figure 16–5 Bind Action Property Dialog

Tip: In ADF applications, most processing of data objects is handled
by the data control. Therefore, if a navigation component that uses
dynamic outcomes needs to perform some processing on a data object
(for example, creating, editing, deleting), it should be bound to a
backing bean method that injects the ADF binding container. When a
backing bean injects the ADF binding container, it calls the specified
data control method to handle the processing of the data and then,
based on the results, returns a navigation outcome to the UI
component. For more information about injecting the binding
container into a backing bean, see Section 17.5, "Overriding
Declarative Methods".

Note: If you enabled auto-binding by choosing the Automatically
Expose UI Components in a New Managed Bean or the
Automatically Expose UI Components in an Existing Managed Bean
options when you created the page, any navigation component you
create will automatically contain a binding to the managed bean (also
known as a backing bean) defined for the page.

Tip: You can also use the JSF commandButton and commandLink
components.

Using Dynamic Navigation

16-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The Bind Action Property dialog enables you to identify the backing bean and
method to which you want to bind the component. If you enabled auto-binding
when you created the page, the Bind Action Property dialog does not display the
option for specifying a static outcome.

3. In the Bind Action Property dialog, identify the backing bean and the method to
which you want to bind the component using one of the following techniques:

■ Click New to create a new backing bean. The Create Managed Bean dialog is
displayed. Use this dialog to name the bean and the class.

■ Select an existing backing bean and method from the dropdown lists.

4. After identifying the backing bean and method, click OK on the Bind Action
Property dialog.

JDeveloper displays the source editor. If it is a new method, the source editor
displays a stub method, as shown in Example 16–13. If it is an existing method, the
source editor displays that method, instead of the stub method.

Example 16–13 Stub Method Created in the Backing Bean

public String commandButton1_action() {
 // Add event code here...
 return null;
}

5. Add any required processing logic to the method.

6. Change the return values of the method to the appropriate outcome strings.

You may want to write conditional logic to return one of multiple outcomes
depending on certain criteria. For example, you might want to return null if there
is an error in the processing, or another outcome value if the processing was
successful. A return value of null causes the navigation handler to forgo
evaluating navigation cases and to immediately redisplay the current page.

16.4.2 What Happens When You Create Dynamic Navigation
When you create a navigation component that specifies a dynamic outcome,
JDeveloper adds an EL expression to the action attribute of the component tag. The
EL expression references the backing bean method that will perform some application
processing, such as saving user input, and return an outcome value.

Example 16–14 shows a button on the SRCreateConfirm page of the SRDemo
application that uses a dynamic outcome value. The button was created using the ADF
Faces commandButton component, which is available from the Data Control Palette
context menu. The user clicks the button to create a new service request.

Example 16–14 Navigation Component That Uses Dynamic Outcomes

<af:commandButton text="#{res['srcreate.submit.button']}"
 partialSubmit="false"
 action="#{backing_SRCreateConfirm.createSRButton_action}"
 id="createSRButton"/>

Tip: To trigger a specific navigation case, the outcome value you
enter in the action attribute must exactly match the outcome value
in the navigation rule, including uppercase and lowercase letters.

Using Dynamic Navigation

Adding Page Navigation 16-19

The button’s action attribute is bound to the createSRButton_action method on
the SRCreateConfirm backing bean, which is shown in Example 16–15.

Example 16–15 Backing Bean Method That Returns a Dynamic Outcome

public String createSRButton_action() {
 BindingContainer bindings = getBindings();
 OperationBinding operBinding =
 bindings.getOperationBinding("createServiceRequest");
 Integer newServiceRequestId = (Integer)operBinding.execute();
 //Put the number of the created service ID onto the request as an
 // example of passing data in that way
 JSFUtils.setRequestAttribute("SRDEMO_CREATED_SVRID",newServiceRequestId);
 return "Complete";
}

The backing bean method creates the service request and returns an outcome value of
Complete. To create the service request, the backing bean method overrides the
declarative method createServiceRequest, which was used to initially create the
button. When a method overrides a declarative method, the JSF runtime injects the
binding container for the current page using the managed property called bindings.
The backing been method calls the getBindings() property getter, which accesses
the current binding container, then it executes the method action binding for the
createServiceRequest method in the SRService data control. For more
information about overriding declarative methods, see Section 17.5, "Overriding
Declarative Methods".

Example 16–16 shows the navigation rule that handles the outcome returned by the
backing bean.

Example 16–16 Navigation Rule Referenced by a Dynamic Outcome

<navigation-rule>
 <from-view-id>/SRCreateConfirm.jspx</from-view-id>
 ...
 <navigation-case>
 <from-outcome>Complete</from-outcome>
 <to-view-id>/SRCreateDone.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

16.4.3 What Happens at Runtime
When a user clicks a navigation component that has a dynamic outcome, the action
method on the backing bean is executed. The method usually processes some user
input and then returns an outcome value to the page. The JSF navigation handler
evaluates the outcome returned by the action method and matches it to a navigation
case that has the same value defined in the from-outcome element. The matching
rule is then implemented and the page defined in the rule’s to-view-id element is
displayed. If the method does not return an outcome or if the outcome does not match
any of the navigation cases, the user remains on the current page.

When using an action method to handle navigation in an application, you don't need
to implement an action listener interface to invoke the method because JSF uses a
default action listener to invoke action methods for page navigation: the method's
logical outcome value is used to tell the JSF navigation handler what page to use for
the render response.

Using Dynamic Navigation

16-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

16.4.4 What You May Need to Know About Using Default Cases
If an action method returns different outcomes depending on the processing logic, you
may want to define a default navigation case to prevent having the method return an
outcome that is not covered by any specific navigation case.

Default navigation cases catch all the outcomes not specifically covered in other
navigation cases. To define a default navigation case, you can exclude the
from-outcome element, which tells the navigation handler that the case should apply
to any outcome not handled by another case.

For example, suppose you are using an action method to handle a Submit command
button. You can handle the success case by displaying a particular page for that
outcome. For all other outcomes, you can display a page explaining that the user
cannot continue. Example 16–17 shows the navigation cases for this scenario.

Example 16–17 Navigation Rule with a Default Navigation Case

<navigation-rule>
 <from-view-id>/order.jsp</from-view-id>
 <navigation-case>
 <from-action>#{backing_home.submit}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/summary.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{backing_home.submit}</from-action>
 <to-view-id>/again.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

In the example, the first navigation case is a dynamic navigation case, where an action
method is determining the outcome. If the outcome is success, the user navigates to
the /summary.jsp page.

The second navigation case is a default navigation case that catches all other outcomes
returned by the action method and displays the /again.jsp for all outcomes. Notice
that the default case does not specify a from-outcome value, which causes this case
to be implemented if the outcome returned by the action method does not match any
of the other cases.

16.4.5 What You May Need to Know About Action Listener Methods
You can use action listener methods in a navigation component when you have an
action that needs information about the user interface. Suppose you have a button that
uses an image of the state of California, and you want a user to be able to select a
county and display information about that county. You could implement an action
listener method that determines which county is selected by storing an outcome for
each county, and an action method that uses the outcome value to navigate to the
correct county page.

To use an action method and action listener method on a component, you would
reference them as shown in Example 16–18.

Using Dynamic Navigation

Adding Page Navigation 16-21

Example 16–18 Navigation Button with Action Listener and Action Methods

<h:commandButton image="californiastate.jpg"
 actionListener="#{someBean.someListenmethod}"
 action="#{someBean.someActionmethod}"/>

16.4.6 What You May Need to Know About Data Control Method Outcome Returns
Instead of binding an action attribute to a backing bean, you can bind it to a data
control method that returns a navigation outcome. To bind the action attribute to a
data control method you must enter the ADF binding expression manually and use
the outcome binding property, as shown in Example 16–19.

Example 16–19 Navigation Component Bound to a Data Control Method

<af:commandButton
 text="Delete Service History Notes"
 action="#{bindings.deleteServiceHistoryNotes.outcome}"/>

The outcome property invokes the outcome() method in the
FacesCtrlActionBinding class, which executes the data control method by calling
the execute method of that same class. When the data control method returns a
value, the outcome() method converts it to a string (if necessary) and returns it to the
action attribute.

Using Dynamic Navigation

16-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Creating More Complex Pages 17-1

17
Creating More Complex Pages

This chapter describes how to add more complex bindings to your pages, such as
using methods that take parameters to create forms and command components.

This chapter includes the following sections:

■ Section 17.1, "Introduction to More Complex Pages"

■ Section 17.2, "Using a Managed Bean to Store Information"

■ Section 17.3, "Creating Command Components to Execute Methods"

■ Section 17.4, "Setting Parameter Values Using a Command Component"

■ Section 17.5, "Overriding Declarative Methods"

17.1 Introduction to More Complex Pages
Once you create a basic page and add navigation capabilities, you may want to add
more complex features to your pages, such as the ability to store information on a
managed bean, or the ability to override declarative actions. ADF provides many
features that allow you to add this complex functionality using very little actual code.

For example, the Delete button on the SRMain page was created by dragging the
Delete operation for the ServiceRequest collection and dropping it as a command
button. Then that Delete operation was overridden, so that when the button is
clicked, it not only deletes the service request from the cache, but also commits the
transaction. Additionally, the SRMain page can be accessed from a number of pages in
the SRDemo application. The userState managed bean (UserSystemState.java)
holds the value of the originating page. The overridden Delete operation also
contains logic to access the value of the originating page so that the user navigates
successfully off the SRMain page.

Read this chapter to understand:

■ How to create an use a managed bean to store parameter values or flags

■ How to create command components that will invoke custom methods on your
application module

■ How to set parameter values

■ How to add logic to an operation or custom method bound to a command
component

Using a Managed Bean to Store Information

17-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

17.2 Using a Managed Bean to Store Information
Often, pages require information from other pages. Instead of setting this information
directly on a page (for example, by setting the parameter value on the page’s page
definition file), which essentially hardcodes the information, you can store this
information on a managed bean. As long as the bean is stored in a scope that is
accessible, any value for an attribute on the bean can be accessed using an EL
expression.

For example, the SRMain page needs to know the page from which the user navigated
from in order to return the user to the correct page. The SRDemo application has a
managed bean that holds this information, allowing the sending page to set the
information, and the SRMain page to use the information in order to determine where
to navigate.

Managed beans are Java classes that you register with the application using the
faces-config.xml file. When the JSF application starts up, it parses this
configuration file and the beans are made available and can be referenced in an EL
expression, allowing access to the beans’ properties and methods. Whenever a
managed bean is referenced for the first time and it does not already exist, the
Managed Bean Creation Facility instantiates the bean by calling the default constructor
method on the bean. If any properties are also declared, they are populated with the
declared default values.

17.2.1 How to Use a Managed Bean to Store Information
Using the JSF Configuration Editor in JDeveloper, you can create a managed bean and
register it with the JSF application at the same time.

To create a managed bean:
1. Open the faces-config.xml file. This file is stored in the <project_

name>/WEB-INF directory.

2. At the bottom of the window, select the Overview tab.

3. In the element list on the left, select Managed Beans. Figure 17–1 shows the JSF
Configuration Editor for the faces-config.xml file.

Figure 17–1 The JSF Configuration Editor

4. Click the New button to open the Create Managed Bean dialog, as shown in
Figure 17–2. Enter the name and fully qualified class path for the bean. Select a
scope, select the Generate Java File checkbox, and click OK.

Tip: Use managed beans to store only "bookeeping" information. All
application data and processing should be handled by logic in the
business layer of the application.

Using a Managed Bean to Store Information

Creating More Complex Pages 17-3

Figure 17–2 The Create Managed Bean Dialog

5. You can optionally use the arrow to the left of the Managed Properties bar to
display the properties for the bean. Click New to create any properties. Press F1
for additional help with the configuration editor.

17.2.2 What Happens When You Create a Managed Bean
When you use the configuration editor to create a managed bean, and elect to generate
the Java file, JDeveloper creates a stub class with the given name and a default
constructor. Example 17–1 shows the code added to the MyBean class stored in the
view package.

Example 17–1 Generated Code for a Managed Bean

package view;

public class MyBean {
 public MyBean() {
 }
}

JDeveloper also adds a managed-bean element to the faces-config.xml file. This
declaration allows you to easily access any logic on the bean using an EL expression
that refers to the given name. Example 17–2 shows the managed-bean element
created for the MyBean class.

Tip: If the managed bean will be used by multiple pages in the
application, you should set the scope to Session. However, then the
bean cannot contain any reference to the binding container, as the data
on the binding object is on the request scope, and therefore cannot
"live" beyond a request. For examples of when you may need to
reference the binding container, see Section 17.5, "Overriding
Declarative Methods".

Note: While you can declare managed properties using the
configuration editor, the corresponding code is not generated on the
Java class. You will need to add that code by creating private member
fields of the appropriate type and then using the Generate
Accessors... menu item on the context menu of the code editor to
generate the corresponding getter and setter methods for these bean
properties.

Creating Command Components to Execute Methods

17-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 17–2 Managed Bean Configuration on the faces-config.xml File

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

You now need to add the logic required by your pages and methods in your
application. You can then refer to that logic using an EL expression that refers to the
managed-bean-name given to the managed bean. For example, to access the myInfo
property on the bean, the EL expression would be:

#{my_bean.myInfo}

The following sections of this chapter provide examples of using the SRDemo
application’s userState managed bean (view.UserSystemState.java) to hold
or get information. Please see those sections for more detailed examples of using a
managed bean to hold information.

■ Section 17.4, "Setting Parameter Values Using a Command Component"

■ Section 17.5, "Overriding Declarative Methods"

■ Section 18.5, "Conditionally Displaying the Results Table on a Search Page"

17.3 Creating Command Components to Execute Methods
When your application contains custom methods, these methods appear in the Data
Control Palette. You can then drag these methods and drop them as command buttons.
When a user clicks the button, the method is executed. For more information about
custom methods, see Chapter 8, "Implementing Business Services with Application
Modules".

For example, the SRService application module in the SRDemo application contains
the deleteServiceHistoryNotes(Set keySet) method. This method ensures
that one or more rows are selected, then deletes those rows and commits the
transaction. To allow the user to execute this method, you drag the
deleteServicehistoryNotes(Set) method from the Data Control Palette, as
shown in Figure 17–3.

Figure 17–3 Methods in the Data Control Palette

Creating Command Components to Execute Methods

Creating More Complex Pages 17-5

17.3.1 How to Create a Command Component Bound to a Service Method
In order to perform the required business logic, many methods require a value for the
method’s parameter or parameters. That means when you create a button bound to the
method, you need to specify from where the value for the parameter(s) can be
retrieved.

For example, if you use the deleteServicehistoryNotes(Set) method, you
need to specify the set of rows to be deleted.

To add a button bound to a method:
1. From the Data Control Palette, drag the method onto the page.

2. From the context menu, choose Methods > ADF Command Button.

3. If the method takes parameters, the Action Binding dialog opens. In the Action
Binding Editor, click the ellipses (...) button in the Value column of Parameters to
launch the EL Expression Builder. You use the builder to set the value of the
method’s parameter.

17.3.2 What Happens When You Create Command Components Using a Method
When you drop a method as a command button, JDeveloper:

■ Defines a method action binding for the method. If the method takes any
parameters, JDeveloper creates NamedData elements that hold the parameter
values.

■ Inserts code in the JSF page for the ADF Faces command component. This code is
the same as code for any other command button, as described in Section 13.4.2.3,
"Using EL Expressions to Bind to Navigation Operations". However, instead of
being bound to the execute method of the action binding for a built-in operation,
the button is bound to the execute method of the method action binding for the
method that was dropped.

17.3.2.1 Using Parameters in a Method
When you drop a method that takes parameters onto a JSF page, JDeveloper creates a
method action binding. This binding is what causes the method to be executed when a
user clicks the command component. When the method requires parameters to run,
JDeveloper also creates NamedData elements for each parameter. These elements
represent the parameters of the method.

Note: In the SRDemo application, additional view-layer logic is
added to the deleteServiceHistoryNotes(Set) method by
overriding this method in a managed bean. You can also override a
custom method if you need to provide conditional navigational logic.
For more information, see Section 17.5, "Overriding Declarative
Methods".

Tip: If you are dropping a button for a method that needs to work
with data in a table or form, that button must be dropped inside the
table or form.

Creating Command Components to Execute Methods

17-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, the deleteServiceHistoryNotes method action binding contains a
NamedData element for the Set parameter. This element is bound to the value
specified when you created the action binding. Example 17–3 shows the method action
binding created when you drop the deleteServiceHistoryNotes(Set) method,
and bind the Set parameter (named keySet) to the keySet property of the
selectionState property of the history table UI component in the page’s backing
bean (for more information about using this method to delete multiple rows (the key
set), see Section 14.6.5, "How to Use the TableSelectMany Component in the Selection
Facet").

Example 17–3 Method Action Binding for a Parameter Method

<methodAction id="deleteServiceHistoryNotes"
 InstanceName="SRService.dataProvider"
 DataControl="SRService"
 MethodName="deleteServiceHistoryNotes"
 RequiresUpdateModel="true" Action="999">
 <NamedData NDName="keySet"
 NDValue="${backing_SRMain.historyTable.selectionState.keySet}"
 NDType="java.util.Set"/>
</methodAction>

17.3.2.2 Using EL Expressions to Bind to Methods
Like creating command buttons using operations, when you create a command button
using a method, JDeveloper binds the button to the method using the
actionListener attribute. The button is bound to the execute property of the
action binding for the given method. This binding causes the binding’s method to be
invoked on the application module. For more information about the command
button’s actionListener attribute, see Section 13.4.3, "What Happens at Runtime:
About Action Events and Action Listeners".

Like navigation operations, the disabled property on the button uses an EL
expression to determine whether or not to display the button. Example 17–4 shows the
EL expression used to bind the command button to the
deleteServiceHistoryNotes(Set) method.

Example 17–4 JSF Code to Bind a Command Button to a Method

<af:commandButton actionListener="#{bindings.deleteServiceHistoryNotes.execute}"
 text="deleteServiceHistoryNotes"
 disabled="#{!bindings.deleteServiceHistoryNotes.enabled}"/>

Tip: Instead of binding a button to the execute method on the
action binding, you can bind the button to method in a backing bean
that overrides the execute method. Doing so allows you to add logic
before or after the original method runs. For more information, see
Section 17.5, "Overriding Declarative Methods".

Setting Parameter Values Using a Command Component

Creating More Complex Pages 17-7

17.3.3 What Happens at Runtime
When the user clicks the button, the method binding causes the associated method to
be invoked, passing in the value bound to the NamedData element as the parameter.
For example, if a user clicks a button bound to the
deleteServiceHistoryNotes(Set) method, the method takes the value of the
key set (in this case the selected rows in a table) and deletes them from the data source.

17.4 Setting Parameter Values Using a Command Component
There may be cases where an action on one page needs to set parameters that will be
used to determine application functionality. For example, the results table on the
SRSearch page will display only if the value of the searchFirstTime flag on the
userState managed bean is false. When this bean is instantiated as the search
page is rendered, the isSearchFirstTime method on the bean checks that
parameter. If it is null (which it will be the first time the page is rendered), the bean
sets the value to true.

A setActionListener component, which is nested in the command button used to
execute this search, is then used to set the searchFirstTime flag to false, thus causing
the results table to display once the search is executed. For information about using
managed beans, see Section 17.2.1, "How to Use a Managed Bean to Store
Information".

17.4.1 How to Set Parameters Using Command Components
You can use the setActionListener component to set values on other objects. This
component must be a child to a command component.

To use the setActionListener component:
1. Create a command component using either the Data Control Palette or the

Component Palette.

2. From the Component Palette, drag a setActionListener component and drop
it as a child to the command component.

3. In the Insert ActionListener dialog, set From to be the parameter value.

4. Set To to be where you want to set the parameter value.

Tip: When you drop a UI component onto the page, JDeveloper
automatically gives it an ID based on the number of that component
previously dropped, for example, commandButton1,
commandButton2. You may want to change the ID to something
more descriptive, especially if you will need to refer to it in a backing
bean that contains methods for multiple UI components on the page.
Note that if you do change the ID, you must manually update any
references to it in EL expressions in the page.

Overriding Declarative Methods

17-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

17.4.2 What Happens When You Set Parameters
The setActionListener component lets the command component set a value
before navigating. When you set the From attribute to the source of the value you need
to pass, or the actual value, the component will be able to access that value. When you
set the To attribute to a target, the command component is able to set the value on the
target. Example 17–5 shows the code on the JSF page for a command component that
takes the value false and sets that as the value of the searchFirstTime flag on the
userState managed bean.

Example 17–5 JSF Page Code for a Command Button Using a setActionListener
Component

<af:commandButton actionListener="#{bindings.Execute.execute}"
 text="#{res['srsearch.searchLabel']}">
 <af:setActionListener from="#{false}"
 to="#{userState.searchFirstTime}"/>
</af:commandButton>

17.4.3 What Happens at Runtime
When a user clicks the command component, before navigation occurs, the
setActionListener component sets the parameter value. In Example 17–5, the
setActionListener takes the value false and sets it as the value for the
searchFirstTime attribute on the userState managed bean. Now, any
component that needs to know this value in determining whether or not to render, can
access it using the EL expression #{userState.searchFirstTime}. For the
complete example Section 18.5, "Conditionally Displaying the Results Table on a
Search Page".

17.5 Overriding Declarative Methods
When you drop an operation or method as a command button, JDeveloper binds the
button to the execute method for the operation or method. However, there may be
occasions when you need to add logic before or after the logic executes. For example,
after the Delete operation successfully executes, you may want to execute the
Commit operation, so that the user does not have to click another button.

JDeveloper allows you to add logic to a declarative operation by creating a new
method and property on a managed bean that provide access to the binding container.
By default, this generated code executes the operation or method. You can then add
logic before or after this code. JDeveloper automatically binds the command
component to this new method instead of the execute property on the original
operation or method. Now when the user clicks the button, the new method is
executed.

Tip: Consider storing the parameter value on a managed bean or in
scope instead of setting it directly on the resulting page’s page
definition file. By setting it directly on the next page, you lose the
ability to easily change navigation in the future. For more information,
see Section 17.2, "Using a Managed Bean to Store Information".
Additionally, the data in a binding container is valid only during the
request in which the container was prepared. Therefore, the data may
change between the time you set it and the time the next page is
rendered

Overriding Declarative Methods

Creating More Complex Pages 17-9

Following are some of the instances in the SRDemo application where backing beans
contain methods that inject the binding container and then add logic before or after the
declarative method is executed:

■ SRCreateConfirm.java: The createSR_action method overrides the
createServiceRequest method to set the service request’s ID as a parameter
value on the JSFUtils helper class after the method is executed.

■ SRMain.java: The onDeleteRequest method overrides the Delete operation.
It first executes the Delete action. If any errors occur, it redisplays the page. If
there are no errors, it executes the Commit operation on the application module. If
any errors occur, it redisplays the page. If there are no errors, the user is returned
to the page that is held as the ReturnNavigationRule value on the UserState
managed bean.

17.5.1 How to Override a Declarative Method
In order to override a declarative method, you must have a managed bean to hold the
new method to which the command component will be bound. If your page has a
backing bean associated with it, JDeveloper adds the code needed to access the
binding object to this backing bean. If your page does not have a backing bean,
JDeveloper asks you to create one.

To override a declarative method:
1. Drag the operation or method to be overridden onto the JSF page and drop it as a

UI command component.

Doing so creates the component and binds it to the associated binding object in the
ADF Model layer using the ActionListener attribute on the component.

For more information about creating command components using methods on the
Data Control Palette, see Section 17.3, "Creating Command Components to
Execute Methods".

For more information about creating command components from operations, see
Section 13.4.2, "What Happens When Command Buttons Are Created Using the
Data Control Palette"

2. On the JSF page, double-click on the component.

In the Bind Action Property dialog, identify the backing bean and the method to
which you want to bind the component using one of the following techniques:

■ If auto-binding has been enabled on the page, the backing bean is already
selected for you, as shown in Figure 17–4.

Note: You cannot use the following procedure if the command
component currently has an EL expression as its value for the Action
attribute, as JDeveloper will not overwrite an EL expression. You must
remove this value before continuing.

Overriding Declarative Methods

17-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 17–4 Bind Action Property Dialog for a Page with Auto-Binding Enabled

– To create a new method, enter a name for the method in the Method field,
which initially displays a default name.

 OR

– To use an existing method, select a method from the dropdown list in the
Method field.

– Select Generate ADF Binding Code.

■ If the page is not using auto-binding, you can select from an existing backing
bean or create a new one, as shown in Figure 17–5. For more information
about auto-binding, see Section 11.5.4, "How to Use the Automatic Component
Binding Feature".

Figure 17–5 Bind Action Property Dialog for a Page with Auto-Binding Disabled

– Click New to create a new backing bean. The Create Managed Bean dialog
is displayed. Use this dialog to name the bean and the class, and set the
bean’s scope.

OR

– Select an existing backing bean and method from the dropdown lists.

Overriding Declarative Methods

Creating More Complex Pages 17-11

3. After identifying the backing bean and method, click OK in the Bind Action
Property dialog

JDeveloper opens the managed bean in the source editor. Example 17–6 shows the
code inserted into the bean. In this example, a command button is bound to the
Delete operation.

Example 17–6 Generated Code in a Backing Bean to Access the Binding Object

 public BindingContainer getBindings() {

 return this.bindings;
 }

 public void setBindings(BindingContainer bindings) {
 this.bindings = bindings;
 }

 public String commandButton_action1() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("Delete");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty()) {
 return null;
 }
 return null;
 }

4. You can now add logic either before or after the binding object is accessed.

Example 17–7 Accessing the Result of an EL Expression in a Managed Bean

FacesContext fc = FacesContext.getCurrentInstance();
 ValueBinding expr =
 fc.getApplication().
 createValueBinding("#{bindings.SomeAttrBinding.inputValue}");
DCIteratorBinding ib = (DCIteratorBinding)
 expr.getValue(fc);

Note: If you are creating a new managed bean, then you must set the
scope of the bean to request. Setting the scope to request is
required because the data in the binding container object that will be
referenced by the generated code is on the request scope, and
therefore cannot "live" beyond a request.

Additionally, JDeveloper understands that the button is bound to the
execute property of a binding whenever there is a value for the
ActionListener attribute on the command component. Therefore,
if you have removed that binding, you will not be given the choice to
generate the ADF binding code. You need to either inject the code
manually, or to set a dummy value for the ActionListener before
double-clicking on the command component.

Tip: To get the result of an EL expression, you need to use the
ValueBinding class, as shown in Example 17–7

Overriding Declarative Methods

17-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In addition to any processing logic, you may also want to write conditional logic
to return one of multiple outcomes depending on certain criteria. For example,
you might want to return null if there is an error in the processing, or another
outcome value if the processing was successful. A return value of null causes the
navigation handler to forgo evaluating navigation cases and to immediately
redisplay the current page.

 The command button is now bound to this new method using the Action
attribute instead of the ActionListener attribute. If a value had previously
existed for the Action attribute (such as an outcome string), that value is added
as the return for the new method. If there was no value, the return is kept as null.

17.5.2 What Happens When You Override a Declarative Method
When you ovrerride a declarative method, JDeveloper adds a managed property to
your backing bean with the managed property value of #{bindings} (the reference
to the binding container), and it adds a strongly-typed bean property to your class of
the BindingContainer type which the JSF runtime will then set with the value of
the managed property expression #{bindings}. JDeveloper also adds logic to the UI
command action method. This logic includes the strongly-typed getBindings()
method used to access the current binding container.

Example 17–8 shows the code that JDeveloper adds to the chosen managed bean.
Notice that the return String "Complete" was automatically added to the method,
as that was the value of the action attribute.

Tip: To trigger a specific navigation case, the outcome value returned
by the method must exactly match the outcome value in the
navigation rule in a case-sensitive way.

Overriding Declarative Methods

Creating More Complex Pages 17-13

Example 17–8 Generated Code in a Backing Bean to Access the Binding Object

private BindingContainer bindings;
...
public String createSRButton_action() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("createServiceRequest");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty()) {
 return null;
 }

 return "Complete";
}

This code does the following:

■ Accesses the binding container

■ Finds the binding for the associated method, and executes it

■ Adds a return for the method that can be used for navigation. By default the
return is null, or if an outcome string had previously existed for the button’s
Action attribute, that attribute is used as the return value. You can change this
code as needed. For more information about using return outcomes, see
Section 16.4, "Using Dynamic Navigation".

JDeveloper automatically rebinds the UI command component to the new method
using the Action attribute, instead of the ActionListener attribute. For example,
Example 17–9 shows the code on a JSF page for a command button created by
dropping the createServiceRequest method. Notice that the actionListener
attribute is bound to the createServiceRequest method, and the action attribute
has a String outcome of Complete. If the user were to click the button, the method
would simply execute, and navigate to the page defined as the toViewId for this
navigation case.

Example 17–9 JSF Page Code for a Command Button Bound to a Declarative Method

<af:commandButton actionListener="#{bindings.createServiceRequest.execute}"
 text="createServiceRequest"
 disabled="#{!bindings.createServiceRequest.enabled}"
 id="createSRButton"
 action="Complete"/>

Example 17–10 shows the code after overriding the method on the page’s backing
bean. Note that the action attribute is now bound to the backing bean’s method.

Example 17–10 JSF Page Code for a Command Button Bound to an Overridden Method

<af:commandButton text="createServiceRequest"
 disabled="#{!bindings.createServiceRequest.enabled}"
 id="createSRButton"
 action="#{backing_SRCreateConfirm.createSRButton_action}"/>

Overriding Declarative Methods

17-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Tip: If when you click the button that uses the overridden method,
you receive this error:

SEVERE: Managed bean main_bean could not be created
The scope of the referenced object: '#{bindings}' is
shorter than the referring object

it is because the managed bean that contains the overriding method
has a scope that is greater than request, (that is, either session or
application). Because the data in the binding container referenced
in the method has a scope of request, the scope of this managed
bean must be set to request scope or a lesser scope.

Creating a Search Form 18-1

18
Creating a Search Form

This chapter describes how to create different types of search pages, for example
search forms that work similarly to Oracle Forms EnterQuery/ExecuteQuery searches,
or forms that are more like search forms you find on web sites.

This chapter includes the following sections:

■ Section 18.1, "Introduction to Creating Search Forms"

■ Section 18.2, "Creating a EnterQuery/ExecuteQuery Search Form"

■ Section 18.3, "Creating a Web-type Search Form"

■ Section 18.4, "Creating Search Page Using Named Bind Variables"

■ Section 18.5, "Conditionally Displaying the Results Table on a Search Page"

18.1 Introduction to Creating Search Forms
You can create a search form that allows users to enter criteria into a form based on
known attributes of an object. The criteria is then constructed into a query, and a
query-by-example (QBE) search is executed. All records whose attributes match the
entered criteria are returned and can then be displayed in a table, either on a separate
page or on the same page. To create a QBE search from, you drop a collection from the
Data Control palette as an ADF Search Form. When you do this, the input text
components do not have any associated validators or converters, which then allows
the end user to enter search criteria that might otherwise not pass validation or
conversion, such as entering > 1500 into a number field (for more information about
conversion and validation, see Chapter 20, "Using Validation and Conversion").

In addition to iterating over collections, an iterator binding provides QBE capability by
also being able to iterate over a collection of QBE criteria rows. These rows are created
by the criteria entered by the user. Each criteria row has the same attribute structure as
a row in its related data collection, except that the attribute values are all treated as a
String data type. This data type allows the user to enter in the form fields query
criteria containing comparison operators and wildcard characters.

For the iterator binding to have this capability, the binding must be set to Find mode.
When an iterator binding is set to work in Find mode, the binding iterates over the
these criteria rows instead of the standard collection data. The Execute operation is
then used to execute the query against the collection. The Execute operation applies
the user’s query criteria and also disables the Find mode for the iterator binding,
allowing the form to display data returned from the collection, as opposed to criteria.
For more information about the Find mode, see Section 10.5.3, "How to Use Find Mode
to Implement Query-by-Example".

Introduction to Creating Search Forms

18-2 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

By default, an ADF Search form contains command buttons bound to the Find and
Execute operations. These button are useful if you want to be able to use the form to
both search for records and view the current returned record. The user clicks the Find
button to put the iterator in Find mode, thus making the input text fields available for
criteria. When the user then clicks the Execute button, the criteria is used to create the
query, the search is executed, and the form can then display the results. This type of
search form is similar to how Oracle Forms EnterQuery/ExecuteQuery searches work.
For more information on creating this type of search form, see Section 18.2, "Creating a
EnterQuery/ExecuteQuery Search Form".

You can also force the iterator to always be in Find mode, thus negating the need for
the Find button and allowing the user to view both their search criteria and the results.
The user sees only a button bound to the Execute operation. When the user clicks
that button, the iterator is toggled out of Find mode. To have it programatically set
back to Find mode so that the user can always enter criteria, you insert an action
binding into the page definition file that executes whenever the iterator is not in Find
mode (for example after the Execute operation is invoked). However, this means that
the results must be displayed in a separate form or table, as the iterator for the search
form will always be in Find mode. This type of search is how a typical web page
search works. For more information, see Section 18.3, "Creating a Web-type Search
Form".

For a this type of web search, you can have the search form and results table on
separate pages, or you can have the search form and the results table on the same
page. However, when the search and results are on the same page, there must be one
iterator that is always in Find mode for the search form, and a separate iterator for the
results. See Section 18.3.4, "About Creating Search and Results on the Same Page" for
more information. The SRSearch page uses this QBE search functionality, and displays
the search form and results table on the same page, as shown in Figure 18–1.

Figure 18–1 Search and Results on the Same Page

You can also create a quick search form using named bind variables from a view object
created just for the search. For example, the SRStaffSearch page in the SRDemo
application uses the StaffListByEmailNameRole view object to create the search
form. Instead of dropping the collection as an ADF Search Form, the
ExecuteWithParams operation is dropped as a parameter form. When this search is
executed, instead of building a QBE query dynamically each time the search is
executed, the parameter form uses the view object’s design-time SQL statement to
execute the query. The text of the SQL statement never changes, so the database can
reuse it efficiently, providing increased performance.

Creating a EnterQuery/ExecuteQuery Search Form

Creating a Search Form 18-3

By contrast, in a QBE query the WHERE clause predicate is generated dynamically to
match your search criteria. So if you keep searching with different combinations of
criteria, the text of your SQL statement for that view object changes with the different
executions. For example, three different searches might generate the following three
different WHERE clauses for their SQL statements:

■ AND (SVR_ID = 101)

■ AND (SVR_ID = 102

■ AND (PROBLEM_DESCRIPTION LIKE '%FOO%' AND ...)

Because the text of the SQL statement potential changes for a QBE search, the view
object creates a new prepared statement each time, and the query must be reparsed on
the database side. For this reason, when a search is expected to be frequently executed
with the same statement, you may want to use a parameter search form for enhanced
performance.

However, in order to create a parameterized search, you create a specific view object
for the search. If you need to work programmatically with the rows using their
generated custom row interfaces, it might not be practical if the view object for the
search requires exactly the same structure and behavior as an existing view object. For
example, if you create two view objects, ServiceRequests and
ServiceRequestSearch, both with the same structure, and you need to edit the
client code to get typesafe access to attributes, you'll need to edit both the
ServiceRequestsRow and SearchRequestsSearchRow client interfaces. For this
reason, you should use a QBE type search when you the query will require a view
object that is the same as an existing view object, and the expected performance
savings from a parameterized search will not be great.

In the SRDemo application, the SRSearch page uses a QBE query to find service
requests based on the ID, status, problem description, and product name from the
ServiceRequests view object. This search page uses an instance of the
ServiceRequests view object named SearchServiceRequests, which is
instantiated specifically for the search page by the application module. Another
instance of the ServiceRequests view object, the ServiceRequestsByStatus
instance, is used by the SRList page to show a filtered list of service requests by status.

For more information about view objects, view object instances, and named bind
variables, see Chapter 5, "Querying Data Using View Objects"

18.2 Creating a EnterQuery/ExecuteQuery Search Form
You can create a form that allows users to enter search criteria, execute the search, and
then review the results of the search in the same form. However, you will need to
create two forms that will act as one: one for the search form, and one for the results.

To do this, you set the form used to enter the search criteria to display only when the
iterator is in Find mode. You set the second form, which displays the results, to
display only when the iterator is not in Find mode. You control the display of each
using an EL expression for the Rendered attribute of the forms. This allows the user
to enter in a criteria like > 1500 into a number field when the form is in Find mode,
but the same entry will raise an error when the user is editing data.

Creating a EnterQuery/ExecuteQuery Search Form

18-4 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

18.2.1 How to Create an EnterQuery/ExecuteQuery Search Page
As stated above, you actually create two forms, one for the query and one for the
results. EL expressions are used to determine when to display the correct form.

1. From the Data Control Palette, drag a collection and from the context menu, select
Forms > ADF Search Form.

For example, if you want the query to execute over all service requests, you would
drag the ServiceRequests collection.

2. Drag the same collection, but this time, drop it as an ADF Form. Select Include
Navigation Controls in the Edit Form Fields dialog. This will be the form that
displays the results. The navigation controls will allow the user to navigate
through the objects returned from the query.

3. In the Structure window, select the panelForm component for the first form.

4. In the Property Inspector, in the Rendered field, enter the following expression,
replacing <iterator> with the name of the iterator:

#{bindings.<iterator>.findMode == true}

This will cause the form to be rendered whenever the iterator is in Find mode.

If you are unsure of the name, you can use the Bind to Data tool to open the
Expression Builder, as shown in Figure 18–2.

Figure 18–2 Clicking to Open the Bind to Data Tool

In the Variables tree of the Expression Builder, select the findMode property
under the correct iterator, and click the right arrow to add it to the Expression
pane. You then add the logical operator and set the expression to check for true.
Figure 18–3 shows the expression that would be built for the
ServiceRequestsIterator iterator.

Creating a EnterQuery/ExecuteQuery Search Form

Creating a Search Form 18-5

Figure 18–3 Expression Builder Used to Set the Rendered Attribute

5. In the Structure window, select the panel form for the second form. Set the
Rendered property to:

#{bindings.<iterator_name>.findMode == false}

This expression will cause this form to be displayed whenever the iterator is not in
Find mode.

6. From the Data Control Palette, drag the Find operation associated with the
collection and drop it as an ADF Command Button next to the navigation buttons
in the second form. This button allows the user to toggle back into Find mode.
Doing so will display the first form, so that the user can execute another query.

7. Rename the Find and Execute buttons to something more meaningful for the user.
For example, you might rename the Find button in the top form to Cancel Query,
since clicking this button will cause the iterator to toggle out of Find mode. You
might rename the Execute button in the top form to Execute Query. Lastly, you
might rename the bottom Find button to Enter Query, as that button will be used
to place the iterator into Find mode, thereby causing the top form to display.

18.2.2 What Happens When You Create a Search Form
When you drop a search form onto a page, JDeveloper includes a command button
bound to the Find operation and a command button bound to the Execute
operation, as shown in Example 18–1. The Find operation places the associated
iterator into Find mode. The Execute operation executes the query and places the
iterator out of Find mode.

Example 18–1 Page Definition Code for Find and Execute Operations

<action id="Find" RequiresUpdateModel="true" Action="3"
 IterBinding="ServiceRequestsIterator"/>
<action id="Execute" RequiresUpdateModel="true" Action="2"
 IterBinding="ServiceRequestsIterator"/>

The following table shows the built-in search operations, along with the result of
invoking the operation.

Creating a Web-type Search Form

18-6 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Additionally when you drop an ADF Search Form, JDeveloper adds an outputText
component inside the panelGroup component that holds the Find and Execute
buttons. This outputText component displays the words Find Mode whenever the
iterator is in Find mode. This is used mostly for development purposes, allowing you
to be able to easily determine when the iterator is in Find mode. You can safely delete
this component.

18.3 Creating a Web-type Search Form
For a standard web-type search form, you may not want the user to have to manually
place the form into Find mode. Instead, you may want them to simply enter the
search criteria and then execute the search. To do this, you configure the iterator so
that it is always in Find mode. You can then either have the results displayed on a
separate page, or you can display them on the same page. If you have them displayed
on the same page, you need to create a separate iterator for the results set that is not
continually in Find mode.

18.3.1 How to Create a Search Form and Separate Results Page
To create a search form that is always in find mode, you drop the collection you are
searching against as an ADF Search Form, and set a condition on the iterator that
keeps it in Find mode. You then drop the same collection as a table or form on another
page to display the results.

To create search and results on separate pages:
1. From the Data Control Palette, drag a collection and from the context menu, select

Forms > ADF Search Form.

For example, if you want the query to execute over all service requests, you would
drag the ServiceRequests collection.

2. On another page, drag the same collection, but this time drop it as any type of
table or form.

3. On the Execute button, create the navigation between the search form and the
results page. This will allow the user to navigate to the results page as the query is
done. For more information about creating navigation, see Chapter 16, "Adding
Page Navigation".

At this point, when the search form on the page renders, it displays with values in
the text boxes from the first record. Users must click the Find button in order to set
the iterator into Find mode and enter search criteria. When the user then clicks
the Execute button, the user navigates to the results page, whose table displays the
results from the query. If the user navigates back to the search form, it displays the
attribute values of the first record in the results set.

Table 18–1 Search Built-in Operations

Operation

Action
Attribute
Value When invoked, the associated iterator binding will...

Find 3 Places the associated iterator into Find mode, allowing it to
iterate over criteria instead of data.

Execute 2 Applies the criteria and executes the query using the criteria
from the iterator when in Find mode. Toggles the associated
iterator out of Find mode, so that the iterator can work with
the results.

Creating a Web-type Search Form

Creating a Search Form 18-7

You can follow the next set of procedures to eliminate the need for the Find button.

To set the iterator automatically in Find mode:
Follow these steps to automatically put the search form’s iterator into Find mode:

1. Open the page definition file for the search page.

2. In the Structure Pane, right-click on the Executables node and choose Insert
inside executables > invokeAction.

3. In the Insert invokeAction dialog, enter an ID for the action, such as AlwaysFind.
From the Binds drop-down list, select Find. Do NOT click OK or close the dialog.

4. In the Insert invokeAction dialog, select the Advanced Properties tab.

5. For Refresh Condition, enter the following EL expression, which tells the
application to invoke this Find action whenever the page is not in Find mode.
Replace <iterator> with the name of the iterator:

${bindings.<iterator>.findMode == false}

6. In the search JSF page, delete the Find button. Doing this only deletes the
component from the JSF page. The binding still exists in the page definition
because it is being referenced by the EL expression on the RefreshCondition.

18.3.2 What Happens When You Create A Web-type Search Form
When you drop a search form onto a page, JDeveloper includes a command button
bound to the Find operation and a command button bound to the Execute
operation. For details, see Section 18.2.2, "What Happens When You Create a Search
Form".

You use invokeActions to invoke an operation implicitly. For example, in a search
page, instead of needing to have the user click the Find button, you can invoke this
operation at a defined time or when a defined condition evaluates to true.

The RefreshCondition attribute provides a condition for invoking the action. The
Refresh attribute determines at what point in the ADFm lifecycle the action should
be invoked, when the RefreshCondition evaluates to true. For a web-type search
page, you use an EL expression that evaluates to a condition that says to invoke the
Find action whenever the iterator is not in Find mode. For example the page
definition for the SRSearch page has the following entries:

Example 18–2 Page Definition Code for a Find InvokeAction and Related Binding

<executables>
 <invokeAction id="AlwaysFind" Binds="Find" Refresh="ifNeeded"
 RefreshCondition=
 "${bindings.SearchServiceRequestsIterator.findMode == false}"/>
 <iterator id="SearchServiceRequestsIterator" RangeSize="10"
 Binds="SearchServiceRequests" DataControl="SRService"/>
</executables>
 ...
<bindings>
 ...
 <action id="Find" RequiresUpdateModel="true" Action="3"
 IterBinding="SearchServiceRequestsIterator"/>
...
</bindings>

Creating a Web-type Search Form

18-8 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

18.3.3 What You May Need to Know
By creating a condition that places the iterator in continuous Find mode, any other
binding that references that iterator will also be referencing the iterator when it is in
Find mode. Therefore, if you want to have other components on the page that also
need to reference that iterator, but do not need it to be in Find mode, you must create
a separate iterator based on the same collection. This is how you are able to place the
search results on the same page as the search form. See the next section Chapter 18.3.4,
"About Creating Search and Results on the Same Page" for details.

18.3.4 About Creating Search and Results on the Same Page
As stated above, when you place the iterator into Find mode, it is in Find mode for
all associated bindings. When you drop the same collection as a table to display the
search results, that table’s binding uses the same iterator as the search form. Because
that means the table component would be bound to an iterator binding in Find mode,
it will display the current query-by-example view criteria rows, as shown in
Figure 18–4, instead of the actual data until you hit Execute and the iterator is taken
out of Find mode.

Figure 18–4 The Table Displays the Criteria Rows When in Find Mode

To avoid this, you must create a second iterator for the table that is not in Find mode,
but instead displays the collection of data that meets the search criteria.

18.3.5 How To Create Search and Results on the Same Page
To create a page that has both a search form and results table on the same page, you
follow the procedures for when they are on separate pages, except you must create a
separate iterator for the results table.

To create a search form and results table on the same page:
1. From the Data Control Palette, drag a collection and from the context menu, select

Forms > ADF Search Form.

For example, if you want the query to execute over all service requests, you would
drag the ServiceRequests collection.

2. Drag the same collection, but this time drop it as any type of table.

3. Open the associated page definition file.

Creating a Web-type Search Form

Creating a Search Form 18-9

4. In the Structure Pane, right-click on the Executables node and choose Insert
inside executables > invokeAction.

5. In the Insert invokeAction dialog, enter an ID for the action, such as
AlwaysFind. From the Binds drop-down list, select Find. Do NOT click OK or
close the dialog.

6. In the Insert invokeAction dialog, select the Advanced Properties tab.

7. For RefreshCondition, enter the following EL expression, which tells the
application to invoke this action whenever the page is not in Find mode. Replace
<iterator> with the name of the iterator:

${bindings.<iterator>.findMode == false}

8. In the Structure Pane, right-click on the Executables node and choose Insert
inside executables > iterator.

9. Select the same collection used for the search form, and in the Iterator ID field
enter a more meaningful name, such as ResultsIterator and click OK.

10. In the Structure Pane, expand the bindings node, right-click on the binding for the
results table, and choose Properties.

11. In the Table Binding Editor dialog, make sure the correct collection is selected in
the Data Collection column.

12. Select the newly created iterator from the Iterator drop-down list, ensure that all
correct attributes are in the Display Attributes column, and click OK.

13. In the JSF page, delete the Find button.

Doing this only deletes the component from the JSF page. The binding still exists
in the page definition file.

18.3.6 What Happens When Search and Results are on the Same Page
In the above steps, you created a new iterator for the table. This iterator was created
using the same collection, however it does not have a find operation associated with it.
Therefore, it will always display the results of the search.

For example, the page definition for SRSearch page has the following entries:

Note: The invokeAction must appear before the iterator, so that it
is executed first.

Creating Search Page Using Named Bind Variables

18-10 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Example 18–3 Two Iterators Used to Create a Search Form and Results Table

<executables>
 <invokeAction id="AlwaysFind" Binds="Find" Refresh="ifNeeded"
 RefreshCondition=
 "${bindings.SearchServiceRequestsIterator.findMode == false}"/>
...
 <iterator id="SearchServiceRequestsIterator" RangeSize="10"
 Binds="SearchServiceRequests" DataControl="SRService"/>
 <iterator id="SearchServiceRequestsResultsIterator" RangeSize="10"
 Binds="SearchServiceRequests" DataControl="SRService" />
. . .
</executables>
. . .
<bindings>
. . .
 <action id="Find" RequiresUpdateModel="true" Action="3"
 IterBinding="SearchServiceRequestsIterator"
. . .
 <table id="AllServiceRequests" IterBinding="AllServiceRequestsResultsIterator">
 . . .
 </table>
</bindings>

18.4 Creating Search Page Using Named Bind Variables
You can create a search form using a query from a view object that uses named bind
variables to find matching objects. For example, the StaffListByEmailNameRole
view object uses the following named bind variables:

■ TheFirstName

■ TheLastName

■ EmailAddress

■ Role

Figure 18–5 shows the SRStaffSearch search form, created using the
StaffListByEmailNameRole view object. This page is used to find a staff user,
given a first name, last name, email address, and role.

Figure 18–5 The SRStaffSearch Form

Creating Search Page Using Named Bind Variables

Creating a Search Form 18-11

18.4.1 How to Create a Parameterized Search Form
Because a parameterized search uses variables that represent parameters, instead of
using the Execute operation to invoke the query, you use the ExecuteWithParams
operation. You create the search form by dropping ExecuteWithParams operation as
a parameterized form. You then drop the corresponding collection as a table a table to
display the results. Figure 18–5 shows the ExecuteWithParams operation for the
StaffListByEmailNameRole collection.

Figure 18–6 The ExecuteWithParams Operation Uses Parameters

To create a search form and results table:
1. From the Data Control Palette, drag the ExecuteWithParams operation.

2. From the context menu, choose Parameters > ADF Parameter Form.

3. Use the Edit Form Fields dialog to change the display of the fields.

4. From the Data Control Palette, drag the corresponding collection, and drop it as
any type of table or form.

18.4.2 What Happens When You Use Parameter Methods
When you drop the ExecuteWithParams operation as a parameter form, JDeveloper:

■ Defines the following in the page definition file: variables to hold the data values,
an action binding for the operation, and the attribute bindings for the associated
attributes.

■ Inserts code in the JSF page for the form using ADF Faces inputText
components bound to the attribute bindings, and an ADF Faces commandButton
component bound to the ExecuteWithParams operation. This code is the same
as code for any other input form or command button.

Just as when you drop an operation such as Execute or Next, when you drop the
ExecuteWithParams operation, JDeveloper creates an action binding. However,
because the operation requires parameters to run, JDeveloper also creates NamedData
elements for each parameter. These represent the named bind variables on the
associated view object. Each NamedData element is bound to a value binding for the
corresponding attribute. These bindings allow the operation to access the correct
attribute’s value for the parameter on execution.

Creating Search Page Using Named Bind Variables

18-12 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

For example, the action binding for the ExecuteWithParams operation on the
StaffListByEmailNameRole collection contains a NamedData element for each of
the named bind variables on the StaffListByEmailNameRole view object. The
EmailAddress NamedData element is bound to the
StaffListByEmailNameRole_EmailAddres attribute binding using an EL
expression. Example 18–4 shows the action binding and some of the attribute bindings
created when you drop the ExecuteWithParameters operation on the
StaffListByEmailNameRole collection as a parameter form.

Example 18–4 Method Action Binding in the Page Definition File

<bindings>
 <action id="ExecuteWithParams"
 IterBinding="StaffListByEmailNameRoleIterator"
 InstanceName="SRService.StaffListByEmailNameRole"
 DataControl="SRService" RequiresUpdateModel="true" Action="95">
 <NamedData NDName="EmailAddress" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_EmailAddress}"/>
 <NamedData NDName="Role" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_Role}"/>
 <NamedData NDName="TheFirstName" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_TheFirstName}"/>
 <NamedData NDName="TheLastName" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_TheLastName}"/>
 </action>
 <attributeValues id="EmailAddress" IterBinding="variables">
 <AttrNames>
 <Item Value="StaffListByEmailNameRole_EmailAddress"/>
 </AttrNames>
 </attributeValues>
...
</bindings>

Because you dropped the ExecuteWithParams operation, the attributes reference a
variable iterator that accesses the variables instead of a collection’s iterator. This is
because the operation (unlike the returned collection) does not need to access an
instance of an object; therefore, there is nothing to hold the values entered on the page.
Variables act as these data holders.

JDeveloper creates a variable for each named bind variable. The variables are declared
as children to the variable iterator, and are local, meaning they live only during a
single request, and while they are carried across subsequent post-backs to the same
form, they would be forgotten (and re-initialized) when a user navigates to some other
page. Example 18–5 shows the variable iterator and variables created when dropping
the ExecuteWithParameters operation on the StaffListByEmailNameRole
collection. The variable iterator is used both by the form and by the button.

Creating Search Page Using Named Bind Variables

Creating a Search Form 18-13

Example 18–5 Variable Iterator and Variables in the Page Definition File

<executables>
 <iterator id="StaffListByEmailNameRoleIterator" RangeSize="10"
 Binds="StaffListByEmailNameRole" DataControl="SRService"/>
 <variableIterator id="variables">
 <variableUsage DataControl="SRService"
 Binds="StaffListByEmailNameRole.variablesMap.EmailAddress"
 Name="StaffListByEmailNameRole_EmailAddress"
 IsQueriable="false"/>
 <variableUsage DataControl="SRService"
 Binds="StaffListByEmailNameRole.variablesMap.Role"
 Name="StaffListByEmailNameRole_Role" IsQueriable="false"/>
 <variableUsage DataControl="SRService"
 Binds="StaffListByEmailNameRole.variablesMap.TheFirstName"
 Name="StaffListByEmailNameRole_TheFirstName"
 IsQueriable="false"/>
 <variableUsage DataControl="SRService"
 Binds="StaffListByEmailNameRole.variablesMap.TheLastName"
 Name="StaffListByEmailNameRole_TheLastName"
 IsQueriable="false"/>
 </variableIterator>
</executables>

18.4.3 What Happens at Runtime
When the user enters data and submits the form, the variables are populated and the
attribute binding can then provide the value for the named bind variables using the EL
expression for the value of the NamedDataElement.

When the user enters Smith as the last name in the corresponding inputText
component, and clicks the command button, the following happens:

■ The StaffListByEmailNameRole_TheLastName variable is populated with
the value Smith. If no values were entered for the other fields, then the
corresponding variables use the default value set for the named bind variables on
the view object. For more information, see Section 5.9, "Using Named Bind
Variables".

■ Because the attribute binding refers to the variable iterator, the attribute binding
can get the value for TheLastName, and any other variable values:

 <attributeValues id="TheLastName" IterBinding="variables">
 <AttrNames>
 <Item Value="StaffListByEmailNameRole_TheLastName"/>
 </AttrNames>
 </attributeValues>

Tip: When the search form and results table are on the same page,
the first time a user accesses the page, the table displays all records
from the iterator. You can make it so that the results table does not
display until the user actually executes the search. For procedures, see
Section 18.5, "Conditionally Displaying the Results Table on a Search
Page".

Conditionally Displaying the Results Table on a Search Page

18-14 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

■ Because the NamedData element has an EL expression that evaluates to the item
value of the attribute binding, the parameter can also access the value:

<NamedData NDName="TheLastName" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_TheLastName}"/>

■ The ExecuteWithParams operation is executed with the parameters taking their
values from the NamedData elements.

■ The operation applies the named bind variable values and executes the query.

■ The StaffListByEmailNameRoleIterator iterator iterates over the
collection, allowing a table to display the results. For more information about
tables at runtime, see Section 14.2.2, "What Happens When You Use the Data
Control Palette to Create a Table".

18.5 Conditionally Displaying the Results Table on a Search Page
When a web search form and results table are on the same page, the first time a user
accesses the page, the table displays all records in the current range from the iterator.
You can make it so that the results table does not display until the user actually
executes the search. Figure 18–7 shows the SRSearch page as it displays the first time a
user accesses it.

Figure 18–7 Hidden Results Table for a Search Page

Once the user executes a search, the results table displays, as shown in Figure 18–8.

Conditionally Displaying the Results Table on a Search Page

Creating a Search Form 18-15

Figure 18–8 Results Table Displayed for a Search Page

18.5.1 How to Add Conditional Display Capabilities
To conditionally display the results table, you must enter an EL expression on the UI
component (either the table itself or another component that holds the table
component), that evaluates to whether this is the first time the user has accessed the
search page. A field on a managed bean holds the value used in the expression.

To conditionally display the results table:
1. Create a search form and results table on the same page.

2. Create a flag on a managed bean that will be set when the user accesses the page
for the first time. For example, the userState managed bean in the SRDemo
application contains the SEARCH_FIRSTTIME_FLAG parameter. An EL expression
on the page needs to know the value of this parameter to determine whether or
not to render the results table (see step 4). When the bean is instantiated for the EL
expression, the isSearchFirstTime method then checks that field. If it is null,
it sets the value to True. For information about creating managed beans, see
Section 17.2, "Using a Managed Bean to Store Information"

3. On the JSF page, insert a setActionListener component into the command
component used to execute this search. Set the from attribute to #{false}. Set
the to attribute to the field on the managed bean created in step two. This will set
that field to false whenever the button is clicked. For more information about
using the setActionListener component, see Section 17.4, "Setting Parameter
Values Using a Command Component".

Example 18–6 shows the code for the Search button on the SRSearch page.

Conditionally Displaying the Results Table on a Search Page

18-16 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Example 18–6 Using a setActionListener Component to Set a Value

<af:commandButton actionListener="#{bindings.Execute.execute}"
 text="#{res['srsearch.searchLabel']}">
 <af:setActionListener from="#{false}"
 to="#{userState.searchFirstTime}"/>
</af:commandButton>

4. On the JSF page, use an EL expression as the value of the Rendered attribute so
that the UI component (the table or the UI component holding the table) only
renders when the variable is a certain value.

Example 18–7 shows the EL expression used for the value for the Rendered
attribute of the panelGroup component on the SRSearch page.

Example 18–7 JSF Code to Conditionally Display the Search Results Table

<af:panelGroup rendered="#{userState.searchFirstTime == false}">

This EL expression causes the panelGroup component to render only if the
searchFirstTime flag has a value of False.

18.5.2 What Happens When you Conditionally Display the Results Table
When you use a managed bean to hold a value, other objects can both set the value
and access the value. For example, similar to passing parameter values, you can use
the setActionListener component to set values on a managed bean that can then
be accessed by an EL expression on the rendered attribute of a component.

For example, when a user accesses the SRSearch page for the first time, the following
happens:

■ Because the panelGroup component that holds the table contains an EL
expression for it’s rendered attribute, and the EL expression references the
userState bean, that bean is instantiated.

■ Because the user has not accessed page, the SEARCH_FIRSTTIME_FLAG field on
the userState bean has not yet been set, and therefore has a value of null

■ Because the value is null, the isSearchFirstTime method on that bean sets
the SEARCH_FIRSTTIME_FLAG field to true.

■ When the EL expression for the panelGroup component is evaluated, because he
SEARCH_FIRSTTIME_FLAG field is true, the SRSearch page displays without
rendering the panelGroup component. This is because the EL expression for the
Rendered attribute evaluates to True only when SEARCH_FIRSTTIME_FLAG
field is false.

■ When the user enters search criteria and clicks the Search button, the associated
setActionListener component sets the SEARCH_FIRSTTIME_FLAG field on
the userState bean to false.

■ Because there is no outcome defined for the command button, the user stays on
the same page.

■ Because the SEARCH_FIRSTTIME_FLAG field is now set to false, when the
page rerenders with the results, the panelGroup component displays the table
with the result.

Using Complex UI Components 19-1

19
Using Complex UI Components

This chapter describes how to use ADF Faces components to create some of the
functionality in the SRDemo application.

This chapter includes the following sections:

■ Section 19.1, "Introduction to Complex UI Components"

■ Section 19.2, "Using Dynamic Menus for Navigation"

■ Section 19.3, "Using Popup Dialogs"

■ Section 19.4, "Enabling Partial Page Rendering"

■ Section 19.5, "Creating a Multipage Process"

■ Section 19.6, "Providing File Upload Capability"

■ Section 19.7, "Creating Selection Lists"

■ Section 19.8, "Creating a Shuttle"

19.1 Introduction to Complex UI Components
ADF Faces components simplify user interaction. For example, inputFile enables
file uploading, and selectInputText has built-in dialog support for navigating to a
popup window and returning to the initial page with the selected value. While most of
the ADF Faces components can be used out-of-the-box with minimal Java coding,
some of them require extra coding in backing beans and configuring in
faces-config.xml.

While the SRDemo pages use a custom skin, the descriptions of the rendered UI
components and the illustrations in this chapter follow the default Oracle skin.

Read this chapter to understand:

■ How to create dynamic navigation menus using a menu model

■ How to create popup dialogs using command components

■ How to enable partial page rendering explicitly using partial triggers and events

■ How to create a multipage process using a process train model

■ How to provide file upload support

■ How to create lists with static and dynamic list of values, and navigation list
binding

■ How to create a shuttle for displaying and moving list items

Using Dynamic Menus for Navigation

19-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

19.2 Using Dynamic Menus for Navigation
The SRDemo pages use a panelPage component to lay out the page with a
hierarchical menu system for page navigation. Figure 19–1 shows the Management
page with the available menu choices from the SRDemo application’s menu hierarchy.
Typically, a menu hierarchy consists of global buttons, menu tabs, and a menu bar
beneath the menu tabs.

Figure 19–1 Dynamic Navigation Menus in the SRDemo Application

There are two ways to create a menu hierarchy, namely:

■ Manually by inserting individual menu item components into each menu
component, and marking the current menu items as "selected" on each page

■ Declaratively by binding each menu component to a menu model object and using
the menu model display the appropriate menu items, including setting the current
items as "selected"

For most of the pages you see in the SRDemo application, the declarative technique is
employed—using a menu model and managed beans—to dynamically generate the
menu hierarchy.

The panelPage component supports menu1 and menu2 facets for creating the
hierarchical, navigation menus that enable a user to go quickly to related pages in the
application.

The menu1 facet takes a menuTabs component, which lays out a series of menu items
rendered as menu tabs. Similarly, the menu2 facet takes a menuBar component that
renders menu items in a bar beneath the menu tabs.

Global buttons are buttons that are always available from any page in the application,
such as a Help button. The menuGlobal facet on panelPage takes a menuButtons
component that lays out a series of buttons.

Note: The global buttons in the SRDemo application are not
generated dynamically, instead they are hard-coded into each page via
dynamic includes using <f:subview> and <jsp:include> tags. In
some pages, cacheable fragments are used to contain the menuTabs
components. For purposes of explaining how to create dynamic
menus in this chapter, global buttons are included and caching is
excluded in the descriptions and code samples. For information about
caching, see Chapter 23, "Optimizing Application Performance with
Caching".

Using Dynamic Menus for Navigation

Using Complex UI Components 19-3

19.2.1 How to Create Dynamic Navigation Menus
To display hierarchical menus dynamically, you build a menu model and bind the
menu components (such as menuTabs and menuBar) to the menu model. At runtime,
the menu model generates the hierarchical menu choices for the pages.

To create dynamic navigation menus:
1. Create a menu model. (See Section 19.2.1.1, "Creating a Menu Model")

2. Create a JSF page for each menu choice or item in the menu hierarchy. (See
Section 19.2.1.2, "Creating the JSF Page for Each Menu Item")

3. Create one global navigation rule that has navigation cases for each menu item.
(See Section 19.2.1.3, "Creating the JSF Navigation Rules")

19.2.1.1 Creating a Menu Model
Use the oracle.adf.view.faces.model.MenuModel,
oracle.adf.view.faces.model.ChildPropertyTreeModel, and
oracle.adf.view.faces.model.ViewIdPropertyMenuModel classes to create
a menu model that dynamically generates a menu hierarchy.

To create a menu model:
1. Create a class that can get and set the properties for each item in the menu

hierarchy or tree.

For example, each item in the tree needs to have a label, a viewId, and an
outcome property. If items have children (for example, a menu tab item can have
children menu bar items), you need to define a property to represent the list of
children (for example, children property). To determine whether items are
shown or not shown on a page depending on security roles, define a boolean
property (for example, shown property). Example 19–1 shows the MenuItem class
used in the SRDemo application.

Example 19–1 MenuItem.java for All Menu Items

package oracle.srdemo.view.menu;
import java.util.List;
import oracle.adf.view.faces.component.core.nav.CoreCommandMenuItem;
public class MenuItem {
 private String _label = null;
 private String _outcome = null;
 private String _viewId = null;
 private String _destination = null;
 private String _icon = null;
 private String _type = CoreCommandMenuItem.TYPE_DEFAULT;
 private List _children = null;
 //extended security attributes
 private boolean _readOnly = false;
 private boolean _shown = true;
 public void setLabel(String label) {
 this._label = label;
 }
 public String getLabel() {
 return _label;
 }
 // getter and setter methods for remaining attributes omitted
}

Using Dynamic Menus for Navigation

19-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

2. Configure a managed bean for each menu item or page in the hierarchy, with
values for the properties that require setting at instantiation.

Each bean should be an instance of the menu item class you create in step 1.
Example 19–2 shows the managed bean code for all the menu items in the
SRDemo application. If an item has children items, the list entries are the children
managed beans listed in the order you desire. For example, the Management
menu tab item has two children.

Typically each bean should have none as its bean scope. The SRDemo application,
however, uses session scoped managed beans for the menu items because
security attributes are assigned to the menu items when they are created
dynamically, and the SRDemo application uses a session scoped UserInfo
bean to hold the user role information for the user currently logged in. The user
role information is used to determine which menu items a user sees when logged
in. For example, only users with the user role of ’manager’ see the Management
menu tab. JSF doesn’t let you reference a session scoped managed bean from a
none scoped bean; therefore, the SRDemo application uses all session scoped
managed beans for the menu system.

Example 19–2 Managed Beans for Menu Items in the faces-config.xml File

<!-- If you were to use dynamically generated global buttons -->
<!-- Root pages: Two global button menu items -->
<managed-bean>
 <managed-bean-name>menuItem_GlobalLogout</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.logout']}</value>
 </managed-property>
 <managed-property>
 <property-name>icon</property-name>
 <value>/images/logout.gif</value>
 </managed-property>
 <managed-property>
 <property-name>type</property-name>
 <value>global</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRLogout.jsp</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalLogout</value>
 </managed-property>
</managed-bean>

<managed-bean>
 <managed-bean-name>menuItem_GlobalHelp</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>

Note: The type property defines a menu item as global or
nonglobal. Global items can be accessed from any page in the
application. For example, a Help button on a page is a global item.

Using Dynamic Menus for Navigation

Using Complex UI Components 19-5

 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.help']}</value>
 </managed-property>
 <managed-property>
 <property-name>icon</property-name>
 <value>/images/help.gif</value>
 </managed-property>
 <managed-property>
 <property-name>type</property-name>
 <value>global</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRHelp.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalHelp</value>
 </managed-property>
</managed-bean>

<!-- Root pages: Four menu tabs -->
<!-- 1. My Service Requests menu tab item -->
<managed-bean>
 <managed-bean-name>menuItem_MyServiceRequests</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.my']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRList.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalHome</value>
 </managed-property>
</managed-bean>

<!-- 2. Advanced Search menu tab item -->
<managed-bean>
 <managed-bean-name>menuItem_AdvancedSearch</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.advanced']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.staff}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/staff/SRSearch.jspx</value>
 </managed-property>
 <managed-property>

Using Dynamic Menus for Navigation

19-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 <property-name>outcome</property-name>
 <value>GlobalSearch</value>
 </managed-property>
</managed-bean>

<!-- 3. New Service Request menu tab item -->
<managed-bean>
 <managed-bean-name>menuItem_New</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.new']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRCreate.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalCreate</value>
 </managed-property>
</managed-bean>

<!-- 4. Management menu tab item -->
<!-- This managed bean uses managed bean chaining for children menu items -->
<managed-bean>
 <managed-bean-name>menuItem_Manage</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRManage.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalManage</value>
 </managed-property>
 <managed-property>
 <property-name>children</property-name>
 <list-entries>
 <value-class>oracle.srdemo.view.menu.MenuItem</value-class>
 <value>#{subMenuItem_Manage_Reporting}</value>
 <value>#{subMenuItem_Manage_ProdEx}</value>
 </list-entries>
 </managed-property>
</managed-bean>

<!-- Children menu bar items for Management tab -->
<managed-bean>
 <managed-bean-name>subMenuItem_Manage_Reporting</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>

Using Dynamic Menus for Navigation

Using Complex UI Components 19-7

 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage.reporting']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRManage.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalManage</value>
 </managed-property>
</managed-bean>

<managed-bean>
 <managed-bean-name>subMenuItem_Manage_ProdEx</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage.prodEx']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRSkills.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>Skills</value>
 </managed-property>
</managed-bean>

3. Create a class that constructs a ChildPropertyTreeModel instance. The
instance represents the entire tree hierarchy of the menu system, which is later
injected into a menu model. Example 19–3 shows the MenuTreeModelAdapter
class used in the SRDemo application.

Note: As you see in Figure 19–1, the Management menu tab has a
menu bar with two items: Overview and Technician Skills. As each
menu item has its own page or managed bean, so the two items are
represented by these managed beans, respectively: subMenuItem_
Manage_Reporting and subMenuItem_Manage_ProdEx. The
Management menu tab is represented by the menuItem_Manage
managed bean, which uses value binding expressions (such as
#{subMenuItem_Manage_ProdEx}) inside the list value elements
to reference the children managed beans.

Using Dynamic Menus for Navigation

19-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–3 MenuTreeModelAdapter.java for Holding the Menu Tree Hierarchy

package oracle.srdemo.view.menu;
import java.beans.IntrospectionException;
import java.util.List;
import oracle.adf.view.faces.model.ChildPropertyTreeModel;
import oracle.adf.view.faces.model.TreeModel;

public class MenuTreeModelAdapter {
 private String _propertyName = null;
 private Object _instance = null;
 private transient TreeModel _model = null;

 public TreeModel getModel() throws IntrospectionException
 {
 if (_model == null)
 {
 _model = new ChildPropertyTreeModel(getInstance(), getChildProperty());
 }
 return _model;
 }

 public String getChildProperty()
 {
 return _propertyName;
 }
 /**
 * Sets the property to use to get at child lists
 * @param propertyName
 */
 public void setChildProperty(String propertyName)
 {
 _propertyName = propertyName;
 _model = null;
 }

 public Object getInstance()
 {
 return _instance;
 }
 /**
 * Sets the root list for this tree.
 * @param instance must be something that can be converted into a List
 */
 public void setInstance(Object instance)
 {
 _instance = instance;
 _model = null;
 }
 /**
 * Sets the root list for this tree.
 * This is needed for passing a List when using the managed bean list
 * creation facility, which requires the parameter type of List.
 * @param instance the list of root nodes
 */
 public void setListInstance(List instance)
 {
 setInstance(instance);
 }
}

Using Dynamic Menus for Navigation

Using Complex UI Components 19-9

4. Configure a managed bean to reference the menu tree model class in step 3. The
bean should be instantiated with a childProperty value that is the same as the
property value that represents the list of children as created on the bean in step 1.

The bean should also be instantiated with a list of root pages (listed in the order
you desire) as the value for the listInstance property. The root pages are the
global button menu items and the first-level menu tab items, as shown in
Example 19–2. Example 19–4 shows the managed bean for creating the menu tree
model.

Example 19–4 Managed Bean for Menu Tree Model in the faces-config.xml File

<managed-bean>
 <managed-bean-name>menuTreeModel</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.menu.MenuTreeModelAdapter
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>childProperty</property-name>
 <value>children</value>
 </managed-property>
 <managed-property>
 <property-name>listInstance</property-name>
 <list-entries>
 <value-class>oracle.srdemo.view.menu.MenuItem</value-class>
 <value>#{menuItem_GlobalLogout}</value>
 <value>#{menuItem_GlobalHelp}</value>
 <value>#{menuItem_MyServiceRequests}</value>
 <value>#{menuItem_AdvancedSearch}</value>
 <value>#{menuItem_New}</value>
 <value>#{menuItem_Manage}</value>
 </list-entries>
 </managed-property>
</managed-bean>

5. Create a class that constructs a ViewIdPropertyMenuModel instance. The
instance creates a menu model from the menu tree model. Example 19–5 shows
the MenuModelAdapter class used in the SRDemo application.

Example 19–5 MenuModelAdapter.java

package oracle.srdemo.view.menu;
import java.beans.IntrospectionException;
import java.io.Serializable;
import java.util.List;
import oracle.adf.view.faces.model.MenuModel;
import oracle.adf.view.faces.model.ViewIdPropertyMenuModel;

public class MenuModelAdapter implements Serializable {
 private String _propertyName = null;
 private Object _instance = null;
 private transient MenuModel _model = null;
 private List _aliasList = null;

 public MenuModel getModel() throws IntrospectionException
 {
 if (_model == null)
 {
 ViewIdPropertyMenuModel model =

Using Dynamic Menus for Navigation

19-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 new ViewIdPropertyMenuModel(getInstance(),
 getViewIdProperty());

 if(_aliasList != null && !_aliasList.isEmpty())
 {
 int size = _aliasList.size();
 if (size % 2 == 1)
 size = size - 1;

 for (int i = 0; i < size; i=i+2)
 {
 model.addViewId(_aliasList.get(i).toString(),
 _aliasList.get(i+1).toString());
 }
 }

 _model = model;
 }
 return _model;
 }

 public String getViewIdProperty()
 {
 return _propertyName;
 }
 /**
 * Sets the property to use to get at view id
 * @param propertyName
 */
 public void setViewIdProperty(String propertyName)
 {
 _propertyName = propertyName;
 _model = null;
 }

 public Object getInstance()
 {
 return _instance;
 }
 /**
 * Sets the treeModel
 * @param instance must be something that can be converted into a TreeModel
 */
 public void setInstance(Object instance)
 {
 _instance = instance;
 _model = null;
 }

 public List getAliasList()
 {
 return _aliasList;
 }
 public void setAliasList(List aliasList)
 {
 _aliasList = aliasList;
 }
}

Using Dynamic Menus for Navigation

Using Complex UI Components 19-11

6. Configure a managed bean to reference the menu model class in step 5. This is the
bean to which all the menu components on a page are bound.

The bean should be instantiated with the instance property value set to the
model property of the menu tree model bean configured in step 4. The
instantiated bean should also have the viewIdProperty value set to the viewId
property on the bean created in step 1. Example 19–6 shows the managed bean
code for creating the menu model.

Example 19–6 Managed Bean for Menu Model in the faces-config.xml File

<!-- create the main menu menuModel -->
<managed-bean>
 <managed-bean-name>menuModel</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.menu.MenuModelAdapter</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>viewIdProperty</property-name>
 <value>viewId</value>
 </managed-property>
 <managed-property>
 <property-name>instance</property-name>
 <value>#{menuTreeModel.model}</value>
 </managed-property>
</managed-bean>

19.2.1.1.1 What You May Need to Know About Chaining Managed Beans

By using value binding expressions to chain managed bean definitions, you can create
a tree-like menu system instead of a flat structure. The order of the individual
managed bean definitions in faces-config.xml does not matter, but the order of
the children list-entries in a parent bean should be in the order you want the
menu choices to appear.

When you chain managed bean definitions together, the bean scopes must be
compatible. Table 19–1 lists the compatible bean scopes.

19.2.1.1.2 What You May Need to Know About Accessing Resource Bundle Strings

The String resources for all labels in the SRDemo application are contained in a
resource bundle. This resource bundle is configured in faces-config.xml. As
described earlier, each menu item is defined as a session scoped managed bean, and
the various attributes of a menu item (such as its type and label) are defined through
managed bean properties. For the menu item managed bean to access the label to use
from the resource bundle, you need to configure a managed bean that provides the
access to the bundle.

Table 19–1 Combinations of Managed Bean Scopes Allowed

A bean of this scope... Can chain with beans of these scopes

none none

application none, application

session none, application, session

request none, application, session, request

Using Dynamic Menus for Navigation

19-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In the SRDemo application, the ResourceAdapter class exposes the resource bundle
within EL expressions via the resources managed bean. Example 19–7 shows the
ResourceAdapter class, and the JSFUtils.getStringFromBundle() method
that retrieves a String from the bundle.

Example 19–7 Part of ResourceAdapter.java and Part of JSFUtils.java

package oracle.srdemo.view.resources;
import oracle.srdemo.view.util.JSFUtils;
/**
 * Utility class that allows us to expose the specified resource bundle within
 * general EL
 */
public class ResourceAdapter implements Map {

 public Object get(Object resourceKey) {
 return JSFUtils.getStringFromBundle((String)resourceKey);
 }
 // Rest of file omitted from here
}
...
/** From JSFUtils.java */
package oracle.srdemo.view.util;
import java.util.MissingResourceException;
import java.util.ResourceBundle;
...
public class JSFUtils {
 private static final String NO_RESOURCE_FOUND = "Missing resource: ";
 /**
 * Pulls a String resource from the property bundle that
 * is defined under the application’s message-bundle element in
 * faces-config.xml. Respects Locale.
 * @param key
 * @return Resource value or placeholder error String
 */
 public static String getStringFromBundle(String key) {
 ResourceBundle bundle = getBundle();
 return getStringSafely(bundle, key, null);
 }
 /*
 * Internal method to proxy for resource keys that don't exist
 */
 private static String getStringSafely(ResourceBundle bundle, String key,
 String defaultValue) {
 String resource = null;
 try {
 resource = bundle.getString(key);
 } catch (MissingResourceException mrex) {
 if (defaultValue != null) {
 resource = defaultValue;
 } else {
 resource = NO_RESOURCE_FOUND + key;
 }
 }
 return resource;
 }
//Rest of file omitted from here
}

Using Dynamic Menus for Navigation

Using Complex UI Components 19-13

Example 19–8 shows the resources managed bean code that provides the access for
other managed beans to the String resources.

Example 19–8 Managed Bean for Accessing the Resource Bundle Strings

<!-- Resource bundle -->
<application>
 <message-bundle>oracle.srdemo.view.resources.UIResources</message-bundle>
 ...
</application>

<!-- Managed bean for ResourceAdapater class -->
<managed-bean>
 <managed-bean-name>resources</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.resources.ResourceAdapter</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

The resources managed bean defines a Map interface onto the resource bundle that
is defined in faces-config.xml. The menu item labels automatically pick up the
correct language strings.

19.2.1.2 Creating the JSF Page for Each Menu Item
Each menu item (whether it is a menu tab item, menu bar item, or global button) has
its own page. To display the available menu choices on a page, bind the menu
components (such as menuTabs, menuBar, or menuButtons) to the menu model.
Example 19–9 shows the menuTabs component code that binds the component to a
menu model.

Example 19–9 MenuTabs Component Bound to a Menu Model

<af:panelPage title="#{res['srmanage.pageTitle']}"
 binding="#{backing_SRManage.panelPage1}"
 id="panelPage1">
 <f:facet name="menu1">
 <af:menuTabs value="#{menuModel.model}"...>
 ...
 </af:menuTabs>
 </f:facet>
 ...
</af:panelPage>

Each menu component has a nodeStamp facet, which takes one commandMenuItem
component, as shown in Example 19–10. By using a variable and binding the menu
component to the model, you need only one commandMenuItem component to
display all items in a menu, which is accomplished by using an EL expression similar
to #{var.label} for the text value, and #{var.getOutcome} for the action
value on the commandMenuItem component. It is the commandMenuItem component
that provides the actual label you see on a menu item, and the navigation outcome
when the menu item is activated.

Tip: The menu model is built when it is first referenced. This means
it is not rebuilt if the browser language is changed within a single
session.

Using Dynamic Menus for Navigation

19-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–10 NodeStamp Facet and CommandMenuItem Component

<af:panelPage title="#{res['srmanage.pageTitle']}"
 binding="#{backing_SRManage.panelPage1}"
 id="panelPage1">
 <f:facet name="menu1">
 <af:menuTabs var="menuTab"
 value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 .../>
 </f:facet>
 </af:menuTabs>
 </f:facet>
 ...
</af:panelPage>

Whether a menu item renders on a page is determined by the security role of the
current user logged in. For example, only users with the manager role see the
Management menu tab. The rendered and disabled attributes on a
commandMenuItem component determine whether a menu item should be rendered
or disabled.

Following along with the MenuItem class in Example 19–1: For global items, bind the
rendered attribute to the variable's type property and set it to global. For
nonglobal items, bind the rendered attribute to the variable's shown property and
the type property, and set the type property to default. For nonglobal items, bind
also the disabled attribute to the variable’s readOnly property. Example 19–11
shows how this is done for menuTabs (a nonglobal component) and menuButtons (a
global component).

Example 19–11 Rendered and Disabled Menu Item Components

<af:menuTabs var="menuTab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 rendered="#{menuTab.shown and
 menuTab.type=='default'}"
 disabled="#{menuTab.readOnly}"/>
 </f:facet>
</af:menuTabs>
...
<af:menuButtons var="menuOption" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuOption.label}"
 action="#{menuOption.getOutcome}"
 rendered="#{menuOption.type=='global'}"
 icon="#{menuOption.icon}"/>
 </f:facet>
</af:menuButtons>

You can use any combination of menus you desire in an application. For example, you
could use only menu bars, without any menu tabs. To let ADF Faces know the start
level of your menu hierarchy, you set the startDepth attribute on the menu
component. Based on a zero-based index, the possible values of startDepth are 0, 1,
and 2, assuming three levels of menus are used. If startDepth is not specified, it
defaults to zero (0).

Using Dynamic Menus for Navigation

Using Complex UI Components 19-15

If an application uses global menu buttons, menu tabs, and menu bars: A global
menuButtons component always has a startDepth of zero. Since menu tabs are the
first level, the startDepth for menuTabs is zero as well. The menuBar component
then has a startDepth value of 1. Example 19–12 shows part of the menu code for a
panelPage component.

Example 19–12 PanelPage Component with Menu Facets

<af:panelPage title="#{res['srmanage.pageTitle']}">
 <f:facet name="menu1">
 <af:menuTabs var="menuTab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 rendered="#{menuTab.shown and
 menuTab.type=='default'}"
 disabled="#{menuTab.readOnly}"/>
 </f:facet>
 </af:menuTabs>
 </f:facet>
 <f:facet name="menu2">
 <af:menuBar var="menuSubTab" startDepth="1"
 value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuSubTab.label}"
 action="#{menuSubTab.getOutcome}"
 rendered="#{menuSubTab.shown and
 menuSubTab.type=='default'}"
 disabled="#{menuSubTab.readOnly}"/>
 </f:facet>
 </af:menuBar>
 </f:facet>
 <f:facet name="menuGlobal">
 <af:menuButtons var="menuOption" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuOption.label}"
 action="#{menuOption.getOutcome}"
 rendered="#{menuOption.type=='global'}"
 icon="#{menuOption.icon}"/>
 </f:facet>
 </af:menuButtons>
 </f:facet>
 ...
</af:panelPage>

19.2.1.2.1 What You May Need to Know About the PanelPage and Page Components

Instead of using a panelPage component and binding each menu component on the
page to a menu model object, you can use the page component with a menu model.
By value binding the page component to a menu model, as shown in the following
code snippet, you can take advantage of the more flexible rendering capabilities of the
page component. For example, you can easily change the look and feel of menu
components by creating a new renderer for the page component. If you use the
panelPage component, you need to change the renderer for each of the menu
components.

Tip: If your menu system uses menu bars as the first level, then the
startDepth on menuBar should be set to zero, and so on.

Using Dynamic Menus for Navigation

19-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

<af:page title="Title 1" var="node" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{node.label}"
 action="#{node.getOutcome}"
 type="#{node.type}"/>
 </f:facet>
</af:page>

Because a menu model dynamically determines the hierarchy (that is, the links that
appear in each menu component) and also sets the current items in the focus path as
"selected," you can use practically the same code on each page.

19.2.1.3 Creating the JSF Navigation Rules
Create one global navigation rule that has navigation cases for each first-level and
global menu item. Children menu items are not included in the global navigation rule.
For menu items that have children menu items (for example, the Management menu
tab has children menu bar items), create a navigation rule with all the navigation cases
that are possible from the parent item, as shown in Example 19–13.

Example 19–13 Navigation Rules for a Menu System in the faces-config.xml File

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>GlobalHome</from-outcome>
 <to-view-id>/app/SRList.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalSearch</from-outcome>
 <to-view-id>/app/staff/SRSearch.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalCreate</from-outcome>
 <to-view-id>/app/SRCreate.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalManage</from-outcome>
 <to-view-id>/app/management/SRManage.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalLogout</from-outcome>
 <to-view-id>/app/SRLogout.jspx</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>GlobalAbout</from-outcome>
 <to-view-id>/app/SRAbout.jspx</to-view-id>
 </navigation-case>
</navigation-rule>
<!-- Navigation rule for Management menu tab with children items -->
<navigation-rule>
 <from-view-id>/app/management/SRManage.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Skills</from-outcome>
 <to-view-id>/app/management/SRSkills.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

Using Dynamic Menus for Navigation

Using Complex UI Components 19-17

19.2.2 What Happens at Runtime
MenuModelAdapter constructs the menu model, which is a
ViewIdPropertyMenuModel instance, via the menuModel managed bean. When the
menuTreeModel bean is requested, this automatically triggers the creation of the
chained beans menuItem_GlobalLogout, menuItem_GlobalHelp, menuItem_
MyServiceRequests, and so on. The tree of menu items is injected into the menu
model. The menu model provides the model that correctly highlights and enables the
items on the menus as you navigate through the menu system.

The individual menu item managed beans (for example, menuItem_
MyServiceRequests) are instantiated with values for label, viewId, and
outcome that are used by the menu model to dynamically generate the menu items.
The default JSF actionListener mechanism uses the outcome values to handle the
page navigation.

Each menu component has a nodeStamp facet, which is used to stamp the different
menu items in the menu model. The commandMenuItem component housed within
the nodeStamp facet provides the text and action for each menu item. Each time
nodeStamp is stamped, the data for the current menu item is copied into an EL
reachable property. The name of this property is defined by the var attribute on the
menu component that houses the nodeStamp facet. Once the menu has completed
rendering, this property is removed (or reverted back to its previous value). In
Example 19–14, the data for each menu bar item is placed under the EL property
menuSubTab. The nodeStamp displays the data for each item by getting further
properties from the menuSubTab property.

Example 19–14 MenuBar Component Bound to a Menu Model

<af:menuBar var="menuSubTab" startDepth="1"
 value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuSubTab.label}"
 action="#{menuSubTab.getOutcome}"
 rendered="#{menuSubTab.shown and
 menuSubTab.type=='default'}"
 disabled="#{menuSubTab.readOnly}"/>
 </f:facet>
</af:menuBar>

By binding a menu component to a menu model and using a variable to represent a
menu item, you need only one commandMenuItem component to display all menu
items at that hierarchy level, allowing for more code reuse between pages, and is much
less error prone than manually inserting a commandMenuItem component for each
item. For example, if menu is the variable, then EL expressions such as
#{menu.label} and #{menu.getOutcome} specify the text and action values
for a commandMenuItem component.

The menu model in conjunction with nodeStamp controls whether a menu item is
rendered as selected. As described earlier, a menu model is created from a tree model,
which contains viewId information for each node. ViewIdPropertyMenuModel,
which is an instance of MenuModel, uses the viewId of a node to determine the focus
rowKey. Each item in the menu model is stamped based on the current rowKey. As
the user navigates and the current viewId changes, the focus path of the model also
changes and a new set of items is accessed. MenuModel has a method
getFocusRowKey() that determines which page has focus, and automatically
renders a node as selected if the node is on the focus path.

Using Dynamic Menus for Navigation

19-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

19.2.3 What You May Need to Know About Menus
Sometimes you might want to create menus manually instead of using a menu model.

The first-level menu tab My Service Requests has one second-level menu bar with
several items, as illustrated in Figure 19–2. From My Service Requests, you can view
open, pending, closed, or all service requests, represented by the first, second, third,
and fourth menu bar item from the left, respectively. Each view is actually generated
from the SRList.jspx page.

Figure 19–2 Menu Bar Items on My Service Requests Page (SRList.jspx)

In the SRList.jspx page, instead of binding the menuBar component to a menu
model and using a nodeStamp to generate the menu items, you use individual
children commandMenuItem components to display the menu items because the
command components require a value to determine the type of requests to navigate to
(for example, open, pending, closed, or all service requests). Example 19–15 shows
part of the code for the menuBar component used in the SRList.jspx page.

Example 19–15 MenuBar Component with Children CommandMenuItem Components

<af:menuBar>
 <af:commandMenuItem text="#{res['srlist.menubar.openLink']}"
 disabled="#{!bindings.ExecuteWithParams.enabled}"
 selected="#{userState.listModeOpen}"
 actionListener="#{bindings.ExecuteWithParams.execute}">
 <af:setActionListener from="#{'Open'}"
 to="#{userState.listMode}"/>
 </af:commandMenuItem>
 <af:commandMenuItem text="#{res['srlist.menubar.pendingLink']}"
 disabled="#{!bindings.ExecuteWithParams.enabled}"
 selected="#{userState.listModePending}"
 actionListener="#{bindings.ExecuteWithParams.execute}"
 <af:setActionListener from="#{'Pending'}"
 to="#{userState.listMode}"/>
 </af:commandMenuItem>
 ...
 <af:commandMenuItem text="#{res['srlist.menubar.allRequests']}"
 selected="#{userState.listModeAll}"
 disabled="#{!bindings.ExecuteWithParams.enabled}"
 actionListener="#{bindings.ExecuteWithParams.execute}">
 <af:setActionListener from="#{'%'}"
 to="#{userState.listMode}"/>
 </af:commandMenuItem>
 ...
</af:menuBar>

The af:setActionListener tag, which declaratively sets a value on an
ActionSource component before navigation, passes the correct list mode value to
the userState managed bean. The session scoped userState managed bean
stores the current list mode of the page.

Using Popup Dialogs

Using Complex UI Components 19-19

When the commandMenuItem component is activated, the ExecuteWithParams
built-in operation is executed, passing the value of its parameter to the named bind
variable of the ServiceRequestsByStatus view object instance in the data model.
This updates the row set to contain only service requests whose status matches the
parameter value passed in. The commandMenuItem components also use convenience
functions in the UserSystemState bean class to evaluate whether the menu item
should be marked as selected or not.

19.3 Using Popup Dialogs
Sometimes you might want to display a new page in a separate popup dialog instead
of displaying it in the same window containing the current page. In the popup dialog,
you might let the user enter or select information, and then return to the original page
to use that information. Ordinarily, you would need to use JavaScript to launch the
popup dialog and manage the process, and create code for managing cases where
popup dialogs are not supported on certain client devices such as a PDA. With the
dialog framework, ADF Faces has made it easy to launch and manage popup dialogs
and processes without using JavaScript.

Consider a simple application that requires users to log in to see their orders.
Figure 19–3 shows the page flow for the application, which consists of five
pages—login.jspx, orders.jspx, new_account.jspx, account_
details.jspx, and error.jspx.

Figure 19–3 Page Flow of a Dialog Sample Application

When an existing user logs in successfully, the application displays the Orders page,
which shows the user's orders, if there are any. When a user does not log in
successfully, the Error page displays in a popup dialog, as shown in Figure 19–4.

Using Popup Dialogs

19-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 19–4 Error Page in a Popup Dialog

On the Error page there is a Cancel button. When the user clicks Cancel, the popup
dialog closes and the application returns to the Login page, as shown in Figure 19–5.

Figure 19–5 Login Page

When a new user clicks the New User link on the Login page, the New Account page
displays in a popup dialog, as shown in Figure 19–6.

Figure 19–6 New Account Page in a Popup Dialog

After entering information such as first name and last name, the user then clicks the
Details button to display the Account Details page in the same popup dialog, as
shown in Figure 19–7. In the Account Details page, the user enters other information
and confirms a password for the new login account. There are two buttons on the
Account Details page—Cancel and Done.

Using Popup Dialogs

Using Complex UI Components 19-21

Figure 19–7 Account Details Page in a Popup Dialog

If the new user decides not to proceed with creating a new login account and clicks
Cancel, the popup dialog closes and the application returns to the Login page. If the
new user clicks Done, the popup dialog closes and the application returns to the Login
page where the Username field is now populated with the user’s first name, as shown
in Figure 19–8. The new user can then proceed to enter the new password and log in
successfully.

Figure 19–8 Login Page With the Username Field Populated

19.3.1 How to Create Popup Dialogs
To make it easy to support popup dialogs in your application, ADF Faces has built in
the dialog functionality to components that implement ActionSource (such as
commandButton and commandLink). For ADF Faces to know whether to launch a
page in a popup dialog from an ActionSource component, four conditions must
exist:

■ There must be a JSF navigation rule with an outcome that begins with "dialog:".

■ The command component’s action outcome must begin with "dialog:".

■ The useWindow attribute on the command component must be "true".

■ The client device must support popup dialogs.

The page that displays in a popup dialog is an ordinary JSF page. But for purposes of
explaining how to implement popup dialogs in this chapter, a page that displays in a
popup dialog is called the dialog page, and a page from which the popup dialog is
launched is called the originating page. A dialog process starts when the originating page
launches a dialog (which can contain one dialog page or a series of dialog pages), and
ends when the user dismisses the dialog and is returned to the originating page.

Note: If useWindow is false or if the client device doesn’t support
popup dialogs, ADF Faces automatically shows the page in the
current window instead of using a popup—code changes are not
needed to facilitate this.

Using Popup Dialogs

19-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The tasks for supporting popup dialogs in an application are:

1. Define a JSF navigation rule for launching a dialog.

2. Create the JSF page from which a dialog is launched.

3. Create the dialog page and return a dialog value.

4. Handle the return value.

5. Pass a value into a dialog.

The tasks can be performed in any order.

19.3.1.1 Defining a JSF Navigation Rule for Launching a Dialog
You manage the navigation into a popup dialog by defining a standard JSF navigation
rule with a special dialog: outcome. Using the dialog sample application shown in
Figure 19–3, three navigation outcomes are possible from the Login page:

■ Show the Orders page in the same window (successful login)

■ Show the Error dialog page in a popup dialog (login failure)

■ Show the New Account dialog page in a popup dialog (new user)

Example 19–16 shows the navigation rule for the three navigation cases from the Login
page (login.jspx).

Example 19–16 Dialog Navigation Rules in the faces-config.xml File

<navigation-rule>

 <!-- Originating JSF page -->
 <from-view-id>/login.jspx</from-view-id>

 <!-- Navigation case for the New Account dialog page (new user)-->
 <navigation-case>
 <from-outcome>dialog:newAccount</from-outcome>
 <to-view-id>/new_account.jspx</to-view-id>
 </navigation-case>

 <!-- Navigation case for the Error dialog page (upon login failure) -->
 </navigation-case>
 <from-outcome>dialog:error</from-outcome>
 <to-view-id>/error.jspx</to-view-id>
 </navigation-case>

 <!-- Navigation case for the Orders page (upon login success) -->
 </navigation-case>
 <from-outcome>orders</from-outcome>
 <to-view-id>/orders.jspx</to-view-id>
 </navigation-case>

</navigation-rule>

19.3.1.1.1 What Happens at Runtime

The dialog navigation rules on their own simply show the specified pages in the main
window. But when used with command components with dialog: action outcomes
and with useWindow attributes set to true, ADF Faces knows to launch the pages in
popup dialogs. This is described in the next step.

Using Popup Dialogs

Using Complex UI Components 19-23

19.3.1.2 Creating the JSF Page That Launches a Dialog
In the originating page from which a popup dialog is launched, you can use either an
action method or a static action outcome on the ActionSource component. Whether
you specify a static action outcome or use an action method that returns an action
outcome, this action outcome must begin with dialog:.

The sample application uses an action method binding on the commandButton
component to determine programmatically whether to navigate to the Orders page or
the Error dialog page, and a static action outcome on the commandLink component to
navigate directly to the New Account dialog page. Both command components are on
the Login page. Example 19–17 shows the code for the Login commandButton
component.

Example 19–17 Login Button on the Login Page

af:commandButton id="cmdBtn"
 text="Login"
 action="#{backing_login.commandButton_action}"
 useWindow="true"
 windowHeight="200"
 windowWidth="500"
 partialSubmit="true"/>

The attributes useWindow, windowHeight, and windowWidth are used in launching
pages in popup dialogs. These attributes are ignored if the client device doesn’t
support popup dialogs.

When useWindow="true" ADF Faces knows to launch the dialog page in a new
popup dialog. The windowHeight and windowWidth attributes specify the size of
the popup dialog.

The action attribute on commandButton specifies a reference to an action method in
the page’s backing bean, Login.java. The action method must return an outcome
string, which JSF uses to determine the next page to display by comparing the
outcome string to the outcomes in the navigation cases defined in
faces-config.xml. The code for this action method is shown in Example 19–18.

Example 19–18 Action Method Code for the Login Button

public String commandButton_action()
{
 String retValue;
 retValue = "orders";
 _cust = getListCustomer();
 if (_cust == null || !password.equals(_cust.getPassword()))
 {
 retValue = "dialog:error";
 }

 return retValue;
}

Tip: Set the partialSubmit attribute on the commandButton
component to true. This prevents the originating page from
refreshing (and hence flashing momentarily) when the popup dialog
displays.

Using Popup Dialogs

19-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–19 shows the code for the New User commandLink component that uses
a static action outcome.

Example 19–19 New User Command Link on the Login Page

<af:commandLink id="cmdLink"
 text="New User?"
 action="dialog:newAccount"
 useWindow="true"
 partialSubmit="true"
 windowHeight="200"
 windowWidth="500" />

Instead of referencing an action method, the action attribute value is simply a static
outcome string that begins with dialog:.

19.3.1.2.1 What Happens at Runtime

ADF Faces uses the attribute useWindow="true" in conjunction with an action
outcome that begins with dialog: to determine whether to start a dialog process and
launch a page in a popup dialog (assuming dialog: navigation rules have been
defined in faces-config.xml).

If the action outcome does not begin with dialog:, ADF Faces does not start a
process or launch a popup dialog even when useWindow="true". Conversely, if the
action outcome begins with dialog:, ADF Faces does not launch a popup dialog if
useWindow="false" or if useWindow is not set, but ADF Faces does start a new
process.

If the client device does not support popup dialogs, ADF Faces shows the dialog page
in the current window after preserving all the state of the current page—you don’t
have to write any code to facilitate this.

When a command component is about to launch a dialog, it delivers a launch event
(LaunchEvent). The launch event stores information about the component that is
responsible for launching a popup dialog, and the root of the component tree to
display when the dialog process starts. A launch event can also pass a map of
parameters into the dialog. For more information, see Section 19.3.1.5, "Passing a Value
into a Dialog".

19.3.1.3 Creating the Dialog Page and Returning a Dialog Value
The dialog pages in our sample application are the Error page, the New Account page,
and the Account Details page. The dialog process for a new user actually contains two
pages: the New Account page and the Account Details page. The dialog process for a
user login failure contains just the Error page.

A dialog page is just like any other JSF page, with one exception. In a dialog page you
must provide a way to tell ADF Faces when the dialog process finishes, that is, when
the user dismisses the dialog. Generally, you do this programmatically or declaratively
via a command component. Example 19–20 shows how to accomplish this
programmatically via a Cancel button on the Error page.

Using Popup Dialogs

Using Complex UI Components 19-25

Example 19–20 Cancel Button on the Error Page

<af:commandButton text="Cancel"
 actionListener="#{backing_error.cancel}" />

The actionListener attribute on commandButton specifies a reference to an action
listener method in the page’s backing bean, Error.java. The action listener method
processes the action event that is generated when the Cancel button is clicked. You call
the AdfFacesContext.returnFromDialog() method in this action listener
method, as shown in Example 19–21.

Example 19–21 Action Listener Method for the Cancel Button in a Backing Bean

public void cancel(ActionEvent actionEvent)
{
 AdfFacesContext.getCurrentInstance().returnFromDialog(null, null);
}

To accomplish the same declaratively on the Account Details dialog page, attach a
af:returnActionListener tag to the Cancel button component, as shown in
Example 19–22. The af:returnActionListener tag calls the returnFromDialog
method on the AdfFacesContext—no backing bean code is needed.

Example 19–22 Cancel Button on the Account Details Page

<af_commandButton text="Cancel" immediate="true">
 <af:returnActionListener/>
</af:commandButton>

No attributes are used with the af:returnActionListener tag. The immediate
attribute on commandButton is set to true: if the user clicks Cancel without entering
values in the required Password and Confirm Password fields, the default JSF
ActionListener can execute during the Apply Request Values phase instead of the
Invoke Application phase, thus bypassing input validation.

The New Account page and Account Details page belong in the same dialog process.
A dialog process can have as many pages as you desire, but you only need to call
AdfFacesContext.returnFromDialog() once.

The same af:returnActionListener tag or
AdfFacesContext.returnFromDialog() method can also be used to end a
process and return a value from the dialog. For example, when the user clicks Done on
the Account Details page, the process ends and returns the user input values.
Example 19–23 shows the code for the Done button.

Example 19–23 Done Button on the Account Details Page

<af:commandButton text="Done"
 actionListener="#{backing_new_account.done}" />

The actionListener attribute on commandButton specifies a reference to an action
listener method in the page’s backing bean, New_account.java. The action listener
method processes the action event that is generated when the Done button is clicked.

Note: The AdfFacesContext.returnFromDialog() method
returns null. This is all that is needed in the backing bean to handle
the Cancel action event.

Using Popup Dialogs

19-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–24 shows the code for the action listener method, where the return value
is retrieved, and then returned via the AdfFacesContext.returnFromDialog()
method.

Example 19–24 Action Listener Method for the Done Button in a Backing Bean

public void done(ActionEvent e)
{
 AdfFacesContext afContext = AdfFacesContext.getCurrentInstance();
 String firstname = afContext.getProcessScope().get("firstname").toString();
 String lastname = afContext.getProcessScope().get("lastname").toString();
 String street = afContext.getProcessScope().get("street").toString();
 String zipCode = afContext.getProcessScope().get("zipCode").toString();
 String country = afContext.getProcessScope().get("country").toString();
 String password = afContext.getProcessScope().get("password").toString();
 String confirmPassword =
 afContext.getProcessScope().get("confirmPassword").toString();
 if (!password.equals(confirmPassword))
 {
 FacesMessage fm = new FacesMessage();
 fm.setSummary("Confirm Password");
 fm.setDetail("You've entered an incorrect password. Please verify that you've
 entered a correct password!");
 FacesContext.getCurrentInstance().addMessage(null, fm);
 }
 else
 {
 //Get the return value
 Customer cst = new Customer();
 cst.setFirstName(firstname);
 cst.setLastName(lastname);
 cst.setStreet(street);
 cst.setPostalCode(zipCode);
 cst.setCountry(country);
 cst.setPassword(password);
 // And return it
 afContext.getCurrentInstance().returnFromDialog(cst, null);
 afContext.getProcessScope().clear();
 }
}

The AdfFacesContext.returnFromDialog() method lets you send back a return
value in the form of a java.lang.Object or a java.util.Map of parameters. You
don’t have to know where you’re returning the value to—ADF Faces automatically
takes care of it.

19.3.1.3.1 What Happens at Runtime

The AdfFacesContext.returnFromDialog() method tells ADF Faces when the
user dismisses the dialog. This method can be called whether the dialog page is shown
in a popup dialog or in the main window. If a popup dialog is used, ADF Faces
automatically closes it.

In the sample application, when the user clicks the Cancel button on the Error page or
Account Details page, ADF Faces calls AdfFacesContext.returnFromDialog(),
(which returns null), closes the popup dialog, and returns to the originating page.

The first page in the new user dialog process is the New Account page. When the
Details button on the New Account page is clicked, the application shows the Account

Using Popup Dialogs

Using Complex UI Components 19-27

Details dialog page in the same popup dialog (because useWindow="false"), after
preserving the state of the New Account page.

When the Done button on the Account Details page is clicked, ADF Faces closes the
popup dialog and AdfFacesContext.returnFromDialog() returns cst to the
originating page.

When the dialog is dismissed, ADF Faces generates a return event (ReturnEvent).
The AdfFacesContext.returnFromDialog() method sends a return value as a
property of the return event. The return event is delivered to the return listener
(ReturnListener) that is registered on the command component that launched the
dialog (which would be the New User commandLink on the Login page). How you
would handle the return value is described in Section 19.3.1.4, "Handling the Return
Value".

19.3.1.4 Handling the Return Value
To handle a return value, you register a return listener on the command component
that launched the dialog, which would be the New User link component on the Login
page in the sample application. Example 19–25 shows the code for the New User link
component.

Example 19–25 New User Command Link on the Login Page

<af:commandLink id="cmdLink" text="New User?"
 action="dialog:newAccount"
 useWindow="true" partialSubmit="true"
 returnListener="#{backing_login.handleReturn}"
 windowHeight="200" windowWidth="500" />

The returnListener attribute on commandLink specifies a reference to a return
listener method in the page’s backing bean, Login.java. The return listener method
processes the return event that is generated when the dialog is dismissed.
Example 19–26 shows the code for the return listener method that handles the return
value.

Example 19–26 Return Listener Method for the New User Link in a Backing Bean

public void handleReturn(ReturnEvent event)
{
 if (event.getReturnValue() != null)
 {
 Customer cst;
 String name;
 String psw;
 cst = (Customer)event.getReturnValue();
 name = cst.getFirstName();
 psw = cst.getPassword();
 CustomerList.getCustomers().add(cst);
 inputText1.setSubmittedValue(null);
 inputText1.setValue(name);
 inputText2.setSubmittedValue(null);
 inputText2.setValue(psw);
 }
}

You use the getReturnValue() method to retrieve the return value, because the
return value is automatically added as a property of the ReturnEvent.

Using Popup Dialogs

19-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

19.3.1.4.1 What Happens at Runtime

In the sample application, when ADF Faces delivers a return event to the return
listener registered on the commandLink component, the handleReturn() method is
called and the return value is processed accordingly. The new user is added to a
customer list, and as a convenience to the user any previously submitted values in the
Login page are cleared and the input fields are populated with the new information.

19.3.1.5 Passing a Value into a Dialog
The AdfFacesContext.returnFromDialog() method lets you send a return
value back from a dialog. Sometimes you might want to pass a value into a dialog. To
pass a value into a dialog, you use a launch listener (LaunchListener).

In the sample application, a new user can enter a name in the Username field on the
Login page, and then click the New User link. When the New Account dialog page
displays in a popup dialog, the First Name input field is automatically populated with
the name that was entered in the Login page. To accomplish this, you register a launch
listener on the command component that launched the dialog (which would be
commandLink). Example 19–27 shows the code for the commandLink component.

Example 19–27 Input Field and New User Command Link on the Login Page

<af:inputText label="Username" value="#{backing_login.username}"/>
<af:commandLink id="cmdLink" text="New User?"
 action="dialog:newAccount"
 useWindow="true" partialSubmit="true"
 launchListener="#{backing_login.handleLaunch}"
 returnListener="#{backing_login.handleReturn}"
 windowHeight="200" windowWidth="500" />

The LaunchListener attribute on commandLink specifies a reference to a launch
listener method in the page’s backing bean, Login.java. In the launch listener
method you use the getDialogParameters() method to add a parameter to a Map
using a key-value pair. Example 19–28 shows the code for the launch listener method.

Example 19–28 Launch Listener Method for the New User Command Link in a Backing
Bean

public void handleLaunch(LaunchEvent event)
{
 //Pass the current value of the field into the dialog
 Object usr = username;
 event.getDialogParameters().put("firstname", usr);
}
// Use by inputText value binding
public String username;
public String getUsername()
{
 return username;
}
public void setUsername(String username)
{
 this.username = username;
}

To show the parameter value in the New Account dialog page, use the ADF Faces
processScope to retrieve the key and value via a special EL expression in the format
#{processScope.someKey}, as shown in Example 19–29.

Using Popup Dialogs

Using Complex UI Components 19-29

Example 19–29 Input Field on the New Account Page

<af:inputText label="First name" value="#{processScope.firstname}"/>

19.3.1.5.1 What Happens at Runtime

When a command component is about to launch a dialog (assuming all conditions
have been met), ADF Faces queues a launch event. This event stores information about
the component that is responsible for launching a dialog, and the root of the
component tree to display when the dialog process starts. Associated with a launch
event is a launch listener, which takes the launch event as a single argument and
processes the event as needed.

In the sample application, when ADF Faces delivers the launch event to the launch
listener registered on the commandLink component, the handleLaunch() method is
called and the event processed accordingly.

In ADF Faces, a process always gets a copy of all the values that are in the
processScope of the page from which a dialog is launched. When the
getDialogParameters() method has added parameters to a Map, those parameters
also become available in processScope, and any page in the dialog process can get
the values out of processScope by referring to the processScope objects via EL
expressions.

Unlike sessionScope, processScope values are visible only in the current "page
flow" or process. If the user opens a new window and starts navigating, that series of
windows has its own process; values stored in each window remain independent.
Clicking on the browser's Back button automatically resets processScope to its
original state. When you return from a process the processScope is back to the way
it was before the process started. To pass values out of a process you would use
AdfFacesContext.returnFromDialog(), sessionScope or
applicationScope.

19.3.2 How the SRDemo Popup Dialogs Are Created
The SRDemo application uses a popup dialog to:

■ Display a list of frequently asked questions (FAQ).

■ Select and assign a technician to an open service request.

In the Create New Service Request page (see Figure 19–13), when the user clicks the
Frequently Asked Questions link, the application displays a popup dialog showing
the FAQ list.

In the Edit Service Request page, when the user clicks the flashlight icon next to the
Assigned to label (see Figure 19–12), the application displays the Search for Staff
popup dialog. In the dialog (as shown in Figure 19–9), the user first makes a search
based on user role. Then in the results section, the user clicks the radio button next to a
name and clicks Select.

Note: You can use processScope with all JSF components, not only
with ADF Faces components.

Using Popup Dialogs

19-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 19–9 Search for Staff Popup Dialog (SRStaffSearch.jspx)

After making a selection, the popup dialog closes and the application returns to the
Edit Service Request page where the Assigned to display-only fields are now updated
with the selected technician’s first name and last name, as shown in Figure 19–10. You
don’t need to write any code to facilitate the update as the fields are automatically
updated when the foreign key AssignedTo is modified. For details, see Section 7.3,
"Including Reference Entities in Join View Objects".

Figure 19–10 Edit Service Request Page (SREdit.jspx) With an Assigned Request

Using Popup Dialogs

Using Complex UI Components 19-31

To reiterate, the tasks for supporting a popup dialog are (not listed in any particular
order):

1. Create the JSF navigation rules with dialog: outcomes.

2. Create the page that launches the dialog via a dialog: action outcome.

3. Create the dialog page and return a value.

4. Handle the return value.

Firstly, the JSF navigation rules for launching dialogs are shown in Example 19–30. The
navigation case for showing the dialog page SRStaffSearch.jspx is defined by the
dialog:StaffSearch outcome; the navigation case for showing the SRFaq.jspx
dialog page is defined by the dialog:FAQ outcome.

Example 19–30 Dialog Navigation Rules in the faces-config.xml File

<navigation-rule>
 <from-view-id>/app/staff/SREdit.jspx</from-view-id>
 ...
 <navigation-case>
 <from-outcome>dialog:StaffSearch</from-outcome>
 <to-view-id>/app/staff/SRStaffSearch.jspx</to-view-id>
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/app/SRCreate.jspx</from-view-id>
 <navigation-case>
 <from-outcome>dialog:FAQ</from-outcome>
 <to-view-id>/app/SRFaq.jspx</to-view-id>
 </navigation-case>
 ...
</navigation-rule>

Secondly, the pages that launch popup dialogs are SREdit.jspx and
SRCreate.jspx. In both pages the useWindow attribute on the commandLink
component is set to true, which is a precondition for ADF Faces to know that it has to
launch a popup dialog.

Example 19–31 shows the commandLink component on the page that launches the
SRStaffSearch.jspx dialog page. The commandLink component has the static
action outcome dialog:StaffSearch.

Example 19–31 CommandLink Component for Launching the SRStaffSearch Dialog
Page

<af:commandLink id="staffLOVLink" action="dialog:StaffSearch"
 useWindow="true" immediate="true"
 partialSubmit="true"
 returnListener="#{backing_SREdit.handleStaffLOVReturn}"..>
 <af:objectImage height="24" width="24"
 source="/images/searchicon_enabled.gif"/>
</af:commandLink>

Example 19–32 shows the commandLink component on the page that launches the
SRFaq.jspx dialog page. The commandLink component has the static action
outcome dialog:SRFaq.

Using Popup Dialogs

19-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–32 CommandLink Component for Launching the SRFaq Dialog Page

<af:commandLink action="dialog:FAQ"
 text="#{res['srcreate.faqLink']}"
 useWindow="true"
 immediate="true"
 partialSubmit="true"/>

Thirdly, the dialog pages SRStaffSearch.jspx and SRFaq.jspx have to call the
AdfFacesContext.returnFromDialog() method to let ADF Faces know when
the user dismisses the dialogs. In SRStaffSearch.jspx, which uses a table
component with a tableSelectOne component to display the names for selection,
the AdfFacesContext.returnFromDialog() method is called when the user
clicks the Select commandButton component after selecting the radio button for a
name in the table. The af:returnActionListener tag on the Select button
component calls the returnFromDialog() method, which closes the dialog and
sends the return value from the dialog—no backing bean code is needed.
Example 19–33 shows the code snippet for the Select button component.

Example 19–33 CommandButton Component for Selecting a Name and Closing the
Popup Dialog

<af:tableSelectOne>
 <af:commandButton text="#{res['srstaffsearch.button.select']}">
 <af:setActionListener from="#{row.UserId}"
 to="#{bindings.AssignedTo.inputValue}"/>
 <af:returnActionListener value="#{row.UserId}"/>
 </af:commandButton>
</af:tableSelectOne>

Similarly in SRFaq.jspx, a commandLink component is used to close the dialog and
call the AdfFacesContext.returnFromDialog() method. The
af:returnActionListener tag calls the returnFromDialog method on the
AdfFacesContext—backing bean code is not needed. Example 19–34 shows the
code snippet for the commandLink. When the user dismisses the SRFaq.jspx popup
dialog, ADF Faces simply closes the dialog. No dialog return value is sent, so there’s
no need to handle a return value.

Example 19–34 CommandLink Component for Closing the SRFaq Popup Dialog

<af:commandLink text="#{res['srdemo.close']}">
 <af:returnActionListener/>
</af:commandLink>

Note that the SRStaffSearch page definition file includes a binding to the AssignedTo
attribute. In the SRStaffSearch dialog, when the user selects a radio button for a name
and then clicks Select, the dialog is dismissed and the application returns to the
SREdit page with the selected name populated in the Assigned To display-only fields.
As shown in Example 19–33, the Select commandButton component has an
af:setActionListener tag that is configured to set the value of the selected
UserId to the value of the AssignedTo attribute. The Select commandButton also
has the af:returnActionListener tag, which returns the value of the selected
UserId. The commandLink component that launches the SRStaffSearch dialog has an
attached return listener (see Example 19–31), but the return handler code (as shown in
Example 19–35) does not use the return value. The return handler simply causes the
Assigned On date field to refresh its value from the binding.

Enabling Partial Page Rendering

Using Complex UI Components 19-33

Example 19–35 Return Listener Method

 public void handleStaffLOVReturn(ReturnEvent event) {
 getAssignedDate().resetValue();
 }

19.3.3 What You May Need to Know About ADF Faces Dialogs
The ADF Faces dialog framework has these known limitations:

■ Does not support the use of </redirect> in navigation rules that may launch
dialog pages in new popup dialogs. You can, however, use </redirect> in
navigation rules that launch dialog pages within the same window.

■ Cannot detect popup blockers. If you use popup dialogs in your web application,
tell your users to disable popup blocking for your site.

19.3.4 Other Information
The ADF Faces select input components (such as selectInputText and
selectInputDate) also have built-in dialog support. These components
automatically handle launching a page in a popup dialog, and receiving the return
event. For example, when you use selectInputText to launch a dialog, all you
have to do is to set the action attribute to a dialog: outcome, and specify the width
and height of the dialog. When the user dismisses the dialog, the return value from the
dialog is automatically used as the new value of the input component. You would still
need to define a JSF navigation rule with the dialog: outcome, create the dialog
page, and create the dialog page’s backing bean to handle the action events.

Besides being able to launch popup dialogs from action events, you can also launch
popup dialogs from value change events and poll events. For example, you can
programmatically launch a dialog (without a JSF navigation rule) by using the
AdfFacesContext.launchDialog() method in a value change listener method or
poll listener method.

If you’re a framework or component developer you can enable a custom renderer to
launch a dialog and handle a return value, or add LaunchEvent and ReturnEvent
events support to your custom ActionSource components. For details about the
DialogService API that you can use to implement dialogs, see the ADF Faces
Javadoc for oracle.adf.view.faces.context.DialogService. See also the
ADF Faces Developer’s Guide for further information about supporting dialogs in
custom components and renderers.

19.4 Enabling Partial Page Rendering
ADF Faces components use partial page rendering (PPR), which allows small areas of
a page to be refreshed without the need to redraw the entire page. PPR is the same as
AJAX-style browser user interfaces that update just parts of the page for a more
interactive experience. PPR is currently supported on the following browsers:

■ Internet Explorer 5.5 and above (Windows)

■ Mozilla 1.0/Netscape 7.0

On all other platforms, ADF Faces automatically uses full page rendering You don’t
need to disable PPR or write code to support both cases.

Enabling Partial Page Rendering

19-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Most of the time you don’t have to do anything to enable PPR because ADF Faces
components have built-in support for PPR. For example, in the SRSearch.jspx page,
the Results section of the page uses a showOneTab component with two
showDetailItem components to let the user display either a summary view or detail
view of the search results. Figure 19–11 shows the Results section with the Summary
View selected. When the user clicks Detail View, only the portion of the page that is
below the Results title will refresh.

Figure 19–11 Search Page (SRSearch.jspx) with the Summary Result View Selected

At times you want to explicitly refresh parts of a page yourself. For example, you may
want an output component to display what a user has chosen or entered in an input
component, or you may want a command link or button to update another
component. Three main component attributes can be used to enable partial page
rendering:

■ autoSubmit: When the autoSubmit attribute of an input component (such as
inputText and selectOneChoice) or a table select component (such as
tableSelectOne) is set to true, and an appropriate action takes place (such as a
value change), the component automatically submits the form it is enclosed in. For
PPR, you might use this in conjunction with a listener attribute bound to a method
that performs some logic when an event based on the submit is launched.

■ partialSubmit: When the partialSubmit attribute of a command component
is set to true, the page partially submits when the button or link is clicked. You
might use this in conjunction with an actionListener method that performs
some logic when the button or link is clicked.

■ partialTriggers: All rendered components support the partialTriggers
attribute. The value of this attribute is one or more IDs of other trigger
components. When those trigger components are updated (for example through
an automatic submit or a partial submit), the target component is also updated.

Enabling Partial Page Rendering

Using Complex UI Components 19-35

19.4.1 How to Enable PPR
The SREdit.jspx page of the SRDemo application uses partial page submits and
partial triggers to support PPR.

Figure 19–12 shows the SREdit.jspx page with an unassigned service request.
When the user clicks the flashlight icon (which is a commandLink component with an
objectImage component), a popup dialog displays to allow the user to search and
select a name. After selecting a name, the popup dialog closes and the Assigned to
display-only fields (outputText components) and the date field
(selectInputDate component) below Status are refreshed with the appropriate
values; other parts of the edit page are not refreshed.

Figure 19–12 Edit Service Request Page (SREdit.jspx) with an Unassigned Request

To enable a command component to partially refresh another component:
1. On the trigger command component, set the id attribute to a unique value, and

set the partialSubmit attribute to true.

2. On the target component that you want to partially refresh when the trigger
command component is activated, set the partialTriggers attribute to the id
of the command component.

Example 19–36 shows the code snippets for the command and read-only output
components used in the SREdit.jspx page to illustrate PPR.

Tip: A component’s unique ID must be a valid XML name, that is,
you cannot use leading numeric values or spaces in the ID. JSF also
does not permit colons (:) in the ID.

Enabling Partial Page Rendering

19-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–36 Code for Enabling Partial Page Rendering Through a Partial Submit

<af:panelLabelAndMessage label="#{res['sredit.assignedTo.label']}">
 <af:panelHorizontal>
 <af:outputText value="#{bindings.AssignedToFirstName.inputValue}"
 partialTriggers="staffLOVLink"/>
 <af:outputText value="#{bindings.AssignedToLastName.inputValue}"
 partialTriggers="staffLOVLink"/>
 <af:commandLink id="staffLOVLink" action="dialog:StaffSearch"
 useWindow="true" immediate="true"
 partialSubmit="true"
 returnListener="#{backing_SREdit.handleStaffLOVReturn}"
 partialTriggers="status"
 disabled="#{bindings.Status.inputValue==2}">
 <af:objectImage height="24" width="24"
 source="/images/searchicon_enabled.gif"/>
 </af:commandLink>
 <f:facet name="separator">
 <af:objectSpacer width="4" height="10"/>
 </f:facet>
 </af:panelHorizontal>
</af:panelLabelAndMessage>

19.4.2 What Happens at Runtime
ADF Faces command buttons and links can generate partial events. The
partialSubmit attribute on commandButton or commandLink determines
whether a partial page submit is used to perform an action or not. When
partialSubmit is true, ADF Faces performs the action through a partial page
submit. Thus you can use a command button or link to update a portion of a page,
without having to redraw the entire page upon a submit. By default the value of
partialSubmit is false, which means full page rendering is used in response to a
partial event. Full page rendering is also automatically used when partial page
rendering is not supported in the client browser or platform or when navigating to
another page.

In the example, the partialTriggers attributes on the Assigned to display-only
outputText components are set to the id of the commandLink component. When the
commandLink component fires a partial event, the output components (which are
listening for partial events from commandLink) know to refresh their values via
partial page rendering.

19.4.3 What You May Need to Know About PPR and Screen Readers
Screen readers do not reread the full page in a partial page request. PPR causes the
screen reader to read the page starting from the component that fired the partial
action. Hence, you should place the target components after the component that fires
the partial request; otherwise the screen reader would not read the updated targets.

Tip: The partialTriggers attribute on a target component can
contain the id of one or more trigger components. Use spaces to
separate multiple ids.

Creating a Multipage Process

Using Complex UI Components 19-37

19.5 Creating a Multipage Process
If you have a set of pages that should be visited in a particular order, consider using
the processTrain and processChoiceBar components to show the multipage
process. In the SRDemo application, the SRCreate.jspx and
SRCreateConfirm.jspx pages use a processTrain and processChoiceBar
component to let a user create a new service request.

When rendered, the processTrain component shows the total number of pages in
the process as well as the page where the user is currently at, and allows the user to
navigate between those pages. For example, Figure 19–13 shows the first page in the
create service request process, where the user selects one appliance from a list box and
enters a description of the problem in a text box. The number of nodes (circles) in the
train indicates the total number of predefined pages in the process; the solid node
indicates that the user is currently working on that page in the process. To go to the
next page in the process, the user clicks the active text link below the node.

Figure 19–13 First Page of the Create New Service Request Process (SRCreate.jspx)

Note that the illustrations in this chapter use the Oracle skin and not the SRDemo skin.

The processChoiceBar component renders a dropdown menu for selecting a page
in the process, and where applicable, one or more buttons for navigating forward and
backward in the process.

On the first page in the create service request process, when the user clicks the
Confirm text link or the Continue button, or selects Confirm from the dropdown
menu, the application displays the second page of the process, as shown in
Figure 19–14.

Creating a Multipage Process

19-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 19–14 Second Page of the Create New Service Request Process
(SRCreateConfirm.jspx)

From the second page, the user can return to the problem description page by clicking
Basic Problem Details in the train or clicking the Back button, or by selecting Basic
Problem Details from the dropdown menu.

If done the user clicks Submit Request, and the application displays the Request
Submitted page, as shown in Figure 19–15.

Figure 19–15 Request Submitted Page (SRCreateDone.jspx)

19.5.1 How to Create a Process Train
To display a process train on each page, you bind the processTrain component to a
process train model. At runtime the train model dynamically creates the train for each
page in the process.

To create and use a process train:
1. Create a process train model. (See Section 19.5.1.1, "Creating a Process Train

Model")

2. Create the JSF page for each node in the train. (See Section 19.5.1.2, "Creating the
JSF Page for Each Train Node")

3. Create a navigation rule that has navigation cases for each node. (See
Section 19.5.1.3, "Creating the JSF Navigation Rules")

Creating a Multipage Process

Using Complex UI Components 19-39

19.5.1.1 Creating a Process Train Model
Use the oracle.adf.view.faces.model.MenuModel class and the
oracle.adf.view.faces.model.ProcessMenuModel class to create a process
train model that dynamically generates a process train. The MenuModel class is the
same menu model mechanism that is used for creating menu tabs and menu bars, as
described in Section 19.2.1, "How to Create Dynamic Navigation Menus".

To create a process train model:
1. Create a class that can get and set the properties for each node in the process train.

Each node in the train needs to have a label, a viewId and an outcome
property. Example 19–37 shows part of the MenuItem class used in the SRDemo
application.

Example 19–37 MenuItem.java for Process Train Nodes

package oracle.srdemo.view.menu;
public class MenuItem {
 private String _label = null;
 private String _outcome = null;
 private String _viewId = null;
 ...
 //extended security attributes
 private boolean _readOnly = false;
 private boolean _shown = true;
 public void setLabel(String label) {
 this._label = label;
 }

 public String getLabel() {
 return _label;
 }

// getter and setter methods for remaining attributes omitted
}

2. Configure a managed bean for each node in the train, with values for the
properties that require setting at instantiation.

Each bean should be an instance of the class you create in step 1. Example 19–38
shows the managed bean code for the process train nodes in
faces-config.xml.

Creating a Multipage Process

19-40 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–38 Managed Beans for Process Train Nodes in the faces-config.xml File

<!--First train node -->
<managed-bean>
 <managed-bean-name>createTrain_Step1</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srcreate.train.step1']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRCreate.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>GlobalCreate</value>
 </managed-property>
</managed-bean>

<!-- Second train node-->
<managed-bean>
 <managed-bean-name>createTrain_Step2</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srcreate.train.step2']}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/SRCreateConfirm.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>Continue</value>
 </managed-property>
</managed-bean>
3. Configure a managed bean that is an instance of a list with application as its

scope.

The list entries are the train node managed beans you create in step 2, listed in the
order that they should appear on the train. Example 19–39 shows the managed
bean code for creating the process train list.

Example 19–39 Managed Bean for Process Train List in the faces-config.xml File

<!-- create the list to pass to the train model -->
<managed-bean>
 <managed-bean-name>createTrainNodes</managed-bean-name>
 <managed-bean-class>java.util.ArrayList</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <list-entries>
 <value-class>oracle.srdemo.view.menu.MenuItem</value-class>
 <value>#{createTrain_Step1}</value>
 <value>#{createTrain_Step2}</value>
 </list-entries>
</managed-bean>

Creating a Multipage Process

Using Complex UI Components 19-41

4. Create a class to facilitate the construction of a ProcessMenuModel instance. This
class must have at least two properties, viewIdProperty and instance.

Example 19–40 shows the TrainModelAdapter class used in the SRDemo
application.

Example 19–40 TrainModelAdapter.java for Holding the Process Train Nodes

package oracle.srdemo.view.menu;
import oracle.adf.view.faces.model.MenuModel;
import oracle.adf.view.faces.model.ProcessMenuModel;
...
public class TrainModelAdapter implements Serializable {
 private String _propertyName = null;
 private Object _instance = null;
 private transient MenuModel _model = null;
 private Object _maxPathKey = null;
 public MenuModel getModel() throws IntrospectionException {
 if (_model == null)
 {
 _model = new ProcessMenuModel(getInstance(),
 getViewIdProperty(),
 getMaxPathKey());
 }
 return _model;
 }
 public String getViewIdProperty() {
 return _propertyName;
 }
 /**
 * Sets the property to use to get at view id
 * @param propertyName
 */
 public void setViewIdProperty(String propertyName) {
 _propertyName = propertyName;
 _model = null;
 }
 public Object getInstance() {
 return _instance;
 }
 /**
 * Sets the treeModel
 * @param instance must be something that can be converted into a TreeModel
 */
 public void setInstance(Object instance) {
 _instance = instance;
 _model = null;
 }
 public Object getMaxPathKey()
 {
 return _maxPathKey;
 }
 public void setMaxPathKey(Object maxPathKey)
 {
 _maxPathKey = maxPathKey;
 }
}

Creating a Multipage Process

19-42 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

If you wish to write your own menu model instead of using ProcessMenuModel,
you can use ProcessUtils to implement the PlusOne or MaxVisited behavior
for controlling page access. For information about how to control page access
using those process behaviors, see Section 19.5.1.1.1, "What You May Need to
Know About Controlling Page Access".

5. Configure a managed bean to reference the class you create in step 4. This is the
bean to which the processTrain component is bound.

The bean should be instantiated to have the instance property value set to the
managed bean that creates the train list (as configured in step 3). The instantiated
bean should also have the viewIdProperty value set to the viewId property on
the bean created in step 1. Example 19–41 shows the managed bean code for
creating the process train model.

Example 19–41 Managed Bean for Process Train Model in the faces-config.xml File

<!-- create the train menu model -->
<managed-bean>
 <managed-bean-name>createTrainMenuModel</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.menu.TrainModelAdapter</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <managed-property>
 <property-name>viewIdProperty</property-name>
 <value>viewId</value>
 </managed-property>
 <managed-property>
 <property-name>instance</property-name>
 <value>#{createTrainNodes}</value>
 </managed-property>
</managed-bean>

19.5.1.1.1 What You May Need to Know About Controlling Page Access

When you want to control the pages users can access based on the page they are
currently on, you can use one of two process scenarios provided by ADF Faces,
namely Max Visited or Plus One.

Suppose there are five pages or nodes in a process train, and the user has navigated
from page 1 to page 4 sequentially. At page 4 the user jumps back to page 2. Where the
user can go next depends on which process scenario is used.

In the Max Visited process, from the current page 2 the user can go back to page 1, go
ahead to page 3, or jump ahead to page 4. That is, the Max Visited process allows the
user to return to a previous page or advance to any page up to the furthest page
already visited. The user cannot jump ahead to page 5 from page 2 because page 5 has
not yet been visited.

Given the same situation, in the Plus One process the user can only go ahead to page 3
or go back to page 1. That is, the Plus One process allows the user to return to a
previous page or to advance one node in the train further than they are on currently.
The user cannot jump ahead to page 4 even though page 4 has already been visited.

If you were to use the Max Visited process, you would add code similar to the next
code snippet, for the createTrainMenuModel managed bean (see Example 19–41) in
faces-config.xml:

Creating a Multipage Process

Using Complex UI Components 19-43

<managed-property>
 <property-name>maxPathKey</property-name>
 <value>TRAIN_DEMO_MAX_PATH_KEY</value>
</managed-property>

ADF Faces knows to use the Max Visited process because a maxPathKey value is
passed into the ProcessMenuModel (see Example 19–40).

The Create New Service Request process uses the Plus One process because
faces-config.xml doesn’t have the maxPathKey managed-property setting, thus
null is passed for maxPathKey. When null is passed, ADF Faces knows to use the
PlusOne process.

The process scenarios also affect the immediate and readOnly attributes of the
command component used within a processTrain component. For information, see
Section 19.5.1.2.1, "What You May Need to Know About the Immediate and ReadOnly
Attributes".

19.5.1.2 Creating the JSF Page for Each Train Node
Each train node has its own page. To display the process train, on each page bind the
processTrain component to the process train model, as shown in Example 19–42.

A processTrain component is usually inserted in the location facet of a
panelPage or page component. Like a menu component, a processTrain
component has a nodeStamp facet that accepts one commandMenuItem component.
It is the commandMenuItem component that provides the actual label you see below a
train node, and the navigation outcome when the label is activated.

Example 19–42 ProcessTrain Component in the SRCreate.jspx File

<af:panelPage..>
 ...
 <f:facet name="location">
 <af:processTrain var="train"
 value="#{createTrainMenuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{train.label}"
 action="#{train.getOutcome}"
 readOnly="#{createTrainMenuModel.model.readOnly}"
 immediate="false"/>
 </f:facet>
 </af:processTrain>
 </f:facet>
 ...
</af:panelPage>

Note: You can use the same code for the process train on each page
because the process train model dynamically determines the train
node links, the order of the nodes, and whether the nodes are enabled,
disabled, or selected.

Creating a Multipage Process

19-44 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Typically, you use a processTrain component with a processChoiceBar
component. The processChoiceBar component, which is also bound to the same
process train model, gives the user additional navigation choices for stepping through
the multipage process. Example 19–43 shows the code for the processChoiceBar
component in the SRCreate.jspx page. A processChoiceBar component is
usually inserted in the actions facet of a panelPage or page component.

Example 19–43 ProcessChoiceBar Component in the SRCreate.jspx File

<af:panelPage ..>
 <f:facet name="actions">
 <af:panelButtonBar>
 <af:commandButton text="#{res['srdemo.cancel']}"
 action="GlobalHome"
 actionListener=
 "#{bindings.cancelNewServiceRequest.exec}"
 immediate="true"/>
 <af:processChoiceBar var="choice"
 value="#{createTrainMenuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{choice.label}"
 action="#{choice.getOutcome}"
 readOnly="#{createTrainMenuModel.model.readOnly}"
 immediate="false"/>
 </f:facet>
 </af:processChoiceBar>
 </af:panelButtonBar>
 </f:facet>
 ...
</af:panelPage>

As illustrated in Figure 19–13 and Figure 19–14, the processChoiceBar component
automatically provides a Continue button and a Back button for navigating forward
and backward in the process. You don’t have to write any code for these buttons. If
you want to provide additional buttons (such as the Cancel and Submit Request
buttons in Figure 19–14), use a panelButtonBar to lay out the button components
and the processChoiceBar component.

19.5.1.2.1 What You May Need to Know About the Immediate and ReadOnly Attributes

The two process scenarios provided by ADF Faces and described in Section 19.5.1.1.1,
"What You May Need to Know About Controlling Page Access" have an effect on both
the immediate and readOnly attributes of the commandMenuItem component used
within processTrain. When binding processTrain to a process train model, you
can bind the node's immediate or readOnly attribute to the model's immediate or
readOnly attribute. The ProcessMenuModel class then uses logic to determine the
value of the immediate or readOnly attribute.

When the data on the current page does not need to be validated, the immediate
attribute should be set to true. For example, in the Plus One scenario described in
Section 19.5.1.1.1, if the user is on page 4 and goes back to page 2, the user has to come
back to page 4 again later, so that data does not need to be validated when going to
page 1 or 3, but should be validated when going ahead to page 5.

Note: If your multipage process has only two pages, ADF Faces uses
Continue as the label for the button that navigates forward. If there is
more than two pages in the process, the forward button label is Next.

Creating a Multipage Process

Using Complex UI Components 19-45

The ProcessMenuModel class uses the following logic to determine the value of the
immediate attribute:

■ Plus One: immediate is set to true for any previous step, and false otherwise.

■ Max Visited: When the current page and the maximum page visited are the same,
the behavior is the same as the Plus One scenario. If the current page is before the
maximum page visited, then immediate is set to false.

The readOnly attribute should be set to true only if that page of the process cannot
be reached from the current page. The ProcessMenuModel class uses the following
logic to determine the value of the readOnly attribute:

■ Plus One: readOnly will be true for any page past the next available page.

■ Max Visited: When the current step and the maximum page visited are the same,
the behavior is the same as the Plus One scenario. If the current page is before the
maximum page visited, then readOnly is set to true for any page past the
maximum page visited.

19.5.1.3 Creating the JSF Navigation Rules
The <from-outcome> and <to-view-id> values in the navigation cases must
match the properties set in the process train model.

In the SRDemo application, a global navigation rule is used for the first page of the
Create New Service Request process because the SRCreate.jspx page is accessible
from any page in the application. The second page of the process,
SRCreateConfirm.jspx, is not included in the global navigation rule because it is
only accessible from the SRCreate.jspx page. Example 19–44 shows the navigation
rules and cases for the process.

Example 19–44 Navigation Rules for Process Train Nodes in the faces.config.xml File

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>GlobalCreate</from-outcome>
 <to-view-id>/app/SRCreate.jspx</to-view-id>
 </navigation-case>
 ...
</navigation-rule>
...
<navigation-rule>
 <from-view-id>/app/SRCreate.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Continue</from-outcome>
 <to-view-id>/app/SRCreateConfirm.jspx</to-view-id>
 </navigation-case>
 ...
</navigation-rule>
<navigation-rule>
 <from-view-id>/app/SRCreateConfirm.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Back</from-outcome>
 <to-view-id>/app/SRCreate.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>Complete</from-outcome>
 <to-view-id>/app/SRCreateDone.jspx</to-view-id>
 </navigation-case>

Creating a Multipage Process

19-46 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

</navigation-rule>

19.5.2 What Happens at Runtime
Java automatically adds a no-arg constructor to TrainModelAdapter because the
TrainModelAdapter class is used as a managed bean. TrainModelAdapter
constructs the process train model, which is a ProcessMenuModel instance, via the
createTrainMenuModel managed bean. The createTrainNodes managed bean
creates and injects the train node list into the train model. The train model provides
the model that correctly highlights and enables the nodes on the train as you step
through the process.

The individual train node managed beans (for example, createTrain_Step1) are
instantiated with values for label, viewId, and outcome that are used by the train
model to dynamically generate the train nodes. The default JSF actionListener
mechanism uses the outcome values to handle the page navigation.

In the SRDemo application, the individual train node managed beans access String
resources in the resource bundle via the resources managed bean, so that the correct
node label is dynamically retrieved and display at runtime.

At runtime if maxPathKey has a value (set in faces-config.xml), ADF Faces
knows to use the Max Visited process scenario. If maxPathKey is null (as in the
SRDemo application), ADF Faces uses the Plus One process to control page access
from the current page.

Like the menuTab component, the processTrain and processChoiceBar
components have a nodeStamp facet, which takes one commandMenuItem
component. By using train as the variable and binding the processTrain
component to the process train model, you need only one commandMenuItem
component to display all train node items using #{train.label} as the text value
and #{train.getOutcome} as the action value on the command component.
Similarly, by using choice as the variable and binding the processChoiceBar
component to the process train model, you need only one commandMenuItem
component to display all items as menu options using #{choice.label} as the
text value and #{choice.getOutcome} as the action value.

The enabling and disabling of a node is not controlled by the MenuItem class, but by
the process train model based on the current view using the EL expression
#{createTrainMenuModel.model.readOnly} on the readOnly attribute of the
processTrain or processChoiceBar component.

19.5.3 What You May Need to Know About Process Trains and Menus
The ProcessMenuModel class extends the ViewIdPropertyMenuModel class,
which is used to create dynamic menus, as described in Section 19.2, "Using Dynamic
Menus for Navigation". Like menus and menu items, each node on a train is defined
as a menu item. But unlike menus where the menu items are gathered into the
intermediate menu tree object (MenuTreeModelAdapter), the complete list of train
nodes is gathered into an ArrayList that is then injected into the
TrainModelAdapter class. Note, however, that both ViewIdPropertyMenuModel
and ProcessMenuModel can always take a List and turn it into a tree internally.

Tip: Disabled menu choices are not rendered on browsers that don’t
support disabled items in a dropdown menu. On browsers that
support disabled items in a dropdown menu, the unreachable items
will look disabled.

Providing File Upload Capability

Using Complex UI Components 19-47

In the SRDemo application, the nodes on the train are not secured by user role as any
user can create a new service request, which means that the train model can be stored
as an application scoped managed bean and shared by all users. The menu model
is stored as a session scoped managed bean because the menu tab items are secured
by user role, as some tabs are not available to some user roles.

To add a new page to a process train, configure a new managed bean for the page
(Example 19–38), add the new managed bean to the train list (Example 19–39), and
add the navigation case for the new page (Example 19–44).

19.6 Providing File Upload Capability
File uploading is a capability that is required in many web applications. Standard J2EE
technologies such as Servlets and JSP, and JSF 1.1.x, do not directly support file
uploading. The ADF Faces framework, however, has integrated file uploading support
at the component level via the inputFile component.

During file uploading, ADF Faces temporarily stores incoming files either in memory
or on disk. You can set a default directory storage location, and default values for the
amount of disk space and memory that can be used in any one file upload request.

Figure 19–16 shows the SRMain.jspx page of the SRDemo application, where users
can upload files for a particular service request.

Figure 19–16 File Upload Button on the SRMain Page

When the user clicks Upload document, the upload form displays in a popup dialog,
as shown in Figure 19–17.

Figure 19–17 File Upload Form in the SRDemo Application

Providing File Upload Capability

19-48 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The user can enter the full pathname of the file for uploading or click Browse to locate
and select the file. When Begin Upload is clicked, ADF Faces automatically uploads
the selected file. Upon a successful upload, ADF Faces displays some information
about the uploaded file, as shown in Figure 19–18. If uploading is unsuccessful for
some reason, the application displays the error stack trace in the same popup dialog.

Figure 19–18 File Upload Success Information

Providing File Upload Capability

Using Complex UI Components 19-49

19.6.1 How to Support File Uploading on a Page
Use the following tasks to provide file uploading support in a JSF application.

To provide file uploading support:
1. Make sure the ADF Faces filter has been installed.

The ADF Faces filter is a servlet filter that ensures ADF Faces is properly
initialized by establishing an AdfFacesContext object. JDeveloper automatically
installs the filter for you in web.xml when you insert an ADF Faces component
into a JSF page for the first time. Example 19–45 shows the ADF Faces filter and
mapping configuration setting in web.xml.

Example 19–45 ADF Faces Filter in the web.xml File

<!-- Installs the ADF Faces Filter -- >
<filter>
 <filter-name>adfFaces</filter-name>
 <filter-class>oracle.adf.view.faces.webapp.AdfFacesFilter</filter-class>
</filter>

<!-- Adds the mapping to ADF Faces Filter -- >
<filter-mapping>
 <filter-name>adfFaces</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

2. In web.xml set a context initialization parameter for the storage location of
uploaded files. It’s up to you where you want to save the uploaded files.
Example 19–46 shows the context parameter used in the SRDemo application for
uploaded files.

Example 19–46 Uploaded File Storage Location in the web.xml File

<context-param>
 <description>Parent directory location of SRDemo fileuploads</description>
 <param-name>SRDemo.FILE_UPLOADS_DIR</param-name>
 <param-value>/tmp/srdemo_fileuploads</param-value>
</context-param>

3. Create a backing bean for handling uploaded files. Example 19–47 shows the
managed bean code in faces-config.xml for the SRDemo file upload page.

Example 19–47 Managed Bean for the SRFileUpload Page in the faces.config.xml File

<managed-bean>
 <managed-bean-name>backing_SRFileUpload</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.backing.SRFileUpload</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 ...
</managed-bean>

Providing File Upload Capability

19-50 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. In the JSF page you can use either af:form or h:form for file uploading. Make
sure you set the enclosing form to support file uploads, as shown in the next code
snippet:

<af:form usesUpload="true"/>
..
<h:form enctype="multipart/form-data"/>

5. Use the inputFile component to provide a standard input field with a label, and
a Browse button, as shown in Figure 19–17.

The inputFile component delivers standard value change events as files are
uploaded, and manages the processing of the uploaded contents for you. It is up to
you how you want to handle the contents.

To process file uploading, you could either implement a value change listener
method in the backing bean to handle the event, or bind the value attribute of
inputFile directly to a managed bean property of type
oracle.adf.view.faces.model.UploadedFile. Either way you have to
write your own Java code in the backing bean for handling the uploaded files.

The following code snippet shows the code for an inputFile component if you
were to bind the component to a managed bean property of type
oracle.adf.view.faces.model.UploadedFile.

<af:inputFile value="#{myuploadBean.myuploadedFile}".../>

The SRDemo file upload form uses a value change listener method. Example 19–48
shows the code for the method binding expression in the
valueChangeListener attribute of the inputFile component.

Example 19–48 InputFile Component in the SRFileUpload.jspx File

<af:inputFile label="#{res['srfileupload.uploadlabel']}"
 valueChangeListener="#{backing_SRFileUpload.fileUploaded}"
 binding="#{backing_SRFileUpload.srInputFile}"
 columns="40"/>

6. In the page’s backing bean, write the code for handling the uploaded contents. For
example, you could write the contents to a local directory in the file system.
Example 19–49 shows the value change listener method that handles the value
change event for file uploading in the SRDemo application.

Example 19–49 Value Change Listener Method for Handling a File Upload Event

public void fileUploaded(ValueChangeEvent event) {

 InputStream in;
 FileOutputStream out;

 // Set fileUPloadLoc to "SRDemo.FILE_UPLOADS_DIR" context init parameter
 String fileUploadLoc =
 FacesContext.getCurrentInstance().getExternalContext().
 getInitParameter("SRDemo.FILE_UPLOADS_DIR");

 if (fileUploadLoc == null) {
 // Backup value if context init parameter not set.
 fileUploadLoc = "/tmp/srdemo_fileuploads";
 }

Providing File Upload Capability

Using Complex UI Components 19-51

 //get svrId and append to file upload location
 DBSequence svrId =
 (DBSequence)ADFUtils.getBoundAttributeValue("SvrId");
 fileUploadLoc += "/sr_" + svrId + "_uploadedfiles";

 // Create upload directory if it does not exists.
 boolean exists = (new File(fileUploadLoc)).exists();
 if (!exists) {
 (new File(fileUploadLoc)).mkdirs();
 }

 UploadedFile file = (UploadedFile)event.getNewValue();

 if (file != null && file.getLength() > 0) {
 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message =
 new
FacesMessage(JSFUtils.getStringFromBundle("srmain.srfileupload.success") +
 " " + file.getFilename() + " (" +
 file.getLength() + " bytes)");
 context.addMessage(event.getComponent().getClientId(context),
 message);

 try {
 out = new FileOutputStream(fileUploadLoc + "/" + file.getFilename());
 in = file.getInputStream();

 for (int bytes = 0; bytes < file.getLength(); bytes++) {
 out.write(in.read());
 }

 in.close();
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 } else {
 // need to check for null value here as otherwise closing
 // the dialog after a failed upload attempt will lead to
 // a nullpointer exception
 String filename = file != null ? file.getFilename() : null;
 String byteLength = file != null ? "" + file.getLength() : "0";

 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message =
 new FacesMessage(FacesMessage.SEVERITY_WARN,
JSFUtils.getStringFromBundle("srmain.srfileupload.error") +
 " " + filename + " (" + byteLength +
 " bytes)", null);
 context.addMessage(event.getComponent().getClientId(context),
 message);
 }
}

7. Use a commandButton component to submit the form. Example 19–50 shows the
commandButton code in the SRDemo file upload form, and also the action
method code in the page’s backing bean.

Providing File Upload Capability

19-52 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–50 Code for the Command Button and Action Method

<af:commandButton text="#{res['srfileupload.uploadbutton']}"
 action="#{backing_SRFileUpload.UploadButton_action}"/>

...

...
public String UploadButton_action() {
 if (this.getSrInputFile().getValue() == null){
 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message =
 new FacesMessage(FacesMessage.SEVERITY_WARN,
JSFUtils.getStringFromBundle("srmain.srfileupload.emptyfielderror"), null);
 context.addMessage(this.getSrInputFile().getId(), message);

 }

 return null;
}

8. If using a popup dialog, add a commandLink component to let the user close the
dialog. For more information about closing a popup dialog, see Section 19.3.1.3,
"Creating the Dialog Page and Returning a Dialog Value". Example 19–51 shows
the code for the commandLink component and the action method in the page’s
backing bean.

Example 19–51 Code for the Command Link and Action Method

<af:commandLink action="#{backing_SRFileUpload.closeFileUpload_action}"../>
..
public String closeFileUpload_action() {
 AdfFacesContext.getCurrentInstance().returnFromDialog(null, null);
 return null;
}

19.6.2 What Happens at Runtime
The SRDemo application creates a directory such as C:\tmp\srdemo_fileuploads
to store uploaded files. Uploaded files for a service request are placed in a
subdirectory prefixed with the service request id, for example C:\tmp\srdemo_
fileuploads\sr_103_uploadedfiles.

The oracle.adf.view.faces.webapp.UploadedFileProcessor API is
responsible for processing file uploads. Each application has a single
UploadedFileProcessor instance, which is accessible from AdfFacesContext.

The UploadedFileProcessor processes each uploaded file as it comes from the
incoming request, converting the incoming stream into an
oracle.adf.view.faces.model.UploadedFile instance, and making the
contents available for the duration of the current request. In other words, the value
attribute of the inputFile component is automatically set to an instance of
UploadedFile. If the inputFile component's value is bound to a managed bean
property of type oracle.adf.view.faces.model.UploadedFile, ADF Faces
sets an UploadedFile object on the model.

The oracle.adf.view.faces.model.UploadedFile API describes the contents
of a single file. It lets you get at the actual byte stream of the file, as well as the file's
name, its MIME type, and its size. The UploadedFile might be stored as a file in the
file system, or it might be stored in memory; the API hides that difference.

Providing File Upload Capability

Using Complex UI Components 19-53

ADF Faces limits the size of acceptable incoming requests to avoid denial-of-service
attacks that might attempt to fill a hard drive or flood memory with uploaded files. By
default, only the first 100 kilobytes in any one request are stored in memory. Once that
has been filled, disk space is used. Again, by default, that is limited to 2,000 kilobytes
of disk storage for any one request for all files combined. The AdfFacesFilter
throws an EOFException once the default disk storage and memory limits are
reached. To change the default values, see Section 19.6.4, "Configuring File Uploading
Initialization Parameters".

19.6.3 What You May Need to Know About ADF Faces File Upload
Consider the following if you’re using ADF Faces file upload:

■ Most applications don't need to replace the default UploadedFileProcessor
instance, but if your application needs to support uploading of very large files,
you may wish to replace the default processor with a custom
UploadedFileProcessor implementation. For more information see
Section 19.6.5, "Configuring a Custom Uploaded File Processor".

■ The ADF Faces Filter ensures that the UploadedFile content is cleaned up after
the request is complete. Thus, you cannot cache UploadedFile objects across
requests. If you need to keep a file, you must copy it into persistent storage before
the request finishes.

19.6.4 Configuring File Uploading Initialization Parameters
During file uploading, ADF Faces temporarily stores incoming files either on disk or in
memory. ADF Faces defaults to the application server's temporary directory, as
provided by the javax.servlet.context.tempdir property. If that property is
not set, the system java.io.tempdir property is used.

If you wish you can set a default temporary storage location, and default values for the
amount of disk space and memory that can be used in any one file upload request. You
can specify the following file upload context parameters in web.xml:

■ oracle.adf.view.faces.UPLOAD_TEMP_DIR—Specifies the directory where
temporary files are to be stored during file uploading. Default is the user's
temporary directory.

■ oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE—Specifies the
maximum amount of disk space that can be used in a single request to store
uploaded files. Default is 2000K.

■ oracle.adf.view.faces.UPLOAD_MAX_MEMORY—Specifies the maximum
amount of memory that can be used in a single request to store uploaded files.
Default is 100K.

Example 19–52 shows the context initialization parameters for file uploading that you
use in web.xml.

Providing File Upload Capability

19-54 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–52 Context Parameters for File Uploading in the web.xml File

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_TEMP_DIR</param-name>
 <param-value>/tmp/Adfuploads</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE</param-name>
 <param-value>10240000</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_MEMORY</param-name>
 <param-value>5120000</param-value>
</context-param>

19.6.5 Configuring a Custom Uploaded File Processor
Most applications don't need to replace the default UploadedFileProcessor
instance provided by ADF Faces, but if your application needs to support uploading of
very large files or rely heavily on file uploads, you may wish to replace the default
processor with a custom UploadedFileProcessor implementation. For example,
you could improve performance by using an implementation that immediately stores
files in their final destination, instead of requiring ADF Faces to handle temporary
storage during the request.

To replace the default processor, specify the custom implementation using the
<uploaded-file-processor> element in adf-faces-config.xml.
Example 19–53 shows the code for registering a custom UploadedFileProcessor
implementation.

Example 19–53 Registering a Custom Uploaded File Processor in the
adf-faces-config.xml File

<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">
...
 <!-- Use my UploadFileProcessor class -->
 <uploaded-file-processor>
 com.mycompany.faces.myUploadedFileProcessor
 </uploaded-file-processor>
...
</adf-faces-config>

Note: The file upload initialization parameters are processed by the
default UploadedFileProcessor only. If you replace the default
processor with a custom UploadedFileProcessor implementation,
the parameters are not processed.

Tip: Any file uploading initialization parameters specified in
web.xml are processed by the default UploadedFileProcessor
only. If you replace the default processor with a custom
UploadedFileProcessor implementation, the file uploading
parameters are not processed.

Creating Selection Lists

Using Complex UI Components 19-55

19.7 Creating Selection Lists
ADF Faces list components for selecting a single value from a list include
selectOneRadio, selectOneChoice and selectOneListbox, which work in the
same way as standard JSF list components. ADF Faces list components, however,
provide extra functionality such as support for label and message display, automatic
form submission, and partial page rendering.

In the SRDemo application, the SRStaffSearch page uses a selectOneRadio
component to let users pick the staff role to perform a search on. The list of staff roles
is bound to a static list of values that is provided by the developer. In the SRCreate
page, a selectOneListbox component is used to let users select an appliance from a
list of values that is populated dynamically at runtime. In the SRSkills page, a
selectOneChoice component is used to let users traverse through the objects in a
collection. In all cases, the f:selectItems tag is used to provide the list items for
display and selection.

19.7.1 How to Create a List with a Fixed List of Values
The SRStaffSearch page uses a selectOneRadio component to let users pick the staff
role to perform a search on. For example, the user can refine the search on staff
members who have the role of Manager or Technician. Figure 19–19 shows the Search
for Staff form in the SRDemo application.

Figure 19–19 SelectOneRadio Component for Selecting a Staff Role

The Search for Staff form uses a query from a view object that has named bind
variables to find matching objects via the ExecuteWithParams operation. For
information about how to create a search form using parameters, see Section 18.4.1,
"How to Create a Parameterized Search Form".

In the SRStaffSearch page definition file, as shown in Example 19–54, the variable
StaffListByEmailNameRole_Role is bound to the Role named bind variable in
the StaffListByEmailNameRole view object. The StaffListByEmailNameRole

Creating Selection Lists

19-56 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

view object extends the StaffList view object to add the bind variables used by this
search page.

The iterator StaffListByEmailNameRoleIterator iterates over the
StaffListByEmailNameRole collection. The
StaffListByEmailNameRoleIterator is also related to the
ExecuteWithParams action, which encapsulates the details about how to invoke the
action and what parameters the action is expecting. The NamedData elements show
the parameters to be passed to the ExecuteWithParams action.

When the user selects a Role radio button, the selectOneRadio component in the
SRStaffSearch page populates the appropriate page definition variable with the
selected value.

For information about variable iterators and variables, see Section 12.5.2.2, "Binding
Objects Defined in the executables Element".

Example 19–54 SRStaffSearch Page Definition File

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.83" id="app_staff_SRStaffSearchPageDef"
 Package="oracle.srdemo.view.pageDefs" ...>
 <parameters/>
 <executables>
 <iterator id="StaffListByEmailNameRoleIterator"

Binds="StaffListByEmailNameRole"
RangeSize="10" DataControl="SRService"/>

 <variableIterator id="variables">
 <variableUsage DataControl="SRService"
 Binds="StaffListbyEmailNameRole.variablesMap.Role"

Name="StaffListByEmailNameRole_Role" IsQueriable="false"/>
 ...
 <variableUsage DataControl="SRService"
 Binds="StaffListByEmailNameRole.variablesMap.TheFirstName"
 Name="StaffListByEmailNameRole_TheFirstName"

IsQueriable="false"/>
 <variableUsage DataControl="SRService"
 Binds="StaffListByEmailNameRole.variablesMap.TheLastName"
 Name="StaffListByEmailNameRole_TheLastName"

IsQueriable="false"/>
 </variableIterator>
 ...
 </executables>
 <bindings>
 <action id="ExecuteWithParams" IterBinding="StaffListByEmailNameRoleIterator"
 InstanceName="SRService.StaffListByEmailNameRole"
 DataControl="SRService" RequiresUpdateModel="true"
 Action="95">
 <NamedData NDName="Role" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_Role}"/>
 ...
 <NamedData NDName="TheFirstName" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_TheFirstName}"/>
 <NamedData NDName="TheLastName" NDType="java.lang.String"
 NDValue="${bindings.StaffListByEmailNameRole_TheLastName}"/>
 </action>
 ...

Creating Selection Lists

Using Complex UI Components 19-57

 <attributeValues id="TheFirstName" IterBinding="variables">
 <AttrNames>
 <Item Value="StaffListByEmailNameRole_TheFirstName"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="TheLastName" IterBinding="variables">
 <AttrNames>
 <Item Value="StaffListByEmailNameRole_TheLastName"/>
 </AttrNames>
 </attributeValues>
 ...
 </bindings>
</pageDefinition>

The following procedure assumes you’ve already created a parameter search form that
uses the ExecuteWithParams operation.

To use a variable to create a list bound to a fixed list of values:
1. Open the JSF page in the visual editor.

2. If necessary, delete the inputText component that was created for the Role field
because you want to use a selection list component instead.

3. From the Data Control Palette, expand StaffListByEmailNameRole > Operations
> ExecuteWithParams > Parameters.

StaffListByEmailNameRole is the view object that contains the Role named bind
variable.

4. Drag and drop the Role parameter to the page, and then choose Create > Single
Selections > ADF Select One Radio from the context menu. The List Binding
Editor displays, as illustrated in Figure 19–20.

Figure 19–20 List Binding Editor with the Fixed List Option Selected

Creating Selection Lists

19-58 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5. In the List Binding Editor, make sure variables is selected in the Base Data Source
dropdown list.

Base Data Source is the target that will receive the value selected by the user at
runtime.

6. Select the Fixed List radio button.

The Fixed List option lets users choose a value from a predefined list, which is
useful when you want a data object attribute to be updated by a list of values that
you code yourself, rather than getting the values from another data source.

7. From the Base Data Source Attribute dropdown list, select
StaffListByEmailNameRole_Role.

The Base Data Source Attribute is the variable name of the target.

8. Enter the following in the Set of Values box, pressing Enter to set a value before
typing the next value:

■ Technician

■ Manager

The order in which you enter the values is the order in which the list items are
displayed in the selectOneRadio control at runtime.

9. In the List Items section, select Include Labeled Item from the "No Selection"
Item dropdown list. Then enter Any in the box next to it.

The selectOneRadio component supports a null value, that is, if the user has
not selected an item, the label of the item is shown as blank, and the value of the
component defaults to an empty string. Instead of using blank or an empty string,
you can specify a string to represent the null value. By default, the new string
appears at the top of the list of values that is defined in step 8.

19.7.2 What Happens When You Create a List Bound to a Fixed List of Values
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 12.2.3, "What Happens When You Use the Data
Control Palette".

Example 19–55 shows the code for the selectOneRadio component after you’ve
completed the List Binding Editor.

Example 19–55 SelectOneRadio Component After You Complete Binding

<af:selectOneRadio value="#{bindings.Role.inputValue}"
 label="#{bindings.Role.label}: ">
 <f:selectItems value="#{bindings.Role.items}"/>
</af:selectOneRadio>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the Role list binding object in the binding container.

In the page definition file, JDeveloper adds the Role list binding object definition in
the bindings element, as shown in Example 19–56.

Creating Selection Lists

Using Complex UI Components 19-59

Example 19–56 List Binding Object for the Fixed List in the Page Definition File

<bindings>
 ...
 <list id="Role" IterBinding="variables" ListOperMode="0" StaticList="true"
 NullValueFlag="1">
 <AttrNames>
 <Item Value="StaffListByEmailNameRole_Role"/>
 </AttrNames>
 <ValueList>
 <Item Value="Any"/>
 <Item Value="Technician"/>
 <Item Value="Manager"/>
 </ValueList>
 </list>
 ...
</bindings>

In the list element, the id attribute specifies the name of the list binding object. The
IterBinding attribute references the variable iterator, whose current "row" is a row
of attributes representing each variable in the binding container. The variable iterator
exposes the variable values to the bindings in the same way as other collections of
data. The AttrNames element specifies the attribute value returned by the iterator.
The ValueList element specifies the fixed list of values to be displayed for selection.

At runtime, when a value is selected from the list, the base data source attribute
StaffListByEmailNameRole_Role, which is the target of the Role list binding
object, is updated to the selected value.

For more information about the page definition file and ADF data binding
expressions, see Section 12.5, "Working with Page Definition Files" and Section 12.6,
"Creating ADF Data Binding EL Expressions".

19.7.3 How to Create a List with a Dynamic List of Values
Instead of getting values from a static list, you can populate a selection list component
with values dynamically at runtime. The steps for creating a list component bound to a
dynamic list are almost the same as those for creating a list component bound to a
fixed list, with the exception that you define two data sources—one for the list data
source that provides the dynamic list of values, and the other for the base data source
that is to be updated based on the user’s selection.

The SRCreate page, as shown in Figure 19–21, uses a selectOneListbox component
to let users pick an appliance from a product list that is populated dynamically. The
list data source is the ProductList collection because you want users to select an
appliance (product) from the list. The base data source you want to update with the
selected value is the Globals collection. The Globals view object is a transient view
object, that is, one containing only transient attributes. Transient view objects are
useful for holding temporary values in the data model that need to be presented on
different pages of your application.

Creating Selection Lists

19-60 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 19–21 SelectOneListbox Component on the SRCreate Page

To create a list box bound to a dynamic list of values:
1. Open the JSF page in the visual editor.

2. From the Data Control Palette, drag and drop any attribute of the base data source
to the page. Choose Create > Single Selections > ADF Select One Listbox from
the context menu. The List Binding Editor displays, as illustrated in Figure 19–22.

For example, you might expand the Globals collection, then drag and drop the
ProductId attribute to the page.

Figure 19–22 List Binding Editor with the Dynamic List Option Selected

Creating Selection Lists

Using Complex UI Components 19-61

3. In the List Binding Editor, the Base Data Source dropdown list should default to
the collection of the attribute you dragged (for example, SRService.Globals).

The Base Data Source is the source that is to be updated with the list value
selected by a user at runtime.

4. Select the Dynamic List radio button.

The Dynamic List option lets you specify one or more base data source attributes
to be updated from another set of bound values.

5. Next to the List Data Source dropdown list, click Add... to select the list data
source. In the Add Data Source dialog, select the collection that will provide the
list of values dynamically. For example, in the Add Data Source dialog, expand
SRService, and then select ProductList. Accept the default iterator name for the
selected collection.

The List Data Source is the source that provides the list of values users see in the
list box at runtime.

6. In the mapping area, the default base data source attribute should be ProductId
and the default list data source attribute should be ProdId, if you dragged the
ProductId attribute of Globals in step 2, and selected the ProductList
collection in step 5. The mapping specifies the list source attribute to the base
source attribute you want to update. Click Add to add another mapping using the
dropdown lists, if you wish.

For example, you might select ProductName from the Base Data Source Attribute
dropdown list, and then Name from the List Data Source Attribute dropdown list

7. In the List Items section, select the desired attribute of the list data source from the
Display Attribute dropdown list. The list data source attribute populates the list
values users see at runtime.

For example, you might select Name from the Display Attribute dropdown list
because you want users to select a product name from the list.

19.7.4 What Happens When You Create a List Bound to a Dynamic List of Values
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 12.2.3, "What Happens When You Use the Data
Control Palette".

Example 19–57 shows the code for the selectOneListbox component after you’ve
completed the List Binding Editor.

Note: The list and base collections do not have to form a
master-detail relationship, but the items in the list collection must
have the same type as the base collection attributes.

Creating Selection Lists

19-62 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 19–57 SelectOneListbox Component After You Complete Binding

<af:selectOneListbox value="#{bindings.GlobalsProductId.inputValue}"
 label="#{bindings.GlobalsProductId.label}">
 <f:selectItems value="#{bindings.GlobalsProductId.items}"/>
</af:selectOneListbox>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the GlobalsProductId list binding object in the binding
container. For further descriptions about ADF data binding expressions, see
Section 12.6, "Creating ADF Data Binding EL Expressions".

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in Example 19–58.

Example 19–58 List Binding Object for the Dynamic List in the Page Definition File

<executables>
 ...
 <iterator id="ProductListIterator" Binds="ProductList" RangeSize="-1"
 DataControl="SRService"/>
 <iterator id="GlobalsIterator" RangeSize="10" Binds="Globals"
 DataControl="SRService"/>
</executables>
<bindings>
 ...
 <list id="GlobalsProductId" IterBinding="GlobalsIterator" StaticList="false"
 ListOperMode="0" ListIter="ProductListIterator">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="ProductName"/>
 </AttrNames>
 <ListAttrNames>
 <Item Value="ProdId"/>
 <Item Value="Name"/>
 </ListAttrNames>
 <ListDisplayAttrNames>
 <Item Value="Name"/>
 </ListDisplayAttrNames>
 </list>
 ...
</bindings>

By default, JDeveloper sets the RangeSize attribute on the iterator element for the
ProductList iterator binding to a value of -1, thus allowing the iterator to furnish
the full list of valid products for selection. In the list element, the id attribute
specifies the name of the list binding object. The IterBinding attribute references
the iterator that iterates over the Globals collection. The ListIter attribute
references the iterator that iterates over the ProductList collection. The AttrNames
element specifies the base data source attributes returned by the base iterator. The
ListAttrNames element defines the list data source attributes that are mapped to the
base data source attributes. The ListDisplayAttrNames element specifies the list
data source attribute that populates the values users see in the list at runtime.

For complete information about page definition files, see Section 12.5, "Working with
Page Definition Files".

Creating Selection Lists

Using Complex UI Components 19-63

19.7.5 How to Create a List with Navigation List Binding
The SRSkills page has a selectOneChoice component that uses navigation list
binding. Navigation list binding is used to let users navigate through the objects in a
collection. As the user changes the current object selection using the navigation list
component, any other component that is also bound to the same collection through its
attributes will display from the newly selected object. In addition, if the collection
whose current row you change is the master view object instance in a data model
master/detail relationship, the row set in the detail view object instance is
automatically updated to show the appropriate data for the new current master row
As illustrated later in Figure 19–26, when a manager selects a technician’s name from
the dropdown list, the shuttle component below the navigation list component is
updated to show the selected technician’s product skills.

The dropdown list for selecting a technician name is derived from the StaffList
collection, which has a detail collection, StaffExpertiseAreas, that is created via
the view link ExpertiseAreasForStaffMember.

To create a list that uses navigation list binding:
1. From the Data Control Palette, expand SRService. Drag and drop the desired

collection to the page, and then choose Create > Navigation > ADF Navigation
Lists from the context menu. The List Binding Editor displays, as illustrated in
Figure 19–23.

For example, you might drop StaffList because you want users to navigate and
select a technician name.

Figure 19–23 Navigation List Binding Editor

2. In the Display Attributes section, double-click the attributes of the StaffList
collection that you don’t want to be displayed in the list, moving them to the
Available Attributes section.

3. In the Select an Iterator dropdown list, the default iterator name for the collection
is shown. Accept the default or click New to create a new name for the iterator.

Creating Selection Lists

19-64 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

19.7.6 What Happens When You Create a List With Navigation List Binding
When you drag and drop from the Data Control Palette, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Control Palette, see Section 12.2.3, "What Happens When You Use the Data
Control Palette".

By default JDeveloper creates the list using the selectOneChoice component when
you use navigation list binding.

Example 19–59 shows the code for the selectOneChoice component after you’ve
completed the List Binding Editor.

Example 19–59 SelectOneChoice Component After You Complete the Binding

<af:selectOneChoice id="navList1" autoSubmit="true"
 value="#{bindings.StaffList.inputValue}"
 label="#{bindings.StaffList.label}"
 <f:selectItems value="#{bindings.StaffList.items}"/>
</af:selectOneChoice>

The f:selectItems tag provides the list of items for traversing and selecting. In the
page definition file, JDeveloper adds the list binding object into the bindings
element, and the iterator binding object into the executables element, as shown in
Example 19–60.

Example 19–60 List Binding Object for the Navigation List in the Page Definition File

<executables>
 <iterator id="StaffListIterator" Binds="StaffList" RangeSize="10"
 DataControl="SRService"/>
 ...
</executables>
<bindings>
 <list StaticList="false" ListOperMode="1" id="StaffList"
 IterBinding="StaffListIterator">
 <AttrNames>
 <Item Value="FirstName"/>
 <Item Value="LastName"/>
 </AttrNames>
 </list>
 ...
</bindings>

In the list element, the id attribute specifies the name of the list binding object. The
IterBinding attribute references the iterator that iterates over the StaffList
collection. The AttrNames element specifies the attributes returned by the iterator.

For more information about the page definition file and ADF data binding
expressions, see Section 12.5, "Working with Page Definition Files" and Section 12.6,
"Creating ADF Data Binding EL Expressions".

Creating a Shuttle

Using Complex UI Components 19-65

19.8 Creating a Shuttle
The selectManyShuttle and selectOrderShuttle components render two list
boxes, and buttons that allow the user to select multiple items from the leading (or
"available") list box and move or shuttle the items over to the trailing (or "selected") list
box, and vice versa. Figure 19–24 shows an example of a rendered
selectManyShuttle component. You can specify any text you want for the headers
that display above the list boxes.

Figure 19–24 Shuttle (SelectManyShuttle) Component

The only difference between selectManyShuttle and selectOrderShuttle is
that in the selectOrderShuttle component, the user can reorder the items in the
trailing list box by using the up and down arrow buttons on the side, as shown in
Figure 19–25.

Figure 19–25 Shuttle Component (SelectOrderShuttle) with Reorder Buttons

In the SRDemo application, the SRSkills page uses a selectManyShuttle
component to let managers assign product skills to a technician. Figure 19–26 shows
the SRSkills page created for the sample application. The leading list box on the left
displays products such as washing machines and dryers; the trailing list box on the
right displays the products that a technician is skilled at servicing.

Note: In addition to using the supplied Move and Remove buttons
to shuttle items from one list to the other, you can also double-click an
item in either list. Double-clicking an item in one list moves the item
to the other list. For example, if you double-click an item in the
leading list, the item is automatically moved to the trailing list, and
vice versa.

Creating a Shuttle

19-66 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 19–26 SelectManyShuttle Component on the SRSkills Page

Only users with the manager role can access the SRSkills page. To review and change
product skill assignments, a manager first selects a technician’s name from the
dropdown list above the shuttle component. The application then displays the
technician’s existing skill assignments in the trailing list (Assigned Skills).

To add new skill assignments for the selected technician, the manager selects the
products from the leading list (Available Products) and then clicks the Move button.

To remove skills from the Assigned Skills list, the manager selects the products from
the trailing list and then clicks the Remove button.

Below the leading and trailing lists are optional boxes for displaying a description of a
product. To view a description of a product, the manager can select an item from
either list box, and the application displays the product’s description in the box below
the list, as shown in Figure 19–27.

Creating a Shuttle

Using Complex UI Components 19-67

Figure 19–27 Shuttle Component with Descriptions Shown

19.8.1 How to Create a Shuttle
Like other ADF Faces selection list components, the selectManyShuttle
component can use the f:selectItems tag to provide the list of items available for
display and selection in the leading list.

Before you can bind the f:selectItems tag, create a generic class that can be used
by any page that requires a shuttle. In the class, declare and include getter and setter
methods for the properties that describe the view object instance names that should be
used for the list of all available choices (leading list or available products) and the list
of selected choices (trailing list or assigned skills). Example 19–61 shows the
ShuttlePageBackingBeanBase class that is created to manage the population and
selection state of the shuttle component on the SRSkills page.

Example 19–61 ShuttlePageBackingBeanBase Class

package oracle.srdemo.view.util;
import java.util.List;
import javax.faces.event.ValueChangeEvent;
public class ShuttlePageBackingBeanBase {
 String allItemsIteratorName;
 String allItemsValueAttrName;
 String allItemsDisplayAttrName;
 String allItemsDescriptionAttrName;
 String selectedValuesIteratorName;
 String selectedValuesValueAttrName;
 List selectedValues;
 List allItems;
 private boolean refreshSelectedList = false;

 public void setAllItemsIteratorName(String allItemsIteratorName) {
 this.allItemsIteratorName = allItemsIteratorName;
 }
 public String getAllItemsIteratorName() {
 return allItemsIteratorName;
 }

Creating a Shuttle

19-68 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

// other getter and setter methods are omitted
 public void setSelectedValues(List selectedValues) {
 this.selectedValues = selectedValues;
 }
 public void refreshSelectedList(ValueChangeEvent event) {
 refreshSelectedList = true;
 }
 public List getSelectedValues() {
 if (selectedValues == null || refreshSelectedList) {
 selectedValues = ADFUtils.

attributeListForIterator(selectedValuesIteratorName,
selectedValuesValueAttrName);

 }
 return selectedValues;
 }
 public void setAllItems(List allItems) {
 this.allItems = allItems;
 }
 public List getAllItems() {
 if (allItems == null) {
 allItems = ADFUtils.selectItemsForIterator(allItemsIteratorName,
 allItemsValueAttrName,
 allItemsDisplayAttrName,
 allItemsDescriptionAttrName);
 }
 return allItems;
 }
}

The getAllItems() method populates the shuttle’s leading list. The
getSelectedValues() method also returns a List, but the list defines the items in
the shuttle’s trailing list. Note that the ShuttlePageBackingBeanBase class calls
several utility methods in the ADFUtils class.

The SRSkills page backing bean (backing_SRSkills), which extends the
ShuttlePageBackingBeanBase class, is injected with values for several properties
of the base bean. Example 19–62 shows the managed bean and managed properties
configured in faces-config.xml for working with the shuttle component.

Example 19–62 Managed Bean for the Shuttle Component in the faces-config.xml File

<managed-bean>
 <managed-bean-name>backing_SRSkills</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRSkills</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>allItemsIteratorName</property-name>
 <value>ProductListIterator</value>
 </managed-property>
 <managed-property>
 <property-name>allItemsValueAttrName</property-name>
 <value>ProdId</value>
 </managed-property>
 <managed-property>
 <property-name>allItemsDisplayAttrName</property-name>
 <value>Name</value>
 </managed-property>

Creating a Shuttle

Using Complex UI Components 19-69

 <managed-property>
 <property-name>allItemsDescriptionAttrName</property-name>
 <value>Description</value>
 </managed-property>
 <managed-property>
 <property-name>selectedValuesIteratorName</property-name>
 <value>StaffExpertiseAreasIterator</value>
 </managed-property>
 <managed-property>
 <property-name>selectedValuesValueAttrName</property-name>
 <value>ProdId</value>
 </managed-property>
</managed-bean>

The SRSkills page uses the following iterator objects:

■ StaffListIterator: Iterates over the StaffList collection, which provides
the technician names in the dropdown list above the shuttle.

■ StaffExpertiseAreasIterator: Iterates over the StaffExpertiseAreas
collection, which provides the list of skills assigned to a selected technician name.

■ ProductListIterator: Iterates over the ProductList collection, which
provides the list of product names.

All the bindings of the SRSkills page are defined in the file app_management_
SRSkillsPageDef.xml. Example 19–63 shows part of the page definition file for the
SRSkills page.

Example 19–63 Page Definition File for the SRSkills Page

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.36.2" id="app_management_SRSkillsPageDef"
 Package="oracle.srdemo.view.pageDefs">
 <parameters/>
 <executables>
 <iterator id="StaffListIterator" Binds="StaffList" RangeSize="10"
 DataControl="SRService"/>
 <iterator id="StaffExpertiseAreasIterator" Binds="StaffExpertiseAreas"
 RangeSize="10" DataControl="SRService"/>
 <iterator id="ProductListIterator" Binds="ProductList" RangeSize="10"
 DataControl="SRService"/>
 </executables>
 ...
</pageDefinition>

The following procedure assumes you’ve already created the selectOneChoice
component for selecting a technician from a dropdown list. For instructions on how to
create the dropdown list, see Section 19.7.5, "How to Create a List with Navigation List
Binding".

The procedure also assumes you’ve created the relevant iterator bindings in the page
definition file (Example 19–63), a class similar to the
ShuttlePageBackingBeanBase class (Example 19–61), and configured the required
managed bean and managed properties in faces-config.xml (Example 19–62).

Creating a Shuttle

19-70 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To create a shuttle component that is associated with a navigation list
component:
1. In the JSF page that contains the navigation list component, select the

selectOneChoice component. In the Property Inspector, set the Id attribute to a
value (for example, technicianList), and then set the ValueChangeListener
attribute to the refreshSelectedList() method in the backing_SRSkills
managed bean (for example, #{backing_
SRSkills.refreshSelectedList}).

2. From the ADF Faces Core page of the Component Palette, drag and drop
SelectManyShuttle to the page. JDeveloper displays the Insert SelectManyShuttle
dialog, as illustrated in Figure 19–28.

Figure 19–28 Insert SelectManyShuttle Dialog

3. Select Bind to list (select items) and click Bind... to open the Expression Builder.

4. In the Expression Builder, expand JSF Managed Beans > backing_SRSkills.
Double-click allItems to build the expression #{backing_
SRSkills.allItems}. Click OK.

This binds the f:selectItems tag to the getAllItems() method that
populates the shuttle’s leading list.

5. In the Insert SelectManyShuttle dialog, click Common Properties. Click Bind...
next to the Value field to open the Expression Builder again.

6. In the Expression Builder, expand JSF Managed Beans > backing_SRSkills.
Double-click selectedValues to build the expression #{backing_
SRSkills.selectedValues}. Click OK.

This binds the value attribute of the selectManyShuttle component to the
getSelectedValues() method that populates the shuttle’s trailing list.

Creating a Shuttle

Using Complex UI Components 19-71

7. Close the Insert SelectManyShuttle dialog.

8. In the Property Inspector, set the partialTriggers attribute on the
selectManyShuttle component to the Id of the selectOneChoice
component (for example, technicianList) that provides the navigation dropdown
list of technician names.

Example 19–64 shows the code for the selectManyShuttle component after you
complete the Insert SelectManyShutle dialog.

Example 19–64 SelectManyShuttle Component in the SRSkills.jspx File

<af:selectManyShuttle value="#{backing_SRSkills.selectedValues}"
 partialTriggers="technicianList"
 ...
 <f:selectItems value="#{backing_SRSkills.allItems}"/>
</af:selectManyShuttle>

For more information about using the shuttle component, see the ADF Faces Core tags
at

http://www.oracle.com/technology/products/jdev/htdocs/partners/a
ddins/exchange/jsf/doc/tagdoc/core/index.html

19.8.2 What Happens at Runtime
When the SRSkills page is first accessed, the iterator StaffListIterator executes
and iterates over the StaffList collection. By default, the first item displayed in the
selectOneChoice component is selected because the component has a navigation
list binding, whose value is always set to the current row in the iterator. The initial
selection automatically drives the master-detail coordination between the StaffList
and StaffExpertiseAreas collections, thus the selectManyShuttle component
is updated with the selected technician’s product skills in the trailing list.

When the manager selects another technician name from the navigation dropdown
list, the selectOneChoice component makes the new selection the current row in
the StaffList iterator. Because the selectOneChoice component is listed as a
partialTriggers component on the selectManyShuttle component, the shuttle
rerenders with the newly selected technician’s product skills in the trailing list.

The partialTriggers attribute setting on the selectManyShuttle component
causes the shuttle to redisplay with the updated values in the leading and trailing lists.

When the Save skill changes command button (see Figure 19–26) is clicked, the
current technician’s associated List of product IDs (that is, assigned skills) are
retrieved and sent to the updateSkillsForCurrentStaff() method.

Example 19–65 shows the code for the commandButton component on the
SRSkills.jspx page.

Example 19–65 CommandButton Component in the SRSkills.jspx File

<af:commandButton action="#{backing_SRSkills.onUpdateSkills}"
actionListener="#{bindings.

updateSkillsForCurrentStaff.execute}"../>

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/tagdoc/core/index.html

Creating a Shuttle

19-72 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Using Validation and Conversion 20-1

20
Using Validation and Conversion

This chapter describes how to add ADF Model validation and JSF validation and
conversion capabilities to your application. It also describes how to handle and display
any errors, including those not caused by validation.

This chapter includes the following sections:

■ Section 20.1, "Introduction to Validation and Conversion"

■ Section 20.3, "Adding Validation"

■ Section 20.4, "Creating Custom JSF Validation"

■ Section 20.5, "Adding Conversion"

■ Section 20.6, "Creating Custom JSF Converters"

■ Section 20.7, "Displaying Error Messages"

■ Section 20.8, "Handling and Displaying Exceptions in an ADF Application"

20.1 Introduction to Validation and Conversion
In an ADF Business Components application, virtually all validation code is defined in
the shared, reusable business domain layer of entity objects. This ensures that your
business information is validated consistently in every page where end users are
allowed to make changes, and it simplifies maintenance by centralizing validation. For
information about configuring the declarative runtime behavior for entity objects, see
Section 6.6, "Configuring Declarative Runtime Behavior". For information about
specifying and managing declarative validation rules in the entity or attribute level,
see Section 6.7, "Using Declarative Validation Rules". For information about extending
entity objects with custom code, see Section 9.3, "Using Method Validators".

In the model layer, ADF Model validation rules can be set for the attributes of a
collection. In an ADF Business Components application, unless you use data controls
other than the application module data controls, you don’t need to add ADF Model
validation rules.

In the view layer, ADF Faces input components have built-in validation capabilities.
You set validation on a UI component either by setting the required attribute or by
using one of the built-in ADF Faces validators. ADF applications also have validation
capabilities at the model layer, allowing you to set validation on a binding to an
attribute. In addition, you can create your own ADF Faces validators to suit your
business needs.

Validation, Conversion, and the Application Lifecycle

20-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

ADF Faces input components also have built-in conversion capabilities, which allow
users to enter information as Strings, and which the application can automatically
convert to another data type, such as Date. Conversely, data stored as something
other than a String can be converted to a String for display and updating.

Many components, such as selectInputDate, automatically provide this
capability. Other components, such as inputText, automatically add a built-in ADF
Faces or JSF reference implementation converter when you drag and drop from the
Data Control Palette an attribute that is of a type for which a converter exists.

When validators or converters fail, associated error messages can be displayed to the
user. These messages can be displayed in popup dialogs for client-side validation, or
they can be displayed on the page itself next to the component whose validation or
conversion failed.

Read this chapter to understand:

■ The ADF Faces validators and ADF Model validation, and how to use them in an
application

■ The ADF Faces converters and how to use them in an application

■ The different ways you can display error messages

■ How errors are handled by the ADF Model and displayed by ADF Faces error
message components

■ How exceptions thrown by the ADF application are handled, and how to
customize the error handling process

20.2 Validation, Conversion, and the Application Lifecycle
Figure 20–1 shows how validation and conversion work in the integrated JSF and ADF
lifecycle.

Figure 20–1 Validation and Conversion in the Lifecycle

Adding Validation

Using Validation and Conversion 20-3

When a form with data is submitted, the browser sends a request value to the server
for each UI component whose value attribute is bound. The request value is first
stored in an instance of the component in the JSF Apply Request Values phase. If the
value requires conversion (for example, if it is displayed as a String but stored as a
DateTime object), the data is converted to the correct type. Then, if you set ADF Faces
validation for any of the components that hold the data, the value is validated against
the defined rules during the Process Validations phase, before the value is applied to
the model.

If validation or conversion fails, the lifecycle proceeds to the Render Response phase
and a corresponding error message is displayed on the page. If validation and
conversion are successful, then the UpdateModel phase starts and the validated and
converted values are used to update the model.

At this point, if there are any ADF Model validation rules, the values are validated
against those rules in the ADF Validate Model Updates phase. As with ADF Faces
validation, if the validation fails, the lifecycle proceeds to the Render Response phase.
See Section 13.2.3, "What Happens at Runtime: The JSF and ADF Lifecycles" for more
information. In your ADF Business Components application, note that unless you use
data controls other than your application module data controls, you don’t need to use
additional ADF Model validation rules because the validators set in the business
domain layer of entity objects are sufficient.

When a validation or conversion error occurs, the component (in the case of JSF
validation or conversion) or attribute (in the case of ADF Model validation) whose
validation or conversion failed places an associated error message in the queue and
invalidates itself. The current page is then redisplayed with an error message. Both
ADF Faces components and the ADF Model provide a way of declaratively setting
these messages. For information about how other errors are handled by an ADF
application, see Section 20.8, "Handling and Displaying Exceptions in an ADF
Application".

20.3 Adding Validation
You can add validation so that when a user edits or enters data in a field and submits
the form, the data is validated against any set rules and conditions. If validation fails,
the application displays an error message.

Those rules and conditions can be set at one of the following layers:

■ View layer: You can use ADF Faces validation when you need client-side
validation. Many ADF Faces components have attributes that provide validation.
For information, see Section 20.3.1.1.1, "Using Validation Attributes". In addition,
ADF Faces provides separate validation classes that can be run on both the client
and the server. For details, see Section 20.3.1.1.2, "Using JSF and ADF Faces
Validators". You can also create your own validators. For information about
custom validators, see Section 20.4.3, "How to Create a Custom JSF Validator".

■ Model layer: By default, when you use the Data Control Palette to create input text
components, the components contain the af:validator tag that is bound to the
validator property on the attribute’s binding. This binding allows a JSF
application to run ADF Model validation during the JSF Process Validations
phase. Note that in an ADF Business Components application, unless you use data
controls other than the application module data controls, you don’t need to use
additional ADF Model validation rules. If you want to use ADF Model validation,
you declaratively set the validation rules on bindings to attributes of a collection.
For more information, see Section 20.3.1.2, "Adding ADF Model Validation".

Adding Validation

20-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Business layer: You set declarative validation rules for the entity object in the
business layer, and any of the entity object attributes. By placing validation in the
business domain layer of entity objects, the validation can be reused when that
attribute’s value is accessed by any page. Consider placing all, if not most, of your
validation rules in the centralized, more reusable, and easier to maintain entity
objects of your business domain layer.

For the purposes of this chapter, only the ADF Faces validators and ADF Model
validation will be discussed. For information about using ADF Business Components
declarative validation rules, see Section 6.7, "Using Declarative Validation Rules". For
information about using or extending the basic set of declarative rules with custom
rules and code of your own, see Section 9.3, "Using Method Validators".

20.3.1 How to Add Validation
You set ADF Faces validation on the JSF page and you set ADF Model validation on
the page definition file. Message display for both is handled on the JSF page. For more
information about displaying messages created by validation errors, see Section 20.7,
"Displaying Error Messages".

20.3.1.1 Adding ADF Faces Validation
By default, ADF Faces validation occurs on both the client and server side. Although
both syntactic and semantic validation are performed on the client side and server
side, the client side performs only a subset of the validation performed by the server
side. Client-side validation allows validators to catch and display data without
requiring a round-trip to the server.

To set ADF Faces to not run client-side validation, add the
<client-validation-disabled> element in adf-faces-config.xml and set it
to true.

ADF Faces provides the following types of validation:

■ UI component attributes: ADF Faces input components provide attributes that can
be used to validate data. For example, you can supply simple validation using the
required attribute on ADF Faces input components to specify whether a value
must be supplied. When set to true, the component must have a value. Otherwise
the application displays an error message. For more information, see
Section 20.3.1.1.1, "Using Validation Attributes".

■ Default ADF Faces validators: The validators supplied by ADF Faces and the JSF
reference implementation provide common validation checks, such as validating
date ranges and validating the length of entered data. For more information, see
Section 20.3.1.1.2, "Using JSF and ADF Faces Validators".

■ Custom ADF Faces validators: You can create your own validators and then select
them to be used in conjunction with UI components. For more information, see
Section 20.4, "Creating Custom JSF Validation".

Note: If the JavaScript form.submit() function is called on a JSF
page, the ADF Faces support for client-side validation is bypassed.
ADF Faces provides a submitForm() method that you can use
instead, or you could use the autoSubmit attribute on ADF Faces
input components.

Adding Validation

Using Validation and Conversion 20-5

20.3.1.1.1 Using Validation Attributes

Many ADF Faces UI components have attributes that provide simple validation.
Table 20–1 shows these attributes, along with a description of the validation logic they
provide and the UI components that contain them.

When you use the Data Control Palette to create input components, the required
attribute is bound to the mandatory property of its associated binding, as shown in
the following EL expression:

<af:inputText required="#{bindings.ProblemDescription.mandatory}"

The EL expression evaluates to whether or not the attribute on the object to which it is
bound can be null. You can choose to keep the expression as is, or you can manually
set the required attribute to "true" or "false".

To use UI component attributes that provide validation:
1. In the Structure window, select the UI component.

2. In the Property Inspector, enter a value for the validation attribute. See Table 20–1
for a list of validation attributes you could use.

3. (Optional) Set the tip attribute to display text that will guide the user to entering
correct data (for example, a valid range for numbers). This text will display under
the component.

4. (Optional) If you set the required attribute to true (or if you used an EL
expression that can evaluate to true), you can also enter a value for the
RequiredMessageDetail attribute. Instead of displaying a default message,
ADF Faces will display this message, if validation fails.

Table 20–1 ADF Faces Validation Attributes

Attribute Description Available on

MaxValue The maximum value allowed for the Date value. chooseDate

MinValue The minimum value allowed for the Date value. chooseDate

Required When set to true (or set to an EL expression that
evaluates to true), the component must have a
non-null value or a String value of at least one
character.

For table selection components (see Section 14.6,
"Enabling Row Selection in a Table"), if the required
attribute is set to true, then at least one row in the
table must be selected.

All input
components,
all select
components,
tableSelectMany,
tableSelectOne

MaximumLength The maximum number of characters that can be
entered. Note that this value is independent of the
value set for the columns attribute. See also
ByteLengthValidator in Table 20–3, " ADF Faces
Validators".

inputText

Tip: The object to which the UI component is bound varies
depending on how the input component was created. For example, if
a search form was created using a parameter form, then the input
components are usually bound to variables, since the attribute values
are only temporarily stored in the binding container before passing
them onto methods or parameterized actions. If a form was created
using a collection, then the input component is probably bound to an
attribute on an entity object.

Adding Validation

20-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For tables with a selection component set to required, you must place the error
message in the summary attribute of the table in order for the error message to
display.

Messages can include optional placeholders (such as {0}, {1}, and so on) for
parameters. At runtime, the placeholders are replaced with the appropriate
parameter values. The order of parameters is:

■ Component label input value (if present)

■ Minimum value (if present)

■ Maximum value (if present)

■ Pattern value (if present)

Example 20–1 shows a RequiredMessageDetail attribute that uses parameters.

Example 20–1 Parameters in a RequiredMessageDetail Attribute

<af:inputText value="#{bindings.productId.inputValue}"
 label="Product ID"
 requiredMessageDetail="You must enter a {0}."
 required="true"
</af:inputText>

This message evaluates to You must enter a Product ID.

For additional help with UI component attributes, in the Property Inspector,
right-click the attribute name and choose Help.

20.3.1.1.2 Using JSF and ADF Faces Validators

JSF and ADF Faces validators provide more complex validation routines. Table 20–2
describes the JSF reference implementation validators that have supplied tags.

Table 20–3 describes the built-in validators and tags supplied by ADF Faces.

Table 20–2 JSF Reference Implementation Validators

Validator Tag Name Description

DoubleRangeValidator f:validateDoubleRange Validates that a component value
is within a specified range. The
value must be convertible to
floating-point type or a
floating-point.

LengthValidator f:validateLength Validates that the length of a
component value is within a
specified range. The value must be
of type java.lang.String

LongRangeValidator f:validateLongRange Validates that a component value
is within a specified range. The
value must be any numeric type
or String that can be converted
to a long

Adding Validation

Using Validation and Conversion 20-7

Table 20–3 ADF Faces Validators

Validator Tag Name Description

ByteLengthValidator af:validateByteLength Validates the number of
bytes in a String when
Java encoding is used.
For example, six English
characters do not use the
same byte storage as 6
Japanese characters. You
specify the encoding to
use as an attribute of the
validator.

In cases where the server
must limit the number of
bytes required to store a
string, use this validator
instead of specifying the
maximumLength
attribute on an input
component.

In an Oracle database
table column of type
VARCHAR2(n), when
using multi-byte
character sets, the
maximum allowed byte
length might be different
from n, depending on
whether or not the size of
the VARCHAR2 in the
database implies
character or byte size.

DateTimeRangeValidator af:validateDateTimeRange Validates that the
entered date is within a
given range. You specify
the range as attributes of
the validator.

RegExpValidator af:validateRegExp Validates the data using
Java regular expression
syntax.

Note: ADF Faces also provides the af:validator tag, which you
can use to register a custom validator on a component. For
information about using custom validators, see Section 20.4, "Creating
Custom JSF Validation".

By default, whenever you drop an attribute from the Data Control
Palette as an input text component, JDeveloper automatically adds the
af:validator tag to the component, and binds it to the validator
property on the associated binding. The binding allows access to ADF
Model validation for processing on the client side. For more
information, see Section 20.3.2, "What Happens When You Create
Input Fields Using the Data Control Palette". For information about
ADF Model validation, see Section 20.3.1.2, "Adding ADF Model
Validation".

Adding Validation

20-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To add ADF Faces validators:
1. In the Structure window, right-click the component for which you’d like to add a

validator.

2. In the context menu, choose Insert inside <UI component> > ADF Faces Core to
insert an ADF Faces validator. (To insert a JSF reference implementation validator,
choose Insert inside <UI component> > JSF Core.)

3. Choose a validator tag (for example, ValidateDateTimeRange).

4. In the Property Inspector, set values for the attributes, including any messages for
validation errors. For additional help, right-click any of the attributes and choose
Help.

ADF Faces lets you customize the detail portion of a validation error message. By
setting a value for an XxxMessageDetail attribute, where Xxx is the validation
error type (for example, maximumMessageDetail), ADF Faces displays the
custom message instead of a default message, if validation fails.

20.3.1.2 Adding ADF Model Validation
Note that you don’t need to add additional ADF Model validation if you have already
set validation rules in the business domain layer of your entity objects. In an ADF
Business Components application, unless you use data controls other than your
application module data controls, you won’t need to use ADF Model validation.

Table 20–4 describes the ADF Model validation rules that you can configure for an
attribute.

To create an ADF Model validation rule:
1. Open the page definition that contains the attribute for which you want to create a

rule.

2. In the Structure window, select the attribute, list, or table binding.

3. In the Property Inspector, select the Edit Validation Rule link.

4. In the Validation Rules Editor, select the attribute name and click New.

5. In the Add Validation Rule dialog, select a validation rule and configure the rule
accordingly. For additional help on creating the different types of rules, click
Help.

Table 20–4 ADF Model Validation Rules

Validator Rule Name Description

Compare Compares the attribute’s value with a literal value

List Validates whether or not the value is in or is not in a list of
values

Range Validates whether or not the value is within a range of values

Length Validates the value’s character or byte size against a size and
operand (such as greater than or equal to)

Regular Expression Validates the data using Java regular expression syntax

Note: For information about ADF Business Components declarative
validation rules, see Section 6.7, "Using Declarative Validation Rules".

Adding Validation

Using Validation and Conversion 20-9

20.3.2 What Happens When You Create Input Fields Using the Data Control Palette
When you use the Data Control Palette to create input text fields (for example, by
dropping an attribute from the Data Control Palette as an inputText component),
JDeveloper automatically provides ADF Faces validation code on the JSF page by:

■ Adding an af:messages tag as a child of the afh:body tag.

By default the globalOnly attribute is set to false, and the message and text
attributes are not set. For more information, see Section 20.7, "Displaying Error
Messages".

■ Binding the required attribute for input fields to the mandatory property of the
associated attribute binding, as shown in the following EL expression:

<af:inputText required="#{bindings.ProblemDescription.mandatory}"

The expression evaluates to whether or not a null value is allowed based on the
attribute of the associated business object. By default, all components whose
required attribute evaluates to true will display an asterisk.

■ Adding an af:validator tag as a child of the input component, and binding the
tag to the validator property of the associated binding, as shown below:

<af:inputText value="#{bindings.SomeAttribute.inputValue}"...>
 <af:validator binding="#{bindings.SomeAttribute.validator}"/>
</af:inputText>

The binding allows the JSF lifecycle to access, on the client side, any ADF Model
validation that you may have set for the associated attribute. If you don’t wish to
use ADF Model validation, then you can delete the af:validator tag and insert
the validation tag of your choice, or if you don’t want to use any validation, you
can simply delete the tag. If you do want to use only ADF Model validation, you
must keep the tag as is.

To create a simple input form for products in the SRDemo application, for example,
you might drop a collection similar to the ProductList collection from the Data
Control Palette as a creation form. Example 20–2 shows the JSF code created by
JDeveloper if such a collection were dropped.

Example 20–2 JSF Code for a Create Product Page

<afh:body>
 <af:messages/>
 <h:form>
 <af:panelForm>
 <af:inputText value="#{bindings.ProdId.inputValue}"
 label="#{bindings.ProdId.label}"
 required="#{bindings.ProdId.mandatory}"
 columns="#{bindings.ProdId.displayWidth}">
 <af:validator binding="#{bindings.ProdId.validator}"/>
 <f:convertNumber groupingUsed="false"
 pattern="#{bindings.ProdId.format}"/>
 </af:inputText>

Tip: If you delete the af:validator tag and its binding, and want to add
ADF Model validation at a later point, you must add the tag back into the code
with the binding attribute bound to the associated attribute’s validator
property.

Adding Validation

20-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 <af:inputText value="#{bindings.Name.inputValue}"
 label="#{bindings.Name.label}"
 required="#{bindings.Name.mandatory}"
 columns="#{bindings.Name.displayWidth}">
 <af:validator binding="#{bindings.Name.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.Image.inputValue}"
 label="#{bindings.Image.label}"
 required="#{bindings.Image.mandatory}"
 columns="#{bindings.Image.displayWidth}">
 <af:validator binding="#{bindings.Image.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.Description.inputValue}"
 label="#{bindings.Description.label}"
 required="#{bindings.Description.mandatory}"
 columns="#{bindings.Description.displayWidth}">
 <af:validator binding="#{bindings.Description.validator}"/>
 </af:inputText>
 <f:facet name="footer">
 <af:commandButton text="Submit"/>
 </f:facet>
 </af:panelForm>
 </h:form>
</afh:body>

Note that each inputText component’s required attribute is bound to the
mandatory property of its associated binding. The EL expression evaluates to
whether or not the attribute on the object to which it is bound can be null.

20.3.3 What Happens at Runtime
When the user submits the page, the ADF Faces validate() method first checks for
a submitted value if the required attribute of a component is true. If the value is
null or a zero-length string, the component is invalidated. At this point, what
happens depends on whether or not client-side validation is enabled.

If client-side validation is enabled, an error message is placed in the queue. If there are
other validators registered on the component, they are not called at all, and the current
page is redisplayed with a dialog displaying the error message.

In Example 20–2, a value for the image attribute is not required. However, all other
values are required, as set by the mandatory property. This is denoted in the web
page by asterisks next to the input text fields, as shown in Figure 20–2. Figure 20–2
also shows the alert dialog that is displayed if no data is entered for the product ID,
and if client-side validation is enabled. If no data is entered for all three required
fields, then the alert would show three error messages.

Note: JSF reference implementation validators are not run on the
client side.

Adding Validation

Using Validation and Conversion 20-11

Figure 20–2 Client-Side Error for a Required Value

If the submitted value is a non-null value or a string value of at least one character, the
validation process continues and all validators on the component are called one at a
time. Because the af:validator tag on the component is bound to the validator
property on the binding, any validation routines set on the model are also accessed
and executed at this time.

The process then continues to the next component. If all validations are successful, the
Update Model Values phase starts and a local value is used to update the model. If
any validation fails, the current page is redisplayed along with the error dialog.

When client-side validation is disabled, all validations are done on the server. First, the
ADF Faces validation is performed during the Process Validations phase. If any errors
are encountered, the values are invalidated and the associated messages are added to
the queue in FacesContext. Once all validation is run on the components, control
passes to the model layer, which runs the Validate Model Updates phase. As with the
Process Validations phase, if any errors are encountered, the values are invalidated
and the associated messages are added to the queue in FacesContext (for
information on how errors other than validation or conversion are handled, see
Section 20.8, "Handling and Displaying Exceptions in an ADF Application"). The
lifecycle then jumps to the Render Response phase and redisplays the current page.
ADF Faces automatically displays an error icon next to the label of any input
component that generated an error, and it displays the associated messages below the
input field. If there is a tip associated with the field, the error message displays below
the tip. Figure 20–3 shows a server-side validation error.

Figure 20–3 Server-Side Validation Error

Creating Custom JSF Validation

20-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

20.3.4 What You May Need to Know
You can both set the required attribute and use validators on a component.
However, if you set the required attribute to true and the value is null or a
zero-length string, the component is invalidated and any other validators registered
on the component are not called.

This combination might be an issue if there is a valid case for the component to be
empty. For example, if the page contains a Cancel button, the user should be able to
click that button and navigate off the page without entering any data. To handle this
case, you set the immediate attribute on the Cancel button’s component to true.
This attribute allows the action to be executed during the Apply Request Values phase,
thus bypassing the validation whenever the action is executed.

20.4 Creating Custom JSF Validation
This section describes how to add backing bean validation methods, and provides
information on how to create custom JSF validators. For information about using
method validators to invoke custom validation code in ADF Business Components, or
to extend the basic set of declarative rules with custom code, see Chapter 9,
"Implementing Programmatic Business Rules in Entity Objects".

Sometimes you may need custom validation logic for a component on a single page.
For example, if you have separate input fields for entering a date (month, day, year
fields) and each has its own validator, users will not get an error if they enter
February 30, 2005. By creating a validation method on the page’s backing bean, the
validation can access the separate components on the page, and thus validate the
entire date.

If you need custom validation logic that will be reused by more than one page within
the application, or if you want the validation to be able to run on the client side, you
should implement a JSF validator class. You can then create an ADF Faces version,
which will allow the validator to run on the client.

If you want to implement a custom, reusable validation rule to use as part of your
domain business layer, see Section 26.9, "Implementing Custom Validation Rules".

20.4.1 How to Create a Backing Bean Validation Method
When you need custom validation for a component on a single page, you can create a
method that provides the needed validation on a backing bean.

To add a backing bean validation method:
1. Insert the component that will require validation into the JSF page.

2. In the visual editor, double-click the component to launch the Bind Validator
Property dialog.

3. In the Bind Validator Property dialog, enter or select the managed bean that will
hold the validation method, or click New to create a new managed bean. Use the
default method signature provided or select an existing method if the logic
already exists.

When you click OK in the dialog, JDeveloper adds a skeleton method to the code
and opens the bean in the source editor.

Creating Custom JSF Validation

Using Validation and Conversion 20-13

4. Add the needed validation logic. This logic should use
javax.faces.validator.ValidatorException to throw the appropriate
exceptions and javax.faces.application.FacesMessage to generate the
corresponding error messages. For more information about the Validator
interface and FacesMessage, see the Javadoc for
javax.faces.validator.Validator and
javax.faces.application.FacesMessage, or visit
http://java.sun.com/.

20.4.2 What Happens When You Create a Backing Bean Validation Method
When you create a validation method, JDeveloper adds a skeleton method to the
managed bean you selected. Example 20–3 shows the code JDeveloper generates.

Example 20–3 Managed Bean Code for a Validation Method

public void inputText_validator(FacesContext facesContext,
 UIComponent uiComponent, Object object) {
 // Add event code here...
}

JDeveloper also binds the validator attribute of the component to the backing
bean’s validation method using an EL expression. Example 20–4 shows the code
JDeveloper adds to the component.

Example 20–4 JSF Code for a Custom Validation Method

<af:inputText value="#{bindings.SomeObject.inputValue}"
 label="#{bindings.SomeObject.label}"
 ...
 validator="#{backing_MyPage.inputText_validator}">

When the form containing the input component is submitted, the method to which the
validator attribute is bound is executed.

20.4.3 How to Create a Custom JSF Validator
Creating a custom validator requires writing the business logic for the validation by
creating a Validator implementation that contains a method overriding the
validate method of the Validator interface, and then registering the custom
validator with the application. You can also create a tag for the validator, or you can
use the af:validator tag and nest the custom validator as a property of that tag.

You can then create a client-side version of the validator. ADF Faces client-side
validation works in the same way that standard validation works on the server, except
that JavaScript is used on the client: JavaScript validator objects can throw
ValidatorExceptions, and they support the validate() method.

Note: If the JavaScript form.submit() function is called, the ADF
Faces support for client-side validation is bypassed. ADF Faces
provides a submitForm() method that you can use instead, or you
can use the autoSubmit attribute on ADF Faces input components.

http://java.sun.com/

Creating Custom JSF Validation

20-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To create a custom JSF validator:
1. Create a Java class that implements the javax.faces.validator.Validator

interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and a validate method that overrides the
validate method of the Validator interface.

The validate method takes the FacesContext instance, the UI component, and
the data to be validated. For example:

public void validate(FacesContext facesContext,
 UIComponent uiComponent,
 Object object) {
..
}
For more information about these classes, refer to the Javadoc or visit
http://java.sun.com/.

2. Add the needed validation logic. This logic should use
javax.faces.validator.ValidatorException to throw the appropriate
exceptions and javax.faces.application.FacesMessage to generate the
corresponding error messages. For more information about the Validator
interface and FacesMessage, see the Javadoc for
javax.faces.validator.Validator and
javax.faces.application.FacesMessage, or visit http://java.sun.com/.

3. If your application saves state on the client, make your custom validator
implementation implement the Serializable interface, or implement the
StateHolder interface, and the saveState(FacesContext) and
restoreState(FacesContext, Object) methods of StateHolder. For
more information, see the Javadoc for the StateHolder interface of the
javax.faces.component package.

4. Register the validator in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

■ In the window, select Validators and click New. Click Help or press F1 for
additional help in registering the validator.

5. Optionally create a tag for the validator that sets the attributes for the class. You
create a tag by adding an entry for the tag in the application’s tag library definition
file (TLD). To do so:

■ Open or create a TLD for the application. For more information about creating
a TLD, visit http://java.sun.com/.

■ Define the validator ID and class as registered in the faces-config.xml
file.

■ Define any properties or attributes as registered in that configuration file.

Note: To allow the page author to configure the attributes from the
page, you need to create a tag for the validator. See step 5 for more
information. If you don’t want the attributes configured on the page,
then you must configure them in this implementation class.

http://java.sun.com/
http://java.sun.com/
http://java.sun.com/

Creating Custom JSF Validation

Using Validation and Conversion 20-15

To create a client-side version of the validator:
1. Write a JavaScript version of the validator, passing relevant information to a

constructor.

2. Implement the interface
oracle.adf.view.faces.validator.ClientValidator, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Validator object. The second method is
getClientValidation(), which returns a JavaScript constructor that is used to
instantiate an instance of the validator.

For a complete example of how to add client-side validation to a validator
implementation, see "Client-Side Converters and Validators" in Development Guidelines
for Oracle ADF Faces Applications.

To use a custom validator on a JSF page:
■ To use a custom validator that has a tag on a JSF page, you need to manually nest

it inside the component’s tag.

Example 20–5 shows a custom validator nested inside an inputText component.
Note that the tag attributes are used to provide the values for the validator’s
properties that were declared in the faces-config.xml file.

Example 20–5 A Custom Validator Tag on a JSF Page

<h:inputText id="empnumber" required="true">
 <hdemo:emValidator emPatterns="9999|9 9 9 9|9-9-9-9" />
</h:inputText>

To use a custom validator without a custom tag:
To use a custom validator without a custom tag, you must nest the validator’s ID (as
configured in faces-config.xml file) inside the af:validator tag.

1. From the Structure window, right-click the input component for which you want
to add validation, and choose Insert inside <component> > ADF Faces Core >
Validator.

2. Select the validator’s ID from the dropdown list and click OK.

JDeveloper inserts code on the JSF page that makes the validator ID a property of
the validator tag.

Example 20–6 shows the code on a JSF page for a validator using the af:validator
tag.

Example 20–6 A Custom Validator Nested Within a Component on a JSF Page

<af:inputText id="empnumber" required="true">
 <af:validator validatorID="emValidator"/>
</af:inputText>

Note: If you do not create a tag for the validator, you must configure
any attributes in the Validator implementation.

Adding Conversion

20-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

20.4.4 What Happens When You Use a Custom JSF Validator
When you use a custom JSF validator, the application accesses the validator class
referenced in either the custom tag or the af:validator tag and executes the
validate method. This method accesses the data from the component in the current
FacesContext and executes logic against it to determine if it is valid. If the validator
has attributes, those attributes are also accessed and used in the validation routine.
Like standard validators, if the custom validation fails, associated messages are placed
in the message queue in FacesContext.

20.5 Adding Conversion
A web application can store data of many types (such as int, long, date) in the
model layer. When viewed in a client browser, however, the user interface has to
present the data in a manner that can be read or modified by the user. For example, a
date field in a form might represent a java.util.Date object as a text string in the
format pattern mm/dd/yyyy. When a user edits a date field and submits the form, the
string must be converted back to the type that is required by the application. Then the
data is validated against any rules and conditions.

When you create an inputText component by dropping an attribute that is of a type
for which there is a converter, JDeveloper automatically adds that converter’s tag as a
child of the input component. This tag invokes the converter, which will convert the
String entered by the user back into the type expected by the object.

The JSF standard converters, which handle conversion between Strings and simple
data types, implement the javax.faces.convert.Converter interface. The
supplied JSF standard converter classes are:

■ BigDecimalConverter

■ BigIntegerConverter

■ BooleanConverter

■ ByteConverter

■ CharacterConverter

■ DateTimeConverter

■ DoubleConverter

■ FloatConverter

■ IntegerConverter

■ LongConverter

■ NumberConverter

■ ShortConverter

Adding Conversion

Using Validation and Conversion 20-17

Table 20–5 shows the converters provided by ADF Faces.

As with validators, the ADF Faces converters are also run on the client side unless
client-side validation is explicitly disabled in the adf-faces-config.xml file.

In addition to JavaScript-enabled converters for color, date, and number, ADF Faces
also provides JavaScript-enabled converters for input text fields that are bound to any
of these Java types:

■ java.lang.Integer

■ java.lang.Long

■ java.lang.Short

■ java.lang.Byte

■ java.lang.Float

■ java.lang.Double

Unlike the converters listed in Table 20–5, the JavaScript-enabled converters are
automatically used whenever needed. They do not have associated tags that can be
nested in the component.

20.5.1 How to Use Converters
Whenever you drop an attribute from the Data Control Palette for which there is an
ADF Faces converter, JDeveloper automatically adds the converter to the input
component. You can also manually insert a converter.

To add ADF Faces converters that have a tag:
1. In the Structure window, right-click the component for which you’d like to add a

converter.

2. In the context menu, choose Insert inside <UI component> > ADF Faces Core to
insert an ADF Faces converter or JSF Core to insert a JSF converter.

3. Choose a converter tag (for example, ConvertDateTime).

Table 20–5 ADF Faces Converters

Converter Tag Name Description

ColorConverter af:convertColor Converts java.lang.String
objects to java.awt.Color objects.
You specify a set of color patterns as
an attribute of the converter.

DateTimeConverter af:convertDateTime Converts java.lang.String
objects to java.util.Date objects.
You specify the pattern and style of
the date as attributes of the converter.

NumberConverter af:convertNumber Converts java.lang.String
objects to java.lang.Number
objects. You specify the pattern and
type of the number as attributes of
the converter.

Note: JSF reference implementation converters are not run on the
client-side

Adding Conversion

20-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. In the Property Inspector, set values for the attributes, including any messages for
conversion errors. For additional help, right-click any of the attributes and choose
Help.

ADF Faces lets you customize the detail portion of a conversion error message. By
setting a value for an XxxMessageDetail attribute, where Xxx is the conversion
error type (for example, convertDateMessageDetail), ADF Faces displays the
custom message instead of a default message, if conversion fails.

20.5.2 What Happens When You Create Input Fields Using the Data Control Palette
When you use the Data Control Palette to create input fields that are of a type
supported by a converter, JDeveloper automatically provides ADF Faces conversion
code on the JSF page by:

■ Adding an af:messages tag as a child of the body tag. By default the
globalOnly attribute is set to false, and the message and text attributes are not
set. For more information, see Section 20.7, "Displaying Error Messages".

■ Adding a converter tag as a child of the input component.

By default, the pattern attribute is bound to the format property of the
associated binding. The format property determines how the String is
formatted according to the format masks defined in the business layer objects,
using an EL expression such as #{bindings.someObject.format}. For
example, with the convertNumber converter, it might determine whether
decimals are used.

For example, if you drop the ProdId attribute from the ProductList collection as an
inputText component, JDeveloper automatically adds the convertNumber
converter as a child of the input component, as shown in Example 20–7.

Example 20–7 Converter Tag in a JSF Page

<af:inputText value="#{bindings.ProductListProdId.inputValue}"
 required="#{bindings.ProductListProdId.mandatory}"
 columns="#{bindings.ProductListProdId.displayWidth}">
 ...
 <f:convertNumber groupingUsed="false"
 pattern="#{bindings.ProductListProdId.format}"/>
</af:inputText>

The binding evaluates to the format property as it is set on the data control itself.

Tip: If you drop a primary key attribute that is of type DBSequence
from the Data Control Palette, JDeveloper does not add the
f:convertNumber tag to the input component. If you create an edit
form that uses a primary key of type Number, and later changed the
type to DBSequence, you must either remove the
f:convertNumber tag from the input component that was created
earlier, or recreate the form. For information about DBSequence, see
Section 6.6.3.8, "Trigger-Assigned Primary Key Values from a
Database Sequence".

Creating Custom JSF Converters

Using Validation and Conversion 20-19

20.5.3 What Happens at Runtime
When the user submits the page containing converters, the ADF Faces validate()
method calls the converter's getAsObject() method to convert the string value to
the required object type. When there isn't an attached converter and if the component
is bound to a bean property in the model, then JSF automatically uses the converter
that has the same data type as the bean property. If conversion fails, the submitted
value is marked as invalid and JSF adds an error message to a queue that is
maintained by FacesContext. If conversion is successful and there are no validators
attached to the component, the converted value is stored as a local value that is later
used to update the model.

20.6 Creating Custom JSF Converters
You can create your own converters to meet your specific business needs. As with
creating custom JSF validators, you can create custom JSF converters that run on the
server side, and then also create a JavaScript version that can run on the client side.
However, unlike creating custom validators, you can create only converter classes.
You cannot add a method to a backing bean to provide conversion.

20.6.1 How to Create a Custom JSF Converter
Creating a custom converter requires writing the business logic for the conversion by
creating an implementation of the Converter interface that contains methods
overriding the getAsObject and getAsString methods of the Converter
interface, and then registering the custom converter with the application. You then use
the f:converter tag and nest the custom converter as a property of that tag, or you
can use the converter attribute on the input component to bind to that converter.

You can also create a client-side version of the converter. ADF Faces client-side
converters work in the same way standard JSF conversion works on the server, except
that JavaScript is used on the client: JavaScript converter objects can throw
ConverterExceptions, and they support the getAsObject and getAsString
methods.

To create a custom JSF converter:
1. Create a Java class that implements the javax.faces.converter.Converter

interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and getAsObject and getAsString
methods, which override the same methods of the Converter interface.

The getAsObject method takes the FacesContext instance, the UI component,
and the String to be converted to a specified object. For example:

Note: If the JavaScript form.submit() function is called, the ADF
Faces support for client-side conversion is bypassed. ADF Faces
provides a submitForm() method that you can use instead, or you
can use the autoSubmit attribute on ADF Faces input components.

Creating Custom JSF Converters

20-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

public Object getAsObject(FacesContext context,
 UIComponent component,
 java.lang.String value){
..
}

The getAsString method takes the FacesContext instance, the UI component,
and the object to be converted to a String. For example:

public String getAsString(FacesContext context,
 UIComponent component,
 Object value){
..
}

For more information about these classes, refer to the Javadoc or visit
http://java.sun.com/.

2. Add the needed conversion logic. This logic should use
javax.faces.converter.ConverterException to throw the appropriate
exceptions and javax.faces.application.FacesMessage to generate the
corresponding error messages. For more information about the Converter
interface and FacesMessage, see the Javadoc for
javax.faces.converter.Converter and
javax.faces.application.FacesMessage, or visit http://java.sun.com/.

3. If your application saves state on the client, make your custom converter
implementation implement the Serializable interface, or implement the
StateHolder interface, and the saveState(FacesContext) and
restoreState(FacesContext, Object) methods of StateHolder. For
more information, see the Javadoc for the StateHolder interface of
javax.faces.component package.

4. Register the converter in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

■ In the window, select Converters and click New. Click Help or press F1 for
additional help in registering the converter.

To create a client-side version of the converter:
1. Write a JavaScript version of the converter, passing relevant information to a

constructor.

2. Implement the interface
oracle.adf.view.faces.converter.ClientConverter, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Converter object. The second method is
getClientConversion(), which returns a JavaScript constructor that is used to
instantiate an instance of the converter.

For a complete example of how to add client-side conversion to a converter
implementation, see "Client-Side Converters and Validators" in Development Guidelines
for Oracle ADF Faces Applications.

http://java.sun.com/
http://java.sun.com/

Displaying Error Messages

Using Validation and Conversion 20-21

To use a custom converter on a JSF page:
■ Bind your converter class to the converter attribute of the input component.

Example 20–8 shows a custom converter referenced by the converter attribute of an
inputText component.

Example 20–8 A Custom Converter on a JSF Page

<af:inputText value="#{bindings.ProductListName.inputValue}"
 label="#{bindings.ProductListName.label}"
 required="#{bindings.ProductListName.mandatory}"
 columns="#{bindings.ProductListName.displayWidth}"

converter="srdemo.MyConverter">
</af:inputText>

20.6.2 What Happens When You Use a Custom Converter
When you use a custom converter, the application accesses the converter class
referenced in the converter attribute, and executes the getAsObject or
getAsString method as appropriate. These methods access the data from the
component in the current FacesContext and execute the conversion logic.

20.7 Displaying Error Messages
By default, ADF Faces validation and conversion run on the client side. When a
component’s data fails validation, an alert dialog displays an error message for the
component. You do not need to do any additional work to have client-side error
messages display in this way. Figure 20–4 shows the message displayed when data is
not entered for an input component that has a required attribute set to true.

Figure 20–4 A Client-Side Error Message

Note: If a custom converter is registered in an application under a
class for a specific data type, whenever a component's value
references a value binding that has the same type as the custom
converter object, JSF will automatically use the converter of that class
to convert the data. In that case, you don't need to use the converter
attribute to register the custom converter on a component, as shown
in the following code snippet:

<h:inputText value="#{myBean.myProperty}"/>

 where myProperty has the same type as the custom converter.

Displaying Error Messages

20-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

ADF Faces provides default text for messages displayed when validation or
conversion fails. You can replace the default messages with your own messages by
setting the text on the xxxMessageDetail attributes of the validator or converter
(such as convertDateMessageDetail or notInRangeDetailMessage), or by
binding those attributes to a resource bundle using an EL expression. For more
information about using resource bundles, see Section 22.4.1, "How to Internationalize
an Application".

When you use the Data Control Palette to create input components, JDeveloper inserts
the af:messages tag at the top of the page. This tag can display all error messages in
the queue for any validation that occurs on the server side, in a box offset by color. If
you choose to turn off client-side validation for ADF Faces, those error messages are
displayed along with any ADF Model error messages. ADF Model messages are
shown first. Messages are shown both within the af:messages tag and with the
associated components.

Figure 20–5 shows the error message for an ADF Model validation rule, which states
that the description is too long, along with an error message for an ADF Faces
component required attribute violation.

Figure 20–5 Displaying Server-Side Error Messages With the ADF Faces Messages Tag

20.7.1 How to Display Server-Side Error Messages on a Page
You can display server-side error messages in a box at the top of a page using the
af:messages tag. When you drop any item from the Data Control Palette onto a
page as an input component, JDeveloper automatically adds this tag for you.

To display error messages in an error box:
1. In the Structure window, select the af:messages tag.

This tag is created automatically whenever you drop an input widget from the
Data Control Palette. However, if you need to insert the tag, simply insert the
following code within the afh:body tag:

<afh:body>
 <af:messages globalOnly="false" />
 ...
</afh:body>

Handling and Displaying Exceptions in an ADF Application

Using Validation and Conversion 20-23

2. In the Property Inspector set the following attributes:

■ globalOnly: By default ADF Faces displays global messages (i.e., messages
that are not associated with components) followed by individual component
messages. If you wish to display only global messages in the box, set this
attribute to true. Component messages will continue to display with the
associated component.

■ message: The main message text that displays just below the message box
title, above the list of individual messages.

■ text: The text that overrides the default title of the message box.

3. Ensure that client-side validation has been disabled. If you do not disable
client-side validation, the alert dialog will display if there are any ADF Faces
validation errors, as the server-side validation will not have taken place.

20.7.2 What Happens When You Choose to Display Error Messages
When a conversion or validation error occurs on an ADF Faces input component, the
component creates a FacesMessage object and adds it to a message queue on the
FacesContext instance. During the Render Response phase, the message associated
with the validator or converter is displayed using the built-in message display
attribute for the ADF Faces input component. This attribute displays the detail error
message next to the component. The message is also displayed by the optional
af:messages tag, which displays all summary messages in a message box.

20.8 Handling and Displaying Exceptions in an ADF Application
Exceptions thrown by any part of an ADF application are also handled and displayed
on the JSF page. By default, all exceptions thrown in the application are caught by the
binding container. When an exception is encountered, the binding container routes the
exception to the application’s active error handler, which by default is the
DCErrorHandlerImpl class. The reportException(BindingContainer,
Exception) method on this class passes the exception to the binding container to
process. The binding container then processes the exception by placing it on the
exception list in a cache.

If exceptions are encountered on the page during the page lifecycle, (for example,
during validation), they are also caught by the binding container and cached, and are
additionally added to FacesContext.

During the Prepare Render phase, the ADF lifecycle executes the
reportErrors(context) method. This method is implemented differently for
each view technology. By default, the reportErrors method on the
FacesPageLifecycle class:

■ Accesses the exception list from the binding container.

■ Calls the addError helper method, which creates and adds the messages to the
FacesContext. By default, messages display the JBO exception number and
exception text.

■ Clears the exceptions list in the binding container.

Tip: To disable client-side validation, add the
<client-validation-disabled> element in
adf-faces-config.xml and set it to true.

Handling and Displaying Exceptions in an ADF Application

20-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

You can customize this default framework behavior. For example, you can create a
custom error handler for exceptions, or you can change how the lifecycle reports
exceptions. You can also customize how a single page handles exceptions.

20.8.1 How to Change Exception Handling
You can change the default exception handling by extending the default error handler,
DCErrorHandlerImpl. Doing so also requires that you create a custom ADF lifecycle
class that will call the new error handler during the Prepare Model phase.

You can also create a custom ADF lifecycle class to change how the lifecycle reports
errors by overriding the reportErrors method.

If you only want to change how exceptions are created for a single page, you can
create a lifecycle class just for that page.

To create a custom error handler:
1. Create a class that extends the DCErrorHandlerImpl class.

2. In the new class, override the
public void reportException(DCBindingContainer, Exception)
method.

Example 20–9 shows the SRDemoErrorHandler Class that the SRDemo
application uses to handle errors.

Example 20–9 SRDemoErrorHandler Class

public class SRDemoErrorHandler extends DCErrorHandlerImpl{
 /**
 * Constructor for custom error handler.
 * @param setToThrow should exceptions throw or not
 */
 public SRDemoErrorHandler(boolean setToThrow) {
 super(setToThrow);
 }
 /**
 * Overridden ADF binding framework method to customize the way
 * that Exceptions are reported to the client.
 * Here we set the "append codes" flag to false on each JboException
 * in the exception (and any detail JboExceptions it contains)
 * @param bc BindingContainer
 * @param ex exception being reported
 */
 public void reportException(DCBindingContainer bc, Exception ex) {
 //Force JboException's reported to the binding layer to avoid
 //printing out the JBO-XXXXX product prefix and code.
 disableAppendCodes(ex);
 super.reportException(bc, ex);
 }

 private void disableAppendCodes(Exception ex) {
 if (ex instanceof JboException) {
 JboException jboEx = (JboException) ex;
 jboEx.setAppendCodes(false);
 Object[] detailExceptions = jboEx.getDetails();
 if ((detailExceptions != null) && (detailExceptions.length > 0)) {
 for (int z = 0, numEx = detailExceptions.length; z < numEx; z++) {
 disableAppendCodes((Exception) detailExceptions[z]);
 }

Handling and Displaying Exceptions in an ADF Application

Using Validation and Conversion 20-25

 }
 }
 }
}

3. Globally override the error handler. To do this, you must create a custom page
lifecycle class that extends FacesPageLifecycle. In this class, you override the
public void prepareModel(LifecycleContext) method, which sets the
error handler. To have it set the error handler to the custom handler, have the
method check whether or not the custom error handler is the current one in the
binding context. If it is not, set it to be. (Because by default the
ADFBindingFilter always sets the error handler to be DCErrorHandlerImpl,
your method must set it back to the custom error handler.) You must then call
super.prepareModel.

Example 20–10 shows the prepareModel method from the
frameworkExt.SRDemoPageLifecycle class that extends the
FacesPageLifecycle class. Note that the method checks whether or not the
error handler is an instance of the SRDemoErrorHandler, and if it is not, it sets it
to the new error handler.

Example 20–10 PrepareModel Method

public void prepareModel(LifecycleContext ctx) {
 if (!(ctx.getBindingContext().getErrorHandler() instanceof
 SRDemoErrorHandler)) {
 ctx.getBindingContext().setErrorHandler(new SRDemoErrorHandler(true));
 }
 //etc
 super.prepareModel(ctx);
}

4. You now must create a new Phase Listener that will return the custom lifecycle.
See the procedure "To create a new phase listener:" later in the section.

To customize how the lifecycle reports errors:
1. Create a custom page lifecycle class that extends FacesPageLifecycle.

2. Override the public void reportErrors(PageLifecycleContext)
method to customize the display of error messages.

See the SRDemo for the reportErrors() method, which is found in the
frameworkExt.SRDemoPageLifecycle class. The method customizes the
error handling by "pruning" exceptions from the list that the user cannot directly
do anything to correct. In general, the errors being pruned out are the "wrapper
exceptions" that are added by the ADF Business Components bundled exception
mode. For information about the bundled exception mode, see Section 10.5.7,
"Understanding Bundled Exception Mode".

3. You now must create a new phase listener that will return the custom lifecycle.

Handling and Displaying Exceptions in an ADF Application

20-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To create a new phase listener:
1. Extend the ADFPhaseListener class.

2. Override the protected PageLifecycle createPageLifecycle ()
method to return a new custom lifecycle.

Example 20–11 shows the createPageLifecycle method in the
frameworkExt.SRDemoADFPhaseListener class.

Example 20–11 CreatePageLifecycle Method in SRDemoADFPhaseListener

public class SRDemoADFPhaseListener extends ADFPhaseListener {
 protected PageLifecycle createPageLifecycle() {
 return new SRDemoPageLifecycle();
 }
}

3. Register the phase listener in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

■ In the window, select Life Cycle and click New. Click Help or press F1 for
additional help in registering the converter.

To override exception handling for a single page:
1. Create a custom page lifecycle class that extends the FacesPageLifecycle class.

2. Override the public void reportErrors(PageLifecycleContext)
method to customize the display of error messages. For an example of overriding
this method, see the procedure "To customize how the lifecycle reports errors:"
earlier in this section.

3. Open the page definition for the page. In the Structure window, select the page
definition node. In the Property Inspector, enter the new class as the value for the
ControllerClass attribute.

20.8.2 What Happens When You Change the Default Error Handling
When you create your own error handler, the application uses that class instead of the
DCErrorHandler class. Because you created and registered a new lifecycle, that
lifecycle is used for the application. This new lifecycle instantiates your custom error
handler.

When an error is subsequently encountered, the binding container routes the error to
the custom error handler. The reportException(BindingContainer,
Exception) method then executes.

If you’ve overridden the reportErrors method in the custom lifecycle class, then
during the Prepare Render phase, the lifecycle executes the new
reportErrors(context) method.

Adding ADF Bindings to Existing Pages 21-1

21
Adding ADF Bindings to Existing Pages

This chapter describes how to use the Data Control Palette to add ADF bindings to
existing UI components. Instead of using the Data Control Palette to design your
application pages, you can design the UI first using other tools, such as the
Component Palette, and add the ADF bindings later.

This chapter includes the following sections:

■ Section 21.1, "Introduction to Adding ADF Bindings to Existing Pages"

■ Section 21.2, "Designing Pages for ADF Bindings"

■ Section 21.3, "Using the Data Control Palette to Bind Existing Components"

■ Section 21.4, "Adding ADF Bindings to Text Fields"

■ Section 21.5, "Adding ADF Bindings to Tables"

■ Section 21.6, "Adding ADF Bindings to Actions"

■ Section 21.7, "Adding ADF Bindings to Selection Lists"

■ Section 21.8, "Adding ADF Bindings to Trees and Tree Tables"

21.1 Introduction to Adding ADF Bindings to Existing Pages
While the Data Control Palette enables you to design and create bound components in
a single drag and drop action, in some cases, it may be preferable to create the basic UI
components first and add the bindings later. For example, if a development team
includes UI designers, the designers can create the basic pages using JDeveloper tools,
such as the Component Palette, and the developers can add the page functionality
afterwards, including the ADF bindings.

Read this chapter to understand:

■ How to design a page for easy insertion of ADF bindings

■ Which UI components you can add ADF bindings to

■ How to use the Data Control Palette to add ADF bindings to existing page
components

■ What happens to your components when ADF bindings are added

Designing Pages for ADF Bindings

21-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

21.2 Designing Pages for ADF Bindings
When designing and creating a web page that will have ADF bindings added later, use
the JDeveloper wizards, visual editors, and design tools (such as the Component
Palette).

You can design your pages using any tags that you want; however, if you plan to add
ADF bindings to certain components, you may want to design those components
using tags that work with ADF bindings. Otherwise, the components will have to be
entirely replaced when the bindings are added later.

When you add ADF bindings to an existing component, ADF preserves as much of the
original component’s properties as possible. However, the binding may overwrite such
things as labels, column headings, and range navigation.

If a label value contains a static text string, the ADF binding overwrites the value with
an EL expression that binds to an attribute name in the data control. You can use
control hints on the entity object or view object attributes in your business service to
centrally define the labels displayed by an ADF binding. However, if you define your
UI labels using EL expressions that reference managed beans (for example, a standard
binding on a resource bundle), that label is preserved when you add the ADF binding
to that component. In many cases, it is preferable to design your basic UI components
using labels that are bound to resource bundles, especially if you will be localizing
your pages. For more information about resource bundles, see Section 22.4,
"Internationalizing Your Application".

Range navigation is another property that is overwritten by the ADF binding, because
the iterator referenced by the binding manages the current rowset. Later sections in
this chapter discuss how to add ADF bindings to specific UI components and how
those specific components are affected by the ADF bindings.

21.2.1 Creating the Page
When you use the Create JSF JSP wizard to create a page to which you intend to add
ADF bindings, be sure to do the following actions to make future binding easier:

■ Choose the Do not Automatically Expose UI Components in a Managed Bean
option.

This option turns off JDeveloper’s auto-binding feature, which automatically
associates every UI component in the page to a corresponding property in the
backing bean for eventual programmatic manipulation. If you intend to add ADF
bindings to a page, Oracle recommends that you do not use the auto-binding
feature. If you use the auto-binding feature, you will have to remove the managed
bean bindings later, after you have added the ADF bindings. The managed bean
UI component property bindings do not affect the ADF bindings, but their
presence may be confusing in the JSF code. For information about managed beans,
see Section 11.5, "Creating and Using a Backing Bean for a Web Page".

■ Add the ADF Faces tag libraries.

While you can add ADF bindings to JSF components, the ADF Faces components
provide greater functionality, especially when combined with ADF bindings.

■ Add the desired page-level physical attributes such as background color, style
sheets, or skins.

The ADF bindings do not affect your page-level attributes. For information about
using ADF Faces skins, see Section 22.3, "Using Skins to Change the Look and
Feel".

Designing Pages for ADF Bindings

Adding ADF Bindings to Existing Pages 21-3

21.2.2 Adding Components to the Page
When designing web pages, keep in mind that ADF bindings can be added only to
certain ADF Faces tags or their equivalent JSF HTML tags. Table 21–1 lists the ADF
Faces and JSF tags to which you can later add ADF bindings. On the Component
Palette, the ADF Faces tags are available on the ADF Faces Core page, and the JSF tags
are available on the JSF HTML page.

Tip: To enable the use of JSF Reference Implementation UI
component tags with ADF bindings, you must choose the Include JSF
HTML Widgets for JSF Databinding option in the ADF View
Settings of the project properties. However, using ADF Faces tags,
especially with ADF bindings, provides greater functionality than
does using the reference implementation JSF tags.

Table 21–1 Tags That Can Be Used for ADF Bindings

ADF Faces Tags Used in ADF Bindings Equivalent JSF HTML Tags

Text Fields

af:·inputText h:inputText

af:outputText h:outputText

af:outputLabel h:outputLabel

Tables

af:table h:dataTable

Actions

af:commandButton h:commandButton

af:commandLink h:commandLink

Selection Lists

af:selectOneChoice h:selectOneMenu

af:selectOneListbox h:selectOneListbox

af:selecOneRadio h:selectOneRadio

af:selectBooleanRadio h:selectBooleanCheckbox

Trees

af:tree n/a

af:treeTable n/a

Designing Pages for ADF Bindings

21-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

21.2.3 Other Design Considerations
When designing pages using the JDeveloper wizards and editors to which you will
later add ADF bindings, you can either:

■ Choose options that enable you to bind later and, instead, enter static labels and
values. This approach enables you to design your UI using placeholder labels and
values that will be replaced later by the values and labels returned by the ADF
bindings.

OR

■ Bind labels to resource bundles, which contain the actual text to be displayed in
the label. When you later add an ADF binding to a component, ADF retains any
existing label bindings on resource bundles (or managed beans). For information
about using resource bundles, see Section 22.4, "Internationalizing Your
Application".

For information about creating JSF and ADF Faces components, see Section 11.4.1,
"How to Add UI Components to a JSF Page".

21.2.3.1 Creating Text Fields in Forms
For text field labels, you can either enter static placeholder values or bind to resource
bundles. If you are not binding labels to resource bundles, then use the Property
Inspector or source editor to add or modify placeholder labels and values in text fields.
Use placeholder labels and values that make it easier for the developer, who will later
add the bindings, to determine the intent of the field. Static placeholder values will be
replaced by the ADF bindings. However, as mentioned previously, any bindings to
resource bundles will be retained.

For example, if you are creating a form that displays user information, you might use
User First Name, User Last Name, and User Address as placeholder text field
labels. The developer who adds the ADF bindings would then match the placeholder
labels to actual attributes in a data source on the data control.

21.2.3.2 Creating Tables
When you drag a table component from the Component Palette and drop it on a page,
JDeveloper displays a table wizard to help you define the table. Choose the Bind Later
option in the ADF Faces Table wizard (or, for JSF tables, the Number of Columns
option in the Create Data Table wizard), which enables you to specify the number of
columns needed in the table instead of binding to a data source. If you are unsure of
the total number of columns needed, enter an estimate. Later, when the bindings are
added, the number of columns can easily be adjusted.

As with text fields, use placeholder labels or bindings on resource bundles in the
column headings. If you are using the ADF table component, you can specify the
column headings in the Header Text field on the Column Details page of the ADF
Faces Table wizard. For JSF tables, you can enter the column headings directly in the
table displayed in the visual editor.

21.2.3.3 Creating Buttons and Links
For the button or link label, use the Property Inspector or the source editor to add a
static placeholder or a binding on a resource bundle. If the button or link will perform
page navigation, you can specify an outcome value in the action attribute, to enable
page navigation in your initial pages. However, when the ADF bindings are added,
the action attribute is overwritten, and the action will have to be re-entered.

Using the Data Control Palette to Bind Existing Components

Adding ADF Bindings to Existing Pages 21-5

21.2.3.4 Creating Lists
When you drag a selection list from the Component Palette and drop it on a page,
JDeveloper displays the Insert dialog to help you define the list. Use the Create List
option on the Insert dialog to define the list. Only enter item labels or values if you
will ultimately create a static list. If you intend to populate the list from a binding on a
data collection, leave the item labels and values blank. For the list label, use the
Property Inspector to enter a static placeholder or a binding on a resource bundle. For
example, if you are creating a dropdown list of products, you might enter Products
as the label for the list. Later, when the binding is added, static placeholder labels are
replaced by an ADF binding expression.

21.2.3.5 Creating Trees or Tree Tables
When creating trees, use the value attribute to identify the root node and the var
value to identify the branch node. When creating a tree table, choose the Bind Later
option in the ADF Faces Tree Table wizard. You can specify a number of columns, but
when the ADF binding is added all data is displayed in a single column.

21.3 Using the Data Control Palette to Bind Existing Components
To bind existing components to ADF data controls, you must add ADF binding
expressions to the component tags. While you could manually add ADF binding
expressions to existing tags, it is easier to use the Data Control Palette. Using the Data
Control Palette ensures that all the necessary binding objects and references are
automatically created for you. (For more information see, Section 21.3.2, "What
Happens When You Use the Data Control Palette to Add ADF Bindings".)

21.3.1 How to Add ADF Bindings Using the Data Control Palette
The following procedure is a general description of how to use the Data Control
Palette and the Structure window to add ADF bindings to existing components. Later
sections in this chapter describe how to add ADF bindings to specific types of
components.

To add ADF bindings using the Data Control Palette and Structure Window:
1. With your page displayed in the Design page of the visual editor, open the

Structure window.

2. In the Design page of the visual editor, select the UI component to which you want
to add ADF bindings.

The component must be one of the tags listed in Table 21–1. When you select a
component in the visual editor, JDeveloper simultaneously selects that component
tag in the Structure window, as shown in Figure 21–1. Use the Structure window
to verify that you have selected the correct component. If the incorrect component
is selected, make the adjustment in the Structure window.

Tip: You can drop the data control object on the component
displayed in the Design page of the visual editor, but using the
Structure window provides greater accuracy and precision. For
example, if you try dropping a data control object on a component in
the visual editor and do not get the Bind Existing <component name>
option in the context menu, this means you did not drop the data
control on the correct tag in the visual editor. In this case, try using the
Structure window where each tag is clearly delineated.

Using the Data Control Palette to Bind Existing Components

21-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 21–1 Structure Window with Tag Selected

3. Drag the appropriate data control object from the Data Control Palette to the
Structure window and drop it on the selected UI component. (For information
about the nodes on the Data Control Palette, see Section 12.2.1, "How to
Understand the Items on the Data Control Palette".)

Figure 21–2 Dropping a Data Control Object on a UI Component in the Structure Window

4. From the Data Control Palette context menu, choose the Bind Existing
<component name> option, where <component name> is the name of the
component, such as text field or table, as shown in Figure 21–3.

Tip: As you position the data control object over the UI component
in the Structure window, a horizontal line with an embedded up or
down arrow appears at the top or bottom of the component, as shown
in Figure 21–2. Whenever either of these lines appears, you can drop
the data control object: in this case, it does not matter which direction
the arrow is pointing.

Tip: If the context menu does not display a Bind Existing
<component name> option, you have not dropped the data control
object on the correct tag in the Structure window. You can add
bindings only to the tags shown in Table 21–1.

Adding ADF Bindings to Text Fields

Adding ADF Bindings to Existing Pages 21-7

Figure 21–3 Context Menu for Binding to an Existing Component

21.3.2 What Happens When You Use the Data Control Palette to Add ADF Bindings
When you use the Data Control Palette all of the required ADF objects are
automatically created for you:

■ The DataBindings.cpx file is created and a corresponding entry for the page is
added to it.

■ The ADF binding filter is registered in the web.xml file.

■ The ADF phase listener is registered in the faces-config.xml file.

■ A page definition file is created and configured with the binding object definitions
for component on the page.

All of these objects are required for a component with ADF bindings to be rendered
correctly on a page. If you do not use the Data Control Palette, you will have to create
these things manually. For more information about these objects, see Chapter 12,
"Displaying Data on a Page".

21.4 Adding ADF Bindings to Text Fields
You bind forms or other container components by binding the individual text fields
that comprise the component: you cannot bind an entire form at one time. You bind a
text field to an attribute in a collection.

21.4.1 How to Add ADF Bindings to Text Fields
To add ADF bindings to a text field, you drag an attribute from the Data Control
Palette and drop it on the text field component displayed in the Structure window. For
general tips about dropping items from the Data Control Palette onto the Structure
window, see Section 21.3.1, "How to Add ADF Bindings Using the Data Control
Palette".

To add ADF bindings to a text field:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In Design page of the visual editor, select the text field.

This simultaneously selects the tag in the Structure window. The text field tag
must be one of the tags listed previously in Table 21–1. If the incorrect tag is
selected, make the adjustment in the Structure window.

3. From the Data Control Palette, drag an attribute to the Structure window and drop
it on the selected text field.

Adding ADF Bindings to Tables

21-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. On the Data Control Palette context menu, choose Bind Existing Input Text.

The binding is added to the text field.

21.4.2 What Happens When You Add ADF Bindings to a Text Field
Example 21–1 displays an input text field component before the ADF bindings are
added. The example is a simple inputText tag with a static label value of First
Name.

Example 21–1 Text Field Component Before ADF Bindings

<af:inputText label="First Name"/>

Example 21–2 displays the same text field after the FirstName attribute of the
StaffList collection from the SRDemo data control was dropped on it. Notice that
the label, which was a static string on the original tag, was replaced with a binding
expression. To modify the label displayed by an ADF binding, you can use control
hints. Other tag attributes have been added with bindings on different properties on
the FirstName attribute. For a description of each binding property, see Appendix B,
"Reference ADF Binding Properties".

Example 21–2 Text Field Component After ADF Bindings Are Added

<af:inputText label="#{bindings.StaffListFirstName.label}"
 value="#{bindings.StaffListFirstName.inputValue}"
 required="#{bindings.StaffListFirstName.mandatory}"
 columns="#{bindings.StaffListFirstName.displayWidth}">
 <af:validator binding="#{bindings.StaffListFirstName.validator}"/>
</af:inputText>

In addition to adding the bindings to the text field, JDeveloper automatically adds
entries for the databound text field to the page definition file. The page definition
entries include an iterator binding object defined in the executables element and a
a value binding defined in the bindings element. For more information about
databound text fields and forms, see Chapter 13, "Creating a Basic Page".

21.5 Adding ADF Bindings to Tables
You can add ADF bindings to an entire table at one time. In fact, it is recommended to
bind the entire table instead of the individual components that comprise the table.
When you add a binding to a table, you can drag an entire collection from the Data
Control Palette onto the table. You can bind an individual column, but only if the table
is already bound to an iterator.

21.5.1 How to Add ADF Bindings to Tables
To add ADF bindings to a table, you drag a data collection from the Data Control
Palette and drop it on the table tag displayed in the Structure window. For general tips
about dropping items from the Data Control Palette onto the Structure window, see
Section 21.3.1, "How to Add ADF Bindings Using the Data Control Palette".

Adding ADF Bindings to Tables

Adding ADF Bindings to Existing Pages 21-9

To add ADF bindings to a table:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the table.

The tag selected in the Structure window must be one of the tags listed previously
in Table 21–1. JDeveloper simultaneously selects the corresponding tag in the
Structure window. If the incorrect tag is selected, make the adjustment in the
Structure window. For example, if a column tag is selected, select the table tag
instead.

3. From the Data Control Palette, drag a collection to the Structure window and drop
it on the selected table tag.

4. On the Data Control Palette context menu, choose Bind Existing ADF Table or
Bind Existing ADF Read-only Table. The Edit Table Column dialog appears, as
shown in Figure 21–4.

Figure 21–4 Edit Table Column Dialog

The Display Label column in the dialog displays the placeholder column
headings entered when the table was created. In the example, the placeholder
column headings are First Name, Last Name, Email, and User ID. The Value
Binding column displays the attributes from the data collection. The Component
to Use column displays the types of components each table column will contain.

5. In the Edit Table Columns dialog, use the dropdowns in the Value Binding fields
to choose the attributes from the data collection to be bound to each column in the
table, as shown in Figure 21–5. If placeholder column headings were entered when
the table was created, match the attributes to the appropriate column headings.
For example, if a column heading is First Name, you would choose the
firstName attribute from the Value Binding dropdown next to that column
heading.

Adding ADF Bindings to Tables

21-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 21–5 Value Binding Dropdown in the Edit Table Columns Dialog

For more information about tables, see Chapter 14, "Adding Tables".

21.5.2 What Happens When You Add ADF Bindings to a Table
Example 21–3 displays a table before the ADF bindings are added. The table defines
four columns and uses static placeholder values as column headings: First Name,
Last Name, Email, and User ID. The table also defines a range navigation of 15
rows, table banding, and a selection facet.

Example 21–3 ADF Faces Table Before ADF Bindings

<af:table emptyText="No items were found" rows="15" banding="none"
 bandingInterval="1">
 <f:facet name="selection">
 <af:tableSelectOne/>
 </f:facet>
 <af:column sortable="false" headerText="First Name">
 <af:outputText value="#{row.col1}"/>
 </af:column>
 <af:column sortable="false" headerText="Last Name">
 <af:outputText value="#{row.col2}"/>
 </af:column>
</af:table>

Example 21–4 displays the same table after the StaffList data collection from the
SRDemo data control was dropped on it. Notice that since the placeholder column
headings were static values, they have been replaced with a binding on the
StaffList binding object. However, the selection facet and banding from the
original table remain intact. The selectionState and selectionListener
attributes have been added with bindings on the StaffList binding object.

The range navigation value is replaced by a binding on the iterator, which manages
the current row. The rangeSize binding property, which defines the number of rows
can be set in the page definition file. For a description of each binding property, see
Appendix B, "Reference ADF Binding Properties".

Tip: If you need to add additional columns to the table, click New.

Adding ADF Bindings to Actions

Adding ADF Bindings to Existing Pages 21-11

Example 21–4 ADF Faces Table After ADF Bindings Are Added

<af:table emptyText="#{bindings.StaffList.viewable ? \'No rows yet.\' :
 \'Access Denied.\'}"
 value="#{bindings.StaffList.collectionModel}" var="row"
 bandingInterval="1"
 rows="#{bindings.StaffList.rangeSize}"
 first="#{bindings.StaffList.rangeStart}">
 selectionState="#{bindings.StaffList.collectionModel.
 selectedRow}"
 selectionListener="#{bindings.StaffList.collectionModel.

makeCurrent}">
 <af:column sortable="false"
 headerText="#{bindings.StaffList.labels.UserId}"
 sortProperty="UserId">
 <af:outputText value="#{row.UserId}">
 <f:convertNumber groupingUsed="false"
 pattern="#{bindings.StaffList.formats.UserId}"/>
 </af:outputText>
 </af:column>
 <af:column sortable="false"
 headerText="#{bindings.StaffList.labels.UserRole}"
 sortProperty="UserRole">
 <af:outputText value="#{row.UserRole}"/>
 </af:column>
</af:table>

In addition to adding the bindings to the table, JDeveloper automatically adds entries
for the databound table to the page definition file. The page definition entries include
an iterator binding object defined in the executables element and the value
bindings for the table in the bindings element. By default, the RangeSize property
on the iterator binding is set to 10. This value is now bound to the range navigation in
the table and overrides the original range navigation value set in the table before the
bindings were added. In the example, the original table set the range navigation value
at 15. If necessary, you can change the RangeSize value in the page definition to
match the original value defined in the table.

For more information about databound tables, see Chapter 14, "Adding Tables".

21.6 Adding ADF Bindings to Actions
You can add ADF bindings to buttons or links. When you add a binding to a button or
link, you use a method or operation from the data control. When a user clicks the
button or link, the method or operation is invoked.

If you want the button or link to perform page navigation, after adding the ADF
binding you must bind the action attribute of the component tag to a backing bean,
which will handle the navigation. The backing bean must inject the ADF binding
container and return an outcome value. For information about creating navigation
rules and binding navigation components to backing beans, see Chapter 16, "Adding
Page Navigation".

21.6.1 How to Add ADF Bindings to Actions
To add ADF bindings to a button or link, you drag a method or operation from the
Data Control Palette and drop it on the button or link tag displayed in the Structure
window. For general tips about dropping items from the Data Control Palette onto the
Structure window, see Section 21.3.1, "How to Add ADF Bindings Using the Data
Control Palette".

Adding ADF Bindings to Selection Lists

21-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To add ADF bindings to a button or link:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the button or link.

The tag selected in the Structure window must be one of the tags listed previously
in Table 21–1. JDeveloper simultaneously selects the corresponding tag in the
Structure window. If the incorrect tag is selected, make the adjustment in the
Structure window.

3. From the Data Control Palette, drag a method or operation to the Structure
window and drop it on the selected button or link tag.

4. On the Data Control Palette context menu, choose Bind Existing CommandButton
or Bind Existing CommandLink.

5. If the method requires a parameter, the Action Binding Editor appears where you
define the parameter values to pass to the method. (For more information about
passing parameters to methods, see Chapter 17, "Creating More Complex Pages".)

21.6.2 What Happens When You Add ADF Bindings to an Action
Example 21–5 displays a command button before the ADF bindings are added.

Example 21–5 ADF Faces Command Button Before ADF Bindings

<af:commandButton text="Create User"/>

Example 21–6 displays the same button after the Create operation from the SRDemo
data control was dropped on it. Since the original label was a static value, the binding
replaced it with the name of the method; you can change the button label using the
Property Inspector. An actionListener attribute was added with a binding on the
Create operation. The actionListener detects when the user clicks the button and
executes the operation as a result. If you want the button to navigate to another page,
you can bind to a backing bean or add an action value. For more information, see
Chapter 16, "Adding Page Navigation".

Example 21–6 ADF Faces Command Button After ADF Bindings Are Added

<af:commandButton text="Create"
 actionListener="#{bindings.Create.execute}"
 disabled="#{!bindings.Create.enabled}"/>

In addition to adding the bindings to the button, JDeveloper automatically adds an
iterator and action binding object to the page definition file.

For more information about databound buttons and links, see Chapter 13, "Creating a
Basic Page".

21.7 Adding ADF Bindings to Selection Lists
You can add ADF bindings to any of the selection lists previously shown in Table 21–1.
A databound selection list displays values from a data control collection or a static list
and updates an attribute in another collection or a method parameter based on the
user’s selection. When adding a binding to a list, you use an attribute from the data
control that will be populated by the selected value in the list.

Adding ADF Bindings to Selection Lists

Adding ADF Bindings to Existing Pages 21-13

21.7.1 How to Add ADF Bindings to Selection Lists
To add ADF bindings to a selection list, you drag an attribute from the Data Control
Palette and drop it on the selection list tag displayed in the Structure window. For
general tips about dropping items from the Data Control Palette onto the Structure
window, see Section 21.3.1, "How to Add ADF Bindings Using the Data Control
Palette".

To add ADF bindings to a selection list component:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the selection list component.

The tag selected in the Structure window must be one of the tags listed previously
in Table 21–1. JDeveloper simultaneously selects the corresponding tag in the
Structure window. If the incorrect tag is selected, make the adjustment in the
Structure window.

3. From the Data Control Palette, drag an attribute to the Structure window and drop
it on the selected selection list tag. Use the attribute in the data collection that you
want to populate when the user selects an item from the list.

4. On the Data Control Palette context menu, choose Bind Existing <component
name>.

5. In the List Binding Editor, define the data collection that will be updated by the
list (Base Data Source), the data collection that will populate the list (List Data
Source), and the attributes that will be displayed in the list. For information about
using the List Binding Editor to define lists, see Section 19.7, "Creating Selection
Lists".

21.7.2 What Happens When You Add ADF Bindings to a Selection List
Example 21–7 displays a single-selection dropdown list before the ADF bindings are
added. Notice that the component defines a label for the list, but that it does not define
static list item labels and values. The item labels and values will be populated by the
bindings.

Example 21–7 ADF Faces Single-Selection Dropdown Before ADF Bindings

<af:selectOneChoice label="Product:"/>

Example 21–8 displays the same list after the ProdID attribute in the
ServiceRequests collection from the SRDemo data control was dropped on it.
Because the original list label was a static value, the binding replaced it with a binding
on the ServiceRequestsProdId attribute, which was the attribute that was
dragged from the Data Control Palette and dropped on the dropdown list component.
You can change the label using control hints. The list values are also bound to the
same attribute. Notice that no display values or labels are defined in the component by
the binding. Instead, the display values are defined in the page definition file.

Adding ADF Bindings to Trees and Tree Tables

21-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 21–8 ADF Faces Single-Selection Dropdown After ADF Bindings Are Added

<af:selectOneChoice value="#{bindings.ServiceRequestsProdId.inputValue}"
 label="#{bindings.ServiceRequestsProdId.label}">
 <f:selectItems value="#{bindings.ServiceRequestsProdId.items}"/>
</af:selectOneChoice>

In addition to adding the bindings to the list, JDeveloper automatically adds several
binding objects for the list to the page definition file. The executables element
defines the iterator binding for the collection that populates the list, and the iterator
binding for the target collection.

The bindings element contains the list binding object definition. The
ListDisplayAttrNames element defines the data collection attributes that populate
the values the user sees in the list and is added only if the list is a dynamic list. In
dynamic lists, the list items are populated by a binding on the data collection. If the list
is a static list, a ValueList element is added instead with the static values that will
appear in the list.

For more information about databound lists, see Section 19.7, "Creating Selection
Lists".

21.8 Adding ADF Bindings to Trees and Tree Tables
You can add ADF bindings to ADF Faces tree and tree table components. The ADF
Faces tree component displays a hierarchy of master-detail related data collections in
a tree format. A databound ADF Faces tree displays multiple root nodes that are
populated by a binding on a master data collection. Each node in the tree may have
any number of branches, which are populated by bindings on detail data collections.
Each node in the tree is indented to show its level in the hierarchy. The ADF tree
component includes mechanisms for expanding and collapsing the tree. By default,
the icon for each node in the tree is a folder; however, you can use your own icons for
each level of nodes in the hierarchy. The ADF Faces tree table components display a
hierarchy of master-detail collections in a table. For more information about
master-detail relationships and trees, see Chapter 15, "Displaying Master-Detail Data".

21.8.1 How to Add ADF Bindings to Trees and Tree Tables
To add ADF bindings to a tree or tree table, you drag a master data collection from the
Data Control Palette and drop it on the tree tag displayed in the Structure window.
For general tips about dropping items from the Data Control Palette onto the Structure
window, see Section 21.3.1, "How to Add ADF Bindings Using the Data Control
Palette".

Tip: Any static item labels and values defined in the original
selection list are not replaced by the ADF bindings. If you add static
item labels and values to the original selection list, and then add a
dynamic list with a binding on the data collection, the list will display
both the values populated by the binding and the static values defined
in the component itself. In most cases, you would not want this.
Therefore, you must either design the initial component without using
static item labels and values, or remove them after the bindings are
added.

Adding ADF Bindings to Trees and Tree Tables

Adding ADF Bindings to Existing Pages 21-15

To add ADF bindings to a tree component:
1. With the page displayed in the Design page of the visual editor, open the Structure

window.

2. In the Design page of the visual editor, select the tree tag.

JDeveloper simultaneously selects the corresponding tag in the Structure window.
If the incorrect tag is selected, make the adjustment in the Structure window.

3. From the Data Control Palette, drag a data collection to the Structure window and
drop it on the selected tree tag. The data collection you select should be the master
collection, which will populate the root node of the tree.

4. On the Data Control Palette context menu, choose Bind Existing Tree.

5. Use the Tree Binding Editor to define the root and branch nodes of the tree. For
information, see Section 15.4, "Using Trees to Display Master-Detail Objects".

21.8.2 What Happens When You Add ADF Bindings to a Tree or Tree Table
Example 21–9 displays a tree before the ADF bindings are added. Notice that the value
attribute specifies the root node as users, and the var attribute specifies the first
branch as service requests.

Example 21–9 ADF Faces Tree Before ADF Bindings

<af:tree value="users" var="service requests">
 <f:facet name="nodeStamp">
 <h:outputText/>
 </f:facet>
</af:tree>

Example 21–10 displays the same tree after the LoggedInUser data collection from
the SRDemo data control was dropped on it. The LoggedInUser data collection will
populate the root node, and the ServiceRequestsByStatus collection was defined
as a branch off the root nodes. The binding replaced the value attribute with a
binding on the LoggedInUser binding object. The var attribute now contains a value
of node, which provides access to the current node. The nodes themselves are defined
in the page definition file.

Example 21–10 ADF Faces Tree After ADF Bindings Are Added

<af:tree value="#{bindings.LoggedInUser.treeModel}" var="node">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node}"/>
 </f:facet>
</af:tree>

In addition to adding the bindings to the tree, JDeveloper automatically adds several
binding objects for the tree to the page definition file. The executables element
defines the iterator binding for the collection that populates the root node.

The bindings element contains a tree binding object definition. The AttrNames
element lists all the attributes available in the collection, but only the attributes in the
nodeDefinition element are displayed in the tree. The Accesssors element
defines the view link accessor methods that will be used to retrieve the data that will
populate the branches in the node.

For more information about trees and tree tables, see Chapter 15, "Displaying
Master-Detail Data".

Adding ADF Bindings to Trees and Tree Tables

21-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Changing the Appearance of Your Application 22-1

22
Changing the Appearance of Your

Application

This chapter describes how to change the default appearance of your application by
changing style properties, using ADF skins, and internationalizing the application.

This chapter includes the following sections:

■ Section 22.2, "Changing the Style Properties of a Component"

■ Section 22.3, "Using Skins to Change the Look and Feel"

■ Section 22.4, "Internationalizing Your Application"

22.1 Introduction to Changing ADF Faces Components
ADF Faces components delegate the functionality of the component to a component
class, and the display of the component to a renderer. Renderers determine the
different ways a component can be displayed on a client, or how to display the
component on different clients. The component’s tag used on a page determines the
unique combination of a component class and a renderer. By default, all tags for ADF
Faces combine the associated component class with an HTML renderer, and are part of
the HTML render kit. For example, the command button and the command link
components are both UICommand components; however, they use different renderers.
You can create your own custom renderers; it is beyond the scope of this document to
explain how to create JSF renderers or custom components.

You cannot customize the ADF Faces renderers. However, you can customize how
components display using skins. By default, applications created using ADF Faces
components use the Oracle skin. However, the SRDemo sample application uses a
custom skin. Skins are an easy way to globally style an application. You can create
your own skin to change the colors, fonts, and even the location of portions of ADF
Faces components, by setting styles for components in one CSS file. You then configure
the application to use the skin when displaying the application. Included with ADF
Faces are HTML render kits for display on both desktop and PDA.

If you don’t wish to change the entire look of an application, you can choose to change
the inline styles for a component on a page. You can also programatically set styles
conditionally. For example, you may want to display text red, only under certain
conditions.

In addition to changing the appearance of your application, you can also
internationalize your application, allowing users in different locales to view text
strings in the language to which their browser is set. Many ADF Faces components
include text strings, and the components handle the translation of those strings for you

Changing the Style Properties of a Component

22-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

automatically. Any text that is part of the component displays in the language of the
user’s browser.

You need to translate only the text you add to the application. You can also change
other locale-specific properties, such as text direction and currency code.

Read this chapter to understand:

■ How to use inline styles to change a component’s appearance

■ How to conditionally set a style property on a component

■ How to create a custom skin

■ How to internationalize your application

22.2 Changing the Style Properties of a Component
ADF Faces components use the CSS style properties, based on the Cascading Style
Sheet specification. Cascading style sheets contain rules, composed of selectors and
declarations that define how styles will be applied. These are then interpreted by the
browser and override the browser’s default settings. It is beyond the scope of this
document to explain the concepts of CSS. Visit the W3C web site
(http://www.w3c.org/) for extensive information on style sheets, including the
official specification.

You can change a style property to alter a component’s appearance. ADF Faces
components use both inline style properties that can set individual attributes (such as
font-size and font-color), as well as style classes used to group a set of inline
styles. For example, the style class .AFFieldText sets all properties for the text
displayed in an inputText component.

22.2.1 How to Set a Component’s Style Attributes
You can set inline styles or you can declare a style class for an ADF Faces component
on a page.

To set the style:
1. In the Structure window, select the component you wish to style.

2. In the Property Inspector, expand the Core node. This node contains all the
attributes related to how the component displays.

3. To set a style class for the component, click in the StyleClass field and click the
ellipses (...) button. In the StyleClass dialog, enter a style class for use on this
component. For additional help in using the dialog, click Help.

4. To set an inline attribute, expand the InlineStyle node. Click in the field for the
attribute to set, and use the dropdown menu to choose a value.

You can also use EL expressions for the InlineStyle attribute itself to
conditionally set inline style attributes. For example, in the SRSearch page of the
SRDemo application, the date in the Assigned Date column displays red if a
service request has not yet been assigned. Example 22–1 shows the code on the JSF
page for the outputText component.

http://www.w3c.org/

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 22-3

Example 22–1 EL Expression Used to Set a Style Attribute

<af:outputText value="#{row.assignedDate eq
 null?res['srsearch.highlightUnassigned']:row.assignedDate}"
 inlineStyle="#{row.assignedDate eq null?'color:rgb(255,0,0);':''}"/>

22.2.2 What Happens When You Format Text
As Example 22–1 shows, when you use the Property Inspector to set a style,
JDeveloper adds the corresponding code for the component to the JSF page.

22.3 Using Skins to Change the Look and Feel
Skins allow you to globally change the appearance of ADF Faces components within
an application. A skin is a global style sheet that only needs to be set in one place for
the entire application. Instead of having to style each component, or having to insert a
style sheet on each page, you can create one skin for the entire application. Every
component will automatically use the styles as described by the skin. The application
developer does not need to add any code, and any changes to the skin will be picked
up at runtime, no change to code is needed.

Skins are also based on the Cascading Style Sheet specification. By default, ADF Faces
applications use the Oracle skin. Components in the visual editor as well as in the web
page display using the settings for this skin. Figure 22–1 shows the SRList page with
the Oracle skin applied.

Figure 22–1 The SRList Page Using the Oracle Skin

ADF Faces also provides two other skins. The Minimal skin provides some formatting,
as shown in Figure 22–2. Notice that almost everything except the graphic for the page
has changed, including the colors, the shapes of the buttons, and where the copyright
information displays.

Note: The syntax in a skin style sheet is based on the CSS3
specification. However, many browsers do not yet adhere to this
version. At runtime, ADF Faces converts the CSS to the CSS2
specification.

Using Skins to Change the Look and Feel

22-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 22–2 The SRList Page Using the Minimal Skin

The third skin provided by ADF Faces is the Simple skin. This skin contains almost no
special formatting, as shown in Figure 22–3.

Figure 22–3 The SRList Page Using the Simple Skin

The SRDemo application uses a custom skin created just for that application, as shown
in Figure 22–4.

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 22-5

Figure 22–4 The SRList Page Using the Custom SRDemo Skin

In addition to using a CSS file to determine the styles, skins also use a resource bundle
to determine the text within a component. For example, the word "Select" in the
selection column shown in Figure 22–4 is determined using the skin’s resource bundle.
All the included skins use the same resource bundle.

22.3.1 How to Use Skins
Custom skins extend the Simple skin. To create a custom skin, you declare selectors in
a style sheet that override the selectors in the Simple skin’s style sheet. Any selectors
that you choose not to override will continue to use the style as defined in the Simple
skin. Once you create your skin’s style sheet, you need to register it as a valid skin in
the application, and then configure the application to use the skin.

The selectors used by the simple skin are listed in the "Selectors for Skinning ADF
Faces Components" topic in JDeveloper’s online help. It is located in the Reference >
Oracle ADF Faces book. This document shows selectors broken down into three
sections: global selectors, button selectors, and component-level selectors. Global
selectors determine the style properties for multiple components. Examples include
the default font family and background colors. Button selectors are used to style all
buttons in the application.

Component selectors determine the styles for specific components or portions of a
component. Icon selectors denote where the icon can be found.

Within each section are the selectors that can be styled. There are three types of
selectors: standard selectors, selectors with pseudo elements, and selectors that use the
alias pseudo classes. Standard selectors are those that directly represent an element
that can have styles applied to it. For example af|body represents the af:body
component. You can set CSS styles, properties, and icons for this type of element.

Note: Button selectors style all buttons in the application. You cannot
define separate selectors for different buttons. For example, the
af:commandButton and af:goButton components will display the
same.

Using Skins to Change the Look and Feel

22-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Pseudo elements are used to denote a specific area of component that can have styles
applied. Pseudo elements are denoted by a double colon followed by the portion of the
component the selector represents. For example, af|column::cell-text provides
the styles and properties for the text in a cell of a column.

The alias pseudo class is used for a selector that sets styles for more than one
component or more than one portion of a component. For example, the
.AFMenuBarItem:alias selector defines skin properties that are shared by all
af:menuBar items. Any properties defined in this alias are included in the
af|menuBar::enabled and af|menuBar::selected style classes. If you change
the .AFMenuBarItem:alias style, you will affect the af|menuBar::enabled and
af|menuBar::selected selectors. You can also create your own pseudo classes for
inclusion in other selectors.

You can create multiple skins. For example, you might create one skin for the version
of an application for the web, and another for when the application runs on a PDA. Or
you can change the skin based on the locale set on the current user’s browser.
Additionally, you can configure a component, for example a selectOneChoice
component, to allow a user to switch between skins.

The text used in a skin is defined in a resource bundle. As with the selectors for the
Simple skin, you can override the text by creating a custom resource bundle and
declaring only the text you want to change. The keys for the text that you can override
are documented in the "Reference: Keys for Resource Bundle Used by Skins" topic of
the JDeveloper online help. Once you create your custom resource bundle, you register
it with the skin.

22.3.1.1 Creating a Custom Skin
You create a custom skin by extending the Simple skin and overriding the selectors.
You then need to register the skin with the application.

To create a custom skin:
1. Review your pages using the Simple skin to determine what you would like to

change. For procedures on changing the skin, see Section 22.3.1.2, "Configuring an
Application to Use a Skin".

2. In JDeveloper, create a CSS file:

a. Right-click the project that contains the code for the user interface and choose
New to open the New Gallery.

b. In the New Gallery, expand the Web Tier node and select HTML.

c. Double-click CSS File.

d. Complete the Create Cascading Style Sheet dialog. Click Help for help
regarding this dialog.

Note: ADF Faces components provide automatic translation. The
resource bundle used for the components’ skin is translated into 28
languages. If a user sets the browser to use the German (Germany)
language, any text contained within the components will
automatically display in German. For this reason, if you create a
resource bundle for a custom skin, you must also create localized
versions of that bundle for any other languages the application
supports. For more information about Internationalization, see
Section 22.4, "Internationalizing Your Application".

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 22-7

3. Refer to the "Selectors for Skinning ADF Faces Components" topic in JDeveloper’s
online help. It is located in the Reference > Oracle ADF Faces book. Add any
selectors that you wish to override to your CSS file and set the properties as
needed. You can set any properties as specified by the CSS specification.

If you are overriding a selector for an icon, use a content relative path for the URL
to the icon image (that is, start with a leading forward slash), and do not use
quotes. Also, you must include the width and the height for the icon.
Example 22–2 shows a selector for an icon.

Example 22–2 Selector for an Icon

.AFButtonDisabledStartIcon:alias
 {
 content:url(/skins/srdemo/images/btnDisabledStart.gif);
 width:7px; height:18px
 }

Icons and buttons can both use the rtl pseudo class. This defines an icon or
button for use when the application displays in right-to-left mode. Example 22–3
shows the rtl psuedo class used for an icon.

Example 22–3 Icon Selector Using the rtl Psuedo Class

.AFButtonDisabledStartIcon:alias:rtl
 {
 content:url(/skins/srdemo/images/btnDisabledStartRtl.gif);
 width:7px; height:18px
 }

4. You can create your own alias classes that you can then include on other selectors.
To do so:

a. Create a selector class for the alias. For example, the SRDemo skin has an alias
used to set the color of a link when a cursor hovers over it:

.MyLinkHoverColor:alias {color: #CC6633;}

b. To include the alias in another selector, add a pseudo element to an existing
selector to create a new selector, and then reference the alias using the
-ora-rule-ref:selector property.

For example, the SRDemo skin created a new selector for the
af|menuBar::enabled-link selector in order to style the hover color, and
then referenced the custom alias, as shown in Example 22–4.

Example 22–4 Referencing a Custom Alias in a New Selector

af|menuBar::enabled-link:hover
{
 -ora-rule-ref:selector(".MyLinkHoverColor:alias");
}

5. Save the file to a directory.

Tip: Overriding an alias will likely change the appearance of more
than one component. Be sure to carefully read the reference document
so that you understand what you may be changing.

Using Skins to Change the Look and Feel

22-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Once you’ve created the CSS, you need to register the skin and then configure the
application to use the skin.

To create a custom bundle for the skin:
1. Review the "Reference: Keys for Resource Bundle Used by Skins" topic of the

JDeveloper online help and your pages using the Simple skin to determine what
text you would like to change. For procedures on changing the skin to the Simple
skin, see Section 22.3.1.2, "Configuring an Application to Use a Skin".

2. In JDeveloper, create a resource bundle. It must be of type
java.util.ResourceBundle. For detailed instructions, see Section 22.4.1,
"How to Internationalize an Application".

3. Add any keys to your bundle that you wish to override and set the text as needed.

To register a custom skin and bundle:
1. If one does not yet exist, create an adf-faces-skins.xml file (the file is located

in the <view_project_name>/WEB-INF directory). This file will be used to
declare each skin accessible to the application.

a. Right-click your view project and choose New to open the New Gallery.

The New Gallery launches. The file launches in the Source editor.

b. In the Categories tree on the left, select XML. If XML is not displayed, use the
Filter By dropdown list at the top to select All Technologies.

c. In the Items list, select XML Document and click OK.

d. Name the file adf-faces-skins.xml, place it in the <view_project_
name>/WEB-INF directory, and click OK.

e. Replace the generated code with the code shown in Example 22–5.

Example 22–5 Default Code for an adf-faces-skins.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://xmlns.oracle.com/adf/view/faces/skin">

 <skin>

 </skin>

</skins>

2. Register the new skin by defining the following for the skin element:

■ <id>: This value will be used if you want to reference your skin in an EL
expression. For example, if you want to have different skins for different
locales, you can create an EL expression that will select the correct skin based
on its ID.

■ <family>: You configure an application to use a particular family of skins.
Doing so allows you to group skins together for an application, based on the
render kit used.

Tip: If you internationalize your application, you must also create
localized versions of this resource bundle. For more information and
procedures, see Section 22.4.1, "How to Internationalize an
Application".

Using Skins to Change the Look and Feel

Changing the Appearance of Your Application 22-9

■ <render-kit-id>: This value determines which render kit to use for the
skin. You can enter one of the following:

– oracle.adf.desktop: The skin will automatically be used when the
application is rendered on a desktop.

– oracle.adf.pda: The skin will be used when rendered on a PDA.

■ <style-sheet-name>: This is the fully qualified path to the custom CSS file.

■ <bundle-name>: The resource bundle created for the skin. If you did not
create a custom bundle, then you do not need to declare this element.

Example 22–6 shows the entry in the adf-faces-skins.xml file for the
SRDemo skin.

Example 22–6 Skins Entry for the SRDemo Skin in the adf-faces-skins.xml File

<skin>
 <id>
 srdemo.desktop
 </id>
 <family>
 srdemo
 </family>
 <render-kit-id>
 oracle.adf.desktop
 </render-kit-id>
 <style-sheet-name>
 skins/srdemo/srdemo.css
 </style-sheet-name>
</skin>

22.3.1.2 Configuring an Application to Use a Skin
You set an element in the adf-faces-config.xml file that determines which skin
to use, and if necessary, under what conditions.

To configure an application to use a skin:
1. Open the adf-faces-config.xml file.

2. Replace the <skin-family> value with the family name for the skin you wish to
use. Example 22–7 shows the configuration to use the srdemo skin family.

Example 22–7 Configuration to Use a Skin Family

<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">
 <skin-family>srdemo</skin-family>
</adf-faces-config>

3. To conditionally set the value, enter an EL expression that can be evaluated to
determine the skin to display.

Note: If you have created localized versions of the resource bundle,
you only need to register the base resource bundle.

Internationalizing Your Application

22-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, if you want to use the German skin when the user’s browser is set to
the German locale, and use the English skin otherwise, you would have the
following entry in the adf-faces-config.xml file:

<skin-family>#{facesContext.viewRoot.locale.language=='de' ? 'german' :
'english'}</skin-family>

4. To configure a component to dynamically change the skin, you must first
configure the component on the JSF page to set a value in scope that can later be
evaluated by the configuration file. You then configure the skin family in the
adf-faces-config file to be dynamically set by that value.

1. Open the JSF page that contains the component that will be used to set the
skin family.

2. Configure the component to set the skin family in sessionScope.
Example 22–8 shows a selectOneChoice component that takes its selected
value, and sets it as the value for the skinFamily attribute in
sessionScope.

Example 22–8 Using a Component to Set the Skin Family

<af:selectOneChoice label="Select Skin"
 value="#{sessionScope.skinFamily}"
 onchange="form.submit();">
 <af:selectItem label="Simple" value="simple"/>
 <af:selectItem label="Minimal" value="minimal"/>
 <af:selectItem label="Oracle" value="oracle"/>
 <af:selectItem label="SRDemo" value="srdemo"/>
</af:selectOneChoice>

The onchange event handler will perform a form POST when ever a skin is
selected in the selectOneChoice component. Alternative you can add a
command button to the page that will re-submit the page. Every time there is a
POST the EL expression will be evaluated, and if there is a new value redraw
the page with the new skin.

3. In the adf-faces-config file, use an EL expression to dynamically evaluate
the skin family:

<skin-family>#{sessionScope.skinFamily}</skin-family>

22.4 Internationalizing Your Application
When your application will be viewed by users in more than one country, you can
configure your application to use different locales so that it displays the correct
language for the language setting of a user’s browser. For example, if you know your
application will be viewed in Italy, you can localize your application so that when a
user’s browser is set to use the Italian language, text strings in the application will
appear in Italian.

ADF Faces components provide automatic translation. The resource bundle used for
the components’ skin (which determines look and feel, as well as the text within the
component) is translated into 28 languages. If a user sets the browser to use the Italy
(Italian) language, any text contained within the components will automatically
display in Italian. For more information on skins and this resource bundle, see
Section 22.3.1, "How to Use Skins". For a complete list of all text included in ADF Faces
components, see the "Reference: Keys for Resource Bundle Used by Skins" topic of the
JDeveloper online help.

Internationalizing Your Application

Changing the Appearance of Your Application 22-11

For any text you add to the application, you need to provide a resource bundle that
holds the actual text, and you need to load that bundle into the page using the JSF
loadBundle tag. Then, instead of directly entering the text on the JSF page or
entering the text as a value for the Text attribute of a component, you bind that
attribute to a key in the resource bundle. You then create a version of the resource
bundle for each locale.

In the SRDemo application, all attribute labels and hints are implemented using
control hints on entity objects and view objects instead of using resource bundles (for
more information, see Section 5.4, "Defining Attribute Control Hints" and Section 6.5,
"Defining Attribute Control Hints"). JSF resource bundles are used for all other UI
strings, such as command buttons.

Figure 22–5 shows the SRList page from the SRDemo application in a browser set to
use the English (United States) language.

Figure 22–5 The SRList Page in English

Although the title of this page is "My Service Requests," instead of having "My Service
Requests" as the value for the title attribute of the PanelPage component, the
value is bound to a key in the UIResources resource bundle. The UIResources
resource bundle is loaded into the page using the loadBundle tag, as shown in
Example 22–9. The resource bundle is given a variable name (in this case res) that can
then be used in EL expressions. The title attribute of the panelPage component is
then bound to the srlist.pageTitle key in that resource bundle.

Example 22–9 Resource Bundles Used in a JSF Page

<f:view>
 <f:loadBundle basename="oracle.srdemo.view.resources.UIResources"
 var="res"/>
 <af:document title="#{res['srdemo.browserTitle']}"
 initialFocusId="viewButton">
 <af:form>
 <af:panelPage title="#{res['srlist.pageTitle']}">

Note: Any text retrieved from the database is not translated. This
document covers how to localize static text, not text that is stored in
the database.

Internationalizing Your Application

22-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The UIResources resource bundle has an entry in the English language for all static
text displayed on each page in the SRDemo application, as well as text for messages
and global text, such as generic labels. Example 22–10 shows the keys for the SRList
page.

Example 22–10 Resource Bundle Keys for the SRList Page Displayed in English

#SRList Screen
srlist.pageTitle=My Service Requests
srlist.menubar.openLink=Open Requests
srlist.menubar.pendingLink=Requests Awaiting Customer
srlist.menubar.closedLink=Closed Requests
srlist.menubar.allRequests=All Requests
srlist.menubar.newLink=Create New Service Request
srlist.selectAnd=Select and
srlist.buttonbar.view=View
srlist.buttonbar.edit=Edit

Figure 22–6 also shows the SRList page, but with the browser set to use the Italian
(Italy) locale.

Figure 22–6 The SRList Page in Italian

Example 22–11 shows the resource bundle version for the Italian (Italy) language,
UIResources_it. Note that there is not an entry for the selection facet’s title, yet it
was translated from "Select" to "Seleziona" automatically. That is because this text is
part of the ADF Faces table component’s selection facet.

Example 22–11 Resource Bundle Keys for the SRList Page Displayed in Italian

#SRList Screen
srlist.pageTitle=Miei Ticket
srlist.menubar.openLink=Ticket Aperti
srlist.menubar.pendingLink=Ticket in Attesa del Cliente
srlist.menubar.closedLink=Ticket Risolti
srlist.menubar.allRequests=Tutti i Ticket
srlist.menubar.newLink=Creare Nuovo Ticket
srlist.selectAnd=Seleziona e
srlist.buttonbar.view=Vedere Dettagli
srlist.buttonbar.edit=Aggiorna

Internationalizing Your Application

Changing the Appearance of Your Application 22-13

The resource bundles for the application can be either Java classes or property files.
The abstract class ResourceBundle has two subclasses:
PropertyResourceBundle and ListResourceBundle. A
PropertyResourceBundle is stored in a property file, which is a plain-text file
containing translatable text. Property files can contain values only for String objects.
If you need to store other types of objects, you must use a ListResourceBundle
instead. The contents of a property file must be encoded as ISO 8859-1. Any characters
not in that character set must be stored as escaped Unicode.

To add support for an additional locale, you simply replace the values for the keys
with localized values and save the property file appending a language code
(mandatory), and an optional country code and variant as identifiers to the name, for
example, UIResources_it.properties. The SRDemo application uses property
files.

The ListResourceBundle class manages resources in a name, value array. Each
ListResourceBundle class is contained within a Java class file. You can store any
locale-specific object in a ListResourceBundle class. To add support for an
additional locale, you subclass the base class, save it to a file with an locale / language
extension, translate it, and compile it into a class file.

The ResourceBundle class is flexible. If you first put your locale-specific String
objects in a PropertyResourceBundle file, you can still move them to a
ListResourceBundle class later. There is no impact on your code, since any call to
find your key will look in both the ListResourceBundle class as well as the
PropertyResourceBundle file.

The precedence order is class before properties. So if a key exists for the same language
in both a class file and in a property file, the value in the class file will be the value
presented to the user. Additionally, the search algorithm for determining which bundle
to load is as follows:

1. (baseclass)+(specific language)+(specific country)+(specific variant)

2. (baseclass)+(specific language)+(specific country)

3. (baseclass)+(specific language)

4. (baseclass)+(default language)+(default country)+(default variant)

5. (baseclass)+(default language)+(default country)

6. (baseclass)+(default language)

For example, if a user’s browser is set to the Italian (Italy) locale and the default locale
of the application is US English, the application will attempt to find the closest match,
looking in the following order:

1. it_IT

2. it

3. en_US

Note: Property files must contain characters in the IS0 8859-1
character set. If you need to use other characters, use a
ListResourceBundle class instead.

All non-8859-1 character sets must be converted to escaped UTF-8
characters, or they will not display correctly.

Internationalizing Your Application

22-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. en

5. The base class bundle

22.4.1 How to Internationalize an Application
To internationalize your application, you need to do the following:

1. Create a base resource bundle that contains all the text strings that are not part of
the components themselves. This bundle should be in the default language of the
application.

2. Use the base resource bundle on the JSF pages by loading the bundle and then
binding component attributes to keys in the bundle.

3. Create a localized resource bundle for each locale supported by the application.

4. Register the locales with the application.

5. Register the bundle used for application messages.

Tip: The getBundle method used to load the bundle looks for the
default locale classes before it returns the base class bundle. If it fails
to find a match, it throws a MissingResourceException error. A
base class with no suffixes should always exist in order to avoid
throwing this exception

Tip: These procedures will allow the application to display the
correct language based on the browser settings of the user. You may
also want to create your application in a way that allows the user to
manually set the locale they wish to use. The current locale is stored in
the viewRoot of FacesContext.

Tips:

■ Instead of creating one resource bundle for the entire application,
you can create multiple resource bundles. For example, in a JSF
application, you must register the resource bundle that holds error
messages with the application in the faces-config.xml file.
For this reason, you may want to create a separate bundle for
messages.

■ Create your resource bundle as a Java class instead of a property
file if you need to include values for objects other than Strings, or
if you need slightly enhanced performance.

■ The getBundle method used to load the bundle looks for the
default locale classes before it returns the base class bundle.
However if it fails to find a match, it throws a
MissingResourceException error. A base class with no
suffixes should always exist in order to avoid throwing this
exception

Note: If you use a custom skin and have created a custom resource
bundle for the skin, you must also create localized versions of that
resource bundle. Similarly if your application uses control hints to set
any text, you must create localized versions of the generated resource
bundles for that text.

Internationalizing Your Application

Changing the Appearance of Your Application 22-15

 Detailed procedures for each step follow.

To create a resource bundle as a property file:
1. In JDeveloper, create a new simple file.

1. In the Application Navigator, right-click where you want the file to be placed
and choose New to open the New Gallery.

2. In the Categories tree, select Simple Files, and in the Items list, select File.

3. Enter a name for the file, using the extension.properties.

2. Create a key and value for each string of static text for this bundle. The key is a
unique identifier for the string. The value is the string of text in the language for
the bundle. If you are creating a localized version of the base resource bundle, any
key not found in this version will inherit the values from the base class.

For example the key and value for the title of the SRList page is:

srlist.pageTitle=My Service Requests

To create a resource bundle as a Java Class:
1. In JDeveloper, create a new simple Java class:

■ In the Application Navigator, right-click where you want the file to be placed
and choose New to open the New Gallery.

Note: If you are creating a localized version of the base resource
bundle, save the file to the same directory as the base file.

Note: If you are creating a localized version of a base resource
bundle, you must append the ISO 639 lowercase language code to the
name of the file. For example, the Italian version of the UIResources
bundle is UIResources_it.properties. You can add the ISO 3166
uppercase country code (for example it_CH, for Switzerland) if one
language is used by more than one country. You can also add an
optional non standard variant (for example, to provide platform or
region information).

If you are creating the base resource bundle, no codes should be
appended.

Note: All non-ASCII characters must be either UNICODE escaped or
the encoding must be explicitly specified when compiling, for
example:

javac -encoding ISO8859_5 UIResources_it.java

Note: All non-8859-1 character sets must be converted to escaped
UTF-8 characters, or they will not display correctly.

Internationalizing Your Application

22-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ In the Categories tree, select Simple Files, and in the Items list, select Java
Class.

■ Enter a name and package for the class. The class must extend
java.util.ListResourceBundle.

2. Implement the getContents() method, which simply returns an array of
key-value pairs. Create the array of keys for the bundle with the appropriate
values. Example 22–12 shows a sample base resource bundle java class.

Example 22–12 Base Resource Bundle Java Class

package sample;

import java.util.ListResourceBundle;

public class MyResources extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 {"button_Search", "Search"},
 {"button_Reset", "Reset"},
 };
}

To use a base resource bundle on a page:
You need to load only the base resource bundle on the page. The application will
automatically use the correct version based on the user’s locale setting in their
browser.

1. Set your page encoding and response encoding to be a superset of all supported
languages. If no encoding is set, the page encoding defaults to the value of the
response encoding set using the contentType attribute of the page directive.
Example 22–13 shows the encoding for the SRList page.

Note: If you are creating a localized version of the base resource
bundle, this must reside in the same directory as the base file.

Note: If you are creating a localized version of a base resource
bundle, you must append the ISO 639 lowercase language code to the
name of the class. For example, the Italian version of the
UIResources bundle might be UIResources_it.java. You can
add the ISO 3166 uppercase country code (for example it_CH, for
Switzerland) if one language is used by more than one country. You
can also add an optional non standard variant (for example, to
provide platform or region information).

If you are creating the base resource bundle, no codes should be
appended.

Note: Keys must be Strings. If you are creating a localized version
of the base resource bundle, any key not found in this version will
inherit the values from the base class.

Internationalizing Your Application

Changing the Appearance of Your Application 22-17

Example 22–13 Page and Response Encoding

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces"
 xmlns:afc="http://xmlns.oracle.com/adf/faces/webcache">
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>

2. Load the base resource bundle onto the page using the loadBundle tag, as shown
in Example 22–14. The basename attribute specifies the fully qualified name of
the resource bundle to be loaded. This resource bundle should be the one created
for the default language of the application. The var attribute specifies the name of
a request scope attribute under which the resource bundle will be exposed as a
Map, and will be used in the EL expressions that bind component attributes to a
key in the resource bundle.

Example 22–14 The loadBundle Tag

<f:loadBundle basename="oracle.srdemo.view.resources.UIResources"
 var="res"/>

3. Bind all attributes that represent strings of static text displayed on the page to the
appropriate key in the resource bundle, using the variable created in the previous
step. Example 22–15 shows the code for the View button on the SRList page.

Example 22–15 Binding to a Resource Bundle

<af:commandButton text="#{res['srlist.buttonbar.view']}"
 . . . />

To register locales:
1. Open the faces-config.xml file and select the Overview tab in the editor

window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

2. In the JSF Configuration Editor, select Application.

3. If not already displayed, click the Local Config’s triangle to display the Default
Locale and Supported Locales fields.

4. For Default Locale, enter the ISO locale identifier for the default language to be
used by the application. This identifier should represent the language used in the
base resource bundle.

Tip: By default JDeveloper sets the page encoding to
windows-1252. To set the default to a different page encoding:

1. From the menu, choose Tools > Preferences.

2. In the left-hand pane, select Environment if it is not already selected.

3. Set Encoding to the preferred default.

Internationalizing Your Application

22-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5. Add additional supported locales by clicking New. Click Help or press F1 for
additional help in registering the locales.

To register the message bundle:
1. Open the faces-config.xml file and click on the Overview tab in the editor

window. The faces-config.xml file is located in the <View_
Project>/WEB-INF directory.

2. In the window, select Application.

3. For Message Bundle, enter the fully qualified name of the base bundle that
contains messages to be used by the application.

22.4.2 How to Configure Optional Localization Properties for ADF Faces
Along with providing text translation, ADF Faces also automatically provides other
types of translation, such as text direction and currency codes. The application will
automatically display appropriately based on the user’s selected locale. However, you
can also manually set the following localization settings for an application in the
adf-faces-config.xml file.

■ <currency-code>: Defines the default ISO 4217 currency code used by
oracle.adf.view.faces.converter.NumberConverter to format
currency fields that do not specify a currency code in their own converter.

■ <number-grouping-separator>: Defines the separator used for groups of
numbers (for example, a comma). ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses
and formats.

■ <decimal-separator>: Defines the separator (for example, a period or a
comma) used for the decimal point. ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses
and formats.

■ <right-to-left>: ADF Faces automatically derives the rendering direction
from the current locale, but you can explicitly set the default page rendering
direction by using the values true or false.

■ <time-zone>: ADF Faces automatically uses the time zone used by the client
browser. This value is used by
oracle.adf.view.faces.converter.DateTimeConverter while it
converts Strings to Date.

To configure optional localization properties:
1. Open the adf-faces-config.xml file. The file is located in the <View_

Project>/WEB-INF directory.

2. From the Component Palette, drag the element you wish to add to the file into the
Structure window. An empty element is added to the page.

3. Enter the desired value.

Example 22–16 shows a sample adf-faces-config.xml file with all the optional
localization elements set.

Internationalizing Your Application

Changing the Appearance of Your Application 22-19

Example 22–16 Configuring Currency Code and Separators for Numbers and Decimal
Point

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

<!-- Set the time zone to Pacific Daylight Savings Time -->
<time-zone>PDT</time-zone>

Internationalizing Your Application

22-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Optimizing Application Performance with Caching 23-1

23
Optimizing Application Performance with

Caching

This chapter describes how to add caching support to existing application pages.

This chapter explains the following:

■ About Caching

■ Using ADF Faces Cache to Cache Content

23.1 About Caching
For most Web-based applications, a large percentage of requests are made for identical
or similar content. These repeated requests for both dynamic and static contents place
a significant strain on application infrastructure.

Caching stores all or parts of a web page in memory for use in future responses. It
significantly reduces response time to client requests by reusing cached content for
future requests without executing the code that created it.

Oracle ADF Faces Cache provides a simple way for you to cache portions of a
response generated by a request. You simply wrap the fragment content you want to
cache with a beginning <afc:cache> and ending </afc:cache> tag. By caching
both dynamic and static content, you can increase throughput and shorten response
times.

You can add the <afc:cache> tag to cache the following fragment types:

■ Page fragment—You make the <afc:cache> tag a direct child of the <f:view>
tag, and enclose the page's content within it.

■ Fragment within a page—You enclose only the fragment portion within the
<afc:cache> tag. Caching fragments is useful when sections of a page must be
created for each request.

■ Included fragment that exists in its own subpage—You make the <afc:cache>
tag a direct child of the <f:subview> tag, and enclose the fragment's content
within it.

You can use the ADF Faces Cache library with any application developed with
JavaServer Faces (JSF).

Using ADF Faces Cache to Cache Content

23-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

23.2 Using ADF Faces Cache to Cache Content
Consider using the <afc:cache> tag for the following types of content:

■ Resource Intensive

If rendering a particular JSF or ADF component requires resource-intensive
operations like making database or network queries, caching can help to reduce
the rendering cost by retrieving content from the cache as opposed to regenerating
it.

■ Shareable

The cache can serve the same object to multiple users or sessions.

The degree of sharing can be application wide or limited by certain properties,
such as a bean property, user cookie, or request header.

■ Changes infrequently

Infrequently changing content is ideal to cache, because the cache can serve the
content for a long period of time. The ADF Faces Cache expiration and
invalidation mechanisms help to invalidate content in the cache. Use expiration
when you can accurately predict when the source of the content will change; use
invalidation for content that changes from a request.

Because frequently changing content requires constant cache updates, this content
is not ideal to cache.

Several of the pages in the SRDemo application use the Cache component to cache
fragments. By analyzing how caching support was added to SRCreate.jspx and
SRFaq.jspx, you can better understand how to cache fragments in your applications.

Figure 23–1 shows the SRCreate.jspx page. It contains these cacheable fragments:

■ The first fragment contains content at the start of the page, including the text and
link to the Frequently Asked Questions, the prompt to enter a basic description of
your problem, and the objectSeparator component.

This content is generic to all users.

■ The second fragment contains the tabs, including the New Service Request tab.

This content varies by the user. The content is valid across all sessions for the same
user.

■ The third fragment contains the Logout and Help menu item at the top of the
page.

This content is generic to all users.

Because these fragments are shareable by a given user across sessions or across all
users, they are good caching candidates.

Using ADF Faces Cache to Cache Content

Optimizing Application Performance with Caching 23-3

Figure 23–1 Create New Service Request Page in the SRDemo Application

Example 23–1 shows the code for the first fragment, the start of the page content.

Example 23–1 Start Page Content Fragment

<!--Page Content Start-->
<afc:cache duration="864000">
 <af:objectSpacer width="10" height="10"/>
 <af:panelHorizontal>
 <f:facet name="separator">
 <af:objectSpacer width="4" height="10"/>
 </f:facet>
 <af:outputText value="#{res['srcreate.faqText']}"/>
 <af:commandLink text=" #{res['srcreate.faqLink']}"
 action="dialog:FAQ" useWindow="true"
 immediate="true" partialSubmit="true"/>
 </af:panelHorizontal>
 <af:objectSpacer width="10" height="10"/>
 <af:outputFormatted value="#{res['srcreate.explainText']}"/>
 <af:objectSeparator/>
</afc:cache>

The attributes for the <afc:cache> tag specify the following:

■ The duration attributes specifies 86,400 seconds before the fragment expires.
When a fragment expires and client requests it, it is removed from the cache and
then refreshed with new content.

Example 23–2 shows the code for the second fragment, the tabs across the top of the
page.

Using ADF Faces Cache to Cache Content

23-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 23–2 Menu Tabs Fragment

<f:facet name="menu1">
 <afc:cache duration="864000"
 varyBy="request.Session"
 <af:menuTabs var="menuTab" value="#{menuModel.model}">
 <f:facet name="nodeStamp">
 <af:commandMenuItem text="#{menuTab.label}"
 action="#{menuTab.getOutcome}"
 rendered="#{menuTab.shown and
menuTab.type=='default'}"
 disabled="#{menuTab.readOnly}"/>
 </f:facet>
 </af:menuTabs>
 </afc:cache>
</f:facet>

The attributes for the <afc:cache> tag specify the following:

■ The duration attribute specifies 86,400 seconds before the fragment expires.

■ The varyBy attribute specifies which version of the fragment to display based on
the session scope. This attribute specifies to cache a version of the fragment for the
entire session. The content is valid across one session regardless of the user.

Example 23–3 shows the code for the last fragment, which displays the Logout and
Help menu items as a global menu fragment.

Example 23–3 Logout and Help Menu Fragment

<f:facet name="menuGlobal">
 <f:subview id="globalMenufragment">
 <afc:cache duration="86400">
 <jsp:include page="/app/globalMenu.jspx">
 </afc:cache>
 </f:subview>
</f:facet>

Figure 23–2 shows the SRFaq.jspx page. Its content is shareable among all users.

Using ADF Faces Cache to Cache Content

Optimizing Application Performance with Caching 23-5

Figure 23–2 Frequently Asked Questions Dialog in the SRDemo Application

Example 23–4 shows the code for this page fragment.

Example 23–4 FAQ Fragment

<f:view>
 <afc:cache duration="86400"
 searchKeys="FAQ"
...FAQ Page Content...
 </afc:cache>
</f:view>

The attributes for the <afc:cache> tag specify the following:

■ The duration attribute specifies 86,400 seconds before the fragment expires.

■ The searchKeys attribute assigns this page fragment a search string of FAQ. You
can invalidate this fragment using this search key.

You use search keys to organize web pages and fragments into different groups.
You can assign all the pages in a particular group with the same search key. For
example, you can assign the search key new_request to all the pages that have
something to do with creating a new service requests. To invalidate a group of
objects, you submit an invalidation request that specifies the search key associated
with that particular group. For example, if the invalidation request specifies the
search key new_request, all the pages assigned the new_request search key
will be invalidated. In the SRDemo application, the SRFaq.jspx page is the only
page assigned a search key.

When objects are marked as invalid and a client requests them, they are removed
and then refreshed with new content.

Using ADF Faces Cache to Cache Content

23-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

23.2.1 How to Add Support for ADF Faces Cache
To use the Cache component, you add the ADF Faces Cache library to an application’s
project and apply the library to the specific JSP page.

To add the ADF Faces Cache library:
1. In the Application Navigator, select the project that you want to use the Cache

component.

2. From the context menu, choose Project Properties.

The Project Properties dialog opens.

3. Select the Libraries node.

4. On the Libraries page, click Add Library.

5. Locate the ADF Faces Cache library in the selection tree and click OK.

6. On the Libraries page, click OK.

7. For each JSP document or page, you plan to apply the <afc:cache> tag, add the
following library syntax to the <jsp:root> tag:

xmlns:afc="http://xmlns.oracle.com/adf/faces/webcache"

You can now insert the Cache component from the Component Palette or use
Code Insight to insert the <afc:cache> tag.

23.2.2 What Happens When You Cache Fragments
When you run an application containing the <afc:cache> tag, the content is not
cached until there is an initial browser request for it. After the content is cached, the
content is served from the cache. You can see when content is inserted into the cache
and how many cache hits and misses result from fragment requests using a
combination of the following tools:

■ Logging

■ AFC Statistics Servlet

■ Visual Diagnostics

23.2.2.1 Logging
ADF Faces Cache leverages the Java Logging API (java.util.logging.Logger) to log
events and error messages. These messages show the sequence of how objects are
inserted and served from the cache.

Depending on the logging configuration specified in the j2ee-logging.xml file,
logging information can display in the Log Window of JDeveloper and write to the
log.xml file. The j2ee-logging.xml file specifies the directory path information
for log.xml.

Example 23–5 shows log excerpts in which fragment SRCreate.jspx is initially
requested and found not to be in the cache (cache miss) and inserted into the cache
(insert). SRCreate.jspx is requested again, and served from the cache (cache
hit).

Using ADF Faces Cache to Cache Content

Optimizing Application Performance with Caching 23-7

Example 23–5 Log Sample

fragment is SRCreate.jspx:_id13
fragment (SRCreate.jspx:_id13) fetch: cache miss
fragment (SRCreate.jspx:_id13) insert: cached for 86400 secs
...
fragment is SRCreate.jspx:_id19
fragment (SRCreate.jspx:_id19) fetch: cache hit
...

23.2.2.2 AFC Statistics Servlet
The AFC Statistics servlet, shown in Figure 23–3, displays the following cache
statistics. These statistics can help to provide an overall picture of cache throughput:

■ Number of objects in cache–The number of objects stored in the cache.

■ Number of cache hits–The number of requests served by objects in the cache.

■ Number of cache misses–The number of cacheable requests that were not served
by the cache. This number represents initial requests and requests for invalidated
or expired objects that have been refreshed.

■ Number of invalidation requests–The number of invalidation requests serviced
by the cache.

■ Number of documents invalidated–The total number of objects invalidated by the
cache.

The Number of invalidation requests and the Number of documents invalidated
may not be the same. This difference can occur because one search key may apply
to more than one object.

The Click here to Reset Stats link, shown in Figure 23–3, resets these statistics, except
for Number of objects in cache.

Figure 23–3 AFC Statistics Servlet

See Also: Section A.8 for further information about the
j2ee-logging.xml file

Using ADF Faces Cache to Cache Content

23-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To enable the servlet:
1. Create the following entry in the web.xml file in the /WEB-INF directory of the

application:

<servlet>
 <servlet-name>AFCStatsServlet</servlet-name>
 <servlet-class>oracle.webcache.adf.servlet.AFCStatsServlet</servlet-class>
</servlet>

2. Point your browser to the following URL:

http://application_host:application_
port/application-context-root/servlet/AFCStatsServlet

23.2.2.3 Visual Diagnostics
The visual diagnostics feature enables you to visually display whether fragments are
cache hits or cache misses. This feature demarcates fragment output with the HTML
 tag, using a class appropriate for its cache hit or cache miss status. By setting a
distinct class style, you can visually determine whether fragments are stored in the
cache.

While the SRDemo application does not use the visual diagnostics feature, you may
find it useful for testing your applications.

23.2.3 What You May Need to Know
When you use AFC Statistics servlet, you may encounter the following problems:

■ HTTP 404 Page Not Found error code

If you receive this error when accessing the servlet, it is most likely the result of a
configuration issue.

To resolve this problem, ensure the following lines are present in the web.xml file:

<servlet>
 <servlet-name>AFCStatsServlet</servlet-name>
 <servlet-class>oracle.webcache.adf.servlet.AFCStatsServlet</servlet-class>
</servlet>

■ Cache instance is not running error

This error occurs because the servlet has not started to monitor the cache. The
servlet only starts to monitor the cache after the first object has been inserted into
the cache and the cache instance is created.

To workaround this error, select Click here to Reset Stats.

See Also: Topic "Viewing Cache Performance Statistics" in the
JDeveloper online help for further information about the AFC
Statistics servlet

See Also: Topic "Using Visual Diagnostics" in the JDeveloper online
help for further information

Testing and Debugging Web Applications 24-1

24
Testing and Debugging Web Applications

This chapter describes the process of debugging your user interface project. It also
supplies information about methods of the Oracle ADF Model API, which you can use
to set breakpoints for debugging. Finally, it explains how to write and run regression
tests for your ADF Business Components-based business services.

This chapter includes the following sections:

■ Section 24.1, "Getting Started with Oracle ADF Model Debugging"

■ Section 24.2, "Correcting Simple Oracle ADF Compilation Errors"

■ Section 24.3, "Correcting Simple Oracle ADF Runtime Errors"

■ Section 24.4, "Understanding a Typical Oracle ADF Model Debugging Session"

■ Section 24.5, "Setting Up Oracle ADF Source Code for Debugging"

■ Section 24.5, "Debugging the Oracle ADF Model Layer"

■ Section 24.6, "Tracing EL Expressions"

■ Section 24.8, "Regression Testing an Application Module With JUnit"

24.1 Getting Started with Oracle ADF Model Debugging
Like any debugging task, debugging the web application’s interaction with Oracle
ADF is a process of isolating specific contributing factors. However, in the case of web
applications, generally, this process does not involve compiling Java source code. Your
web pages contain no Java source code, as such, to compile. In fact, you may not
realize that a problem exists until you run and attempt to use the application. For
example, these failures are only visible at runtime:

■ Page not found servlet error

■ Page is found but the components display without data

■ Page fails to display data after executing a method call or built-in operation (like
Next or Previous)

■ Page displays but a method call or built-in operation fails to execute at all

■ Page displays but unexpected validation errors occur

The failure to display data or to execute a method call arises from the interaction
between the web page’s components and the Oracle ADF Model layer. When a
runtime failure is observed during ADF lifecycle processing, the sequence of preparing
the model, updating the values, invoking the actions, and, finally, rendering the data
failed to complete.

Correcting Simple Oracle ADF Compilation Errors

24-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Fortunately, most failures in the web application’s interaction with Oracle ADF result
from simple and easy-to-fix errors in the declarative information that the application
defines or in the EL expressions that access the runtime objects of the page’s Oracle
ADF binding container.

Therefore, in your Oracle ADF databound application, you should examine the
declarative information and EL expressions as likely contributing factors when
runtime failures are observed. Read the following sections to understand editing the
declarative files:

■ Section 24.2, "Correcting Simple Oracle ADF Compilation Errors"

■ Section 24.3, "Correcting Simple Oracle ADF Runtime Errors"

The most useful diagnostic tool (short of starting a full debugging session) that you
can use when running your application is the ADF Logger. You use this J2EE logging
mechanism in JDeveloper to capture runtime traces messages from the Oracle ADF
Model layer API. With ADF logging enabled, JDeveloper displays the application trace
in the Message Log window. The trace includes runtime messages that may help you
to quickly identify the origin of an application error. Read Section 24.4,
"Understanding a Typical Oracle ADF Model Debugging Session" to configure the
ADF Logger to display detailed trace messages.

As of June 28th, 2005, supported Oracle ADF customers can request Oracle ADF
source code from Oracle Worldwide Support. This can make debugging Oracle ADF
Business Components framework code a lot easier. Read Section 24.5, "Setting Up
Oracle ADF Source Code for Debugging" to understand how to configure JDeveloper
to use the Oracle ADF source code.

If the error cannot be easily identified, you can utilize the debugging tools in
JDeveloper to step through the execution of the application and the various phases of
the Oracle ADF page lifecycle. This process will help you to isolate exactly where the
error occurred. By using the debugging tools, you will be able to pause execution of
the application on specific methods in the Oracle ADF API, examine the data that the
Oracle ADF binding container has to work with, and compare it to what you expect
the data to be. Read Section 24.5, "Debugging the Oracle ADF Model Layer" to
understand debugging the Oracle ADF Model layer.

Occasionally, you may need help debugging EL expressions. While EL is not
well-supported with a large number of useful exceptions, you can enable JSF trace
messages to examine variable resolution. Read Section 24.6, "Tracing EL Expressions"
to work with JSF trace messages.

JDeveloper provides integration with JUnit for your ADF Business Components
application through a wizard that generate regression test cases. Read Section 24.8,
"Regression Testing an Application Module With JUnit" to understand how to write
test suites for your application.

24.2 Correcting Simple Oracle ADF Compilation Errors
When you create web pages and work with the ADF data controls to create the ADF
binding definitions in JDeveloper, the Oracle ADF declarative files you edit must
conform to the XML schema defined by Oracle ADF. When an XML syntax error
occurs, the JDeveloper XML compiler immediately displays the error in the Structure
window. Choose Structure from the JDeveloper View menu to open the Structure
window for any Oracle ADF file you edit in the XML editor.

Correcting Simple Oracle ADF Compilation Errors

Testing and Debugging Web Applications 24-3

Currently a limitation of the JDeveloper compiler is the ability to resolve EL
expressions. EL expressions in your web pages interact directly with various runtime
objects in the web environment, including the web page’s Oracle ADF binding
container. At present, errors in EL expressions can be observed only at runtime. Thus,
the presence of a single typing error in an object-access expression will not be detected
by the compiler, but will manifest at runtime as a failure to interact with the binding
container and a failure to display data in the page. For information about debugging
runtime errors, see Section 24.3, "Correcting Simple Oracle ADF Runtime Errors".

Example 24–1 illustrates simple compilation errors contained in the page definition
file: "fase" instead of "false" and "IsQueriable="false"/" instead of
"IsQueriable="false"/>" (missing a closing angle bracket).

Example 24–1 Sample Page Definition File with Two Errors

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.62" id="browseusersPageDef"
 Package="oracle.srdemo.view.pageDefs"
 EnableTokenValidation="fase"
 ...>
 <parameters/>
 <executables>
 <variableIterator id="variables">
 <variable Type="java.lang.String" Name="findUsersByName_name"
 IsQueriable="false"/

The Structure window for the above errors would display as shown in Figure 24–1.

Figure 24–1 Structure Window Displays XML Error

If you were to attempt to compile the application, the Compiler window would also
display similar errors, as shown in Figure 24–2.

Tip: The JDeveloper Expression Builder is a dialog that helps you
build EL expressions by providing lists of objects, managed beans,
and properties. It is particularly useful when creating or editing ADF
databound EL expressions because it provides a hierarchical list of
ADF binding objects and their valid properties from which you can
select the ones you want to use in an expression. Oracle recommends
using the Expression Builder to avoid introducing typing errors. For
details, see Section 12.6.2, "How to Use the Expression Builder".

Correcting Simple Oracle ADF Runtime Errors

24-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 24–2 Compiler Window Displays XML Compile Error

To correct schema validation errors, in either the Structure window or the Compiler
window, double-click the error to open the file. The file will open in the XML editor
with the responsible line highlighted for you to fix.

After you correct the error, the Structure window will immediately remove the error
from the window. Optionally, you may recompile the project using the make operation
to recompile the changed file and view the empty Compiler window.

24.3 Correcting Simple Oracle ADF Runtime Errors
Failures of the Oracle ADF Model layer cannot be detected by the JDeveloper
compiler, in part, because the page’s data-display and method-execution behavior
relies on the declarative Oracle ADF page definition files. The Oracle ADF Model layer
utilizes those declarative files at runtime to create the objects of the Oracle ADF
binding container.

To go beyond simple schema validation, you will want to routinely run and test your
web pages to ensure that one of the following conditions does not exist:

■ The project dependency between the data model project and the user interface
project becomes disabled.

By default, the dependency between projects is enabled whenever you create a
web page that accesses a data control in the data model project. However, if the
dependency is disabled and remains disabled when you attempt to run the
application, an internal servlet error will be generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
model.DataControls.dcx of type null not found

To correct the error, right-click the user interface project, choose Project Properties,
and select Dependencies in the dialog. Make sure that the
<ModelProjectName>.jpr option appears selected in the panel.

■ The DataBindings.cpx file location changed but the web.xml file still
references the original path for the file.

By default, JDeveloper adds the DataBindings.cpx file to the package for your
user interface project. If a change to the location of the file is made (for example,
due to refactoring the application), an internal servlet error will be generated at
runtime:

oracle.jbo.NoXMLFileException: JBO-26001: XML File not found
for the Container /oracle/<path>/DataBinding.cpx

To correct the error, open the web.xml file and edit the path that appears in the
<context-param> element CpxFileName.

Correcting Simple Oracle ADF Runtime Errors

Testing and Debugging Web Applications 24-5

■ Page definition files have been renamed but the DataBindings.cpx file still
references the original page definition filenames.

While JDeveloper does not permit these files to be renamed within the IDE, if a
page definition file is renamed outside of JDeveloper and the references in the
DataBindings.cpx file are not also updated, an internal servlet error will be
generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
oracle.<path>.pageDefs.<pagedefinitionName> of type Form
Binding Definition not found

To correct the error, open the DataBindings.cpx file and edit the page
definition filenames that appear in the <pageMap> and
<pageDefinitionUsages> elements.

■ The web page file (.jsp or.jspx) has been renamed but the
DataBindings.cpx file still references the original filename of the same web
page.

The page controller uses the page’s URL to determine the correct page definition
to use to create the ADF binding container for the web page. If the page’s name
from the URL does not match the <pageMap> element of the
DataBindings.cpx file, an internal servlet error will be generated at runtime:

javax.faces.el.PropertyNotFoundException: Error testing
property <propertyname>

To correct the error, open the DataBindings.cpx file and edit the web page
filenames that appear in the <pageMap> element.

■ Bindings have been renamed in the web page EL expressions but the page
definition file still references the original binding object names.

The web page may fail to display information that you expect to see. To correct the
error, compare the binding names in the page definition file and the EL expression
responsible for displaying the missing part of the page. Most likely the mismatch
will occur on a value binding, with the consequence that the component will
appear but without data. Should the mismatch occur on an iterator binding name,
the error may be more subtle and may require deep debugging to isolate the
source of the mismatch.

■ Bindings in the page definition file have been renamed or deleted and the EL
expressions still reference the original binding object names.

Because the default error-handling mechanism will catch some runtime errors
from the ADF binding container, this type of error can be very easy to find. For
example, if an iterator binding (named findUsersByNameIter) was renamed in
the page definition file, yet the page still refers to the original name, this error will
display in the web page:

JBO-25005: Object name findUsersByNameIter for type Iterator
Binding Definition is invalid

To correct the error, right-click the name in the web page and choose Go to Page
Definition to locate the correct binding name to use in the EL expression.

Understanding a Typical Oracle ADF Model Debugging Session

24-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ EL expressions were written manually instead of using the Expression Picker
dialog and invalid object names or property names were introduced.

This error may not be easy to find. Depending on which EL expression contains
the error, you may or may not see a servlet error message. For example, if the error
occurs in a binding property with no runtime consequence, such as displaying a
label name, the page will function normally but the label will not be displayed.
However, if the error occurs in a binding that executes a method, an internal
servlet error javax.faces.el.MethodNotFoundException: <methodname>
will display. Or, in the case of an incorrectly typed property name on the method
expression, the servlet error
javax.faces.el.PropertyNotFoundException: <propertyname> will
display. For information about displaying JSF trace messages to help debug these
exception, see Section 24.6, "Tracing EL Expressions".

If the above list of typical errors does not help you to find and fix a runtime error, you
can initiate debugging within JDeveloper in order to isolate the contributing factor.
This process involves pausing the execution of the application as it proceeds through
the phases of the Oracle ADF page lifecycle, examining the data received by the
lifecycle, and determining whether that data is expected or not. To inspect the data of
your application, you will work with source code breakpoints and Data window, as
described in Section 24.4, "Understanding a Typical Oracle ADF Model Debugging
Session".

24.4 Understanding a Typical Oracle ADF Model Debugging Session
If you are not able to easily find the error in your web page or its corresponding page
definition file, you can use the JDeveloper debugging tools to investigate where your
application failure occurs. Specifically, the goal for debugging the interaction between
the web page and the Oracle ADF Model layer is to pause the application by setting
breakpoints on the execution of the Oracle ADF page lifecycle and to examine the data
loaded at runtime. When the objects of the Oracle ADF Model layer do not contain the
data that you expect to see, this observation will help you to identify the probable
contributing factor.

Generally, the process for debugging proceeds like this:

1. Run the application and look for missing or incomplete data, actions and methods
that are ignored or incorrectly executed, or other unexpected results.

2. Create a debugging configuration that will enable the ADF Log and send Oracle
ADF Model messages to the JDeveloper Log window. For more information, see
Section 24.4.2, "Creating an Oracle ADF Debugging Configuration".

3. Choose Go to Java Class from the Navigate menu (or press Ctrl + -) and use the
dialog to locate the Oracle ADF class that represents the entry point for the
processing failure.

4. Open the class file in the Java editor and find the Oracle ADF method call that will
enable you to step into the statements of the method.

5. Set a breakpoint on the desired method and run the debugger.

Tip: JDeveloper will locate the class from the user interface project
that has the current focus in the Application Navigator. If your
workspace contains more than one user interface project, be sure the
one with the current focus is the one that you want to debug.

Understanding a Typical Oracle ADF Model Debugging Session

Testing and Debugging Web Applications 24-7

6. When the application stops on the breakpoint, use the Data window to examine
the local variables and arguments of the current context.

Once you have set breakpoints to pause the application at key points, you can proceed
to view data in the JDeveloper Data window. To effectively debug your web page’s
interaction with the Oracle ADF Model layer, you need to understand:

■ The Oracle ADF page lifecycle and the method calls that get invoked

■ The local variables and arguments that the Oracle ADF Model layer should
contain during the course of application processing

Awareness of Oracle ADF processing, as described in Section 24.5, "Debugging the
Oracle ADF Model Layer", will give you the means to selectively set breakpoints,
examine the data loaded by the application, and isolate the contributing factors.

24.4.1 Turning on Diagnostic Logging
Even before you use the actual debugger, running with framework diagnostics logging
turned on can be helpful to see what happened when the problem occurs. To turn on
diagnostic logging set the Java System property named jbo.debugoutput to the
value console. Additionally, the value ADFLogger lets you route diagnostics
through the standard J2SE Logger implementation, which can be controlled in a
standard way through the OC4J j2ee-logging.xml file.

The easiest way to set this system property while running your application inside
JDeveloper is to edit your project properties and in the Run/Debug panel, select a run
configuration and click Edit to edit it. Then add the string
-Djbo.debugoutput=console to the Java Options field.

24.4.2 Creating an Oracle ADF Debugging Configuration
ADF Faces leverages the Java Logging API (java.util.logging.Logger) to
provide logging functionality when you run a debugging session. Java Logging is a
standard API that is available in the Java Platform, starting with JDK 1.4. For the key
elements, see the section "Java Logging Overview" at
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.
html.

Because standard Java Logging is used, you can edit the j2ee-logging.xml file to
control the level of diagnostics you receive in the Log window:

■ When you conduct a debugging session within JDeveloper, you will use
JDeveloper embedded-OC4J and will want to modify the file in your JDeveloper
install here:

<JDev_
Install>/jdev/system/oracle.j2ee.10.1.3.xx.xx/embedded-oc4j/c
onfig

■ Similarly, when you want to conduct a remote debugging session on Oracle
Application Server, you can modify the file here:

<OAS_Home>/j2ee/<OC4J_INSTANCE>/config

Note: JSF web pages may also use backing beans to manage the
interaction between the page’s components and the data. Debug
backing beans by setting breakpoints as you would any other Java
class file.

Understanding a Typical Oracle ADF Model Debugging Session

24-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Or, when you want to conduct a remote debugging session on standalone OC4J,
you can modify the file here:

<OC4J_Home>/j2ee/home/config

To edit ADF package-level logging in the j2ee-logging.xml file:
If you want to change the logging level for Oracle ADF, you can edit the <logger>
elements of the configuration file.

For the packages oracle.adf.view.faces and
oracle.adfinternal.view.faces, edit:

<logger name="oracle.adf" level="INFO"/>
<logger name="oracle.adfinternal" level="INFO"/>

For the Oracle ADF Model layer packages, edit these elements:

<logger name="oracle.adf" level="INFO"/>
<logger name="oracle.jbo" level="INFO"/>

Alternatively, you can create a debug configuration in JDeveloper that you can choose
when you start a debugging session.

To create an Oracle ADF Model debugging configuration:
1. In the Application Navigator, double-click the user interface project.

2. In the Project Properties dialog, click Run/Debug and create a new run
configuration, for example, named ADF debugging.

3. Double-click the new run configuration to edit the properties.

4. In the Edit Run Configuration dialog, for Launch Settings, enter the following
Java Options for the default ojvm virtual machine:

-Djbo.debugoutput=adflogger -Djbo.adflogger.level=FINE

Oracle recommends the level=FINE for detailed diagnostic messages.

24.4.3 Debugging an Application Module Using the Tester
Often you will find it useful to debug the ADF Business Components in your
application without having to run the user interface of your ADF application. You are
likely already aware that you can select any application module in the Application
Navigator, and choose Test from its right-mouse context menu to launch the Business
Components Tester tool.

What you might not know is that you can also launch the Tester tool in the debugger.
This can be extremely useful and can make debugging ADF Business Components
applications even easier than having to start up the complete frontend GUI of your
application.

Note: By default the level is set to INFO for all packages of Oracle
ADF. However, Oracle recommends level="FINE" for detailed
logging diagnostics.

Understanding a Typical Oracle ADF Model Debugging Session

Testing and Debugging Web Applications 24-9

To launch an ADF Application Module in the tester in debug mode, do the following:

1. In the Application Navigator, select the desired application module.

2. In the Structure Window, expand the Sources folder, and select the Java
implementation class for your application module.

If you application module is called MyModule, its implementation class will be
named MyModuleImpl.java.

3. Select Debug from the context menu on that application module implementation
class to launch the debugger.

You'll notice that the main() method of your application module Java class looks like
this:

public static void main(String[] args) {
launchTester("com.yourcompany.yourapp.model", /* package name */

"MyModuleLocal"); /* Configuration Name */
}

If you need to launch the application module in the debugger using a different
configuration than the one indicated (e.g. MyModuleLocal in the code sample above),
just change the string that gets passed as the second argument to launchTester() to
be the name of the configuration you want to use instead.

24.4.4 Understanding the Different Kinds of Breakpoints
You first need to understand the different kinds of breakpoints and where to create
them.

To see the Debugger Breakpoints window, use the View | Debugger > Breakpoints
menu choice from the main JDeveloper menu, or optionally the key accelerator for
this: [Ctrl]+[Shift]+[R].

You can create a new breakpoint by selecting the New Breakpoint menu choice from
the right-mouse menu anywhere in the breakpoints window. The Breakpoint Type
dropdown list controls what kind of breakpoint you will create. The valid choices are:

Tip: When you debug the application module implementation class
(by selecting the .java file in the System Navigator), you don't have
to change configuration name since it is written into the main()
method as one of the two strings that get passed to the debugger.
However, when you debug the application module using the Business
Components Tester (by choosing Test from the context menu on the
application module node in the Application Navigator), your
configuration must use a JDBC URL connection (not a JDBC
DataSource). For example, in the SRDemo application, the
configuration SRServiceLocalTesting lets you run the Tester. By
default, the selected configuration will be SRServiceLocal. If you
do not change the configuration choice, an alert will indicate that the
Tester cannot use a JDBC DataSource connection.

Understanding a Typical Oracle ADF Model Debugging Session

24-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Exception — break whenever an exception of this class (or a subclass) is thrown.

This is great when you don't know where the exception occurs, but you know
what kind of exception it is (e.g. java.lang.NullPointerException,
java.lang.ArrayIndexOutOfBoundsException,
oracle.jbo.JboException, etc.) The checkbox options allow you to control
whether to break on caught or uncaught exceptions of this class. The (Browse...)
button helps you find the fully-qualified class name of the exception. The
Exception Class combobox remembers most recently used exception breakpoint
classes. Note that this is the default breakpoint type when you create a breakpoint
in the breakpoints window.

■ Source — break whenever a particular source line in a particular class in a
particular package is run.

You rarely create a source breakpoint in the New Breakpoint window. This is
because it's much easier to create it by first using the Navigate | Go to Class menu
(accelerator [Ctrl]+[Shift]+[Minus]), then scrolling to the line number you
want -- or using Navigate | Go to Line (accelerator [Ctrl]+[G]) -- and finally
clicking in the breakpoint margin at the left of the line you want to break on. This
is equivalent to creating a new source breakpoint, but it means you don't have to
type in the package, class, and line number by hand.

■ Method — break whenever a method in a given class is invoked.

This is handy to set breakpoints on a particular method you might have seen in
the call stack while debugging a problem. Of course, if you have the source you
can set a source breakpoint wherever you want in that class, but this kind of
breakpoint lets you stop in the debugger even when you don't have source for a
class.

■ Class — break whenever any method in a given class is invoked.

This can be handy when you might only know the class involved in the problem,
but not the exact method you want to stop on. Again, this kind of breakpoint does
not require source. The Browse button helps you quickly find the fully-qualified
class name you want to break on.

■ Watchpoint — break whenever a given field is accessed or modified.

This can be super helpful to find a problem if the code inside a class modifies a
member field directly from several different places (instead of going through setter
or getter methods each time). You can stop the debugger in its tracks when any
field is modified. You can create a breakpoint of this type by using the Toggle
Watchpoint menu item on the right-mouse menu when pointing at a member field
in your class' source.

24.4.5 Editing Breakpoints to For Improved Control
After creating a breakpoint you can edit the breakpoint in the breakpoints window by
selecting Edit in the context menu on the desired breakpoint.

Some really interesting features you can use by editing your breakpoint are:

■ Associate a logical "breakpoint group" name to group this breakpoint with others
having the same breakpoint group name. Breakpoint groups make it easy to
enable/disable an entire set of breakpoints in one operation.

■ Associate a debugger action to occur when the breakpoint is hit. The default action
is to just stop the debugger so you can inspect things, but you can add a beep,
write something to a log file, and enable or disable group of breakpoints.

Understanding a Typical Oracle ADF Model Debugging Session

Testing and Debugging Web Applications 24-11

■ Associate a conditional expression with the breakpoint so that it the debugger only
stops when that condition is met. In 10.1.3, the expressions can be virtually any
boolean expression, including:

■ expr ==value

■ expr.equals("value")

■ expr instanceoffully.qualified.ClassName

24.4.6 Filtering Your View of Class Members
An excellent but often overlooked feature of the JDeveloper debugger is the ability to
filter the members you want to see in the debugger window for any class. In the
debugger's Data window, pointing at any item and selecting Object Preferences from
the right-mouse context menu brings up a dialog that lets you customize which
members appear in the debugger and (more importantly sometimes) which members
don't appear. These preferences are set by class type and can really simplify the
amount of scrolling you need to do in the debugger data window. This is especially
useful while debugging when you might only be interested in a handful of a class'
members.

24.4.7 Interesting Oracle ADF Breakpoints to Set
Interesting breakpoints you can set in Oracle ADF source code when you're trying to
debug a problem are:

■ Exception breakpoint for oracle.jbo.JboException

When you're not sure where to start, this is the base class of all ADF Business
Components runtime exceptions.

■ Exception breakpoint for oracle.jbo.DMLException

This is the base class for exceptions originating from the database, like a failed
DML operation due to an exception raised by a trigger or by a constraint violation.

■ Source breakpoint in the doIt() method of JUCtrlActionBinding class
(oracle.jbo.uicli.binding package).

This is the method that will execute when any ADF action binding is invoked, and
you can step into the logic and look at parameters if relevant.

■ Method breakpoint in the
oracle.jbo.server.ViewObjectImpl.executeQueryForCollection
method.

This is the method that will be called when a view object executes its SQL query.

■ Method breakpoint in the
oracle.jbo.server.ViewRowImpl.setAttributeInternal method.

This is the method that will be called when any view row attribute is set.

■ Method breakpoint in the
oracle.jbo.server.EntityImpl.setAttributeInternal method.

This is the method that will be called when any entity object attribute is set.

Note: Use the debugger watch window to evaluate the expression
first to make sure its valid.

Setting Up Oracle ADF Source Code for Debugging

24-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

By looking at the stack window when you hit these breakpoints, and stepping
through the source you can get a better idea of what's going on.

24.4.8 Communicating Stack Trace Information to Someone Else
If you are unable to determine what the problem is and resolve it yourself, typically
your next step is to ask someone else for assistance. Whether you post a question in
the OTN JDeveloper Discussion Forum or open a Service Request on Metalink,
including the stack trace information in your posting is extremely useful to anyone
who will need to assist you further to understand exactly where the problem is
occurring.

JDeveloper's Stack window makes communicating this information easy. Whenever
the debugger is paused, you can view the Stack window to see the program flow as a
stack of method calls that got you to the current line. Using the right-mouse
Preferences menu on the Stack window background, you can set the Stack window
preference to include the Line number information as well as the class and method
name that will be there by default. Finally, the other useful context menu option
Export lets you save the current stack information to an external text file whose
contents you can then post or send to whomever might need to help you diagnose the
problem.

24.5 Setting Up Oracle ADF Source Code for Debugging
You can obtain complete source code for Oracle ADF by opening a service request
with Oracle Worldwide Support and requesting it. This section explains how to use
Oracle ADF source code for debugging purposes inside the Oracle JDeveloper
environment.

24.5.1 Setting Up the ADF Source System Library
The first step requires you to define a system library that points to the
adfsource.zip file. To accomplish this task, follow these steps:

1. Select Tools | Manage Libraries to display the Manage Libraries dialog.

2. With the Libraries tab selected, click on the System Libraries folder in the tree at
the left and click the New button

3. Enter a library name. For example, ADF Source.

4. Enter a source path of C:\adf_1013_3673_source\adfsource.zip

5. Uncheck the Deployed by Default checkbox.

6. Click OK to close the Manage Libraries dialog.

Note: The instructions below assume you have extracted the adf_
1013_3673_source.zip archive into the root C:\ directory to
create a C:\adf_1013_3673_source directory, and that your
JDeveloper home directory is C:\jdev1013. If you have JDeveloper
installed in a different directory, you'll need to substitute that instead.

Note: Notice the Class Path field is blank. You only need to provide a
value for the Source Path field.

Setting Up Oracle ADF Source Code for Debugging

Testing and Debugging Web Applications 24-13

24.5.2 Adding the ADF Source Library to a Project
In order to debug any application using Oracle ADF inside JDeveloper, you just need
to add your new ADF Source system library created above to the library list of the
project you plan to debug. To accomplish this task, follow these steps:

1. Select the project that you will be debugging in the Application Navigator.

2. Choose Project Properties from the right mouse menu to show the Project
Properties dialog.

3. Select the Libraries category in the tree at the left (by default, under the
Development profile).

4. Select the ADF Source library in the Available Libraries list on the left

5. Click the (>) button to move this library into your project's Selected Libraries list.

6. Click OK to close the Project Properties dialog.

24.5.3 Seeing Better Information in the Code Editor
Once you have added the ADF Source library to your project, you instantly have
access to the helpful Quick JavaDoc feature ([Ctrl]+[D]) that the JDeveloper Code
Editor makes available. As shown in Figure 24–3, invoking the Quick JavaDoc on a
method like findSessionCookie().

Figure 24–3 Using Quick JavaDoc on ADF API's in Code Editor

24.5.4 Setting Breakpoints and Debugging
After performing the two steps above, you can debug any Oracle ADF code for the
current project in the same way as you have been doing for your own Java code. This
means that you can press [Ctrl]+[Minus] to type in any class name in Oracle ADF,
and JDeveloper will open its source file automatically so you can set breakpoints as
desired.

24.5.5 Seeing Better Symbol Information Using Debug Libraries
When debugging Oracle ADF source, as shown in Figure 24–4 by default you will not
see symbol information for parameters or member variables of the currently executing
method.

Setting Up Oracle ADF Source Code for Debugging

24-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 24–4 Local Symbols Are Hard To Understand Without Debug Libraries

This can make debugging a little less useful. You can make the situation better by
using the debug versions of the ADF JAR files supplied along with the source, while
debugging in your development environment.

The debuglib subdirectory of C:\adf_1013_3673_source contains versions of
Oracle ADF JAR files from JDeveloper 10.1.3 Build 3673 that have been compiled with
additional debug information. When you use these debug JAR files instead of the
default optimized JAR files you will see all of the information in the debugger as
shown in Figure 24–5.

Figure 24–5 See Local Symbol Information in Debugger Using Debug Libraries

In order to use these debug JAR files, perform the following steps:

1. Make sure JDeveloper 10g is not running. If it's currently running, exit from the
product before proceeding with the subsequent steps.

2. Make a backup subdirectory of all existing optimized JAR files in the
./BC4J/lib directory of your JDeveloper installation:

C:\> cd jdev1013\BC4J\lib
C:\jdev1013\BC4J\lib> mkdir backup
C:\jdev1013\BC4J\lib> copy *.jar backup

Note: The supplied debug libraries are not recommended for use in a
test or production environment since they typically have slightly
slower runtime performance than the optimized JAR files shipped
with JDeveloper.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 24-15

3. Notice that the debuglib subdirectory of C:\adf_1013_3673_source contains
debug versions of the same ADF JAR files as the ones you just made a backup of.
The only difference is that each debug JAR file has the suffix _g.jar instead of
just.jar.

4. For each ADF library that you want to have debug symbols for while debugging,
copy the _g.jar version of the matching library over the existing, corresponding
library in the C:\jdev1013\BC4J\lib directory. This is safe to do since you
made a backup of the optimized JAR files in the backup directory in step 2 above.

For example, for the main ADF Business Components runtime JAR file
(bc4jmt.jar), you would copy the C:\adf_1013_3673_
source\debuglib\bc4jmt_g.jar to
C:\jdev1013\BC4J\lib\bc4jmt.jar.

Since debug libraries typically run a little slower than libraries compiled without
debug information, this diagnostic message is to remind you not to use debug libraries
for performance timing.

**
*** WARNING: Oracle BC4J debug build executing - do not use for timing ***
**

To change back to the optimized libraries, simply copy the JAR file(s) in question from
the ./BC4J/lib/backup directory back to the ./BC4J/lib directory.

24.6 Debugging the Oracle ADF Model Layer
The processing of your JSF page in combination with Oracle ADF Model is controlled
by two classes:

■ oracle.adf.controller.faces.lifecycle.FacesPageLifecycle class

■ oracle.adf.controller.v2.lifecycle.PageLifecycleImpl class

FacesPageLifecycle implements certain methods of PageLifecycleImpl to
provide customized error-handling behavior for ADF Faces applications. Generally,
however, you will set breakpoints on PageLifecycleImpl, as this class provides the
starting point for creating the objects of the Oracle ADF binding context.

The successful interaction between the web page and these objects of the Oracle ADF
binding context ensures that the page’s components display with correct and complete
data, that methods and actions produce the desired result, and that the page renders
properly with the appropriate validation errors.

Tip: The FacesPageLifecycle class provides the default
implementation of the phase of the ADF Lifecycle. A good place to set
a breakpoint is on the prepareModel() method, as it initiates the
first phase of the ADF lifecycle. For details about the Oracle ADF
lifecycle, see Section 13.2.3, "What Happens at Runtime: The JSF and
ADF Lifecycles".

Debugging the Oracle ADF Model Layer

24-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

24.6.1 Correcting Failures to Display Pages
At runtime, several things must happen before the ADF lifecycle can prepare the
model and display the web page. When the first request for an ADF databound web
page occurs, the servlet registers the Oracle ADF servlet filter ADFBindingFilter,
named in the web.xml file. The method ADFBindingFilter.doFilter() sets up
the ADF processing state, and the method
ADFBindingFilter.initializeBindingContext() creates an instance of
oracle.adf.model.BindingContext by reading the CpxFileName init
parameter from the web.xml file.

24.6.1.1 Fixing Binding Context Creation Errors
Immediately after ADFBindingFilter.initializeBindingContext() is called,
BindingContext is an empty container object that will define a hierarchy of the
Oracle ADF Model layer objects. However, as the container object, BindingContext
must exist in order for the page’s binding to be created. If it does not, an internal
servlet error for the Container /oracle/<path>/DataBinding.cpx will be
thrown:

oracle.jbo.NoXMLFileException: JBO-26001: XML File not found

To debug creating the binding context for the web application:
1. In the oracle.adf.model.servlet.ADFBindingFilter class, set a break on

chain.doFilter() and step into this method.

2. Set another break on ctx.get(BindingContext.IS_INITIALIZED) and step
into this method.

3. In the oracle.jbo.uicli.mom.JUMetaObjectManager class, set a break on
chain.getClientProjectExtension() and step into this method.

4. When processing pauses, look in slot0 for a file with the expected package name in
the Data window.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 24-17

If the DataBindings.cpx file is not found, then check that the servlet context
parameter element correctly defines the fully qualified name for the .cpx file and
verify that the file exists in your project in the location specified by the qualified name
path. Example 24–2 shows the context parameter for the SRDemo application.

Example 24–2 Sample web.xml Servlet Context Parameter

<context-param>
 <param-name>CpxFileName</param-name>
 <param-value>oracle.srdemo.view.DataBindings</param-value>
</context-param>

24.6.1.2 Fixing Binding Container Creation Errors
After BindingContext is created by ADFBindingFilter, the method
PageLifeCycle.xXX() passes the request’s web page URL to the method
BindingContext.findBindingContainer() to find a page definition from the
<pageMap> element in the DataBindings.cpx file that matches the web page. This
becomes the BindingContainer. This BindingContainer object is the runtime
instance object with all bindings created on it. If page definition file is not found, an
internal servlet error will be thrown:

oracle.jbo.NoDefException: JBO-25002: Definition
oracle.<path>.pageDefs.<pagedefinitionName> of type Form Binding
Definition not found

Tip: The name specified in the param-value element of the context
parameter must be the fully qualified name of the .cpx file.

Debugging the Oracle ADF Model Layer

24-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To debug creating the binding container for the web page:
1. In the oracle.adf.model.BindingContext class, set a break on

findBindingContainerIdByPath() and step into this method.

2. Look for the name of the databound web page associated with the binding
container in the Data window.

3. In the Smart Data window, look for a matching entry for the expected databound
web page file name.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 24-19

4. In the Data window, there should be a matching page definition entry for the
databound web page.

If the <pagename>PageDef.xml file is not found, then check that the <pageMap>
element in the DataBindings.cpx file specifies the correct name and path to the
web page in your project. Example 24–3 shows a sample DataBindings.cpx file for
the SRDemo application. Notice that the <pageMap> element maps the JSF page to its
page definition file

Example 24–3 Sample Databinding.cpx Page Definitions

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="10.1.3.34.12" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.srdemo.view" ClientType="Generic">
 <pageMap>
 <page path="/app/SRList.jspx" usageId="app_SRListPageDef"/>
 ...>
 </pageMap>
 <pageDefinitionUsages>
 <page id="SRListPageDef" path="oracle.srdemo.view.pageDefs.
 app_SRListPageDef"/>
 ...
 </pageDefinitionUsages>
 <dataControlUsages>
 <dc id="SRDemoFAQ" path="oracle.srdemo.faq.SRDemoFAQ"/>
 <BC4JDataControl id="SRService" Package="oracle.srdemo.model"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="SRServiceLocal" syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 </dataControlUsages>
</Application>

CAUTION: If you change the name of a JSF page or a page definition
file, the .cpx file is not automatically refactored. You must manually
update the page mapping in the .cpx to reflect the new page name.

Debugging the Oracle ADF Model Layer

24-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

24.6.2 Correcting Failures to Display Data
After BindingContainer is created by BindingContext, the ADF lifecycle
initiates the Prepare Model and the Render Model phases before data can be displayed
in the web page. Several things must happen before the bindings are resolved and data
can appear in the web page:

■ Page parameters must be set.

■ Iterator and Method executables must be get refreshed by executing named service
methods and ADF iterator bindings.

24.6.2.1 Fixing Executable Errors
The ADF lifecycle enters the Prepare Model phase by calling
BindingContainer.refresh(PREPARE_MODEL). During the Prepare Model
phase, BindingContainer page parameters get prepared and then evaluated. Next,
BindingContainer executables get refreshed based on the order of entry in the
pagedef.xml file’s <executables> section and on the evaluation of their Refresh
and RefreshCondition properties (if present). When an executable leads to an
iterator binding refresh, the corresponding data control will be executed, and that
leads to execution of one or more collections in the service objects. If an iterator
binding fails to refresh, a JBO exception will be thrown and the data will not be
available to display.

To debug all executables for the binding container:
1. In the oracle.adf.model.binding.DCBindingContainer class, set a break

on internalRefreshControl(int, boolean) as the entry point to debug
the executables.

Tip: In the DCBindingContainer.internalRefreshControl() method,
you can determine whether the executable will be refreshed by checking the
outcome of the condition if (/*execute ||*/ execDef == null ||
execDef.isRefreshable(this, iterObj, refreshFlag)). If the
condition evaluates to true, then the executable is refreshed and processing will
continue to initSourceRSI().

2. In the oracle.adf.model.binding.DCIteratorBinding class, set a break
on callInitSourceRSI() to halt processing and step into the method.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 24-21

3. When processing pauses, look for callInitSourceRSI() in the Stack window.
The result displayed in the Smart Data window should show the result that you
expect.

When your web page fails to display data from a method iterator binding, you can
drill down to the entry point in JUMethodIteratorDef.java and its nested class
JUMethodIteratorBinding to debug its execution.

To debug the method iterator executable for the binding container:
1. In the oracle.jbo.uicli.binding.JUMethodIteratorDef class, set a

break on initSourceRSI() as the entry point to debug a method iterator
binding executable.

2. Set a break on invokeMethodAction() to halt processing and step into the
method.

Note that if the method returns a valid collection or a bean, then that object
becomes the datasource for the rowset iterator that this iterator binding is bound
to. For bean data controls, an instance of DCRowSetIteratorImpl is created to
provide the rowset iterator functionality for the iterator binding to work with.
(Note that for ADF Business Components, this method would ideally return a
ADF Business Components rowset iterator so that ADF Business Components can
manage the state of the collection.)

3. When initSourceRSI() returns a rowset iterator, pause processing and look for
mProvider in the Smart Data window. The mProvider variable is the datasource
fetched for this rowset iterator. If the method returned successfully, it should show
a collection bound to an iterator or a bean.

Debugging the Oracle ADF Model Layer

24-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

When the executable that produced the exception is identified, check that the
<executables> element in the pagedef.xml file specifies the correct attribute
settings.

Whether the executable is refreshed during the Prepare Model phase, depends on the
value of Refresh and RefreshCondition (if they exist). If Refresh is set to
prepareModel, or if no value is supplied (meaning it uses the default, ifneeded),
then the RefreshCondition attribute value is evaluated. If no RefreshCondition
value exists, the executable is invoked. If a value for RefreshCondition exists, then
that value is evaluated, and if the return value of the evaluation is true, then the
executable is invoked. If the value evaluates to false, the executable is not invoked.
The default value always enforces execution.

Example 24–4 shows a sample pagedef.xml file from the SRDemo application.
Notice that the <executables> element lists the executables in the order in which
they should be executed, with the detail iterator positioned after its master binding
iterator.

Tip: If the debugger does not reach a breakpoint that you set on an
executable in the binding container, then the error is most likely a
result of the way the executable’s Refresh and RefreshCondition
attribute was defined. Examine the attribute definition. For details
about the Refresh and RefreshCondition attribute values, see
Section A.6.1, "PageDef.xml Syntax".

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 24-23

Example 24–4 Sample Page Definition Executables

<executables>
 <iterator id="StaffListIterator" Binds="StaffList" RangeSize="10"
 DataControl="SRService"/
 <iterator id="StaffExpertiseAreasIterator" Binds="StaffExpertiseAreas"
 RangeSize="10" DataControl="SRService"/>
<executables>

24.6.2.2 Fixing Render Value Errors Before Submit
During the prepareRender phase of the ADF lifecycle, the bindings determine the data
to display, and properties on the bindings determine the conditions in which to
display the data. When the web page is rendered the first time, each EL expression that
points to a binding gets resolved by the BindingContainer instance for that page.
Based on the expression appropriate values like format, isEnabled, and
isViewable, the data value for a binding is returned from BindingContainer. If
the binding is unable to return the data, a JBO exception is thrown.

To debug the binding resolution for the binding container:
1. In the oracle.jbo.uicli.binding.JUCtrlValueBinding class, set a break

in getInputValue() and step into the method.

2. If getInputValue() returns an error, pause processing and look for the binding
name in the Data window.

Debugging the Oracle ADF Model Layer

24-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

3. Continue stepping into getInputValue(), and look for a return value in the
Data window that you expect for the current row that this binding represents.

When the binding that produced the exception is identified, check that the
<bindings> element in the pagedef.xml file specifies the correct attribute settings.
Example 24–5 shows a sample pagedef.xml file for the SRDemo application.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 24-25

Example 24–5 Sample Page Definition Value Bindings

<bindings>
 <attributeValues IterBinding="GlobalsIterator" id="ProblemDescription">
 <AttrNames>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="GlobalsIterator" id="ProductId">
 <AttrNames>
 <Item Value="ProductId"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="GlobalsIterator" id="ProductName">
 <AttrNames>
 <Item Value="ProductName"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="FirstName"
 IterBinding="LoggedInUserIterator">
 <AttrNames>
 <Item Value="FirstName"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="LastName"
 IterBinding="LoggedInUserIterator">
 <AttrNames>
 <Item Value="LastName"/>
 </AttrNames>
 </attributeValues>
 ...
</bindings>

In case of submit, again, the lifecycle first looks up and prepares the
BindingContainer instance. If the lifecycle finds a state token that was persisted for
this BindingContainer, it asks the BindingContainer to process this state token.
Processing the state token restores the variable values that were saved out in previous
the render. If you need to debug processing the state token, break in
DCIteratorBinding.processFormToken() and
DCIteratorBinding.buildFormToken().

After this, all posts are applied to the bindings through setInputValue() on the
value bindings.

24.6.3 Correcting Failures to Invoke Actions and Methods
When the executables are refreshed, actions and custom methods may be invoked on
the page. At this stage, the corresponding action or method binding is refreshed. If an
executable or its target binding is not executed, the action will be ignored.

The entry point for action and method execution is the
DCDataControl.invokeOperation() method. Although
JUCtrlActionBinding.invoke() is another potential entry point, method iterator
bindings also use it to invoke methods implicitly. Instead, debugging on
DCDataControl.invokeOperation() allows you to work with the same method
that the data control uses to invoke the method. This is preferred because some
adapter data controls can interpret the method name in a custom way rather than
leave it to ADF to call the method.

Debugging the Oracle ADF Model Layer

24-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To debug the action or method invocation for the binding container:
1. In the oracle.adf.model.binding.DCDataControl class, set a break on

invokeOperation() as the entry point to debug an action or method
invocation.

2. When processing pauses, step though the method to verify instanceName in the
Data window shows the method being invoked is the intended method on the
desired object.

3. Verify args in the Data window shows the parameter value for each parameter
being passed into your method is as expected. The parameter value below shows
null.

To debug a custom method invocation for the binding container:
1. In your class, set a breakpoint on the desired custom method.

2. In oracle.adf.model.generic.DCGenericDataControl class, set a break
on invokeMethod() to halt processing before looking into the Data window.

Debugging the Oracle ADF Model Layer

Testing and Debugging Web Applications 24-27

3. When processing pauses, step though the method to verify instanceName in the
Data window shows the method being invoked is the intended method on the
desired object.

4. Verify args in the Data window shows the parameter value for each parameter
being passed into your method is as expected. The parameter value below shows
null.

When the ignored action or custom method is identified, check that the
<invokeAction> definitions in <executables> element and their corresponding
<action> and <methodAction> definitions in the <bindings> element of the
pagedef.xml file specifies the correct attribute settings.

Tracing EL Expressions

24-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Whether the <invokeAction> executable is refreshed during the Prepare Model
phase, depends on the value of Refresh and RefreshCondition (if they exist). If
Refresh is set to prepareModel, or if no value is supplied (meaning it uses the
default, ifneeded), then the RefreshCondition attribute value is evaluated. If no
RefreshCondition value exists, the executable is invoked. If a value for
RefreshCondition exists, then that value is evaluated, and if the return value of the
evaluation is true, then the executable is invoked. If the value evaluates to false, the
executable is not invoked. The default value always enforces execution.

Example 24–6 shows a sample of the custom method binding definitions in the
pagedef.xml file for the SRDemo application.

Example 24–6 Sample Page Definition Executables and Action Bindings

<executables>
 <invokeAction id="AlwaysFind" Binds="Find" Refresh="ifNeeded"
 RefreshCondition=
 "${bindings.SearchServiceRequestsIterator.findMode == false}"/>
 <invokeAction id="insertBlankViewCriteriaRowIfThereAreNone" Binds="Create"
 Refresh="renderModel"
 RefreshCondition=
 "${bindings.SearchServiceRequestsIterator.findMode and
 bindings.SearchServiceRequestsIterator.estimatedRowCount == 0}"/>
 ...
</executables>

24.7 Tracing EL Expressions
EL is not well supported with exceptions to inform you of specific failures. However,
Example 24–4 shows one common exception you are likely to see when the resolver is
unable to completely evaluate the expression.

Example 24–7 Expression Evaluation PropertyNotFound Exception

javax.faces.el.PropertyNotFoundException:
 Error setting property 'resultsTable' in bean of type null
at com.sun.faces.el.PropertyResolverImpl.setValue
 (PropertyResolverImpl.java:153)

You can check your web page’s source code for problems in the expression, such as
mistyped property names. When no obvious error is found, you will want to configure
the logging.properties file in the <JDeveloper_Install>/jre/lib directory
to display messages from the EL resolver.

Tip: If the debugger does not reach a breakpoint that you set on an
action in the binding container, then the error is most likely a result of
the way the executable’s Refresh and RefreshCondition attribute
was defined. Examine the attribute definition. For details about the
Refresh and RefreshCondition attribute values, see
Section A.6.1, "PageDef.xml Syntax".

Regression Testing an Application Module With JUnit

Testing and Debugging Web Applications 24-29

To trace EL expression variables:
1. Open <JDeveloper_Install>/jre/lib/logging.properties in your text

editor.

2. Set java.util.logging.ConsoleHandler.level=FINE.

3. Add the line:

com.sun.faces.level=FINE

4. Run your application and view the variable resolution in the JDeveloper Log
window.

24.8 Regression Testing an Application Module With JUnit
Testing your business services is an important part of your application development
process. By creating a set of JUnit regression tests that exercise the functionality
provided by your application module, you can ensure that new features, bug fixes, or
refactorings do not destabilize your application. JDeveloper’s integrated support for
creating JUnit regression tests makes it easy to follow this best practice. Its integrated
support for running JUnit tests means that any developer on the team can run the test
suite with a single mouse click, greatly increasing the chances that every team member
can run the tests to verify their own changes to the system. Furthermore, by using
JDeveloper’s integrated support for creating and running Apache Ant build scripts,
you can easily incorporate running the tests into your nightly build process as well.
This section explains how to create a JUnit test for your application module, how to
run it, and how to integrate the tests into an Ant build script.

24.8.1 How to Create a JUnit Test Suite for an Application Module
Typically you will create a separate project to contain your regression tests. For
example, the SRDemo application has it JUnit regression test suite in the UnitTests
project, while the business components that comprise its SRService application
module belong to the DataModel project. After creating a new project to contain your
JUnit test suite, you can use the Create Business Components Test Suite wizard in the
context of that new project to create a JUnit test suite for an application module. You
can find this wizard in the General > Unit Tests (JUnit) category in the New Gallery.

When the Test Suite Wizard dialog appears, perform the following steps on the Select
Application page:

1. Select the business components project in your workspace that contains the
application module.

2. Select the application module in that project for which you want to create a test
suite.

3. Enter a configuration name to use for running the tests.

4. Click Finish to create the test suite.

Tip: If you don’t see the Business Components Test Suite wizard, use
JDeveloper’s Help | Check for Updates feature to install the JUnit
Integration for Business Components extension before continuing.

Regression Testing an Application Module With JUnit

24-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

24.8.2 What Happens When You Create a JUnit Test Suite for an Application Module
When you create a JUnit test suite for an application module using the wizard,
JDeveloper updates the current project to have a dependency on the project containing
the application module. In addition, assuming the application module for which you
created the test suite were named devguide.example.ExampleModule, it
generates the following skeleton classes in the devguide.example.test package:

■ A test suite class named ExampleModuleAllTests,

■ A test fixture class named ExampleModuleConnectFixture

■ A test class named ViewInstanceNameTest for each view object instance in the
application module’s data model

In this example, you would run the test suite at any time by running the
ExampleModuleAllTests class.

24.8.3 What You May Need to Know

24.8.3.1 Test Suite Class Adds Test Cases to the Suite
By convention, a JUnit test suite is a class containing a public static method
named suite() that returns an object that implements the Test interface in the
junit.framework package. Typically, this will be an instance of the TestSuite
class in that same package. The generated ExampleModuleAllTests class follows
this convention to create and return an instance of this TestSuite object. As shown
in Example 24–8, before returning the test suite it calls the addTestSuite() method
to add one or more test case classes to the suite.

Example 24–8 Test Suite Class Adds Test Cases to the Suite

package devguide.example.test;
import junit.framework.Test;
import junit.framework.TestSuite;
public class ExampleModuleAllTests {
 public static Test suite() {
 TestSuite suite;
 suite = new TestSuite("ExampleModuleAllTests");
 suite.addTestSuite(ProductsTest.class);
 suite.addTestSuite(ServiceHistoriesTest.class);
 suite.addTestSuite(ServiceRequestsTest.class);
 // etc.
 return suite;
 }
}

24.8.3.2 Test Fixture Class Encapsulates Access to the Application Module
The generated ExampleModuleConnectFixture is a JUnit test fixture that
encapsulates the details of acquiring and releasing an application. It contains a
setUp() method that uses the createRootApplicationModule() method of the
Configuration class to create an instance of an application module. Its
tearDown() method calls the matching releaseRootApplicationModule()
method to release the application module instance.

Regression Testing an Application Module With JUnit

Testing and Debugging Web Applications 24-31

Each test case class contains a setUp() and tearDown() method that JUnit invokes
to allow initializing resources required by the test case and to later clean them up.
These test case methods invoke the corresponding setUp() and tearDown()
methods to prepare and clean up the text fixture for each test case execution. Any time
a test in the test case needs access to the application module, it access it using the test
fixture’s getApplicationModule() method. This returns the same application
module instance, saved in a member field of the test fixture class, between the initial
call to setUp() and the final call to tearDown() at the end of the test case.

24.8.3.3 JUnit Tests for an Application Module Must Use a JDBC URL Connection
The application module configuration that you use for a JUnit test suite needs to use a
JDBC URL connection, rather than a JDBC datasource. This is due to the fact that JDBC
datasources are defined by the J2EE application server and can only be referenced in
the context of an application running inside the server. Your JUnit tests run outside the
server environment. For example, the SRDemo application has two configurations
defined for its SRService application module. The SRServiceLocal configuration
uses a JDBC datasource. It is referenced in the DataBindings.cpx file of the
UserInterface project for use in the SRDemo application. In contrast, the SRDemo’s
JUnit tests reference the SRServiceLocalTesting configuration. This uses a JDBC
URL connection instead of a datasource.

24.8.3.4 Test Case Classes Contain One or More Test Methods with Assertions
Each generated test case can contain one or more test methods that the JUnit
framework will execute as part of executing that test case. You can add a test to the test
case simply by creating a public void method in the class whose name begins with the
prefix test. For example, it might look like this:

// In ViewInstanceNameTest.java test case class
 public void testSomeMeaningfulName() {
 // test assertions here
 }

The wizard generates skeleton test case classes for each view object instance in the
data model, each of which contains a single test method named testAccess(). This
method contains a call to the assertNotNull() method to test that the view object
instance exists.

Your own testing methods can use any of the programmatic APIs available in the
oracle.jbo package to work with the application module and view object instances
in its data model. You can also cast the ApplicationModule interface to a custom
interface to have your tests invoke your custom service methods as part of their job.
During each test, you will call one or more assertXxxx() methods provided by the
JUnit framework to assert what the expected outcome of a particular expression
should be. When you run the test suite, if any of the tests in any of the test cases
contains assertions that fail, JDeveloper’s JUnit Test Runner window displays the
failing tests with a red failure icon.

24.8.4 Running a JUnit Test Suite as Parts of an Ant Build Script
Apache Ant is a popular, cross-platform build utility for which JDeveloper offers
excellent design-time support. You can incorporate the automatic execution of JUnit
tests and test output report generation by using Ant’s built-in <junit> and <junitreport>
tasks. Example 24–9 shows a task called tests from the SRDemo’s Ant build.xml
file in the BuildAndDeploy project. It depends on the build and buildTests
targets that Ant will ensure have been executed before running the tests target.

Regression Testing an Application Module With JUnit

24-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The <junit> tag contains a nested <test> tag that identifies the test suite class to execute
and specifies a directory in which to report the results. The <junitreport> tag allows
you to format the test results into a collection of HTML pages that resemble the format
of JavaDoc. To try running the SRDemo’s JUnit test from this Ant task, select the
build.xml file in the Application Navigator, and choose Run Ant Target > tests from
the context menu.

Example 24–9 Ant Build Target Runs JUnit Test Suite and Generates Report

<!-- In SRDemo’s build.xml -->
<target name="tests" description="Run the model layer Unit tests"
 depends="build, buildTests">
 <mkdir dir="${tests.reporting.dir}"/>
 <junit printsummary="true" fork="true">
 <formatter usefile="true" type="xml"/>
 <test name="oracle.srdemo.tests.model.SRServiceAllTests"
 todir="${tests.reporting.dir}"/>
 <sysproperty key="jbo.debugoutput" value="file"/>
 <classpath path="${model.build.dir}"/>
 <classpath path="${tests.build.dir}"/>
 <classpath refid="tests.classpath"/>
 </junit>
 <junitreport todir="${tests.reporting.dir}">
 <fileset dir="${tests.reporting.dir}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${tests.reporting.dir}"/>
 </junitreport>
</target>

24.8.5 Customizing the Default JUnit Test Classes
The SRDemo’s UnitTest project includes examples of a few customizations you can
make to the generated test case classes. This section describes how to customize the
text fixture to authenticate a particular user and how to refactor common test case
code in to a base class.

24.8.5.1 Customizing the Test Fixture to Run as an Authenticated User
The SRServiceFixture has a custom constructor that accepts a username and a
password. Its setUp() method uses a custom ADF Business Components
EnvInfoProvider implementation to supply runtime configuration parameters to
the application module. In particular, to authenticate as the given username with the
given password, the JUnitFixureLoginInfoProvider class implements the
EnvInfoProvider interface’s getInfo() method to return:

■ The value Must for the jbo.security.enforce property

■ The username value for the java.naming.security.principal property
(referenced using the JboContext.SECURITY_PRINCIPAL constant)

■ The password value for the java.naming.security.credentials property
(referenced using the JboContext.SECURITY_CREDENTIALS constant)

Each of the three test cases in the oracle.srdemo.tests.model.unittests
package creates its instance of the SRServiceFixture with a different combination
of username and password values. For example, the
SRServiceTestAsManagerRole test case creates a SRServiceFixture for a user
that has the manager role (sking). The other two tests each do the same, but for a user
of the other two roles Technician and Manager.

Regression Testing an Application Module With JUnit

Testing and Debugging Web Applications 24-33

24.8.5.2 Refactoring Common Test Case Code Into a Base Class
All three of the test case classes extend the SRUnitTestBase class. This class contains
code that is common to all of the test cases. For example, it includes a number of
helper methods for getting the current date, setting the current row in a view object by
a stringified key, and creating a key of appropriate type for a given view object. It also
defines the abstract method createSRServiceFixtureForTest() that each
subclass overrides to return the SRServiceFixture constructed with the
appropriate username and password for the authentication.

Tip: The UnitTests project in the SRDemo includes the
ConfigurationData directory as one of its project contents paths.
This ensures that the jazn-data.xml file (contained in its
META-INF subdirectory) which defines all the users and roles for the
demo, is readable by the JUnit tests at runtime. XML files in the
project source path are copied to the project’s output directory during
compilation since their *.xml file extension is included by default in
the Copy File Types to Output Directory field of the Compiler page
in the Project Properties dialog.

Regression Testing an Application Module With JUnit

24-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Part IV
Advanced Topics

Part IV contains the following chapters:

■ Chapter 25, "Advanced Business Components Techniques"

■ Chapter 26, "Advanced Entity Object Techniques"

■ Chapter 27, "Advanced View Object Techniques"

■ Chapter 28, "Application Module State Management"

■ Chapter 29, "Understanding Application Module Pooling"

■ Chapter 30, "Adding Security to an Application"

■ Chapter 31, "Creating Data Control Adapters"

■ Chapter 32, "Working Productively in Teams"

■ Chapter 33, "Working with Web Services"

■ Chapter 34, "Deploying ADF Applications"

Advanced Business Components Techniques 25-1

25
Advanced Business Components

Techniques

This chapter describes advanced techniques that apply to all types of ADF Business
Components.

This chapter includes the following sections:

■ Section 25.1, "Globally Extending ADF Business Components Functionality"

■ Section 25.2, "Creating a Layer of Framework Extensions"

■ Section 25.3, "Customizing Framework Behavior with Extension Classes"

■ Section 25.4, "Creating Generic Extension Interfaces"

■ Section 25.5, "Invoking Stored Procedures and Functions"

■ Section 25.6, "Accessing the Current Database Transaction"

■ Section 25.7, "Working with Libraries of Reusable Business Components"

■ Section 25.8, "Customizing Business Components Error Messages"

■ Section 25.9, "Creating Extended Components Using Inheritance"

■ Section 25.10, "Substituting Extended Components In a Delivered Application"

25.1 Globally Extending ADF Business Components Functionality
One of the powerful features of framework-based development is the ability to extend
the base framework to change a built-in feature to behave differently or to add a new
feature that can be used by all of your applications. This section describes:

■ What framework extension classes are

■ How to create an extension class and base ADF components you create on it

■ How to adopt the best practice of using a whole custom layer of framework
extension classes for your component or specific project

Note: To experiment with a working version of the examples in this
chapter, download the AdvancedExamples workspace from the
Example Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01.

Globally Extending ADF Business Components Functionality

25-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

25.1.1 What Are ADF Business Components Framework Extension Classes?
An ADF Business Components framework extension class is Java class you write that
extends one of the framework's base classes to:

■ Augment a built-in feature works with additional, generic functionality

■ Change how a built-in feature works, or even to

■ Workaround a bug you encounter in a generic way

Once you've created a framework extension class, any new ADF components you
create can be based on your customized framework class instead of the base one. Of
course, you can also update the definitions of existing components to use the new
framework extension class as well.

25.1.2 How To Create a Framework Extension Class
To create a framework extension class, follow these steps:

1. Identify a project to contain the framework extension class.

You can create it in the same project as your business service components if you
believe it will only be used by components in that project. Alternatively, if you
believe you might like to reuse the framework extension class across multiple ADF
applications, create a separate FrameworkExtensions project (as shown in the
SRDemo application) to contain the framework extension classes.

2. Ensure the BC4J Runtime library is in the project's libraries list.

Use the Libraries page of the Project Properties dialog to verify this and to add
the library if missing.

3. Create the new class using the Create Java Class dialog.

This dialog is available in the New Gallery in the General category.

4. Specify the appropriate framework base class from the oracle.jbo.server
package in the Extends field.

Figure 25–1 illustrates what it would look like to create a custom framework
extension class named CustomAppModuleImpl in the
com.yourcompany.fwkext package to customize the functionality of the base
application module component. To quickly find the base class you're looking for,
use the Browse button next to the Extends field that launches the JDeveloper
Class Browser. Using its Search tab, you can type in part of the class name
(including using * as a wildcard) to quickly subset the list of classes to find the
one you're looking for.

Globally Extending ADF Business Components Functionality

Advanced Business Components Techniques 25-3

Figure 25–1 Creating a Framework Extension Class for an Application Module

When you click OK, JDeveloper creates the custom framework extension class for you
in the directory of the project's source path corresponding to the package name you've
chosen.

25.1.3 What Happens When You Create a Framework Extension Class
After creating a new framework extension class, it will not automatically be used by
your application. You must decide which components in your project should make use
of it. The following sections describe the available approaches for basing your ADF
components on your own framework extension classes.

25.1.4 How to Base an ADF Component on a Framework Extension Class
You can set the base classes for any ADF component using the Java page of any ADF
Business Components wizard or editor. Before doing so, review the following
checklist:

■ If you have decided to create your framework extension classes in a separate
project, ensure that you have visited the Dependencies page of the Project
Properties dialog for the project containing your business components in order to
mark the FrameworkExtension project as a project dependency.

■ If you have packaged your framework extension classes in a Java archive (JAR)
file, ensure that you have created a named library definition to reference its JAR
file and also listed that library in the library list of the project containing your
business components. To create a library if missing, use the Manage Libraries
dialog available from the Tools | Manage Libraries main menu item. To verify or
adjust the project's library list, use the Libraries page of the Project Properties
dialog.

Note: Some ADF Business Components component classes exist in
both a server-side and a remote-client version. For example, if you use
the JDeveloper Class Browser and type ApplicationModuleImpl
into the Match Class Name field on the Search tab, the list will show
two ApplicationModuleImpl classes: one in the
oracle.jbo.server package and the other in the
oracle.jbo.client.remote package. When creating framework
extension classes, use the base ADF classes in the
oracle.jbo.server package.

Globally Extending ADF Business Components Functionality

25-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

After you ensure the framework classes are available to reference, Figure 25–2 shows
how you would use the CustomAppModuleImpl class as the base class for a new
application module. By clicking the Class Extends button of the Java page of the
wizard, the Extends dialog displays to let you enter the fully-qualified name of your
framework extension class (or use the Browse button to use the JDeveloper Class
Browser to find it quickly).

Figure 25–2 Specifying a Custom Base Class for a New Application Module

The same Class Extends button appears on the Java page of every ADF Business
Components wizard and editor, so you can use this technique to choose your desired
framework extension base class(es) both for new components or existing ones.

25.1.5 What Happens When You Base a Component on a Framework Extension Class
When an ADF component you create extends a custom framework extension class,
JDeveloper updates its XML component definition to reflect the custom class name
you've chosen.

25.1.5.1 Basing an XML-Only Component on a Framework Extension Class
For example, assume you've created the YourService application module above in
the com.yourcompany.yourapp package, with a custom application module base
class of CustomAppModuleImpl. If you have opted to leave the component as an
XML-only component with no custom Java file, its XML component definition
(YourService.xml) will look like what you see in Example 25–1. The value of the
ComponentClass attribute of the <AppModule> tag is read at runtime to identify the
Java class to use to represent the component.

Note: When using the JDeveloper Class Browser in the Extends
dialog of an ADF Business Components wizard or editor to select a
custom base class for the component, the list of available classes is
automatically filtered to show only classes that are appropriate. For
example, when clicking Browse in Figure 25–2 to select an application
module Object base class, the list will only show classes available in
the current project's library list which extend the
oracle.jbo.server.ApplicationModule class either directly or
indirectly. If you don't see the class you're looking for, either you
extended the incorrect base class or you have chosen the wrong
component class name to override.

Globally Extending ADF Business Components Functionality

Advanced Business Components Techniques 25-5

Example 25–1 Custom Base Class Names Are Recorded in XML Component Definition

<AppModule
Name="YourService"
ComponentClass="com.yourcompany.fwkext.CustomAppModuleImpl" >

<!-- etc. -->
</AppModule>

Figure 25–3 illustrates how the XML-only YourService application module relates to
your custom extension class. At runtime, it uses the CustomAppModuleImpl class
which inherits its base behavior from the ApplicationModuleImpl class.

Figure 25–3 XML-Only Component Reference an Extended Framework Base Class

25.1.5.2 Basing a Component with a Custom Java Class on a Framework Extension
Class
If your component requires a custom Java class, as you've seen in previous chapters
you open the Java page of the component editor and check the appropriate checkbox
to enable it. For example, when you enable a custom application module class for the
YourServer application module, JDeveloper creates the appropriate
YourServiceImpl.java class. As shown in Example 25–2, it also updates the
component's XML component definition to reflect the name of the custom component
class.

Example 25–2 Custom Component Class Recorded in XML Component Definition

<AppModule
Name="YourService"
ComponentClass="com.yourcompany.yourapp.YourServiceImpl" >

<!-- etc. -->
</AppModule>

JDeveloper also updates the component's custom Java class to modify its extends
clause to reflect the new custom framework base class, as shown in Example 25–3.

Globally Extending ADF Business Components Functionality

25-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 25–3 Component's Custom Java Class Updates to Reflect New Base Class

package com.yourcompany.yourapp;
import com.yourcompany.fwkext.CustomAppModuleImpl;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
public class YourServiceImpl extends CustomAppModuleImpl {
/**This is the default constructor (do not remove) */
public YourServiceImpl() {}
// etc.

}

Figure 25–4 illustrates how the YourService application module with its custom
YourServiceImpl class is related to your framework extension class. At runtime, it
uses the YourServiceImpl class which inherits its base behavior from the
CustomAppModuleImpl framework extension class which, in turn, extends the base
ApplicationModuleImpl class.

Figure 25–4 Component with Custom Java Extending Customized Framework Base
Class

25.1.6 What You May Need to Know

25.1.6.1 Don't Update the Extends Clause in Custom Component Java Files By
Hand
If you have an ADF component with a custom Java class and later decide to base the
component on a framework extension class, use the Class Extends button on the Java
page of the component editor to change the component's base class. Doing this
updates the component's XML component definition to reflect the new base class, and
also modifies the extends clause in the component's custom Java class. If you
manually update the extends clause without using the component editor, the
component's XML component definition will not reflect the new inheritance and the
next time you open the editor, your manually modified extends clause will be
overwritten with what the component editor believes is the correct component base
class.

Globally Extending ADF Business Components Functionality

Advanced Business Components Techniques 25-7

25.1.6.2 You Can Have Multiple Levels of Framework Extension Classes
In the examples above, you've seen a single CustomAppModuleImpl class that
extends the base ApplicationModuleImpl class. However, there is no fixed limit on
how many levels of framework extension classes you create. After creating a
company-level CustomAppModuleImpl to use for all application modules in all ADF
applications your company creates, some later project team might encounter the need
to further customize that framework extension class. That team could create a
SomeProjectCustomAppModuleImpl class that extends the
CustomAppModuleImpl and then include the project-specific custom application
module code in there:

public class SomeProjectCustomAppModuleImpl
extends CustomAppModuleImpl {

/*
* Custom application module code specific to the
* "SomeProject" project goes here.
*/

}

Then, any application modules created as part of the implementation of this specific
project can use the SomeProjectCustomAppModuleImpl as their base class instead
of the CustomAppModuleImpl.

25.1.6.3 Setting up Project-Level Preferences for Framework Extension Classes
If you decide to use a specific set of framework extension classes as a standard for a
given project, you can open the Business Components > Base Classes page in the
Project Properties dialog, as shown in Figure 25–5, to define your preferred base
classes for each component type. For example, to indicate that any new application
modules created in the project should use the CustomAppModuleImpl class by
default, enter the fully-qualified name of that class in the Application Module Object
class name field as shown. Setting these preferences for base classes does not affect
any existing components in the project, but the component wizards will use the
preferences for any new components created.

Figure 25–5 Setting Project-Level Preferences for ADF Component Base Classes

Creating a Layer of Framework Extensions

25-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

25.1.6.4 Setting Up Framework Extension Class Preferences at the IDE Level
By choosing the Tools | Preferences main menu item in JDeveloper, you can open the
Business Components > Base Classes page to set framework base classes preferences
at a global level. This setting does not affect any existing projects containing ADF
components, but JDeveloper will use these as the default values for the project-level
business components base classes preferences for any new projects created.

25.2 Creating a Layer of Framework Extensions
Before you begin to develop application-specific business components, Oracle
recommends that you consider creating a complete layer of framework extension
classes and setting up your project-level preferences to use that layer by default. You
might not have any custom code in mind to put in some (or any!) of these framework
extension classes yet, but the first time you encounter a need to:

■ Add a generic feature that all your company's application modules require

■ Augment a built-in feature with some custom, generic processing

■ Workaround a bug you encounter in a generic way

You will be glad you heeded this recommendation. Failure to set up these preferences
at the outset can present your team with a substantial inconvenience if you discover
mid-project that all of your entity objects, for example, require a new generic feature,
augmented built-in feature, or a generic bug workaround. Putting a complete layer of
framework classes in place to be automatically used by JDeveloper at the start of your
project is an insurance policy against this inconvenience and the wasted time related
to dealing with it later in the project.

25.2.1 How to Create Your Layer of Framework Extension Layer Classes
A common set of customized framework base classes in a package name of your own
choosing like com.yourcompany.adfextensions, each importing the
oracle.jbo.server.* package, would consist of the following classes:

■ public class CustomEntityImpl extends EntityImpl

■ public class CustomEntityDefImpl extends EntityDefImpl

■ public class CustomViewObjectImpl extends ViewObjectImpl

■ public class CustomViewRowImpl extends ViewRowImpl

■ public class CustomApplicationModuleImpl extends
ApplicationModuleImpl

■ public class CustomDBTransactionImpl extends
DBTransactionImpl2

■ public class CustomDatabaseTransactionFactory extends
DatabaseTransactionFactory

To make your framework extension layer classes easier to package as a reusable
library, Oracle recommends creating them in a separate project from the projects that
use them. In the SRDemo application, the FrameworkExtensions project contains
all of the framework extension classes used by the application.

Creating a Layer of Framework Extensions

Advanced Business Components Techniques 25-9

For completeness, you may also want to create customized framework classes for the
following classes as well, note however that overriding anything in these classes
would be a fairly rare requirement.

■ public class CustomViewDefImpl extends ViewDefImpl

■ public class CustomEntityCache extends EntityCache

■ public class CustomApplicationModuleDefImpl extends
ApplicationModuleDefImpl

25.2.2 How to Package Your Framework Extension Layer in a JAR File
Use the Create Deployment Profile: JAR File dialog to create a JAR file containing the
classes in your framework extension layer. This is available in the New Gallery in the
General > Deployment Files category.

Give the deployment profile a name like FrameworkExtensions and click OK. By
default the JAR file will include all class files in the project. Since this is exactly what
you want, when the JAR Deployment Profile Properties dialog appears, you can just
click OK to finish.

Finally, to create the JAR file, select the FrameworkExtensions.deploy node in the
Application Navigator under the Resources folder, and choose Deploy to JAR File on
the context menu. A Deployment tab appears in the JDeveloper Log window that
should display feedback like:

---- Deployment started. ---- Apr 28, 2006 1:42:39 PM
Running dependency analysis...
Wrote JAR file to ...\FrameworkExtensions\deploy\FrameworkExtensions.jar
Elapsed time for deployment: less than one second
---- Deployment finished. ---- Apr 28, 2006 1:42:39 PM

25.2.3 How to Create a Library Definition for Your Framework Extension JAR File
JDeveloper uses named libraries as a convenient way to organize the one or more JAR
files that comprise reusable component libraries. To define a library for your
framework extensions JAR file, do the following:

1. Choose Tools > Manage Libraries from the JDeveloper main menu.

2. In the Manage Libraries dialog, select the Libraries tab.

3. Select the User folder in the tree and click the New button.

Note: For your convenience, the FrameworkExtensions project in
the AdvancedExamples workspace contains a set of these classes.
You can select the com.yourcompany.adfextensions package in
the Application Navigator and choose the Refactor > Rename option
from the context menu to change the package name of all the classes
to a name you prefer.

Note: If you don't see the Deployment Profiles category in the New
Gallery, set the Filter By dropdown list at the top of the dialog to the
All Technologies choice to make it visible.

Customizing Framework Behavior with Extension Classes

25-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. In the Create Library dialog that appears, name the library "Framework Extension
Layer" and select the Class Path node and click Add Entry.

5. Use the Select Path Entry dialog that appears to select the
FrameworkExtensions.jar file that contains the class files for the framework
extension components, then click Select.

6. Select the Source Path node and click Add Entry.

7. Use the Select Path Entry dialog that appears to select the
..\FrameworkExtensions\src directory where the source files for the
framework extension classes reside, then click Select.

8. Click OK to dismiss the Create Library dialog and define the new library.

When finished, you will see your new "Framework Extension Layer" user-defined
library, as shown in Figure 25–6. You can then add this library to the library list of any
project where you will be building business services, and your custom framework
extension classes will be available to reference as the preferred component base
classes.

Figure 25–6 New User-Defined Library for Your Framework Extensions Layer

25.3 Customizing Framework Behavior with Extension Classes
One of the common tasks you'll perform in your framework extension classes is
implementing custom application functionality. Since framework extension code is
written to be used by all components of a specific type, the code you write in these
classes often needs to work with component attributes in a generic way. To address
this need, ADF provides API's that allow you to access component metadata at
runtime. It also provides the ability to associate custom metadata properties with any
component or attribute. You can write your generic framework extension code to
leverage runtime metadata and custom properties to build generic functionality,
which if necessary, only is used in the presence of certain custom properties.

25.3.1 How to Access Runtime Metadata For View Objects and Entity Objects
Figure 25–7 illustrates the three primary interfaces ADF provides for accessing
runtime metadata about view objects and entity objects. The ViewObject interface
extends the StructureDef interface. The class representing the entity definition
(EntityDefImpl) also implements this interface. As its name implies, the
StructureDef defines the structure and the component and provides access to a
collection of AttributeDef objects that offer runtime metadata about each attribute
in the view object row or entity row. Using an AttributeDef, you can access its
companion AttributeHints object to reference hints like the display label, format
mask, tooltip, etc.

Customizing Framework Behavior with Extension Classes

Advanced Business Components Techniques 25-11

Figure 25–7 Runtime Metadata Available for View Objects and Entity Objects

25.3.2 Implementing Generic Functionality Using Runtime Metadata
In Section 7.9.3, "What You May Need to Know About Enabling View Object Key
Management for Read-Only View Objects" you learned that for read-only view objects
the findByKey() method and the setCurrentRowWithKey built-in operation only
work if you override the create() method on the view object to call
setManageRowsByKey(true). This can be a tedious detail to remember if you
create a lot of read-only view objects, so it is a great candidate for automating in a
framework extension class for view objects.

The SRDemo application contains an SRViewObjectImpl class in the
FrameworkExtensions project that is the base class for all view objects in the
application. That framework extension class for view objects extends the base
ViewObjectImpl class and overrides the create() method as shown in
Example 25–4 to automate this task. After calling the super.create() to perform
the default framework functionality when a view object instance is created at runtime,
the code tests whether the view object is a read-only view object with at least one
attribute marked as a key attribute. If this is the case, it invokes
setManageRowsByKey(true).

The isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute() helper
method determines whether the view object is read-only by testing the combination of
the following conditions:

■ isFullSql() is true

This method returns true if the view object's SQL query is completely specified by
the developer, as opposed to having the select list derived automatically based on
the participating entity usages.

■ getEntityDefs() is null

This method returns an array of EntityDefImpl objects representing the view
object's entity usages. If it returns null, then the view object has no entity usages.

It goes on to determine whether the view object has any key attributes by looping over
the AttributeDef array returned by the getAttributeDefs() method. If the
isPrimaryKey() method returns true for any attribute definition in the list, then you
know the view object has a key.

Customizing Framework Behavior with Extension Classes

25-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 25–4 Automating Setting Manage Rows By Key

public class SRViewObjectImpl extends ViewObjectImpl {
protected void create() {
super.create();
if (isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute()) {
setManageRowsByKey(true);

}
}
boolean isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute() {
if (getViewDef().isFullSql() && getEntityDefs() == null) {
for (AttributeDef attrDef : getAttributeDefs()) {
if (attrDef.isPrimaryKey()) {
return true;

}
}

}
return false;

}
// etc.

}

25.3.3 Implementing Generic Functionality Driven by Custom Properties
In JDeveloper, when you create application modules, view objects, and entity objects
you can open the Custom Properties tab of the editor to define custom metadata
properties for any component. These are name/value pairs that you can use to
communicate additional declarative information about the component to the generic
code that you write in framework extension classes. You can use the getProperty()
method in your code to conditionalize generic functionality based on the presence of,
or the specific value of, one of these custom metadata properties.

For example, the SRViewObjectImpl framework extension class in the SRDemo
application overrides the view object's insertRow() method to conditionally force a
row to be inserted and to appear as the last row in the row set. If any view object
extending this framework extension class defines a custom metadata property named
InsertNewRowsAtEnd, then this generic code executes to insert new rows at the end.
If a view object does not define this property, it will have the default insertRow()
behavior. In the SRDemo application, the ServiceHistories view object defines
this custom metadata property so any new rows added to it get inserted at the bottom.

Example 25–5 Conditionally Inserting New Rows at the End of a View Object's Default
RowSet

public class SRViewObjectImpl extends ViewObjectImpl {
private static final String INSERT_NEW_ROWS_AT_END = "InsertNewRowsAtEnd";
public void insertRow(Row row) {
super.insertRow(row);
if (getProperty(INSERT_NEW_ROWS_AT_END) != null) {
row.removeAndRetain();
last();
next();
getDefaultRowSet().insertRow(row);

}
}
// etc.

}

In addition to defining component-level custom properties, you can also define
properties on view object attributes, entity object attributes, and domains. At runtime,

Customizing Framework Behavior with Extension Classes

Advanced Business Components Techniques 25-13

you access them using the getProperty() method on the AttributeDef interface
for a given attribute.

25.3.4 What You May Need to Know

25.3.4.1 Determining the Attribute Kind at Runtime
In addition to providing information about an attribute’s name, Java type, SQL type,
and many other useful pieces of information, the AttributeDef interface contains
the getAttributeKind() method that you can use to determine the kind of
attribute it represents. This method returns a byte value corresponding to one of the
public constants in the AttributeDef interface listed in Table 25–1.

25.3.4.2 Configuring Design Time Custom Property Names
Once you have written framework extension classes that depend on custom
properties, you can set a JDeveloper preference so that your custom property names
show in the dropdown list on the Custom Properties tab of the appropriate
component editor. To set up these pre-defined custom property names, choose Tools |
Preferences from the JDeveloper main menu and open the Business Components >
Property Names tab in the Preferences dialog.

25.3.4.3 Setting Custom Properties at Runtime
You may find it handy to programmatically set custom property values at runtime.
While the setProperty() API to perform this function is by design not available to
clients on the ViewObject, ApplicationModule, or AttributeDef interfaces in
the oracle.jbo package, code you write inside your ADF components' custom Java
classes can use it.

Table 25–1 Entity Object and View Object Attribute Kinds

Public AttributeDef Constant Attribute Kind Description

ATTR_PERSISTENT Persistent attribute

ATTR_TRANSIENT Transient attribute

ATTR_ENTITY_DERIVED View object attribute mapped to an entity-level
transient attribute

ATTR_SQL_DERIVED SQL-Calculated attribute

ATTR_DYNAMIC Dynamic attribute

ATTR_ASSOCIATED_ROWITERATOR Accessor attribute returning a RowSet of set of zero
or more Rows

ATTR_ASSOCIATED_ROW Accessor attribute returning a single Row

Note: You can experiment with an example of this technique by
using the ProgrammaticallySetProperties project in the
AdvancedExamples workspace. See the note at the beginning of this
chapter for download instructions.

Creating Generic Extension Interfaces

25-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

25.4 Creating Generic Extension Interfaces
In addition to creating framework extension classes, you can create custom interfaces
that all of your components can implement by default. This section considers an
example for an application module, however, the same functionality is possible for a
custom extended view object and view row interface as well.

Assume that you have a CustomApplicationModuleImpl class that extends
ApplicationModuleImpl and that you want to expose two custom methods like
this:

public void doFeatureOne(String arg);
public int anotherFeature(String arg);

Perform the following steps to create a custom extension interface
CustomApplicationModule and have your CustomApplicationModuleImpl
class implement it.

1. Create a custom interface that contains the methods you would like to expose
globally on your application module components. For this scenario, that interface
would look like this:

package devguide.advanced.customintf.fwkext;
/**
* NOTE: This does not extend the
* ==== oracle.jbo.ApplicationModule interface.
*/
public interface CustomApplicationModule {
public void doFeatureOne(String arg);
public int anotherFeature(String arg);

}

Notice that the interface does not extend the oracle.jbo.ApplicationModule
interface.

2. Modify your CustomApplicationModuleImpl application module framework
extension class to implement this new CustomApplicationModule interface.

package devguide.advanced.customintf.fwkext;
import oracle.jbo.server.ApplicationModuleImpl;
public class CustomApplicationModuleImpl

extends ApplicationModuleImpl
implements CustomApplicationModule {

public void doFeatureOne(String arg) {
System.out.println(arg);

}
public int anotherFeature(String arg) {
return arg == null ? 0 : arg.length();

}
}

3. Rebuild your project.

Note: The examples in this section refer to the
CustomizedExtensionInterface project in the
AdvancedExamples workspace. See the note at the beginning of this
chapter for download instructions.

Creating Generic Extension Interfaces

Advanced Business Components Techniques 25-15

The ADF wizards will only "see" your interfaces after they have been successfully
compiled.

Then, to create a new ProductModule application module which exposes the global
extension interface CustomApplicationModule and is based on the
CustomApplicationModuleImpl framework extension class, do the following:

1. Ensure that your application module has a custom Java class.

If it doesn't, you can enable one on the Java page of the Application Module Editor
and clicking the Apply button.

2. Select CustomApplicationModuleImpl as the base class for the application
module.

To do this, again use the Java tab of the Application Module Editor and open the
Extends dialog by clicking the Class Extends button.

3. Indicate that you want the CustomApplicationModule interface to be one of
the custom interfaces that clients can use with your component.

To do this, open the Client Interface page. Click on the Interfaces button. Shuttle
the CustomApplicationModule interface from the Available to the Selected
list, then click OK.

4. Insure that at least one method appears in the Selected list on the Client Interface
page.

When you dismiss the Application Module editor, JDeveloper generates the
application module custom interface ProductModule. It automatically extends both
the base ApplicationModule interface and your CustomApplicationModule
extension interface like this:

package devguide.advanced.customintf.common;
import devguide.advanced.customintf.fwkext.CustomApplicationModule;

import oracle.jbo.ApplicationModule;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// ---
public interface ProductModule

extends CustomApplicationModule, ApplicationModule {
void doSomethingProductRelated();

}

Once you've done this, then client code can cast your ProductModule application
module to a CustomApplicationModule interface and invoke the generic extension
methods it contains in a strongly-typed way.

Note: You need to select at least one method in the Selected list on
the Client Interface page, even if it means redundantly selecting one
of the methods on the global extension interface. Any method will do
in order to get JDeveloper to generate the custom ProductModule
interface.

Note: The basic steps are the same for exposing methods on a
ViewObjectImpl framework extension class, as well as for a
ViewRowImpl extension class.

Invoking Stored Procedures and Functions

25-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

25.5 Invoking Stored Procedures and Functions
You can write code in the custom Java classes for your business components to invoke
database stored procedures and functions. Here you'll consider some simple examples
based on procedures and functions in a PL/SQL package; however, using the same
techniques, you also can invoke procedures and functions that are not part of a
package.

Consider the following PL/SQL package:

create or replace package devguidepkg as
procedure proc_with_no_args;
procedure proc_with_three_args(n number, d date, v varchar2);
function func_with_three_args(n number, d date, v varchar2) return varchar2;
procedure proc_with_out_args(n number, d out date, v in out varchar2);

end devguidepkg;

The following sections explain how to invoke each of the example procedures and
functions in this package.

25.5.1 Invoking Stored Procedures with No Arguments
If you need to invoke a stored procedure that takes no arguments, you can use the
executeCommand() method on the DBTransaction interface (in the
oracle.jbo.server package as shown in Example 25–6.

Example 25–6 Executing a Stored Procedure with No Arguments

// In StoredProcTestModuleImpl.java
public void callProcWithNoArgs() {
getDBTransaction().executeCommand(
"begin devguidepkg.proc_with_no_args; end;");

}

25.5.2 Invoking Stored Procedure with Only IN Arguments
Invoking stored procedures that accept only IN-mode arguments — which is the
default PL/SQL parameter mode if not specified — requires using a JDBC
PreparedStatement object. The DBTransaction interface provides a
createPreparedStatement() method to create this object for you in the context of
the current database connection. You could use a helper method like the one shown in
Example 25–7 to simplify the job of invoking a stored procedure of this kind using a
PreparedStatement. Importantly, by using a helper method, you can encapsulate
the code that closes the JDBC PreparedStatement after executing it. The code
performs the following basic tasks:

1. Creates a JDBC PreparedStatement for the statement passed in, wrapping it in
a PL/SQL begin...end block.

2. Loops over values for the bind variables passed in, if any.

Note: The examples in this section refer to the
StoredProcedureInvocation project in the AdvancedExamples
workspace. See the note at the beginning of this chapter for download
instructions.

Invoking Stored Procedures and Functions

Advanced Business Components Techniques 25-17

3. Sets the value of each bind variable in the statement.

Notice that since JDBC bind variable API's use one-based numbering, the code
adds one to the zero-based for loop index variable to account for this.

4. Executes the statement.

5. Closes the statement.

Example 25–7 Helper Method to Simplify Invoking Stored Procedures with Only IN
Arguments

protected void callStoredProcedure(String stmt, Object[] bindVars) {
PreparedStatement st = null;
try {
// 1. Create a JDBC PreparedStatement for
st = getDBTransaction().createPreparedStatement("begin "+stmt+";end;",0);
if (bindVars != null) {
// 2. Loop over values for the bind variables passed in, if any
for (int z = 0; z < bindVars.length; z++) {
// 3. Set the value of each bind variable in the statement
st.setObject(z + 1, bindVars[z]);

}
}
// 4. Execute the statement
st.executeUpdate();

}
catch (SQLException e) {
throw new JboException(e);

}
finally {
if (st != null) {
try {
// 5. Close the statement
st.close();

}
catch (SQLException e) {}

}
}

}

With a helper method like this in place, calling the proc_with_three_args
procedure above would look like this:

// In StoredProcTestModuleImpl.java
public void callProcWithThreeArgs(Number n, Date d, String v) {
callStoredProcedure("devguidepkg.proc_with_three_args(?,?,?)",

new Object[]{n,d,v});
}

Notice the question marks used as JDBC bind variable placeholders for the arguments
passed to the function. JDBC also supports using named bind variables, but using
these simpler positional bind variables is also fine since the helper method is just
setting the bind variable values positionally.

Invoking Stored Procedures and Functions

25-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

25.5.3 Invoking Stored Function with Only IN Arguments
Invoking stored functions that accept only IN-mode arguments requires using a JDBC
CallableStatement object in order to access the value of the function result after
executing the statement. The DBTransaction interface provides a
createCallableStatement() method to create this object for you in the context of
the current database connection. You could use a helper method like the one shown in
Example 25–8 to simplify the job of invoking a stored function of this kind using a
CallableStatement. As above, the helper method encapsulates both the creation
and clean up of the JDBC statement being used.

The code performs the following basic tasks:

1. Creates a JDBC CallableStatement for the statement passed in, wrapping it in
a PL/SQL begin...end block.

2. Registers the first bind variable for the function return value.

3. Loops over values for the bind variables passed in, if any.

4. Sets the value of each bind user-supplied bind variable in the statement.

Notice that since JDBC bind variable API's use one-based numbering, and since
the function return value is already the first bind variable in the statement, the
code adds two to the zero-based for loop index variable to account for these.

5. Executes the statement.

6. Returns the value of the first bind variable.

7. Closes the statement.

Example 25–8 Helper Method to Simplify Invoking Stored Functions with Only IN
Arguments

// Some constants
public static int NUMBER = Types.NUMERIC;
public static int DATE = Types.DATE;
public static int VARCHAR2 = Types.VARCHAR;

protected Object callStoredFunction(int sqlReturnType, String stmt,
Object[] bindVars) {

CallableStatement st = null;
try {
// 1. Create a JDBC CallabledStatement
st = getDBTransaction().createCallableStatement(

"begin ? := "+stmt+";end;",0);
// 2. Register the first bind variable for the return value
st.registerOutParameter(1, sqlReturnType);
if (bindVars != null) {
// 3. Loop over values for the bind variables passed in, if any
for (int z = 0; z < bindVars.length; z++) {
// 4. Set the value of user-supplied bind vars in the stmt
st.setObject(z + 2, bindVars[z]);

}
}
// 5. Set the value of user-supplied bind vars in the stmt
st.executeUpdate();
// 6. Return the value of the first bind variable
return st.getObject(1);

}

Invoking Stored Procedures and Functions

Advanced Business Components Techniques 25-19

catch (SQLException e) {
throw new JboException(e);

}
finally {
if (st != null) {
try {
// 7. Close the statement
st.close();

}
catch (SQLException e) {}

}
}

}

With a helper method like this in place, calling the func_with_three_args
procedure above would look like this:

// In StoredProcTestModuleImpl.java
public String callFuncWithThreeArgs(Number n, Date d, String v) {
return (String)callStoredFunction(VARCHAR2,

"devguidepkg.func_with_three_args(?,?,?)",
new Object[]{n,d,v});

}

Notice the question marks as above that are used as JDBC bind variable placeholders
for the arguments passed to the function. JDBC also supports using named bind
variables, but using these simpler positional bind variables is also fine since the helper
method is just setting the bind variable values positionally.

25.5.4 Calling Other Types of Stored Procedures
Calling a stored procedure or function like devguidepkg.proc_with_out_args
that includes arguments of OUT or IN OUT mode requires using a
CallableStatement as in the previous section, but is a little more challenging to
generalize into a helper method. Example 25–9 illustrates the JDBC code necessary to
invoke the devguidepkg.proc_with_out_args procedure.

The code performs the following basic tasks:

1. Defines a PL/SQL block for the statement to invoke.

2. Creates the CallableStatement for the PL/SQL block.

3. Registers the positions and types of the OUT parameters.

4. Sets the bind values of the IN parameters.

5. Executes the statement.

6. Creates a JavaBean to hold the multiple return values

The DateAndStringBean class contains bean properties named dateVal and
stringVal.

7. Sets the value of its dateVal property using the first OUT param.

8. Sets value of its stringVal property using second OUT param.

9. Returns the result.

10. Closes the JDBC CallableStatement.

Invoking Stored Procedures and Functions

25-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 25–9 Calling a Stored Procedure with Multiple OUT Arguments

public Date callProcWithOutArgs(Number n, String v) {
CallableStatement st = null;
try {
// 1. Define the PL/SQL block for the statement to invoke
String stmt = "begin devguidepkg.proc_with_out_args(?,?,?); end;";
// 2. Create the CallableStatement for the PL/SQL block
st = getDBTransaction().createCallableStatement(stmt,0);
// 3. Register the positions and types of the OUT parameters
st.registerOutParameter(2,Types.DATE);
st.registerOutParameter(3,Types.VARCHAR);
// 4. Set the bind values of the IN parameters
st.setObject(1,n);
st.setObject(3,v);
// 5. Execute the statement
st.executeUpdate();
// 6. Create a bean to hold the multiple return values
DateAndStringBean result = new DateAndStringBean();
// 7. Set value of dateValue property using first OUT param
result.setDateVal(new Date(st.getDate(2)));
// 8. Set value of stringValue property using 2nd OUT param
result.setStringVal(st.getString(3));
// 9. Return the result
return result;

} catch (SQLException e) {
throw new JboException(e);

} finally {
if (st != null) {
try {
// 10. Close the JDBC CallableStatement
st.close();

}
catch (SQLException e) {}

}
}

}

The DateAndString bean used in Example 25–9 is a simple JavaBean with two bean
properties like this:

package devguide.advanced.storedproc;
import java.io.Serializable;
import oracle.jbo.domain.Date;
public class DateAndStringBean implements Serializable {
Date dateVal;
String stringVal;
public void setDateVal(Date dateVal) {this.dateVal=dateVal;}
public Date getDateVal() {return dateVal;}
public void setStringVal(String stringVal) {this.stringVal=stringVal;}
public String getStringVal() {return stringVal;}

}

Working with Libraries of Reusable Business Components

Advanced Business Components Techniques 25-21

25.6 Accessing the Current Database Transaction
Since the ADF Business Components components abstract all of the lower-level
database programming details for you, you typically won't need direct access to the
JDBC Connection object. Unless you use the reserved release mode described in
Section 28.3.1, "Supported Release Levels", there is no guarantee at runtime that your
application will use the exact same application module instance or JDBC Connection
instance across different web page requests. Since inadvertently holding a reference to
the JDBC Connection object in this type of pooled services environment can cause
unpredictable behavior at runtime, by design, the ADF Business Components layer
has no direct API to obtain the JDBC Connection. This is an intentional attempt to
discourage its direct use and inadvertent abuse.

However, on occasion it may come in handy when you're trying to integrate
third-party code with ADF Business Components, so you can use a helper method like
the one shown in Example 25–10 to access the connection.

Example 25–10 Helper Method to Access the Current JDBC Connection

/**
* Put this method in your XXXXImpl.java class where you need
* to access the current JDBC connection
*/
private Connection getCurrentConnection() throws SQLException {
/* Note that we never execute this statement, so no commit really happens */
PreparedStatement st = getDBTransaction().createPreparedStatement("commit",1);
Connection conn = st.getConnection();
st.close();
return conn;
}

25.7 Working with Libraries of Reusable Business Components
As with other Java components, you can create a JAR file containing one of more
packages of reusable ADF components. Then, in other projects you can import one or
more packages of components from this component library to reference those in a new
application.

Note: In order to allow the custom method to be a legal candidate
for inclusion in an application module's custom service interface (if
desired), the bean needs to implement the java.io.Serializable.
interface. Since this is a "marker" interface, this involves simply
adding the implements Serializable keywords without needing
to code the implementation of any interface methods.

Caution: Oracle recommends that you never cache the JDBC
connection obtained using the helper method above in your own code
anywhere. Instead, call the helper method each time you need it to
avoid inadvertently holding a reference to a JDBC Connection that
might be used in another request by another user at a later time do to
the pooled services nature of the ADF runtime environment.

Working with Libraries of Reusable Business Components

25-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

25.7.1 How To Create a Reusable Library of Business Components
Use the Create Business Components Archive Profile dialog to create a JAR file
containing the Java classes and XML component definitions that comprise your
business components library. This is available in the New Gallery in the General >
Deployment Files category.

Give the deployment profile a name like ReusableComponents.bcdeploy and
click OK. As shown in Figure 25–8, the ReusableComponents.bcdeploy business
components deployment archive profile contains two nested JAR deployment profiles:

■ ReusableComponentsMiddleTier.deploy

■ ReusableComponentsCommon.deploy

These two nested profiles are standard JAR deployment profiles that are
pre-configured to bundle:

■ All of the business components custom java classes and XML component
definitions into a ReusableComponentsCSMT.jar archive

■ All of the client interfaces, message bundle classes, and custom domains into a
ReusableComponentsCSCommon.jar

They are partitioned this way in order to simplify deployment of ADF Business
Components-based applications. The *CSMT.jar is an archive of components
designed to be deployed only on the middle tier application server. The
*CSCommon.jar is common both to the application server and to the remote client
tier in the deployment scenario when the client interacting with the application
module is running in a different physical server from the application module with
which it is working.

Note: The examples in this section refer to the
ReusableComponents,
ProjectImportingReusableComponents, and
OtherProjectWithComponents projects in the
AdvancedExamples workspace. See the note at the beginning of this
chapter for download instructions.

Note: If you don't see the Deployment Profiles category in the New
Gallery, set the Filter By dropdown list at the top of the dialog to the
All Technologies choice to make it visible.

Working with Libraries of Reusable Business Components

Advanced Business Components Techniques 25-23

Figure 25–8 Business Components Archive Deployment Profile Contains Nested
Profiles

To create the JAR files, select the ReusableComponents.bcdeploy node in the
Application Navigator under the Resources folder, and choose Deploy on the context
menu. A Deployment tab appears in the JDeveloper Log window that should display
feedback like:

---- Deployment started. ---- Apr 28, 2006 7:04:02 PM
Running dependency analysis...
Wrote JAR file to ...\ReuseableComponents\deploy\ReuseableComponentsCSMT.jar
Running dependency analysis...
Wrote JAR file to ...\ReuseableComponents\deploy\ReuseableComponentsCSCommon.jar
Elapsed time for deployment: less than one second
---- Deployment finished. ---- Apr 28, 2006 7:04:02 PM

25.7.2 How To Import a Package of Reusable Components from a Library
Once you have created a reusable library of business components, you can import one
or more packages of components from that library in other projects to reference them.
When you import a package of business components from a library, the components in
that package are available in the various Available lists of the ADF Business
Components component wizards and editor, however they do not display in the
Application Navigator. The only components that appear in the Application Navigator
are the ones in the source path for the current project.

To import a package of business components from a library, do the following:

1. Define a library for your JAR file on the Libraries tab of the Project Properties
dialog of the importing project.

You can define the library as a project-level library or a user-level library. Be sure
to include both the *CSMT.jar and the *CSCommon.jar in the class path of the
library definition.

2. Include the new library in your importing project's library list.

3. With the importing project selected in the Application Navigator, choose File |
Import from the JDeveloper main menu.

4. In the Import dialog that appears, select Business Components from the list.

Working with Libraries of Reusable Business Components

25-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

5. Use the file open dialog to navigate into your library's *CSMT.jar file — as if it
were a directory — and select the XML component definition file from any
components in the package whose components you want to import.

6. Acknowledge the alert that confirms the successful importing of the package.

7. Repeat steps 3-6 again for each package of components you want to import.

Assuming that there was an entity object like Product in the package(s) of
components you imported, you could then create a new view object in the importing
project using the imported Product component as its entity usage. This is just one
example. You can reference any of the imported components as if they were in the
source path of your project. The only difference is that you cannot edit the imported
components. In fact, the reusable component library JAR file might only contain the
XML component definition files and the Java *.class files for the components
without any source code.

25.7.3 What Happens When You Import a Package of Reusable Components from a
Library

When you import a package of components into a project named
YourImportingProjectName, JDeveloper adds a reference to that package in the
YourImportingProjectName.jpx file in the root directory of your importing
project's source path. As part of this entry, it includes a design time project named _
LocationURL whose value points to the JAR file in which the imported components
reside.

25.7.4 What You May Need to Know

25.7.4.1 Adding Other Directories of Business Components to Project Source Path
The Application Navigator displays all business components in the source path of
your project. If you want to add additional business components from a directory that
is not currently part of your project's source path, then open the Project Content page
of the Project Properties dialog and add the parent directory for these other
components as one of the directories in the Java Content list. In contrast to imported
packages of components, these additional components added to your project's source
path will be fully editable and will appear in the Application Navigator.

25.7.4.2 Have to Close/Reopen to See Changes from a JAR
If you make changes to your imported components and update the JAR file that
contains them, you need to close and reopen any importing projects in order to pickup
the changes. This does not require exiting out of JDeveloper. You can select your
importing project in the Application Navigator, choose File | Close from the main
menu, and then re-expand the project's nodes to close and reopen the project. When
you do this, JDeveloper will reread the components from the updated version of the
imported JAR file.

Customizing Business Components Error Messages

Advanced Business Components Techniques 25-25

25.7.4.3 How to Remove an Imported Package from a Project
If you mistakenly import a package of components, or wish to remove an imported
package of components that you are not using, at this time, JDeveloper provides no
interactive way to do this. To unimport a package, you need to follow these steps:

1. Remove the workspace in question from the Application Navigator.

2. Use a text editor to edit the YourImportingProjectName.jpx file.

3. Remove the <Containee> element in that file the represents the imported package
you want to remove.

This means removing every line in the file between (and including) the
appropriate <Containee> tag for that package and its matching </Containee> tag.

4. Reopen the workspace in JDeveloper.

25.8 Customizing Business Components Error Messages

25.8.1 How to Customize Base ADF Business Components Error Messages
You can customize any of the built-in ADF Business Components error messages by
providing an alternative message string for the error code in a custom message
bundle. Assume you do not like the built-in error message:

JBO-27014: Attribute Name is Product is required

If you have requested the Oracle ADF source code from Oracle Worldwide Support,
you can look in the CSMessageBundle.java file in the oracle.jbo package to see
that this error message is related to the combination of the following lines in that
message bundle file:

public class CSMessageBundle extends CheckedListResourceBundle {
// etc.
public static final String EXC_VAL_ATTR_MANDATORY = "27014";
// etc.
private static final Object[][] sMessageStrings = {
// etc.
{EXC_VAL_ATTR_MANDATORY, "Attribute {2} in {1} is required"},
// etc.

}
}

Caution: Do not remove an imported package if your project still has
components that reference it. If you do, JDeveloper will throw
exceptions when the project is opened, or your application may have
unpredictable behavior. Ensure that there are no references to any of
the components in the imported package before manually removing
the package entry from the *.jpx file.

Note: The examples in this section refer to the
CustomizedErrorMessages project in the AdvancedExamples
workspace. See the note at the beginning of this chapter for download
instructions.

Customizing Business Components Error Messages

25-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The numbered tokens {2} and {1} are error message placeholders. In this example
the {l} is replaced at runtime with the name of the entity object and the {2} with the
name of the attribute.

To create a custom message bundle file, do the following:

1. Open the Business Components > Options page in the Project Properties dialog
for the project containing your business components.

Notice the Custom Message Bundles to use in this Project list at the bottom of the
dialog.

2. Click New.

3. Enter a name and package for the custom message bundle in the Create
MessageBundle class dialog and click OK.

4. Click OK to dismiss the Project Properties dialog and open the new custom
message bundle class in the source editor.

5. Edit the two-dimensional String array in the custom message bundle class to
contain any customized messages you'd like to use.

Example 25–11 illustrates a custom message bundle class that overrides the error
message string for the JBO-27014 error considered above.

Example 25–11 Custom ADF Business Components Message Bundle

package devguide.advanced.customerrs;
import java.util.ListResourceBundle;
public class CustomMessageBundle extends ListResourceBundle {
private static final Object[][] sMessageStrings
= new String[][] {

{"27014","You must provide a value for {2}"}
};

protected Object[][] getContents() {
return sMessageStrings;

}
}

25.8.2 What Happens When You Customize Base ADF Business Components Error
Messages

After adding this message to your custom message bundle file, if you test the
application using the Business Components Browser and try to blank out the value of
a mandatory attribute, you'll now see your custom error message instead of the
default one:

JBO-27014: You must provide a value for Name

Note: If the fully-qualified name of your custom message bundle file
does not appear in the Custom Message Bundles to use in this
Project list, click the Remove button, then click the Add button to add
the new message bundle file created. When the custom message
bundle file is correctly registered, it's fully-qualified class name
should appear in the list.

Customizing Business Components Error Messages

Advanced Business Components Techniques 25-27

You can add as many messages to the message bundle as you want. Any message
whose error code key matches one of the built-in error message codes will be used at
runtime instead of the default one in the oracle.jbo.CSMessageBundle message
bundle.

25.8.3 How to Customize Error Messages for Database Constraint Violations
If you enforce constraints in the database, you might want to provide a custom error
message in your ADF application to display to the end user when one of those
constraints is violated. For example, imagine that you added a constraint called NAME_
CANNOT_BEGIN_WITH_X to the SRDemo application’s PRODUCTS table using the
following DDL statement:

alter table products add (
constraint name_cannot_begin_with_x

check (upper(substr(name,1,1)) != 'X')
);

To define a custom error message in your application, just add a message to a custom
message bundle with the constraint name as the message key. For example, assuming
that you use the same CustomMessageBundle.java class created in the previous
section, Example 25–12 shows what it would look like to define a message with the
key NAME_CANNOT_BEGIN_WITH_X which matches the name of the database
constraint name defined above.

Example 25–12 Customizing Error Message for Database Constraint Violation

package devguide.advanced.customerrs;
import java.util.ListResourceBundle;
public class CustomMessageBundle extends ListResourceBundle {
private static final Object[][] sMessageStrings
= new String[][] {

{"27014","You must provide a value for {2}"},
{"NAME_CANNOT_BEGIN_WITH_X",
"The name cannot begin with the letter x!"}

};
protected Object[][] getContents() {
return sMessageStrings;

}
}

25.8.4 How to Implement a Custom Constraint Error Handling Routine
If the default facility for assigning a custom message to a database constraint violation
does not meet your needs, you can implement your own custom constraint error
handling routine. Doing this requires creating a custom framework extension class for
the ADF transaction class, which you then configure your application module to use at
runtime.

25.8.4.1 Creating a Custom Database Transaction Framework Extension Class
To write a custom framework extension class for the ADF transaction, create a class
like the CustomDBTransactionImpl shown in Example 25–13. This example
overrides the transaction object's postChanges() method to wrap the call to
super.postChanges() with a try/catch block in order to perform custom
processing on any DMLConstraintException errors that might be thrown. In this
simple example, the only custom processing being performed is a call to
ex.setExceptions(null) to clear out any nested detail exceptions that the

Customizing Business Components Error Messages

25-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

DMLConstraintException might have. Instead of this, you could perform any
other kind of custom exception processing required by your application, including
throwing a custom exception, provided your custom exception extends
JboException directly or indirectly.

Example 25–13 Custom Database Transaction Framework Extension Class

package devguide.advanced.customerrs;
import oracle.jbo.DMLConstraintException;
import oracle.jbo.JboException;
import oracle.jbo.common.StringManager;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.TransactionEvent;
public class CustomDBTransactionImpl extends DBTransactionImpl2 {
public void postChanges(TransactionEvent te) {
try {
super.postChanges(te);

}
/*
* Catch the DML constraint exception
* and perform custom error handling here
*/
catch (DMLConstraintException ex) {
ex.setExceptions(null);
throw ex;

}
}

}

25.8.4.2 Configuring an Application Module to Use a Custom Database Transaction
Class
In order for your application module to use a custom database transaction class at
runtime, you must:

1. Provide a custom implementation of the DatatabaseTransactionFactory
class that overrides the create() method to return an instance of the customized
transaction class.

2. Configure the value of the TransactionFactory property to be the
fully-qualified name of this custom transaction factory class.

Example 25–14 shows a custom database transaction factory class that does this. It
returns a new instance of the CustomDBTransactionImpl class when the
framework calls the create() method on the database transaction factory.

Creating Extended Components Using Inheritance

Advanced Business Components Techniques 25-29

Example 25–14 Custom Database Transaction Factory Class

package devguide.advanced.customerrs;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.DatabaseTransactionFactory;
public class CustomDatabaseTransactionFactory

extends DatabaseTransactionFactory {
public CustomDatabaseTransactionFactory() {
}
/**
* Return an instance of our custom ToyStoreDBTransactionImpl class
* instead of the default implementation.
*
* @return instance of custom CustomDBTransactionImpl implementation.
*/
public DBTransactionImpl2 create() {
return new CustomDBTransactionImpl();

}
}

To complete the job, use the Properties tab of the Configuration Editor to assign the
value
devguide.advanced.customerrs.CustomDatabaseTransactionFactory to
the TransactionFactory property. When you run the application using this
configuration, your custom transaction class will be used.

25.9 Creating Extended Components Using Inheritance
Whenever you create a new business component, if necessary, you can extend an
existing one to create a customized version of the original. For example, in the
SRDemo application, as shown in Figure 25–9, the ServiceRequestsByStatus
view object extends the ServiceRequests view object to add a named bind variable
named TheStatus and to customize the WHERE clause to reference that bind variable.

Figure 25–9 ADF Business Components Can Extend Another Component

While the figure shows a view object example, this component inheritance facility is
available for all component types. When one component extends another, the
extended component inherits all of the metadata and behavior from the parent it
extends. In the extended component, you can add new features or customize existing
features of its parent component both through metadata and Java code.

Creating Extended Components Using Inheritance

25-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

25.9.1 How To Create a Component That Extends Another
To create an extended component, use the component wizard in the New Gallery for
the type of component you want to create. For example, to create an extended view
object, you use the Create View Object wizard. On the Name page of the wizard — in
addition to specifying a name and a package for the new component — provide the
fully-qualified name of the component that you want to extend in the Extends field. To
pick the component name from a list, use the Browse button next to the Extends field.
Then, continue to create the extended component in the normal way using the
remaining panels of the wizard.

25.9.2 What Happens When You Create a Component That Extends Another
As you've learned, the ADF business components you create are comprised of an XML
component definition and an optional Java class. When you create a component that
extends another, JDeveloper reflects this component inheritance in both the XML
component definition and in any generated Java code for the extended component.

25.9.2.1 Understanding an Extended Component's XML Descriptor
JDeveloper notes the name of the parent component in the new component's XML
component definition by adding an Extends attribute to the root component element.
Any new declarative features you add or any aspects of the parent component's
definition you've overridden appear in the extended component's XML component
definition. In contrast, metadata that is purely inherited from the parent component is
not repeated for the extended component.

Example 25–15 shows what the ServiceRequstsByStatus.xml XML component
definition for the ServiceRequstsByStatus view object looks like. Notice the
Extends attribute on the <ViewObject> element, <Variable> element related to the
additional bind variable added in the extended view object, and the overridden value
of the Where attribute for the WHERE clause that was modified to reference the
StatusCode bind variable.

Example 25–15 Extended Component Reflects Parent in Its XML Descriptor

<ViewObject
Name="ServiceRequestsByStatus"
Extends="oracle.srdemo.model.queries.ServiceRequests"
Where="((ServiceRequest.CREATED_BY = CreatedByUser.USER_ID)

AND (ServiceRequest.ASSIGNED_TO = AssignedToUser.USER_ID(+)))
AND (ServiceRequest.PROD_ID = Product.PROD_ID)
AND STATUS LIKE NVL(:StatusCode,'%')"

OrderBy="REQUEST_DATE DESC"
BindingStyle="OracleName"
CustomQuery="false"
ComponentClass="oracle.srdemo.model.queries.ServiceRequestsByStatusImpl"
FetchMode="FETCH_AS_NEEDED"
UseGlueCode="false" >

Note: The examples in this section refer to the BaseProject project
in the AdvancedExamples workspace. See the note at the beginning
of this chapter for download instructions.

Creating Extended Components Using Inheritance

Advanced Business Components Techniques 25-31

<Variable
Name="StatusCode"
Kind="where"
Type="java.lang.String"
DefaultValue="%" >

</Variable>
</ViewObject>

25.9.2.2 Understanding Java Code Generation for an Extended Component
If you enable custom Java code for an extended component, JDeveloper automatically
generates the Java classes to extend the respective Java classes of its parent component.
In this way, the extended component can override any aspect of the parent
component's programmatic behavior as necessary. If the parent component is an
XML-only component with no custom Java class of its own, the extended component's
Java class extends whatever base Java class the parent would use at runtime. This
could be the default ADF Business Components framework class in the
oracle.jbo.server package, or could be your own framework extension class if
you have specified that in the Extends dialog of the parent component.

In addition, if the extended component is an application module or view object and
you enable client interfaces on it, JDeveloper automatically generates the extended
component's client interfaces to extend the respective client interfaces of the parent
component. If the respective client interface of the parent component does not exist,
then the extended component's client interface directly extends the appropriate base
ADF Business Components interface in the oracle.jbo package.

25.9.3 What You May Need to Know

25.9.3.1 You Can Use Parent Classes and Interfaces to Work with Extended
Components
Since an extended component is a customized version of its parent, code you write
that works with the parent component's Java classes or its client interfaces works
without incident for either the parent component or any customized version of that
parent component.

For example, assume you have a base Products view object with custom Java classes
and client interfaces like:

■ class ProductsImpl

■ row class ProductsRowImpl

■ interface Products

■ row interface ProductsRow

If you create a ProductsByName view object that extends Products, then you can
use the base component's classes and interface to work both with Products and
ProductsByName.

Creating Extended Components Using Inheritance

25-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 25–16 illustrates a test client program that works with the Products,
ProductsRow, ProductsByName, and ProductsByNameRow client interfaces. A
few interesting things to note about the example are the following:

1. You can use parent Products interface for working with the ProductsByName
view object that extends it.

2. Alternatively, you can cast an instance of the ProductsByName view object to its
own more specific ProductsByName client interface.

3. You can test if row ProductsRow is actually an instance of the more specific
ProductsByNameRow before casting it and invoking a method specific to the
ProductsByNameRow interface.

Example 25–16 Working with Parent and Extended Components

package devguide.advanced.extsub;
/* imports omitted */
public class TestClient {
public static void main(String[] args) {
String amDef = "devguide.advanced.extsub.ProductModule";
String config = "ProductModuleLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);
Products products = (Products)am.findViewObject("Products");
products.executeQuery();
ProductsRow product = (ProductsRow)products.first();
printAllAttributes(products,product);
testSomethingOnProductsRow(product);
// 1. You can use parent Products interface for ProductsByName
products = (Products)am.findViewObject("ProductsById");
// 2. Or cast it to its more specific ProductsByName interface
ProductsByName productsById = (ProductsByName)products;
productsById.setProductName("Ice");
productsById.executeQuery();
product = (ProductsRow)productsById.first();
printAllAttributes(productsById,product);
testSomethingOnProductsRow(product);
am.getTransaction().rollback();
Configuration.releaseRootApplicationModule(am,true);

}
private static void testSomethingOnProductsRow(ProductsRow product) {
try {
// 3. Test if row is a ProductsByNameRow before casting
if (product instanceof ProductsByNameRow) {
ProductsByNameRow productByName = (ProductsByNameRow)product;
productByName.someExtraFeature("Test");

}
product.setName("Q");
System.out.println("Setting the Name attribute to 'Q' succeeded.");

}
catch (ValidationException v) {
System.out.println(v.getLocalizedMessage());

}
}
private static void printAllAttributes(ViewObject vo, Row r) {
String viewObjName = vo.getName();
System.out.println("Printing attribute for a row in VO '"+

viewObjName+"'");
StructureDef def = r.getStructureDef();
StringBuilder sb = new StringBuilder();

Creating Extended Components Using Inheritance

Advanced Business Components Techniques 25-33

int numAttrs = def.getAttributeCount();
AttributeDef[] attrDefs = def.getAttributeDefs();
for (int z = 0; z < numAttrs; z++) {
Object value = r.getAttribute(z);
sb.append(z > 0 ? " " : "")
.append(attrDefs[z].getName())
.append("=")
.append(value == null ? "<null>" : value)
.append(z < numAttrs - 1 ? "\n" : "");

}
System.out.println(sb.toString());

}
}

Running the test client above produces the following results:

Printing attribute for a row in VO 'Products'
ProdId=100
Name=Washing Machine W001
Checksum=I am the Product Class

Setting the Name attribute to 'Q' succeeded.
Printing attribute for a row in VO 'ProductsById'
ProdId=119
Name=Ice Maker I012
Checksum=I am the Product Class
SomeExtraAttr=SomeExtraAttrValue

Called someExtraFeature of ProductsByNameRowImpl
Setting the Name attribute to 'Q' succeeded.

25.9.3.2 Class Extends is Disabled for Extended Components
When you create an extended component, the Class Extends button on the Java page
of the extended component is disabled. This is due to the fact that JDeveloper
automatically extends the appropriate class of its parent component, so it does not
make sense to allow you to select a different class.

25.9.3.3 Interesting Aspects You Can Extend for Key Component Types

Entity Objects
When you create an extended entity object, you can introduce new attributes, new
associations, new validators, and new custom code. You can override certain
declarative aspects of existing attributes as well as overriding any method from the
parent component's class.

View Objects
When you create an extended view object, you can introduce new attributes, new view
links, new bind variables, and new custom code. You can override certain declarative
aspects of existing attributes as well as overriding any method from the parent
component's class.

Note: In this example, Products is an entity-based view object based
on the Product entity object. The Product entity object includes a
transient Checksum attribute that returns the string "I am the Product
class". You'll learn more about why this was included in the example
in Section 25.10, "Substituting Extended Components In a Delivered
Application".

Creating Extended Components Using Inheritance

25-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Application Modules
When you create an extended application module, you can introduce new view object
instances or new nested application module instance and new custom code. You can
also override any method from the parent component's class.

25.9.3.4 Extended Components Have Attribute Indices Relative to Parent
If you add new attributes in an extended entity object or view object, the attribute
index numbers are computed relative to the parent component. For example, consider
the Products view object mentioned above. If you enable a custom view row class, it
might have attribute index constants defined in the ProductsRowImpl.java class
like this:

public class ProductsRowImpl extends ViewRowImpl
implements ProductsRow {

public static final int PRODID = 0;
public static final int NAME = 1;
public static final int CHECKSUM = 2;
//etc.

}

When you create an extended view object like ProductsByName, if that view object
adds an addition attribute like SomeExtraAttr and has a custom view row class
enabled, then its attribute constants will be computed relative to the maximum value
of the attribute constants in the parent component:

public class ProductsByNameRowImpl extends ProductsRowImpl
implements ProductsByNameRow {

public static final int MAXATTRCONST =
ViewDefImpl.getMaxAttrConst("devguide.advanced.extsub.Products");

public static final int SOMEEXTRAATTR = MAXATTRCONST;

Additional attributes would have index values of MAXATTRCONST+1,
MAXATTRCONST+2, etc.

25.9.3.5 Design Time Limitations for Changing Extends After Creation
After defining an extended component, JDeveloper allows you to change the parent
component from which an extended component inherits. You can accomplish by:

■ Selecting the extended component in the Application Navigator

■ Using the Property Inspector to change the Extends property

However, you cannot currently use this technique to change the extended component
to not inherit from any parent. The one exception to this limitation is the entity object,
whose component editor offers an Extends field on the Name page that you can blank
out if necessary. For all other extended components, to make them no longer extend
from a parent component you need to delete and recreate them to accomplish this.

Substituting Extended Components In a Delivered Application

Advanced Business Components Techniques 25-35

25.10 Substituting Extended Components In a Delivered Application
If you deliver packaged applications that can require on-site customization for each
potential client of your solution, ADF Business Components offers a useful feature to
simplify that task.

25.10.1 Extending and Substituting Components Is Superior to Modifying Code
All too often, on-site application customization is performed by making direct changes
to the source code of the delivered application. This approach demonstrates its
weaknesses whenever you deliver patches or new feature releases of your original
application to your clients. Any customizations they had been applied to the base
application's source code need to be painstakingly re-applied to the patched or
updated version of the base application. Not only does this render the application
customization a costly, ongoing maintenance expense, it can introduce subtle bugs due
to human errors that occur when reapplying previous customzations to new releases.

ADF Business Components offers a superior, component-based approach to support
application customization that doesn't require changing — or even having access to —
the base application's source code. To customize your delivered application, your
customers can:

1. Import one or more packages of components from the base application into a new
project.

2. Create new components to effect the application customization, extending
appropriate parent components from the base application as necessary.

3. Define a list of global component substitutions, naming their customized
components to substitute for your base application's appropriate parent
components.

When the customer runs your delivered application with a global component
substitution list defined, their customized application components are used by your
delivered application without changing any of its code. When you deliver a patched or
updated version of the original application, their component customizations apply to
the updated version the next time they restart the application without needing to
re-apply any customizations.

25.10.2 How To Substitute an Extended Component
To define global component substitutions, use the Business Components >
Substitutions page of the Project Properties dialog in the project where you've
created extended components based on the imported components from the base
application. As shown in Figure 25–10, to define each component substitution:

1. Select the base application's component in the Available list.

2. Select the customized, extended component to substitute in the Substitute list.

3. Click Add.

Note: The examples in this section refer to the BaseProject and
ExtendAndSubstitute projects in the AdvancedExamples
workspace. See the note at the beginning of this chapter for download
instructions.

Substituting Extended Components In a Delivered Application

25-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 25–10 Defining Business Components Substitutions

25.10.3 What Happens When You Substitute
When you define a list of global component substitutions in a project named
YourExtendsAndSubstitutesProject, the substitution list is saved in the
YourExtendsAndSubstitutesProject.jpx in the root directory of the source
path.

The file will contain <Substitute> elements as shown in Example 25–17, one for each
component to be substituted.

Example 25–17 Component Substitution List Saved in the Project's JPX File

<JboProject
Name="ExtendAndSubstitute"
SeparateXMLFiles="true"
PackageName="" >
<Containee

Name="anotherpkg"
FullName="devguide.advanced.anotherpkg.anotherpkg"
ObjectType="JboPackage" >

</Containee>
<Containee

Name="extsub"
FullName="devguide.advanced.extsub.extsub"
ObjectType="JboPackage" >
<DesignTime>

<Attr Name="_LocationURL"
Value="../../BaseProject/deploy/BaseProjectCSMT.jar" />

</DesignTime>
</Containee>
<Substitutes>

<Substitute OldName="devguide.advanced.extsub.Product"
NewName="devguide.advanced.anotherpkg.CustomizedProduct" />

<Substitute OldName="devguide.advanced.extsub.Products"
NewName="devguide.advanced.anotherpkg.CustomizedProducts" />

</Substitutes>
</JboProject>

Note: You can only substitute a component in the base application
with an extended component that inherits directly or indirectly from
the base one.

Substituting Extended Components In a Delivered Application

Advanced Business Components Techniques 25-37

25.10.4 Enabling the Substituted Components in the Base Application
To have the original application use the set of substituted components, define the Java
system property Factory-Substitution-List and set its value to the name of the
project whose *.jpx file contains the substitution list. The value should be just the
project name without any *.jpr or *.jpx extension.

Consider a simple example that customizes the Product entity object and the
Products view object described in Section 25.9.3.1, "You Can Use Parent Classes and
Interfaces to Work with Extended Components". To perform the customization,
assume you create new project named ExtendsAndSubstitutes that:

■ Defines a library for the JAR file containing the base components

■ Imports the package containing Product and Products

■ Creates new extended components in a distinct package name called
CustomizedProduct and CustomizedProducts

■ Defines a component substitution list to use the extended components.

When creating the extended components, assume that you:

■ Added an extra view attribute named ExtraViewAttribute to the
CustomizedProducts view object.

■ Added a new validation rule to the CustomizedProduct entity object to enforce
that the product name cannot be the letter "Q".

■ Overrode the getChecksum() method in the CustomizedProduct.java class
to return "I am the CustomizedProduct Class".

If you define the Factory-Substitution-List Java system property set to the
value ExtendsAndSubstitutes, then when you run the exact same test client class
shown above in Example 25–16 the output of the sample will change to reflect the use
of the substituted components:

Printing attribute for a row in VO 'Products'
ProdId=100
Name=Washing Machine W001
Checksum=I am the CustomizedProduct Class
ExtraViewAttribute=Extra Attr Value

The name cannot be Q!
Printing attribute for a row in VO 'ProductsById'
ProdId=119
Name=Ice Maker I012
Checksum=I am the CustomizedProduct Class
SomeExtraAttr=SomeExtraAttrValue

Called someExtraFeature of ProductsByNameRowImpl
The name cannot be Q!

Compared to the output from Example 25–16, notice that in the presence of the factory
substitution list, the Products view object in the original test program now has the
additional ExtraViewAttribute, now reports a Checksum attribute value of "I am
the CustomizedProduct Class", and now disallows the assignment of the product
name to have the value "Q". These component behavior changes were performed
without needing to modify the original Java or XML source code of the delivered
components.

Substituting Extended Components In a Delivered Application

25-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Advanced Entity Object Techniques 26-1

26
Advanced Entity Object Techniques

This chapter describes advanced techniques for use in the entity objects in your
business domain layer.

This chapter includes the following sections:

■ Section 26.1, "Creating Custom, Validated Data Types Using Domains"

■ Section 26.2, "Updating a Deleted Flag Instead of Deleting Rows"

■ Section 26.3, "Advanced Entity Association Techniques"

■ Section 26.4, "Basing an Entity Object on a PL/SQL Package API"

■ Section 26.5, "Basing an Entity Object on a Join View or Remote DBLink"

■ Section 26.6, "Using Inheritance in Your Business Domain Layer"

■ Section 26.7, "Controlling Entity Posting Order to Avoid Constraint Violations"

■ Section 26.8, "Implementing Automatic Attribute Recalculation"

■ Section 26.9, "Implementing Custom Validation Rules"

26.1 Creating Custom, Validated Data Types Using Domains
When you find yourself repeating the same sanity-checking validations on the values
of similar attributes across multiple entity objects, you can save yourself time and
effort by creating your own data types that encapsulate this validation. For example,
imagine that across your business domain layer there are numerous entity object
attributes that store strings that represent email addresses. One technique you could
use to ensure that end-users always enter a valid email address everywhere one
appears in your business domain layer is to:

■ Use a basic String data type for each of these attributes

■ Add an attribute-level method validator with Java code that ensures that the
String value has the format of a valid email address for each attribute

Note: To experiment with a working version of the examples in this
chapter, download the AdvancedEntityExamples workspace from
the Example Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01/.

http://otn.oracle.com/documentation/jdev/b25947_01/

Creating Custom, Validated Data Types Using Domains

26-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

However, these approaches could get tedious quickly in a large application. Luckily,
ADF Business Components offers an alternative that allows you to create your own
EmailAddress data type that represents email addresses. After centralizing all of the
sanity-checking regarding email address values into this new custom data type, you
can use the EmailAddress as the type of every attribute in your application that
represents an email address. By doing this, you make the intention of the attribute
values more clear to other developers and simplify application maintenance by
putting the validation in a single place. ADF Business Components calls these
developer-created data types domains.

26.1.1 What Are Domains?
Domains are Java classes that extend the basic data types like String, Number, and
Date to add constructor-time validation to insure the candidate value passes relevant
sanity checks. They offer you a way to define custom data types with cross-cutting
behavior such as basic data type validation, formatting, and custom metadata
properties in a way that are inherited by any entity objects or view objects that use the
domain as the Java type of any of their attributes.

26.1.2 How To Create a Domain
To create a domain, use the Create Domain wizard. This is available in the New
Gallery in the ADF Business Components category.

In step 1, on the Name panel specify a name for the domain and a package in which it
will reside. To create a domain based on a simple Java type, leave the Domain for an
Oracle Object Type unchecked.

In step 2, on the Settings panel, indicate the base type for the domain and the database
column type to which it will map. For example, if you were creating a domain called
ShortEmailAddress to hold eight-character short email addresses, you would set
the base type to String and the Database Column Type to VARCHAR2(8). You can
set other common attribute settings on this panel as well.

Then, click Finish to create your domain.

26.1.3 What Happens When You Create a Domain
When you create a domain, JDeveloper creates its XML component definition in the
subdirectory of your project's source path that corresponds to the package name you
chose. For example, if you created the ShortEmailAddress domain in the
devguide.advanced.domains package, JDeveloper would create the
ShortEmailAddress.xml file in the ./devguide/advanced/domains
subdirectory. A domain always has a corresponding Java class, which JDeveloper
creates in the common subpackage of the package where the domain resides. This
means it would create the ShortEmailAddress.java class in the
devguide.advanced.domains.common package. The domain's Java class is
automatically generated with the appropriate code to behave in a way that is identical
to one of the built-in data types.

Note: The examples in this section refer to the SimpleDomains
project in the AdvancedEntityExamples workspace. See the note at
the beginning of this chapter for download instructions. Run the
CreateObjectType.sql script in the Resources folder against the
SRDemo connection to set up the additional database objects required
for the project.

Creating Custom, Validated Data Types Using Domains

Advanced Entity Object Techniques 26-3

26.1.4 What You May Need to Know

26.1.4.1 Using Domains for Entity and View Object Attributes
Once you've created a domain in a project, it automatically appears among the list of
available data types in the Attribute Type dropdown list in the entity object and view
object wizards and editors as shown in Figure 26–1. To use the domain as the type of a
given attribute, just pick it from the list.

Figure 26–1 Custom Domain Types in the Attribute Type Dropdown List

26.1.4.2 Validate Method Should Throw DataCreationException If Sanity Checks
Fail
Typically, the only coding task you need to do for a domain is to write custom code
inside the generated validate() method. Your implementation of the validate()
method should perform your sanity checks on the candidate value being constructed,
and throw a DataCreationException in the oracle.jbo package if the validation
fails.

In order to throw an exception message that is translatable, you can create a message
bundle class similar to the one shown in Example 26–1. Create it in the same common
package as your domain classes themselves. The message bundle returns an array of
{MessageKeyString,TranslatableMessageString} pairs.

Example 26–1 Custom Message Bundle Class For Domain Exception Messages

package devguide.advanced.domains.common;
import java.util.ListResourceBundle;
public class ErrorMessages extends ListResourceBundle {
public static final String INVALID_SHORTEMAIL = "30002";
public static final String INVALID_EVENNUMBER = "30003";
private static final Object[][] sMessageStrings = new String[][] {

{ INVALID_SHORTEMAIL,
"A valid short email address has no @-sign or dot."},

{ INVALID_EVENNUMBER,

Note: The entity-mapped attributes in an entity-based view object
inherit their data type from their corresponding underlying entity
object attribute, so if the entity attribute uses a domain type, so will
the matching view object attribute. For transient or SQL-derived view
object attributes, you can directly set the type to use a domain since it
is not inherited from any underlying entity.

Creating Custom, Validated Data Types Using Domains

26-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

"Number must be even."}
};

/**
* Return String Identifiers and corresponding Messages
* in a two-dimensional array.
*/
protected Object[][] getContents() {
return sMessageStrings;

}
}

26.1.4.3 String Domains Aggregate a String Value
Since String is a base JDK type, a domain based on a String aggregates a private
mData String member field to hold the value that the domain represents. Then, the
class implements the DomainInterface expected by the ADF runtime, as well as the
Serializable interface, so the domain can be used in method arguments or returns
types of ADF components custom client interfaces.

Example 26–2 shows the validate() method for a simple ShortEmailAddress
domain class. It tests to make sure that the mData value does not contains an at-sign or
a dot, and if it does, then the method throws DataCreationException referencing
an appropriate message bundle and message key for the translatable error message.

Example 26–2 Simple ShortEmailAddress String-Based Domain Type with Custom
Validation

public class ShortEmailAddress implements DomainInterface, Serializable {
private String mData;
// etc.
/**Implements domain validation logic and throws a JboException on error. */
protected void validate() {
int atpos = mData.indexOf('@');
int dotpos = mData.lastIndexOf('.');
if (atpos > -1 || dotpos > -1) {
throw new DataCreationException(ErrorMessages.class,
ErrorMessages.INVALID_SHORTEMAIL,null,null);

}
}
// etc.

}

26.1.4.4 Other Domains Extend Existing Domain Type
Other simple domains based on a built-in type in the oracle.jbo.domain package
extend the base type as shown in Example 26–3. It illustrates the validate() method
for a simple Number-based domain called EvenNumber that represents even
numbers.

Creating Custom, Validated Data Types Using Domains

Advanced Entity Object Techniques 26-5

Example 26–3 Simple EvenNumber Number-Based Domain Type with Custom Validation

public class EvenNumber extends Number {
// etc.
/**
* Validates that value is an even number, or else
* throws a DataCreationException with a custom
* error message.
*/
protected void validate() {
if (getValue() % 2 == 1) {
throw new DataCreationException(ErrorMessages.class,
ErrorMessages.INVALID_EVENNUMBER,null,null);

}
}
// etc.

}

26.1.4.5 Simple Domains are Immutable Java Classes
When you create a simple domain based on one of the basic data types, it is an
immutable class. This just means that once you've constructed a new instance of it like
this:

ShortEmailAddress email = new ShortEmailAddress("smuench");

You cannot change its value. If you want to reference a different short email address,
you just construct another one:

ShortEmailAddress email = new ShortEmailAddress("bribet");

This is not a new concept since it's the same way that String, Number, and Date
classes behave, among others.

26.1.4.6 Creating Domains for Oracle Object Types When Useful
The Oracle database supports the ability to create user-defined types in the database.
For example, you could create a type called POINT_TYPE using the following DDL
statement:

create type point_type as object (
x_coord number,
y_coord number

);

If you use user-defined types like POINT_TYPE, you can create domains base on them,
or you can reverse-engineer tables containing columns of object type to have
JDeveloper create the domain for you.

Manually Creating Object Type Domains
To create a domain yourself, do the following in the Create Domain wizard:

■ In step 1 of the Create Domain wizard on the Name panel, check the Domain for
an Oracle Object Type checkbox, then select the object type for which you want to
create a domain from the Available Types list.

■ In step 2 on the Settings panel, use the Attribute dropdown list to switch between
the multiple domain properties to adjust the settings as appropriate.

■ Click Finish

Creating Custom, Validated Data Types Using Domains

26-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Reverse-Engineering Object Type Domains
In addition to manually creating object type domains, when you use the Business
Components from Tables wizard and select a table containing columns of an Oracle
object type, JDeveloper automatically creates domains for those object types as part of
the reverse-engineering process. For example, imagine you created a table like this
with a column of type POINT_TYPE:

create table interesting_points(
id number primary key,
coordinates point_type,
description varchar2(20)

);

If you create an entity object for the INTERESTING_POINTS table in the Business
Components from Tables wizard, then you will get both an InterestingPoints
entity object and a PointType domain. The latter will have been automatically created,
based on the POINT_TYPE object type, since it was required as the data type of the
Coordinates attribute of the InterestingPoints entity object.

Unlike simple domains, object type domains are mutable. JDeveloper generates getter
and setter methods into the domain class for each of the elements in the object type's
structure. After changing any domain properties, when you set that domain as the
value of a view object or entity object attribute, it is treated as a single unit. ADF does
not track which domain properties have changed, only that a domain-valued attribute
value has changed.

26.1.4.7 Quickly Navigating to the Domain Class
After selecting a domain in the Application Navigator, you can quickly navigate to its
implementation class by:

■ Choosing Go to Domain Class on the right-mouse context menu, or

■ Double-clicking on the domain class in the Structure Window

26.1.4.8 Domains Get Packaged in the Common JAR
When you create a business components archive, as described in Section 25.7,
"Working with Libraries of Reusable Business Components", the domain classes and
message bundle files in the *.common subdirectories of your project's source path get
packaged into the *CSCommon.jar. They are classes that are common to both the
middle-tier application server and to an eventual remote-client you might need to
support.

Note: Domains based on Oracle object types are useful for working
programmatically with data whose underlying type is an oracle object
type. They also can simplify passing and receiving structure
information to stored procedures. However, support for working with
object type domains in the ADF binding layer is complete, so it's not
straightforward to use object domain-valued attributes in
declaratively-databound user interfaces.

Updating a Deleted Flag Instead of Deleting Rows

Advanced Entity Object Techniques 26-7

26.1.4.9 Entity and View Object Attributes Inherit Custom Domain Properties
You can define custom metadata properties on a domain. Any entity object or view
object attribute based on that domain inherits those custom properties as if they had
been defined on the attribute itself. If the entity object or view object attribute defines
the same custom property, its setting takes precedence over the value inherited from
the domain.

26.1.4.10 Domain Settings Cannot Be Less Restrictive at Entity or View Level
JDeveloper will enforce declarative settings you impose at the domain definition level
cannot be made less restrictive in the Entity Object editor or View Object editor for an
attribute based on the domain type. For example, if you define a domain to have its
Updatable property set to While New, then when you use your domain as the Java
type of an entity object attribute, you can set Updatable to be Never (more restrictive)
but you cannot set it to be Always. Similarly, if you define a domain to be Persistent,
you cannot make it transient later. When sensible for your application, set declarative
properties for a domain to be as lenient as possible so you can later make them more
restrictive as needed.

26.2 Updating a Deleted Flag Instead of Deleting Rows
For auditing purposes, once a row is added to a table, sometimes your requirements
may demand that rows are never physically deleted from the table. Instead, when the
end-user deletes the row in the user interface, the value of a DELETED column should
be updated from "N" to "Y" to mark it as deleted. This section explains the two method
overrides required to alter an entity object’s default behavior to achieve this effect. The
following sections assume you want to change the Product entity from the SRDemo
application to behave in this way. They presume that you’ve altered the PRODUCTS
table to have an additional DELETED column, and synchronized the Product entity
with the database to add the corresponding Deleted attribute.

26.2.1 How to Update a Deleted Flag When a Row is Removed
To update a deleted flag when a row is removed, enable a custom Java class for your
entity object and override the remove() method to set the deleted flag before calling
the super.remove() method. Example 26–4 shows what this would look like in the
ProductImpl class of the SRDemo application’s Product entity object. It is
important to set the attribute before calling super.remove() since an attempt to set
the attribute of a deleted row will encounter the DeadEntityAccessException.

Example 26–4 Updating a Deleted Flag When a Product Entity Row is Removed

// In ProductImpl.java
public void remove() {
 setDeleted("Y");
 super.remove();
}

The row will still be removed from the row set, but it will have the value of its Deleted
flag modified to "Y" in the entity cache. The second part of implementing this behavior
involves forcing the entity to perform an UPDATE instead of an INSERT when it is
asked to perform its DML operation. You need to implement both parts for a complete
solution.

Advanced Entity Association Techniques

26-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

26.2.2 Forcing an Update DML Operation Instead of a Delete
To force an entity object to be updated instead of deleted, override the doDML()
method and write code that conditionally changes the operation flag. When the
operation flag equals DML_DELETE, your code will change it to DML_UPDATE instead.
Example 26–5 shows what this would look like in the ProductImpl class of the
SRDemo application’s Product entity object.

Example 26–5 Forcing an Update DML Operation Instead of a Delete

// In ProductImpl.java
protected void doDML(int operation, TransactionEvent e) {
 if (operation == DML_DELETE) {
 operation = DML_UPDATE;
 }
 super.doDML(operation, e);
 }

With this overridden doDML() method in place to complement the overridden
remove() method described in the previous section, any attempt to remove a
Product entity through any view object with a Product entity usage will update the
DELETED column instead of physically deleting the row. Of course, in order to prevent
"deleted" products from appearing in your view object query results, you will need to
appropriately modify their WHERE clauses to include only products WHERE DELETED
= ’N’.

26.3 Advanced Entity Association Techniques
This section describes several advanced techniques for working with associations
between entity objects.

26.3.1 Modifying Association SQL Clause to Implement Complex Associations
When you need to represent a more complex relationship between entities than one
based only on the equality of matching attributes, you can modify the association’s
SQL clause to include more complex criteria. For example, sometimes the relationship
between two entities depends on effectivity dates. A ServiceRequest may be
related to a Product, however if the name of the product changes over time, each row
in the PRODUCTS table might include additional EFFECTIVE_FROM and
EFFECTIVE_UNTIL columns that track the range of dates in which that product row
is (or was) in use. The relationship between a ServiceRequest and the Product
with which it is associated might then be described by a combination of the matching
ProdId attributes and a condition that the service request’s RequestDate lie
between the product’s EffectiveFrom and EffectiveUntil dates.

You can setup this more complex relationship in the Association Editor. First add any
additional necessary attribute pairs on the Entity Objects page, which in this example
would include one (EffectiveFrom, RequestDate) pair and one
(EffectiveUntil, RequestDate) pair. Then on the Association SQL page you can
edit the Where field to change the WHERE clause to be:

(:Bind_ProdId = ServiceRequest.PROD_ID) AND
(ServiceRequest.REQUEST_DATE BETWEEN :Bind_EffectiveFrom
 AND :Bind_EffectiveUntil)

Advanced Entity Association Techniques

Advanced Entity Object Techniques 26-9

26.3.2 Exposing View Link Accessor Attributes at the Entity Level
When you create a view link between two entity-based view objects, on the View Link
Properties page, you have the option to expose view link accessor attributes both at
the view object level as well as at the entity object level. By default, a view link
accessor is only exposed at the view object level of the destination view object. By
checking the appropriate In Entity Object: SourceEntityName or In Entity
Object:DestinationEntityName checkbox, you can opt to have JDeveloper include a
view link attribute in either or both of the source or destination entity objects. This can
provide a handy way for an entity object to access a related set of related view rows,
especially when the query to produce the rows only depends on attributes of the
current row.

26.3.3 Optimizing Entity Accessor Access By Retaining the Row Set
Each time you retrieve an entity association accessor row set, by default the entity
object creates a new RowSet object to allow you to work with the rows. This does not
imply re-executing the query to produce the results each time, only creating a new
instance of a RowSet object with its default iterator reset to the "slot" before the first
row. To force the row set to refresh its rows from the database, you can call its
executeQuery() method.

Since there is a small amount of overhead associated with creating the row set, if your
code makes numerous calls to the same association accessor attributes, you can
consider enabling the association accessor row set retention for the source entity object
in the association. To use the association accessor retention feature, first enable a
custom Java entity collection class for your entity object. As with other custom entity
Java classes you’ve seen, you do this on the Java panel of the Entity Object editor by
selecting the Entity Collection Class checkbox. Then, in the YourEntityCollImpl
class that JDeveloper creates for you, override the init() method, and add a line
after super.init() that calls the setAssociationAccessorRetained()
method passing true as the parameter. It affects all association accessor attributes for
that entity object.

When this feature is enabled for an entity object, since the association accessor row set
it not recreated each time, the current row of its default row set iterator is also retained
as a side-effect. This means that your code will need to explicitly call the reset()
method on the row set you retrieve from the association accessor to reset the current
row in its default row set iterator back to the "slot" before the first row.

Note, however, that with accessor retention enabled, your failure to call reset() each
time before you iterate through the rows in the accessor row set can result in a subtle,
hard-to-detect error in your application. For example, if you iterate over the rows in an
association accessor row set like this, for example, to calculate some aggregate total:

// In ProductImpl.java
RowSet rs = (RowSet)getServiceRequests();
while (rs.hasNext()) {
 ServiceRequestImpl r = (ServiceRequestImpl)rs.next();
 // Do something important with attributes in each row
}

The first time you work with the accessor row set, the code will work. However, since
the row set (and its default row set iterator) are retained, the second and subsequent
times you access the row set the current row will already be at the end of the row set
and the while loop will be skipped since rs.hasNext() will be false. Instead, with
this feature enabled, write your accessor iteration code like this:

Basing an Entity Object on a PL/SQL Package API

26-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

// In ProductImpl.java
RowSet rs = (RowSet)getServiceRequests();
rs.reset(); // Reset default row set iterator to slot before first row!
while (rs.hasNext()) {
 ServiceRequestImpl r = (ServiceRequestImpl)rs.next();
 // Do something important with attributes in each row
}

26.4 Basing an Entity Object on a PL/SQL Package API
If you have a PL/SQL package that encapsulates insert, update, and delete access to an
underlying table, you can override the default DML processing event for the entity
object that represents that table to invoke the procedures in your PL/SQL API instead.
Often, such PL/SQL packages are used in combination with a companion database
view. Client programs read data from the underlying table using the database view,
and "write" data back to the table using the procedures in the PL/SQL package. This
section considers the code necessary to create a Product entity object based on such a
combination of a view and a package.

Given the PRODUCTS table in the SRDemo schema, consider a database view named
PRODUCTS_V, created using the following DDL statement:

create or replace view products_v
as select prod_id,name,image,description from products;

In addition, consider the simple PRODUCTS_API package shown in Example 26–6 that
encapsulates insert, update, and delete access to the underlying PRODUCTS table.

Example 26–6 Simple PL/SQL Package API for the PRODUCTS Table

create or replace package products_api is
procedure insert_product(p_prod_id number,

p_name varchar2,
p_image varchar2,
p_description varchar2);

procedure update_product(p_prod_id number,
p_name varchar2,
p_image varchar2,
p_description varchar2);

procedure delete_product(p_prod_id number);
end products_api;

The following sections explain how to create an entity object based on the above
combination of view and package.

Note: The examples in this section refer to the
EntityWrappingPLSQLPackage project in the
AdvancedEntityExamples workspace. See the note at the
beginning of this chapter for download instructions. Run the
CreateAll.sql script in the Resources folder against the SRDemo
connection to setup the additional database objects required for the
project.

Basing an Entity Object on a PL/SQL Package API

Advanced Entity Object Techniques 26-11

26.4.1 How to Create an Entity Object Based on a View
To create an entity object based on a view, use the Create Entity Object wizard and
perform the following steps:

■ In step 1 on the Name panel, give the entity a name like Product and check the
Views checkbox at the bottom of the Database Objects section.

This enables the display of the available database views in the current schema in
the Schema Object list.

■ Select the desired database view in the Schema Object list.

■ In step 3 on the Attribute Settings panel, use the Select Attribute dropdown list
to choose the attribute that will act as the primary key, then enable the Primary
Key setting for that property.

■ Then click Finish.

26.4.2 What Happens When You Create an Entity Object Based on a View
By default, an entity object based on a view performs all of the following directly
against the underlying database view:

■ SELECT statement (for findByPrimaryKey())

■ SELECT FOR UPDATE statement (for lock()), and

■ INSERT, UPDATE, DELETE statements (for doDML())

The following sections first illustrate how to override the doDML() operations, then
explain how to extend that when necessary to override the lock()and
findByPrimaryKey()handling in a second step.

26.4.3 Centralizing Details for PL/SQL-Based Entities into a Base Class
If you plan to have more than one entity object based on a PL/SQL API, it's a smart
idea to abstract the generic details into a base framework extension class. In doing this,
you'll be using several of the concepts you learned in Chapter 25, "Advanced Business
Components Techniques". Start by creating a PLSQLEntityImpl class that extends
the base EntityImpl class that each one of your PL/SQL-based entities can use as
their base class. As shown in Example 26–7, you'll override the doDML() method of
the base class to invoke a different helper method based on the operation.

Example 26–7 Overriding doDML() to Call Different Procedures Based on the Operation

// In PLSQLEntityImpl.java
protected void doDML(int operation, TransactionEvent e) {
// super.doDML(operation, e);
if (operation == DML_INSERT)
callInsertProcedure(e);

else if (operation == DML_UPDATE)
callUpdateProcedure(e);

else if (operation == DML_DELETE)
callDeleteProcedure(e);

}

Note: When defining the entity based on a view, JDeveloper cannot
automatically determine the primary key attribute since database
views do not have related constraints in the database data dictionary.

Basing an Entity Object on a PL/SQL Package API

26-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In the PLSQLEntityImpl.java base class, you can write the helper methods so that
they perform the default processing like this:

// In PLSQLEntityImpl.java
/* Override in a subclass to perform non-default processing */
protected void callInsertProcedure(TransactionEvent e) {
super.doDML(DML_INSERT, e);

}
/* Override in a subclass to perform non-default processing */
protected void callUpdateProcedure(TransactionEvent e) {
super.doDML(DML_UPDATE, e);

}
/* Override in a subclass to perform non-default processing */
protected void callDeleteProcedure(TransactionEvent e) {
super.doDML(DML_DELETE, e);

}

After putting this infrastructure in place, when you base an entity object on the
PLSQLEntityImpl class, you can use the Source | Override Methods menu item to
override the callInsertProcedure(), callUpdateProcedure(), and
callDeleteProcedure() helper methods and perform the appropriate stored
procedure calls for that particular entity. To simplify the task of implementing these
calls, you could add the callStoredProcedure() helper method you learned
about in Chapter 25.5, "Invoking Stored Procedures and Functions" to the
PLSQLEntityImpl class as well. This way, any PL/SQL-based entity objects that
extend this class can leverage the helper method.

26.4.4 Implementing the Stored Procedure Calls for DML Operations
To implement the stored procedure calls for DML operations, do the following:

■ Use the Class Extends button on the Java panel of the Entity Object Editor to set
your Product entity object to have the PLSQLEntityImpl class as its base class.

■ Enable a custom Java class for the Product entity object.

■ Use the Source | Override Methods menu item and select the
callInsertProcedure(), callUpdateProcedure(), and
callDeleteProcedure() methods.

Example 26–8 shows the code you would write in these overridden helper methods.

Example 26–8 Leveraging a Helper Method to Invoke Insert, Update, and Delete
Procedures

// In ProductImpl.java
protected void callInsertProcedure(TransactionEvent e) {
callStoredProcedure("products_api.insert_product(?,?,?,?)",

new Object[] { getProdId(), getName(), getImage(),
getDescription() });

}
protected void callUpdateProcedure(TransactionEvent e) {
callStoredProcedure("products_api.update_product(?,?,?,?)",

new Object[] { getProdId(), getName(), getImage(),
getDescription() });

}
protected void callDeleteProcedure(TransactionEvent e) {
callStoredProcedure("products_api.delete_product(?)",

new Object[] { getProdId() });
}

Basing an Entity Object on a PL/SQL Package API

Advanced Entity Object Techniques 26-13

At this point, if you create a default entity-based view object called Products for the
Product entity object and add an instance of it to a ProductModule application
module you can quickly test inserting, updating, and deleting rows from the
Products view object instance in the Business Components Browser.

Often, overriding just the insert, update, and delete operations will be enough. The
default behavior that performs the SELECT statement for findByPrimaryKey() and
the SELECT FOR UPDATE statement for the lock() against the database view works
for most basic kinds of views.

However, if the view is complex and does not support SELECT FOR UPDATE or if
you need to perform the findByPrimaryKey() and lock() functionality using
additional stored procedures API's, then you can follow the steps in the next section.

26.4.5 Adding Select and Lock Handling
You can also handle the lock and findByPrimaryKey() functionality of an entity object
by invoking stored procedures if necessary. Imagine that the PRODUCTS_API package
were updated to contain the two additional procedures shown in Example 26–9. Both
the lock_product and select_product procedures accept a primary key attribute
as an IN parameter and return values for the remaining attributes using OUT
parameters.

Example 26–9 Additional Locking and Select Procedures for the PRODUCTS Table

/* Added to PRODUCTS_API package */
procedure lock_product(p_prod_id number,

p_name OUT varchar2,
p_image OUT varchar2,
p_description OUT varchar2);

procedure select_product(p_prod_id number,
p_name OUT varchar2,
p_image OUT varchar2,
p_description OUT varchar2);

26.4.5.1 Updating PLSQLEntityImpl Base Class to Handle Lock and Select
You can extend the PLSQLEntityImpl base class to handle the lock() and
findByPrimaryKey() overrides using helper methods similar to the ones you
added for insert, update, delete. At runtime, both the lock() and
findByPrimaryKey() operations end up invoking the lower-level entity object
method called doSelect(boolean lock). The lock() operation calls
doSelect() with a true value for the parameter, while the findByPrimaryKey()
operation calls it passing false instead.

Example 26–10 shows the overridden doSelect() method in PLSQLEntityImpl to
delegate as appropriate to two helper methods that subclasses can override as
necessary.

Basing an Entity Object on a PL/SQL Package API

26-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 26–10 Overriding doSelect() to Call Different Procedures Based on the Lock
Parameter

// In PLSQLEntityImpl.java
protected void doSelect(boolean lock) {
if (lock) {
callLockProcedureAndCheckForRowInconsistency();

} else {
callSelectProcedure();

}
}

The two helper methods are written to just perform the default functionality in the
base PLSQLEntityImpl class:

// In PLSQLEntityImpl.java
/* Override in a subclass to perform non-default processing */
protected void callLockProcedureAndCheckForRowInconsistency() {
super.doSelect(true);

}
/* Override in a subclass to perform non-default processing */
protected void callSelectProcedure() {
super.doSelect(false);

}

Notice that the helper method that performs locking has the name
callLockProcedureAndCheckForRowInconsistency(). This reminds
developers that it is their responsibility to perform a check to detect at the time of
locking the row whether the newly-selected row values are the same as the ones the
entity object in the entity cache believes are the current database values.

To assist subclasses in performing this old-value versus new-value attribute
comparison, you can add one final helper method to the PLSQLEntityImpl class like
this:

// In PLSQLEntityImpl
protected void compareOldAttrTo(int attrIndex, Object newVal) {
if ((getPostedAttribute(attrIndex) == null && newVal != null) ||

(getPostedAttribute(attrIndex) != null && newVal == null) ||
(getPostedAttribute(attrIndex) != null && newVal != null &&
!getPostedAttribute(attrIndex).equals(newVal))) {

throw new RowInconsistentException(getKey());
}

}

26.4.5.2 Implementing Lock and Select for the Product Entity
With the additional infrastructure in place in the base PLSQLEntityImpl class, you
can override the callSelectProcedure() and
callLockProcedureAndCheckForRowInconsistency() helper methods in the
Product entity object's ProductImpl class. Since the select_product and lock_
product procedures have OUT arguments, as you learned in Section 25.5.4, "Calling
Other Types of Stored Procedures", you need to use a JDBC CallableStatement
object to perform these invocations.

Basing an Entity Object on a PL/SQL Package API

Advanced Entity Object Techniques 26-15

Example 26–11 shows the code required to invoke the select_product procedure.
It's performing the following basic steps:

1. Creating a CallableStatement for the PLSQL block to invoke.

2. Registering the OUT parameters and types, by one-based bind variable position.

3. Setting the IN parameter value.

4. Executing the statement.

5. Retrieving the possibly updated column values.

6. Populating the possibly updated attribute values in the row.

7. Closing the statement.

Example 26–11 Invoking the Stored Procedure to Select a Row by Primary Key

// In ProductImpl.java
protected void callSelectProcedure() {
String stmt = "begin products_api.select_product(?,?,?,?);end;";
// 1. Create a CallableStatement for the PLSQL block to invoke
CallableStatement st = getDBTransaction().createCallableStatement(stmt, 0);
try {
// 2. Register the OUT parameters and types
st.registerOutParameter(2, VARCHAR2);
st.registerOutParameter(3, VARCHAR2);
st.registerOutParameter(4, VARCHAR2);
// 3. Set the IN parameter value
st.setObject(1,getProdId());
// 4. Execute the statement
st.executeUpdate();
// 5. Retrieve the possibly updated column values
String possiblyUpdatedName = st.getString(2);
String possiblyUpdatedImage = st.getString(3);
String possiblyUpdatedDesc = st.getString(4);
// 6. Populate the possibly updated attribute values in the row
populateAttribute(NAME,possiblyUpdatedName,true,false,false);
populateAttribute(IMAGE,possiblyUpdatedImage,true,false,false);
populateAttribute(DESCRIPTION,possiblyUpdatedDesc,true,false,false);

} catch (SQLException e) {
throw new JboException(e);

} finally {
if (st != null) {
try {
// 7. Closing the statement
st.close();

} catch (SQLException e) {
}

}
}

}

Example 26–12 shows the code to invoke the lock_product procedure. It's doing
basically the same steps as above, with just the following two interesting differences:

■ After retrieving the possibly updated column values from the OUT parameters, it
uses the compareOldAttrTo() helper method inherited from the
PLSQLEntityImpl to detect whether or not a RowInconsistentException
should be thrown as a result of the row lock attempt.

Basing an Entity Object on a PL/SQL Package API

26-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ In the catch (SQLException e) block, it is testing to see whether the database
has thrown the error:

ORA-00054: resource busy and acquire with NOWAIT specified

and if so, it again throws the ADF Business Components
AlreadyLockedException just as the default entity object implementation of
the lock() functionality would do in this situation.

Example 26–12 Invoking the Stored Procedure to Lock a Row by Primary Key

// In ProductImpl.java
protected void callLockProcedureAndCheckForRowInconsistency() {
String stmt = "begin products_api.lock_product(?,?,?,?);end;";
CallableStatement st = getDBTransaction().createCallableStatement(stmt, 0);
try {
st.registerOutParameter(2, VARCHAR2);
st.registerOutParameter(3, VARCHAR2);
st.registerOutParameter(4, VARCHAR2);
st.setObject(1,getProdId());
st.executeUpdate();
String possiblyUpdatedName = st.getString(2);
String possiblyUpdatedImage = st.getString(3);
String possiblyUpdatedDesc = st.getString(4);
compareOldAttrTo(NAME,possiblyUpdatedName);
compareOldAttrTo(IMAGE,possiblyUpdatedImage);
compareOldAttrTo(DESCRIPTION,possiblyUpdatedDesc);

} catch (SQLException e) {
if (Math.abs(e.getErrorCode()) == 54) {
throw new AlreadyLockedException(e);

} else {
throw new JboException(e);

}
} finally {
if (st != null) {
try {
st.close();

} catch (SQLException e) {
}

}
}

}

With these methods in place, you have a Product entity object that wraps the
PRODUCTS_API package for all of its database operations. Due to the clean separation
of the data querying functionality of view objects and the data validation and saving
functionality of entity objects, you can now leverage this Product entity object in any
way you would use a normal entity object. You can build as many different view
objects that use Product as their entity usage as necessary.

Using Inheritance in Your Business Domain Layer

Advanced Entity Object Techniques 26-17

26.5 Basing an Entity Object on a Join View or Remote DBLink
If you need to create an entity object based on either of the following:

■ Synonym that resolves to a remote table over a DBLINK

■ View with INSTEAD OF triggers

Then you will encounter the following error if any of its attributes are marked as
Refresh on Insert or Refresh on Update:

JBO-26041: Failed to post data to database during "Update"
Detail 0
ORA-22816: unsupported feature with RETURNING clause

The error says it all. These types of schema objects to not support the RETURNING
clause, which by default the entity object uses to more efficiently return the refreshed
values in the same database roundtrip in which the INSERT or UPDATE operation was
executed.

To disable the use of the RETURNING clause for an entity object of this type, do the
following:

1. Enable a custom entity definition class for the entity object.

2. In the custom entity definition class, override the createDef() method to call:

setUseReturningClause(false)

3. If the Refresh on Insert attribute is the primary key of the entity object, you must
identity some other attribute in the entity as an alternate unique key by setting the
Unique Key property on it.

At runtime, when you have disabled the use of the RETURNING clause in this way,
the entity object implements the Refresh on Insert and Refresh on Update behavior
using a separate SELECT statement to retrieve the values to refresh after insert or
update as appropriate.

26.6 Using Inheritance in Your Business Domain Layer
Inheritance is a powerful feature of object-oriented development that can simplify
development and maintenance when used appropriately. As you've seen in
Section 25.9, "Creating Extended Components Using Inheritance", ADF Business
Components supports using inheritance to create new components that extend
existing ones in order to add additional properties or behavior or modify the behavior
of the parent component. This section helps you understand when inheritance can be
useful in modeling the different kinds of entities in your reusable business domain
layer.

Note: The examples in this section refer to the
InheritanceAndPolymorphicQueries project in the
AdvancedEntityExamples workspace. See the note at the
beginning of this chapter for download instructions. Run the
AlterUsersTable.sql script in the Resources folder against the
SRDemo connection to setup the additional database objects required
for the project.

Using Inheritance in Your Business Domain Layer

26-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

26.6.1 Understanding When Inheritance Can be Useful
Your application's database schema might contain tables where different logical kinds
of business information are stored in rows of the same table. These tables will typically
have one column whose value determines the kind of information stored in each row.
For example, the SRDemo application's USERS table stores information about
end-users, technicians, and managers in the same table. It contains a USER_ROLE
column whose value — user, technician, or manager — determines what kind of
user the row represents.

While the simple SRDemo application implementation doesn't yet contain this
differentiation in this release, it's reasonable to assume that a future release of the
application might require:

■ Managing additional database-backed attributes that are specific to managers or
specific to technicians

■ Implementing common behavior for all users that is different for managers or
technicians

■ Implementing new functionality that is specific to only managers or only
technicians

Figure 26–2 shows what the business domain layer would look like if you created
distinct User, Manager, and Technician entity objects to allow distinguishing the
different kinds of business information in a more formal way inside your application.
Since technicians and managers are special kinds of users, their corresponding entity
objects would extend the base User entity object. This base User entity object contains
all of the attributes and methods that are common to all types of users. The
performUserFeature() method in the figure represents one of these common
methods.

Then, for the Manager and Technician entity objects you can add specific
additional attributes and methods that are unique to that kind of user. For example, in
the figure, Manager has an additional NextReview attribute of type Date to track
when the manager must next review his employees. There is also a
performManagerFeature() method that is specific to managers. Similarly, the
Technician entity object has an additional Certified attribute to track whether the
technician has completed training certification. The
performTechnicianFeature() is a method that is specific to technicians. Finally,
also note that since expertise areas only are relevant for technicians, the association
between "users" and expertise levels is defined between Technician and
ExpertiseArea.

Using Inheritance in Your Business Domain Layer

Advanced Entity Object Techniques 26-19

Figure 26–2 Distinguishing Users, Managers, and Technicians Using Inheritance

By modeling these different kinds of users as distinct entity objects in an inheritance
hierarchy in your domain business layer, you can simplify having them share common
data and behavior and implement the aspects of the application that make them
distinct.

26.6.2 How To Create Entity Objects in an Inheritance Hierarchy
To create entity objects in an inheritance hierarchy, you use the Create Entity Object
wizard to create each entity following the steps outlined in the sections below. The
example described here assumes that you've altered the SRDemo application's USERS
table by executing the following DDL statement to add two new columns to it:

alter table users add (
certified varchar2(1),
next_review date

);

26.6.2.1 Start By Identifying the Discriminator Column and Distinct Values
Before creating entity objects in an inheritance hierarchy based on table containing
different kinds of information, you should first identify which column in the table is
used to distinguish the kind of row it is. In the SRDemo application's USERS table, this
is the USER_ROLE column. Since it helps partition or "discriminate" the rows in the
table into separate groups, this column is known as the discriminator column.

Next, determine the valid values that the descriminator column takes on in your table.
You might know this off the top of your head, or you could execute a simple SQL
statement in the JDeveloper SQL Worksheet to determine the answer. To access the
worksheet:

■ Choose View | Connection Navigator.

■ Expand the Database folder and select the SRDemo connection.

■ Choose SQL Worksheet from the right-mouse context menu.

Figure 26–3 shows the results of performing a SELECT DISTINCT query in the SQL
Worksheet on the USER_ROLE column in the USERS table. It confirms that the rows
are partitioned into three groups based on the USER_ROLE discriminator values:
user, technician, and manager.

Using Inheritance in Your Business Domain Layer

26-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 26–3 Using the SQL Worksheet to Find Distinct Discriminator Column Values

26.6.2.2 Identify the Subset of Attributes Relevant to Each Kind of Entity
Once you know how many different kinds of business entities are stored in the table,
you will also know how many entity objects to create to model these distinct items.
You'll typically create one entity object per kind of item. Next, in order to help
determine which entity should act as the base of the hierarchy, you need to determine
which subset of attributes is relevant to each kind of item.

Using the example above, assume you determine that all of the attributes except
Certified and NextReview are relevant to all users, that Certified is specific to
technicians, and that NextReview is specific to managers. This information leads you
to determine that the Users entity object should be the base of the hierarchy, with
Manager and Technician entity object each extending Users to add their specific
attributes.

26.6.2.3 Creating the Base Entity Object in an Inheritance Hierarchy
To create the base entity object in an inheritance hierarchy, use the Create Entity
Object wizard and following these steps:

■ In step 1 on the Name panel, provide a name and package for the entity, and select
the schema object on which the entity will be based.

For example, name the entity object User and base it on the USERS table.

■ In step 2 on the Attributes panel, select the attributes in the Entity Attributes list
that are not relevant to the base entity object (if any) and click Remove to remove
them.

For example, remove the Certified and NextReview attributes from the list.

■ In step 3 on the Attribute Settings panel, use the Select Attribute dropdown list
to choose the attribute that will act as the discriminator for the family of inherited
entity objects and check the Discriminator checkbox to identify it as such.
Importantly, you must also supply a Default Value for this discriminator attribute
to identify rows of this base entity type.

For example, select the UserRole attribute, mark it as a discriminator attribute,
and set its Default Value to the value "user".

Then click Finish to create the entity object.

Note: Leaving the Default Value blank for a discriminator attribute
is legal. A blank default value means that a row whose discriminator
column value IS NULL will be treated as this base entity type.

Using Inheritance in Your Business Domain Layer

Advanced Entity Object Techniques 26-21

26.6.2.4 Creating a Subtype Entity Object in an Inheritance Hierarchy
To create a subtype entity object in an inheritance hierarchy, first do the following:

■ Determine the entity object that will be the parent entity object from which your
new entity object will extend.

For example, the parent entity for a new Manager entity object will be the User
entity created above.

■ Ensure that the parent entity has a discriminator attribute already identified.

The base type must already have the discriminator attribute identified as
described in the section above. If it does not, use the Entity Object editor to set the
Discriminator property on the appropriate attribute of the parent entity before
creating the inherited child.

Then, use the Create Entity Object wizard and follow these steps to create the new
subtype entity object in the hierarchy:

■ In step 1 on the Name panel, provide a name and package for the entity, and click
the Browse button next to the Extends field to select the parent entity from which
the entity being created will extend.

For example, name the new entity Manager and select the User entity object in
the Extends field.

■ In step 2 on the Attributes panel, use the New from Table button to add the
attributes corresponding to the underlying table columns that are specific to this
new entity subtype.

For example, select the NEXT_REVIEW column to add a corresponding
NextReview attribute to the Manager entity object

■ Still on step 2, use the Override button to override the discriminator attribute so
that you can customize the attribute metadata to supply a distinct Default Value
for the Manager subtype.

For example, override the UserRole NextReview attribute.

■ In step 3 on the Attribute Settings panel, use the Select Attribute dropdown list
to choose the discriminator attribute. Importantly, you must change the Default
Value field to supply a distinct default value for the discriminator attribute that
defines the entity subtype being created.

For example, select the UserRole attribute and change its Default Value to the
value "manager".

Then click Finish to create the subtype entity object.

Note: You can repeat the same steps to define the Technician
entity that extends User to add the additional Certified attribute
and overrides the Default Value of the UserRole discriminator
attribute to have the value "technician".

Using Inheritance in Your Business Domain Layer

26-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

26.6.3 How to Add Methods to Entity Objects in an Inheritance Hierarchy
To add methods to entity objects in an inheritance hierarchy, enable the custom Java
class for the entity in question and visit the code editor to add the method.

26.6.3.1 Adding Methods Common to All Entity Objects in the Hierarchy
To add a method that is common to all entity objects in the hierarchy, enable a custom
Java class for the base entity object in the hierarchy and add the method in the code
editor. For example, if you add the following method to the UserImpl class for the
base User entity object, it will be inherited by all entity objects in the hierarchy:

// In UserImpl.java
public void performUserFeature() {
System.out.println("## performUserFeature as User");

}

26.6.3.2 Overriding Common Methods in a Subtype Entity
To override a method in a subtype entity that is common to all entity objects in the
hierarchy, enable a custom Java class for the subtype entity and choose Source |
Override Methods to launch the Override Methods dialog. Select the method you
want to override, and click OK. Then, customize the overridden method's
implementation in the code editor. For example, imagine overriding the
performUserFeature() method in the ManagerImpl class for the Manager
subtype entity object and change the implementation to look like this:

// In ManagerImpl.java
public void performUserFeature() {
System.out.println("## performUserFeature as Manager");

}

When working with instances of entity objects in a subtype hierarchy, sometimes you
will process instances of multiple different subtypes. Since Manager and
Technician entities are special kinds of User, you can write code that works with all
of them using the more generic UserImpl type that they all have in common. When
doing this generic kind of processing of classes that might be one of a family of
subtypes in a hierarchy, Java will always invoke the most specific override of a
method available.

This means that invoking the performUserFeature() method on an instance of
UserImpl that happens to really be the more specific ManagerImpl subtype, will the
result in printing out the following:

performUserFeature as Manager

instead of the default result that regular UserImpl instances would get:

performUserFeature as User

26.6.3.3 Adding Methods Specific to a Subtype Entity
To add a method that is specific to a subtype entity object in the hierarchy, enable a
custom Java class for that entity and add the method in the code editor. For example,
you could add the following method to the ManagerImpl class for the Manager
subtype entity object:

// In ManagerImpl.java
public void performManagerFeature() {
System.out.println("## performManagerFeature called");

}

Using Inheritance in Your Business Domain Layer

Advanced Entity Object Techniques 26-23

26.6.4 What You May Need to Know

26.6.4.1 Sometimes You Need to Introduce a New Base Entity
In the example above, the User entity object corresponded to a concrete kind of row in
the USERS table and it also played the role of the base entity in the hierarchy. In other
words, all of its attributes were common to all entity objects in the hierarchy. You
might wonder what would happen, however, if the User entity required a property
that was specific to users, but not common to managers or technicians. Imagine that
end-users can participate in customer satisfaction surveys, but that managers and
technicians do not. The User entity would require a LastSurveyDate attribute to
handle this requirement, but it wouldn't make sense to have Manager and
Technician entity objects inherit it.

In this case, you can introduce a new entity object called BaseUser to act as the base
entity in the hierarchy. It would have all of the attributes common to all User,
Manager, and Technician entity objects. Then each of the three entities the
correspond to concrete rows that appear in the table could have some attributes that
are inherited from BaseUser and some that are specific to its subtype. In the
BaseUser type, so long as you mark the UserRole attribute as a discriminator
attribute, you can just leave the Default Value blank (or some other value that does
not occur in the USER_ROLE column in the table). Because at runtime you'll never be
using instances of the BaseUser entity, it doesn't really matter what its discriminator
default value is.

26.6.4.2 Finding Subtype Entities by Primary Key
When you use the findByPrimaryKey() method on an entity definition, it only
searches the entity cache for the entity object type on which you call it. In the example
above, this means that if you call UserImpl.getDefinitionObject() to access
the entity definition for the User entity object when you call findByPrimaryKey()
on it, you will only find entities in the cache that happen to be users. Sometimes this is
exactly the behavior you want. However, if you want to find an entity object by
primary key allowing the possibility that it might be a subtype in an inheritance
hierarchy, then you can use the EntityDefImpl class’ findByPKExtended()
method instead. In the User example described here, this alternative finder method
would find an entity object by primary key whether it is a User, Manager, or
Technician. You can then use the Java instanceof operator to test which type you
found, and then cast the UserImpl object to the more specific entity object type in
order to work with features specific to that subtype.

26.6.4.3 You Can Create View Objects with Polymorphic Entity Usages
When you create an entity-based view object with an entity usage corresponding to a
base entity object in an inheritance hierarchy, you can configure the view object to
query rows corresponding to multiple different subtypes in the base entity's subtype
hierarchy. Each row in the view object will use the appropriate subtype entity object as
the entity row part, based on matching the value of the discriminator attribute. See
Section 27.6.2, "How To Create a View Object with a Polymorphic Entity Usage" for
specific instructions on setting up and using these view objects.

Controlling Entity Posting Order to Avoid Constraint Violations

26-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

26.7 Controlling Entity Posting Order to Avoid Constraint Violations
Due to database constraints, when you perform DML operations to save changes to a
number of related entity objects in the same transaction, the order in which the
operations are performed can be significant. If you try to insert a new row containing
foreign key references before inserting the row being referenced, the database can
complain with a constraint violation. This section helps you understand the default
order for processing of entity objects during commit time and how to
programmatically influence that order when necessary.

26.7.1 Understanding the Default Post Processing Order
By default, when you commit the transaction the entity objects in the pending changes
list are processed in chronological order, in other words, the order in which the
entities were added to the list. This means that, for example, if you create a new
ServiceRequest and then a new Product related to that service request, the new
ServiceRequest will be inserted first and the new Product second.

26.7.2 How Compositions Change the Default Processing Ordering
When two entity objects are related by a composition, the strict chronological ordering
is modified automatically to ensure that composed parent and child entity rows are
saved in an order that avoids violating any constraints. This means, for example, that a
new parent entity row is inserted before any new composed children entity rows.

26.7.3 Overriding postChanges() to Control Post Order
If your related entities are associated but not composed, then you need to write a bit of
code to ensure that the related entities get saved in the appropriate order.

26.7.3.1 Observing the Post Ordering Problem First Hand
Consider the newServiceRequestForNewProduct() custom method from an
ExampleModule application module in Example 26–13. It accepts a set of parameters
and:

1. Creates a new ServiceRequest.

2. Creates a new Product.

3. Sets the product id to which the server request pertains.

4. Commits the transaction.

5. Constructs a Result Java bean to hold new product ID and service request ID.

6. Results the result.

Note: The examples in this section refer to the
ControllingPostingOrder project in the
AdvancedEntityExamples workspace. See the note at the
beginning of this chapter for download instructions.

Note: The code makes the assumption that both
ServiceRequest.SvrId and Product.ProdId have been set to
have DBSequence data type to populate their primary keys based on a
sequence.

Controlling Entity Posting Order to Avoid Constraint Violations

Advanced Entity Object Techniques 26-25

Example 26–13 Creating a New ServiceRequest Then a New Product and Returning the
New Ids

// In ExampleModuleImpl.java
public Result newServiceRequestForNewProduct(String prodName,

String prodDesc,
String problemDesc,
Number customerId) {

// 1. Create a new ServiceRequest
ServiceRequestImpl newSR = createNewServiceRequest();
// 2. Create a new Product
ProductImpl newProd = createNewProduct();
newProd.setName(prodName);
newProd.setDescription(prodDesc);
// 3. Set the product id to which service request pertains
newSR.setProdId(newProd.getProdId().getSequenceNumber());
newSR.setProblemDescription(problemDesc);
newSR.setCreatedBy(customerId);
// 4. Commit the transaction
getDBTransaction().commit();
// 5. Construct a bean to hold new product id and SR id
Result result = new Result();
result.setSvrId(newSR.getSvrId().getSequenceNumber());
result.setProdId(newProd.getProdId().getSequenceNumber());
// 6. Return the result
return result;

}
private ServiceRequestImpl createNewServiceRequest() {
EntityDefImpl srDef = ServiceRequestImpl.getDefinitionObject();
return (ServiceRequestImpl)srDef.createInstance2(getDBTransaction(),null);

}
private ProductImpl createNewProduct() {
EntityDefImpl srDef = ProductImpl.getDefinitionObject();
return (ProductImpl)srDef.createInstance2(getDBTransaction(),null);

}

If you add this method to the application module's client interface and test it from a
test client program, you get an error:

oracle.jbo.DMLConstraintException:
JBO-26048: Constraint "SVR_PRD_FK" violated during post operation:
"Insert" using SQL Statement
"BEGIN
INSERT INTO SERVICE_REQUESTS(
SVR_ID,STATUS,REQUEST_DATE,
PROBLEM_DESCRIPTION,PROD_ID,CREATED_BY)
VALUES (?,?,?,?,?,?)
RETURNING SVR_ID INTO ?;

END;".
Detail 0
java.sql.SQLException:
ORA-02291: integrity constraint (SRDEMO.SVR_PRD_FK) violated

- parent key not found

Controlling Entity Posting Order to Avoid Constraint Violations

26-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The database complains when the SERVICE_REQUESTS row is inserted that the value
of its PROD_ID foreign key doesn't correspond to any row in the PRODUCTS table. This
occurred because:

■ The code created the ServiceRequest before the Product

■ ServiceRequest and Product entity objects are associated but not composed

■ The DML operations to save the new entity rows is done in chronological order, so
the new ServiceRequest gets inserted before the new Product.

26.7.3.2 Forcing the Product to Post Before the ServiceRequest
To remedy the problem, you could reorder the lines of code in the example to create
the Product first, then the ServiceRequest. While this would address the
immediate problem, it still leaves the chance that another application developer could
creating things in an incorrect order.

The better solution is to make the entity objects themselves handle the posting order so
it will work correctly regardless of the order of creation. To do this you need to
override the postChanges() method in the entity that contains the foreign key
attribute referencing the associated entity object and write code as shown in
Example 26–14. In this example, since it is the ServiceRequst that contains the
foreign key to the Product entity, you need to update the ServiceRequest to
conditionally force a related, new Product to post before the service request posts
itself.

The code tests whether the entity being posted is in the STATUS_NEW or STATUS_
MODIFIED state. If it is, it retrieves the related product using the getProduct()
association accessor. If the related Product also has a post-state of STATUS_NEW, then
first it calls postChanges() on the related parent row before calling
super.postChanges() to perform its own DML.

Example 26–14 Overriding postChanges() in ServiceRequestImpl to Post Product First

// In ServiceRequestImpl.java
public void postChanges(TransactionEvent e) {
/* If current entity is new or modified */
if (getPostState() == STATUS_NEW ||

getPostState() == STATUS_MODIFIED) {
/* Get the associated product for the service request */
ProductImpl product = getProduct();
/* If there is an associated product */
if (product != null) {
/* And if it's post-status is NEW */
if (product.getPostState() == STATUS_NEW) {
/*
* Post the product first, before posting this
* entity by calling super below
*/
product.postChanges(e);

}
}

}
super.postChanges(e);

}

Controlling Entity Posting Order to Avoid Constraint Violations

Advanced Entity Object Techniques 26-27

If you were to re-run the example now, you would see that without changing the
creation order in the newServiceRequestForNewProduct() method's code,
entities now post in the correct order — first new Product, then new
ServiceRequest. Yet, there is still a problem. The constraint violation still appears,
but now for a different reason!

If the primary key for the Product entity object were user-assigned, then the code in
Example 26–14 would be all that is required to address the constraint violation by
correcting the post ordering.

In this example, however, the Product.ProdId is assigned from a database
sequence, and not user-assigned in this example. So when a new Product entity row
gets posted its ProdId attribute is refreshed to reflect the database-assigned sequence
value. The foreign key value in the ServiceRequest.ProdId attribute referencing
the new product is "orphaned" by this refreshing of the product's ID value. When the
service request row is saved, its PROD_ID value still doesn't match a row in the
PRODUCTS table, and the constraint violation occurs again. The next two sections
discuss the solution to address this "orphaning" problem.

26.7.3.3 Understanding Associations Based on DBSequence-Valued Primary Keys
Recall from Section 6.6.3.8, "Trigger-Assigned Primary Key Values from a Database
Sequence" that when an entity object's primary key attribute is of DBSequence type,
during the transaction in which it is created, its numerical value is a unique,
temporary negative number. If you create a number of associated entities in the same
transaction, the relationships between them are based on this temporary negative key
value. When the entity objects with DBSequence-value primary keys are posted, their
primary key is refreshed to reflect the correct database-assigned sequence number,
leaving the associated entities that are still holding onto the temporary negative
foreign key value "orphaned".

For entity objects based on a composition, when the parent entity object's
DBSequence-valued primary key is refreshed, the composed children entity rows
automatically have their temporary negative foreign key value updated to reflect the
owning parent's refreshed, database-assigned primary key. This means that for
composed entities, the "orphaning" problem does not occur.

However, when entity objects are related by an association that is not a composition,
you need to write a little code to insure that related entity rows referencing the
temporary negative number get updated to have the refreshed, database-assigned
primary key value. The next section outlines the code required.

Note: An alternative to the programmatic technique discussed
above, which solves the problem at the J2EE application layer, is the
use of deferrable constraints at the database layer. If you have control
over your database schema, consider defining (or altering) your
foreign key constraints to be DEFERRABLE INITIALLY DEFERRED.
This causes the database to defer checking the constraint until
transaction commit time. This allows the application to perform DML
operations in any order provided that by COMMIT time all appropriate
related rows have been saved and would alleviate the parent/child
ordering described above. However, you would still need to write the
code described in the following sections to cascade-update the foreign
key values if the parent’s primary key is assigned from a sequence.

Controlling Entity Posting Order to Avoid Constraint Violations

26-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

26.7.3.4 Refreshing References to DBSequence-Assigned Foreign Keys
When an entity like Product in this example has a DBSequence-valued primary key,
and it is referenced as a foreign key by other entities that are associated with (but not
composed by) it, you need to override the postChanges() method as shown in
Example 26–15 to save a reference to the row set of entity rows that might be
referencing this new Product row. If the status of the current Product row is New,
then the code assigns the RowSet-valued return of the getServiceRequest()
association accessor to the newServiceRequestsBeforePost member field before calling
super.postChanges().

Example 26–15 Saving Reference to Entity Rows Referencing this New Product

// In ProductImpl.java
RowSet newServiceRequestsBeforePost = null;
public void postChanges(TransactionEvent TransactionEvent) {
 /* Only bother to update references if Product is a NEW one */
 if (getPostState() == STATUS_NEW) {
 /*
 * Get a rowset of service requests related
 * to this new product before calling super
 */
 newServiceRequestsBeforePost = (RowSet)getServiceRequest();
 }
 super.postChanges(TransactionEvent);
}

This saved RowSet is then used by the overridden refreshFKInNewContainees()
method shown in Example 26–16. It gets called to allow a new entity row to cascade
update its refreshed primary key value to any other entity rows that were referencing
it before the call to postChanges(). It iterates over the ServiceRequestImpl rows
in the newServiceRequestsBeforePost row set (if non-null) and sets the new product ID
value of each one to the new sequence-assigned product value of the newly-posted
Product entity.

Example 26–16 Cascade Updating Referencing Entity Rows with New ProdId Value

// In ProductImpl.java
protected void refreshFKInNewContainees() {
 if (newServiceRequestsBeforePost != null) {
 Number newProdId = getProdId().getSequenceNumber();
 /*
 * Process the rowset of service requests that referenced
 * the new product prior to posting, and update their
 * ProdId attribute to reflect the refreshed ProdId value
 * that was assigned by a database sequence during posting.
 */
 while (newServiceRequestsBeforePost.hasNext()) {
 ServiceRequestImpl svrReq =
 (ServiceRequestImpl)newServiceRequestsBeforePost.next();
 svrReq.setProdId(newProdId);
 }
 closeNewServiceRequestRowSet();
 }
}
After implementing this change, the code in Example 26–13 runs without encountering
any database constraint violations.

Implementing Automatic Attribute Recalculation

Advanced Entity Object Techniques 26-29

26.8 Implementing Automatic Attribute Recalculation
Section 6.10, "Adding Transient and Calculated Attributes to an Entity Object"
explained how to add calculated attributes to an entity object. Often the formula for
the calculated value will depend on other attribute values in the entity. For example,
consider a LineItem entity object representing the line item of an order. The
LineItem might have attributes like Price and Quantity. You might introduce a
calculated attributed named ExtendedTotal which you calculate by multiplying the
price times the quantity. When either the Price or Quantity attributes is modified,
you might expect the calculated attribute ExtendedTotal to be updated to reflect the
new extended total, but this does not happen automatically. Unlike a spreadsheet, the
entity object does not have any built-in expression evaluation engine that understands
what attributes your formula depends on.

To address this limitation, you can write code in a framework extension class for entity
objects that add a recalculation facility. The SREntityImpl framework extension
class in the SRDemo application contains the code shown in Example 26–17 that does
this. It does not try to implement a sophisticated expression evaluator. Instead, it
leverages the custom properties mechanism to allow a developer to supply a
declarative "hint" about which attributes (e.g. X, Y, and Z) should be recalculated when
another attribute like A gets changed.

To leverage the generic facility, the developer of an entity object:

■ Bases his entity on the framework extension class containing this additional code,

■ Defines one or more entity-level custom properties that follow a particular naming
pattern. These indicate to the generic code which attributes should get recalculated
when a particular other attribute changes.

To indicate that "when attribute A changes, recalculate attributes X, Y, and Z" he
would add a custom property named Recalc_A with the comma-separated value
"X,Y,Z" to indicate that.

To implement the functionality the SREntityImpl class overrides the
notifyAttributesChanged()method. This method gets invoked whenever the
value of entity object attributes change. As arguments, the method receives two arrays:

■ int[] of attribute index numbers whose values have changed

■ Object[] containing the new values for those attributes

The code does the following basic steps:

1. Iterates over the set of custom entity properties

2. If property name starts with "Recalc_" it gets the substring following this prefix
to know the name of the attribute whose change should trigger recalculation of
others.

3. Determines the index of the recalc-triggering attribute.

4. If the array of changed attribute indexes includes the index of the recalc-triggering
attribute, then tokenize the comma-separated value of the property to find the
names of the attributes to recalculate.

5. If there were any attributes to recalculate, add their attribute indexes to a new
int[] of attributes whose values have changed.

The new array is created by copying the existing array elements in the attrIndices
array to a new array, then adding in the additional attribute index numbers.

6. Call the super with the possibly updated array of changed attributes.

Implementing Automatic Attribute Recalculation

26-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 26–17 Entity Framework Extension Code to Automatically Recalculate Derived
Attributes

// In SREntityImpl.java
protected void notifyAttributesChanged(int[] attrIndices, Object[] values) {
int attrIndexCount = attrIndices.length;
EntityDefImpl def = getEntityDef();
HashMap eoProps = def.getPropertiesMap();
if (eoProps != null && eoProps.size() > 0) {
Iterator iter = eoProps.keySet().iterator();
ArrayList otherAttrIndices = null;
// 1. Iterate over the set of custom entity properties
while (iter.hasNext()) {
String curPropName = (String)iter.next();
if (curPropName.startsWith(RECALC_PREFIX)) {
// 2. If property name starts with "Recalc_" get follow attr name
String changingAttrNameToCheck = curPropName.substring(PREFIX_LENGTH);
// 3. Get the index of the recalc-triggering attribute
int changingAttrIndexToCheck =

def.findAttributeDef(changingAttrNameToCheck).getIndex();
if (isAttrIndexInList(changingAttrIndexToCheck,attrIndices)) {
// 4. If list of changed attrs includes recalc-triggering attr,
// then tokenize the comma-separated value of the property
// to find the names of the attributes to recalculate
String curPropValue = (String)eoProps.get(curPropName);
StringTokenizer st = new StringTokenizer(curPropValue,",");
if (otherAttrIndices == null) {
otherAttrIndices = new ArrayList();

}
while (st.hasMoreTokens()) {
String attrName = st.nextToken();
int attrIndex = def.findAttributeDef(attrName).getIndex();
if (!isAttrIndexInList(attrIndex,attrIndices)) {
Integer intAttr = new Integer(attrIndex);
if (!otherAttrIndices.contains(intAttr)) {
otherAttrIndices.add(intAttr);

}
}

}
}

}
}
if (otherAttrIndices != null && otherAttrIndices.size() > 0) {
// 5. If there were any attributes to recalculate, add their attribute
// indexes to the int[] of attributes whose values have changed
int extraAttrsToAdd = otherAttrIndices.size();
int[] newAttrIndices = new int[attrIndexCount + extraAttrsToAdd];
Object[] newValues = new Object[attrIndexCount + extraAttrsToAdd];
System.arraycopy(attrIndices,0,newAttrIndices,0,attrIndexCount);
System.arraycopy(values,0,newValues,0,attrIndexCount);
for (int z = 0; z < extraAttrsToAdd; z++) {
newAttrIndices[attrIndexCount+z] =
((Integer)otherAttrIndices.get(z)).intValue();
newValues[attrIndexCount+z] =
getAttribute((Integer)otherAttrIndices.get(z));

}
attrIndices = newAttrIndices;
values = newValues;

}
}

Implementing Custom Validation Rules

Advanced Entity Object Techniques 26-31

// 6. Call the super with the possibly updated array of changed attributes
super.notifyAttributesChanged(attrIndices, values);

}

The ServiceHistory entity object in the SRDemo application uses this feature by
setting a custom entity property named Recalc_SvhType with the value of Hidden.
This way, anytime the value of the SvhType attribute is changed, the value of the
calculated Hidden attribute is recalculated.

26.9 Implementing Custom Validation Rules
ADF Business Components comes with a base set of built-in declarative validation
rules that you can use. However, the most powerful feature of the validator
architecture for entity objects is that you can create your own custom validation rules.
When you notice that you or your team are writing the same kind of validation code
over and over, you can build a custom validation rule class that captures this common
validation "pattern" in a parameterized way. Once you've defined a custom validation
rule class, you can register it in JDeveloper so that it is as simple to use as any of the
built-in rules. In fact, as you see in the following sections, you can even bundle your
custom validation rule with a custom UI panel that JDeveloper will leverage
automatically to facilitate developers' using and configuring the parameters your
validation rule might require.

26.9.1 How To Create a Custom Validation Rule
To write a custom validation rule for entity objects, create a Java class that implements
the JboValidatorInterface in the oracle.jbo.rules package. As shown in
Example 26–18, this interface contains one main validate() method, and a getter
and setter method for a Description property.

Example 26–18 All Validation Rules Must Implement the JboValidatorInterface

package oracle.jbo.rules;
public interface JboValidatorInterface {
void validate(JboValidatorContext valCtx) { }
java.lang.String getDescription() { }
void setDescription(String description) { }
}

If the behavior of your validation rule will be parameterized to make it more flexible,
then add additional bean properties to your validator class for each parameter. For
example, the SRDemo application contains a custom validation rule called
DateMustComeAfterRule which validates that one date attribute must come after
another date attribute. To allow developer's using the rule to configure the names of
the date attributes to use as the initial and later dates for validation, this class defines
two properties initialDateAttrName and laterDateAttrName.

Example 26–19 shows the code that implements the custom validation rule. It extends
the AbstractValidator to inherit support for working automatically with the
entity object's custom message bundle, where JDeveloper will automatically save the
validation error message when a developer uses the rule on one of their entity objects.

Implementing Custom Validation Rules

26-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The validate() method of the validation rule gets invoked at runtime whenever the
rule class should perform its functionality. The code performs the following basic
steps:

1. Ensures validator is correctly attached at the entity level.

2. Gets the entity row being validated.

3. Gets the values of the initial and later date attributes.

4. Validate sthat initial date is before later date.

5. Throws an exception if the validation fails.

Example 26–19 Custom DateMustComeAfterRule in the SRDemo Application

package oracle.srdemo.model.frameworkExt.rules;
// NOTE: Imports omitted
public class DateMustComeAfterRule extends AbstractValidator

implements JboValidatorInterface {
/**
* This method is invoked by the framework when the
* validator should do its job.
*/
public void validate(JboValidatorContext valCtx) {
// 1. If validator is correctly attached at the entity level...
if (validatorAttachedAtEntityLevel(valCtx)) {
// 2. Get the entity row being validated
EntityImpl eo = (EntityImpl)valCtx.getSource();
// 3. Get the values of the initial and later date attributes
Date initialDate = (Date) eo.getAttribute(getInitialDateAttrName());
Date laterDate = (Date) eo.getAttribute(getLaterDateAttrName());
// 4. Validate that initial date is before later date
if (!validateValue(initialDate,laterDate)) {
// 5. Throw the validation exception
RulesBeanUtils.raiseException(getErrorMessageClass(),

getErrorMsgId(),
valCtx.getSource(),
valCtx.getSourceType(),
valCtx.getSourceFullName(),
valCtx.getAttributeDef(),
valCtx.getNewValue(),
null, null);

}
}
else {
throw new RuntimeException("Rule must be at entity level");

}
}
/**
* Validate that the initialDate comes before the laterDate.
*/
private boolean validateValue(Date initialDate, Date laterDate) {
return (initialDate == null) || (laterDate == null) ||
(initialDate.compareTo(laterDate) < 0);

}
/**
* Return true if validator is attached to entity object
* level at runtime.
*/

Implementing Custom Validation Rules

Advanced Entity Object Techniques 26-33

private boolean validatorAttachedAtEntityLevel(JboValidatorContext ctx) {
return ctx.getOldValue() instanceof EntityImpl;

}
// NOTE: Getter/Setter Methods omitted
private String description;
private String initialDateAttrName;
private String laterDateAttrName;

}

For easier reuse of your custom validation rules, you would typically package them
into a JAR file for reference by applications that make use of the rules. In the SRDemo
application, the FrameworkExtensions project contains a
DateMustComeAfterRule.deploy deployment profile that packages the rule class into
a JAR file named DateMustComeAfterRule.jar for use at runtime and design
time.

26.9.2 Adding a Design Time Bean Customizer for Your Rule
Since a validation rule class is a bean, you can implement a standard JavaBean
customizer class to improve the design time experience of setting the bean properties.
In the example of the DateMustComeAfter rule in the previous section, the two
properties developers will need to configure are the initialDateAttrName and
laterDateAttrName properties.

Figure 26–4 illustrates using JDeveloper's visual designer for Swing to create a
DateMustComeAfterRuleCustomizer using a JPanel with a titled border
containing two JLabel prompts and two JComboBox controls for the dropdown lists.
The code in the class populates the dropdown lists with the names of the Date-valued
attributes of the current entity object being edited in the IDE. This will allow a
developer who adds a DateMustComeAfterRule validation to their entity object to
easily pick which date attributes should be used for the starting and ending dates for
validation.

Figure 26–4 Using JDeveloper's Swing Visual Designer to Create Validation Rule
Customizer

To associate a customizer with your DateMustComeAfterRule Java Bean, you
follow the standard practice of creating a BeanInfo class. As shown in
Example 26–20, the DateMustComeAfterRuleBeanInfo returns a BeanDescriptor
that associates the customizer class with the DateMustComeAfter bean class.

You would typically package your customizer class and this bean info in a separate
JAR file for design-time-only use. The FrameworkExtensions project in the
SRDemo application contains a deployment profile that packages these classes in a
DateMustComeAfterRuleDT.jar.

Implementing Custom Validation Rules

26-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 26–20 BeanInfo to Associate a Customizer with a Custom Validation Rule

package oracle.srdemo.model.frameworkExt.rules;
import java.beans.BeanDescriptor;
import java.beans.SimpleBeanInfo;
public class DateMustComeAfterRuleBeanInfo extends SimpleBeanInfo {
public BeanDescriptor getBeanDescriptor() {
return new BeanDescriptor(DateMustComeAfterRule.class,

DateMustComeAfterRuleCustomizer.class);
}

}

26.9.3 Registering and Using a Custom Rule in JDeveloper
To use a custom validation rule in a project containing entity objects, follow these
steps:

1. Define a project-level library for the rule JAR files.

2. Add that library to your project's library list.

3. Use the Business Components > Registered Rules panel of the Project Properties
dialog to add a one or more validation rules.

When adding a validation rule, provide the fully-qualified name of the validation
rule class, and supply a validation rule name that will appear in JDeveloper's list
of available validators.

Figure 26–5 shows the Validation panel of the Entity Object editor for the SRDemo
application's ServiceRequest entity object. When you edit the DateMustComeAfter
rule, you can see the custom editing panel is automatically discovered from the rule
class' BeanInfo and used at design time to show the developer the starting and ending
attribute names. JDeveloper provides the support for capturing the translatable error
message that will be shown to the end-user if the validation rule fails at runtime.

Figure 26–5 Custom Validation Rule with Custom Editor Panel in JDeveloper

Advanced View Object Techniques 27-1

27
Advanced View Object Techniques

This chapter describes advanced techniques you can use while designing and working
with your view objects.

This chapter includes the following sections:

■ Section 27.1, "Advanced View Object Concepts and Features"

■ Section 27.2, "Tuning Your View Objects for Best Performance"

■ Section 27.3, "Using Expert Mode for Full Control Over SQL Query"

■ Section 27.4, "Working with Multiple Named View Criteria"

■ Section 27.5, "Performing In-Memory Sorting and Filtering of Row Sets"

■ Section 27.6, "Using View Objects to Work with Multiple Row Types"

■ Section 27.7, "Reading and Writing XML"

■ Section 27.8, "Using Programmatic View Objects for Alternative Data Sources"

■ Section 27.9, "Creating a View Object with Multiple Updatable Entities"

■ Section 27.10, "Declaratively Preventing Insert, Update, and Delete"

27.1 Advanced View Object Concepts and Features
This section describes a number of interesting view object concepts and features that
have not been discussed in previous chapters.

27.1.1 Using a Max Fetch Size to Only Fetch the First N Rows
The default maximum fetch size of a view object is minus one (-1), which indicates that
there is no artificial limit to the number of rows that can be fetched. Keep in mind that
by default, rows are fetched as needed, so this default does not imply a view object
will necessary fetch all the rows. It simply means that if you attempt to iterate through
all the rows in the query result, you will get them all.

Note: To experiment with a working version of the examples in this
chapter, download the AdvancedViewObjectsExamples
workspace from Example Downloads page at
http://otn.oracle.com/documentation/jdev/b25947_01/.

http://otn.oracle.com/documentation/jdev/b25947_01/

Advanced View Object Concepts and Features

27-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

However, you might want to put an upper bound on the maximum number of rows
that a view object will retrieve. If you write a query containing an ORDER BY clause
and only want to return the first N rows to display the "Top-N" entries in a page, you
can call the setMaxFetchSize() method on your view object to set the maximum
fetch size to N. The view object will stop fetching rows when it hits the maximum fetch
size. Often you will combine this technique with specifying a Query Optimizer Hint
of FIRST_ROWS on the Tuning panel of the View Object Editor. This gives a hint to the
database that you want to retrieve the first rows as quickly as possible, rather than
trying to optimize the retrieval of all rows.

27.1.2 Consistently Displaying New Rows in View Objects Based on the Same Entity
When multiple instances of entity-based view objects in an application module are
based on the same underlying entity object, a new row created in one of them can be
automatically added (without having to re-query) to the row sets of the others to keep
your user interface consistent or simply to consistently reflect new rows in different
application pages for a pending transaction. Consider the SRDemo application’s
SRList page that displays an end-user's list of service requests. If the end-user goes to
create a new service request, this task is performed through a different view object and
handled by a custom application module method. Using this view object new row
consistency feature, the newly created service request automatically appears in the
end-user's list of open service requests on the SRList page without having to
re-query the database.

For historical reasons, this capability is known as the view link consistency feature
because in prior releases of Oracle ADF the addition of new rows to other relevant row
sets only was supported for detail view object instances in a view link based on an
association. Now this view link consistency feature works for any view objects for
which it is enabled, regardless of whether they are involved in a view link or not.

27.1.2.1 How View Link Consistency Mode Works
Consider two entity-based view objects ServiceRequestSummary and
ServiceRequests both based on the same underlying ServiceRequest entity
object. When a new row is created in a row set for one of these view objects (like
ServiceRequests) and the row's primary key is set, any of the other row sets for
view objects based on the same ServiceRequest entity object (like
ServiceRequestSummary) receive an event indicating a new row has been created.
If their view link consistency flag is enabled, then a copy of the new row is inserted
into their row set as well.

27.1.2.2 Understanding the Default View Link Consistency Setting and How to
Change It
You can control the default setting for the view link consistency feature using the
jbo.viewlink.consistent configuration parameter. The default setting for this
parameter is the word "DEFAULT" which has the following meaning. If your view
object has:

■ A single entity usage, view link consistency is enabled

■ Multiple entity usages, and:

■ If all secondary entity usages are marked as contributing reference
information, then view link consistency is enabled

■ If any secondary entity usage marked as not being a reference view link
consistency is disabled.

Advanced View Object Concepts and Features

Advanced View Object Techniques 27-3

You can globally disable this feature by setting the jbo.viewlink.consistent to
the value false in your configuration. Conversely, you could globally enable this
feature by setting jbo.viewlink.consistent to the value true, but Oracle does
not recommend doing this. Doing so would force view link consistency to be set on for
view objects with secondary entity usages that are not marked as a reference which
presently do not support the view link consistency feature well.

To set the feature programmatically, use the setAssociationConsistent() API
on any RowSet. When you call this method on a view object, it affects its default row
set.

27.1.2.3 Using a RowMatch to Qualify Which New, Unposted Rows Get Added to a
Row Set
If a view object has view link consistency enabled, any new row created by another
view object based on the same entity object is added to its row set. By default the
mechanism adds new rows in an unqualified way. If your view object has a
design-time WHERE clause that queries only a certain subset of rows, you can apply a
RowMatch object to your view object to perform the same filtering in-memory. The
filtering expression of the RowMatch object you specify prevents new rows from being
added that wouldn't make sense to appear in that view object.

For example, the ServiceRequestsByStatus view object in the SRDemo
application includes a design time WHERE clause like this:

WHERE /* ... */ AND STATUS LIKE NVL(:StatusCode,'%')

Its custom Java class overrides the create() method as shown in Example 27–1 to
force view link consistency to be enabled. It also applies a RowMatch object whose
filtering expression matches rows whose Status attribute matches the value of the
:StatusCode named bind variable (or matches any row if :StatusCode = '%'). This
RowMatch filter is used by the view link consistency mechanism to qualify the row
that is a candidate to add to the row set. If the row qualifies by the RowMatch, it is
added. Otherwise, it is not.

Example 27–1 Providing a Custom RowMatch to Control Which New Rows are Added

// In ServiceRequestsByStatusImpl.java
protected void create() {
super.create();
setAssociationConsistent(true);
setRowMatch(new RowMatch("Status = :StatusCode or :StatusCode = '%'"));

}

See Section 27.5.4, "Performing In-Memory Filtering with RowMatch" for more
information on creating and using a RowMatch object.

Note: If the RowMatch facility does not provide enough control, you
can override the view object's rowQualifies() method to
implement a custom filtering solution. Your code can determine
whether a new row qualifies to be added by the view link consistency
mechanism or not.

Advanced View Object Concepts and Features

27-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.1.2.4 Setting a Dynamic Where Clause Disables View Link Consistency
If you call setWhereClause() on a view object to set a dynamic where clause, the
view link consistency feature is disabled on that view object. If you have provided an
appropriate custom RowMatch object to qualify new rows for adding to the row set,
you can call setAssociationConsistent(true) after setWhereClause() to
re-enable view link consistency.

27.1.2.5 New Row from Other View Objects Added at the Bottom
If a row set has view link consistency enabled, then new rows added due to creation
by other row sets are added to the bottom of the row set.

27.1.2.6 New, Unposted Rows Added to Top of RowSet when Re-Executed
If a row set has view link consistency enabled, then when you call the
executeQuery() method, any qualifying new, unposted rows are added to the top
of the row set before the queried rows from the database are added.

27.1.3 Understanding View Link Accessors Versus Data Model View Link Instances
View objects support two different styles of master-detail coordination:

■ View link instances for active data model master/detail coordination

■ View link accessor attributes for programmatically accessing detail row sets on
demand

27.1.3.1 Enabling a Dynamic Detail Row Set with Active Master/Detail Coordination
When you add a view link instance to your application module's data model, you
connect two specific view object instances and indicate that you want active
master/detail coordination between the two. At runtime the view link instance in the
data model facilitates the eventing that enables this coordination. Whenever the
current row is changed on the master view object instance, an event causes the detail
view object to be refreshed by automatically invoking executeQuery() with a new
set of bind parameters for the new current row in the master view object.

A key feature of this active data model master/detail is that the master and detail view
object instances are stable objects to which client user interfaces can establish bindings.
When the current row changes in the master — instead of producing a new detail view
object instance — the existing detail view object instance updates its default row set to
contain a the set of rows related to the new current master row. In addition, the user
interface binding objects receive events that allow the display to update to show the
detail view object's refreshed row set.

Another key feature that is exclusive to active data model master/detail is that a detail
view object instance can have multiple master view object instances. For example, an
ExpertiseAreas view object instance may be a detail of both a Products and a
Technicians view object instances. Whenever the current row in either the
Products or Technicians view object instance changes, the default row set of the
detail ExpertiseAreas view object instance is refreshed to include the row of
expertise area information for the current technician and the current product. See
Section 27.1.6, "Setting Up a Data Model with Multiple Masters" for details on setting
up a detail view object instance with multiple-masters.

Advanced View Object Concepts and Features

Advanced View Object Techniques 27-5

27.1.3.2 Accessing a Stable Detail Row Set Using View Link Accessor Attributes
When you need to programmatically access the detail row set related to a view object
row by virtue of a view link, you can use the view link accessor attribute. You control
the name of the view link accessor attribute on the View Link Properties panel of the
View Link Editor. Assuming you've named your accessor attribute
AccessorAttrName, you can access the detail row set using the generic
getAttribute() API like:

RowSet detail = (RowSet)currentRow.getAttribute("AccessorAttrName");

If you've generated a custom view row class for the master view object and exposed
the getter method for the view link accessor attribute on the client view row interface,
you can write strongly-typed code to access the detail row set like this:

RowSet detail = (RowSet)currentRow.getAccessorAttrName();

Unlike the active data model master/detail, programmatic access of view link accessor
attributes does not require a detail view object instance in the application module's
data model. Each time you invoke the view link accessor attribute, it returns a RowSet
containing the set of detail rows related to the master row on which you invoke it.

Using the view link accessor attribute, the detail data rows are stable. As long as the
attribute value(s) involved in the view link definition in the master row remain
unchanged, the detail data rows will not change. Changing of the current row in the
master does not affect the detail row set which is "attached" to a given master row. For
this reason, in addition to being useful for general programmatic access of detail rows,
view link accessor attributes are appropriate for UI object like the tree control, where
data for each master node in a tree needs to retain its distinct set of detail rows.

27.1.3.3 Accessor Attributes Create Distinct Row Sets Based on an Internal View
Object
When you combine the use of active data model master/detail with programmatic
access of detail row sets using view link accessor, it is even more important to
understand that they are distinct mechanisms. For example, imagine that you have:

■ Defined ServiceRequests and ServiceHistories view objects

■ Defined a view link between them, naming the view link accessor
HistoriesForRequest

■ Added instances of them to an application module's data model named master
(of type ServiceRequests) and detail (of type ServiceHistories)
coordinated actively by a view link instance.

If you find a service request in the master view object instance, the detail view
object instance updates as expected to show the corresponding service request
histories. At this point, if you invoke a custom method that programmatically accesses
the HistoriesForRequest view link accessor attribute of the current
ServiceRequests row, you get a RowSet containing the set of ServiceHistory
rows. You might reasonably expect this programmatically access RowSet to have
come from the detail view object instance in the data model, but this is not the case.

The RowSet returned by a view link accessor always originates from an internally
created view object instance, not one you that added to the data model. This internal
view object instance is created as needed and added with a system-defined name to
the root application module.

Advanced View Object Concepts and Features

27-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The principal reason a distinct, internally-created view object instance is used is to
guarantee that it remains unaffected by developer-related changes to their own view
objects instances in the data model. For example, if the view row were to use the detail
view object in the data model for view link accessor RowSet, the resulting row set
could be inadvertently affected when the developer dynamically:

1. Adds a WHERE clause with new named bind parameters

If such a view object instance were used for the view link accessor result,
unexpected results or an error could ensue because the dynamically-added WHERE
clause bind parameter values have not been supplied for the view link accessor's
RowSet: they were only supplied for the default row set of the detail view object
instance in the data model.

2. Adds an additional master view object instance for the detail view object instance
in the data model.

In this scenario, the semantics of the accessor would be changed. Instead of the
accessor returning ServiceHistory rows for the current ServiceRequest
row, it could all of a sudden start returning only the ServiceHistory rows for
the current ServiceRequest that were created by a current technician, for
example.

3. Removes the detail view object instance or its containing application module
instance.

In this scenario, all rows in the programmatically-accessed detail RowSet would
become invalid.

Furthermore, Oracle ADF needs to distinguish between the active data model
master/detail and view link accessor row sets for certain operations. For example,
when you create a new row in a detail view object, the framework automatically
populates the attributes involved in the view link with corresponding values of the
master. In the active data model master/detail case, it gets these values from the
current row(s) of the possibly multiple master view object instances in the data model.
In the case of creating a new row in a RowSet returned by a view link accessor, it
populates these values from the master row on which the accessor was called.

27.1.4 Presenting and Scrolling Data a Page at a Time Using the Range
To present and scroll through data a page at a time, you can configure a view object to
manage for you an appropriately-sized range of rows. The range facility allows a client
to easily display and update a subset of the rows in a row set, as well as easily scroll to
subsequent pages N rows as a time. You call setRangeSize() to define how many
rows of data should appear on each page. The default range size is one (1) row. A
range size of minus one (-1) indicates the range should include all rows in the row set.

Note: When using the ADF Model layer's declarative data binding,
the iterator binding in the page definition has a RangeSize property.
At runtime, the iterator binding invokes the setRangeSize()
method on its corresponding row set iterator, passing the value of this
RangeSize property. The ADF design time by default sets this
RangeSize property to 10 rows for most iterator bindings. An
exception is the range size specified for a List binding to supply the
set of valid values for a UI component like a dropdown list. In this
case, the default range size is minus one (-1) to allow the range to
include all rows in the row set.

Advanced View Object Concepts and Features

Advanced View Object Techniques 27-7

When you set a range size greater than one, you control the row set paging behavior
using the iterator mode. The two iterator mode flags you can pass to the
setIterMode() method are:

■ RowIterator.ITER_MODE_LAST_PAGE_PARTIAL

In this mode, the last page of rows may contain fewer rows than the range size.
For example, if you set the range size to 10 and your row set contains 23 rows, the
third page of rows will contain only three rows. This is the style that works best
for web applications.

■ RowIterator.ITER_MODE_LAST_PAGE_FULL

In this mode, the last page of rows is kept full, possibly including rows at the top
of the page that had appeared at the bottom of the previous page. For example, if
you set the range size to 10 and your row set contains 23 rows, the third page of
rows will contain 10 rows, the first seven of which appeared as the last seven rows
of page two. This is the style that works best for desktop-fidelity applications
using Swing.

27.1.5 Efficiently Scrolling Through Large Result Sets Using Range Paging
As a general rule, for highest performance, Oracle recommends building your
application in a way that avoids giving the end-user the opportunity to scroll through
very large query results. To enforce this recommendation, call the
getEstimatedRowCount() method on a view object to determine how many rows
would be returned the user’s query before actually executing the query and allowing
the user to proceed. If the estimated row count is unreasonably large, your application
can demand that the end-user provide additional search criteria.

However, when you must work with very large result sets, you can use the view
object's access mode called "range paging" to improve performance. The feature allows
your applications to page back and forth through data, a range of rows at a time, in a
way that is more efficient for large data sets than the default "scrollable" access mode.

27.1.5.1 Understanding How to Oracle Supports "TOP-N" Queries
The Oracle database supports a feature called a "Top-N" query to efficiently return the
first N ordered rows in a query. For example, if you have a query like:

SELECT EMPNO, ENAME,SAL FROM EMP ORDER BY SAL DESC

If you want to retrieve the top 5 employees by salary, you can write a query like:

SELECT * FROM (
SELECT X.*,ROWNUM AS RN FROM (

SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC
) X

) WHERE RN <= 5

which gives you results like:

EMPNO ENAME SAL RN
---------- -------- ------ ----

7839 KING 5000 1
7788 SCOTT 3000 2
7902 FORD 3000 3
7566 JONES 2975 4
7698 BLAKE 2850 5

Advanced View Object Concepts and Features

27-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The feature is not only limited to retrieving the first N rows in order. By adjusting the
criteria in the outmost WHERE clause you can efficiently retrieve any range of rows in
the query's sorted order. For example, to retrieve rows 6 through 10 you could alter
the query this way:

SELECT * FROM (
SELECT X.*,ROWNUM AS RN FROM (

SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC
) X

) WHERE RN BETWEEN 6 AND 10

Generalizing this idea, if you want to see page number P of the query results, where
each page contains R rows, then you would write a query like:

SELECT * FROM (
SELECT X.*,ROWNUM AS RN FROM (
SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC

) X
) WHERE RN BETWEEN ((:P - 1) * :R) + 1 AND (:P) * :R

As the result set you consider grows larger and larger, it becomes more and more
efficient to use this technique to page through the rows. Rather than retrieving
hundreds or thousands of rows over the network from the database, only to display
ten of them on the page, instead you can produce a clever query to retrieve only the R
rows on page number P from the database. No more than a handful of rows at a time
needs to be returned over the network when you adopt this strategy.

To implement this database-centric paging strategy in your application, you could
handcraft the clever query yourself and write code to manage the appropriate values
of the :R and :P bind variables. Alternatively, you can use the view object's range
paging access mode, which implements it automatically for you.

27.1.5.2 How to Enable Range Paging for a View Object
To enable range paging for your view object, first call setRangeSize() to define the
number of rows per page, then call the following method:

yourViewObject.setAccessMode(RowSet.RANGE_PAGING);

27.1.5.3 What Happens When You Enable Range Paging
When a view object's access mode is set to RANGE_PAGING, the view object takes its
default query like:

SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

and automatically "wraps" it to produce a Top-N query.

For best performance, the statement uses a combination of greater than and less than
conditions instead of the BETWEEN operator, but the logical outcome is the same as the
Top-N wrapping query you saw above. The actual query produced to wrap a base
query of:

SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

looks like this:

SELECT * FROM (
SELECT /*+ FIRST_ROWS */ IQ.*, ROWNUM AS Z_R_N FROM (
SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

) IQ WHERE ROWNUM < :0)
WHERE Z_R_N > :1

Advanced View Object Concepts and Features

Advanced View Object Techniques 27-9

The two bind variables are bound as follows:

■ :1 index of the first row in the current page

■ :0 is bound to the last row in the current page

27.1.5.4 How are View Rows Cached When Using Range Paging?
When a view object operates in RANGE_PAGING access mode, it only keeps the current
range (or "page") of rows in memory in the view row cache at a time. That is, if you are
paging through results ten at a time, then on the first page, you'll have rows 1 through
10 in the view row cache. When you navigate to page two, you'll have rows 11
through 20 in the cache. This also can help make sure for large row sets that you don't
end up with tons of rows cached just because you want to preserve the ability to scroll
backwards and forwards.

27.1.5.5 How to Scroll to a Given Page Number Using Range Paging
When a view object operates in RANGE_PAGING access mode, to scroll to page number
N call its scrollToRangePage() method, passing N as the parameter value.

27.1.5.6 Estimating the Number of Pages in the Row Set Using Range Paging
When a view object operates in RANGE_PAGING access mode, you can access an
estimate of the total number of pages the entire query result would produce using the
getEstimatedRangePageCount() method.

27.1.5.7 Accommodating Inserts and Deletes Using Auto Posting
The range paging access mode is typically used for paging through read-only row sets,
and often is used with read-only view objects. You allow the user to find the row they
are looking for by paging through a large row set with range paging access mode, then
you use the Key of that row to find the selected row in a different view object for
editing.

Additionally, the view object supports a RANGE_PAGING_AUTO_POST access mode to
accommodate the inserting and deleting of rows from the row set. This mode behaves
like the RANGE_PAGING mode, except that it eagerly calls postChanges() on the
database transaction whenever any changes are made to the row set. This
communicates the pending changes to the database via appropriate INSERT, UPDATE,
or DELETE statements so that the changes are preserved when scrolling backward or
forward.

27.1.5.8 Understanding the Tradeoffs of Using Range Paging Mode
You might ask yourself, "Why wouldn't I always want to use RANGE_PAGING mode?"
The answer is that using range paging potentially causes more overall queries to be
executed as you are navigating forward and backward through your view object rows.
You would want to avoid using RANGE_PAGING mode in these situations:

■ You plan to read all the rows in the row set immediately (for example, to populate
a dropdown list).

In this case your range size would be set to -1 and there really is only a single
"page" of all rows, so range paging does not add value.

■ You need to page back and forth through a small-sized row set.

If you have 100 rows or fewer, and are paging through them 10 at a time, with
RANGE_PAGING mode you will execute a query each time you go forward and

Advanced View Object Concepts and Features

27-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

backward to a new page. In normal mode, you will cache the view object rows as
you read them in, and paging backwards through the previous pages will not
re-execute queries to show those already-seen rows.

In the case of a very large (or unpredictably large) row set, the trade off of potentially
doing a few more queries — each of which only returns up to the RangeSize number
of rows from the database — is more efficient then trying to cache all of the
previously-viewed rows. This is especially true if you allow the user to jump to an
arbitrary page in the list of results. Doing so in normal, scrollable mode requires
fetching and caching all of the rows between the current page and the page the users
jumps to. In RANGE_PAGING mode, it will ask the database just for the rows on that
page. Then, if the user jumps back to a page of rows that they have already visited, in
RANGE_PAGING mode, those rows get re-queried again since only the current page of
rows is held in memory in this mode.

27.1.6 Setting Up a Data Model with Multiple Masters
When useful, you can set up your data model to have multiple master view object
instances for the same detail view object instance. Consider view objects named
Technicians, Products, and ExpertiseAreas with view links defined between:

■ Products and ExpertiseAreas

■ Technicians and ExpertiseAreas

Figure 27–1 shows what the data model panel looks like when you've configured both
Technicians and Products view object instances to be masters of the same
ExpertiseAreas view object instance.

Figure 27–1 Multiple Master View Object Instances for the Same Detail

To set up the data model as shown in Figure 27–1 open the Application Module Editor
and follow these steps on the Data Model panel:

1. Add an instance of the Technicians view object to the data model.

Assume you name it Technicians.

2. Add an instance of the Products view object to the data model

Assume you name it Products.

3. Select the Technicians view object instance in the Data Model list

Note: The example in this section refer to the MultipleMasters
project in the AdvancedViewObjectExamples workspace. See the
note at the beginning of this chapter for download instructions.

Advanced View Object Concepts and Features

Advanced View Object Techniques 27-11

4. In the Available View Objects list, select the ExpertiseAreas view object
indented beneath the Technicians view object, enter the view object instance
name of ExpertiseAreas in the Name field, and click > to shuttle it into data
model as a detail of the existing Technicians view object instance.

5. Select the Products view object instance in the Data Model list

6. In the Available View Objects list, select the ExpertiseAreas view object
indented beneath the Products view object, enter the same view object instance
name of ExpertiseAreas in the Name field, and click > to shuttle it into data
model as a detail of the existing Products view object instance.

An alert will appear: An instance of a View Object with the name
ExpertiseAreas has already been used in the data model. Would you like to use
the same instance?

7. Click Yes to confirm you want the ExpertiseAreas view object instance to also
be the detail of the Products view object instance.

27.1.7 Understanding When You Can Use Partial Keys with findByKey()
View objects based on multiple entity usages support the ability to find view rows by
specifying a partially populated key. A partial key is a multi-attribute Key object with
some of its attributes set to null. However, there are strict rules about what kinds of
partial keys can be used to perform the findByKey().

If a view object is based on N entity usages, where N > 1, then the view row key is by
default comprised of all of the primary key attributes from all of the participating
entity usages. Only the ones from the first entity object are required to participate in the
view row key, but by default all of them do.

If you allow the key attributes from some secondary entity usages to remain as key
attributes at the view row level, then you should leave all of the attributes that form
the primary key for that entity object as part of the view row key. Assuming you have
left the one or more key attributes in the view row for M of the N entity usages, where
(M <= N), then you can use findByKey() to find rows based on any subset of these M
entity usages. Each entity usage for which you provide values in the Key object,
requires that you must provide non-null values for all of the attributes in that entity's
primary key.

You have to follow this rule because when a view object is based on at least one or
more entity usages, its findByKey() method finds rows by delegating to the
findByPrimaryKey() method on the entity definition corresponding to the first
entity usage whose attributes in the view row key are non-null. The entity definition's
findByPrimaryKey() method requires all key attributes for any given entity object
to be non-null in order to find the entity row in the cache.

As a concrete example, imagine that you have a ServiceRequests view object with
an ServiceRequest entity object as its primary entity usage, and a Product entity
as secondary reference entity usage. Furthermore, assume that you leave the Key
Attribute property of both of the following view row attributes set to true:

■ SvrId — primary key for the ServiceRequest entity

■ ProdId1 — primary key for the Product entity

Advanced View Object Concepts and Features

27-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The view row key will therefore be the (SvrId, ProdId1) combination. When you do
a findByKey(), you can provide a Key object that provides:

■ A completely specified key for the underlying ServiceRequest entity

Key k = new Key(new Object[]{new Number(200), null});

■ A completely specified key for the underlying Product entity

Key k = new Key(new Object[]{null, new Number(118)});

■ A completely specified key for both entities

Key k = new Key(new Object[]{new Number(200), new Number(118)});

When a valid partial key is specified, the findByKey() method can return multiple
rows as a result, treating the missing entity usage attributes in the Key object as a
wildcard.

27.1.8 Creating Dynamic Attributes to Store UI State
You can add one or more dynamic attributes to a view object at runtime using the
addDynamicAttribute() method. Dynamic attributes can hold any object as their
value. Typically, you will consider using dynamic attributes when writing generic
framework extension code that requires storing some additional per-row transient
state to implement a feature you want to add to the framework in a global, generic
way.

27.1.9 Working with Multiple Row Sets and Row Set Iterators
While you typically work with a view object's default row set, you can call the
createRowSet() method on the ViewObject interface to create secondary, named
row sets based on the same view object's query. One situation where this could make
sense is when your view object's SQL query contains named bind variables. Since each
RowSet object stores its own copy of bind variable values, you could use a single view
object to produce and process multiple row sets based on different combinations of
bind variables values. You can find a named row set you've created using the
findRowSet() method. When you're done using a secondary row set, call its
closeRowSet() method.

For any RowSet, while you typically work with its default row set iterator, you can call
the createRowSetIterator() method of the RowSet interface to create secondary,
named row set iterators. You can use find a named row set iterator you've created
using the findRowSetIterator() method. When you're done using a secondary
row set iterator, call its closeRowSetIterator() method.

Note: Through the ADF Model declarative data binding layer, user
interface pages or panels in your application work with the default
row set iterator of the default row set of view objects in the application
module's data model. Due to this fact, the most typical scenario for
creating secondary row set iterators is to write business logic that
iterates over a view object's default row set without disturbing the
current row of the default row set iterator used by the user interface
layer.

Tuning Your View Objects for Best Performance

Advanced View Object Techniques 27-13

27.1.10 Optimizing View Link Accessor Access By Retaining the Row Set
Each time you retrieve a view link accessor row set, by default the view object creates
a new RowSet object to allow you to work with the rows. This does not imply
re-executing the query to produce the results each time, only creating a new instance of
a RowSet object with its default iterator reset to the "slot" before the first row. To force
the row set to refresh its rows from the database, you can call its executeQuery()
method.

Since there is a small amount of overhead associated with creating the row set, if your
code makes numerous calls to the same view link accessor attributes you can consider
enabling view link accessor row set retention for the source view object in the view
link. To use the view link accessor retention feature, enable a custom Java class for
your view object, override the create() method, and add a line after
super.create() that calls the setViewLinkAccessorRetained() method
passing true as the parameter. It affects all view link accessor attributes for that view
object.

When this feature is enabled for a view object, since the view link accessor row set it
not recreated each time, the current row of its default row set iterator is also retained
as a side-effect. This means that your code will need to explicitly call the reset()
method on the row set you retrieve from the view link accessor to reset the current
row in its default row set iterator back to the "slot" before the first row.

Note, however, that with accessor retention enabled, your failure to call reset() each
time before you iterate through the rows in the accessor row set can result in a subtle,
hard-to-detect error in your application. For example, if you iterate over the rows in a
view link accessor row set like this, for example to calculate some aggregate total:

RowSet rs = (RowSet)row.getAttribute("ServiceRequestsForProduct");
while (rs.hasNext()) {
 Row r = rs.next();
 // Do something important with attributes in each row
}
The first time you work with the accessor row set the code will work. However, since
the row set (and its default row set iterator) are retained, the second and subsequent
times you access the row set the current row will already be at the end of the row set
and the while loop will be skipped since rs.hasNext() will be false. Instead, with
this feature enabled, write your accessor iteration code like this:

RowSet rs = (RowSet)row.getAttribute("ServiceRequestsForProduct");
rs.reset(); // Reset default row set iterator to slot before first row!
while (rs.hasNext()) {
 Row r = rs.next();
 // Do something important with attributes in each row
}

Recall that if view link consistency is on, when the accessor is retained the new
unposted rows will show up at the end of the row set. This is slightly different from
when the accessor is not retained (the default), where new unposted rows will appear
at the beginning of the accessor row set.

27.2 Tuning Your View Objects for Best Performance
You can use view objects to read rows of data, create and store rows of transient data,
as well as automatically coordinate inserts, updates, and deletes made by end users
with your underlying business objects. How you design and use your view objects can
definitely affect their performance at runtime. This section provides guidance on
configuring your view objects to get the best possible performance.

Tuning Your View Objects for Best Performance

27-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.2.1 Use Bind Variables for Parameterized Queries
Whenever the WHERE clause of your query includes values that might change from
execution to execution, you should use named bind variables. Their use also protects
your application against abuse through SQL injection attacks by malicious end-users.

27.2.1.1 Use Bind Variables to Avoid Re-parsing of Queries
Bind variables are place holders in the SQL string whose value you can easily change
at runtime without altering the text of the SQL string itself. Since the query text doesn't
change from execution to execution, the database can efficiently reuse the same parsed
statement each time. Avoiding re-parsing of your statement alleviates the database
from having to continually re-determine its query optimization plan and eliminates
contention by multiple end-users on other costly database resources used during this
parsing operation. This savings leads to higher runtime performance of your
application. See Section 5.9, "Using Named Bind Variables" for details on how to use
named bind variables.

27.2.1.2 Use Bind Variables to Prevent SQL-Injection Attacks
Using bind variables for parameterized WHERE clause values is especially important if
their values will be supplied by end-users of your application. Consider the example
shown in Example 27–2. It adds a dynamic WHERE clause formed by concatenating a
user-supplied parameter value into the statement.

Example 27–2 Using String Concatenation Instead of Bind Variables is Vulnerable to
SQL-Injection Attacks

// EXAMPLE OF BAD PRACTICE, Do not follow this approach!
String userSuppliedValue = ... ;
yourViewObject.setWhereClause("BANK_ACCOUNT_ID = "+userSuppliedValue);

A user with malicious intentions — if able to learn any details about your application's
underlying database schema — could supply a carefully-constructed "bank account
number" as a field value or URL parameter like:

BANK_ACCOUNT_ID

When the code in Example 27–2 concatenates this value into the dynamically-applied
where clause, what the database sees is a query predicate like this:

WHERE (BANK_ACCOUNT_ID = BANK_ACCOUNT_ID)

This WHERE clause retrieves all bank accounts instead of just the current user's,
perhaps allowing the hacker to view private information of another person's account.
This technique of short-circuiting an application's WHERE clause by trying to supply a
maliciously-constructed parameter value into a SQL statement is called a SQL injection
attack. Using named bind variables instead for these situations as shown in
Example 27–3 prevents the vulnerability.

Example 27–3 Use Named Bind Variables Instead of String Concatenation

// Best practice using named bind variables
String userSuppliedValue = ... ;
yourViewObject.setWhereClause("BANK_ACCOUNT_ID = :BankAcccountId");
yourViewObject.defineNamedWhereClauseParam("BankAcccountId", null, null);
yourViewObject.setNamedWhereClauseParam("BankAcccountId",userSuppliedValue);

If a malicious user supplies an illegal value in this case, they receive an error your
application can handle instead of obtaining data they are not suppose to see.

Tuning Your View Objects for Best Performance

Advanced View Object Techniques 27-15

27.2.2 Use Read-Only View Objects When Entity-Based Features Not Required
View objects can either be related to underlying entity objects or not. When a view
object is related to one or more underlying entity objects you can create new rows, and
modify or remove queried rows. The view object coordinates with underlying entity
objects to enforce business rules and to permanently save the changes. In addition,
entity-based view objects:

■ Immediately reflect pending changes made to relevant entity object attributes
made through other view objects in the same transaction

■ Initialize attribute values in newly created rows to the values from the underlying
entity object attributes

■ Reflect updated reference information when foreign key attribute values are
changed

On the other hand, view objects that are not related to any entity object are read-only,
do not pickup entity-derived default values, do not reflect pending changes, and do
not reflect updated reference information. You need to decide what kind of
functionality your application requires and design the view object accordingly.
Typically view objects used for SQL-based validation purposes, as well as for
displaying the list of valid selections in a dropdown list, can be read-only.

There is a small amount of runtime overhead associated with the coordination
between view object rows and entity object rows, so if you don't need any of the
functionality offered by an entity-mapped view object, you can slightly increase
performance by using a read-only view object with no related entity objects.

27.2.3 Use SQL Tracing to Identify Ill-Performing Queries
After deciding whether your view object should be mapped to entities or not, your
attention should turn to the query itself. The Explain Plan button on the Query panel
of the View Object Editor allows you to see the query plan that the database query
optimizer will use. If you see that it is doing a full table scan, you should consider
adding indexes or providing a value for the Optimizer Hint field on the Tuning panel
to explicitly control which query plan will be used. These facilities provide some
useful tools to the developer to evaluate the query plans for individual view object
SQL statements. However, their use is not a substitute for tracing the SQL of the entire
application to identify poorly performing queries in the presence of a production
environment's amount of data and number of end users.

You can use the Oracle database's SQL Tracing facilities to produce a complete log of
all SQL statements your application performs. The approach that works in all versions
of the Oracle database is to issue the command:

ALTER SESSION SET SQL_TRACE TRUE

This command enables tracing of the current database session and logs all SQL
statements to a server-side trace file until you either enter ALTER SESSION SET
SQL_TRACE FALSE or close the connection. To simplify enabling this option to trace
your ADF applications, override the afterConnect() method of your application
module (or custom application module framework extension class) to conditionally
perform the ALTER SESSION command to enable SQL tracing based on the presence
of a Java system property as shown in Example 27–4.

Tuning Your View Objects for Best Performance

27-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 27–4 Conditionally Enabling SQL Tracing in an Application Module

// In YourCustomApplicationModuleImpl.java
protected void afterConnect() {
super.afterConnect();
if (System.getProperty("enableTrace") != null) {
getDBTransaction().executeCommand("ALTER SESSION SET SQL_TRACE TRUE");

}
}

After producing a trace file, you use the tkprof utility supplied with the database to
format the information and to better understand information about each query
executed like:

■ The number of times it was (re)parsed

■ The number of times it was executed

■ How many round-trips were made between application server and the database

■ Various quantitative measurements of query execution time

Using these techniques, you can decide which additional indexes might be required to
speed up particular queries your application performs, or which queries could be
changed to improve their query optimization plan.

27.2.4 Consider the Appropriate Tuning Settings for Every View Object
The Tuning panel of the View Object Editor lets you set various options that can
dramatically effect your query's performance.

27.2.4.1 Set the Database Retrieval Options Appropriately
The Retrieve from the Database section, controls how the view object retrieves rows
from the database server. The options for the fetch mode are All Rows, At Most One
Row, and No Rows. Most view objects will stick with the default All Rows option,
which will be retrieved As Needed or All at Once depending on which option you
choose. The "as needed" option ensures that an executeQuery() operation on the
view object initially retrieves only as many rows as necessary to fill the first page of a
display, whose number of rows is set based on the view object's range size.

For view objects whose WHERE clause expects to retrieve a single row, set the option to
At Most One Row for best performance. This way, the view object knows you don't
expect any more rows and will skip its normal test for that situation. Finally, if you use
the view object only for creating new rows, set the option to No Rows so no query will
ever be performed.

27.2.4.2 Consider Whether Fetching One Row at a Time is Appropriate
The fetch size controls how many rows will be returned in each round trip to the
database. By default, the framework will fetch rows in batches of one row at a time. If
you are fetching any more than one row, you will gain efficiency by setting this in
Batches of value.

Note: The Oracle 10g database provides the new DBMS_MONITOR
package that further simplifies SQL tracing and integrates it with
Oracle Enterprise Manager for visually monitoring the most
frequently performed query statements your applications perform.

Tuning Your View Objects for Best Performance

Advanced View Object Techniques 27-17

However the higher the number, the larger the client-side buffer required, so avoid
setting this number arbitrarily high. If you are displaying results N rows at a time in
the user interface, it's good to set the fetch size to at least N+1 so that each page of
results can be retrieved in a single round trip to the database.

27.2.4.3 Specify a Query Optimizer Hint if Necessary
The Query Optimizer Hint field allows you to specify an optional hint to the Oracle
query optimizer to influence what execution plan it will use. At runtime, the hint you
provide is added immediately after the SELECT keyword in the query, wrapped by
the special comment syntax /*+ YOUR_HINT */. Two common optimizer hints are:

■ FIRST_ROWS — to hint that you want the first rows as quickly as possible

■ ALL_ROWS — to hint that you want all rows as quickly as possible

There are many other optimizer hints that are beyond the scope of this manual to
document. Reference the Oracle 10g database reference manuals for more information
on available hints.

27.2.5 Creating View Objects at Design Time
It's important to understand the overhead associated with creating view objects at
runtime. Avoid the temptation to do this without a compelling business requirement.
For example, if your application issues a query against a table whose name you know
at design time and if the list of columns to retrieve is also fixed, then create a view
object at design time. When you do this, your SQL statements are neatly encapsulated,
can be easily explained and tuned during development, and incur no runtime
overhead to discover the structure and data types of the resulting rows.

In contrast, when you use the createViewObjectFromQueryStmt() API on the
ApplicationModule interface at runtime, your query is buried in code, it's more
complicated to proactively tune your SQL, and you pay a performance penalty each
time the view object is created. Since the SQL query statement for a
dynamically-created view object could theoretically be different on each execution, an
extra database round trip is required to discover the "shape" of the query results
on-the-fly. Only create queries dynamically if you cannot know the name of the table to
query until runtime. Most other needs can be addressed using a design-time created
view object in combination with runtime API's to set bind variables in a fixed where
clause, or to add an additional WHERE clause (with optional bind variables) at runtime.

27.2.6 Use Forward Only Mode to Avoid Caching View Rows
Often you will use write code that programmatically iterates through the results of a
view object. A typical situation will be custom validation code that must process
multiple rows of query results to determine whether an attribute or an entity is valid
or not. In these cases, if you intend to read each row in the row set a single time and
never require scrolling backward or re-iterating the row set a subsequent time, then
you can use "forward only" mode to avoid caching the retrieved rows. To enable
forward only mode, call setForwardOnly(true) on the view object.

Caution: Unless your query really fetches just one row, leaving the
default fetch size of one (1) in the in Batches of field on the Tuning
panel is a recipe for bad performance due to many unnecessary round
trips between the application server and the database. Oracle strongly
recommends considering the appropriate value for each view object's
fetch size.

Using Expert Mode for Full Control Over SQL Query

27-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

You can also use forward-only mode to avoid caching rows when inserting, updating,
or deleting data as long as you never scroll backward through the row set and never
call reset() to set the iterator back to the first row. Forward only mode only works
with a range size of one (1).

27.3 Using Expert Mode for Full Control Over SQL Query
When defining entity-based view objects, you can fully-specify the WHERE and ORDER
BY clauses, whereas, by default, the FROM clause and SELECT list are automatically
derived. The names of the tables related to the participating entity usages determine
the FROM clause, while the SELECT list is based on the:

■ Underlying column names of participating entity-mapped attributes

■ SQL expressions of SQL-calculated attributes

When you require full control over the SELECT or FROM clause in a query, you can
enable "Expert Mode".

27.3.1 How to Enable Expert Mode for Full SQL Control
To enable expert mode, select Expert Mode on the SQL Statement panel of the Create
View Object wizard or View Object Editor.

27.3.2 What Happens When You Enable Expert Mode
When you enable expert mode, the read-only Generated Statement section of the SQL
Statement panel becomes a fully-editable Query Statement text box, displaying the
full SQL statement. Using this text box, you can change every aspect of the SQL query.

For example, Example 27–2 shows the SQL Statement page of the View Object editor
for the SRDemo application’s ServiceHistories view object. It’s an expert mode,
entity-based view object that references a PL/SQL function context_pkg.app_
user_name and joins the USERS table an additional time in the FROM clause to filter
hidden service history notes from end-users who are not in the technician or
manager roles.

Note: Using a read-only view object (with no entity usages) in
forward-only mode with an appropriately tuned fetch size is the most
efficient way to programmatically read data.

Using Expert Mode for Full Control Over SQL Query

Advanced View Object Techniques 27-19

Figure 27–2 ServiceHistories Expert Mode View Object in the SRDemo Application

27.3.3 What You May Need to Know

27.3.3.1 You May Need to Perform Manual Attribute Mapping
The automatic cooperation of a view object with its underlying entity objects depends
on correct attribute-mapping metadata saved in the XML component definition. This
information relates the view object attributes to corresponding attributes from
participating entity usages. JDeveloper maintains this attribute mapping information
in a fully-automatic way for normal entity-based view objects. However, when you
decide to use expert mode with a view object, you need to pay attention to the changes
you make to the SELECT list. That is the part of the SQL query that directly relates to
the attribute mapping. Even in expert mode, JDeveloper continues to offer some
assistance in maintaining the attribute mapping metadata when you do the following
to the SELECT list:

■ Reorder an expression without changing its column alias

JDeveloper reorders the corresponding view object attribute and maintains the
attribute mapping.

■ Add a new expression

■ JDeveloper adds a new SQL-calculated view object attribute with a corresponding
Camel-Capped name based on the column alias of the new expression.

■ Remove an expression

JDeveloper converts the corresponding SQL-calculated or entity-mapped attribute
related to that expression to a transient attribute.

However, if you rename a column alias in the SELECT list, JDeveloper has no way to
detect this, so it is treated as if you removed the old column expression and added a
new one of a different name.

Using Expert Mode for Full Control Over SQL Query

27-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

After making any changes to the SELECT list of the query, visit the Attribute
Mappings panel to ensure that the attribute mapping metadata is correct. The table on
this panel, which is disabled for view objects in normal mode, becomes enabled for
expert mode view objects. For each view object attribute, you will see its
corresponding SQL column alias in the table. By clicking into a cell in the View
Attributes column, you can use the dropdown list that appears to select the
appropriate entity object attribute to which any entity-mapped view attributes should
correspond.

27.3.3.2 Disabling Expert Mode Loses Any Custom Edits
When you disable expert mode for a view object it will return to having its SELECT
and FROM clause be derived again. JDeveloper warns you that doing this might lose
any of your custom edits to the SQL statement. If this is what you want, after
acknowledging the alert, your view object's SQL query reverts back to the default.

27.3.3.3 Once In Expert Mode, Changes to SQL Expressions Are Ignored
Consider a Products view object with a SQL-calculated attribute named Shortens
whose SQL expression you defined as SUBSTR(NAME,1,10). If you switch this view
object to expert mode, the Query Statement box will show a SQL query like this:

SELECT Products.PROD_ID,
Products.NAME,
Products.IMAGE,
Products.DESCRIPTION,
SUBSTR(NAME,1,10) AS SHORT_NAME

FROM PRODUCTS Products

If you go back to the attribute definition for the Shortens attribute and change the
SQL Expression field from SUBSTR(NAME,1,10) to SUBSTR(NAME,1,15), then the
change will be saved in the view object's XML component definition. Note, however,
that the SQL query will remain as above. This occurs because JDeveloper never tries to
modify the text of an expert mode query. In expert mode, the developer is in full
control. JDeveloper attempts to adjust metadata as described above in function of
some kinds of changes you make yourself to the expert mode SQL statement, but it
does not perform the reverse. Therefore, if you change view object metadata, the
expert mode SQL statement is not updated to reflect it.

To make the above change to the SQL calculated Shortens attribute, you need to
update the expression in the expert mode SQL statement itself. To be 100% thorough,
you should make the change both in the attribute metadata and in the expert mode SQL
statement. This would ensure — if you (or another developer on your team) ever
decides to toggle expert mode off at a later point in time — that the automatically
derived SELECT list would contain the correct SQL-derived expression.

Note: If the view attribute is SQL-calculated or transient, a
corresponding attribute with a “SQL” icon appears in the View
Attributes column to represent it. Since these attributes are not related
to underlying entity objects, there is no entity attribute related
information required for them.

Using Expert Mode for Full Control Over SQL Query

Advanced View Object Techniques 27-21

27.3.3.4 Don't Map Incorrect Calculated Expressions to Entity Attributes
When changing the SELECT list expression that corresponds to entity-mapped
attributes, don't introduce SQL calculations that change the value of the attribute
when retrieving the data. To illustrate the problem that will occur if you do this,
consider the following query for a simple entity-based view object named Products:

SELECT Products.PROD_ID,
Products.NAME,
Products.IMAGE,
Products.DESCRIPTION

FROM PRODUCTS Products

Imagine that you wanted to limit the name column to showing only the first ten
characters of the name for some use case. The correct way to do that would be to
introduce a new SQL-calculated field called ShortName with an expression like
SUBSTR(Products.NAME,1,10). However, one way you might have thought to
accomplish this was to switch the view object to expert mode and change the SELECT
list expression for the entity-mapped NAME column to the following:

SELECT Products.PROD_ID,
SUBSTR(Products.NAME,1,10) AS NAME,
Products.IMAGE,
Products.DESCRIPTION

FROM PRODUCTS Products

This alternative strategy would initially appear to work. At runtime, you see the
truncated value of the name as you are expecting. However, if you modify the row,
when the underlying entity object attempts to lock the row it does the following:

■ Issues a SELECT FOR UPDATE statement, retrieving all columns as it tries to lock
the row.

■ If the entity object successfully locks the row, it compares the original values of all
the persistent attributes in the entity cache as they were last retrieved from the
database with the values of those attributes just retrieved from the database
during the lock operation.

■ If any of the values differs, then the following error is thrown:

(oracle.jbo.RowInconsistentException)
JBO-25014: Another user has changed the row with primary key [...]

If you see an error like this at runtime even though you are the only user testing the
system, it is most likely due to your inadvertently introducing a SQL function in your
expert mode view object that changed the selected value of an entity-mapped
attribute. In the example above, the SUBSTR(Products.NAME,1,10) function
introduced causes the original selected value of the Name attribute to be truncated.

Note: If you find you had to make numerous changes to the view
object metadata of an expert mode view object, you can consider the
following technique to avoid having to manually translate any effects
those changes might have implied to the SQL statement yourself.
First, copy the text of your customized query to a temporary file.
Then, disable expert mode for the view object and acknowledge the
warning that you will lose your changes. At this point JDeveloper will
re-derive the correct generated SQL statement based on all the new
metadata changes you've made. Finally, you can enable expert mode
once again and re-apply your SQL customizations.

Using Expert Mode for Full Control Over SQL Query

27-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

When the row-lock SQL statement selects the value of the NAME column, it will select
the entire value. This will cause the comparison described above to fail, producing the
"phantom" error that another user has changed the row.

The same thing would happen with NUMBER, or DATE valued attributes if you
inadvertently apply SQL functions in expert mode to truncate or alter their retrieved
values for entity-mapped attributes. If you need to present altered versions of
entity-mapped attribute data, introduce a new SQL-calculated attribute with the
appropriate expression to handle the job.

27.3.3.5 Expert Mode SQL Formatting is Retained
When you switch a view object to expert mode, its XML component definition
switches from storing parts of the query in separate XML attributes, to saving the
entire query in a single <SQLQuery> element. The query is wrapped in a XML
CDATA section to preserve the line formatting you may have done to make a complex
query be easier to understand.

27.3.3.6 Expert Mode Queries Are Wrapped as Inline Views
If your expert-mode view object:

■ Contains a design-time ORDER BY clause specified in the Order By field of the
Query Clauses panel, or

■ Has a dynamic where clause or order by clause applied at runtime using
setWhereClause() or setOrderByClause()

then its query gets nested into an inline view before applying these clauses. For
example, suppose your expert-mode query was defined as:

select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
union all
select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_USERS

At runtime, when you set an additional WHERE clause like email =
:TheUserEmail, the view object nests its original query into an inline view like this:

SELECT * FROM(
select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
union all
select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_USERS) QRSLT

and then adds the dynamic where clause predicate at the end, so that the final query
the database sees is:

SELECT * FROM(
select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from USERS
union all
select USER_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_USERS) QRSLT
WHERE email = :TheUserEmail

Working with Multiple Named View Criteria

Advanced View Object Techniques 27-23

This query "wrapping" is necessary in general for expert mode queries since the
original query could be arbitrarily complex, including SQL UNION, INTERSECT,
MINUS, or other operators that combine multiple queries into a single result. In those
cases, simply "gluing" the additional runtime WHERE clause onto the end of the query
text could produce unexpected results since. For example, it might only apply to the
last of several UNION'ed statements. By nesting the original query verbatim into an
inline view, the view object guarantees that your additional WHERE clause is correctly
used to filter the results of the original query, regardless of how complex it is.

27.3.3.7 Disabling the Use of Inline View Wrapping at Runtime
Due to the inline view wrapping of expert mode view objects, the dynamically-added
WHERE clause can only refer to columns in the SELECT list of the original query. To
avoid this limitation, when necessary you can disable the use of the inline view
wrapping by calling setNestedSelectForFullSql(false).

27.3.3.8 Enabling Expert Mode May Impact Dependent Objects
When you modify a query to be in expert mode after you have already created:

■ View links involving it, or

■ Other view objects that extend it

JDeveloper will warn you with the alert shown in Figure 27–3 to remind you that you
should revisit these dependent components to ensure their SQL statements still reflect
the correct query.

Figure 27–3 Proactive Reminder to Revisit Dependent Components

For example, if you were to modify the ServiceRequests view object in the
SRDemo application to use expert mode, since the ServiceRequestsByStatus
view object extends it, you need to revisit the extended component to ensure its query
still logically reflects an extension of the modified parent component.

27.4 Working with Multiple Named View Criteria
You can define multiple named view criteria and then selectively apply any
combination of them to your view object at runtime as needed.

Note: The examples in this section refer to the
MultipleViewCriterias project in the
AdvancedViewObjectExamples workspace. See the note at the
beginning of this chapter for download instructions.

Working with Multiple Named View Criteria

27-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.4.1 Defining Named View Criteria
To define named view criteria, you override the create() method in your view
object's custom Java class and call the putViewCriteria() method to define one or
more named ViewCriteria objects.

For example, given a Users view object based on the USERS table in the SRDemo
schema, you could override the create() method as shown in Example 27–5 to
define named view criteria called CountryIsUS, CountryIsNotUS, IsStaff, and
IsCustomer by calling appropriate helper methods.

Example 27–5 Defining Multiple Named View Criteria in an Overridden create() Method

package devguide.advanced.multiplevc;
// Imports omitted
public class UsersImpl extends ViewObjectImpl implements Users {
// etc.
protected void create() {
super.create();
defineCountryIsUSCriteria();
defineCountryIsNotUSCriteria();
defineIsStaffCriteria();
defineIsCustomerCriteria();

}
private void defineCountryIsUSCriteria() {
ViewCriteria vc = createViewCriteria();
ViewCriteriaRow vcr = vc.createViewCriteriaRow();
vcr.setAttribute("CountryId","US");
vc.add(vcr);
putViewCriteria("CountryIsUS",vc);

}
private void defineCountryIsNotUSCriteria() {
ViewCriteria vc = createViewCriteria();
ViewCriteriaRow vcr = vc.createViewCriteriaRow();
vcr.setAttribute("CountryId","US");
vcr.setConjunction(ViewCriteriaRow.VCROW_CONJ_NOT);
vc.add(vcr);
putViewCriteria("CountryIsNotUS",vc);

}
private void defineIsStaffCriteria() {
ViewCriteria vc = createViewCriteria();
ViewCriteriaRow vcr = vc.createViewCriteriaRow();
vcr.setAttribute("UserRole","IN ('technician','manager')");
vc.add(vcr);
putViewCriteria("IsStaff",vc);

}
private void defineIsCustomerCriteria() {
ViewCriteria vc = createViewCriteria();
ViewCriteriaRow vcr = vc.createViewCriteriaRow();
vcr.setAttribute("UserRole","user");
vc.add(vcr);
putViewCriteria("IsCustomer",vc);

}
// etc.

}

Working with Multiple Named View Criteria

Advanced View Object Techniques 27-25

27.4.2 Applying One or More Named View Criteria
To apply one or more named view criteria, use the
setApplyViewCriteriaNames() method. This method accepts a String array of
the names of the criteria you want to apply. If you apply more than one named
criteria, they are AND-ed together in the WHERE clause produced at runtime. Then,
you can expose custom methods on the client interface of the view object to
encapsulate applying combinations of the named view criteria. For example,
Example 27–6 shows custom methods showStaffInUS(),
showCustomersOutsideUS(), and showCustomersInUS(), each of which uses
the setApplyViewCriteriaNames() method to apply an appropriate combination
of named view criteria. Once these methods are exposed on the view object's client
interface, at runtime clients can invoke these methods as needed to change the
information displayed by the view object.

Example 27–6 Exposing Client Methods to Enable Appropriate Named Criterias

// In UsersImpl.java
public void showStaffInUS() {
setApplyViewCriteriaNames(new String[]{"CountryIsUS","IsStaff"});
executeQuery();

}
public void showCustomersOutsideUS() {
setApplyViewCriteriaNames(new String[]{"CountryIsNotUS","IsCustomer"});
executeQuery();

}
public void showCustomersInUS() {
setApplyViewCriteriaNames(new String[]{"CountryIsUS","IsCustomer"});
executeQuery();

}

27.4.3 Removing All Applied Named View Criteria
To remove any currently applied named view criteria, use
setApplyViewCriteriaNames(null). For example, you could add the
showAll() method in Example 27–7 to the Users view object and expose it on the
client interface. This would allow clients to return to an unfiltered view of the data
when needed.

Example 27–7 Removing All Applied Named View Criterias

// In UsersImpl.java
public void showAll() {
setApplyViewCriteriaNames(null);
executeQuery();

}

Note: The setApplyViewCriterias(null) removes all applied
view criteria, but allows you to later reapply any combination of
them. In contrast, the clearViewCriterias() method deletes all
named view criteria. After calling clearViewCriterias() you
would have to use putViewCriteria() again to define new named
criteria before you could apply them.

Performing In-Memory Sorting and Filtering of Row Sets

27-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.4.4 Using the Named Criteria at Runtime
Example 27–8 shows the interesting lines of a TestClient class that works with the
Users view object described above. It invokes different client methods on the Users
view object interface to show different filtered sets of data. The showRows() method
is a helper method that iterates over the rows in the view object to display some
attributes.

Example 27–8 Test Client Code Working with Named View Criterias

// In TestClientMultipleViewCriterias.java
Users vo = (Users)am.findViewObject("Users");
vo.showCustomersOutsideUS();
showRows(vo,"After applying view criterias for customers outside US");
vo.showStaffInUS();
showRows(vo,"After applying view criterias for staff in US");
vo.showCustomersInUS();
showRows(vo,"After applying view criterias for customers in US");
vo.showAll();
showRows(vo,"After clearing all view criterias");

Running the TestClient program produces output as follows:

--- After applying view criterias for customers outside US ---
Hermann Baer [user, DE]
John Chen [user, TH]
:
--- After applying view criterias for staff in US ---
David Austin [technician, US]
Bruce Ernst [technician, US]
:
--- After applying view criterias for customers in US ---
Shelli Baida [user, US]
Emerson Clabe [user, US]
:
--- After clearing all view criterias ---
David Austin [technician, US]
Hermann Baer [user, DE]
:

27.5 Performing In-Memory Sorting and Filtering of Row Sets
By default a view object performs its query against the database to retrieve the rows in
its resulting row set. However, you can also use view objects to perform in-memory
searches and sorting to avoid unnecessary trips to the database.

Note: The examples in this section refer to the
InMemoryOperations project in the
AdvancedViewObjectExamples workspace. See the note at the
beginning of this chapter for download instructions. The examples
illustrate using the in-memory sorting and filtering functionality from
the client side using methods on the interfaces in the oracle.jbo
package. The same functionality can be, and typically should be,
encapsulated inside custom methods of your application module or
view object components, which you expose on their respective client
interface.

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 27-27

27.5.1 Understanding the View Object's Query Mode
The view object's query mode controls the source used to retrieve rows to populate its
row set. The setQueryMode() allows you to control which mode, or combination of
modes, are used:

■ ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES

This is the default mode that retrieves results from the database.

■ ViewObject.QUERY_MODE_SCAN_VIEW_ROWS

This mode uses rows already in the row set as the source, allowing you to
progressively refine the row set's contents through in-memory filtering.

■ ViewObject.QUERY_MODE_SCAN_ENTITY_ROWS

This mode, valid only for entity-based view objects, uses the entity rows presently
in the entity cache as the source to produce results based on the contents of the
cache.

You can use the modes individually, or combine them using Java's logical OR operator
(X|Y). For example, to create a view object that queries the entity cache for unposted
new entity rows, as well as the database for existing rows, you could write code like:

setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES |
ViewObject.QUERY_MODE_SCAN_ENTITY_ROWS)

If you combine the query modes, the view object automatically handles skipping of
duplicate rows. In addition, there is an implied order to the results that are found:

1. Scan view rows (if specified)

2. Scan entity cache (if specified)

3. Scan database tables (if specified) by issuing a SQL query

If you call the setQueryMode() method to change the query mode, your new setting
takes effect the next time you call the executeQuery() method.

27.5.2 Sorting View Object Rows In Memory
To sort the rows in a view object at runtime, use the setSortBy() method. You pass
a sort expression that looks like a SQL ORDER BY clause. However, instead of
referencing the column names of the table, you use the view object's attribute names.
For example, for a view object containing attributes named DaysOpen and
CreatedByUser, you could sort the view object first by DaysOpen descending, then
by CreatedByUser by calling:

setSortBy("DaysOpen desc, CreatedByUser");

Alternatively, you can use the zero-based attribute index position in the sorting clause
like this:

setSortBy("2 desc, 3");

After calling the setSortBy() method, the rows will be sorted the next time you call
the executeQuery() method. The view object translates this sorting clause into an
appropriate format to use for ordering the rows depending on the query mode of the
view object. If you use the default query mode, the SortBy clause is translated into an
appropriate ORDER BY clause and used as part of the SQL statement sent to the
database. If you use either of the in-memory query modes, then the SortBy by clause

Performing In-Memory Sorting and Filtering of Row Sets

27-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

is translated into one or more SortCriteria objects for use in performing the
in-memory sort.

27.5.2.1 Combining setSortBy and setQueryMode for In-Memory Sorting
Example 27–9 shows the interesting lines of code from the TestClientSetSortBy
class that uses setSortBy() and setQueryMode() to perform an in-memory sort
on the rows produced by a read-only view object ResolvedServiceRequests.

Example 27–9 Combining setSortBy and setQueryMode for In-Memory Sorting

// In TestClientSetSortBy.java
am.getTransaction().executeCommand("ALTER SESSION SET SQL_TRACE TRUE");
ViewObject vo = am.findViewObject("ResolvedServiceRequests");
vo.executeQuery();
showRows(vo,"Initial database results");
vo.setSortBy("DaysOpen desc");
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
vo.executeQuery();
showRows(vo,"After in-memory sorting by DaysOpen desc");
vo.setSortBy("DaysOpen desc, CreatedByUser");
vo.executeQuery();
showRows(vo,"After in-memory sorting by DaysOpen desc, CreatedByUser");

Running the example produces the results:

--- Initial database results ---
106,Ice machine not working,1,mhartste
103,Washing machine leaks,4,ngreenbe
105,Air in dryer not hot,4,jmurman
109,Freezer is not cold,4,jwhalen
:
--- After in-memory sorting by DaysOpen desc ---
100,I have noticed that every time I do a...,9,dfaviet
101,Agitator does not work,8,sbaida
103,Washing machine leaks,4,ngreenbe
105,Air in dryer not hot,4,jmurman
:
--- After in-memory sorting by DaysOpen desc, CreatedByUser ---
100,I have noticed that every time I do a...,9,dfaviet
101,Agitator does not work,8,sbaida
105,Air in dryer not hot,4,jmurman
109,Freezer is not cold,4,jwhalen
:

The first line in Example 27–9 containing the executeCommand() call issues the
ALTER SESSION SET SQL TRACE command to enable SQL tracing for the current
database session. This causes the Oracle database to log every SQL statement
performed to a server-side trace file. It records information about the text of each SQL
statement, including how many times the database parsed the statement and how
many round-trips the client made to fetch batches of rows while retrieving the query
result.

Note: While SQL ORDER BY expressions treat column names in a
case-insensitive way, the attribute names in a SortBy expression are
case-sensitive.

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 27-29

Once you've produced a trace file, you can use the tkprof utility that comes with the
database to format the file:

tkprof xe_ora_3916.trc trace.prf

This will produces a trace.prf file containing the interesting information shown in
Example 27–10 about the SQL statement performed by the
ResolvedServiceRequests view object. You can see that after initially querying six
rows of data in a single execute and fetch from the database, the two subsequent sorts
of those results did not cause any further executions. Since the code set the query
mode to ViewObject.QUERY_MODE_SCAN_VIEW_ROWS the setSortBy() followed
by the executeQuery() performed the sort in memory.

Example 27–10 TKPROF Output of a Trace File Confirming Sort Was Done In Memory

SELECT * FROM (select sr.svr_id,

case
when length(sr.problem_description) > 37 then
rtrim(substr(sr.problem_description,1,37))||'...'
else sr.problem_description

end as problem_description,
ceil(
(select trunc(max(svh_date))

from service_histories
where svr_id = sr.svr_id)

- trunc(request_date)
) as days_open,
u.email as created_by_user

from service_requests sr, users u
where sr.created_by = u.user_id
and status = 'Closed') QRSLT ORDER BY days_open

call count cpu elapsed disk query current rows
------- ----- ------ -------- ---- ------ -------- -------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 22 0 6
------- ----- ------ -------- ---- ------ -------- -------
total 3 0.00 0.00 0 22 0 6

Note: You might need a DBA to grant permission to the SRDEMO
account to perform the ALTER SESSION command to do the tracing
of SQL output.

Performing In-Memory Sorting and Filtering of Row Sets

27-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.5.2.2 Extensibility Points for In-Memory Sorting
Should you need to customize the way that rows are sorted in memory, you have the
following two extensibility points:

1. You can override the method:

public void sortRows(Row[] rows)

This method performs the actual in-memory sorting of rows. By overriding this
method you can plug in an alternative sorting approach if needed.

2. You can override the method:

public Comparator getRowComparator()

The default implementation of this method returns an
oracle.jbo.RowComparator. RowComparator invokes the compareTo()
method to compare two data values. These methods/objects can be overridden to
provide custom compare routines.

27.5.3 Performing In-Memory Filtering with View Criteria
To filter the contents of a row set using ViewCriteria, you can call:

■ applyViewCriteria() or setApplyViewCriteriaNames() followed by
executeQuery() to produce a new, filtered row set.

■ findByViewCriteria() to retrieve a new row set to process programmatically
without changing the contents of the original row set.

Both of these approaches can be used against the database or to perform in-memory
filtering, or both, depending on the view criteria mode. You set the criteria mode using
the setCriteriaMode() method on the ViewCriteria object, to which you can
pass either of the following integer flags, or the logical OR of both:

■ ViewCriteria.CRITERIA_MODE_QUERY

■ ViewCriteria.CRITERIA_MODE_CACHE

When used for in-memory filtering, the operators supported are ViewCriteria are
=, >, <, <=, >=, <>, and LIKE.

Example 27–11 shows the interesting lines from a
TestClientFindByViewCriteria class that uses the two features described above
both against the database and in-memory. It uses a CustomerList view object
instance and performs the following basic steps:

1. Queries customers from the database with a last name starting with a 'C',
producing the output:

--- Initial database results with applied view criteria ---
John Chen
Emerson Clabe
Karen Colmenares

2. Subsets the results from step 1 in memory to only those with a first name starting
with 'J'. It does this by adding a second view criteria row to the view criteria and
setting the conjunction to use "AND". This produces the output:

--- After augmenting view criteria and applying in-memory ---
John Chen

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 27-31

3. Sets the conjunction back to OR and re-applies the criteria to the database to query
customers with last name like 'J%' or first name like 'C%'. This produces the
output:

--- After changing view criteria and applying to database again ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares
Jennifer Whalen

4. Defines a new criteria to find customers in-memory with first or last name that
contain a letter 'o'

5. Uses findByViewCriteria() to produce new row set instead of subsetting,
producing the output:

--- Rows returned from in-memory findByViewCriteria ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares

6. Shows that original row set hasn't changed when findByViewCriteria() was
used, producing the output:

--- Note findByViewCriteria didn't change rows in the view ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares
Jennifer Whalen

Example 27–11 Performing Database and In-Memory Filtering with View Criteria

// In TestClientFindByViewCriteria.java
ViewObject vo = am.findViewObject("CustomerList");
// 1. Show customers with a last name starting with a 'C'
ViewCriteria vc = vo.createViewCriteria();
ViewCriteriaRow vcr1 = vc.createViewCriteriaRow();
vcr1.setAttribute("LastName","LIKE 'C%'");
vo.applyViewCriteria(vc);
vo.executeQuery();
vc.add(vcr1);
vo.executeQuery();
showRows(vo, "Initial database results with applied view criteria");
// 2. Subset results in memory to those with first name starting with 'J'
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
ViewCriteriaRow vcr2 = vc.createViewCriteriaRow();
vcr2.setAttribute("FirstName","LIKE 'J%'");
vcr2.setConjunction(ViewCriteriaRow.VCROW_CONJ_AND);
vc.setCriteriaMode(ViewCriteria.CRITERIA_MODE_CACHE);
vc.add(vcr2);
vo.executeQuery();
showRows(vo,"After augmenting view criteria and applying in-memory");
// 3. Set conjuction back to OR and re-apply to database query to find
// customers with last name like 'J%' or first name like 'C%'
vc.setCriteriaMode(ViewCriteria.CRITERIA_MODE_QUERY);
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES);
vcr2.setConjunction(ViewCriteriaRow.VCROW_CONJ_OR);
vo.executeQuery();

Performing In-Memory Sorting and Filtering of Row Sets

27-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

showRows(vo,"After changing view criteria and applying to database again");
// 4. Define new critera to find customers with first or last name like '%o%'
ViewCriteria nameContainsO = vo.createViewCriteria();
ViewCriteriaRow lastContainsO = nameContainsO.createViewCriteriaRow();
lastContainsO.setAttribute("LastName","LIKE '%o%'");
ViewCriteriaRow firstContainsO = nameContainsO.createViewCriteriaRow();
firstContainsO.setAttribute("FirstName","LIKE '%o%'");
nameContainsO.add(firstContainsO);
nameContainsO.add(lastContainsO);
// 5. Use findByViewCriteria() to produce new rowset instead of subsetting
nameContainsO.setCriteriaMode(ViewCriteria.CRITERIA_MODE_CACHE);
RowSet rs = (RowSet)vo.findByViewCriteria(nameContainsO,

-1,ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
showRows(rs,"Rows returned from in-memory findByViewCriteria");
// 6. Show that original rowset hasn't changed
showRows(vo,"Note findByViewCriteria didn't change rows in the view");

27.5.4 Performing In-Memory Filtering with RowMatch
The RowMatch object provides an even more convenient way to express in-memory
filtering conditions. You create a RowMatch object by passing a query predicate
expression to the constructor like this:

RowMatch rm =
new RowMatch("LastName = 'Popp' or (FirstName like 'L%' and LastName like 'D%')")
;

As you do with the SortBy clause, you phrase the RowMatch expression in terms of
the view object attribute names, using the supported operators like =, >, <, <=, >=, <>,
and LIKE. You can group subexpressions with parenthesis and use the and and or
operators between subexpressions.

27.5.4.1 Applying a RowMatch to a View Object
To apply a RowMatch to your view object, call the setRowMatch() method. In
contrast to a ViewCriteria, the RowMatch is only used for in-memory filtering, so
there is no "match mode" to set. You can use a RowMatch on view objects in any
supported query mode, and you will see the results of applying it the next time you
call the executeQuery() method.

When you apply a RowMatch to a view object, the RowMatch expression can reference
the view object's named bind variables using the same :VarName notation that you
would use in a SQL statement. For example, if a view object had a named bind
variable named StatusCode, you could apply a RowMatch to it with an expression
like:

Status = :StatusCode or :StatusCode = '%'

Example 27–12 shows the interesting lines of a TestClientRowMatch class that
illustrate the RowMatch in action. The CustomerList view object used in the example
has a transient Boolean attribute named Selected. The code performs the following
basic steps:

Note: While SQL query predicates treat column names in a
case-insensitive way, the attribute names in a RowMatch expression
are case-sensitive.

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 27-33

1. Queries the full customer list, producing the output:

--- Initial database results ---
Neena Kochhar [null]
Lex De Haan [null]
Nancy Greenberg [null]
:

2. Marks odd-numbered rows selected by setting the Selected attribute of odd
rows to Boolean.TRUE, producing the output:

--- After marking odd rows selected ---
Neena Kochhar [null]
Lex De Haan [true]
Nancy Greenberg [null]
Daniel Faviet [true]
John Chen [null]
Ismael Sciarra [true]
:

3. Uses a RowMatch to subset the row set to contain only the select rows, that is,
those with Selected = true. This produces the output:

--- After in-memory filtering on only selected rows ---
Lex De Haan [true]
Daniel Faviet [true]
Ismael Sciarra [true]
Luis Popp [true]
:

4. Further subsets the row set using a more complicated RowMatch expression,
producing the output:

--- After in-memory filtering with more complex expression ---
Lex De Haan [true]
Luis Popp [true]

Example 27–12 Performing In-Memory Filtering with RowMatch

// In TestClientRowMatch.java
// 1. Query the full customer list
ViewObject vo = am.findViewObject("CustomerList");
vo.executeQuery();
showRows(vo,"Initial database results");
// 2. Mark odd-numbered rows selected by setting Selected = Boolean.TRUE
markOddRowsAsSelected(vo);
showRows(vo,"After marking odd rows selected");
// 3. Use a RowMatch to subset row set to only those with Selected = true
RowMatch rm = new RowMatch("Selected = true");
vo.setRowMatch(rm);
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
vo.executeQuery();
showRows(vo, "After in-memory filtering on only selected rows");
// 4. Further subset rowset using more complicated RowMatch expression
rm = new RowMatch("LastName = 'Popp' "+

"or (FirstName like 'L%' and LastName like 'D%')");
vo.setRowMatch(rm);
vo.executeQuery();
showRows(vo,"After in-memory filtering with more complex expression");

Using View Objects to Work with Multiple Row Types

27-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

// 5. Remove RowMatch, set query mode back to database, requery to see full list
vo.setRowMatch(null);
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES);
vo.executeQuery();
showRows(vo,"After re-querying to see a full list again");

27.5.4.2 Using RowMatch to Test an Individual Row
In addition to using a RowMatch to filter a row set, you can also use its rowQualifies()
method to test whether any individual row matches the criteria it encapsulates. For
example:

RowMatch rowMatch = new RowMatch("CountryId = 'US'");
if (rowMatch.rowQualifies(row)) {
System.out.println("Customer is from the United States ");

}

27.5.4.3 How a RowMatch Affects Rows Fetched from the Database
Once you apply a RowMatch, if the view object's query mode is set to retrieve rows
from the database, when you call executeQuery() the RowMatch is applied to rows
as they are fetched. If a fetched row does not qualify, it is not added to the rowset.

Unlike a SQL WHERE clause, a RowMatch can evaluate expressions involving transient
view object attributes and not-yet-posted attribute values. This can be useful to filter
queried rows based on RowMatch expressions involving transient view row attributes
whose values are calculated in Java. This interesting aspect should be used with care,
however, if your application needs to process a large rowset. Oracle recommends
using database-level filtering to retrieve the smallest-possible rowset first, and then
using RowMatch as appropriate to subset that list in memory.

27.6 Using View Objects to Work with Multiple Row Types
In Section 26.6, "Using Inheritance in Your Business Domain Layer" you saw how to
create an inheritance hierarchy of User, Technician, and Manager entity objects.
Sometimes you will create a view object to work with entity rows of a single type like
Technician, which perhaps includes Technician-specific attributes. At other times
you may want to query and update rows for users, technicians, and managers in the
same row set, working with attributes that they all share in common.

27.6.1 What is a Polymorphic Entity Usage?
A polymorphic entity usage is one that references a base entity object in an inheritance
hierarchy and is configured to handle subtypes of that entity as well. Figure 27–4 shows
the results of using a view object with a polymorphic entity usage. The entity-based
UserList view object has the User entity object as its primary entity usage. The view
object partitions each row retrieved from the database into an entity row part of the
appropriate entity object subtype of User. It creates the appropriate entity row subtype
based on consulting the value of the discriminator attribute. For example, if the
UserList query retrieves one row for user ngreenbe, one row for manager sking,
and one row for technician ahunold, the underlying entity row parts would be as
shown in the figure.

Note: To experiment with the example described in this section, use
the same InheritanceAndPolymorphicQueries project in the
AdvancedEntityExamples workspace used in Section 26.6, "Using
Inheritance in Your Business Domain Layer".

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 27-35

Figure 27–4 View Object with a Polymorphic Entity Usage Handles Entity Subtypes

27.6.2 How To Create a View Object with a Polymorphic Entity Usage
To create a view object with a polymorphic entity usage, follow these steps:

1. Identify the entity object that represents the base type in the entity inheritance
hierarchy you want to work with.

2. Create an entity-based view object with that base entity as its entity usage.

3. On the Entity Objects panel of the Create View Object wizard, select the entity
usage in the Selected list and click Subtypes...

■ In the Subtypes dialog that appears, shuttle the desired entity subtypes you want
to allow from the Available to the Selected list, and click OK

Then click OK to create the view object.

27.6.3 What Happens When You Create a View Object with a Polymorphic Entity Usage
When you create an entity-based view object with a polymorphic entity usage,
JDeveloper adds information about the allowed entity subtypes to the view object's
XML component definition. For example, when creating the UserList view object
above, the names of the allowed subtype entity objects are recorded in an <AttrArray>
tag like this:

<ViewObject Name="UserList" ... >
<EntityUsage Name="TheUser"

Entity="devguide.advanced.inheritance.entities.User" >
</EntityUsage>
<AttrArray Name="EntityImports">

<Item Value="devguide.advanced.inheritance.entities.Manager" />
<Item Value="devguide.advanced.inheritance.entities.Technician" />

</AttrArray>
<!-- etc. -->

</ViewObject>

Note: When an entity-based view object references an entity object
with a discriminator attribute, then JDeveloper enforces that the
discriminator attribute is included in the query as well (in addition to
the primary key attribute).

Using View Objects to Work with Multiple Row Types

27-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.6.4 What You May Need to Know

27.6.4.1 Your Query Must Limit Rows to Expected Entity Subtypes
If your view object expects to work with only a subset of the available entity subtypes
in a hierarchy, you need to include an appropriate WHERE clause that limits the query
to only return rows whose discriminator column matches the expected entity types.

27.6.4.2 Exposing Selected Entity Methods in View Rows Using Delegation
By design, clients do not work directly with entity objects. Instead, they work
indirectly with entity objects through the view rows of an appropriate view object that
presents a relevant set of information related to the task as hand. Just as a view object
can expose a particular set of the underlying attributes of one or more entity objects
related to the task at hand, it can also expose a selected set of methods from those
entities. You accomplish this by enabling a custom view row Java class and writing a
method in the view row class that:

■ Accesses the appropriate underlying entity row using the generated entity
accessor in the view row, and

■ Invokes a method on it

For example, assume that the User entity object contains a performUserFeature()
method in its UserImpl class. To expose this method to clients on the UserList view
row, you can enable a custom view row Java class and write the method shown in
Example 27–13. JDeveloper generates an entity accessor method in the view row class
for each participating entity usage based on the entity usage alias name. Since the alias
for the User entity in the UserList view object is "TheUser", it generates a
getTheUser() method to return the entity row part related to that entity usage.

Example 27–13 Exposing Selected Entity Object Methods on View Rows Through
Delegation

// In UserListRowImpl.java
public void performUserFeature() {
getTheUser().performUserFeature();

}

The code in the view row's performUserFeature() method uses this
getTheUser() method to access the underlying UserImpl entity row class and then
invokes its performUserFeature() method. This style of coding is known as
delegation, where a view row method delegates the implementation of one of its
methods to a corresponding method on an underlying entity object. When delegation
is used in a view row with a polymorphic entity usage, the delegated method call is
handled by appropriate underlying entity row subtype. This means that if the
UserImpl, ManagerImpl, and TechnicianImpl classes implement the
performUserFeature() method in a different way, the appropriate
implementation is used depending on the entity subtype for the current row.

After exposing this method on the client row interface, client programs can use the
custom row interface to invoke custom business functionality on a particular view
row. Example 27–14 shows the interesting lines of code from a
TestEntityPolymorphism class. It iterates over all the rows in the UserList view
object instance, casts each one to the custom UserListRow interface, and invokes the
performUserFeature() method.

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 27-37

Example 27–14 Invoking a View Row Method That Delegates to an Entity Object

UserList userlist = (UserList)am.findViewObject("UserList");
userlist.executeQuery();
while (userlist.hasNext()) {
UserListRow user = (UserListRow)userlist.next();
System.out.print(user.getEmail()+"->");
user.performUserFeature();

}

Running the client code in Example 27–14 produces the following output:

austin->## performUserFeature as Technician
hbaer->## performUserFeature as User
:
sking->## performUserFeature as Manager
:

Rows related to User entities display a message confirming that the
performUserFeature() method in the UserImpl class was used. Rows related to
Technician and Manager entities display a different message, highlighting the
different implementations that the respective TechnicianImpl and ManagerImpl
classes have for the inherited performUserFeature() method.

27.6.4.3 Creating New Rows With the Desired Entity Subtype
In a view object with a polymorphic entity usage, when you create a new view row it
contains a new entity row part whose type matches the base entity usage. To create a
new view row with one of the entity subtypes instead, use the createAndInitRow()
method. Example 27–15 shows two custom methods in the UserList view object's
Java class that use createAndInitRow() to allow a client to create new rows having
entity rows either of Manager or Technician subtypes. To use the
createAndInitRow(), as shown in the example, create an instance of the
NameValuePairs object and set it to have an appropriate value for the discriminator
attribute. Then, pass that NameValuePairs to the createAndInitRow() method to
create a new view row with the appropriate entity row subtype, based on the value of
the discriminator attribute you passed in.

Example 27–15 Exposing Custom Methods to Create New Rows with Entity Subtypes

// In UserListImpl.java
public UserListRow createManagerRow() {
NameValuePairs nvp = new NameValuePairs();
nvp.setAttribute("UserRole","manager");
return (UserListRow)createAndInitRow(nvp);

}
public UserListRow createTechnicianRow() {
NameValuePairs nvp = new NameValuePairs();
nvp.setAttribute("UserRole","technician");
return (UserListRow)createAndInitRow(nvp);

}

If you expose methods like this on the view object's custom interface, then at runtime,
a client can call them to create new view rows with appropriate entity subtypes.
Example 27–16 shows the interesting lines relevant to this functionality from a
TestEntityPolymorphism class. First, it uses the createRow(),
createManagerRow(), and createTechnicianRow() methods to create three
new view rows. Then, it invokes the performUserFeature() method from the
UserListRow custom interface on each of the new rows.

Using View Objects to Work with Multiple Row Types

27-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

As expected, each row handles the method in a way that is specific to the subtype of
entity row related to it, producing the results:

performUserFeature as User
performUserFeature as Manager
performUserFeature as Technician

Example 27–16 Creating New View Rows with Different Entity Subtypes

// In TestEntityPolymorphism.java
UserListRow newUser = (UserListRow)userlist.createRow();
UserListRow newMgr = userlist.createManagerRow();
UserListRow newTech = userlist.createTechnicianRow();
newUser.performUserFeature();
newMgr.performUserFeature();
newTech.performUserFeature();

27.6.5 What are Polymorphic View Rows?
In the example shown in Section 27.6, "Using View Objects to Work with Multiple Row
Types", the polymorphism occurs "behind the scenes" at the entity object level. Since
the client code works with all view rows using the same UserListRow interface, it
cannot distinguish between rows based on a Manager entity object from those based
on a User entity object. The code works with all view rows using the same set of view
row attributes and methods common to all types of underlying entity subtypes.

If you configure a view object to support polymorphic view rows, then the client can
work with different types of view rows using a view row interface specific to the type
of row it is. By doing this, the client can access view attributes or invoke view row
methods that are specific to a given subtype as needed. Figure 27–5 illustrates the
hierarchy of view objects that enables this feature for the UserList example
considered above. TechnicianList and ManagerList are view objects that extend
the base UserList view object. Notice that each one includes an additional attribute
specific to the subtype of User they have as their entity usage. TechnicianList
includes an additional Certified attribute, while ManagerList includes the
additional NextReview attribute. When configured for view row polymorphism as
described in the next section, a client can work with the results of the UserList view
object using:

■ UserListRow interface for view rows related to

■ TechnicianListRow interface for view rows related to technicians

■ ManagerListRow interface for view rows related to managers

As you'll see, this allows the client to access the additional attributes and view row
methods that are specific to a given subtype of view row.

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 27-39

Figure 27–5 Hierarchy of View Object Subtypes Enables View Row Polymorphism

27.6.6 How to Create a View Object with Polymorphic View Rows
To create a view object with polymorphic view rows, follow these steps:

1. Identify an existing view object to be the base

In the example above, the UserList view object is the base.

2. Identify a discriminator attribute for the view row, and give it a default value.

Check the Discriminator checkbox on the attribute panel to mark the attribute as
the one that distinguishes which view row interface to use. You must supply a
value for the Default field that matches the attribute value for which you expect
the base view object's view row interface to be used. For example, in the
UserList view object, you would mark the UserRole attribute as the
discriminator attribute and supply a default value of "user".

3. Enable a custom view row class for the base view object, and expose at least one
method on the client row interface. This can be one or all of the view row attribute
accessor methods, as well as any custom view row methods.

4. Create a new view object that extends the base view object

In the example above, TechnicianList extends the base UserList view object.

5. Enable a custom view row class for the extended view object.

If appropriate, add additional custom view row methods or override custom view
row methods inherited from the parent view object's row class.

6. Supply a distinct value for the discriminator attribute in the extended view object.

The TechnicianList view object provides the value of "technician" for the
UserRole discriminator attribute.

7. Repeat steps 4-6 to add additional extended view objects as needed.

For example, the ManagerList view object is a second one that extends
UserList. It supplies the value "manager" for the UserRole discriminator
attribute.

After setting up the view object hierarchy, you need to define the list of view object
subtypes that participate in the view row polymorphism. To accomplish this, do the
following:

Using View Objects to Work with Multiple Row Types

27-40 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

1. Add an instance of each type of view object in the hierarchy to the data model of
an application module.

For example, the UserModule application module in the example has instances of
UserList, TechnicianList, and ManagerList view objects.

2. In the Data Model panel of the Application Module Editor, click Subtypes...

3. In the Subtypes dialog that appears, shuttle the desired view object subtypes that
you want to participate in view row polymorphism from the Available to the
Selected list, and click OK

27.6.7 What You May Need to Know

27.6.7.1 Selecting Subtype-Specific Attributes in Extended View Objects
When you create an extended view object, it inherits the entity usage of its parent. If
the parent view object's entity usage is based on an entity object with subtypes in your
domain layer, you may want your extended view object to work with one of these
subtypes instead of the inherited parent entity usage type. Two reasons you might
want to do this are:

1. To select attributes that are specific to the entity subtype

2. To be able to write view row methods that delegate to methods specific to the
entity subtype

In order to do this, you need to override the inherited entity usage to refer to the
desired entity subtype. To do this, perform these steps in the View Object Editor for
your extended view object:

1. On the Entity Objects panel, verify that you are working with an extended entity
usage.

For example, when creating the TechnicianList view object that extends the
UserList view object, the entity usage with the alias TheUser will initially
display in the Selected list as: TheUser (User): extended. The type of the entity
usage is in parenthesis, and the "extended" label confirms that the entity usage is
currently inherited from its parent.

2. Select the desired entity subtype in the Available list that you want to override the
inherited one. It must be a subtype entity of the existing entity usage's type.

For example, you would select the Technician entity object in the Available list
to overridden the inherited entity usage based on the User entity type.

3. Click > to shuttle it to the Selected list

4. Acknowledge the alert that appears, confirming that you want to override the
existing, inherited entity usage.

When you have performed these steps, the Selected list updates to reflect the
overridden entity usage. For example, for the TechnicianList view object, after
overriding the User-based entity usage with the Technician entity subtype, it
updates to show: TheUser (Technician): overridden.

After overriding the entity usage to be related to an entity subtype, you can then use
the Attributes tab of the editor to select additional attributes that are specific to the
subtype. For example, the TechnicianList view object includes the additional
attribute named Certified that is specific to the Technician entity object.

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 27-41

27.6.7.2 Delegating to Subtype-Specific Methods After Overriding the Entity Usage
After overriding the entity usage in an extended view object to reference a subtype
entity, you can write view row methods that delegate to methods specific to the
subtype entity class. Example 27–17 shows the code for a
performTechnicianFeature() method in the custom view row class for the
TechnicianList view object. It casts the return value from the getTheUser()
entity row accessor to the subtype TechnicianImpl, and then invokes the
performTechnicianFeature() method that is specific to Technician entity
objects.

Example 27–17 View Row Method Delegating to Method in Subtype Entity

// In TechnicianListRowImpl.java
public void performTechnicianFeature() {

TechnicianImpl tech = (TechnicianImpl)getTheUser();
tech.performTechnicianFeature();

}

27.6.7.3 Working with Different View Row Interface Types in Client Code
Example 27–18 shows the interesting lines of code from a
TestViewRowPolymorphism class that performs the following steps:

1. Iterates over the rows in the UserList view object.

For each row in the loop, it uses Java's instanceof operator to test whether the
current row is an instance of the ManagerListRow or the TechnicianListRow.

2. If the row is a ManagerListRow, then cast it to this more specific type and:

■ Call the performManagerFeature() method specific to the
ManagerListRow interface, and

■ Access the value of the NextReview attribute that is specific to the
ManagerList view object.

3. If the row is a TechnicianListRow, then cast it to this more specific type and:

■ Call the performTechnicianFeature() method specific to the
TechnicianListRow interface, and

■ Access the value of the Certified attribute that is specific to the
TechnicianList view object.

4. Otherwise, just call a method on the UserListRow

Note: You need to perform the explicit cast to the entity subtype here
because JDeveloper does not yet take advantage of the new JDK 5.0
feature called covariant return types that would allow a subclass like
TechnicianListRowImpl to override a method like
getTheUser() and change its return type.

Using View Objects to Work with Multiple Row Types

27-42 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 27–18 Using View Row Polymorphism in Client Code

// In TestViewRowPolymorphism.java
ViewObject vo = am.findViewObject("UserList");
vo.executeQuery();
// 1. Iterate over the rows in the UserList view object
while (vo.hasNext()) {
UserListRow user = (UserListRow)vo.next();
System.out.print(user.getEmail()+"->");
if (user instanceof ManagerListRow) {
// 2. If the row is a ManagerListRow, cast it
ManagerListRow mgr = (ManagerListRow)user;
mgr.performManagerFeature();
System.out.println("Next Review:"+mgr.getNextReview());

}
else if (user instanceof TechnicianListRow) {
// 3. If the row is a ManagerListRow, cast it
TechnicianListRow tech = (TechnicianListRow)user;
tech.performTechnicianFeature();
System.out.println("Certified:"+tech.getCertified());

}
else {
// 4. Otherwise, just call a method on the UserListRow
user.performUserFeature();

}
}

Running the code in Example 27–18 produces the following output:

daustin->## performTechnicianFeature called
Certified:Y
hbaer->## performUserFeature as User
:
sking->## performManagerFeature called
Next Review:2006-05-09
:

This illustrates that by using the view row polymorphism feature the client was able to
distinguish between view rows of different types and access methods and attributes
specific to each subtype of view row.

27.6.7.4 View Row Polymorphism and Polymorphic Entity Usage are Orthogonal
While often even more useful when used together, the view row polymorphism and
the polymorphic entity usage features are distinct and can be used separately. In
particular, the view row polymorphism feature can be used for read-only view objects,
as well as for entity-based view objects. When you combine both mechanisms, you can
have both the entity row part being polymorphic, as well as the view row type.

Note to use view row polymorphism with either view objects or entity objects, you
must configure the discriminator attribute property separately for each. This is
necessary because read-only view objects contain no related entity usages from which
to infer the discriminator information.

In summary, to use view row polymorphism:

1. Configure an attribute to be the discriminator at the view object level in the root
view object in an inheritance hierarchy.

2. Have a hierarchy of inherited view objects each of which provides a distinct value
for the "Default Value" property of that view object level discriminator attribute.

Reading and Writing XML

Advanced View Object Techniques 27-43

3. List the subclassed view objects in this hierarchy in the application module's list of
Subtypes.

Whereas, to create a view object with a polymorphic entity usage:

1. Configure an attribute to be the discriminator at the entity object level in the root
entity object in an inheritance hierarchy.

2. Have a hierarchy of inherited entity objects, each of which overrides and provides
a distinct value for the "Default Value" property of that entity object level
discriminator attribute.

3. List the subclassed entity objects in a view object's list of Subtypes.

27.7 Reading and Writing XML
The Extensible Markup Language (XML) standard from the Worldwide Web
Consortium (W3C) defines a language-neutral approach for electronic data exchange.
Its rigorous set of rules enables the structure inherent in data to be easily encoded and
unambiguously interpreted using human-readable text documents.

View objects support the ability to write these XML documents based on their queried
data. View objects also support the ability to read XML documents in order to apply
changes to data including inserts, updates, and deletes. When you've introduced view
links, this XML capability supports reading and writing multi-level nested information
for master/detail hierarchies of any complexity. While the XML produced and
consumed by view objects follows a canonical format, you can combine the view
object's XML features with XML Stylesheet Language Transformations (XSLT) to
easily convert between this canonical XML format and any format you need to work
with.

27.7.1 How to Produce XML for Queried Data
To produce XML from a view object, use the writeXML() method. If offers two ways
to control the XML produced:

1. For precise control over the XML produced, you can specify a view object attribute
map indicating which attributes should appear, including which view link
accessor attributes should be accessed for nested, detail information:

Node writeXML(long options, HashMap voAttrMap)

2. To producing XML that includes all attributes, you can simply specify a
depth-level that indicates how many levels of view link accessor attributes should
be traversed to produce the result:

Node writeXML(int depthCount, long options)

Note: The examples in this section refer to the
ReadingAndWritingXML project in the
AdvancedViewObjectExamples workspace. See the note at the
beginning of this chapter for download instructions.

Reading and Writing XML

27-44 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The options parameter is a integer flag field that can be set to one of the following bit
flags:

■ XMLInterface.XML_OPT_ALL_ROWS

Includes all rows in the view object's row set in the XML.

■ XMLInterface.XML_OPT_LIMIT_RANGE

Includes only the rows in the current range in the XML.

Using the logical OR operation, you can combine either of the above flags with the
XMLInterface.XML_OPT_ASSOC_CONSISTENT flag when you want to include new,
unposted rows in the current transaction in the XML output.

Both versions of the writeXML() method accept an optional third argument which is
an XSLT stylesheet that, if supplied, is used to transform the XML output before
returning it.

27.7.2 What Happens When You Produce XML
When you produce XML using writeXML(), the view object begins by creating a
wrapping XML element whose default name matches the name of the view object
definition. For example, for a Users view object in the
devguide.advanced.xml.queries package, the XML produces will be wrapped
in an outermost <Users> tag.

Then, it converts the attribute data for the appropriate rows into XML elements. By
default, each row's data is wrapped in an row element whose name is the name of the
view object with the Row suffix. For example, each row of data from a view object
named Users is wrapped in an <UsersRow> element. The elements representing the
attribute data for each row appear as nested children inside this row element.

If any of the attributes is a view link accessor attribute, and if the parameters passed to
writeXML() enable it, the view object will include the data for the detail rowset
returned by the view link accessor. This nested data is wrapped by an element whose
name is determined by the name of the view link accessor attribute. The return value
of the writeXML() method is an object that implements the standard W3C Node
interface, representing the root element of the generated XML.

For example, to produce an XML element for all rows of a Users view object instance,
and following view link accessors as many levels deep as exists, Example 27–19 shows
the code required.

Example 27–19 Generating XML for All Rows of a View Object to All View Link Levels

ViewObject vo = am.findViewObject("Users");
printXML(vo.writeXML(-1,XMLInterface.XML_OPT_ALL_ROWS));

The Users view object is linked to a ServiceRequests view object showing the
service requests created by that user. In turn, the ServiceRequests view object is
linked to a ServiceHistories view object providing details on the notes entered for
the service request by customers and technicians. Running the code in Example 27–19
produces the XML shown in Example 27–20, reflecting the nested structure defined by
the view links.

Note: The writeXML() method uses view link accessor attributes to
programmatically access detail collections. It does not require adding
view link instances in the data model.

Reading and Writing XML

Advanced View Object Techniques 27-45

Example 27–20 XML from a Users View Object with Two Levels of View Linked Details

<Users>
:
<User>

<UserId>316</UserId>
<UserRole>user</UserRole>
<EmailAddress>sbaida</EmailAddress>
<FirstName>Shelli</FirstName>
<LastName>Baida</LastName>
<StreetAddress>4715 Sprecher Rd</StreetAddress>
<City>Madison</City>
<StateProvince>Wisconsin</StateProvince>
<PostalCode>53704</PostalCode>
<CountryId>US</CountryId>
<UserRequests>

<ServiceRequestsRow>
<SvrId>101</SvrId>
<Status>Closed</Status>
<RequestDate>2006-04-16 13:32:54.0</RequestDate>
<ProblemDescription>Agitator does not work</ProblemDescription>
<ProdId>101</ProdId>
<CreatedBy>316</CreatedBy>
<AssignedTo>304</AssignedTo>
<AssignedDate>2006-04-23 13:32:54.0</AssignedDate>
<ServiceHistories>

<ServiceHistoriesRow>
<SvrId>101</SvrId>
<LineNo>1</LineNo>
<SvhDate>2006-04-23 13:32:54.0</SvhDate>
<Notes>Asked customer to ensure the lid was closed</Notes>
<SvhType>Technician</SvhType>
<CreatedBy>304</CreatedBy>

</ServiceHistoriesRow>
<ServiceHistoriesRow>

<SvrId>101</SvrId>
<LineNo>2</LineNo>
<SvhDate>2006-04-24 13:32:54.0</SvhDate>
<Notes>Problem is fixed</Notes>
<SvhType>Customer</SvhType>
<CreatedBy>316</CreatedBy>

</ServiceHistoriesRow>
</ServiceHistories>

</ServiceRequestsRow>
</UserRequests>

</User>
:

</Users>

Reading and Writing XML

27-46 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.7.3 What You May Need to Know

27.7.3.1 Controlling XML Element Names
You can change the default XML element names used in the view object's canonical
XML format by setting custom properties:

■ Set the custom attribute-level property named XML_ELEMENT to a value
SomeOtherName to change the XML element name used for that attribute to
<SomeOtherName>

For example, the Email attribute in the Users view object defines this property to
change the XML element you see in Example 27–20 to be <EmailAddress> instead
of <Email>.

■ Set the custom view object-level property named XML_ROW_ELEMENT to a value
SomeOtherRowName to change the XML element name used for that attribute to
<SomeOtherRowName>

For example, the Users view object defines this property to change the XML
element name for the rows you see in Example 27–20 to be <User> instead of
<UsersRow>.

■ To change the name of the element names that wrapper nested row set data from
view link attribute accessors, you need to use the View Link Properties panel of
the View Link Editor to change the name of the view link accessor attribute.

27.7.3.2 Controlling Element Suppression for Null-Valued Attributes
By default, if a view row attribute is null, then its corresponding element is omitted
from the generated XML. You can set the custom attribute-level property named XML_
EXPLICIT_NULL to any value (e.g. "true" or "yes") to cause an element to be
included for the attribute if its value is null. For example, if an attribute named
AssignedDate has this property set, then a row containing a null assigned date will
contain a corresponding <AssignedDate null="true"/> element. If you want this
behavior for all attributes of a view object, you can define the XML_EXPLICIT_NULL
custom property at the view object level as a shortcut for defining it on each attribute.

27.7.3.3 Printing or Searching the Generated XML Using XPath
Two of the most common things you might want to do with the XML Node object
returned from writeXML() are:

1. Printing the node to its serialized text representation — to send across the network
or save in a file, for example

2. Searching the generated XML using W3C XPath expressions

Reading and Writing XML

Advanced View Object Techniques 27-47

Unfortunately, the standard W3C Document Object Model (DOM) API does not
include methods for doing either of these useful operations. But there is hope. Since
ADF Business Components uses the Oracle XML parser's implementation of the DOM,
you can cast the Node return value from writeXML() to the Oracle specific classes
XMLNode or XMLElement (in the oracle.xml.parser.v2 package) to access
additional useful functionality like:

■ Printing the XML element to its serialized text format using the print() method

■ Searching the XML element in memory with XPath expressions using the
selectNodes() method

■ Finding the value of an XPath expression related to the XML element using the
valueOf() method.

Example 27–21 shows the printXML() method in the TestClientWriteXML. It
casts the Node parameter to an XMLNode and calls the print() method to dump the
XML to the console.

Example 27–21 Using the XMLNode's print() Method to Serialize XML

// In TestClientWriteXML.java
private static void printXML(Node n) throws IOException {
((XMLNode)n).print(System.out);

}

27.7.3.4 Using the Attribute Map For Fine Control Over Generated XML
When you need fine control over which attributes appear in the generated XML, use
the version of the writeXML() method that accepts a HashMap. Example 27–22
shows the interesting lines from a TestClientWriteXML class that use this
technique. After creating the HashMap, you put String[]-valued entries into it
containing the names of the attributes you want to include in the XML, keyed by the
fully-qualified name of the view definition those attributes belong to. The example
includes the UserId, Email, StateProvince, and UserRequests attributes from
the Users view object, and the SvrId, Status, AssignedDate, and
ProblemDescription attributes from the ServiceRequests view object.

While processing the view rows for a given view object instance:

■ If an entry exists in the attribute map with a key matching the fully-qualified view
definition name for that view object, then only the attributes named in the
corresponding String array are included in the XML.

Furthermore, if the string array includes the name of a view link accessor attribute,
then the nested contents of its detail row set are included in the XML. If a view
link accessor attribute name does not appear in the string array, then the contents
of its detail row set are not included.

■ If no such entry exists in the map, then all attributes for that row are included in
the XML.

Note: For upward compatibility reasons with earlier versions of
ADF Business Components the HashMap expected by the
writeXML() method is the one in the
com.sun.java.util.collections package.

Reading and Writing XML

27-48 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 27–22 Using a View Definition Attribute Map for Fine Control Over Generated
XML

HashMap viewDefMap = new HashMap();
viewDefMap.put("devguide.advanced.xml.queries.Users",

new String[]{"UserId",
"Email",
"StateProvince",
"UserRequests" /* View link accessor attribute */
});

viewDefMap.put("devguide.advanced.xml.queries.ServiceRequests",
new String[]{"SvrId","Status","AssignedDate","ProblemDescription"});

printXML(vo.writeXML(XMLInterface.XML_OPT_ALL_ROWS,viewDefMap));

Running the example produces the XML shown in Example 27–23, including only the
exact attributes and view link accessors indicated by the supplied attribute map.

Example 27–23 XML from a Users View Object Produced Using an Attribute Map

<Users>
<User>

<UserId>300</UserId>
<EmailAddress>sking</EmailAddress>
<StateProvince>Washington</StateProvince>
<UserRequests>

<ServiceRequestsRow>
<SvrId>200</SvrId>
<Status>Open</Status>
<AssignedDate null="true"/>
<ProblemDescription>x</ProblemDescription>

</ServiceRequestsRow>
</UserRequests>

</User>
<User>

<UserId>301</UserId>
<EmailAddress>nkochhar</EmailAddress>
<StateProvince>Maryland</StateProvince>

</User>
:

</Users>

27.7.3.5 Use the Attribute Map Approach with Bi-Directional View Links
If your view objects are related through a view link that you have configured to be
bi-directional, then you must use the writeXML() approach that uses the attribute
map. If you were to use the writeXML() approach in the presence of bi-directional
view links and were to supply a maximum depth of -1 to include all levels of view
links that exist, the writeXML() method will go into an infinite loop as it follows the
bi-directional view links back and forth, generating deeply nested XML containing
duplicate data until it runs out of memory. Use writeXML() with an attribute map
instead in this situation. Only by using this approach can you control which view link
accessors are included in the XML and which are not to avoid infinite recursion while
generating the XML.

27.7.3.6 Transforming Generated XML Using an XSLT Stylesheet
When the canonical XML format produced by writeXML() does not meet your
needs, you can supply an XSLT stylesheet as an optional argument. It will produce the
XML as it would normally, but then transform that result using the supplied stylesheet
before returning the final XML to the caller.

Reading and Writing XML

Advanced View Object Techniques 27-49

Consider the XSLT stylesheet shown in Example 27–24. It is a simple transformation
with a single template that matches the root element of the generated XML from
Example 27–23 to create a new <CustomerEmailAddresses> element in the result. The
template uses the <xsl:for-each> instruction to process all <User> element children of
<Users> that contain more than one <ServiceRequestsRow> child element inside a
nested <UserRequests> element. For each <User> element that qualifies, it creates a
<Customer> element in the result whose Contact attribute is populated from the
value of the <EmailAddress> child element of the <User>.

Example 27–24 XSLT Stylesheet to Transform Generated XML Into Another Format

<?xml version="1.0" encoding="windows-1252" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<CustomerEmailAddresses>
<xsl:for-each

select="/Users/User[count(UserRequests/ServiceRequestsRow) > 1]">
<xsl:sort select="EmailAddress"/>
<Customer Contact="{EmailAddress}"/>

</xsl:for-each>
</CustomerEmailAddresses>

</xsl:template>
</xsl:stylesheet>

Example 27–25 shows the interesting lines from a TestClientWriteXML class that
put this XSLT stylesheet into action when calling writeXML().

Example 27–25 Passing an XSLT Stylesheet to writeXML() to Transform the Resulting
XML

// In TestClientWriteXML.java
XSLStylesheet xsl = getXSLStylesheet();
printXML(vo.writeXML(XMLInterface.XML_OPT_ALL_ROWS,viewDefMap,xsl));

Running the code in Example 27–25 produces the transformed XML shown here:

<CustomerEmailAddresses>
<Customer Contact="dfaviet"/>
<Customer Contact="jchen"/>
<Customer Contact="ngreenbe"/>

</CustomerEmailAddresses>

The getXSLStylesheet() helper method shown in Example 27–26 is also
interesting to study since it illustrates how to read a resource like an XSLT stylesheet
from the classpath at runtime. The code expects the Example.xsl stylesheet to be in
the same directory as the TestClientWriteXML class. By referencing the Class
object for the TestClientWriteXML class using the .class operator, the code uses
the getResource() method to get a URL to the resource. Then, it passes the URL to
the newXSLStylesheet() method of the XSLProcessor class to create a new
XSLStylesheet object to return. That object represents the compiled version of the
XSLT stylesheet read in from the *.xslfile.

Reading and Writing XML

27-50 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 27–26 Reading an XSLT Stylesheet as a Resource from the Classpath

private static XSLStylesheet getXSLStylesheet()
throws XMLParseException, SAXException,IOException,XSLException {

String xslurl = "Example.xsl";
URL xslURL = TestClientWriteXML.class.getResource(xslurl);
XSLProcessor xslProc = new XSLProcessor();
return xslProc.newXSLStylesheet(xslURL);

}

27.7.3.7 Generating XML for a Single Row
In addition to calling writeXML() on a view object, you can call the same method
with the same parameters and options on any Row as well. If the Row object on which
you call writeXML() is a entity row, you can bitwise-OR the additional
XMLInterface.XML_OPT_CHANGES_ONLY flag if you only want the changed entity
attributes to appear in the XML.

27.7.4 How to Consume XML Documents to Apply Changes
To have a view object consume an XML document to process inserts, updates, and
deletes, use the readXML() method:

void readXML(Element elem, int depthcount)

The canonical format expected by readXML() is the same as what would be produced
by a call to the writeXML() method on the same view object. If the XML document to
process does not correspond to this canonical format, you can supply an XSLT
stylesheet as an optional third argument to readXML() to transform the incoming
XML document into the canonical format before it is read for processing.

27.7.5 What Happens When You Consume XML Documents
When a view object consumes an XML document in canonical format, it processes the
document to recognize row elements, their attribute element children, and any nested
elements representing view link accessor attributes. It processes the document
recursively to a maximum level indicated by the depthcount parameter. Passing -1
for the depthcount to request that it process all levels of the XML document.

27.7.5.1 How ViewObject.readXML() Processes an XML Document
For each row element it recognizes, the readXML() method does the following:

■ Identifies the related view object to process the row.

■ Reads the children attribute elements to get the values of the primary key
attributes for the row.

■ Performs a findByKey() using the primary key attributes to detect whether the
row already exists or not.

Note: When working with resources like XSLT stylesheets that you
want to be included in the output directory along with your compiled
Java classes and XML metadata, you can use the Compiler page of the
Project Properties dialog to update the Copy File Types to Output
Directory field to include .xsl in the semicolon-separated list.

Reading and Writing XML

Advanced View Object Techniques 27-51

■ If the row exists:

■ If the row element contains the marker attribute bc4j-action="remove",
then the existing row is deleted.

■ Otherwise, the row's attributes are updated using the values in any attribute
element children of the current row element in the XML

■ If the row does not exist, then a new row is created, inserted into the view object's
rowset. Its attributes are populated using the values in any attribute element
children of the current row element in the XML.

27.7.5.2 Using readXML() to Processes XML for a Single Row
The same readXML() method is also supported on any Row object. The canonical
XML format it expects is the same format produced by a call to writeXML() on the
same row. You can invoke readXML() method on a row to:

■ Update its attribute values from XML

■ Remove the row, if the bc4j-action="remove" marker attribute is present on
the corresponding row element.

■ Insert, update, or delete any nested rows via view link accessors

Consider the XML document shown in Example 27–27. It is in the canonical format
expected by a single row in the Technicians view object. Nested inside the root
<TechniciansRow> element, the <City> attribute represents the technician's city. The
nested <ExpertiseAreas> element corresponds to the ExpertiseAreas view link
accessor attribute and contains three <ExpertiseAreasRow> elements. Each of these
includes <ProdId> elements representing part of the two-attribute primary key of a
ExpertiseAreas row. The other primary key attribute, UserId, is inferred from the
enclosing parent <TechniciansRow> element.

Example 27–27 XML Document in Canonical Format to Insert, Update, and Delete Rows

<TechniciansRow>
<!-- This will update Techncian's City attribute -->
<City>Padova</City>
<ExpertiseAreas>

<!-- This will be an update since it does exist -->
<ExpertiseAreasRow>

<ProdId>100</ProdId>
<ExpertiseLevel>Expert</ExpertiseLevel>

</ExpertiseAreasRow>
<!-- This will be an insert since it doesn't exist -->
<ExpertiseAreasRow>

<ProdId>110</ProdId>
<ExpertiseLevel>Expert</ExpertiseLevel>

</ExpertiseAreasRow>
<!-- This will be deleted -->
<ExpertiseAreasRow bc4j-action="remove">

<ProdId>112</ProdId>
</ExpertiseAreasRow>

</ExpertiseAreas>
</TechniciansRow>

Reading and Writing XML

27-52 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 27–28 shows the interesting lines of code from a TestClientReadXML class
that applies this XML datagram to a particular row in the Technicians view object,
and to the nested set of the technician's areas of expertise via the view link accessor
attribute to the ExpertiseAreas view object. TestClientReadXML class performs
the following basic steps:

1. Finds a target row by key (e.g. for technician "ahunold").

2. Shows the XML produced for the row before changes are applied.

3. Obtains the parsed XML document with changes to apply using a helper method.

4. Reads the XML document to apply changes to the row.

5. Shows the XML with the pending changes applied.

TestClientReadXML class is using the XMLInterface.XML_OPT_ASSOC_
CONSISTENT flag described in Section 27.7.1, "How to Produce XML for Queried
Data" to ensure that new, unposted rows are included in the XML.

Example 27–28 Applying Changes to and Existing Row with readXML()

ViewObject vo = am.findViewObject("Technicians");
Key k = new Key(new Object[] { 303 });
// 1. Find a target row by key (e.g. for technician "ahunold")
Row ahunold = vo.findByKey(k, 1)[0];
// 2. Show the XML produced for the row before changes are applied
printXML(ahunold.writeXML(-1, XMLInterface.XML_OPT_ALL_ROWS));
// 3. Obtain parsed XML document with changes to apply using helper method
Element xmlToRead = getInsertUpdateDeleteXMLGram();
printXML(xmlToRead);
// 4. Read the XML document to apply changes to the row
ahunold.readXML(getInsertUpdateDeleteXMLGram(), -1);
// 5. Show the XML with the pending changes applied
printXML(ahunold.writeXML(-1, XMLInterface.XML_OPT_ALL_ROWS |

XMLInterface.XML_OPT_ASSOC_CONSISTENT));

Running the code in Example 27–28 initially displays the "before" version of Alexander
Hunold's information. Notice that:

■ The City attribute has the value "Southlake"

■ The expertise area for product 100 has a level of "Qualified"

■ There is an expertise row for product 112, and

Reading and Writing XML

Advanced View Object Techniques 27-53

■ There is no expertise area row related to product 110.

<TechniciansRow>
<UserId>303</UserId>
<UserRole>technician</UserRole>
<Email>ahunold</Email>
:
<City>Southlake</City>
:
<ExpertiseAreas>

<ExpertiseAreasRow>
<ProdId>100</ProdId>
<UserId>303</UserId>
<ExpertiseLevel>Qualified</ExpertiseLevel>

</ExpertiseAreasRow>
:
<ExpertiseAreasRow>

<ProdId>112</ProdId>
<UserId>303</UserId>
<ExpertiseLevel>Expert</ExpertiseLevel>

</ExpertiseAreasRow>
:

</ExpertiseAreas>
</TechniciansRow>

After applying the changes from the XML document using readXML() to the row and
printing its XML again using writeXML() you see that:

■ The City is now "Padova"

■ The expertise area for product 100 has a level of "Expert"

■ The expertise row for product 112 is removed, and

■ A new expertise area row for product 110 got created.

<TechniciansRow>
<UserId>303</UserId>
<UserRole>technician</UserRole>
<Email>ahunold</Email>
:
<City>Padova</City>
:
<ExpertiseAreas>

<ExpertiseAreasRow>
<ProdId>110</ProdId>
<UserId>303</UserId>
<ExpertiseLevel>Expert</ExpertiseLevel>

</ExpertiseAreasRow>
<ExpertiseAreasRow>

<ProdId>100</ProdId>
<UserId>303</UserId>
<ExpertiseLevel>Expert</ExpertiseLevel>

</ExpertiseAreasRow>
</TechniciansRow>

Using Programmatic View Objects for Alternative Data Sources

27-54 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.8 Using Programmatic View Objects for Alternative Data Sources
By default view objects read their data from the database and automate the task of
working with the Java Database Connectivity (JDBC) layer to process the database
result sets. However, by overriding appropriate methods in its custom Java class, you
can create a view object that programmatically retrieves data from alterative data
sources like a REF CURSOR, an in-memory array, or a Java *.properties file, to
name a few.

27.8.1 How to Create a Read-Only Programmatic View Object
To create a read-only programmatic view object, use the Create View Object wizard
and follow these steps:

1. In step 1 on the Name panel, provide a name and package for the view object. In
the What kind of data do you need this view object to manage? radio group,
select Rows Populated Programmatically, not Based on a Query

2. In step 2 on the Attributes panel, click New one or more times to define the view
object attributes your programmatic view object requires.

3. In step 3 on the Attribute Settings panel, adjust any setting you may need to for
the attributes you defined.

4. In step 4 on the Java panel, enable a custom view object class to contain your code.

5. Click Finish to create the view object.

In your view object's custom Java class, override the methods described in
Section 27.8.3, "Key Framework Methods to Override for Programmatic View Objects"
to implement your custom data retrieval strategy.

27.8.2 How to Create an Entity-Based Programmatic View Object
To create a entity-based view object with programmatic data retrieval, create the view
object in the normal way, enable a custom Java class for it, and override the methods
described in the next section to implement your custom data retrieval strategy.

Note: The example illustrated using readXML() to apply changes to
a single row. If the XML document contained a wrapping
<Technicians> row, including the primary key attribute in each of its
one or more nested <TechniciansRow> elements, then that document
could be processed using the readXML() method on the
Technicians view object for handling operations for multiple
Technician rows.

Using Programmatic View Objects for Alternative Data Sources

Advanced View Object Techniques 27-55

27.8.3 Key Framework Methods to Override for Programmatic View Objects
A programmatic view object typically overrides all of the following methods of the
base ViewObjectImpl class to implement its custom strategy for retrieving data:

■ create()

This method is called when the view object instance is created and can be used to
initialize any state required by the programmatic view object. At a minimum, this
overridden method will contain the following lines to ensure the programmatic
view object has no trace of a SQL query related to it:

// Wipe out all traces of a query for this VO
getViewDef().setQuery(null);
getViewDef().setSelectClause(null);
setQuery(null);

■ executeQueryForCollection()

This method is called whenever the view object's query needs to be executed (or
re-executed).

■ hasNextForCollection()

This method is called to support the hasNext() method on the row set iterator
for a row set created from this view object. Your implementation returns true if
you have not yet exhausted the rows to retrieve from your programmatic data
source.

■ createRowFromResultSet()

This method is called to populate each row of "fetched" data. Your implementation
will call createNewRowForCollection() to create a new blank row and then
populateAttributeForRow() to populate each attribute of data for the row.

■ getQueryHitCount()

This method is called to support the getEstimatedRowCount() method. Your
implementation returns a count, or estimated count, of the number of rows that
will be retrieved by the programmatic view object's query.

■ protected void releaseUserDataForCollection()

Your code can store and retrieve a user data context object with each row set. This
method is called to allow you to release any resources that may be associated with
a row set that is being closed.

Since the view object component can be related to several active row sets at runtime,
many of the above framework methods receive an Object parameter named qc in
which the framework will pass the collection of rows in question that your code is
supposed to be filling, as well as the array of bind variable values that might affect
which rows get populated into the specific collection.

You can store a user-data object with each collection of rows so your custom
datasource implementation can associate any needed datasource context information.
The framework provides the setUserDataForCollection() and
getUserDataForCollection() methods to get and set this per-collection context
information. Each time one of the overridden framework methods is called, you can
use the getUserDataForCollection() method to retrieve the correct ResultSet
object associated with the collection of rows the framework wants you to populate.

The examples in the following sections each override these methods to implement
different kinds of programmatic view objects.

Using Programmatic View Objects for Alternative Data Sources

27-56 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.8.4 How to Create a View Object on a REF CURSOR
Sometimes your application might need to work with the results of a query that is
encapsulated within a stored procedure. PL/SQL allows you to open a cursor to
iterate through the results of a query, and then return a reference to this cursor to the
client. This so-called REF CURSOR is a handle with which the client can then iterate
the results of the query. This is possible even though the client never actually issued
the original SQL SELECT statement.

Declaring a PL/SQL package with a function that returns a REF CURSOR is
straightforward. For example, your package might look like this:

CREATE OR REPLACE PACKAGE RefCursorExample IS
TYPE ref_cursor IS REF CURSOR;
FUNCTION get_requests_for_tech(p_email VARCHAR2) RETURN ref_cursor;
FUNCTION count_requests_for_tech(p_email VARCHAR2) RETURN NUMBER;

END RefCursorExample;

After defining an entity-based RequestForTech view object with an entity usage for
a ServiceRequest entity object, go to its custom Java class
RequestForTechImpl.java. At the top of the view object class, define some
constant Strings to hold the anonymous blocks of PL/SQL that you'll execute using
JDBC CallableStatement objects to invoke the stored functions:

/*
* Execute this block to retrieve the REF CURSOR
*/
private static final String SQL =

"begin ? := RefCursorSample.getEmployeesForDept(?);end;";
/*
* Execute this block to retrieve the count of service requests that
* would be returned if you executed the statement above.
*/
private static final String COUNTSQL =

"begin ? := RefCursorSample.countEmployeesForDept(?);end;";

Then, override the methods of the view object as described in the following sections.

27.8.4.1 The Overridden create() Method
The create() method removes all traces of a SQL query for this view object.

protected void create() {
getViewDef().setQuery(null);
getViewDef().setSelectClause(null);
setQuery(null);

}

Note: The examples in this section refer to the
ViewObjectOnRefCursor project in the
AdvancedViewObjectExamples workspace. See the note at the
beginning of this chapter for download instructions. Run the
CreateRefCursorPackage.sql script in the Resources folder
against the SRDemo connection to set up the additional database
objects required for the project.

Using Programmatic View Objects for Alternative Data Sources

Advanced View Object Techniques 27-57

27.8.4.2 The Overridden executeQueryForCollection() Method
The executeQueryForCollection() method calls a helper method
retrieveRefCursor() to execute the stored function and return the REF CURSOR
return value, cast as a JDBC ResultSet. Then, it calls the helper method
storeNewResultSet() that uses the setUserDataForCollection() method to
store this ResultSet with the collection of rows for which the framework is asking to
execute the query.

protected void executeQueryForCollection(Object qc,Object[] params,
int numUserParams) {

storeNewResultSet(qc,retrieveRefCursor(qc,params));
super.executeQueryForCollection(qc, params, numUserParams);

}

The retrieveRefCursor() uses the helper method described in Section 25.5,
"Invoking Stored Procedures and Functions" to invoke the stored function and return
the REF CURSOR:

private ResultSet retrieveRefCursor(Object qc, Object[] params) {
ResultSet rs = (ResultSet)callStoredFunction(OracleTypes.CURSOR,

"RefCursorExample.get_requests_for_tech(?)",
new Object[]{getNamedBindParamValue("Email",params)});

return rs ;
}

27.8.4.3 The Overridden createRowFromResultSet() Method
For each row that the framework needs fetched from the datasource, it will invoke
your overridden createRowFromResultSet() method. The implementation
retrieves the collection-specific ResultSet object from the user-data context, uses the
createNewRowForCollection() method to create a new blank row in the
collection, and then use the populateAttributeForRow() method to populate the
attribute values for each attribute defined at design time in the View Object Editor.

protected ViewRowImpl createRowFromResultSet(Object qc, ResultSet rs) {
/*
* We ignore the JDBC ResultSet passed by the framework (null anyway) and
* use the resultset that we've stored in the query-collection-private
* user data storage
*/
rs = getResultSet(qc);

/*
* Create a new row to populate
*/
ViewRowImpl r = createNewRowForCollection(qc);
try {
/*
* Populate new row by attribute slot number for current row in Result Set
*/
populateAttributeForRow(r,0, rs.getLong(1));
populateAttributeForRow(r,1, rs.getString(2));
populateAttributeForRow(r,2, rs.getString(3));

}
catch (SQLException s) {
throw new JboException(s);

}
return r;

}

Using Programmatic View Objects for Alternative Data Sources

27-58 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

27.8.4.4 The Overridden hasNextForCollectionMethod()
The overridden implementation of the framework method
hasNextForCollection() has the responsibility to return true or false based on
whether there are more rows to fetch. When you've hit the end, you call the
setFetchCompleteForCollection() to tell view object that this collection is done
being populated.

protected boolean hasNextForCollection(Object qc) {
ResultSet rs = getResultSet(qc);
boolean nextOne = false;
try {
nextOne = rs.next();
/*
* When were at the end of the result set, mark the query collection
* as "FetchComplete".
*/
if (!nextOne) {
setFetchCompleteForCollection(qc, true);
/*
* Close the result set, we're done with it
*/
rs.close();

}
}
catch (SQLException s) {
throw new JboException(s);
}
return nextOne;

}

27.8.4.5 The Overridden releaseUserDataForCollection() Method
Once the collection is done with its fetch-processing, the overridden
releaseUserDataForCollection() method gets invoked and closes the
ResultSet cleanly so no database cursors are left open.

protected void releaseUserDataForCollection(Object qc, Object rs) {
ResultSet userDataRS = getResultSet(qc);
if (userDataRS != null) {
try {
userDataRS.close();

}
catch (SQLException s) {
/* Ignore */

}
}
super.releaseUserDataForCollection(qc, rs);

}

27.8.4.6 The Overridden getQueryHitCount() Method
Lastly, in order to properly support the view object's getEstimatedRowCount()
method, the overridden getQueryHitCount() method returns a count of the rows
that would be retrieved if all rows were fetched from the row set. Here the code uses a
CallableStatement to get the job done. Since the query is completely encapsulated
behind the stored function API, the code also relies on the PL/SQL package to provide
an implementation of the count logic as well to support this functionality.

public long getQueryHitCount(ViewRowSetImpl viewRowSet) {
Object[] params = viewRowSet.getParameters(true);

Using Programmatic View Objects for Alternative Data Sources

Advanced View Object Techniques 27-59

BigDecimal id = (BigDecimal)params[0];
CallableStatement st = null;
try {
st = getDBTransaction().createCallableStatement(COUNTSQL,

DBTransaction.DEFAULT);
/*
* Register the first bind parameter as our return value of type CURSOR
*/
st.registerOutParameter(1,Types.NUMERIC);
/*
* Set the value of the 2nd bind variable to pass id as argument
*/
if (id == null) st.setNull(2,Types.NUMERIC);
else st.setBigDecimal(2,id);
st.execute();
return st.getLong(1);

}
catch (SQLException s) {
throw new JboException(s);

}
finally {try {st.close();} catch (SQLException s) {}}

}

27.8.5 Populating a View Object from Static Data
The SRDemo application’s SRStaticDataViewObjectImpl class in the
FrameworkExtensions project provides a programmatic view object
implementation you can extend to populate code and description "lookup" data from
static data in an in-memory array.

As shown in Example 27–29, it performs the following tasks in its overridden
implementation of the key programmatic view object methods:

■ create()

When the view object is created, the data is loaded from the in-memory array. It
calls a helper method to set up the codesAndDescriptions array of codes and
descriptions and wipes out all traces of a query for this view object.

■ executeQueryForCollection()

Since the data is static, you don't really need to perform any query, but you still
need to call the super to allow other framework setup for the row set to be done
correctly. Since the code nulls out of traces of a query in the create() method,
the view object won't actually perform any query during the call to super.

■ hasNextForCollection()

The code returns true if the fetchPosition is still less than the number of rows
in the in-memory array

■ createRowFromResultSet()

Populates the "fetched" data for one row when the base view object
implementation asks it to. It gets the data from the codesAndDescriptions
array to populate the first and second attributes in the view object row (by
zero-based index position).

■ getQueryHitCount()

The code returns the number of "rows" in the codesAndDescriptions array
that was previously stored in the rows member field.

Using Programmatic View Objects for Alternative Data Sources

27-60 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In addition, the following other methods help get the data setup:

■ setFetchPos()

Sets the current fetch position for the query collection. Since one view object can be
used to create multiple row sets, you need to keep track of the current fetch
position of each rowset in its "user data" context. It calls the
setFetchCompleteForCollection() to signal to the view object that it's done
fetching rows.

■ getFetchPos()

Get the current fetch position for the query collection. This returns the fetch
position for a given row set that was stored in its user data context.

■ initializeStaticData()

Subclasses override this method to initialize the static data for display.

■ setCodesAndDescriptions()

Sets the static code and description data for this view object.

Example 27–29 Custom View Object Class to Populate Data from a Static Array

package oracle.srdemo.model.frameworkExt;
// Imports omitted
public class SRStaticDataViewObjectImpl extends SRViewObjectImpl {
private static final int CODE = 0;
private static final int DESCRIPTION = 1;
int rows = -1;
private String[][] codesAndDescriptions = null;

protected void executeQueryForCollection(Object rowset, Object[] params,
int noUserParams) {

// Initialize our fetch position for the query collection
setFetchPos(rowset, 0);
super.executeQueryForCollection(rowset, params, noUserParams);

}
// Help the hasNext() method know if there are more rows to fetch or not
protected boolean hasNextForCollection(Object rowset) {
return getFetchPos(rowset) < rows;

}
// Create and populate the "next" row in the rowset when needed
protected ViewRowImpl createRowFromResultSet(Object rowset,ResultSet rs) {
ViewRowImpl r = createNewRowForCollection(rowset);
int pos = getFetchPos(rowset);
populateAttributeForRow(r, 0, codesAndDescriptions[pos][CODE]);
populateAttributeForRow(r, 1, codesAndDescriptions[pos][DESCRIPTION]);
setFetchPos(rowset, pos + 1);
return r;

}
// When created, initialize static data and remove trace of any SQL query
protected void create() {
super.create();
// Setup string arrays of codes and values from VO custom properties
initializeStaticData();
rows = (codesAndDescriptions != null) ? codesAndDescriptions.length : 0;
// Wipe out all traces of a query for this VO
getViewDef().setQuery(null);
getViewDef().setSelectClause(null);
setQuery(null);

}

Using Programmatic View Objects for Alternative Data Sources

Advanced View Object Techniques 27-61

// Return the estimatedRowCount of the collection
public long getQueryHitCount(ViewRowSetImpl viewRowSet) {
return rows;

}
// Subclasses override this to initialize their static data
protected void initializeStaticData() {
setCodesAndDescriptions(new String[][]{
{"Code1","Description1"},
{"Code2","Description2"}

});
}
// Allow subclasses to initialize the codesAndDescriptions array
protected void setCodesAndDescriptions(String[][] codesAndDescriptions) {
this.codesAndDescriptions = codesAndDescriptions;

}
// Store the current fetch position in the user data context
private void setFetchPos(Object rowset, int pos) {
if (pos == rows) {
setFetchCompleteForCollection(rowset, true);

}
setUserDataForCollection(rowset, new Integer(pos));

}
// Get the current fetch position from the user data context
private int getFetchPos(Object rowset) {
return ((Integer)getUserDataForCollection(rowset)).intValue();

}
}

27.8.5.1 Basing Lookup View Object on SRStaticDataViewObjectImpl
The ServiceRequestStatusList view object in the SRDemo application defines
two String attributes named Code and Description, and extends the
SRStaticDataViewObjectImpl class. It overrides the
initializeStaticData() method to supply the values of the legal service request
status codes:

public class ServiceRequestStatusListImpl
extends SRStaticDataViewObjectImpl {

protected void initializeStaticData() {
setCodesAndDescriptions(new String[][]{

{"Open","Open"},
{"Pending","Pending"},
{"Closed","Closed"}

});
}

}

27.8.5.2 Creating a View Object Based on Static Data from a Properties File
Rather than compiling the static data for a view object into the Java class itself, it can
be convenient to externalize it into a standard Java properties file with a Name=Value
format like this:

#This is the property file format. Comments like this are ok
US=United States
IT=Italy

The SRPropertiesFileViewObjectImpl in the SRDemo application extends
SRStaticDataViewObjectImpl to override the initializeStaticData()
method and invoke the loadDataFromPropertiesFile() method shown in

Using Programmatic View Objects for Alternative Data Sources

27-62 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 27–30 to read the static data from a properties file. This method does the
following basic steps:

1. Derives the property file name based on the view definition name.

For example, a CountryList view object in a x.y.z.queries package that
extends this class would expect to read the properties file named
./x/y/z/queries/CountryList.properties file.

2. Initializes a list to hold the name=value pairs.

3. Opens an input stream to read the properties file from the class path.

4. Loops over each line in the properties file.

5. If line contains and equals sign and is not a comment line that begins with a hash,
then add a string array of {code,description} to the list.

6. Closes the line number reader and input stream.

7. Returns the list contains as a two-dimensional String array.

Example 27–30 Reading Static Data for a View Object from a Properties File

// In SRPropertiesFileViewObjectImpl.java
private synchronized String[][] loadDataFromPropertiesFile() {
// 1. Derive the property file name based on the view definition name
String propertyFile =
getViewDef().getFullName().replace('.', '/') + ".properties";

// 2. Initialize a list to hold the name=value pairs
List codesAndDescriptionsList = new ArrayList(20);
try {
// 3. Open an input stream to read the properties file from the class path
InputStream is = Thread.currentThread().getContextClassLoader()

.getResourceAsStream(propertyFile);
LineNumberReader lnr = new LineNumberReader(new InputStreamReader(is));
String line = null;
// 4. Loop over each line in the properties file
while ((line = lnr.readLine()) != null) {
line.trim();
int eqPos = line.indexOf('=');
if ((eqPos >= 1) && (line.charAt(0) != '#')) {
// 5. If line contains "=" and isn't a comment, add String[]
// of {code,description} to the list
codesAndDescriptionsList.add(new String[]{

line.substring(0, eqPos),
line.substring(eqPos + 1)});

}
}
// 6. Close the line number reader and input stream
lnr.close();
is.close();

} catch (IOException iox) {
iox.printStackTrace();
return new String[0][0];

}
// 7. Return the list contains as a two-dimensional String array
return (String[][])codesAndDescriptionsList.toArray();

}

Creating a View Object with Multiple Updatable Entities

Advanced View Object Techniques 27-63

27.8.5.3 Creating Your Own View Object with Static Data
To create your own view object with static data that extends one of the example classes
provided in the SRDemo application, define a new read-only programmatic view
object with String attributes named Code and Description. On the Java panel of the
View Object Editor, click Class Extends to specify the fully-qualified name of the
SRStaticDataViewObjectImpl or SRPropertiesFileViewObjectImpl class
as the custom class in the Object field. Then, enable a custom Java class for your view
object and do the following:

If you extend SRStaticDataViewObjectImpl...
Then override the initializeStaticData() method and invoke the
loadDataFromPropertiesFile() method shown

If you extend SRStaticDataViewObjectImpl ...
Then create the appropriate *.properties file in the same directory as the view object's
XML component definition, with a name that matches the name of the view object
(ViewObjectName.properties).

27.9 Creating a View Object with Multiple Updatable Entities

When you create a view object with multiple entity usages, you can enable a
secondary entity usage to be updatable by selecting it in the Selected list of the Entity
Objects panel of the View Object Editor and:

■ Selecting the Reference checkbox

■ Deselecting the Updatable checkbox

If you only plan to use the view object to update or delete existing data, then this is the
only step required. The user can update attributes related to any of the non-reference,
updatable entity usages and the view row will delegate the changes to the appropriate
underlying entity rows.

However, if you need a view object with multiple updatable entities to support
creating new rows, then you need to write a bit of code to enable that to work
correctly. When you call createRow() on a view object with multiple update entities,
it creates new entity row parts for each updatable entity usage. Since the multiple
entities in this scenario are related by an association, there are three pieces of code you
might need to implement to ensure the new, associated entity rows can be saved
without errors:

1. You may need to override the postChanges() method on entity objects involved
to control the correct posting order.

2. If the primary key of the associated entity is populated by a database sequence
using DBSequence, and if the multiple entity objects are associated but not
composed, then you need to override the postChanges() and
refreshFKInNewContainees() method to handle cascading the refreshed
primary key value to the associated rows that were referencing the temporary
value.

Note: To experiment with the example described in this section, use
the same ControllingPostingOrder project in the
AdvancedEntityExamples workspace used in Section 26.7,
"Controlling Entity Posting Order to Avoid Constraint Violations".

Creating a View Object with Multiple Updatable Entities

27-64 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

3. You need to override the create() method of the view object's custom view row
class to modify the default row creation behavior to pass the context of the parent
entity object to the newly-created child entity.

In Section 26.7, "Controlling Entity Posting Order to Avoid Constraint Violations",
you've already seen the code required for 1 and 2 above in an example with associated
Product and ServiceRequest entity objects. The only thing remaining is the
overridden create() method on the view row. Consider a
ServiceRequestAndProduct view object with a primary entity usage of
ServiceRequest and secondary entity usages of Product and User. Assume the
Product entity usage is marked as updatable and non-reference, while the User
entity usage is a reference entity usage.

Example 27–31 shows the commented code required to correctly sequence the creation
of the multiple, updatable entity row parts during a view row create operation.

Example 27–31 Overriding View Row create() Method for Multiple Updatable Entities

/**
* By default, the framework will automatically create the new
* underlying entity object instances that are related to this
* view object row being created.
*
* We override this default view object row creation to explicitly
* pre-populate the new (detail) ServiceRequestImpl instance using
* the new (master) ProductImpl instance. Since all entity objects
* implement the AttributeList interface, we can directly pass the
* new ProductImpl instance to the ServiceRequestImpl create()
* method that accepts an AttributeList.
*/
protected void create(AttributeList attributeList) {
// The view row will already have created "blank" entity instances
ProductImpl newProduct = getProduct();
ServiceRequestImpl newServiceRequest = getServiceRequest();
try {

// Let product "blank" entity instance to do programmatic defaulting
newProduct.create(attributeList);
// Let service request "blank" entity instance to do programmatic
// defaulting passing in new ProductImpl instance so its attributes
// are available to the EmployeeImpl's create method.
newServiceRequest.create(newProduct);

}
catch (JboException ex) {
newProduct.revert();
newServiceRequest.revert();
throw ex;

}
catch (Exception otherEx) {
newProduct.revert();
newServiceRequest.revert();
throw new RowCreateException(true /* EO Row? */,

"Product" /* EO Name */,
otherEx /* Details */);

}
}

Declaratively Preventing Insert, Update, and Delete

Advanced View Object Techniques 27-65

In order for this view row class to be able to invoke the protected create() method
on the Product and ServiceRequest entity objects, they need to override the
create() method. If the view object and entity objects are in the same package, the
overridden create() method can have protected access. Otherwise, it requires
public access.

/**
* Overridding this method in this class allows friendly access
* to the create() method by other classes in this same package, like the
 * ServiceRequestsAndProduct view object implementation class, whose overridden
 * create() method needs to call this.
* @param nameValuePair
*/
protected void create(AttributeList nameValuePair) {
super.create(nameValuePair);

}

27.10 Declaratively Preventing Insert, Update, and Delete
Some 4GL tools like Oracle Forms provide declarative properties that control whether
a given data collection allows inserts, updates, or deletes. While the view object does
not yet support this as a built-in feature in the current release, it's easy to add this
facility using a framework extension class that exploits custom metadata properties as
the developer-supplied flags to control insert, update, or delete on a view object.

To allow developers to have control over individual view object instances, you could
adopt the convention of using application module custom properties by the same
name as the view object instance. For example, if an application module has view
object instances named ProductsInsertOnly, ProductsUpdateOnly,
ProductsNoDelete, and Products, your generic code might look for application
module custom properties by these same names. If the property value contains
Insert, then insert is enabled for that view object instance. If the property contains
Update, then update allowed. And, similarly, if the property value contains Delete,
then delete is allowed. You could use helper methods like this to test for these
application module properties and determine whether insert, update, and delete are
allowed for a given view object:

private boolean isInsertAllowed() {
return isStringInAppModulePropertyNamedAfterVOInstance("Insert");

}
private boolean isUpdateAllowed() {
return isStringInAppModulePropertyNamedAfterVOInstance("Update");

}
private boolean isDeleteAllowed() {
return isStringInAppModulePropertyNamedAfterVOInstance("Delete");

}
private boolean isStringInAppModulePropertyNamedAfterVOInstance(String s) {
String voInstName = getViewObject().getName();
String propVal = (String)getApplicationModule().getProperty(voInstName);
return propVal != null ? propVal.indexOf(s) >= 0 : true;

}

Note: The examples in this section refer to the
DeclarativeBlockOperations project in the
AdvancedViewObjectExamples workspace. See the note at the
beginning of this chapter for download instructions.

Declaratively Preventing Insert, Update, and Delete

27-66 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 27–32 shows the other code required in a custom framework extension class
for view rows to complete the implementation. It overrides the following methods:

■ isAttributeUpdateable()

To enable the user interface to disable fields in a new row if insert is not allowed or
to disable fields in an existing row if update is not allowed.

■ setAttributeInternal()

To prevent setting attribute values in a new row if insert is not allowed or to
prevent setting attributes in an existing row if update is not allowed.

■ remove()

To prevent remove if delete is not allowed.

■ create()

To prevent create if insert is not allowed.

Example 27–32 Preventing Insert, Update, or Delete Based on Custom Properties

public class CustomViewRowImpl extends ViewRowImpl {
public boolean isAttributeUpdateable(int index) {
if (hasEntities() &&

((isNewOrInitialized() && !isInsertAllowed()) ||
(isModifiedOrUnmodified() && !isUpdateAllowed()))) {

return false;
}
return super.isAttributeUpdateable(index);

}
protected void setAttributeInternal(int index, Object val) {
if (hasEntities()) {
if (isNewOrInitialized() && !isInsertAllowed())
throw new JboException("No inserts allowed in this view");

else if (isModifiedOrUnmodified() && !isUpdateAllowed())
throw new JboException("No updates allowed in this view");

}
super.setAttributeInternal(index, val);

}
public void remove() {
if (!hasEntities() || isDeleteAllowed() || isNewOrInitialized())
super.remove();

else
throw new JboException("Delete not allowed in this view");

}
protected void create(AttributeList nvp) {
if (isInsertAllowed()) {
super.create(nvp);

} else {
throw new JboException("Insert not allowed in this view");

}
}
// private helper methods omitted

}

Application Module State Management 28-1

28
Application Module State Management

This chapter describes the application module state management facility and how to
use it.

This chapter includes the following sections:

■ Section 28.1, "Understanding Why State Management is Necessary"

■ Section 28.2, "The ADF Business Components State Management Facility"

■ Section 28.3, "Controlling the State Management Release Level"

■ Section 28.4, "What State Is Saved and When is It Cleaned Up?"

■ Section 28.5, "Managing Custom User Specific Information"

■ Section 28.6, "Managing State for Transient View Objects"

■ Section 28.7, "Using State Management for Middle-Tier Savepoints"

■ Section 28.8, "Testing to Ensure Your Application Module is Activation-Safe"

■ Section 28.9, "Caveats Regarding Pending Database State"

28.1 Understanding Why State Management is Necessary
Most real-world business applications need to support multi-step user tasks. Modern
sites tend to use a "step-by-step" style user interface to guide the end user through a
logical sequence of pages to complete these tasks. When the task is done, the user can
save or cancel everything as a unit.

28.1.1 Examples of Multi-Step Tasks
In a typical search-then-edit scenario, the end user searches to find an appropriate row
to update, then may open several different pages of related master/detail information
to make edits before deciding to save or cancel his work. Consider another scenario
where the end user wants to book a vacation online. The process may involve the end
user's entering details about:

■ One or more flight segments that comprise the journey

■ One or more passengers taking the trip

■ Seat selections and meal preferences

■ One or more hotel rooms in different cities

■ Car they will rent

Understanding Why State Management is Necessary

28-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Along the way, the user might decide to complete the transaction, save the reservation
for finishing later, or abandoning the whole thing.

It's clear these scenarios involve a logical unit of work that spans multiple web pages.
You've seen in previous chapters how to use JDeveloper's JSF page navigation
diagram to design the page flow for these use cases, but that is only part of the puzzle.
The pending changes the end user makes to business domain objects along the way —
Trip, Flight, Passenger, Seat, HotelRoom, Auto, etc. — represent the
in-progress state of the application for each end user. Along with this, other types of
"bookkeeping" information about selections made in previous steps comprise the
complete picture of the application state.

28.1.2 Stateless HTTP Protocol Complicates Stateful Applications
While it may be easy to imagine these multi-step scenarios, implementing them in web
applications is complicated by the stateless nature of HTTP, the hypertext transfer
protocol. Figure 28–1 illustrates how an end user's "visit" to a site comprises a series of
HTTP request/response pairs. However, HTTP affords a web server no way to
distinguish one user's request from another user's, or to differentiate between a single
user's first request and any subsequent requests he makes while interacting with the
site. The server gets each request from any user always as if it were the first (and only!)
one they make.

Figure 28–1 Web Applications Use the Stateless HTTP Protocol

But even if you've never implemented your own web applications before, since you've
undoubtedly used a web application to buy a book, plan a holiday, or even just read
your email, it's clear that a solution must exist to distinguish one user from another.

28.1.3 How Cookies Are Used to Track a User Session
As shown in Figure 28–2, the technique to recognize an ongoing sequence of requests
from the same end user over the stateless HTTP protocol involves a unique identifier
called a "cookie.." A cookie is a name/value pair that is sent in the header information
of each HTTP request the user makes to a site. On the initial request made by a user,
the cookie is not part of the request. The server uses the absence of the cookie to detect
the start of a user's session of interactions with the site, and it returns a unique
identifier to the browser that represents this session for this user. In practice, the
cookie value is a long string of letters and numbers, but for simplicity's sake, assume
that the unique identifier is a letter like "A" or "Z" that corresponds to different users
using the site.

Web browsers support a standard way of recognizing the cookie returned by the
server, along with a way of identifying what site sent the cookie and how long it
should remember the cookie value. On each subsequent request made by that user,
until the cookie "expires" the browser sends the cookie along in the header of the
request.

Understanding Why State Management is Necessary

Application Module State Management 28-3

The server uses the value of the cookie to distinguish the requests made by different
users. A cookie that expires when you close your browser is known as a "session
cookie," while other cookies set to live beyond a single browser session might expire in
a week, a month, or a year from when they were first created.

Figure 28–2 Tracking State Using a Session Cookies and Server-Side Session

J2EE-compliant web servers provide a standard server-side facility called the
HttpSession that allows a web developer to store Java objects related to a particular
user's session as named attribute/value pairs. An object placed in this session Map on
one request can be retrieved by the developer while handling a subsequent request
during the same session. The session stays "active" while the user continues to send
new requests within the timeframe configured by the <session-timeout> element in
the web.xml file. The default session length is 35 minutes.

28.1.4 Performance and Reliability Impact of Using HttpSession
The HttpSession facility is an ingredient in most application state management
strategies, but it can present performance and reliability problems if not used
judiciously. First, since the session-scope Java objects you create are held in the
memory of the J2EE web server, the objects in the HTTP session are lost if the server
should fail.

As shown in Figure 28–3, one way to improve the reliability is to configure multiple
J2EE servers in a cluster. By doing this, the J2EE application server replicates the
objects in the HTTP session for each user across multiple servers in the cluster so that
if one server goes down, the objects exist in the memory of the other servers in the
cluster that can continue to handle the users requests. Since the cluster comprises
separate servers, replicating the HTTP session contents among them involves
broadcasting the changes made to HTTP session objects over the network.

Figure 28–3 Session Replication in a Server Cluster

The ADF Business Components State Management Facility

28-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

You can begin to see some of the performance implications of overusing the HTTP
session:

■ The more active users, the more HTTP sessions will be created on the server.

■ The more objects stored in each HTTP session, the more memory you will need.

■ In a cluster, the more objects in each HTTP session that change, the more network
traffic will be generated to replicate the changed objects to other servers in the
cluster.

At the outset, it would seem that keeping the number of objects stored in the session to
a minimum addresses the problem. However, this implies leveraging an alternative
mechanism for temporary storage for each user's pending application state. The most
popular alternatives involve saving the application state to the database between
requests or to a file of some kind on a shared file system.

Of course, this is easier said than done. A possible approach involves eagerly saving
the pending changes to your underlying database tables and committing the
transaction at the end of each HTTP request. But this idea has two key drawbacks:

■ Your database constraints might fail.

At any given step of the multi-step process, the information may only be partially
complete, and this could cause errors at the database level when trying to save the
changes.

■ You complicate rolling back the changes.

Cancelling the logical of unit of work would involves carefully deleting all of the
eagerly-committed rows in possible multiple tables.

These limitations have lead developers in the past to invent solutions involving a
"shadow" set of database tables with no constraints and with all of the column types
defined as character-based. Using such a solution becomes very complex very quickly.
Ultimately, you will conclude that you need some kind of generic application state
management facility to address these issues in a more generic and workable way. The
solution comes in the form of ADF Business Components, which implements this for
you out of the box.

28.2 The ADF Business Components State Management Facility
The application module component and application module pool cooperate to offer a
generic solution to database-backed, application state management. This feature
enables you to easily create web applications that support multi-step use cases without
falling prey to the memory, reliability, or implementation complexity problems
described in the previous section.

Your ADF Business Components-based application automatically manages the
application state of each user session. This provides the simplicity of a stateful
programming model that you are used to in previous 4GL tools, yet, implemented in a
way that delivers scalability nearing that of a purely stateless application.
Understanding what happens behind the scenes is essential to make the most efficient
use of this important feature.

The ADF Business Components State Management Facility

Application Module State Management 28-5

28.2.1 Basic Architecture of the State Management Facility
You can use application module components to implement completely stateless
applications or to support a unit of work that spans multiple browser pages.
Figure 28–4 illustrates the basic architecture of the state management facility to
support these multi-step scenarios. An application module supports passivating its
pending transaction state to an XML document, which is stored in the database in a
single, generic table, keyed by a unique passivation snapshot ID. It also supports the
reverse operation of activating pending transaction state from one of these saved XML
"snapshots." This passivation and activation is performed automatically by the
application module pool when needed.

Figure 28–4 ADF Provides Generic, Database-Backed State Management

The ADF binding context is the one object that lives in the HttpSession for each end
user. It hold references to lightweight application module data control objects that
manage acquiring an application module instance from the pool at the beginning of
each request and releasing it to the pool at the end of each request. The data control
holds a reference to the ADF "session cookie" that identifies the user session. In
particular, business domain objects created or modified in the pending transaction are
not saved in the HttpSession using this approach. This minimizes both the session
memory required per user and eliminates the network traffic related to session
replication if the servers are configured in a cluster.

For improved reliability, if you have multiple application servers and you enable the
optional ADF Business Components failover support, then subsequent end-user
requests can be handled by any server in your server farm or cluster. The ADF session
cookie saved in the client browser is enough to "reactivate" the pending application
state from the database-backed XML snapshot if required, regardless of what server
handles the request.

The ADF Business Components State Management Facility

28-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

28.2.2 Understanding When Passivation and Activation Occurs
To better understand when the automatic passivation and activation of application
module state occurs, consider the following simple case:

1. At the beginning of an HTTP request, the application module data control handles
the beginRequest event by checking out an application module instance from
the pool.

The application module pool returns an unreferenced instance. An unreferenced
application module is one that is not currently managing the pending state for any
other user session.

2. At the end of the request, the application module data control handles the
endRequest event by checking the application module instance back into the
pool in "managed state" mode.

That application module instance is now referenced by the data control that just
used it. And the application module instance is an object that still contains
pending transaction state made by the data control (that is, entity object and view
object caches; updates made but not committed; and cursor states), stored in
memory. As you’ll see below, it’s not dedicated to this data control, just referenced
by it.

3. On a subsequent request, the same data control — identified by its
SessionCookie — checks out an application module instance again.

Due to the "stateless with user affinity" algorithm the pool uses, you might assume
that the pool returns the exact same application module instance, with the state
still there in memory.

Sometimes due to a high number of users simultaneously accessing the site,
application module instances must be sequentially reused by different user sessions.
In this case, the application pool must recycle a currently referenced application
module instance for use by another session, as follows:

1. The application module data control for User A's session checks an application
module instance into the application pool at the end of a request. Assume this
instance is named AM1.

2. The application module data control for User Z's new session requests an
application module instance from the pool for the first time, but there are no
unreferenced instances available. The application module pool then:

■ Passivates the state of instance AM1 to the database.

■ Resets the state of AM1 in preparation to be used by another session.

■ Returns the AM1 instance to User Z's data control.

3. On a subsequent request, the application module data control for User A's session
requests an application module instance from the pool. The application module
pool then:

■ Obtains an unreference instance.

This could be instance AM1, obtained by following the same steps as in (2)
above, or another AM2 instance if it had become unreferenced in the meantime.

■ Activates the appropriate pending state for User A from the database.

■ Returns the application module instance to User A's data control.

Controlling the State Management Release Level

Application Module State Management 28-7

The process of passivation, activation, and recycling allows the state referenced by the
data control to be preserved across requests without requiring a dedicated application
module instance for each data control. Both browser users in the above scenario are
carrying on an application transaction that spans multiple HTTP requests, but the end
users are unaware whether the passivation and activation is occurring in the
background. They just continue to see the pending changes. In the process, the
pending changes never need to be saved into the underlying application database
tables until the end user is ready to commit the logical unit of work.

The application module pool makes a best effort to keep an application module
instance "sticky" to the current data control whose pending state it is managing. This is
known as maintaining user session affinity. The best performance is achieved if a data
control continues to use exactly the same application module instance on each request,
since this avoids any overhead involved in reactivating the pending state from a
persisted snapshot.

28.2.3 How Passivation Changes When Optional Failover Mode is Enabled
There is a parameter called jbo.dofailover that can be set in your application
module configuration on the Pooling and Scalability tab of the Configuration Editor.
This parameter controls when and how often passivation occurs. When the failover
feature is disabled, which it is by default, then application module pending state will
only be passivated on demand when it must be. This occurs just before the pool
determines it must hand out a currently-referenced application module instance to a
different data control.

In contrast, with the failover feature turned on, the application module’s pending state
is passivated every time it is checked back into application module pool. This provides
the most pessimistic protection against application server failure. The application
module instances' state is always saved and may be activated by any application
module instance at any time. Of course, this capability comes at expense of the
additional overhead of eager passivation on each request.

28.3 Controlling the State Management Release Level
When a data control handles the endRequest notification indicating the processing
for the current HTTP request has completed, it releases the application module
instance by checking it back into the application module pool. The application module
pool manages instances and performs state management tasks (or not) based on the
release level you use when returning the instance to the pool.

ADF supports the release levels described in the following sections.

Note: When running or debugging an application that uses failover
support within the JDeveloper environment, you are frequently
starting and stopping the embedded OC4J server. The ADF failover
mechanism has no way of knowing whether you stopped the
embedded server to simulate an application server failure, or whether
you stopped it because you want to retest something from scratch in a
"fresh" server instance. If you intend doing the latter, Oracle
recommends exiting out of your browser before restarting the
application on the embedded server. This eliminates the chance that
you will be confused by the correct functioning of the failover
mechanism when you didn't intend to be testing that aspect of your
application.

Controlling the State Management Release Level

28-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

28.3.1 Supported Release Levels

Managed Level
This is the default level. This level implies that application module's state is relevant
and has to be preserved for this data control to span over several HTTP requests.
Managed level does not guarantee that for the next request this data control will
receive the same physical application module instance, but it does guarantees that an
application module with identical state will be provided so it is logically the same
application module instance each time. It is important to note that the framework
makes the best effort it can to provide the same instance of application module for the
same data control if it is available at the moment. This is done for better performance
since the same application module does not need to activate the previous state which
it still has intact after servicing the same data control during previous request.
However, the data control is not guaranteed to receive the same instance for all its
requests and if the application module that serviced that data control during previous
is busy or unavailable, then a different application module will activate this data
control’s state. For this reason, it is not valid to cache references to application module
objects, view objects, or view rows across HTTP requests in controller-layer code.

This mode was called the "Stateful Release Mode" in previous releases of JDeveloper.

Unmanaged Level
This mode implies that no state associated with this data control has to be preserved to
survive beyond the current HTTP request. This level is the most efficient in
performance because there is no overhead related to state management. However, you
should limited in its use to applications that require no state management, or to cases
when state no longer needs to be preserved at this point (a classic example is releasing
the application module after servicing the HTTP request from logout page).

This mode was called the "Stateless Release Mode" in previous releases of JDeveloper.

Reserved Level
This level guarantees that each data control will be assigned its own application
module during its first request and for all subsequent requests coming from the
HttpSession associated with this data control. This data control will always receive
the same physical instance of application module. This mode exists for legacy
compatibility reasons and for very rare special use cases. In general, it is strongly
recommended never to use this mode. You would normally avoid using this mode
because the data control to application module correlation becomes one to one, the
scalability of the application reduces very sharply, and so does reliability of the
application.

Note: If the jbo.ampool.doampooling configuration property is
false — corresponding to your unchecking the Enable Application
Module Pooling option in the Pooling and Scalability tab of the
Configuration Editor — then there is effectively no pool. In this case,
when the application module instance is released at the end of a
request it is immediately removed. On subsequent requests made by
the same user session, a new application module instance must be
created to handle each user request, and pending state must be
reactivated from the passivation store. Setting this property to false
is useful to discover problems in your application logic that might
occur when reactivation does occur due to unpredictable load on your
system. However, you'll typically never run a production system with
this option set to false.

Controlling the State Management Release Level

Application Module State Management 28-9

Reliability suffers because if for whatever reason the application module is lost, the
data control will not be able to receive any other application module in its place from
the pool, and so HttpSession gets lost as well, which is not the case for managed
level.

28.3.2 Setting the Release Level at Runtime
If you do not want to use the default "Managed State" release level, you can set your
desired level programmatically. Use the API's describe in the following section:

Unmanaged Level
To set a data control to release its application module using the unmanaged level, call
the resetState() method on the DCDataControl class (in the
oracle.adf.model.binding package).

You can call this method any time during the request. This will cause application
module not to passivate its state at all when it is released to the pool at the end of the
request. Note that this method only affects the current application module instance in
the current request. After this, the application module is released in unmanaged level
to the pool, it becomes unreferenced and gets reset. The next time the application
module is used by a client, it will be used in the managed level again by default.

Reserved Level
To set a data control to release its application module using the reserved level, call the
setReleaseLevel() method of the DCJboDataControl class (in the
oracle.adf.model.bc4j package), and pass the integer constant
ApplicationModule.RELEASE_LEVEL_RESERVED.

When the release level for an application module has been changed to "Reserved" it
will stay so for all subsequent requests until explicitly changed.

Managed Level
If you have set an application module to use reserved level, you can later set it back to
use managed level by calling the setReleaseLevel() method of the
DCJboDataControl class, and passing the integer constant
ApplicationModule.RELEASE_LEVEL_MANAGED.

The sections below illustrate four different contexts you might make use of these
release mode API's.

28.3.2.1 Setting Release Level in a JSF Backing Bean
Example 28–1 shows calling the resetState() method on a data control named
UserModuleDataControl from the action method of a JSF backing bean.

Note: The failover option is ignored for an application module
released with Reserved release level since its use implies your
application absolutely requires working with the same application
module instance on each request.

Note: You can programmatically release the application module
with the unmanaged level when you want to signal that the user has
ended a logical unit of work. This will happen automatically when the
HTTPSession times out, as described below.

Controlling the State Management Release Level

28-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 28–1 Calling resetState() on Data Control in a JSF Backing Bean Action
Method

package devguide.advanced.releasestateless.controller.backing;
import devguide.advanced.releasestateless.controller.JSFUtils;
import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCDataControl;
/**
* JSF Backing bean for the "Example.jspx" page
*/
public class Example {
/**
* In an action method, call resetState() on the data control to cause
* it to release to the pool with the "unmanaged" release level.
* In other words, as a stateless application module.
*/
public String commandButton_action() {
// Add event code here...
getDataControl("UserModuleDataControl").resetState();
return null;

}
private DCDataControl getDataControl(String name) {
BindingContext bc =
(BindingContext)JSFUtils.resolveExpression("#{data}");

return bc.findDataControl(name);
}

}

28.3.2.2 Setting Release Level in an ADF PagePhaseListener
Example 28–2 shows calling the resetState() method on a data control named
UserModuleDataControl from the after-prepareRender phase of the ADF lifecycle
using a custom ADF page phase-listener class. You would associate this custom class
to a particular page by setting the ControllerClass attribute on the page’s page
definition to the fully-qualified name of this class.

Example 28–2 Calling resetState() on Data Control in a Custom PagePhaseListener

package devguide.advanced.releasestateless.controller;
import oracle.adf.controller.v2.lifecycle.Lifecycle;
import oracle.adf.controller.v2.lifecycle.PagePhaseEvent;
import oracle.adf.controller.v2.lifecycle.PagePhaseListener;
import oracle.adf.model.binding.DCDataControl;
public class ReleaseStatelessPagePhaseListener

implements PagePhaseListener {
/**
* In the "after" phase of the final "prepareRender" ADF Lifecycle
* phase, call resetState() on the data control to cause it to release
* to the pool with the "unmanaged" release level. In other words,
* as a stateless application module.
*
* @param event ADF page phase event
*/
public void afterPhase(PagePhaseEvent event) {
if (event.getPhaseId() == Lifecycle.PREPARE_RENDER_ID) {
getDataControl("UserModuleDataControl", event).resetState();

}
}

Controlling the State Management Release Level

Application Module State Management 28-11

// Required to implement the PagePhaseListener interface
public void beforePhase(PagePhaseEvent event) {}
private DCDataControl getDataControl(String name,

PagePhaseEvent event) {
return event.getLifecycleContext()

.getBindingContext()

.findDataControl(name);
}

}

28.3.2.3 Setting Release Level in an ADF PageController
Example 28–3 shows calling the resetState() method on a data control named
UserModuleDataControl from an overridden prepareRender() method of a custom
ADF page controller class. You would associate this custom class to a particular page
by setting the ControllerClass attribute on the page’s page definition to the
fully-qualified name of this class.

Example 28–3 Calling resetState() on Data Control in a Custom ADF PageController

package devguide.advanced.releasestateless.controller;
import oracle.adf.controller.v2.context.LifecycleContext;
import oracle.adf.controller.v2.lifecycle.PageController;
import oracle.adf.controller.v2.lifecycle.PagePhaseEvent;
import oracle.adf.model.binding.DCDataControl;
public class ReleaseStatelessPageController extends PageController {
/**
* After calling the super in the final prepareRender() phase
* of the ADF Lifecycle, call resetState() on the data control
* to cause it to release to the pool with the "unmanaged"
* release level. In other words, as a stateless application module.
*
* @param lcCtx ADF lifecycle context
*/
public void prepareRender(LifecycleContext lcCtx) {
super.prepareRender(lcCtx);
getDataControl("UserModuleDataControl", lcCtx).resetState();

}
private DCDataControl getDataControl(String name,

LifecycleContext lcCtx) {
return lcCtx.getBindingContext().findDataControl(name);

}
}

28.3.2.4 Setting Release Level in an Custom ADF PageLifecycle
If you wanted to build an ADF application where every request was handled in a
completely stateless way, use a global custom PageLifecycle class as shown in
Example 28–4. See Section 10.5.4.1, "Globally Customizing the ADF Page Lifecycle" for
details on how to configure your application to use your custom lifecycle in a global
way.

Note: You can accomplish basically the same kinds of page-specific
lifecycle customization tasks using a custom PagePhaseListener or
a custom PageController class. The key difference is that the
PagePhaseListener interface can be implemented on any class,
while a custom PageController must extend the PageController
class in the oracle.adf.controller.v2.lifecycle package.

What State Is Saved and When is It Cleaned Up?

28-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 28–4 Calling resetState() on Data Control in a Custom ADF PageLifecycle

package devguide.advanced.releasestateless.controller;
import oracle.adf.controller.faces.lifecycle.FacesPageLifecycle;
import oracle.adf.controller.v2.context.LifecycleContext;
import oracle.adf.model.binding.DCDataControl;
public class ReleaseStatelessPageLifecycle extends FacesPageLifecycle {
/**
* After calling the super in the final prepareRender() phase
* of the ADF Lifecycle, call resetState() on the data control
* to cause it to release to the pool with the "unmanaged"
* release level. In other words, as a stateless application module.
*
* @param lcCtx ADF lifecycle context
*/
public void prepareRender(LifecycleContext lcCtx) {
super.prepareRender(lcCtx);
getDataControl("UserModuleDataControl", lcCtx).resetState();

}
private DCDataControl getDataControl(String name,

LifecycleContext lcCtx) {
return lcCtx.getBindingContext().findDataControl(name);

}
}

28.4 What State Is Saved and When is It Cleaned Up?
The information saved by passivation is divided in two parts: transactional and
non-transactional state. Transactional state is the set of updates made to entity object
data – performed either directly on entity objects or on entities through view object
rows – that are intended to be saved into the database. Non-transactional state
comprises view object runtime settings, such as the current row index, WHERE clause,
and ORDERBY clause.

28.4.1 What State is Saved?
The information saved as part of the application module passivation "snapshot"
includes the following.

Transactional State
■ New, modified, and deleted entities in the entity caches of the root application

module for this user session’s (including old/new values for modified ones).

Non-Transactional State
■ For each active view object (both statically and dynamically created):

■ Current row indicator for each row set (typically one)

■ New rows and their positions (New rows are treated differently then updated
ones. Their index in the VO is traced as well)

■ ViewCriteria and all its related parameters such as view criteria row etc.

■ Flag indicating whether or not a row set has been executed

■ Range start and Range size

■ Access mode

■ Fetch mode and fetch size

■ Any view object-level custom data

What State Is Saved and When is It Cleaned Up?

Application Module State Management 28-13

■ SELECT, FROM, WHERE, and ORDER BY clause if created dynamically or
changed from the View definition

28.4.2 Where is the State Saved?
By default, passivation snapshots are saved in the database, but you can configure it to
use the file system as an alternative.

28.4.2.1 How Database-Backed Passivation Works
The passivated XML snapshot is written to a BLOB column in a table named PS_TXN,
using a connection specified by the jbo.server.internal_connection property.
Each time a passivation record is saved, it is assigned a unique passivation snapshot
ID based on the sequence number taken from the PS_TXN_SEQ sequence. The ADF
session cookie held by the application module data control in the ADF binding context
remembers the latest passivation snapshot ID that was created on its behalf and
remembers the previous ID that was used.

28.4.2.2 Controlling the Schema Where the State Management Table Resides
The ADF runtime recognizes a configuration property named
jbo.server.internal_connection that controls which database
connection/schema should be used for the creation of the PS_TXN table and the PS_
TXN_SEQ sequence. If you don't set the value of this configuration parameter
explicitly, then the state management facility creates the temporary tables using the
credentials of the current application database connection.

To keep the temporary information separate, the state management facility will use a
different connection instance from the database connection pool, but the database
credentials will be the same as the current user. Since the framework creates
temporary tables, and possibly a sequence if they don't already exists, the implication
of not setting a value for the jbo.server.internal_connection is that the
current database user must have CREATE TABLE, CREATE INDEX and CREATE
SEQUENCE privileges. Since this is often not desirable, Oracle recommends always
supplying an appropriate value for the jbo.server.internal_connection
property, providing the credentials for a "state management" schema where table and
schema be created. Valid values for the jbo.server.internal_connection
property in your configuration are:

■ A fully-qualified JDBC connection URL like:

jdbc:oracle:thin:someuser/somepassword@host:port:SID

■ A JDBC datasource name like:

java:/comp/env/jdbc/YourJ2EEDataSourceName

Note: If you enable ADF Business Components runtime diagnostics,
the contents of each XML state snapshot. See Section 5.5.3.2, "Enabling
ADF Business Components Debug Diagnostics" for more information
on how to enable diagnostics.

What State Is Saved and When is It Cleaned Up?

28-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

28.4.2.3 Configuring the Type of Passivation Store
Passivated information can be stored in several places. You can control it
programmatically or by configuring an option in the application module
configuration. The choices are database or a file stored on local file system:

■ File

This choice may be the fastest available as access to the file is faster then access to
the database. This choice is good if the entire middle tier (one or multiple Oracle
Application Server installation(s) and all their OC4J instances) is either installed
on the same machine or have access to a commonly shared file system, so
passivated information is accessible to all. Usually, this choice may be good for a
small middle tier where one Oracle Application Server is used. In other words this
is very suitable choice for small middle tier such as one Oracle Application Server
with all its components installed on one physical machine. The location and name
of the persistent snapshot files are determined by jbo.tmpdir property if
specified. It follows usual rules of ADF property precedence for a configuration
property. If nothing else is specified, then the location is determined by user.dir
if specified. This is a default property and the property is OS specific.

■ Database

This is the default choice. While it may be a little slower than passivating to file, it
is by far the most reliable choice. With passivation to file, the common problem
might be that it is not accessible to Oracle Application Server instances that are
remotely installed. In this case, in a cluster environment, if one node goes down
the other may not be able to access passivated information and then failover will
not work. Another possible problem is that even if file is accessible to the remote
node, the access time for the local and remote node may be very different and
performance will be inconsistent. With database access, time should be about the
same for all nodes.

To set the value of your choice in design time, set the property
jbo.passivationstore to database or file. The value null will indicate that a
connection-type-specific default should be used. This will use database passivation for
Oracle or DB2, and file serialization for any others.

To set the storage programmatically use the method setStoreForPassiveState()
of interface oracle.jbo.ApplicationModule. The parameter values that you can
pass are:

■ PASSIVATE_TO_DATABASE

■ PASSIVATE_TO_FILE

28.4.3 When is the State Cleaned Up?
Under normal circumstances, the ADF state management facility provides automatic
cleanup of the passivation snapshot records.

28.4.3.1 Previous Snapshot Removed When Next One Taken
When a passivation record is saved to the database on behalf of a session cookie, as
described above, this passivation record gets a new, unique snapshot ID. The
passivation record with the previous snapshot ID used by that same session cookie is
deleted as part of the same transaction. In this way, assuming no server failures, there
will only ever be a single passivation snapshot record per active end-user session.

What State Is Saved and When is It Cleaned Up?

Application Module State Management 28-15

28.4.3.2 Passivation Snapshot Removed on Unmanaged Release
The passivation snapshot record related to a session cookie is removed when the
application module is checked into the pool with the unmanaged state level. This can
occur when:

■ Your code specifically calls resetState() on the application module data
control.

■ Your code explicitly invalidates the HttpSession, for example, as part of
implementing an explicit "Logout" functionality.

■ The HttpSession times out due to exceeding the session timeout threshold for
idle time and failover mode is disabled (which is the default).

In each of these cases, the application module pool also resets the application module
referenced by the session cookie to be "unreferenced" again. Since no changes were
ever saved into the underlying database tables, once the pending session state
snapshots are removed, there remains no trace of the unfinished work the user session
had completed up to that point.

28.4.3.3 Passivation Snapshot Retained in Failover Mode
When the failover mode is enabled, if the HttpSession times out due to session
inactivity, then the passivation snapshot is retained so that the end user can continue
their work when they return to their browser.

After a break in the action, when the end user returns to his browser and continues to
use the application, it continues working as if nothing had changed. In failover mode,
the ADF runtime saves an additional browser cookie that the ADF runtime uses to
track the latest passivation snapshot ID for each client running an application in
failover mode. So, even though the users next request will be processed in the context
of a new HttpSession (perhaps even in a different application server instance), the
user is unaware that this has occurred. The additional browser cookie is used to
reactivate any available application module instance with the user's last pending state
snapshot before handling the request.

28.4.4 Approaches for Timing Out the HttpSession
Since HTTP is a stateless protocol, the server receives no implicit notice that a client
has closed his browser or gone away for the weekend. Therefore any J2EE-compliant
server provides a standard, configurable session timeout mechanism to allow
resources tied to the HTTP session to be freed when the user has stopped performing
requests. You can also programmatically force a timeout.

28.4.4.1 Configuring the Implicit Timeout Due to User Inactivity
You configure the session timeout threshold using the <session-timeout> tag in the
web.xml file. The default value is 35 minutes. When the HttpSession times out the
BindingContext goes out of scope, and along with it, any data controls that might
have referenced application modules released to the pool in the managed state level.
The application module pool resets any of these referenced application modules and
marks the instances unreferenced again.

Note: If an application module was released with reserved level then
the HttpSession times out, the user will have to go through
authentication process, and all unsaved changes are lost.

What State Is Saved and When is It Cleaned Up?

28-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

28.4.4.2 Coding an Explicit HttpSession Timeout
To end a user's session before the session timeout expires, you can call the
invalidate() method on the HttpSession object from a backing bean in response
to the user's click on a "Logout" button or link. This cleans up the HttpSession in the
same way as if the session time had expired. Using JSF and ADF, after invalidating the
session, you must perform a redirect to the next page you want to display, rather than
just doing a forward. Example 28–5 shows the code used by the SRLogout.java
backing bean in the SRDemo application to perform this task.

Example 28–5 Programatically termin

// In SRLogout.java, backing bean for the logout.jspx page
public String logoutButton_action() throws IOException{
ExternalContext ectx = FacesContext.getCurrentInstance().getExternalContext();
HttpServletResponse response = (HttpServletResponse)ectx.getResponse();
HttpSession session = (HttpSession)ectx.getSession(false);
session.invalidate();
response.sendRedirect("SRWelcome.jspx");
return null;

}

As with the implicit timeouts, when the HTTP session is cleaned up this way, it ends
up causing any referenced application modules to be marked unreferenced.

28.4.5 Cleaning Up Temporary Storage Tables
JDeveloper supplies the bc4jcleanup.sql script in the ./BC4J/bin directory to
help with periodically cleaning up the state management table. Persistent snapshot
records can accumulate over time if the server has been shutdown in an abnormal
way, such as might occur during development or due to a server failure. Running the
script in SQL*Plus will create the BC4J_CLEANUP PL/SQL package. The two relevant
procedures in this package are:

■ PROCEDURE Session_State(olderThan DATE)

This procedure cleans-up application module session state storage for sessions
older than a given date.

■ PROCEDURE Session_State(olderThan_minutes INTEGER)

This procedures cleans-up application module session state storage for sessions
older than a given number of minutes.

You can schedule periodic cleanup of your ADF temporary persistence storage by
submitting an invocation of the appropriate procedure in this package as a database
job.

You can use an anonymous PL/SQL block like the one shown in Example 28–6 to
schedule the execution of bc4j_cleanup.session_state() to run starting
tomorrow at 2:00am and each day thereafter to cleanup sessions whose state is over 1
day (1440 minutes) old.

Managing Custom User Specific Information

Application Module State Management 28-17

Example 28–6 Scheduling Periodic Cleanup of the State Management Table

SET SERVEROUTPUT ON
DECLARE
jobId BINARY_INTEGER;
firstRun DATE;

BEGIN
-- Start the job tomorrow at 2am
firstRun := TO_DATE(TO_CHAR(SYSDATE+1,'DD-MON-YYYY')||' 02:00',

'DD-MON-YYYY HH24:MI');
-- Submit the job, indicating it should repeat once a day
dbms_job.submit(job => jobId,

-- Run the BC4J Cleanup for Session State
-- to cleanup sessions older than 1 day (1440 minutes)
what => 'bc4j_cleanup.session_state(1440);',
next_date => firstRun,
-- When completed, automatically reschedule
-- for 1 day later
interval => 'SYSDATE + 1'
);

dbms_output.put_line('Successfully submitted job. Job Id is '||jobId);
END;
.
/

28.5 Managing Custom User Specific Information
It is fairly common practice to add custom user-defined information in the application
module in the form of member variables or some custom information stored in
oracle.jbo.Session user data hashtable. The ADF state management facility
provides a mechanism to save this custom information to the passivation snapshot as
well. By overriding the following two methods on the ApplicationModuleImpl
class, you can write out and read back your custom information:

protected void passivateState(Document doc, Element parent)
public void activateState(Element elem)

Consider the following simple example that shows how to override this pair of
methods to ensure custom application module state is included in the
passivation/activation cycle. Assume that you would like to keep some custom
parameter in your application module called jbo.counter whose value you want to
preserve across passivation and activation of the application module state. Each
application module has an oracle.jbo.Session object associated with it that stores
application module-specific session-level state. The session contains a "user data"
hashtable where you can store transient information. For the user-specific data to
"survive" across application module passivation and reactivation, you need to write
code to save and restore this custom value into the application module state
passivation snapshot. Example 28–7 shows the code you can write in your pair of
overridden passivateState() and activateState() methods in a custom
application module class to do the job.

Managing Custom User Specific Information

28-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The overridden passivateState() method performs the following steps:

1. Retrieve the value of the value to save.

2. Create an XML element to contain the value.

3. Create an XML text node to represent the value.

4. Append the text node as a child of the element.

5. Append the element to the parent element passed in.

The overridden activateState() method performs the reverse job by doing the
following:

1. Search the element for any <jbo.counter> elements.

2. If any are found, loop over the nodes found in the node list.

3. Get first child node of the <jbo.counter> element.

It should be a DOM Text node whose value is the string you saved when your
passivateState() method above got called, representing the value of the
jbo.counter attribute.

4. Set the counter value to the activated value from the snapshot.

Example 28–7 Passivating and Activating Custom Information in the State Snapshot
XML Document

/**
* Overridden framework method to passivate custom XML elements
* into the pending state snapshot document
*/
public void passivateState(Document doc, Element parent) {
// 1. Retrieve the value of the value to save
int counterValue = getCounterValue();
// 2. Create an XML element to contain the value
Node node = doc.createElement(COUNTER);
// 3. Create an XML text node to represent the value
Node cNode = doc.createTextNode(Integer.toString(counterValue));
// 4. Append the text node as a child of the element
node.appendChild(cNode);
// 5. Append the element to the parent element passed in
parent.appendChild(node);

}
/**
* Overridden framework method to activate custom XML elements
* into the pending state snapshot document
*/
public void activateState(Element elem) {
super.activateState(elem);
if (elem != null) {
// 1. Search the element for any <jbo.counter> elements
NodeList nl = elem.getElementsByTagName(COUNTER);
if (nl != null) {

Note: The API's used to manipulate nodes in an XML document are
provided by the Document Object Model (DOM) interfaces in the
org.w3c.dom package. These are part of the Java API for XML
Processing (JAXP). See the JavaDoc for the Node, Element, Text,
Document, and NodeList interfaces in this package for more details.

Managing State for Transient View Objects

Application Module State Management 28-19

// 2. If any found, loop over the nodes found
for (int i=0, length = nl.getLength(); i < length; i++) {
// 3. Get first child node of the <jbo.counter> element
Node child = nl.item(i).getFirstChild();
if (child != null) {
// 4. Set the counter value to the activated value
setCounterValue(new Integer(child.getNodeValue()).intValue()+1);
break;

}
}

}
}

}
/*
* Helper Methods
*/
private int getCounterValue() {
String counterValue = (String)getSession().getUserData().get(COUNTER);
return counterValue == null ? 0 : Integer.parseInt(counterValue);

}
private void setCounterValue(int i) {
getSession().getUserData().put(COUNTER,Integer.toString(i));

}
private static final String COUNTER = "jbo.counter";

28.6 Managing State for Transient View Objects
Each view object can be declaratively configured to be passivation-enabled or not by
using the Passivate State checkbox on the Tuning page of the View Object Editor. If a
view object is not passivation enabled, then no information about it gets written in the
application module passivation snapshot.

For passivation/activation purposes, both transient and SQL-calculated view object
attributes are treated in the same way.

Transient view object attributes are not passivated by default. Due to their nature, they
are usually intended to be "read only" and are very easily recreateable. So, it often
doesn’t make sense to passivate their values as part of the XML snapshot. However,
by checking the Passivate checkbox on the Attribute page of the View Object Editor
for any transient attribute, you can declaratively configure it to be
passivation-enabled.

By default, all view objects are marked as passivation-enabled, and all transient
attributes are not. That means that a transient view object — one that contains only
transient attributes — is marked to be passivation enabled, but only passivates its
information related to the current row and other non-transactional state.

It is worth noting that passivating transient view object attributes is more costly
resource-wise and performance- wise, because transactional functionality is usually
managed on the entity object level. Since transient view objects are not based on an
entity object, this means that all updates are managed in the view object row cache and
not in entity cache. Therefore, passivating transient view objects or transient view
object attributes requires special runtime handling.

Note: Similar methods are available on the ViewObjectImpl class
and the EntityObjectImpl class to save custom state for those
objects to the passivation snapshot as well.

Using State Management for Middle-Tier Savepoints

28-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Usually passivation only saves the values that have been changed, but with transient
view objects passivation has to save entire row. The row will only include the view
object attributes marked for passivation).

28.7 Using State Management for Middle-Tier Savepoints
In the database server you are likely familiar with the savepoint feature that allows a
developer to rollback to a certain point within a transaction instead of rolling back the
entire transaction. An application module offers the same feature but implemented in
the middle tier. There are three methods in oracle.jbo.ApplicationModule
interface that allow you to take advantage of this feature. The methods are:

public String passivateStateForUndo(String id,byte[] clientData,int flags)
public byte[] activateStateForUndo(String id,int flags)
public boolean isValidIdForUndo(String id)

You can use these methods to create a stack of named snapshots and restore the
pending transaction state from them by name. Keep in mind that those snapshots do
not survive past duration of transaction (i.e. events of commit or rollback). This feature
could be used to develop complex capabilities of the application, such as the ability to
undo and redo changes. Another ambitious goal that could exploit this functionality
would be functionality to make the browser back and forward buttons behave in an
application-specific way. Otherwise, simple uses of these methods can come quite in
handy.

28.8 Testing to Ensure Your Application Module is Activation-Safe
If you have not explicitly tested that your application module functions when its
pending state gets activated from a passivation snapshot, then you may encounter an
unpleasant surprise in your production environment when heavy system load "tests"
this aspect of your system for the first time.

28.8.1 Understanding the jbo.ampool.doampooling Configuration Parameter
The jbo.ampool.doampooling configuration property corresponds to the Enable
Application Module Pooling option in the Pooling and Scalability tab of the
Configuration Editor. By default, this checkbox is checked so that application module
pooling is enabled. Nearly always this default setting of jbo.ampool.doampooling
to true is the way you will run your applications in production. However, setting the
property to false should play an important role in your testing. When this property
is false, there is effectively no application pool. When the application module instance
is released at the end of a request it is immediately removed. On subsequent requests
made by the same user session, a new application module instance must be created to
handle it and the pending state of the application module must be reactivated from the
passivation store.

28.8.2 Disabling Application Module Pooling to Test Activation
Oracle recommends, as part of your overall testing plan, that you adopt the practice of
testing your application modules with the jbo.ampool.doampooling configuration
parameter set to false. This setting completely disables application module pooling
and forces the system to activate your application module’s pending state from a
passivation snapshot on each page request. It is an excellent way to detect problems
that might occur in your production environment due to assumptions made in your
custom application code.

Caveats Regarding Pending Database State

Application Module State Management 28-21

For example, if you have transient view object attributes you believe should be getting
passivated, this technique allows you to test that they are working as you expect. In
addition, consider situations where you might have introduced:

■ Private member fields in application modules, view objects, or entity objects

■ Custom user session state in the Session user data hashtable

Your custom code likely assumes that this custom state will be maintained across
HTTP requests. As long as you test with a single user on the JDeveloper embedded
OC4J server, or test with a small number of users, things will appear to work fine. This
is due to the "stateless with affinity" optimization of the ADF application module pool.
If system load allows, the pool will continue to return the same application module
instance to a user on subsequent requests. However, under heavier load, during
real-world use, it may not be able to achieve this optimization and will need to resort
to grabbing any available application module instance and reactivating its pending
state from a passivation snapshot. If you have not correctly overridden
passivateState() and activateState() (as described in Section 28.5,
"Managing Custom User Specific Information") to save and reload your custom
component state to the passivation snapshot, then your custom state will be missing
(i.e. null or back to your default values) after this reactivation step. Testing with
jbo.ampool.doampooling set to false allows you to quickly isolate these kinds of
situations in your code.

28.9 Caveats Regarding Pending Database State
As you have seen, the ADF state management mechanism relies on passivation and
activation to manage the state of an application module instance. Implementing this
feature in a robust way is only possible if all pending changes are managed by the
application module transaction in the middle tier. The most scalable strategy is to keep
pending changes in middle-tier objects and not perform operations that cause pending
database state to exist across HTTP requests. This allows the highest leverage of the
performance optimizations offered by the application module pool and the most
robust runtime behavior for your application.

28.9.1 Web Applications Should Use Optimistic Locking
Oracle recommends using optimistic locking for web applications. Pessimistic locking,
which is the default, should not be used for web applications as it creates pending
transactional state in the database in the form of row-level locks. If pessimistic locking
is set, state management will work, but the locking mode will not perform as expected.
Behind the scenes, every time an application module is recycled, a rollback is issued in
the JDBC connection. This would release all the locks that pessimistic locking had
created.

To change your configuration to use optimistic locking, open the Properties tab of the
Configuration Editor and set the value of the jbo.locking.mode to optimistic.

28.9.2 Use PostChanges Only During the Current Request
As you saw in Section 9.2.2, "Understanding Commit Processing and Validation",
using the postChanges() method needs to be done with careful consideration, if at
all. Nowhere is this more true than when considering state management, application
pooling, and database connection pooling. The postChanges() method should only
be used as part of the commit processing lifecycle so that any pending database state it
creates is committed or rolled back during the same request.

Caveats Regarding Pending Database State

28-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

28.9.3 Pending Database State Across Requests Requires Reserved Level
If for some reason you need to create a transactional state in the database in some
request by invoking postChanges() method or by calling PL/SQL stored procedure,
but you cannot issue a commit or rollback by the end of that same request, then you
must release the application module instance with the reserved level from that request
until a subsequent request when you either commit or rollback. Oracle recommends
that this be as short a period of time as possible between creation of transactional state
in the database performing the concluding commit or rollback, so that reserved level
doesn’t have to be used for long time. This is due to the fact that the reserved level has
adverse effects on application’s scalability and reliability.

Once an application module has been released with reserved level, it remains at that
release level for all subsequent requests until release level is explicitly changed back to
managed or unmanaged level. So, it is your responsibility to set release level back to
managed level once commit or rollback has been issued.

28.9.4 Connection Pooling Prevents Pending Database State
When you check the Disconnect Application Module Upon Release property on the
Pooling and Scalability tab of the Configuration Editor, this translates to setting the
jbo.doconnectionpooling configuration parameter to true.

With this connection pooling option enabled — typically in order to share a common
pool of database connections across multiple application module pools — upon
releasing your application module to the application module pool, its JDBC connection
is released back to the database connection pool and a ROLLBACK will be issued on
that connection. This implies that all changes which were posted but not commited will
be lost. On the next request, when the application module is used, it will receive a
JDBC connection from the pool, which may be a different JDBC connection instance
from the one it used previously. Those changes that were posted to the database but
not commited during the previous request are no longer there.

Understanding Application Module Pooling 29-1

29
Understanding Application Module Pooling

This chapter describes how ADF Business Components application module pools
work and how you can tune the pools to optimize application performance.

This chapter includes the following sections:

■ Section 29.1, "Overview of Application Module Pooling"

■ Section 29.2, "Lifecycle of a Web Page Request Using Oracle ADF and JSF"

■ Section 29.3, "Understanding Configuration Property Scopes"

■ Section 29.4, "Setting Pool Configuration Parameters"

■ Section 29.5, "How Many Pools are Created, and When?"

■ Section 29.6, "Application Module Pool Parameters"

■ Section 29.7, "Database Connection Pool Parameters"

■ Section 29.8, "How Database and Application Module Pools Cooperate"

■ Section 29.9, "Database User State and Pooling Considerations"

29.1 Overview of Application Module Pooling
An application module pool is a collection application module instances of the same
type. For example, the SRDemo application has one or more instances of the SRService
application module in it, based on the number of users that are visiting the site. This
pool of application module instances is shared by multiple browser clients whose
typical "think time" between submitting web pages allows optimizing the number of
application module components to be effectively smaller than the total number of
active users working on the system. That is, twenty users visiting the web site from
their browser might be able to be serviced by 5 or 10 application module instances
instead of having as many application module instances as you have browser users.

Application module components can be used to support web application scenarios
that are completely stateless, or they can be used to support a unit of work that spans
multiple browser pages. As a performance optimization, when an instance of an
application module is returned to the pool in "managed state" mode, the pool keeps
track that the application module is referenced by that particular session. The
application module instance is still in the pool and available for use, but it would prefer
to be used by the same session that was using it last time because maintaining this
so-called "session affinity" improves performance.

Lifecycle of a Web Page Request Using Oracle ADF and JSF

29-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

So, at any one moment in time, the instances of application modules in the pool are
logically partitioned into three groups, reflecting their state:

■ Unconditionally available for use

■ Available for use, but referenced for session affinity reuse by an active user session

■ Unavailable, inasmuch as it's currently in use (at that very moment) by some thread
in the web container.

Section 29.3, "Understanding Configuration Property Scopes" describes the application
module pool configuration parameters and how they affect the behavior of the pool.

29.2 Lifecycle of a Web Page Request Using Oracle ADF and JSF
Figure 29–1 shows a sequence diagram of the lifecycle of a web page request using JSF
and Oracle ADF in tandem.

Figure 29–1 Lifecycle of a Web Page Request Using JSF and Oracle ADF

As shown in the figure, the basic flow of processing happens as follows:

1. A web request for http://yourserver/yourapp/faces/some.jsp arrives
from the client to the application server

2. The ADFBindingFilter finds the ADF binding context in the HTTP session, and
if not yet present, initializes it for the first time.

During binding context initialization, the ADFBindingFilter:

■ Consults the servlet context initialization parameter named CpxFileName
and appends the *.cpx file extension to its value to determine the name of the
binding context metadata file. By default the parameter value will be
"DataBindings", so it will look for a file named DataBindings.cpx.

■ Reads the binding context metadata file to discover the data control
definitions, the page definition file names used to instantiate binding
containers at runtime, and the page map that relates a JSP page to its page
definition file.

Lifecycle of a Web Page Request Using Oracle ADF and JSF

Understanding Application Module Pooling 29-3

■ Constructs an instance of each Data Control, and a reference to each
BindingContainer. The contents of each binding container are loaded lazily the
first time they are used by a page.

3. The ADFBindingFilter invokes the beginRequest() method on each data
control participating in the request. This gives every data control a notification at
the start of every request where they can perform any necessary setup.

4. An application module data control uses the beginRequest notification to
acquire an instance of the application module from the application module pool.

5. The JSF Lifecycle class, which is responsible for orchestrating the standard
processing phases of each request, notifies the ADFPhaseListener class during
each phase of the lifecycle so that it can perform custom processing to coordinate
the JSF lifecycle with the Oracle ADF Model data binding layer.

6. The ADFPhaseListener creates an ADF PageLifecycle object to handle each
request and delegates appropriate before/after phase methods to corresponding
methods in the ADF PageLifecycle class as shown in Figure 29–2. If the
appropriate binding container for the page has never been used before during the
user's session, it is created.

Figure 29–2 How JSF Page Lifecycle and ADF Page Lifecycle Phases Relate

7. The JSF Lifecycle forwards control to the page to be rendered.

8. The UI components on the page access value bindings and iterator bindings in the
page's binding container and render the formatted output to appear in the
browser.

9. The ADFBindingFilter invokes the endRequest() method on each data
control participating in the request. This gives every data control a notification at
the end of every request where they can perform any necessary resource cleanup.

10. An application module data control uses the endRequest notification to release
the instance of the application module back to the application module pool.

Note: The FacesServlet (in javax.faces.webapp) is
configured in the web.xml file of a JSF application and is responsible
for initially creating the JSF Lifecycle class (in
javax.faces.lifecycle) to handle each request. However, since
it is the Lifecycle class that does all the interesting work, the
FacesServlet is not shown in the diagram.

Understanding Configuration Property Scopes

29-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

11. The user sees the resulting page in the browser.

29.3 Understanding Configuration Property Scopes
Each runtime configuration property used by ADF Business Components has a scope.
The scope of each property indicates at what level the property's value is evaluated
and whether its value is effectively shared (i.e. static) in a single Java VM, or not. The
ADF Business Components PropertyManager class is the registry of all supported
properties. It defines the property names, their default values, and their scope. This
class contains a main() method so that you can run the class from the command line
to see a list of all the configuration property information.

Assuming JDEVHOME is the JDeveloper 10g installation directory, to see this list of
settings for reference, do the following:

$ java -cp JDEVHOME/BC4J/lib/bc4jmt.jar oracle.jbo.common.PropertyManager

Issuing this comman will send all of the ADF Business Components configuration
properties to the console. It also lists a handy reference about the different levels at
which you can set configuration property values and remind you of the precedence
order these levels have:

Properties loaded from following sources, in order:
1. Client environment [Provided programmatically

or declaratively in bc4j.xcfg]
2. Applet tags
3. -D flags (appear in System.properties)
4. bc4j.properties file (in current directory)
5. /oracle/jbo/BC4J.properties resource
6. /oracle/jbo/commom.jboserver.properties resource
7. /oracle/jbo/common.Diagnostic.properties resource
8. System defined default

You'll see each property is listed with one of the following scopes:

■ MetaObjectManager

Properties at this scope are initialized once per Java VM when the ADF
PropertyManager is first initialized.

■ SessionImpl

Properties at this scope are initialized once per invocation of
ApplicationModule.prepareSession().

■ Configuration

Properties at this scope are initialized when the ApplicationModule pool is first
created and the application module's configuration is read the first time.

■ Diagnostic

Properties at this scope are specific to the built-in ADF Business Components
diagnostic facility.

At each of these scopes, the layered value resolution described above is performed
when the properties are initialized. Whenever property values are initialized, if you
have specified them in the Client Environment (level 1 in the resolution order) the
values will take precedence over values specified as System parameters (level 3 in the
resolution order).

Setting Pool Configuration Parameters

Understanding Application Module Pooling 29-5

The Client Environment is a hashtable of name/value pairs that you can either
programatically populate, or which will be automatically populated for you by the
Configuration object when loaded, with the name/value pairs it contains in its
entry in the bc4j.xcfg file. The implication of this is that for any properties scoped
at MetaObjectManager level, the most reliable way to ensure that all of your
application modules use the same default value for those properties is to do both of
the following:

1. Make sure the property value does not appear in any of your application module's
bc4j.xcfg file configuration name/value pair entries.

2. Set the property value using a Java system property in your runtime environment.

If, instead, you leave any MetaObjectManager-scoped properties in your bc4j.xcfg
files, you will have the undesirable behavior that they will take on the value specified
in the configuration of the first application module whose pool gets created after the
Java VM starts up.

29.4 Setting Pool Configuration Parameters
You control the runtime behavior of an application module pool by setting
appropriate configuration parameters. You can set these declaratively in an
application module configuration, supply them as Java System parameters, or set them
programmatically at runtime.

29.4.1 Setting Configuration Properties Declaratively
The Pooling and Scalability tab of the Configuration Editor shown in Figure 29–3 is
used for seeing and setting parameters.

Figure 29–3 Pooling and Scalability Tab of the Configuration Manager

Setting Pool Configuration Parameters

29-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The values that you supply through the Configuration Manager are saved in an XML
file named bc4j.xcfg in the ./common subdirectory relative to the application
module's XML component definition. All of the configurations for all of the
application modules in a single Java package are saved in that same file.

For example, if you look at the bc4j.xcfg file in the
./oracle/srdemo/model/common directory of the SRDemo application's
DataModel project, you will see the two named configurations for its SRService
application module, as shown in Example 29–1. The SRServiceLocalTesting
configuration uses JDBC URL connections for use by the SRDemo application’s JUnit
tests and by the Business Components Browser. The SRServiceLocal uses JDBC
Datasource names and is used by the web application.

Example 29–1 Configuration Settings for the SRService Application Module

<BC4JConfig>
<AppModuleConfigBag>

<AppModuleConfig name="SRServiceLocal">
<DeployPlatform>LOCAL</DeployPlatform>
<JDBCDataSource>java:comp/env/jdbc/SRDemoDS</JDBCDataSource>
<jbo.project>DataModel</jbo.project>
<jbo.locking.mode>optimistic</jbo.locking.mode>
<AppModuleJndiName>oracle.srdemo.model.SRService</AppModuleJndiName>
<jbo.security.enforce>Must</jbo.security.enforce>
<ApplicationName>oracle.srdemo.model.SRService</ApplicationName>
<jbo.server.internal_connection
>java:comp/env/jdbc/SRDemoCoreDS</jbo.server.internal_connection>

</AppModuleConfig>
<AppModuleConfig name="SRServiceLocalTesting">

<DeployPlatform>LOCAL</DeployPlatform>
<JDBCName>SRDemo</JDBCName>
<jbo.project>DataModel</jbo.project>
<AppModuleJndiName>oracle.srdemo.model.SRService</AppModuleJndiName>
<jbo.locking.mode>optimistic</jbo.locking.mode>
<jbo.security.enforce>Must</jbo.security.enforce>
<ApplicationName>oracle.srdemo.model.SRService</ApplicationName>

</AppModuleConfig>
</AppModuleConfigBag>
<ConnectionDefinition name="SRDemo">

<ENTRY name="JDBC_PORT" value="1521"/>
<ENTRY name="ConnectionType" value="JDBC"/>
<ENTRY name="HOSTNAME" value="localhost"/>
<ENTRY name="DeployPassword" value="true"/>
<ENTRY name="user" value="srdemo"/>
<ENTRY name="ConnectionName" value="SRDemo"/>
<ENTRY name="SID" value="XE"/>
<ENTRY name="password">

<![CDATA[{904}05708016F4BB90FC04CFE36B6C9D2BDFE5]]>
</ENTRY>
<ENTRY name="JdbcDriver" value="oracle.jdbc.OracleDriver"/>
<ENTRY name="ORACLE_JDBC_TYPE" value="thin"/>
<ENTRY name="DeployPassword" value="true"/>

</ConnectionDefinition>
</BC4JConfig>

Note that child elements of the <AppModuleConfig> tag appear with tag names
matching their property values. It's also important to understand that if a property is
currently set to its runtime default value, then the Configuration Manager does not
write the entry to the bc4j.xcfg file.

Setting Pool Configuration Parameters

Understanding Application Module Pooling 29-7

29.4.2 Setting Configuration Properties as System Parameters
As an alternative to specifying configuration properties in the bc4j.xcfg file, you
can also set Java VM system parameters with the same property names. These system
parameters will be used only if a corresponding property does not exist in the relevant
bc4j.xcfg file for the application module in question. In other words, configuration
parameters that appear in the application module configuration take precedence over
parameters of the same name supplied as Java system parameters.

You typically set Java system parameters using the -D command line flag to the Java
VM like this:

java -Dproperty=value -jar yourserver.jar

Alternatively, your J2EE container probably has a section in its own configuration files
where Java system parameters can be specified for use at J2EE container startup time.

Many customers adopt the best practice technique of supplying site-specific default
values for ADF configuration parameters as Java system parameters and then make
sure that their bc4j.xcfg files do not include references to these parameters unless
an application-module-specific exception to these global default values is required.

Using OC4J you can specify these parameters either as -D Java system parameters on
the command line that starts OC4J, or provide them — one per line — in the
oc4j.properties file and add the -properties oc4j.properties command
line flag to OC4J at startup.

29.4.3 Programmatically Setting Configuration Properties
You can set configuration properties programmatically by creating a Java class that
implements the EnvInfoProvider interface in the oracle.jbo.common.ampool
package. In your class, you override the getInfo() method and call put() to put
values into the environment Hashtable passed in as shown in Example 29–2

Caution: The values of Idle Instance Timeout, Pool Polling Interval
settings for both the Application Pool and the database Connection
Pool are displayed and edited in this dialog as a number of seconds,
but are saved to the configuration file in milliseconds. If you provide a
value for any of these four parameters as a Java System parameter —
or if you hand-edit the bc4j.xcfg file — make sure to provide these
time interval values in milliseconds!

Setting Pool Configuration Parameters

29-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 29–2 Setting Environment Properties with a Custom EnvInfoProvider

package devguide.advanced.customenv.view;
import java.util.Hashtable;
import oracle.jbo.common.ampool.EnvInfoProvider;
/**
* Custom EnvInfoProvider implementation to set
* environment properties programmatically
*/
public class CustomEnvInfoProvider implements EnvInfoProvider {
/**
* Overridden framework method to set custom values in the
* environment hashtable.
*
* @param string - ignore
* @param environment Hashtable of config parameters
* @return null - not used
*/
public Object getInfo(String string, Object environment) {
Hashtable envHashtable = (Hashtable)environment;
envHashtable.put("some.property.name","some value");
return null;

}
/* Required to implement EnvInfoProvider */
public void modifyInitialContext(Object object) {}
/* Required to implement EnvInfoProvider */
public int getNumOfRetries() {return 0;}

}

When creating an application module for a stateless or command-line-client, with the
createRootApplicationModule() method of the Configuration class, you can
pass the custom EnvInfoProvider as the optional second argument. In order to use a
custom EnvInfoProvider in an ADF web-based application, you need to implement a
custom session cookie factory class as shown in Example 29–3. To use your custom
session cookie factory, set the jbo.ampool.sessioncookiefactoryclass
configuration property to the fully-qualified name of your custom session cookie
factory class.

How Many Pools are Created, and When?

Understanding Application Module Pooling 29-9

Example 29–3 Custom SessionCookieFactory to Install a Custom EnvInfoProvider

package devguide.advanced.customenv.view;
import java.util.Properties;
import oracle.jbo.common.ampool.ApplicationPool;
import oracle.jbo.common.ampool.EnvInfoProvider;
import oracle.jbo.common.ampool.SessionCookie;
import oracle.jbo.http.HttpSessionCookieFactory;
/**
* Example of custom http session cookie factory
* to install a custom EnvInfoProvider implementation
* for an ADF web-based application.
*/
public class CustomHttpSessionCookieFactory

extends HttpSessionCookieFactory {
public SessionCookie createSessionCookie(String appId,

String sessionId,
ApplicationPool pool,
Properties props) {

SessionCookie cookie =
super.createSessionCookie(appId, sessionId,pool, props);

EnvInfoProvider envInfoProv = new CustomEnvInfoProvider();
cookie.setEnvInfoProvider(envInfoProv);
return cookie;

}
}

29.5 How Many Pools are Created, and When?
There are two kinds of pools in use when running a typical ADF web application,
Application Module pools and database connection pools. It's important to
understand how many of each kind of pool your application will create.

29.5.1 Application Module Pools
Application Module components can be used at runtime in two ways:

■ As an application module the client accesses directly

■ As a reusable component aggregated (or "nested") inside of another application
module instance

When a client accesses it directly, an application module is called a root application
module. Clients access nested application modules indirectly as a part of their
containing application module instance. It's possible, but not common, to use the same
application module at runtime in both ways. The important point is that ADF only
creates an application module pool for a root application module.

The basic rule is that one application module pool is created for each root application
module used by an ADF web application in each Java VM where a root application
module of that type is used by the ADF controller layer.

29.5.2 Database Connection Pools
ADF web applications always use a database connection pool, but which one they use
for your application modules depends on how they define their connection:

■ JDBC URL (e.g. jdbc:oracle:thin:@penguin:1521:ORCL)

■ JNDI Name for a Datasource (e.g. java:comp/env/jdbc/YourConnectionDS)

How Many Pools are Created, and When?

29-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

If you supply a JDBC URL connection while configuring your application module —
which happens when you select a JDeveloper named connection which encapsulates
the JDBC URL and username information — then the ADF database connection pool
will be used for managing the connection pool.

If you supply the JNDI name of a JDBC Datasource then the ADF database connection
pool will not be used and the configuration parameters described below relating to the
ADF database connection pool are not relevant.

When using ADF database connection pooling, you have the following basic rule: One
database connection pool is created for each unique <JDBCURL,Username> pair, in
each Java VM where a <JDBCURL,Username> connection is requested by a root
application used by the ADF controller layer.

29.5.3 Understanding Application Module and Connection Pools
Section 29.5.3.1, "Single Oracle Application Server Instance, Single OC4J Container,
Single JVM" and Section 29.5.3.2, "Multiple Oracle Application Server Instances, Single
OC4J Container, Multiple JVMs" illustrate how application module pools and
connection pools are created in different scenarios. Both of these sections make the
following assumptions:

■ Your web application makes use of two application modules HRModule and
PayablesModule.

■ You have a CommonLOVModule containing a set of commonly used view objects
to support list-of-values in your application, and that both HRModule and
PayablesModule aggregate a nested instance of CommonLOVModule to access
the common LOV view objects it contains.

■ You have configured both HRModule and PayablesModule to use the same
JDeveloper connection definition named appuser.

■ In both HRModule and PayablesModule you have configured
jbo.passivationstore=database (the default) and configured the ADF
"internal connection" (jbo.server.internal_connection) used for state
management persistence to have the value of a fully-qualified JDBC URL that
points to a different username than the appuser connection does.

Consider how many pools of which kinds are created for this application in both a
single JVM and multiple JVM runtime scenario.

29.5.3.1 Single Oracle Application Server Instance, Single OC4J Container, Single
JVM
If you deploy this application to a single Oracle Application Server instance,
configured with a single OC4J container having a single Java VM, there is only a single
Java VM available to service the web requests coming from your application users.

Note: To configure the database connection pool for JDBC
Datasources looked-up by JNDI from your J2EE Web and/or EJB
container, consult the documentation for your J2EE container to
understand the pooling configuration options and how to set them.

How Many Pools are Created, and When?

Understanding Application Module Pooling 29-11

Assuming that all the users are making use of web pages that access both the
HRModule and the PayablesModule, this will give:

■ One application module pool for the HRModule root application module

■ One application module pool for the PayablesModule root application module

■ One DB connection pool for the appuser connection

■ One DB connection pool for the JDBC URL supplied for the internal connection for
state management.

This gives a total of two application module pools and two database pools in this
single Java VM.

29.5.3.2 Multiple Oracle Application Server Instances, Single OC4J Container,
Multiple JVMs
Next consider a deployment environment involving multiple Java VMs. Assume that
you have installed Oracle Application Server 10g (version 9.0.4) onto two different
physical machines, with a hardware load-balancer in front of it. On each of these two
machines, imagine that the Oracle Application Server instance is configured to have
one OC4J container with two JVMs. As users of your application access the
application, their requests are shared across these two Oracle Application Server
instances, and within each Oracle Application Server instance, across the two JVMs
that its OC4J container has available.

Again assuming that all the users are making use of web pages that access both the
HRModule and the PayablesModule, this will give:

■ Four application module pools for HRModule, one in each of four JVMs.

(1 HRModule root application module) x (2 Oracle Application Server Instances) x
(2 OC4J JVMs each)

■ Four application module pools for PayablesModule, one in each of four JVMs.

(1 PayablesModule root application module) x (2 Oracle Application Server
Instances) x (2 OC4J JVMs each)

■ Four DB connection pools for appuser, one in each of four JVMs.

(1 appuser DB connection pool) x (2 Oracle Application Server Instances) x (2
OC4J JVMs each)

■ Four DB connection pools for the internal connection JDBC URL, one in each of
four JVMs.

(1 internal connection JDBC URL DB connection pool) x (2 Oracle Application
Server Instances) x (2 OC4J JVMs each)

This gives a total of eight application module pools and eight DB connection pools
spread across four JVMs.

As you begin to explore the configuration parameters for the application module pools
in Section 29.6, "Application Module Pool Parameters", keep in mind that the
parameters apply to a given application module pool for a given application module
in a single JVM.

Note: There is no separate application module pool for the nested
instances of the reusable CommonLOVModule. Instances of
CommonLOVModule are wrapped by instances of HRModule and
PayablesModule in their respective application module pools.

Application Module Pool Parameters

29-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

As the load balancing spreads user request across the multiple JVMs where ADF is
running, each individual application module pool in each JVM will have to support
one N th of the user load — where N is number of JVMs available to service those user
requests. The appropriate values of the application module and DB connection pools
need to be set with the number of Java VMs in mind.

29.6 Application Module Pool Parameters
The application module pool configuration parameters fall into three logical categories
relating to pool behavior, pool sizing, and pool cleanup behavior.

29.6.1 Pool Behavior Parameters
Table 29–2 lists the application module configuration parameters that affect the
behavior of the application module pool.

Table 29–1 Application Module Pool Behavior Configuration Parameters

Pool Configuration Parameter Description

Failover Transaction State Upon Managed
Release

(jbo.dofailover)

Enables eager passivation of pending
transaction state each time an application
module is released to the pool in "Managed
State" mode. See Section 28.2.3, "How
Passivation Changes When Optional Failover
Mode is Enabled" for more information.

This feature is disabled by default (false)

Disconnect Application Module Upon Release

(jbo.doconnectionpooling)

Forces the application module pool to release
the JDBC connection used each time the
application module is released to the pool. See
Section 29.8, "How Database and Application
Module Pools Cooperate" for more
information.

This feature is disabled by default (false).

Support Dynamic JDBC Credentials

(jbo.ampool.dynamicjdbccredentials)

Enables additional pooling lifecycle events to
allow developer-written code to change the
database credentials (username/password)
each time a new user session begins to use the
application module.

This feature is enabled by default (true),
however this setting is a necessary but not
sufficient condition to implement the feature.
The complete implementation requires
additional developer-written code.

Reset Non-Transactional State Upon
Unmanaged Release

(jbo.ampool.resetnontransactionals
tate))

Forces the application module to reset any
non-transactional state like view object
runtime settings, JDBC prepared statements,
bind variable values, etc. when the application
module is released to the pool in unmanaged
or "stateless" mode.

This feature is enabled by default (true).
Disabling this feature can improve
performance, however since it does not clear
bind variable values, your application needs
to ensure that it systemically sets bind variable
values correctly. Failure to do so with this
feature disabled can mean one user might see
data with another users bind variable values.)

Application Module Pool Parameters

Understanding Application Module Pooling 29-13

29.6.2 Pool Sizing Parameters
Table 29–2 lists the application module configuration parameters that affect the sizing
of the application module pool.

29.6.3 Pool Cleanup Parameters
A single "application module pool monitor" per Java VM runs in a background thread
and wakes up every so often to do resource reclamation. Table 29–3 lists the
parameters that affect how resources are reclaimed when the pool monitor does one of
its resource cleanup passes.

Enable Application Module Pooling

(jbo.ampool.timetolive)

Enables the application module pooling
facility. See Section 28.8, "Testing to Ensure
Your Application Module is Activation-Safe"
for more information on when Oracle
recommends to disable this feature as a
routine part of your application testing.

This feature is enabled by default (true)

Table 29–2 Application Module Pool Sizing Configuration Parameters

Pool Configuration Parameter Description

Initial Pool Size

(jbo.ampool.initpoolsize)

The number of application module instances
to created when the pool is initialized.

The default is 0 (zero) instances.

Maximum Pool Size

(jbo.ampool.maxpoolsize)

The maximum number of application module
instances that the pool can allocate.

The pool will never create more application
module instances than this limit imposes. The
default is 5000 instances.

Referenced Pool Size

(jbo.recyclethreshold)

The maximum number of application module
instances in the pool that attempt to preserve
session affinity for the next request made by
the session which used them last before
releasing them to the pool in managed-state
mode.

The referenced pool size should always be less
than or equal to the maximum pool size. The
default is to allow 10 available instances to try
and remain "loyal" to the affinity they have
with the most recent session that released
them in managed state mode.

Maximum Instance Time to Live

(jbo.ampool.timetolive)

The number of milliseconds after which to
consider an application module instance in the
pool as a candidate for removal during the
next resource cleanup regardless of whether it
would bring the number of instances in the
pool below minavailablesize.

The default is 3600000 milliseconds of total
time to live (which is 3600 seconds, or one
hour)

Table 29–1 (Cont.) Application Module Pool Behavior Configuration Parameters

Pool Configuration Parameter Description

Application Module Pool Parameters

29-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Note: Since there is only a single application monitor pool monitor
per Java VM, the value that will effectively be used for the application
module pool monitor polling interval will be the value found in the
application module configuration read by the first application module
pool that gets created. To make sure this value is set in a predictable
way, it is best practice to set all application modules to use the same
Pool Polling Interval value.

Table 29–3 Application Module Resource Management Configuration Parameters

Pool Configuration Parameter Description

Pool Polling Interval

(jbo.ampool.monitorsleepinterval)

The length of time in milliseconds between
pool resource cleanup.

While the number of application module
instances in the pool will never exceed the
maximum pool size, available instances which
are candidates for getting removed from the
pool do not get "cleaned up" until the next
time the application module pool monitor
wakes up to do its job. The default is to have
the application module pool monitor wake up
every 600000 milliseconds (which is 600
seconds, or ten minutes).

Maximum Available Size

(jbo.ampool.maxavailablesize)

The ideal maximum number of application
module instances in the pool when not under
abnormal load.

When the pool monitor wakes up to do
resource cleanup, it will try to remove
available application module instances to
bring the total number of available instances
down to this ideal maximum. Instances that
have been not been used for a period longer
than the idle instance time-out will always get
cleaned up at this time, then additional
available instances will be removed if
necessary to bring the number of available
instances down to this size. The default
maximum available size is 25 instances.

Minimum Available Size

(jbo.ampool.minavailablesize)

The minimum number of available application
module instances that the pool monitor should
leave in the pool during a resource cleanup
operation. Set to zero (0) if you want the pool
to shrink to contain no instances when all
instances have been idle for longer than the
idle time-out.

The default is 5 instances.

Idle Instance Timeout

(jbo.ampool.maxinactiveage)

The number of milliseconds after which to
consider an inactive application module
instance in the pool as a candidate for removal
during the next resource cleanup.

The default is 600000 milliseconds of idle time
(which is 600 seconds, or ten minutes).

Database Connection Pool Parameters

Understanding Application Module Pooling 29-15

29.7 Database Connection Pool Parameters
If you are using a JDBC URL for your connection information so that the ADF
database connection pool is used, then configuration parameters listed in Table 29–4
can be used to tune the behavior of the database connection pool. A single "database
connection pool monitor" per Java VM runs in a background thread and wakes up
every so often to do resource reclamation. The parameters in Table 29–3 include the
ones that affect how resources are reclaimed when the pool monitor does one of its
resource cleanup passes.

Maximum Instance Time to Live

(jbo.pooltimetolive)

The number of milliseconds after which to
consider an connection instance in the pool as
a candidate for removal during the next
resource cleanup regardless of whether it
would bring the number of instances in the
pool below minavailablesize.

The default is 3600000 milliseconds of total
time to live (which is 3600 seconds, or one
hour)

Note: The configuration parameters for database connection pooling
have MetaObjectManager scope (described in Section 29.3,
"Understanding Configuration Property Scopes" earlier). This means
their settings are global and will be set once when the first application
module pool in your application is created. To insure the most
predictable behavior, Oracle recommends leaving the values of these
parameters in the Connection Pooling section of the Pooling and
Scalability tab at their default values — so that no entry for them is
written into the bc4j.xcfg file — and to instead set the desired
values for the database connection pooling tuning parameters as Java
System Parameters in your J2EE container.

Table 29–4 Database Connection Pool Parameters

Pool Configuration Parameter Description

Initial Pool Size

(jbo.initpoolsize)

The number of JDBC connection instances to
created when the pool is initialized

The default is an initial size of 0 instances.

Maximum Pool Size

(jbo.maxpoolsize)

The maximum number of JDBC connection
instances that the pool can allocate.

The pool will never create more JDBC
connections than this imposes. The default is
5000 instances.

Table 29–3 (Cont.) Application Module Resource Management Configuration Parameters

Pool Configuration Parameter Description

Database Connection Pool Parameters

29-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Notice that since the database connection pool does not implement the heuristic of
session affinity, there is no configuration parameter for the database connection pool
which controls the referenced pool size.

You should take care not to configure the jbo.ampool.monitorsleepinterval
(for the application module pools) or the jbo.poolmonitorsleepinterval (for
the DB pools) to be too short of a time period because the chance exists — with a large
number of application module pools to cleanup — that your next pool monitor
"wakeup" might occur while your previous cleanup-cycle is still going on. The default
of 10 minutes (600000 milliseconds) is reasonable. Setting it to something like 10
seconds (10000 milliseconds) might cause trouble.

Pool Polling Interval

(jbo.poolmonitorsleepinterval)

The length of time in milliseconds between
pool resource cleanup.

While the number of JDBC connection
instances in the pool will never exceed the
maximum pool size, available instances which
are candidates for getting removed from the
pool do not get "cleaned up" until the next
time the JDBC connection pool monitor wakes
up to do its job. The default is 600000
milliseconds of idle time (which is 600
seconds, or ten minutes).

Maximum Available Size

(jbo.poolmaxavailablesize)

The ideal maximum number of JDBC
connection instances in the pool when not
under abnormal load.

When the pool monitor wakes up to do
resource cleanup, it will try to remove
available JDBC connection instances to bring
the total number of available instances down
to this ideal maximum. Instances that have
been not been used for a period longer than
the idle instance time-out will always get
cleaned up at this time, then additional
available instances will be removed if
necessary to bring the number of available
instances down to this size. The default is an
ideal maximum of 25 instances (when not
under load).

Minimum Available Size

(jbo.poolminavailablesize)

The minimum number of available JDBC
connection instances that the pool monitor
should leave in the pool during a resource
cleanup operation. Set to zero (0) if you want
the pool to shrink to contain no instances
when all instances have been idle for longer
than the idle time-out.

The default is to not let the minimum
available size drop below 5 instances.

Idle Instance Timeout

(jbo.poolmaxinactiveage)

The number of seconds after which to
consider an inactive JDBC connection instance
in the pool as a candidate for removal during
the next resource cleanup.

The default is 600000 milliseconds of idle
time (which is 600 seconds, or ten minutes).

Table 29–4 (Cont.) Database Connection Pool Parameters

Pool Configuration Parameter Description

How Database and Application Module Pools Cooperate

Understanding Application Module Pooling 29-17

29.8 How Database and Application Module Pools Cooperate
How ADF application module pools use the database connection pool depends on the
setting of the jbo.doconnectionpooling application module configuration
parameter. In the Configuration Manager panel that you see in Figure 29–3, you set
this parameter using the checkbox labelled Disconnect Application Module Upon
Release.

If the default setting of jbo.doconnectionpooling=false is used, then when an
application module instance is created in any pool it acquires a JDBC connection from
the appropriate connection pool (based on the JDBC URL in the ADF case, or from the
underlying JDBC data source implementation's pool in the case of a JNDI data source
name). That application module instance holds onto the JDBC connection object that it
acquired from the pool until the application module instance is removed from the
application module pool. During its lifetime, that application module instance may
service many different users, and ADF worries about issuing rollbacks on the database
connection so that different users don't end up getting pending database state
confused. By holding onto the JDBC connection, it allows each application module
instance to keep its JDBC PreparedStatements's open and usable across subsequent
accesses by clients, thereby providing the best performance.

If jbo.doconnectionpooling=true, then each time a user session finishes using
an application module (typically at the end of each HTTP request), the application
module instance disassociates itself with the JDBC connection it was using on that
request and it returns it to the JDBC connection pool. The next time that application
module instance is used by a user session, it will reacquire a JDBC connection from the
JDBC connection pool and use it for the span of time that application module is
checked out of the application module pool (again, typically the span of one HTTP
request). Since the application module instance "unplugs" itself from the JDBC
connection object used to create the PreparedStatements it might have used during the
servicing of the current HTTP request, those PreparedStatements are no longer usable
on the next HTTP request because they are only valid in the context of the Connection
object in which they were created. So, when using the connection pooling mode
turned on like this, the trade-off is slightly more JDBC overhead setup each time, in
return for using a smaller number of overall database connections.

The key difference is seen when many application module pools are all using the same
underlying database user for their application connection.

■ If 50 different application module pools each have even just a single application
module instance in them, with jbo.doconnectionpooling=false there will
be 50 JDBC application connections in use. If the application module pooling
parameters are set such that the application module pools are allowed to shrink to
0 instances after an appropriate instance idle timeout by setting
jbo.ampool.minavailablesize=0, then when the application module is
removed from its pool, it will put back the connection its holding onto.

Note: The notion of disconnecting the application module upon
release to the pool better captures what the actual feature is doing
than the related configuration parameter name
(jbo.doconnectionpooling) does. The setting of
jbo.doconnectionpooling=false does not mean that there is no
database connection pooling happening. What it means is that the
application module is not disconnected from its JDBC connection
upon check in back to the application module pool.

Database User State and Pooling Considerations

29-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ In contrast, if 50 different application module pools each have a single application
module instance and jbo.doconnectionpooling=true, then the amount of
JDBC connections in use will depend on how many of those application modules
are simultaneously being used by different clients. If an application module
instance is in the pool and is not currently being used by a user session, then with
jbo.doconnectionpooling=true it will have released its JDBC connection
back to the connection pool and while the application module instance is sitting
there waiting for either another user to need it again, or to eventually be cleaned
up by the application module pool monitor, it will not be "hanging on" to a JDBC
connection.

For highest performance, Oracle recommends not disconnecting the application
module instance from its database connection on each check in to the application
module pool. Accordingly, the default setting of the jbo.doconnectionpooling
configuration parameter is false. The pooling of application module instances is
already an effective way to optimize resource usage, and there are runtime efficiencies
that Oracle ADF can gain if you do not have to disconnect application module
instances from their associated JDBC connection after each release to the pool.
Effectively, by pooling the application modules which are related one-to-one with a
JDBC connection, you are already achieving a pooling of database connections that is
optimal for most web applications.

In contrast to Oracle's default recommendation, one situation in which it might be
opportune to use database connection pooling is when you have a large number of
application module pools all needing to use database connections from the same
underlying application user at the database level. In this case, the many application
module pools can perhaps economize on the total overall database sessions by sharing
a single, underlying database connection pool of JDBC connections, albeit at a loss of
efficiency of each one. This choice would be favored only if total overall database
sessions is of maximum priority.

29.9 Database User State and Pooling Considerations
Sometimes you may need to invoke stored procedures to initialize database state
related to the current user's session. The correct place to perform this initialization is in
an overridden prepareSession() method of your application module.

29.9.1 How Often prepareSession() Fires When jbo.doconnectionpooling = false
The default setting for jbo.doconnectionpooling is false. This means the
application module instance hangs onto its JDBC connection while it's in the
application module pool. This is the most efficient setting because the application
module can keep its JDBC prepared statements open across application module
checkouts/checkins.The application module instance will trigger its
prepareSession() method each time a new user session begins using it.

29.9.2 Setting Database User State When jbo.doconnectionpooling = true
If you set jbo.doconnectionpooling to true, then on each checkout of an
application module from the pool, that application module pool will acquire a JDBC
connection from the database connection pool and use it during the span of the current
request. At the end of the request when the application module is released back to the
application module pool, that application module pool releases the JDBC connection it
was using back to the database connection pool.

Database User State and Pooling Considerations

Understanding Application Module Pooling 29-19

It follows that with jbo.doconnectionpooling set to true the application module
instance in the pool may have a completely different JDBC connection each time you
check it out of the pool. In this situation, the prepareSession() method will fire
each time the application module is checked out of the pool to give you a chance to
reinitialize the database state.

29.9.3 Understanding How the SRDemo Application Sets Database State
The SRDemo application includes a simple example of setting database state on a
per-user basis. It uses the following PL/SQL package to set and get a package-level
variable that holds the name of the currently authenticated web application user.

Example 29–4 SRDemo CONTEXT_PKG PL/SQL Package

create or replace package context_pkg as
 procedure set_app_user_name(username varchar2);
 function app_user_name return varchar2;
end context_pkg;

The WHERE clause of the ServiceHistories view object in the demo references the
context_pkg.app_user_name function to illustrate how your application queries
might reference the per-user state.

The SRApplicationModuleImpl framework extension class in the
FrameworkExtensions project includes a callStoredProcedure() helper
method similar to the ones in Section 25.5.2, "Invoking Stored Procedure with Only IN
Arguments". The SRServiceImpl application module class extends this class and
defines the setCurrentUserInPLSQLPackage() helper method shown in
Example 29–5 that uses the callStoredProcedure() method to invoke context_
pkg.set_app_user_name() stored procedure, passing the value of the currently
authenticated user as a parameter value.

Example 29–5 Method to Call Context_Pkg.Set_App_User_Name Stored Procedure

// In SRServiceImpl.java
public void setCurrentUserInPLSQLPackage() {
 String user = getUserPrincipalName();
 callStoredProcedure("context_pkg.set_app_user_name(?)",new Object[]{user});
}

With this helper method in place, the SRServiceImpl class then overrides the
prepareSession() method as shown in Example 29–6.

Note: In practice, you will typically create a database CONTEXT
namespace, associate a PL/SQL procedure with it, and then use the
SYS_CONTEXT() SQL function to reference values from the context.
however the simple PL/SQL package above was enough to illustrate
the mechanics involved in setting and referencing the user state
without further complicating the installation of the SRDemo
application, so the demo’s authors chose this simpler approach to
keep the demo more straightforward.

Database User State and Pooling Considerations

29-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 29–6 Overridden afterConnect() and prepareSession() to Set Database State

// In SRServiceImpl.java
 protected void prepareSession(Session session) {
 super.prepareSession(session);
 getLoggedInUser().retrieveUserInfoForAuthenticatedUser();
 setUserIdIntoUserDataHashtable();
 setCurrentUserInPLSQLPackage();
 }

Adding Security to an Application 30-1

30
Adding Security to an Application

This chapter describes how to use Oracle ADF Security in your web application to
handle authentication and authorization on the Oracle Application Server. It also
describes how to bypass Oracle ADF Security when you want to work strictly with
container-managed security.

This chapter includes the following sections:

■ Section 30.1, "Introduction to Security in Oracle ADF Web Applications"

■ Section 30.2, "Specifying the JAZN Resource Provider"

■ Section 30.3, "Configuring Authentication Within the web.xml File"

■ Section 30.4, "Configuring the ADF Business Components Application to Use
Container-Managed Security"

■ Section 30.5, "Creating a Login Page"

■ Section 30.6, "Creating a Logout Page"

■ Section 30.7, "Implementing Authorization Using Oracle ADF Security"

■ Section 30.8, "Implementing Authorization Programmatically"

30.1 Introduction to Security in Oracle ADF Web Applications
Web application security can be provided by Oracle ADF Security. The Oracle ADF
Security implementation is built upon a pluggable architecture that implements the
Oracle Application Server Java Authentication and Authorization (JAAS) Provider for
authentication and authorization:

■ Authentication provides a way to determine who the current user is. Oracle ADF
Security can authenticate users against data within various resource providers.

■ Authorization provides a way to restrict access to the application or parts of the
application (called resources) based on the user attempting to access the resource.
Oracle ADF Security allows you to set authorization on ADF Model layer objects.

First, you must configure the application to use a resource provider. The user data
against which the login and passwords are authenticated is stored within a resource
provider, such as a database or LDAP director. By editing the jazn.xml file, you
choose an identity management provider for the OracleAS JAAS Provider. Read the
following section to understand editing the jazn.xml file:

■ Section 30.2, "Specifying the JAZN Resource Provider"

Then, you can configure the application's container to use Oracle ADF Security. This
will allow you to use Oracle ADF Security for authentication and authorization.

Specifying the JAZN Resource Provider

30-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Alternatively, you can bypass Oracle ADF Security and use container-managed
security. Read the following sections to understand how to configure authentication
and create login and logout pages:

■ Section 30.3, "Configuring Authentication Within the web.xml File"

■ Section 30.4, "Configuring the ADF Business Components Application to Use
Container-Managed Security"

■ Section 30.5, "Creating a Login Page"

■ Section 30.6, "Creating a Logout Page"

When you want to assign resources to particular users, you can work with Oracle ADF
Model layer to enable authorization. If you choose not to use ADF authorization, you
can still work with ADF authentication. Alternatively, you can integrate standard J2EE
authorization with the Oracle ADF Model layer to restrict resources. The SRDemo
application uses the latter approach. Read the following section to understand both
approaches to implementing authorization:

■ Section 30.7, "Implementing Authorization Using Oracle ADF Security"

■ Section 30.8, "Implementing Authorization Programmatically"

30.2 Specifying the JAZN Resource Provider
If you wish to use the JAZN realm from either the lightweight XML resource provider
(system-jazn-data.xml) or through the Oracle Internet Directory, you need to edit
the jazn.xml file to select one of those providers.

Note: If you are working with another JAAS-compliant security provider, see your
security provider's documentation.

30.2.1 How To Specify the Resource Provider
To use the JAZN realm from either the lightweight XML resource provider
(system-jazn-data.xml) or through the Oracle Internet Directory (LDAP
provider), you need to specify which provider you want your application to work
with.

To specify the resource provider, you edit the provider environment descriptor in
jazn.xml, located in the following directories.

■ For JDeveloper’s embedded OC4J:

<JDEV_
HOME>/jdev/system/oracle.j2ee.10.1.3/embedded-oc4j/config
directory

■ For JDeveloper’s standalone OC4J:

<JDEV_HOME>/j2ee/home/config directory

■ For Oracle Application Server:

<OC4J_HOME>/j2ee/<instance_name>/config directory

Note: When you want to understand the security features of OC4J,
see the Oracle Containers for J2EE Security Guide in the Oracle
Application Server documentation library. For example, the "Standard
Security Concepts" chapter provides a useful overview of the JAAS
security model.

Specifying the JAZN Resource Provider

Adding Security to an Application 30-3

To work with the XML-based provider, comment out the environment descriptor
for LDAP:
<jazn xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="XML"
 location="./system-jazn-data.xml"
 default-realm="jazn.com"
/>

<!--
<jazn
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="LDAP"
 location="ldap://myoid.us.oracle.com:389"
/>
-->

To work with the LDAP provider, comment out the environment descriptor for
XML:
<!--
<jazn
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="XML"
 location="./system-jazn-data.xml"
 default-realm="jazn.com"
/>
-->

<jazn
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-10_0.xsd"
 schema-major-version="10"
 schema-minor-version="0"
 provider="LDAP"
 location="ldap://myoid.us.oracle.com:389"
/>

30.2.2 What You May Need to Know About Oracle ADF Security and Resource
Providers

Because Oracle ADF Security uses OracleAS JAAS, it relies on the LoginContext to
provide the basic methods for authentication. LoginContext uses Login Modules,
which are pluggable bits of code that handle the actual authentication. Oracle ADF
Security also uses OracleAS JAAS Provider RealmLoginModule login module to
perform standard user name/password type of authentication.

Configuring Authentication Within the web.xml File

30-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Oracle ADF Security can authenticate users against a given resource provider. The
resource provider, such as a database or LDAP directory, contains the data against
which the login and passwords are authenticated.

Specifically, Oracle ADF Security supports the use of Oracle Single Sign-On and Oracle
Internet Directory (OID) to provide authentication. You should use OID (the
LDAP-based provider) to provide identity management in production environments
where scalability and manageability are important. In this case, you will need to
administer the users through the LDAP administration tools provided with Oracle
Containers for J2EE.

For more information on using OID, see the Oracle Identify Management Guide to
Delegated Administration from the Oracle Application Server documentation library.

In addition, JDeveloper provides an XML-based resource provider
(system-jazn-data.xml) that can be used for small scale applications or for
development and testing purposes. This provider contains user, role, grant, and login
module configurations.

30.3 Configuring Authentication Within the web.xml File
In many web-based applications, there may be a link to "protected" areas of the site
that require knowing who the originator of the request is; in other words, access to the
linked area requires an authenticated user. This can be accomplished dynamically with
the adfAuthentication servlet or without ADF, using only J2EE container-managed
authentication provided by OC4J. Either way, by configuring the container with
security constraints, you prevent access to the server without an authenticated session.

Once the user is authenticated, the application can determine whether that user has
privileges to access the resource as defined by any authorization constraint. You
configure this constraint and set up users or roles for you application to recognize in
the web.xml file.

For example, in the SRDemo application, three roles determine who gets access to
perform what type of functions. Each user must be classified with one of the three
roles: user, technician or manager. All of these criterion are implemented using
container managed Form-based authentication supported by Oracle Application
Server.

30.3.1 How to Enable J2EE Container-Managed Authentication
If your application contains pages that require a user to be authenticated against a data
store in order to be accessed, you must declare the following in the web.xml
configuration file:

■ <security-role> defines valid roles in the security context.

■ <login-config> defines the protocol for authentication, for example
form-based or HTTPS.

■ <security-constraint> defines the resources specified by URL patterns and
HTTP methods that can be accessed only by authorized users or roles.

Note: The SRDemo application currently does not demonstrate
Oracle ADF Security at the ADF Model layer. To understand how the
SRDemo application handles authentication, see Section 30.3.1, "How
to Enable J2EE Container-Managed Authentication".

Configuring Authentication Within the web.xml File

Adding Security to an Application 30-5

■ <servlet> defines the servlet that provides authentication.

■ <servlet-mapping> maps the servlet to a URL pattern. The

■ <filter> defines the filter used to transform the content of the authentication
request.

■ <filter-mapping> maps the filter to the file extensions used by the application.
For details about the ADF binding filter, see Configuring the ADF Binding Filter.

The security roles that you define in the web.xml file identify the logical names of
groups of users that your application recognizes. You will create security constraints in
order to restrict access to particular web pages based on whether the authenticated
user belongs to the authorized role or not.

To specify security roles for J2EE container-managed security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. To add the security role definition, select Security Roles on the left panel of the
Web Application Deployment Descriptor editor and click Add.

The roles you enter here must match roles from your data store. For example, if
you are using the XML-based provider (as defined with
system-jazn-data.xml), you would enter the value of <name> for any of the
defined <roles> that need to be authenticated. Additionally, if you configure
OC4J to use security role mapping, the role names must also match the roles
defined in the <security-role-mapping> element of the orion-web.xml
configuration file.

3. Save all changes and proceed to create the login configuration, as described below.

Figure 30–1 shows the web.xml editor with the Security Roles definition displayed. In
the SRDemo application, three security roles are defined.

Note: When you insert an ADF Faces component into a JSF page for
the first time, JDeveloper updates the web.xml file to define the ADF
Faces servlet filter and ADF Faces resources servlet. For more details
about the these servlet settings, see What Happens When You First
Insert an ADF Faces Component.

Configuring Authentication Within the web.xml File

30-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 30–1 Web Application Deployment Descriptor Dialog, Security Roles Panel

Before configuring the login configuration, you should already have created a login
web page and the optional login error page. For details, see Section 30.5, "Creating a
Login Page".

To create a login configuration for J2EE container-managed security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. To create a login configuration, select Login Configuration on the left panel of the
editor. For example, to use form-based authentication, you would select
Form-Based Authentication, and enter the name of the file used to render the
login and login error page, for example login.jspx and loginerror.jspx.
For further details, see Section 30.5.1, "Wiring the Login and Error Pages".

3. Save all changes and close the Web Application Deployment Descriptor editor.

Figure 30–2 shows the web.xml editor with the Login Configuration definition
displayed.

Configuring Authentication Within the web.xml File

Adding Security to an Application 30-7

Figure 30–2 Web Application Deployment Descriptor Dialog, Login Configuration Panel

To create security constraints for J2EE container-managed security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. To add the security constraint definition, select Security Constraints on the left
panel of the editor, and at the bottom of the panel click New.

3. To add a new Web Resource, on the Constraints page, click Add.

Tip: Because the security constraint is specified as a URL, the web resource name
you supply can be based on your application's database connection name. For
example, if your database connection is MyConnection, then you might type
jdbc/MyConnection for the web resource name.

4. To specify the URL pattern of your client requests, click the web resource name
you just specified, select URL Patterns, and click Add. Type a forward slash (/) to
reference a JSP login page located at the top level relative to the web application
folder.

5. To specify authorized security roles, select the Authorization tab. Select the
security roles that require authentication. The roles available are the roles you
configured in step 2.

6. To specify transport guarantee, select the User Data tab. Select the type of
guarantee to use.

7. Save all changes and close the Web Application Deployment Descriptor editor.

Figure 30–3 shows the web.xml editor with a Security Constraint definition
displayed.

Configuring Authentication Within the web.xml File

30-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 30–3 Web Application Deployment Descriptor Dialog, Security Constraints Panel

30.3.2 What Happens When You Use Security Constraints without Oracle ADF Security
Example 30–1 shows sample definitions similar to the ones that your web.xml file
should contain when you have finished configuring J2EE container-managed security.

Example 30–1 J2EE Security Enabled in the SRDemo Application web.xml File

<security-constraint>
 <web-resource-collection>
 <web-resource-name>ALL Manager</web-resource-name>
 <url-pattern>faces/app/management/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>AllStaff</web-resource-name>
 <url-pattern>faces/app/staff/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>technician</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>SRDemo Sample</web-resource-name>
 <url-pattern>faces/app/*</url-pattern>
 </web-resource-collection>

Configuring Authentication Within the web.xml File

Adding Security to an Application 30-9

 <auth-constraint>
 <role-name>user</role-name>
 <role-name>technician</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>infrastructure/SRLogin.jspx</form-login-page>
 <form-error-page>infrastructure/SRLogin.jspx</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <description>Customers of ACME corp</description>
 <role-name>user</role-name>
 </security-role>
 <security-role>
 <description>Employees of ACME corp</description>
 <role-name>technician</role-name>
 </security-role>
 <security-role>
 <description>The boss</description>
 <role-name>manager</role-name>
 </security-role>

When the user clicks a link to a protected page, if they are not authenticated (that is,
the authenticated user principal is not currently in SecurityContext), the OC4J security
servlet is called and the web container invokes the login page defined by the
deployment descriptor <form-login-config> element.

Once a user submits their user name and password, that data is compared against the
data in a resource provider where user information is stored, and if a match is found,
the originator of the request (the user) is authenticated. The user name is then stored in
SecurityContext, where it can be accessed to obtain other security related information
(such as the group the user belongs to) in order to determine authorization rights.

The web.xml deployment descriptor supports declarative security through
<security-constraints> that specify the resources available to the authenticated
users of the application. Whether or not the user is permitted to access a web page
depends on its membership in a role identified in the <auth_constraint> element.
The application calls the servlet method isUserInRole() to determine if a particular
user is in a given security role. The <security-role> element defines a logical
name of the roles based on the same names defined by the JAZN realm in the
system-jazn-data.xml file.

30.3.3 How to Enable Oracle ADF Authentication
For web-based applications, you can configure a security constraint against the
adfAuthentication servlet within the web.xml file. This constraint prevents access to
the servlet without an authenticated session. As long as the link to the protected area
contains the URL pattern defined in the constraint, the web container will invoke the
login page if the user is not authenticated.

Configuring Authentication Within the web.xml File

30-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To configure web.xml for Oracle ADF Security:
1. In the Navigator, expand your JSP project, right-click the web.xml file and choose

Properties. The web.xml file resides in the WEB-INF folder of your project.

2. Define Security Roles, Login Configuration, and Security Constraints as you
normally would. (See above procedures.)

3. To create the <servlet> element for the ADF authentication servlet, select
Servlets/JSP on the left panel of the editor and click New. Enter the following:

Servlet Name: adfAuthentication

Servlet Class:
oracle.adf.share.security.authentication.AuthenticationServle
t

To add an initialization parameter that contains the URL for the resulting page if
authentication succeeds, select Initialization Parameters and click Add. If you do
not enter a URL, the user will return to the current page.

4. To create a servlet mapping, select Servlet Mapping on the left panel of the editor,
and click Add. Enter the following:

URL Pattern: /adfAuthentication/*

Servlet Name: adfAuthentication

5. Save all changes and close the Web Application Deployment Descriptor editor.

Figure 30–3 shows the web.xml editor with the Servlet Mapping definition displayed
for the adfAuthentication servlet.

Note: The adfAuthentication servlet is optional and allows dynamic
authentication, that is, if the user has not yet logged in and the page
being accessed needs authorization, then the user will be prompted to
log in. The servlet take an optional parameter success_url. If
success_url is specified, then after successfully logging in, the user
is directed to the requested page. If success_url is not specified,
then after successful login, the servlet directs the user back to the page
from which the login was initiated.

Configuring Authentication Within the web.xml File

Adding Security to an Application 30-11

Figure 30–4 Web Application Deployment Descriptor Dialog, Servlet Mapping Panel

30.3.4 What Happens When You Use Security Constraints with Oracle ADF
Example 30–2 shows sample definitions similar to the ones that your web.xml file
should contain.

Example 30–2 Oracle ADF Security Enabled in a Sample web.xml File

<servlet>
 <servlet-name>adfAuthentication</servlet-name>
<servlet-class>oracle.adf.share.security.authentication.
 AuthenticationServlet</servlet-class>
 <init-param>
 <param-name>sucess_url</param-name>
 <param-value>inputForm.jsp</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>adfAuthentication</servlet-name>
 <url-pattern>/adfAuthentication/*</url-pattern>
</servlet-mapping>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>adfAuthentication</web-resource-name>
 <url-pattern>/adfAuthentication</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
</security-constraint>

Configuring the ADF Business Components Application to Use Container-Managed Security

30-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>login.jspx</form-login-page>
 <form-error-page>login.jspx</form-error-page>
 </form-login-config>
</login-config>
<security-role>
 <role-name>user</role-name>
</security-role>

When the user clicks a link to a protected page, if they are not authenticated (that is,
the authenticated user principal is not currently in SecurityContext), the Oracle ADF
Security Login Servlet is called and the web container invokes the login page.

Once a user submits their user name and password, that data is compared against the
data in a resource provider where user information is stored, and if a match is found,
the originator of the request (the user) is authenticated. The user name is then stored in
SecurityContext, where it can be accessed to obtain other security related information
(such as the group the user belongs to) in order to determine authorization rights.

Because Oracle ADF Security implements OracleAS JAAS, authentication also results
in the creation of a JAAS Subject, which also represents the originator of the request.

30.4 Configuring the ADF Business Components Application to Use
Container-Managed Security

When you want to work with security in an Oracle ADF Business Components
application, the ADF Business Components application module must be enabled to
recognize the authenticated user. This will permit the application to create the
application module based on the presence of an authenticated user. If the user
attempts to login and is not authenticated, no application module will be created for
the session.

30.4.1 How to Configure Security in an Oracle ADF Business Components Application
To enable security in an Oracle ADF Business Components application, you must edit
the jbo.security.enforce property of the application modules configuration
(maintained in the bc4j.xcfg file). The jbo.security.enforce property set to
Must specifies that an authenticated user must be logged in before the application
module will be created. This is a requirement for any business components application
that will work with container-managed security.

To configure security for Oracle ADF Business Components:
1. In the Application Navigator, expand the data model project and located the

application module node.

2. Right-click the application module node and choose Configurations.

3. In the Configuration Manager, select the configuration for your application and
click Edit.

4. In the Oracle Business Components Configuration dialog, select the Properties
tab.

The dialog display the full list of ADF Business Components configuration
properties. The security properties begin with jbo.security.

Configuring the ADF Business Components Application to Use Container-Managed Security

Adding Security to an Application 30-13

5. Scroll to locate the jbo.security.enforce property and enter the value Must.

6. Click OK to close the dialogs and save the configuration changes.

Figure 30–6 shows the application module configuration SRServiceLocal and security
property as they appear in the SRDemo application for ADF Business Components.

Figure 30–5 ADF BC Configuration Dialog, Properties Panel

In order to use the JAZN realm in an ADF Business Components application, you
must export the BC4J Security library to your user interface project. This will ensure
that the jazn.jar is available to the user interface project at runtime. Without this
library defined, an exception such as NullPointerException in
JboJAZNUserManager.isUserInRole() will be returned when your application
attempts to verify the logged in user.

To add required libraries for ADFBC Security to the user interface project:
1. In the Application Navigator, right-click the user interface project and choose

Project Properties.

2. In the Project Properties dialog, select Libraries to view the list of available
libraries.

3. Scroll to locate BC4J Security and make sure that Export is enabled.

4. Click OK to close the dialog and save the setting.

Figure 30–6 shows the BC4J Security library as it should appear for the user interface
project.

Configuring the ADF Business Components Application to Use Container-Managed Security

30-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 30–6 Project Properties Dialog, Libraries Panel

30.4.2 What Happens When You Configure Security in an ADF Business Components
Application

The jbo.security.enforce property in the ADF Business Components application
module’s configuration settings when set to Must requires the application module to
obtain an authenticated user principal from the SecurityContext before the application
module is created for the specified configuration.

30.4.3 What You May Need to Know About the ADF Business Components Security
Property

The security mechanism provided by ADF Business Components can be combined
with ADF Security when you want to want to configure security constraints against
the adfAuthentication servlet. You enable ADF Security when you want to grant
authorization permissions to ADF binding objects in the application. For details about
the authorization features provided by ADF security, see Section 30.7, "Implementing
Authorization Using Oracle ADF Security".

When you enable ADF Security in an ADF Business Components application, the
application module obtains the principal from the security context under the ADF
context instead of the JAAS security context. For details about enabling ADF servlet
authentication, see Section 30.3.3, "How to Enable Oracle ADF Authentication".

Tip: Starting in JDeveloper 10.1.3.1 maintenance release, you need
only set the ADF Security property authorizationEnforce to
true and you will automatically enable security in an ADF Business
Components application. In this case, the jbo.security.enforce
property is not required.

Creating a Login Page

Adding Security to an Application 30-15

30.5 Creating a Login Page
The login page for a web application should use the J2EE security container login
method j_security_check as a method that the form posts. Figure 30–7 shows a
sample login page from the SRDemo application.

Figure 30–7 Sample Login Page from the SRDemo Application

To create a web page for the login form:
1. With the user interface project selected, open the New Gallery and select JSP from

the Web Tier - JSP category. Do NOT select the Web Tier - JSF category to create a
JSPX document as a login form.

2. In the Create JSP wizard, choose JSPX Document type for the JSP file type. The
wizard lets you create a JSPX document without using managed beans.

3. On the Tag Libraries page of the wizard, select All Libraries and add JSTL Format
1.1 and JSTL Core 1.1 to the Selected Libraries list.

4. Click Finish to complete the wizard and add the JSPX file to the user interface
project.

5. In the Component Palette, select the JSTL 1.1 FMT page, and drag SetBundle into
the Structure window for the JSPX document so it appears above the title element.

CAUTION: When you create the login page, you may use JSP
elements and JSTL tags. Your page can be formatted as a JSFX
document, but due to a limitation in relation to JSF and container
security, JSF components cannot be used.

Creating a Login Page

30-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

6. In the Insert SetBundle dialog, set BaseName to the package that contains the
resource bundle for the page. For example, in the SRDemo application, it is
oracle.srdemo.view.resources.UIResources.

7. Optionally, drag Message onto the title element displayed in the Structure
window. Double-click the Message element and set the key property to the
resource bundle’s page title key. For example, in the SRDemo application, the key
is srlogin.pageTitle. Delete the string title leftover from the page creation.

8. In the Component Palette, select the HTML Forms page and drag Form inside the
page body. In the Insert Form dialog, set the action to j_security_check and
set the method to post.

9. Drag Text Field for the user name into the form and set the name to j_username.

10. Drag Password Field into the form and name it j_password.

11. Drag Submit Button into the form with label set to Sign On.

12. In the Component Palette, again select the JSTL 1.1 FMT page, and drag two
Message tags into the form so they appear beside the input fields. Set their key
properties. For example, in the SRDemo application, the resource keys are
srlogin.password and srlogin.username.

Example 30–3 shows the source code from the SRDemo application’s login page. This
JSPX document uses only HTML elements and JSTL tags to avoid conflicts with the
security container when working with JSF components. The security check method
appears on the <form> element and the form contains input fields to accept the user
name and password. These fields assign the values to the container’s login bean
attributes j_username and j_password, respectively.

Example 30–3 Sample Source from SRLogin.jspx

<html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=windows-1252"/>
 <fmt:setBundle basename="oracle.srdemo.view.resources.UIResources"/>
 <title>
 <fmt:message key="srdemo.login"/>
 </title>
 </head>
 <body>
 ... omitting the "number of attempts" checking logic ...
 <form action="j_security_check" method="post">
 <table cellspacing="3" cellpadding="2" border="0" width="100%">
 <tr>
 <td colspan="3">
 <img height="69" width="340"
 src="/SRDemo/faces/images/SRBranding.gif"
 alt="SRDemo Logo"/>
 <hr/>
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <h1>
 <fmt:message key="srlogin.pageTitle"/>
 </h1>
 </td>
 </tr>
 <tr>

Creating a Login Page

Adding Security to an Application 30-17

 <td colspan="3">
 <c:if test="${sessionScope.loginAttempts >0}">
 <h3><fmt:message key="srdemo.badLogin"/></h3>
 </c:if>
 </td>
 </tr>
 <tr>
 <td>&nbsp;</td>
 <td> </td>
 <td rowspan="7">
 <table border="1" cellpadding="5">
 <tr>
 <td>
 <fmt:message key="srlogin.info"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>&nbsp;</td>
 </tr>
 <tr>
 <td width="120">
 <fmt:message key="srlogin.username"/>
 </td>
 <td>
 <input type="text" name="j_username"/>
 </td>
 </tr>
 <tr>
 <td width="120">
 <fmt:message key="srlogin.password"/>
 </td>
 <td>
 <input type="password" name="j_password"/
 </td>
 </tr>
 <tr>
 <td> </td>
 <td>
 <input type="submit" name="logon" value="Sign On"/>
 </td>
 </tr>
 <tr>
 </tr>
 <td>&nbsp;</td>
 <tr>
 <td>&nbsp;</td>
 </tr>
 <tr>
 <td>&nbsp;</td>
 </tr>
 <tr>
 <td colspan="3">
 <hr/>
 </td>
 </tr>
 </table>
 </form>

Creating a Login Page

30-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 </c:if>
 </body>
</html>

30.5.1 Wiring the Login and Error Pages
To allow the web container to perform authentication, the web.xml file must contain
the login configuration information that specifies the page to display for log in and
another page to display when log in fails because the user could not be authenticated.

To configure how login is to be handled:
1. In the Application Navigator, locate web.xml in the WEB-INF folder.

2. Right-click web.xml and choose Properties.

3. In the Web Application Deployment Descriptor dialog, select Login
Configuration.

4. Choose Form-Based Authentication and enter the path name for both the login
and error page. The path specified for the login page and error page is relative to
the document root that will be used to authenticate the user. For example, in the
SRDemo application, the path infrastructure/SRLogin.jspx is used for
both the login and error page.

Figure 30–8 shows the web.xml editor with the Login Configuration definition
displayed.

Figure 30–8 Web Application Deployment Descriptor Dialog, Login Configuration Panel

Creating a Logout Page

Adding Security to an Application 30-19

30.5.2 What Happens When You Wire the Login and Error Pages
When you define the web.xml login configuration information, JDeveloper creates
these definitions:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>infrastructure/SRLogin.jspx</form-login-page>
 <form-error-page>infrastructure/SRLogin.jspx</form-error-page>
 </form-login-config>
 </login-config>

Because you selected Form-based authentication, to specify user-written HTML Form
for authentication, the page servlet will look for the JSP page you specified to
authenticate the user. The JSP page must return an HTML page containing a Form that
conforms to a specific naming convention. Similarly, when authentication fails, the
servlet will look for a page to display. In the SRDemo application, the same page
appears for both cases, though you could have defined different pages.

Example 30–3 shows the conventions of that permit the HTML Form to invoke the
authentication servlet. Specifically, the form must specify three pieces of information:

1. <form action="j_security_check" method="post"> to invoke the
security check method j_security_check on the container’s login bean.

2. <input type="text" name="j_username"/> to assign the username value
to the container’s login bean attribute j_username.

3. <input type="password" name="j_password"/> to assign the password
value to the container’s login bean attribute j_password.

Please note that the value of the login bean attributes must be retuned by the HTML
Form with the exact names shown. In a JSF JSP page, a JSF form does not guarantee
this. Therefore, Oracle recommends that you use a JSP document page in order to use
the HTML Form to preserve the login bean attribute names.

30.6 Creating a Logout Page
The logout page may be called from the global logout button that appears on any page
that includes the global menu page. The purpose of the logout page is to provide a
prompt for the user to confirm that they want to quit. If the user chooses to log out,
their session is invalidated and then they are redirected back to the application’s
welcome page. They will have to log in again to continue the application. Figure 30–9
shows the logout page from the SRDemo application.

Creating a Logout Page

30-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 30–9 Sample Logout Page from SRDemo Application

To create the logout page:
1. With the user interface project selected, open the New Gallery and select JSF JSP

from the Web Tier - JSF category. In this case, it is acceptable to use JSF
components.

2. In the Create JSF JSP wizard, choose JSP Document type for the JSF JSP file type.
In this case, you want to create a JSPX document that will use JSF components.

3. On the Component Binding page, do not create a managed bean.

4. On the Tag Libraries page of the wizard, add ADF Faces Components and ADF
Faces HTML to the Selected Libraries list.

5. Click Finish to complete the wizard and add the JSPX file to the user interface
project.

6. In the Component Palette, select the ADF Faces Core page, and drag the
components Document, Form, and PanelPage so that PanelPage appears nested
inside Form, and Form appears nested inside Document.

7. Next construct the PanelPage container for the command buttons by dragging the
components PanelBox, PanelHeader, PanelButtonBar so that PanelButtonBar
appears nested inside PanelHeader, and PanelHeader appears nested inside
PanelBox. All should be nested inside PanelPage.

8. To create the buttons that give the user the choice whether to logout or not, drag
two CommandButton components inside the PanelButtonBar.

9. The first button should provide the logout function. You can wire it separately by
creating a managed bean. For details, see Section 30.6.1, "Wiring the Logout
Action".

10. The second button should invoke an action GlobalHome to direct the user to the
desired page. This action will be defined in the faces-config.xml file with a
navigation rule.

Creating a Logout Page

Adding Security to an Application 30-21

Example 30–4 shows the source code from the SRDemo application’s logout page. This
JSPX document has no restriction on using JSF components because the page has no
interaction with the security container. The action to invoke the logout function
appears on the <af:commandButton> with the logout label.

Example 30–4 Sample Source from SRLogout.jspx

<af:form>
 <af:panelPage title="#{res['srlogout.pageTitle']}">
 <!--Page Content Start-->
 <af:panelBox>
 <af:panelHeader text="#{res['srlogout.subTitle']}"
 messageType="warning">
 <af:outputText value="#{res['srlogout.text']}"/>
 <af:panelButtonBar>
 <af:commandButton text="#{res['srlogout.logout.label']}"
 action="#{backing_SRLogout.logoutButton_action}"/>
 <af:commandButton text="#{res['srlogout.goBack.label']}"
 action="GlobalHome"/>
 </af:panelButtonBar>
 </af:panelHeader>
 </af:panelBox>
 <!-- Page Content End -->
 ... omitting facets related to the visual design of the page ...
 </af:panelPage>
</af:form>

30.6.1 Wiring the Logout Action
To handle the logout action, the JSPX document can use a managed bean with
properties that correspond to the logout page’s logout command button.

To handle the logout action:
1. In the open logout page, double-click the command button that you reserved for

the logout action.

2. In the Action property dialog, leave Method Binding selected and click New to
define the Managed Bean class.

3. In the Create Managed Bean dialog, specify the new class file name for the
managed bean and enter the name of the managed bean to register with the
faces-config.xml file.

4. In the Action property dialog, click New to name the method that you will
implement in the managed bean class to return a string that sets the component’s
outcome value.

Figure 30–10 shows the Action property dialog with the managed bean backing_
SRLogout and the method logoutButton_action() entered.

Creating a Logout Page

30-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 30–10 Action Binding Dialog for Logout CommandButton

5. In the generated .java file, implement the method handler for the command
button that will redirect the user back to an appropriate page. See Example 30–5
for a sample.

Example 30–5 shows the method handler from the SRDemo application logout page’s
managed bean. The logoutButton_action() method invalidates the session and
redirects to the home page. The security container will prompt the user to
reauthenticate automatically.

Example 30–5 Sample Source from SRLogout.java

 public String logoutButton_action() throws IOException{
 ExternalContext ectx = FacesContext.getCurrentInstance().getExternalContext();
 HttpServletResponse response = (HttpServletResponse)ectx.getResponse();
 HttpSession session = (HttpSession)ectx.getSession(false);
 session.invalidate();

 response.sendRedirect("SRWelcome.jspx");
 return null;
 }

30.6.2 What Happens When You Wire the Logout Action
When you define the action property for the command button, JDeveloper updates
the Logout.jspx page source code with the name of the managed bean and bean
method to invoke:

<af:commandButton text="#{res['srlogout.logout.label']}"
action="#{backing_SRLogout.logoutButton_action}"/>

Warning: If your application calls the invalidate() method on
the HTTP Session to terminate the current session at logoff time, you
must use a "Redirect" to navigate back to a home page to require
accessing an ADF Model binding container. The redirect to a
databound page ensures that the ADF Binding Context gets created
again after invalidating the HTTP Session.

Implementing Authorization Using Oracle ADF Security

Adding Security to an Application 30-23

and, JDeveloper updates the faces-config.xml file to define the managed bean:

<managed-bean>
<managed-bean-name>backing_SRLogout</managed-bean-name>
<managed-bean-class>oracle.srdemo.view.backing.SRLogout</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

Once a user clicks the logout button, the JSF controller identifies the corresponding
class file from the Faces configuration file and passes the name of the action handler
method to the managed bean. In turn, the action handler, shown previously in
Example 30–5, invalidates the session and redirects to the home page.

30.7 Implementing Authorization Using Oracle ADF Security
Authorization provides a way to restrict access to a resource based on the user
attempting access. Oracle ADF Security implements OracleAS JAAS for authorization
of security-aware resources.

 Oracle ADF Security provides another level of granularity, allowing object instance
access control based on Java Permissions using JAAS. Specifically, certain Oracle ADF
Model layer objects are "security-aware," meaning that there are pre-defined
component-specific permissions that a developer can grant for a given resource.

The following Oracle ADF objects are security-aware as defined by the page definition
file associated with each databound web page:

■ Binding container

■ Iterator binding

■ Attribute binding

■ MethodAction binding

You set grants on these objects by defining which authenticated users or roles have
permission to perform a given action on the object (called a resource). Grantees, which
are roles, users, or groups defined as principals are mapped to permissions.
Permissions are permission to execute a specific action against a resource, as defined
by Oracle ADF Security classes (see the Oracle ADF Javadoc for details). Grants are
aggregated. That is if a group's role is granted permissions, and a user is a member of
that group, then the user also has those permissions. If no grant is made, then access
by the role, user, or group is denied.

Table 30–1 shows permissions you can grant on binding containers, iterator bindings,
attribute-level bindings (for example, table, list, boolean, and attribute-value
bindings), and method bindings. You use the Authorization Editor to grant
permissions for users on the Oracle ADF objects created at runtime from the page
definition file.

Note: The SRDemo application currently does not demonstrate
Oracle ADF Security at the ADF Model layer. To understand how the
SRDemo application handles authorization, see Section 30.8,
"Implementing Authorization Programmatically".

Implementing Authorization Using Oracle ADF Security

30-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Before you can implement Oracle ADF authorization, you must first:

■ Configure authentication for the ADF Authentication servlet. For details, see
Section 30.3.3, "How to Enable Oracle ADF Authentication".

■ Configure your application to use Oracle ADF Security authorization. For details,
see Section 30.7.1, "Configuring the Application to Use Oracle ADF Security
Authorization".

Table 30–1 Oracle ADF Security Authorization Permissions

ADF Model Object Defined Actions Affect on Components in the User Interface

Binding Container for a web
page

grant - can administer the
permissions on the page

On pages that allow runtime customization, any link
or button configured to set access controls will be
disabled for users not granted this permission.

edit - can edit content on
the page

If a user is granted permission for the view action, but
not for the edit action, then any data in input text
boxes will display as read only.

personalize - allows the
user customization of the
page

On pages that allow runtime customization, any link
or button configured to put the page into
personalization mode will be disabled for users not
granted this permission.

view - can view the page A user not granted this permission will be shown an
authorization error.

Iterator Binding read - can read the
returned rows

All rows of data will be returned. However, you can
limit what can be displayed or updated by placing
grants on the individual attribute bindings.

update - can update data
in a row

If the Commit operation is dropped as a command
button from the Data Control Palette, the button will
be disabled for users who were not granted this
permission. Instead of limiting updates to an entire
row, you can instead limit the ability to update
individual attributes.

create - can create a new
row

If the Create operation is dropped as a command
button from the Data Control Palette, the button will
be disabled for any users that were not granted this
permission.

delete - can delete a row If the Delete operation is dropped as a command
button from the Data Control Palette, the button will
be disabled for any users that were not granted this
permission.

Method Action Binding invoke - the method can
execute

If the method is bound to a command button, that
button will be disabled for any users that were not
granted this permission. If the method is invoked
implicitly, the method will only execute for users
granted this permission.

Attribute-level Bindings read - can read the
attribute's value

The value for the attributes will be displayed.

update - can update the
attribute 's value

Any data in input text boxes will display as read only
for users who were not granted this permission.

Implementing Authorization Using Oracle ADF Security

Adding Security to an Application 30-25

30.7.1 Configuring the Application to Use Oracle ADF Security Authorization
You must first configure the application to use Oracle ADF Security before you can
work with ADF authorization in your application.

30.7.1.1 How to Configure Oracle ADF Security Authorization
To enable Oracle ADF Security authorization, you create a configuration file named
adf-config.xml that sets the application's container to use Oracle ADF Security.
The file initializes the ADFContext and SecurityContext.

To configure an application to use Oracle ADF Security:
1. Right-click on the project for which security is needed and choose New.

2. In the New Gallery, select the XML category.

If XML is not displayed, use the Filter By list at the top to select All Technologies.

3. In the Items list, select XML Document and click OK.

4. Name the file adf-config.xml, save it in the <application_
name>/.adf/META-INF directory, and click OK.

The file opens in the source editor.

5. Replace the generated code with the following:

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns:xsi=" http://www.w3.org/2001/XMLSchema-instance "
 xsi:schemaLocation=" http://xmlns.oracle.com/adf/config
 ../../../../../bc4jrt/src/oracle/adf/share/config/schema/config.xsd"
 xmlns=" http://xmlns.oracle.com/adf/config "
 xmlns:sec=" http://xmlns.oracle.com/adf/security/config ">
 <sec:adf-config-child xmlns=" http://xmlns.oracle.com/adf/security/config ">
 <JaasSecurityContext
 initialContextFactoryClass="oracle.adf.share.security.
 JAASInitialContextFactory"
 authorizationEnforce="true"
 jaasProviderClass="oracle.adf.share.security.providers.jazn.
 JAZNSecurity Context" >
 </JaasSecurityContext>
 </sec:adf-config-child>
</adf-config>

6. Save and close the file.

30.7.1.2 What Happens When You Configure An Application to Use Oracle ADF
Security
The authorizationEnforce parameter in the <JaasSecurityContext> element
set to true will allow the authenticated user principals to be placed into ADF
SecurityContext once the user is authenticated.

Tip: If you want to run the application without using Oracle ADF
Security, simply set the authorizationEnforce parameter to false.

Implementing Authorization Using Oracle ADF Security

30-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

30.7.1.3 What You May Need to Know About the Authorization Property
Because security can be turned on and off, it is recommended that an application
should determine this property setting before invoking an authorization check. The
application can check if Oracle ADF Security is enabled by checking the authorization
property setting. This is exposed through the isAuthorizationEnabled() method
of the SecurityContext under the ADFContext. For example:

if (ADFContext.getCurrent().getSecurityContext().isAuthorizationEnabled())
 {
 Permission p = new RegionPermission("view.pageDefs.page1PageDef", "Edit");
 AccessController.checkPermission(p);
 // do the protected action
 } catch (AccessControlException ace) {
 // do whatever’s appropriate on an access denied
}

30.7.2 Setting Authorization on ADF Binding Containers
You use the Authorization Editor to grant permissions for users on the binding
container as it is defined by the entire page definition. See Table 30–1 for details about
available Oracle ADF permissions.

To grant permissions on the binding container using the Authorization Editor:
1. Create your web page. From the Visual Editor, right-click the page and choose Go

to Page Definition.

2. In the Structure window, right-click the root node, PageDef, and choose Edit
Authorization.

3. The Authorization Editor shows the pre-defined permissions for the binding
container, along with the principals (roles and users) as defined by your resource
provider.

Click Help or press F1 for more help on using this dialog.

30.7.3 Setting Authorization on ADF Iterator Bindings
You use the Authorization Editor to grant permissions for users on iterator bindings.
See Table 30–1 for details about available Oracle ADF permissions.

To grant permissions on iterators using the Authorization Editor:
1. Create your web page. From the Visual Editor, right-click the page and choose Go

to Page Definition.

2. In the Structure window, expand the executables node.

3. Right-click on the iterator you wish to grant a permission for and choose Edit
Authorization.

Note: Starting in JDeveloper 10.1.3.1 maintenance release, you need
only set the ADF Security property authorizationEnforce to
true and you will automatically enable security for ADF Business
Components applications. In this case, the jbo.security.enforce
property is not required. To understand how ADF Business
Components enforces security, see Section 30.4, "Configuring the ADF
Business Components Application to Use Container-Managed
Security".

Implementing Authorization Using Oracle ADF Security

Adding Security to an Application 30-27

4. The Authorization Editor shows the pre-defined permissions for the iterator, along
with the principals (roles and users) as defined by your resource provider.

Click Help or press F1 for more help on using this dialog.

30.7.4 Setting Authorization on ADF Attribute and MethodAction Bindings
You use the Authorization Editor to grant permissions for users on attribute and
method action bindings.

Note that permissions granted on an attribute reflect the ability to execute operations
such as Create, Delete, and Commit. Therefore, do not set authorization on the
operations, but instead on the attribute or iterator. See Table 30–1 for details about
Oracle ADF permissions.

To grant permissions on attribute and method bindings using the Authorization
Editor:
1. Create your web page. From the Visual Editor, right-click the page and choose Go

to Page Definition.

2. In the Structure window, expand the bindings node.

3. Right-click on the attribute or method action binding you wish to grant a
permission for and choose Edit Authorization.

4. The Authorization Editor shows the pre-defined permissions for the attribute or
method action binding, along with the principals (roles and users) as defined by
your resource provider.

Click Help or press F1 for more help on using this dialog.

30.7.5 What Happens When Oracle ADF Security Handles Authorization
When a user attempts to execute an action against a resource which has a defined
grant, Oracle ADF Security checks to see if the user is a principal defined in the grant.
If the user is not yet authenticated, the application displays the login page or form. If
the user has been authenticated, and does not have permission, a security error is
displayed.

Example 30–6 shows grants for the attribute binding and method binding if you are
using the Oracle JAZN lightweight XML provider, these grants are written in the
system-jazn-data.xml file. Note that in these grants, the role users has been
granted a RowSetPermission to create, read, and update the attributes of the bound
collection EmployeesView1, and also an AttributePermission to read the
DepartmentID attribute value.

Implementing Authorization Programmatically

30-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 30–6 Sample system-jazn-data.xml File Oracle ADF Permissions

<grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/users</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.RowSetPermission</class>
 <name>EmployeesView1</name>
 <actions>create,read,update</actions>
 </permission>
 <permission>
 <class>oracle.adf.share.security.authorization.AttributePermission</class>
 <name>EmployeesView1.DepartmentId</name>
 <actions>read</actions>
 </permission>
 </permissions>
</grant>

Users or roles are those already defined in your resource provider.

30.8 Implementing Authorization Programmatically
You can set authorization policies against resources and users. For example, you can
allow only certain groups of users the ability to view, create, or change certain data or
invoke certain methods. Or, you can prevent components from rendering based on the
group a user belongs to. Because the user has been authenticated, the application can
determine whether or not to allow that user access to any object that has an
authorization restraint configured against it.

The application can reference roles programmatically to determine whether a specific
user belongs to a role. In the SRDemo application this is accomplished using the
method isUserInRole() defined by the FacesContext interface (and also
available from the HttpServletRequest interface).

The SRDemo application uses three core roles to determine who will have access to
perform specific functions. Each user is classified with by the roles: user, technician, or
manager. The remoteUser value (obtained from the Faces Context) matches the email
address in the SRDemo application’s USERS table. These criteria are implemented
using container-managed, Form-based authentication provided by Oracle Application
Server as described in Section 30.3.1, "How to Enable J2EE Container-Managed
Authentication".

Implementing Authorization Programmatically

Adding Security to an Application 30-29

30.8.1 Making User Information EL Accessible
Once the security container is set up, performing authorization is a task of:

■ Reading the container security attributes the first time the application references it

■ Making the key security information available in a form that can be accessed
through the expression language

To accomplish this, the JSF web application can make use of a managed bean that is
registered with session scope. The managed beans are Java classes that you register
with the application using the faces-config.xml file. When the application starts,
it parses this configuration file and the beans are made available and can be referenced
in an EL expression, allowing access by the web pages to the bean’s content.

For detailed information about working with managed beans, see Section 17.2, "Using
a Managed Bean to Store Information".

This sample from SRList.jspx controls whether the web page will display a button
that the manager uses to display an edit page.

<af:commandButton text="#{res['srlist.buttonbar.edit']}"
 actionListener="#{bindings.setCurrentRowWithKey.execute}"
 action="Edit"
 rendered="#{userInfo.manager}">
 <af:setActionListener from="#{row.rowKeyStr}"
 to="#{processScope.rowKeyStr}"/>
 <af:setActionListener from="#{'GlobalHome'}"
 to="#{userState.returnNavigationRule}"/>
</af:commandButton>

This sample from SRCreateConfirm.jspx controls whether the web page will
display a user name based on the user’s authentication status.

<f:facet name="infoUser">
 <!-- Show the Logged in user -->
 <h:outputFormat value="#{res['srdemo.connectedUser']}"
 rendered="#{userInfo.authenticated}" escape="false">
 <f:param value="#{userInfo.userName}"/>
 </h:outputFormat>
</f:facet>

30.8.1.1 Creating a Class to Manage Roles
The managed bean’s properties allow you to invoke methods in a class that contains
the code needed to validate users and to determine the available roles. This class
should be created before you create the managed bean so you know the property
names to use when you define the managed bean.

To create the Java class:
1. In the New Gallery select the General category and the Java Class item.

2. In the Create Java Class dialog, enter the name of the class and accept the defaults
to create a public class with a default constructor.

Example 30–7 shows the key methods that the SRDemo application implements:

Implementing Authorization Programmatically

30-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 30–7 SRDemo Application UserInfo.java Sample

/**
 * Constructor
 */
public UserInfo() {

 FacesContext ctx = FacesContext.getCurrentInstance();
 ExternalContext ectx = ctx.getExternalContext();

 //Ask the container who the user logged in as
 _userName = ectx.getRemoteUser();

 //Default the value if not authenticated
 if (_userName == null || _userName.length()==0) {
 _userName = "Not Authenticated";
 }

 //Set the user role flag...
 //Watch out for a tricky bug here:
 //We have to evaluate the roles Most > Least restrictive
 //because the manager role is assigned to the technician and user roles
 //thus checking if a manager is in "user" will succeed and we'll stop
 //there at the lower level of priviledge
 for (int i=(ROLE_NAMES.length-1);i>0;i--) {
 if (ectx.isUserInRole(ROLE_NAMES[i])){
 _userRole = i;
 break;
 }
 }
}

 /**
 * @return the String role name
 */
 public String getUserRole() {
 return ROLE_NAMES[_userRole];
 }

 /**
 * Get the security container user name of the current user.
 * As an additional precaution make it clear when we are running in
 * Dev mode.
 * @return users login name which in this case is also their email id.
 */
 public String getUserName() {
 StringBuffer name = new StringBuffer(_userName);
 if (_devMode) {
 name.append(" (Development Mode)");
 }
 return name.toString();
 }

 /**
 * Function designed to be used from Expression Language
 * for swiching UI Features based on role.
 * @return boolean
 */
 public boolean isCustomer() {
 return (_userRole==USER_ROLE);
 }

Implementing Authorization Programmatically

Adding Security to an Application 30-31

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * @return boolean
 */
 public boolean isTechnician() {
 return (_userRole==TECHNICIAN_ROLE);
 }

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * @return boolean
 */
 public boolean isManager() {
 return (_userRole==MANAGER_ROLE);
 }

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * This particular function indicates if the user is either
 * a technician or manager
 * @return boolean
 */
 public boolean isStaff() {
 return (_userRole>USER_ROLE);
 }

 /**
 * Function designed to be used from Expression Language
 * for switching UI Features based on role.
 * This particular function indicates if the session is actually authenticated
 * @return boolean
 */
 public boolean isAuthenticated() {
 return (_userRole>NOT_AUTHENTICATED);
 }
}

30.8.1.2 Creating a Managed Bean for the Security Information
The UserInfo bean is registered as a managed bean named userInfo in the JSF
faces-config.xml file. The managed bean uses expressions for managed properties
which the UserInfo.java class implements.

For example, in the SRDemo application the following expressions appear in the
UserInfo managed bean:

■ #{userInfo.userName} either returns the login Id or the String "Not
Authenticated"

■ #{userInfo.userRole} returns the current user’s role in its String value, for
example, manager

■ #{userInfo.staff} returns true if the user is a technician or manager

■ #{userInfo.customer} returns true if the user belongs to the role user

■ #{userInfo.manager} returns true if the user is a manager

Implementing Authorization Programmatically

30-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To define the managed bean properties and expressions:
1. In the Application Navigator, open the faces-config.xml file in the user

interface WEB-INF folder.

2. In the window, select the Overview tab.

3. In the element list on the left, select Managed Beans and click New.

4. In the Create Managed Bean dialog specify the class information for the managed
bean. If you have not created the class, see Section 30.8.1.1, "Creating a Class to
Manage Roles".

5. To permit the security information defined by the managed bean to accessible by
multiple web pages, set Scope to Session. For example, the SRDemo application
defines the managed bean name userInfo, corresponding to the
UserInfo.java class.

Example 30–8 shows the portion of the faces-config.xml file that defines the
managed bean userInfo to hold security information for the SRDemo application.

Example 30–8 Managed Beans in the SRDemo faces-config.xml File

<!-- The managed bean used to hold security information -->
 <managed-bean>
 <managed-bean-name>userInfo</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.UserInfo</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Creating Data Control Adapters 31-1

31
Creating Data Control Adapters

If you need data controls beyond those that are provided by JDeveloper, you can
create your own. ADF supports two main ways to create data controls:

■ Create a JavaBean to represent the data source.

■ Create a data control adapter for the data source type.

This chapter describes the second option: creating a data control adapter. For
information about data controls, see Chapter 1, "Introduction to Oracle ADF
Applications".

This chapter contains the following topics:

■ Section 31.1, "Introduction to the Simple CSV Data Control Adapter"

■ Section 31.2, "Overview of Steps to Create a Data Control Adapter"

■ Section 31.3, "Implement the Abstract Adapter Class"

■ Section 31.4, "Implement the Data Control Definition Class"

■ Section 31.5, "Implement the Data Control Class"

■ Section 31.6, "Create any Necessary Supporting Classes"

■ Section 31.7, "Create an XML File to Define Your Adapter"

■ Section 31.8, "Build Your Adapter"

■ Section 31.9, "Package and Deploy Your Adapter to JDeveloper"

■ Section 31.10, "Location of Javadoc Information"

31.1 Introduction to the Simple CSV Data Control Adapter
This chapter shows a simple CSV data control adapter as an example of a custom data
control adapter. This adapter is a simplified version of the CSV data control adapter
that ships with JDeveloper.

The chapter describes what the simple CSV data control adapter does and the classes
that make up the adapter.

The simple CSV data control adapter retrieves comma-separated values from a file and
displays them on a page. To use the adapter in JDeveloper, you can do one of the
following:

■ right-click a node that represents a CSV file and choose "Create Data Control" from
the context menu

■ drag and drop a node on the Data Control Palette

Overview of Steps to Create a Data Control Adapter

31-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

In either case, the node must map to a CSV text file, and the name of the file must have
a .csv extension. You do not have to enter any metadata because the simple CSV data
control adapter extracts the metadata from the node.

After you create a data control using the simple CSV adapter, the data control appears
in the Data Control Palette. You can then drag and drop it onto a view page.

To simplify some details, the simple CSV adapter hardcodes the following items:

■ The fields in the CSV file are comma-separated.

■ The delimiter character is the double-quote character.

■ The CSV file uses UTF-8 encoding.

■ The first line in the file specifies column names.

■ The name of the CSV file must have a .csv extension.

(The CSV adapter that ships with JDeveloper enables you to set these values.)

When you create a data control adapter, you create it so that it represents a source
type, not a source instance. In the case of the CSV adapter, the source type is CSV files.
To specify a specific data instance, for example, a particular CSV file, the user creates a
data control with the help of the data control adapter and associates the instance with
metadata. The metadata specifies the data for the instance. In the case of the simple
CSV adapter, the metadata includes the path to a specific CSV file.

The responsibilities of a data control adapter include:

■ Providing metadata for the data control instance

■ Creating a data control instance using the stored metadata during runtime

Data control adapters run within the adapter framework. The adapter framework takes
care of storing the metadata, integrating the data control adapter with the ADF
lifecycle, and integrating with JDeveloper during design time.

31.2 Overview of Steps to Create a Data Control Adapter
To create data control adapters:

1. Create classes to extend abstract classes and implement interfaces in the adapter
framework. These classes are used during design time and runtime. You have to
create three classes as described in these sections:

■ Section 31.3, "Implement the Abstract Adapter Class"

■ Section 31.4, "Implement the Data Control Definition Class"

■ Section 31.5, "Implement the Data Control Class"

You can also create additional classes as required by your adapter. For the simple
CSV adapter, it includes two additional classes: CSVHandler and CSVParser.
These classes are shown in Section 31.6, "Create any Necessary Supporting
Classes".

2. Create a definition file, adapter-definition.xml, to register your adapter
with ADF. This file contains the class name of your adapter implementation and
references the libraries that your adapter needs to run. See Section 31.7, "Create an
XML File to Define Your Adapter".

3. Install your data control adapter in JDeveloper by packaging your class files and
the definition file in a JAR file and placing the JAR file in JDeveloper’s classpath.
See Section 31.9, "Package and Deploy Your Adapter to JDeveloper".

Implement the Abstract Adapter Class

Creating Data Control Adapters 31-3

Invoking Your Adapter
After installing your data control adapter in JDeveloper, you can invoke it by
right-clicking a node in JDeveloper that your data control adapter supports and
selecting "Create Data Control" from the context menu. The data control adapter
declares the node types that it supports in its adapter-definition.xml
configuration file (described in Section 31.7, "Create an XML File to Define Your
Adapter").

For example, if your adapter supports database connection nodes, when you
right-click on a database connection, then you can select Create Data Control from the
context menu to invoke your adapter.

Note that this chapter does not cover how to create a wizard, or how to pass values
from a wizard to your adapter.

31.3 Implement the Abstract Adapter Class
Implementing the AbstractAdapter class is optional. It is required only if you want
to enable the user to create a data control by dragging and dropping a node onto the
Data Control Palette. In this case, the dropped node represents the data source
associated with the data control that you are creating. If you do not want this feature,
you do not have to implement this class. For example, the CSV data control adapter
that ships with JDeveloper does not implement this class because it does not support
the drag-and-drop operation. Instead, this adapter displays a wizard to collect
information from the user.

The simple CSV adapter implements the AbstractAdapter. When the user drags
and drops a node onto the Data Control Palette, JDeveloper checks to see which
adapter can handle the type of node that was dropped. You specify the node types that
your adapter can handle in the adapter-definition.xml file. This file is used to
register your adapter with JDeveloper. See Section 31.7, "Create an XML File to Define
Your Adapter" for details about this file.

In your class, you have to implement some methods in the AbstractAdapter class,
as described in these sections:

■ Section 31.3.4, "Implementing the initialize Method"

■ Section 31.3.5, "Implementing the invokeUI Method"

■ Section 31.3.6, "Implementing the getDefinition Method"

31.3.1 Location of JAR Files
The abstract class oracle.adf.model.adapter.AbstractAdapter is located in
the JDEV_HOME/bc4j/lib/adfm.jar file.

31.3.2 Abstract Adapter Class Outline
Example 31–1 shows an outline of a class that implements the AbstractAdapter
class.

Implement the Abstract Adapter Class

31-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 31–1 Outline for Class That Implements AbstractAdapter

import oracle.adf.model.adapter.AbstractAdapter;
import oracle.adf.model.adapter.DTContext;
import oracle.adf.model.adapter.AbstractDefinition;

public class MyAdapter extends AbstractAdapter
{

public void initialize(Object sourceObj, DTContext ctx)
{

// you need to implement this method.
// see Section 31.3.4, "Implementing the initialize Method".

}

public boolean invokeUI()
{

// you need to implement this method.
// see Section 31.3.5, "Implementing the invokeUI Method".

}

public AbstractDefinition getDefinition()
{

// you need to implement this method.
// see Section 31.3.6, "Implementing the getDefinition Method".

}
}

31.3.3 Complete Source for the SampleDCAdapter Class
Example 31–2 shows the complete source for the SampleDCAdapter class. This is the
class that implements AbstractAdapter for the simple CSV adapter. Subsequent
sections describe the methods in this class.

Example 31–2 Complete Source for SampleDCAdapter

package oracle.adfinternal.model.adapter.sample;

import java.net.URL;

import oracle.adf.model.adapter.AbstractAdapter;
import oracle.adf.model.adapter.AbstractDefinition;
import oracle.adf.model.adapter.DTContext;

import oracle.ide.Context;

public class SampleDCAdapter extends AbstractAdapter
{

// JDev Context
private Context mJdevCtx = null;

// Source object of data
private Object mSrc = null;
// Source Location
private String mSrcLoc = null;
// data control name
private String mDCName = null;
// data control definition
private AbstractDefinition mDefinition = null;

public SampleDCAdapter()

Implement the Abstract Adapter Class

Creating Data Control Adapters 31-5

{
}

/**
 * Initializes the adapter from a source object.
 * <p>
 * The source object can be different thing depending on the context of the
 * design time that the adapter is used in. For JDeveloper, the object will
 * be a JDeveloper node.
 * </p>
 * <p>
 * Adapter implementations will check the <code>"ctx"</code> parameter to
 * get the current design time context. The source object will be used to
 * extract the information for the data source.
 * </p>
 * @param sourceObj Object that contains information about the data source
 * that will be used to define the data control.
 * @param ctx Current design time context.
 */
public void initialize(Object sourceObj, DTContext ctx)
{

mSrc = sourceObj;
mJdevCtx = (Context) ctx.get(DTContext.JDEV_CONTEXT);

}

/**
 * Invlokes the UI at the design time.
 * <p>
 * This method is a call back from the JDeveloper design time environment to
 * the adapters to bring up any UI if required to gather information about
 * the data source they represent.
 * </p>
 *
 * @return false if the user cancels the operation. The default retrun value
 * is true.
 */
public boolean invokeUI()
{

// First check if this is a JDev environment.
if (mJdevCtx != null && mSrc != null)
{

if (extractDataSourceInfo(mSrc))
{

SampleDCDef def = new SampleDCDef(mSrcLoc,mDCName);
mDefinition = def;
return true;

}
return false;

}
return false;

}

 /**
 * <p>
 * The Definition instance obtained can be used by the ADF design time to
 * capture the data control metadata.
 *</p>
 *
 * @return The definition instance describing the data control design time.
 */

Implement the Abstract Adapter Class

31-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

public AbstractDefinition getDefinition()
{

return mDefinition;
}

/**
 * @param source the data source object.
 * @return false if data type is unknown.
 */
public boolean canCreateDataControl(Object source)
{

return extractDataSourceInfo(source);
}

/**
 * Extracts information from a data source. This method extracts name
 * from the object.
 * @param obj the data source object.
 */
private boolean extractDataSourceInfo(Object obj)
{

mDCName = "SampleDC";

// See if the node dropped is a text node of CSV type.
// We will assume that the CSV data file must end with .csv
if (obj instanceof oracle.ide.model.TextNode)
{

oracle.ide.model.TextNode tn = (oracle.ide.model.TextNode) obj;
URL url = tn.getURL();
String loc = url.getFile();
// Check if the file has a matching extension
if (loc.endsWith(".csv"))
{

mSrcLoc = loc;
String path = url.getPath();
int index = path.lastIndexOf('/');

if (index != -1)
{

String fileName = path.substring(index+1);
int dotIndex = fileName.lastIndexOf('.');
mDCName = fileName.substring(0,dotIndex);

}
return true;

}
}
return false;

}

}

Implement the Abstract Adapter Class

Creating Data Control Adapters 31-7

31.3.4 Implementing the initialize Method
The framework calls the initialize method when the user drags and drops a node
onto the Data Control Palette. The method has the following signature:

Example 31–3 initialize Signature

public abstract void initialize(Object sourceObj, DTContext ctx);

The sourceObj parameter specifies the node that was dropped. You can check this to
ensure that the node type is something your adapter can handle.

The ctx parameter specifies the design time context. The package path for DTContext
is oracle.adf.model.adapter.DTContext.

In the initialize method, you should perform these tasks:

■ check if the source node is something that you support

■ if you support the node, then extract all the information that you need to create a
data control instance from the source node. If the information is not sufficient to
create a data control instance, you can display some UI in the invokeUI method
to get the user to enter the required information.

For the simple CSV adapter, the initialize method simply sets some class
variables. These class variables are checked later in the invokeUI method.

Example 31–4 initialize Method

public void initialize(Object sourceObj, DTContext ctx)
{

mSrc = sourceObj;
mJdevCtx = (Context) ctx.get(DTContext.JDEV_CONTEXT);

}

31.3.5 Implementing the invokeUI Method
This method enables you to display any UI to collect information from the user about
the dropped data source. The method has the following signature in the
AbstractAdapter:

Example 31–5 invokeUI Signature

public boolean invokeUI()
{

return true;
}

The method should return false if the user cancels the operation in the UI. This
means that the data control is not created.

The method should return true (which is the default implementation) if the UI was
run to collect the information.

The simple CSV adapter uses the initialize method to call
extractDataSourceInfo, which performs the following:

■ checks that the node right-clicked by the user represents a text file and that the
filename has a .csv extension

■ gets the filename of the CSV file

Implement the Abstract Adapter Class

31-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ sets the mSrcLoc and mDCName class variables. mSrcLoc points to the location of
the CSV file, and mDCName is the name used for the data control. In this case, it is
just the name of the CSV file without the .csv extension.

These variables are used by invokeUI to instantiate a SampleDCDef object. The
SampleDCDef object, which is another class you have to implement, is described
in Section 31.4, "Implement the Data Control Definition Class".

Example 31–6 shows the invokeUI method:

Example 31–6 invokeUI

public boolean invokeUI()
{

// First check if this is a JDev environment.
if (mJdevCtx != null && mSrc != null)
{

if (extractDataSourceInfo(mSrc))
{

SampleDCDef def = new SampleDCDef(mSrcLoc,mDCName);
mDefinition = def;
return true;

}
return false;

}
return false;

}

31.3.6 Implementing the getDefinition Method
This method returns the definition of the data control that was created from
information gathered from the dropped source node. The method has the following
signature:

Example 31–7 getDefinition Signature

public abstract AbstractDefinition getDefinition();

The AbstractDefinition class is the data control definition class that you created.
See Section 31.4, "Implement the Data Control Definition Class".

In the simple CSV adapter, the getDefinition method returns the value of the
mDefinition class variable, which was set in the invokeUI method. mDefinition
refers to the data control definition class that you created (SampleDCDef in the case of
the simple CSV adapter).

Example 31–8 getDefinition

public AbstractDefinition getDefinition()
{

return mDefinition;
}

Implement the Data Control Definition Class

Creating Data Control Adapters 31-9

31.4 Implement the Data Control Definition Class
This class needs to provide all the information that the framework needs to instantiate
a data control during design time and runtime. This class is responsible for performing
these operations:

■ creating a default constructor. See Section 31.4.4, "Creating a Default Constructor".

■ collecting metadata from the user about the data source. See Section 31.4.5,
"Collecting Metadata from the User".

■ defining the structure of the output. The structure defines what the user sees when
the user expands the data control in the Data Control Palette. The user can then
drag elements from the data control entry in the Data Control Palette to a page to
create a view component. See Section 31.4.6, "Defining the Structure of the Data
Control".

■ creating an instance of the data control class using that metadata. The data control
class is a class that you implement. See Section 31.4.7, "Creating an Instance of the
Data Control".

■ enabling the framework to load the metadata from the DCX file. See Section 31.4.8,
"Setting the Metadata for Runtime".

■ setting a name for your data control. See Section 31.4.9, "Setting the Name for the
Data Control".

31.4.1 Location of JAR Files
The data control definition class needs to extend the abstract class
oracle.adf.model.adapter.AbstractDefinition. This class is located in the
JDEV_HOME/bc4j/lib/adfm.jar file.

31.4.2 Data Control Definition Class Outline
Example 31–9 is an outline showing the methods you have to implement when you
create a data control definition class. The sample is taken from SampleDCDef, which
is the data control definition class for the simple CSV data control adapter.

Example 31–9 Outline for the Data Control Definition Class

import oracle.adf.model.adapter.AbstractDefinition;
import org.w3c.dom.Node;
import oracle.binding.meta.StructureDefinition;
import oracle.binding.DataControl;
import java.util.Map;

public class SampleDCDef extends AbstractDefinition
{

// default constructor
public SampleDCDef ()
{

// you need a default constructor.
// see Section 31.4.4, "Creating a Default Constructor".

}

public Node getMetadata()
{

// you need to implement this method.
// see Section 31.4.5, "Collecting Metadata from the User".

}

Implement the Data Control Definition Class

31-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

public StructureDefinition getStructure()
{

// you need to implement this method.
// see Section 31.4.6, "Defining the Structure of the Data Control".

}

public DataControl createDataControl()
{

// you need to implement this method.
// see Section 31.4.7, "Creating an Instance of the Data Control".

}

public void loadFromMetadata(Node node, Map params)
{

// you need to implement this method.
// see Section 31.4.8, "Setting the Metadata for Runtime".

}

public String getDCName()
{

// you need to implement this method.
// see Section 31.4.9, "Setting the Name for the Data Control".

}
}

31.4.3 Complete Source for the SampleDCDef Class
Example 31–10 shows the complete source for the SampleDCDef class:

Example 31–10 Complete Source for the SampleDCDef Class

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;

import java.util.Map;
import oracle.binding.DataControl;
import oracle.binding.meta.StructureDefinition;

import oracle.adf.model.adapter.AbstractDefinition;

import oracle.adf.model.adapter.AdapterDCService;
import oracle.adf.model.adapter.AdapterException;
import oracle.adf.model.adapter.dataformat.AccessorDef;
import oracle.adf.model.adapter.dataformat.StructureDef;
import oracle.adf.model.adapter.utils.NodeAttributeHelper;

import oracle.adf.model.utils.SimpleStringBuffer;

import oracle.adfinternal.model.adapter.sample.CSVHandler;
import oracle.adfinternal.model.adapter.sample.SampleDataControl;
import oracle.adfinternal.model.adapter.url.SmartURL;

import oracle.xml.parser.v2.XMLDocument;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

Implement the Data Control Definition Class

Creating Data Control Adapters 31-11

public class SampleDCDef extends AbstractDefinition
{

// Name of the root accessor for a definition
public static final String RESULT_ACC_NAME = "Result";

// Namespace for the metadata definition.
public static final String SAMPLEDC_NS =

"http://xmlns.oracle.com/adfm/adapter/sampledc";

// Definition tag as the root
public static final String DEFINITION = "Definition";

// Attribute to contain the source URL
public static final String SOURCE_LOC = "SourceLocation";

// Name of the data control
private String mName = "SampleDC";

// the structure definition
private StructureDef mStructDef = null;

// URL for this definition.
private String mCSVUrl = null;

public SampleDCDef()
{
}

public SampleDCDef(String csvURL,String dcName)
{

mCSVUrl = csvURL;
mName = dcName;

}

public Node getMetadata()
{

XMLDocument xDoc = new XMLDocument();
Element metadata = xDoc.createElementNS(SAMPLEDC_NS, DEFINITION);
metadata.setAttribute(SOURCE_LOC, mCSVUrl.toString());
return metadata;

}

public StructureDefinition getStructure()
{

if (mStructDef == null)
{

// create an empty StructureDefinition
mStructDef = new StructureDef(getName());
SmartURL su = new SmartURL(mCSVUrl.toString());
InputStream isData = su.openStream();
CSVHandler csvHandler = new CSVHandler(isData, true, "UTF-8", ",", "\"");

// Name of the accessor or the method structure to hold the attributes
String opName = new SimpleStringBuffer(50).append(getDCName())

.append("_")

.append(RESULT_ACC_NAME)

.toString();

Implement the Data Control Definition Class

31-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

StructureDef def = (StructureDef)csvHandler.getStructure(opName, null);
// Create the accessor definition
AccessorDef accDef =

new AccessorDef(RESULT_ACC_NAME, mStructDef, def, true);
def.setParentType(StructureDef.TYPE_ACCESSOR);
accDef.setBindPath(new SimpleStringBuffer(50)

.append(mStructDef.getFullName())

.append(".")

.append(AdapterDCService.DC_ROOT_ACC_NAME)

.toString());
mStructDef.addAccessor(accDef);

}
return mStructDef;

}

public void loadFromMetadata(Node node, Map params)
{

try
{

// Get the information from the definition
NodeList listChld = node.getChildNodes();
int cnt = listChld.getLength();
Node chld;

for (int i = 0; i < cnt; i++)
{

chld = listChld.item(i);
// System.out.println("Tag: " + chld.getNodeName());
if (DEFINITION.equalsIgnoreCase(chld.getNodeName()))
{

// Load the required attributes
NodeAttributeHelper attribs =
new NodeAttributeHelper(chld.getAttributes());
mCSVUrl = attribs.getValue(SOURCE_LOC);

}
}

}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}

}

public DataControl createDataControl()
{

SampleDataControl dcDataControl = new SampleDataControl(mCSVUrl);
return dcDataControl;

}

public String getDCName()
{

return mName;
}

public String getAdapterType()
{

Implement the Data Control Definition Class

Creating Data Control Adapters 31-13

return "oracle.adfm.adapter.SampleDataControl";
}

}

31.4.4 Creating a Default Constructor
You need to create a default constructor for the data control definition class. The
simple CSV adapter has an empty default constructor:

Example 31–11 SampleDCDef Default Constructor

public SampleDCDef()
{
}

The default constructor is used only during runtime. It is not used during design time.

31.4.5 Collecting Metadata from the User
Metadata in a data control adapter provides information on the data source. The data
control definition class uses the metadata to create a data control. Examples of
metadata for the full-featured CSV data control adapter include the URL to the CSV
file, the field separator character, and the quote character. For the simple CSV adapter,
the metadata consists of only the location of the CSV file.

A data control adapter can collect metadata in different ways. Examples:

■ The CSV data control adapter that comes with JDeveloper uses a wizard to collect
metadata from the user.

■ The web service data control adapter also uses a wizard to collect metadata.
Alternatively, users can drag a web service connection node and drop it on the
Data Control Palette. The web service adapter extracts metadata from the node
instead of launching the wizard.

When the user drags and drops a node onto the Data Control Palette, the adapter
framework looks for an adapter that can handle the type of node that was
dropped by searching the registered data control adapters. Data control adapters
declare which node types they support. The nodes are JDeveloper nodes that
represent specific source types. When the framework finds an adapter that
supports the type of node that was dropped, it invokes the data control adapter,
which then extracts the required information from the node.

■ The simple CSV adapter extracts metadata from a node when the user right-clicks
a node and selects "Create Data Control" from the context menu.

Regardless of how a data control adapter retrieves the metadata, you must implement
the getMetadata method in your data control definition class. The framework calls
the method to get the metadata.

This method returns the metadata in the form of a Node object. The getMetadata
method has the following signature:

Implement the Data Control Definition Class

31-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 31–12 getMetadata Signature

public org.w3c.dom.Node getMetadata();

In the simple CSV adapter, the getMetadata method retrieves the metadata from the
mCSVUrl class variable and inserts the value in an Element object.

Example 31–13 getMetadata Method

public Node getMetadata()
{

XMLDocument xDoc = new XMLDocument();
Element metadata = xDoc.createElementNS(SAMPLEDC_NS, DEFINITION);
metadata.setAttribute(SOURCE_LOC, mCSVUrl.toString());
return metadata;

}

The framework extracts the information from getMetadata’s return value (the Node
object) and writes the information to the DataControls.dcx file. For example, after
the user has created a CSV data control, the file looks like the following:

Example 31–14 DataControls.dcx File

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"

version="10.1.3.36.45" Package="view" id="DataControls">

<AdapterDataControl id="testdata"
FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"
ImplDef="oracle.adfinternal.model.adapter.sample.SampleDCDef"
SupportsTransactions="false"
SupportsSortCollection="false" SupportsResetState="false"
SupportsRangesize="false" SupportsFindMode="false"
SupportsUpdates="false" Definition="testdata"
BeanClass="testdata"
xmlns="http://xmlns.oracle.com/adfm/datacontrol">

<Source>
<Definition

SourceLocation="/C:/Application1/ViewController/public_
html/testdata.csv"/>

</Source>
</AdapterDataControl>

</DataControlConfigs>

The value of the id attribute of the AdapterDataControl tag ("testdata") is
extracted from the name of the CSV file. The other attributes in the
AdapterDataControl tag contain information about the simple CSV adapter itself.
In the Definition element, the framework writes the metadata provided by the
node; the SourceLocation attribute specifies the location of the CSV file.

31.4.6 Defining the Structure of the Data Control
Structure in a data control definition describes the items that appear when the user
expands the data control in the Data Control Palette. Items that can appear include
methods, accessors, and attributes of the underlying service that are available to the
user to invoke or display. The user can drag these items onto a view page.

Implement the Data Control Definition Class

Creating Data Control Adapters 31-15

In your data control definition class, you need to implement the getStructure
method. The framework calls this method when the user expands the data control in
the Data Control Palette.

The getStructure method has the following signature:

Example 31–15 getStructure Signature

public oracle.binding.meta.StructureDefinition getStructure();

StructureDefinition is an interface. You can find more information about this
interface in the online help in JDeveloper, under Reference > Oracle ADF Model API
Reference.

Example 31–16 getStructure Method

public StructureDefinition getStructure()
{

if (mStructDef == null)
{

// create an empty StructureDefinition
mStructDef = new StructureDef(getName());
SmartURL su = new SmartURL(mCSVUrl.toString());
InputStream isData = su.openStream();
CSVHandler csvHandler = new CSVHandler(isData, true, "UTF-8", ",", "\"");

// Name of the accessor or the method structure to hold the attributes
String opName = new SimpleStringBuffer(50).append(getDCName())

.append("_")

.append(RESULT_ACC_NAME)

.toString();

StructureDef def = (StructureDef)csvHandler.getStructure(opName, null);
// Create the accessor definition
AccessorDef accDef =

new AccessorDef(RESULT_ACC_NAME, mStructDef, def, true);
def.setParentType(StructureDef.TYPE_ACCESSOR);
accDef.setBindPath(new SimpleStringBuffer(50)

.append(mStructDef.getFullName())

.append(".")

.append(AdapterDCService.DC_ROOT_ACC_NAME)

.toString());
mStructDef.addAccessor(accDef);

}
return mStructDef;

}

31.4.7 Creating an Instance of the Data Control
The framework calls the createDataControl method in the data control definition
class to create a data control instance. The createDataControl method has the
following signature:

Implement the Data Control Definition Class

31-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 31–17 createDataControl Signature

public oracle.binding.DataControl createDataControl();

The DataControl object returned by the method is an instance of the data control
class that you create. Section 31.5, "Implement the Data Control Class" describes this
class.

In the data control definition for the simple CSV adapter, the createDataControl
method looks like the following:

Example 31–18 createDataControl Method

public DataControl createDataControl()
{

SampleDataControl dcDataControl = new SampleDataControl(mCSVUrl);
return dcDataControl;

}

The SampleDataControl class is described in more detail in Section 31.5,
"Implement the Data Control Class".

31.4.8 Setting the Metadata for Runtime
When the user runs the view page that references your data control, the framework
reads the metadata from the DCX file and invokes the loadFromMetadata method in
the data control definition class to load the data control with the metadata saved
during design time.

Recall that the framework wrote the metadata to the DCX file in the getMetadata
method. See Section 31.4.5, "Collecting Metadata from the User".

The loadFromMetadata method has the following signature:

Example 31–19 loadFromMetadata Signature

public void loadFromMetadata(org.w3c.dom.Node node, java.util.Map params);

The node parameter contains the metadata. In the simple CSV adapter, the method
looks like the following:

Implement the Data Control Definition Class

Creating Data Control Adapters 31-17

Example 31–20 loadFromMetadata Method

public void loadFromMetadata(Node node, Map params)
{

try
{

// Get the information from the definition
NodeList listChld = node.getChildNodes();
int cnt = listChld.getLength();
Node chld;

for (int i = 0; i < cnt; i++)
{

chld = listChld.item(i);
// System.out.println("Tag: " + chld.getNodeName());
if (DEFINITION.equalsIgnoreCase(chld.getNodeName()))
{

// Load the required attributes
NodeAttributeHelper attribs =
new NodeAttributeHelper(chld.getAttributes());
mCSVUrl = attribs.getValue(SOURCE_LOC);

}
}

}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}

}

31.4.9 Setting the Name for the Data Control
You need to implement the getDCName method to return a string that is used to
identify the data control instance in the Data Control Palette. getDCName has the
following signature:

Example 31–21 getDCName Signature

public String getDCName();

In the simple CSV adapter, the method just returns the value of the mName class
variable, which was set by the SampleDCDef(String csvURL, String dcName)
constructor. This constructor was called in the SampleDCAdapter class. mName is the
name of the CSV file without the .csv extension.

Implement the Data Control Class

31-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 31–22 getDCName Method

public String getDCName()
{

return mName;
}

Note that each data control instance must have a unique name within an application.
For example, if you have two CSV data controls in an application, you can name them
"CSV1" and "CSV2". For the CSV data control adapter that is shipped with JDeveloper,
the user can enter the name in the wizard. For the simple CSV adapter, the name is the
name of the CSV file without the .csv extension.

31.5 Implement the Data Control Class
The data control class must be able to access the data source based on the metadata
that was saved during design time. This class is instantiated by the
createDataControl method in the data control definition class (see Section 31.4.7,
"Creating an Instance of the Data Control").

This class needs to:

■ Extend the abstract class oracle.adf.model.AbstractImpl.

■ Implement one of the following data control interfaces:

31.5.1 Location of JAR Files
The abstract class oracle.adf.model.AbstractImpl is located in the JDEV_
HOME/bc4j/lib/adfm.jar file.

The data control interfaces are located in the JDEV_
HOME/bc4j/lib/adfbinding.jar file.

Table 31–1 Data Control Interfaces

Interface When to Use

oracle.binding.DataControl Implement this interface if you do not need to demarcate
the start and end of a request and if you do not need
transactional support.

oracle.binding.ManagedDataControl Implement this interface if you need to demarcate the start
and end of a request. This interface extends DataControl,
which means that you have to implement the methods in
DataControl as well.

oracle.binding.TransactionalDataControl Implement this interface if you need transactional support.
The interface requires you to implement the
rollbackTransaction and commitTransaction
methods, in addition to the methods in the DataControl
interface. (TransactionalDataControl extends the
DataControl interface.)

Implement the Data Control Class

Creating Data Control Adapters 31-19

31.5.2 Data Control Class Outline
The following class outline for a data control class shows the methods you have to
implement:

Example 31–23 Outline for a Data Control Class

import oracle.adf.model.adapter.AbstractImpl;
import oracle.binding.DataControl;
import java.util.HashMap;

public class SampleDataControl extends AbstractImpl implements ManagedDataControl
{

public boolean invokeOperation(java.util.Map map,
oracle.binding.OperationBinding action)

{
// you need to implement this method.
// see Section 31.5.4, "Implementing the invokeOperation Method".

}

public String getName()
{

// you need to implement this method.
// see Section 31.5.5, "Implementing the getName Method".

}

public void release(int flags)
{

// you need to implement this method.
// see Section 31.5.6, "Implementing the release Method".

}

public Object getDataProvider()
{

// you need to implement this method.
// see Section 31.5.7, "Implementing the getDataProvider Method".

}
}

31.5.3 Complete Source for the SampleDataControl Class
Example 31–24 shows the complete source for the SampleDataControl class.

Example 31–24 Complete Source for the SampleDataControl Class

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;

import javax.naming.Context;

import oracle.binding.ManagedDataControl;
import oracle.binding.OperationInfo;

import oracle.adf.model.adapter.AdapterException;

Implement the Data Control Class

31-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

import oracle.adf.model.adapter.AbstractImpl;
import oracle.adf.model.adapter.dataformat.CSVHandler;

import oracle.adfinternal.model.adapter.url.SmartURL;

// Data control that represents a URL data source with CSV data format.
public class SampleDataControl extends AbstractImpl

implements ManagedDataControl
{

//URL to access the data source
private String mCSVUrl = null;

public SampleDataControl()
{
}

public SampleDataControl(String csvUrl)
{

mCSVUrl = csvUrl;
}

public boolean invokeOperation(java.util.Map map,
oracle.binding.OperationBinding action)

{
Context ctx = null;
try
{

// We are interested of method action binding only.
if (action == null)
{

return false;
}

OperationInfo method = action.getOperationInfo();
// No method defined, we are not interested.
if (method == null)
{

return false;
}

// Execute only when the adapter execute is invoked
if (METHOD_EXECUTE.equals(method.getOperationName()))
{

Object retVal = null;
if (mCSVUrl != null)
{

SmartURL su = new SmartURL(mCSVUrl);
InputStream isData = su.openStream();
CSVHandler csvHandler =

new CSVHandler(isData,true,"UTF-8",",","\"");
Map properties = new HashMap();
retVal = csvHandler.getResult(properties);

}

Map rootDataRow = new java.util.HashMap(2);
rootDataRow.put(SampleDCDef.RESULT_ACC_NAME, retVal);
ArrayList aRes = new ArrayList(2);
aRes.add(rootDataRow);

Implement the Data Control Class

Creating Data Control Adapters 31-21

processResult(aRes.iterator(), map, action);
return true;

}
}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}
return false;

}

/**
* Perform request level initialization of the DataControl.
* @param requestCtx a HashMap representing request context.
*/
public void beginRequest(HashMap requestCtx)
{
}

/**
* perform request level cleanup of the DataControl.
* @param requestCtx a HashMap representing request context.
*/
public void endRequest(HashMap requestCtx)
{
}

/**
* return false as resetState was deferred to endRequest processing
*/
public boolean resetState()
{

return false;
}

/**
* returns the name of the data control.
*/
public String getName()
{

return mName;
}

/**
* releases all references to the objects in the data provider layer
*/
public void release(int flags)
{
}

Implement the Data Control Class

31-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

/**
* Return the Business Service Object that this datacontrol is associated with.
*/
public Object getDataProvider()
{

return null;
}

}

31.5.4 Implementing the invokeOperation Method
You must implement the invokeOperation method in your data control class. The
framework invokes this method when the user runs the view page.

This method is declared in the DataControl interface. The method has the following
signature:

Example 31–25 invokeOperation Signature

public boolean invokeOperation(java.util.Map bindingContext,
 oracle.binding.OperationBinding action);

The bindingContext parameter contains the return values fetched from the data
source. The keys for retrieving the values are generated by the framework. Typically
you do not need to process the values unless you need to filter or transform them.

The action parameter specifies the method that generated the values. The method
could be a method supported by the underlying service, as in the case of a web service.
The framework calls the data control even for some built-in actions if the data control
wants to override the default behavior. You can check this parameter to determine if
you need to process the action or not. For data controls that represent data sources that
do not expose methods, the framework creates an action AbstractImpl.METHOD_
EXECUTE to the execute the query for a data control.

The method should return false if it does not handle an action.

In the simple CSV adapter, the invokeOperation method checks that the method is
METHOD_EXECUTE before fetching the data. It invokes the CSVHandler class,
which invokes the CSVParser class, to get the data from the CSV file.

Implement the Data Control Class

Creating Data Control Adapters 31-23

Example 31–26 invokeOperation Method

public boolean invokeOperation(java.util.Map map,
oracle.binding.OperationBinding action)

{
Context ctx = null;
try
{

// We are interested in method action binding only.
if (action == null)
{

return false;
}

OperationInfo method = action.getOperationInfo();
// No method defined, we are not interested.
if (method == null)
{

return false;
}

// Execute only when the adapter execute is invoked
if (METHOD_EXECUTE.equals(method.getOperationName()))
{

Object retVal = null;
if (mCSVUrl != null)
{

SmartURL su = new SmartURL(mCSVUrl);
InputStream isData = su.openStream();
CSVHandler csvHandler =

new CSVHandler(isData, true, "UTF-8", ",", "\"");
Map properties = new HashMap();
retVal = csvHandler.getResult(properties);

}

Map rootDataRow = new java.util.HashMap(2);
rootDataRow.put(SampleDCDef.RESULT_ACC_NAME, retVal);
ArrayList aRes = new ArrayList(2);
aRes.add(rootDataRow);

processResult(aRes.iterator(), map, action);
return true;

}
}
catch (AdapterException ae)
{

throw ae;
}
catch (Exception e)
{

throw new AdapterException(e);
}
return false;

}

Note that invokeOperation calls the processResult method after fetching the
data. See the next section for details.

Implement the Data Control Class

31-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

31.5.4.1 About Calling processResult
invokeOperation should call processResult to provide updated values to the
framework. The method puts the result into the binding context for the framework to
pick up. The method has the following syntax:

Example 31–27 processResult Syntax

public void processResult(Object result,
Map bindingContext,
oracle.binding.OperationBinding action)

In the result parameter, specify the updated values.

In the bindingContext parameter, specify the binding context. This is typically the
same binding context passed into the invokeOperation method.

In the action parameter, specify the operation. This is typically the same action value
passed into the invokeOperation method.

31.5.4.2 Return Value for invokeOperation
Return true from invokeOperation if you handled the action in the method.
Return false if the action should be handled by the framework.

31.5.5 Implementing the getName Method
Implement the getName method to return the name of the data control as used in a
binding context.

This method is declared in the DataControl interface. It has the following signature:

Example 31–28 getName Signature

public String getName();

In the simple CSV adapter, the method simply returns mName, which is a variable
defined in the AbstractImpl class.

Example 31–29 getName Method

public String getName()
{

return mName;
}

Create any Necessary Supporting Classes

Creating Data Control Adapters 31-25

31.5.6 Implementing the release Method
The framework calls the release method to release all references to the objects in the
data provide layer.

This method is declared in the DataControl interface. It has the following signature:

Example 31–30 release Signature

public void release(int flags);

The flags parameter indicate which references should be released:

■ REL_ALL_REFS: The data control should release all references to the view and
model objects.

■ REL_DATA_REFS: The data control should release references to data provider
objects.

■ REL_VIEW_REFS: The data control should release all references to view or UI
layer objects.

In the simple CSV data control adapter, the release method is empty. However, if
your data control uses a connection, it should close and release the connection in this
method.

31.5.7 Implementing the getDataProvider Method
This method returns the business service object associated with this data control.

This method is declared in the DataControl interface. It has the following signature:

Example 31–31 getDataProvider Signature

public Object getDataProvider();

In the simple CSV data control adapter, this method just returns null.

31.6 Create any Necessary Supporting Classes
In addition to the required classes, which implement ADF interfaces, you can create
any supporting classes for your adapter, if necessary. The simple CSV adapter includes
two supporting classes: CSVHandler and CSVParser. These classes read and parse
the CSV files into rows and fields. See Section 31.11, "Contents of Supporting Files" for
complete source listing for these classes.

Create an XML File to Define Your Adapter

31-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

31.7 Create an XML File to Define Your Adapter
To define your adapter for JDeveloper, create a file called
adapter-definition.xml and place it in a directory called meta-inf. Note that
the file and directory names are case-sensitive.

A typical adapter-definition.xml file contains the following entries:

Example 31–32 Description of adapter-definition.xml File

<AdapterDefinition>
<Adapter Name="unique name for the adapter"

ClassName="full name of class that implements AbstractAdapter">

<Schema Namespace="name of schema that defines the data control metadata for
this adapter"

Location="location of schema definition file"/>

<Source>
<Type Name="name of source type that the adapter can handle to create a

data control"
JDevNode="full class name of supported node"/>

</Source>

<JDevContextHook Class="full name of class that provides the JDeveloper
context hook, if any"/>

<Dependencies>
<Library Path="full path name of the JAR file that the adapter needs in

order to run"/>
</Dependencies>

</Adapter>
</AdapterDefinition>

The AdapterDefinition tag is the container tag for all adapters.

Each Adapter tag describes an adapter. It has the following attributes:

■ Name specifies a unique name for the adapter. The framework uses this name to
identify the adapter.

■ ClassName specifies the full Java class that implements the AbstractAdapter.

The Schema tag defines the namespace and the schema definition for the adapter
metadata. JDeveloper registers the schema so that the metadata can be validated at
design time. You can define all the namespaces and schemas supported by the
adapters. This is optional.

The Source tag specifies the node (or data source) types that the adapter supports. It
has the following attributes:

■ JDevNode specifies the Java class for the supported node type. This node type can
appear in JDeveloper’s Connection Navigator.

■ Name: any string

The JDevContextHook tag specifies additions to the context menu (the menu that
appears when the user right clicks on the metadata node for the data control instance
in the Structure Pane).

Build Your Adapter

Creating Data Control Adapters 31-27

The Dependencies tag lists the library files that your adapter requires during
runtime. The framework adds the library files to the project when the user uses a data
control based on your adapter.

The adapter-definition.xml file for the simple CSV data control adapter looks
like the following:

Example 31–33 adapter-definition.xml File for the Simple CSV Adapter

<AdapterDefinition>
<Adapter Name="oracle.adfm.adapter.SampleDataControl"

ClassName="oracle.adfinternal.model.adapter.sample.SampleDCAdapter">
<Schema Namespace="http://xmlns.oracle.com/adfm/adapter/sample"

Location="/oracle/adfinternal/model/adapter/sample/sampleDC.xsd"/>
<Source>

<Type Name="csvNode" JDevNode="oracle.ide.model.TextNode"/>
</Source>
<Dependencies>

<Library Path="${oracle.home}/jlib/sampledc.jar"/>
</Dependencies>

</Adapter>
</AdapterDefinition>

The sampleDC.xsd file is shown in Section 31.11.1, "sampleDC.xsd".

31.8 Build Your Adapter
You need to add the following libraries to your project in order to build your adapter:

1. In the Project Properties dialog in JDeveloper, select Libraries on the left side.

2. Click Add Library on the right side and add the following libraries:

■ JSR-227 API

■ ADF Model Generic Runtime

■ Oracle XML Parser v2

3. Click Add Jar/Directory on the right side and add the following libraries:

■ JDEV_HOME/ide/lib/ide.jar

■ JDEV_HOME/ide/lib/javatools.jar

■ JDEV_HOME/bc4j/jlib/dc-adapter.jar

Package and Deploy Your Adapter to JDeveloper

31-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

31.9 Package and Deploy Your Adapter to JDeveloper
Perform these steps to deploy your adapter to JDeveloper:

1. Create an extension.xml file in the meta-inf directory (the same directory
that contains the adapter-definition.xml file).

You need to do this because you are deploying the adapter as a JDeveloper
extension. You use the extension.xml to add your JAR files to JDeveloper’s
classpath.

The extension.xml file contains the following lines:

Example 31–34 extension.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<extension xmlns="http://jcp.org/jsr/198/extension-manifest"

id="oracle.adfm.sample-adapters"
version="10.1.3.36.45"
esdk-version="1.0">

<name>ADFm Sample Adapter</name>
<owner>Oracle Corporation</owner>
<dependencies>

<import>oracle.BC4J</import>
<import>oracle.j2ee</import>

</dependencies>
<classpaths>

<classpath>../../BC4J/jlib/dc-adapters.jar</classpath>
<classpath>../../jlib/sampledc.jar</classpath>

</classpaths>

<hooks>
<!-- Adapter-specific data control library definitions -->
<libraries xmlns="http://xmlns.oracle.com/jdeveloper/1013/jdev-libraries">

<library name="Sample Data Control" deployed="true">
<classpath>../../jlib/sampledc.jar</classpath>

</library>
</libraries>

</hooks>
</extension>

For details on the tags in the extension.xml file, see the file JDEV_
HOME/jdev/doc/extension/ide-extension-packaging.html.

2. Create a JAR file that contains the class files for your adapter, the
adapter-definition.xml file, and the extension.xml file. The XML files
must be in a meta-inf directory.

For the simple CSV adapter, the JAR file is called sampledc.jar, and it contains the
following files:

Package and Deploy Your Adapter to JDeveloper

Creating Data Control Adapters 31-29

Example 31–35 sampledc.jar

connections.xml
extension/meta-inf/extension.xml
meta-inf/adapter-definition.xml
meta-inf/Manifest.mf
oracle/adfinternal/model/adapter/sample/CSVHandler$1.class
oracle/adfinternal/model/adapter/sample/CSVHandler.class
oracle/adfinternal/model/adapter/sample/CSVParser.class
oracle/adfinternal/model/adapter/sample/SampleDataControl.class
oracle/adfinternal/model/adapter/sample/SampleDCAdapter.class
oracle/adfinternal/model/adapter/sample/SampleDCDef.class

3. Copy the JAR file to the JDEV_HOME/jlib directory.

4. Create another JAR file to contain only the extension.xml file and the manifest file
in the meta-inf directory. For the simple CSV adapter, the JAR file is called
oracle.adfm.sampledc.10.1.3.jar, and it contains the following files:

Example 31–36 oracle.adfm.sampledc.10.1.3.jar

meta-inf/extension.xml
meta-inf/Manifest.mf

5. Copy the second JAR file (for example, oracle.adfm.sampledc.10.1.3.jar)
to the JDEV_HOME/jdev/extensions directory.

6. Stop JDeveloper, if it is running.

7. Start JDeveloper. When you right-click on a node type that your adapter supports,
you should see the "Create Data Control" menu item.

If you want more information on JDeveloper extensions, you can download the
Extension SDK:

1. In JDeveloper, choose Help | Check for Updates. This starts the Check for
Updates wizard.

2. On the Welcome page of the wizard, click Next.

3. On the Source page, select Search Update Centers, and select all the locations
listed in that section. Click Next.

4. On the Updates page, select Extension SDK. Click Next to download and install
the extension SDK.

5. On the Summary page, click Finish. You will need to restart JDeveloper so that it
can access the Extension SDK files.

For help on the Extension SDK, open the JDeveloper’s online help, and navigate to
Extending JDeveloper > Extending JDeveloper with the Extension SDK.

Location of Javadoc Information

31-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

31.10 Location of Javadoc Information
The JDeveloper online help provides reference information for the classes described in
this chapter in Javadoc format.

31.11 Contents of Supporting Files
This section shows the contents of the following files:

■ Section 31.11.1, "sampleDC.xsd"

■ Section 31.11.2, "CSVHandler Class"

■ Section 31.11.3, "CSVParser"

31.11.1 sampleDC.xsd
Example 31–37 shows the contents of the sampleDC.xsd file.

Example 31–37 sampleDC.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/adfm/adapter/test"
 xmlns="http://xmlns.oracle.com/adfm/adapter/test"
 elementFormDefault="qualified">
 <xsd:element name="Definition">
 <xsd:complexType>
 <xsd:attribute name="SourceLocation" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

31.11.2 CSVHandler Class
Example 31–38 shows the contents of the CSVHandler class.

Example 31–38 CSVHandler

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;

import java.util.Iterator;
import java.util.List;
import java.util.Map;

Table 31–2 Location of Javadoc

Class / Interface Location of Javadoc in the Online Help

AbstractDefinition

AbstractImpl

AbstractAdapter

Reference > Oracle ADF Model API Reference > Packages >
oracle.adf.model.adapter > Class Summary

StructureDefinition Reference > Oracle ADF Model API Reference > Packages >
oracle.binding.meta > Interface Summary

DataControl

ManagedDataControl

TransactionalDataControl

Reference > Oracle ADF Model API Reference > Packages > oracle.binding
> Interface Summary

Contents of Supporting Files

Creating Data Control Adapters 31-31

import oracle.binding.meta.DefinitionContext;
import oracle.binding.meta.StructureDefinition;

import oracle.adf.model.utils.SimpleStringBuffer;

import oracle.adf.model.adapter.AdapterException;
import oracle.adf.model.adapter.dataformat.AttributeDef;
import oracle.adf.model.adapter.dataformat.StructureDef;
import oracle.adfinternal.model.adapter.sample.CSVParser;
import oracle.adf.model.adapter.utils.Utility;

/**
 * Format handler for character separated values.
 * <p>
 * This class generates structures according to the JSR 227 specification from
 * a CSV data stream by parsing the data. The data types are guessed from the
 * value of the first data line. It can extract values from a CSV data stream
 * as well.
 * <p>
 * Data controls that deals with CSV data can use this class to generate data
 * and structure.
 *
 * @version 1.0
 * @since 10.1.3
 */
public class CSVHandler
{
 // stream containing the data.
 private InputStream mDataStream;

 // if the first row contains the names
 private boolean mIsFirstRowNames = false;

 // Encoding styles
 private String mEncStyle;

 // Character value separator
 private String mDelimiter;

 // Character used to quote a multi-word string
 private String mQuoteChar;

 // Column names
 private List mColNames = null;

 ////////////////////////////// Constructors //////////////////////////////////

 /**
 * Creats a CSV format handler object.
 *
 * @param is input stream that contains the CSV data.
 * @param isFirstRowNames flag to indicate if the first row of the CSV data
 * can be treated as column names.
 * @param encodingStyle encoding style of the data.
 * @param delim character value separators.
 * @param quoteChar value that can be treated as quote.
 */
 public CSVHandler(
 InputStream is,

Contents of Supporting Files

31-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 boolean isFirstRowNames,
 String encodingStyle,
 String delim,
 String quoteChar)
 {
 mDataStream = is;
 mIsFirstRowNames = isFirstRowNames;
 mEncStyle = encodingStyle;
 mDelimiter = delim;
 mQuoteChar = quoteChar;
}

 ///////////////////// Impl of FormatHandler //////////////////////////////////

 /**
 * Returns the structure definition extracted for the data format.
 * <p>
 *
 * @param name name of the root structure.
 * @param ctx definition context information.
 * @return the structure information extracted.
 */
 public StructureDefinition getStructure(String name, DefinitionContext ctx)
 {
 StructureDef attrParent = null;
 try
 {
 CSVParser parser;

 if (mEncStyle == null)
 {
 parser = new CSVParser(mDataStream);
 }
 else
 {
 parser = new CSVParser(mDataStream, mEncStyle);
 }

 parser.setSeparators(mDelimiter.toCharArray());
 if (mQuoteChar != null && mQuoteChar.length() != 0)
 {
 parser.setQuoteChar(mQuoteChar.charAt(0));
 }

 // Get the column names
 Iterator colNames = getColNames(parser).iterator();

 // Create the structure definition
 attrParent = new StructureDef(name);

 // Parse the data to get the attributes
 if (mIsFirstRowNames)
 {
 parser.nextLine();
 }

 String[] vals = parser.getLineValues();
 if (vals != null)
 {

Contents of Supporting Files

Creating Data Control Adapters 31-33

 int i = 0;
 while (colNames.hasNext())
 {
 String type = "java.lang.String";
 if (i < vals.length)
 {
 type = checkType(vals[i]);
 ++i;
 }
 AttributeDef attr =
 new AttributeDef((String) colNames.next(), attrParent, type);
 attrParent.addAttribute(attr);
 }
 }
 else
 {
 while (colNames.hasNext())
 {
 AttributeDef attr =
 new AttributeDef((String) colNames.next(),
 attrParent, "java.lang.String");
 attrParent.addAttribute(attr);
 }
 }
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 return attrParent;

 }

 /**
 * Returns the resulting data extracted from the input.
 * @param params parameters passed containig the context information.
 * @return <code>Iterator</code> of <code>Map</code> objects for the result.
 * If no data found it can return null. The <code>Map</code>
 * contains the value of attributes as defined in the data structure.
 * For complex data, <code>Map</code>s can contain other iterator of
 * <code>Map</code>s as well.
 */
 public Iterator getResult(Map params)
 {
 try
 {
 final CSVParser parser;
 if (mEncStyle == null)
 {
 parser = new CSVParser(mDataStream);
 }
 else
 {
 parser = new CSVParser(mDataStream, mEncStyle);
 }

 parser.setSeparators(mDelimiter.toCharArray());
 if (mQuoteChar != null && mQuoteChar.length() != 0)
 {

Contents of Supporting Files

31-34 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 parser.setQuoteChar(mQuoteChar.charAt(0));
 }

 final List cols = getColNames(parser);
 final boolean bEndOfData = (mIsFirstRowNames) ? !parser.nextLine() : false;
 //return the data iterator
 return new Iterator()
 {
 CSVParser _parser = parser;
 Iterator _colNames = cols.iterator();
 boolean _eof = bEndOfData;

 public void remove()
 {
 }

 public boolean hasNext()
 {
 return !_eof;
 }

 public Object next()
 {
 try
 {
 if (_eof)
 {
 return null;
 }

 java.util.HashMap map = new java.util.HashMap(5);

 // Create the current row as Map
 String[] data = _parser.getLineValues();
 int i = 0;
 while (_colNames.hasNext())
 {
 String val = null;
 if (i < data.length)
 {
 val = data[i];
 }

 map.put(_colNames.next(), val);
 i++;
 }

 // get the next data line.
 _eof = !_parser.nextLine();

 return map;
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 }

 };

Contents of Supporting Files

Creating Data Control Adapters 31-35

 }
 catch (AdapterException ae)
 {
 throw ae;
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 }

 //==
 // Class Helper Methods
 //==

 /**
 * Attempts to obtain the Java type from the string value.
 * @param data String value whose datatype has to be guessed.
 * @return Java type name.
 */
 private String checkType(String data)
 {
 try
 {
 // We first try to convert the value into a long number.
 // If successful, we will use long; if it throws NumberFormatException,
 // we will attempt to convert it to float. If this too fails, we return
 // string.
 if (data != null)
 {
 try
 {
 // Try to conver the value into an integer number.
 long numTest = Long.parseLong(data);
 return "java.lang.Long"; //NOTRANS
 }
 catch (NumberFormatException nfe)
 {
 // Try to convert the value into float number.
 float numTest = Float.parseFloat(data);
 return "java.lang.Float"; //NOTRANS
 }
 }
 else
 {
 return "java.lang.String"; //NOTRANS
 }
 }
 catch (NumberFormatException nfe)
 {
 // If conversion failed, we assume this is a string.
 return "java.lang.String";
 }
 }

 /**
 * Gets the column names.
 */

Contents of Supporting Files

31-36 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 /**
 * Gets the column names.
 */
 private List getColNames(CSVParser parser)
 {
 try
 {
 if (mColNames == null)
 {
 // Get the first row. If the first row is NOT the column names, we need
 // to generate column names for them.

 if (!parser.nextLine())
 {
 // No data found.
 // ToDo: resource
 new Exception("No data");
 }

 mColNames = new java.util.ArrayList(10);

 String[] cols = parser.getLineValues();
 if (mIsFirstRowNames)
 {
 makeValidColumnNames(cols);
 for (int i = 0; i < cols.length; i++)
 {
 mColNames.add(cols[i]);
 }
 }
 else
 {
 for (int i = 0; i < cols.length; i++)
 {
 String colName =
 new SimpleStringBuffer(20).append("Column").append(i).toString();
 mColNames.add(colName);
 }
 }
 }

 return mColNames;
 }
 catch (Exception e)
 {
 throw new AdapterException(e);
 }
 }

 /**
 * Make valid column names for all columns in CSV data source.
 *
 * This method applies the following rules to translate the given string
 * to a valid column name which can be accepted by EL:
 *
 * 1. If the first character of the string is digit,
 * prefix the string with '_'.
 * 2. Translate any characters other than letter, digit, or '_' to '_'.
 *

Contents of Supporting Files

Creating Data Control Adapters 31-37

 *
 */
 private String[] makeValidColumnNames(String[] cols)
 {
 for (int i = 0; i <cols.length; i++)
 {
 // Trim out leading or ending white spaces
 if (cols[i] != null && cols[i].length() > 0)
 {
 cols[i] = cols[i].trim();
 }

 if (cols[i] == null || cols[i].length() == 0)
 {
 // Default as "column1", "column2", ... if column name null
 cols[i] = new SimpleStringBuffer("column").append(i+1).toString();
 }
 else
 {
 // Check special characters
 try
 {
 cols[i] = Utility.normalizeString(cols[i]);
 }
 catch (Exception e)
 {
 // On error, simply default to "columnX".
 cols[i] = new SimpleStringBuffer("column").append(i+1).toString();
 }
 }
 }
 return cols;
 }

}

31.11.3 CSVParser
Example 31–39 shows the contents of the CSVParser class.

Example 31–39 CSVParser

package oracle.adfinternal.model.adapter.sample;

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.LineNumberReader;
import java.util.ArrayList;

import oracle.adf.model.utils.SimpleStringBuffer;

public final class CSVParser
{
 /////////////////////////////// Constants ////////////////////////////////////

 /** UTF8 encoding, used for hadling data in different languages. */
 public static final String UTF8_ENCODING = "UTF8";

 /** Quote character */
 private static char CHAR_QUOTE = '"';

Contents of Supporting Files

31-38 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 /** Comma (seperator) character */
 private static char CHAR_COMMA = ',';

 /////////////////////////////// Class Variables //////////////////////////////

 /**
 * CSV stream reader
 */
 private LineNumberReader mReader;

 /** Buffer to store one line of values. */
 private ArrayList mValueArrayList = new ArrayList();

 /** Buffer to store one string value. */
 private SimpleStringBuffer mValueBuffer = new SimpleStringBuffer(256);

 /** Current processed line. */
 private String mLine = null;

 /** Current character position in the current line. */
 private int mLinePosition = -1;

 /** Length of current line. */
 private int mLineLength = 0;

 /** If last character is comma. */
 private boolean mLastCharIsComma = false;

 /** Value separator character set. The separator can be one of these values.*/
 private char[] mSepCharSet = {CHAR_COMMA};

 /** Quote character. */
 private char mQuoteChar = CHAR_QUOTE;

 ////////////////////////////// Constructors //////////////////////////////////

 /**
 * Constructor
 *
 * @param pInputStream CSV input stream
 * @throws Exception any error occurred
 */
 public CSVParser(InputStream pInputStream) throws Exception
 {
 // If no encoding is passed in, use "UTF-8" encoding
 this(pInputStream, UTF8_ENCODING);
 }

 /**
 * Constructor
 *
 * @param pInputStream CSV input stream
 * @param pEnc character encoding
 * @throws Exception any error occurred
 */
 public CSVParser(InputStream pInputStream, String pEnc) throws Exception
 {

Contents of Supporting Files

Creating Data Control Adapters 31-39

 if (pInputStream == null)
 {
 throw new Exception("Null Input Stream."); //TODO: Resource
 }

 mReader = new LineNumberReader(new InputStreamReader(pInputStream, pEnc));
 }

 ///////////////////////////// Public Methods /////////////////////////////////

 /**
 * Sets the separator characters as a list of possible separators for the
 * data. CSV data may have more than one separators. By default this parser
 * considers comma (,) as the data separator.
 * @param seps Array of separator charactors.
 */
 public void setSeparators(char[] seps)
 {
 if ((seps != null) && (seps.length > 0))
 {
 mSepCharSet = seps;
 }
 }

 /**
 * Sets the quote character.
 * @param ch Quote character.
 */
 public void setQuoteChar(char ch)
 {
 mQuoteChar = ch;
 }

 /**
 * Moves to the next line of the data.
 * @return returns false if the end of data reached.
 * @throws Exception any error occurred
 */
 public boolean nextLine() throws Exception
 {
 setLine(mReader.readLine());
 if (mLine == null)
 {
 // End of file
 mValueArrayList.clear();
 return false;
 }

 parseLine();

 return true;
 }

 /**
 * Gets values of next line.
 * @return next line elements from input stream. If end of data reached,
 * it returns null.
 * @throws Exception any error occurred
 */
 public String[] getLineValues() throws Exception

Contents of Supporting Files

31-40 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 {
 if (mValueArrayList.size() > 0)
 {
 String[] ret = new String[mValueArrayList.size()];
 return (String[]) mValueArrayList.toArray(ret);
 }

 return null;
 }

 //////////////////////////// Class Helpers ///////////////////////////////////

 /**
 * Checks if the character is a valid separator.
 */
 private boolean isSeparator(char ch)
 {
 for (int i = 0; i < mSepCharSet.length; i++)
 {
 if (ch == mSepCharSet[i])
 {
 return true;
 }
 }

 return false;
 }

 /**
 * Tests if end of line has reached.
 * @return true if end of line.
 */
 public boolean isEndOfLine()
 {
 // If last char is comma, must return at least one more value
 return (mLinePosition >= mLineLength) && (!mLastCharIsComma);
 }

 /**
 * Sets current line to be processed
 *
 * @param line the line to be processed
 */
 private void setLine(String line)
 {
 mLine = line;

 if (line != null)
 {
 mLineLength = line.length();
 mLinePosition = 0;
 }

 }

 /**
 * If next character is quote character

Contents of Supporting Files

Creating Data Control Adapters 31-41

 *
 * @return true if next character is quote
 */
 private boolean isNextCharQuote()
 {
 if ((mLinePosition + 1) >= mLineLength)
 {
 // no more char in the line
 return false;
 }
 else
 {
 char ch = mLine.charAt(mLinePosition + 1);
 if (ch == mQuoteChar)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 }

 /**
 * Parse one line.
 *
 * @return values of the line
 * @throws Exception any error occurred
 */
 private void parseLine() throws Exception
 {
 mValueArrayList.clear();

 String[] values = null;
 String value = null;

 while (!isEndOfLine())
 {
 value = getNextValue();
 mValueArrayList.add(value);
 }
 }

 /**
 * Gets next value from current line.
 * @return next data value.
 */
 private String getNextValue() throws Exception
 {
 mLastCharIsComma = false;

 // Clean up value buffer first
 if (mValueBuffer.length() > 0)
 {
 mValueBuffer.setLength(0);
 }

 boolean insideQuote = false;
 boolean firstChar = true;

Contents of Supporting Files

31-42 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

 boolean endValue = false;

 // Scan char by char
 while ((mLinePosition < mLineLength) && !endValue)
 {
 boolean copyChar = true;
 char ch = mLine.charAt(mLinePosition);

 // If first char
 if (firstChar)
 {
 // Only check quote at first char
 if (ch == mQuoteChar)
 {
 insideQuote = true;
 copyChar = false;
 }
 // Also need to check comma at first char
 else if (isSeparator(ch))
 {
 copyChar = false;
 endValue = true;
 mLastCharIsComma = true;
 }

 firstChar = false;
 }
 // Not first char but inside quote
 else if (insideQuote)
 {
 // Check end quote
 if (ch == mQuoteChar)
 {
 copyChar = false;
 // Two sucesstive quote chars inside quote means quote char itself
 if (isNextCharQuote())
 {
 mLinePosition++;
 }
 // Otherwise it is ending quote
 else
 {
 insideQuote= false;
 }
 }
 }
 // Not first char and outside quote
 else
 {
 // Check comma
 if (isSeparator(ch))
 {
 copyChar = false;
 endValue = true;
 mLastCharIsComma = true;
 }
 }

 if (copyChar)
 {

Contents of Supporting Files

Creating Data Control Adapters 31-43

 mValueBuffer.append(ch);
 }

 mLinePosition++;
 }

 if (mValueBuffer.length() > 0)
 {
 return mValueBuffer.toString();
 }
 else
 {
 return null;
 }
 }

}

Contents of Supporting Files

31-44 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Working Productively in Teams 32-1

32
Working Productively in Teams

The source control system used for the SRDemo application was CVS. This chapter
contains advice for using CVS with ADF projects, and general advice for using CVS
with JDeveloper.

This chapter includes the following sections:

■ Section 32.1, "Using CVS with an ADF Project"

■ Section 32.2, "General Advice for Using CVS with JDeveloper"

32.1 Using CVS with an ADF Project
This section contains advice specifically for using CVS with an ADF project, for
example the SRDemo application.

32.1.1 Choice of Internal or External CVS Client
A CVS client lets you import your work into CVS or check it out from CVS control.
The CVS client can be a standalone program, or it can be integrated into an IDE, as it is
with JDeveloper. The SRDemo application was created using the JDeveloper internal
CVS client.

32.1.2 Preference Settings
You set up JDeveloper to use CVS by ensuring that Support for CVS n.n is checked on
the Extensions preferences page (Tools > Preferences |Extensions | Versioning
Support n.n | Configure) and that CVS is selected from the dropdown list on the
Versioning preferences page (Tools > Preferences | Versioning).

Preferences for using CVS are set by selecting Tools > Preferences |Extensions |
Versioning | CVS and its subpages.

The SRDemo application was created using the default preferences for CVS, although
you may want to consider setting the timeout to ten minutes (Operation Timeout on
the General subpage), especially if you have a slow connection to a remote server.

32.1.3 File Dependencies
JDeveloper will work with the CVS version control system to keep files within a
multi-file component synchronized, for example, by automatically checking out all the
files that are dependent on a file that you expressly check out. However, when
working with Oracle ADF-base JSP pages, you should be conscious of the
dependencies between the various, related artifacts.

Using CVS with an ADF Project

32-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

For example, when you commit a JSP page like SomeName.jsp, if changes you made
in JDeveloper have caused the associated SomeNamePageDef.xml file to be modified,
it will also appear in the Outgoing page of the Pending Changes window. On the
other hand, if SomeName.jsp is a new JSP page on which you’ve dropped some
databound controls, its associated SomeNamePageDef.xml file will also appear in the
Candidates page of the Pending Changes window, and the DataBindings.cpx file
will appear as a modified file in the Outgoing page. By understanding these
relationships, you can better decide which files need to be committed together as part
of the same CVS transaction to ensure that other developers who update their project
from the source control server receive a consistent set of related files.

32.1.4 Use Consistent Connection Definition Names
Most JDeveloper and ADF objects will be created only once per project and will by
definition have the same name regardless of who sees or uses them. However, some
objects like database connections could theoretically be left to the creativity of each
team member in their own JDeveloper environment, even though they map to the
same connection details. Avoid such naming differences for otherwise common
connection definitions when working with ADF under version control since the
discrepancy will cause unnecessary differences in your data-sources.xml files.
Team members should agree up front on a common, case-sensitive connection name
and that should be used by every member of the team.

32.1.5 General Advice for Committing ADF Work to CVS
In general, you should commit your work after it has been tested and are satisfied that
it is working. The longer you work on a set of components without testing the changes
and checking them in, the greater the chances that other developers will have modified
them too, resulting in merge conflicts and the need to resolve them.

32.1.5.1 Other Version Control Tips and Techniques
Make sure to have an active CVS connection open in the CVS navigator when you are
performing any kind of renaming or refactoring operations. If you do so, these will be
automatically handled as appropriate file deletes and adds in the source control
system. If you are not in the context of a CVS connection when you make these kinds
of changes, then the next time you connect to source control, your renamed files may
inadvertently show up as new files.

When renaming files (for example, through refactoring), you should commit the files
as soon as practicable after you have renamed them. This is because renaming a file
through JDeveloper involves a CVS delete operation and a CVS add operation, and an
added file needs to be committed to make it available to other developers. However,
you should still test the changes before committing them. A typical scenario would be
to refactor the files, then rerun the unit tests, then commit the files.

When developing new features, you may have to depart from the normal rule of unit
testing files before committing them, if other members of the team need to work on the
files in order to complete the unit of work that is to be tested. In this case, the files will
need to be committed before testing so that other members of the team can obtain
them from the CVS repository.

When committing work to CVS, always add comments describing the changes you
have made. You add comments in the Comments box of the Commit to CVS dialog
(Versioning > Commit).

General Advice for Using CVS with JDeveloper

Working Productively in Teams 32-3

32.1.6 Check Out or Update from the CVS Repository
It is preferable to perform, at regular intervals, a clean checkout from the CVS
repository to a fresh directory (using Versioning > Check Out Module). Simply
updating your working copy from the repository (using Versioning > Update) can
hide problems such as incomplete commits.

You could use Apache Ant, which is integrated into JDeveloper, to create a script that
will automatically check out the full source and build it. If the build completes
successfully, this will be confirmation that everyone has committed all the changes
required to make the system perform correctly. Otherwise, the build will break and
problems will be signalled. To find out how to use Apache Ant to create build scripts,
search for "About Ant Integration in JDeveloper" in the JDeveloper online help.

32.1.7 Special Consideration when Manually Adding Navigation Rules to the
faces-config.xml File

If you manually add navigation rules to the faces-config.xml file (using the XML
view or the Overview screen), you must switch to the visual diagram view of
faces-config before checking in the faces-config.xml file. Doing so will cause
the diagram file (faces-config.oxd_faces) to register the metadata change and
force it to reflect the rule change. It also ensures that the faces-config.oxd_faces
file is marked for commit and that the two files will not get out of synchronization.

If you don't do this, the diagram file will no longer be in step with the XML metadata
and will give errors. If this happens, the solution is to manually delete the diagram file
and let JDeveloper re-create it when it next attempts to open the file. That file is
\model\public_html\WEB-INF\faces-config.oxd_faces under the
userinterface/viewcontroller project.

32.2 General Advice for Using CVS with JDeveloper
This section contains advice for using CVS with JDeveloper generally.

32.2.1 Team-Level Activities
Divide the development work between several projects.

Consider using a code formatter, possibly as part of an Apache Ant build script.
JDeveloper’s code formatter is available from the Code Style page of the Preferences
dialog (Tools > Preferences | Code Style). You can use this to create and export a
standard format that all team members can import, thus allowing them to share the
same built-in code formatting rules.

Build the code before checking it into CVS and before doing a CVS update.

Consider running a continuous integration tool. The tool should rebuild the whole
project whenever someone commits changes to the CVS repository and should notify
developers when code they have committed breaks the build by requesting that the
code be fixed. Running a continuous integration tool will improve confidence in the
quality of the code in the CVS repository, encourage developers to update more often,
and lead to smaller updates and fewer conflicts. An example of a continuous
integration tool is Apache Gump (http://gump.apache.org/).

Before importing modules, configure the CVS repository to import binary file types as
binary (rather than as text), to prevent them from being corrupted.

General Advice for Using CVS with JDeveloper

32-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

32.2.2 Developer-Level Activities
This section contains advice for developers working with files under CVS control.

32.2.2.1 Typical Workflow When Checking Your Work Into CVS
Always perform an update (Versioning > Update) or module checkout (Versioning >
Check Out Module) before you start editing files to make sure that you are working
with the most recent versions.

While you can commit your work one file at a time using the Versioning > Commit
menu option, Oracle recommends using the Pending Changes window. To show this
window, choose Versioning > Pending Changes from JDeveloper’s main menu. When
working in a team, before committing the files you’ve been working on, you will
typically use the Pending Changes window in the following sequence:

■ Use the Outgoing Page to add new files to source control.

First, use the Outgoing page to see all of the new files you’ve created in the
current workspace. To be sure the list is as up to date as possible, click the Refresh
icon in the page toolbar. Decide which of the new files should be added to source
control, and select all of these. Finally, use the Add option on the context menu to
add the selected files to source control. The longer you work on a set of
components without testing the changes and checking them in, the greater the
chances that other developers will have modified them too thereby resulting in
merge conflicts and the need to resolve them.

■ Use the Incoming Page to update workspace files from other team members.

Second, use the Incoming panel to review whether any changes made by other
developers on your team might affect the work you’re about to check in. If other
team members may have created files in new directories that you do not yet have
in your copy of the project, use the Update Project Folders option on the context
menu of the workspace or on an individual project to ensure your local working
area reflects those new directories. Again, you should click the Refresh button to
ensure that you’re seeing the most up-to-date list of incoming files. If team
members have changed files unrelated to your work, you can choose to update
your copies of those files if useful to you for testing. If they have changed files that
are the same as ones you have modified, then JDeveloper will show the incoming
status as conflicts on merge. You need to update the files and address any merge
conflicts before the CVS server will allow you to check in.

■ Resolve any merge conflicts if necessary.

After performing an update that encountered merge conflicts, JDeveloper displays
an exclamation point next to each conflicting file in the Application Navigator.
Also, in the Pending Changes window’s Outgoing page the outgoing status will
be shown as conflicts. You can resolve the conflicts using JDeveloper’s built-in
merge tool. Right-click the file and choose Resolve Conflicts from the context
menu. Three versions of the file will be shown: on the left will be the version in the
CVS repository, on the right will be the current local version, and in the middle
will be an editable version that represents the result of the merge. Symbols in the
margin between the three panels indicate the suggested action for resolving each
conflict. By selecting an appropriate icon in the margin and using the context

Tip: Do not commit the WEB-INF\temp directory because this is a
directory containing cached images that ADF Faces generates once on
demand at runtime.

General Advice for Using CVS with JDeveloper

Working Productively in Teams 32-5

menu, you can insert changes from the file on the left side or the right side after
the adjacent difference.

Tooltips explain the suggested action of each conflict. You can accept the suggested
actions or edit the text directly. To complete the merge, you must save the changes
that have been made, using the Save button in the merge window’s toolbar. If this
is not enabled, you may need to use the Mark as Resolved or Mark All As
Resolved options in the context menu. Once you’ve saved the merged version of
the file, the merge tool window becomes blank and JDeveloper removes the
conflict symbol from the navigator icon and you will be able to commit the
merged file to the CVS repository. You can close the merge tool window and
proceed to the next conflict, if any.

■ Use the Outgoing Page to commit your changes.

Finally, use the Outgoing page of the Pending Changes window to commit your
changes to source control. There may be some files that are modified but which
you don’t want to commit. For example, each time you run your application on
the embedded OC4J server, JDeveloper may refresh the contents of your project’s
data-sources.xml and/or jazn-data.xml file. You may not want to keep
checking in modified versions of these each time. In addition, there may be files
you modified, but whose changes you don’t wish to keep. As you can do at any
time, you can choose Versioning > Undo Changes from the context menu for such
a file in the Application Navigator. This will revert the file to the latest checked-in
version in source control. Finally, select the files you want to check in, and choose
Commit on the context menu.

32.2.2.2 Handling CVS Repository Configuration Files
To prevent accidental corruption of the CVS repository, do not change repository
configuration files manually. If you need to change a CVS configuration file, check out
CVSROOT as a module, modify the specific configuration file locally, and then commit
it to the repository.

32.2.2.3 Advice for Merge Conflicts in ADF Business Components Projects
You can remove one cause of merge conflicts in an multi-developer environment by
disabling the use of ADF Business Components package XML files. You do this by
deselecting the option Copy Package XML Files to Class Path on the Business
Components: General page of the Preferences dialog. See Section 4.4.7.2,
"Recommendation for Disabling Use of Package XML File"

When you add or remove business components in a JDeveloper ADF Business
Components project, JDeveloper reflects it in the project file (.jpr). When you create
(or refactor) a component into a new package, JDeveloper reflects that in the business
components project file (.jpx). Although the XML format of these project control files
has been optimized to reduce occurrences of merge conflicts, merge conflicts may still
arise and you will need to resolve them using JDeveloper’s Resolve Conflicts option
on the context menu of each affected file.

After resolving merge conflicts in any ADF Business Components XML component
descriptor files, the project file (.jpr) for an ADF Business Components project, or the
corresponding business components project file (.jpx), Oracle recommends closing
and reopening the project to ensure that you’re working with latest version of the
component definitions. To do this, select the project in the Application Navigator,

Tip: Be aware that the Commit All button on the toolbar of the
Pending Changes window will commit all files in the Outgoing list.
Use the technique described above to commit selected files.

General Advice for Using CVS with JDeveloper

32-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

choose File > Close from the JDeveloper main menu, then expand the project again in
the Application Navigator.

Working with Web Services 33-1

33
Working with Web Services

This chapter contains advice for using web services with ADF projects, and general
advice for creating and using web services in JDeveloper

This chapter includes the following sections:

■ Section 33.1, "What are Web Services"

■ Section 33.2, "Creating Web Service Data Controls"

■ Section 33.3, "Securing Web Service Data Controls"

■ Section 33.4, "Publishing Application Modules as Web Services"

■ Section 33.5, "Calling a Web Service from an Application Module"

33.1 What are Web Services
Web services is the term for a technology that consists of a set of messaging protocols
and programming standards that expose business functions over the Internet using
open XML-based standards, and an individual web service is a discrete, reusable
software component that is accessed programmatically over the Internet, using HTTP
or sometimes SMTP, to return a response.

Web services allow enterprises to expose business functionality irrespective of the
platform or language of the originating application because the business functionality
is exposed in such a way that it is abstracted to a message composed of standard XML
constructs that can be recognized and used by other applications.

Oracle ADF has built in support to use web services as business service providers in
applications. For example, an application could:

■ Use some functionality in an application run by another company and exposed as
a web service to provide business-to-business e-commerce.

■ Use web service made available through a site such as Xmethods.com to provide
some standard functionality.

■ Find a web service that provides the specified functionality in a UDDI registry and
use it at runtime.

You can use Oracle ADF to build applications that target one or all of the tiers in the
J2EE platform using your choice of implementation technologies. Using ADF business
components to implement your business services, you gain the additional flexibility to
be able to expose parts of your application as web services at any time without code
changes.

What are Web Services

33-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Factors influencing the decision to deploy a component as a web service are:

■ Web services separate the application from the underlying architecture.

■ Web services are lightweight, which can result in improved performance across
the Internet or an intranet.

■ Web services technology is designed to use the Web infrastructure, including
HTTP.

It is useful to describe the XML standards on which web services are based.

33.1.1 SOAP
The Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol that is
used for the sending and receiving over messages of a transport protocol, usually
HTTP or SMTP. The SOAP specification, which you can see at web site of the World
Wide Web Consortium, provides a standard way to encode requests and responses. It
describes the structure and data types of message payloads using XML Schema.

A SOAP message is constructed of the following components:

■ A SOAP envelope that contains the SOAP body, the important part of the SOAP
message, and optionally a SOAP header.

■ A protocol binding that specifies how the SOAP envelope is sent, that in the case
of web services generated in JDeveloper, is via HTTP.

Web services use SOAP, the XML protocol for expressing data as XML and
transporting it across the Internet using HTTP, and SOAP allows for more than one
way of converting data to XML and back again. JDeveloper supports SOAP RPC
encoding, SOAP RPC-literal style, and document-literal style (also known as message
style).

The web services you create in JDeveloper can be either for deployment on Oracle
SOAP, which is based on Apache SOAP 2.2 and is part of the Oracle Application
Server, or to the SOAP server, which is one of the OC4J containers in Oracle
Application Server.

33.1.2 WSDL
The Web Services Description Language (WSDL) is an XML language used to describe
the syntax of web service interfaces and their locations. You can see the WSDL v1.1
specification at the web site of the World Wide Web Consortium. Each web service has
a WSDL document that contains all the information needed to use the service, the
location of the service, its name, and information about the methods that the web
service exposes. When you use one of JDeveloper's web service publishing wizards to
produce your web service, the WSDL document for your service is automatically
generated.

33.1.3 UDDI
Universal Description, Discovery and Integration (UDDI) provide a standards-based
way of locating web services either by name, or by industry category. UDDI registries
can be public, for example the public UDDI registries that are automatically available
from JDeveloper, or private, such as a UDDI registry used within an organization. This
version of JDeveloper only supports web service discovery using UDDI, however
future versions will provide full support for UDDI registration. You can see the UDDI
v2 specification at http://www.uddi.org/.

http://www.uddi.org/

What are Web Services

Working with Web Services 33-3

JDeveloper's UDDI browser, in the Connections Navigator, stores information about a
UDDI registry and allows you to search a UDDI registry using search criteria that you
specify to find web services that are described by WSDLs.

You can create your own registry connections to another public UDDI registry, or to a
private UDDI registry within your organization. This creates a connection descriptor
properties file that contains the enquiry endpoint and the business keys of the registry.
You can find this file at <JDEV_INSTALL>/system<release_and_build_
number>/uddiconnections.xml, where <JDEV_INSTALL> is the root directory in
which JDeveloper is installed.

JDeveloper's Find Web Service wizard browses UDDI registries to find web services by
either name or category. You must have an appropriate connection from your machine
so that JDeveloper can make a connection to the UDDI registry you select, for example,
a connection to the internet if you want to search a public UDDI registry, and you can
only generate a stub to a web service that has a tick in the Is WSDL? column that
identifies the registry entry as being defined by a WSDL document.

When you use UDDI registries a term you will come across, and that you may be
unfamiliar with, is tModel, short for Technical Model. This represents the technical
specification of a web service, and when you search for a web service using the Find
Web Service wizard, the wizard also displays other web services that are compatible
with the same tModel.

The data structure types used in UDDI are:

■ Service Details This section gives information about the service, including the
name.

■ Business Entity This is the top-level data structure called businessEntity that
contains information about the business providing the web service.

■ Service Bindings contains the bindingTemplate, that contains information about
the service access point, and the tModel that gives the technical specification of the
web service.

When the Find Web Services wizard finds a web service, it lists all web services that
are compatible with the same tModel.

33.1.4 Web Services Interoperability
A key issue facing web services is how interoperable web services actually are. The
key feature of web services is that they use common standards to avoid the problems
that earlier solutions to getting different applications to be able to use each other's
components, for example CORBA, had. However the standards themselves have been
being written at the same time as the organizations have been starting to write, deploy
and use web services. This has led to interoperability issues such as web services being
written using different standards, for example, not using WSDL to provide web
service information.

The Web Services-Interoperability Organization (WS-I) was formed by Oracle and
other industry leaders to address these issues of interoperability, and to provide tools
so that web services can be tested to see how well they interoperate. JDeveloper helps
you to test the interoperability of web services by analyzing a web service for
conformity to the WS-I Basic Profile 1.0. First you have to download a WS-I compliant
analyzer. There are a number of these available from independent vendors, and one
from the WS-I web site. A set of test assertions is used to find out how well a web
service conforms to the basic profile, and information is recorded for the following
artifacts:

Creating Web Service Data Controls

33-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

■ Discovery when a web service has been found using a UDDI registry. If the service
has not been found using the Find Web Services wizard, this section of the report
returns errors in the Missing Input section.

■ Description of a web service's WSDL document, where the different elements of
the document are examined and non-conformities are reported. An example of a
failure in this section is a failure of assertion WSI2703, that gives the message
"WSDL definition does not conform to the schema located at
http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd for some element using
the WSDL-SOAP binding namespace, or does not conform to the schema located
at http://schemas.xmlsoap.org/wsdl/2003-02-11.xsd for some element using the
WSDL namespace."

■ Message that tests the request and response messages when the connection is
made to the web service and it sends its reply.

For more information about WS-I including the specification, see the web site of The
Web Services-Interoperability Organization (WS-I) at ws-i.org.

33.2 Creating Web Service Data Controls
The most common way of using web services in an application developed using
Oracle ADF is to create a data control for an external web service, and a usual reason
for this is to add functionality that is readily available as a web service but which
would be time consuming to develop with the application, or to access an application
that runs on a different architecture.

Also, you can re-use components created by Oracle ADF to make them available as
web services for other applications to access.

33.2.1 How to Create a Web Service Data Control
JDeveloper allows you to create a data control for an existing web service using just
the WSDL for the service. You can browse to a WSDL on the local file system, locate
one in a UDDI registry, or enter the WSDL URL directly.

To create a web service data control:
1. In the Application Navigator, right-click an application and choose New.

2. In the New Gallery, expand Business Tier in the Categories tree, and select Web
Services.

3. In the Items list, double-click Web Service Data Control.

4. Follow the wizard instructions to complete creating the data control.

Alternatively, you can right-click on the WSDL node in the navigator and select the
Create Data Control from the context menu.

Note:

If you are working behind a firewall and you want to use a web
service that is outside the firewall, you must configure the
Web/Browser Proxy settings in JDeveloper. Refer to the JDeveloper
online help for more information.

Securing Web Service Data Controls

Working with Web Services 33-5

33.3 Securing Web Service Data Controls
Web services allow applications to exchange data and information through defined
application programming interfaces. SSL (Secure Sockets Layer) provides secure data
transfer over unreliable networks, but SSL only works point to point. Once the data
reaches the other end, the SSL security is removed and the data becomes accessible in
its raw format. A complex web service transaction can have data multiple messages
being sent to different systems, and SSL cannot provide the end-to-end security that
would keep the data invulnerable to eavesdropping.

Any form of security for web services has to address the following issues:

■ The authenticity and integrity of data.

■ Data privacy and confidentiality.

■ Authentication and authorization.

■ Non-repudiation.

■ Denial of service attacks.

33.3.1 WS-Security Specification
The WS-Security specification unifies multiple security technologies to make secure
web services interoperable between systems and platforms. The specification can be
viewed at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-mes
sage-security-1.0.pdf.

WS-Security addresses the following aspects of web services security issues:

■ Authentication and Authorization

The identity of the sender of the data is verified, and the security system ensures
that the sender has privileges to perform the data transaction.

The type of authentication can be a basic username password pair transmitted in
plain text, or trusted X509 certificate chains. SAML assertion tokens can also be
used to allow the client to authenticate against the service, or allow it to participate
in a federated SSO environment, where in authenticated details are be shared
between domains in a vendor independent manner

■ Data Authenticity, Integrity and Non-Repudation

XML digital signatures, which use industry standard messages, digest algorithms
to digitally sign the SOAP message.

■ Data Privacy

XML encryption that uses industry standard encryption algorithms to encrypt the
message.

■ Denial of Service Attacks

Defines XML structures to time stamp the SOAP message. The server uses the time
stamp to invalidate the SOAP message after a defined interval.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Securing Web Service Data Controls

33-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Throughout this section the "client" is the web service data control, which sends SOAP
messages to a deployed web service. The deployed web service may be:

■ a web service deployed on OC4J for testing purposes.

■ web service running on Oracle Application Server.

■ A web service running anywhere in the world that is accessible through the
Internet

33.3.2 Creating and Using Keystores
An ADF 10.1.3 Web Services data control can be configured for message level security
using either Java Key Store (JKS), or the Oracle Wallet. For information on setting up
and using Oracle Wallet, see the Oracle Technology Network at
www.oracle.com/technology.

This section describes:

■ Creating a keystore using the J2SE 1.4 Keytool utility

■ Building a keystore private/public key pairs, which are used for encryption and
signing.

■ How to obtain a Certificate to issue digital signatures from a root certificating
authority.

■ How to import the Certificate into the keystore.

■ How to export the Certificate with the public key for encryption.

This is illustrated by creating two keystores, one to be configured on the server side,
and the other on the client side (the data control side).

33.3.2.1 How to Create a Keystore
To create a public private key pair that can be used by the client for encryption and
signing, at the command prompt run the following:

Example 33–1 Command to Create a Keystore

keytool -genkey -alias clientenckey clientsignkey -keyalg RSA -sigalg SHA1withRSA
-keystore client.jks

The keystore utility will prompt you for the keystore password, and then asks
questions to determine the distinguished name (DN), which is a unique identifier and
consists of the following components:

■ CN= common name. This must be a single name without spaces or special
characters.

■ OU=organizational unit

■ O=organization name

■ L=locality name

Note: The steps outlined in this section for requesting digital
certificates is for test purposes only. Deployments intending to use
Web Services data control with digital signatures enabled must ensure
that trusted certificates are generated compliant to the security
policies of the deployment environment.

Securing Web Service Data Controls

Working with Web Services 33-7

■ S=state name

■ C=country, a two letter country code

After you answer the questions, the Keytool utility will prompt you for the key
password. If the key password is the same as the keystore password, press Enter
without entering a value. Otherwise, enter the key password. After you enter the key
password, the keystore file client.jks is created in the current directory. It contains a
single key pair with the alias clientenckey which can be used to encrypt the SOAP
requests from the data control.

Next, create a key pair for digitally signing the SOAP requests made by the data
control. At the command prompt run the command again, but use clientsignkey for
the alias of the signing key pair.

To list the key entries in the keystore, run the following:

Example 33–2 Command to List Key Pairs in the Keystore

keytool -list -keystore client.jks

The Keytool utility will prompt you for the store password. Enter the password that
was used to create the keystore. Repeat the commands to create a keystore for the
server side, and use serverenckey for the encryption key pair, and serversignkey for
the signing key pair.

33.3.2.2 How to Request a Certificate
The keytool, by default, generates a self-signed certificate, that is a certificate whose
issuer is the same as the generator of the key.

If your public key is to be distributed to the outside world, to allow verification of the
digital signatures you have issued, then a trusted Certificate Authority (CA) must
issue a certificate vouching your identity on your public key. To do this, create a
Certificate request file for the signature key pair you have created and submit the
request file to a CA.

At the command prompt, run the following:

Example 33–3 Command to Create a Certificate Request File

keytool -certreq -file clientsign.csr -alias clientsignkey -keystore client.jks

The Keytool utility will prompt you for the store and key passwords. After you enter
the passwords, a certificate request is generated in a file called clientsign.csr for the
public key aliased by clientsignkey.

When you are developing your application, you can use a CA such as Verisign to
request trial certificates. Go to www.verisign.com, navigate to Free SSL Trial Certificate
and create a request. You must enter the same DN information you used when you
created the keystore. Verisign's certificate generation tool will ask you to paste the
contents of the certificate request file generated by the keytool (in this case,
clientsign.csr). Once all the information is correctly provided, the certificate will be
sent to the email ID you have provided, and you have to import it into the keystore.

Open the contents of the certificate in a text editor, and save the file as
clientsign.cer.

You also have to import the root certificate issued by Verisign into the keystore. The
root certificate is needed to complete the certificate chain up to the issuer.

Securing Web Service Data Controls

33-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The root certificate vouches the identity of the issuer. Follow the instructions in the
email you received from Verisign to access the root certificate, and paste the contents
of the root certificate into a text file called root.cer.

Once you have the root.cer and clientsign.cer files created, run the following command
to import the certificates into your keystore:

Example 33–4 Importing the Root Certificate

keytool -import -file root.cer -keystore client.jks

The Keytool utility will prompt you for the store password. Next you must import
your public key certificate.

Example 33–5 Importing the Public Key Certificate

keytool -import -file clientsign.cer -alias clientsignkey -keystore client.jks

The Keytool utility will prompt you for the store and key password. After entering the
passwords, execute the same commands to set up the trusted certificate chain in the
server keystore.

Once the certificate chains are set up, the client and sever are ready to issue digitally
signed SOAP requests.

33.3.2.3 How to Export a Public Key Certificate
The server must export its public key to the client so the client can encrypt the data it
sends to the server. The server can then use its corresponding private key to decrypt
the data. The server’s public key certificate is imported into the client keystore.

At the command prompt, run the following:

Example 33–6 Command to Export the Server’s Public Key Certificate

keytool -export -file serverencpublic.cer -alias serverenckey -keystore server.jks

The Keytool utility will prompt you for the store password.

In the example, serverencpublic.cer contains the public key certificate of the server's
encryption key. To import this certificate in the client's keystore, run the following:

Example 33–7 Command to Import Client’s Encription Key

keytool -import -file serverencpublic.cer -alias serverencpublic -keystore
client.jks

The Keystore utility will prompt you for the store password.

Similarly, the client must export its public key so that it can be imported into the
server’s keystore, as shown in the following examples:

Example 33–8 Command to Export the Client’s Public Key Certificate

keytool -export -file clientencpublic.cer -alias clientenckey -keystore client.jks

Note:

Trusted certificates are mandatory when issuing digital signatures on
the SOAP message. You cannot issue digital signatures with
self-signed/untrusted certificates in your keystore.

Securing Web Service Data Controls

Working with Web Services 33-9

The Keytool utility will prompt you for the store password.

Example 33–9 Command to Import the Public Key Certificate

keytool -import -file clientencpublic.cer -alias clientencpublic -keystore
server.jks

The Keytool utility will prompt you for the keystore password.

The server and client keystores are now ready to be used to configure security for the
web service data control.

33.3.3 Defining Web Service Data Control Security
Once you have a web services data control in a JDeveloper project, you can define
security using the Data Control Security wizard.

To invoke the data control security wizard:
1. Select the web service data control in the Application Navigator.

2. In the Structure window, right-click the web service data control, and choose
Define Web Service Security.

3. Consult the following sections for more information, or click F1 or Help in the
wizard for detailed information about a page of the wizard.

Figure 33–1 Invoking the Data Control Security Wizard

33.3.3.1 How to Set Authentication
WS-Security allows for service level authentication by using either username tokens or
binary tokens. In addition to these, the web service client can issue SAML assertion
tokens that can be used for server side authentication, or for participation in a
federated SSO environment.

Securing Web Service Data Controls

33-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 33–2 Select the Type of Authentication

33.3.3.1.1 Testing Authenticated Web Service Data Controls on OC4J

Oracle's WS-Security implementation is integrated with JAZN (JAAS) to achieve the
authentication. How authentication using a certificate is done depends on the
implementation and integration with the platform security system. This section
discusses configuring OC4J as the server where the application is deployed.

For Username Token authentication, username/password pair must be a trusted user
entry in the JAZN repository.

For X509 Token authentication, the CN (Common Name) on whom the Certificate is
issued must be a trusted user in the JAZN repository.

For SAML authentication, the user must be a valid user in the JAZN repository.

To edit the JAZN repository:
■ Open <JDEV_INSTALL>/J2EE/home/system-jazn-data.xml and enter the

authentication details. For example, for X509 authentication, make an entry under
the <users> section similar to:

<user>
 <name>King</name>
 <display-name>OC4J Administrator</display-name>
 <description>OC4J Administrator</description>
 <credentials>{903}/LptVQLDeA5sgZFLL5TKlr/qjVFPxB42</credentials>
</user>

Note: When the application is deployed to Oracle Application
Server, the administrator should use the security editing tool to add
users to the security system, grouping them in the appropriate role
and granting appropriate privileges. This example of manually editing
system-jazn-data.xml is just for testing, and not recommended
for working applications.

Securing Web Service Data Controls

Working with Web Services 33-11

33.3.3.1.2 Username Tokens

Username tokens provide basic authentication of a username/password pair. The
passwords can be transmitted as plain text or digest.

Oracle's WS-Security implementation is integrated with JAZN (JAAS) to achieve the
authentication. The username/password pair must be a trusted user entry in the JAZN
repository.

To use username tokens for authentication:
1. In the Authentication page of the wizard, under Available Operations, select one

or more ports or operations to apply the authentication to.

2. Select the authentication type as the Username Token.

3. Enter the remaining information required for username authentication.

33.3.3.1.3 X509 Certificate Authentication

An X509 certificate issued by a trusted CA is a binary security token which can be
used to authenticate the client. The client sends its X509 certificate with a digital
signature, which is used by the server for authentication. The X509 certificate chain
associated with signature key is used for authentication.

You must have the keystore file, with the root certificate of the CA, installed on the
server.

To use X509 certificate authentication:
1. In the Authentication page of the wizard, select the authentication type as the

X509 Token.

2. In the Keystore page of the wizard, and specify the location of the keystore file,
and enter the signature key alias and password.

33.3.3.1.4 SAML Assertion Tokens

SAML assertion tokens can be used to allow client to authenticate against the web
service, or allow the client to participate in a federated SSO environment, where
authenticated details can be shared between domains in a vendor independent
manner.

Note: This is not the same as HTTP basic or digest authentication.
The concept is similar, but it differs in that the recipient of HTTP
authentication is the HTTP server, whereas for the web service data
control, the username tokens are passed with the message, and the
recipient is the target web service.

Note: An X509 certificate can only be configured at port level, unlike
the other authentication types that can be configured at port or
operation level.

Note: SAML Assertions will not be issued if the user identity cannot
be established by JAZN.

Securing Web Service Data Controls

33-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

To use SAML authentication:
1. In the Authentication page of the wizard, select the authentication type as the

SAML Token.

2. The Subject Name is the username name against which the SAML Assertions will
be issued.

3. You can choose Confirmation method as SENDER-VOUCHES or
SENDER-VOUCHES-UNSIGNED:

■ ISENDER-VOUCHES (default). The SAML tokens must be digitally signed.
This is the preferred method to issue SAML tokens. If you choose this
confirmation technique, then you must configure a keystore and enter
keystore and signature key information on the Keystore page of the wizard.

■ SENDER-VOUCHES-UNSIGNED. The SAML tokens are transmitted without
any digital signatures. If you choose this confirmation technique, then you
need not configure a keystore and signature key.

33.3.3.2 How to Set Digital Signatures
You can configure digital signatures on the outgoing SOAP messages, and verify
digital signatures on the incoming message from the web service your application is
contacting. You can also enforce an expiration window for the digital signatures.

Figure 33–3 Set a Digital Signature

You can set a digital signature on the outgoing SOAP message at port or operation
level in the Message Integrity page of the wizard, and verify the digital signatures
from the incoming message of the web service.

To sign the SOAP request, and verify the signature of the SOAP response:
1. In the Message Integrity page of the wizard, select the appropriate options.

2. In the Keystore page of the wizard, and specify the location of the keystore file,
and enter the signature key alias and password.

Securing Web Service Data Controls

Working with Web Services 33-13

33.3.3.3 How to Set Encryption and Decryption
When you create a web service in JDeveloper, you can set security options in the Web
Services Editor. These are then applied at the server side once the web service is
deployed. Refer to the JDeveloper online help for complete information.

Before deploying the web service, run the editor and configure encryption and
decryption details on the web service. Ensure that you have specified the client's (that
is, the data control's) public key to be used for encryption.

Figure 33–4 Set Encryption and Decryption

You can encrypt and outgoing SOAP message at port or operation level in the Message
Confidentiality page of the wizard, and decrypt the incoming message from the web
service.

To encrypt the SOAP request, and decrypt the SOAP response:
1. In the Message Confidentiality page of the wizard, select the appropriate options.

The encryption algorithm you select must be the same as that configured on the
server side when the web service was deployed.

2. Enter the server’s public key alias to allow the data control to encrypt the key
details using the server's public key. In this example, serverencpublic is the
server's public key certificate that imported in the key store configuration.

3. If the web service uses incoming message encryption, select Decrypt Incoming
SOAP Response.

4. In the Keystore page of the wizard, and specify the location of the keystore file,
and enter the encryption key alias and password.

33.3.3.4 How to Use a Key Store
How to Create a Keystore described setting up keystores for the client (the web service
data control) and for the server (a deployed web service). In the Configure Key Store
page of the Data Control Security wizard you enter the information needed for the
keystore to be used for data control security.

Publishing Application Modules as Web Services

33-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Figure 33–5 Set Key Store Information

The final stage of configuring WS-Security for a data control based on a web service is
to specify the keystore details. Enter the information to access the client keystore here,
and when the wizard is finished the keys configured in the store will be available for
signatures and encryption for all requests generated by the data control and all
responses processed by the data control.

To set key store access information:
■ In the Configure Key Store page of the wizard, enter the appropriate values.

33.4 Publishing Application Modules as Web Services
Oracle ADF Business Components application modules offer built-in support for web
services. Any custom method that you add to the client interface of your application
module appears on its web service interface after you enable the optional web service
deployment option.

33.4.1 How to Enable the J2EE Web Service Option for an Application Module
 To enable your application module as a web service:

1. Enable a custom Java class for your application module and add to it one or more
custom methods that you want to appear on the web service interface.

2. Open the Application Module editor and on the Client Interface tab, select one or
more custom methods to appear on the client interface.

3. With the Application Module editor still open, on the Remote panel, select
Remoteable Application Module, select J2EE Web Service in the Available list
and shuttle it to the selected list.

4. Then click OK to save your changes.

Publishing Application Modules as Web Services

Working with Web Services 33-15

33.4.2 What Happens When You Enable the J2EE Web Service Option
Once this J2EE Web Service remoteable option of your application module is enabled,
every time you dismiss the Application Module editor, JDeveloper synchronizes your
web service classes with any changes you made to the application module’s client
interface.

JDeveloper creates the generated web service class in the server.webservice
subpackage of the package where your application module resides. For example, if
you application module were named oracle.srdemo.model.SRService, its
generated web service class would be named SRServiceServer in the
oracle.srdemo.model.server.webservice package.

For each method named someMethod in your application module’s client interface,
JDeveloper adds a delegator method in the generated web service class that looks like
what you see in Example 33–10. The code performs the following basic steps:

1. Acquires an application module instance from the pool.

2. Delegates the web service method call to the application module instance.

3. Returns the result if the method is non-void.

4. Releases the application module instance to the pool without removing it.

Since the web service code passes false to the releaseRootApplicationModule
method of the Configuration object, the application module instance is not
removed and remains in the pool ready to handle the next incoming stateless web
service method invocation. Then the application pool grows and shrinks with load in
the same way the web application will. The only difference is that here the pool is
being used in a totally stateless way. For more information on tuning the application
module pool, see Chapter 29, "Understanding Application Module Pooling".

Example 33–10 Generated Code for Each Method in Application Module Client Interface

// In YourAppModuleServer.java generated web service class
 :
 public void someMethod(int p1, String p2) {
 AppModuleImpl _am = null;
 try {
 // 1. Acquire an application module instance from the pool
 _am = (AppModuleImpl)Configuration.createRootApplicationModule(
 "com.yourcompany.yourapp.YourAppModule",
 "YourAppModuleLocal");
 // 2. Delegate a call to its someMethod() method, passing arguments
 _am.someMethod(p1, p2);
 // 3. If return of method is non-void, return the result here
 } finally {
 if (_am != null) {
 // 4. Release application module to the pool, without removing it
 Configuration.releaseRootApplicationModule(_am, false);
 }
 }
 :
 }

Calling a Web Service from an Application Module

33-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

33.4.3 What You May Need to Know About Deploying an Application Module as a Web
Service

JDeveloper creates a web service deployment profile as part of enabling the web
service remote option on your application module. To deploy the service, just select
Deploy from the context menu of this deployment profile.

33.4.4 What You May Need to Know About Data Types Supported for Web Service
Methods

Your custom method parameters and return types can use any datatype that
implements the java.io.Serializable interface. This excludes the use of any
generic ADF Business Components interfaces from the oracle.jbo package like Row
or ViewObject. While these types are allowed on the custom interface of an
application module, in general, they are not supported for web services. To return
collections of data through a web service interface, you will need to create custom data
transfer objects that implement the Serializable interface and populate them from
the results of your view object query results before returning them in an array.

For example, if you needed to return a single row of the ServiceRequests view
object instance in the SRDemo application’s SRService application module, you would
need to create a new ServiceRequest bean with appropriate bean properties and
corresponding getter and setter methods. This class would need to implement the
Serializable interface. Since this is just a marker interface, there is no additional
implementation required other than adding the implements Serializable
keywords to the class definition. Once you have created this bean, you can populate its
properties inside the custom method implementation, and then return it as the return
value of a custom service method like:

public ServiceRequest findServiceRequest(int svrid)

If you need to return a collection of serializable objects, you can use any type
supported by the web service infrastructure. For example, you could return an array of
one or more service requests using a custom method signature like:

public ServiceRequest[] findServiceRequests(String status, String technician)

33.5 Calling a Web Service from an Application Module
In a service-oriented architecture, sometimes your application module will need to
take advantage of functionality offered by a web service. JDeveloper’s built-in web
services wizards make this an easy task. After creating a web service proxy class using
the wizard, calling the service is as simple as calling a method in a local Java object.

33.5.1 Understanding the Role of the Web Services Description Language Document
A web service can be implemented in any programming language and can reside on
any server on the network. Each web service identifies the methods in its API by
describing them in a standard, language-neutral XML format. This XML document,
whose syntax adheres to the Web Services Description Language (WSDL) described in
Section 33.1.2, "WSDL", enables tools like JDeveloper to automatically understand the
names of the web service’s methods as well as the data types of the parameters they
might expect and their eventual return value.

In order to work with any web service, you will need to know the URL that identifies
its WSDL document. This URL could be a file-based URL like:

file:///D:/temp/SomeService.wsdl

Calling a Web Service from an Application Module

Working with Web Services 33-17

if you have received the WSDL document as an email attachment, for example, and
saved it to your local hard drive. Alternatively, the URL could be an HTTP-based URL
like:

http://somerserver.somecompany.com/SomeService/SomeService.wsdl

Some web services make their WSDL document available by using a special parameter
to modify the actual service URL itself. So, for example, a web service that expects to
receive requests at the HTTP address of:

http://somerserver.somecompany.com/SomeService

might publish the corresponding WSDL document using the same URL with an
additional parameter on the end like this:

http://somerserver.somecompany.com/SomeService?WSDL

Since there is no established standard, you will just need to know what the correct
URL to the WSDL document is. With that URL in hand, you can then create a web
service proxy class to call the service.

33.5.2 Understanding the Role of the Web Service Proxy Class
To call a web service from an application module, you create a web service proxy class
for the service you want to invoke. A web service proxy is a generated Java class that
represents the web service inside your application. It encapsulates the service URL of
the web service and handles the lower-level details of making the call.

The web service proxy class presents a set of Java methods that correspond to the web
service’s public API. By using the web service proxy class, you can call any method in
the web service in the same way as you work with the methods of any other local Java
class.

33.5.3 How to Call a Web Service from an Application Module
To call a web service from an application module, you perform three steps:

1. Create a web service proxy class for the web service.

2. Create an instance of the web service proxy class in your application module.

3. Invoke one or more methods on the web service proxy object.

33.5.3.1 Creating a Web Service Proxy Class for a Web Service
To create a web service proxy class for a web service you need to call, use the Create
Web Service Proxy wizard. You’ll find it in the Business Tier > Web Services category
of the New Gallery. When the wizard appears, follow these steps:

1. In step 1on the Web Service Description page, enter the URL for the WSDL
document that describes the service, then press [Tab].

For example, if the service is created to comply with the latest JAXRPC standard
and deployed to an Oracle Application Server, the WSDL URL might look like
this:

http://someserver:8888/StockQuoteService/StockQuoteServiceSoapHttpPort?WSDL

Calling a Web Service from an Application Module

33-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

2. If the wizard displays the Next > button enabled, then JDeveloper has recognized
and validated the WSDL document. You can click it and proceed to step 3. If the
button does not enable, click Why Not? to understand what problem JDeveloper
encountered when trying to read the WSDL document. If necessary, fix the
problem after verifying the URL and try step 1 again.

3. In step 5 on the Default Mapping Options page, choose a Java package name for
the generated web service proxy class, then click Finish.

33.5.3.2 Understanding the Generated Web Service Proxy
JDeveloper generates the web service proxy class in the package you’ve indicated with
a name that reflects the name of the web service port it discovered in the WSDL
document. The web service port name might be a nice, human-readable name like
StockQuoteService, or could be a less-friendly name like
StockQuoteServiceSoapHttpPort. This port name is decided by the developer
that published the web service you are using. Assuming that the port name of the
service is StockQuoteServiceSoapHttpPort, JDeveloper will generate a web
proxy class named StockQuoteServiceSoapHttpPortClient.

The web service proxy displays in the Application Navigator as a single, logical node
called WebServiceNameProxy. For example, the node for the StockQuoteService
web service above would appear in the navigator with the name
StockQuoteServiceProxy. As part of generating the proxy class, in addition to the
main web service proxy class that you will use to invoke the server, JDeveloper
generates a number of auxiliary classes and interfaces. You can see these files in the
Structure window by selecting the web service proxy node in the Application
Navigator. The generated files are used as part of the lower-level implementation of
invoking the web service.

The only auxiliary generated classes you will need to reference are those created to
hold structured web service parameters or return types. For example, imagine that the
StockQuoteService web service has a quoteForSymbol() method that accepts
one String parameter and returns a floating-point value indicating the current price of
the stock. If the designer of the web service chose to return a simple floating-point
number, then the web service proxy class would have a corresponding method like
this:

public float quoteForSymbol(String symbol)

If instead, the designer of the web service thought it useful to return multiple pieces of
information as the result, then the service’s WSDL file will include a named structure
definition describing the multiple elements it contains. For example, assume the
service returns both the symbol name and the current price as a result. To contain these
two data elements, the WSDL file might define a structure named QuoteInfo with an
element named symbol of String type and an element named price of floating-point
type. In this situation, when JDeveloper generates the web service proxy class, the Java
method signature will look like this instead:

public QuoteInfo quoteForSymbol(String symbol)

The QuoteInfo return type references one of the auxiliary classes that comprises the
web service proxy implementation. It is a simple bean whose properties reflect the
names and types of the structure defined in the WSDL document. In a similar way, if
the web service accepts parameters whose values are structures or arrays of structures,
then you will work with these structures in your Java code using the corresponding
generated beans.

Calling a Web Service from an Application Module

Working with Web Services 33-19

33.5.3.3 Calling a Web Service Method Using the Web Service Proxy Class
Once you’ve generated the web service proxy class, you can use it inside a custom
method of your application module as shown in Example 33–11.

Example 33–11 Calling a Web Service Method Using the Web Service Proxy Class

// In YourModuleImpl.java
public void performSomeApplicationTask(String symbol) throws Exception {
 // application-specific code here
 :
 // Create an instance of the web service proxy class
 StockQuoteServiceSoapHttpPortClient svc =
 new StockQuoteServiceSoapHttpPortClient();
 // Call a method on the web service proxy class and get the result
 QuoteInfo quote = svc.quoteForSymbol(symbol);
 float currentPrice = quote.getPrice();
 // more application-specific code here
}

33.5.4 What Happens When You Call a Web Service from an Application Module
When you invoke a web service from an application module, the web service proxy
class handles the lower-level details of using the XML-based web services protocol
described in Section 33.1.1, "SOAP". In particular, it does the following:

■ Creates an XML document to represent the method invocation

■ Packages any method arguments in XML

■ Sends the XML document to the service URL using an HTTP POST request

■ Unpackages the XML-encoded response from the web service.

If the method you invoke has a return value, your code receives it as an appropriately
typed object to work with in your application module code.

33.5.5 What You May Need to Know

33.5.5.1 Use a Try/Catch Block to Handle Web Service Exceptions
By using the generated web service proxy class, invoking a remote web service
becomes as easy as calling a method in a local Java class. The only real distinction to be
aware of is that the web service method call could fail if there is a problem with the
HTTP request involved. The method calls that you perform against a web service
proxy should anticipate the possibility that the request might fail by wrapping the call
with an appropriate try...catch block. Example 33–12 improves on the simpler
example shown above by implementing the best practice of catching the web service
exception. In this case it simply rethrows the error as a JboException, but you could
implement more appropriate error handling in your own application.

Calling a Web Service from an Application Module

33-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Example 33–12 Wrapping Web Service Method Calls with a Try/Catch Block

// In YourModuleImpl.java
public void performSomeApplicationTask(String symbol) {
 // application-specific code here
 // :
 QuoteInfo quote = null;
 try {
 // Create an instance of the web service proxy class
 StockQuoteServiceSoapHttpPortClient svc =
 new StockQuoteServiceSoapHttpPortClient();
 // Call a method on the web service proxy class and get the result
 quote = svc.quoteForSymbol(symbol);
 }
 catch (Exception ex) {
 throw new JboException(ex);
 }
 float currentPrice = quote.getPrice();
 // more application-specific code here
}

33.5.5.2 Web Services are Do Not Share a Transaction with the Application Module
You will use some web services to access reference information. However, other
services you call may modify data. This data modification might be in your own
company’s database if the service was written by a member of your own team or
another team in your company. If the web service is outside your firewall, of course
the database being modified will be managed by another company. In either of these
situations, it is important to understand that any data modifications performed by a
web service you invoke will occur in their own distinct transaction that is unrelated to
the application module’s current unit of work. For example, if you have invoked a web
service that modifies data and then you later call rollback() to cancel the pending
changes in the application module’s current unit of work, this has no effect on the
changes performed by the web service you called in the process. You may need to
invoke a corresponding web service method to perform a compensating change to
account for your rollback of the application module’s transaction.

33.5.5.3 Setting Browser Proxy Information
If the web service you need to call resides outside your corporate firewall, you need to
ensure that you have set the appropriate Java system properties to configure the use of
an HTTP proxy server. The Java system properties to configure are:

■ http.proxyHost

Set this to the name of the proxy server.

■ http.proxyPort

Set this to the HTTP port number of the proxy server (often 80).

■ http.nonProxyHosts

Optionally set this to a vertical-bar-separated list of servers not requiring the user
of a proxy server (e.g. "localhost|127.0.0.1|*.yourcompany.com").

Within JDeveloper, you can configure an HTTP proxy server on the Web Browser and
Proxy page of the IDE Preferences dialog. When you run your application, JDeveloper
includes appropriate -D command-line options to set the above three system
properties based on the settings you’ve indicated in this dialog.

Deploying ADF Applications 34-1

34
Deploying ADF Applications

This chapter describes how to deploy applications that use ADF to Oracle Application
Server as well as to third-party application servers such as JBoss, WebLogic, and
WebSphere.

This chapter includes the following sections:

■ Section 34.1, "Introduction to Deploying ADF Applications"

■ Section 34.2, "Deployment Steps"

■ Section 34.3, "Deployment Techniques"

■ Section 34.4, "Deploying Applications Using Ant"

■ Section 34.5, "Deploying the SRDemo Application"

■ Section 34.6, "Deploying to Oracle Application Server"

■ Section 34.7, "Deploying to JBoss"

■ Section 34.8, "Deploying to WebLogic"

■ Section 34.9, "Deploying to WebSphere"

■ Section 34.10, "Deploying to Tomcat"

■ Section 34.11, "Deploying to Application Servers That Support JDK 1.4"

■ Section 34.12, "Installing ADF Runtime Library on Third-Party Application
Servers"

■ Section 34.13, "Verifying Deployment and Troubleshooting"

34.1 Introduction to Deploying ADF Applications
Deployment is the process through which application files are packaged as an archive
file and transferred to the target application server. Deploying ADF applications is
only slightly different from deploying standard J2EE applications.

JDeveloper supports the following deployment options:

■ Deploying to an application server.

■ Deploying to an archive file: Applications can be deployed indirectly by choosing
an archive file as the deployment target. You can then use tools provided by the
application server vendor to deploy the archive file. Information on deploying to
selected other application servers is available on the Oracle Technology Network
(http://www.oracle.com/technology).

■ Deploying for testing: JDeveloper supports two options for testing applications:

Deployment Steps

34-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Embedded OC4J Server: You can test applications, without deploying them, by
running them on JDeveloper’s embedded Oracle Containers for J2EE (OC4J)
server. OC4J is the J2EE component of Oracle Application Server.

Standalone OC4J: In a development environment, you can deploy and run
applications on a standalone version of OC4J prior to deploying them to Oracle
Application Server. Standalone OC4J is included with JDeveloper.

Connection to Data Source
You need to configure in JDeveloper a data source that refers to the data source (such
as a database) used in your application.

ADF Runtime Library
If you are deploying to third-party application servers (such as JBoss, WebLogic, and
WebSphere), you have to install the ADF runtime library on the servers. See
Section 34.12, "Installing ADF Runtime Library on Third-Party Application Servers"
for details.

For Oracle Application Server, the ADF runtime libraries are already installed.

Standard Packaging
After you have all the necessary files, you package the files for the application for
deployment in the standard manner. This gives you an EAR file, a WAR file, or a JAR
file.

When you are ready to deploy your application, you can deploy using a variety of
tools. You can deploy to most application servers from JDeveloper. You can also use
tools provided by the application server vendor. Tools are described in the specific
application server sections later in the chapter.

34.2 Deployment Steps
To deploy an application, you perform these steps:

Step 1: Install the ADF Runtime Library on the Target Application Server

Step 2: Create a Connection to the Target Application Server

Step 3: Create a Deployment Profile for the JDeveloper Project

Step 4: Create Deployment Descriptors

Step 5: Perform Additional Configuration Tasks Needed for ADF

Step 6: Perform Application Server-Specific Configuration

Step 7: Deploy the Application

Step 1 Install the ADF Runtime Library on the Target Application Server
This step is required if you are deploying ADF applications to third-party application
servers, and optional if you are deploying on Oracle Application Server or standalone
OC4J. See Section 34.12, "Installing ADF Runtime Library on Third-Party Application
Servers" for installation steps.

Deployment Steps

Deploying ADF Applications 34-3

JSF applications that contain ADF Faces components have a few additional
deployment requirements:

■ ADF Faces require Sun’s JSF Reference Implementation 1.1_01 (or later) and
MyFaces 1.0.8 (or later).

■ ADF Faces applications cannot run on an application server that only supports JSF
1.0.

Step 2 Create a Connection to the Target Application Server
In JDeveloper, create a connection to the application server where you want to deploy
your application. Note that if your target application server is WebSphere, you can
skip this step because JDeveloper cannot create a connection to WebSphere. For
WebSphere, you deploy applications using the WebSphere console. See Section 34.9,
"Deploying to WebSphere" for details.

To create a connection to an application server:

1. In the Connections Navigator, right click Application Server and choose New
Application Server Connection. The Create Application Server Connection
wizard opens.

2. Click Next to proceed to the Type page.

3. On the Type page:

■ Provide a name for the connection.

■ In the Connection Type list box, select the application server type. You can
deploy ADF applications on these application servers:

– Standalone OC4J 10.1.3

– Oracle Application Server (10.1.2 or 10.1.3)

– WebLogic Server (8.x or 9.x)

– JBoss 4.0.x

– Tomcat 5.x

■ Click Next.

4. If you selected Tomcat as the application server, the Tomcat Directory page
appears. Enter the Tomcat’s "webapps" directory as requested and click Next. This
is the last screen for configuring a Tomcat server.

5. If you selected JBoss as the application server, the JBoss Directory page appears.
Enter the JBoss’s "deploy" directory as requested and click Next. This is the last
screen for configuring a JBoss server.

6. On the Authentication page enter a user name and password that corresponds to
the administrative user for the application server. Click Next.

7. On the Connection page, identify the server instance and configure the connection.
Click Next.

Deployment Steps

34-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

8. On the Test page, test the connection. If not successful, return to the previous
pages of the wizard to fix the configuration.

If you are using WebLogic, you may see this error when testing the connection:

Class Not Found Exception -
weblogic.jndi.WLInitialContextFactory

This exception occurs when weblogic.jar is not in JDeveloper’s classpath. You
may ignore this exception and continue with the deployment.

9. Click Finish.

Step 3 Create a Deployment Profile for the JDeveloper Project
Deployment profiles are project components that govern the deployment of a project
or application. A deployment profile specifies the format and contents of the archive
file that will be created.

To create a deployment profile:

1. In the Applications Navigator, select the project for which you want to create a
profile.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Deployment Profiles.

4. In the Items list, select a profile type. For ADF applications, you should select one
of the following from the Items list:

■ WAR File

■ EAR File

You can also select Business Components Archive, if you are using ADF Business
Components.

If the desired item is not found or enabled, make sure you selected the correct
project, and select All Technologies in the Filter By dropdown list.

Click OK.

5. In the Create Deployment Profile dialog provide a name and location for the
deployment profile, and click OK.

The profile, <name>.deploy, will be added to the project, and its Deployment
Profile Properties dialog will open.

6. Select items in the left pane to open dialog pages in the right pane. Configure the
profile by setting property values in the pages of the dialog.

Typically you can accept the default settings. One of the settings that you might
want to change is the J2EE context root (select General on the left pane). By
default, this is set to the project name. You need to change this if you want users to
use a different name to access the application. Note that if you are using custom
JAAS LoginModules for authentication with JAZN, the context root name also
defines the application name that is used to look up the JAAS LoginModule.

7. Click OK to close the dialog.

8. Save the file to keep all changes.

To view or edit a deployment profile, right-click it in the Navigator, and choose
Properties, or double-click the profile in the Navigator. This opens the Deployment
Profile Properties dialog.

Deployment Steps

Deploying ADF Applications 34-5

Step 4 Create Deployment Descriptors
Deployment descriptors are server configuration files used to define the configuration
of an application for deployment and are deployed with the J2EE application as
needed. The deployment descriptors a project requires depend on the technologies the
project uses, and on the type of the target application server. Deployment descriptors
are XML files that can be created and edited as source files, but for most descriptor
types JDeveloper provides dialogs that you can use to view and set properties.

In addition to the standard J2EE deployment descriptors (for example:
application.xml, and web.xml), you can also have deployment descriptors that
are specific to your target application server. For example, if you are deploying on
Oracle Application Server, you can also have orion-application.xml,
orion-web.xml, and orion-ejb-jar.xml.

To create a deployment descriptor:

1. In the Applications Navigator, select the project for which you want to create a
descriptor.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Deployment Descriptors.

4. In the Items list, select a descriptor type, and click OK.

If the desired item is not found, make sure you selected the correct project, and
select All Technologies in the Filter By dropdown list. If the desired item is not
enabled, check to make sure the project does not already have a descriptor of that
type. A project may have only one instance of a descriptor.

JDeveloper starts the Create Deployment Descriptor wizard or opens the file in the
editor pane, depending on the type of deployment descriptor you selected.

To view or change deployment descriptor properties:

1. In the Applications Navigator, right-click the deployment descriptor and choose
Properties. If the context menu does not have a Properties item, then the
descriptor must be edited as a source file. Choose Open from the context menu to
open the profile in an XML editor window.

2. Select items in the left pane to open dialog pages in the right pane. Configure the
descriptor by setting property values in the pages of the dialog.

3. Click OK when you are done.

To edit a deployment descriptor as an XML file:

■ In the Applications Navigator, right-click the deployment descriptor and choose
Open. The file opens in an XML editor.

Note: For EAR files, do not create more than one deployment
descriptor per application or workspace. These files are assigned to
projects, but have workspace scope. If multiple projects in an
application or workspace have the same deployment descriptor, the
one belonging to the launched project will supersede the others. This
restriction applies to application.xml, data-sources.xml,
jazn-data.xml, and orion-application.xml.

Deployment Steps

34-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Step 5 Perform Additional Configuration Tasks Needed for ADF
If your application uses ADF Faces components, ensure that the standard J2EE
deployment descriptors contain entries for ADF Faces, and that you include the ADF
and JSF configuration files in your archive file (typically a WAR file). When you create
ADF Faces components in your application, JDeveloper automatically creates and
configures the files for you.

Check that the WAR file includes the following configuration and library files:

■ web.xml—See Section 11.4.2.1, "More About the web.xml File" for ADF and JSF
entries in this file.

■ faces-config.xml and adf-faces-config.xml files. See Section 11.4.2.2,
"More About the faces-config.xml File" and Section 11.4.2.3, "Starter
adf-faces-config.xml File" for details.

■ JAR files used by JSF and ADF Faces:

– commons-beanutils.jar

– commons-collections.jar

– commons-digester.jar

– commons-logging.jar

– jsf-api.jar and jsf-impl.jar—These JAR files are the JSF reference
implementation that JDeveloper includes by default.

– jstl.jar and standard.jar—These are the libraries for the JavaServer
Pages Standard Tag Library (JSTL).

– adf-faces-api.jar—Located in the ADF Faces runtime library, this JAR
contains all public ADF Faces APIs and is included in the WAR by default.

– adf-faces-impl.jar—Located in the ADF Faces runtime library, this JAR
contains all private ADF Faces APIs and is included in the WAR by default.

– adfshare.jar—Located in the ADF Common runtime library, this JAR
contains ADF Faces logging utilities.

If you have installed the ADF runtime libraries, which are required if you are
deploying ADF Business Components, adfshare.jar is included in the
WAR by default. Otherwise, you must manually include adfshare.jar in
WEB-INF/lib when creating the WAR deployment profile.

If you are using ADF databound UI components as described in Section 12.2, "Using
the Data Control Palette", check that you have the DataBindings.cpx file. For
information about the file, see Section 12.3, "Working with the DataBindings.cpx File".

Note: If you are using another JSF implementation (such as
MyFaces), you must include the JAR files for those libraries when you
create the deployment profile and remove the JSF JAR files
(jsf-api.jar and jsf-impl.jar) from the WAR file; otherwise,
your application will not run correctly.

Deployment Steps

Deploying ADF Applications 34-7

A typical WAR directory structure for a JSF application has the following layout:

MyApplication/
 JSF pages
 WEB-INF/
 configuration files (web.xml, faces-config.xml etc)
 tag library descriptors (optional)
 classes/
 application class files
 Properties files
 lib/
 commons-beanutils.jar
 commons-collections.jar
 commons-digester.jar
 commons-logging.jar
 jsf-api.jar
 jsf-impl.jar
 jstl.jar
 standard.jar

Step 6 Perform Application Server-Specific Configuration
Before you can deploy the application to your target application server, you may need
to perform some vendor-specific configuration. See the specific application server
sections later in this chapter.

Step 7 Deploy the Application

To deploy to the target application server from JDeveloper:

■ Right-click the deployment profile, choose Deploy to from the context menu, then
select the application server connection that you created earlier (in step 2 on
page 34-3).

You can also use the deployment profile to create the archive file (EAR, WAR, or JAR
file) only. You can then deploy the archive file using tools provided by the target
application server. To create an archive file:

■ Right-click the deployment profile and choose Deploy to WAR file (or Deploy to
EAR file) from the context menu.

Note: If you are running WebLogic 8.1, see Section 34.8.3, "WebLogic
8.1 Deployment Notes".

Deployment Techniques

34-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Step 8 Test the Application
Once you've deployed the application, you can test it from the application server. To
test run your application, open a browser window and enter an URL of the following
type:

■ For Oracle AS: http://<host>:port/<context root>/<page>

■ For Faces pages: http://<host>:port/<context root>/faces/<page>

34.3 Deployment Techniques
Table 34–1 describes some common deployment techniques that you can use during
the application development and deployment cycle. The table lists the deployment
techniques in order from deploying on development environments to deploying on
production environments. It is likely that in the production environment, the system
administrators deploy applications using scripting tools.

Note: The reason why /faces has to be in the URL for Faces pages
is because JDeveloper configures your web.xml file to use the URL
pattern of /faces to be associated with the Faces Servlet. The Faces
Servlet does its per-request processing, strips out the /faces part in
the URL, then forwards to the JSP. If you do not include the /faces in
the URL, then the Faces Servlet is not engaged (since the URL pattern
doesn't match) and so your JSP is run without the necessary JSF
per-request processing.

Table 34–1 Deployment Techniques

Deployment Technique When to Use

Deploy directly from JDeveloper This technique is typically used when you are developing your
application.

When you are developing the application, you may want to deploy it
quickly for testing. You want deployment to be quick because you will
be repeating the editing and deploying process many times.

JDeveloper comes with an embedded OC4J server, on which you can
run and test your application. You should also deploy your application
to an external application server to test it.

Deploy to EAR file, then use the target
application server’s tools for
deployment

This technique is typically used when you are ready to deploy and test
your application on an application server in a test environment. On the
test server, you can test features (such as LDAP and OracleAS Single
Sign-On) that are not available on the development server.

You can also use the test environment to develop your deployment
scripts. The scripts may involve Ant.

Use a script to deploy applications This technique is typically used on test and production environments.
On production environments, system administrators usually run scripts
to deploy applications.

Deploying to Oracle Application Server

Deploying ADF Applications 34-9

34.4 Deploying Applications Using Ant
You can also use Ant to package and deploy applications. The build.xml file, which
contains the deployment commands for Ant, may vary depending on the target
application server.

For deployment to Oracle Application Server using Ant, see the chapter "Deploying
with the OC4J Ant Tasks" in the Oracle Containers for J2EE Deployment Guide. This
chapter provides complete details on how to use Ant to deploy to Oracle Application
Server. Oracle provides Ant tasks that are specific to Oracle Application Server.

For deployment to other application servers, see the application server’s
documentation. If your application server does not provide specific Ant tasks, you
may be able to use generic Ant tasks. For example, the generic ear task creates an
EAR file for you.

For information about Ant, see http://ant.apache.org.

34.5 Deploying the SRDemo Application
The SRDemo application includes a project called BuildAndDeploy, which contains
EAR and WAR deployment profiles as well as Ant scripts that you can use to build the
application. The deployment profiles pull in the appropriate files from the projects in
the application workspace to build the EAR and WAR files. You can deploy the EAR or
WAR file on your target application server. (You can also deploy directly to your
application server from JDeveloper if you have created a connection to your
application server.)

To view the properties of a deployment profile, right-click the deployment profile and
choose Properties from the context menu.

The SRDemo application also includes the
UserInterface/src/META-INF/SRDemo-jazn-data.xml file. The file contains
some usernames and passwords so that the application can work out of the box
running on the embedded OC4J server. Note that this file is not distributed in the EAR
file. If you deploy the application to an external application server, you have to set up
the relevant credential store on the target application server.

If you want to deploy the application to different application servers, you can create a
separate deployment profile for each target application server. This enables you to
configure the properties for each target separately.

34.6 Deploying to Oracle Application Server
This section describes deployment details specific to Oracle Application Server:

■ Section 34.6.1, "Oracle Application Server Versions Supported"

■ Section 34.6.2, "Oracle Application Server Release 2 (10.1.2) Deployment Notes"

■ Section 34.6.3, "Oracle Application Server Deployment Methods"

■ Section 34.6.4, "Oracle Application Server Deployment to Test Environments
("Automatic Deployment")"

■ Section 34.6.5, "Oracle Application Server Deployment to Clustered Topologies"

Deploying to Oracle Application Server

34-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

34.6.1 Oracle Application Server Versions Supported
Table 34–2 shows the supported versions of Oracle Application Server:

34.6.2 Oracle Application Server Release 2 (10.1.2) Deployment Notes
If you are deploying to Oracle Application Server Release 2 (10.1.2), you have to
perform some additional steps before you can run your ADF applications:

■ This version of Oracle Application Server supports JDK 1.4. This means that you
need to configure JDeveloper to build your applications with JDK 1.4 instead of
JDK 1.5. See Section 34.11, "Deploying to Application Servers That Support JDK
1.4" for details.

■ You need to install the ADF runtime libraries on the application server. This is
because the ADF runtime libraries that were shipped with Release 2 (10.1.2) need
to be updated. To install the ADF runtime libraries, see Section 34.12.1, "Installing
the ADF Runtime Libraries from JDeveloper".

■ Note that Oracle Application Server Release 2 (10.1.2) supports J2EE 1.3, while
JDeveloper 10.1.3 supports J2EE 1.4. This means that if you are using J2EE 1.3
components , you have to ensure that JDeveloper creates the appropriate
configuration files for that version. Configuration files for J2EE 1.3 and 1.4 are
different.

Table 34–3 lists the configuration files that need to be J2EE 1.3-compliant, and how
to configure JDeveloper to generate the appropriate version of the files.

Table 34–2 Support Matrix for Oracle Application Server

Oracle Application Server Version JDK Version J2EE Version

Release 3 (10.1.3) 1.5_05 1.4

Release 2 (10.1.2) 1.4 1.3

Deploying to Oracle Application Server

Deploying ADF Applications 34-11

34.6.3 Oracle Application Server Deployment Methods
Instead of deploying applications directly from JDeveloper, you can use JDeveloper to
create the archive file, and then deploy the archive file using these methods:

■ Using Application Server Control Console. For details, see the "Deploying with
Application Server Control Console" chapter in the Oracle Containers for J2EE
Deployment Guide.

■ Using admin_client.jar. For details, see the "Deploying with the admin_
client.jar Utility" chapter in the Oracle Containers for J2EE Deployment Guide.

You can access the Oracle Containers for J2EE Deployment Guide from the Oracle
Application Server documentation library.

34.6.4 Oracle Application Server Deployment to Test Environments ("Automatic
Deployment")

If you are deploying to a standalone OC4J environment that is not a production
environment, you can configure OC4J to automatically deploy your application. This
method is not recommended for production environments.

For details, see the "Automatic Deployment in OC4J" chapter in the Oracle Containers
for J2EE Deployment Guide.

Table 34–3 Configuring JDeveloper to Generate Configuration Files That Are J2EE 1.3-Compliant

Configuration File How to Configure JDeveloper to Generate Appropriate Version of the File

application.xml

web.xml

1. Select the project in the Applications Navigator.

2. Select File > New to display the New Gallery.

3. In Categories, expand General and select Deployment Descriptors.

4. In Items, select J2EE Deployment Descriptor Wizard and click OK.

5. Click Next in the wizard to display the Select Descriptor page.

6. On the Select Descriptor page, select application.xml (or web.xml) and
click Next.

7. On the Select Version page, select 1.3 (2.3 if you are configuring web.xml)
and click Next.

8. On the Summary page, click Finish.

orion-application.xml

data-sources.xml

oc4j-connectors.xml

1. Select the project in the Applications Navigator.

2. Select File > New to display the New Gallery.

3. In Categories, expand General and select Deployment Descriptors.

4. In Items, select OC4J Deployment Descriptor Wizard and click OK.

5. Click Next in the wizard to display the Select Descriptor page.

6. On the Select Descriptor page, select the file you want to configure and
click Next.

7. On the Select Version page, select the appropriate version and click Next.

For orion-application.xml, select 1.2.

For data-sources.xml, select 1.0.

For oc4j-connectors.xml, select 10.0.

8. On the Summary page, click Finish.

Deploying to JBoss

34-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

34.6.5 Oracle Application Server Deployment to Clustered Topologies
To deploy to clustered topologies, you can use any of the following methods:

■ In JDeveloper, you can deploy to a "group" of Oracle Application Server instances.
To do this, ensure that the connection to the Oracle Application Server is set to
"group" instead of "single instance".

■ You can use the admin_client.jar command-line utility. This utility enables
you to deploy the application to all nodes in a cluster using a single command.
admin_client.jar is shipped with Oracle Application Server 10.1.3.

For details, see the "Deploying with the admin_client.jar Utility" chapter in the
Oracle Containers for J2EE Deployment Guide.

34.7 Deploying to JBoss
This section describes deployment details that are specific to JBoss.

■ Section 34.7.1, "JBoss Versions Supported"

■ Section 34.7.2, "JBoss Deployment Notes"

■ Section 34.7.3, "JBoss Deployment Methods"

34.7.1 JBoss Versions Supported
Table 34–4 shows the supported versions of JBoss:

34.7.2 JBoss Deployment Notes
■ Before deploying applications that use ADF to JBoss, you need to install the ADF

runtime libraries on JBoss. See Section 34.12, "Installing ADF Runtime Library on
Third-Party Application Servers" for details.

Table 34–4 Support Matrix for JBoss

JBoss version JDK version J2EE version

4.0.2 1.5_04 1.4

4.0.3 1.5_04 1.4

Deploying to JBoss

Deploying ADF Applications 34-13

■ If you are running JBoss version 4.0.3, you need to delete the following directories
from the JBoss home. This is to facilitate running JSP and ADF Faces components.

– deploy/jbossweb-tomcat55.sar/jsf-lib/

– tmp, log, and data directories (located at the same level as the deploy
directory)

After removing the directories, restart JBoss.

If you do not remove these directories, you may get the following exception
during runtime:

org.apache.jasper.JasperException
org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:370)
org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:314)
org.apache.jasper.servlet.JspServlet.service(JspServlet.java:264)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
com.sun.faces.context.ExternalContextImpl.dispatch(ExternalContextImpl.java:322
)
com.sun.faces.application.ViewHandlerImpl.renderView(ViewHandlerImpl.java:130)
com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:87
)
com.sun.faces.lifecycle.LifecycleImpl.phase(LifecycleImpl.java:200)
com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:117)
javax.faces.webapp.FacesServlet.service(FacesServlet.java:198)
org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java:
81)

root cause

java.lang.NullPointerException
javax.faces.webapp.UIComponentTag.setupResponseWriter(UIComponentTag.java:615)
javax.faces.webapp.UIComponentTag.doStartTag(UIComponentTag.java:217)
org.apache.myfaces.taglib.core.ViewTag.doStartTag(ViewTag.java:71)
org.apache.jsp.untitled1_jsp._jspx_meth_f_view_0(org.apache.jsp.untitled1_
jsp:84)
org.apache.jsp.untitled1_jsp._jspService(org.apache.jsp.untitled1_jsp:60)
org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:97)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:322)
org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:314)
org.apache.jasper.servlet.JspServlet.service(JspServlet.java:264)
javax.servlet.http.HttpServlet.service(HttpServlet.java:810)
com.sun.faces.context.ExternalContextImpl.dispatch(ExternalContextImpl.java:322
)
com.sun.faces.application.ViewHandlerImpl.renderView(ViewHandlerImpl.java:130)
com.sun.faces.lifecycle.RenderResponsePhase.execute(RenderResponsePhase.java:87
)
com.sun.faces.lifecycle.LifecycleImpl.phase(LifecycleImpl.java:200)
com.sun.faces.lifecycle.LifecycleImpl.render(LifecycleImpl.java:117)
javax.faces.webapp.FacesServlet.service(FacesServlet.java:198)
org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java:
81)

■ To deploy applications directly from JDeveloper to JBoss, the directory where the
target JBoss application server is installed must be accessible from JDeveloper.
This means you need to run JDeveloper and JBoss on the same machine, or you
need to map a network drive on the JDeveloper machine to the JBoss machine.

Deploying to WebLogic

34-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

This is required because JDeveloper needs to copy the EAR file to the JBOSS_
HOME\server\default\deploy directory in the JBoss installation directory.

■ In the Business Components Project Wizard, set the SQL Flavor to SQL92, and the
Type Map to Java. This is necessary because ADF uses the emulated XA
datasource implementation when the Business Components application is
deployed as an EJB session bean.

■ For business components JSP applications, choose Deploy to EAR file from the
context menu to deploy it as an EAR file. You must deploy this application to an
EAR file and not a WAR file because JBoss does not add EJB references under the
java:comp/env/ JNDI namespace for a WAR file. If you have set up a
connection in JDeveloper to your JBoss server, you can deploy the EAR file
directly to the server.

34.7.3 JBoss Deployment Methods
You can deploy to JBoss directly if you have set up a connection in JDeveloper to your
JBoss server. When you deploy from JDeveloper, it copies the EAR file to the JBOSS_
HOME\server\default\deploy directory. JBoss deploys the EAR files that it finds
in that directory. You do not have to restart JBoss in order to access the application.

34.8 Deploying to WebLogic
This section describes deployment details that are specific to WebLogic.

■ Section 34.8.1, "WebLogic Versions Supported"

■ Section 34.8.2, "WebLogic Versions 8.1 and 9.0 Deployment Notes"

■ Section 34.8.3, "WebLogic 8.1 Deployment Notes"

■ Section 34.8.5, "WebLogic Deployment Methods"

34.8.1 WebLogic Versions Supported
Table 34–5 shows the supported versions of WebLogic:

34.8.2 WebLogic Versions 8.1 and 9.0 Deployment Notes
■ Before deploying applications that use ADF to WebLogic, you need to install the

ADF runtime libraries on WebLogic. See Section 34.12, "Installing ADF Runtime
Library on Third-Party Application Servers" for details.

■ When you click Test Connection in the Create Application Server Connection
wizard, you may get the following exception:

Class Not Found Exception -
weblogic.jndi.WLInitialContextFactory

Table 34–5 Support Matrix for WebLogic

WebLogic version JDK version J2EE version

8.1 SP4 1.4

ADF applications have been
certified against the Sun JDK,
but not the JRockit JDK.

1.3

9.0 1.5 1.4

Deploying to WebLogic

Deploying ADF Applications 34-15

This exception occurs when weblogic.jar is not in JDeveloper’s classpath. You
may ignore this exception and continue with the deployment.

■ You may get an exception in JDeveloper when trying to deploy large EAR files.
The workaround is to deploy the application using the server console.

34.8.3 WebLogic 8.1 Deployment Notes
■ This version of WebLogic supports JDK 1.4. This means that you need to configure

JDeveloper to build your applications with JDK 1.4 (such as the JDK provided by
WebLogic) instead of JDK 1.5. See Section 34.11, "Deploying to Application Servers
That Support JDK 1.4" for details.

■ WebLogic 8.1 is only J2EE 1.3 compliant. This means that you need to create an
application.xml file that complies with J2EE 1.3. To create this file in
JDeveloper, make the following selections:

1. Select the project in the Applications Navigator.

2. Select File > New to display the New Gallery.

3. In Categories, expand General and select Deployment Descriptors.

4. In Items, select J2EE Deployment Descriptor Wizard and click OK.

5. Click Next in the wizard to display the Select Descriptor page.

6. On the Select Descriptor page, select application.xml and click Next.

7. On the Select Version page, select 1.3 and click Next.

8. On the Summary page, click Finish.

■ Similarly, your web.xml needs to be compliant with J2EE 1.3 (which corresponds
to servlet 2.3 and JSP 1.2). To create this file in JDeveloper, follow the steps as
shown above, except that you select web.xml in the Select Descriptor page, and 2.3
in the Select Version page.

■ If you are using Struts in your application, you need to create the web.xml file at
version 2.3 first, then create any required Struts configuration files. If you reverse
the order (create Struts configuration files first), this will not work because
creating a Struts configuration file also creates a web.xml file if one does not
already exist, but this web.xml is for J2EE 1.4, which will not work with WebLogic
8.1.

34.8.4 WebLogic 9.0 Deployment Notes
■ When you are deploying to WebLogic 9.0 from JDeveloper, ensure that the HTTP

Tunneling property is enabled in the WebLogic console. This property is located
under Servers > ServerName > Protocols. ServerName refers to the name of your
WebLogic server.

34.8.5 WebLogic Deployment Methods
You can deploy directly to WebLogic if you have set up a connection in JDeveloper to
your WebLogic server.

You can also deploy using the WebLogic console (for example: http://<weblogic_
host:port>/console/).

Deploying to WebSphere

34-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

34.9 Deploying to WebSphere
This section describes deployment details that are specific to WebSphere.

■ Section 34.9.1, "WebSphere Versions Supported"

■ Section 34.9.2, "WebSphere Deployment Notes"

■ Section 34.9.3, "WebSphere Deployment Methods"

34.9.1 WebSphere Versions Supported
Table 34–6 shows the supported versions of WebSphere:

34.9.2 WebSphere Deployment Notes
■ This version of WebSphere supports JDK 1.4. This means that you need to

configure JDeveloper to build your applications with JDK 1.4 instead of JDK 1.5.
See Section 34.11, "Deploying to Application Servers That Support JDK 1.4" for
details.

■ Before you can deploy applications that use ADF to WebSphere, you need to
install the ADF runtime libraries on WebSphere. See Section 34.12.2, "Configuring
WebSphere 6.0.1 to Run ADF Applications" for details. Note that JDeveloper
cannot connect to WebSphere application servers. This means you have to use the
manual method of installing the ADF runtime libraries.

■ Check that you have the following lines in the web.xml file for the ADF
application you want to deploy:

<servlet>
<servlet-name>jsp</servlet-name>
<servlet-class>com.ibm.ws.webcontainer.jsp.servlet.JspServlet</servlet-class>

</servlet>

■ You may need to configure data sources and other variables for deployment. Use
the correct DataSource name, JNDI name, URLs, etc, that were used when creating
the application.

■ After deploying the application, you need to add the appropriate shared library
reference for the ADF application, depending on your application’s SQL flavor
and type map. You created the shared library in step 5 on page 34-22.

34.9.3 WebSphere Deployment Methods
You can deploy using the WebSphere console (for example: http://<websphere_
host:port>/ibm/console/).

Table 34–6 Support Matrix for WebSphere

WebSphere version JDK version J2EE version

6.0.1 1.4.2 1.4

Deploying to Application Servers That Support JDK 1.4

Deploying ADF Applications 34-17

34.10 Deploying to Tomcat
This section describes deployment details that are specific to Tomcat.

34.10.1 Tomcat Versions Supported
Table 34–7 shows the supported versions of Tomcat:

34.10.2 Tomcat Deployment Notes
■ Before deploying applications that use ADF to Tomcat, you need to install the ADF

runtime libraries on Tomcat. See Section 34.12, "Installing ADF Runtime Library on
Third-Party Application Servers" for details.

■ After you install the ADF runtime libraries, rename the file TOMCAT_
HOME/common/jlib/bc4jdomgnrc to bc4jdomgnrc.jar (that is, add the
.jar extension to the filename). This file is required for users who are using the
Java type mappings.

■ You can deploy applications to Tomcat from JDeveloper (if you have set up a
connection to your Tomcat server), or you can also deploy applications using the
Tomcat console.

34.11 Deploying to Application Servers That Support JDK 1.4
If you are deploying to an application server that uses JDK 1.4, you need to configure
JDeveloper to build your applications using JDK 1.4. By default, JDeveloper 10.1.3 uses
JDK 1.5. If you build an application with JDK 1.5 and run it on an application server
that supports JDK 1.4, you may get "unsupported class version" errors.

Application servers that support JDK 1.4 include Oracle Application Server Release 2
(10.1.2), WebLogic 8.1, and WebSphere.

To configure JDeveloper to build projects with JDK 1.4:
1. Install J2SE 1.4 on the machine running JDeveloper.

2. Configure JDeveloper with the J2SE 1.4 that you installed:

a. In JDeveloper, choose Tools > Manage Libraries. This displays the Manage
Libraries dialog.

b. In the Manage Libraries dialog, choose the J2SE Definitions tab.

c. On the right-hand side, click the Browse button for the J2SE Executable field
and navigate to the J2SE_1.4/bin/java.exe file, where J2SE_1.4 refers
to the directory where you installed J2SE 1.4.

d. Click OK.

Table 34–7 Support Matrix for Tomcat

Tomcat version JDK version J2EE version

5.5.9 1.5 1.4

Installing ADF Runtime Library on Third-Party Application Servers

34-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

3. Configure your project to use J2SE 1.4:

a. In the Project Properties dialog for your project, select Libraries on the
left-hand side.

b. On the right-hand side, click the Change button for the J2SE Version field.
This displays the Edit J2SE Definition dialog.

c. In the Edit J2SE Definition dialog, on the left-hand side, select 1.4 under User.

d. Click OK in the Edit J2SE Definition dialog.

e. Click OK in the Project Properties dialog.

34.11.1 Switching Embedded OC4J to JDK 1.4
When you run an Oracle JDeveloper 10.1.3 application using the Embedded OC4J
server, the application is configured for JDK 1.5. If you then try to switch to JDK 1.4,
you will see JSP compile failures. To remedy this you need to force the application files
to be re-compiled when OC4J is restarted with JDK 1.4. To configure Embedded OC4J
to JDK 1.4:

1. Configure JDeveloper 10.1.3.4 according to the steps above.

2. Stop the embedded OC4J server instance.

3. Delete the following directory:

ORACLE_HOME/j2ee/instance/application-deployments

4. Start the embedded server again.

34.12 Installing ADF Runtime Library on Third-Party Application Servers
Before you can deploy applications that use ADF on third-party application servers,
you need to install the ADF runtime libraries on those application servers. You can
perform the installation using a wizard or you can do it manually:

■ For WebLogic, JBoss, and Tomcat, you can install the ADF runtime libraries from
JDeveloper using the ADF Runtime Installer wizard. See Section 34.12.1,
"Installing the ADF Runtime Libraries from JDeveloper".

■ For WebSphere, you have to install the ADF runtime libraries manually. See
Section 34.12.2, "Configuring WebSphere 6.0.1 to Run ADF Applications".

■ For all application servers, you can install the ADF runtime libraries manually. See
Section 34.12.3, "Installing the ADF Runtime Libraries Manually".

34.12.1 Installing the ADF Runtime Libraries from JDeveloper
You can install the ADF runtime libraries from JDeveloper on selected application
servers. The supported application servers are listed in the Tools > ADF Runtime
Installer submenu.

Note that for WebSphere, you need to install the libraries manually. See Section 34.12.2,
"Configuring WebSphere 6.0.1 to Run ADF Applications".

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 34-19

To install the ADF Runtime Libraries from JDeveloper:
1. Stop all instances of the target application server.

2. (WebLogic only) Create a new WebLogic domain, if you do not already have one.
You will install the ADF runtime libraries in the domain.

Steps for creating a domain in WebLogic are provided here for your convenience.

Steps for Creating Domains in WebLogic 8.1:

a. From the Start menu, choose Programs > BEA WebLogic Platform 8.1 >
Configuration Wizard. This starts up the Configuration wizard.

b. On the Create or Extend a Configuration page, select Create a new WebLogic
Configuration. Click Next.

c. On the Select a Configuration Template page, select Basic WebLogic Server
Domain. Click Next.

d. On the Choose Express or Custom Configuration page, select Express. Click
Next.

e. On the Configure Administrative Username and Password page, enter a
username and password. Click Next.

f. On the Configure Server Start Mode and Java SDK page, make sure you select
Sun’s JDK. Click Next.

g. On the Create WebLogic Configuration page, you can change the domain
name. For example, you might want to change it to jdevdomain.

Steps for Creating Domains in WebLogic 9.0:

a. From the Start menu, choose Programs > BEA Products > Tools >
Configuration Wizard. This starts up the Configuration wizard.

b. On the Welcome page, select Create a new WebLogic Domain. Click Next.

c. On the Select a Domain Source page, select Generate a domain configured
automatically to support the following BEA products. Click Next.

d. On the Configure Administrator Username and Password page, enter a
username and password. Click Next.

e. On the Configure Server Start Mode and JDK page, make sure you select Sun’s
JDK. Click Next.

f. On the Customize Environment and Services Settings page, select No. Click
Next.

g. On the Create WebLogic Domain page, set the domain name. For example,
you might want to set it to jdevdomain. Click Create.

3. Start the ADF Runtime Installer wizard by choosing Tools > ADF Runtime
Installer > Application_Server_Type. Application_Server_Type is the type of the target
application server (for example, Oracle Application Server, WebLogic, JBoss, or
standalone OC4J).

Note: The domain must be configured to use Sun’s JDK.

Installing ADF Runtime Library on Third-Party Application Servers

34-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

4. Proceed through the pages in the wizard. For detailed instructions for any page in
the wizard, click Help. You need to enter the following information in the wizard:

■ On the Home Directory page, select the home or root directory of the target
application server.

■ (WebLogic only) On the Domain Directory page, select the home directory of
the WebLogic domain where you want to install the ADF libraries. You created
this domain in step 2 on page 34-19.

■ On the Installation Options page, choose Install the ADF Runtime Libraries.

■ On the Summary page, check the details and click Finish.

5. (WebLogic only) Edit WebLogic startup files so that WebLogic includes the ADF
runtime library when it starts up.

Steps for WebLogic 8.1:

a. Make a backup copy of the WEBLOGIC_HOME\user_
projects\domains\jdevdomain\startWebLogic.cmd (or
startWebLogic.sh) file because you will be editing it in the next step.
"jdevdomain" is the name of the domain that you created earlier in step 2 on
page 34-19.

b. In the startWebLogic.cmd (or startWebLogic.sh) file, add the "call
"setupadf.cmd"" line (for Windows) before the "set CLASSPATH" line:

call "setupadf.cmd"
set CLASSPATH=%WEBLOGIC_CLASSPATH%;%POINTBASE_CLASSPATH%;

%JAVA_HOME%\jre\lib\rt.jar;%WL_HOME%\server\lib\webservices.jar;
%CLASSPATH%

The setupadf.cmd script was installed by the ADF Runtime Installer wizard
in the WEBLOGIC_HOME\user_projects\domains\jdevdomain directory.

c. To start WebLogic, change directory to the jdevdomain directory and run
startWebLogic.cmd:

> cd WEBLOGIC_HOME\user_projects\domains\jdevdomain
> startWebLogic.cmd

Steps for WebLogic 9.0:

a. Make a backup copy of the %DOMAIN_HOME%\bin\setDomainEnv.cmd file
because you will be editing it in the next step.

%DOMAIN_HOME% is specified in the startWebLogic.cmd (or
startWebLogic.sh) file. For example, if you named your domain
jdevdomain, then %DOMAIN_HOME% would be BEA_HOME\user_
projects\domains\jdevdomain. You created the domain earlier in step 2
on page 34-19.

b. In the %DOMAIN_HOME%\bin\setDomainEnv.cmd file, add the "call
"%DOMAIN_HOME%\setupadf.cmd"" line before the "set CLASSPATH" line:

call "%DOMAIN_HOME%\setupadf.cmd"
set CLASSPATH=%PRE_CLASSPATH%;%WEBLOGIC_CLASSPATH%;%POST_CLASSPATH%;

%WLP_POST_CLASSPATH%;%WL_HOME%\integration\lib\util.jar;%CLASSPATH%

c. If the "set CLASSPATH" line does not have %CLASSPATH%, then add it to the
line, as shown above.

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 34-21

d. To start WebLogic, change directory to %DOMAIN_HOME% and run
startWebLogic.cmd:

> cd %DOMAIN_HOME%
> startWebLogic.cmd

6. (WebLogic only) Before you run JDeveloper, configure JDeveloper to include the
WebLogic client in its class path.

a. Make a backup copy of the JDEVELOPER_HOME\jdev\bin\jdev.conf file
because you will be editing it in the next step.

b. Add the following line to the jdev.conf file:

AddJavaLibFile <WEBLOGIC_HOME>\server\lib\weblogic.jar

Replace <WEBLOGIC_HOME> with the fullpath to the directory where you
installed WebLogic.

7. Restart the target application server. If you are running WebLogic, you may have
already started up the server.

Managing Multiple Versions of the ADF Runtime Library
Application servers may contain different versions of the ADF runtime libraries, but at
any time only one version (the active version) is accessible to deployed applications.
The other versions are archived.

You can use the ADF Runtime Installer wizard to make a different version the active
version. On the Installation Options page in the wizard, choose the Restore option.

34.12.2 Configuring WebSphere 6.0.1 to Run ADF Applications
Before you can run ADF applications on WebSphere 6.0.1, you have to perform these
steps:

1. Create the install_adflibs_1013.sh (or .cmd on Windows) script, as
follows:

If you are running on UNIX:

a. Copy the source shown in Section 34.12.2.1, "Source for install_adflibs_1013.sh
Script" and paste it to a file. Save the file as install_adflibs_1013.sh.

b. Enable execute permission on install_adflibs_1013.sh.

> chmod a+x install_adflibs_1013.sh

If you are running on Windows, copy the source shown in Section 34.12.2.2,
"Source for install_adflibs_1013.cmd Script" and paste it to a file. Save the file as
install_adflibs_1013.cmd.

You will run the script later, in step 3.

2. Stop the WebSphere processes.

3. Run the install_adflibs_1013.sh (.cmd on Windows) script to install the
ADF libraries, as follows:

a. Set the ORACLE_HOME environment variable to point to the JDeveloper
installation.

b. Set the WAS_ADF_LIB environment variable to point to the location where
you want to install the ADF library files. Typically this is the WebSphere home

Installing ADF Runtime Library on Third-Party Application Servers

34-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

directory. The library files are installed in the WAS_ADF_LIB/lib and WAS_
ADF_LIB/jlib directories.

c. Run the script. <script_dir> refers to the directory where you created the
script.

> cd <script_dir>
> install_adflib_1013.sh // if on Windows, use the .cmd extension

4. Start WebSphere processes.

5. Use the WebSphere administration tools to create a new shared library. Depending
on your application, you create one of the shared libraries below.

■ For applications that use Oracle SQL flavor and type map, create the
ADF10.1.3-Oracle shared library:

Set the name of the shared library to ADF10.1.3-Oracle.

Set the classpath to include all the JAR files in WAS_ADF_LIB\lib and WAS_
ADF_LIB\jlib except for WAS_ADF_LIB\jlib\bc4jdomgnrc.jar. This
JAR file is used for generic type mappings.

WAS_ADF_LIB refers to the directory that will be used as a library defined in
the WebSphere console. WAS_ADF_LIB contains the ADF library files.

■ For applications that use non-Oracle SQL flavor and type map, create the
ADF10.1.3-Generic shared library:

Set the name of the shared library to ADF10.1.3-Generic.

Set the classpath to include WAS_ADF_LIB\jlib\bc4jdomgnrc.jar and all
the JAR files in WAS_ADF_LIB\lib except for bc4jdomorcl.jar. WAS_
ADF_LIB refers to the directory that will be used as a library defined in the
WebSphere console. WAS_ADF_LIB contains the ADF library files.

6. Add the following parameter in the Java command for starting up WebSphere.

-Djavax.xml.transform.TransformerFactory=org.apache.xalan.pro
cessor.TransformerFactoryImpl

7. Shut down and restart WebSphere so that it uses the new parameter.

34.12.2.1 Source for install_adflibs_1013.sh Script
Example 34–1 shows the source for the install_adflibs_1013.sh script. Instead
of copying the ADF runtime library files manually to your WebSphere environment,
you can use this script. See Section 34.12.2, "Configuring WebSphere 6.0.1 to Run ADF
Applications" for details.

The install_adflibs_1013.sh script is for use on UNIX environments. If you are
running on Windows, see Section 34.12.2.2, "Source for install_adflibs_1013.cmd
Script".

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 34-23

Example 34–1 install_adflibs_1013.sh

#!/bin/sh

EXIT=0
if ["$ORACLE_HOME" = ""]
 then
 echo "Error: The ORACLE_HOME environment variable must be set before executing
this script."
 echo "This should point to your JDeveloper installation directory"
 EXIT=1
fi
if ["$WAS_ADF_LIB" = ""];
 then
 echo "Error: The WAS_ADF_LIB environment variable must be set before executing
this script."
 echo "This should point to the location where you would like the ADF jars to
be copied."
 EXIT=1
fi

if ["$EXIT" -eq 0]
then

if [! -d $WAS_ADF_LIB]; then
 mkdir $WAS_ADF_LIB
fi
if [! -d $WAS_ADF_LIB/lib]; then
 mkdir $WAS_ADF_LIB/lib
fi
if [! -d $WAS_ADF_LIB/jlib]; then
 mkdir $WAS_ADF_LIB/jlib
fi

Core BC4J runtime
cp $ORACLE_HOME/BC4J/lib/adfcm.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/adfm.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/adfmweb.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/adfshare.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jct.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jctejb.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jdomorcl.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jimdomains.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jmt.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/lib/bc4jmtejb.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/jlib/dc-adapters.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/jlib/adf-connections.jar $WAS_ADF_LIB/lib/

Core BC4J jlib runtime
cp $ORACLE_HOME/BC4J/jlib/bc4jdomgnrc.jar $WAS_ADF_LIB/jlib/
cp $ORACLE_HOME/BC4J/jlib/adfui.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/BC4J/jlib/adfmtl.jar $WAS_ADF_LIB/lib/

Oracle Home jlib runtime
cp $ORACLE_HOME/jlib/jdev-cm.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jlib/jsp-el-api.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jlib/oracle-el.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jlib/commons-el.jar $WAS_ADF_LIB/lib/

Oracle MDS runtime
cp $ORACLE_HOME/jlib/commons-cli-1.0.jar $WAS_ADF_LIB/lib/

Installing ADF Runtime Library on Third-Party Application Servers

34-24 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

cp $ORACLE_HOME/jlib/xmlef.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/mds/lib/mdsrt.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/mds/lib/concurrent.jar $WAS_ADF_LIB/lib/

Oracle Diagnostic
cp %ORACLE_HOME%/diagnostics/lib/commons-cli-1.0.jar $WAS_ADF_LIB/lib/

SQLJ Runtime
cp $ORACLE_HOME/sqlj/lib/translator.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/sqlj/lib/runtime12.jar $WAS_ADF_LIB/lib/

Intermedia Runtime
cp $ORACLE_HOME/ord/jlib/ordhttp.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/ord/jlib/ordim.jar $WAS_ADF_LIB/lib/

OJMisc
cp $ORACLE_HOME/jlib/ojmisc.jar $WAS_ADF_LIB/lib/

XML Parser
cp $ORACLE_HOME/lib/xmlparserv2.jar $WAS_ADF_LIB/lib/

JDBC
cp $ORACLE_HOME/jdbc/lib/ojdbc14.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/jdbc/lib/ojdbc14dms.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/lib/dms.jar $WAS_ADF_LIB/lib/

XSQL Runtime
cp $ORACLE_HOME/lib/xsqlserializers.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/lib/xsu12.jar $WAS_ADF_LIB/lib/
cp $ORACLE_HOME/lib/xml.jar $WAS_ADF_LIB/lib/

fi

34.12.2.2 Source for install_adflibs_1013.cmd Script
Example 34–2 shows the source for the install_adflibs_1013.cmd script. Instead
of copying the ADF runtime library files manually to your WebSphere environment,
you can use this script. See Section 34.12.2, "Configuring WebSphere 6.0.1 to Run ADF
Applications" for details.

The install_adflibs_1013.cmd script is for use on Windows environments. If
you are running on UNIX, see Section 34.12.2.1, "Source for install_adflibs_1013.sh
Script".

Example 34–2 install_adflibs_1013.cmd

@echo off
if {%ORACLE_HOME%} =={} goto :oracle_home

if {%WAS_ADF_LIB%} =={} goto :was_adf_lib

mkdir %WAS_ADF_LIB%
mkdir %WAS_ADF_LIB%\lib
mkdir %WAS_ADF_LIB%\jlib

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 34-25

@REM Core BC4J runtime
copy %ORACLE_HOME%\BC4J\lib\adfcm.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfm.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfmweb.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfshare.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jct.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jctejb.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jdomorcl.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jimdomains.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jmt.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\bc4jmtejb.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\collections.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\lib\adfbinding.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\jlib\dc-adapters.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\jlib\adf-connections.jar %WAS_ADF_LIB%\lib\

@REM Core BC4J jlib runtime
copy %ORACLE_HOME%\BC4J\jlib\bc4jdomgnrc.jar %WAS_ADF_LIB%\jlib\
copy %ORACLE_HOME%\BC4J\jlib\adfui.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\BC4J\jlib\adfmtl.jar %WAS_ADF_LIB%\lib\

@REM Oracle Home jlib runtime
copy %ORACLE_HOME%\jlib\jdev-cm.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\jsp-el-api.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\oracle-el.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\commons-el.jar %WAS_ADF_LIB%\lib\

@REM Oracle MDS runtime
copy %ORACLE_HOME%\jlib\commons-cli-1.0.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jlib\xmlef.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\mds\lib\mdsrt.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\mds\lib\concurrent.jar %WAS_ADF_LIB%\lib\

@REM Oracle Diagnostic
copy %ORACLE_HOME%\diagnostics\lib\ojdl.jar %WAS_ADF_LIB%\lib\

@REM SQLJ Runtime
copy %ORACLE_HOME%\sqlj\lib\translator.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\sqlj\lib\runtime12.jar %WAS_ADF_LIB%\lib\

@REM Intermedia Runtime
copy %ORACLE_HOME%\ord\jlib\ordhttp.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\ord\jlib\ordim.jar %WAS_ADF_LIB%\lib\

@REM OJMisc
copy %ORACLE_HOME%\jlib\ojmisc.jar %WAS_ADF_LIB%\lib\

@REM XML Parser
copy %ORACLE_HOME%\lib\xmlparserv2.jar %WAS_ADF_LIB%\lib\

@REM JDBC
copy %ORACLE_HOME%\jdbc\lib\ojdbc14.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\jdbc\lib\ojdbc14dms.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\lib\dms.jar %WAS_ADF_LIB%\lib\

@REM XSQL Runtime
copy %ORACLE_HOME%\lib\xsqlserializers.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\lib\xsu12.jar %WAS_ADF_LIB%\lib\
copy %ORACLE_HOME%\lib\xml.jar %WAS_ADF_LIB%\lib\

Installing ADF Runtime Library on Third-Party Application Servers

34-26 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

goto :end

:oracle_home
@echo Set the ORACLE_HOME pointing to the directory of your 10.1.3 JDeveloper
installation.

:was_adf_lib
if {%WAS_ADF_LIB%} =={} @echo Set the WAS_ADF_LIB environment variable pointing to
the directory where you would like to install ADF libraries.

:end

34.12.3 Installing the ADF Runtime Libraries Manually
Instead of using the ADF Runtime Installer wizard in JDeveloper to install the
libraries, you can also install the libraries manually on your target application server.

Table 34–8 lists the files that you must copy to your application server before you
deploy any ADF applications. In the table, JDEV_INSTALL refers to the directory
where you installed JDeveloper.

■ For JBoss, the destination directory is JBOSS_HOME/server/default/lib.

■ For WebLogic, the destination directory is WEBLOGIC_HOME/ADF/lib. You have
to create the ADF directory, and under it, the lib and jlib directories.

■ For Tomcat, the destination directory is TOMCAT_HOME/common/lib.

Installing ADF Runtime Library on Third-Party Application Servers

Deploying ADF Applications 34-27

Table 34–8 ADF Runtime Library Files to Copy

Copy These Files: Notes

From JDEV_INSTALL/BC4J/lib:

■ adfcm.jar

■ adfm.jar

■ adfmweb.jar

■ adfshare.jar

■ bc4jct.jar

■ bc4jctejb.jar

■ bc4jdomorcl.jar or bc4jdomgnrc.jar

Note: Only one of these files is required, depending
on which mapping type you used to build your
application. If you are using the Oracle type
mappings, copy bc4jdomorcl.jar. If the
application was built using "Java" type mappings,
copy bc4jdomgnrc.jar instead.
bc4jdomgnrc.jar is located in JDEV_
INSTALL/BC4J/jlib.

■ bc4jimdomains.jar

■ bc4jmt.jar

■ bc4jmtejb.jar

■ collections.jar

■ adfbinding.jar

These are the ADF runtime library files.

From JDEV_INSTALL/BC4J/jlib:

■ adfmtl.jar

■ bc4jdomgnrc.jar (see the note above)

■ adfui.jar

These are the ADF runtime library files.

From JDEV_INSTALL/jlib:

■ jdev-cm.jar

■ commons-el.jar

■ oracle-el.jar

■ jsp-el-api.jar

These are the JDeveloper runtime library files.

From JDEV_INSTALL/jlib:

■ commons-cli-1.0.jar

■ xmlef.jar

From JDEV_INSTALL/mds/lib:

■ mdsrt.jar

■ concurrent.jar

These are the Oracle MDS files.

From JDEV_INSTALL/diagnostics/lib:

■ ojdl.jar

These are the Oracle diagnostics files.

From JDEV_INSTALL/jlib:

■ ojmisc.jar

These are the OJMisc runtime files.

From JDEV_INSTALL/lib:

■ xmlparserv2.jar

This file is for XML support.

Installing ADF Runtime Library on Third-Party Application Servers

34-28 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

The destination directory (the directory to which you copy these files) depends on
your application server:

34.12.3.1 Installing the ADF Runtime Libraries from a Zip File
You can also install the ADF runtime libraries by downloading adfinstaller.zip
from OTN and following the directions below.

To install the ADF Runtime Libraries:

1. To initiate the download, go to the JDeveloper Download page on OTN, here:

http://www.oracle.com/technology/software/products/jdev/index
.html

Unzip adfinstaller.zip to the target directory.

2. Set the DesHome variable in the adfinstaller.properties file to specify the
home directory of the destination application server:

For example:

Oracle AS: DesHome=c:\\oas1013

OC4J: DesHome=c:\\oc4j

JBoss: DesHome=c:\\jboss-4.0.3

From JDEV_INSTALL/lib:

■ xml.jar

■ xsqlserializers.jar

■ xsu12.jar

These are the XSQL library files.

From JDEV_INSTALL/ord/jlib:

■ ordhttp.jar

■ ordim.jar

These files are for interMedia Text support. interMedia
Text is a feature for storing, retrieving, and manipulating
audio, document, image, and video data in an Oracle
database.

From JDEV_INSTALL/sqlj/lib:

■ runtime12.jar

■ translator.jar

These are the SQLJ runtime library files.

From JDEV_INSTALL/jdbc/lib:

■ ojdbc14.jar

■ ojdbc14dms.jar

From JDEV_INSTALL/lib:

■ dms.jar

These are the JDBC runtime library files.

From JDEV_INSTALL/javacache/lib:

■ cache.jar

These are the Java Cache runtime library files.

From JDEV_INSTALL/BC4J/redist:

■ webapp.war or bc4j.ear

This file is for Business Components web application
image and cascading style sheet support.

If you are running Tomcat, copy the webapp.war file to
the TOMCAT_HOME/webapps directory.

If you are running JBoss, copy the bc4j.ear file to the
JBOSS_HOME/server/default/deploy directory.

Table 34–8 (Cont.) ADF Runtime Library Files to Copy

Copy These Files: Notes

Verifying Deployment and Troubleshooting

Deploying ADF Applications 34-29

Tomcat: DesHome=c:\\jakarta-tomcat-5.5.9

WebLogic: DesHome=c:\\bea\weblogic90 (note server home directory is in
weblogic subdirectory)

3. Set the type variable in the adfinstaller.properties file to specify the
platform for the application server where the ADF libraries are to be installed. The
choices are OC4J/AS/TOMCAT/JBOSS/WEBLOGIC.

For example:

type=AS

4. Set the UserHome variable in the adfinstaller.properties file to specify the
WebLogic domain for which ADF is being configured. This setting is only used for
WebLogic, and ignored for all other platforms. For example:

UserHome= c:\\bea\weblogic90\\user_
projects\\domains\\adfdomain

5. Shut down all instances of the application server running on the target platform.

6. Run the following command if you only wish to see the version of the ADF
Installer:

java -jar runinstaller.jar –version

7. Run the following command on the command line prompt:

java -jar runinstaller.jar adfinstaller.properties

34.12.4 Deleting the ADF Runtime Library
If you used the wizard to install the ADF runtime library, you should use the wizard to
delete the library. On the Installation Options page in the wizard, choose the Delete
option.

If you installed the ADF runtime library manually, you can just manually delete the
files from your application server.

34.13 Verifying Deployment and Troubleshooting
After you deploy your application, test it to ensure that it runs correctly on the target
application server. This section provides some common troubleshooting tips.

■ Section 34.13.1, "How to Test Run Your Application"

■ Section 34.13.2, ""Class Not Found" or "Method Not Found" Errors"

■ Section 34.13.3, "Application Is Not Using data-sources.xml File on Target
Application Server"

■ Section 34.13.4, "Using jazn-data.xml with the Embedded OC4J Server"

■ Section 34.13.5, "Error "JBO-30003: The application pool failed to check out an
application module due to the following exception""

Verifying Deployment and Troubleshooting

34-30 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

34.13.1 How to Test Run Your Application
Once you've deployed the application, you can run it from the application server. To
test run your application, open a browser window and enter an URL of the following
type:

■ For Oracle AS: http://<host>:port/<context root>/<page>

■ For Faces pages: http://<host>:port/<context root>/faces/<page>

34.13.2 "Class Not Found" or "Method Not Found" Errors

Problem
You get "Class Not Found" or "Method Not Found" errors during runtime.

Solution
Check that ADF runtime libraries are installed on the target application server, and
that the libraries are at the correct version.

You can use the ADF Runtime Installer wizard in JDeveloper to check the version of
the ADF runtime libraries. To launch the wizard, choose Tools > ADF Runtime
Installer > Application_Server_Type. Application_Server_Type is the type of the target
application server (for example, WebLogic, JBoss, or standalone OC4J).

34.13.3 Application Is Not Using data-sources.xml File on Target Application Server

Problem
After deploying and running your application, you find that your application is using
the data-sources.xml file that is packaged in the application’s EAR file, instead of
using the data-sources.xml file on the target application server. You want the
application to use the data-sources.xml file on the target application server.

Solution
When you create your EAR file in JDeveloper, choose not to include the
data-sources.xml file. To do this:

1. Choose Tools > Preferences to display the Preferences dialog.

2. Select Deployment on the left side.

3. Deselect Bundle Default data-sources.xml During Deployment.

4. Click OK.

5. Re-create the EAR file.

Before redeploying your application, undeploy your old application and ensure that
the data-sources.xml file on the target application server contains the appropriate
entries needed by your application.

Verifying Deployment and Troubleshooting

Deploying ADF Applications 34-31

34.13.4 Using jazn-data.xml with the Embedded OC4J Server
If your application uses jazn-data.xml, you should be aware of how the embedded
OC4J server uses this file: If the embedded OC4J server finds a jazn-data.xml file in
the application’s META-INF directory, then the embedded OC4J server will use it. The
embedded OC4J server will also set the <workspace>-oc4j-app.xml file to point
to this jazn-data.xml file. This enables you to edit the jazn-data.xml file using
the Embedded OC4J Server Preferences dialog.

If there is no jazn-data.xml file in META-INF, the embedded OC4J server will
create a <workspace>-jazn-data.xml file in the workspace root. You would then
have to go and edit that file (or use the Embedded OC4J Server Preferences dialog to
do so).

34.13.5 Error "JBO-30003: The application pool failed to check out an application
module due to the following exception"

Problem
You get the following error in the error log:

05/11/07 18:12:59.67 10.1.3.0.0 Started
05/11/07 18:13:05.687 id: 10.1.3.0.0 Started
05/11/07 18:13:38.224 id: Servlet error
JBO-30003: The application pool (<class_name>) failed to checkout an application
 module due to the following exception:
oracle.jbo.JboException: JBO-29000: Unexpected exception caught:
oracle.jbo.JboException, msg=JBO-29000: Unexpected exception caught:
oracle.classloader.util.AnnotatedClassFormatError, msg=<classname> (Unsupported
 major.minor version 49.0)

 Invalid class: <classname>
 Loader: webapp5.web.id:0.0.0
 Code-Source:
/C:/oc4j/j2ee/home/applications/webapp5/webapp5/WEB-INF/classes/
 Configuration: WEB-INF/classes/ in
C:\oc4j\j2ee\home\applications\webapp5\webapp5\WEB-INF\classes

 Dependent class: oracle.jbo.common.java2.JDK2ClassLoader
 Loader: adf.oracle.domain:10.1.3
 Code-Source: /C:/oc4j/BC4J/lib/adfm.jar
 Configuration: <code-source> in /C:/oc4j/j2ee/home/config/server.xml

 at
oracle.jbo.common.ampool.ApplicationPoolImpl.doCheckout(ApplicationPoolImpl.java:1
892)

Solution
A possible cause of this exception is that the application was unable to connect to the
database for its data bindings. Check that you have set up the required database
connections in your target application server environment, and that the connections
are working.

Verifying Deployment and Troubleshooting

34-32 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Part V
Appendices

Part V contains the following appendices:

■ Appendix A, "Reference ADF XML Files"

■ Appendix B, "Reference ADF Binding Properties"

■ Appendix C, "ADF Equivalents of Common Oracle Forms Triggers"

■ Appendix D, "Most Commonly Used ADF Business Components Methods"

■ Appendix E, "ADF Business Components J2EE Design Pattern Catalog"

Reference ADF XML Files A-1

A
Reference ADF XML Files

This appendix provides reference for the Oracle ADF metadata files that you create in
your data model and user interface projects. You may use this information when you
want to edit the contents of the metadata these files define.

This appendix includes the following sections:

■ Appendix A.1, "About the ADF Metadata Files"

■ Appendix A.2, "ADF File Overview Diagram"

■ Appendix A.3, "ADF File Syntax Diagram"

■ Appendix A.4, "bc4j.xcfg"

■ Appendix A.5, "DataBindings.cpx"

■ Appendix A.6, "<pageName>PageDef.xml"

■ Appendix A.7, "web.xml"

■ Appendix A.8, "j2ee-logging.xml"

■ Appendix A.9, "faces-config.xml"

■ Appendix A.10, "adf-faces-config.xml"

■ Appendix A.11, "adf-faces-skins.xml"

A.1 About the ADF Metadata Files
Metadata files in the Oracle ADF application are structured XML files used by the
application to:

■ Specify the parameters, methods, and return values available to your application’s
Oracle ADF data control usages.

■ Create objects in the Oracle ADF binding context and to define the runtime
behavior of those objects.

■ Define configuration information about the UI components in JSF and Oracle ADF
Faces.

■ Define application configuration information for the J2EE application server.

In the case of ADF bindings, you can use the binding-specific editors to customize the
runtime properties of the binding objects. You can open a binding’s editor when you
display the Structure window for a page definition file and choose Properties from the
context menu.

ADF File Overview Diagram

A-2 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Additionally, you can view and edit the contents of any metadata file in JDeveloper’s
XML editor. The easiest way to work with these file is through the Structure window
and Property Inspector. In the Structure window, you can select an element and in the
Property Inspector, you can define attribute values for the element, often by choosing
among dropdown menu choices. Use this reference to learn the choices you can select
in the case of the Oracle ADF-specific elements.

A.2 ADF File Overview Diagram
The relationship between the Oracle ADF metadata files defines dependencies
between the model data and the user interface projects. The dependencies are defined
as file references within XML elements of the files.

Figure A–1 illustrates the hierarchical relationship of the XML metadata files that you
may work with in the Oracle ADF application that uses an ADF Business Components
application module as a service interface to JSF web pages.

Figure A–1 Oracle ADF File Hierarchy Overview for an ADF BC-based Web Application

A.2.1 Oracle ADF Data Control Files
In an ADF Business Components application, the data control implementation files are
contained within the application. The application module and view object XML
component descriptor files provide the references for the data control. These files, in
conjunction with the bc4j.xcfg file (see Section A.4) provide the necessary
information for the data control.

A workspace that uses ADF Business Components in one project and a non-ADF
Business Components data control in another project, like the SRDemoFAQ data

Oracle ADF Data
Control Files

Oracle ADF Data
Binding Files

Oracle ADF Faces &
Web Configuration Files

User Interface
Project

Data Model
Project

ADF BC Application

DataBindings.cpx

<pagename>PageDef.xml

web.xml

faces-config.xml

adf-faces-config.xml

adf-faces-skins.xml

ADF File Overview Diagram

Reference ADF XML Files A-3

control, may have a DataControls.dcx file, as well as supporting
<sessionbeanname>.xml and <beanname>.xml files. For more information on the
non-ADF Business Components data controls, see the Oracle Application
Development Framework Developers Guide 10g for J2EE Developers.

A.2.2 Oracle ADF Data Binding Files
These standard XML configuration files for an Oracle ADF application appear in your
user interface project:

■ DataBindings.cpx— This file contains the pageMap, page definitions
references, and data control references. The file is created the first time you create a
data binding for a UI component (either from the Structure window or from the
Data Control Palette). The DataBindings.cpx file defines the Oracle ADF
binding context for the entire application. The binding context provides access to
the bindings across the entire application. The DataBindings.cpx file also
contains references to the <pagename>PageDef.xml files that define the
metadata for the Oracle ADF bindings in each web page.

See Appendix A.5, "DataBindings.cpx" for details about what you can configure in
the DataBindings.cpx file.

■ <pagename>PageDef.xml—This is the page definition XML file. This file is
created each time you design a new web page using the Data Control Palette or
Structure window. These XML files contain the metadata used to create the
bindings that populate the data in the web page’s UI components. For every web
page that refers to an ADF binding, there must be a corresponding page definition
file with binding definitions.

See Appendix A.6, "<pageName>PageDef.xml" for details about what you can
configure in the <pagename>PageDef.xml file.

A.2.3 Oracle ADF Faces and Web Configuration Files
These XML configuration files required in a JSF application appear in your user
interface project:

■ web.xml—Part of the application's configuration is determined by the contents of
its J2EE application deployment descriptor, web.xml. The web.xml file defines
everything about your application that a server needs to know. The file plays a
role in configuring the Oracle ADF data binding by setting up the
ADFBindingFilter. Additional runtime settings include servlet runtime and
initialization parameters, custom tag library location, and security settings.

For details about ADF data binding and JSF configuration options, see
Appendix A.7, "web.xml".

■ faces-config.xml—This JSF configuration file lets you register a JSF
application's resources, such as validators, converters, managed beans, and
navigation rules. While an application can have more than one configuration
resource file, and that file can have any name, typically the filename is
faces-config.xml.

For details about JSF configuration options, see Appendix A.9, "faces-config.xml".

■ adf-faces-config.xml—This ADF Faces configuration file lets you configure
ADF Faces-specific user interface features such as accessibility levels, custom
skins, enhanced debugging, and right-to-left page rendering.

ADF File Syntax Diagram

A-4 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

For details about ADF Faces configuration options, see Appendix A.10,
"adf-faces-config.xml".

A.3 ADF File Syntax Diagram
Figure A–2 illustrates the hierarchical relationship of the XML metadata files that you
may work with in the web application that uses an ADF application module as a
service interface to ADF Business Components. At runtime, the objects created from
these files interact in this sequence:

1. When the first request for an ADF databound web page occurs, the servlet
registers the Oracle ADF servlet filter ADFBindingFilter named in the
web.xml file.

2. The binding filter creates a binding context by reading the CpxFileName init
param from the web.xml file.

3. The binding context creates the binding container by loading the
<pagename>PageDef.xml file as referenced by the <pagemap> element from
the DataBindings.cpx file.

4. The binding container's prepareModel phase prepares/refreshes all the
executables.

5. An iterator binding gets executed by referencing the named method on the
application module specified by the data control factory named in the
DataControls.dcx file.

6. The binding container also creates the bindings defined in the <bindings>
section of the <pagename>PageDef.xml file for the mapped web page.

7. The web page references to ADF bindings through EL using the expression
#{bindings} get resolved by accessing the binding container of the page.

8. The page pulls the available data from the bindings on the binding container.

bc4j.xcfg

Reference ADF XML Files A-5

Figure A–2 Oracle ADF File Hierarchy and Syntax Diagram for an ADF BC-based Web Application

A.4 bc4j.xcfg
The bc4j.xcfg file contains information about application module names and the
runtime parameters the user has configured. A sample bc4j.xcfg from the SRDemo
application follows:

Presentation layer

EJB Session Bean Facade and
Oracle ADF Model layer

Solid lines indicates
hierarchy of metadata

Dotted lines indicate references
to objects in the ADF binding

Denotes multiple files of
this type may exist in the project*

web.xml

DataBindings.cpx

<pagename>PageDef.xml*

<ApplicationModuleName>.xml

bc4j.xcfg

<pagename>.jspx*
...

 <context-param>
 <paramname>
 CpxFileName
 </paramname>
 <param-value>
 <pkgname>.DataBindings
 </param-value>
 </context-param>

...

<Application>
 ...

 <pageDefinitionUsages>
 <page id="<pagename>PageDef"
 path="<pkgname>"/> ...
 </pageDefinitionUsages>

 <dataControlUsages>
 <BC4JDataControl id=
 "<AppModuleName> "
 path="<pkgname>"/>
 <dc id="<servicebeanname> "
 path="<pkgname>"/>
 </dataControlUsages>

</Application>

<pageDefinition>
...

 <executables >
 <iterator id="<vo.name>Iterator"
 Binds="<vo.name>
 />...
 </executables>

 <bindings>
 <...
 IterBinding="<vo.name>Iterator">
 />...
 </bindings>

</pageDefinition>

<ViewUsage
 Name="ProductList"
 ViewObjectName="oracle.srdemo.
 model.queries.ProductList">
...
</ViewUsage>

<ViewUsage
 Name="Globals"
 ViewObjectName="oracle.srdemo.
 model.queries.Globals">
...
</ViewUsage>

<BC4JConfig>

 <AppModuleConfigBag>
 <AppModuleConfig name="SRServiceLocal">

 ...
</BC4JConfig>

...
<af:xxx>
 ...

 rows="#{bindings.find<beanname>.rangeSize}"

 first="#{bindings.find<beanname>.rangeStart}"

 value="#{bindings.find<beanname>.collectionModel}"

 ...
</af:xxx>
...

DataBindings.cpx

A-6 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Example A–1 bc4j.xcfg

<?xml version = '1.0' encoding = 'UTF-8'?>
<BC4JConfig>
 <AppModuleConfigBag>
 <AppModuleConfig name="SRServiceLocal">
 <DeployPlatform>LOCAL</DeployPlatform>
 <JDBCDataSource>java:comp/env/jdbc/SRDemoDS</JDBCDataSource>
 <jbo.project>DataModel</jbo.project>
 <jbo.locking.mode>optimistic</jbo.locking.mode>
 <AppModuleJndiName>oracle.srdemo.model.SRService</AppModuleJndiName>
 <jbo.security.enforce>Must</jbo.security.enforce>

<java.naming.factory.initial>oracle.jbo.common.JboInitialContextFactory</java.nami
ng.factory.initial>
 <ApplicationName>oracle.srdemo.model.SRService</ApplicationName>
 <jbo.server.internal_
connection>java:comp/env/jdbc/SRDemoCoreDS</jbo.server.internal_connection>
 </AppModuleConfig>
 <AppModuleConfig name="SRServiceLocalTesting">
 <DeployPlatform>LOCAL</DeployPlatform>
 <JDBCName>SRDemo</JDBCName>
 <jbo.project>DataModel</jbo.project>
 <AppModuleJndiName>oracle.srdemo.model.SRService</AppModuleJndiName>
 <jbo.locking.mode>optimistic</jbo.locking.mode>
 <jbo.security.enforce>Must</jbo.security.enforce>

<java.naming.factory.initial>oracle.jbo.common.JboInitialContextFactory</java.nami
ng.factory.initial>
 <ApplicationName>oracle.srdemo.model.SRService</ApplicationName>
 </AppModuleConfig>
 </AppModuleConfigBag>
 <ConnectionDefinition name="SRDemo">
 <ENTRY name="JDBC_PORT" value="1521"/>
 <ENTRY name="ConnectionType" value="JDBC"/>
 <ENTRY name="HOSTNAME" value="bordello.us.oracle.com"/>
 <ENTRY name="DeployPassword" value="true"/>
 <ENTRY name="user" value="SRDemo"/>
 <ENTRY name="ConnectionName" value="SRDemo"/>
 <ENTRY name="SID" value="bordello"/>
 <ENTRY name="password">
 <![CDATA[{904}05EF4D2067E3477EBE0CF3865966EB7C5F]]>
 </ENTRY>
 <ENTRY name="JdbcDriver" value="oracle.jdbc.OracleDriver"/>
 <ENTRY name="ORACLE_JDBC_TYPE" value="thin"/>
 <ENTRY name="DeployPassword" value="true"/>
 </ConnectionDefinition>
</BC4JConfig>

A.5 DataBindings.cpx
The DataBindings.cpx file is created in the user interface project the first time you
drop a data control usage onto a web page in the HTML Visual Editor. The .cpx file
defines the Oracle ADF binding context for the entire application and provides the
metadata from which the Oracle ADF binding objects are created at runtime. When
you insert a databound UI component into your document, the page will contain
binding expressions that access the Oracle ADF binding objects at runtime.

DataBindings.cpx

Reference ADF XML Files A-7

If you are familiar with building ADF applications in earlier releases of JDeveloper,
you’ll notice that the .cpx file no longer contains all the information copied from the
DataControls.dcx file, but only a reference to it. Therefore, if you need to make
changes to the .cpx file, you must edit the DataControls.dcx file.

The DataBindings.cpx file appears in the /src directory of the user interface
project folder. When you double-click the file node, the binding context description
appears in the XML Source Editor. (To edit the binding context parameters, use the
Property Inspector and select the desired parameter in the Structure window.)

A.5.1 DataBindings.cpx Syntax
The toplevel element of the DataBindings.cpx file is <DataControlConfigs>:

<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="10.1.3.35.65" Package="oracle.srdemo.model"
 id="DataControls">

where the XML namespace attribute (xmlns) specifies the URI to which the data
controls bind at runtime. Only the package name is editable; all other attributes should
have the values shown.

Figure A–3 displays the child element hierarchy of the <DataControlConfigs> element.
Note that each business service for which you have created a data control, will have its
own <dataControlUsages> definition.

Figure A–3 Schema for the Structure Definition of the DataBindings.cpx File

The child elements have the following usages:

■ <pageMap> element maps all user interface URLs and the corresponding
pageDefinitionUsage name. This map is used at runtime to map an URL to its
pageDefinition.

■ <pageDefinitionUsages> element maps a PageDefinition Usage (BindingContainer
instance) name to the corresponding pageDefinition definition. The id attribute
represents the usage id. The path attribute represents the full path to the page
definition.

■ <dataControlUsages> element declares a list of datacontrol (shortnames) and
corresponding path to the datacontrol definition entries in the dcx or xcfg file.

<pageName>PageDef.xml

A-8 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Table A–1 describes the attributes of the DataBindings.cpx elements.

A.5.2 DataBindings.cpx Sample
Example A–2 shows the syntax for the DataBindings.cpx file in the SR Demo
application. The data controls are named by the id="<name>". The combination of the
Package attribute and the Configuration attribute are used to locate the bc4j.xcfg file in
the "./common" subdirectory of the indicated package. The configuration contains the
information of the application module name and all the runtime parameters the user
has configured.

Example A–2 DataBindings.cpx file

 <dataControlUsages>
 <dc id="SRDemoFAQ" path="oracle.srdemo.faq.SRDemoFAQ"/>
 <BC4JDataControl id="SRService" Package="oracle.srdemo.model"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="SRServiceLocal" syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 </dataControlUsages>

A.6 <pageName>PageDef.xml
The <pageName>PageDef.xml files are created each time you insert a databound
component into a web page using the Data Control Palette or Structure window. These
XML files define the Oracle ADF binding container for each web page in the
application. The binding container provides access to the bindings within the page.
Therefore, you will have one XML file for each databound web page.

Table A–1 Attributes of the DataBindings.cpx File Elements

Element Syntax Attributes Attribute Description

<pageMap>
 <page />
</pageMap>

path The full directory path. Identifies the location of the
user interface page.

usageId A unique qualifier. Names the page definition id that
appears in the ADF page definition file. The ADF
binding servlet looks at the incoming URL requests
and checks that the bindings variable is pointing to
the ADF page definition associated with the URL of
the incoming HTTP request.

<pageDefinitionUsages>
 <page/>
</pageDefinitionUsages>

id A unique qualifier. References the page definition id
that appears in the ADF page definition file.

path The fully qualified package name. Identifies the
location of the user interface page’s ADF page
definition file.

<dataControlUsages>
 <dc ... />
</dataControlUsages>

id A unique qualifier. Identifies the data control usage as
is defined in the DataControls.dcx file.

path The fully qualified package name. Identifies the
location of the data control

<pageName>PageDef.xml

Reference ADF XML Files A-9

The PageDef.xml file appears in the /src/view directory of the ViewController project
folder. The Application Navigator displays the file in the view package of the
Application Sources folder. When you double-click the file node, the page description
appears in the XML Source Editor. To edit the page description parameters, use the
Property Inspector and select the desired parameter in the Structure window.

There are important differences in how the PageDefs are generated for methods that
return a single-value and a collection, so these are listed separately below.

A.6.1 PageDef.xml Syntax
The toplevel element of the PageDef.xml file is <pageDefinition>:

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.83" id="<pagename>PageDef"
 Package="oracle.srdemo.view.pageDefs">

where the XML namespace attribute (xmlns) specifies the URI to which the ADF
binding container binds at runtime. Only the package name is editable; all other
attributes should have the values shown.

Example A–3 displays the child element hierarchy of the <pageDefinition> element.
Note that each business service for which you have created a data control, will have its
own <AdapterDataControl> definition.

Example A–3 PageDef.xml Element Hierarchy

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition>
 <parameters>
 ...
 </parameters>
 <executables>
 ...
 </executables>
 <bindings>
 ...
 </bindings>
</pageDefinition>

The child elements have the following usages:

■ <parameters> defines page-level parameters that are EL accessible. These
parameters store information local to the web page request and may be accessed in
the binding expressions.

■ <executables> defines the list of items (methods, view objects, and accessors) to
execute during the prepareModel phase of the ADF page lifecycle. Methods to be
executed are defined by <methodIterator>. The lifecycle performs the execute in
the sequence listed in the <executables> section. Whether or not the method or

Note: You cannot rename the <pageName>PageDef.xml file in
JDeveloper, but you can rename the file outside of JDeveloper in your
MyWork/ViewController/src/view folder. If you do rename the
<pageName>PageDef.xml file, you must also update the
DataBindings.cpx file references for the id and path attributes in the
<pageDefinitionUsages> element.

<pageName>PageDef.xml

A-10 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

operation is executed depends on it’s refresh or refreshCondition attribute value.
Built-in operations on the data control are defined by:

<page> - definition for a nested page definition (binding container)

<iterator> - definition to a named collection in DataControls

<accessorIterator> - definition to get an accessor in a data control hierarchy

<methodIterator> - definition to get to an iterator returned by an invoked method
defined by a methodAction in the same file

<variableIterator> - internal iterator that contains variables declared for the
binding container

<invokeAction> - definition of which method to invoke as an executable

■ <bindings> refers to an entry in <executables> to get to the collection from which
bindings extract/submit attribute level data.

Table A–2 describes the attributes of the toplevel <pageDefinition> element.

Table A–3 describes the attributes of the child element of <parameters>.

Table A–2 Attributes of the PageDef.xml File <pageDefinition> Element

Element Syntax Attributes Attribute Description

<pageDefinition> ControllerClass Fully qualified classname to create when controller
requests a PageController object for this
bindingContainer

EnableTokenValidation Enables currency validation for this bindingContainer
when a postback occurs. This is to confirm that the
web tier state matches the state that particular page
was rendered with.

FindMode This is for legacy (10.1.2) use only and indicates if this
bindingContainer should start out in findMode when
initially prepared.

MsgBundleClass Fully qualified package name. Identifies the class
which contains translation strings for any bindings

Viewable An EL expression that should resolve at runtime to
whether this binding and the associated component
should be rendered or not.

<pageName>PageDef.xml

Reference ADF XML Files A-11

Table A–4 describes the attributes of the PageDef.xml <executables> elements.

Table A–3 Attributes of the PageDef.xml File <parameters> Element

Element Syntax Attributes Attribute Description

<parameter> id Unique identifier. May be referenced by ADF bindings

option Indicates the usage of the variable within the binding
container:

■ Final indicates that this parameter cannot be
passed in by a usage of this binding container, it
must use the default value in the definition.

■ Optional indicates the variable value need not be
provided.

■ Mandatory indicates the variable value must be
provided or a binding container exception will be
thrown.

readonly Indicates whether the parameter value may be
modified or not. Set to true when you do not want the
application to modify the parameter value.

value A default value, this can be an EL expression.

Table A–4 Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<accessorIterator> BeanClass Identifies the Java type of beans in the associated
iterator/collection.

CacheResults If true, manage the data collection between requests.

DataControl The data control which interprets/returns the
collection referred to by this iterator binding.

id Unique identifier. May be referenced by any ADF
value binding.

MasterBinding Reference to the methodIterator (or iterator) that
binds the data collection that serves as the master to
the accessor iterator’s detail collection.

ObjectType This is used for ADF Business Components only. A
boolean value determines if the collection is an object
type or not.

RangeSize Specifies the number of data objects in a range to fetch
from the bound collection. The range defines a
window you can use to access a subset of the data
objects in the collection. By default, the range size is
set to a range that fetches just ten data objects. Use
RangeSize when you want to work with an entire set
or when you want to limit the number of data objects
to display in the page. Note that the values -1 and 0
have specific meaning: the value -1 returns all
available objects from the collection, while the value 0
will return the same number of objects as the
collection uses to retrieve from its data source.

<pageName>PageDef.xml

A-12 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Refresh Determines when and whether the executable should
be invoked. Set one of the following properties as
required:

■ always - causes the executable to be invoked each
time the binding container is prepared. This will
occur when the page is displayed and when the
user submits changes, or when the application
posts back to the page.

■ deferred - refresh occurs when another binding
requires/refers to this executable.Since refreshing
an executable may be a performance concern,
you can set the refresh to only occur if it's used in
a binding that is being rendered.

■ ifNeeded - (default) whenever the framework
needs to refresh the executable because it has not
been refreshed to this point. For example, when
you have an accessor hierarchy such that a detail
is listed first in the page definition, the master
could be refreshed twice (once for the detail and
again for the master’s iterator). Using ifNeeded
gives the mean to avoid duplicate refreshes. This
is the default behavior for executables.

■ never - When the application itself will call
refresh on the executable during one of the
controller phases and does not want the
framework to refresh it at all.

■ prepareModel - causes the executable to be
invoked each time the page’s binding container is
prepared.

■ prepareModelIfNeeded - causes the executable to
be invoked during the prepareModel phase if this
executable has not been refreshed to this point.
See also ifNeeded above.

■ renderModel - causes the executable to be
invoked each time the page is rendered.

■ renderModelIfNeeded - causes the executable to
be invoked during the page’s renderModel phase
on the condition that it is needed. See also
ifNeeded above.

RefreshCondition An EL expression that when resolved, determines
when and whether the executable should be invoked.
For example,
${!bindings.findAllServiceRequestIter.findMode}
resolves the value of the findMode on the iterator in
the ADF binding context AllServiceRequest. Hint: Use
the Property Inspector to create expressions from the
available objects of the binding context (bindings
namespace) or binding context (data namespace), JSF
managed beans, and JSP objects.

Table A–4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

Reference ADF XML Files A-13

<invokeAction> Binds Determines the action to invoke. This may be on any
actionBinding. Additionally, in the case, of the EJB
session facade data control, you may bind to the
finder method exposed by the data control. Built-in
actions supported by the EJB session facade data
control include:

■ Execute executes the bound action defined by the
data collection.

■ Find retrieves a data object from a collection.

■ First navigates to the first data object in the data
collection range.

■ Last navigates to the first data object in the data
collection range.

■ Next navigates to the first data object in the data
collection range. If the current range position is
already on the last data object, then no action is
performed.

■ Previous navigates to the first data object in the
data collection range. If the current position is
already on the first data object, then no action is
performed.

■ setCurrentRowWithKey passes the row key as a
String converted from the value specified by the
input field. The row key is used to set the
currency of the data object in the bound data
collection. When passing the key, the URL for the
form will not display the row key value. You may
use this operation when the data collection
defines a multipart attribute key.

■ setCurrentRowWithKeyValue is used as above,
but when you want to use a primary key value
instead of the stringified key.

id Unique identifier. May be referenced by any ADF
action binding

Refresh see Refresh above.

RefreshCondition see RefreshCondition above.

<iterator> and
<methodIterator>

BeanClass Identifies the Java type of beans in the associated
iterator/collection

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

Binds see Binds above.

CacheResults see CacheResults above

DataControl Name of the DataControl usage in the bindingContext
(.cpx) which this iterator is associated with.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
value binding.

ObjectType Not used by EJB session facade data control (used by
ADF Business Components only).

Table A–4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

A-14 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Table A–5 describes the attributes of the PageDef.xml <bindings> element.

RangeSize see RangeSize above

Refresh see Refresh above

RefreshCondition see RefreshCondition above

<page> and <variableIterator> id Unique identifier. In the case of <page>, refers to
nested page/region that is included in this page. In
the case of the <variableIterator> executable, the
identifier may be referenced by any ADF value
binding

path Used by <page> executable only. Advanced, a fully
qualified path that may reference another page’s
binding container.

Refresh see Refresh above

RefreshCondition see RefreshCondition above

Table A–5 Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<action> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this the session bean

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

DataControl Name of the DataControl usage in the bindingContext
(.cpx) which this iteratorBinding or actionBinding is
associated with.

<attributeValues> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

Table A–4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

Reference ADF XML Files A-15

<button> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

BoolVal Identifies whether the value at the zero index in the
static value list in this boolean list binding represents
true or false.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

ListOperMode Determines if this list binding is for navigation,
contains a static list of values or is a LOV type list.

NullValueFlag Describes whether this list binding has a null value
and if so, whether it should be displayed at the
beginning of the list or the end.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

<graph> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

BoolVal Identifies whether the value at the zero index in the
static value list in this boolean list binding represents
true or false.

ChildAccessorName The name of the accessor to invoke to get the next
level of nodes for a given Hierarchical Node Type in a
tree.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

A-16 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

<list> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

ListOperMode Determines if this list binding is for navigation,
contains a static list of values or is a LOV type list.

NullValueFlag Describes whether this list binding has a null value
and if so, whether it should be displayed at the
beginning of the list or the end.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

StaticList Defines a static list of values that will be rendered in
the bound list component.

<methodAction> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this the session bean

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ClassName This is the class to which the method being invoked
belongs.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

Reference ADF XML Files A-17

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DataControl Name of the DataControl usage in the bindingContext
(.cpx) which this iteratorBinding or actionBinding is
associated with.

DefClass Used internally for testing.

id Unique identifier. May be referenced by any ADF
action binding

InstanceName A dot-separated EL path to a Java object instance on
which the associated method is to be invoked.

IsLocalObjectReference Set to True if the instanceName contains an EL path
relative to this bindingContainer.

IsViewObjectMethod Set to True if the instanceName contains an
instance-path relative to the associated data control's
Application Module.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

MethodName Indicates the name of the operation on the given
instance/class that needs to be invoked for this
methodActionBinding.

RequiresUpdateModel Whether this action requires that the model be
updated before the action is to be invoked.

ReturnName The EL path of the result returned by the associated
method.

<table> and <tree> ApplyValidation Set to True by default. When true, controlBinding
executes validators defined on the binding. You can
set to False in the case of ADF Business Components,
when running in local mode and the same validators
are already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition. Ignored in JDeveloper 10.1.3.

ControlClass Used internally for testing purposes.

CustomInputHandler This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandler
implementation that is used to process the inputValue
for a given value binding.

DefClass Used internally for testing.

DiscrValue Indicates the discriminator value for a hierarchical
type binding (type definition for a tree node). This
value is used to determine if a given row in a
collection being rendered in a polymorphic tree
binding should be rendered using the containing
hierarchical type binding.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

A-18 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

A.6.2 PageDef.xml Sample for Attributes of a View Object
This is the page definition file that’s created when you drop attributes of the
LoggedInUser view object from the Data Control Palette, SRService node, into your
open JSP page.

Example A–4 PageDef for Attributes of LoggedInUser View Object

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.65" id="app_SRCreateConfirmPageDef"
 Package="oracle.srdemo.view.pageDefs">
 <parameters/>
 <executables>
 <iterator id="GlobalsIterator" RangeSize="10" Binds="Globals"
 DataControl="SRService"/>
 <iterator id="LoggedInUserIterator" RangeSize="10" Binds="LoggedInUser"
 DataControl="SRService"/>
 </executables>
 <bindings>
 <attributeValues IterBinding="GlobalsIterator" id="ProblemDescription">
 <AttrNames>
 <Item Value="ProblemDescription"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="GlobalsIterator" id="ProductId">
 <AttrNames>
 <Item Value="ProductId"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="GlobalsIterator" id="ProductName">
 <AttrNames>
 <Item Value="ProductName"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="FirstName"
 IterBinding="LoggedInUserIterator">
 <AttrNames>
 <Item Value="FirstName"/>
 </AttrNames>
 </attributeValues>
 <attributeValues id="LastName"
 IterBinding="LoggedInUserIterator">
 <AttrNames>
 <Item Value="LastName"/>
 </AttrNames>
 </attributeValues>
 ...

id Unique identifier. May be referenced by any ADF
action binding

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to indicate
the null value in a list display.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Elements

Element Syntax Attributes Attribute Description

<pageName>PageDef.xml

Reference ADF XML Files A-19

 </bindings>
</pageDefinition>

A.6.3 PageDef.xml Sample for the Entire View Object
This is the page definition file that’s created when you drop the
ServiceRequestsByStatus node from the Data Control Palette, SRService node, into
your open JSP page. This one produces the entire view object.

Example A–5 PageDef for the Entire View Object

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.65" id="app_SRListPageDef"
 Package="oracle.srdemo.view.pageDefs"
 EnableTokenValidation="false">
 <parameters/>
 <executables>
 <iterator id="ServiceRequestsByStatusIterator" RangeSize="10"
 Binds="ServiceRequestsByStatus" DataControl="SRService"/>
 </executables>
 <bindings>
 <table id="LoggedInUserServiceRequests"
 IterBinding="ServiceRequestsByStatusIterator">
 <AttrNames>
 <Item Value="SvrId"/>
 <Item Value="Status"/>
 <Item Value="RequestDate"/>
 <Item Value="ProblemDescription"/>
 <Item Value="ProdId"/>
 <Item Value="CreatedBy"/>
 <Item Value="AssignedTo"/>
 <Item Value="AssignedDate"/>
 </AttrNames>
 </table>
 <action id="setCurrentRowWithKey"
 IterBinding="ServiceRequestsByStatusIterator"
 InstanceName="SRService.ServiceRequestsByStatus"
 DataControl="SRService" RequiresUpdateModel="false" Action="96">
 <NamedData NDName="rowKey" NDValue="${row.rowKeyStr}"
 NDType="java.lang.String"/>
 </action>
 <action id="ExecuteWithParams" IterBinding="ServiceRequestsByStatusIterator"
 InstanceName="SRService.ServiceRequestsByStatus"
 DataControl="SRService" RequiresUpdateModel="true"
 Action="95">
 <NamedData NDName="StatusCode" NDValue="${userState.listMode}"
 NDType="java.lang.String"/>
 </action>
 </bindings>
</pageDefinition>

web.xml

A-20 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

A.7 web.xml
This section describes Oracle ADF configuration settings specific to the standard
web.xml deployment descriptor file.

In JDeveloper when you create a project that uses JSF technology, a starter web.xml
file with default settings is created for you in /WEB-INF. To edit the file, double-click
web.xml in the Application Navigator to open it in the XML editor.

The following must be configured in web.xml for all applications that use JSF and
ADF Faces:

■ JSF servlet and mapping—The servlet javax.faces.webapp.FacesServlet
that manages the request processing lifecycle for web applications utilizing JSF to
construct the user interface.

■ ADF Faces filter and mapping—A servlet filter to ensure that ADF Faces is
properly initialized by establishing a AdfFacesContext object. This filter also
processes file uploads.

■ ADF resource servlet and mapping—A servlet to serve up web application
resources (images, style sheets, JavaScript libraries) by delegating to a
ResourceLoader.

The JSF servlet and mapping configuration settings are automatically added to the
starter web.xml file when you first create a JSF project. When you insert an ADF Faces
component into a JSF page for the first time, JDeveloper automatically inserts the
configuration settings for ADF Faces filter and mapping, and resource servlet and
mapping.

Example A–6 Configuring web.xml for ADF Faces and JSF

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee">
 <description>Empty web.xml file for Web Application</description>

 <!-- Installs the ADF Faces Filter -- >
 <filter>
 <filter-name>adfFaces</filter-name>
 <filter-class>oracle.adf.view.faces.webapp.AdfFacesFilter</filter-class>
 </filter>

 <!-- Adds the mapping to ADF Faces Filter -- >
 <filter-mapping>
 <filter-name>adfFaces</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 </filter-mapping>

 <!-- Maps the JSF servlet to a symbolic name -->
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- Maps ADF Faces ResourceServlet to a symbolic name -- >
 <servlet>
 <servlet-name>resources</servlet-name>

web.xml

Reference ADF XML Files A-21

 <servlet-class>oracle.adf.view.faces.webapp.ResourceServlet</servlet-class>
 </servlet>

 <!-- Maps URL pattern to the JSF servlet's symbolic name -->
 <!-- You can use either a path prefix or extension suffix pattern -->
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>

 <!-- Maps URL pattern to the ResourceServlet's symbolic name -->
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
...
</web-app>

Appendix A.7.1.1, "Configuring for State Saving" through Appendix A.7.1.7, "What
You May Need to Know" detail the context parameters you could use in web.xml
when you work with JSF and ADF Faces.

A.7.1 Tasks Supported by the web.xml File
The following JSF and ADF Faces tasks are supported by the web.xml file.

A.7.1.1 Configuring for State Saving
You can specify the following state-saving context parameters:

■ javax.faces.STATE_SAVING_METHOD—Specifies where to store the
application’s view state. By default this value is server, which stores the
application's view state on the server. If you wish to store the view state on the
browser client, set this value to client. JDeveloper then automatically uses
token-based client-side state saving (see oracle.adf.view.faces.CLIENT_
STATE_METHOD below). You can specify the number of tokens to use instead of
using the default number of 15 (see oracle.adf.view.faces.CLIENT_
STATE_MAX_TOKENS below).

■ oracle.adf.view.faces.CLIENT_STATE_METHOD—Specifies the type of
client-side state saving to be used when client-side state saving is enabled. The
values are:

– token—(Default) Stores the page state in the session, but persists a token to
the client. The simple token, which identifies a block of state stored back on
the HttpSession, is stored on the client. This enables ADF Faces
to disambiguate multiple appearances of the same page. Failover
HttpSession is supported. This matches the default server-side behavior
that will be provided in JSF 1.2.

– all—Stores all state on the client in a (potentially large) hidden form field.
This matches the client-side state saving behavior in JSF 1.1, but it is useful for
developers who do not want to use HttpSession.

■ oracle.adf.view.faces.CLIENT_STATE_MAX_TOKENS—Specifies how
many tokens should be stored at any one time per user. The default is 15. When
this value is exceeded, the state is lost for the least recently viewed pages, which
affects users who actively use the Back button or who have multiple windows
opened at the same time. If you're building HTML applications that rely heavily
on frames, you would want to increase this value.

web.xml

A-22 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Example A–7 shows part of a web.xml file that contains state-saving parameters.

Example A–7 Context Parameters for State Saving in web.xml

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.CLIENT_STATE_MAX_TOKENS</param-name>
 <param-value>20</param-value>
</context-param>

A.7.1.2 Configuring for Application View Caching
You can specify the following application view caching context parameter:

■ oracle.adf.view.faces.USE_APPLICATION_VIEW_CACHE—Specifies
whether to enable the application view caching feature. When application view
caching is enabled, the first time a page is viewed by any user, ADF Faces caches
the initial page state at an application level. Subsequently, all users can reuse the
page's cached state coming and going, significantly improving application
performance. Default is false.

Example A–8 shows part of a web.xml file that contains the application view caching
parameter.

Example A–8 Context Parameters for Application View Caching in web.xml

<context-param>
 <param-name>oracle.adf.view.faces.USE_APPLICATION_VIEW_CACHE</param-name>
 <param-value>true</param-value>
</context-param>

A.7.1.3 Configuring for Debugging
You can specify the following debugging context parameters:

■ oracle.adf.view.faces.DEBUG_JAVASCRIPT—ADF Faces by default
obfuscates the JavaScript it delivers to the client, as well as strip comments and
whitespace. This dramatically reduces the size of the ADF Faces JavaScript
download, but also makes it tricky to debug the JavaScript. Set to true to turn off
the obfuscation during application development. Set to false for application
deployment.

■ oracle.adf.view.faces.CHECK_FILE_MODIFICATION—By default this
parameter is false. If it is set to true, ADF Faces will automatically check the
modification date of your JSPs, and discard saved state when they change. When
set to true, this makes development easier, but adds overhead that should be
avoided when your application is deployed. Set to false for application
deployment.

For testing and debugging in JDeveloper’s embedded OC4J, you don’t need to
explicitly set this parameter to true because ADF Faces automatically detects the
embedded OC4J and runs with the file modification checks enabled.

Example A–9 shows part of a web.xml file that contains debugging parameters.

web.xml

Reference ADF XML Files A-23

Example A–9 Context Parameters for Debugging in web.xml

<context-param>
 <param-name>oracle.adf.view.faces.DEBUG_JAVASCRIPT</param-name>
 <param-value>true</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.CHECK_FILE_MODIFICATION</param-name>
 <param-value>true</param-value>
</context-param>

A.7.1.4 Configuring for File Uploading
You can specify the following file upload context parameters:

■ oracle.adf.view.faces.UPLOAD_TEMP_DIR—Specifies the directory where
temporary files are to be stored during file uploading. The default is the user's
temporary directory.

■ oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE—Specifies the
maximum amount of disk space that can be used in a single request to store
uploaded files. The default is 2000K.

■ oracle.adf.view.faces.UPLOAD_MAX_MEMORY—Specifies the maximum
amount of memory that can be used in a single request to store uploaded files. The
default is 100K.

Example A–10 shows part of a web.xml file that contains file upload parameters.

Example A–10 Context Parameters for File Uploading in web.xml

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_TEMP_DIR</param-name>
 <param-value>/tmp/Adfuploads</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_DISK_SPACE</param-name>
 <param-value>5120000</param-value>
</context-param>

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_MEMORY</param-name>
 <param-value>512000</param-value>
</context-param>

For information about file uploading, see Section 19.6, "Providing File Upload
Capability".

Note: The file upload initialization parameters are processed by the
default UploadedFileProcessor only. If you replace the default
processor with a custom UploadedFileProcessor implementation,
the parameters are not processed.

web.xml

A-24 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

A.7.1.5 Configuring for ADF Model Binding
When you use ADF data controls to build web pages, the following must be
configured in web.xml:

■ ADF binding filter—A servlet filter to create the ADFContext, which contains
context information about ADF, including the security context and the
environment class that contains the request and response object. ADF applications
use this filter to preprocess any HTTP requests that may require access to the
binding context.

■ Servlet context parameter for the application binding container—Specifies which
CPX file the filter reads at runtime to define the application binding context. For
information about CPX files, see Section 12.3, "Working with the DataBindings.cpx
File".

In JDeveloper when you first use the Data Control Palette to build your databound JSF
page, the ADF data binding configuration settings are automatically added to the
web.xml file.

Example A–11 shows part of a web.xml file that contains ADF Model binding
settings. For more information about the Data Control Palette and binding objects, see
Chapter 12, "Displaying Data on a Page".

Example A–11 ADF Model Binding Configuration Settings in web.xml

<context-param>
 <param-name>CpxFileName</param-name>
 <param-value>view.DataBindings</param-value>
</context-param>

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jsp</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <url-pattern>*.jspx</url-pattern>
</filter-mapping>

A.7.1.6 Other Context Configuration Parameters for JSF
Other optional, application-wide parameters for JSF are:

■ javax.faces.CONFIG_FILES—Specifies paths to JSF application configuration
resource files. Use a comma-separated list of application-context relative paths for
the value (see Example A–12). You need to set this parameter if you use more than
one JSF configuration file in your application, as described in Appendix A.9.1,
"Tasks Supported by the faces-config.xml".

■ javax.faces.DEFAULT_SUFFIX—Specifies a file extension (suffix) for JSP
pages that contain JSF components. The default value is .jsp.

■ javax.faces.LIFECYCLE_ID—Specifies a lifecycle identifier other than the
default set by the javax.faces.lifecycle.LifecycleFactory.DEFAULT_
LIFECYCLE constant.

j2ee-logging.xml

Reference ADF XML Files A-25

Example A–12 Configuring for Multiple JSF Configuration Files in web.xml

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/faces-config1.xml,/WEB-INF/faces-config2.xml</param-value>
</context-param>

A.7.1.7 What You May Need to Know
If you have multiple filters for your application, make sure they are listed in web.xml
in the order in which you want to run them. At runtime, the filters are called in the
sequence listed in that file.

A.8 j2ee-logging.xml
ADF Faces leverages the Java Logging API (java.util.logging.Logger) to
provide logging functionality when you run a debugging session. Java Logging is a
standard API that is available in the Java Platform, starting with JDK 1.4. For the key
elements, see the section "Java Logging Overview" at
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.
html.

Typically you would want to configure the following in j2ee-logging.xml:

■ Change the logging level for Oracle ADF packages. See Section A.8.1.1.

■ Redirect the log output to a location, like a file, in addition to the default Log
window in JDeveloper. See Section A.8.1.2.

■ Change the directory path that determines where your log file resides. See
Section A.8.1.3.

A.8.1 Tasks Supported by the j2ee-logging.xml
The following JSF tasks are supported by the j2ee-logging.xml file.

A.8.1.1 Change the Logging Level for Oracle ADF Packages
When you want to change the logging level of individual Oracle ADF packages, edit
<logger> in the <loggers> element of j2ee-logging.xml (see Example A–13).
The default level of logging is INFO. Oracle recommends level="FINE" for detailed
log messages. Note that package names are hierarchically inclusive. For instance, if
you change the level of oracle.adf, the level specified will also apply to all classes
that begin with the path oracle.adf. To change the level of specific classes, supply
the full path; for instance, a level set for the package name
oracle.adf.controller will not apply to other branches of the oracle.adf
package.

For details about setting logging when debugging ADF applications, see Section 24.4.2,
"Creating an Oracle ADF Debugging Configuration".

Example A–13 Changing the Logging Level in j2ee-logging.xml

<loggers>
 <logger name="oracle.adf" level="FINE" />
 ...
</loggers>

faces-config.xml

A-26 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

A.8.1.2 Redirect the Log Output
The default logger (name="oracle") is associated with two handlers: one for file
output and another for console output (JDeveloper Log window). By default log
messages are output to both locations at the same time. When you want to redirect the
output for the log messages, edit <handler> in the <logger> element of
j2ee-logging.xml (see Example A–14). For example, you can comment out the
<handler name="oc4j-handler"/> when you want the output to only go to the
JDeveloper Log window.

Example A–14 Changing the Logger Handler in j2ee-logging.xml

<loggers>
 <logger name="oracle" level="NOTIFICATION:1" useParentHandlers="false">
 <handler name="oc4j-handler"/>
 <handler name="console-handler"/>
 </logger>
 ...
</loggers>

A.8.1.3 Change the Location of the Log File
When you want to change where the log files reside, edit <log_handler> in the
<log_handlers> element of j2ee-logging.xml (see Example A–15). The default
directory for the log file is ../log/oc4j.

Example A–15 Changing the Location of the Log File in j2ee-logging.xml

<log_handler name="oc4j-handler"
 class="oracle.core.ojdl.loggin.ODLHandlerFactory">
 <property name="path" value="C:/temp/adf-log"/>
 <property name-"maxFileSize" value="10485760"/>

A.9 faces-config.xml
You register a JSF application's resources—such as validators, converters, managed
beans, and the application navigation rules—in the application's configuration file.
Typically you have one configuration file named faces-config.xml.

Note: A JSF application can have more than one JSF configuration
file. For example if you need individual JSF configuration files for
separate areas of your application, or if you choose to package
libraries containing custom components or renderers, you can create a
separate JSF configuration file for each area or library. For details see,
Section 11.2.3, "What You May Need to Know About Multiple JSF
Configuration Files".

faces-config.xml

Reference ADF XML Files A-27

In JDeveloper, when you create a project that uses JSF technology, an empty
faces-config.xml file is created for you in /WEB-INF.

Typically you would want to configure the following in faces-config.xml:

■ Application resources such as default render kit, message bundles, and supported
locales. Refer to Section A.9.1.1, Section A.9.1.3. and Section A.9.1.4.

■ Page-to-page navigation rules. See Section A.9.1.5.

■ Custom validators and converters. See Section A.9.1.6.

■ Managed beans for holding and processing data, handling UI events, and
performing business logic.

If you use ADF data controls to build databound web pages, you also need to register
the ADF phase listener in faces-config.xml. Refer to Section A.9.1.2.

A.9.1 Tasks Supported by the faces-config.xml
The following JSF tasks are supported by the faces-config.xml file.

A.9.1.1 Registering a Render Kit for ADF Faces Components
When you use ADF Faces components in your application, you must add the ADF
default render kit in the <application> element of faces-config.xml. As
mentioned earlier, JDeveloper creates one empty faces-config.xml file for you
when you create a new project that uses JSF technology. When you insert an ADF
Faces component into a JSF page for the first time, JDeveloper automatically inserts the
default render kit for ADF components into faces-config.xml (see Example A–16).

Example A–16 Configuring faces-config.xml for ADF Faces Components

<?xml version="1.0" encoding="windows-1252"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- Default render kit for ADF components -->
 <application>
 <default-render-kit-id>oracle.adf.core</default-render-kit-id>
 </application>
 ...
</faces-config>

A.9.1.2 Registering a Phase Listener for ADF Binding
The ADF phase listener is used to execute the ADF page lifecycle. When you use ADF
data binding, you need to specify a phase listener for ADF lifecycle phases. In
JDeveloper when an ADF data control is inserted into a JSF page for the first time, a
standard ADF phase listener is added to faces-config.xml in the <lifecycle>
element.

The ADF phase listener listens for all the JSF phases before which and after which it
needs to execute its own phases concerned with preparing the model, validating
model updates, and preparing pages to be rendered. See Section 13.2.3, "What
Happens at Runtime: The JSF and ADF Lifecycles", for more information about how
the ADF lifecycle phases integrate with the JSF lifecycle phases. Example A–17 shows
part of a faces-config.xml that contains the ADF phase listener.

faces-config.xml

A-28 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

You may want to subclass the standard ADF phase listener when custom behavior,
such as error handling, is desired. See Section 20.8, "Handling and Displaying
Exceptions in an ADF Application" for details about subclassing the ADF phase
listener. JDeveloper will not read the standard phase listener to faces-config.xml
if it detects a subclass.

Example A–17 Registering the ADF Phase Listener in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
<lifecycle>
 <phase-listener>
 oracle.adf.controller.faces.lifecycle.ADFPhaseListener
 </phase-listener>
</lifecycle>
 ...
</faces-config>

A.9.1.3 Registering a Message Resource Bundle
When you use a resource bundle for localized labels and messages, add the resource as
a <message-bundle> in the <application> element of faces-config.xml (see
Example A–18). The SRDemo application uses a resource properties file to hold the
strings for the UI.

Example A–18 Registering a Message Bundle in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <application>
 ...
 <message-bundle>oracle.srdemo.view.resources.UIResources</message-bundle>
 ...
 </application>
 ...
</faces-config>

To reference a message bundle in a page, see Section 22.4, "Internationalizing Your
Application".

A.9.1.4 Configuring for Supported Locales
Register the default and all supported locales for your application in the
<application> element of faces-config.xml (see Example A–19).

Example A–19 Registering Default and Supported Locales in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <application>
 ...
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en-US</supported-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>fr</supported-locale>
 </locale-config>
 </application>
 ...
</faces-config>

faces-config.xml

Reference ADF XML Files A-29

A.9.1.4.1 What You May Need to Know

JSF allows more than one <application> element in a single faces-config.xml
file. The JSF Configuration Editor only allows you to edit the first instance in the file.
You'll need to edit the file directly using the XML editor for any other
<application> elements.

A.9.1.5 Creating Navigation Rules and Cases
While you can enter navigation rules and cases directly in the faces-config.xml
file, Oracle recommends you use the JSF Navigation Modeler. The Navigation Modeler
enables you to lay out the pages in your JSF application and add navigation between
the pages in the form of a diagram. To open the Navigation Modeler, double-click the
faces-config.xml file in the Application Navigator. In the visual editor, activate
the Diagram tab to display the Navigation Modeler.

When JDeveloper first creates an empty faces-config.xml, it also creates a
diagram file to hold diagram details such as layout and annotations. JDeveloper
always maintains this diagram file alongside the faces-config.xml file, which
holds all the settings needed by your application. This means that if you are using
versioning or source control, the diagram file is included along with the
faces-config.xml file it represents.

The navigation cases you add to the diagram are reflected in faces-config.xml,
without your needing to edit the file directly.

A navigation rule defines one or more cases that specify an outcome value. A
navigation component in a web page specifies an outcome value in its action
attribute, which triggers a specific navigation case when a user clicks that component.
For example, in the SRList page of the sample application, when the user clicks the
View button, the application displays the SRMain page. The action attribute on the
View button has the string value View (see Example A–20). The corresponding code
for the navigation case within the navigation rule for the SRList page is shown in
Example A–21.

Example A–20 Action Outcome String Defined on View Button

<af:commandButton text="#{res['srlist.buttonbar.view']}"
 action="View"/>

Example A–21 Creating Static Navigation Cases in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <navigation-rule>
 <from-view-id>/SRList.jspx</from-view-id>

 <navigation-case>
 <from-outcome>Edit</from-outcome>
 <to-view-id>/SREdit.jspx</to-view-id>
 </navigation-case>

 <navigation-case>
 <from-outcome>View</from-outcome>
 <to-view-id>/SRMain.jspx</to-view-id>
 </navigation-case>

faces-config.xml

A-30 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

 <navigation-case>
 <from-outcome>Search</from-outcome>
 <to-view-id>/SRSearch.jspx</to-view-id>
 </navigation-case>

 <navigation-case>
 <from-outcome>Create</from-outcome>
 <to-view-id>/SRCreate.jspx</to-view-id>
 </navigation-case>
 </navigation-rule>
 ...
</faces-config>

For information about creating JSF navigation rules and cases, as well as creating
navigation components, see Chapter 16, "Adding Page Navigation".

A.9.1.6 Registering Custom Validators and Converters
JSF and ADF Faces standard validators and converters provide common validation
checks for numeric ranges and string lengths, and the most common datatype
conversions. If you need more complex validation rules and checks, or if you need to
convert a component's data to a type other than a standard type, you can create your
own custom validator or converter.

The custom validator or converter must implement the
javax.faces.validator.Validator or javax.faces.convert.Converter
interface, respectively. To make use of your custom validator or converter in an
application, you have to register it in faces-config.xml using the <validator>
or <converter> element (see Example A–22). For a custom validator, you can
register it under an identifier (ID); for a custom converter you can register it under an
ID or a fully qualified class name for a specific datatype.

Example A–22 Registering Custom Validators and Converters in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <validator>
 <validator-id>oracle.srdemo.core.CreditCard</validator-id>
 <validator-class>oracle.srdemo.core.CreditCardValidator</validator-class>
 </validator>
 <converter>
 <converter-id>oracle.srdemo.core.CreditCard</validator-id>
 <converter-class>oracle.srdemo.core.CreditCardConverter</converter-class>
 </converter>
 ...
</faces-config>

A.9.1.7 Registering Managed Beans
In JSF, managed beans are the JavaBeans used to manage data between the web tier
and the business tier of the application (similar to a data transfer object). At runtime,
whenever the bean is referenced in a page through a value or method binding
expression, the JSF implementation instantiates a bean, populates it with any declared,
default values, and places it in the managed bean scope as defined in the
faces-config.xml.

To register a managed bean in faces-config.xml, use the <managed-bean>
element (see Example A–23). You have to specify the following for a managed bean:

faces-config.xml

Reference ADF XML Files A-31

■ Name—Determines how the bean will be referred to within the application using
EL expressions, instead of using the bean's fully qualified class name.

■ Class—This is the JavaBean that contains the properties that hold the data, along
with the corresponding accessor methods and/or any other methods (such as
navigation or validation) used by the bean. This can be an existing class (such as a
data transfer class), or it can be a class specific to the page (such as a backing
bean).

■ Scope—This determines the scope within which the bean is stored. The valid
scopes are:

■ application—The bean is available for the duration of the web application.
This is helpful for global beans such as LDAP directories.

■ request—The bean is available from the time it is instantiated until a
response is sent back to the client. This is usually the life of the current page.

■ session—The bean is available to the client throughout the client's session.

■ none—The bean is instantiated each time it is referenced.

Managed properties are any properties of the bean that you would like populated with
a value when the bean is instantiated. The set method for each declared property is
run once the bean is constructed. To initialize a managed bean's properties with set
values, including those for a bean's map or list property, use the
<managed-property> element. When you configure a managed property for a
managed bean, you declare the property name, its class type, and its default value.

Managed beans and managed bean properties can be initialized as lists or maps,
provided that the bean or property type is a List or Map, or implements
java.util.Map or java.util.List. The default for the values within a list or map
is java.lang.String.

Example A–23 Registering Managed Beans in faces-config.xml

<faces-config xmlns="http://java.sun.com/JSF/Configuration">
 ...
 <!-- This managed bean uses application scope -->
 <managed-bean>
 <managed-bean-name>resources</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.resources.ResourceAdapter
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 </managed-bean>

 <!-- Page backing beans typically use request scope-->
 <managed-bean>
 <managed-bean-name>backing_SRCreate</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.backing.SRCreate</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1app/SRCreate.jspx-->
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{bindings}</value>
 </managed-property>
 </managed-bean>

adf-faces-config.xml

A-32 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

 <managed-bean>
 <managed-bean-name>backing_SRManage</managed-bean-name>
 <managed-bean-class>
 oracle.srdemo.view.backing.management.SRManage
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <!--oracle-jdev-comment:managed-bean-jsp-link:1app/management/SRManage.jspx-->
 <managed-property>
 <property-name>bindings</property-name>
 <value>#{bindings}</value>
 </managed-property>
 </managed-bean>

 <!-- This managed bean uses session scope -->
 <managed-bean>
 <managed-bean-name>userState</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.UserSystemState</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 ...
</faces-config>

A.10 adf-faces-config.xml
When you create a JSF application using ADF Faces components, besides configuring
elements in faces-config.xml you can configure ADF Faces-specific features in the
adf-faces-config.xml file. The adf-faces-config.xml file has a simple XML
structure that enables you to define element properties using the JSF expression
language (EL) or static values.

In JDeveloper when you insert an ADF Faces component into a JSF page for the first
time, a starter adf-faces-config.xml file is automatically created for you in the
/WEB-INF directory of your ViewController project. Example A–24 shows the starter
adf-faces-config.xml file.

Typically you would want to configure the following in adf-faces-config.xml:

■ Page accessibility levels

■ Skin family

■ Time zone

■ Enhanced debugging

■ Oracle Help for the Web (OHW) URL

Example A–24 Starter adf-faces-config.xml Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/view/faces/config">

 <skin-family>oracle</skin-family>

</adf-faces-config>

adf-faces-config.xml

Reference ADF XML Files A-33

A.10.1 Tasks Supported by adf-faces-config.xml
The following JSF tasks are supported by the adf-faces-config.xml file.

A.10.1.1 Configuring Accessibility Levels
To define the level of accessibility support in an application, use
<accessibility-mode>. The supported values are:

■ default—Output supports accessibility features.

■ inaccessible—Accessibility-specific constructs are removed to optimize output
size.

■ screenReader—Accessibility-specific constructs are added to improve behavior
under a screen reader (but may have a negative affect on other users. For example
access keys are not displayed if the accessibility mode is set to screen reader
mode).

Example A–25 Configuring an Accessibility Level

<!-- Set the accessibility mode to screenReader -->
<accessibility-mode>screenReader</accessibility-mode>

A.10.1.2 Configuring Currency Code and Separators for Number Groups and
Decimals
To set the currency code to use for formatting currency fields, and define the separator
to use for groups of numbers and the decimal point, use the following elements:

■ <currency-code>—Defines the default ISO 4217 currency code used by
oracle.adf.view.faces.converter.NumberConverter to format
currency fields that do not specify a currency code in their own converter.

■ <number-grouping-separator>—Defines the separator used for groups of
numbers (for example, a comma). ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while parsing and
formatting.

■ <decimal-separator>—Defines the separator (e.g., a period or a comma) used
for the decimal point. ADF Faces automatically derives the separator from the
current locale, but you can override this default by specifying a value in this
element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while parsing and
formatting.

adf-faces-config.xml

A-34 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Example A–26 Configuring Currency Code and Separators For Numbers and Decimal
Point

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

A.10.1.3 Configuring For Enhanced Debugging Output
ADF Faces enhances debugging output when you set <debug-output> to "true". The
following features are then added to debug output:

■ Automatic indenting.

■ Comments identifying which component was responsible for a block of HTML.

■ Detection of unbalanced elements, repeated use of the same attribute in a single
element, or other malformed markup problems.

■ Detection of common HTML errors (for example, <form> tags inside other
<form> tags or <tr> or <td> tags used in illegal locations).

Example A–27 Enabling Enhanced Debugging

<!-- Activate the ADF Faces enhanced debugging features -->
<debug-output>true</debug-output>

A.10.1.4 Configuring for Client-Side Validation and Conversion
ADF Faces validators and converters support client-side validation and conversion as
well as server-side validation and conversion. ADF Faces client-side validators and
converters work the same way as the server-side validators and converters, except that
JavaScript is used on the client. ADF Faces JavaScript-enabled validators and
converters run on the client when the form is submitted; thus errors can be caught
without a server round trip. You can, however, turn off client-side conversion and
validation in your ADF Faces application by setting
<client-validation-disabled> to "true".

Example A–28 Turning Off Client-Side Validation and Conversion

<!-- Disable client validation -->
<client-validation-disabled>true</client-validation-disabled>

A.10.1.5 Configuring the Language Reading Direction
By default, ADF Faces page rendering direction is based on the language being used
by the browser. However, you can explicitly set the default page rendering direction in
the <right-to-left> element by using "true" or "false".

adf-faces-config.xml

Reference ADF XML Files A-35

Example A–29 Configuring For Right-to-Left Page Rendering

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

A.10.1.6 Configuring the Skin Family
By default, ADF Faces uses the Oracle <skin-family> for all pages. You can change
this to specify a custom <skin-family>. See also Section A.11.1, "Tasks Supported by
adf-faces-skins.xml".

For information about creating custom skins, see Section 22.3, "Using Skins to Change
the Look and Feel".

Example A–30 Configuring a Skin to be Used For All Pages

<!-- Specify custom skin instead of Oracle skin -->
<skin-family>srdemo<skin-family>

A.10.1.7 Configuring the Output Mode
To change the output mode ADF Faces uses, set the <output-mode> element, using
one of these values:

■ default—The default page output mode (usually display).

■ printable—An output mode suitable for printable pages.

■ email—An output mode suitable for e-mailing a page's content.

Example A–31 Configuring an Output Mode

<!-- Set the output mode to printable -->
<output-mode>printable</output-mode>

A.10.1.8 Configuring the Number of Active ProcessScope Instances
By default ADF Faces sets the maximum number of active processScope instances
at 15. Use the <process-scope-lifetime> element to change the number. A static
value must be used.

Example A–32 Configuring the Number of Active ProcessScope Instances

<!-- Set the maximum number of processScope instances to 10 -->
<process-scope-lifetime>10</process-scope-lifetime>

A.10.1.9 Configuring the Time Zone and Year Offset
To set the time zone used for processing and displaying dates, and the year offset that
should be used for parsing years with only two digits, use the following elements:

■ <time-zone>—ADF Faces defaults to the time zone used by the client browser.
This value is used by
oracle.adf.view.faces.converter.DateTimeConverter while
converting strings to Date.

■ <two-digit-year-start>—Defaults to the year 1950 if no value is set. This
value is used by
oracle.adf.view.faces.converter.DateTimeConverter to convert
strings to Date.

adf-faces-config.xml

A-36 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Example A–33 Configuring the Time Zone and Year Offset

<!-- Set the time zone to Pacific Daylight Savings Time -->
<time-zone>PDT</time-zone>

<!-- Set the year offset to 2000 -->
<two-digit-year-start>2000</two-digit-year-start>

A.10.1.10 Configuring a Custom Uploaded File Processor
Most applications don't need to replace the default UploadedFileProcessor
instance provided by ADF Faces, but if your application needs to support uploading of
very large files or rely heavily on file uploads, you may wish to replace the default
processor with a custom UploadedFileProcessor implementation. For example
you could improve performance by using an implementation that immediately stores
files in their final destination, instead of requiring ADF Faces to handle temporary
storage during the request. To replace the default processor, specify a custom
implementation using the <uploaded-file-processor> element.

Example A–34 Configuring a Custom Uploaded File Processor

<!-- Use my UploadFileProcessor class -->
<uploaded-file-processor>
 com.mycompany.faces.myUploadedFileProcessor
</uploaded-file-processor>

A.10.1.11 Configuring the Help Site URL
If you use Oracle Help for the Web (OHW) to provide help in your application, you
can attach help content to any JSF tag that accepts a URL. Before you can do this, you
must configure your help site URL by using the <oracle-help-servlet-url>
element. ADF Faces supports OHW Version 2.0 as well as earlier versions

Use the adfFacesContext.helpTopic EL object to attach help content to the JSF
tag. For example:

<h:outputLink value="#{adfFacesContext.helpTopic.someTopicID}">
 <h:outputText value="Help!"/>
</h:outputLink>

Example A–35 Configuring the Help Site URL

<!-- Set the help site URL -->
<oracle-help-servlet-url>mywebsite.com/project_one/help</oracle-help-servlet-url>

A.10.1.12 Retrieving Configuration Property Values From adf-faces-config.xml
Once you have configured elements in the adf-faces-config.xml file, you can
retrieve property values using one of the following approaches:

■ Programmatically using the AdfFacesContext class.

The AdfFacesContext class is a context class for all per-request and per-webapp
information required by ADF Faces. One instance of the AdfFacesContext class
exists per request. Although it is similar to the JSF FacesContext class, the
AdfFacesContext class does not extend FacesContext.

To retrieve an ADF Faces configuration property programmatically, first call the
static getCurrentInstance() method to get an instance of the
AdfFacesContext object, then call the method that retrieves the desired
property, as shown in the following example:

adf-faces-skins.xml

Reference ADF XML Files A-37

// Get an instance of the AdfFacesContext object
AdfFacesContext context = AdfFacesContext.getCurrentInstance();

// Get the time-zone property
TimeZone zone = context.getTimeZone();

// Get the right-to-left property
if (context.isRightToLeft())
{
 ...
}

For the list of methods to retrieve ADF Faces configuration properties, refer to the
Javadoc for oracle.adf.view.faces.context.AdfFacesContext.

■ Using a JSF EL expression to bind a component attribute value to one of the
properties of the ADF Faces implicit object (adfFacesContext).

The AdfFacesContext class contains an EL implicit variable, called
adfFacesContext, that exposes the context object properties for use in JSF EL
expressions. Using a JSF EL expression, you can bind a component attribute value
to one of the properties of the adfFacesContext object. For example in the EL
expression below, the <currency-code> property is bound to the
currencyCode attribute value of the JSF ConvertNumber component:

<af:outputText>
 <f:convertNumber currencyCode="#{adfFacesContext.currencyCode}"/>
</af:outputText>

A.11 adf-faces-skins.xml
The adf-faces-skins.xml file is optional; you need this file only if you are using a
custom skin for your application. To create the file, simply use a text editor; store the
file in /WEB-INF.

You can specify one or more custom skins in adf-faces-skins.xml.

Example A–36 Adf-faces-skins.xml

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://xmlns.oracle.com/adf/view/faces/skin">
 <skin>
 <id>purple.desktop</id>
 <family>purple</family>
 <render-kit-id>oracle.adf.desktop</render-kit-id>
 <style-sheet-name>skins/purple/purpleSkin.css</style-sheet-name>
 <bundle-name>oracle.adfdemo.view.faces.resource.SkinBundle</bundle-name>
 </skin>
</skins>

A.11.1 Tasks Supported by adf-faces-skins.xml
The value of <family> is what you would specify in adf-faces-config.xml for
the <skin-family> element when you wish to configure your application to use a
custom skin. See Section A.10.1.6, "Configuring the Skin Family".

For information about creating custom skins, see Section 22.3, "Using Skins to Change
the Look and Feel".

adf-faces-skins.xml

A-38 Oracle Application Development Framework Developer’s Guide for Forms/4GL Developers

Reference ADF Binding Properties B-1

B
Reference ADF Binding Properties

This appendix provides a reference for the properties of the ADF bindings.

B.1 EL Properties of Oracle ADF Bindings
Table B–1 shows the properties that you can use in EL expressions to access values of
the ADF binding objects at runtime. The properties appear in alphabetical order.

Note: When you use the EL Expression Builder dialog in JDeveloper,
you may see properties listed below the ADF bindings and ADF data
variables that do not appear in this appendix. Properties that do not
appear in this appendix will become deprecated in a future release.
For the full list of deprecated binding properties, please refer to the
JDeveloper Release Note.

Table B–1 EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

actionEnabled Use operationEnabled
instead.

n/a yes n/a n/a n/a n/a n/a

allRowsInRange Returns an array of current set
of rows from the associated
collection. Calls
getAllRowsInRange() on
the RowSetIterator.

yes n/a n/a n/a n/a n/a n/a

attributeDef Returns the attribute definition
for the first attribute to which
the binding is associated.

n/a n/a yes yes yes n/a n/a

attributeDefs Returns the attribute definitions
for all the attributes to which
the binding is associated.

n/a n/a yes yes yes n/a n/a

attributeValue Returns an unformatted and
typed (appropriate Java type)
value in the current row, for the
attribute to which the control
binding is bound. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a yes yes yes n/a n/a

EL Properties of Oracle ADF Bindings

B-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

attributeValues Returns the value of all the
attributes to which the binding
is associated in an ordered
array.Returns an array of an
unformatted and typed
(appropriate Java type) values
in the current row for all the
attributes to which the control
binding is bound. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a yes yes yes n/a n/a

children Returns the child nodes of a
tree node binding.

n/a n/a n/a n/a n/a n/a yes

currentRow Returns the current row on an
action binding bound to an
iterator (for example, built-in
navigation actions).

n/a yes n/a n/a n/a n/a n/a

dataControl Returns the iterator’s
associated data provider.

yes n/a n/a n/a n/a n/a n/a

displayData Returns a list of map elements.
Each map entry contains the
following elements:

■ selected: A boolean
true if current entry
should be selected.

■ index: The index value of
the current entry.

■ prompt: A string value
that may be used to render
the entry in the UI.

■ displayValues: An
ordered list of display
attribute values for all
display attributes in the list
binding.

Note this property is not visible
in the EL expression builder
dialog.

n/a n/a n/a n/a yes n/a n/a

displayHint Returns the display hint for the
first attribute to which the
binding is associated. The hint
identifies whether the attribute
should be displayed or not. For
more information, see
oracle.jbo.AttributeHin
ts.displayHint. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a n/a n/a yes n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

Reference ADF Binding Properties B-3

displayHints Returns a list of name-value
pairs for UI hints for all display
attributes to which the binding
is associated. The map contains
the following elements:

■ label: The label to
display for the current
attribute.

■ tooltip: The tooltip to
display for the current
attribute.

■ displayHint: The
display hint for the current
attribute.

■ displayHeight: The
height in lines for the
current attribute.

■ displayWidth: The
width in characters for the
current attribute.

■ controlType: The control
type hint for the current
attribute.

■ format: The format to be
used for the current
attribute.

Note this property is not visible
in the EL expression builder
dialog.

n/a n/a n/a yes yes n/a n/a

enabled Use operationEnabled. n/a n/a n/a n/a n/a n/a n/a

enabledString Returns disabled if the action
binding is not ready to be
invoked. Otherwise, returns "".

n/a yes n/a n/a n/a n/a n/a

error Returns any exception that was
cached while updating the
associated attribute value for a
a value binding or when
invoking an operation bound
by an operation binding.

yes yes yes yes yes yes yes

estimatedRowCount Returns the maximum row
count of the rows in the
collection with which this
iterator binding is associated

yes n/a n/a n/a n/a yes yes

findMode Return true if the iterator is
currently operating in find
mode. Otherwise, returns
false.

yes n/a n/a n/a n/a n/a n/a

fullName Returns the fully qualified
name of the binding object in
the Oracle ADF binding
context.

yes yes yes yes yes yes yes

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

B-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

inputValue Returns the value of the first
attribute to which the binding
is associated. If the binding was
used to set the value on the
attribute and the set operation
failed, this method returns the
invalid value that was being
set.

n/a n/a yes yes yes yes yes

iteratorBinding Returns the iterator binding
that provides access to the data
collection.

n/a yes yes yes yes yes yes

label Returns the label (if supplied
by Control Hints) for the first
attribute of the binding.

n/a n/a yes yes yes n/a n/a

labels Returns a map of labels (if
supplied by Control Hints)
keyed by attribute name for all
attributes to which the binding
is associated. Note this
property is not visible in the EL
expression builder dialog.

n/a n/a yes yes yes yes n/a

labelSet Returns an ordered set of labels
for all the attributes to which
the binding is associated. Note
this property is not visible in
the EL expression builder
dialog.

n/a n/a yes yes yes yes n/a

mandatory Returns whether the first
attribute to which the binding
is associated is required.

n/a n/a yes yes yes n/a n/a

name Returns the name of the
binding object in the context of
the binding container to which
it is registered. Note this
property is not visible in the EL
expression builder dialog.

yes yes yes yes yes yes yes

operationEnabled Returns true or false
depending on the state of the
action binding. For example,
the action binding may be
enabled (true) or disabled
(false) based on the currency
(as determined, for example,
when the user clicks the First,
Next, Previous, Last navigation
buttons.

n/a yes n/a n/a n/a n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

Reference ADF Binding Properties B-5

rangeSet Returns a list of map elements
over the range of rows from the
associated iterator binding. The
elements in this list are wrapper
objects over the indexed row in
the range that restricts access to
only the attributes to which the
binding is bound. The
properties returned on the
reference object are:

■ index — The range index
of the row this reference is
pointing to.

■ key — The key of the row
this reference is pointing
to.

■ keyStr — The String
format of the key of the
row this reference is
pointing to.

■ currencyString — The
current indexed row as a
String. Returns "*" if the
current entry belongs to
the current row; otherwise,
returns " ". This property is
useful in JSP applications
to display the current row.

■ attributeValues — The
array of applicable
attribute values from the
row.

And you may also access an
attribute value by name on a
range set like
rangeSet.dname if dname is
a bound attribute in the range
binding.

n/a n/a n/a n/a n/a yes yes

rangeSize Returns the range size of the
ADF iterator binding’s row set.
This allows you to determine
the number or data objects to
bind from the data source.

yes n/a n/a n/a n/a yes yes

rangeStart Returns the absolute index in a
collection of the first row in
range. See javadoc for
oracle.jbo.RowSetIterat
or.getRangeStart().

yes n/a n/a n/a n/a yes yes

result Returns the result of a method
that is bound and invoked by a
method action binding.

n/a yes n/a n/a n/a n/a n/a

rootNodeBinding Returns the root node of a tree
binding.

n/a n/a n/a n/a n/a n/a yes

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

EL Properties of Oracle ADF Bindings

B-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

selectedValue Returns the value
corresponding to the current
selected index in the list or
button binding.

n/a n/a n/a yes yes n/a n/a

tooltip Returns the tooltip hint for the
first attribute to which the
binding is associated.

n/a n/a yes yes yes n/a n/a

updateable Returns true if the first
attribute to which the binding
is associated is updateable.
Otherwise, returns false.

n/a n/a yes yes yes n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action
Attribut
e Button List Table Tree

ADF Equivalents of Common Oracle Forms Triggers C-1

C
ADF Equivalents of Common Oracle Forms

Triggers

This appendix provides a quick summary of how basic tasks performed using the
most common Oracle Forms triggers are accomplished using Oracle ADF.

This appendix contains the following sections:

■ Appendix C.1, "Validation & Defaulting (Business Logic)"

■ Appendix C.2, "Query Processing"

■ Appendix C.3, "Database Connection"

■ Appendix C.4, "Transaction "Post" Processing (Record Cache)"

■ Appendix C.5, "Error Handling"

C.1 Validation & Defaulting (Business Logic)

Table C–1 ADF Equivalents for Oracle Forms Validation and Defaulting Triggers

Forms Trigger ADF Equivalent

WHEN-VALIDATE-RECORD

Execute validation code at the record level

In the custom EntityImpl class for your entity
object, write a public method returning
boolean type with a method name like
validateXXXX() and have it return true if
the validation succeeds or false if the
validation fails. Then, add a method validator
for this validation method at the entity level
on the "Validation" panel for your entity
object. When doing that you can associate a
validation failure message with the rule at that
time.

WHEN-VALIDATE-ITEM

Execute validation code at the field level

In the custom EntityImpl class for your entity
object, write a public method returning
boolean type and accepting a single
argument of the same datatype as your
attribute, having a method name like
validateXXXX(). Have it return true if the
validation succeeds or false if the validation
fails. Then, add a method validator for this
validation method at the entity attribute level
for the appropriate attribute on the
"Validation" panel for your entity object. When
doing that you can associate a validation
failure message with the rule at that time.

Query Processing

C-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

C.2 Query Processing

WHEN-DATABASE-RECORD

Execute code when a row in the datablock is
marked for INSERT or UPDATE

Override the
addToTransactionManager() method of
your entity object. Write code after calling the
super.

WHEN-CREATE-RECORD

Execute code to populate complex default
values when a new record in the data block is
created, without changing the modification
status of the record.

Override the create() method of your entity
object and after calling super, use appropriate
setAttrName() methods to set default
values for attributes as necessary. To eagerly
set a primary key attribute to the value of a
sequence, construct an instance of the
SequenceImpl helper class and call its
getSequenceNumber() method to get the
next sequence number. Assign this value to
your primary key attribute. If you want to
assign the sequence number lazily, but still
without using a database trigger, you can use
the technique above in an overridden
prepareForDML() method in your entity
object. If instead you want to assign the
primary key from a sequence using your own
BEFOREINSERTFOREACHROW database
trigger, then use the special datatype called
DBSequence for your primary key attribute
instead of the regular Number type.

WHEN-REMOVE-RECORD

Execute code whenever a row is removed
from the data block.

Override the remove() method of your entity
object and write code either before or after
calling super.

Table C–2 ADF Equivalents for Oracle Forms Query Processing Triggers

Forms Trigger ADF Equivalent

PRE-QUERY

Execute logic before executing a query in a
Data Block, typically to setup values for
query-by-example criteria in the "example
record".

Override executeQueryForCollection()
on your view object class and write code
before calling the super.

ON-COUNT

Override default behavior to count the query
hits for a Data Block

Override getQueryHitCount() in your
view object and do something instead of
calling the super.

POST-QUERY

Execute logic after retrieving each row from
the datasource for a data block.

Generally instead of using a POST-QUERY
style technique to fetch descriptions from
other tables based on foreign key values in the
current row, in ADF it's more efficient to build
a view object that has multiple participating
entity objects, joining in all the information
you need in the query from the main table, as
well as any auxiliary/lookup-value tables.
This way, in a single round-trip to the
database you get all the information you need.
If you still need a per-fetched-row trigger like
POST-QUERY, override the
createInstanceFromResultSet()
method in your view object class.

Table C–1 (Cont.) ADF Equivalents for Oracle Forms Validation and Defaulting Triggers

Forms Trigger ADF Equivalent

Transaction "Post" Processing (Record Cache)

ADF Equivalents of Common Oracle Forms Triggers C-3

C.3 Database Connection

C.4 Transaction "Post" Processing (Record Cache)

ON-LOCK

Override default behavior to attempt to
acquire lock on the current row in the data
block.

Override the lock() method in your entity
object class and do something instead of
calling the super.

Table C–3 ADF Equivalents for Oracle Forms Database Connection Triggers

Forms Trigger ADF Equivalent

POST-LOGON

Execute logic after logging onto the Database

Override afterConnect() on your custom
application module. Since application module
instances can stay connected while serving
different logical client sessions, probably what
you want is to override the
prepareSession() which is fired after
initial login, as well as after any time the
application module is used by a user that was
different from the one that used it last time.

PRE-LOGOUT

Execute logic before logging off from the
Database

Override beforeDisconnect() on your
custom application module class and write
code.

Table C–4 ADF Equivalents for Oracle Forms Transactional Triggers

Forms Trigger ADF Equivalent

PRE-COMMIT

Execute code before commencing processing
of the changed rows in all data blocks in the
transaction.

Override commit() method in a custom
DBTransactionImpl class and write code
before calling the super.

Note:

See this article for an overview of creating and
using a custom DBTransaction
implementation.

PRE-INSERT

Execute code before NEW row in the
datablock is INSERTed into the database
during "post" processing.

Override doDML() method in your entity
class and if the operation equals DML_
INSERT then write code before calling the
super.

ON-INSERT

Override default processing for INSERTing a
NEW row into the database during "post"
processing.

Override doDML() method in your entity
class and if the operation equals DML_
INSERT then write code instead of calling the
super.

POST-INSERT

Execute code after NEW row in the datablock
is INSERTed into the database during "post"
processing.

Override doDML() method in your entity
class and if the operation equals DML_
INSERT then write code after calling the
super.

Table C–2 (Cont.) ADF Equivalents for Oracle Forms Query Processing Triggers

Forms Trigger ADF Equivalent

Error Handling

C-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

C.5 Error Handling

PRE-DELETE

Execute code before row removed from the
datablock is DELETEd from the database
during "post" processing.

Override doDML() method in your entity
class and if the operation equals DML_
DELETE then write code before calling the
super.

ON-DELETE

Override default processing for DELETE-ing a
row removed from the datablock from the
database during "post" processing.

Override doDML() method in your entity
class and if the operation equals DML_
DELETE then write code instead of calling the
super.

POST-DELETE

Execute code after row removed from the
datablock is DELETEd from the database
during "post" processing.

Override doDML() method in your entity
class and if the operation equals DML_
DELETE then write code after calling the super.

PRE-UPDATE

Execute code before row changed in the
datablock is UPDATEd in the database during
"post" processing.

Override doDML() method in your entity
class and if the operation equals DML_
UPDATE then write code before calling the
super.

ON-UPDATE

Override default processing for UPDATE-ing
a row changed in the datablock from the
database during "post" processing.

Override doDML() method in your entity
class and if the operation equals DML_
UPDATE then write code instead of calling the
super.

POST-UPDATE

Execute code after row changed in the
datablock is UPDATEd in the database during
"post" processing.

Override doDML() method in your entity
class and if the operation equals DML_
UPDATE then write code after calling the super.

POST-FORMS-COMMIT

Execute code after Forms has "posted" all
necessary rows to the database, but before
issuing the data COMMIT to end the
transaction.

If you want a single block of code for the
whole transaction, you can override the
doCommit() method in a custom
DBTransactionImpl object and write some
code before calling super. To execute
entity-specific code before commit for each
affected entity in the transaction, override the
beforeCommit() method on your entity
object and write some code there.

POST-DATABASE-COMMIT

Execute code after database transaction has
been committed.

Override commit() method in a custom
DBTransactionImpl class and write code
after calling the super.

Table C–5 ADF Equivalents for Oracle Forms Error Handling Triggers

Forms Trigger ADF Equivalent

ON-ERROR

Override default behavior for handling an
error.

Install a custom error handler
(DCErrorHandler) on the ADF
BindingContext

Table C–4 (Cont.) ADF Equivalents for Oracle Forms Transactional Triggers

Forms Trigger ADF Equivalent

Most Commonly Used ADF Business Components Methods D-1

D
Most Commonly Used ADF Business

Components Methods

This appendix highlights the most commonly used methods in the interfaces and
classes of the ADF Business Components layer of Oracle ADF.

This appendix contains the following sections:

■ Appendix D.1, "Most Commonly Used Methods in the Client Tier"

■ Appendix D.2, "Most Commonly Used Methods In the Business Service Tier"

D.1 Most Commonly Used Methods in the Client Tier
All of the interfaces described in this section are designed for use by client-layer code
and are part of the oracle.jbo.* package.

Note: The corresponding implementation classes for these
oracle.jbo.* interfaces are consciously designed to not be directly
accessed by client code. As you'll see in the Section D.2, "Most
Commonly Used Methods In the Business Service Tier" section below,
the implementation classes live in the oracle.jbo.server.*
package and generally have the suffix Impl in their name to help
remind you not to using them in your client-layer code.

Most Commonly Used Methods in the Client Tier

D-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

D.1.1 ApplicationModule Interface
The ApplicationModule is a business service component that acts as a transactional
container for other ADF components and coordinates with them to implement a
number of J2EE design patterns important to business application developers. These
design pattern implementations enable your client code to work easily with updatable
collections of value objects, based on fast-lane reader SQL queries that retrieve only
the data needed by the client, in the way the client wants to view it. Changes made to
these value objects are automatically coordinated with your persistent business
domain objects in the business service tier to enforce business rules consistently and
save changes back to the database.

In addition to generic ApplicationModule access, Oracle JDeveloper 10g can
generate you a custom YourApplicationModuleName interface containing
service-level custom methods that you've chosen to expose to the client. You do this by
visiting the Client Interface tab of the Application Module editor, and shuttling the
methods you'd like to appear in your client interface into the Selected list. JDeveloper
will also generate an appropriate YourApplicationModuleNameClient client
proxy implementation class that is used automatically by your remote client in the

Table D–1 ApplicationModule Interface

If you want to...
Call this ApplicationModule interface
method...

Access an existing view object instance by
name

findViewObject()

Creating a new view object instance from an
existing definition

createViewObject()

Creating a new view object instance from a
SQL Statement

createViewObjectFromQueryStmt()

Note:

This incurs runtime overhead to describe the
"shape" of the dynamic query's SELECT list.
Oracle recommends using this only when you
cannot know the SELECT list for the query at
design-time. Furthermore, if you are creating
the dynamic query based on some kind of
custom runtime repository, you can follow this
tip to create (both read-only and updatable)
dynamic view objects without the
runtime-describe overhead with a little more
work. If only the WHERE needs to be dynamic,
create the view object at design time, then set
the where clause dynamically as needed using
ViewObject API's.

Access a nested application module instance
by name

findApplicationModule()

Create a new nested application module
instance from an existing definition

createApplicationModule()

Find a view object instance in a nested
application module

findViewObject()

Note:

To find an instance of a view object belonging
to a nested application module you use a dot
notation
nestedAMInstanceName.VOInstanceNam
e

Accessing the current transaction object getTransaction()

Most Commonly Used Methods in the Client Tier

Most Commonly Used ADF Business Components Methods D-3

case that you deploy your application module as an EJB Session Bean or whenever you
use your application module in Batch Mode.

D.1.2 Transaction Interface
The Transaction interface exposes methods allowing the client to manage pending
changes in the current transaction.

D.1.3 ViewObject Interface
A ViewObject encapsulates a database query and simplifies working with the RowSet
of results it produces. You use view objects to project, filter, join, or sort business data
using SQL from one or more tables into exactly the format that the user should see it

Table D–2 Transaction Interface

If you want to... Call this Transaction interface method...

Commit pending changes commit()

Rollback pending changes rollback()

Execute a one-time database command or
block of PL/SQL

executeCommand()

Note:

Commands that require retrieving OUT
parameters, that will be executed more than
once, or that could benefit by using bind
variables should not use this method. Instead,
expose a custom method on your application
module.

Validate all pending invalid changes in the
transaction

validate()

Change the default locking mode setLockingMode()

Note:

You can set the locking mode in your
configuration by setting the property
jbo.locking.mode to one of the four
supported values: none, optimistic,
pessimistic, optupdate. If you don't
explicitly set it, it will default to
pessimistic. For web applications, Oracle
recommends using optimistic or
optupdate modes.

Decide whether to use bundled exception
reporting mode or not.

setBundledExceptionMode()

Note:

ADF controller layer support sets this
parameter to true automatically for web
applications.

Decide whether entity caches will be cleared
upon a successful commit of the transaction.

setClearCacheOnCommit()

Note:

Default is false

Decide whether entity caches will be cleared
upon a rollback of the transaction.

setClearCacheOnRollback()

Note:

Default is true

Clear the entity cache for a specific entity
object.

clearEntityCache()

Most Commonly Used Methods in the Client Tier

D-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

on the page or panel. You can create "master/detail" hierarchies of any level of depth
or complexity by connecting view objects together using view links. View objects can
produce read-only query results, or by associating them with one ore more entity
objects at design time, can be fully updatable. Updatable view objects can support
insertion, modification, and deletion of rows in the result collection, with automatic
delegation to the correct business domain objects.

Every ViewObject aggregates a "default rowset" for simplifying the 90% of use cases
where you work with a single RowSet of results for the ViewObject's query. A
ViewObject implements all the methods on the RowSet interface by delegating them
to this default RowSet. That means you can invoke any RowSet methods on any
ViewObject as well.

Every ViewObject implements the StructureDef interface to provide information
about the number and types of attributes in a row of its row sets. So you can call
StructureDef methods right on any view object.

In addition to generic ViewObject access, JDeveloper 10g can generate you a custom
YourViewObjectName interface containing view-object level custom methods that

Table D–3 ViewObject Interface

If you want to... Call this ViewObject interface method...

Set an additional runtime WHERE clause on
the rowset

setWhereClause()

Note:

This WHERE clause augments any WHERE
clause specified at design time in the base
view object. It does not replace it.

Set a dynamic ORDER BY clause setOrderByClause()

Create a Query-by-Example criteria collection createViewCriteria()

Note:

You then create one or more
ViewCriteriaRow objects using the
createViewCriteriaRow() method on the
ViewCriteria object you created. Then, you
add() these view criteria rows to the view
criteria collection and apply the criteria using
the method below.

Apply a Query-by-Example criteria collection applyViewCriteria()

Set a query optimizer hint setQueryOptimizerHint()

Access the attribute definitions for the key
attributes in the view object

getKeyAttributeDefs()

Add a dynamic attribute to rows in this view
object's row sets

addDynamicAttribute()

Clear all row sets produced by a view object clearCache()

Remove view object instance an its resources remove()

Set an upper limit on the number of rows that
the view object will attempt to fetch from the
database.

setMaxFetchSize()

Note:

Default is -1 which means to impose no limit
on how many rows would be retrieved from
the database if you iterate through them all.
By default they are fetched lazily as you
iterate through them.

Most Commonly Used Methods in the Client Tier

Most Commonly Used ADF Business Components Methods D-5

you've chosen to expose to the client. You do this by visiting the Client Interface tab of
the View Object editor, and shuttling the methods you'd like to appear in your client
interface into the Selected list. JDeveloper will also generate an appropriate
YourViewObjectNameClient client proxy implementation class that is used
automatically by your remote client in the case that you deploy your application
module as an EJB Session Bean or whenever you use your application module in Batch
Mode.

D.1.4 RowSet Interface
A RowSet is a set of rows, typically produced by executing a ViewObject's query.

Every RowSet aggregates a "default rowset iterator" for simplifying the 90% of use
cases where you only need a single iterator over the rowset. A RowSet implements all
the methods on the RowSetIterator interface by delegating them to this default
RowSetIterator. This means you can invoke any RowSetIterator method on any
RowSet (or ViewObject, since it implements RowSet as well for its default RowSet).

D.1.5 RowSetIterator Interface
A RowSetIterator is an iterator over the rows in a RowSet. By default it allows you to
iterate both forward and backward through the rows.

Table D–4 RowSet Interface

If you want to... Call this RowSet interface method...

Set a where clause bind variable value setWhereClauseParam()

Note:

Bind variable ordinal positions are zero-based

Avoid view object row caching if data is being
read only once

setForwardOnly()

Force a row set's query to be (re)executed executeQuery()

Estimate the number of rows in a view object's
query result

getEstimatedRowCount()

Produce XML document for rows in View
Object rowset

writeXML()

Process all rows from an incoming XML
document

readXML()

Set whether rowset will automatically see new
rows based on the same entity object created
through other rowsets

setAssociationConsistent()

Create secondary iterator to use for
programmatic iteration

createRowSetIterator()

Note:

If you plan to find and use the secondary
iterator by name later, then pass in a string
name as the argument, otherwise pass null
for the name and make sure to close the
iterator when done iterating by calling its
closeRowSetIterator() method.

Table D–5 RowSetIterator Interface

If you want to... Call this RowSetIterator interface method...

Get the first row of the iterator's rowset first()

Most Commonly Used Methods in the Client Tier

D-6 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Test whether there are more rows to iterate hasNext()

Get the next row of iterator's rowset next()

Find row in this iterator's rowset with a given
Key value

findByKey()

Note:

It's important that the Key object that you pass
to findByKey be created using the exact same
datatypes as the attributes that comprise the
key of the rows in the view object you're
working with.

Create a new row to populate for insertion createRow()

Note:

The new row will already have default values
set for attributes which either have a static
default value supplied at the entity object or
view object level, or if the values have been
populated in an overridden create()
method of the underlying entity object(s).

Create a view row with an initial set of foreign
key and/or discriminator attribute values

createAndInitRow()

Note:

You use this method when working with view
objects that can return one of a "family" of
entity object subtypes. By passing in the
correct discriminator attribute value in the call
to create the row, the framework can create
you the correct matching entity object subtype
underneath.

Insert a new row into the iterator's rowset insertRow()

Note:

It's a good habit to always immediately insert
a newly created row into the rowset. That way
you will avoid a common gotcha of creating
the row but forgetting to insert it into the
rowset.

Get the last row of the iterator's rowset last()

Get the previous row of the iterator's rowset previous()

Reset the current row pointer to the slot before
the first row

reset()

Close an iterator when done iterating closeRowSetIterator()

Set a given row to be the current row setCurrentRow()

Remove the current row removeCurrentRow()

Remove the current row to later insert it at a
different location in the same iterator.

removeCurrentRowAndRetain()

Remove the current row from the current
collection but do not remove it from the
transaction.

removeCurrentRowFromCollection()

Set/change the number of rows in the range (a
"page" of rows the user can see)

setRangeSize()

Scroll to view the Nth page of rows (1-based) scrollToRangePage()

Table D–5 (Cont.) RowSetIterator Interface

If you want to... Call this RowSetIterator interface method...

Most Commonly Used Methods in the Client Tier

Most Commonly Used ADF Business Components Methods D-7

D.1.6 Row Interface
A Row is generic value object. It contains attributes appropriate in name and Java type
for the ViewObject that it's related to.

In addition to generic Row access, JDeveloper 10g can generate you a custom
YourViewObjectNameRow interface containing your type-safe attribute getter and
setter methods, as well as any desired row-level custom methods that you've chosen to
expose to the client. You do this by visiting the Client Row Interface tab of the View
Object editor, and shuttling the methods you'd like to appear in your client interface
into the Selected list. JDeveloper will also generate an appropriate
YourViewObjectNameRowClient client proxy implementation class that is used
automatically by your remote client in the case that you deploy your application
module as an EJB Session Bean or whenever you use your application module in Batch
Mode.

D.1.7 StructureDef Interface
A StructureDef is an interface that provides access to runtime metadata about the
structure of a Row.

In addition, for convenience every ViewObject implements the StructureDef
interface as well, providing access to metadata about the attributes in the resulting
view rows that its query will produce.

Scroll to view the range of rows starting with
row number N

scrollRangeTo()

Set row number N in the range to be the
current row

setCurrentRowAtRangeIndex()

Get all rows in the range as a Row array getAllRowsInRange()

Table D–6 Row Interface

If you want to... Call this Row interface method...

Get the value of an attribute by name getAttribute()

Set the value of an attribute by name setAttribute()

Produce an XML document for a single row writeXML()

Eagerly validate a row validate()

Read row attribute values from XML readXML()

Remove the row remove()

Flag a newly created row as temporary (until
updated again)

setNewRowState(Row.STATUS_
INITIALIZED)

Retrieve the attribute structure definition
information for a row

getStructureDef()

Get the Key object for a row getKey()

Table D–5 (Cont.) RowSetIterator Interface

If you want to... Call this RowSetIterator interface method...

Most Commonly Used Methods in the Client Tier

D-8 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

D.1.8 AttributeDef Interface
An AttributeDef provides attribute definition information for any attribute of a View
Object row or Entity Object instance like attribute name, Java type, and SQL type. It
also provides access to custom attribute-specific metadata properties that can be
inspected by generic code you write, as well as UI hints that can assist in rendering an
appropriate user interface display for the attribute and its value.

Table D–7 StructureDef Interface

If you want to... Call this StructureDef interface method...

Access attribute definitions for all attributes in
the view object row

getAttributeDefs()

Find an attribute definition by name findAttributeDef()

Get attribute definition by index getAttributeDef()

Get number of attributes in a row getAttributeCount()

Table D–8 AttributeDef Interface

If you want to... Call this AttributeDef interface method...

Get the Java type of the attribute getJavaType()

Get the SQL type of the attribute getSQLType()

Note:

The int value corresponds to constants in the
JDBC class java.sql.Types

Determine the kind of attribute getAttributeKind()

Note:

If it's a simple attribute, it returns one of the
constants ATTR_PERSISTENT, ATTR_SQL_
DERIVED, ATTR_TRANSIENT, ATTR_
DYNAMIC, ATTR_ENTITY_DERIVED. If it is an
1-to-1 or many-to-1 association/viewlink
accessor it returns ATTR_ASSOCIATED_ROW.
If it is an 1-to-many or many-to-many
association/viewlink accessor it returns
ATTR_ASSOCIATED_ROWITERATOR

Get the Java type of elements contained in an
Array-valued attribute

getElemJavaType()

Get the SQL type of elements contained in an
Array-valued attribute

getElemSQLType()

Get the name of the attribute getName()

Get the index position of the attribute getIndex()

Get the precision of a numeric attribute or the
maximum length of a String attribute

getPrecision()

Get the scale of a numeric attribute getScale()

Get the underlying column name
corresponding to the attribute

getColumnNameForQuery()

Get attribute-specific custom property values getProperty(), getProperties()

Get the UI AttributeHints object for the
attribute

getUIHelper()

Most Commonly Used Methods In the Business Service Tier

Most Commonly Used ADF Business Components Methods D-9

D.1.9 AttributeHints Interface
The AttributeHints interface related to an attribute exposes UI hint information that
attribute that you can use to render an appropriate user interface display for the
attribute and its value.

D.2 Most Commonly Used Methods In the Business Service Tier
The implementation classes corresponding to the oracle.jbo.* interfaces described
above are consciously designed to not be directly accessed by client code. They live in
a different package named oracle.jbo.server.* and have the Impl suffix in their
name to help remind you not to using them in your client-layer code.

In your business service tier implementation code, you can use any of the same
methods that are available to clients above, but in addition you can also:

■ Safely cast any oracle.jbo.* interface to its oracle.jbo.server.* package
implementation class and use any methods on that Impl class as well.

■ Override any of the base framework implementation class' public or protected
methods to augment or change its default functionality by writing custom code in
your component subclass before or after calling super.methodName().

This section provides a summary of the most frequently called, written, and
overridden methods for the key ADF Business Components classes.

D.2.1 Controlling Custom Java Files For Your Components
Before examining the specifics of individual classes, it's important to understand how
you can control which custom Java files each of your components will use. When you
don't need a customized subclass for a given component, you can just let the base
framework class handle the implementation at runtime.

Test whether the attribute is mandatory isMandatory()

Test whether the attribute is queriable isQueriable()

Test whether the attribute is part of the
primary key for the row

isPrimaryKey()

Table D–9 AttributeHints Interface

If you want to... Call this AttributeHints interface method...

Get the UI label for the attribute getLabel()

Get the tool tip for the attribute getTooltip()

Get the formatted value of the attribute, using
any format mask supplied

getFormattedAttribute()

Get the display hint for the attribute getDisplayHint()

Note:

Will have a String value of either Display or
Hide.

Get the preferred control type for the attribute getControlType()

Parse a formatted string value using any
format mask supplied for the attribute

parseFormattedAttribute()

Table D–8 (Cont.) AttributeDef Interface

If you want to... Call this AttributeDef interface method...

Most Commonly Used Methods In the Business Service Tier

D-10 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Each business component you create comprises a single XML component descriptor,
and zero or more related custom Java implementation files. Each component that
supports Java customization has a Java tab in its component editor in the JDeveloper
10g IDE. By checking or unchecking the different Java classes, you control which ones
get created for your component. If none of the boxes is checked, then your component
will be an XML-only component, which simply uses the base framework class as its
Java implementation. Otherwise, tick the checkbox of the related Java classes for the
current component that you need to customize. JDeveloper 10g will create you a
custom subclass of the framework base class in which you can add your code.

A best practice is to always generate Entity Object and View Row classes, even if you
don't require any custom code in them other than the automatically-generated getter
and setter methods. These getter and setter methods offer you compile-time type
checking that avoids discovering errors at runtime when you accidentally set an
attribute to an incorrect kind of value.

D.2.2 ApplicationModuleImpl Class
The ApplicationModuleImpl class is the base class for application module
components. Since the application module is the ADF component used to implement a
business service, think of the application module class as the place where you can
write your service-level application logic. The application module coordinates with
view object instances to support updatable collections of value objects that are
automatically "wired" to business domain objects. The business domain objects are
implemented as ADF entity objects.

D.2.2.1 Methods You Typically Call on ApplicationModuleImpl

Note: You can setup global IDE preferences for which Java classes
should be generated by default for each ADF business component
type by selecting Tools | Preferences... | Business Components and
ticking the checkboxes to indicate what you want your defaults to be.

Table D–10 Methods You Typically Call on ApplicationModuleImpl

If you want to...
Call this method of the
ApplicationModuleImpl class

Perform any of the common application
module operations from inside your class,
which can also be done from the client

See the Section D.1.1, "ApplicationModule
Interface" section above.

Access a view object instance that you added
to the application module's data model at
design time

getViewObjectInstanceName()

Note:

JDeveloper 10g generates this type-safe view
object instance getter method for you to reflect
each view object instance in the application
module's design-time data-model.

Access the current DBTransaction object getDBTransaction()

Most Commonly Used Methods In the Business Service Tier

Most Commonly Used ADF Business Components Methods D-11

D.2.2.2 Methods You Typically Write in Your Custom ApplicationModuleImpl
Subclass

JDeveloper 10g can generate you a custom YourApplicationModuleName interface
containing service-level custom methods that you've chosen to expose to the client.
You do this by visiting the Client Interface tab of the Application Module editor, and
shuttling the methods you'd like to appear in your client interface into the Selected
list.

D.2.2.3 Methods You Typically Override in Your Custom ApplicationModuleImpl
Subclass

Access a nested application module instance
that you added to the application module at
design time

getAppModuleInstanceName()

Note:

JDeveloper 10g generates this type-safe
application module instance getter method for
you to reflect each nested application module
instance added to the current application
module at design time.

Table D–11 Methods You Typically Write in Your Custom ApplicationModuleImpl
Subclass

If you want to...
Write a method like this in your custom
ApplicationModuleImpl class

Invoke a database stored procedure someCustomMethod()

Note:

Use appropriate method on the
DBTransaction interface to create a JDBC
PreparedStatement. If the stored
procedure has OUT parameters, then create a
CallableStatement instead.

See this sample project for a robust code
example of encapsulating a call to a PL/SQL
stored procedure inside your application
module.

Expose custom business service methods on
your application module

someCustomMethod()

Note:

Select the method name on the Client
Interface panel of the application module
editor to expose it for client access if required.

Table D–10 (Cont.) Methods You Typically Call on ApplicationModuleImpl

If you want to...
Call this method of the
ApplicationModuleImpl class

Most Commonly Used Methods In the Business Service Tier

D-12 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

D.2.3 DBTransactionImpl2 Class
The DBTransactionImpl2 class — which extends the base DBTransactionImpl class,
and is constructed by the DatabaseTransactionFactory class — is the base class that
implements the DBTransaction interface, representing the unit of pending work in the
current transaction.

Table D–12 Methods You Typically Override in Your Custom ApplicationModuleImpl
Subclass

If you want to...
Override this method of the
ApplicationModuleImpl class

Perform custom setup code the first time an
application module is created and each
subsequent time it gets used by a different
client session.

prepareSession()

Note:

This is the method you'd use to setup
per-client context info for the current user in
order to use database Oracle's Virtual Private
Database (VPD) features. It can also be used to
set other kinds of PL/SQL package global
variables, whose values might be
client-specific, on which other stored
procedures might rely.

This method is also useful to perform setup
code that is specific to a given view object
instance in the application module. If instead
of being instance-specific you want the view
object setup code to be initialized for every
instance ever created of that view object
component, then put the setup logic in an
overridden create() method in your
ViewObjectImpl subclass instead.

Perform custom setup code after the
application module's transaction is associated
with a database connection from the
connection pool.

afterConnect()

Note:

Can be a useful place to write a line of code
that uses
getDBTransaction().executeCommand(
) to perform an ALTER SESSION SET SQL
TRACE TRUE to enable database SQL Trace
logging for the current application connection.
These logs can then be processed with the
TKPROF utility to study the SQL statements
being performed and the query optimizer
plans that are getting used.

Perform custom setup code before the
application module's transaction releases its
database connection back to the database
connection pool.

beforeDisconnect()

Note:

If you have set jbo.doconnectionpooling
to true, then the connection is released to the
database connection pool each time the
application module is returned to the
application module pool.

Write custom application module state to the
state management XML snapshot

passivateState()

Read and restore custom application module
state from the state management XML
snapshot

activateState()

Most Commonly Used Methods In the Business Service Tier

Most Commonly Used ADF Business Components Methods D-13

D.2.3.1 Methods You Typically Call on DBTransaction

D.2.3.2 Methods You Typically Override in Your Custom DBTransactionImpl2
Subclass

In order to have your custom DBTransactionImpl2 subclass get used at runtime,
there are two steps you must follow:

1. Create a custom subclass of DatabaseTransactionFactory that overrides the
create method to return an instance of your custom DBTransactionImpl2
subclass like this:

package com.yourcompany.adfextensions;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.DatabaseTransactionFactory;
import com.yourcompany.adfextensions.CustomDBTransactionImpl;
public class CustomDatabaseTransactionFactory

extends DatabaseTransactionFactory {
/**
* Return an instance of our custom CustomDBTransactionImpl class
* instead of the default implementation.
*
* @return An instance of our custom DBTransactionImpl2 implementation.
*/
public DBTransactionImpl2 create() {
return new CustomDBTransactionImpl();

Table D–13 Methods You Typically Call on DBTransaction

If you want to...
Call this method on the DBTransaction
object

Commit the transaction commit()

Rollback the transaction rollback()

Eagerly validate any pending invalid changes
in the transaction

validate()

Create a JDBC PreparedStatement using
the transaction's Connection object

createPreparedStatement()

Create a JDBC CallableStatement using
the transaction's Connection object

createCallableStatement()

Create a JDBC Statement using the
transaction's Connection object

createStatement()

Add a warning to the transaction's warning
list.

addWarning()

Table D–14 Methods You Typically Override in Your Custom DBTransactionImpl2
Subclass

If you want to...
Override this method in your custom
DBTransactionImpl2 class

Perform custom code before or after the
transaction commit operation

commit()

Perform custom code before or after the
transaction rollback operation

rollback()

Most Commonly Used Methods In the Business Service Tier

D-14 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

}
}

2. Tell the framework to use your custom transaction factory class by setting the
value of the TransactionFactory configuration property to the fully-qualified
class name of your custom transaction factory. As with other configuration
properties, if not supplied in the configuration XML file, it can be provided
alternatively as a Java system parameter of the same name.

D.2.4 EntityImpl Class
The EntityImpl class is the base class for entity objects, which encapsulate the data,
validation rules, and business behavior for your business domain objects.

D.2.4.1 Methods You Typically Call on EntityImpl

Table D–15 Methods You Typically Call on EntityImpl

If you want to...
Call this method in your EntityImpl
subclass

Get the value of an attribute getAttributeName()

Note:

Code-generated getter method calls
getAttributeInternal() but provides
compile-time type checking.

Set the value of an attribute setAttributeName()

Note:

Code-generated setter method calls
setAttributeInternal() but provides
compile-time type checking.

Get the value of an attribute by name getAttributeInternal()

Set the value of an attribute by name setAttributeInternal()

Eagerly perform entity object validation validate()

Refresh the entity from the database refresh()

Populate the value of an attribute without
marking it as being changed, but sending
notification of its being changed so UI's refresh
the value on the screen/page.

populateAttributeAsChanged()

Access the definition object for an entity getDefinitionObject()

Get the Key object for an entity getKey()

Determine the state of the entity instance,
irrespective of whether it has already been
posted in the current transaction (but not yet
committed)

getEntityState()

Note:

Will return one of the constants STATUS_
UNMODIFIED, STATUS_INITIALIZED,
STATUS_NEW, STATUS_MODIFIED, STATUS_
DELETED, or STATUS_DEAD indicating the
status of the entity instance in the current
transaction.

Most Commonly Used Methods In the Business Service Tier

Most Commonly Used ADF Business Components Methods D-15

D.2.4.2 Methods You Typically Write in Your Custom EntityImpl Subclass

D.2.4.3 Methods You Typically Override on EntityImpl

Determine the state of the entity instance getPostState()

Note:

This method is typically only relevant if you
are programmatically using the
postChanges() method to post but not yet
commit entity changes to the database and
need to detect the state of an entity with
regard to its posting state

Get the value originally read from the
database for a given attribute

getPostedAttribute()

Eagerly lock the database row for an entity
instance

lock()

Table D–16 Methods You Typically Write in Your Custom EntityImpl Subclass

If you want to...
Write a method like this in your EntityImpl
subclass

Perform attribute-specific validation public boolean
validateSomething(AttrTypevalue)

Note:

Register the attribute validator method by
adding a "MethodValidator" on correct
attribute in the Validation panel of the Entity
Object editor. When you register the method
validation

Perform entity-level validation public boolean validateSomething()

Note:

Register the entity-level validator method by
adding a "MethodValidator" on the entity in
the Validation panel of the Entity Object
editor.

Calculate the value of a transient attribute Add your calculation code to the generated
getAttributeName() method.

Table D–17 Methods You Typically Override on EntityImpl

If you want to...
Override this method in your custom
EntityImpl subclass...

Set calculated default attribute values,
including programmatically populating thbe
primary key attribute value of a new entity
instance.

create()

Note:

After calling super.create(), call the
appropriate setAttrName() method(s) to set
the default values for that(/those) attributes.

Table D–15 (Cont.) Methods You Typically Call on EntityImpl

If you want to...
Call this method in your EntityImpl
subclass

Most Commonly Used Methods In the Business Service Tier

D-16 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Modify attribute values before changes are
posted to the database

prepareForDML()

Augment/change the standard INSERT,
UPDATE, or DELETE DML operation that the
framework will perform on your entity
object's behalf to the database

doDML()

Note:

Check the value of the operation flag to the
constants DML_INSERT, DML_UPDATE, or
DML_DELETE to test what DML operation is
being performed.

Perform complex, SQL-based validation after
all entity instances have been posted to the
database but before those changes are
committed.

beforeCommit()

Insure that a related, newly-created, parent
entity gets posted to the database before the
current child entity on which it depends

postChanges()

Note:

If the parent entity is related to this child
entity via a composition association, then the
framework already handles this automatically.
If they are only associated (but not composed)
then you need to override postChanges()
method to force a newly-created parent entity
to post before the current, dependent child
entity. See this OTN article for the code you
typically write in your overridden
postChanges() method to accomplish this.

Note: It is possible to write attribute-level validation code directly
inside the appropriate setAttributeName method of your
EntityImpl class, however adopting the MethodValidator
approach suggested above results in having a single place on the
Validation tab of the Entity Object editor to look in order to
understand all of the validations in effect for your entity object, so it
can result in easier to understand components.

WARNING: It is also possible to override the validateEntity()
method to write entity-level validation code, however if you want to
maintain the benefits of the ADF bundled exception mode — where
the framework collects and reports a maximal set of validation
errors back to the client user interface — it is recommended to adopt
the MethodValidator approach suggested in the table above. This
allows the framework to automatically collect all of your exceptions
that your validation methods throw without your having to
understand the bundled exception implementation mechanism.
Overriding the validateEntity() method directly shifts the
responsibility on your own code to correctly catch and bundle the
exceptions like Oracle ADF would have done by default, which is
non-trivial and a chore to remember and hand-code each time.

Table D–17 (Cont.) Methods You Typically Override on EntityImpl

If you want to...
Override this method in your custom
EntityImpl subclass...

Most Commonly Used Methods In the Business Service Tier

Most Commonly Used ADF Business Components Methods D-17

D.2.5 EntityDefImpl Class
The EntityDefImpl class is a singleton, shared metadata object for all entity objects of a
given type in a single Java VM. It defines the structure of the entity instances and
provides methods to create new entity instances and find existing instances by their
primary key.

D.2.5.1 Methods You Typically Call on EntityDefImpl

D.2.5.2 Methods You Typically Write on EntityDefImpl

Table D–18 Methods You Typically Call on EntityDefImpl

If you want to... Call the EntityDefImpl method

Find an entity object of a this type by its
primary key

findByPrimaryKey()

Note:

See this tip for getting
findByPrimaryKey() to find entity
instances of subtype entities as well.

Access the current DBTransaction object getDBTransaction()

Find any EntityDefImpl object by its
fully-qualified name

findDefObject() (static method)

Retrieve the value of an entity object's custom
property

getProperty(), getProperties()

Set the value of an entity object's custom
property

setProperty()

Create a new instance of an entity object createInstance2()

Note:

Alternatively, you can expose custom
createXXX() methods with your own
expected signatures in that same custom
EntityDefImpl subclass. See the next
section for details.

Iterate over the entity instances in the cache of
this entity type.

getAllEntityInstancesIterator()

Access ArrayList of entity definition objects
for entities that extend the current one.

getExtendedDefObjects()

Most Commonly Used Methods In the Business Service Tier

D-18 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

D.2.5.3 Methods You Typically Override on EntityDefImpl

D.2.6 ViewObjectImpl Class
The ViewObjectImpl class the base class for view objects.

D.2.6.1 Methods You Typically Call on ViewObjectImpl

Table D–19 Methods You Typically Write on EntityDefImpl

If you want to...
Write a method like this in your custom
EntityDefImpl class

Allow other classes to create an entity instance
with an initial type-safe set of attribute values
or setup information.

createXXXX(Type1arg1, ...,
TypeNargN)

Note:

Internally, this would create and populate an
instance of a NameValuePairs object (which
implements AttributeList) and call the
protected method createInstance(), passing
that NameValuePairs object. Make sure the
method is public if other classes need to be
able to call it.

Table D–20 Methods You Typically Override on EntityDefImpl

If you want to... Call the EntityDefImpl method

Perform custom metadata initialization when
this singleton metaobject is loaded.

createDef()

Avoid using the RETURNING INTO clause to
support refresh-on-insert or refresh-on-update
attributes

isUseReturningClause()

Note:

Return false to disable the use of RETURNING
INTO, necessary sometimes when your entity
object is based on a view with INSTEAD OF
triggers that doesn't support RETURNING
INTO at the database level.

Control whether the UPDATE statements
issued for this entity update only changed
columns, or all columns

isUpdateChangedColumns()

Note:

Defaults to true.

Find any EntityDefImpl object by its
fully-qualified name

findDefObject()

Note:

Static method.

Set the value of an entity object's custom
property

setProperty()

Allow other classes to create a new instance an
entity object without doing so implicitly via a
view object.

createInstance()

Note:

If you don't write a custom create method as
noted in the previous section, you'll need to
override this method and widen the visibility
from protected to public to allow other
classes to construct an entity instance.

Most Commonly Used Methods In the Business Service Tier

Most Commonly Used ADF Business Components Methods D-19

D.2.6.2 Methods You Typically Write in Your Custom ViewObjectImpl Subclass

JDeveloper 10g can generate you a custom YourViewObjectName interface
containing view object custom methods that you've chosen to expose to the client. You
can accomplish this by visiting the Client Interface tab of the View Object editor, and

Table D–21 Methods You Typically Call on ViewObjectImpl

If you want to... Call this ViewObjectImpl method

Perform any of the common view object,
rowset, or rowset iterator operations from
inside your class, which can also be done from
the client

See the Section D.1.3, "ViewObject Interface",
Section D.1.4, "RowSet Interface", and
Section D.1.5, "RowSetIterator Interface"
sections above.

Set an additional runtime WHERE clause on
the default rowset

setWhereClause()

Defines a named bind parameter. defineNamedWhereClauseParam()

Removes a named bind parameter. removeNamedWhereClauseParam()

Set bind variable values on the default rowset
by name. Only works when you have formally
defined named bind variables on your view
object.

setNamedWhereClauseParam()

Set bind variable values on the default rowset.
Use this method for view objects with binding
style of "Oracle Positional" or "JDBC
Positional" when you have not formally
defined named bind variables.

setWhereClauseParam()

Retrieved a subset of rows in a view object's
row set based on evaluating an in-memory
filter expression.

getFilteredRows()

Retrieved a subset of rows in the current range
of a view object's row set based on evaluating
an in-memory filter expression.

getFilteredRowsInRange()

Set the number of rows that will be fetched
from the database per round-trip for this view
object.

setFetchSize()

Note:

The default fetch size is a single row at a time.
This is definitely not optimal if your view
object intends to retrieve many rows, so you
should either set the fetch size higher at
design time on the Tuning tab of the View
Object editor, or set it at runtime using this
API.

Table D–22 Methods You Typically Write in Your Custom ViewObjectImpl Subclass

If you want to...
Write a method like this in your
ViewObjectImpl subclass

Provide clients with type-safe methods to set
bind variable values without exposing
positional details of the bind variables
themselves

someMethodName(Type1arg1, ...,
TypeNargN)

Note:

Internally, this method would call the
setWhereClauseParam() API to set the correct
bind variables with the values provided in the
type-safe method arguments.

Most Commonly Used Methods In the Business Service Tier

D-20 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

shuttling the methods you'd like to appear in your client interface into the Selected
list.

D.2.6.3 Methods You Typically Override in Your Custom ViewObjectImpl Subclass

D.2.7 ViewRowImpl Class
The ViewRowImpl class the base class for view row objects.

D.2.7.1 Methods You Typically Call on ViewRowImpl

Table D–23 Methods You Typically Override in Your Custom ViewObjectImpl Subclass

If you want to... Override this ViewObjectImpl method

Initialize custom view object class members
(not row attributes!) when the view object
instance is created for the first time.

create()

Note:

This method is useful to perform setup logic
that is applicable to every instance of a view
object that will ever get created, in the context
of any application module.

If instead of generic view object setup logic,
you need to perform logic specific to a given
view object instance in an application module,
then override the prepareSession()
method of your application module's
ApplicationModuleImpl subclass and
perform the logic there after calling
findViewObject() to find the view object
instance whose properties you want to set.

Write custom view object instance state to the
state management XML snapshot

passivateState()

Read and restore custom view object instance
state from the state management XML
snapshot

activateState()

Customize the behavior of view object query
execution, independent of whether the query
was executed explicitly by calling
executeQuery() or implicitly, for example,
by navigating to the first() row when the
query hadn't yet been executed.

executeQueryForCollection()

Change/augment the way that the
ViewCriteria collection of
ViewCriteriaRows is converted into a
query-by-example WHERE clause.

getViewCriteriaClause()

Table D–24 Methods You Typically Call on ViewRowImpl

If you want to...
Write a method like this in your custom
ViewRowImpl class

Perform any of the common view row
operations from inside your class, which can
also be done from the client

See the Section D.1.6, "Row Interface" section
above.

Get the value of an attribute getAttrName()

Set the value of an attribute setAttrName()

Most Commonly Used Methods In the Business Service Tier

Most Commonly Used ADF Business Components Methods D-21

D.2.7.2 Methods You Typically Write on ViewRowImpl

JDeveloper 10g can generate you a custom YourViewObjectNameRow interface
containing view row custom methods that you've chosen to expose to the client. You
can accomplish this by visiting the Client Row Interface tab of the View Object editor,
and shuttling the methods you'd like to appear in your client interface into the
Selected list.

D.2.7.3 Methods You Typically Override in Your Custom ViewRowImpl Subclass

Access the underlying entity instance to which
this view row is delegating attribute storage.

getEntityUsageAliasName()

Note:

You can change the name of the entity usage
alias name on the Entity Objects tab of the
View Object Editor

Table D–25 Methods You Typically Write on ViewRowImpl

If you want to...
Write a method like this in your custom
ViewRowImpl class

Calculate the value of a view object level
transient attribute

getAttrName()

Note:

JDeveloper generates the skeleton of the
method for you, but you need to write the
custom calculation logic inside the method
body.

Perform custom processing of the setting of a
view row attribute

setAttrName()

Note:

JDeveloper generates the skeleton of the
method for you, but you need to write the
custom logic inside the method body if
required.

Determine the updateability of an attribute in
a conditional way.

isAttributeUpdateable()

Custom methods that expose logical
operations on the current row, optionally
callable by clients

doSomething()

Note:

Often these view-row level custom methods
simply turn around and delegate to a method
call on the underlying entity object related to
the current row.

Table D–26 Methods You Typically Override in Your Custom ViewRowImpl Subclass

If you want to...
Write a method like this in your custom
ViewRowImpl class

Determine the updateability of an attribute in
a conditional way.

isAttributeUpdateable()

Table D–24 (Cont.) Methods You Typically Call on ViewRowImpl

If you want to...
Write a method like this in your custom
ViewRowImpl class

Most Commonly Used Methods In the Business Service Tier

D-22 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

D.2.8 Setting Up Your Own Layer of Framework Base Classes
Before you begin to develop application specific business components, Oracle
recommends creating yourself a layer of classes that extend all of the ADF Business
Components framework base implementation classes described in this paper. An
example of a customized framework base class for application module components
might look like this:

package com.yourcompany.adfextensions;
import oracle.jbo.server.ApplicationModuleImpl;
public class CustomApplicationModuleImpl extends ApplicationModuleImpl {
/*
* We might not yet have any custom code to put here yet, but
* the first time we need to add a generic feature that all of
* our company's application modules need, we will be very happy
* that we thought ahead to leave ourselves a convenient place
* in our class hierarchy to add it so that all of the application
* modules we have created will instantly benefit by that new feature,
* behavior change, or even perhaps, bug workaround.
*/

}

A common set of customized framework base classes in a package name of your own
choosing like com.yourcompany.adfextensions, each importing the
oracle.jbo.server.* package, would consist of the following classes.

■ public class CustomEntityImpl extends EntityImpl

■ public class CustomEntityDefImpl extends EntityDefImpl

■ public class CustomViewObjectImpl extends ViewObjectImpl

■ public class CustomViewRowImpl extends ViewRowImpl

■ public class CustomApplicationModuleImpl extends
ApplicationModuleImpl

■ public class CustomDBTransactionImpl extends
DBTransactionImpl2

■ public class CustomDatabaseTransactionFactory extends
DatabaseTransactionFactory

For completeness, you may also want to create customized framework classes for the
following classes as well, but overriding anything in these classes would be a fairly
rare requirement.

■ public class CustomViewDefImpl extends ViewDefImpl

■ public class CustomEntityCache extends EntityCache

■ public class CustomApplicationModuleDefImpl extends
ApplicationModuleDefImpl

ADF Business Components J2EE Design Pattern Catalog E-1

E
ADF Business Components J2EE Design

Pattern Catalog

This appendix provides a brief summary of the popular J2EE design patterns that the
ADF Business Components layer implements for you.

This appendix contains the following sections:

■ Appendix E, "ADF Business Components J2EE Design Pattern Catalog"

E.1 J2EE Design Patterns Implemented by ADF Business Components
By using the Oracle Application Development Framework's business components
building-blocks and related design-time extensions to JDeveloper, you get a
prescriptive architecture for building richly-functional and cleanly layered J2EE
business services with great performance. Table E–1 provides a brief overview of the
numerous design patterns that the ADF Business Components layer implements for
you. Some are the familiar patterns from Sun's J2EE Blueprints, and some are design
patterns that ADF Business Components adds to the list.

Table E–1 J2EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description How ADF BC Implements It

Model/View/Controller

Cleanly separates the roles of data and
presentation, allowing multiple types of client
displays to work with the same business
information.

The ADF Application Module provides a
generic implementation of a
Model/View/Controller "application object"
that simplifies exposing the application data
model for any application or service, and
facilitates declaratively specifying the
boundaries of a logical unit of work.
Additional UI-centric frameworks and tag
libraries provided in JDeveloper 10g help the
developer implement the View and Controller
layers.

Interface / Implementation Separation

Cleanly separates the API or Interface for
components from their implementation class.

ADF Business Components enforce a logical
separation of client-tier accessible
functionality (via interfaces) and their
business tier implementation. JDeveloper
handles the creation of custom interfaces and
client proxy classes automatically.

J2EE Design Patterns Implemented by ADF Business Components

E-2 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Service Locator

Abstracts the technical details of locating a
service so the client and use it more easily.

ADF application modules are looked up using
a simple configuration object which hides the
low-level details of finding the service
instance behind the scenes. For web
applications, it also hides the implementation
of the application module pool usage, a
lightweight pool of service components that
improves application scalability.

Inversion of Control

A containing component orchestrates the
lifecycle of the components it contains,
invoking specific methods that the developer
can overrides at the appropriate times so the
developer can focus more on what the code
should do instead when it should get
executed.

ADF components contain a number of
easy-to-override methods that the framework
invokes as needed during the course of
application processing.

Dependency Injection

Simplifies application code, and increases
configuration flexibility by deferring
component configuration and assembly to the
container.

The ADF configures all its components from
externalized XML metadata definition files.
The framework automatically injects
dependent objects like view object instances
into your application module service
component and entity objects into your view
rows at runtime, implementing lazy loading. It
supports runtime factory substitution of
components by any customized subclass of
that component to simplify on-site application
customization scenarios. Much of the ADF
functionality is implemented via dynamic
injection of validator and listener
subscriptions that coordinate the framework
interactions depending on what declarative
features have been configured for each
component in their XML metadata.

Active Record

Avoids the complexity of "anything to
anything" object/relational mapping, by
providing an object that wraps a row in a
database table or view, encapsulates the
database access, and adds domain logic on
that data.

ADF entity objects handle the database
mapping functionality you use most
frequently, including inheritance, association,
and composition support, without having to
think about object/relational mapping. They
also provide a place to encapsulate both
declarative business rules and one-off
programmatic business domain logic.

Data Access Objects

Avoids unnecessary marshalling overhead by
implementing dependent objects as
lightweight, persistent classes instead of each
as an Enterprise Bean. Isolates persistence
details into a single, easy to maintain class.

ADF view objects automate the
implementation of data access for reading data
using SQL statements. ADF entity objects
automate persistent storage of lightweight
business entities. ADF view objects and entity
objects cooperate to provide a sophisticated,
performant data access objects layer where
any data queried through a view object can
optionally be made fully updatable without
writing any "application plumbing" code.

Session Facade

Avoids inefficient client access of Entity Beans
and inadvertent exposure of sensitive business
information by wrapping Entity Beans with a
Session Bean.

ADF application modules are designed to
implement a coarse-grained "service facade"
architecture in any of their supported
deployment modes. When deployed as EJB
Session Beans, they provide an
implementation the Session Facade pattern
automatically.

Table E–1 (Cont.) J2EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description How ADF BC Implements It

J2EE Design Patterns Implemented by ADF Business Components

ADF Business Components J2EE Design Pattern Catalog E-3

Value Object

Avoids unnecessary network round-trips by
creating one-off "transport" objects to group a
set of related attributes needed by a client
program.

ADF provides an implementation of a generic
Row object, which is a metadata-driven
container of any number and kind of
attributes that need to be accessed by a client.
The developer can work with the generic Row
interface and do late-bound
getAttribute("Price") and
setAttribute("Quantity")calls, or
optionally generate early-bound row
interfaces like OverdueOrdersRow, to enable
type-safe method calls like getPrice() and
setQuantity(). Smarter than just a simple
"bag 'o attributes" the ADF Row object can be
introspected at runtime to describe the
number, names, and types of the attributes in
the row, enabling sophisticated, generic
solutions to be implemented.

Page-by-Page Iterator

Avoids sending unnecessary data to the client
by breaking a large collection into page-sized
"chunks" for display.

ADF provides an implementation of a generic
RowSet interface which manages result sets
produced by executing View Object SQL
queries. RowSet allows the developer to set a
desired page-size, for example 10 rows, and
page up and down through the query results
in these page-sized chunks. Since data is
retrieved lazily, only data the user actually
visits will ever be retrieved from the database
on the backend, and in the client tier the
number of rows in the page can be returned
over the network in a single roundtrip.

Fast-Lane Reader

Avoids unnecessary overhead for read-only
data by accessing JDBC API's directly. This
allows an application to retrieve only the
attributes that need to be displayed, instead of
finding all of the attributes by primary key
when only a few attributes are required by the
client. Typically, implementations of this
pattern sacrifice data consistency for
performance, since queries performed at the
raw JDBC level do not "see" pending changes
made to business information represented by
Enterprise Beans.

ADF View Objects read data directly from the
database for best performance, however they
give developers a choice regarding data
consistency. If updateability and/or
consistency with pending changes is desired,
the developer need only associate his/hew
View Object with the appropriate Entity
Objects whose business data is being
presented. If consistency is not a concern,
View Objects can simply perform the query
with no additional overhead. In either case,
the developer never has to write JDBC data
access code. They only provide appropriate
SQL statements in XML descriptors.

(Bean) Factory

Allows runtime instantiation and
configuration of an appropriate subclass of a
given interface or superclass based on
externally-configurable information.

All ADF component instantiation is done
based on XML configuration metadata
through factory classes allowing runtime
substitution of specialized components to
facilitate application customization.

Entity Facade

Provides a restricted view of data and
behavior of one or more business entities.

The ADF view object can surface any set of
attributes and methods from any combination
of one or more underlying entity objects to
furnish the client with a single, logical value
object to work with.

Table E–1 (Cont.) J2EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description How ADF BC Implements It

J2EE Design Patterns Implemented by ADF Business Components

E-4 Oracle Application Development Framework Developer’s Guide For Forms/4GL Developers

Value Messenger

Keeps client value object attributes in sync
with the middle-tier business entity
information that they represent in a
bidirectional fashion.

ADF's value object implementation
coordinates with a client-side value object
cache to batch attribute changes to the EJB tier
and receive batch attribute updates which
occur as a result of middle-tier business logic.
The ADF Value Messenger implementation is
designed to not require any kind of
asynchronous messaging to achieve this effect.

Continuations

Gives the developer the simplicity and
productivity of a stateful programming model
with the scalability of a stateless web solution.

ADF's application module pooling and state
management functionality combine to deliver
this developer value-add. This avoids
dedicating application server tier resources to
individual users, but supports a "stateless with
user affinity" optimization that you can tune.

Table E–1 (Cont.) J2EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description How ADF BC Implements It

Index-1

Index

Numerics
4GL development

about, 1-4
ADF Business Components and, 4-4

A
access keys, 11-40
accessibility support levels, 11-39
accessorIterator element, A-11
Accessors element, 15-15
Action Binding Editor, 17-5
action bindings

about, 12-18
debugging, 24-20
disabled attribute, 12-25, 13-16
enabled property, 12-26, 13-15
for operations, 13-14
for page navigation, 16-17

action element, A-14
action events, 13-16
action listeners

in navigation operations, 13-16
in page navigation components, 16-19, 16-20

action methods, in page navigation
components, 16-16

actionEnabled binding property, B-1
actionListener attribute

command buttons for methods, 17-6
navigation operations, 13-16
See also action listeners

actions
adding ADF bindings to existing, 21-11
in page navigation, 16-14

actions facet, 19-44
active data models

about, 4-17
benefits of, 4-18
displayed in Data Control Palette, 10-6
examples of, 4-17
view link instances and view link accessors, 27-4

Add Validation Rule dialog, 6-27
ADF. See Oracle ADF
ADF binding context. See binding context
ADF binding filter. See binding filter

ADF bindings. See bindings
ADF Business Components

4GL tools and, 4-4 to 4-8
application module pooling. See pooling
ApplicationModule interface, 4-11
ApplicationModuleImpl class, 4-11
archive deployment profiles for, 25-22
checklist for basing components on framework

extensions, 25-3
client interfaces for, 4-16
configuration properties, listing, 29-4
configuration property scopes, 29-4
current JDBC connection, accessing, 25-21
custom interfaces, creating, 25-14
custom Java classes

about, 4-12
for entity objects, generating, 6-38

custom metadata properties, 25-12
customized framework behavior, examples

of, 25-10
data types in oracle.jbo.domain

package, 4-14
data types supported, 4-20
debug diagnostics output for, enabling, 5-17
enabling security, 30-12
error messages, customizing, 25-25
extending base classes, 25-2
features of, 4-2
Forms concepts and, 4-4
framework extension classes

about, 25-2
basing components on, 25-4
creating, 25-2
creating a layer of, 25-8
custom Java classes, reflected in, 25-6
entries in XML component definition

file, 25-4, 25-5
for database transactions, 25-27
library definitions for, creating, 25-9
packaging in JAR files, 25-9

inheritance, using to extend individual
components, 25-29

JDeveloper design time preferences for, 4-13
oracle.jbo package, 4-11
oracle.jbo.server package, 4-11
overview of, 4-1, 4-8

Index-2

package naming conventions, 4-9
publishing as web services, 33-14
reusable component libraries, creating, 25-22
SQL flavors supported, 4-19
See also application modules
See also state management

ADF Business Components applications
business domain layer, creating, 2-5
business services for use cases, implementing, 2-9
database constraint error handling,

customizing, 25-27
database constraint error messages,

customizing, 25-27
metadata files for bindings, 2-21
overview of creating, 2-2
production, customizing on-site, 25-35
UI first development approach, 2-5
web pages, creating, 2-18

ADF Business Components projects
adding components from other directories, 25-24
component substitutions, defining global, 25-35
custom message bundles, adding, 25-26
custom validation rules, registering and

using, 26-34
debug output, enabling, 5-17
default base framework extension classes,

specifying preferences for, 25-7
disabling use of package XML files, 4-14
removing imported packages, 25-25
reusable component libraries

creating, 25-22
importing, 25-23

reusable framework extension classes,
packaging, 25-8

ADF Command Button. See command buttons
ADF Controller library, 12-8
ADF Creation forms, 13-21
ADF Faces

accessibility support levels, 11-39
configuration files, A-3
converters, 20-17
dependencies and libraries, 11-14
enhanced debugging output, 11-39
file uploading, 19-47
filter and mapping configuration settings, 11-18
internationalization, 22-10
partial page rendering, 19-33
resource servlet and mapping configuration

settings, 11-18
skins, 22-3
supported platforms, 11-3
tag libraries for, 11-14
validation, 20-4
validators, 20-6

ADF Faces Cache
AFC Statistics servlet, 23-7
logging, 23-6
types of content to cache, 23-2
visual diagnostics, 23-8

ADF Faces components

access keys for, 11-40
adding bindings to existing, 21-3
adding to JSF pages, 11-15
changing appearance, 22-3
creating

commandButton components, 17-5, 17-6
commandButton components for page

navigation, 16-15, 16-17
commandButton components, for navigation

operations, 13-13
commandLink components for page

navigation, 16-15, 16-17
commandLink components, for navigation

operations, 13-13
inputText components, 13-3
outputText components, 13-3
selectManyShuttle components, 19-65
selectOneRadio components, 19-55
selectRangeChoiceBar components, 14-7
table components, 14-3
tableSelectMany components, 14-18
tableSelectOne components, 14-4
tree components, 15-9
treeTable components, 15-17

layout and panel components, 11-29
skinning, 22-3
style properties, changing, 22-2
translating, 22-10

ADF Faces Core tag library, 11-14
ADF Faces HTML tag library, 11-14
ADF Faces lifecycle, overriding, 20-25
ADF Form. See forms
ADF Input Text. See text fields
ADF Input Text with a Label. See text fields
ADF Label. See text fields
ADF Logger, 24-7
ADF Master Form, Detail Form. See master-detail

objects
ADF Master Form, Detail Table. See master-detail

objects
ADF Master Table, Detail Form. See master-detail

objects
ADF Master Table, Detail Table. See master-detail

objects
ADF Master Table, Inline Detail Table. See

master-detail objects
ADF Model layer

benefits of JSF and, 1-8
business service technologies and, 1-3
declarative data binding and, 1-8, 10-1
exception handling, 20-23
lifecycle, 13-6
runtime, what happens at, 2-22
validation, 20-8

ADF Model Runtime library, 12-8
ADF Output Text. See text fields
ADF Output Text with a Label. See text fields
ADF phase listener, 13-6

creating custom, 20-26
registering in the web.xml file, 12-7

Index-3

ADF Read-Only Dynamic Table. See dynamic tables
ADF Read-Only Form. See forms
ADF Read-Only Table. See tables
ADF runtime libraries

active versions, 34-21
ADF Controller library, 12-8
ADF Model Runtime library, 12-8
adf-controller.jar file, 12-8
ADFm.jar file, 12-8
deleting, 34-29
in the project properties, 12-8
installing

from JDeveloper, 34-18
manually, 34-26
on third-party servers, 34-18

list of files, 34-26
ADF Swing, 1-2
ADF Table. See tables
ADF Tree. See tree components
ADF Tree Table. See treeTable components
ADFBindingFilter class, 12-10, 12-11
adf-config.xml file, 30-25
ADFContext object, 12-12
adf-controller.jar file, 12-8
adf-faces-config.xml file

about, A-3, A-32
accessibility, A-33
client-side validation, 20-4, A-34
client-validation-disabled element, 20-4
conversion, 20-17
currency, numbers, and decimals, A-33
currency-code element, 22-18
custom upload file processor, A-36
decimal-separator element, 22-18
editing, 11-20
enhanced debugging output, A-34
example of, 11-20
help site URL, A-36
language reading direction, A-34
localization properties, 22-18
number-grouping-separator element, 22-18
output mode, A-35
ProcessScope instances, A-35
retrieving property values, A-36
right-to-left element, 22-18
skin family, A-35
skin-family element, 22-9
supported tasks, A-33
time zone and year offset, A-35
time-zone element, 22-18

adfFacesContext.postback property, 10-20
adf-faces-skins.xml file, 22-8

about, A-37
bundle-name element, 22-9
family element, 22-8
id element, 22-8
render-kit-id element, 22-9
skins element, 22-8
style-sheet-name element, 22-9
supported tasks, A-37

adfm.jar file, 12-8
AFC Statistics servlet, 23-7
AJAX-style pages, 1-16
allDetailsEnabled attribute, 14-13
allRowsInRange binding property, B-1
Application Module Editor, 5-11
application module pools

about, 29-9
See also pooling

application modules
benefits of custom methods, 4-18
bundled exception mode, 10-23
client interfaces

accessing in ADF Swing panels, 8-19
accessing in custom page controllers, 8-19
accessing in JSF backing beans, 8-17
generating, 8-11
local mode versus remote mode, 8-16
programmatic access, 8-14

client proxy classes, 8-12
command-line test client programs for,

creating, 5-19
compared to 4GL concepts, 4-5 to 4-8
creating, 5-7
creation guidelines, 8-28
custom database transaction class, configuring to

use, 25-28
custom service methods

adding, 8-7, 8-9
displayed in Data Control Palette, 10-5
guidelines for, 8-9
method signatures, 8-13
publishing, 8-11
testing, 6-36

database connections
configuring, 8-3
types of, 8-4

database user state, initializing, 29-18
debugging, 8-9
definition of, 4-3, 8-2
editing, 5-11
extending, 25-30, 25-34
nested, 10-9
operations, built-in, 10-7
pooling and state management features of, 8-26
publishing as web services, 33-14
root versus nested, 8-30
runtime configuration properties, default, 5-11
SQL tracing, enabling, 27-15
testing activation, 28-20
testing tool for, 5-14
tips and techniques for data

binding, 10-12 to 10-20
Transaction object, 7-26
types of states in pools, 29-2
UML diagrams, creating, 8-23
view objects in, using, 5-6
XML component definition files for, 5-10
See also data models
See also pooling

Index-4

See also state management
application templates, 11-3
application view caching, 11-40
ApplicationModule interface, 4-11
ApplicationModuleImpl class

about, 4-11
built-in methods, overriding, 8-19

Apply Request Values phase, 13-8
architecture of Oracle ADF, 1-1
associations

accessor row set retention feature, using, 26-9
accessors to access related entity rows, 9-15
complex, implementing more, 26-8
composition

posting order and, 26-24
settings for, 6-25
styles of relationships, 6-11

creating manually, 6-8
database tables with no foreign key constraints

and, 6-8
DBSequence-valued primary keys and, 26-27
editing accessor names, 6-10
names of, 6-5
posting order, controlling, 26-24
programmatic access, 6-30
refactoring, 6-10
XML component definition files for, 6-5, 6-11
See also entity objects

attribute bindings
about, 12-18, 13-4
EL expressions for, 13-5
setting ADF authorization grants, 30-27

attribute control hints
adding, 5-12, 6-15
Java message bundles and, 5-13
structure in Java message bundles, 5-13

attributeDef binding property, B-1
attributeDefs binding property, B-1
attribute-level validation rules, 9-3
attributes

about, 12-5
binding to text fields, 13-2
on the Data Control Palette, 12-5

Attributes Mapping wizard page, 5-4
attributeValue binding property, B-1
attributeValues bindings property, B-2
attributeValues element, A-14
AttrNames element, 15-15
authenticated users, referencing information

about, 9-16
authentication

enabling ADF Security, 30-9
enabling for ADF Business Components

applications, 30-12
enabling J2EE security, 30-4

authorization
ADF Security permissions, 30-24
enabling for ADF Security, 30-23

authorizationEnforce property, 30-14, 30-25
automatic component binding, 11-33, 16-16, 16-17

automatic form submission, 11-39
autoSubmit attribute

for table row selection components, 14-15
use of, 11-39

B
Back button, issues

in forms, 13-17
in page navigation, 16-11
in tables, 14-9

backing beans
ADF data controls and, 11-37
application module client interfaces,

accessing, 8-17
automatic component binding and, 11-34
binding attribute and, 11-33
definition of, 1-7
overriding declarative methods in, 17-8
referencing in JSF pages, 11-33
registering in faces-config.xml, 11-31
state management release level, setting, 28-9
uses of, 11-30
using for validation method, 20-12
using in page navigation components, 16-16

bc4j.xcfg file, 5-11
Bind Action Property dialog, 16-17, 17-9
Bind Existing ADF Read-Only Table. See binding to

existing components
Bind Existing ADF Table. See binding to existing

components
Bind Existing CommandButton. See binding to

existing components
Bind Existing CommandLink. See binding to existing

components
Bind Existing Input Text. See binding to existing

components
Bind Existing Tree. See binding to existing

components
Bind Validator Property dialog, 20-12
bind variables. See named bind variables
binding attribute, 11-33
binding containers

about, 12-19
debugging, 24-16
overriding declarative methods, 17-13
runtime usage, 12-19
scope, 12-19
setting ADF authorization grants, 30-26

binding context
about, 12-8
initializing using the ADF binding filter, 12-12

binding context, debugging, 24-12
binding filter, 12-7, 12-10
binding objects

action, 12-18
attribute, 12-18
defined in page definition files, 12-13
EL properties of, B-1
invokeAction, 12-15

Index-5

iterator, 12-15
list, 12-18, 19-58, 19-62, 19-64
method action, 12-18
referencing in EL expressions, 12-20
runtime properties, 12-27
scope, 12-19
table, 12-18
tree, 12-18
value, 12-18

binding properties
accessing in the Expression Builder, 12-21
EL reference, B-1
in EL expressions, 12-20

binding to existing components
commandButton components, 21-12
commandLink components, 21-12
inputText components, 21-8
outputText components, 21-7
selection lists, 21-12
table components, 21-9
tree components, 21-15

bindings
action for operations, 13-14
adding to existing components, 21-1
adding to UI components, 13-25
attribute, 13-4
changing, 13-26
changing for tables, 14-10
deleting for UI components, 13-25
iterator, about, 13-3
rebinding tables, 14-11
rebinding UI components, 13-26
required objects for ADF, 12-7
table, 14-5
text fields, 13-2
value, 13-4

bindings element, 12-18
bindings variable, 12-20
breakpoints

types of, 24-8
bundled exception mode, 10-23
bundle-name element, 22-9
Business Component Browser Connect dialog, 5-14
Business Component View Criteria dialog, 5-25
Business Components Browser

application module state management feature,
using, 8-27

application modules, testing, 5-14
debug diagnostic output, example of, 5-17
features of, 5-16
illustration of, 5-15
named bind variables, inspecting, 5-28
read-only view objects, testing, 5-16
toolbar buttons, 7-16
view criteria, testing, 5-25

Business Components from Tables wizard, 6-2
business rules, programmatic, 9-1
business service clients, definition of, 4-11
business service methods

adding, 8-6

displayed in Data Control Palette, 10-5
guidelines for, 8-9
method signatures, 8-13
publishing, 8-11
testing, 6-36

business services
web services, 33-1

button element, A-15
buttons, command. See command buttons

C
caching with ADF Faces Cache, 23-1 to 23-8
calculated attributes, 7-21

automating recalculation, 26-29
entries in XML component definition file, 7-22,

7-23
character encoding, in the ADF binding filter, 12-12
children binding property, B-2
client-side state saving, 11-38
client-side validation

creating custom JSF, 20-15
using custom JSF, 20-15

client-validation-disabled element, 20-4
CollectionModel class, 14-6
collections, about, 12-3, 12-5
columns

attributes for, 14-6
column tag, 14-5

command buttons
adding ADF bindings to existing, 21-11
binding to backing beans, 16-16
binding to methods, 17-6
creating using a method, 17-5
in navigation operations, 13-13
in page navigation, 16-15, 16-17

command components
ID for, 17-7
passing parameter values with, 17-7

command links
in page navigation, 16-15, 16-17
navigation operations, 13-13
setting current row with, 14-23

commandButton components. See command buttons
commandLink components. See command links
Commit operation, 13-18
compilation errors, 24-2
components. See UI components
conditionally displaying components, 18-14
configuration files for JSF

creating page navigation rules in, 16-2
editing, 11-7
starter file in JDeveloper, 11-7
using multiple, 11-9
wizard for creating, 11-9
See also faces-config.xml file

Configuration Manager dialog, 5-11
connection pooling

pending database state and, 28-22
Context class, 13-7

Index-6

control bindings, 10-2
control hints

adding, 5-12, 6-15
Java message bundles and, 5-13
structure in Java message bundles, 5-13

conversion
about, 20-16
in an application, 20-2
lifecycle, 20-2

converters
ADF Faces, 20-17
creating custom, 20-19
creating custom JSF, 20-19
using, 20-17

.cpx file. See DataBindings.cpx file
Create Application dialog, 11-3
Create Application Module wizard, 5-7
Create Business Components Diagram dialog, 6-12,

8-23
Create Cascading Style Sheet dialog, 22-6
Create Entity Object wizard, 6-6
Create JSF JSP wizard, 11-10
Create Managed Bean dialog, 11-31, 17-2
Create New Association wizard, 6-8
Create operation

about, 13-20
repeating, 13-23

Create View Link wizard, 5-36
Create View Object wizard, 5-2
Create Web Service Data Control wizard, 33-4
createPageLifecycle method, 20-26
createRootApplicationModule()

method, 8-16
createRowSet() method, 27-12
createRowSetIterator() method, 27-12
creating entity objects in, 26-19
CSS style properties, 22-2
currency-code element, 22-18
current row, setting programmatically, 14-23
currentRow binding property, B-2
custom Java classes

about, 4-12
for entity objects, generating, 6-38

custom service methods
adding, 8-6
displayed in Data Control Palette, 10-5
guidelines for, 8-9
method signatures, 8-13
publishing, 8-11
testing, 6-36

custom validation rules
creating, 26-31
customizers for, 26-33
registering and using in projects, 26-34

CVS
client, 32-1
commit comments, 32-2
preferences, 32-1

D
data binding files

about, A-3
data binding, about, 1-8
data collection. See collections
data control files

about, A-2
Data Control Palette

about, 12-2
attributes, 12-5
context menu, 12-6
default UI component features, 12-7
displaying, 12-2
icons defined, 12-3
identifying master-detail objects, 15-2
method returns, 12-4
objects created, 12-7
operations, 12-5
parameters, 12-5
using to create UI components, 12-6
view object collections, 12-5

Data Control Security wizard, 33-9
data control security, defining for web services, 33-9
data controls

application module, role of, 10-3
benefits of, 1-8
default names, changing, 10-4
displayed on the Data Control Palette, 12-3
from web services, 33-4
using to create UI components, 12-1

data models
active master-detail coordination, enabling, 5-41
displayed in Data Control Palette, 10-6
multiple master view objects, setting, 27-10
updatable

creating, 7-1
testing, 7-16

view link instances and view link accessors, 27-4
view object instances in, defining, 5-8
view objects and, 5-6

data types
domains, 26-2
Oracle, list of, 4-14
setting usage of, 4-20

database connection pools
about, 29-9
See also pooling

database connections, setting, 4-19
database tables, creating from entity objects, 6-6
database transaction classes, custom, 25-27
DataBindings.cpx file, A-3

about, 12-7, 12-9, A-6
changing a page definition filename, 12-13
dataControlUsages element, A-8
elements, A-8
elements, defined, 12-10
PageDefinitionUsages element, A-8
pageMap element, A-8
runtime usage, 12-19
sample, A-8

Index-7

syntax, A-7
dataControl binding property, B-2
dataControlUsages element, 12-10, A-8
data-sources.xml file, 8-5
data-sources.xml file, not including in

deployment, 34-30
date format masks, 6-15, 6-17
DBSequence

displaying, 13-23
entity object primary key and, 6-22, 26-27

debugging
ADF binding context, 24-12
ADF Model in JDeveloper, 24-6
ADF Model layer, 24-10
binding container, 24-16
runtime errors, 24-4

decimal-separator element, 22-18
declarative bindings, types of, 1-8
declarative development, about, 1-4
declarative validation rules

about, 6-26
adding, 6-26
entries in XML component definition file, 6-27

default page navigation cases, 16-6
default range size, 27-6
defName attribute, 15-15
deploying ADF applications, 34-1

for testing purposes, 34-1
from JDeveloper, 34-8
overview, 34-1
steps for, 34-2
techniques for, 34-8
to EAR file, 34-8
to JBoss, 34-12
to Oracle Application Server, 34-9
to Tomcat, 34-17
to WebLogic, 34-14
to WebSphere, 34-16
troubleshooting, 34-29
using Ant, 34-9
using scripts, 34-8

deploying SRDemo application, 34-9
detailStamp facet

about, 14-12
DisclosureEvent event, 14-14
used to display inline detail table, 15-20
using, 14-12

dialog navigation rules, 19-22
digital signatures, setting for web services, 33-12
disabled attribute

about, 12-25, 13-16
enabled property, 12-26, 13-16

DisclosureAllEvent event, 15-20
DisclosureEvent event

detailStamp facet, 14-14
in tree components, 15-15
in treeTable components, 15-20

disclosureListener attribute
detailStamp facet, 14-14
in tree components, 15-15

in treeTable components, 15-20
discriminators

selecting attributes as, 26-20
setting default values for, 26-20

displayData binding property, B-2
displayHint binding property, B-2
displayHints binding property, B-3
DML processing, overriding, 26-10
domains

about, 26-2
creating

based on Oracle object types, 26-5
based on simple Java types, 26-2

custom code in, 26-3
exception messages for, creating, 26-3
extending Oracle data type example, 26-5
String-based example, 26-4

dropdown lists
adding ADF bindings to existing, 21-12
List Binding Editor, 21-13
navigation list binding, 19-63

dynamic list of values, 19-59
dynamic menus. See menus
dynamic outcomes. See outcomes
dynamic tables, 14-3

E
Edit Form Fields dialog, 13-10
edit forms

about, 13-18
creating, 13-18

Edit Table Columns dialog, 14-3, 14-10, 14-16
EL expressions

accessing results in a managed bean, 17-11
accessing security properties, 30-29
ADF binding properties, 12-20, 12-27
binding attributes with, 13-5
binding object properties reference, B-1
bindings variable, 12-20
creating, 12-20, 12-21
editing, 12-21
examples of ADF binding expressions, 12-24
Expression Builder, using to create, 12-21
navigation operations, 13-15
referencing binding objects, 12-20
syntax for ADF binding expressions, 12-20
tracing in JDeveloper, 24-23
using to bind to ADF data control objects, 12-20

embedded OC4J server, deploying for testing, 34-2
enabled binding property, B-3
enabled property, 12-26, 13-16
enabledString binding property, B-3
entity cache, 7-26, 7-31
entity object attributes

accessors for custom classes, generating, 6-39
control hints, adding, 6-15
declarative settings for, 6-19
type mappings, default, 6-19
type value, 6-19

Index-8

updatable, 6-20
Entity Object Editor, 6-6
entity objects

attribute control hints, 6-15
attribute-level validation rules, 9-3
attribute-level validators, 6-29
basing on PL/SQL package and database

view, 26-10
business rules, programmatic, 9-1
calculated attributes, 6-48
compared to 4GL concepts, 4-5 to 4-8
composition association settings, 6-25
creating for

existing tables, 6-2
synonyms and views, 6-6

custom Java classes, generating, 6-38
custom properties, adding, 6-18
database tables with no primary key constraints

and, 6-5
DBSequence-valued primary keys and

composition associations, 26-27
declarative features of, 6-19
declarative runtime behavior, configuring, 6-17
default values

assigning derived values before saving, 9-9
eagerly allocating from a sequence at

create, 9-9
initializing at create, 9-8
initializing at refresh, 9-9

definition of, 4-3, 6-1
deleted flags, using, 26-7
diagram of, creating, 6-12
DML processing, overriding, 26-10
DML statement syntax, setting, 4-19
domain types, using, 26-3
editing, 6-6
entity associations. See associations
entity definition objects, 6-30
entity rows

accessing, 6-30
creating, 6-34
updating or removing, 6-33

entity-level validation rules, 9-3
entity-level validators, 6-29
extending, 25-30, 25-33
finding by primary key, 6-30
inheritance. See inheritance hierarchies
names of, 6-3
pending changes, undoing, 9-11
posting order

controlling, 26-24
default, 26-24

primary key for, 6-5, 6-21
primary key value, trigger-assigned, 6-22
programmatic access, 6-30
reference entities in view objects, 7-8
RETURNING clause, disabling, 26-17
row states, 9-4
runtime metadata, accessing, 25-10
synchronizing with underlying database

tables, 6-7
tips and techniques for business logic

in, 9-15 to 9-20
transient attributes, adding, 6-47
trigger-assigned values, 6-21
validation rules for, 6-26
validators. See method validators
view objects and, 7-24
wizard for creating, 6-6
XML component definition files for, 6-4

entity references, 7-3
entity rows

accessing, 6-30
accessing using association accessors, 9-15
creating, 6-34
default values

assigning derived values before saving, 9-9
eagerly allocating from a sequence at

create, 9-9
initializing at create, 9-8
initializing at refresh, 9-9

entity cache, 7-26
new, refresh flags for, 9-11
pending changes, undoing, 9-11
states of, 9-4
updating or removing, 6-33

entity usages
entries in XML component definition files, 7-11
polymorphic, 27-34
primary, 7-8
secondary, adding, 7-8
view link consistency and, 27-2

entity-level validation rules, 9-3
error binding property, B-3
error messages

about, 20-21
ADF Business Components, customizing, 25-25
disabling client-side, 20-23
displaying server-side, 20-22
parameters in, 20-6

estimatedRowCount binding property, B-3
evaluating page navigation rules, 16-10
events

action, 13-16
DisclosureAllEvent event, 15-20
DisclosureEvent event, 14-14, 15-15, 15-20
FocusEvent event, 15-19
LaunchEvent event, 19-24
PrepareRender event, 13-9
RangeChangeEvent event, 14-9
ReturnEvent event, 19-27
SelectionEvent event, 14-17

exception handling
about, 20-23
changing, 20-24
custom handler, 20-24
customizing the lifecycle, 20-25
single page, overriding for, 20-26

executables element, 12-15
Execute operation, 18-1

Index-9

execute property, 13-15
ExecuteWithParams operation, 18-11
existing components. See binding to existing

components
Expression Builder

about, 12-21
about the object list, 12-23
icons used, 12-23
using, 12-22

expression language. See EL expressions

F
faces-config.oxd_faces file, 11-12, 16-8
faces-config.xml file

about, A-3, A-26
configuring for ADF Faces, 11-19
converters, 20-20
custom validators and converters, A-30
editing, 11-7
example of, 11-7
from-action element, 16-3
from-outcome element, 16-3
from-view-id element, 16-3
locales, 22-17
managed bean configuration, 17-2, 17-3
managed beans, A-30
managed-bean element, 17-3
message resource bundle, A-28
navigation rules and classes, A-29
navigation-case element, 16-3
page navigation rule elements, 16-3
phase listener

default, 13-6
registering new, 20-26

phase listener for ADF Binding, A-27
redirect element, 16-3
render kit for ADF Faces, A-27
required elements for ADF, 12-7
supported locales, A-28
supported tasks, A-27
to-view-id element, 16-3
using to define page navigation rules, 16-2
validation, 20-14
wizard for creating, 11-9

FacesContext class, 13-6
FacesServlet class, 13-6
facets

about, 13-11
actions facet, 19-44
adding or removing, 11-27
detailStamp facet, 14-12, 15-20
footer facet, 13-11
in panelPage components, 11-26
in tree components, 15-13
in tree table components, 15-19
location facet, 19-43
menu, 19-2
nodeStamp facet, 15-13, 15-19, 19-13
pathStamp facet, 15-19

selection facet, 14-14
Factory-Substitution-List Java system

property, 25-37
family element, 22-8
file dependencies, A-2
file uploading

context parameters for, 19-53
custom file processor for, 19-54
disk space and memory for, 19-53
inputFile component, 19-50
storage location for files, 19-49
supporting, 19-49

filter mappings, 12-11
filter-class element, 12-11
filter-name element, 12-11
Find mode

about, 18-1
setting automatically on iterator, 18-7

findByKey() method, 7-25, 7-41
findByPKExtended() method, 26-23
findByPrimaryKey() method, 6-21
findMode binding property, B-3
findRowSet() method, 27-12
findRowSetIterator() method, 27-12
fixed list of values, 19-55
FocusEvent event, 15-19
FocusListener listener, 15-19
footer facet, 13-11
foreign keys, DBSequence-assigned, 26-28
foreign-key relationships, 15-1
format masks

date, 6-15, 6-17
number, 5-12

forms
adding UI components, 13-25
changing order of UI components, 13-25
creating basic, 13-9
creating edit, 13-18
creating input, 13-21
creating search, 18-1
creation, 13-21
deleting UI components, 13-25
footer facet, 13-11
modifying the default, 13-25
navigation operations, 13-12
parameterized, 18-11
using the Data Control Palette to create, 13-11
using to display master-detail objects, 15-4
widgets for basic, 13-10

Forms development, ADF Business Components
and, 4-4

from-action element, 16-3
from-outcome element, 16-3
from-view-id element, 16-3
fullName binding property, B-3

G
getAsObject method, 20-19
getAsString method, 20-19

Index-10

getBundle method, 22-14
getClientConversion() method, 20-20
getClientScript() method, 20-15, 20-20
getClientValidation() method, 20-15
getContents() method, 22-16
getCurrentRow() method, 8-13
getCurrentRowIndex() method, 5-21
getEntityState() method, 9-5
getEstimatedRangePageCount() method, 27-9
getEstimatedRowCount() method, 5-19
getPostState() method, 9-5
global buttons, 19-2
global page navigation rules, 16-6
graph element, A-15

H
hierarchical menus. See menus
HTTP sessions, 28-3

I
id attribute, 12-13
id element, 22-8
immediate attribute, 13-8
inheritance hierarchies, 26-19

about, 26-18
base entity objects in, 26-20
discriminators

selecting attributes as, 26-20
setting default values for, 26-20

entity object methods, adding common, 26-22
illustration of, 26-19
subtype entity objects

adding specific methods, 26-22
creating, 26-21
finding by primary key, 26-23
overriding common methods, 26-22

Initialize Business Components Project dialog, 4-19
Initialize Context phase, 13-7, 13-9
init-param element, 12-12
inline tables, 15-20
input forms

about, 13-21
Create operation, 13-23
creating multiple objects, 13-24

inputFile components, use of, 19-50
inputText components. See text fields; forms
inputValue binding property, B-4
Insert ActionListener dialog, 17-7
Insert SelectManyShuttle dialog, 19-70
internationalization

about, 22-10
procedures for, 22-14
See also localizing

Invoke Application phase, 13-9
invokeAction bindings, 12-15
invokeAction element, A-13
isAttributeUpdateable() method, 9-20
isExpanded method, 15-15

iterator bindings
about, 12-15, 13-3
findMode and, 10-15
range, 12-16
rangeSize attribute, 13-14
referencing row index and row count, 10-12
Refresh and RefreshCondition

properties, 10-19
setting ADF authorization grants, 30-26
tables, 14-5

iterator element, A-13
iteratorBinding binding property, B-4
iterators

about, 12-15
creating new, 18-8
method, 12-15
RowSetIterator object, 12-16
setting Find mode on, 18-7
variable, 12-15

J
j_security_check login method, 30-15
j2ee-logging.xml file, A-25
Java message bundle files

about, 5-13
entity object example, 6-16
localized, 5-14
validation error messages, 6-28
view object example, 5-13

javax.faces.CONFIG_FILES context
parameter, 11-9

javax.faces.STATE_SAVING_METHOD context
parameter, 11-38

jazn-data.xml file, 34-31
jazn-data.xml, with web services, 33-10
JBO-30003 error, 34-31
jbo.ampool.doampooling configuration

property, 28-8, 28-20
jbo.doconnectionpooling configuration

parameter, 28-22
jbo.locking.mode property, 5-12, 7-30, 28-21
jbo.security.enforce property, 30-12
JBoss, deploying applications to, 34-12
jbo.viewlink.consistent configuration

parameter, 27-2
JDBC datasource connections, 8-4
JDBC URL connections, 8-4
JSF

about, 1-5
Oracle ADF and, 1-4

JSF Configuration Editor
launching, 11-7
using to create managed beans, 17-2
using to define page navigation rules, 16-2, 16-5,

16-6
JSF Core tag library, 11-14
JSF HTML tag library, 11-14
JSF lifecycle, with ADF, 13-6
JSF Navigation Case, 16-4

Index-11

JSF navigation diagrams
deleting JSF pages on, 11-13
faces-config.oxd_faces files for, 11-12
opening, 11-11
renaming JSF pages on, 11-13
using to define page navigation rules, 16-2
See also JSF Navigation Modeler

JSF Navigation Modeler
deleting pages, 16-13
refreshing, 16-13
using to define page navigation rules, 16-3, 16-13

JSF Page Flow & Configuration wizard, 11-9
JSF pages

automatic component binding in, 11-34
backing beans for, 11-30
creating from the JSF navigation diagram, 11-11
designing for ADF bindings, 21-2
editing, 11-15
effects of name change, 12-9
example in XML, 11-12
inserting UI components, 11-15
laying out, 11-24 to 11-30
loading a resource bundle, 22-16
referencing backing beans in, 11-33
ways to create, 11-10

JSF servlet and mapping configuration settings, 11-6
JSF tag libraries, 11-14
JSP documents, 11-10

benefits of using, 2-19
JUnit extension, installing, 3-10

K
keystores

creating, 33-6
exporting public key, 33-8
requesting certificates, 33-7
using with web services data controls, 33-6

L
label attribute, 13-26
label binding property, B-4
labels binding property, B-4
labels, changing for UI components, 13-26
labelSet binding property, B-4
LaunchEvent event, 19-24
LaunchListener listener, 19-28
libraries

ADF Controller, 12-8
ADF Model Runtime, 12-8
ADF runtime, 12-8
adf-controller.jar file, 12-8
adfm.jar, 12-8

lifecycle
error handling, 20-2
JSF and ADF, 13-6, 29-3
phases in an ADF application, 13-7

lifecycle phases.See names of individual phases
lifecycle, page

customizing for single page, 10-17
customizing globally, 10-16
JSF and ADF, illustration of, 29-2
state management release level, setting, 28-11

links, command. See command links
List Binding Editor, 19-57, 19-60, 19-63, 21-13
list bindings, 12-18
list components, creating, 19-55
list element, A-16
list of values

adding ADF bindings to existing, 21-12
dynamic list, 19-59
fixed list, 19-55
List Binding Editor, 19-57, 19-60, 21-13
list binding object, 19-58, 19-62

listeners
DisclosureListener listener, 15-15
FocusListener listener, 15-19
LaunchListener listener, 19-28
ReturnListener listener, 19-27

ListResourceBundle
about, 22-13
creating, 22-15

loadBundle tag
about, 22-11
using, 22-16

locales, registering, 22-17
localizing

about, 22-10
ListResourceBundle, 22-13
property files, requirements, 22-13
See also internationalization

location facet, 19-43
logging, A-25

changing logging level for ADF packages, A-25
log file location, A-26
redirecting output, A-26

login page, 30-15
logout page, 30-19

M
managed beans

accessing EL expression results, 17-11
automatic component binding and, 11-34
chaining, 19-11
compatible scopes, 19-11
configuring for menus, 19-4, 19-9, 19-11
configuring for process trains, 19-39, 19-40, 19-42
configuring in faces-config.xml, 11-31, 17-2
creation at runtime, 17-2
definition of, 1-6
managed properties in, 11-36
multiple page usage, 17-3
overriding declarative methods in, 17-8
scope for backing beans with method

overrides, 17-11
scope types, 11-31
storing information on, 17-2, 18-15
using in page navigation components, 16-16

Index-12

validation method, 20-13
value binding expressions for chaining, 19-7

managed-bean element, 17-3
mandatory binding property, B-4
mandatory property, 20-5, 20-9
mappings

ADF binding filter, 12-11
Master Form, Detail Form. See master-detail objects
Master Form, Detail Table. See master-detail objects
Master Table, Detail Form. See master-detail objects
Master Table, Detail Table. See master-detail objects
Master Table, Inline Detail. See master-detail objects
master-detail coordination

combining types of, 27-5
multiple master view objects, setting, 27-10
types of, 27-4
See also master-detail objects

master-detail objects
about, 15-1
displaying in

detailStamp facet, 15-20
forms, 15-4
separate pages, 15-9
tables, 15-4
tree components, 15-9
treeTable components, 15-17

example of, 15-4
in the Data Control Palette, 15-2
managing row currency, 15-9
managing synchronization of data, 15-9
MasterTable, Inline Detail widget, 15-21
RowSetIterator objects, 15-8
treeTable components, 15-18
widgets, 15-5

Master-Details widgets, 15-5
maximum row fetch size, 27-1
MenuModel class, 19-3
menus

components for, 19-13
facets for, 19-2
managed beans for, 19-4, 19-9, 19-11
menu model creation, 19-3 to 19-11
menu tree model, 19-7
navigation rules for, 19-16
nodeStamp facet, 19-13
startDepth attribute, 19-14
ViewIdPropertyMenuModel instance, 19-9
ways to create, 19-2

message bundle files. See Java message bundle files
messages tag, 20-9, 20-22
messages, error

about, 20-21
ADF Business Components, customizing, 25-25
disabling client-side, 20-23
displaying server-side, 20-22
parameters in, 20-6

Metadata Commit phase, 13-9
metadata files

about, A-1
method action binding objects, 12-18

method action bindings
setting ADF authorization grants, 30-27

method iterators, 12-15
method returns, 12-4
method validators

about, 9-5
attribute-level, creating, 9-5
entity-level, creating, 9-7
entries in XML component definition files, 9-6,

9-8
error message parameter for invalid value, 9-8
using validation view objects in, example of, 9-13

methodAction element, A-16
methodIterator element, A-13
methods

adding logic to, 17-8, 17-12
binding to command components, 17-5
in page navigation components, 16-14
overriding declarative, 17-8, 17-12
populating parameters at runtime, 18-13
providing parameters when binding, 17-5

MVC architecture, 1-1

N
name binding property, B-4
named bind variables

about, 5-26
adding, 5-26, 5-30
advanced uses of, 27-14
creating search forms with, 18-11
default NULL values, 5-29
inspecting in Business Components

Browser, 5-28
runtime errors, 5-28
setting values programmatically, 5-29
test client program example for, 5-31

navigation list binding, 19-63
navigation menus. See menus
navigation modeler. See JSF Navigation Modeler
navigation operations

action events, 13-16
Back button, issues, 13-17
EL expressions for, 13-15
inserting, 13-12
types, 13-15

navigation rules, page
about, 16-2
conflicts, 16-12
creating, 16-2
default cases, 16-6
deleting, 16-13
dialogs, for launching, 19-22
evaluating at runtime, 16-10
examples of, 16-8
global, 16-2, 16-6
in multiple configuration files, 16-11
menus, for, 19-16
overlapping, 16-11
pattern-based, 16-2

Index-13

splitting, 16-12
navigation, page

about, 16-1
binding to a backing bean, 16-17
binding to a data control method, 16-17
default cases, 16-20
dialogs, for launching, 19-22
dynamic outcomes, 16-1, 16-16
from-action element, 16-3
from-outcome element, 16-3
from-view-id element, 16-3
global rules, 16-2
menus, for, 19-16
navigation-case element, 16-3
NavigationHandler handler, 16-10
navigation-rule element, 16-3
pattern-based rules, 16-2
redirect element, 16-3
rules

about, 16-2
conflicts, 16-12
creating, 16-2
default cases, 16-6
deleting, 16-13
evaluating at runtime, 16-10
examples of, 16-8
global, 16-2, 16-6
in multiple configuration files, 16-11
overlapping, 16-11
pattern-based, 16-2, 16-5
using the JSF Configuration Editor, 16-6
using the JSF Navigation Modeler, 16-3

static outcomes, 16-1, 16-14
to-view-id element, 16-3
using action listeners, 16-20
using outcomes, 16-1
using the JSF Navigation Modeler, 16-13

navigation, range
forms, 13-12
row attribute, 14-8
tables, 14-7

navigation-case element, 16-3
navigation-case Properties dialog, 16-5
NavigationHandler handler, 16-10
navigation-rule element, 16-3
nodeDefinition element, 15-15
nodeStamp facet, 15-13, 15-19, 19-13
number format masks, 5-12
number-grouping-separator element, 22-18

O
operationEnabled binding property, B-4
operations

accessing from the Data Control Palette, 12-5
action events for navigation, 13-16
built-in, 10-7
described, 13-20
EL expressions for navigation, 13-15
Execute, 18-1

ExecuteWithParams, 18-11
for searches, 18-5
in page navigation components, 16-14
navigation, 13-12, 13-14, 13-15

Oracle ADF
4GL development and, 1-4
architecture, 1-1
debugging the Model layer, 24-10
file syntax, A-4
Forms concepts and, 4-4
JSF and, 1-4
key components for declarative development, 1-4
security features, 30-1
supported technologies, 1-1

Oracle data types
list of, 4-14
setting usage of, 4-20

Oracle Wallet, 33-6
oracle.adf.view.faces.CHECK_FILE_

MODIFICATION context parameter, 11-38
oracle.adf.view.faces.DEBUG_JAVASCRIPT

context parameter, 11-38
oracle.adf.view.faces.USE_APPLICATION_

VIEW_CACHE context parameter, 11-40
oracle.jbo package, 4-11, 5-18
oracle.jbo.client package, 8-16
oracle.jbo.domain package, 4-14
oracle.jbo.rules package, 26-31
oracle.jbo.server package, 4-11
oracle.jbo.server.SessionImpl object, 9-16
oracle.jbo.Session interface, 9-16
ORDER BY clause, 7-4
orion-web.xml file, 8-5
outcomes

dynamic, 16-1, 16-16
page navigation, 16-1
static, 16-1, 16-14

outputText components. See text fields; forms

P
package XML files, disabling the use of, 4-14
page controllers, 11-8
page definition files

about, 12-8, 12-12, A-3, A-8
action bindings, 12-18
at runtime, 12-19
attribute bindings, 12-18
binding containers, 12-19
binding objects, 12-13
bindings element, 12-18
creating, 12-12
effects of name change, 12-9, 12-12
elements, 12-13, A-10
executables element, 12-15
id attribute, 12-13
invokeAction bindings, 12-15
iterator bindings, 12-15
list bindings, 12-18
location, 12-12

Index-14

mapped in the DataBindings.cpx file, 12-13
method bindings, 12-18
naming, 12-12
nodeDefinition element, 15-15
parameters, 12-14
parameters element, 12-14
rangeSize attribute, 12-17
refresh attribute, 12-16, 12-17
refreshCondition attribute, 12-16
renaming, A-9
sample, A-18, A-19
syntax, A-9
table bindings, 12-18
tree bindings, 12-18, 15-14
value bindings, 12-18

page element, A-14
page layouts, 11-24 to 11-30
page lifecycle

customizing for single page, 10-17
customizing globally, 10-16
JSF and ADF, illustration of, 29-2
state management release level, setting, 28-11

page navigation. See navigation, page
Page Properties dialog, 11-34
pageDefinition element, A-10
pageDefinitionUsages element, 12-10, A-8
PageDef.xml file. See page definition files
pageMap element, 12-10, A-8
paging large result sets, 27-7
panelButtonBar components, 13-15
panelPage components

facets in, 11-26
inserting into pages, 11-15
uses of, 11-14

parameter element, A-11
parameter methods, passing values to, 17-7
parameters

accessing values, 17-5
Apply Request Values phase, 13-8
bindings for, 17-5
defined in page definition file, 12-14
for messages, 20-6
for methods, 17-5
NamedData element, 17-5
on the Data Control Palette, 12-5
passing values for, 17-7
Prepare Model phase, 13-8, 13-9
providing for methods, 17-5
setting for methods, 17-5
setting on setActionListener

components, 17-7
parameters element, 12-14
param-name element, 12-11
partial keys, 27-11
partial page rendering

attributes for enabling, 19-34
autoSubmit attribute and, 11-39
command components and, 19-35
panelPartialRoot tag and, 11-22

partialSubmit attribute, 19-23

partialTriggers attribute, 19-34
pathStamp facet, 15-19
pattern attribute, 20-18
pattern-based page navigation rules, 16-5
PeopleTools, ADF Business Components and, 4-6
permission grants for ADF Security, 30-24
phase listeners

creating custom, 20-26
registering in the web.xml file, 12-7

phase-listener element, 12-7
PL/SQL procedures and functions, calling from ADF

custom Java classes, 25-16
pooling, application module

about, 29-1
configuration parameters

for pool behavior, 29-12
for pool cleanup, 29-13
for pool sizing, 29-13
setting as Java system parameters, 29-7
setting declaratively, 29-5
setting programmatically, 29-7

database connection and application module pools
about, 29-10
cooperation between, 29-17

multiple JVM scenario, 29-11
single JVM scenario, 29-10
type of states in pools, 29-2
types of pools, 29-9

pooling, database connection
application module and database connection pools

about, 29-10
cooperation between, 29-17

configuration parameters for, 29-15
database user state and, 29-18
multiple JVM, 29-11
single JVM, 29-10

popup dialogs
closing and returning from, 19-24
components with built-in support for, 19-33
conditions for supporting, 19-21
creating, 19-21 to 19-28
launch event, 19-24
launch listener, 19-28
launching from command components, 19-23
navigation rules for launching, 19-22
passing values into, 19-28
return event and return listener, 19-27
return value handling, 19-27
tasks for supporting, 19-22

postback property, using in refreshCondition
attribute, 13-9

postChanges() method, 9-4, 9-5, 28-21
PPR. See partial page rendering
Prepare Model phase

about, 13-8
when navigating, 13-9

Prepare Render phase
about, 13-9
exception handling, 20-23
overriding, 20-25

Index-15

prepareForDML() method, 9-9
prepareModel method, 20-25
PrepareRender event, 13-9
prepareSession() method, overriding, 8-21
primary keys, DBSequence-valued, 26-27
process trains

page access control, 19-42
processChoiceBar components, binding to train

models, 19-44
processTrain components, binding to train

models, 19-43
train model creation, 19-39 to 19-42

Process Validations phase, 13-8
processChoiceBar components, binding to train

models, 19-44
ProcessMenuModel class, 19-39, 19-41
processScope scope, 19-28
processTrain components, binding to train

models, 19-43
Project Properties dialog, 11-8
projects

creating from WAR files, 11-4
dependencies on, 11-8
JSF technology in, 11-5
properties of, 11-5, 11-12
renaming, 11-4
view or user interface, 11-8

property files
creating for resource bundles, 22-15
requirements for resource bundles, 22-13

PropertyManager class, 29-4
pseudo class, 22-6

creating, 22-7
referencing, 22-7

pseudo elements, 22-6

Q
query-by-example search, 18-1
query-by-example view criteria

testing, 5-25
using, 5-22

R
range navigation. See navigation, range
range paging, 27-7
range, iterator, 12-16
RANGE_PAGING_AUTO_POST access mode, 27-9
RangeChangeEvent event, 14-9
rangeSize attribute, 12-17, 13-14, 14-8
rangeSize binding property, B-5
rangeStart binding property, B-5
rebinding

input components, 13-26
tables, 14-11

recommended technologies for 4GL developers, 1-3
redirect element, 16-3
REF CUSOR, view objects and, 27-56
reference entities, 7-8

refresh attribute, 12-16, 12-17
about, 13-8
Find mode, 18-7

REFRESH_FORGET_NEW_ROWS flag, 9-9
REFRESH_REMOVE_NEW_ROWS flag, 9-9
refreshCondition attribute, 12-16

about, 13-8
Find mode, 18-7

releaseApplicationModule() method, 8-16
Render Response phase, 13-9
render-kit-id element, 22-9
reportErrors method, 20-23 to 20-25, 20-26
reportException method, 20-24, 20-26
required attribute

table row selection components, 14-15
validation, 20-4, 20-9

resetRange binding property, B-5
resource bundles

creating as a property file, 22-15
creating as Java classes, 22-15
for skins

creating, 22-8
registering, 22-8
using, 22-6

ListResourceBundle, 22-13
loading onto a JSF page, 22-16
property files, 22-13
property files versus Java classes, 22-13

Restore View phase, 13-7
restoreState method, 20-14
result binding property, B-5
returnActionListener tag, 19-25
ReturnEvent event, 19-27
RETURNING clause, 26-17
ReturnListener listener, 19-27
right-to-left element, 22-18
Rollback operation, 13-18
rootNodeBinding binding property, B-5
row, 12-3, 12-5
row currency

on master-detail objects, 15-9
setting programmatically, 14-22

row iterators, iterator mode flags and, 27-7
RowMatch objects

in-memory filtering and, 27-32
view link consistency and, 27-3

rows attribute
about, 14-8
binding to rangeSize attribute, 14-8
first attribute, 14-8

rows, view object
filtering with RowMatch objects, 27-32
filtering with view criteria, 27-30
sorting in memory, 27-27

rowsByDepth attribute, 15-20
rowset, 12-3, 12-5
RowSetIterator objects

about, 12-16
scope, 12-19
used to manage master-detail objects, 15-8

Index-16

rules, page navigation
about, 16-2
conflicts, 16-12
creating, 16-2
default cases, 16-6
deleting, 16-13
dialogs, for launching, 19-22
evaluating at runtime, 16-10
examples of, 16-8
global, 16-2, 16-6
in multiple configuration files, 16-11
menus, for, 19-16
pattern-based, 16-2

S
SAML assertion tokens, for web services, 33-11
saveState method, 20-14
scope, binding containers and objects, 12-19
scrollToRangePage() method, 27-9
search forms

about, 18-1
conditionally displaying results table, 18-14
EnterQuery/ExecuteQuery

about, 18-2
creating, 18-3

named bind variables
about, 18-2
using, 18-11

parameterized
about, 18-2
creating, 18-11

query-by-example, about, 18-1
results, on same page, 18-8
web

about, 18-2
creating, 18-6

security
for ADF Business Components

applications, 30-12
for ADF web applications, 30-1
for web service data controls, 33-5

selectBooleanCheckbox components, in a
table, 14-11

selectedValue binding property, B-6
selection facet, 14-14, 14-17
selection list components

adding ADF bindings to existing, 21-12
creating, 19-55

SelectionEvent event, 14-17
selectionState attribute, 14-17
selectItems tag, 19-58
selectManyShuttle components, creating, 19-65
selectOneChoice components

creating, 19-63
in a table, 14-11

selectOneListbox components
creating, 19-59

selectOneListbox components, in a table, 14-11
selectOneRadio components

creating, 19-55
selectOneRadio components, in a table, 14-11
selectors, 22-5
selectRangeChoiceBar components

about, 14-7
at runtime, 14-8
RangeChangeEvent event, 14-9

sequences
displaying, 13-23

service methods
adding, 8-6
displayed in Data Control Palette, 10-5
guidelines for, 8-9
method signatures, 8-13
publishing, 8-11
testing, 6-36

servlet context parameter, 12-11
setActionListener components

search pages, conditionally displaying
results, 18-15

setting, 17-7
setActionListener tag, 19-18
setAssociationConsistent() method, 27-3
setCurrentRowWithKey operation

compared to
setCurrentRowWithKeyValue, 10-21

setting programmatically, 14-22
setMaxFetchSize() method, 27-2
setNewRowState() method, 9-4
setQueryMode() method, 27-27
setRangeSize() method, 27-6
setSubmittedValue method, 13-8
setViewLinkAccessorRetained()

method, 27-13
setWhereClause() method, 5-24
SiebelTools, ADF Business Components and, 4-7
skin element, 22-8
skin-family element, 22-9
skins

about, 22-3
alias pseudo class, 22-6
configuring an application to use, 22-9
creating, 22-6
creating a resource bundle for, 22-8
icons, for, 22-7
minimal, 22-3
Oracle, 22-3
pseudo class

about, 22-6
creating, 22-7

pseudo elements, 22-6
registering, 22-8
resource bundles

about, 22-6
creating, 22-8
registering, 22-8

rtl pseudo class, 22-7
selectors, 22-5
simple, 22-4
using, 22-5

Index-17

SOAP, and web services, 33-2
SQL alias, 5-5
SQL expressions, 5-5
SQL queries

column names and view object attribute
names, 5-4

expert mode, 27-18, 27-22
named bind variables, referencing, 5-27
read-only view objects, defining for, 5-3
SQL expressions in, 5-5
view criteria and, 5-24

SQL Statement wizard page, 5-3
SQL tracing, 27-15
SQL-calculated attributes, 7-21
SRDemo application

data binding in, overview of, 10-23 to 10-36
database user state, setting, 29-19
functionality, 3-11
installing, 3-4
JUnit tests, running, 3-10
overview, 3-1
refreshing data, 3-6
requirements, 3-2
running, 3-8
schema, 3-2

stack trace, reporting information in, 24-10
standalone OC4J, deploying for testing, 34-2
startDepth attribute, 19-14
state management

ADF, 28-4
custom user information, reading and

writing, 28-17
failover mode and passivation, 28-7, 28-15
for transient view objects, 28-19
general information about, 28-1
HTTP sessions, timing out, 28-15
middle-tier savepoints and, 28-20
passivation store, types of, 28-14
passivation versus activation, 28-6
passivation, database-backed, 28-13
pending database state and, 28-21, 28-22
release levels

pending database state and, 28-22
setting at runtime, 28-9
supported, 28-8

schema, controlling, 28-13
state cleanup, automatic, 28-14
storage information, 28-13
temporary storage, cleaning up, 28-16
transactional versus non-transactional

state, 28-12
state saving, 11-38
StateHolder interface, 20-14
static list of values, 19-55
static outcomes. See outcomes
stored procedures and functions, calling from ADF

custom Java classes, 25-16
style properties, changing, 22-2
StyleClass dialog, 22-2
style-sheet-name element, 22-9

submitForm method, 20-4
Synchronize with Database dialog, 6-7

T
table binding objects, 12-18
table element, A-17
table tag, 14-5
tables

about, 14-2
adding ADF bindings to existing, 21-8
attributes for, 14-6
Back button, using, 14-9
bindings for, 14-5
changing default, 14-10
conditionally displaying on search page, 18-14
creating, 14-2
detailStamp facet

about, 14-12
using, 14-12

dynamic tables, 14-3
master table with inline detail table, 15-20
master-detail objects, displaying in, 15-4
read-only, 14-3
rebinding, 14-11
selection facet, 14-14
selectRangeChoiceBar components, 14-7

about, 14-7
table tag, 14-5
var attribute, 14-6
versus forms, 14-2
widgets for, 14-3

tableSelectMany components
about, 14-14
autoSubmit attribute, 14-15
required attribute, 14-15
text attribute, 14-15
using, 14-18

tableSelectOne components
about, 14-14
adding to a table, 14-4, 14-11
autoSubmit attribute, 14-15
required attribute, 14-15
text attribute, 14-15
using, 14-16

tag libraries for JSF and ADF Faces, 11-14
technologies recommended for 4GL developers, 1-3
technologies supported in Oracle ADF, 1-1
text attribute, 14-15
text fields

adding ADF bindings to existing, 21-7
binding, 13-2
creating for attributes, 13-2
input text widgets, 13-2
label widgets, 13-2
output text widgets, 13-2
using the Data Control Palette to create, 13-3

time-zone element, 22-18
token validation

forms, 13-17

Index-18

setting, 13-17
tables, 14-9

Tomcat, deploying applications to, 34-17
tooltip binding property, B-6
to-view-id element, 16-3
Transaction object, 7-26
transactional state, 28-12
transient attributes

adding, 6-47
calculated, 7-24
calculated values, displaying, 6-48
entity-based view objects, adding to, 7-22
entries in XML component definition file, 6-48
passivation and, 28-19

Tree Binding Editor, 15-11, 15-21
tree components

about, 15-9
Accessors element, 15-15
adding ADF bindings to existing, 21-14
AttrNames element, 15-15
binding objects created for, 15-14
defName attribute, 15-15
DisclosureEvent event, 15-15
disclosureListener attribute, 15-15
example of, 15-10
facet tag, 15-13
FocusEvent event, 15-19
FocusListener listener, 15-19
isExpanded method, 15-15
nodeDefinition tag, 15-15
nodeStamp facet, 15-13
Tree Binding Editor, 15-11
treeModel property, 15-13
using to display master-detail objects, 15-9
var attribute, 15-13

tree element, A-17
TreeModel class, 15-19
treeModel property, 15-13, 15-19
treeState attribute, 15-20
treeTable components

about, 15-17
Accessors element, 15-15
adding ADF bindings to existing, 21-14
AttrNames element, 15-15
creating from Data Control Palette, 15-18
defName attribute, 15-15
DisclosureAllEvent event, 15-20
DisclosureEvent event, 15-20
disclosureListener attribute, 15-20
displaying master-detail objects, 15-17
example of, 15-17
facet tag, 15-19
nodeStamp facet, 15-19
pathStamp facet, 15-19
rowsByDepth attribute, 15-20
TreeModel class, 15-19
treeModel property, 15-19
treeState attribute, 15-20
var attribute, 15-19

U
UDDI, and web services, 33-2
UI components

adding ADF bindings to existing, 21-3
adding binding for, 13-25
adding to a form, 13-25
binding instances of, 11-33
changing labels for, 13-26
changing the display order on forms, 13-25
conditionally displaying, 18-14
creating with the Data Control Palette, 12-1, 12-6,

12-7
default ADF features, 12-7
deleting bindings for, 13-25
deleting from a form, 13-25
editing for tables, 14-10
inserting into JSF pages, 11-15
modifying, 13-25
rebinding, 13-25, 13-26
skins, 22-3
style properties, 22-2

UI control hints
adding, 5-12, 6-15
Java message bundles and, 5-13
structure in Java message bundles, 5-13

UML diagrams
about, 6-14
creating, 8-23
display options, 8-24
illustration of, 6-13, 10-4
view objects entity usages, 7-12
working with, 8-24

Update Model Values phase, 13-8
updateable binding property, B-6
username token authentication, for web

services, 33-11

V
validate method, 20-10, 20-16
Validate Model Updates phase, 13-8
validation

ADF Faces, 20-4
ADF Faces attributes, 20-5
ADF Faces validators, 20-6
ADF Model validation rules

adding, 20-8
types of, 20-8

client-side custom JSF validators
creating, 20-15
using, 20-15

custom JSF validators
about, 20-12
creating, 20-13

custom validation using domains, 26-1
entity object, 6-26
lifecycle, 20-2
method, overriding, 20-12
parameters in messages, 20-6
required attribute, 20-4

Index-19

runtime, 20-10
view objects for, creating, 9-11
working in an application, 20-2

validation cycle
about, 9-2
commit processing and, 9-3
infinite, 9-4
upon failures, 9-4

Validation Rules Editor dialog, 20-8
validation rules, custom

creating, 26-31
customizers for, 26-33
registering and using in projects, 26-34

validation rules, declarative
about, 6-26
adding, 6-26
attribute-level, 9-3
entity-level, 9-3
entries in XML component definition file, 6-27
error message parameter for invalid value, 9-8
error messages, 9-8

Validator interface, 20-12
validator tag, 20-9
validators

ADF Faces, 20-6
attribute-level, 6-29
custom JSF, creating, 20-14
entity-level, 6-29
See also method validators

value bindings
about, 12-18, 13-4
changing, 13-26
table, 14-5

var attribute
tables, 14-6
tree tables, 15-19
trees, 15-13

variable iterators
about, 12-15
variable element, 12-15
variableUsage element, 12-15

variableIterator element, A-14
variables

at runtime, 18-13
variableUsage element, 12-15
versioning

committing ADF work to CVS, 32-2
developer-level activities, 32-4
name consistency, 32-2
team-level activities, 32-3

view caching, 11-40
view criteria

named
applying, 27-25
defining, 27-24
removing, 27-25
using at runtime, 27-26

testing, 5-25
using, 5-22
using in memory, 27-30

view link accessor attributes, 27-4, 27-13
view link accessors, 27-4
view links

about, 5-38
active versus passive, 5-41
association-based, 7-13, 7-15
creating, 5-36, 7-14
master-detail coordination styles, 27-4
view link accessor attributes, exposing, 26-9
view link accessors, using, 5-39
view link consistency, using, 27-2 to 27-4
XML component definition files for, 5-38, 7-15

view object attributes
control hints, adding, 5-12
declarative settings for, 5-6
names of, 5-4
type value, 5-6

View Object Editor, opening, 5-5
view object instances

application modules and, 5-8
creating at runtime for validation, example

of, 9-12
differences between view objects and, 5-8
displayed in Data Control Palette, 10-8
names of, defining, 5-8
operations, built-in, 10-8

view objects
application modules and, 5-6
client interfaces, 8-12
compared to 4GL concepts, 4-5 to 4-8
control hints, adding, 5-12
custom classes, generating, 5-43 to 5-47
data-retrieval methods, 5-18
declaratively controlling insert, update, and

delete, 27-65
definition of, 4-4
difference between read-only and

entity-based, 7-40
differences between view object instances

and, 5-8
domain types, using, 26-3
dynamic attributes and, 27-12
entity objects and, 7-24
entity usages, multiple, 27-63
entity-based

about, 7-1, 7-6, 7-24
calculated attributes entries in XML file, 7-22,

7-23
calculated attributes, types of, 7-21
compared to read-only, 7-40
creating, 7-2, 7-5
editing, 7-6
executing query, 7-28
in multiuser environments, 7-34
partial keys, findByKey() and, 27-11
primary entity usage, 7-8
programmatic access examples, 7-34
programmatic, creating, 27-54
reference entities, adding, 7-8
requerying, 7-31

Index-20

SQL-calculated attributes, adding, 7-21
testing, 7-16
transient attributes, adding, 7-22
view link consistency, using, 27-2 to 27-4

extending, 25-30, 25-33
filtering in memory, 27-32
forward only mode, 27-17
internally created, 27-5
Java message bundles for, 5-13
join queries and linked master-detail

queries, 5-33
master-detail using association-based view

links, 7-14
master-detail using view links, 5-36
maximum fetch size, 27-1
named bind variables, adding, 5-26
passivation and, 28-19
polymorphic entity usages, 27-34
polymorphic view rows, 27-38
programmatic, using, 27-54
query modes, 27-27
query results in stored procedures, working

with, 27-56
query-by-example view criteria, using, 5-22
range paging, 27-7
range size and data scrolling, 27-6
read-only

compared to entity-based, 7-40
creating, 5-2 to 5-5
editing, 5-5
inline views and, 5-32
join tables in, 5-34
programmatic, creating, 27-54
testing, 5-16

reference entities, adding, 7-8
row sets and row set iterators, multiple, 27-12
RowMatch objects, using, 27-32
RowSet and RowSetIterator, 5-18
runtime metadata, accessing, 25-10
runtime versus design time creation, 27-17
sorting and searching in memory, 27-26 to 27-32
SQL statement syntax, setting, 4-19
static data, populating with, 27-59
tuning for performance, 27-13 to 27-17
Tuning panel options, 27-16
validation

creating at runtime, 9-11
example usage, 9-13

view row client interfaces, 8-12
XML

consuming, 27-50
generating, 27-43

XML component definition files for, 5-5, 7-6
view row attributes, modifying, 7-29
view row client interfaces, 8-13
view.PageDefs package, 12-12

W
Web 2.0 pages, 1-16

web configuration files, A-3
web pages. See JSF pages
web search forms

about, 18-2
creating, 18-6

web services
about, 33-1
authentication, 33-13
creating data controls, 33-4
defining data control security, 33-9
encrypting and decrypting, 33-13
JAZN, 33-10
keystores, 33-6, 33-13
publishing application modules, 33-14
SAML assertion tokens, 33-11
securing data controls, 33-5
setting authentication, 33-9
setting digital signatures, 33-12
SOAP, 33-2
testing authentication, 33-10
UDDI, 33-2
username token authentication, 33-11
WSDL, 33-2
WS-Security, 33-5
X509 authentication, 33-11

WebLogic, deploying applications to, 34-14
WebSphere

configuring to run ADF applications, 34-21
deploying applications to, 34-16

web.xml file, 12-7, A-3, A-20
ADF filter mappings, 12-11
ADF model binding, A-24
application view caching, A-22
configuring for ADF Faces, 11-18
debugging, A-22
editing, 11-6
example of, 11-5
JSF parameters, A-24
registering the ADF binding filter, 12-10
saving state, A-21
servlet context parameter, defining, 12-11
tasks supported by, A-21
uploading, A-23

WHERE clause
join view objects, 7-13
multiple view criteria and, 5-24
named bind variables and, 5-26
view link consistency and, 27-4

WSDL, and web services, 33-2
WS-Security, about, 33-5

X
X509 authentication, for web services, 33-11
XML component definition files

application module, 5-10
definition of, 4-11
entity object, 6-4
entries for calculated attributes, 7-22, 7-23
entries for entity usages, 7-11

Index-21

entries for transient attributes, 6-48
extended components, 25-30
view object, entity-based, 7-6
view object, read-only, 5-5

Index-22

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started with Oracle ADF Applications
	1 Introduction to Oracle ADF Applications
	1.1 Introduction to Oracle ADF
	1.2 Framework Architecture and Supported Technologies
	1.2.1 View Layer Technologies Supported
	1.2.2 Controller Layer Technologies Supported
	1.2.3 Business Services Technologies Supported by ADF Model
	1.2.4 Recommended Technologies for Enterprise 4GL Developers

	1.3 Declarative Development with Oracle ADF and JavaServer Faces
	1.3.1 Declarative Data Access and Validation with ADF Business Components
	1.3.2 Declarative User Interface Design and Page Navigation with JavaServer Faces
	1.3.2.1 Declarative User Interface Design with JSF
	1.3.2.2 Declarative Page Navigation with JSF

	1.3.3 Declarative Data Binding with Oracle ADF Model Layer
	1.3.4 Simple, Event-Driven Approach to Add Custom Logic
	1.3.4.1 Simple-to-Handle Events in the Controller Layer
	1.3.4.2 Simple-to-Handle Events in the Business Service Layer
	1.3.4.3 Simple to Globally Extend Basic Framework Functionality

	1.4 Highlights of Additional ADF Features
	1.4.1 Comprehensive JDeveloper Design-Time Support
	1.4.2 Sophisticated AJAX-Style Web Pages Without Coding
	1.4.3 Centralized, Metadata-Driven Functionality
	1.4.4 Generation of Complete Web Tier Using Oracle JHeadstart

	2 Overview of Development Process with Oracle ADF and JSF
	2.1 Introduction to the Development Process
	2.2 Creating an Application Workspace to Hold Your Files
	2.3 Thinking About the Use Case and Page Flow
	2.4 Designing the Database Schema
	2.5 Creating a Layer of Business Domain Objects for Tables
	2.5.1 Dragging and Dropping to Reverse-Engineer Entity Objects for Tables
	2.5.2 Adding Business Validation Rules to Your Entity Object
	2.5.3 Defining UI Control Hints for Your Entity Objects

	2.6 Building the Business Service to Handle the Use Case
	2.6.1 Creating a Application Module to Manage Technicians
	2.6.2 Creating View Objects to Query Appropriate Data for the Use Case
	2.6.3 Using View Objects in the Application Module's Data Model
	2.6.4 Testing Your Service
	2.6.5 The Data Control for Your Application Module Enables Data Binding

	2.7 Dragging and Dropping Data to Create a New JSF Page
	2.8 Examining the Binding Metadata Files Involved
	2.9 Understanding How Components Reference Bindings via EL
	2.10 Configuring Binding Properties If Needed
	2.11 Understanding How Bindings Are Created at Runtime
	2.12 Making the Display More Data-Driven
	2.12.1 Hiding and Showing Groups of Components Based on Binding Properties
	2.12.2 Toggling Between Alternative Sets of Components Based on Binding Properties

	2.13 Adding the Edit Page and Finishing the Use Case
	2.13.1 Adding Another View Object to the Data Model
	2.13.2 Creating the Edit Page
	2.13.3 Synchronizing the Search and Edit Page
	2.13.4 Controlling Whether Data Appears Initially
	2.13.5 Running the Final Result

	2.14 Considering How Much Code Was Involved

	3 Oracle ADF Service Request Demo Overview
	3.1 Introduction to the Oracle ADF Service Request Demo
	3.1.1 Requirements for Oracle ADF Service Request Application
	3.1.2 Overview of the Schema

	3.2 Setting Up the Oracle ADF Service Request Demo
	3.2.1 Downloading and Installing the Oracle ADF Service Request Application
	3.2.2 Installing the Oracle ADF Service Request Schema
	3.2.3 Creating the Oracle JDeveloper Database Connection
	3.2.4 Running the Oracle ADF Service Request Demo in JDeveloper
	3.2.5 Running the Oracle ADF Service Request Demo Unit Tests in JDeveloper

	3.3 Quick Tour of the Oracle ADF Service Request Demo
	3.3.1 Customer Logs In and Reviews Existing Service Requests
	3.3.2 Customer Creates a Service Request
	3.3.3 Manager Logs In and Assigns a Service Request
	3.3.4 Manager Views Reports and Updates Technician Skills
	3.3.5 Technician Logs In and Updates a Service Request

	Part II Building Your Business Services
	4 Overview of ADF Business Components
	4.1 Prescriptive Approach and Reusable Code for Business Services
	4.2 What are ADF Business Components and What Can They Do?
	4.3 Relating ADF Business Components to Familiar 4GL Tools
	4.3.1 Familiar Concepts for Oracle Forms Developers
	4.3.2 Familiar Concepts for PeopleTools Developers
	4.3.3 Familiar Concepts for SiebelTools Developers
	4.3.4 Familiar Functionality for ADO.NET Developers

	4.4 Overview of ADF Business Components Implementation Architecture
	4.4.1 Based on Standard Java and XML
	4.4.2 Works with Any Application Server or Database
	4.4.3 Implements All of the J2EE Design Patterns You Need
	4.4.4 Components are Organized into Packages
	4.4.5 Architecture of the Base ADF Business Components Layer
	4.4.6 Components Are Metadata-Driven With Optional Custom Java Code
	4.4.6.1 Example of an XML-Only Component
	4.4.6.2 Example of a Component with Custom Java Class

	4.4.7 Recommendations for Configuring ADF Business Components Design Time Preferences
	4.4.7.1 Recommendation for Initially Disabling Custom Java Generation
	4.4.7.2 Recommendation for Disabling Use of Package XML File

	4.4.8 Basic Datatypes
	4.4.9 Generic Versus Strongly-Typed APIs
	4.4.10 Client-Accessible Components Can Have Custom Interfaces
	4.4.10.1 Framework Client Interfaces for Components
	4.4.10.2 Custom Client Interfaces for Components

	4.5 Understanding the Active Data Model
	4.5.1 What is an Active Data Model?
	4.5.2 Examples of the Active Data Model In Action
	4.5.3 Active Data Model Allows You to Eliminate Most Client-Side Code

	4.6 Overview of ADF Business Components Design Time Facilities
	4.6.1 Choosing a Connection, SQL Flavor, and Type Map
	4.6.2 Creating New Components Using Wizards
	4.6.3 Quick-Creating New Components Using the Context Menu
	4.6.4 Editing Components Using the Component Editor
	4.6.5 Visualizing, Creating, and Editing Components Using UML Diagrams
	4.6.6 Testing Application Modules Using the Business Components Browser
	4.6.7 Refactoring Components

	5 Querying Data Using View Objects
	5.1 Introduction to View Objects
	5.2 Creating a Simple, Read-Only View Object
	5.2.1 How to Create a Read-Only View Object
	5.2.2 What Happens When You Create a Read-Only View Object
	5.2.3 What You May Need to Know About View Objects
	5.2.3.1 Editing an Existing View Object Definition
	5.2.3.2 Working with Queries That Include SQL Expressions
	5.2.3.3 Controlling the Length, Precision, and Scale of View Object Attributes

	5.3 Using a View Object in an Application Module's Data Model
	5.3.1 How to Create an Application Module
	5.3.1.1 Understanding the Difference Between View Object Components and View Object Instances

	5.3.2 What Happens When You Create an Application Module
	5.3.3 What You May Need to Know About Application Modules
	5.3.3.1 Editing an Application Module's Runtime Configuration Properties

	5.4 Defining Attribute Control Hints
	5.4.1 How to Add Attribute Control Hints
	5.4.2 What Happens When You Add Attribute Control Hints
	5.4.3 What You May Need to Know About Message Bundles

	5.5 Testing View Objects Using the Business Components Browser
	5.5.1 How to Test a View Object Using the Business Components Browser
	5.5.2 What Happens When You Use the Business Components Browser
	5.5.3 What You May Need to Know About the Business Components Browser
	5.5.3.1 Customizing Configuration Options for the Current Run
	5.5.3.2 Enabling ADF Business Components Debug Diagnostics

	5.6 Working Programmatically with View Object Query Results
	5.6.1 Common Methods for Working with the View Object’s Default RowSet
	5.6.2 Counting the Number of Rows in a RowSet

	5.7 How to Create a Command-Line Java Test Client
	5.7.1 What Happens When You Run a Test Client Program
	5.7.2 What You May Need to Know About Running a Test Client

	5.8 Filtering Results Using Query-By-Example View Criteria
	5.8.1 How to Use View Criteria to Filter View Object Results
	5.8.2 What Happens When You Use View Criteria to Filter View Object Results
	5.8.3 What You May Need to Know About Query-By-Example Criteria
	5.8.3.1 Use Attribute Names in View Criteria, Column Names in WHERE Clause
	5.8.3.2 Testing View Criteria in the Business Component Browser
	5.8.3.3 Altering Compound Search Conditions Using Multiple View Criteria Rows
	5.8.3.4 Searching for a Row Whose Attribute Value is NULL Value
	5.8.3.5 Searching Case-Insensitively
	5.8.3.6 Clearing View Criteria in Effect
	5.8.3.7 Applying View Criteria Causes Query to be Re-parsed

	5.9 Using Named Bind Variables
	5.9.1 Adding a Named Bind Variable
	5.9.2 What Happens When You Add Named Bind Variables
	5.9.3 What You May Need to Know About Named Bind Variables
	5.9.3.1 Errors Related to Bind Variables
	5.9.3.2 Bind Variables Default to NULL If No Default Supplied
	5.9.3.3 Setting Existing Bind Variable Values at Runtime
	5.9.3.4 Adding a Named Bind Variable at Runtime
	5.9.3.5 Understanding the Default Use of Inline Views for Read-Only Queries

	5.10 Working with Master/Detail Data
	5.10.1 How to Create a Read-Only View Object Joining Tables
	5.10.1.1 Using the Query Builder to Simplify Creating Joins
	5.10.1.2 Testing the Join View

	5.10.2 How to Create Master/Detail Hierarchies Using View Links
	5.10.3 What Happens When You Create Master/Detail Hierarchies Using View Links
	5.10.4 What You May Need to Know About View Links
	5.10.4.1 View Link Accessor Attributes Return a RowSet
	5.10.4.2 How to Access a Detail Collection Using the View Link Accessor
	5.10.4.3 How to Enable Active Master/Detail Coordination in the Data Model

	5.11 Generating Custom Java Classes for a View Object
	5.11.1 How To Generate Custom Classes
	5.11.1.1 Generating Bind Variable Accessors
	5.11.1.2 Generating View Row Attribute Accessors
	5.11.1.3 Exposing View Row Accessors to Clients
	5.11.1.4 Configuring Default Java Generation Preferences

	5.11.2 What Happens When You Generate Custom Classes
	5.11.2.1 Seeing and Navigating to Custom Java Files

	5.11.3 What You May Need to Know About Custom Classes
	5.11.3.1 About the Framework Base Classes for a View Object
	5.11.3.2 You Can Safely Add Code to the Custom Component File
	5.11.3.3 Attribute Indexes and InvokeAccessor Generated Code

	6 Creating a Business Domain Layer Using Entity Objects
	6.1 Introduction to Entity Objects
	6.2 Creating Entity Objects and Associations
	6.2.1 How to Create Entity Objects and Associations from Existing Tables
	6.2.2 What Happens When You Create Entity Objects and Associations from Existing Tables
	6.2.2.1 What Happens When a Table Has No Primary Key

	6.2.3 Creating Entity Objects Using the Create Entity Wizard
	6.2.4 Creating an Entity Object for a Synonym or View
	6.2.5 Editing an Existing Entity Object or Association
	6.2.6 Creating Database Tables from Entity Objects
	6.2.6.1 Using Database Key Constraints for an Association

	6.2.7 Synchronizing an Entity with Changes to Its Database Table
	6.2.8 What You May Need to Know About Creating Entities

	6.3 Creating and Configuring Associations
	6.3.1 How to Create an Association
	6.3.1.1 Changing Entity Association Accessor Names
	6.3.1.2 Renaming and Moving Associations to a Different Package

	6.3.2 What Happens When You Create an Association
	6.3.3 What You May Need to Know About Composition Associations

	6.4 Creating an Entity Diagram for Your Business Layer
	6.4.1 How to Create an Entity Diagram
	6.4.1.1 Publishing the Business Entity Diagram

	6.4.2 What Happens When You Create an Entity Diagram
	6.4.3 What You May Need to Know About Creating Entities On a Diagram
	6.4.3.1 UML Diagram is Actively Synchronized with Business Components
	6.4.3.2 UML Diagram Adds Extra Metadata to XML Component Descriptors

	6.5 Defining Attribute Control Hints
	6.5.1 How to Add Attribute Control Hints
	6.5.2 What Happens When You Add Attribute Control Hints
	6.5.3 Internationalizing the Date Format

	6.6 Configuring Declarative Runtime Behavior
	6.6.1 How To Configure Declarative Runtime Behavior
	6.6.2 What Happens When You Configure Declarative Runtime Behavior
	6.6.3 About the Declarative Entity Object Features
	6.6.3.1 Legal Database and Java Data types for an Entity Object Attribute
	6.6.3.2 Indicating Datatype Length, Precision, and Scale
	6.6.3.3 Controlling the Updatability of an Attribute
	6.6.3.4 Making an Attribute Mandatory
	6.6.3.5 Defining the Primary Key for the Entity
	6.6.3.6 Defining a Static Default Value
	6.6.3.7 Synchronization with Trigger-Assigned Values
	6.6.3.8 Trigger-Assigned Primary Key Values from a Database Sequence
	6.6.3.9 Lost Update Protection
	6.6.3.10 History Attributes
	6.6.3.11 Setting the Discriminator Attribute for Entity Object Inheritance Hierarchies
	6.6.3.12 Understanding and Configuring Composition Behavior

	6.7 Using Declarative Validation Rules
	6.7.1 How to Add a Validation Rule
	6.7.2 What Happens When You Add a Validation Rule
	6.7.3 What You May Need to Know About Validation Rules
	6.7.3.1 Understanding the Built-in Entity-Level Validators
	6.7.3.2 Understanding the Built-in Attribute-Level Validators
	6.7.3.3 Caveat About the List Validator

	6.8 Working Programmatically with Entity Objects and Associations
	6.8.1 Finding an Entity Object by Primary Key
	6.8.2 Accessing an Associated Entity Using the Accessor Attribute
	6.8.3 Updating or Removing an Existing Entity Row
	6.8.4 Creating a New Entity Row
	6.8.5 Testing Using a Static Main Method

	6.9 Generating Custom Java Classes for an Entity Object
	6.9.1 How To Generate Custom Classes
	6.9.1.1 Choosing to Generate Entity Attribute Accessors

	6.9.2 What Happens When You Generate Custom Classes
	6.9.3 Seeing and Navigating to Custom Java Files
	6.9.4 What You May Need to Know About Custom Java Classes
	6.9.4.1 About the Framework Base Classes for an Entity Object
	6.9.4.2 You Can Safely Add Code to the Custom Component File
	6.9.4.3 Configuring Default Java Generation Preferences
	6.9.4.4 Attribute Indexes and InvokeAccessor Generated Code

	6.9.5 Programmatic Example for Comparison Using Custom Entity Classes

	6.10 Adding Transient and Calculated Attributes to an Entity Object
	6.10.1 How to Add a Transient Attribute
	6.10.2 What Happens When You Add Transient Attribute
	6.10.3 Adding Java Code in the Entity Class to Perform Calculation

	7 Building an Updatable Data Model With Entity-Based View Objects
	7.1 Introduction to Entity-Based View Objects
	7.2 Creating an Entity-Based View Object
	7.2.1 How to Create an Entity-Based View Object
	7.2.1.1 Creating a View Object Having All Attributes of an Entity Object

	7.2.2 What Happens When You Create an Entity-Based View Object
	7.2.3 Editing an Existing Entity-Based View Object Definition
	7.2.4 What You May Need to Know About View Objects
	7.2.4.1 View Object Attributes Inherit Properties from Underlying Entity Object Attributes

	7.3 Including Reference Entities in Join View Objects
	7.3.1 How to Include Reference Entities in a View Object
	7.3.1.1 Adding Additional Reference Entity Usages to the View Object
	7.3.1.2 Selecting Additional Attributes from Reference Entity Usages
	7.3.1.3 Renaming Attributes from Reference Entity Usages
	7.3.1.4 Removing Unnecessary Key Attributes from Reference Entity Usages
	7.3.1.5 Hiding the Primary Key Attributes from Reference Entity Usages

	7.3.2 What Happens When You Reference Entities in a View Object
	7.3.3 What You May Need to Know About Join View Objects
	7.3.3.1 Showing View Objects in a Business Components Diagram
	7.3.3.2 Modify Default Join Clause to Be Outer Join When Appropriate

	7.4 Creating an Association-Based View Link
	7.4.1 How to Create an Association-Based View Link
	7.4.2 What Happens When You Create an Association-Based View Link

	7.5 Testing Entity-Based View Objects Interactively
	7.5.1 Overview of Business Component Browser Functionality for an Updatable Data Model
	7.5.2 Adding View Object Instances to the Data Model
	7.5.3 How to Test Entity-Based View Objects Interactively
	7.5.4 What Happens When You Test Entity-Based View Objects Interactively
	7.5.5 Simulating End-User Interaction with Your Application Module Data Model
	7.5.5.1 Testing Master/Detail Coordination
	7.5.5.2 Testing UI Control Hints
	7.5.5.3 Testing View Objects That Reference Entity Usages
	7.5.5.4 Testing Business Domain Layer Validation
	7.5.5.5 Testing Alternate Language Message Bundles and Control Hints
	7.5.5.6 Testing Row Creation and Default Value Generation
	7.5.5.7 Testing New Detail Rows Have Correct Foreign Keys

	7.6 Adding Calculated and Transient Attributes to an Entity-Based View Object
	7.6.1 How to Add a SQL-Calculated Attribute
	7.6.2 What Happens When You Add a SQL-Calculated Attribute
	7.6.3 How to Add a Transient Attribute
	7.6.3.1 Adding an Entity-Mapped Transient Attribute to a View Object

	7.6.4 What Happens When You Add a Transient Attribute
	7.6.5 Adding Java Code in the View Row Class to Perform Calculation
	7.6.6 What You May Need to Know About Transient Attributes

	7.7 Understanding How View Objects and Entity Objects Cooperate at Runtime
	7.7.1 Each View Row or Entity Row Has a Related Key
	7.7.2 What Role Does the Entity Cache Play in the Transaction
	7.7.3 Metadata Ties Together Cleanly Separated Roles of Data Source and Data Sink
	7.7.4 What Happens When a View Object Executes Its Query
	7.7.5 What Happens When You Modify a View Row Attribute
	7.7.6 What Happens When You Change a Foreign Key Attribute
	7.7.7 What Happens When You Re-query Data
	7.7.7.1 Unmodified Attributes in Entity Cache are Refreshed During Re-query
	7.7.7.2 Modified Attributes in Entity Cache are Left Intact During Re-query
	7.7.7.3 Overlapping Subsets of Attributes are Merged During Re-query

	7.7.8 What Happens When You Commit the Transaction
	7.7.9 Interactively Testing Multiuser Scenarios

	7.8 Working Programmatically with Entity-Based View Objects
	7.8.1 Example of Iterating Master/Detail/Detail Hierarchy
	7.8.2 Example of Finding a Row and Updating a Foreign Key Value
	7.8.3 Example of Creating a New Service Request
	7.8.4 Example of Retrieving the Row Key Identifying a Row

	7.9 Summary of Difference Between Entity-Based View Objects and Read-Only View Objects
	7.9.1 Runtime Features Unique to Entity-Based View Objects
	7.9.2 View Objects with No Entity Usage Are Read-Only
	7.9.3 What You May Need to Know About Enabling View Object Key Management for Read-Only View Objects

	8 Implementing Business Services with Application Modules
	8.1 Introduction to Application Modules
	8.2 Creating an Application Module
	8.2.1 Creating an Application Module
	8.2.2 What Happens When You Create an Application Module
	8.2.3 Editing an Existing Application Module
	8.2.4 Configuring Your Application Module Database Connection
	8.2.4.1 Using a JDBC URL Connection Type
	8.2.4.2 Using a JDBC Datasource Connection Type

	8.2.5 Managing Your Application Module's Runtime Configurations
	8.2.6 What You Might Need to Know About Application Module Connections
	8.2.6.1 The Business Components Browser Requires a JDBC URL Connection
	8.2.6.2 Testing the SRService Application Module in the Business Components Browser

	8.3 Adding a Custom Service Method
	8.3.1 How to Generate a Custom Class for an Application Module
	8.3.2 What Happens When You Generate a Custom Class for an Application Module
	8.3.3 What You May Need to Know About Default Code Generation
	8.3.4 Debugging the Application Module Using the Business Components Tester
	8.3.5 How to Add a Custom Service Method to an Application Module

	8.4 Publishing Custom Service Methods to Clients
	8.4.1 How to Publish Custom Service Methods to Clients
	8.4.2 What Happens When You Publish Custom Service Methods to Clients
	8.4.3 How to Generate Client Interfaces for View Objects and View Rows
	8.4.4 What You May Need to Know About Method Signatures on the Client Interface
	8.4.5 What You May Need to Know About Passing Information from the Data Model

	8.5 Working Programmatically with an Application Module's Client Interface
	8.5.1 How to Work Programmatically with an Application Module's Client Interface
	8.5.2 What Happens When You Work with an Application Module's Client Interface
	8.5.3 How to Access an Application Module Client Interface
	8.5.3.1 How to Access an Application Module Client Interface in a JSF Web Application
	8.5.3.2 How to Access an Application Module Client Interface in a JSP/Struts Web Application
	8.5.3.3 How to Access an Application Module Client Interface in an ADF Swing Application

	8.6 Overriding Built-in Framework Methods
	8.6.1 How to Override a Built-in Framework Method
	8.6.2 What Happens When You Override a Built-in Framework Method
	8.6.3 How to Override prepareSession() to Set Up an Application Module for a New User Session

	8.7 Creating an Application Module Diagram for Your Business Service
	8.7.1 How to Create an Application Module Diagram
	8.7.2 What Happens When You Create an Application Module Diagram
	8.7.3 What You May Need to Know About Application Module Diagrams
	8.7.3.1 Using the Diagram for Editing the Application Module
	8.7.3.2 Controlling Display Options
	8.7.3.3 Filtering Method Names
	8.7.3.4 Show Related Objects and Implementation Files
	8.7.3.5 Publishing the Application Module Diagram
	8.7.3.6 Testing the Application Module From the Diagram

	8.8 Supporting Multipage Units of Work
	8.8.1 Overview of Application Module Pooling and State Management
	8.8.2 Experimenting with State Management in the Business Components Browser

	8.9 Deciding on the Granularity of Application Modules
	8.9.1 Use Cases Assist in Planning Your Application Modules
	8.9.2 Application Modules Are Designed to Support Assembly
	8.9.3 Root Application Modules Versus Nested Application Module Usages

	9 Implementing Programmatic Business Rules in Entity Objects
	9.1 Introduction to Programmatic Business Rules
	9.2 Understanding the Validation Cycle
	9.2.1 Types of Entity Object Validation Rules
	9.2.1.1 Attribute-Level Validation Rules
	9.2.1.2 Entity-Level Validation Rules

	9.2.2 Understanding Commit Processing and Validation
	9.2.3 Avoiding Infinite Validation Cycles
	9.2.4 What Happens When Validations Fail
	9.2.5 Understanding Entity Objects Row States

	9.3 Using Method Validators
	9.3.1 How to Create an Attribute-Level Method Validation
	9.3.2 What Happens When You Create an Attribute-Level Method Validator
	9.3.3 How to Create an Entity-Level Method Validator
	9.3.4 What Happens When You Create an Entity-Level Method Validator
	9.3.5 What You Might Need To Know About Translating Validation Rule Error Messages
	9.3.6 What You May Need to Know About Referencing the Invalid Value in an Attribute-Level Validation Error Message

	9.4 Assigning Programmatically-Derived Attribute Values
	9.4.1 Defaulting Values for New Rows at Create Time
	9.4.1.1 Choosing Between create() and initDefaults() Methods
	9.4.1.2 Eagerly Defaulting an Attribute Value from a Database Sequence

	9.4.2 Assigning Derived Values Before Saving
	9.4.3 Assigning Derived Values When an Attribute Value is Set

	9.5 Undoing Pending Changes to an Entity Using the Refresh Method
	9.5.1 Controlling What Happens to New Rows During a Refresh
	9.5.2 Cascading Refresh to Composed Children Entity Rows

	9.6 Using View Objects for Validation
	9.6.1 Creating View Objects at Runtime for Validation
	9.6.2 Implementing an Efficient Existence Check
	9.6.3 Validating Conditions Related to All Entities of a Given Type

	9.7 How to Access Related Entity Rows Using Association Accessors
	9.8 How to Reference Information About the Authenticated User
	9.8.1 Referencing Role Information About the Authenticated User
	9.8.2 Referencing the Name of the Authenticated User

	9.9 How to Access Original Attribute Values
	9.10 How to Store Information About the Current User Session
	9.11 How to Access the Current Date and Time
	9.12 How to Send Notifications Upon a Successful Commit
	9.13 How to Conditionally Prevent an Entity Row from Being Removed
	9.14 How to Implement Conditional Updatability for Attributes
	9.15 Additional Resources

	10 Overview of Application Module Data Binding
	10.1 Overview of Data Controls and Declarative Bindings
	10.1.1 Data Controls Abstract the Implementation Technology of a Business Service
	10.1.2 Bindings Connect UI Controls to Data Collections and Operations

	10.2 Understanding the Application Module Data Control
	10.3 How an Application Module Appears in the Data Control Palette
	10.3.1 Overview of the SRService Application Module
	10.3.2 How to Change the Data Control Name Before You Begin Building Pages
	10.3.3 How the Data Model and Service Methods Appear in the Data Control Palette
	10.3.4 How to Change View Instance Names Before You Begin Building Pages
	10.3.5 How Transaction Control Operations Appear in the Data Control Palette
	10.3.6 How View Objects Appear in the Data Control Palette
	10.3.6.1 Built-in Operations for View Object Data Collections

	10.3.7 How Nested Application Modules Appear in the Data Control Palette

	10.4 How to Add a Create Button on a Page
	10.4.1 What Happens When You Drop a Create Button on a Web Page
	10.4.2 What Happens When You Drop a Create Operation Onto a Swing Panel
	10.4.3 When to Use CreateInsert Instead of Create
	10.4.4 What You May Need to Know About Create and CreateInsert

	10.5 Application Module Databinding Tips and Techniques
	10.5.1 How to Create a Record Status Display
	10.5.2 How to Work with Named View Object Bind Variables
	10.5.3 How to Use Find Mode to Implement Query-by-Example
	10.5.4 How to Customize the ADF Page Lifecycle to Work Programmatically with Bindings
	10.5.4.1 Globally Customizing the ADF Page Lifecycle
	10.5.4.2 Customizing the Page Lifecycle for a Single Page
	10.5.4.3 Using Custom ADF Page Lifecycle to Invoke an onPageLoad Backing Bean Method

	10.5.5 How to Use Refresh Correctly for InvokeAction and Iterator Bindings
	10.5.5.1 Correctly Configuring the Refresh Property of Iterator Bindings
	10.5.5.2 Refreshing an Iterator Binding Does Not Forcibly Re-Execute Query
	10.5.5.3 Correctly Configuring Refresh Property of InvokeAction Executables

	10.5.6 Understanding the Difference Between setCurrentRowWithKey and setCurrentRowWithKeyValue
	10.5.7 Understanding Bundled Exception Mode

	10.6 Overview of How SRDemo Pages Use the SRService
	10.6.1 The SRList Page
	10.6.1.1 Overview of Data Binding in the SRList Page
	10.6.1.2 Business Service Notes for the SRList Page

	10.6.2 The SRMain Page
	10.6.2.1 Overview of Data Binding in the SRMain Page
	10.6.2.2 Business Service Notes for the SRMain Page

	10.6.3 The SREdit Page
	10.6.3.1 Overview of Data Binding in the SREdit Page
	10.6.3.2 Business Service Notes for the SREdit Page

	10.6.4 The SRSearch Page
	10.6.4.1 Overview of Data Binding in the SRSearch Page
	10.6.4.2 Business Service Notes for the SRSearch Page

	10.6.5 The SRStaffSearch Page
	10.6.5.1 Overview of Data Binding in the SRStaffSearch Page
	10.6.5.2 Business Service Notes for the SRStaffSearch Page

	10.6.6 The SRManage Page
	10.6.6.1 Overview of Data Binding in the SRManage Page
	10.6.6.2 Business Service Notes for the SRManage Page

	10.6.7 The SRSkills Page
	10.6.7.1 Overview of Data Binding in the SRSkills Page
	10.6.7.2 Business Service Notes for the SRSkills Page

	10.6.8 The SRCreate Page
	10.6.8.1 Overview of Data Binding in the SRCreate Page
	10.6.8.2 Business Service Notes for the SRCreate Page

	10.6.9 The SRConfirmCreate Page
	10.6.9.1 Overview of Data Binding in the SRConfirmCreate Page
	10.6.9.2 Business Service Notes for the SRCreate Page

	Part III Building Your Web Interface
	11 Getting Started with ADF Faces
	11.1 Introduction to ADF Faces
	11.2 Setting Up a Workspace and Project
	11.2.1 What Happens When You Use an Application Template to Create a Workspace
	11.2.1.1 Starter web.xml File
	11.2.1.2 Starter faces-config.xml File

	11.2.2 What You May Need to Know About the ViewController Project
	11.2.3 What You May Need to Know About Multiple JSF Configuration Files

	11.3 Creating a Web Page
	11.3.1 How to Add a JSF Page
	11.3.2 What Happens When You Create a JSF Page
	11.3.3 What You May Need to Know About Using the JSF Navigation Diagram
	11.3.4 What You May Need to Know About ADF Faces Dependencies and Libraries

	11.4 Laying Out a Web Page
	11.4.1 How to Add UI Components to a JSF Page
	11.4.2 What Happens When You First Insert an ADF Faces Component
	11.4.2.1 More About the web.xml File
	11.4.2.2 More About the faces-config.xml File
	11.4.2.3 Starter adf-faces-config.xml File

	11.4.3 What You May Need to Know About Creating JSF Pages
	11.4.3.1 Editing in the Structure Window
	11.4.3.2 Displaying Errors

	11.4.4 Using the PanelPage Component
	11.4.4.1 PanelPage Facets
	11.4.4.2 Page Body Contents

	11.5 Creating and Using a Backing Bean for a Web Page
	11.5.1 How to Create and Configure a Backing Bean
	11.5.2 What Happens When You Create and Configure a Backing Bean
	11.5.3 How to Use a Backing Bean in a JSF Page
	11.5.4 How to Use the Automatic Component Binding Feature
	11.5.5 What Happens When You Use Automatic Component Binding in JDeveloper
	11.5.6 What You May Need to Know About Backing Beans and Managed Beans
	11.5.7 Using ADF Data Controls and Backing Beans

	11.6 Best Practices for ADF Faces

	12 Displaying Data on a Page
	12.1 Introduction to Displaying Data on a Page
	12.2 Using the Data Control Palette
	12.2.1 How to Understand the Items on the Data Control Palette
	12.2.2 How to Use the Data Control Palette
	12.2.3 What Happens When You Use the Data Control Palette
	12.2.4 What Happens at Runtime

	12.3 Working with the DataBindings.cpx File
	12.3.1 How to Create a DataBindings.cpx File
	12.3.2 What Happens When You Create a DataBindings.cpx File

	12.4 Configuring the ADF Binding Filter
	12.4.1 How to Configure the ADF Binding Filter
	12.4.2 What Happens When You Configure an ADF Binding Filter
	12.4.3 What Happens at Runtime

	12.5 Working with Page Definition Files
	12.5.1 How to Create a Page Definition File
	12.5.2 What Happens When You Create a Page Definition File
	12.5.2.1 Binding Objects Defined in the parameters Element
	12.5.2.2 Binding Objects Defined in the executables Element
	12.5.2.3 Binding Objects Defined in the bindings Element

	12.5.3 What Happens at Runtime
	12.5.4 What You May Need to Know About Binding Container Scope

	12.6 Creating ADF Data Binding EL Expressions
	12.6.1 How to Create an ADF Data Binding EL Expression
	12.6.2 How to Use the Expression Builder
	12.6.3 What Happens When You Create ADF Data Binding Expressions
	12.6.3.1 EL Expressions That Reference Attribute Binding Objects
	12.6.3.2 EL Expressions That Reference Table Binding Objects
	12.6.3.3 EL Expressions That Reference Action Binding Objects

	12.6.4 What You May Need to Know About ADF Binding Properties

	13 Creating a Basic Page
	13.1 Introduction to Creating a Basic Page
	13.2 Using Attributes to Create Text Fields
	13.2.1 How to Use the Data Control Palette to Create a Text Field
	13.2.2 What Happens When You Use the Data Control Palette to Create a Text Field
	13.2.2.1 Creating and Using Iterator Bindings
	13.2.2.2 Creating and Using Value Bindings
	13.2.2.3 Using EL Expressions to Bind UI Components

	13.2.3 What Happens at Runtime: The JSF and ADF Lifecycles

	13.3 Creating a Basic Form
	13.3.1 How to Use the Data Control Palette to Create a Form
	13.3.2 What Happens When You Use the Data Control Palette to Create a Form
	13.3.2.1 Using Facets

	13.4 Incorporating Range Navigation into Forms
	13.4.1 How to Insert Navigation Controls into a Form
	13.4.2 What Happens When Command Buttons Are Created Using the Data Control Palette
	13.4.2.1 Using Action Bindings for Built-in Navigation Operations
	13.4.2.2 Iterator RangeSize Attribute
	13.4.2.3 Using EL Expressions to Bind to Navigation Operations

	13.4.3 What Happens at Runtime: About Action Events and Action Listeners
	13.4.4 What You May Need to Know About the Browser Back Button

	13.5 Creating a Form to Edit an Existing Record
	13.5.1 How to Use the Data Control Palette to Create Edit Forms
	13.5.2 What Happens When You Use Built-in Operations to Change Data

	13.6 Creating an Input Form
	13.6.1 How to Create an Input Form
	13.6.2 What Happens When You Create an Input Form
	13.6.3 What You May Need to Know About Displaying Sequence Numbers
	13.6.4 What You May Need to Know About Create Forms and the RefreshCondition

	13.7 Modifying the UI Components and Bindings on a Form
	13.7.1 How to Modify the UI Components and Bindings
	13.7.1.1 Changing the Value Binding for a UI Component
	13.7.1.2 Changing the Action Binding for a UI Component

	13.7.2 What Happens When You Modify Attributes and Bindings

	14 Adding Tables
	14.1 Introduction to Adding Tables
	14.2 Creating a Basic Table
	14.2.1 How to Create a Basic Table
	14.2.2 What Happens When You Use the Data Control Palette to Create a Table
	14.2.2.1 Iterator and Value Bindings for Tables
	14.2.2.2 Code on the JSF Page for an ADF Faces Table

	14.3 Incorporating Range Navigation into Tables
	14.3.1 How to Use Navigation Controls in a Table
	14.3.2 What Happens When You Use Navigation Controls in a Table
	14.3.3 What Happens at Runtime
	14.3.4 What You May Need to Know About the Browser Back Button

	14.4 Modifying the Attributes Displayed in the Table
	14.4.1 How to Modify the Displayed Attributes
	14.4.2 How to Change the Binding for a Table
	14.4.3 What Happens When You Modify Bindings or Displayed Attributes

	14.5 Adding Hidden Capabilities to a Table
	14.5.1 How to Use the DetailStamp Facet
	14.5.2 What Happens When You Use the DetailStamp Facet
	14.5.3 What Happens at Runtime

	14.6 Enabling Row Selection in a Table
	14.6.1 How to Use the TableSelectOne Component in the Selection Facet
	14.6.2 What Happens When You Use the TableSelectOne Component
	14.6.3 What Happens at Runtime
	14.6.4 What You May Need to Know About Using Links Instead of the Selection Facet
	14.6.5 How to Use the TableSelectMany Component in the Selection Facet
	14.6.6 What Happens When You Use the TableSelectMany Component
	14.6.7 What Happens at Runtime

	14.7 Setting the Current Object Using a Command Component
	14.7.1 How to Manually Set the Current Row
	14.7.2 What Happens When You Set the Current Row
	14.7.3 What Happens At Runtime

	15 Displaying Master-Detail Data
	15.1 Introduction to Displaying Master-Detail Data
	15.2 Identifying Master-Detail Objects on the Data Control Palette
	15.3 Using Tables and Forms to Display Master-Detail Objects
	15.3.1 How to Display Master-Detail Objects in Tables and Forms
	15.3.2 What Happens When You Create Master-Detail Tables and Forms
	15.3.2.1 Code Generated in the JSF Page
	15.3.2.2 Binding Objects Defined in the Page Definition File

	15.3.3 What Happens at Runtime
	15.3.4 What You May Need to Know About Master-Detail on Separate Pages

	15.4 Using Trees to Display Master-Detail Objects
	15.4.1 How to Display Master-Detail Objects in Trees
	15.4.2 What Happens When You Create ADF Databound Trees
	15.4.2.1 Code Generated in the JSF Page
	15.4.2.2 Binding Objects Defined in the Page Definition File

	15.4.3 What Happens at Runtime
	15.4.4 What You May Need to Know About Adding Command Links to Tree Nodes

	15.5 Using Tree Tables to Display Master-Detail Objects
	15.5.1 How to Display Master-Detail Objects in Tree Tables
	15.5.2 What Happens When You Create a Databound Tree Table
	15.5.2.1 Code Generated in the JSF Page
	15.5.2.2 Binding Objects Defined in the Page Definition File

	15.5.3 What Happens at Runtime

	15.6 Using an Inline Table to Display Detail Data in a Master Table
	15.6.1 How to Display Detail Data Using an Inline Table
	15.6.2 What Happens When You Create an Inline Detail Table
	15.6.2.1 Code Generated in the JSF Page
	15.6.2.2 Binding Objects Defined in the Page Definition File

	15.6.3 What Happens at Runtime

	16 Adding Page Navigation
	16.1 Introduction to Page Navigation
	16.2 Creating Navigation Rules
	16.2.1 How to Create Page Navigation Rules
	16.2.1.1 About Navigation Rule Elements
	16.2.1.2 Using the Navigation Modeler to Define Navigation Rules
	16.2.1.3 Using the JSF Configuration Editor

	16.2.2 What Happens When You Create a Navigation Rule
	16.2.3 What Happens at Runtime
	16.2.4 What You May Need to Know About Navigation Rules and Cases
	16.2.4.1 Defining Rules in Multiple Configuration Files
	16.2.4.2 Overlapping Rules
	16.2.4.3 Conflicting Navigation Rules
	16.2.4.4 Splitting Navigation Cases Over Multiple Rules

	16.2.5 What You May Need to Know About the Navigation Modeler

	16.3 Using Static Navigation
	16.3.1 How to Create Static Navigation
	16.3.2 What Happens When You Create Static Navigation

	16.4 Using Dynamic Navigation
	16.4.1 How to Create Dynamic Navigation
	16.4.2 What Happens When You Create Dynamic Navigation
	16.4.3 What Happens at Runtime
	16.4.4 What You May Need to Know About Using Default Cases
	16.4.5 What You May Need to Know About Action Listener Methods
	16.4.6 What You May Need to Know About Data Control Method Outcome Returns

	17 Creating More Complex Pages
	17.1 Introduction to More Complex Pages
	17.2 Using a Managed Bean to Store Information
	17.2.1 How to Use a Managed Bean to Store Information
	17.2.2 What Happens When You Create a Managed Bean

	17.3 Creating Command Components to Execute Methods
	17.3.1 How to Create a Command Component Bound to a Service Method
	17.3.2 What Happens When You Create Command Components Using a Method
	17.3.2.1 Using Parameters in a Method
	17.3.2.2 Using EL Expressions to Bind to Methods

	17.3.3 What Happens at Runtime

	17.4 Setting Parameter Values Using a Command Component
	17.4.1 How to Set Parameters Using Command Components
	17.4.2 What Happens When You Set Parameters
	17.4.3 What Happens at Runtime

	17.5 Overriding Declarative Methods
	17.5.1 How to Override a Declarative Method
	17.5.2 What Happens When You Override a Declarative Method

	18 Creating a Search Form
	18.1 Introduction to Creating Search Forms
	18.2 Creating a EnterQuery/ExecuteQuery Search Form
	18.2.1 How to Create an EnterQuery/ExecuteQuery Search Page
	18.2.2 What Happens When You Create a Search Form

	18.3 Creating a Web-type Search Form
	18.3.1 How to Create a Search Form and Separate Results Page
	18.3.2 What Happens When You Create A Web-type Search Form
	18.3.3 What You May Need to Know
	18.3.4 About Creating Search and Results on the Same Page
	18.3.5 How To Create Search and Results on the Same Page
	18.3.6 What Happens When Search and Results are on the Same Page

	18.4 Creating Search Page Using Named Bind Variables
	18.4.1 How to Create a Parameterized Search Form
	18.4.2 What Happens When You Use Parameter Methods
	18.4.3 What Happens at Runtime

	18.5 Conditionally Displaying the Results Table on a Search Page
	18.5.1 How to Add Conditional Display Capabilities
	18.5.2 What Happens When you Conditionally Display the Results Table

	19 Using Complex UI Components
	19.1 Introduction to Complex UI Components
	19.2 Using Dynamic Menus for Navigation
	19.2.1 How to Create Dynamic Navigation Menus
	19.2.1.1 Creating a Menu Model
	19.2.1.2 Creating the JSF Page for Each Menu Item
	19.2.1.3 Creating the JSF Navigation Rules

	19.2.2 What Happens at Runtime
	19.2.3 What You May Need to Know About Menus

	19.3 Using Popup Dialogs
	19.3.1 How to Create Popup Dialogs
	19.3.1.1 Defining a JSF Navigation Rule for Launching a Dialog
	19.3.1.2 Creating the JSF Page That Launches a Dialog
	19.3.1.3 Creating the Dialog Page and Returning a Dialog Value
	19.3.1.4 Handling the Return Value
	19.3.1.5 Passing a Value into a Dialog

	19.3.2 How the SRDemo Popup Dialogs Are Created
	19.3.3 What You May Need to Know About ADF Faces Dialogs
	19.3.4 Other Information

	19.4 Enabling Partial Page Rendering
	19.4.1 How to Enable PPR
	19.4.2 What Happens at Runtime
	19.4.3 What You May Need to Know About PPR and Screen Readers

	19.5 Creating a Multipage Process
	19.5.1 How to Create a Process Train
	19.5.1.1 Creating a Process Train Model
	19.5.1.2 Creating the JSF Page for Each Train Node
	19.5.1.3 Creating the JSF Navigation Rules

	19.5.2 What Happens at Runtime
	19.5.3 What You May Need to Know About Process Trains and Menus

	19.6 Providing File Upload Capability
	19.6.1 How to Support File Uploading on a Page
	19.6.2 What Happens at Runtime
	19.6.3 What You May Need to Know About ADF Faces File Upload
	19.6.4 Configuring File Uploading Initialization Parameters
	19.6.5 Configuring a Custom Uploaded File Processor

	19.7 Creating Selection Lists
	19.7.1 How to Create a List with a Fixed List of Values
	19.7.2 What Happens When You Create a List Bound to a Fixed List of Values
	19.7.3 How to Create a List with a Dynamic List of Values
	19.7.4 What Happens When You Create a List Bound to a Dynamic List of Values
	19.7.5 How to Create a List with Navigation List Binding
	19.7.6 What Happens When You Create a List With Navigation List Binding

	19.8 Creating a Shuttle
	19.8.1 How to Create a Shuttle
	19.8.2 What Happens at Runtime

	20 Using Validation and Conversion
	20.1 Introduction to Validation and Conversion
	20.2 Validation, Conversion, and the Application Lifecycle
	20.3 Adding Validation
	20.3.1 How to Add Validation
	20.3.1.1 Adding ADF Faces Validation
	20.3.1.2 Adding ADF Model Validation

	20.3.2 What Happens When You Create Input Fields Using the Data Control Palette
	20.3.3 What Happens at Runtime
	20.3.4 What You May Need to Know

	20.4 Creating Custom JSF Validation
	20.4.1 How to Create a Backing Bean Validation Method
	20.4.2 What Happens When You Create a Backing Bean Validation Method
	20.4.3 How to Create a Custom JSF Validator
	20.4.4 What Happens When You Use a Custom JSF Validator

	20.5 Adding Conversion
	20.5.1 How to Use Converters
	20.5.2 What Happens When You Create Input Fields Using the Data Control Palette
	20.5.3 What Happens at Runtime

	20.6 Creating Custom JSF Converters
	20.6.1 How to Create a Custom JSF Converter
	20.6.2 What Happens When You Use a Custom Converter

	20.7 Displaying Error Messages
	20.7.1 How to Display Server-Side Error Messages on a Page
	20.7.2 What Happens When You Choose to Display Error Messages

	20.8 Handling and Displaying Exceptions in an ADF Application
	20.8.1 How to Change Exception Handling
	20.8.2 What Happens When You Change the Default Error Handling

	21 Adding ADF Bindings to Existing Pages
	21.1 Introduction to Adding ADF Bindings to Existing Pages
	21.2 Designing Pages for ADF Bindings
	21.2.1 Creating the Page
	21.2.2 Adding Components to the Page
	21.2.3 Other Design Considerations
	21.2.3.1 Creating Text Fields in Forms
	21.2.3.2 Creating Tables
	21.2.3.3 Creating Buttons and Links
	21.2.3.4 Creating Lists
	21.2.3.5 Creating Trees or Tree Tables

	21.3 Using the Data Control Palette to Bind Existing Components
	21.3.1 How to Add ADF Bindings Using the Data Control Palette
	21.3.2 What Happens When You Use the Data Control Palette to Add ADF Bindings

	21.4 Adding ADF Bindings to Text Fields
	21.4.1 How to Add ADF Bindings to Text Fields
	21.4.2 What Happens When You Add ADF Bindings to a Text Field

	21.5 Adding ADF Bindings to Tables
	21.5.1 How to Add ADF Bindings to Tables
	21.5.2 What Happens When You Add ADF Bindings to a Table

	21.6 Adding ADF Bindings to Actions
	21.6.1 How to Add ADF Bindings to Actions
	21.6.2 What Happens When You Add ADF Bindings to an Action

	21.7 Adding ADF Bindings to Selection Lists
	21.7.1 How to Add ADF Bindings to Selection Lists
	21.7.2 What Happens When You Add ADF Bindings to a Selection List

	21.8 Adding ADF Bindings to Trees and Tree Tables
	21.8.1 How to Add ADF Bindings to Trees and Tree Tables
	21.8.2 What Happens When You Add ADF Bindings to a Tree or Tree Table

	22 Changing the Appearance of Your Application
	22.1 Introduction to Changing ADF Faces Components
	22.2 Changing the Style Properties of a Component
	22.2.1 How to Set a Component’s Style Attributes
	22.2.2 What Happens When You Format Text

	22.3 Using Skins to Change the Look and Feel
	22.3.1 How to Use Skins
	22.3.1.1 Creating a Custom Skin
	22.3.1.2 Configuring an Application to Use a Skin

	22.4 Internationalizing Your Application
	22.4.1 How to Internationalize an Application
	22.4.2 How to Configure Optional Localization Properties for ADF Faces

	23 Optimizing Application Performance with Caching
	23.1 About Caching
	23.2 Using ADF Faces Cache to Cache Content
	23.2.1 How to Add Support for ADF Faces Cache
	23.2.2 What Happens When You Cache Fragments
	23.2.2.1 Logging
	23.2.2.2 AFC Statistics Servlet
	23.2.2.3 Visual Diagnostics

	23.2.3 What You May Need to Know

	24 Testing and Debugging Web Applications
	24.1 Getting Started with Oracle ADF Model Debugging
	24.2 Correcting Simple Oracle ADF Compilation Errors
	24.3 Correcting Simple Oracle ADF Runtime Errors
	24.4 Understanding a Typical Oracle ADF Model Debugging Session
	24.4.1 Turning on Diagnostic Logging
	24.4.2 Creating an Oracle ADF Debugging Configuration
	24.4.3 Debugging an Application Module Using the Tester
	24.4.4 Understanding the Different Kinds of Breakpoints
	24.4.5 Editing Breakpoints to For Improved Control
	24.4.6 Filtering Your View of Class Members
	24.4.7 Interesting Oracle ADF Breakpoints to Set
	24.4.8 Communicating Stack Trace Information to Someone Else

	24.5 Setting Up Oracle ADF Source Code for Debugging
	24.5.1 Setting Up the ADF Source System Library
	24.5.2 Adding the ADF Source Library to a Project
	24.5.3 Seeing Better Information in the Code Editor
	24.5.4 Setting Breakpoints and Debugging
	24.5.5 Seeing Better Symbol Information Using Debug Libraries

	24.6 Debugging the Oracle ADF Model Layer
	24.6.1 Correcting Failures to Display Pages
	24.6.1.1 Fixing Binding Context Creation Errors
	24.6.1.2 Fixing Binding Container Creation Errors

	24.6.2 Correcting Failures to Display Data
	24.6.2.1 Fixing Executable Errors
	24.6.2.2 Fixing Render Value Errors Before Submit

	24.6.3 Correcting Failures to Invoke Actions and Methods

	24.7 Tracing EL Expressions
	24.8 Regression Testing an Application Module With JUnit
	24.8.1 How to Create a JUnit Test Suite for an Application Module
	24.8.2 What Happens When You Create a JUnit Test Suite for an Application Module
	24.8.3 What You May Need to Know
	24.8.3.1 Test Suite Class Adds Test Cases to the Suite
	24.8.3.2 Test Fixture Class Encapsulates Access to the Application Module
	24.8.3.3 JUnit Tests for an Application Module Must Use a JDBC URL Connection
	24.8.3.4 Test Case Classes Contain One or More Test Methods with Assertions

	24.8.4 Running a JUnit Test Suite as Parts of an Ant Build Script
	24.8.5 Customizing the Default JUnit Test Classes
	24.8.5.1 Customizing the Test Fixture to Run as an Authenticated User
	24.8.5.2 Refactoring Common Test Case Code Into a Base Class

	Part IV Advanced Topics
	25 Advanced Business Components Techniques
	25.1 Globally Extending ADF Business Components Functionality
	25.1.1 What Are ADF Business Components Framework Extension Classes?
	25.1.2 How To Create a Framework Extension Class
	25.1.3 What Happens When You Create a Framework Extension Class
	25.1.4 How to Base an ADF Component on a Framework Extension Class
	25.1.5 What Happens When You Base a Component on a Framework Extension Class
	25.1.5.1 Basing an XML-Only Component on a Framework Extension Class
	25.1.5.2 Basing a Component with a Custom Java Class on a Framework Extension Class

	25.1.6 What You May Need to Know
	25.1.6.1 Don't Update the Extends Clause in Custom Component Java Files By Hand
	25.1.6.2 You Can Have Multiple Levels of Framework Extension Classes
	25.1.6.3 Setting up Project-Level Preferences for Framework Extension Classes
	25.1.6.4 Setting Up Framework Extension Class Preferences at the IDE Level

	25.2 Creating a Layer of Framework Extensions
	25.2.1 How to Create Your Layer of Framework Extension Layer Classes
	25.2.2 How to Package Your Framework Extension Layer in a JAR File
	25.2.3 How to Create a Library Definition for Your Framework Extension JAR File

	25.3 Customizing Framework Behavior with Extension Classes
	25.3.1 How to Access Runtime Metadata For View Objects and Entity Objects
	25.3.2 Implementing Generic Functionality Using Runtime Metadata
	25.3.3 Implementing Generic Functionality Driven by Custom Properties
	25.3.4 What You May Need to Know
	25.3.4.1 Determining the Attribute Kind at Runtime
	25.3.4.2 Configuring Design Time Custom Property Names
	25.3.4.3 Setting Custom Properties at Runtime

	25.4 Creating Generic Extension Interfaces
	25.5 Invoking Stored Procedures and Functions
	25.5.1 Invoking Stored Procedures with No Arguments
	25.5.2 Invoking Stored Procedure with Only IN Arguments
	25.5.3 Invoking Stored Function with Only IN Arguments
	25.5.4 Calling Other Types of Stored Procedures

	25.6 Accessing the Current Database Transaction
	25.7 Working with Libraries of Reusable Business Components
	25.7.1 How To Create a Reusable Library of Business Components
	25.7.2 How To Import a Package of Reusable Components from a Library
	25.7.3 What Happens When You Import a Package of Reusable Components from a Library
	25.7.4 What You May Need to Know
	25.7.4.1 Adding Other Directories of Business Components to Project Source Path
	25.7.4.2 Have to Close/Reopen to See Changes from a JAR
	25.7.4.3 How to Remove an Imported Package from a Project

	25.8 Customizing Business Components Error Messages
	25.8.1 How to Customize Base ADF Business Components Error Messages
	25.8.2 What Happens When You Customize Base ADF Business Components Error Messages
	25.8.3 How to Customize Error Messages for Database Constraint Violations
	25.8.4 How to Implement a Custom Constraint Error Handling Routine
	25.8.4.1 Creating a Custom Database Transaction Framework Extension Class
	25.8.4.2 Configuring an Application Module to Use a Custom Database Transaction Class

	25.9 Creating Extended Components Using Inheritance
	25.9.1 How To Create a Component That Extends Another
	25.9.2 What Happens When You Create a Component That Extends Another
	25.9.2.1 Understanding an Extended Component's XML Descriptor
	25.9.2.2 Understanding Java Code Generation for an Extended Component

	25.9.3 What You May Need to Know
	25.9.3.1 You Can Use Parent Classes and Interfaces to Work with Extended Components
	25.9.3.2 Class Extends is Disabled for Extended Components
	25.9.3.3 Interesting Aspects You Can Extend for Key Component Types
	25.9.3.4 Extended Components Have Attribute Indices Relative to Parent
	25.9.3.5 Design Time Limitations for Changing Extends After Creation

	25.10 Substituting Extended Components In a Delivered Application
	25.10.1 Extending and Substituting Components Is Superior to Modifying Code
	25.10.2 How To Substitute an Extended Component
	25.10.3 What Happens When You Substitute
	25.10.4 Enabling the Substituted Components in the Base Application

	26 Advanced Entity Object Techniques
	26.1 Creating Custom, Validated Data Types Using Domains
	26.1.1 What Are Domains?
	26.1.2 How To Create a Domain
	26.1.3 What Happens When You Create a Domain
	26.1.4 What You May Need to Know
	26.1.4.1 Using Domains for Entity and View Object Attributes
	26.1.4.2 Validate Method Should Throw DataCreationException If Sanity Checks Fail
	26.1.4.3 String Domains Aggregate a String Value
	26.1.4.4 Other Domains Extend Existing Domain Type
	26.1.4.5 Simple Domains are Immutable Java Classes
	26.1.4.6 Creating Domains for Oracle Object Types When Useful
	26.1.4.7 Quickly Navigating to the Domain Class
	26.1.4.8 Domains Get Packaged in the Common JAR
	26.1.4.9 Entity and View Object Attributes Inherit Custom Domain Properties
	26.1.4.10 Domain Settings Cannot Be Less Restrictive at Entity or View Level

	26.2 Updating a Deleted Flag Instead of Deleting Rows
	26.2.1 How to Update a Deleted Flag When a Row is Removed
	26.2.2 Forcing an Update DML Operation Instead of a Delete

	26.3 Advanced Entity Association Techniques
	26.3.1 Modifying Association SQL Clause to Implement Complex Associations
	26.3.2 Exposing View Link Accessor Attributes at the Entity Level
	26.3.3 Optimizing Entity Accessor Access By Retaining the Row Set

	26.4 Basing an Entity Object on a PL/SQL Package API
	26.4.1 How to Create an Entity Object Based on a View
	26.4.2 What Happens When You Create an Entity Object Based on a View
	26.4.3 Centralizing Details for PL/SQL-Based Entities into a Base Class
	26.4.4 Implementing the Stored Procedure Calls for DML Operations
	26.4.5 Adding Select and Lock Handling
	26.4.5.1 Updating PLSQLEntityImpl Base Class to Handle Lock and Select
	26.4.5.2 Implementing Lock and Select for the Product Entity

	26.5 Basing an Entity Object on a Join View or Remote DBLink
	26.6 Using Inheritance in Your Business Domain Layer
	26.6.1 Understanding When Inheritance Can be Useful
	26.6.2 How To Create Entity Objects in an Inheritance Hierarchy
	26.6.2.1 Start By Identifying the Discriminator Column and Distinct Values
	26.6.2.2 Identify the Subset of Attributes Relevant to Each Kind of Entity
	26.6.2.3 Creating the Base Entity Object in an Inheritance Hierarchy
	26.6.2.4 Creating a Subtype Entity Object in an Inheritance Hierarchy

	26.6.3 How to Add Methods to Entity Objects in an Inheritance Hierarchy
	26.6.3.1 Adding Methods Common to All Entity Objects in the Hierarchy
	26.6.3.2 Overriding Common Methods in a Subtype Entity
	26.6.3.3 Adding Methods Specific to a Subtype Entity

	26.6.4 What You May Need to Know
	26.6.4.1 Sometimes You Need to Introduce a New Base Entity
	26.6.4.2 Finding Subtype Entities by Primary Key
	26.6.4.3 You Can Create View Objects with Polymorphic Entity Usages

	26.7 Controlling Entity Posting Order to Avoid Constraint Violations
	26.7.1 Understanding the Default Post Processing Order
	26.7.2 How Compositions Change the Default Processing Ordering
	26.7.3 Overriding postChanges() to Control Post Order
	26.7.3.1 Observing the Post Ordering Problem First Hand
	26.7.3.2 Forcing the Product to Post Before the ServiceRequest
	26.7.3.3 Understanding Associations Based on DBSequence-Valued Primary Keys
	26.7.3.4 Refreshing References to DBSequence-Assigned Foreign Keys

	26.8 Implementing Automatic Attribute Recalculation
	26.9 Implementing Custom Validation Rules
	26.9.1 How To Create a Custom Validation Rule
	26.9.2 Adding a Design Time Bean Customizer for Your Rule
	26.9.3 Registering and Using a Custom Rule in JDeveloper

	27 Advanced View Object Techniques
	27.1 Advanced View Object Concepts and Features
	27.1.1 Using a Max Fetch Size to Only Fetch the First N Rows
	27.1.2 Consistently Displaying New Rows in View Objects Based on the Same Entity
	27.1.2.1 How View Link Consistency Mode Works
	27.1.2.2 Understanding the Default View Link Consistency Setting and How to Change It
	27.1.2.3 Using a RowMatch to Qualify Which New, Unposted Rows Get Added to a Row Set
	27.1.2.4 Setting a Dynamic Where Clause Disables View Link Consistency
	27.1.2.5 New Row from Other View Objects Added at the Bottom
	27.1.2.6 New, Unposted Rows Added to Top of RowSet when Re-Executed

	27.1.3 Understanding View Link Accessors Versus Data Model View Link Instances
	27.1.3.1 Enabling a Dynamic Detail Row Set with Active Master/Detail Coordination
	27.1.3.2 Accessing a Stable Detail Row Set Using View Link Accessor Attributes
	27.1.3.3 Accessor Attributes Create Distinct Row Sets Based on an Internal View Object

	27.1.4 Presenting and Scrolling Data a Page at a Time Using the Range
	27.1.5 Efficiently Scrolling Through Large Result Sets Using Range Paging
	27.1.5.1 Understanding How to Oracle Supports "TOP-N" Queries
	27.1.5.2 How to Enable Range Paging for a View Object
	27.1.5.3 What Happens When You Enable Range Paging
	27.1.5.4 How are View Rows Cached When Using Range Paging?
	27.1.5.5 How to Scroll to a Given Page Number Using Range Paging
	27.1.5.6 Estimating the Number of Pages in the Row Set Using Range Paging
	27.1.5.7 Accommodating Inserts and Deletes Using Auto Posting
	27.1.5.8 Understanding the Tradeoffs of Using Range Paging Mode

	27.1.6 Setting Up a Data Model with Multiple Masters
	27.1.7 Understanding When You Can Use Partial Keys with findByKey()
	27.1.8 Creating Dynamic Attributes to Store UI State
	27.1.9 Working with Multiple Row Sets and Row Set Iterators
	27.1.10 Optimizing View Link Accessor Access By Retaining the Row Set

	27.2 Tuning Your View Objects for Best Performance
	27.2.1 Use Bind Variables for Parameterized Queries
	27.2.1.1 Use Bind Variables to Avoid Re-parsing of Queries
	27.2.1.2 Use Bind Variables to Prevent SQL-Injection Attacks

	27.2.2 Use Read-Only View Objects When Entity-Based Features Not Required
	27.2.3 Use SQL Tracing to Identify Ill-Performing Queries
	27.2.4 Consider the Appropriate Tuning Settings for Every View Object
	27.2.4.1 Set the Database Retrieval Options Appropriately
	27.2.4.2 Consider Whether Fetching One Row at a Time is Appropriate
	27.2.4.3 Specify a Query Optimizer Hint if Necessary

	27.2.5 Creating View Objects at Design Time
	27.2.6 Use Forward Only Mode to Avoid Caching View Rows

	27.3 Using Expert Mode for Full Control Over SQL Query
	27.3.1 How to Enable Expert Mode for Full SQL Control
	27.3.2 What Happens When You Enable Expert Mode
	27.3.3 What You May Need to Know
	27.3.3.1 You May Need to Perform Manual Attribute Mapping
	27.3.3.2 Disabling Expert Mode Loses Any Custom Edits
	27.3.3.3 Once In Expert Mode, Changes to SQL Expressions Are Ignored
	27.3.3.4 Don't Map Incorrect Calculated Expressions to Entity Attributes
	27.3.3.5 Expert Mode SQL Formatting is Retained
	27.3.3.6 Expert Mode Queries Are Wrapped as Inline Views
	27.3.3.7 Disabling the Use of Inline View Wrapping at Runtime
	27.3.3.8 Enabling Expert Mode May Impact Dependent Objects

	27.4 Working with Multiple Named View Criteria
	27.4.1 Defining Named View Criteria
	27.4.2 Applying One or More Named View Criteria
	27.4.3 Removing All Applied Named View Criteria
	27.4.4 Using the Named Criteria at Runtime

	27.5 Performing In-Memory Sorting and Filtering of Row Sets
	27.5.1 Understanding the View Object's Query Mode
	27.5.2 Sorting View Object Rows In Memory
	27.5.2.1 Combining setSortBy and setQueryMode for In-Memory Sorting
	27.5.2.2 Extensibility Points for In-Memory Sorting

	27.5.3 Performing In-Memory Filtering with View Criteria
	27.5.4 Performing In-Memory Filtering with RowMatch
	27.5.4.1 Applying a RowMatch to a View Object
	27.5.4.2 Using RowMatch to Test an Individual Row
	27.5.4.3 How a RowMatch Affects Rows Fetched from the Database

	27.6 Using View Objects to Work with Multiple Row Types
	27.6.1 What is a Polymorphic Entity Usage?
	27.6.2 How To Create a View Object with a Polymorphic Entity Usage
	27.6.3 What Happens When You Create a View Object with a Polymorphic Entity Usage
	27.6.4 What You May Need to Know
	27.6.4.1 Your Query Must Limit Rows to Expected Entity Subtypes
	27.6.4.2 Exposing Selected Entity Methods in View Rows Using Delegation
	27.6.4.3 Creating New Rows With the Desired Entity Subtype

	27.6.5 What are Polymorphic View Rows?
	27.6.6 How to Create a View Object with Polymorphic View Rows
	27.6.7 What You May Need to Know
	27.6.7.1 Selecting Subtype-Specific Attributes in Extended View Objects
	27.6.7.2 Delegating to Subtype-Specific Methods After Overriding the Entity Usage
	27.6.7.3 Working with Different View Row Interface Types in Client Code
	27.6.7.4 View Row Polymorphism and Polymorphic Entity Usage are Orthogonal

	27.7 Reading and Writing XML
	27.7.1 How to Produce XML for Queried Data
	27.7.2 What Happens When You Produce XML
	27.7.3 What You May Need to Know
	27.7.3.1 Controlling XML Element Names
	27.7.3.2 Controlling Element Suppression for Null-Valued Attributes
	27.7.3.3 Printing or Searching the Generated XML Using XPath
	27.7.3.4 Using the Attribute Map For Fine Control Over Generated XML
	27.7.3.5 Use the Attribute Map Approach with Bi-Directional View Links
	27.7.3.6 Transforming Generated XML Using an XSLT Stylesheet
	27.7.3.7 Generating XML for a Single Row

	27.7.4 How to Consume XML Documents to Apply Changes
	27.7.5 What Happens When You Consume XML Documents
	27.7.5.1 How ViewObject.readXML() Processes an XML Document
	27.7.5.2 Using readXML() to Processes XML for a Single Row

	27.8 Using Programmatic View Objects for Alternative Data Sources
	27.8.1 How to Create a Read-Only Programmatic View Object
	27.8.2 How to Create an Entity-Based Programmatic View Object
	27.8.3 Key Framework Methods to Override for Programmatic View Objects
	27.8.4 How to Create a View Object on a REF CURSOR
	27.8.4.1 The Overridden create() Method
	27.8.4.2 The Overridden executeQueryForCollection() Method
	27.8.4.3 The Overridden createRowFromResultSet() Method
	27.8.4.4 The Overridden hasNextForCollectionMethod()
	27.8.4.5 The Overridden releaseUserDataForCollection() Method
	27.8.4.6 The Overridden getQueryHitCount() Method

	27.8.5 Populating a View Object from Static Data
	27.8.5.1 Basing Lookup View Object on SRStaticDataViewObjectImpl
	27.8.5.2 Creating a View Object Based on Static Data from a Properties File
	27.8.5.3 Creating Your Own View Object with Static Data

	27.9 Creating a View Object with Multiple Updatable Entities
	27.10 Declaratively Preventing Insert, Update, and Delete

	28 Application Module State Management
	28.1 Understanding Why State Management is Necessary
	28.1.1 Examples of Multi-Step Tasks
	28.1.2 Stateless HTTP Protocol Complicates Stateful Applications
	28.1.3 How Cookies Are Used to Track a User Session
	28.1.4 Performance and Reliability Impact of Using HttpSession

	28.2 The ADF Business Components State Management Facility
	28.2.1 Basic Architecture of the State Management Facility
	28.2.2 Understanding When Passivation and Activation Occurs
	28.2.3 How Passivation Changes When Optional Failover Mode is Enabled

	28.3 Controlling the State Management Release Level
	28.3.1 Supported Release Levels
	28.3.2 Setting the Release Level at Runtime
	28.3.2.1 Setting Release Level in a JSF Backing Bean
	28.3.2.2 Setting Release Level in an ADF PagePhaseListener
	28.3.2.3 Setting Release Level in an ADF PageController
	28.3.2.4 Setting Release Level in an Custom ADF PageLifecycle

	28.4 What State Is Saved and When is It Cleaned Up?
	28.4.1 What State is Saved?
	28.4.2 Where is the State Saved?
	28.4.2.1 How Database-Backed Passivation Works
	28.4.2.2 Controlling the Schema Where the State Management Table Resides
	28.4.2.3 Configuring the Type of Passivation Store

	28.4.3 When is the State Cleaned Up?
	28.4.3.1 Previous Snapshot Removed When Next One Taken
	28.4.3.2 Passivation Snapshot Removed on Unmanaged Release
	28.4.3.3 Passivation Snapshot Retained in Failover Mode

	28.4.4 Approaches for Timing Out the HttpSession
	28.4.4.1 Configuring the Implicit Timeout Due to User Inactivity
	28.4.4.2 Coding an Explicit HttpSession Timeout

	28.4.5 Cleaning Up Temporary Storage Tables

	28.5 Managing Custom User Specific Information
	28.6 Managing State for Transient View Objects
	28.7 Using State Management for Middle-Tier Savepoints
	28.8 Testing to Ensure Your Application Module is Activation-Safe
	28.8.1 Understanding the jbo.ampool.doampooling Configuration Parameter
	28.8.2 Disabling Application Module Pooling to Test Activation

	28.9 Caveats Regarding Pending Database State
	28.9.1 Web Applications Should Use Optimistic Locking
	28.9.2 Use PostChanges Only During the Current Request
	28.9.3 Pending Database State Across Requests Requires Reserved Level
	28.9.4 Connection Pooling Prevents Pending Database State

	29 Understanding Application Module Pooling
	29.1 Overview of Application Module Pooling
	29.2 Lifecycle of a Web Page Request Using Oracle ADF and JSF
	29.3 Understanding Configuration Property Scopes
	29.4 Setting Pool Configuration Parameters
	29.4.1 Setting Configuration Properties Declaratively
	29.4.2 Setting Configuration Properties as System Parameters
	29.4.3 Programmatically Setting Configuration Properties

	29.5 How Many Pools are Created, and When?
	29.5.1 Application Module Pools
	29.5.2 Database Connection Pools
	29.5.3 Understanding Application Module and Connection Pools
	29.5.3.1 Single Oracle Application Server Instance, Single OC4J Container, Single JVM
	29.5.3.2 Multiple Oracle Application Server Instances, Single OC4J Container, Multiple JVMs

	29.6 Application Module Pool Parameters
	29.6.1 Pool Behavior Parameters
	29.6.2 Pool Sizing Parameters
	29.6.3 Pool Cleanup Parameters

	29.7 Database Connection Pool Parameters
	29.8 How Database and Application Module Pools Cooperate
	29.9 Database User State and Pooling Considerations
	29.9.1 How Often prepareSession() Fires When jbo.doconnectionpooling = false
	29.9.2 Setting Database User State When jbo.doconnectionpooling = true
	29.9.3 Understanding How the SRDemo Application Sets Database State

	30 Adding Security to an Application
	30.1 Introduction to Security in Oracle ADF Web Applications
	30.2 Specifying the JAZN Resource Provider
	30.2.1 How To Specify the Resource Provider
	30.2.2 What You May Need to Know About Oracle ADF Security and Resource Providers

	30.3 Configuring Authentication Within the web.xml File
	30.3.1 How to Enable J2EE Container-Managed Authentication
	30.3.2 What Happens When You Use Security Constraints without Oracle ADF Security
	30.3.3 How to Enable Oracle ADF Authentication
	30.3.4 What Happens When You Use Security Constraints with Oracle ADF

	30.4 Configuring the ADF Business Components Application to Use Container-Managed Security
	30.4.1 How to Configure Security in an Oracle ADF Business Components Application
	30.4.2 What Happens When You Configure Security in an ADF Business Components Application
	30.4.3 What You May Need to Know About the ADF Business Components Security Property

	30.5 Creating a Login Page
	30.5.1 Wiring the Login and Error Pages
	30.5.2 What Happens When You Wire the Login and Error Pages

	30.6 Creating a Logout Page
	30.6.1 Wiring the Logout Action
	30.6.2 What Happens When You Wire the Logout Action

	30.7 Implementing Authorization Using Oracle ADF Security
	30.7.1 Configuring the Application to Use Oracle ADF Security Authorization
	30.7.1.1 How to Configure Oracle ADF Security Authorization
	30.7.1.2 What Happens When You Configure An Application to Use Oracle ADF Security
	30.7.1.3 What You May Need to Know About the Authorization Property

	30.7.2 Setting Authorization on ADF Binding Containers
	30.7.3 Setting Authorization on ADF Iterator Bindings
	30.7.4 Setting Authorization on ADF Attribute and MethodAction Bindings
	30.7.5 What Happens When Oracle ADF Security Handles Authorization

	30.8 Implementing Authorization Programmatically
	30.8.1 Making User Information EL Accessible
	30.8.1.1 Creating a Class to Manage Roles
	30.8.1.2 Creating a Managed Bean for the Security Information

	31 Creating Data Control Adapters
	31.1 Introduction to the Simple CSV Data Control Adapter
	31.2 Overview of Steps to Create a Data Control Adapter
	31.3 Implement the Abstract Adapter Class
	31.3.1 Location of JAR Files
	31.3.2 Abstract Adapter Class Outline
	31.3.3 Complete Source for the SampleDCAdapter Class
	31.3.4 Implementing the initialize Method
	31.3.5 Implementing the invokeUI Method
	31.3.6 Implementing the getDefinition Method

	31.4 Implement the Data Control Definition Class
	31.4.1 Location of JAR Files
	31.4.2 Data Control Definition Class Outline
	31.4.3 Complete Source for the SampleDCDef Class
	31.4.4 Creating a Default Constructor
	31.4.5 Collecting Metadata from the User
	31.4.6 Defining the Structure of the Data Control
	31.4.7 Creating an Instance of the Data Control
	31.4.8 Setting the Metadata for Runtime
	31.4.9 Setting the Name for the Data Control

	31.5 Implement the Data Control Class
	31.5.1 Location of JAR Files
	31.5.2 Data Control Class Outline
	31.5.3 Complete Source for the SampleDataControl Class
	31.5.4 Implementing the invokeOperation Method
	31.5.4.1 About Calling processResult
	31.5.4.2 Return Value for invokeOperation

	31.5.5 Implementing the getName Method
	31.5.6 Implementing the release Method
	31.5.7 Implementing the getDataProvider Method

	31.6 Create any Necessary Supporting Classes
	31.7 Create an XML File to Define Your Adapter
	31.8 Build Your Adapter
	31.9 Package and Deploy Your Adapter to JDeveloper
	31.10 Location of Javadoc Information
	31.11 Contents of Supporting Files
	31.11.1 sampleDC.xsd
	31.11.2 CSVHandler Class
	31.11.3 CSVParser

	32 Working Productively in Teams
	32.1 Using CVS with an ADF Project
	32.1.1 Choice of Internal or External CVS Client
	32.1.2 Preference Settings
	32.1.3 File Dependencies
	32.1.4 Use Consistent Connection Definition Names
	32.1.5 General Advice for Committing ADF Work to CVS
	32.1.5.1 Other Version Control Tips and Techniques

	32.1.6 Check Out or Update from the CVS Repository
	32.1.7 Special Consideration when Manually Adding Navigation Rules to the faces-config.xml File

	32.2 General Advice for Using CVS with JDeveloper
	32.2.1 Team-Level Activities
	32.2.2 Developer-Level Activities
	32.2.2.1 Typical Workflow When Checking Your Work Into CVS
	32.2.2.2 Handling CVS Repository Configuration Files
	32.2.2.3 Advice for Merge Conflicts in ADF Business Components Projects

	33 Working with Web Services
	33.1 What are Web Services
	33.1.1 SOAP
	33.1.2 WSDL
	33.1.3 UDDI
	33.1.4 Web Services Interoperability

	33.2 Creating Web Service Data Controls
	33.2.1 How to Create a Web Service Data Control

	33.3 Securing Web Service Data Controls
	33.3.1 WS-Security Specification
	33.3.2 Creating and Using Keystores
	33.3.2.1 How to Create a Keystore
	33.3.2.2 How to Request a Certificate
	33.3.2.3 How to Export a Public Key Certificate

	33.3.3 Defining Web Service Data Control Security
	33.3.3.1 How to Set Authentication
	33.3.3.2 How to Set Digital Signatures
	33.3.3.3 How to Set Encryption and Decryption
	33.3.3.4 How to Use a Key Store

	33.4 Publishing Application Modules as Web Services
	33.4.1 How to Enable the J2EE Web Service Option for an Application Module
	33.4.2 What Happens When You Enable the J2EE Web Service Option
	33.4.3 What You May Need to Know About Deploying an Application Module as a Web Service
	33.4.4 What You May Need to Know About Data Types Supported for Web Service Methods

	33.5 Calling a Web Service from an Application Module
	33.5.1 Understanding the Role of the Web Services Description Language Document
	33.5.2 Understanding the Role of the Web Service Proxy Class
	33.5.3 How to Call a Web Service from an Application Module
	33.5.3.1 Creating a Web Service Proxy Class for a Web Service
	33.5.3.2 Understanding the Generated Web Service Proxy
	33.5.3.3 Calling a Web Service Method Using the Web Service Proxy Class

	33.5.4 What Happens When You Call a Web Service from an Application Module
	33.5.5 What You May Need to Know
	33.5.5.1 Use a Try/Catch Block to Handle Web Service Exceptions
	33.5.5.2 Web Services are Do Not Share a Transaction with the Application Module
	33.5.5.3 Setting Browser Proxy Information

	34 Deploying ADF Applications
	34.1 Introduction to Deploying ADF Applications
	34.2 Deployment Steps
	34.3 Deployment Techniques
	34.4 Deploying Applications Using Ant
	34.5 Deploying the SRDemo Application
	34.6 Deploying to Oracle Application Server
	34.6.1 Oracle Application Server Versions Supported
	34.6.2 Oracle Application Server Release 2 (10.1.2) Deployment Notes
	34.6.3 Oracle Application Server Deployment Methods
	34.6.4 Oracle Application Server Deployment to Test Environments ("Automatic Deployment")
	34.6.5 Oracle Application Server Deployment to Clustered Topologies

	34.7 Deploying to JBoss
	34.7.1 JBoss Versions Supported
	34.7.2 JBoss Deployment Notes
	34.7.3 JBoss Deployment Methods

	34.8 Deploying to WebLogic
	34.8.1 WebLogic Versions Supported
	34.8.2 WebLogic Versions 8.1 and 9.0 Deployment Notes
	34.8.3 WebLogic 8.1 Deployment Notes
	34.8.4 WebLogic 9.0 Deployment Notes
	34.8.5 WebLogic Deployment Methods

	34.9 Deploying to WebSphere
	34.9.1 WebSphere Versions Supported
	34.9.2 WebSphere Deployment Notes
	34.9.3 WebSphere Deployment Methods

	34.10 Deploying to Tomcat
	34.10.1 Tomcat Versions Supported
	34.10.2 Tomcat Deployment Notes

	34.11 Deploying to Application Servers That Support JDK 1.4
	34.11.1 Switching Embedded OC4J to JDK 1.4

	34.12 Installing ADF Runtime Library on Third-Party Application Servers
	34.12.1 Installing the ADF Runtime Libraries from JDeveloper
	34.12.2 Configuring WebSphere 6.0.1 to Run ADF Applications
	34.12.2.1 Source for install_adflibs_1013.sh Script
	34.12.2.2 Source for install_adflibs_1013.cmd Script

	34.12.3 Installing the ADF Runtime Libraries Manually
	34.12.3.1 Installing the ADF Runtime Libraries from a Zip File

	34.12.4 Deleting the ADF Runtime Library

	34.13 Verifying Deployment and Troubleshooting
	34.13.1 How to Test Run Your Application
	34.13.2 "Class Not Found" or "Method Not Found" Errors
	34.13.3 Application Is Not Using data-sources.xml File on Target Application Server
	34.13.4 Using jazn-data.xml with the Embedded OC4J Server
	34.13.5 Error "JBO-30003: The application pool failed to check out an application module due to the following exception"

	Part V Appendices
	A Reference ADF XML Files
	A.1 About the ADF Metadata Files
	A.2 ADF File Overview Diagram
	A.2.1 Oracle ADF Data Control Files
	A.2.2 Oracle ADF Data Binding Files
	A.2.3 Oracle ADF Faces and Web Configuration Files

	A.3 ADF File Syntax Diagram
	A.4 bc4j.xcfg
	A.5 DataBindings.cpx
	A.5.1 DataBindings.cpx Syntax
	A.5.2 DataBindings.cpx Sample

	A.6 <pageName>PageDef.xml
	A.6.1 PageDef.xml Syntax
	A.6.2 PageDef.xml Sample for Attributes of a View Object
	A.6.3 PageDef.xml Sample for the Entire View Object

	A.7 web.xml
	A.7.1 Tasks Supported by the web.xml File
	A.7.1.1 Configuring for State Saving
	A.7.1.2 Configuring for Application View Caching
	A.7.1.3 Configuring for Debugging
	A.7.1.4 Configuring for File Uploading
	A.7.1.5 Configuring for ADF Model Binding
	A.7.1.6 Other Context Configuration Parameters for JSF
	A.7.1.7 What You May Need to Know

	A.8 j2ee-logging.xml
	A.8.1 Tasks Supported by the j2ee-logging.xml
	A.8.1.1 Change the Logging Level for Oracle ADF Packages
	A.8.1.2 Redirect the Log Output
	A.8.1.3 Change the Location of the Log File

	A.9 faces-config.xml
	A.9.1 Tasks Supported by the faces-config.xml
	A.9.1.1 Registering a Render Kit for ADF Faces Components
	A.9.1.2 Registering a Phase Listener for ADF Binding
	A.9.1.3 Registering a Message Resource Bundle
	A.9.1.4 Configuring for Supported Locales
	A.9.1.5 Creating Navigation Rules and Cases
	A.9.1.6 Registering Custom Validators and Converters
	A.9.1.7 Registering Managed Beans

	A.10 adf-faces-config.xml
	A.10.1 Tasks Supported by adf-faces-config.xml
	A.10.1.1 Configuring Accessibility Levels
	A.10.1.2 Configuring Currency Code and Separators for Number Groups and Decimals
	A.10.1.3 Configuring For Enhanced Debugging Output
	A.10.1.4 Configuring for Client-Side Validation and Conversion
	A.10.1.5 Configuring the Language Reading Direction
	A.10.1.6 Configuring the Skin Family
	A.10.1.7 Configuring the Output Mode
	A.10.1.8 Configuring the Number of Active ProcessScope Instances
	A.10.1.9 Configuring the Time Zone and Year Offset
	A.10.1.10 Configuring a Custom Uploaded File Processor
	A.10.1.11 Configuring the Help Site URL
	A.10.1.12 Retrieving Configuration Property Values From adf-faces-config.xml

	A.11 adf-faces-skins.xml
	A.11.1 Tasks Supported by adf-faces-skins.xml

	B Reference ADF Binding Properties
	B.1 EL Properties of Oracle ADF Bindings

	C ADF Equivalents of Common Oracle Forms Triggers
	C.1 Validation & Defaulting (Business Logic)
	C.2 Query Processing
	C.3 Database Connection
	C.4 Transaction "Post" Processing (Record Cache)
	C.5 Error Handling

	D Most Commonly Used ADF Business Components Methods
	D.1 Most Commonly Used Methods in the Client Tier
	D.1.1 ApplicationModule Interface
	D.1.2 Transaction Interface
	D.1.3 ViewObject Interface
	D.1.4 RowSet Interface
	D.1.5 RowSetIterator Interface
	D.1.6 Row Interface
	D.1.7 StructureDef Interface
	D.1.8 AttributeDef Interface
	D.1.9 AttributeHints Interface

	D.2 Most Commonly Used Methods In the Business Service Tier
	D.2.1 Controlling Custom Java Files For Your Components
	D.2.2 ApplicationModuleImpl Class
	D.2.2.1 Methods You Typically Call on ApplicationModuleImpl
	D.2.2.2 Methods You Typically Write in Your Custom ApplicationModuleImpl Subclass
	D.2.2.3 Methods You Typically Override in Your Custom ApplicationModuleImpl Subclass

	D.2.3 DBTransactionImpl2 Class
	D.2.3.1 Methods You Typically Call on DBTransaction
	D.2.3.2 Methods You Typically Override in Your Custom DBTransactionImpl2 Subclass

	D.2.4 EntityImpl Class
	D.2.4.1 Methods You Typically Call on EntityImpl
	D.2.4.2 Methods You Typically Write in Your Custom EntityImpl Subclass
	D.2.4.3 Methods You Typically Override on EntityImpl

	D.2.5 EntityDefImpl Class
	D.2.5.1 Methods You Typically Call on EntityDefImpl
	D.2.5.2 Methods You Typically Write on EntityDefImpl
	D.2.5.3 Methods You Typically Override on EntityDefImpl

	D.2.6 ViewObjectImpl Class
	D.2.6.1 Methods You Typically Call on ViewObjectImpl
	D.2.6.2 Methods You Typically Write in Your Custom ViewObjectImpl Subclass
	D.2.6.3 Methods You Typically Override in Your Custom ViewObjectImpl Subclass

	D.2.7 ViewRowImpl Class
	D.2.7.1 Methods You Typically Call on ViewRowImpl
	D.2.7.2 Methods You Typically Write on ViewRowImpl
	D.2.7.3 Methods You Typically Override in Your Custom ViewRowImpl Subclass

	D.2.8 Setting Up Your Own Layer of Framework Base Classes

	E ADF Business Components J2EE Design Pattern Catalog
	E.1 J2EE Design Patterns Implemented by ADF Business Components

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

