ORACLE

Oracle® XML Developer's Kit
Programmer's Guide

10g Release 3 (10.1.3)

B28236-01

February 2006

Oracle XML Developer's Kit Programmer's Guide, 10g Release 3 (10.1.3)

B28236-01

Copyright © 2003, 2006, Oracle. All rights reserved.

Primary Author: Jack Melnick

Contributing Author: Mark Bauer, Shelley Higgins, Steve Muench, Mark Scardina, Jinyu Wang

Contributor: Lance Ashdown, Sandeepan Banerjee, Sivasankaran Chandrasekar, Dan Chiba, Steve Ding,
Stanley Guan, Bill Han, K. Karun, Murali Krishnaprasad, Dmitry Lenkov, Roza Leyderman, Bruce
Lowenthal, lan Macky, Anjana Manian, Meghna Mehta, Valarie Moore, Ravi Murthy, Anguel Novoselsky,
Tomas Saulys, Helen Slattery, Asha Tarachandani, Tim Yu, Jim Warner, Simon Wong, Kongyi Zhou

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

Send US YOUT COMMENTS ..ottt XV
PIEIACE ...t Xvii
AAUGIENCE ..ottt ettt s bt e be s be e ebeebeesbe et ebe e s besbeeabesbeeabeebeshbeebeeteesbe e st e sbeesbebeebeebeenbeenbentas XVii
Documentation ACCESSIDITITYcooiiiiiiiei bbb XVii
STFUCTUIE ..ttt h kbt e bt bbb b e Rt e R bbbt bt e Rt e bt e bt e bt bt ne e e e b e st e b e e b ebeabeaneane s Xviii
REIALEA DOCUMENTS ...ttt et s te e e beete e s be e st e s be e s bebe e beebeenbeenbenbeenseneesaeesaesaeas Xix
1001 01 /=] 011 [o] o S TS TTTTTSO TP TP TR T TP U TP PP XXi
What's New in Oracle XML Developer's Kit? ..., XXV
Oracle Database 10g Release 1 (10.1) New Features in Oracle XML Developer's Kit XXV

Overview of XML Developer's Kit Components

Introducing Oracle XML DeVelOoper's Kit ...t e 1-1
Overview of Oracle XDK COMPONENTS........ccceiiiiiiiiie et se s e siee e sre et sseesreereesreanaenre s 1-2
XDK Functionality Applied to XML DOCUMENTS........cciviiiiiiiii et 1-4
KIMIL PAISEIS ...ttt b etk bbbt h e s b e shb e e sh e s b b e e sae e sb bt e sae e snb e e areesnneenne e e 1-4
XSL Transformation (XSLT) PrOCESSOIS.uiuiiiiierieriesteestesteestesreesaeeaesaeseessesseestessaessesssenseesenees 1-5
JAXB aNnd CH+ Class GENEIATOIS.......cueiiiiiiieieitesieee ettt sttt st sesbe st eresbesee e neas 1-5
XML SCREIMEA PIOCESSON ...ttt sttt ettt b bbb bt b bbbt et nresbe e nne 1-6
XDK JAVABEANS ...ttt ettt ettt b bbb e bt ek e e b et e kbbbt e bt e be e e s be e nbe e e are e anneenre e e 1-6
Oracle XML SQL Utility (XSU) fOr JAVA......cccceeiiiiciiiece ettt 1-7
XSQL Pages PUDIiShiNg FrameWOrK ..o s 1-7
I T 0) QL 1 (1 Y SR RP 1-7
SOBP SEIVICES ...ttt stttk sttt b etk b bt b ekt se b ek h e bt e eb e e e bt e b bt e b e st ekt n b bt bt e b e erene s 1-8
Using XDK-supported Languages to Generate XML DOCUMENTSccocererieieiirieeiieineseeeiee 1-8
Using XSU for Java to Generate XIML DOCUMENTS........ccccvviivieiiieeie et 1-8
Using Oracle XDK Java Components to Generate XML DOCUMENTS.........ccooeverveierneneeenienns 1-9
Using Oracle XDK C Components to Generate XML DOCUMENTS.........ccccoveveevevivenenieeniennn, 1-10
Using Oracle XDK C++ Components to Generate XML DOCUMENTS........cccocvvvierienncniennenn, 1-11
XDK and Application Development TOOIS ..o e e 1-12
Browsers That SUPPOIT XIMILcoiiiiiiiiiie ettt 1-13
OraCle XIML GAEWAYccoiiiieiiieiiciteeiete ettt st te et et e et e st eseesaeesbesreesteetaesteeseentaenreaes 1-14
Oracle Data Provider fOr INET ...ttt stes e seesseneeeensens 1-14
JDIBVEIOPIET ...ttt bbbkt bbb bbbt b bbb 1-15

User INterface XML (UDX) ..o e nnene 1-16

Recommended Books and Web Sites ADOUL XMLccooiiieiiiiiiie et 1-16
Using Oracle XML-Enabled TeChNOIOQY ..ot e 1-17
Information for USiNg the XDK ..o st sr e 1-17
Information About Previous Oracle REIEASEScccucveivvviineie e 1-18
XML Standards That Oracle SUPPOITSc.ccvciieiiiie e sreesresraens 1-19
Maximum XML FIl8 SIZES......ccoiiiiiiiei et bbb 1-20

Getting Started with XDK Java Components

XDK Java Components SPeCITiCAtIONS.........ccccviiiiiiiiiecc e 2-1
DOM SPECITICALIONS ...ttt bbb bbb bbbt b 2-2
XSL Transformations SPeCIifiCatiONS........ccccviiiiiii i 2-2

Installing XDK Java COMPONENTS.........coiiiiieieese et see e se e te e e steesesre e e e sneereesreeseestaesressaenseens 2-3

XDK Java Components DireCtory STrUCTUIEccccoiiiiiiiiiieieee e 2-4

XDK Java Components ENVIroNmMeNnt SEINGS......c.coovviviieeieie e 2-5
UNIX Environment Settings for XDK Java COMPONENTS.......cccciiierieininenieieniee e 2-5
Windows Environment Settings for XDK Java COMPONENTS........cccccvevievieviieiie e e 2-5

XDK Java Components Globalization SUPPOIT ..o 2-6

XDK Java Components DEPENUENCIES........ccciiiiiieiie ettt rae st te e tesreenreenas 2-6

Verifying the XDK Java COMPONENtS VEISION.........ccoiiiiiiiieneieee e s 2-7

XML Parser for Java

XML Parser FOr JAVA OVEIVIBWVcc.ociiiiiiiiie ittt b st st ea et e bbbt bbb e b 3-1
NAMESPACE SUPPONT ...ttt r e r e r e re et e r e re e er et nne e nre e 3-3
XML Parser for Java Validation MOAES ..ot e 3-3
Using DTDs with the XML Parser fOr JAVA ... e 3-5

ADOUL DOM AN SAX APIS. ...t bbbt bbbt bbb sn et 3-7
DOM: Tree-Based APot b ettt sreenes 3-7
SAX: EVENT-BASEA AP L. ...ttt bbbt et r e 3-8
Guidelines for Using DOM and SAX APIS.......ooiiiiiiiiee e see e seese e saeeeens 3-8

ADOUL XIML COMPIESSON ...viiiietiitete sttt ettt ettt sb et b e bbb eb bbbt ekt sb b e e bt eb ekt ab et nr et e b b e nn e enas 3-9
XML Serialization and COMPIESSIONccuviieiiiiiieieeses e e ste e e s ereesre et see e e e ae e enee e 3-10

Running the Sample Applications for XML Parser for Java..........cccovrinniinninennese e 3-10

Using XML Parser for Java: DOMPArser Class........cccciiveiiiiieiieieieeeiee e see e nneens 3-12
WiItNOUE DTD INPUL. ..otttk bbbt b e 3-12
WILh @ DTD INPUL ..ot ettt et e e ae e e st e sreeneeaaesnaesneeraennees 3-12
Comments on Example 1: DOMSaMPIE.JAVA.......c.cccviriiiieiiei e se e ee e see e 3-13
XML Parser for Java Example 1: DOMSaMPIE.JaAVAccccviiiiiiiiiieneeese e 3-14

Using XML Parser for Java: DOMNGaMESPACE ClaSScccvveiieieriieieii e 3-16
XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java.........ccccccrueereene. 3-16

Using XML Parser for Java: SAXPArSer ClassS........ccccooviiiieiieiiiie et se e ste e s 3-17
XML Parser for Java Example 3: Using the Parser and SAX APl (SAXSample.java)............ 3-19
XML Parser for Java Example 4: (SAXNAMESPACE.JAVA)ccovevveerieireeiriiieeie e e s see e erae s 3-22

USING the XIML Parser fOr JAVA. ...ttt 3-25
Using DOM and SAX APIS fOF JAVAccocviiiiiie et 3-25
Using Character Sets with the XML Parser for Javaccccovvviiiiiie s 3-28
General Questions About XML Parser fOr JaVa.........ccccooiiiiieiiniieese e 3-31

USING JAXP ettt bbb bbb bbb bbbttt 3-36
oraxml: XML Parser for Java Command-liNecccooicviiiiie ettt 3-37

XSLT Processor for Java

XSLT ProcessOr FOr JAVA OVEIVIEWcccooiiiiiiiiieiieieeie sttt sttt et stesneebesbesneseenas 4-1
USING XSLT ProCESSON TOI JAVA......cciiiieiiiiiieieiie ettt ste e e e eneesreesaennes 4-1
XSLT Processor for Java EXAMPIE ..o 4-3
XSLT Command-Line INterface: Oraxsl ... 4-5
XML Extension FUNCLIONS fOr XSLT PrOCESSINGcooiiiriirieiisie ettt 4-6
XSLT Processor for Java Extension Functions and NameSpacesccoccevveveeieeiiesieveseeseeenns 4-6
Static Versus NON-Static MEthOdScc.oiiiiiicc e 4-7
Constructor EXtENSION FUNCHIONooiiiiiieieriniee et 4-7
Return Value EXtEeNSION FUNCTIONcoiviiiiieiee et 4-7
Datatypes EXtENSION FUNCTION.......c..coiiiiiiieeiie e 4-8
XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output.............ccccceeveennen. 4-8
Hints for Using the XSLT Processor for Java and XSL ... 4-11
Merging TWO XML DOCUMENTSccuviiiiicie ettt st e et snneanas 4-11
Extracting Embedded XML USIiNG ONIY XSLTccciiiiiiiiiiiienere e 4-13
Support of Output Method "htmI" in the XSL Parser ..o 4-13
Creating an HTML INPUL FOMML..iiiiiiiiie et 4-14
Correct XSL NameSPaCe URN ...ttt 4-14
XSL Processor Produces MUultiple OQUEPULScciviieiicicce s 4-14
Keeping White Spaces in YOUT OULPULcoeiiiiiiieieiie et 4-14
XDK Utilities That Translate Data from Other Formats to XMLccccooeiiiinincnincncne, 4-14
Multiple Threads Using a Single XSLProcessor and Stylesheet............cccccoeveviniiiienieienenns 4-14
Using Document Clones in Multiple Threadscccoveiiiiic i 4-15
Disabling Output Escaping IS SUPPOITEd..........cooiiiiiiiiiinieese e 4-15

XML Schema Processor for Java

WHat 1S XIMIL SCREMIAY ... ettt bbb b b e nn e eneens 5-1
VA L AN g B N B L OO U RSP PRPRP 5-1
DTD LIMITATIONS ...eete ittt bttt b bbbt bbbt b e e b e bt et b e b 5-1
Comparison of XML Schema Features to DTD FEAtUIES.........ccocoiveiiennieiseenenee s 5-2
XML Schema Processor fOr JAVa FEATUIEScooi ittt 5-3
SUPPOIEA CRATACTEN SELS......cuiitiiieeiiite ittt bbbt b e ettt s nb e ene e 5-4
Requirements to Run XML Schema Processor for Java..........cccceie i 5-4
XML Schema Processor FOr JAVA USAQgEccveiiiiieieieeseiee e see e et snesrae e sae e e sneseens 5-4
UsIiNg the XML SChema APcoooiie e 5-5
XML Schema Processor for Java Sample Programsccocceiveeieiesiese e seeee e see e e 5-6

Using JAXB Class Generator

VWAL IS JAXB? ..ottt ettt s s bbbt bbbt st s ekttt b et b ettt bttt enen 6-1
Replacing the XML Class Generator with JAXB Class Generator.........c.cccccvvvevveievieecvviee e sesenns 6-1
Unmarshalling, Marshalling, and Validating USiNg JAXBcccoeiniinenineiienesee e 6-2
USING JAXB ClasS GENEIALOTccueiiieeeeieeitee ettt ste st e et e e e st e te e teste e testeesseanaeneesneeneesreesaesrens 6-2
Features NOt SUPPOITEA IN JAXB ..ot 6-2

vi

JAXB Class Generator Command-Line INTEIrTacCe.........cocouvviiie i 6-3
JAXB CompPared WIth JAXP ...t sttt e et e et e s e e s neeseesaeesaesreesreaes 6-3

XML SQL Utility (XSU)

What IS XML SQL ULHHLY (XSU)? ...ttt bbb 7-1
Generating XML from the Database.........cc.ccuviiieiiiieiiciss et 7-2
Storing XML in the Dat@base.........ccociiiiiiiiiiiee e 7-2
ACCESSING XSU FUNCLIONAIITYooiiiiiiiccee et sttt e te e s 7-2
XEU FRATUNES. ...ttt ettt ettt s bt e st h bbbt e s h bbbt e e bt e eab e e s b be s hb e e sh b snb e e saeenb b e e sneesnbeenris 7-2

XSU Dependencies and INStallation ... 7-3
DependenCies OF XSUciiiiiiiiiiee bbbt bbbttt 7-3
INSTAITING XSU ..ottt et e e aa e s ae s s e e s ae et e e s be e st e te e bebeesbeereenneaneas 7-3

Where XSU can De INSTalled ..o e e 7-4
XML SQL Utility in the DAtabasecccoeiiiiiiieii e 7-4
XML SQL Utility in the Middle TIer......cccviieieie ettt ere e 7-4
XML SQL ULility iN @ WED SEIVENc.oiiiiiic e 7-5

SQL-to-XML and XML-t0-SQL Mapping PriIMEr.......c.cccciiiiiiiiiiece et 7-6
Default SQL-T0-XML MEPPING ..ottt bbbttt 7-6
Customizing the Generated XML: Mapping SQL tO XML........ccccccevviiiiiiiiciie e 7-8
Default XML-10-SQL MAPPING ...oviiiiitiiiiieirieie sttt bbbt e 7-9

HOW XML SQL ULHIEY WOTKS ...ttt ettt sn et ste e sne e 7-10
SEIECTING WL XSU ...ttt et et era e s seesaesreesteteesreeseenreen 7-10
Queries That XSU Cannot HaNAIe..........ccooiiiiiiiie e 7-10
INSEITING WILN XSU ...t be et e s e sr e e ne e s aesneesneeneeaneas 7-10
UPdating WIth XSU ..ottt 7-11
Deleting WIth XSU........oiiiiiiii ettt e et e re e s re e e neereennes 7-12

Using the XSU Command-Line Front ENd OracleXML ..o 7-12
Generating XML Using the XSU Command LiNecccccooveiiiicieiicie e 7-12
XSU's OracleXML getXIML OPLIONScuviiiiiiiieiersieise e 7-13
Inserting XML Using XSU's Command Line (PUEXML).......ccccceeviiiiii i 7-14
XSU OracleXML PUEXIML OPLIONSccviiiiieciiie et e e aae e ae e e saesneeseenraens 7-14

XSU JAVA AP ..ttt sttt st s et e bt h e eb e te bt et et et eR e e Rt et ebe Rt ere b eaeereteerens 7-15

Generating XML with XSU'S OraCcleXMLQUETYcccoiviiieiieiiiie et seesesie e e sae e sneerae e 7-15
Generating XML from SQL QuUEFieS USING XSU ..o 7-16
XSU Generating XML Example 1: Generating a String from Table employees (Java) 7-16
XSU Generating XML Example 2: Generating DOM from Table employees (Java).............. 7-19

Paginating Results: skipROWS and MaxXROWS..........ccccciiiiiiiiieiiiie ettt 7-20
Keeping the Object Open for the Duration of the User's SESSION........ccocccvevvevvvviivnenencneenne 7-20
When the Number of Rows or Columns in a RoOw IS TOO Large........cccccoeevveieiievesecsiieenne. 7-20
LT o1@] o T=Tet (@] o 1= o T ol U] o o 1 T o SRR UPSI 7-20
XSU Generating XML Example 3: Paginating Results: (JAVA)cccovvervineenenineenenee 7-21

Generating XML from ResSUltSet ODJECES.........ccoviiiiiii s 7-21
XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)............... 7-21
XSU Generating XML Example 5: Generating XML from Procedure Return Values........... 7-23

RaAISING NOROWSEXCEPTION ...ttt bbbttt 7-24
XSU Generating XML Example 6: No Rows Exception (Java)cccccveeevieiceiieiviniiesee e, 7-24

Storing XML Back in the Database Using XSU OracleXMLSaVe..........ccccoviiviiieinnincnnene 7-25

Insert Processing USiNg XSU (JaVa APciiiiiiiiiie et 7-26

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java).................. 7-26
XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)cccceenee. 7-27
Update Processing Using XSU (JAVA APoo ottt 7-28
XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)............... 7-28
XSU Updating XML Example 10: Updating a Specified List of Columns (Java)................... 7-29
Delete Processing UsSiNg XSU (JAVA APociiie ittt 7-30
XSU Deleting XML Example 11: Deleting Operations Per ROW (Java)cocecervirieriennnn. 7-30
XSU Deleting XML Example 12: Deleting Specified Key Values (Java)...........ccccecvevvrviinennnns 7-31
Advanced XSU Usage TECHNIQUESooeiiiiiitiiciieeictee ettt 7-31
XSU Exception HaNAliNg iN JAVAccoveiiiiiic ettt st s sne s 7-31
Hints for Using XML SQL ULility (XSU)....cccociiiiiiiiiiieiene e 7-32

XSQL Pages Publishing Framework

XSQL Pages Publishing Framework OVEIVIEWcccccviieeieiiieie e se e e 8-1
What Can | Do with Oracle XSQL PagES?coeiiiiiriiiiirise e 8-2
Where Can | Obtain Oracle XSQL PAgES?ccciiiiiiiiiciesisic sttt se e e e seesta e e e sre s 8-3
What Is Needed to RUN XSQL PAGES?....c.uiiriiiieiiriniereeee ettt st 8-3

Security Considerations for XSQL PAgESccciiiiiiiiiiieiiee s ve e sre e 8-3
Install Your XSQLConfig.xml File in a Safe DIireCtory........cccooviiiiienscneseses e 8-3
Disable Default Client Stylesheet OVEITIdES.........cccoviiiiieiie i 8-4
Be Alert for the Use of SUDSEItUTION PArameters.ccocviieiiiiiieieiceeee e 8-4

What's New in XSQL Pages Release 10.1.. ...ttt 8-4

Overview of Basic XSQL Pages FEATUIES.........ccccviiiii et see s 8-5
Producing XML Datagrams from SQL QUEKIES..........cecireiireiirireneisiee e 8-6
Transforming XML Datagrams into an Alternative XML Format...........cccceoevveiiiiic e, 8-8
Transforming XML Datagrams into HTML for Displaycccceeinniniinnieescens 8-10

Setting Up and Using XSQL Pages in Your ENVIrONMENt...........cccccviieiieiieninnee et 8-12
Using XSQL Pages with Oracle JDeVEIOPET ... 8-12
Setting the CLASSPATH Correctly in Your Production Environment...........ccccccocveveieinenen. 8-13
Setting Up the Connection DefiNitioNSccveiiii i 8-14
Using the XSQL Command-Line ULty ..o 8-15

Overview of All XSQL Pages Capabilities. ... 8-15
Using All of the Core BUilt-in ACHIONS ..ot 8-15
Working with Array-Valued Parametersccocveeiieieiiiie e se e s e sse e sse e enas 8-31
Setting Array-Valued Page or Session Parameters from Stringsccocecvveiveieinivninsesennnnns 8-32
Binding Array-Valued Parameters in SQL and PL/SQL Statements..........cccccevvevveieciecnnenne. 8-33
Supplying Multi-Valued Parameters on the Command LiNe...........cccoverniiinninieienennns 8-35
Supplying Multi-Valued Parameters Programmatically with XSQLRequest...........cccccoe.ne. 8-36
Conditionally Executing Actions or Including Content with <xsql:if-param> 8-36
Optionally Setting an Error Parameter on Any Built-in ACtionccccocovviiiiniiiiiincs 8-37
Aggregating Information Using <xsgl:include-Xsql>.........cccccoiiiieiiiiiie i 8-38
Including XMLTYpe QUENY RESUILSccooiiiiiiiiiiiiie e 8-39
Handling Posted INfOrmMationccooiiii i 8-41
Using Custom XSQL ACtION HANAIEIS.........ccoiiiiiiiie e 8-46

Description of XSQL ServIet EXamMPIESccooi ittt 8-47
Setting UpP the DEMO DaLAccoiveiiiiiiriiie ettt sttt sne e 8-49

Vii

10

viii

Advanced XSQL Pages TOPICS ...c.voeiiiriiiieiiiiitiniet ettt er bbbttt bbb 8-50

Using a Custom XSQL Configuration File Name..........ccccooeiiviiiiicicce e 8-50
Understanding Client Stylesheet-Override OPtions........cc.ccooviiiiiieieiene e 8-51
Controlling How Stylesheets Are ProCeSSEd..........cocviiiiieieciieiieeieie e 8-51
Using XSQL Configuration File to Tune Your ENVIFONMENtcccoviinennensieieneneeenens 8-54
Using the FOP Serializer to Produce PDF QULPULcccoceiiiii i 8-61
Using XSQL Page Processor Programmaticallyc.cccouvvirieiie i 8-63
Writing Custom XSQL ACtion HaNAIErScooiiiiiiie e 8-64
Using Multi-Valued Parameters in Custom XSQL ACLIONS.........cccoevivirieiesieiese e 8-69
Writing Custom XSQL SEraliZErScouiiiiiiie e 8-69
Using a Custom XSQL Connection Manager for JDBC DatasOurCeS...........ccccvevvveveereecverneanne. 8-72
Writing Custom XSQL ConnNection ManagerS. ...t 8-73
Providing a Custom XSQLErrorHandler Implementation............ccccooeveiieiinicnecn e, 8-73
Providing a Custom XSQL Logger Implementation............ccoocvinniniineinene e 8-74
Formatting XSQL ACtion HandIEr EFTOIS.......ccoiiiie ittt 8-75
XSQL Servilet LImitations and HiNtS ...ttt 8-76
HTTP Parameters with MUltibDyte NamESccooiiiiiiiie e 8-76
CURSOR() FuNnction in SQL StatemMentSccveiieieeie e seeie st e e s e e 8-76
Hints for Using the XSQL SEIVIET ..o 8-76

Pipeline Definition Language for Java

Using Pipeline Definition LaNQUAGE.coviiiiicii ettt 9-1
Example of a Pipeline Definition Language Application ... 9-2
The Command-line Pipeling TOOI OrapiPe......ccuviiiiiiiiii et 9-5

XDK JavaBeans

Accessing Oracle XDK JAVABEANScccciiiiiiie ittt ba e sraere e re e e anes 10-1
Database CONNECTIVITYcviiiiceii et e st be st e e e ere e e e sneenaesneeneennees 10-1
XDK JaVABEANS OVEIVIBWcuiiiiiiiiieiieisiesie e sttt st ettt et se e s besbeasesbesbesbessenbeseeneennas 10-2

DOMBUIIAEE JAVABEAN.........ciiiiiiiiite ittt bbb bttt bt er et er e 10-3
Use for Asynchronous Parsing in the Background.............cccoviiiiniinnencie e 10-3
DOMBUIIAEr JAVABEAN USAQEcvvivieiieeeie ettt ste et ere e e sneeneenneas 10-3

XSLTransfOrmMer JAVABEANc.cviviieiri sttt st se et st era s e eteanaeretesreseenteneens 10-4
XSLTransformer JavaBean: Regenerating HTML Only When Data Changes.........c.cccoeeeve.. 10-5
How to Use XSLTransformer JAVABEANccc.eieiveieiee s se et sra e s nees 10-5

DBACCESS JAVABEAN..... ..ottt ettt bbbttt b bbbt et nb e b nne e are e 10-6
DBACESS JAVABEAN USAJE.......ciiiiiiiieiiei ittt sttt esba et e sba e e sbb et b e e s rbenenee e 10-7

XIMLDIT JAVABEANcviiviieiieiiee ettt ettt eb et bt st eb e e st e e et e sbe et e besaesbenteneen 10-7

XMLCOMPIESS JAVABEAN........coiiiiiieiiire e bbbt nr e be e e et 10-8

XMLDBACCESS JAVABEAN........coiiiiiieiiiet ettt 10-8

XSDValidAtOr JAVABEAN.........c.ciiiiiiiiieiieiee ettt b ettt sr b nre 10-8

JAVABEAN EXAMPIEScuiiiiiiiic bbb 10-8
Installing the JavaBean EXamMPIES.........coociiiiiiie it 10-9
XIMLDIFESAMPIEJAVA.cieeiciiiite ettt b e et sr e er e 10-10
XSDValidatorSamPIE.JAVA.........ccceiiiieiee ettt sttt ereans 10-10

11

12

13

14

Using XDK and SOAP
WAL IS SOAP Y ...t sttt e st et e e s be et et e et e beeabeebesabesbesaeesbeebeesbee st esbaenbeans 11-1
What Are UDDI @nd WSDL?ocoiiiiiiiicieiecs sttt ettt enenes 11-2
WAL 1S OFACIE SOAP? ...ttt e ettt bbb bbbt eb s e b b be e 11-2
HOW D0ES Oracle SOAP WOIK? ..ottt sttt 11-2
Oracle SOAP AN IDAP ...ttt b bbbttt bbb ne e b s e 11-3
What 1S @ SOAP CHIENT? ... st ettt bt sr et e seens 11-4
1@)N O [=1 o1 AN = OSSPSR 11-4
WAL IS @ SOAP SEIVEI? ...ttt et e ettt s et e e st e se et e e s teaneetentesnees e teseereeneenenns 11-4
Oracle SOAP SECUNILY FEATUIESecieiicieee ettt e sre et e e e se e ree e 11-5
SOAP TTANSPOITS. ...ttt sttt r et b bbbt b e st r bt benn b b se e nr e e ne e 11-5
AdMINISTIAtIVE CHENTS ... et eens 11-5
SOAP ReQUEST HANAIETocuiiiiiciicie ettt et e e e sne e resreesreateenneenneas 11-5
SOAP Provider Interface and ProVIOEIS........cccooiiiiiiieiiieese e 11-5
Advantages 0f XML OVEr EDIc.ccoiiiiiiic st enas 11-6
SOAP EXAMPIE ..ottt et bt bbbt bbbt bbbt n e 11-6
XML Features Used in the SOAP EXAMPIEoov it 11-7
Prerequisite Software for the SOAP EXamMPIe........cccooviiiiiiiiiie e 11-7
How Is the SOAP Example IMplemented? ...t 11-7
TransX Utility
Overview Of the TranSX ULHTITY ... 12-1
Primary TransX ULty FEAUIEScooiiiiiiiieeiee ettt 12-1
INSTAIIING TraNSX UTHILY ...ooiiiiiiic bbb ettt 12-3
DePeNdENCIES OF TIANSX.......iii ittt e e s e s be s e e saeete e teese e beesbenes 12-3
Installing TransX Using the Oracle INStaller ... 12-3
Installing TransX Downloaded from OTN.........ccocci i 12-4
TransX Utility Command-LiNe SYNTAXccccceiiiiieiieieeinree e sre e eee e sae e sree e sae e seenes 12-4
TransX Utility Command-Line EXamMPIEsccooiiiiiiiiiieireeee s 12-4
Sample Code for TranSX ULTIITY ... 12-5
Getting Started with XDK C Components
Specifications of XDK C/C++ COMPONENTScccciiiiieiiiiicie et sia e seeste e sne e e 13-1
What Are the XDK C COMPONENTS......cciiiiiiiieiiiee ettt ste e e ene e sesneesnes 13-1
Installing the C Components Of XDK ..o 13-2
Setting the UNIX ENVIFONMENT.......ccoiii ettt st eneesree e 13-2
Command Line ENVIFONMENT SETUDc..oviiiiiiieiitere ettt 13-3
Setting the WIiNAOWS ENVIFONMENTc.oiiiiiiicic ettt ene e e naen 13-4
Globalization Support for the C XDK COMPONENTS ..o 13-11
XML Parser for C
What Is the Unified C API for XDK and Oracle XML DB?.......cccccoviveiiiicie e 14-1
USING DOM FOF XDK ..ottt bbbt bbbttt 14-2
Loading an XML Document With the C APL.........c.ooicii e 14-2
Data Encoding of XML Documents for the C APl ... 14-2

15

16

NULL-Terminated and Length-Encoded C APl FUNCLIONSccooiiiniincinceneeee e 14-3

L= g o]l o =T o | T o [P USRS 14-4
INSTAHTING TNE C AP ..ot bbbttt 14-4
USING OCT aNA Tthe C APt s s ae e e s teste e re e e ereens 14-4
DL | I 0] o] (= TSSOSO PRPRTR 14-4
Creating XMLType Instances 0N the CHENt ... 14-5
XML DAta 0N the SEIVETc.oiiiiiiieiie ettt sttt sb bbb b b nre 14-5
XMLType FUNctions and DeSCrIPTIONScuiiiiiiiiiiiesice e 14-5
(O 1O I v T T o] 1= SOOI 14-6
USING the XIML PArSEr FOF C......oviiiiiiiiieiieiisii ettt bbbt 14-9
V=T To] YA AN | [o711 [] o ISR ORUS 14-10
TREEAA SAFELY ... bbbt b et b 14-10
(DT U7 W IV o T=To g T 1= OSSPSR 14-10
EFrOr MESSAGE FIIES ...ttt bbbt b 14-10
XML Parser for C Calling SEOUENCEc.cccviii et e e st e e se e teesaene e 14-10
Parser Calling SEOQUENCEcvcii ettt sr e e sresseesreereesreenaenneas 14-11
XML Parser for C Default BENAVIOF ..ot e 14-12
DOM and SAX APIS COMPATEcc.ociiiieeie ettt te e teasaenseeneesreenes 14-13
USING TNE SAX AP ..ottt bbbt 14-13
(07010 aaF: TaTe I T LT U L7 Vo 1= TP 14-13
Writing C Code to Use SUPPIIEA APIS ... 14-14
USING the SAMIPIE FIlES ... e 14-14
XSLT Processors for C
XV M PIOCESSON ...ttt ettt ettt h e bbb e s b e e bt ek bbbt e b b e kbt e bt e bt e e bt e be e e e e e beeenennr s 15-1
XVM USAQE EXAMIPIE... .ottt ettt te et s te et teeeesraenneas 15-1
Command-Line Access 0f the XVIM PrOCESSONcccvivreieriiieeieieesesese e sressesae e esaesensessens 15-3
ACCESSING XVM ProCeSSOr FOI C.....voiiiiiiiiee ettt sre s 15-3
DS I o o 1ol =T SRS 15-3
XSL Processor Usage EXaMPIE ...ttt sttt ne e 15-3
XPath Processor Usage EXAMPIEccveiieeieiie ettt n e 15-4
Command Line Usage 0f the XSL PrOCESSONccuiiiriirieiiiierenieesieie et 15-4
Accessing Oracle XSL ProCessor fOr C ...t 15-5
Using the Demo Files Included with the SOftWare ... 15-5
Building the C Demo Programs fOr XSLTcooiiiiiicicece et 15-6
XML Schema Processor for C
Oracle XML SChema ProCeSSOr FOF C......oiuiiiiiiiiieieiiesie ettt 16-1
Oracle XML SChema fOr C FRATUIES.........cocviue ittt e e e e e nreens 16-1
Standards CONTOIMIANCEcuii ittt sttt ebeebe et sresreee e 16-2
XML Schema Processor for C: Supplied SOftWareccccceiviieiiiice e 16-2
INnvoking XML Schema ProCesSor TO C ..ot 16-2
XML Schema Processor for C Usage Diagram..........cccccvvveiiiieiie e sesie e 16-2
How to Run XML Schema for C Sample Programs ... 16-3

17

18

19

20

Getting Started with XDK C++ Components

Installation of the XDK C++ COMPONENTSoeiiiiiiiiiiieiiiisiie ettt
Getting the C++ Components 0f XDK ..o
Libraries in the UNIX Environment for C++ XDK.......cccccoiiiiiniiiiiiieie e
Setting the UNIX ENVIroNMeNnt FOr CH ...
Command Line ENVIFONMENT SETUDccvvviiii ettt enas
Windows Environment Setup for CH+ XDK.......ocoiiiiiiiiiiiineese e
Setting the Windows Environment for C++ XDK.......c.ccccooiiiiiiiicic e

Unified C++ Interfaces

What IS the UNITIied CH+ API? ...ttt st ens
ACCESSING the CH+ INTEITACE ..o e e e e re e e
OFaCIEXIML NAMESPACE ... vttt ettt bbb bbbt b ettt nb e
OFaCIEXIML INTEITACESottt bbb bbbttt bbb b bt nee e
CUX INAMIESPACE ...ttt et eh Rt b et e s s e e bt bbbt bbb e an e e nes
OraCleX ML DalatyPES ...c.veeviiviciiie ettt et e et et s e e s e se e s ae e s besreesbeeraeste e st ebeenreaes
(O3 0t [) (=T - Tod -SSR
L@ N F= U g T=T] o T- ol TP U UP PR PRI
L@ B -1 £= 14 Y/ o 1T T T ST R TSP PP TP
(O I g1 =T = Tol OSSOSO
B T] 3l = Tod - Vo 1= RSP R
TOOIS INTEITACES ...ttt ettt b e be b e besee e et e
g oY g\ [EET: Vo =T o 1 1= SRS

XML Parser for C++

INtrodUCtioN 10 PArSEr FOF C ..ottt
DOIM NAIMESPACE ... e eiteeiie ettt ettt ettt ettt st et e e st bbbt e s be e b bt e sbe e sbb e e nb e e s bbe e nee e s bbeebeeenbneeres
DOM DAALYPES. ...c.cieiieiiiitisieiti ettt
DOM INTEITACES ...ttt bbbttt b et eb s b e bt b et st n e nnens
DOM Traversal and Range DatatyPeSccoierieeiriiniienee et
DOM Traversal and RaNge INtErfaCeS........cccvviiiiieiice e
ParSEr INAMESPACE. ..ottt et r et r e r e r e r et s e s e st e s renn e e nrenneenne e
GPAISEI INTEITACE ...ttt bttt b e bttt bbb es e e bt e b
DOMPAISEE INTEITACE ...ttt et r bt sr bbb e e
SAXPAISEr INTEITACE ...e.uiiei ettt st e bt se e nbe e
B =T 1o ST] 1TSS
XML PArSEr FOr CH+ USAQJEcueiuieiieiiieeiiite ittt etttk eb ekt b ettt ab et nn et be b nr e enas
XML Parser for C++ Default BENAVION ..o e
CHt SAMPIE FIIES ..ottt b et b ettt b b et ebe b

XSLT Processor for C++

ACCESSING XSLT TOF Ch oottt ettt e ete et e re e na e sneereesreeseenreeneenes
XSI INBIMESPACE ...ttt bbbt et b et b et bbb bbbt e b bt e bbb ekt e b et et ettt b nnen s

XSE INTEITACES ...ttt er et
XSLT for C++ DOM INtErTAace USAJEc.ooviieiiiiiiiiiiiieieist ettt et

18-1

Xi

21

22

23

24

Xi

INVOKING XSLT FOF Crt ottt bbbtk b ettt bt nnere s 20-2

(O%0] a0 g T TaTe I T T-T U LT Vo 1= TSSOSO SRUSOR 20-2
Writing C++ Code to Use SUPPHEA APIS ... 20-2
Using the Sample Files Included with the Software...........ccccoveviiiii e, 20-2

XML Schema Processor for C++

Oracle XIML Schema Processor TOr CHttt ettt st 21-1
Oracle XML Schema fOr C++ FEALUIES.........cccciiiiiieie et ste e e nra e 21-1
StaNAards CONTOIMANCE.c.iiui ittt e bbb s ae e sbesteesbesbeesbeeseesbeens 21-2

XML SChemMa ProCESSOE APcuioiccei ettt sttt be e se e te et be et eete e b e ena e anes 21-2
Invoking XML Schema Processor fOr CH ... s 21-2

Running the Provided XML Schema for C++ Sample Programs............cccoceviiiiiniiniiniinenennnens 21-2

XPath Processor for C++

D= L T F T = o= TSRS 22-1
ST Laa] o] LI ad foTo] =1 a 1TSS 22-1

XML Class Generator for C++

ACCESSING XML CH+ ClasS GENEIALOIccceiuiiirieieieee ettt sttt bbb e 23-1
USING XIML CH+ ClasS GENEIALONccecveiiiieciecie e st testeete e e s esae s e e sae e e stesnaestaeseenseans 23-1
EXEErNal DTD ParSING....ccoiiiiiiieiiiiite sttt sttt st b e ettt b eb ettt b bt sbe e sbe st nnenea 23-1
EFror MESSAQE FIlES......oiiiie et e et eer e e e e 23-1
XML C++ Class GENEratOr USAGE.ccuirieiriiiiieriiieesteie sttt sttt eae bbb et sre e nneneas 23-2
Input to the XML C++ Class GENEIALONcccveiiieicie e te e e e eraesres 23-2
Using the XML C++ Class Generator EXampPles..........cooeiiiieiiciececee e 23-3
XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml...... 23-3
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd....... 23-3
XML C++ Class Generator Example 3: CG Sample Program.........cccccoverenninenneiescenens 23-3

XSU for PL/SQL

XSU PLISQL AP .ottt s b e et b e st b etk b e bt eb ettt sb bt e b e e ebenbe e e neas 24-1
Generating XML with DBMS_XMLQUENY()...c.coviiriirieiiiiriiisieesieiesie et 24-1
XSU Generating XML Example 1. Generating XML from Simple Queries (PL/SQL) 24-2
XSU Generating XML Example 2: Printing CLOB to Output Buffer............cccccovvniininnnnn, 24-2
XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names.........c........... 24-3
XSU Generating XML Example 4: Using setMaxRows() and setSKipROWS()........c.ccccevuenien 24-3

Setting Stylesheets iN XSU (PL/SQL) ..ottt 24-4

Binding Values in XSU (PL/SQL)cuiiiiiiiiiiiiiesie sttt 24-4
XSU Generating XML Example 5: Binding Values to the SQL Statement...........ccccccoevenes 24-5

Storing XML in the Database Using DBMS_XMLSAVE.........ccccciiiiiiieniie e 24-5

Insert Processing Using XSU (PL/SQL AP ..ot 24-6
XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)ccccceve. 24-6
XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)............. 24-7

Update Processing Using XSU (PL/SQL AP ...t se e 24-8
XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)........ 24-8
XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL).......... 24-8

Delete Processing Using XSU (PL/SQL AP ..ot 24-9

XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL).................. 24-9

XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)ccocvvrvviviiinnennnns 24-10

XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)........ccccceeevvevvnnnene. 24-10

XSU Exception Handling iN PLZSQLcoiiiiiiiiiiieicere ettt 24-11
Glossary

Index

xiii

Xiv

Send Us Your Comments

Oracle XML Developer’s Kit Programmer’s Guide, 10g Release 3 (10.1.3)
B28236-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?

« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
« FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XV

XVi

Audience

Preface

This Preface contains these topics:
« Audience

« Documentation Accessibility
« Structure

» Related Documents

= Conventions

Oracle XML Developer*s Kit Programmer’s Guide introduces application developers to
the XML Developer's Kit (XDK) and how the various language components of the
XDK can work together to generate and store XML data in a database or in a
document outside the database. Examples and sample applications are introduced
where possible.

To use this document, you need familiarity with XML and a third-generation
programming language such as Java, C, or C++.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://ww. oracl e. com accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

XVii

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Structure

This document contains:

Chapter 1, "Overview of XML Developer's Kit Components"
Introduces the XDK parts and utilities used with them.

Chapter 2, "Getting Started with XDK Java Components”
How to install the XDK Java components.

Chapter 3, "XML Parser for Java"
Describes the XML parser for Java features.

Chapter 4, "XSLT Processor for Java"
Describes the XSLT processor for Java.

Chapter 5, "XML Schema Processor for Java"
Describes the XML schema processor Java.

Chapter 6, "Using JAXB Class Generator"
Describes JAXB, which replaces the XML class generator for Java.

Chapter 7, "XML SQL Utility (XSU)"
Describes the XML SQL utility for Java.

Chapter 8, "XSQL Pages Publishing Framework"
Describes this Java capability.

Chapter 9, "Pipeline Definition Language for Java"
Describes the implementation of the Pipeline Definition Language for Java.

Chapter 10, "XDK JavaBeans"
Describes the JavaBeans available.

Chapter 11, "Using XDK and SOAP"
A brief introduction to SOAP and the XDK.

Chapter 12, "TransX Utility"

The TransX Utility simplifies the loading of translated seed data and messages into a
database.

Xviii

Chapter 13, "Getting Started with XDK C Components"
How to install the XDK C components.

Chapter 14, "XML Parser for C"

You are requested to use the new unified C API for new XDK applications. The old C
functions are supported only for backward compatibility, but will not be enhanced.
Describes the C XML parser features.

Chapter 15, "XSLT Processors for C"
Describes the XSLT processor for C features.

Chapter 16, "XML Schema Processor for C"
Describes the XML schema processor for C features.

Chapter 17, "Getting Started with XDK C++ Components”
How to install the XDK C++ components.

Chapter 18, "Unified C++ Interfaces"
The unified C++ API is described. The interfaces are listed.

Chapter 19, "XML Parser for C++"
Describes the XML parser for C++ interfaces.

Chapter 20, "XSLT Processor for C++"
Describes the XSLT processor for C++ interfaces.

Chapter 21, "XML Schema Processor for C++"
Describes the XML schema processor for C++ interfaces.

Chapter 22, "XPath Processor for C++"
Describes the XPath C++ interfaces.

Chapter 23, "XML Class Generator for C++"
Describes the XML class generator for C++ features.

Chapter 24, " XSU for PL/SQL"

XML SQL Utility (XSU) PL/SQL API reflects the Java API in the generation and
storage of XML documents from and to a database.

Glossary

Defines terms of interest to readers of this manual, and related XML manuals. If a term
is used in this manual, a cross-reference to the definition is marked in bold.

Related Documents
For more information, see these Oracle resources:
» Oracle XML DB Developer's Guide
« Oracle XML API Reference
« Oracle XML Java API Reference

XiX

» Oracle Streams Advanced Queuing User’s Guide and Reference
« http://ww. oracle.conftechnol ogy/tech/xm/

Many of the examples in this documentation are provided with your software in the
following directories:

» $ORACLE_HOME/ xdk/ denmpo/ j aval

« $ORACLE_HOWME/ xdk/ deno/ ¢/

» $ORACLE_HOME/ xdk/ j aval/ sanpl e/
» $ORACLE_HOME/ r dbrs/ denp

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracle. com
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://ww. oracl e. conl t echnol ogy/ nenber shi p/
If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://ww. oracl e. con t echnol ogy/ docunent ati on/

For additional information about XML, see:

« WROX publications, especially XML Design and Implementation by Paul Spencer,
which covers XML, XSL, and development.

» Building Oracle XML Applications by Steve Muench, O'Reilly,
http://ww. oreilly.conicatal og/ orxm app/

« The XML Bible, ht t p: / / www. i bi bl i 0. org/ xm / books/ bi bl egol d/

« Oracle Database 10g XML & SQL by the Oracle XML Product Development Team,
http://ww. osbor ne. contf oracl e/

« XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems,
http://ww. i biblio.org/bosak/xm /why/xm apps. ht m

« XML for the Absolute Beginner by Mark Johnson, JavaWorld,
http://ww.javaworl d. conf j w 04- 1999/ w 04-xm _p. htn

« XML And Databases by Ronald Bourret,
http://ww.rpbourret.con xm / XM_LAndDat abases. ht m

« XML Specifications by the World Wide Web Consortium (W3C),
http://ww. w3. or g/ XM/

« XM.. com a broad collection of XML resources and commentary,
http://ww. xm . coni

« Annotated XML Specification by Tim Bray, XM.. com
http://ww. xm . confaxm /testaxnl . ht m

« The XML FAQ by the W3C XML Special Interest Group (the industry clearing
house for XML DTDs that allow companies to exchange XML data),
http://ww. ucc.ie/xm/

« XM.. or g, hosted by OASIS as a resource to developers of purpose-built XML
languages, http: // xm . or g/

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear ina index-organized table.
glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.

(fixed-wi dth)
f ont

| ower case
nonospace
(fixed-wi dth)
f ont

| oner case
italic
nonospace
(fixed-wi dth)
f ont

elements include parameters, privileges,
datatypes, Recovery Manager keywords,
SQL keywords, SQL*Plus or utility
commands, packages and methods, as well
as system-supplied column names,
database objects and structures,
usernames, and roles.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Lowercase monospace typeface indicates
executable programs, filenames, directory
names, and sample user-supplied
elements. Such elements include computer
and database names, net service names
and connect identifiers, user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Enter sql pl us to start SQL*Plus.
The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart ment _i d, depart nent _nane, and
| ocation_i dcolumns are in the
hr. depart ment s table.

Set the QUERY_REWRI TE_ENABLED initialization

. rameter tot r ue.
Note: Some programmatic elementsusea ~ P&'@ etertotrue

mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Connect as oe user.
The JRepUti | class implements these methods.

Lowercase italic monospace font represents
placeholders or variables.

You can specify the par al | el _cl ause.

Run ol d_r el ease. SQL where ol d_r el ease
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE usernane = ' M GRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example
[] Anything enclosed in brackets is optional. DECIMAL (digits [, precision])
{1} Braces are used for grouping items. {ENABLE | DI SABLE}

| A vertical bar represents a choice of two {ENABLE | DI SABLE}
options. [COWPRESS | NOCOWPRESS]

Ellipsis points mean repetition in syntax CREATE TABLE ... AS subquery;
descriptions.

In addition, ellipsis points can mean an SELECT col 1, col2, ... , coln FROM
omission in code examples or text. enpl oyees;

Other symbols You must use symbols other than brackets acctbal NUVBER(11, 2);

([1), braces ({}), vertical bars (]), and acct CONSTANT NUMBER(4) : = 3;
ellipsis points (...) exactly as shown.

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em password

variables for which you must supply DB _NAME = dat abase nane
particular values.

UPPERCASE Uppercase typeface indicates elements SELECT | ast_name, enployee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish SELECT * FROWV USER TABLES;
them from terms you define. Unless terms ppop TABLE hr. enpl Syees;
appear in brackets, enter them in the order
and with the spelling shown. Because these
terms are not case sensitive, you can use
them in either UPPERCASE or lowercase.

| over case Lowercase typeface indicates user-defined SELECT | ast_name, enpl oyee_id FROM
programmatic elements, such as names of enpl oyees;
tables, columns, or files. sql plus hr/hr

Note: Some programmatic elements usea ~ CREATE USER nj ones | DENTI FI ED BY ty3MJ9;
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example
Choose Start > How to start a program. To start the Database Configuration Assistant,
menu item choose Start > Programs > Oracle -

HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

XXii

Convention

Meaning

Example

File and directory
names

C\>

Special characters

HOVE_NAVE

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (), double
quotation marks ("), slash (/), pipe (I), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the filename
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (7). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (") do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

c:\winnt"\"system32 is the same as
CAWINNT\SYSTEM32

C:.\oracl e\ oradat a>

C\> exp HR HR TABLES=emp QUERY=\"VHERE
j ob=' REP'\"

C:\> net start Oracl eHOVE_NAMETNSLI st ener

XXiii

Convention Meaning Example

ORACLE_HOVE In releases prior to Oracle8i release 8.1.3, Go to the
and when you installed Oracle components, all ORACLE_BASE\ ORACLE_HOVE\ r dbns\ adni n
ORACLE_BASE subdirectories were located under a top directory.

level ORACLE_HQOVE directory. The default

for Windows NT was C: \ or ant .

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HQOVE directory. There is a top
level directory called ORACLE_BASE that
by default is

C:\oracl e\ product\10. 1. 0. Ifyou
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:\oracl e\ product\10. 1. 0\ db_n,
where n is the latest Oracle home number.
The Oracle home directory is located
directly under ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Installation Guide
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

XXIV

What's New in Oracle XML Developer's Kit?

This section describes new features of the Oracle Database 10g Release 1 (10.1) and
provides pointers to additional information. New features information from previous
releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle XML Developer's Kit:

Oracle Database 10g Release 1 (10.1) New Features in Oracle XML Developer's Kit

Oracle Database 10g Release 1 (10.1) New Features in Oracle XML
Developer's Kit

This section contains new features in the Oracle XML Developer's Kit (XDK).

JAXB Class Generator

The JAXB compiler generates the interfaces and the implementation classes
corresponding to the XML Schema. The JAXB Class Generator, which is based on
the Java Specification Request (JSR) recommendation for JAXB, is to be used for
new applications. The Class Generator for Java is deprecated and replaced by the
JSR-31 implementation of XML Data Binding (JAXB). The runtime will be
supported so that the Java classes generated in older releases continue to work.

See Also: Chapter 6, "Using JAXB Class Generator"

Unified API for C and C++

These sets of functions work in both XDK and XML DB and replace the C and C++
XDK functions of previous releases.

See Also: Chapter 14, "XML Parser for C" and Chapter 18,
"Unified C++ Interfaces”

XDK C/C++ Components Change

Previously, the globalization support data environment variable setting was ORA _
NLS33. It has now been changed to ORA_NLS10.

Pipeline Definition Language

This W3C note is implemented for Java in the XDK.

See Also: Chapter 9, "Pipeline Definition Language for Java"

XSLT Compiler and XSLT Virtual Machine (XVM)

XXV

XXVi

For improved performance there are new interfaces for the XSL processor for C
and C++.

See Also: "XVM Processor" on page 15-1.

XSQL Pages Publishing Framework Updates

This chapter has been updated for this release.

See Also: Chapter 8, "XSQL Pages Publishing Framework"

Using SOAP
New sections are included, plus an example of a SOAP project is found in this
chapter:

See Also: Chapter 11, "Using XDK and SOAP"

New XML JavaBeans
XMLCompress, XMLDBAccess, and XSDValidator JavaBeans are now available in
the XDK.

See Also: Chapter 10, "XDK JavaBeans"

XDK Java Components Changes

The XDK Java components in this release have several fixes for J2EE conformance
and XML 1.0 Conformance Test Suite. Some of the changes resulted in change in
behavior with respect to previous release. A few of them are listed below:

« The default value of preserve whitewashes
[XMLPar ser . set Preser veWi t espace()] is now dependent on the
presence of a DTD. If a DTD is present, the defaultisf al se, elseitistrue.
Earlier the default was always f al se.

« get Prefix(),getNanmespaceURl (),andgetLocal Name() returnnul |
instead of """ (empty string), when not present in the element or attribute, or if
the node was created using DOM 1.0 methods.

The PL/SQL wrapper for parsing and transformation is replaced by the DBMS_
XMLPARSER, DBMS_XMLDOM and DBMS_XSLPROCESSOR packages.

JAXP 1.2 supports XML Schema validation.
XM.SAXSeri al i zer provides support to handle the SAX output serialization.

See Also: "XDK Java Components Specifications" on page 2-1 for
specifications of the levels of the components in this release
Restructuring of XML Documentation

The following PL/SQL chapters are now located in the Oracle XML DB Developer's
Guide.

« XML Parser for PL/SQL
« XSLT Processor for PL/SQL
« XML Schema Processor for PL/SQL

1

Overview of XML Developer's Kit
Components

This chapter contains these topics:

Introducing Oracle XML Developer's Kit

XDK Functionality Applied to XML Documents

Using XDK-supported Languages to Generate XML Documents
XDK and Application Development Tools

Using Oracle XML-Enabled Technology

Introducing Oracle XML Developer's Kit

Oracle XML Developer's Kit (XDK) is a set of components, tools, and utilities that
eases the task of building and deploying XML-enabled applications.

Release notes for XDK are found in/ xdk/ doc/ r eadne. ht ni .

Table 1-1 summarizes the standards supported by the XDK Components:

Table 1-1 Standards Supported by XDK Components

Standard Java C C++

XML 1.0 (Second Edition) Full Full Full

XML Namespaces 1.0 Full Full Full

XML Base Only in XSLT Not supported Not supported
XML Schema 1.0 Full Full Full

DOM 1.0 Full Full Full

DOM 2.0 Core Full Full Full

DOM 2.0 Events Full Full Full

DOM 2.0 Transversal and Range Full Full Full

DOM 3.0 Load and Save (working Partial Not supported Not supported
draft)

DOM 3.0 Validation (working draft) Full Not supported Not supported
SAX 1.0 Full Full Full

SAX 2.0 Core Full Full Full

SAX 2.0 Extension Full Full Full

Overview of XML Developer's Kit Components 1-1

Introducing Oracle XML Developer's Kit

Table 1-1 (Cont.) Standards Supported by XDK Components

Standard Java C C++

XSLT 1.0 Full Full Full

XSLT 2.0 with backward Partial support Notsupported Not supported
compatibility

XPath 1.0 Full Full Full

XPath 2.0 with backward Partial support Not supported Not supported
compatibility (working draft)

XML Pipeline 1.0 (Notes) Partial Not supported Not supported
JAXP 1.1 (JSR Standard) Full Not applicable Not applicable
JAXP 1.2 (JSR Standard) Full Not applicable Not applicable
JAXB 1.0 (JSR Standard) Partial support Not applicable Not applicable

Class Generator (Oracle proprietary Not applicable Not applicable Full
product)

Oracle has representatives participating actively in the following W3C Working
Groups:

« XML Core

« XML Schema

= XML Query

« XSL/XPath

« XLink/XPointer

= XML Namespaces
» DOM

« SAX

Oracle has representatives participating actively on the following JSR standards:
« JAXB

« JAXP

Overview of Oracle XDK Components

The XDK is fully supported and comes with a commercial redistribution license. To
provide a broad variety of deployment options, the XDK components are available for
Java, C, and C++. Table 1-2 lists and describes the Oracle XDK components.

1-2 Oracle XML Developer's Kit Programmer's Guide

Introducing Oracle XML Developer's Kit

Table 1-2 Overview of Oracle XDK Components

XDK Supported
Component Description Languages See Also
XML Parsers Create and parse XML using Java, C, and Chapter 3, "XML Parser for Java"
industry standard DOM and SAX C++ " "
interfaces. Chapter 14, "XML Parser for C
Chapter 19, "XML Parser for C++"
XSLT Transforms or renders XML into Java, C, and Chapter 4, "XSLT Processor for Java"
Processors cli}'?f\; tLext-based formats such as C++ Chapter 15, "XSLT Processors for C"
Chapter 20, "XSLT Processor for C++"
XVM High performance XSLT Cand C++ "XVM Processor” on page 15-1
transformation engine that supports
compiled stylesheets.
XML Schema Validates schemas. It allows use of Java, C, and Chapter 5, "XML Schema Processor
Processors XML simple and complex C++ for Java"
datatypes. Chapter 16, "XML Schema Processor
for C"
Chapter 21, "XML Schema Processor
for C++"
JAXP Gives you the ability to use the Java "Using JAXP" on page 3-36
SAX, DOM, and XSLT processors,
or alternate processors, from your
Java application.
JAXB Class Creates Java classes based on an Java Chapter 6, "Using JAXB Class
Generator XML Schema. Replaces XML Class Generator"
Generator for Java.
XML Class Automatically generates C++ C++ Chapter 23, "XML Class Generator
Generator classes from DTDs and XML for C++"
Schemas to send XML data from
Web forms or applications.
XML SQL Generates XML documents, DTDs Java and Chapter 7, "XML SQL Utility (XSU)"
Utility (XSU) and Schemas from SQL queries. PL/SQL " "
(XSU) Maps any SQL query result to XML Chapter 24, "XSU for PL/SQL
and vice versa.
XSQL Servlet Combines XML, SQL, and XSLT in Java Chapter 8, "XSQL Pages Publishing
the server to deliver dynamic Web Framework"
content.
XML Pipeline Applies a set of XML processes Java Chapter 9, "Pipeline Definition
Definition specified in a declarative XML Language for Java"
Language XPi pe file.
XML A set of bean encapsulations of Java Chapter 10, "XDK JavaBeans"
JavaBeans: XDK components for ease of use of

Integrated Development
Environment (IDE), Java Server
Pages (JSP), and applets.

Overview of XML Developer's Kit Components 1-3

XDK Functionality Applied to XML Documents

Table 1-2 (Cont.) Overview of Oracle XDK Components

XDK Supported
Component Description Languages See Also
Oracle SOAP The Simple Object Access Protocol Java Chapter 11, "Using XDK and SOAP"
Server (SOAP) is a lightweight protocol for
sending and receiving requests and
responses across the Internet.
TransX Utility Loads translated seed data and Java Chapter 12, "TransX Utility"
messages into the database using
XML.
XML Binary compression and Java "About XML Compressor" on
Compressor decompression of XML documents. page 3-9

XDK Functionality Applied to XML Documents

To work with XML technology, you need to be familiar with the tools to parse XML,
validate XML against a DTD or XML schema, transform XML by applying a stylesheet,
and generate XML documents based on data selected from a database by means of
SQL statements. See Table 1-2, " Overview of Oracle XDK Components”, column "See
Also," for cross-references to the components. XML Compressor supports only Java.
Figure 1-1 shows a simple overview of XDK.

Figure 1-1 XDK Functionality

> XML — | Compressed
Compressor —_— | XML
XML DOM
Documents
— XML Y Sg(h,\(/lelr_na > XSLT <+ p— étSyITesheet
— Parser validator A SAX Proissor f—
— | XML > —— | Transformed
——| Schema e [—— XML

v

Java or C++ Application

XML Parsers

JAXB or CH+ Or jrmmm p—

P| C++ Class =P Java p— | ——
Generator Classes —
XML
Output

The XML Parsers read the XML document, and use either DOM APIs for navigating a
tree-like representation of the XML document, or a Simple API for XML (SAX)
event-based interface that requires less memory. The XML Parser for Java supports
JAXP. JAXP enables processing of XML documents using DOM, SAX, and XSLT
independently of the XML processor implementation. XML Compressor is also
integrated into the parser. This reduces the size of XML message payloads.

Figure 1-2 illustrates the Oracle XML Parsers functionality.

1-4 Oracle XML Developer's Kit Programmer's Guide

XDK Functionality Applied to XML Documents

Figure 1-2 The XML Parsers: Java, C, C++

XML
document
or DTD

Parsers

XML Parser for Java DOM / SAX for Java | <===P-[Java Application

I
—p
XML Parser for C++ fummmp| DOM/SAX fOr C++ | <Gy C++ Application
—p

XML Parser for C DOM / SAX for C S C Application

XSL Transformation (XSLT) Processors

The Oracle XSLT engine fully supports the W3C XSL Transformations
recommendation. It has the following features:

Enables standards-based transformation of XML information inside and outside the
database on any operating system.

The Oracle XML Parsers include an integrated XSL Transformation (XSLT) Processor
for transforming XML data using XSL stylesheets. Using the XSLT processor, you can
transform XML documents from XML to XML, to HTML, or to virtually any other
text-based format.

See Also:
» "XSLT Processor for Java Overview" on page 4-1.

« Specifications and other information are found on the W3C site
athttp://ww. w3. org/ Styl e/ XSL

JAXB and C++ Class Generators

JAXB Class Generator creates a set of Java classes for creation of XML documents
corresponding to an input XML Schema. JAXB does not support DTDs. These classes
are then used in a Java application. The C++ Class Generator creates a set of C++
classes for creation of XML documents corresponding to an input DTD or XML
Schema. These classes are then used in a C++ application.

JAXB Class Generator supports data binding. An XML instance document can be
input to load the instance data at runtime directly into the generated classes from a
DTD. This improves memory usage and performance compared to DOM APIs.

Overview of XML Developer's Kit Components 1-5

XDK Functionality Applied to XML Documents

Figure 1-3 Oracle JAXB Class Generator

P | XML Parser for Java

DTD or
XML Schema Parsed
DTD or
XML IﬁL
Schema |_*
Jc 3
Oracle JAXB > c —» L p—
Class Generator Jo ——» Java Application > —
Jc .
Valid XML
document
based on
Java classes based
DTD or XML
on DTD or XML Schema Schema

(one class per element)

XML Schema Processor

XML Schema was created by the W3C to describe the content and structure of XML
documents in XML, thus improving on DTDs. XML Schema Processor introduces the
concept of datatypes to XML. This allows data to be exchanged between databases
using XML syntax.

XDK JavaBeans

The Oracle XDK JavaBeans are a set of visual and non-visual beans that are useful in
creating a variety of XML-enabled Java applications or applets. XDK JavaBeans
comprises the following beans:

DOMBuilder

The DOMVBUI | der JavaBean is a non-visual bean. It builds a DOM Tree from an XML
document.

XSLTransformer

The XSLTr ansf or mer JavaBean is a non-visual bean. It accepts an XML file, applies
the transformation specified by an input XSL stylesheet and creates the resulting
output file.

DBAccess

DBAccess JavaBean maintains CLOB tables that contain multiple XML and text
documents.

XMLDiff
The XMLDi f f JavaBean performs a tree comparison on two XML DOM trees.

XMLCompress
This JavaBean is an encapsulation of the XML compression functionality.

XMLDBAccess

This JavaBean is an extension of the DBAcess bean to support the XM_Type column,
in which XML documents are stored in an Oracle Database table.

1-6 Oracle XML Developer's Kit Programmer's Guide

XDK Functionality Applied to XML Documents

XSDValidator

This JavaBean is a class file that encapsulates the
oracl e. xm . parser. schema. XSDVal i dat or class and adds capabilities for
validating a DOM tree.

Oracle XML SQL Utility (XSU) for Java

XML SQL Utility is comprised of core Java class libraries that:

« Automatically and dynamically render the results of arbitrary SQL queries into
canonical XML.

« Support queries over richly-structured user-defined object types and object views,
including XM_Ty pe.

XML SQL Utility Java classes can be used for the following tasks:
» Load data from an XML document into an existing database schema or view.

« Support automatic XML insert of canonically-structured XML into any existing
table, view, object table, or object view. By combining with XSLT transformations,
virtually any XML document can be automatically inserted into the database.

Note: XSU for PL/SQL is also available. Oracle XML SQL Utility
(XSU) for Java has these features.

Figure 1-4 shows the Oracle XML SQL Utility functionality for loading data from XML
documents into a database schema or view:

Figure 1-4 Oracle XML SQL Utility Functional Diagram

L xmML-sqL utility

for Java

XML
Document

XSQL Pages Publishing Framework

TransX Utility

The XSQL Pages Publishing Framework (XSQL Servlet) is a server component that
produces dynamic XML documents from one or more SQL queries of data objects. It
does this by processing an XSQL file, which is simply an XML file with a specific
structure and grammar. The XSQL Servlet uses Oracle's XML Parser to process this file
and pass any XSLT processing statements to its internal XSLT Processor while passing
the parameters and SQL statements between the tags to the XML SQL Utility. Results
from those queries are then received as either XML-formatted text or a JDBC

Resul t Set object. If necessary, the query results can be further transformed into any
desired format using the built-in XSLT processor.

The Oracle TransX Utility is a data transfer utility that enables you to populate your
database with multilingual data. It uses XML to specify the data, so that you can easily
transfer from XML to the database. It uses a simple data format that is intuitive for

Overview of XML Developer's Kit Components 1-7

Using XDK-supported Languages to Generate XML Documents

both developers and translators and it uses a validation capability that is less
error-prone than previous techniques.

Soap Services

Oracle SOAP Services is published, located and executed through the Web. It is
transport protocol-independent and operating system-independent. SOAP Services
provide the standard XML message format for all applications. With SOAP Services,
you can build messaging, RPC, and Web service applications with XML standards.

Using XDK-supported Languages to Generate XML Documents

Each of the language components will be employed to generate XML documents.

Using XSU for Java to Generate XML Documents
XSU can render the results of arbitrary SQL queries into canonical XML.

Generating XML from Query Results

Figure 1-5 shows how XML SQL Utility processes SQL queries and returns the results
as an XML document.

Figure 1-5 XML SQL Utility Processes SQL Queries and Returns the Result as an XML
Document

i S XML-SQL Utility —

---- for Java

A
SQL or Object XML Document of

Queries Query Results as a
string or DOM tree

Store and retrieve
XML documents
in the database

v

XML Document Structure: Columns Are Mapped to Elements
The structure of the resulting XML document has these attributes:

« Columns are mapped to top level elements
« Scalar values are mapped to elements with text-only content
« Object types are mapped to elements with attributes appearing as sub-elements

« Collections are mapped to lists of elements

1-8 Oracle XML Developer's Kit Programmer's Guide

Using XDK-supported Languages to Generate XML Documents

XSU Generates the XML Document as a String or DOM Element Tree

The XML SQL Utility (XSU) supports SAX event stream. XSU also generates either of
the following:

« Astring representation of the XML document. Use this representation if you are
returning the XML document to a requester.

« Anin-memory XML DOM tree of elements. Use this representation if you are
operating on the XML programmatically, for example, transforming it using the
XSLT Processor using DOM methods to search or modify the XML in some way.

« Aseries of SAX events which can be used when simply retrieving XML especially
large documents or result sets.

XSU Generates a DTD Based on Queried Table's Schema

You can also use the XML SQL Utility (XSU) to generate a DTD or an XML Schema
based on the schema of the underlying table or view being queried. You can use the
generated DTD as input to the JAXB Class Generator for Java or the C++ Class
Generator. This generates a set of classes based on the DTD elements. You can then
write code that uses these classes to generate the infrastructure behind a Web-based
form.

Based on this infrastructure, the Web form can capture user data and create an XML
document compatible with the database schema. This data can then be written directly
to the corresponding database table or object view without further processing.

See Also:
« Chapter 7, "XML SQL Utility (XSU)"
« "JAXB and C++ Class Generators" on page 1-5

Note: To write an XML document to a database table, where the
XML data does not match the underlying table structure, transform
the XML document before writing it to the database. For techniques
on doing this, see Chapter 7, "XML SQL Utility (XSU)".

Using Oracle XDK Java Components to Generate XML Documents

Figure 1-6 shows the Oracle XDK Java components and how they can be used to
generate XML documents. Cross-references to XDK Java components are listed in
Table 1-2, " Overview of Oracle XDK Components".

In the Java environment, when a SQL query is sent, these are the possible ways of
processing the query using the Oracle XDK components:

» By the XSQL Servlet (this includes using XSU and XML Parser for Java)
« Directly by the XSU (this includes XML Parser for Java)
« Directly by JDBC which then accesses XML Parser

Regardless of which way the stored XML data is generated from the database, the
resulting XML document output from the XML Parser for Java is further processed; it
is formatted and customized by applying stylesheets and processed by the XSLT.

Overview of XML Developer's Kit Components 1-9

Using XDK-supported Languages to Generate XML Documents

Figure 1-6 Generating XML Documents Using XDK Java Components

HTML
e B >
— Text —_—
g XML [[_
l I >
User / Browser / ;)
Client Application Browser /
Application
0 SQL Query
> XSQL Servlet
XML SQL| | XML
28 1
Utility Parser A A 1 XML Document
| with or without
A —| aDTDor
XML Schema
XML SQL Utility Dom or String
@ ’ JAXB Checks for
XML Class errors
Parser Generator
XML Document from |
LOB / XML Type | | Creates Java
source files
uery In Data Out
Query Stream p [XML Dom or Sax —
¢ (Parser| - Parsed DTD JavaBeans | Integrated in
@k=p | JDBC objects Jdeveloper
* - Parsed HTML I
]
l XML Parser =
is within user —
thin f— —
Object application — XSLT XSLT APl is
Relational Processor in the XML
data DTD or Parser
3= Oracle text XML |
|__ | (- Schema
| v —
< loss —
Oracle database — -
XML documents stored: g XSL
- As single object with tags Formatte Stylesheet
in CLOB or BLOB and customized
- As data distributed XML Document
untagged across tables |

- Via views that combine
the documents and data

Using Oracle XDK C Components to Generate XML Documents

Figure 1-7 shows the Oracle XDK C language components used to generate XML
documents. Available XDK C components are listed in Table 1-2, " Overview of Oracle
XDK Components"

SQL queries can be sent to the database by Oracle Call Interface (OCI) or by the
Pro*C/C++ Precompiler.

The resulting XML data can be processed in the following ways:
« With the XML Parser
« Fromthe CLOB as an XML document

This XML data is optionally transformed by the XSLT processor, viewed directly by an
XML-enabled browser, or sent for further processing to an application.

1-10 Oracle XML Developer's Kit Programmer's Guide

Using XDK-supported Languages to Generate XML Documents

Figure 1-7 Generating XML Documents Using XDK C Components

e B
_l‘-ﬁU‘— — =]}«
User / Browser / ;)
Browser /

Client Application

Application
XML
ey
A A
—— | XML Document
——| with or without
—— | aDTDor XML
Schema
XSLT APl is
XSLT in the XML
XML Document from LOB / XML Type Processor Parser
I—
Stream XML |L.DOM or Sax \ 4
SQL > | parser |~ Parsed DTD |— —
Query OCl or objects — —
’ Pro*C/C++ * - Parsed HTML —
] XSL
| . Formatted Stylesheet
XML Parser is and customized
within the user p— XML Document
Object application j— I
Relational DTD
data or
Opsce
| — Schema
_'/ LOBs

Oracle database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

Using Oracle XDK C++ Components to Generate XML Documents

Figure 1-8 shows the Oracle XDK C++ components used to generate XML documents.
Available XDK C++ components are listed in Table 1-2, " Overview of Oracle XDK
Components”

In the C++ environment, when a user or client or application sends a SQL query, there
are two possible ways of processing the query using the XDK C++ components:

« Directly by JDBC which then accesses the XML Parser
« Through the Oracle C++ Call Interface (OCCI) or the Pro*C/C++ Precompiler

Overview of XML Developer's Kit Components 1-11

XDK and Application Development Tools

Figure 1-8 Generating XML Documents Using XDK C++ Components

e B

& — (-

User / Browser / ;)
Browser or

Client Application

Application
XML
N |
A A — | XML Document
—— | with or without
—— | aDTDor XML
Schema
E—
Class Checks for

Generator | errors

I |
Creates C++
source files
—

XSLT APl is
XSLT in the XML
XML Document from LOB Processor Parser
— 4
Stream DOM or Sax \ 4
—— [XML —
(Sg(glér L TYpe | - Parsed DTD e —
Y ’ OCCl or objects [i— —
Pro*C/C++ * - Parsed HTML —
' XSL
| . Formatted Stylesheet
XML Parser is and customized
within the user p— XML Document
Object application p— I
Relational DTD
data or
e Oecke XML Schema
L | =
Q LOBs

Oracle database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

XDK and Application Development Tools

Figure 1-9 shows an overview of how the Oracle XML components enable
development of E-business solutions.

A user who is a consumer or works for a business, sends SQL queries to an Oracle
database either through a Java, C, or C++ application. These applications as well as
development tools such as XSQL Pages Publishing Framework, JDeveloper, and so on,
transform data from the database into XML documents. These XML documents are
input to XML-based business solutions for data exchange with other users, content
and data management, and other uses listed in the illustration.

1-12 Oracle XML Developer's Kit Programmer's Guide

XDK and Application Development Tools

Figure 1-9 Oracle XML Components and E-Business Solutions

!

Oracle Development Tools:
- XSQL Pages Publishing Framework

- JDeveloper
-BC4J
- Oracle Reports
-UIX
User / Browser /
Client / Application
(Business or Consumer)
SQL Query B2B or B2C
| XML Messaging
Using AQ
IDAP
Web
Interface
v XML =
Documents =
Programming APIs: —
Support for e —
Java, C, and C++ _»g
v A —> =
JDBC, OCl, = L>
OCCI, or
Pro*C/C++
Middle Tier:
- Oracle Application Server
- Apache Server
\4 - Java-enabled web server
Object
Relational
data Oracle To search and retrieve
| 4 Text XML documents stored
= in CLOBS

XML Doc in CLOB or XMLType

Oracle Database

XML Data stored:
- In relational tables
- As XML documents in XMLType

The following topics are presented in this section:
« Browsers That Support XML
Oracle XML Gateway
JDeveloper

User Interface XML (UIX)

Browsers That Support XML

Typical XML-Based
Business Solutions

Business Data Exchange with
XML (data stored in or out of
database in relational tables
or LOBs)

XML Gateway

Content and Document
management with XML

(XML documents stored
in or out of database)

XML Application in
the database or
middle tier

Recommended Books and Web Sites About XML

The following browsers support the display of XML.:

Opera. XML, in version 4.0 and higher
Citec Doczilla. XML and SGML browser

Indelv. Displays XML documents only using XSL

Overview of XML Developer's Kit Components 1-13

XDK and Application Development Tools

» Mozilla Gecko. Supports XML, CSS1, and DOM1

« HP ChaiFarer. Embedded environment that supports XML and CSS1

» ICESoft embedded browser. Supports XML, DOM1, CSS1, and MathML
« Microsoft IE5. Has a full XML parser, IE5.x or higher

= Netscape 5.x or higher

Oracle XML Gateway

XML Gateway is a set of services that enables easy integration with the Oracle
E-Business Suite to create and consume XML messages triggered by business events. It
integrates with Oracle Streams Advanced Queuing to enqueue and dequeue a
message which is then transmitted to or from the business partner through any
message transport agent.

See Also:
» Oracle Streams Advanced Queuing User’s Guide and Reference
» Oracle XML DB Developer's Guide

Oracle Data Provider for .NET

Oracle Data Provider for .NET (ODP. NET) is an implementation of a data provider for
the Oracle Database.

ODP. NET uses Oracle native APIs to offer fast and reliable access to Oracle data and
features from any .NET application. ODP. NET also uses and inherits classes and
interfaces available in the Microsoft .NET Framework Class Library.

ODP. NET enables the extraction of data from relational and object-relational tables and
views as XML documents using the Oracle XDK. The use of XML documents for
insert, update, and delete operations to the database server is also allowed.

ODP. NET supports XML natively in the database, through Oracle XML Database
(Oracle XML DB).

ODP. NET supports XML with the following features:
« Store XML data natively in the database server as the Oracle native type XM_Type.

= Access relational and object-relational data as XML data from an Oracle Database
instance into Microsoft . NET environment and process the XML using Microsoft
.NET framework.

« Save changes to the database server using XML data.
For the .NET application developer, features include the following:

=« Enhancements to the Or acl eCommand, Or acl eConnecti on, and
Or acl eDat aReader classes.

« XML-specific classes:
- Oracl eXm Type
— Oracl eXm Stream
— Oracl eXm QueryProperties

— Oracl eXnl SaveProperties

See Also: Oracle Data Provider for .NET Developer’s Guide

1-14 Oracle XML Developer's Kit Programmer's Guide

XDK and Application Development Tools

JDeveloper

Oracle JDeveloper is a J2EE development environment with end-to-end support for
developing, debugging, and deploying e-business applications. JDeveloper empowers
users with highly productive tools, such as the industry's fastest Java debugger, a new
profiler, and the innovative CodeCoach tool for code performance analysis and
improvement.

To maximize productivity, JDeveloper provides a comprehensive set of integrated
tools that support the complete development life cycle, from source code control,
modeling, and coding through debugging, testing, profiling, and deployment.
JDeveloper simplifies J2EE development by providing wizards, editors, visual design
tools, and deployment tools to create high-quality standard J2EE components,
including applets, JavaBeans, Java Server Pages (JSP), servlets, and Enterprise
JavaBeans (EJB). JDeveloper also provides a public API to extend and customize the
development environment and seamlessly integrate it with external products.

The Oracle XDK is integrated into JDeveloper, offering many ways to create, handle,
and transform XML. For example, with the XSQL Servlet, developers can query and
manipulate database information, generate XML documents, transform the documents
using XSLT stylesheets, and make them available on the Web.

JDeveloper has an integrated XML schema-driven code editor for working on XML
Schema-based documents such as XML schemas and XSLT stylesheets, with tag
insight to help you easily enter the correct elements and attributes as defined by the
schema.

An XML Schema Definition defines the structure of an XML document and is used in
the editor to validate the XML and help developers when typing. This feature is called
Code Insight and provides a list of valid alternatives for XML elements or attributes in
the document. Just by specifying the schema for a certain language, the editor can
assist you in creating a document in that markup language.

Oracle JDeveloper simplifies the task of working with Java application code and XML
data and documents at the same time. It features drag-and-drop XML development
modules. These include the following:

« Color-coded syntax highlighting for XML
« Built-in syntax checking for XML and Extensible Style Sheet Language (XSL)

» XSQL Pages and Servlet support, where developers can edit and debug Oracle
XSQL Pages, Java programs that can query the database and return formatted
XML or insert XML into the database without writing code. The integrated servlet
engine enables you to view XML output generated by Java code in the same
environment as your program source, making it easy to do rapid, iterative
development and testing.

= Includes Oracle's XML Parser for Java

= Includes XSLT Processor

« Related XDK for JavaBeans components
« XSQL Page Wizard

« XSQL Action Handlers

= Schema-driven XML editor

Overview of XML Developer's Kit Components 1-15

XDK and Application Development Tools

See Also:
« http://ww. oracl e.com technol ogy/ products/jdev/

« The online discussion forum for JDeveloper is located at
http://ww. oracl e. com t echnol ogy/f oruns

User Interface XML (UIX)

UIX (User Interface XML) is a set of technologies that constitute a framework for
building Web applications. The main focus of UIX is the user presentation layer of an
application, with additional functionality for managing events and for managing the
state of the application flow. UIX is designed to create applications with page-based
navigation, such as an online human resources application, rather than full-featured
applications requiring advanced interaction, such as an integrated development
environment (IDE).

See Also: For sample JDeveloper Demonstration code for UIX:

« http://ww. oracl e. conftechnol ogy/ sanpl e_code/ prod
ucts/jdev/content. htm

« The complete UIX Developer's Guide is included in the
JDeveloper online help.

Recommended Books and Web Sites About XML
Here is another XML Frequently Asked Question site:

http://ww. ucc.iel/xm/

Here are some books and Web sites about XML. URLs are often changed, so some
URLs in this list are not active links:

The publisher WROX has a number of helpful books. One of these, XML Design
and Implementation by Paul Spencer, covers XML, XSL and development.

Building Oracle XML Applications by Steve Muench (published by O'Reilly) See
http://ww.oreilly.conl catal og/orxm app/

The XML Bible. See ht t p: / / www. i bi bl i 0. or g/ xm / books/ bi bl egol d/

Oracle9i XML Handbook by the Oracle XML Product Development Team at
http://ww. osborne. conf oracl e/

XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems
http:// nmetal ab. unc. edu/ pub/ sun-i nf o/ st andar ds/ xm / why/ xm
apps. htm

XML for the Absolute Beginner by Mark Johnson, Javaworld
http://ww.javaworl d. conljw 04-1999/j w 04-xm _p. htn

XML And Databases by Ronald Bourret, Technical University of Darmstadt
http://ww.informatik.tu-darnstadt. de/ DVS1/ st af f/ bourret/
XML/

XM_AndDat abases. ht mand the XML Specifications by the World Wide Web
Consortium (W3C) ht t p: / / www. W3. or g/ XM/

XML.. com a broad collection of XML resources and commentary
http://ww. xml . con

Annotated XML Specification by Tim Bray, XML. com
http://ww. xm . comf axm /testaxm . ht m

1-16 Oracle XML Developer's Kit Programmer's Guide

Using Oracle XML-Enabled Technology

« The XML FAQ by the W3C XML Special Interest Group (the industry clearing
house for XML DTDs that allow companies to exchange XML data)
http://wwv. ucc.ie/xm/ XM. org

« http://xm.org/

« XDev (the DataChannel XML Developer pages)
http://xdev. dat achannel . conf

Using Oracle XML-Enabled Technology

This section includes general information about Oracle XML-enabled technology,
contained in the topics:

« Information for Using the XDK
« Information About Previous Oracle Releases
« XML Standards That Oracle Supports

« Maximum XML File Sizes

Information for Using the XDK

Here are topics about using the XDK:

Using Apache Web Server Instead of the Oracle9i Application Server

You can use the Apache Web server which must now interact with Oracle through
JDBC or other means. You can use the XSQL servlet. This is a servlet that can run on
any servlet-enabled Web server. This runs on Apache and connects to the Oracle
database through a Java Database Connectivity (JDBC) driver.

Need for an XML Parser If all the XML Was Created By Programs

Whether you still need an XML parser if all XML was created by your programs
depends on what you intend to do with the generated XML. If your task is just to
generate XML and send it out then you might not need it. But if you wanted to
generate an XML DOM tree then you need the Parser. You also need it if you have
incoming XML documents and you want to parse and store them. See the XML SQL
utility for some help on this issue.

SQL*Loader and Nesting in XML Documents
If you have the following scenario:

<sonet hi ng>
<price>10.00</pri ce>
</ sonet hi ng>

<sonet hi ngel se>
<pri ce>55.00</price>
</ sonet hi ngel se>

Is there a way to uniquely identify the two <pri ce> elements?

Answer: No. The field description in the control file can be nested, which is part of the
support for object relational columns. The data record to which this maps is, of course,

Overview of XML Developer's Kit Components 1-17

Using Oracle XML-Enabled Technology

flat but using all the data field description features of the SQL*Loader one can get a lot
done. For example:

sanpl e. xm

<resul tset>
<en‘p>
<first> ..</first>
<last>. ..</last>
<m ddl e>....</mddle>
</ enp>
<friend>
<first> ..</first>
<last>. ..</last>
<m ddl e>. ... </ mddl e>
</friend>
</resul tset>

sanpl e. ctl --field definition part of the SQL Loader control file

field list
(
enp COLUWN OBJECT
(
first char(30) enclosed by "<first>" and "</first>",
| ast char(30) enclosed by "<last>" and "</l ast>",
m ddl e char(30) enclosed by "<middl e>" and "</niddl e>"
)
friend COLUW CBJECT
(
first char(30) enclosed by "<first>" and "</first>",
| ast char(30) enclosed by "<last>" and "</|ast>",
m ddl e char(30) enclosed by "<middl e>" and "</ niddl e>"

)

Keep in mind that the COLUMN OBJECT field names have to match the object column
in the database. You will have to use a custom record terminator, otherwise it defaults
tonew i ne (that is, the new i ne separates data for a complete database record).

If your XML is more complex and you are trying to extract only select fields, you can
use FI LLER fields to reposition the scanning cursor, which scans from where it has left
off toward the end of the record (or for the first field, from the beginning of the
record).

The SQL*Loader has a very powerful text parser. You can use it for loading XML when
the document is very big.

Information About Previous Oracle Releases
These sections concern previous Oracle releases.

Using Oracle Database Version 7 and XML

You can go a long way with Oracle database version 7. The only problem is that you
cannot run any of the Java programs inside the server; that is, you cannot load all the
XML tools into the server. But you can connect to the database by downloading the
Oracle JDBC utility for Oracle database version 7 and run all the programs as
client-side utilities.

1-18 Oracle XML Developer's Kit Programmer's Guide

Using Oracle XML-Enabled Technology

Doing Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4

Question: My company has Oracle release 7.3.4 and my group is thinking of using
XML for some data transfers between us and our vendors. It looks as if we need to
move to Oracle8i or higher in order to do so. Is there any way of leveraging Oracle
release 7 to do XML?

Answer: As long as you have the appropriate JDBC 1.1 drivers for Oracle release 7.3.4
you can use the XML SQL Utility to extract data in XML.

For JDBC drivers, refer to the following Web site for information about Oracle
database version 7 JDBC OCI and JDBC Thin Drivers:

http://ww. oracl e. comt echnol ogy/tech/javal

Using Versions Prior to Oracle8i and Oracle XML Tools?

If I am using an Oracle version earlier than Oracle8i, can | supply XML- based
applications using Oracle XML tools? If yes, then what are the licensing terms?

The Oracle XDKs for Java, C, and C++ can work outside the database, including the
XML SQL Utility and XSQL Pages framework. Licensing is the same, including free
runtime. See Oracle Technology Network (OTN) for the latest licenses.

XML Standards That Oracle Supports

Here are discussions about XML standards that Oracle supports.

B2B Standards and Development Tools that Oracle Supports

What B2B XML standards (such as ebXML, cxml, and BizTalk) does Oracle support?
What tools does Oracle offer to create B2B exchanges?

Oracle participates in several B2B standards organizations:

« OBI (Open Buying on the Internet)

« ebXML (Electronic Business XML)

« RosettaNet (E-Commerce for Supply Chain in IT Industry)

« OFX (Open Financial Exchange for Electronic Bill Presentment and Payment)

For B2B exchanges, Oracle provides several alternatives depending on customer
needs, such as the following:

« Oracle Exchange delivers an out-of-the-box solution for implementing electronic
marketplaces

« OracleAS Process Connect has B2B and capability.
« Oracle Gateways for exchanges at data level
« Oracle XML Gateway to transfer XML-based messages from our e-business suite.

The Oracle Internet support provides an integrated and solid platform for B2B
exchanges.

Oracle Corporation's Direction Regarding XML

Oracle Corporation's XML strategy is to use XML in ways that exploit all of the
benefits of the current Oracle technology stack. Today you can combine Oracle XML
components with the Oracle database and Streams to achieve conflict resolution,
transaction verification, and so on. Oracle is working to make future releases more

Overview of XML Developer's Kit Components 1-19

Using Oracle XML-Enabled Technology

seamless for these functions, as well as for functions such as distributed two phase
commit transactions.

The XMLType datatype is used for storing XML in a column in a table or view.

See Also: Oracle XML DB Developer's Guide

XML data is stored either in object-relational tables or views, or as CLOBs. XML
transactions are transactions with one of these datatypes and are handled using the
standard Oracle mechanisms, including rollback segments, locking, and logging.

From Oracle9i onward, Oracle supports sending XML payloads using Streams. This
involves making it possible to query XML from SQL.

Oracle is active in all XML standards initiatives, including W3C XML Working
Groups, Java Extensions for XML, Open Applications Group, and XM.. or g for
developing and registering specific XML schemas.

Oracle Corporation's Plans for XML Query

Oracle is participating in the W3C Working Group for XML Query. Oracle is
considering plans to implement a language that enables querying XML data, such as
in the XSQL proposal. While XSLT provides static XML transformation features, a
query language will add data query flexibility similar to what SQL does for relational
data.

Oracle has representatives participating actively in the following W3C Working
Groups related to XML and XSL: XML Schema, XML Query, XSL, XLink/XPointer,
XML Infoset, DOM, and XML Core.

Maximum XML File Sizes
Here are maximum XML file sizes.

Limitations on the Size of an XML File

There are no XML limitations to an XML file size except the limit of the operating
system.

Size Limit for XML Documents Generated from the Database

Oracle is not aware of any limits beyond those imposed by the object view and the
underlying table structure.

Maximum Size for an XML Document for PL/SQL

Is there a maximum size for an XML document to provide data for PL/SQL (or SQL)
across tables, given that no CLOBs are used? The size limit for an XML document
providing data for PL/SQL across tables should be what can be inserted into an object
view.

1-20 Oracle XML Developer's Kit Programmer's Guide

2

Getting Started with XDK Java Components

This chapter contains these topics:

« XDKJava Components Specifications

« Installing XDK Java Components

« XDKJava Components Directory Structure

« XDKJava Components Environment Settings
« XDK Java Components Globalization Support
« XDKJava Components Dependencies

« Verifying the XDK Java Components Version

XDK Java Components Specifications
XDK Java components, release 10.1, are built on these specifications:
« XML 1.0 (Second Edition)
« DOM Level 2.0 Specifications
= DOM Level 2.0 Core
« DOM Level 2.0 Traversal and Range
= DOM Level 2.0 Events
« DOM Level 3.0 Specifications
« DOM Level 3.0 Load and Save (internal draft version 10 October 2003)
« DOM Level 3.0 Validation (Candidate Recommendation 30 July 2003)
= SAX 2.0 and SAX Extensions
« XSLT/XPath 2.0 Specifications
« XSL Transformations (XSLT) 2.0 (working draft dated 02 May 2003)
« XML Path Language (XPath) 2.0 (working draft dated 22 August 2003)
« XPath 2.0 Data Model (working draft dated 11th November 2002)
« XML Schema Specifications
= XML Schema Part 0: Primer
= XML Schema Part 1: Structures
« XML Schema Part 2: Datatypes

Getting Started with XDK Java Components 2-1

XDK Java Components Specifications

«» XML Pipeline Definition Language 1.0
« Java API for XML Processing 1.1 and 1.2 (JAXP)
= Java Architecture for XML Binding 1.0 (JAXB)

DOM Specifications

In release 10.1, the DOM APIs include support for two new working drafts, DOM
Level 3 Validation and DOM Level 3 Load and Save.

Load and Save

The DOM Level 3 Load and Save module enables software developers to load and
save XML content inside conforming products. DOM 3.0 Core interface

DOMConf i gur at i on is referred by DOM 3 Load and Save. Although DOM 3.0 Core is
not supported, a limited implementation of this interface is available.

The following configuration parameters are supported by XM_DOVBuIi | der which
implements LSPar ser :

« "cdata-sections"

« "validate"

« "validate-if-schema"

« "whitespace-in-element-content"

The following configuration parameters are supported by XMLDOWN i t er which
implements LSSeri al i zer:

« “format-pretty-print"
= "xml-declaration”
Validation

DOM 3.0 validation allows users to retrieve the metadata definitions from XML
schemas, query the validity of DOM operations and validate the DOM documents or
sub-trees against the XML schema.

Some DOM 3 Core functions referred by Validation are implemented, but Core itself is
not supported:

NaneLi st and DOMSt ri ngLi st in DOM core are supported for validation purpose.

Validation is based on XML Schema, DTD needs to be converted to Schema first (use
DTDToSchema utility).

XSL Transformations Specifications

The XSLT processor adds support for the current working drafts of XSLT 2.0, XPath
2.0, and the shared XPath/XQuery data model.

For the XPath 2.0 specification, only the new XPath 2.0 grammar and backwards
compatibility with XPath 1.0 are supported.

These features of the specifications are not supported in release 10.1:

= The functions in the Functions and Operators specification are not supported.
Only the functions from XSLT 1.0 specification are supported.

« Theval i dat e and conpl ex types in SequenceType expressions are not
supported.

2-2 Oracle XML Developer's Kit Programmer's Guide

Installing XDK Java Components

The new datatypes f n: year Mont hdur ati on and f n: dayTi meDur at i on are
not supported.

The Schema Import and Static Typing features are not supported.

The XSLT instructions xsl : r esul t - docunent and xsl : nanespace are not
supported.

The XSLT instructions xsl : t ext and xsl : nunber use XSLT 1.0 semantics and
syntax.

The standard attributes are allowed only on xsl : st yl esheet and literal result
elements, except for def aul t - xpat h- namespace and ver si on.

The processor does not honor the following attributes:

« [required] onxsl:param

« [XML Schema related attributes, like xsl : val i dat i on and xsl : t ype, etc.
Regular expression functions are not supported.

Parameters are not passed through built-in templates.

xsl : sequence is not supported

Installing XDK Java Components

XDK Java components are included with the Oracle database and with the Oracle
application server. You can download the latest beta or production version of XDK
Java components from OTN as part of the XDK. The XDK Java components and
JavaBeans are now bundled together.

If you installed XDK with the Oracle database or the Oracle application server, you can
use this chapter as a reference.

If you download the XDK from OTN, follow these steps:

Go to the URL:
http://ww. oracl e. com t echnol ogy/tech/ xm / xdk/ content . ht ni

Click the Software link on the right-side of the page.

Logon with your OTN username and password (registration is free if you do not
already have an account).

Select the Windows or UNIX download.
Select the appropriate download for your operating system.

Accept all terms of the licensing agreement and then download the software by
clicking the appropriate distribution.

Extract the files in the distribution:

» Choose a directory under which you want the . / xdk directory and
subdirectories to go.

« Change to that directory and then extract the XDK Java components
download archive file. For UNIX:

tar xvfz xdk_XXXX. tar.gz # UNX. XXXX is the rel ease nanme
Use WnZip visual archive extraction tool in Wndows

Getting Started with XDK Java Components 2-3

XDK Java Components Directory Structure

XDK Java Components Directory Structure

After installing the XDK, the directory structure is:

- $XDK_HOMVE
| - bin:
| - lib:
| - xdk:

I

- admn;

executable files and setup script or batch files.

library files.

(Admi nistration):

SQ script and XSL Servlet Configuration

file (XSQLConfig. xnt).

- deno/java: demonstration code

- doc/java: documents including release notes and Javadoc HTM.
All the XDK Java components are certified and supported with JDK 1.2, JDK 1.3, and
JDK 1.4. Make sure that your CLASSPATH includes all the necessary libraries:

Table 2-1 XDK Java Components Libraries
Component Library Notes
XML Parser, xm parserv2.jar XML Parser V2 for Java, which includes JAXP

XSL Processor

Message files

xm nesg. j ar

1.1, DOM, SAX and XSLT APIs.

If you want to use XML Parser with a

for XML language other than English, you need to set
Parser. this JAR file in your CLASSPATH.
XML Schema xschenma. j ar XML Schema Processor for Java.
Processor
XML SQL Xsul2.jar XML SQL Utility for JDK 1.2 and later.
Utility
XSQL Servlet oraclesqgl.jar Oracle XSQL Servlet.
XSQL xsql serializers.jar Oracle XSQL Serializers for FOP/PDF
Integration.
JAXB Class xm . jar Class Generator for Java.
Generator,
Pipeline
Processor,
Differ
JavaBeans xm conp. j ar JavaBeans Utilities.
xm conp2. j ar

TransX Utility transx. zip Oracle TransX Utility.

In addition, XML SQL Utility, XSQL Servlet, and TransX Utility all depend on JDBC
and globalization support libraries, which are listed in Table 2-2:

Table 2-2 JDBC and Globalization Support Libraries for XDK Java Components

Component Library Notes
JDBC cl assesl12. zip JDBC for JDK 1.2 and later.
Globalization orai 18n.j ar Globalization support for JDK 1.2 and later.
Support
XMLType xdb. j ar XMLType Java APIs in $ORACLE_
HOVE/ rdbns/j |i b/
JDeveloper jdev-rt.zip Java GUI libraries.
Runtime

2-4 Oracle XML Developer's Kit Programmer's Guide

XDK Java Components Environment Settings

XDK Java Components Environment Settings

The UNIX and Windows environment settings are listed:

UNIX Environment Settings for XDK Java Components
This file sets up the environment:

$XDK_HOVE/ bi n/ env. csh

Table 2-3 lists the UNIX environment variables, with the ones that must be customized
each marked with "Yes":

Table 2-3 UNIX Environment Settings for XDK Java Components

Variable Notes Yes/No
$JDBCVER JDBC version. For JDK 1.2 and later, set to 12. Yes
$JIDKVER JDK version obtained by JDK - ver si on. Default value is 1.2.2_07. Yes
$I NSTALL_ROOT Installation root of XDK which is the directory $XDK_HOVE. No
$JAVA HOVE Directory where the Java JDK, Standard Edition is installed. Yes
$CLASSPATHI {ORACLE_HOVE}/j dbc/ i b/ cl asses${ IDBCVER}. zi p: Yes

${ ORACLE_HQOVE}/ j dbc/ i b/ nl s_charset ${ JDBCVER}. j ar

If you are running the XSU on a system different from where the Oracle
database is installed, you have to update your CLASSPATH] setting with
the correct locations of the JDBC library (cl asses12. j ar). The

orai 18n. j ar is needed to support certain character sets. See "XDK Java
Components Globalization Support" on page 2-6. Note that if you do not
have these libraries on your system, these are both available on OTN
(http://ww. oracl e. com t echnol ogy), as part of the JDBC driver
download.

$CLASSPATH Include the following: No
.. ${ CLASSPATHI} : ${| NSTALL_ROOT}/ | i b/ xm par serv2.j ar:
${ I NSTALL_ROOT}/ |i b/ xschena. j ar:
${1 NSTALL_ROOT}/ | i b/ xsu${ JDBCVER} . j ar :
${ | NSTALL_ROOT}/1i b/ oracl exsql . j ar:
${ | NSTALL_ROCT}/li b/ cl assgen. j ar
$PATH ${ JAVA_HOVE} / bi n: ${ PATH} : ${1 NSTALL_ROOT}/ bi n No
$LD_LI BRARY_PATH For OCI JDBC connections: No
${ ORACLE_HOVE}/ | i b: ${ LD _L| BRARY_PATH}

Windows Environment Settings for XDK Java Components
This file sets up the environment:

9%XDK_HOVE% bi n\ env. bat

Table 2—-4 lists the Windows environment variables with the ones that must be
customized each marked with "Yes":

Getting Started with XDK Java Components 2-5

XDK Java Components Globalization Support

Table 2-4 Windows Environment Settings for XDK Java Components

Variable Notes Yes/No
%) DBCVER% JDBC version. If using JDK 1.2 and later, it should be set to 12. Yes
%) DKVER% JDK version which you can get from: JDK - ver si on. Default value is 1.2.2_07. Yes
% NSTALL_ROOT% Installation root of XDK, which is the directory %XDK_HOVE% No
% AVA_HOVE% Directory where the Java SDK, Standard Edition is installed. Yes
YCLASSPATHI % CLASSPATHI=%RACLE_HOVE% j dbc\ | i b\ cl asses% DBCVER% zi p; Yes
Y%ORACLE_HOVE% j dbe\ i b\ nl s_char set %W DBCVER% j ar
YL ASSPATHY .} YCLASSPATHI% 9% NSTALL_ROOT% | i b\ xm parserv2.j ar; No

% NSTALL_ROOT% | i b\ xschena. j ar;
% NSTALL_ROOT% | i b\ xsu%DBCVER% | ar ;

% NSTALL_ROOT% | i b\ or acl exsql . j ar; % NSTALL_
ROOT% | i b\ cl assgen. j ar

YPATHY PATH=%J AVA_HOVE% bi n; %ORACLE_HOME% bi n; %°ATHY % NSTALL_ No
ROOT% bi n

XDK Java Components Globalization Support
Here is a summary on the settings that relate to Globalization Support:

«» Usingxm nmesg. j ar: If you are using a language other than English you need to
set the xm nesg. j ar into your CLASSPATH o let the parser get correct messages
in your language.

« Usingorai 18n.j ar: If you are using a multibyte character set other than one of
the following,

L] UTF'8
= 1S08859-1
- JA16SJIS

then you must set this JAR file into your Java CLASSPATH so that JDBC can
convert the character set of the input file to the database character set during the
loading of XML files using either XSU, TransX or XSQL Servlet.

XDK Java Components Dependencies

Figure 2-1 shows the dependencies of XDK Java Components when using JDK 1.2 and
higher:

2-6 Oracle XML Developer's Kit Programmer's Guide

Verifying the XDK Java Components Version

Figure 2-1 XDK Java Components Dependencies Using JDK 1.2.x and Higher

TransX Utility XSQL Servlet
(transx. zi p) (oracl exsql .jar, xsglserializers.jar)
XML SQL Utility WebServer
(xsul2.jar) that
Supports
Class Generator | XML Schema Processor JDBC Driver %aval
(cl assgen.jar) | (xschena.jar) (cl assesl2.jar) erviets
XML Parser / XSL Processor / XML Pipeline/JAXB | NLS
(xm parserv2.jar, xmnesg.jar) (orail8n.jar)
JDK

After you correctly setup the environment, include all the necessary JAR files in your
CLASSPATH. You can then start writing your Java programs and compiling them with
the j avac command:

javac your_program java

If the compilation finishes without errors, then you can just test your program using
the command line or the Web Server.

See Also: Chapter 3, "XML Parser for Java" for further discussion
of the XDK Java components

Verifying the XDK Java Components Version

To obtain the version of XDK you are working with, compile and run the following
Java code (XDKVer si on. j ava):

inport java.net.URL;
inport oracle.xm.parser.v2. XM.Par ser;
public class XDKVersion

{
static public void main(String[] argv)
{
Systemout . println("You are using version: ");
System out . printl n(XM_Par ser. get Rel easeVersion());
}
}

Getting Started with XDK Java Components 2-7

Verifying the XDK Java Components Version

2-8 Oracle XML Developer's Kit Programmer's Guide

3

XML Parser for Java

This chapter contains these topics:

« XML Parser for Java Overview

« About DOM and SAX APIs

« About XML Compressor

« Running the Sample Applications for XML Parser for Java
« Using XML Parser for Java: DOMParser Class

« Using XML Parser for Java: DOMNamespace Class

« Using XML Parser for Java: SAXParser Class

« Using the XML Parser for Java

« Using JAXP

=« oraxml: XML Parser for Java Command-line

XML Parser for Java Overview

Oracle provides XML parsers for Java, C, C++, and PL/SQL. This chapter discusses
the parser for Java only. Each of these parsers is a standalone XML component that
parses an XML document (and possibly also a standalone document type definition
(DTD) or XML Schema) so that they can be processed by your application. In this
chapter, the application examples presented are written in Java.

XML Schema is a W3C XML recommendation effort to introduce the concept of data
types to XML documents and replace the syntax of DTDs with one which is based on
XML. The process of checking the syntax of XML documents against a DTD or XML

Schema is called validation.

To use an external DTD, include a reference to the DTD in your XML document.
Without it there is no way for the parser to know what to validate against. Including
the reference is the XML standard way of specifying an external DTD. Otherwise you
need to embed the DTD in your XML Document.

Figure 3-1 shows an XML document as input to the XML Parser for Java. The DOM or
SAX parser interface parses the XML document. The parsed XML is then transferred to
the application for further processing.

The XML Parser for Java includes an integrated XSL Transformation (XSLT) Processor
for transforming XML data using XSL stylesheets. Using the XSLT Processor, you can
transform XML documents from XML to XML, XML to HTML, or to virtually any
other text-based format.

XML Parser for Java 3-1

XML Parser for Java Overview

If a stylesheet is used, the DOM or SAX interface also parses and outputs the XSL
commands. These are sent together with the parsed XML to the XSLT Processor where
the selected stylesheet is applied and the transformed (new) XML document is then
output. Figure 3-1 shows a simplified view of the XML Parser for Java.

Figure 3-1 XML Parser for Java

DTD —)p | Parsed XML j
f— A4 DOM Parser or p—
_A> SAX parser XSLT Processor fepp —
Original Transformed
XML Parsed XSL XML
Document =P | commands Document
Schema XSL
Stylesheet

The XML Parser for Java processor reads XML documents and provides access to their
content and structure. An XML processor does its work on behalf of another module,
your application. This parsing process is illustrated in Figure 3-2.

Figure 3-2 XML Parsing Process

XML Parser
(Processor)

Py

eads * * Content and Structure

XML
document

I
Storage Units

(entities)
Parsed Unparsed
Data Data
/
Characters
4 N\
Character
Data Markup

3-2 Oracle XML Developer's Kit Programmer's Guide

XML Parser for Java Overview

See Also:
« Schema Primerathttp://ww. w3. org/ TR/ xnml schema- 0/

« Schema structures at
http://ww. w3. org/ TR/ xm schema- 1/

« Schema datatypes at
http://ww. w3. org/ TR/ xm schena- 2/

« Chapter 4, "XSLT Processor for Java"

« Oracle XML DB Developer's Guide for a discussion of the
PL/SQL Parser

. Oracle XML API Reference for methods of the XML Parser for
Java

Namespace Support

The XML Parser for Java also supports XML Namespaces. Namespaces are a
mechanism to resolve or avoid name collisions between element types (tags) or
attributes in XML documents.

This mechanism provides "universal” namespace element types and attribute names.
Such tags are qualified by uniform resource identifiers (URIs), such as:

<oracl e: EMP xni ns: oracl e="http://wwm. oracl e. comf xm "/ >

For example, namespaces can be used to identify an Oracle <EMP> data element as
distinct from another company's definition of an <EMP> data element. This enables an
application to more easily identify elements and attributes it is designed to process.

The XML Parser for Java can parse universal element types and attribute names, as
well as unqualified "local" element types and attribute names.

See Also:
« Chapter 5, "XML Schema Processor for Java"
= Oracle XML API Reference for methods of the XML Parser for Java

« http://www w3. org/ TR/ 1999/ REC- xml - nanes- 19990114/
for the W3C Recommendation for XML Namespaces

XML Parser for Java Validation Modes

Validation involves checking whether or not the attribute names and element tags are
legal, whether nested elements belong where they are, and so on.

The DTD file defined in the <! DOCTYPE> declaration must be relative to the location
of the input XML document. Otherwise, you need to use the set BaseURL(url)
functions to set the base URL to resolve the relative address of the DTD if the input is
coming from | nput St r eam

If you are parsing an | nput St r eam the parser does not know where that

I nput St r eamcame from, so it cannot find the DTD in the same directory as the
current file. The solution is to set BaseURL() on DOVPar ser () to give the parser the
URL hint information to be able to derive the rest when it goes to get the DTD.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup.

XML Parser for Java 3-3

XML Parser for Java Overview

Markup encodes a description of the document's storage layout and logical structure.
XML provides a mechanism to impose constraints on the storage layout and logical
structure.

The parser method set Val i dat i onMbde(node) parses XML in the mode values

shown in Table 3-1.

Table 3-1

XML Parser for Java Validation Modes

Name of Mode

Mode Value in Java

Description

Non-Validating
Mode

DTD Validating
Mode

Partial Validation
Mode

Schema Validation
Mode

Lax Validation

Strict Validation

Auto Validation
Mode

NONVALI DATI NG

DTD_VALI DATI ON

PARTI AL_VALI DATI ON

SCHEMA_VALI DATI ON

SCHEMA_LAX_VALI DATI ON

SCHEMA_STRI CT_VALI DATI ON

See description.

The parser verifies that the XML is
well-formed and parses the data
into a tree of objects that can be
manipulated by the DOM API.

The parser verifies that the XML is
well-formed and validates the XML
data against the DTD (if any).

Partial validation validates all or
part of the input XML document
according to the DTD or XML
Schema, if one is present. If one is
not present, the mode is set to
Non-Validating Mode. With this
mode, the schema validator locates
and builds schemas and validates
the whole or a part of the instance
document based on the
schemalocation and
noNamespaceSchemal.ocation
attributes. See code
exampleXSDSanpl e. j ava in
directory

/ xdk/ deno/ j aval schena.

The XML Document is validated
according to the XML Schema
specified for the document.

The validator tries to validate part
or all of the instance document as
long as it can find the schema
definition. It does not raise an error
if it cannot find the definition. This
is shown in the sample

XSDLax. j ava in the schema
directory.

The validator tries to validate the
whole instance document, raising
errors if it cannot find the schema
definition or if the instance does not
conform to the definition.

If a DTD is available, the mode
value is set to DTD_VALI DATI QN if
a Schema is present then it is set to
SCHEMA VALI DATI ON. If neither is
available, it is set to

NONVAL| DATI NG mode value,
which is the default.

In addition to the validator to build the schema itself, you can use XSDBui | der to
build schemas and set it to the validator using set XMLSchema() net hod. See code

3-4 Oracle XML Developer's Kit Programmer's Guide

XML Parser for Java Overview

example XSDSet Schena. j ava. By using the set XM_Schema() method, the
validation mode is automatically set to SCHEMA_STRI CT_VALI DATI ON, and both
schemaLocat i on and noNanespaceSchermalLocat i on attributes are ignored. You
can also change the validation mode to SCHEMA LAX_VALI DATI ON.

Using DTDs with the XML Parser for Java

The following is a discussion of the use of DTDs. It contains the sections:
« Enabling DTD Caching

« Recognizing External DTDs

« Loading External DTDs from a JAR File

« Checking the Correctness of Constructed XML Documents

« Parsing a DTD Obiject Separately from an XML Document

« XML Parsers Case-Sensitivity

« Allowed File Extensions in External Entities

« Creatinga DOCUMENT_TYPE_NODE

» Standard DTDs That Can be Used for Orders, Shipments, and So On

Enabling DTD Caching
DTD caching is optional and is not enabled automatically.
The XML Parser for Java provides for validating and non-validating DTD caching

through the set Doct ype() function. After you set the DTD using this function,
XMLParser will cache this DTD for further parsing.

If your application has to parse several XML documents with the same DTD, after you
parse the first XML document, you can get the DTD from parser and set it back:

dtd = parser. get Doctype();
parser. setDoctype(dtd);
The parser will cache this DTD and use it for parsing the following XML documents.

Set the DOVPar ser . USE_DTD_ONLY_FOR _VALI DATI ON attribute, if the cached DTD
Object is used only for validation by:

parser.setAttribute(DOVParser. USE_DTD ONLY_FCR_VALI DATI ON, Bool ean. TRUE) ;

Otherwise, the XML parser will copy the DTD object and add it to the result DOM
tree.

The method to set the DTD is set Doct ype() . Here is an example:

[l Test using |nputSource
parser = new DOWParser();
parser.setErrorStrean Systemout);
par ser. showar ni ngs(true);

Fi | eReader r = new Fi | eReader (args[0]);

| nput Sour ce i nSource = new | nput Source(r);

i nSour ce. set System d(createURL(args[0]).toString());
parser. parseDTD(i nSource, args[1]);

dtd = (DTD) parser . get Doct ype();

r = new Fil eReader(args[2]);

XML Parser for Java 3-5

XML Parser for Java Overview

i nSource = new | nput Sour ce(r);
i nSour ce. set System d(creat eURL(args[2]).toString());

// khkkhkkkhkhkhkhkhkhkhhhkkx*k

par ser. set Doct ype(dtd);

// kkkkkkkkkkkkkkkhhkkk*k

par ser. set Val i dat i onvbde(DTD_VALI DATI ON) ;
par ser. parse(inSource);

doc = (XM.Document) par ser. get Docurment () ;
doc.print(new PrintWiter(Systemout));

Recognizing External DTDs
To recognize external DTDs, the XML Parser for Java has the set BaseURL() method.

The way to redirect the DTD is by usingr esol veEnti ty():
1. Parse your External DTD using a DOM parser's par seDTD() method.
2. Callget Doctype() toget an instance of or acl e. xm . par ser. v2. DTD.

3. On the document where you want to set your DTD programmatically, use the call
set Doct ype(your DTD) . Use this technique to read a DTD out of your product's
JARfile.

Loading External DTDs from a JAR File

The parser supports a base URL method (set BaseURL()), but that just points to a
place where all the DTDs are exposed.

Do the following steps:

1. Loadthe DTD asan | nput St ream
InputStreamis = Your d ass. cl ass. get Resour ceAsSt rean("/ foo/ bar/your.dtd");
Thisopens. / f oo/ bar/your . dt d in the first relative location on the CLASSPATH
that it can be found, including out of your JAR ifitisinthe = CLASSPATH.

2. Parsethe DTD:

DOVPar ser d = new DOVPar ser () ;
d. parseDTD(is, "rootel ementnane");
d. set Doct ype(d. get Doct ype());

3. Parse your document:

d. parse("yourdoc");

Checking the Correctness of Constructed XML Documents

No validation is done while creating the DOM tree using DOM APIs. So setting the
DTD in the document does not help validate the DOM tree that is constructed. The
only way to validate an XML file is to parse the XML document using the DOM parser
or the SAX parser.

Parsing a DTD Object Separately from an XML Document
The par seDTD() method enables you to parse a DTD file separately and get a DTD
object. Here is some sample code to do this:

DOVPar ser donparser = new DOVPar ser();
donpar ser . set Val i dat i onMode(DTD_VALI DATI ON) ;
/* parse the DID file */

3-6 Oracle XML Developer's Kit Programmer's Guide

About DOM and SAX APls

donpar ser . par seDTD(new Fi | eReader (dtdfile));
DTD dtd = donpar ser. get Doct ype();

XML Parsers Case-Sensitivity

XML is inherently case-sensitive, therefore the parsers enforce case sensitivity in order
to be compliant. When you run in non-validation mode only well-formedness counts.
However <t est ></ Test > signals an error even in non-validation mode.

Allowed File Extensions in External Entities

The file extension for external entities is unimportant so you can change it to any
convenient extension, including no extension.

Creating a DOCUMENT_TYPE_NODE

There is no way to create a new DOCUMENT _TYPE_NODE object using the DOM APIs.
The only way to get a DTD object is to parse the DTD file or the XML file using the
DOM parser, and then use the get DocType() method.

The following statement does not create a DTD object. It creates an XM_LNode object
with the type set to DOCUMENT_TYPE_NODE, which in fact is not allowed. The

Ol assCast Excepti on is raised because appendChi | d expects a DTD object (based
on the type).

appendChi | d(New XM_.Node("test", Node. DOCUVENT_TYPE NCDE)) ;

Standard DTDs That Can be Used for Orders, Shipments, and So On
Basic, standard DTDs to build on for orders, shipments, and acknowledgements are
found on this Web site, which has been set up for that purpose:

http://ww. xm . org/

About DOM and SAX APIs

XML APIs for parsing are of two kinds:

« DOM APIs (Tree-based)

« SAX APIs (Event-based)

Consider the following simple XML document:

<?xnm version="1.0"?>
<EMPLI ST>
<EMP>
<ENAME>MARY</ ENAME>
</ EMP>
<EMP>
<ENAME>SCOTT</ ENAVE>
</ EMP>
</ EMPLI ST>

DOM: Tree-Based API

A tree-based API (such as DOM) builds an in-memory tree representation of the XML
document. It provides classes and methods for an application to navigate and process
the tree.

In general, the DOM interface is most useful for structural manipulations of the XML
tree, such as reordering elements, adding or deleting elements and attributes,

XML Parser for Java 3-7

About DOM and SAX APIls

renaming elements, and so on. For example, for the immediately preceding XML
document, the DOM creates an in-memory tree structure as shown inFigure 3-3.

SAX: Event-Based API

An event-based API (such as SAX) uses calls to report parsing events to the

application. Your Java application deals with these events through customized event

handlers. Events include the start and end of elements and characters.

Unlike tree-based APIs, event-based APIs usually do not build in-memory tree
representations of the XML documents. Therefore, in general, SAX is useful for

applications that do not need to manipulate the XML tree, such as search operations,

among others. The preceding XML document becomes a series of linear events as
shown in Figure 3-3.

Figure 3-3 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs

XML Document

<?XM. Version = "1.0"?>
<EMPLI ST>
<EMP>
<ENAME>MARY</ ENAMVE>
</ EMP>
<EMP>
<ENAME>SCOTT</ ENAMVE>
</ EMP>
</ EMPLI ST>

The DOM interface creates a
TREE structure based on the
XML Document

<EMPLIST>
7/ AN
<EMP> <EMP>
I I
<ENAME> <ENAME>
I I
MARY SCOTT

Useful for applications that include
changes eg. reordering, adding, or
deleting elements.

Guidelines for Using DOM and SAX APIs
Here are some guidelines for using the DOM and SAX APIs:

DOM

The SAX interface creates
a series of linear events
based on the XML
document

start docunent

start elenment: EMPLIST
start elenment: EMP
start el ement: ENAME
characters: MARY

end el ement: EMP

start elenment: EMP
start el ement: ENAME
characters: SCOIT
end el enent: EWMP

end el enent: EMPLI ST
end docunent

Useful for applications such
as search and retrieval that do
not change the "XML tree".

« Use the DOM API when you need to use random access.

« Use DOM when you are performing XSL Transformations.

=« Use DOM when you are calling XPath. SAX does not support it.

=« Use DOM when you want to have tree iterations and need to walk through the

entire document tree.

« Customize DOM tree building: org. w3c. dom | s. DOVBuUi | derFi |l ter.

« Avoid parsing external DTDs if no validation is required:
DOVPar ser. set . Attri but e(DOVMPar sser . STANDALONE,
Bool ean. TRUE) ; .

3-8 Oracle XML Developer's Kit Programmer's Guide

About XML Compressor

« Avoid including the DTD object in DOM unless necessary:
DOMPar ser. set Attri but e(DOVPar ser. USE_DTD_ONLY_FOR_VALI DATI ON,
Bool ean. TRUE) ; .

« Use DTD caching for DTD validations: DOVPar ser . set Doct ype(dtd) ;.

« Build DOM asynchronously using DOM 3.0 Load and Save:
DOM npl enent at i onLS. MODE_ ASYNCHRONOUS.

« Aunified DOM API supports both XM_Type columns and XML documents.

« When using the DOM interface, use more attributes than elements in your XML to
reduce the pipe size.

See Also: "DOM Specifications" on page 2-2 for information on
what is supported for this release

SAX
« Use the SAX APl when your data is mostly streaming data.

« Use SAX to save memory. DOM consumes more memory.

« Toincrease the speed of retrieval of XML documents from a database, use the SAX
interface instead of DOM. Make sure to select the COUNT(*) of an indexed
column (the more selective the index the better). This way the optimizer can
satisfy the count query with a few inputs and outputs of the index blocks instead
of a full-table scan.

« Use SAX 2.0, because SAX 1.0 is deprecated.
« There are output options for SAX: print formats, XML declaration, CDATA, DTD.

« Multi-task the SAX processing to improve throughput (using multi-handlers and
enabling multiple processing in callbacks). Multiple handler registrations per SAX
parsing: oracle.xml.parser.vV2.XMLMultiHandler.

« Use the built-in XML serializer to simplify output creation:
oracl e. xm . parser. V2. XMLSAXSeri al i zer.

About XML Compressor

The XML Compressor supports binary compression of XML documents. The
compression is based on tokenizing the XML tags. The assumption is that any XML
document has a repeated number of tags and so tokenizing these tags gives a
considerable amount of compression. Therefore the compression achieved depends on
the type of input document; the larger the tags and the lesser the text content, then the
better the compression.

The goal of compression is to reduce the size of the XML document without losing the
structural and hierarchical information of the DOM tree. The compressed stream
contains all the "useful" information to create the DOM tree back from the binary
format. The compressed stream can also be generated from the SAX events.

XML Parser for Java can also compress XML documents. Using the compression
feature, an in-memory DOM tree or the SAX events generated from an XML document
are compressed to generate a binary compressed output. The compressed stream
generated from DOM and SAX are compatible, that is, the compressed stream
generated from SAX can be used to generate the DOM tree and vice versa.

As with XML documents in general, you can store the compressed XML data output as
a BLOB (Binary Large Object) in the database.

XML Parser for Java 3-9

Running the Sample Applications for XML Parser for Java

Sample programs to illustrate the compression feature are described in Table 3-2,
" XML Parser for Java Sample Programs".

XML Serialization and Compression

An XML document is compressed into a binary stream by means of the serialization of
an in-memory DOM tree. When a large XML document is parsed and a DOM tree is
created in memory corresponding to it, it may be difficult to satisfy memory
requirements and this can affect performance. The XML document is compressed into
a byte stream and stored in an in-memory DOM tree. This can be expanded at a later
time into a DOM tree without performing validation on the XML data stored in the
compressed stream.

The compressed stream can be treated as a serialized stream, but the information in the
stream is more controlled and managed, compared to the compression implemented
by Java's default serialization.

There are two kinds of XML compressed streams:

« DOM based compression: The in-memory DOM tree, corresponding to a parsed
XML document, is serialized, and a compressed XML output stream is generated.
This serialized stream regenerates the DOM tree when read back.

« SAX based compression: The compressed stream is generated when an XML file is
parsed using a SAX parser. SAX events generated by the SAX parser are handled
by the SAX compression utility, which handles the SAX events to generate a
compressed binary stream. When the binary stream is read back, the SAX events
are generated.

Note: Oracle Text cannot search a compressed XML document.
Decompression reduces performance. If you are transferring files
between client and server, then HTTP compression can be easier.

Compression is supported only in the XDK Java components.

Running the Sample Applications for XML Parser for Java

The directory deno/ j aval par ser contains some sample XML applications to show
how to use the XML Parser for Java. The following are the sample Java files in its
subdirectories (conmon, conmp, dom j axp, sax, xsl t):

Table 3-2 XML Parser for Java Sample Programs

Sample Program Purpose

XSLSanpl e A sample application using XSL APIs

DOvBanmpl e A sample application using DOM APIs

DOVWNanespace A sample application using Namespace extensions to DOM APIs
DOVENanespace A sample application using DOM Level 2.0 APIs
DOVRangeSanpl e A sample application using DOM Range APls

Event Sanpl e A sample application using DOM Event APIs

Nodel t er at or Sanpl e A sample application using DOM lterator APIs
Tr eeVl ker Sanpl e A sample application using DOM TreeWalker APIs
SAXSanpl e A sample application using SAX APIs

3-10 Oracle XML Developer's Kit Programmer's Guide

Running the Sample Applications for XML Parser for Java

Table 3-2 (Cont.) XML Parser for Java Sample Programs

Sample Program Purpose

SAXNanespace A sample application using Namespace extensions to SAX APIs
SAX2Nanespace A sample application using SAX 2.0

Tokeni zer A sample application using XM_Token interface APls
DOMConpr essi on A sample application to compress a DOM tree

DOVDe Conpr essi on A sample to read back a DOM from a compressed stream

SAXConpr essi on A sample application to compress the SAX output from a SAX
Parser

SAXDeConpr essi on A sample application to regenerate the SAX events from the
compressed stream

JAXPExanpl es Samples using the JAXP 1.1 API

The Tokeni zer application implements XMLToken interface, which you must register
using the set TokenHandl er () method. A request for the XML tokens is registered
using the set Token() method. During tokenizing, the parser does not validate the
document and does not include or read internal or external utilities.

To run the sample programs:

1. Use make (for UNIX) or make. bat (for Windows) in the directory
xdk/ deno/ j ava to generate . cl ass files.

2. Add xm parserv2.jar and the current directory to the CLASSPATH.
The following list does not have to be done in order, except for decompressing:
« Run the sample programs for the DOM APIs and SAX APIs in each directory:

java classname sanple xm file

= Run the sample program for XSL APIs in its directory:

java XSLSanpl e sanple_xsl _file sample_xm file

« Runthe sample program for Tokeni zer APIs in its directory:

java Tokenizer sanple_xm _file token_string

« Run the sample program for compressing a DOM tree in its directory:

j ava DOMConpr essi on sanpl e. dat

The compressed output is generated in a file called xni . ser.

« Run the sample program to build the DOM tree from the compressed stream if
you have done the last step.

j ava DOVDeConpressi on xmi . ser

= Run the sample program for compressing the SAX events in its directory

j ava SAXConpressi on sanpl e. dat

« Run the sample program for regenerating the SAX events from the compressed
stream if you have done the last step:

j ava SAXDeConpressi on xm . ser

XML Parser for Java 3-11

Using XML Parser for Java: DOMParser Class

= Run the sample program for the JAXP 1.1 API in its directory:
j ava JAXPExanpl es
The XML document file and stylesheets are given inside the program

JAXPExanpl es. j ava. The Cont ent Handl er is inside the Java file
or aCont ent Handl er. j ava.

Using XML Parser for Java: DOMParser Class
To write DOM-based parser applications you can use the following classes:
«» DOWarnespace class
« DOWParser class
« XM.Parser class

Since DOVPar ser extends XM_Par ser, all methods of XMLPar ser are also available
to DOVPar ser . Figure 3-4, "XML Parser for Java: DOMParser()" shows the main steps
you need when coding with the DOVPar ser class.

Without DTD Input

In some applications, it is not necessary to validate the XML document. In this case, a
DTD is not required.

1. A new DOWPar ser () is called. Some of the methods to use with this object are:
« setValidat eMbde()
« setPreserveWiteSpace()
« setDoctype()
«» setBaseURL()
« showMar ni ngs()

2. The results of DOVPar ser () are passed to XM_Par ser . par se() along with the
XML input. The XML input can be a file, a string buffer, or URL.

3. Usethe XMLPar ser . get Docunent () method.
4. Optionally, you can apply other DOM methods such as:
= print()
« DOWanespace() methods
5. The Parser outputs the DOM tree XML (parsed) document.

6. Optionally, use DOVPar ser . r eset () to clean up any internal data structures,
once the DOM API has finished building the DOM tree.

With a DTD Input

If validation of the input XML document is required, a DTD is used.

1. A new DOWPar ser () is called. The methods to apply to this object are:
« setValidat eMbde()
« setPreserveWiteSpace()

« setDocType()

3-12 Oracle XML Developer's Kit Programmer's Guide

Using XML Parser for Java: DOMParser Class

« setBaseURL()
« SshowMar ni ngs()

The results of DOVPar ser () are passed to XM_Par ser . par seDTD() method

along with the DTD input.

XM_Par ser . get Docurnent Type() method sends the resulting DTD object back
to the new DOMPar ser () and the process continues until the DTD has been

applied.

Figure 3-4 XML Parser for Java: DOMParser()

XDK for Java: XML Parser for Java — DOM Parser()

4

d Available properties:

-| - setValidationMode
[default = not]

- setPreserveWhiteSpace
[default = not]

- setDocType
[if input type is a DTD]

- setBaseURL
[refers other locations to
base location if reading
from outside source]

- showWarnings

new
DOMParser()

file, string
buffer, or URL
xml input

XMLParser.
parse()

DOMParser.

reset()

XMLParser.
getDocument

Apply other
DOM methods

DOM
document

XMLParser.
parseDTD()

XMLParser.
getDocument-
Type()

Typically Node
Vi class methods

A To print, use the
print method.
Thisis a
nonstandard
DOM method

DTD
object

Comments on Example 1: DOMSample.java

These comments are for Example 1: DOVBanpl e. j ava which follows immediately

after this section.

1. Declare a new DOVPar ser () instance:

DOWPar ser parser = new

DOWPar ser () ;

2. The XML input is a URL generated from the input filename:

URL url = DenmoUtil.createURL(argv[0]);

3. The DOMPar ser class has several methods you can use. The example uses:

parser.setErrorStrean(Systemerr);

XML Parser for Java 3-13

Using XML Parser for Java: DOMParser Class

par ser. set Val i dati onMbde(DTD_VALI DATI ON) ;
par ser. showar ni ngs(true);

4. The input document is parsed:

parser. parse(url);

5. The DOM tree document is obtained:
XM.Docunent doc = parser. get Docunent ();

6. This program applies the node class methods:
« get El enent sByTagNane()
« get TagNane()
« getAttributes()
« get NodeNane()
« get NodeVal ue()

7. The attributes of each element are printed.

Note: No DTD input is shown in DOMSanpl e. j ava.

XML Parser for Java Example 1: DOMSample.java
This example shows the Java code that uses the preceding steps.
/* Copyright (c) Oacle Corporation 2000, 2001. All Rights Reserved. */

/**

* DESCR PTI ON

* This file denonstates a sinple use of the parser and DOM APl .

* The XML file that is given to the application is parsed and the
* elenments and attributes in the docunent are printed.

* The use of setting the parser options is denmonstrated.

*/

inport java.net. URL;

i mport org.w3c. dom Node;

i nport org.w3c.dom El enent;

i nport org.w3c. dom Docunent;

i nport org.w3c. dom NodelLi st;

i mport org.w3c. dom NanedNodeMap;

i mport oracle.xnl. parser.v2. DOWPar ser;
inport oracle.xn.parser.v2. XM.Docunent ;

public class DOVBanpl e
{
static public void main(String[] argv)
{
try
{
if (argv.length !'= 1)
{
/1 Must pass in the name of the XM file.
Systemerr.println("Usage: java DOVBanpl e filename");

3-14 Oracle XML Developer's Kit Programmer's Guide

Using XML Parser for Java: DOMParser Class

Systemexit(1);
}

/1 CGet an instance of the parser
DOVPar ser parser = new DOWParser();

/|l Generate a URL fromthe filenane.

URL url = DenmoUtil.createURL(argv[0]);

/] Set various parser options: validation on,

/1 warnings shown, error streamset to stderr.
parser.setErrorStrean(Systemerr);

par ser. set Val i dati onMbde(DOVPar ser . DTD_VALI DATI ON) ;
par ser. showMar ni ngs(true);

/| Parse the docunent.

}

parser. parse(url);

[/ Qotain the document.
XM.Document doc = parser. get Docunent ();

/1 Print docunment el enents
Systemout. print("The elements are: "),
print El ement s(doc);

[/ Print docunent elenment attributes
Systemout.printin("The attributes of each elenent are: ");
printEl enent Attributes(doc);

}
catch (Exception e)
{
Systemout. printin(e.toString());
}

static void printEl ements(Docunent doc)

{

}

NodeLi st nl = doc. get El ement sByTagNanme("*");
Node n;

for (int i=0; i<nl.getLength(); i++)
{

n=nl.iten(i);

System out. print(n.get NodeNane() + " ");
}

Systemout . println();

static void printEl ementAttributes(Docunent doc)

{

NodeLi st nl = doc. get El ement sByTagNanme("*");
El ement e;

Node n;

NanedNodeMap nnm

String attrnane;
String attrval;
int i, len;

XML Parser for Java

3-15

Using XML Parser for Java: DOMNamespace Class

len = nl.getLength();

for (int j=0; j < len; j++)

{
e = (Element)nl.itenm(j);
Systemout. println(e.get TagNane() + ":");
nnm= e.getAttributes();
if (nnm!=null)
{
for (i=0; i<nnmgetlLength(); i++)
{
n=nnmiten(i);
attrnane = n. get NodeNane();
attrval = n.getNodeVal ue();
Systemout.print(" " + attrpname + " =" + attrval);
}
}
Systemout. printlin();
}

Using XML Parser for Java: DOMNamespace Class

Figure 3-3 illustrates the main processes involved when parsing an XML document
using the DOM interface. The following example illustrates how to use the
DOWNanespace class:

XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java

See the comments in this source code for a guide to the use of methods. The program
begins with these comments:

/**

* DESCRI PTI ON

* This file denonstates a sinple use of the parser and Namespace

* extensions to the DOM APl s.

* The XML file that is given to the application is parsed and the

* elements and attributes in the document are printed.

*|

The methods used on XMLE! enent from the NSNane interface, which provides
Namespace support for element and attribute names, are:

« getQualifiedNanme() returns the qualified name

« getLocal Name() returns the local name

« get Nanespace() returns the resolved Namespace for the name

« get ExpandedNane() returns the fully resolved name.

Here is a how they are used later in the code:

/1 Use the methods getQualifiedNane(), getLocal Nane(), getNamespace()
/'l and get ExpandedNane() in NSNarme interface to get Nanespace
/'l information.

gNanme = nsEl enent . get Qual i fi edNane();
Systemout.println(" ELEMENT Qualified Nane:" + gName);

3-16 Oracle XML Developer's Kit Programmer's Guide

Using XML Parser for Java: SAXParser Class

| ocal Name = nsEl enent . get Local Nane();
Systemout. printin(" ELEMENT Local Nane ;" + | ocal Nang);

nsName = nsEl enent . get Nanespace();
Systemout. printin(" ELEMENT Nanespace :" + nsNane);

expName = nsEl enent . get ExpandedNane() ;
Systemout. printin(" ELEMENT Expanded Name :" + expName);

}

For the attributes, the method get NodeVal ue() returns the value of this node,
depending on its type. Here is another excerpt from later in this program:

nnm = e.getAttributes();

if (nnm!= null)
{
for (i=0; i < nnmgetLength(); i++)

{
nsAttr = (XMLAttr) nnmiten(i);

Il Use the nmethods get ExpandedName(), getQualifiedNanme(),
/'l get NodeVal ue() in NSNane
/] interface to get Nanespace infornation.

attrname = nsAttr.get ExpandedNane();
attrgname = nsAttr.getQualifiedNane();
attrval = nsAttr.get NodeVal ue();

No DTD is input is shown in DOMNaneSpace. j ava.

Using XML Parser for Java: SAXParser Class

Applications can register a SAX handler to receive notification of various parser
events. XMLReader is the interface that an XML parser's SAX2 driver must implement.
This interface enables an application to set and query features and properties in the
parser, to register event handlers for document processing, and to initiate a document
parse.

All SAX interfaces are assumed to be synchronous: the parse methods must not return
until parsing is complete, and readers must wait for an event-handler callback to
return before reporting the next event.

This interface replaces the (now deprecated) SAX 1.0 Parser interface. The XM_LReader
interface contains two important enhancements over the old parser interface:

» Itadds a standard way to query and set features and properties.

« Itadds Namespace support, which is required for many higher-level XML
standards.

Table 3-3 lists the SAXPar ser methods.

XML Parser for Java 3-17

Using XML Parser for Java: SAXParser Class

Table 3-3 SAXParser Methods

Method

Description

get Cont ent Handl er ()

get DTDHandl er ()

get Enti t yResol ver ()

get Error Handl er ()

get Feature(j ava. |l ang. String nane)
get Property(java.lang. String nane)

set Cont ent Handl er (Cont ent Handl er handl er)

set Docunrent Handl er (Docurrent Handl er handl er)

set DTDHandl er (DTDHandl er handl er)

set Enti tyResol ver (EntityResol ver resol ver)

set Error Handl er (Err or Handl er handl er)

set Feature(java. |l ang. String name, bool ean val ue)

set Property(java.lang. Stri ng nane,
j ava. |l ang. Obj ect val ue)

Returns the current content handler
Returns the current DTD handler
Returns the current entity resolver
Returns the current error handler
Looks up the value of a feature
Looks up the value of a property

Enables an application to register a content
event handler

Deprecated as of SAX2.0; replaced by
set Cont ent Handl er ()

Enables an application to register a DTD
event handler

Enables an application to register an entity
resolver

Enables an application to register an error
event handler

Sets the state of a feature

Sets the value of a property

Figure 3-5 shows the main steps for coding with the SAXPar ser class.

Declare a new SAXPar ser () object. Table 3-3 lists all the available methods.

Parse methods return when parsing completes. Meanwhile the process waits for

1. Create a new handler for the parser:
SAXSanpl e sanpl e = new SAXSampl e();
2.
Parser parser = new SAXPar ser;
3. Set validation mode as DTD_VALI DATI ON.
4, Convert the input file to URL and parse:
parser. parse(Denmoltil.createURL(argv[0].toString());
5.
an event-handler callback to return before reporting the next event.
6.

The parsed XML document is available for output by this application. Interfaces
used are:

= Documnent Handl er
« EntityResol ver
= DTDHandl er

= ErrorHandl er

3-18 Oracle XML Developer's Kit Programmer's Guide

Using XML Parser for Java: SAXParser Class

Figure 3-5 Using SAXParser Class

XML Parser for Java: SAXParser()

file,
string buffer,
or URL
xml input

Methods

- - - setValidationMode

- setPreserveWhiteSpace
- setDocType

- setBaseURL

- setContentHandler

- setDTDHandler

- setEntity Resolver

- setErrorHandler

new
SAXParser()

Callback
methods

XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)

This example illustrates how you can use SAXPar ser class and several handler
interfaces. See the comments in this source code for a guide to the use of methods.

SAX is a standard interface for event-based XML parsing. The parser reports parsing
events directly through callback functions such as set Docunent Locat or () and
st art Docunent () . This application uses handlers to deal with the different events.

[* Copyright (c) Oacle Corporation 2000, 2001. Al Rights Reserved. */

/**

* DESCRI PTI ON

* This file demonstates a sinple use of the parser and SAX API.
* The XM. file that is given to the application is parsed and

* prints out sonme information about the contents of this file.
*/

inport java.net.URL;

inport org.xm.sax. Parser;

inport org.xnl.sax. Locator;

inport org.xm.sax.AttributeList;

i nport org.xmn . sax. Handl er Base;
inport org.xn.sax.|nput Source;
inport org.xm .sax. SAXExcepti on;
inport org.xm.sax. SAXPar seExcepti on;

inport oracle.xm.parser.v2. SAXPar ser;

public class SAXSanpl e extends Handl er Base
{

/] Store the |ocator
Locator |ocator;

static public void main(String[] argv)

{
try

XML Parser for Java 3-19

Using XML Parser for Java: SAXParser Class

if (argv.length !'= 1)

{
/1 Mist pass in the nane of the XM. file.
Systemerr.println("Usage: SAXSanple filenane");
Systemexit(1);

}

Il Create a new handler for the parser

SAXSanpl e sanpl e = new SAXSanpl e();

Il Get an instance of the parser
Parser parser = new SAXParser();

/'l set validation node

((SAXPar ser) par ser) . set Val i dat i onMbde(SAXPar ser. DTD_VALI DATI ON) ;
/1 Set Handlers in the parser

par ser . set Docunent Handl er (sanpl e) ;

parser.setEntityResol ver (sanpl e);

par ser. set DTDHandl er (sanpl e) ;

par ser. set Error Handl er (sanpl e) ;

Il Convert file to URL and parse
try
{

}
catch (SAXParseException e)

{
}
catch (SAXException e)
{

}

par ser. parse(DemoUtil.createURL(argv[0]).toString());

Systemout. println(e.get Message());

Systemout. println(e.get Message());

}
catch (Exception e)

{

}
}

PHCEEEEEEEEE it b i i i rrr
/] Sanple inplenentation of Document Handl er interface.
PHCEEEEELEEEE i i b b i i rrrn g

Systemout. printin(e.toString());

public void setDocunent Locator (Locator |ocator)

{

System out. println("Set Docunent Locator:");
this.locator = | ocator;

}

public void startDocument ()

{

Systemout. println("StartDocunent");

}

public void endDocunent() throws SAXException

{
System out. println("EndDocunent");

}

3-20 Oracle XML Developer's Kit Programmer's Guide

Using XML Parser for Java: SAXParser Class

public void startEl ement (String nane, Attributelist atts)
throws SAXException

{

Systemout . println("StartEl ement:"+nane);
for (int i=0;i<atts.getLength();i++)
{
String ananme = atts.get Name(i);
String type = atts. get Type(i);
String value = atts. getValue(i);

Systemout.printin(" "+aname+"("+type+")"+"="+val ue);

}

public void endEl enent(String nane) throws SAXException

{
}

System out . printl n("EndE enent: " +name);

public void characters(char[] cbuf, int start, int len)

{

System out. print("Characters:");
Systemout. println(new String(chuf,start,len));

}

public void ignorabl eWitespace(char[] cbuf, int start, int len)

{
}

Systemout . println("lgnorabl eWiteSpace");

public void processinglnstruction(String target, String data)
throws SAXException

{
}

Systemout . println("Processinglnstruction:"+target+" "+data);

PEETEELLEEEEE i i r i i r iy
/1 Sanple inplenentation of the EntityResol ver interface.
PELEEEEELEEEE i i e i i il

public InputSource resolveEntity (String publicld, String systenmd)
t hrows SAXException
{
Systemout. println("Resol veEntity:"+publicld+" "+systemd);
Systemout. println("Locator:"+l ocator.getPublicld()+" "+
| ocator.get System d() +
" "+| ocat or. get Li neNurber () +" "+l ocat or. get Col unmmNunber ());
return null;

}
LHOLEEEEEEEEEEEEEE e e i e e n e e o

/] Sanple inplenentation of the DTDHandl er interface.
PELTEELELEEEE R i e r e r i iy

XML Parser for Java 3-21

Using XML Parser for Java: SAXParser Class

public void notationDecl (String name, String publicld, String system d)
{

}

Systemout. println("NotationDecl:"+nane+" "+publicld+" "+systend);

public void unparsedEntityDecl (String name, String publicld,
String systemd, String notationNane)
{
Systemout. println("UnparsedEntityDecl:"+name + " "+publicld+" "+
systenl d+" "+notati onNane) ;

}

PHCEEEEEEEEE i i i i i i rrr o
/1 Sanple inplenentation of the ErrorHandl er interface.
PHCETEEEEEEEE i bbb b i rrr g

public voi d warning (SAXParseException e)
t hrows SAXException

{
}

Systemout. println("Wrning: "+e. get Message());

public void error (SAXParseException e)
t hrows SAXException

{
}

t hrow new SAXExcept i on(e. get Message());

public void fatal Error (SAXParseException e)
t hrows SAXException
{
Systemout. println("Fatal error");
t hrow new SAXException(e. get Message());

XML Parser for Java Example 4: (SAXNamespace.java)
See the comments in this source code for use of the SAX APIs.

/*

/**

*
*

*

¥l

Copyright (c) Oracle Corporation 2000, 2001. All Rights Reserved. */

DESCR! PTI ON
This file denonstrates a sinple use of the Namespace extensions to
the SAX 1.0 APIs.

inport java.net.URL;

inport org.xnl.sax. Handl er Base;
i nport org.xnl.sax. SAXExcepti on;
i mport org.xm .sax. SAXPar seExcepti on;

iy

Extensions to the SAX Interfaces for Namespace support.

inmport oracle.xn . parser.v2. XM.Docunent Handl er;
i mport oracle.xnl. parser.v2. Def aul t XM.Docunent Handl er;
i nport oracle.xn .parser.v2. NSNang;

3-22 Oracle XML Developer's Kit Programmer's Guide

Using XML Parser for Java: SAXParser Class

inport oracle.xm .parser.v2 SAXAttrList;
inport oracle.xm.parser.v2. SAXParser;
public class SAXNarmespace {
static public void main(String[] args) {
String fil eNane;
/1Get the file name

if (args.length == 0)

{ Systemerr.printIn("No file Specified'!!");
Systemerr.println("USAGE java SAXNanespace <fil enane>");
return;

}

el se

{
fileName = args[0];

}

try {

/1 Create handlers for the parser

Il Use the XM.Document Handl er interface for namespace support
Il instead of org.xnl.sax. Document Handl er
XM_Docurment Handl er xm DocHandl er = new XM.Docunent Handl er | npl ();

Il For all the other interface use the default provided by
/' Handl er base
Handl er Base def Handl er = new Handl er Base();

Il Get an instance of the parser
SAXPar ser parser = new SAXParser();

/1 set validation node
((SAXPar ser) par ser) . set Val i dat i onMbde(SAXPar ser . DTD_VALI DATI ON) ;

Il Set Handlers in the parser
Il Set the Docunent Handl er to XM.Document Handl er
par ser. set Docunent Handl er (xm DocHandl er) ;

Il Set the other Handler to the defHandl er
par ser. set Error Handl er (def Handl er) ;

par ser. set EntityResol ver (def Handl er);

par ser. set DTDHandl er (def Handl er) ;

try
{
parser. parse(DemoUtil.createURL(fileName).toString());
}
cat ch (SAXPar seException e)
{
Systemerr.printin(args[0] + ": " + e.getMessage());
}

catch (SAXException e)

XML Parser for Java 3-23

Using XML Parser for Java: SAXParser Class

{
Systemerr.println(args[0] +": " + e.getMessage());
}
}
catch (Exception e)
{
Systemerr.printin(e.toString());
}

}

/***

| npl enent ati on of XM.Docunent Handl er interface. Only the new
startEl enent and endEl enent interfaces are inplenented here. Al other

interfaces are inplemented in the class Handl er Base.
**/

cl ass XM.Docunent Handl er I npl ext ends Def aul t XM.Docunent Handl er
{

public void XM.Document Handl er | npl ()

{
}

public void startEl ement (NSName nanme, SAXAttrList atts) throws SAXException
{

Il Use the nethods get QualifiedName(), getLocal Name(), getNamespace()
/'l and get ExpandedNane() in NSName interface to get Namespace
Il information.

String gName;
String | ocal Nane;
String nsNang;
String expNane;

gNane = nane. get Qual i fi edName() ;
Systemout. println("ELEMENT Qualified Nane:" + gNane);

| ocal Name = nane. get Local Nane();

Systemout. println("ELEMENT Local Nare :" + local Nane) ;
nsNanme = nane. get Nanespace();
Systemout. println("ELEMENT Nanmespace :" + nsNane);

expNane = nane. get ExpandedNane();
Systemout. println("ELEMENT Expanded Nane :" + expNane);

for (int i=0; i<atts.getLength(); i++)
{

Il Use the methods getQualifiedNane(), getLocal Nane(), getNamespace()
Il and get ExpandedNane() in SAXAttrList interface to get Namespace
[l information.

gNarme = atts.getQualifiedName(i);
| ocal Name = atts. getLocal Nanme(i)
nsName = atts. get Nanespace(i);

3-24 Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for Java

expNane = atts. get ExpandedNane(i);

Systemout. printin(" ATTRIBUTE Qualified Name :" + gName);
Systemout. printlin(" ATTRI BUTE Local Nane ;" + | ocal Nang) ;
Systemout. println(" ATTRI BUTE Nanespace :" + nsNane);
Systemout. println(" ATTRI BUTE Expanded Nane :" + expNane);

/1 You can get the type and value of the attributes either
/1 by index or by the Qualified Nane.

String type = atts.get Type(gNane);
String value = atts. get Val ue(gNane);

Systemout. println(" ATTRI BUTE Type "+ type);
Systemout. println(" ATTRI BUTE Val ue :" + val ue);

Systemout. println();

}

}

public void endE enment (NSNanme nane) throws SAXException

{
/] Use the methods getQualifiedNane(), getLocal Name(), getNamespace()
/1 and get ExpandedNane() in NSName interface to get Namespace
/] information.
String expName = nane. get ExpandedNane();
Systemout . println("ELEMENT Expanded Name :" + expName);

}

Using the XML Parser for Java

Here are some helpful hints for using the XML Parser for Java. This section contains
these topics:

« Using DOM and SAX APIs for Java
« Using Character Sets with the XML Parser for Java

« General Questions About XML Parser for Java

Using DOM and SAX APIs for Java
Here is some further information about the DOM and SAX APls.

Using the DOM API to Count Tagged Elements

To get the number of elements in a particular tag using the parser, you can use the
get El ement sByTagName() method that returns a node list of all descent elements
with a given tag name. You can then find out the number of elements in that node list
to determine the number of the elements in the particular tag.

Creating a Node with a Value to Be Set Later

If you check the DOM specification, referring to the table discussing the node type,
you will find that if you are creating an element node, its node value is nul | , and

XML Parser for Java 3-25

Using the XML Parser for Java

cannot be set. However, you can create a text node and append it to the element node.
You can then put the value in the text node.

Traversing the XML Tree Using XPATH

You can traverse the tree by using the DOM API. Alternately, you can use the
sel ect Nodes() method which takes XPath syntax to navigate through the XML
document. sel ect Nodes() is part of oracl e. xm . parser.v2. XM_Node.

Finding the First Child Node Element Value

Here is how to efficiently obtain the value of first child node of the element without
going through the DOM tree. If you do not need the entire tree, use the SAX interface
to return the desired data. Since it is event-driven, it does not have to parse the whole
document.

Using the XMLNode.selectNodes() Method

The sel ect Nodes() method is used in XM_EI enent and XM_Docunent nodes. This
method is used to extract contents from the tree or subtree based on the select patterns
allowed by XSL. The optional second parameter of sel ect Nodes, is used to resolve
namespace prefixes (that is, it returns the expanded namespace URL given a prefix).
XMLEI enent implements NSResol ver, so it can be sent as the second parameter.
XMLEI ermrent resolves the prefixes based on the input document. You can use the
NSResol ver interface, if you need to override the namespace definitions. The
following sample code uses sel ect Nodes.

public class SelectNodesTest {

public static void main(String[] args) throws Exception {
String pattern = "/fanmily/member/text()";

String file = args[0];

if (args.length == 2)
pattern = args[1];

DOWPar ser dp = new DOWParser();

dp. parse(createURL(file)); [/ Include createURL from DOVBanpl e
XM.Docurent xd = dp. get Docunent ();
XMLEl enent e = (XM.El enent) xd.get Docunent El enent ();
NodeLi st nl = e.sel ect Nodes(pattern, e);
for (int i =0; i <nl.getLength(); i++) {
Systemout.printin(nl.iten(i).getNodeVal ue());
}
}
}

> java Sel ect NodesTest family. xn
Sar ah
Bob

Joanne
Jim

java Sel ect NodesTest family.xm //menber/ @renberid

>
m
ng
nB
m

3-26 Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for Java

Generating an XML Document from Data in Variables

Here is an example of XML document generation starting from information contained
in simple variables, such as when a client fills in a Java form and wants to obtain an
XML document.

If you have two variables in Java:

String firstname = "G anfranco";
String lastnane = "Pietraforte";

The two ways to get this information into an XML document are as follows:
1. Make an XML document in a string and parse it:

String xm = "<person><first>"+firstnane+"</first>"+
"<l ast>"+l ast name+"</| ast ></ per son>";

DOWPar ser d = new DOWPar ser () ;

d. parse(new StringReader (xm));

Docunment xm doc = d. get Docunent ();

2. Use DOM APIs to construct the document and append it together:

Docunment xm doc = new XM.Docunent();

El enent el = xni doc. creat eEl enent (" person”);
xni doc. appendChi | d(el);

El ement e2 = xnidoc. createEl enent("first");
el. appendChil d(e2);

Text t = xnldoc. createText(firstnane);

e2. appendChi I d(t);

Using the DOM API to Print Data in the Element Tags

For DOM, <name>nacy</ nane> is actually an element named nane with a child
node (Text Node) of value nacy. The sample code is:

String value = nyEl ement. get FirstChild().getNodeVal ue();

Building XML Files from Hash Table Value Pairs
If you have a hash table key = value name = george zip = 20000:

<key>val ue</ key><nanme>geor ge</ nane><zi p>20000</ zi p>

1. Getthe enumeration of keys from your hash table.
2. Loop while enum hasMor eEl enent s().

3. For each key in the enumeration, use the cr eat eEl enent () on DOM document
to create an element by the name of the key with a child text node with the value
of the value of the hash table entry for that key.

DOM Exception WRONG_DOCUMENT_ERR on Node.appendChild()
If you have the following code snippet:

Docunment docl = new XM.Docunent();

El ement el enentl = docl.creat El enent ("foo");

Docunent doc2 = new XM.Docunent();

El enent el enent2 = doc2. creat eEl enent ("bar");
el ement 1. appendChi | d(el enent 2) ;

You will get a DOM exception of WRONG_DOCUMENT _ERR on calling the
appendChi | d() routine, since the owner document of el enent 1 is doc1 while that

XML Parser for Java 3-27

Using the XML Parser for Java

of el ement 2 isdoc2. AppendChi | d() only works within a single tree and the
example uses two different ones. You need to use i npor t Node() or adopt Node()
instead

Getting DOMException when Setting Node Value

If you create an element node, its nodeVal ue is nul | and hence cannot be set. You
get the following error:

oracl e. xn . parser. XM.DOVExcept i on: Node cannot be nodified while trying to set
the value of a newy created node as bel ow

String eName="Mnode";

XM.Node aNode = new XM.Node(eNane, Node. ELEMENT_NOCDE);

aNode. set NodeVal ue(eVal ue);

Extracting Embedded XML from a CDATA Section
Here is an example to extract XML from the CDATA section of a DTD, which is:

<PAYLOAD>
<I[CDATA <?xml version = '1.0" encoding = 'ASCI|' standal one = 'no' ?>
<ADD_PO 003>
<CNTROLAREA>
<BSR>
<VERB val ue=" ADD"' >ADD</ VERB>
<NOUN val ue="P0"' >PO</ NOUN>
<REVI SI ON val ue="003">003</ REVI SI ON>
</ BSR>
</ CNTROLAREA>
</ ADD_PO 003>]] >
</ PAYLOAD>

Extracting PAYLOAD to do Extra Processing You cannot use a different encoding on the
nested XML document included as text inside the CDATA, so having the XML
declaration of the embedded document seems of little value. If you do not need the
XML declaration, then embed the message as real elements into the <PAYLQAD>
instead of as a text chunk, which is what CDATA does for you.

Use the following code:

String s = Your Docunent Obj ect . sel ect Si ngl eNode("/ CES_MESSAGE/ PAYLQAD') ;

The data is not parsed because it is in a CDATA section when you select the value of
PAYLQAD.

You have asked for it to be a big text chunk, which is what it will give you. You must
parse the text chunk yourself (another benefit of not using the CDATA approach) this
way:

Your Par ser . parse(new StringReader(s));

where s is the string you got in the previous step.

Using Character Sets with the XML Parser for Java
Here are hints about character sets:

Reading a Unicode XML File

When reading an XML document stored in an operating system file, do not use the
Fi | eReader class. Instead, use the XML Parser for Java to automatically detect the

3-28 Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for Java

character encoding of the document. Given a binary input stream with no external
encoding information, the parser automatically figures out the character encoding
based on the byte order mark and encoding declaration of the XML document. Any
well-formed document in any supported encoding can be successfully parsed using
the following sample code:

inport java.io.?*;

inport oracle.xm.parser.v2. *;

public class |18nSaf eXMFi | eReadi ngSanpl e

{

public static void main(String[] args) throws Exception
{

/] create an instance of the xm file

File file = new File("nyfile.xm");

/'l create a binary input stream

FilelnputStreamfis = new Fil el nput Strean(file);

/'l buffering for efficiency

Buf f eredl nput Stream i n = new Buf feredl nput Strean(fis);
/1 get an instance of the parser

DOWPar ser parser = new DOVPar ser ();

/] parse the xm file

parser. parse(in);

}

Writing an XML File in UTF-8

Fi Il ewiter class should not be used in writing XML files because it depends on the
default character encoding of the runtime environment. The output file can suffer from
a parsing error or data loss if the document contains characters that are not available in
the default character encoding.

UTF-8 encoding is popular for XML documents, but UTF-8 is not usually the default
file encoding of Java. Using a Java class that assumes the default file encoding can
cause problems. The following example shows how to avoid these problems:

mport java.io.*;
inport oracle.xm .parser.v2.*;

public class |18nSaf eXM.Fi | eWitingSanpl e
{

public static void main(String[] args) throws Exception

{

/] create a test document

XM.Document doc = new XM.Docunent ();

doc. set Version("1.0");

doc. appendChi | d(doc. creat eComment ("This is a test enpty docunent."));
doc. appendChi | d(doc. creat eEl ement ("root"));

Il create a file
File file = new File("nyfile.xm");

Il create a binary output streamto wite to the file just created
FileQut putStreamfos = new Fil eQutputStreamfile);

/]l create a Witer that converts Java character streamto UTF-8 stream
Qutput StreamWiter osw = new QutputStreanWiter(fos,"UTF8");

/'l buffering for efficiency
Witer w = new BufferedWiter(osw;

/] create a PrintWiter to adapt to the printing nethod

XML Parser for Java 3-29

Using the XML Parser for Java

PrintWiter out = new PrintWiter(w;

/1 print the docunent to the file through the connected objects
doc. print(out);
}
}

Writing Parsing XML Stored in NCLOB with UTF-8 Encoding

The following problem with parsing XML stored in an NCLOB column using UTF-8
encoding was reported.

An XML sample that is loaded into the database contains two UTF-8 multibyte
characters: The text is supposed to be:

G(0xc2, 0x82) oti ngen, Br(0xc3, Oxbc)ck W

A Java stored function was written that uses the default connection object to connect to
the database, runs a select query, gets the Or acl eResul t Set , calls the get CLOB()
method and calls the get Asci i St r ean() method on the CLOB object. Then it
executes the following code to get the XML into a DOM obiject:

DOVPar ser parser = new DOVPar ser ();

par ser. set PreserveWi t espace(true);

parser. parse(istr);

/'l istr getAsciiStreamXM.Docunent xnml doc = parser.get Document () ;

The code throws an exception stating that the XML contains an invalid UTF-8
encoding. The character (Oxc2, 0x82) is valid UTF-8. The character can be distorted
when get Asci i Streamn() is called.

To solve this problem, use get Uni codeSt rean() and get Bi naryStr ean() instead
ofget Ascii Stream().

If this does not work, try to print out the characters to make sure that they are not
distorted before they are sent to the parser in step: par ser. parse(i str)

Parsing a Document Containing Accented Characters

This is the way to parse a document containing accented characters:
DOVPar ser par ser=new DOWVPar ser () ;

par ser. set PreserveWi t espace(true);

parser.setError Strean(Systemerr);

par ser. set Val i dati onMobde(fal se);

par ser. showWar ni ngs(true);
parser.parse (new Filel nput Stream new File("PruebaA3lngles.xm")));

Storing Accented Characters in an XML Document

If you have stored accented characters, for example, an €, in your XML file and then
attempt to parse the XML file with the XML Parser for Java, the parser may throw the
following exception:

"Invalid UTF-8 encodi ng'

You can read in accented characters in their hex or decimal format within the XML
document, for example:

&#txe9;

but if you prefer not to do this, set the encoding based on the character set you were
using when you created the XML file. Try setting the encoding to 1ISO-8859-1 (Western

3-30 Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for Java

European ASCII). Use that encoding or something different, depending on the tool or
operating system you are using.

If you explicitly set the encoding to UTF-8 (or do not specify it at all), the parser
interprets your accented character (which has an ASCII value > 127) as the first byte of
a UTF-8 multibyte sequence. If the subsequent bytes do not form a valid UTF-8
sequence, you get an error.

This error just means that your editor is not saving the file with UTF-8 encoding. For
example, it might be saving it with 1SO-8859-1 encoding. The encoding is a particular
scheme used to write the Unicode character number representation to disk. Just
adding this string to the top of the document does not cause your editor to write out
the bytes representing the file to disk using UTF-8 encoding:

<?xm version="1.0" encodi ng="UTF-8"?>

Notepad uses UTF-8 on Windows systems.

You Cannot Dynamically Set the Encoding for an Input XML File

You need to include the proper encoding declaration in your document according to
the specification. You cannot use set Encodi ng() to set the encoding for your input
document. Set Encodi ng() is used with or acl e. xnl . par ser. v2. XM_.Docunent
to set the correct encoding for the printing.

Using System.out.printIn() and Special Characters

You cannot use Syst em out . pri nt | n(). You need to use an output stream which is
encoding aware (for example, Qut put St reamfi t er). You can construct an
OutputStreamWriter and use thewrit e(char[],i nt,i nt) method to print.

/* Exanple */

QutputStreamWiter out = new QutputStreanViter

(Systemout, "8859 1");
/* Java enc string for |SCB859-1*/

General Questions About XML Parser for Java
These are general questions:

Including Binary Data in an XML Document

There is no way to directly include binary data within the document; however, there
are two ways to work around this:

« Binary data can be referenced as an external unparsed entity that resides in a
different file.

« Binary data can be uuencoded (meaning converted into ASCII data by UUENCODE
program) and be included in a CDATA section. The limitation on the encoding
technique is to ensure that it only produces legal characters for the CDATA section.

« base64 is acommand line utility which encodes and decodes files in a format used
by MIME-encoded documents.

Displaying an XML Document

If you are using IE5 as your browser you can display the XML document directly.
Otherwise, you can use the Oracle XSLT Processor version 2 to create the HTML
document using an XSL Stylesheet. The XDK JavaBeans also enable you to view your
XML document.

XML Parser for Java 3-31

Using the XML Parser for Java

Including an External XML File in Another XML File
IE 5.0 will parse an XML file and show the parsed output. Just load the file as you load
an HTML page.

The following works, both browsing it in IE5 as well as parsing it with the XML Parser
for Java:

File: a.xm

<?xm version="1.0" ?>

<IDOCTYPE a [<!ENTITY b SYSTEM "b. xm ">] >
<a>8b; </ a>

File: b.xm
<ok/ >

When you browse and parse a. xim you get the following:

<a>
<ok/ >
</ a>

You Do Not Need Oracle9i or Higher to Run XML Parser for Java

XML Parser for Java can be used with any of the supported version Java VMs. The
only difference with Oracle9i or higher, is that you can load it into the database and
use Oracle9i J)VM which is an internal JVM. For other database versions or servers, you
simply run it in an external JVM and as necessary connect to a database through JDBC.

Inserting Characters <, >, ', ", and & into XML Documents
You must use the entity references:

« > ; for greater than (>)

« & t; forlessthan (<)

« ' for an apostrophe or a single quote ()
« " for straight double quotes (")

« &anp; for ampersand (&)

Invalid Special Characters in Tags

If you have a tag in XML <COVPANYNAME> and use A&B, the parser gives an error with
invalid character.

Special characters such as &, $, and #, and so on are not allowed to be used. If you are
creating an XML document from scratch, you can use a workaround by using only
valid NaneChar s. For example, <A B>, <AB>, <A AND_ B> and soon. They are still
readable.

If you are generating XML from external data sources such as database tables, then
this is a problem which XML 1.0 does not address.

The datatype XMLType addresses this problem by offering a function which maps SQL
names to XML names. The SQL to XML name mapping function will escape invalid
XML NameChar in the format of _XHHHH_where HHHH is a Unicode value of the
invalid character. For example, table name V$SESSI ONwill be mapped to XML name
V_X0024_SESSI ON.

Finally, escaping invalid characters is a workaround to give people a way to serialize
names so that they can reload them somewhere else.

3-32 Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for Java

Parsing XML from Data of Type String

Currently there is no method that can directly parse an XML document contained
within a string. You need to convert the string into an | nput St r eamor

| nput Sour ce before parsing. An easy way is to create a Byt eAr r ayl nput St r eam
using the bytes in the string. For example:

/[* xmDoc is a String of xm */

byte aByteArr [] = xml Doc. get Bytes();

Byt eArrayl nput Stream bai s = new Byt eArrayl nput Stream (aByteArr, O,
aByteArr.length);

donPar ser . par se(bai s) ;

Extracting Data from an XML Document into a String
Here is an example to do this:

XM_Docunent Your Documnent;
/* Parse and Make Mods */

StringWiter sw = new StringWiter();
PrintWiter pw = new PrintWiter(sw;
Your Docunent . print (pw);

String YourDoclnString = sw toString();

[llegal Characters in XML Documents
If you limit it to 8-bit, then #x0- #x8; #xB, #xC, #XE, and #xF are not legal.

Using Entity References with the XML Parser for Java

If the XML Parser for Java does not expand entity references, such as & what ever]
and instead, all values are nul | , how can you fix this?

You probably have a simple error defining or using your entities, since Oracle has
regression tests that handle entity references without error. A simple example is:] >
Al pha, then &st at us.

Merging XML Documents
This is done either using DOM or XSLT.

See Also: "Merging Two XML Documents" on page 4-11

The XML Parser for Java Does Not Need a Utility to View the Parsed Output

The parsed external entity only needs to be a well-formed fragment. The following
program (with xri par ser . j ar from version 1) in your CLASSPATH shows parsing
and printing the parsed document. It's parsing here from a string but the mechanism is
no different for parsing from a file, given its URL.

inport oracle.xn.parser.*;

inport java.io.*;

inport java.net.*;

i nport org.w3c.dom *;

inport org.xm.sax.*;

/*

** Sinple Exanple of Parsing an XML File froma String
** and, if successful, printing the results.

* %

** Usage: java ParseXM.FronString <hel | o><worl d/ ></ hel | 0>
*/

XML Parser for Java 3-33

Using the XML Parser for Java

public class ParseXM.FronBtring {
public static void main(String[] arg) throws |COException, SAXException {
String theStringToParse =
"<?xm version='1.0"?>"+
"<hel | 0>"+
<wor | d/ >" +
"</ hel | 0>";
XM.Document theXM.Doc = parseString(theStringToParse);
/1 Print the docunment out to standard out
t heXMLDoc. pri nt (System out);
}
public static XM.Docunent parseString(String xm String) throws
| OException, SAXException {
XM.Document t heXM.Doc =null;
Il Create an oracle.xm .parser.v2. DOVWParser to parse the docunent.
XM_Par ser theParser = new XM.Parser();
/1 Qpen an input streamon the string
Byt eArrayl nput Stream theStream =
new Byt eArrayl nput Strean(xm String. getBytes());
Il Set the parser to work in non-Validating node
t hePar ser. set Val i dat i onMbde(DTD val i dati on);
try {
Il Parse the docunment fromthe InputStream
t heParser. parse(theStream);
Il Get the parsed XM. Docunent fromthe parser
t heXM.Doc = theParser. get Document ();

cat ch (SAXParseException s) {
Systemout. println(xmError(s));
throw s;

}
return theXM.Doc;

}
private static String xm Error(SAXPar seException s) {
int |ineNum = s. getLi neNurber();
int col Num= s. get Col utmNunber ();
String file = s.get Systemd();
String err = s.getMessage();
return "XM. parse error infile " + file +
"\n" + "at line"
"\n" + err;

+ lineNum + ", character

+ col Num +

Support for Hierarchical Mapping

About the relational mapping of parsed XML data: some users prefer hierarchical
storage of parsed XML data. Will XM_LType address this concern?

Many customers initially have this concern. It depends on what kind of XML data you
are storing. If you are storing XML datagrams that are really just encoding of relational
information (for example, a purchase order), then you will get much better
performance and much better query flexibility (in SQL) by storing the data contained
in the XML documents in relational tables, then reproduce on-demand an XML format
when any particular data needs to be extracted.

If you are storing documents that are mixed-content, like legal proceedings, chapters
of a book, reference manuals, and so on, then storing the documents in chunks and
searching them using Oracle Text's XML search capabilities is the best bet.

3-34 Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for Java

The book, Building Oracle XML Applications, by Steve Muench, covers both of these
storage and searching techniques with lots of examples.

Support for Ambiguous Content Mode
Are there plans to add an ambiguous content mode to the XDK Parser for Java?

The XML Parser for Java implements all the XML 1.0 standard, and the XML 1.0
standard requires XML documents to have unambiguous content models. Therefore,
there is no way a compliant XML 1.0 parser can implement ambiguous content
models.

See Also: http://ww. xm . conf axm /target. ht m #det ermi ni sm

Generating an XML Document Based on Two Tables

If you want to generate an XML document based on two tables with a master detail
relationship. Suppose you have two tables:

« PARENT with columns: ID and PARENT_NAME (Key = ID)

. CHILD with columns: PARENT_ID, CHILD_ID, CHILD_NAME (Key = PARENT _
ID + CHILD_ID)

There is a master detail relationship between PARENT and CHI LD. How can you
generate a document that looks like this?

<?xm version = '1.0"?>
<RONBET>
<ROW num="1">
<par ent _nane>Bi | | </ par ent _nane>
<child_name>Child 1 of 2</child_name>
<chi | d_nanme>Child 2 of 2</child_name>
</ RON
<ROW nun¥"2">
<par ent _name>Lar ry</ parent _name>
<chi | d_nanme>nly one chil d</child_nanme>
</ RON
</ RONSET>

Use an object view to generate an XML document from a master-detail structure. In
your case, use the following code:

create type child_type is object
(child_name <data type child_nanme>) ;
/

create type child_type_nst

is table of child_type ;

/

create view parent_child
as
sel ect p. parent_nanme
, cast
(multiset
(select c.child_nane
from child c
where c.parent_id = p.id
) as child_type_nst
) child_type
fromparent p
/

XML Parser for Java 3-35

Using JAXP

A SELECT * FROM parent _chi | d, processed by an SQL to XML utility generates a
valid XML document for your parent child relationship. The structure does not look
like the one you have presented, though. It looks like this:

<?xm version ='1.0'?>
<ROWBET>
<ROW nun¥" 1" >
<PARENT_NAME>BI | | </ PARENT_NAME>
<CH LD _TYPE>
<CH LD TYPE_| TEM>
<CHI LD NAME>Child 1 of 2</CHI LD NAVE>
</ CH LD_TYPE_| TEM>
<CH LD_TYPE_| TEM>
<CH LD_NAME>Chi | d 2 of 2</CHI LD_NAMVE>
</ CH LD_TYPE_| TEM>
</ CH LD_TYPE>
</ RON
<ROW nun¥e" 2" >
<PARENT_NAME>Lar ry</ PARENT _NAVE>
<CH LD _TYPE>
<CH LD TYPE_| TEM>
<CH LD_NAME>Only one chil d</ CH LD_NAME>
</ CH LD _TYPE_| TEM>
</ CH LD _TYPE>
</ RON
</ RONBET>

Using JAXP

The Java API for XML Processing (JAXP) enables you to use the SAX, DOM, and XSLT
processors from your Java application. JAXP enables applications to parse and
transform XML documents using an API that is independent of a particular XML
processor implementation.

JAXP has a pluggability layer that enables you to plug in an implementation of a
processor. The JAXP APIs have an API structure consisting of abstract classes
providing a thin layer for parser pluggability. Oracle has implemented JAXP based on
the Sun Microsystems reference implementation.

The sample programs JAXPExanpl es. j ava and or a. Cont ent Handl er. j ava in
the directory xdk/ deno/ j aval/ par ser/j axp demonstrate various ways that the
JAXP API can be used to transform any one of the classes of the interface Sour ce:

« DOVSour ce class

« StreanBour ce class

=« SAXSour ce class

into any one of the classes of the interface Resul t :
DOVResul t class

St reanResul t class

SAXResul t class

These transformations use XML documents as sample input, optional stylesheets as
input, and, optionally, a Cont ent Handl er class defined in the file

or aCont ent Handl er . j ava. For example, one method, i denti t y, does an identity
transformation where the output XML document is the same as the input XML

3-36 Oracle XML Developer's Kit Programmer's Guide

oraxml: XML Parser for Java Command-line

document. Another method, xm Fi | t er Chai n(), applies three stylesheets in a

chain.

Among the drawbacks of JAXP are the additional interface cost, features that are
behind "native" Parsers, and the fact that a DOM cannot be shared by processing

components.

See Also:

More examples can be found at:

« http://ww. oracl e.com technol ogy/tech/xm

« http://java.sun.com xm /jaxp/

« and in the directory xdk/ deno/ j ava/ par ser/j axp

oraxml: XML Parser for Java Command-line

or axm is a command-line interface to parse an XML document. It checks for
well-formedness and validity.

To use or axm ensure that the following is true:

« Your CLASSPATHenvironment variable is set to point to the xml parserv2.j ar
file that comes with XML V2 Parser for Java. Because or axm supports schema

validation, include xschenma. j ar also in your CLASSPATH.

« Your PATHenvironment variable can find the Java interpreter that comes with the

JDK that you are using.

Table 3-4 lists the or axm command line options.

Table 3-4

oraxml: Command Line Options

Option

Purpose

-conmp fil eName
-decomp fi | eNane
-dtdfil eName

-enc fil eNane

-hel p

-loglogfile

-noval i datefi |l eNane
-schemafil eNane
-ver si on

-war ni ng

Compresses the input XML file

Decompresses the input compressed file
Validates the input file with DTD Validation
Prints the encoding of the input file

Prints the help message

Writes the errors to the output log file

Checks whether the input file is well-formed
Validates the input file with Schema Validation
Prints the release version

Show warnings

XML Parser for Java 3-37

oraxml: XML Parser for Java Command-line

3-38 Oracle XML Developer's Kit Programmer's Guide

A

XSLT Processor for Java

This chapter contains these topics:

= XSLT Processor for Java Overview

« Using XSLT Processor for Java

» XSLT Command-Line Interface: oraxsl

« XML Extension Functions for XSLT Processing

« Hints for Using the XSLT Processor for Java and XSL

XSLT Processor for Java Overview

Oracle provides eXtensible Stylesheet Language Transformation (XSLT) processing
for Java, C, C++, and PL/SQL. This chapter focuses on the XSLT Processor for Java.
XSLT is a W3C Internet standard that has a version 1.0, and also a 2.0 version currently
in process. XSLT also uses XPath, which is the navigational language used by XSLT
and has corresponding versions. The XSLT Processor for Java implements both the
XSLT and XPath 1.0 standards as well as a draft of the XSLT and XPath 2.0 standard.
Please see the READIVE for the specific versions.

While XSLT is a function-based language that generally requires a DOM of the input
document and stylesheet to perform the transformation, the Java implementation uses
SAX, a stream-based parser to create a stylesheet object to perform transformations
with higher efficiency and less resources. This stylesheet object can be reused to
transform multiple documents without re-parsing the stylesheet.

The XSLT Processor for Java includes additional high performance features. It is
thread-safe to allow processing multiple files with a single XSLT Processor for Java
and stylesheet object. It is also safe to use clones of the document instance in multiple
threads.

Using XSLT Processor for Java

The XSLT Processor for Java operates on two inputs: the XML document to transform,
and the XSLT stylesheet that is used to apply transformations on the XML. Each of
these two can actually be multiple inputs. One stylesheet can be used to transform
multiple XML inputs. Multiple stylesheets can be mapped to a single XML input.

To implement the XSLT Processor in the XML Parser for Java use the XSLPr ocessor
class.

Figure 4-1 shows the overall process used by the XSLPr ocessor class. Here are the
steps:

XSLT Processor for Java 4-1

Using XSLT Processor for Java

1. Create an XSLPr ocessor object and then use methods from the following list in
your Java code. Some of the available methods are:

« renoveParam() - remove parameter

« RESETPARAM) - remove all parameters

« SetParam() -setparameters for the transformation

« setBaseURL() - setabase URL for any relative references in the stylesheet

« setEntityResol ver () - setan entity resolver for any relative references in
the stylesheet

« setlLocal e() -setlocale for error reporting

2. Use one of the following input parameters to the method
XSLProcessor. newxSLSt yl esheet () to create a stylesheet object:

« java.io.Reader

= java.io.lnputStream
« XM.Docunent

= java.net.URL

This creates a stylesheet object that is thread-safe and can be used in multiple XSL
Processors.

3. Create a DOM object by passing one of the XML inputs in step 2, to the DOM
parser and creating an XML input object with par ser. get Documnent .

4. Your XML inputs and the stylesheet object are input (each using one of the input
parameters listed in 2) to the XSL Processor:

XSLProcessor. processXSL(xsl styl esheet, xm instance)

The results of the XSL Transformation can be one of the following:
« Create an XML document object
« Write to an output stream

« Reportas SAX events

4-2 Oracle XML Developer's Kit Programmer's Guide

Using XSLT Processor for Java

Figure 4-1 Using XSL Processor for Java

XSLProcessor
object methods:
* removeParam()
* resetParam()
» setParam()
« setBaseURL()
« setEntityResolver()
« setLocale()
XSLinput || XSLProcessor XSL (?tt))j/éi?heet
java.io.Reader
Java.io.InputStream
XMLDocument
java.net.URL
; XSLT
XML input —> Transformation | €=

v

v

Create an XML
document object

Write to an
output stream

Repart as
SAX events

Unlike in HTML, in XML every start tag must have an ending tag and that the tags are

case sensitive.

XSLT Processor for Java Example

This example has many comments. It uses one XML document and one XSL stylesheet

as inputs.

public class XSLSanpl e

{

public static void main(String args[]) throws Exception

{

if (args.length < 2)

{

Systemerr.printin("Usage: java XSLSanple xslFile xmFile.");
Systemexit(1);

}

/I Create a new XSLProcessor.
XSLProcessor processor = new XSLProcessor();

/] Register a base URL to resolve relative references

/'l processor. set BaseURL(baseURL) ;

/I O register an org.xnl.sax. EntityResol ver to resol ve
Il relative references
/'l processor.setEntityResol ver(nyEntityResol ver);

XSLT Processor for Java

4-3

Using XSLT Processor for Java

/'l Register an error |og
/'l processor.setErrorStrean{new Fil eQutputStrean("error.lo0g"));

Il Set any global paranters to the processor
/'l processor.set Paran(namespace, parani, valuel);
/'l processor.set Paran(namespace, paran2, value2);

Il resetParamis for nultiple XM. docunents with different parameters

String xslFile = args[0];
String xmFile = args[1];

Il Create a XSLStyl esheet

Il The stylesheet can be created using one of follow ng inputs:

I

/1 XM.Docunent xsllnput = /* using DOVParser; see later in this code */
/1 URL xsl Input = new URL(xsl| File);

/'l Reader xsl I'nput = new Fil eReader (xsl File);

I nput Stream xsl I nput = new Fil el nput Strean{xsl File);
XSLStyl esheet styl esheet = processor. newXSLStyl esheet (xsl | nput);

Il Prepare the XM instance document

/1 The XM instance can be given to the processor in one of
/'l followng ways:

I

/1 URL xm | nput
/'l Reader xni | nput
/'l I'nput Stream xm | nput
/1l O using DOVParser

new URL(xm File);
new Fi| eReader (xm File);
new Fil el nput Stream(xni Fil e);

DOVPar ser parser = new DOWParser();

par ser. retai nCDATASect i on(fal se);

par ser. set PreserveWit espace(true);

parser. parse(xm File);

XM.Document xml | nput = parser. get Docunent ();

Il Transformthe XM instance

Il The result of the transformation can be one of the follow ng:
I

/1 1. Return a XM.Docurent Fragnent

/1 2. Print the results to a QutputStream

Il 3. Report SAX Events to a ContentHandl er

/1 1. Return a XM.Docurent Fragnent
XM.Docurent Fragment resul t;
result = processor. processXSL(styl esheet, xm|nput);

Il Print the result to System out
result.print(Systemout);

[l 2. Print the results to a QutputStream
Il processor.processXSL(styl esheet, xm Input, System out);

/1 3. Report SAX Events to a ContentHandl er

/1 Content Handl er cntHandl er = new MyCont ent Handl er();
/'l processor. processXSL(styl esheet, xm Input, cntHandler);

4-4 Oracle XML Developer's Kit Programmer's Guide

XSLT Command-Line Interface: oraxsl

See Also:

« http://wwv w3. org/ TR/ xsl t which is the W3C Web site
« http://www w3. org/styl e/ XSL/ for more information
« "SAX: Event-Based API" on page 3-8

XSLT Command-Line Interface: oraxsl

or axsl is a command-line interface used to apply a stylesheet on multiple XML
documents. It accepts a number of command-line options that determine its behavior.
or axsl isincluded in the SORACLE_HOVE/ bi n directory. To use or axsl ensure the
following:

« Your CLASSPATHenvironment variable is set to point to the xml parserv2.j ar
file that comes with XML Parser for Java, version 2.

« Your PATHenvironment variable can find the Java interpreter that comes with JDK
1.2 or higher.

Use the following syntax to invoke or axsl :

oraxsl options source stylesheet result

or axsl expects to be given a stylesheet, an XML file to transform, and optionally, a
result file. If no result file is specified, it outputs the transformed document to the
standard output. If multiple XML documents need to be transformed by a stylesheet,

use the - | or - d options in conjunction with the - s and - r options. These and other
options are described in Table 4-1.

Table 4-1 oraxsl: Command Line Options

Option Purpose

-ddirectory Directory with files to transform (the default behavior is to
process all files in the directory). If only a certain subset of the
files in that directory, for example, one file, need to be
processed, this behavior must be changed by using - | and
specifying just the files that need to be processed. You can also
change the behavior by using the - x or - i option to select files
based on their extension).

- debug Debug mode (by default, debug mode is turned off).
-e error_|log The file to write errors and warnings into.
-h Help mode (prints or axsl| invocation syntax).

-i source_extensi on Extensions to include (used in conjunction with - d. Only files
with the specified extension are selected).

-1loxml _file_list List of files to transform (enables you to explicitly list the files
to be processed).

-oresult_directory Directory to place results (this must be used in conjunction
with the - r option).

-pparamli st List of Parameters.

XSLT Processor for Java 4-5

XML Extension Functions for XSLT Processing

Table 4-1 (Cont.) oraxsl: Command Line Options

Option Purpose

-r resul t _extension Extension to use for results (if - d or - | is specified, this option
must be specified to specify the extension to be used for the
results of the transformation. So, if you specify the extension
"out ", an input document "i nput _doc" is transformed to
"I nput _doc. out ". By default, the results are placed in the
current directory. This can be changed by using the - o option
which enables you to specify a directory to hold the results).

-s styl esheet Stylesheet to use (if - d or - | is specified, this option needs to
be specified to specify the stylesheet to be used. The complete
path must be specified).

-t num_ of _threads Number of threads to use for processing (using multiple
threads can provide performance improvements when
processing multiple documents).

-V Verbose mode (some debugging information is printed and can
help in tracing any problems that are encountered during
processing).

-w Show warnings (by default, warnings are turned off).

-Xx source_extensi on Extensions to exclude, used in conjunction with - d. All files
with the specified extension not selected.

XML Extension Functions for XSLT Processing

XML extension functions for XSLT processing allow users of XSLT processor for Java
to call any Java method from XSL expressions.

While these are Oracle extensions, the XSLT 1.0 standard provides for
implementation-defined extension functions. Stylesheets using these functions may
not be interoperable when run on different processors.The functions are language and
implementation specific.

This section contains these topics:

« XSLT Processor for Java Extension Functions and Namespaces
« Static Versus Non-Static Methods

« Constructor Extension Function

« Return Value Extension Function

« Datatypes Extension Function

= XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output

XSLT Processor for Java Extension Functions and Namespaces
Java extension functions belong to the namespace that starts with the following:

http:// ww. or acl e. com XSL/ Tr ansf or ni j ava/

An extension function that belongs to the following namespace refers to methods in
class cl assnane:

http:// ww. or acl e. conf XSL/ Tr ansf or ni j ava/ cl assnanme

For example, the following namespace can be used to call j ava. | ang. Stri ng
methods from XSL expressions:

4-6 Oracle XML Developer's Kit Programmer's Guide

XML Extension Functions for XSLT Processing

http://wwmv oracl e. coml XSL/ Transf orm javal/java.lang. String

Static Versus Non-Static Methods

If the method is a non-static method of the class, then the first parameter is used as the
instance on which the method is invoked, and the rest of the parameters are passed on
to the method.

If the extension function is a static method, then all the parameters of the extension
function are passed on as parameters to the static function.

XML Parser for Java - XSL Example 1: Static function
The following XSL, static function example prints out '13":

<xsl : styl esheet
xm ns: mat h="htt p: / / www. or acl e. coml XSL/ Transforni j ava/ j ava. | ang. Mat h" >
<xsl:tenplate match="/">
<xsl:val ue-of select="math:ceil('12.34")"/>

</xsl:tenpl at e>

</ xsl : styl esheet >

Note: The XSL class loader only knows about statically added
JARs and paths in the CLASSPATH - and those specified by
wr apper . cl asspat h.

Constructor Extension Function

The extension function new creates a new instance of the class and acts as the
constructor.

XML Parser for Java - XSL Example 2: Constructor Extension Function
The following constructor function example prints out 'HELLO WORLD":

<xsl : styl esheet

xmns:jstring="http://ww. oracl e.com XSL/ Transfornijava/java.lang. String">
<xsl:tenplate match="/">
<I-- creates a new java.lang.String and stores it in the variable strl -->
<xsl:variable name="str1" select="jstring:new('Hello Wrld)"/>
<xsl :val ue-of select="jstring:toUpperCase($strl)"/>

</xsl:tenpl ate>

</ xsl : styl esheet >

Return Value Extension Function

The result of an extension function can be of any type, including the five types defined
in XSL and the additional simple XML Schema data types defined in XSLT 2.0:

« NodeSet

« Bool ean

« String

« Number

« ResultTree

They can be stored in variables or passed onto other extension functions.

XSLT Processor for Java 4-7

XML Extension Functions for XSLT Processing

If the result is of one of the five types defined in XSL, then the result can be returned as
the result of an XSL expression.

XML Parser for Java XSL- XSL Example 3: Return Value Extension Function
Here is an XSL example illustrating the Return Value Extension function:

<I'-- Declare extension function nanespace -->
<xsl:styl esheet xm ns:parser =
“http://ww. oracl e. com XSL/ Transf orm j ava/ oracl e. xm . parser. v2. DOVPar ser "
xnl ns: document =
"http://ww. oracl e. com XSL/ Transf ornij aval oracl e. xm . parser.v2. XM.Docunent" >

<xsl:tenplate match ="/"> <I-- Create a new instance of the parser, store it in
mypar ser variable -->

<xsl:variabl e name="nyparser" sel ect="parser:new()"/>

<I-- Call a non-static method of DOWParser. Since the nethod is a non-static
method, the first paraneter is the instance on which the method is called. This
is equivalent to $nyparser.parse('test.xn') -->

<xsl:val ue-of sel ect="parser: parse($nyparser, 'test.xm"')"/>

<I'-- Get the document node of the XML Domtree -->

<xsl:variabl e nane="nmydocunent" sel ect="parser: get Docunent ($nyparser)"/>

<I'-- Invoke getel enentshytagname on nydocunent -->

<xsl:for-each

sel ect ="docunent : get El enent sByTagNane($nydocurent, ' el enent nane')" >

</xsl:for-each> </xsl:tenpl ate>
</xsl :styl esheet >

Datatypes Extension Function

Overloading based on number of parameters and type is supported. Implicit type
conversion is done between the five XSL types as defined in XSL. Type conversion is
done implicitly between (St ri ng, Nurmber, Bool ean, Result Tr ee) and from
NodeSet to (Stri ng, Nunber, Bool ean, Resul t Tr ee). Overloading based on two
types which can be implicitly converted to each other is not permitted.

XML Parser for Java - XSL Example 4: Datatype Extension Function

The following overloading results in an error in XSL, since St ri ng and Nunber can
be implicitly converted to each other:

« abc(int i){}
« abc(String s){}
Mapping between XSL type and Java type is done as follows:

String -> java.lang. String
Number -> int, float, double
Bool ean -> bool ean

NodeSet -> XM_NodelLi st

Resul t Tree -> XM.Document Fragnent

XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output

Here are the definitions of these Oracle XSL extensions; both are preceded by
xm ns: ora="http://ww.oracl e. conf XSL/ Transforn j ava".

4-8 Oracle XML Developer's Kit Programmer's Guide

XML Extension Functions for XSLT Processing

ora:output

This element can be used as a top-level element similar to xsl : out put . It can have all
of the attributes of xsl : out put, with similar functionality. It has an additional
attribute name, used as an identifier. When or a: out put is used in a template, it can
only have the attributes use and hr ef . use specifies the top-level or a: out put to be
used, and hr ef gives the output URL

ora:node-set
This built-in extension function converts a result tree fragment into a node-set.

Example of Use of Oracle XSL Extensions
The following example illustrates use of both or a: node- set and or a: out put .

If you enter:

$ oraxsl foo.xm slides.xsl toc.htni

where f 00. xnl is any input XML file. You get as output:
« Atoc. htm slide file with a table of contents

« Aslide01. ht m file withslide 1

« Aslide02. htm filewithslide 2

<l--

| Illustrate using ora:node-set and ora:out put

I

| Both extensions depend on defining a nanmespace

| with the uri of "http://ww:. oracle.com XSL/ Transfornjava"
+-->

<xsl : styl esheet version="1.0"
xmins: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{
xmi ns:ora="http://ww. oracl e. cont XSL/ Transf orni j ava">

<l-- <xsl:output> affects the primary result docunent -->
<xsl :out put node="htm" indent="no"/>

<l--
| <ora:output> at the top-level enables all attributes
| that <xsl:output> enables, but you nust provide the
| addi ti onal "name" attribute to assign a name to
| these output settings to be used later.
+-->
<ora:out put name="nyCQut put" node="htm " indent="no"/>
<l--
| This top-level variable is a result-tree fragnent
+-->
<xsl :variabl e name="fragnent">
<slides>
<slide>

<title>First Slide</title>
<bul | et >Poi nt One</ bul | et >
<bul | et >Poi nt Two</ bul | et >
<bul | et >Poi nt Three</bul | et >
</slide>
<slide>
<title>Second Slide</title>
<bul I et >Poi nt One</bul | et >
<bul I et >Poi nt Two</bul | et >

XSLT Processor for Java 4-9

XML Extension Functions for XSLT Processing

<bul | et >Poi nt Three</bul | et >
</slide>
</slides>
</ xsl:vari abl e>
<xsl:tenplate match="/">

<I-- | We cannot "de-reference" a result-tree-fragnent to
| navigate into it with an XPath expression. However, using
| the ora:node-set() built-in extension function, you can
| "cast" aresult-tree fragnment to a node-set which *can*
| then be navigated using XPath. Since we'll use the node-set
| of <slides> twice later, we save the node-set in a variable
+-->
<xsl:variable nane="slides" select="ora: node-set ($fragment)"/>
<l--
| This <htm > page will go to the primry result document
| It is a"table of contents” for the slide show, with
| links to each slide. The "slides" will each be generated
| into *secondary* result docunents, each slide having
| afile name of "slideNN. htm" where NNis the two-digit
| slide nunmber
+-->
<ht mi >
<body>

<hl>List of Al Sides</hl>
<xsl:apply-tenplates sel ect="$slides" node="toc"/>
</ body>
</htni >
<l--
| Now go apply-tenplates to format each slide
+-->
<xsl:apply-tenplates sel ect="%slides"/>
</xsl:tenpl ate>
<l-- In "toc' mode, generate a link to each slide we match -->
<xsl:tenpl ate match="slide" node="toc">

<xsl:val ue-of select="title"/>
</ a>

</xsl:tenpl ate>
<l--
| For each slide nmatched, send the output for the current
| <slide>to a file named "slideNN. htm". Use the naned
| output style defined earlier called "nyQutput"
<xsl:tenplate match="slide">
<ora: out put use="myQutput href="slide{format-nunber(position(), 00")}.htm">
<htni >
<body>
<xsl:apply-tenpl ates select="title"/>

<xsl:apply-tenplates select="*[not(self::title)]"/>
<ful>
</ body>
</htni >
</ ora: out put >
</xsl:tenplate>
<xsl:tenplate match="bul | et">
<l i><xsl:value-of select="."/></]i>
</xsl:tenpl ate>
<xsl:tenplate match="title">
<hl><xsl:val ue-of select="."/></hl>
</xsl:tenpl ate>

4-10 Oracle XML Developer's Kit Programmer's Guide

Hints for Using the XSLT Processor for Java and XSL

</ xsl :styl esheet >

Hints for Using the XSLT Processor for Java and XSL
This section lists XSL and XSLT Processor for Java hints, and contains these topics:
« Merging Two XML Documents
« Extracting Embedded XML Using Only XSLT
« Support of Output Method "html" in the XSL Parser
« Creating an HTML Input Form
« Correct XSL Namespace URI
« XSL Processor Produces Multiple Outputs
« Keeping White Spaces in Your Output
« XDK Utilities That Translate Data from Other Formats to XML
« Multiple Threads Using a Single XSLProcessor and Stylesheet
« Using Document Clones in Multiple Threads

« Disabling Output Escaping Is Supported

Merging Two XML Documents

To merge two XML documents, you can either use the DOM APIs or use XSLT-based
approaches.

If you use the DOM APIs, then you have to copy the DOM node from the source DOM
document before you can append it to the destination DOM document. This operation
is required to avoid DOM document ownership errors, like WRONG_DOCUMENT_ERR.
Both the i nmpor t Node() method, introduced in DOM 2, and adopt Node() method,
introduced in DOM 3, can be used to copy and paste a DOM document fragment or a
DOM node across different XML documents.

Example: Using importNode() from DOM Level 2
Docurment docl = new XM.Document ();

El ement elementl = docl. createEl enent("fo00");
Docunment doc2 = new XM.Docunent ();

El enent el enent2 = doc2. creat eEl ement ("bar");

el ement2 = docl.inportNode(el ement 2);

el enent 1. appendChi | d(el ement 2);

Example: Using adoptNode from DOM Level 3
Document docl = new XM.Document ();

El ement el enentl = docl. creat ekl ement ("fo0");
Docunment doc2 = new XM.Docunent ();

El enent el enent2 = doc2. creat eEl ement ("bar");
el ement2 = docl. adopt Node(el ement 2) ;

el enent 1. appendChi | d(el ement 2);

The difference between using adopt Node() and i nport Node() is that using

adopt Node() , the source DOM node is removed from the original DOM document,
while using i npor t Node() , the source node is not altered or removed.

XSLT Processor for Java 4-11

Hints for Using the XSLT Processor for Java and XSL

If the merging operation is simple, you can also use the XSLT-based approaches. For
example, you have two XML documents such as:

Example: demol.xml

<nessages>
<nsg>
<key>AAA</ key>
<nun01001</ nune
</ msg>
<nsg>
<key>BBB</ key>
<nunm01011</ nune
</ msg>
</ messages>

Example: demo2.xml

<nmessages>
<m§g>
<key>AAA</ key>
<text>This is a Message</text>

</ msg>
<nsg>

<key>BBB</ key>

<text>This i s another Message</text>
</ msg>

</ messages>

Here is an example stylesheet, that merges the two XML documents, denol. xm and
deno2. xm , based on matching the <key/ > element values.

Example: demomerge.xsl

<xsl:styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or nf >
<xsl:output indent="yes"/>
<xsl:variabl e nane="doc2" sel ect ="docunent (' demo2. xm ")"/>
<xsl:tenplate match="@| node()">

<xsl : copy>

<xsl :apply-tenpl ates sel ect="@| node()"/>

</ xsl: copy>

</xsl:tenpl ate>

<xsl:tenplate match="nsg">
<xsl : copy>
<xsl:appl y-tenpl ates sel ect="@| node()"/>
<t ext ><xsl : val ue- of sel ect="$doc2/ messages/ nsg[key=current ()/key]/text"/>
</text>
</ xsl : copy>
</xsl:tenplate>
</ xsl:styl esheet >

Enter the following at the command line:

$ oraxsl denol.xn deronerge. xsl

Then, you get the following merged result:

<nessages>
<nsg>
<key>AAA</ key>

4-12 Oracle XML Developer's Kit Programmer's Guide

Hints for Using the XSLT Processor for Java and XSL

<nun>01001</ nune
<text>This is a Message</text>
</ nsg>
<nsg>
<key>BBB</ key>
<nunmr01011</ nune
<text>This i s another Message</text>
</ msg>
</ messages>

This method is obviously not as efficient for larger files as an equivalent database join
of two tables, but this illustrates the technique if you have only XML files to work
with.

Extracting Embedded XML Using Only XSLT

The content of your CDATA, it is just text. If you want the text content to be output
without escaping the angle-brackets:

<xsl : val ue- of sel ect="/CES_MESSAGE/ PAYLOAD" di sabl e-out put - escapi ng="yes"/ >

Support of Output Method "html" in the XSL Parser

XSLT fully supports all options of <xsl : out put >. Your XSL stylesheet must be a
well-formed XML document. Instead of using the
 element, you must use <BR/ >.
The <xsl : out put net hod="ht nml "/ > requests that when the XSLT engine writes
out the result of your transformation, it is a proper HTML document. What the XSLT
engine reads in must be well-formed XML.

Assume that you have an XSL stylesheet that performs XML to HTML conversion.
Everything works correctly with the exception of those HTML tags that end up as
empty elements, that is, <i nput type="t ext"/>. For example, the following
stylesheet creates an HTML document with an <i nput > element:

<xsl:styl esheet xm ns:xsl="http://wwm w3. org/ 1999/ XSL/ Transf or ni' >
<xsl : out put nethod="htm "/>

<input type="text" name="{NAME}" size="{Dl SPLAY_LENGTH" max| engt h="{LENGTH}" >
</input>

</ xsl : styl esheet >

It renders HTML in the format of

<HTML>...<input type="text" name="inl" size="10" max| ength="20"/>

</ HTML>

While Internet Explorer can handle this, Netscape cannot. Is there any way to generate
completely cross-browser-compliant HTML with XSL?

The solution to this problem is that if you are seeing:

<input ... />
instead of:
<input ...></input>

XSLT Processor for Java 4-13

Hints for Using the XSLT Processor for Java and XSL

then you are likely using the incorrect way of calling
XSLProcessor. processXSL(), since it appears that it is not doing the HTML
output for you. Use:

voi d processXSL(styl e, sourceDoc, PrintWiter)

instead of:

Docunent Fragment processXSL(styl e, sourceDoc)

Creating an HTML Input Form

To generate an HTML form for inputting data using column names from the user _
t ab_col ums table here is the XSL code:

<xsl:tenpl ate match="ROWN >

<xsl :val ue-of sel ect="COLUMN_NAME"/>
< NPUT NAME="{ COLUWN_NAME}"/ >

</ xsl:tenpl ate>

Correct XSL Namespace URI
The following URI is correct:
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf

If you use:

xm ns: xsl="-- any other string here --"

it does not give correct output.

XSL Processor Produces Multiple Outputs

The XML Parser for Java, release 2.0.2.8 and above, supports <or a: out put > to
produce more than one result from one XML and XSL.

Keeping White Spaces in Your Output

Use this in your code, where (white spaces) means that you enter a space, newline, or
tab there:

<xsl:text>. .. (white spaces)</xsl:text>

XDK Utilities That Translate Data from Other Formats to XML

XSLT translates from XML to XML, or to HTML, or to another text-based format. What
about the other way around?

For HTML, you can use utilities like Tidy or JTidy to turn HTML into well-formed
HTML that can be transformed using XSLT. For unstructured text formats, you can try
utilities like XFlat at the following Web site:

http://ww. uni dex. com xflat. htm

Multiple Threads Using a Single XSLProcessor and Stylesheet

Multiple threads can use a single XSLProcessor and XSLStylesheet instance to perform
concurrent transformations. As long as you are processing multiple files with no more

4-14 Oracle XML Developer's Kit Programmer's Guide

Hints for Using the XSLT Processor for Java and XSL

than one XSLProcessor and XSLStylesheet instance for each XML file you can do this
simultaneously using threads.

Using Document Clones in Multiple Threads

It is safe to use clones of a document in multiple threads. The public voi d

set Param(String, String) throws XSLExcept i on method of class

oracl e. xm . parser.v2. XSLStyl esheet is supported. If you copy the global
area set up by the constructor to another thread then it works. That method is

supported since XML Parser for Java, release 2.0.2.5.
Disabling Output Escaping Is Supported

The XML Parser for Java provides an option to disable output escaping:

<xsl:text disable-output-escaping = "yes">

XSLT Processor for Java 4-15

Hints for Using the XSLT Processor for Java and XSL

4-16 Oracle XML Developer's Kit Programmer's Guide

D

XML Schema Processor for Java

This chapter contains these topics:

« What Is XML Schema?

« What Are DTDs?

« Comparison of XML Schema Features to DTD Features
« XML Schema Processor for Java Features

« XML Schema Processor for Java Usage

« XML Schema Processor for Java Sample Programs

What Is XML Schema?

XML Schema was created by the W3C to use XML itself to describe the content and the
structure of XML documents. It includes most of the capabilities (it does not support
ent i t y) of Document Type Description (DTD) and additional capabilities.

See Also:

« http://www w3. org/ TR/ xm schema- 0/

What Are DTDs?

A DTD is a mechanism provided by XML 1.0 for declaring constraints on XML
markup. DTDs allow the specification of the following:

« Which elements or attributes can appear in your XML documents
= Which elements or attributes can be inside the elements

« The order the elements or attributes can appear

DTDs are also known as XML Markup Declarations.

XML Schema language serves a similar purpose to DTDs, but it is more flexible in
specifying XML document constraints and potentially more useful for certain
applications. Namespace support and datatypes support for elements and attributes
are both found in XML Schema.

XML Schema is also referred to as XML Schema Definition (XSD).

DTD Limitations

DTDs are considered to be deficient in handling certain applications. DTD limitations
include:

XML Schema Processor for Java 5-1

Comparison of XML Schema Features to DTD Features

«» DTD is not integrated with Namespace technology so users cannot import and
reuse code

« DTD does not support datatypes other than character data, a limitation for
describing metadata standards and database schemas

Applications need to specify document structure constraints more flexibly than the
DTD can.

Comparison of XML Schema Features to DTD Features

Because of the inherent limitations of DTDs, the W3C is promoting XML Schema. XML
Schema enables you to specify type information and constraints.

Table 5-1 lists XML Schema features compared to DTD features. Note that most XML
Schema features include DTD features.

Table 5-1 XML Schema Features Compared to DTD Features

XML Schema Feature DTD Feature

Built-In Datatypes

XML schema specifies a set of built-in datatypes. Some of DTDs do not support
them are defined and called primitive datatypes, and they datatypes other than
form the basis of the type system: character strings.

string, boolean, float, decinal, double,
duration, dateTine, tinme, date, gYearMonth,
gYear, ghont hDay, ghMonth, gDay, Base64Binary,
HexBi nary, anyURI, NOTATI ON, QNane.

Others are derived datatypes that are defined in terms of
primitive types.

User-Defined Datatypes

Users can derive their own datatypes from the built-in The publish-year element in
datatypes. There are three ways of datatype derivation: the DTD example cannot be
restriction, list and union. constrained further.

Restriction defines a more restricted datatype by applying
constraining facets to the base type

list simply allows a list of values of its item type

union defines a new type whose value can be of any of its
member types

For example, to specify that the value of publish-year type to
be within a specific range:

<Si npl eType name = "publish-year">
<restriction base="gYear">
<mi nl ncl usi ve val ue="1970"/ >
<max| ncl usi ve val ue="2000"/ >
</restriction>
</ Si npl eType>
The constraining facets are:

| ength, minLength, maxLength, pattern,
enuner ati on, whiteSpace, naxlncl usive,
maxExcl usi ve, m nlncl usive, m nExcl usive,
total Digits, fractionDigits.

Some facets only apply to certain base types.

5-2 Oracle XML Developer's Kit Programmer's Guide

XML Schema Processor for Java Features

Table 5-1 (Cont.) XML Schema Features Compared to DTD Features

XML Schema Feature DTD Feature

Occurrence Indicators (Content Model or Structure)

In XML Schema, the structure (called conpl exType) of the Control by DTDs over the
instance document or an element is defined in terms of model number of child elements in
group and attribute group. A model group may further an element are assigned
contain model groups or element particles, while attribute with the following symbols:
group contains attributes. Wildcards can be used in both
model group and attribute group to indicate any element or
attribute. There are three kinds of model group: sequence, all, « *=zero or more
and choice, representing the sequence, conjunction and
disjunction relationships among particles respectively. The
range of the number of occurrence of each particle can alsobe « (none) = exactly one
specified.

. ? = zero or one.

. + = 0ne or more

Like the datatype, conpl exType can be derived from other
types. The derivation method can be either restriction or
extension. The derived type inherits the content of the base
type plus corresponding modifications. In addition to
inheritance, a type definition can make references to other
components. This feature allows a component to be defined
once and used in many other structures.

The type declaration and definition mechanism in XML
Schema is much more flexible and powerful than the DTD.

Identity Constraints -

XML Schema extends the concept of XML ID/IDREF
mechanism with the declarations of unique, key and keyref.
They are part of the type definition and allow not only
attributes, but also element contents as keys. Each constraint
has a scope within which it holds and the comparison is in
terms of their value rather than lexical strings.

Import/Export Mechanisms (Schema Import, Inclusion and

Modification) v
ou cannot use constructs
All components of a schema need not be defined in a single defined in external schemas.
schema file. XML Schema provides a mechanism of
assembling multiple schemas. Import is used to integrate
schemas of different namespace while inclusion is used to
add components of the same namespace. Components can
also be modified using redefinition when included.

XML Schema Processor for Java Features

XML Schema Processor for Java, which is a part of the Oracle XDK Java components,
has the following features:

« Fully supports the W3C XML Schema specifications of the Recommendation (May
2, 2001).

« XML Schema Part 0: Primer
« XML Schema Part 1: Structures
» XML Schema Part 2: Datatypes

= Supports streaming (SAX) precessing, constant memory usage, and linear
processing time.

= Built on the XML Parser for Java v2.

XML Schema Processor for Java 5-3

XML Schema Processor for Java Usage

Supported Character Sets

XML Schema Processor for Java supports documents in the following encodings:

BIG
EBCDIC-CP-*
EUC-IP
EUC-KR

GB2312
1SO-2022-JP
1SO-2022-KR
ISO-8859-1t0 -9
1SO-10646-UCS-2
1SO-10646-UCS-4
KOI8-R

Shift_JIS
US-ASCII

UTF-8

UTF-16

Requirements to Run XML Schema Processor for Java
To run XML Schema Processor for Java, you need the following:

Any operating system with Java 1.2 support
Java: JDK 1.2.x or higher.

Documentation for sample programs for Oracle XML Schema Processor for Java is
located in the file xdk/ deno/ j ava/ schema/ README.

XML Schema Processor for Java Usage

As shown in Figure 5-1, Oracle's XML Schema Processor for Java performs two major
tasks:

A builder (XSDBui | der) assembles schemas from XML Schema documents and
passes XML Schema object to the DOM or SAX parser.

A schema validator use the schemas to validate XML instance documents which
have been read by the DOM or SAX parser.

These results are passed on to a DOM builder or an application.

Error messages are output by the schema validator.

5-4 Oracle XML Developer's Kit Programmer's Guide

XML Schema Processor for Java Usage

Figure 5-1 XML Schema Processor for Java Usage

—— — XSD
— Builder
XML
Schema
XML
Schema
Object
l PSV
DOM + Default
p— > or Schema value DOM Builder
_— SAX > Validator > or Application
Parser
XML
Instance
Document

m
s |III11]+
:

Messages

XML Schema can be used to define a class of XML documents. Instance document
describes an XML document that conforms to a particular schema.

Although these instances and schemas need not exist specifically as "documents", they
are commonly referred to as files. They may exist as any of the following:

« Streams of bytes
« Fields in a database record
= Collections of XML Infoset "Information Items"

When building the schema, the builder first compiles an internal schema object, and
then calls the DOM Parser to parse the schema object into a corresponding DOM tree.

The validator works as a filter between the SAX Parser and your applications for the
instance document. The validator takes SAX events of the instance document as input
and validates them against the schema. If the validator detects invalid XML
components it sends an error messages.

The output of the validator is:
« Input SAX events
« Default values it supplies

« Post-Schema Validation (PSV) information

Using the XML Schema API

The API of the XML Schema Processor for Java is simple. You can either use either of
the following:

«» setSchemaVal i dati onMbde() inthe DOVPar ser as shown in
XSDSanpl e. j ava.

« Explicitly build the schema using XSDBui | der and set the schema for
XM_Par ser as shown in XSDSet Schens. j ava.

XML Schema Processor for Java 5-5

XML Schema Processor for Java Sample Programs

If you do not explicitly set a compiled schema for validation using XSDBui | der , make
sure that your instance document has the correct xsi : schermalLocat i on attribute
pointing to the schema file. Otherwise, the validation will not be performed.

There is no clean-up call similar to xm cl ean. If you need to release all memory and
reset the state before validating a new XML document, terminate the context and start
over.

XML Schema Processor for Java Sample Programs

The sample XML Schema Processor for Java files provided in the directory
/ xdk/ deno/ j aval/ schenm are described in Table 5-2:

Table 5-2 XML Schema Sample Files

File

Description

cat.xsd

cat al ogue. xni

cat al ogue_e. xm

DTD2Schema. j ava

report.xn

report.xsd

report _e. xn

XSDSanpl e. j ava
XSDSet Schena. j ava

XSDLax. j ava
enbeded_xsql . xsd
enbeded_xsql . xm

The sample XML Schema definition file that supplies input to the
XSDSet Schena. j ava program. XML Schema Processor for Java
uses the XML Schema specification from cat . xsd to validate the
contents of cat al ogue. xm .

The sample XML file that is validated by XML Schema processor
against the XML Schema definition file, cat . xsd, using the
program, XSDSet Schema. j ava.

When XML Schema Processor for Java processes this sample XML
file using XSDSanpl e. j ava, it generates XML Schema errors.

This sample program converts a DTD (first argument) into an XML
Schema and uses it to validate an XML file (second argument).

The sample XML file that is validated by XML Schema Processor
for Java against the XML Schema definition file, r eport . xsd,
using the program, XSDSet Schena. j ava.

The sample XML Schema definition file that is input to the
XSDSet Schena. j ava program. XML Schema Processor for Java
uses the XML Schema specification from r epor t . xsd to validate
the contents of report . xmi .

When XML Schema Processor for Java processes this sample XML
file using XSDSanpl e. j ava, it generates XML Schema errors.

Sample XML Schema Processor for Java program.

When this example is run with cat . xsd and cat al ogue. xmi ,
XML Schema Processor for Java uses the XML Schema specification
from cat . xsd to validate the contents of cat al ogue. xni .

This example uses SCHEMA_LAX_VALI DATI ON.
The input file for XSDLax. j ava.
The output file from XSDLax. j ava.

To run the sample programs:

1. Execute the program rmake to generate . cl ass files.

2. Addxm parserv2.j ar, and the current directory to the CLASSPATH.

The following steps can be done in any order:

« Run the sample programs with the XXX. xm files:

java XSDSanpl e report. xn
j ava XSDSet Schenma report. xsd report. xni

5-6 Oracle XML Developer's Kit Programmer's Guide

XML Schema Processor for Java Sample Programs

java XSDLax enbeded_xsql . xsd enbeded_xsql . xm

XML Schema Processor for Java uses the XML Schema specification from
report. xsd to validate the contents of report . xm .

Run each sample program with the cat al ogue. xm file. For example:

java XSDSanple catal ogue. xm
j ava XSDSet Schema cat.xsd catal ogue. xni

XML Schema Processor for Java uses the XML Schema specification from
cat . xsd to validate the contents of catalogue.xml.

The following are samples that find XML Schema errors:

java XSDSanpl e catal ogue_e. xm
j ava XSDSanpl e report_e. xm

Run the sample for converting a DTD to an XML Schema.
java DTD2Schema dtd2schenma. dtd dtd2schema. xni

XML Schema Processor for Java 5-7

XML Schema Processor for Java Sample Programs

5-8 Oracle XML Developer's Kit Programmer's Guide

6

Using JAXB Class Generator

This chapter contains these topics:

« What Is JAXB?

« Replacing the XML Class Generator with JAXB Class Generator
« Unmarshalling, Marshalling, and Validating Using JAXB

« Using JAXB Class Generator

« Features Not Supported in JAXB

« JAXB Class Generator Command-Line Interface

« JAXB Compared with JAXP

What Is JAXB?

Java Architecture for XML Binding (JAXB) consists of an APl and tools that map to
and from XML data and Java objects. It is an implementation of the JSR-31 "The Java
Architecture for XML Binding (JAXB)", Version 1.0, recommendation of the JCP (Java
Community Process). JSR is a Java Specification Request of the JCP.

The JAXB compiler generates the interfaces and the implementation classes
corresponding to the XML Schema. The classes can be used to read, manipulate and
re-create XML documents. The JAXB compiler generates Java classes corresponding to
an XML Schema, and interfaces that are needed to access XML data. The Java classes,
which can be extended, give you access to the XML data without any specific
knowledge about the underlying data structure.

Note:

« The JAXB specification is described at
http://java. sun.com xm /j axb/

« JSRisdescribedathttp://jcp.org/en/jsr/overview

Replacing the XML Class Generator with JAXB Class Generator

You are requested to use JAXB Class Generator for new applications in order to use the
object binding feature for XML data. The Oracle9i Class Generator for Java is
deprecated. However, the Oracle9i Class Generator runtime was included in release
10.1 and is supported for the duration of the 10.x releases.

Using JAXB Class Generator 6-1

Unmarshalling, Marshalling, and Validating Using JAXB

Unmarshalling, Marshalling, and Validating Using JAXB

Unmarshalling is defined as moving data from an XML document to the Java
generated class objects. Each object is derived from an instance of the schema
component in the input document. Because of the inherent weaknesses of DTDs, they
are not supported by JAXB, but a DTD can be converted to an XML Schema that is
then used by JAXB.

Marshalling is defined as creating an XML document from Java objects by traversing a
content tree of instances of Java classes.

Validation is a prerequisite to marshalling if content has changed in the Java
representation. Validation is verifying that the content tree satisfies the constraints
defined in the schema. The tree is defined as valid when marshalling the tree generates
a document that is valid according to the source schema. If unmarshalling includes
validation that is error-free then the input document and the content tree are valid.
However, validation is not required during unmarshalling.

Validation comes in these forms:

« Unmarshalling-time validation notifies the application of errors and warnings
during unmarshalling.

« On-demand validation on a Java content tree when the application initiates it.

« Fail-fast validation that gives immediate results.

Using JAXB Class Generator

To build a JAXB application, start with an XML Schema file. Build and use a JAXB
application by performing these steps:

1. Generate the Java source files by submitting the XML Schema file to the binding
compiler. The binding compiler could be invoked through the command-line
utility called or aj axb.

2. Compile the Java source code using JDK 1.3 or higher.
3. With the classes and the binding framework, write Java applications that:

— Build object trees representing XML data that is valid against the XML Schema
by either unmarshalling the data from a document or instantiating the classes
you created.

— Access and modify the data.

— Optionally validate the modifications to the data relative to the constraints
expressed in the XML Schema.

— Marshal the data to new XML documents.

See Also: http://java.sun.conl xm /jaxb/faq. htn for
more information on JAXB

Features Not Supported in JAXB
The Oracle release does not support the following:
« TheJavadoc generation.
« ThelLi st and Uni on features of XML Schema.

= Sinpl eType mapping to TypeSaf e Enumclass and | sSet property modifier.

6-2 Oracle XML Developer's Kit Programmer's Guide

JAXB Compared with JAXP

« XML Schema component "any" and substitution groups.

« Customization of XML Schema to override the default binding of XML Schema
components.

« On-demand validation of content tree.

JAXB Class Generator Command-Line Interface
The JAXB class generator command-line interface is accessed this way:

oracl e.xnl . jaxb. orajaxb [-options]
where the options are listed in Table 6-1:

Table 6-1 JAXB Class Generator Command-line Interface

Option Description

-help Prints the help message text

-version Prints the release version

-outputDir Qut putDir The directory in which to generate Java source
-schema SchemaFil e The input schema file

-target Pkg target Pkg The target package name

-interface Generate only the interfaces

JAXB Compared with JAXP

The following lists summarize the advantages of JAXB.

Use JAXB when you want to:

« Access data in memory, but do not need DOM tree manipulation capabilities.
« Build object representations of XML data.

For more information about JAXB:

See Also:

« Code examples are found with the XDK download and with
the JAXB code at $| NSTALL_HOVE/ xdk/ deno/ j aval j axb

« http://java.sun.com xm /jaxb/ for documentation and
examples of the use of JAXB

« Oracle XML API Reference for details of the JAXB API

The Java API for XML Processing (JAXP), that enables applications to parse and
transform XML documents using an API that is independent of a particular XML
processor implementation, is implemented by Oracle.

See Also: "Using JAXP" on page 3-36

Use JAXP when you want to:

« Have flexibility with regard to the way you access the data: either serially with
SAX or randomly in memory with DOM.

« Use your same processing code with documents based on different schemas.

Using JAXB Class Generator 6-3

JAXB Compared with JAXP

« Parse documents that are not necessarily valid.
« Apply XSLT transforms.

= Insert or remove objects from an object tree that represents XML data.

6-4 Oracle XML Developer's Kit Programmer's Guide

v

XML SQL Utility (XSU)

This chapter contains these topics:

What Is XML SQL Utility (XSU)?

XSU Dependencies and Installation

SQL-to-XML and XML-to-SQL Mapping Primer

How XML SQL Utility Works

Using the XSU Command-Line Front End OracleXML
XSU Java API

Generating XML with XSU's OracleXMLQuery
Paginating Results: skipRows and maxRows
Generating XML from ResultSet Objects

Raising NoRowsEXxception

Storing XML Back in the Database Using XSU OracleXMLSave
Insert Processing Using XSU (Java API)

Update Processing Using XSU (Java API)

Delete Processing Using XSU (Java API)

Advanced XSU Usage Techniques

What Is XML SQL Utility (XSU)?

XML has become the format for data interchange, but at the same time, a substantial
amount of data resides in object-relational databases. It is therefore necessary to have
the ability to transform this object-relational data to XML.

XML SQL Utility (XSU) enables you to do these transformations:

XSU can transform data retrieved from object-relational database tables or views
into XML.

XSU can extract data from an XML document, and using a given mapping, insert
the data into appropriate columns or attributes of a table or a view.

XSU can extract data from an XML document and apply this data to updating or
deleting values of the appropriate columns or attributes.

XML SQL Utility (XSU) 7-1

What Is XML SQL Utility (XSU)?

Generating XML from the Database

When given a SELECT query, XSU queries the database and returns the results as an
XML document.

Storing XML in the Database

Given an XML document, XSU can extract the data from the document and insert it
into a table in the database.

Accessing XSU Functionality
XML SQL Utility functionality can be accessed in the following ways:

XSU Features

Through a Java API
Through a PL/SQL API

Through a Java command-line front end

Dynamically generates DTDs.

During generation, performs simple transformations, such as modifying default
tag names for the ROW element. You can also register an XSL transformation that
is then applied to the generated XML documents as needed.

Generates XML documents in their string or DOM representations.

Inserts XML into database tables or views. XSU can also update or delete records
from a database object, given an XML document.

Generates complex nested XML documents. XSU can also store them in relational
tables by creating object views over the flat tables and querying over these views.
Object views can create structured data from existing relational data using
object-relational infrastructure.

Generates an XML Schema given a SQL query.
Generates XML as a stream of SAX2 callbacks.

Supports XML attributes during generation. This provides an easy way to specify
that a particular column or group of columns must be mapped to an XML
attribute instead of an XML element.

Allows SQL identifier to XML identifier escaping. Sometimes column names are
not valid XML tag names. To avoid this you can either alias all the column names
or turn on tag escaping.

Supports XMLType columns in objects or tables.

See Also:

« Oracle XML DB Developer's Guide, in particular, the chapter on
generating XML, for examples on using XSU with XMLType

« Oracle XML API Reference for more information on the Java API
« PL/SQL Packages and Types Reference
« Chapter 24, "XSU for PL/SQL"

7-2 Oracle XML Developer's Kit Programmer's Guide

XSU Dependencies and Installation

XSU Dependencies and Installation

Important information about XSU:

Note: In Oracle9i, XM_Gen was deprecated and is how no longer
included with Oracle software. The replacements for XM_LGEN are
the packages DBM5_XM_Query, used for XML generation, and
DBMS_XM_Save, used for DML and data manipulation.

Migration is simple: the method names are identical. The new XSU
for PL/SQL now contains more methods. All methods take the
context handle as the first argument.

Dependencies of XSU
XML SQL Utility (XSU) depends on the following components:

« Database connectivity - JDBC drivers. XSU can work with any JDBC driver but it
is optimized for Oracle JDBC drivers. Oracle does not make any guarantee or
provide support for the XSU running against non-Oracle databases.

« Oracle XML Parser, Version2 - xnl par serv2. j ar. This file is included in the
Oracle installations. xm par ser v2. j ar is also part of the XDK Java components
archive downloadable from Oracle Technology Network (OTN) Web site.

« XSU also depends on the classes included in xdb. j ar and servl et. j ar. These
are present in Oracle installations. These are also included in the XDK Java
components archive downloadable from OTN.

Installing XSU

XSU is on the Oracle software CD, and it is also part of the XDK Java components
package available on OTN. The XSU comes in the form of two files:

« S$ORACLE_HOWE/ li b/ xsul2.j ar -- Contains all the Java classes that make up
XSU. xsul2. j ar requires a minimum of JDK1.2 and JDBC2

« $ORACLE_HOWVE/ r dbns/ admi n/ dbnsxsu. sql -- This is the SQL script that
builds the XSU PL/SQL API. Load xsul2. j ar into the database before
dbnmexsu. sql isexecuted.

By default, the Oracle installer installs the XSU on the hard drive in the locations
specified in the previous bulleted paragraphs. It also loads the XSU into the database.

If XSU is not installed during the initial Oracle installation, it can be installed later. You
can either use Oracle Installer to install the XSU and its dependent components, or you
can download the latest XDK Java components from OTN.

To load the XSU into the database you need to take one of the following steps,
depending on how you installed XSU:

« Oracle Installer installation: Change directory to your ORACLE_HOME directory,
thentordbms/ adni n. Runi ni t xm . sql .

« OTN download installation: Change directory into the bi n directory of the
downloaded and expanded XDK tree. Then run script xdk | oad. Windows users
run xdkl oad. bat .

XML SQL Utility (XSU) 7-3

Where XSU can be Installed

Where XSU can be Installed

XSU is written in Java, and can live in any tier that supports Java. XSU can be installed
on a client system.

XML SQL Utility in the Database

The Java classes that make up XSU can be loaded into a Java-enabled Oracle database.
XSU contains a PL/SQL wrapper that publishes the XSU Java API to PL/SQL, creating
a PL/SQL API. This way you can:

« Write new Java applications that run inside the database and that can directly
access the XSU Java API

= Write PL/SQL applications that access XSU through its PL/SQL API
= Access XSU functionality directly through SQL

Figure 7-1 shows the typical architecture for such a system. XML generated from XSU
running in the database can be placed in advanced queues in the database to be
gueued to other systems or clients. The XML can be used from within stored
procedures in the database or shipped outside through web servers or application
servers.

In Figure 7-1, all lines are bi-directional. Since XSU can generate as well as save data,
data can come from various sources to XSU running inside the database, and can be
put back in the appropriate database tables.

Figure 7-1 Running XML SQL Utility in the Database

Middle Tier
Oracle Application Web
Server Server
Advanced| |:|

Queuing °
A\ —
s [] | oo .
oL 4 ———1 <—>] <—> 4—’¥
Tables XML SQL Utility — —
and < P (Java / PL/SQL) = — User
Views — —
f XML* f
XML*
Other Database, * XML, HTML,
Messaging Systems, . . . XHTML, VML, . ..

XML SQL Utility in the Middle Tier

Your application architecture may need to use an application server in the middle tier,
separate from the database. The application tier can be an Oracle database, Oracle
Application Server, or a third party application server that supports Java programs.

7-4 Oracle XML Developer's Kit Programmer's Guide

Where XSU can be Installed

You can generate XML in the middle tier, from SQL queries or Resul t Set s, for
various reasons. For example, to integrate different JDBC data sources in the middle
tier. In this case you can install the XSU in your middle tier and your Java programs
can make use of XSU through its Java API.

Figure 7-2, shows how a typical architecture for running XSU in a middle tier. In the
middle tier, data from JDBC sources is converted by XSU into XML and then sent to
Web servers or other systems. Again, the whole process is bi-directional and the data
can be put back into the JDBC sources (database tables or views) using XSU. If an
Oracle database itself is used as the application server, then you can also use the
PL/SQL front-end instead of Java.

Figure 7-2 Running XML SQL Utility in the Middle Tier

Middle Tier

Application Server

or

Oracle Database (Java Web
or PL/SQL front end) Server

=| Application *

E Logic XML
[

XML SQL Utility

Any
Database

SQL data
(via JDBC)

T

2
—8T

(Java) — User
- @
Other Database, * XML, HTML,
Messaging Systems, . .. XHTML, VML, . ..

XML SQL Utility in a Web Server

Figure 7-3 XSU can live in the Web server, as long as the Web server supports Java
servlets. This way you can write Java servlets that use XSU to accomplish their task.

XSQL Servlet does just this. XSQL Servlet is a standard servlet provided by Oracle. It is
built on top of XSU and provides a template-like interface to XSU functionality. To do
XML processing in the Web server, you can use the XSQL Servlet, because it spares
you from the intricate servlet programming.

See: Chapter 8, "XSQL Pages Publishing Framework" for
information about using XSQL Servlet.

XML SQL Utility (XSU) 7-5

SQL-to-XML and XML-to-SQL Mapping Primer

Figure 7-3 Running XML SQL Utility in a Web Server

Web Server
(running Servlets)
Any e
Database SoL d
ViaI080) || asevets XML* s B
XSQL servlets "
((l?) > —> _U—_
4 XML SQL Utility —_—
3 (Java) User
1:IJ
* XML, HTML,
XHTML, VML, . ..

SQL-to-XML and XML-to-SQL Mapping Primer

This section describes the mapping or transformation used to go from SQL to XML or
vice versa.

Default SQL-to-XML Mapping
Consider table enp1:

CREATE TABLE enpl

(
empno NUMBER,
enane VARCHAR2(20),
j ob VARCHAR2(20),
nmgr - NUMBER,
hi r edat e DATE,
sal NUMBER,
dept no NUMBER

)i

XSU can generate an XML document by specifying the query:

select * fromenpl:

<?xm version="1.0"7?>
<ROWBET>
<ROW nume"1">
<EMPNC>7369</ EMPNO>
<ENAVE>SM TH</ ENAMVE>
<JOB>cl erk</ JOB>
<mgr>7902</ ngr >
<Hl REDATE>12/ 17/ 1980 0: 0: 0</ Hl REDATE>
<SAL>800</ SAL>

<DEPTNO>20</ DEPTNO>
</ ROW
<l-- additional rows ... -->
</ RONBET>

In the generated XML, the rows returned by the SQL query are enclosed in a ROASET
tag to constitute the <ROABET> element. This element is also the root element of the
generated XML document.

« The <ROANBET> element contains one or more <ROWNs elements.

7-6 Oracle XML Developer's Kit Programmer's Guide

SQL-to-XML and XML-to-SQL Mapping Primer

« Each of the <ROMNt elements contain the data from one of the returned database
table rows. Specifically, each <RON> element contains one or more elements whose
names and content are those of the database columns specified in the SELECT list
of the SQL query.

« These elements, corresponding to database columns, contain the data from the
columns.

SQL-to-XML Mapping Against Object-Relational Schema

Here is a mapping against an object-relational schema: Consider the object type,
Addr essType. Itis an object type whose attributes are all scalar types and is created
as follows:

CREATE TYPE AddressType AS OBJECT (
street VARCHAR2(40),
city VARCHAR2(20),
state CHAR(2),
zip VARCHAR2(10)
)

The following type, Enpl oyeeType, is also an object type but it has an enpaddr
attribute that is of an object type itself, specifically, Addr essType. Enpl oyee Type is
created as follows:

CREATE TYPE Enpl oyeeType AS OBJECT
(

empno NUMBER,

enane VARCHAR2(20),

sal ary NUMBER,

enpaddr AddressType

)

The following type, Enpl oyeeli st Type, is a collection type whose elements are of
the object type, Enpl oyeeType. Enpl oyeelLi st Type is created as follows:

CREATE TYPE Enpl oyeelLi st Type AS TABLE OF Enpl oyeeType;

Finally, dept 1 is a table with an object type column and a collection type column:
Addr essType and Enpl oyeelLi st Type respectively.

CREATE TABLE dept 1
(
dept no NUMBER,
dept name VARCHAR2(20) ,
dept addr Addr essType,
enplist Enpl oyeeLi st Type
)
NESTED TABLE enplist STORE AS enplist_table;

Assume that valid values are stored in table, dept 1. For the query sel ect * from
dept 1, XSU generates the following XML document:

<?xnm version='1.0"?>
<RONGET>
<ROW num&"1">
<DEPTNO>100</ DEPTNC>
<DEPTNAME>Spor t s</ DEPTNAMVE>
<DEPTADDR>
<STREET>100 Redwood Shores Pkwy</ STREET>
<Cl TY>Redwood Shor es</Cl TY>
<STATE>CA</ STATE>

XML SQL Utility (XSU) 7-7

SQL-to-XML and XML-to-SQL Mapping Primer

<ZI P>94065</ ZI P>
</ DEPTADDR>
<EMPLI ST>
<EMPLI ST_I TEM nun¥"1">
<EMPNO>7369</ ENPNO>
<ENAME>John</ ENAMVE>
<SALARY>10000</ SALARY>
<ENMPADDR>
<STREET>300 Enbar cader o</ STREET>
<CI TY>Pal 0 Alto</CITY>
<STATE>CA</ STATE>
<ZI P>94056</ ZI P>
</ EMPADDR>
</ EMPLI ST_| TEM>
<l-- additional enployee types within the enployee list -->
</ EMPLI ST>
</ RO
<I-- additional rows ... -->
</ ROABET>

As in the last example, the mapping is canonical, that is, <ROASET> contains <ROW
elements that contain elements corresponding to the columns. As before, the elements
corresponding to scalar type columns simply contain the data from the column.

Mapping Complex Type Columns to XML

Things get more complex with elements corresponding to a complex type column. For
example, <DEPTADDR> corresponds to the DEPTADDR column which is of object type
ADDRESS. Consequently, <DEPTADDR> contains sub-elements corresponding to the
attributes specified in the type ADDRESS. These sub-elements can contain data or
sub-elements of their own, again depending if the attribute they correspond to is of a
simple or complex type.

Mapping Collections to XML

When dealing with elements corresponding to database collections, things are also
different. Specifically, the <EMPLI ST> element corresponds to the EMPLI ST column
which is of a Enpl oyeelLi st Type collection type. Consequently, the <EMPLI ST>
element contains a list of <EMPLI ST_I TEM> elements, each corresponding to one of
the elements of the collection.

Other observations to make about the preceding mapping are:
« The <ROWt elements contain a cardinality attribute num

« Ifaparticular column or attribute value is NULL, then for that row, the
corresponding XML element is left out altogether.

« Ifatop level scalar column name starts with the at sign (@) character, then the
particular column is mapped to an XML attribute instead of an XML element.

Customizing the Generated XML: Mapping SQL to XML

Often, you need to generate XML with a specific structure. Since the desired structure
may differ from the default structure of the generated XML document, you want to
have some flexibility in this process. You can customize the structure of a generated
XML document using one of the following methods:

« "Source Customizations"

« "Mapping Customizations"

7-8 Oracle XML Developer's Kit Programmer's Guide

SQL-to-XML and XML-to-SQL Mapping Primer

=« "Post-Generation Customizations"

Source Customizations

Source customizations are done by altering the query or database schema. The
simplest and most powerful source customizations include the following:

« Inthe database schema, create an object-relational view that maps to the desired
XML document structure.

« Inyour query:

« Use cursor subqueries, or cast-multiset constructs to get nesting in the XML
document that comes from a flat schema.

« Alias column and attribute names to get the desired XML element names.

« Alias top level scalar type columns with identifiers that begin with the at sign
(@) to have them map to an XML attribute instead of an XML element. For
example, SELECT enpno AS " @npno", ... FROM enp, resultsinan XML
document where the <RONt element has an attribute EMPNO.

Mapping Customizations

XML SQL Utility enables you to modify the mapping it uses to transform SQL data
into XML. You can make any of the following SQL to XML mapping changes:

« Change or omit the <ROWBET> tag.
« Change or omit the <ROW tag.

« Change or omit the attribute num This is the cardinality attribute of the <ROW
element.

« Specify the case for the generated XML element names.

« Specify that XML elements corresponding to elements of a collection must have a
cardinality attribute.

« Specify the format for dates in the XML document.

» Specify that null values in the XML document have to be indicated using a
nullness attribute, rather then by omission of the element.

Post-Generation Customizations

Finally, if the desired customizations cannot be achieved with the foregoing methods,
you can write an XSL transformation and register it with XSU. While there is an XSLT
registered with the XSU, XSU can apply the XSLT to any XML it generates.

Default XML-to-SQL Mapping
XML to SQL mapping is just the reverse of the SQL to XML mapping.

Consider the following differences when mapping from XML to SQL, compared to
mapping from SQL to XML:

=« When going from XML to SQL, the XML attributes are ignored. Thus, there is
really no mapping of XML attributes to SQL.

=« When going from SQL to XML, mapping is performed from the Resul t Set
created by the SQL query to XML. This way the query can span multiple database
tables or views. What is formed is a single Resul t Set that is then converted into
XML. This is not the case when going from XML to SQL, where:

XML SQL Utility (XSU) 7-9

How XML SQL Utility Works

« Toinsert one XML document into multiple tables or views, you must create an
object-relational view over the target schema.

« If the view is not updatable, one solution is to use | NSTEAD- OF- | NSERT
triggers.

If the XML document does not perfectly map into the target database schema, there are
three things you can do:

« Modify the Target. Create an object-relational view over the target schema, and
make the view the new target.

« Modify the XML Document. Use XSLT to transform the XML document. The XSLT
can be registered with XSU so that the incoming XML is automatically
transformed, before any mapping attempts are made.

« Modify XSU's XML-to-SQL Mapping. You can instruct XSU to perform case
insensitive matching of the XML elements to database columns or attributes.

= You can tell XSU to use the name of the element corresponding to a database
row instead of ROW

= You can specify in XSU the date format to use when parsing dates in the XML
document.

How XML SQL Utility Works

This section describes how XSU works when performing the following tasks:
« Selecting with XSU on page 7-10

« Queries That XSU Cannot Handle

« Inserting with XSU on page 7-10

« Updating with XSU on page 7-11

« Deleting with XSU on page 7-12

Selecting with XSU

XSU generation is simple. SQL queries are executed and the Resul t Set is retrieved
from the database. Metadata about the ResultSet is acquired and analyzed. Using the
mapping described in "Default SQL-to-XML Mapping" on page 7-6, the SQL result set
is processed and converted into an XML document.

Queries That XSU Cannot Handle

There are certain types of queries that XSU cannot handle, especially those that mix
columns of type LONGor LONG RAWwith CURSOR() expressions in the Select clause.
Please note that LONGand LONG RAWare two examples of datatypes that JDBC
accesses as streams and whose use is deprecated. If you migrate these columns to
CLOBs, then the queries will succeed.

Inserting with XSU

To insert the contents of an XML document into a particular table or view, XSU first
retrieves the metadata about the target table or view. Based on the metadata, XSU
generates a SQL | NSERT statement. XSU extracts the data out of the XML document
and binds it to the appropriate columns or attributes. Finally the statement is executed.

7-10 Oracle XML Developer's Kit Programmer's Guide

How XML SQL Utility Works

For example, assume that the target table is dept 1 and the XML document is the one
generated from dept 1.

XSU generates the following | NSERT statement.
I NSERT | NTO dept1 (deptno, deptnane, deptaddr, enplist) VALUES (?,?,?,7)

Next, the XSU parses the XML document, and for each record, it binds the appropriate
values to the appropriate columns or attributes:

deptno <- 100
dept name <- SPORTS
dept addr <- AddressType(' 100 Redwood Shores Pkwy',' Redwood Shores',
"CA','94065")
enplist <- Enpl oyeelList Type(Enpl oyeeType(7369, ' John', 100000,
Addr essType(' 300 Enbarcadero','Palo Alto',' CA'",'94056"),...)

The statement is then executed. Insert processing can be optimized to insert in batches,
and commit in batches.

See Also:
» "Default SQL-to-XML Mapping" on page 7-6

« "Insert Processing Using XSU (Java API)" on page 7-26 for ore
detail on batching

Updating with XSU

Updates and deletes differ from inserts in that they can affect more than one row in the
database table. For inserts, each ROWelement of the XML document can affect at most
one row in the table, if there are no triggers or constraints on the table.

However, with both updates and deletes, the XML element can match more than one
row if the matching columns are not key columns in the table. For updates, you must
provide a list of key columns that XSU needs to identify the row to update. For
example, to update the DEPTNAME to Spor t sDept instead of Sport s, you can have
an XML document such as:

<RONBET>
<ROW nune" 1" >
<DEPTNO>100</ DEPTNO>
<DEPTNANME>Spor t sDept </ DEPTNAVE>
</ RON
</ RONBET>

and supply the DEPTNOas the key column. This results in the following UPDATE
statement:

UPDATE dept1 SET deptname = ? WHERE deptno = ?

and bind the values this way:

deptno <- 100
dept name <- Sport sDept

For updates, you can also choose to update only a set of columns and not all the
elements present in the XML document.

See Also: "Update Processing Using XSU (Java API)" on
page 7-28

XML SQL Utility (XSU) 7-11

Using the XSU Command-Line Front End OracleXML

Deleting with XSU

For deletes, you can choose to give a set of key columns for the delete to identify the
rows. If the set of key columns are not given, then the DELETE statement tries to match
all the columns given in the document. For an XML document:

<ROWBET>
<ROW nun¥"1">
<DEPTNO>100</ DEPTNO>
<DEPTNAME>Spor t s</ DEPTNAME>
<DEPTADDR>
<STREET>100 Redwood Shores Pkwy</ STREET>
<Cl TY>Redwood Shores</Cl TY>
<STATE>CA</ STATE>
<Zl P>94065</ ZI P>
</ DEPTADDR>
</ RON
<l-- additional rows ... -->
</ RONBET>

To delete, XSU builds a DELETE statement (one for each ROWelement):
DELETE FROM dept1 WHERE deptno = ? AND deptname = ? AND deptaddr = ?

The binding is:

deptno <- 100

dept name <- sports

deptaddr <- addresstype(' 100 redwood shores pkwy','redwood city','ca',
' 94065")

See Also: "Delete Processing Using XSU (Java API)" on page 7-30

Using the XSU Command-Line Front End OracleXML

XSU comes with a simple command line front end that gives you quick access to XML
generation and insertion.

The XSU command-line options are provided through the Java class, Or acl e XM..
Invoke it by calling:

java Oracl eXM.

This prints the front end usage information. To run the XSU command-line front end,
first specify where the executable is located. Add the following to your CLASSPATH:

« XSUJava library (xsul2.jar or xsulll.jar)

Also, since XSU depends on Oracle XML Parser and JDBC drivers, make the location
of these components known. To do this, the CLASSPATH must include the locations of:

« Oracle XML Parser Java library (xm par serv2. j ar)

« JDBC library (cl asses12.j ar ifusing xsul2. jar orcl assesl1l1l.j ar if
usingxsulll.j ar)

« AIJAR file for XMLType.

Generating XML Using the XSU Command Line

For XSU generation capabilities, use the XSU get XM parameter. For example, to
generate an XML document by querying the enpl oyees table in the hr schema, use:

7-12 Oracle XML Developer's Kit Programmer's Guide

Using the XSU Command-Line Front End OracleXML

java Oracl eXM. get XML -user "hr/hr" "select * from enpl oyees”

This performs the following tasks:

1. Connects to the current default database

2. Executes the query sel ect * from enpl oyees

3. Converts the result to XML

4. Displays the result

The get XML parameter supports a wide range of options. They are explained in the

following section.

XSU's OracleXML getXML Options

Table 7-1 lists the OracleXML get XM options:

Table 7-1 XSU's OracleXML getXML Options

getXML Option

Description

- user user nane/password

-conn JDBC_connect _string

-wi t hDTD

-w t hSchema

-rowset Tag t ag_nane

-rowTag t ag_name

-row dAttr row_id_attribute_nane

-rowldColumnrow | d_col unm_nane

-collectionldAttr collection_id_

attribute nane

-useNul l Attrld

-styl eSheet styl esheet _UR

Specifies the username and password to connect to the
database. If this is not specified, the user defaults to
scott/ti ger. Note that the connect string is also being
specified. The username and password can be specified as
part of the connect string.

Specifies the JDBC database connect string. By default the
connect string is: "j dbc: or acl e: oci : @):

Instructs the XSU to generate the DTD along with the XML
document.

Instructs the XSU to generate the schema along with the
XML document.

Specifies r owset tag (the tag that encloses all the XML
elements corresponding to the records returned by the
query). The default r owset tag is RONSET. Specifying an
empty string for the rowset tells the XSU to completely
omit the r owset element.

Specifies the r owtag (the tag used to enclose the data
corresponding to a database row). The default row tag is
ROW Specifying an empty string for the row tag tells the
XSU to completely omit the row tag.

Names the attribute of the ROWNelement keeping track of the
cardinality of the r ows. By default this attribute is called
num Specifying an empty string (") as the r owi D attribute
will tell the XSU to omit the attribute.

Specifies that the value of one of the scalar columns from
the query is to be used as the value of the r owl Dattribute.

Names the attribute of an XML list element keeping track of
the cardinality of the elements of the list (the generated
XML lists correspond to either a cursor query, or collection).
Specifying an empty string (") as the r owd D attribute will
tell the XSU to omit the attribute.

Tells the XSU to use the attribute NULL (TRUE/ FALSE) to
indicate the nullness of an element.

Specifies the stylesheet in the XML PI (Processing
Instruction).

XML SQL Utility (XSU) 7-13

Using the XSU Command-Line Front End OracleXML

Table 7-1 (Cont.) XSU's OracleXML getXML Options

getXML Option Description

-styl esheet Type styl esheet _type Specifies the stylesheet type in the XML PI (Processing
Instruction).

-errorTagerror tag_nane Specifies the error tag - the tag to enclose error messages
that are formatted into XML.

-rai seNoRowsExcepti on Tells the XSU to raise an exception if no rows are returned.

- maxRows maxi mum r ows Specifies the maximum number of rows to be retrieved and
converted to XML.

- ski pRows nunber_of _rows_to_skip Specifies the number of rows to be skipped.

- encodi ng encodi ng_nane Specifies the character set encoding of the generated XML.

- dat eFor mat dat e_f or nat Specifies the date format for the date values in the XML
document.

-fil eName SQL_query_fil eName Specifies the file name that contains the query, or specify the
query itself.

| sal _query

- useTypeFor Col | El enifag Use type name for column-element tag (by default XSU uses
the col um-nane_item

-set XSLTRef URI Set the XSLT external entity reference.

- uselLower Case Generate lowercase or uppercase tag names, respectively.

The default is to match the case of the SQL object names

| -useUpper Case from which the tags are generated.

-w t hEscapi ng There are characters that are legal in SQL object names but
illegal in XML tags. This option means that if such a
character is encountered, it is escaped rather than throwing
an exception.

-rai seException By default the XSU catches any error and produces the XML
error. This changes this behavior so the XSU actually throws
the raised Java exception.

Inserting XML Using XSU's Command Line (putXML)

To insert an XML document into the enpl oyees table in the hr schema, use the
following syntax:

java Oracl eXM. put XM -user "hr/hr" -fileName "/tnp/tenmp.xm" "enpl oyees"

This performs the following tasks:

1. Connects to the current database

2. Reads the XML document from the given file
3. Parses it, matches the tags with column names
4

Inserts the values appropriately into the enpl oyees table

Note: The XSU command line front end, put XM_, currently only
publishes XSU insert functionality.

XSU OracleXML putXML Options
Table 7-2 lists the put XML options:

7-14 Oracle XML Developer's Kit Programmer's Guide

Generating XML with XSU's OracleXMLQuery

Table 7-2 XSU's OracleXML putXML Options

putXML Options

Description

- user user nane/password

-conn JDBC_connect _string

- bat chSi ze bat chi ng_si ze

-comit Batch commit _si ze

-rowlagtag_nane

- dat eFor mat dat e_f or nat

-ignoreCase

-fileNanefil e_nane
-URL URL

-xm Doc xm _docunent
-tabl eNane t abl e

-w t hEscapi ng

-set XSLT URI
- set XSLTRef URI

Specifies the username and password to connect to the database. If
this is not specified, the user defaultstoscott/ti ger. The
connect string is also being specified; the username and password
can be specified as part of the connect string.

Specifies the JDBC database connect string. By default the connect
string is: "j dbc: or acl e: oci : @):

Specifies the batch size, that controls the number of rows that are
batched together and inserted in a single trip to the database to
improve performance.

Specifies the number of inserted records after which a commit is to
be executed. Note that if the autocommit is TRUE (the default), then
setting the conmi t Bat ch has no consequence.

Specifies the r owtag (the tag used to enclose the data
corresponding to a database row). The default row tag is ROV
Specifying an empty string for the r owtag tells XSU that no
row-enclosing tag is used in the XML document.

Specifies the date format for the date values in the XML document.

Makes the matching of the column names with tag names case
insensitive (for example, "EnpNo" will match with "EMPNO" if
ignoreCase is on).

Specifies the XML document to insert, a local file.

Specifies a URL to fetch the document from.

Specifies the XML document as a string on the command line.
The name of the table to put the values into.

If SQL to XML name escaping was used when generating the doc,
then this will turn on the reverse mapping.

XSLT to apply to the XML document before inserting.
Set the XSLT external entity reference.

XSU Java API

The following two classes make up the XML SQL Utility Java API:

= XSU API for XML generation: or acl e. xm . sql . query. Or acl eXM_Query

« XSU API for XML save, insert, update, and delete:
oracle.xm .sqgl.dm . O acl eXM.Save

Generating XML with XSU's OracleXMLQuery

The Or acl eXM_Quer y class makes up the XML generation part of the XSU Java API.
Figure 7-4 illustrates the basic steps you need to take when using OracleXMLQuery to

generate XML:

1. Create a connection.

2. Createan Or acl eXM_Query instance by supplying an SQL string or a
Resul t Set obiject.

3. Obtain the result as a DOM tree or XML string.

XML SQL Utility (XSU) 7-15

Generating XML with XSU's OracleXMLQuery

Figure 7-4 Generating XML With XML SQL Utility for Java: Basic Steps

SQL
Query
> Create JDBC
Connection IDBC Result
esu
SQL Set
Query

OracleXMLQuery
instance

Generating XML from SQL Queries Using XSU

The following examples illustrate how XSU can generate an XML document in its
DOM or string representation given a SQL query. See Figure 7-5.

Figure 7-5 Generating XML With XML SQL Utility

DOM
getXMLDOM object v
Further
processing
getXMLString XML
String

REGISTER
Query

1

User / Browser /
Client /
Application

set
the options

Generated
XML
as DOM

Generated
XML
as String

Generating XML from the Database using the XML SQL Utility

A

User / Browser
Client /
Application

N\

XSU Generating XML Example 1: Generating a String from Table employees (Java)

1. Create a connection

« Before generating the XML you must create a connection to the database. The
connection can be obtained by supplying the JDBC connect string. First register
the Oracle JDBC class and then create the connection, as follows

/I inport the Oracle driver..

import oracle.jdbc.*;

/1 Load the Oracle JDBC driver
Driver Manager . regi sterDriver(new oracle.jdbc. OracleDriver());

/1l Create the connection.

Connection conn =

Dri ver Manager . get Connecti on("j dbc:oracle:oci: @, "hr","hr");

7-16 Oracle XML Developer's Kit Programmer's Guide

Generating XML with XSU's OracleXMLQuery

Here, we use the default connection for the JDBC OCI driver. You can connect to
the scot t schema supplying the password ti ger .

You can also use the JDBC thin driver to connect to the database. The thin driver is
written in pure Java and can be called from within applets or any other Java
program.

See Also:: Oracle Database Java Developer's Guide for more details.

= Here is an example of connecting using the JDBC thin driver:

/1 Create the connection.

Connection conn =
Dri ver Manager . get Connecti on("j dbc: oracl e: t hi n: @l sun489: 1521: ORCL",
Ilhrn’ ”hr“);

The thin driver requires you to specify the host name (dl sun489), port number
(1521), and the Oracle SID (ORCL), which identifies a specific Oracle instance on
the machine.

« No connection is needed when run in the server. When writing server side Java
code, that is, when writing code that will run in the server, you need not establish
a connection using a username and password, since the server-side internal driver
runs within a default session. You are already connected. In this case call the
def aul t Connection() ontheoracl e.jdbc.driver. Oracl eDriver()
class to get the current connection, as follows:

inport oracle.jdbc. *;

/1 Load the Oracle JDBC driver

Driver Manager. registerDriver(new oracle.jdbc. Oracl eDriver());
Connection conn = new oracle.jdbc. Oracl eDriver (). default Connection ();

The remaining discussion either assumes you are using an OCI connection from
the client or that you already have a connection object created. Use the appropriate
connection creation based on your needs.

Note:

oracl e. xm . sql . dat aset . Or acl eXM.Dat aSet Ext Jdbc is
used only for Oracle JDBC, while

oracl e. xm . sqgl . dat aset. Oracl eXM.Dat aSet GenJdbc is
used for non-Oracle JDBC.

2. Creating an Or acl eXM.Quer y Class instance:

Once you have registered your connection, create an Or acl eXM_Quer y class instance
by supplying a SQL query to execute as follows:

[l inport the query class in to your class
inport oracle.xm.sql.query.Oacl eXM.Query;

Oracl eXMQuery gry = new Oracl eXM.Query (conn, "select * from enpl oyees");

You are now ready to use the query class.
3. Obtain the result as a DOM tree or XML string:

XML SQL Utility (XSU) 7-17

Generating XML with XSU's OracleXMLQuery

=« DOM object output. If, instead of a string, you wanted a DOM object, you can
simply request a DOM output as follows:

org.w3c. DOM Docunent domDoc = qry. get XM.DOM) ;

and use the DOM traversals.
« XML string output. You can get an XML string for the result by:
String xm String = qry.get XM.String();

Here is a complete listing of the program to extract (generate) the XML string. This
program gets the string and prints it out to standard output:

inmport oracle.jdbc.*;

inmport oracle.xnl.sql.query. O acl eXM_.Query;
inport java.lang.*;

inport java.sql.*;

Il class to test the String generation!
class test XM.SQL {

public static void main(String[] argv)

{

try{
/'l create the connection

Connection conn = getConnection("hr","hr");

Il Create the query class.
Oracl eXMQuery gry = new Oracl eXM.Query(conn, "select * from enpl oyees");

Il Get the XML string
String str = qgry.get XM.String();

/1 Print the XM out put
Systemout. printin(" The XML output is:\n"+str);
Il Always close the query to get rid of any resources..
gry. close();
}catch(SQLException e){
Systemout. printlin(e.toString());
}
}

/1 Get the connection given the user name and password. .!
private static Connection getConnection(String username, String password)
throws SQLException

{
Il register the JDBC driver..
Driver Manager. regi sterDriver(new oracle.jdbc. OracleDriver());
Il Create the connection using the OCl driver
Connection conn =
Dri ver Manager . get Connecti on("j dbc: oracl e: oci : @, user nane, passwor d) ;
return conn;
}

7-18 Oracle XML Developer's Kit Programmer's Guide

Generating XML with XSU's OracleXMLQuery

How to Run This Program
To run this program;

1. Storethe codeinafilecalledt est XMLSQL. j ava
2. Compileitusing j avac, the Java compiler
3. Execute it by specifying:j ava t est XMLSQL

You must have the CLASSPATH pointing to this directory for the Java executable to
find the class. Alternatively use various visual Java tools including Oracle JDeveloper
to compile and run this program. When run, this program prints out the XML file to
the screen.

XSU Generating XML Example 2: Generating DOM from Table employees (Java)

DOM represents an XML document in a parsed tree-like form. Each XML entity
becomes a DOM node. Thus XML elements and attributes become DOM nodes while
their children become child nodes. To generate a DOM tree from the XML generated
by XSU, you can directly request a DOM document from XSU, as it saves the overhead
of having to create a string representation of the XML document and then parse it to
generate the DOM tree.

XSU calls the parser to directly construct the DOM tree from the data values. The
following example illustrates how to generate a DOM tree. The example steps through
the DOM tree and prints all the nodes one by one.

i nport org.w3c.dom *;

inport oracle.xm.parser.v2. *;

inport java.sql.*;

inport oracle.xm.sqgl.query. Oracl eXM.Query;
inport java.io.*;

class donfest {

public static void main(String[] argv)

{

try{
/] create the connection

Connection conn = get Connection("hr","hr");

[/ Create the query class.
Oracl eXMQuery gqry = new Oracl eXM_.Query(conn, "select * from enployees");

/1 CGet the XM. DOM obj ect. The actual type is the Oracle Parser's DOM
/'l representation. (XM.Document)
XM.Docurent donDoc = (XM.Docunent)qgry. get XM.DOM) ;

[/ Print the XML output directly fromthe DOM
domDoc. print(Systemout);

/] 1f you instead want to print it to a string buffer you can do this.
StringWiter s = new StringWiter(10000);

domDoc. print(new PrintWiter(s));

Systemout.println(" The string version ---> "+s.toString());

gry.close(); // Always close the query!!
}catch(Exception e){
Systemout.printin(e.toString());
}
}

XML SQL Utility (XSU) 7-19

Paginating Results: skipRows and maxRows

/] Get the connection given the user name and password. .!

private static Connection getConnection(String user, String passwd)
throws SQLException

{

DriverManager. regi sterDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =

Dri ver Manager. get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;

Paginating Results: skipRows and maxRows

In the examples shown so far, XML SQL Utility (XSU) takes the Resul t Set or the
query, and generates the whole document from all the rows of the query. To obtain 100
rows at a time, you then have to fire off different queries to get the first 100 rows, the
next 100, and so on. Also it is not possible to skip the first five rows of the query and
then generate the result.

To obtain those results, use the XSU ski pRows and maxRows parameter settings:

« ski pRows parameter, when set, forces the generation to skip the desired number
of rows before starting to generate the result.

= maxRows limits the number of rows converted to XML.

For example, if you set ski pRows to a value of 5 and maxRows to a value of 10, then
XSU skips the first 5 rows, then generates XML for the next 10 rows.

Keeping the Object Open for the Duration of the User's Session

In Web scenarios, you may want to keep the query object open for the duration of the
user's session. For example, consider the case of a Web search engine that gives the
results of a user's search in a paginated fashion. The first page lists 10 results, the next
page lists 10 more results, and so on.

To achieve this, request XSU to convert 10 rows at a time and keep the ResultSet state
active, so that the next time you ask XSU for more results, it starts generating from the
place the last generation finished.

See Also: "XSU Generating XML Example 3: Paginating Results:
(Java)" on page 7-21

When the Number of Rows or Columns in a Row Is Too Large

There is also the case when the number of rows, or number of columns in a row are
very large. In this case, you can generate multiple documents each of a smaller size.
These cases can be handled by using the maxRows parameter and the

keepObj ect Open function.

keepObjectOpen Function

Typically, as soon as all results are generated, Or acl eXM_Query internally closes the
Resul t Set , if it created one using the SQL query string given, since it assumes you
no longer want any more results. However, in the case described earlier, to maintain
that state, you need to call the keepObj ect Open function to keep the cursor active.
See the following example.

7-20 Oracle XML Developer's Kit Programmer's Guide

Generating XML from ResultSet Objects

XSU Generating XML Example 3: Paginating Results: (Java)

This example shows how you can use the XSU for Java API to generate an XML page:

inport oracle.sql.*;
inport oracle.jdbc. *;

inport oracle.xm.sql.*;

inport oracle.xm.sql.query.*;
inport oracle.xm.sql.dataset.*;
inport oracle.xm.sql.docgen.*;

inport java.sql.*;
inport java.io.*;

public class b

{

public static void main(String[] args) throws Exception

{
DriverManager.registerDriver(new oracle.jdbc. OracleDriver());

Connection conn =
Dri ver Manager . get Connection"jdbc: oracl e:oci: @, "hr", "hr"();

Statenent stnt =
conn. createSt at enent (Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_READ ONLY) ;

String sCmd = "SELECT FI RST_NAME, LAST_NAMVE FROM HR. EMPLOYEES";
ResultSet rs = stnt.executeQuery(sCnd);

O acl eXMQuery xm Qy = new O acl eXM.Query(conn, rs);
xm Qy. keepChj ect Qpen(true);

[/xm Qvy.set Row dAt trName("");

xm Qy. set Rowset Tag(" ROASET") ;

xm Qy. set RowTag(" ROW) ;

xm Qy. set MaxRows(20) ;

/lrs.beforeFirst();
String sXM. = xm Qy. get XM.String();
Systemout. println(sXM);

Generating XML from ResultSet Objects

You saw how you can supply a SQL query and get the results as XML. In the last
example, you retrieved paginated results. However in Web cases, you may want to
retrieve the previous page and not just the next page of results. To provide this
scrollable functionality, you can use the Scrollable Resul t Set . Use the Resul t Set
object to move back and forth within the result set and use XSU to generate the XML
each time. The following example illustrates how to do this.

XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)

This example shows you how to use the JDBC Resul t Set to generate XML. Note that
using the Resul t Set might be necessary in cases that are not handled directly by

XML SQL Utility (XSU) 7-21

Generating XML from ResultSet Objects

XSU, for example, when setting the batch size, binding values, and so on. This
example extends the previously defined pageTest class to handle any page.

public class pageTest
{
Connection conn;
O acl eXMQuery qry;
Statement stnt;
Resul t Set rset;
int lastRow = 0;

public pageTest(String sql Query)

{
try{
conn = getConnection("hr","hr");
stnt = conn.createStatenment();// create a scrollable Rset
Resul t Set rset = stnt.executeQuery(sql Query); // get the result set.
gry = new Oracl eXM_.Query(conn,rset); // create an Oracl eXM.Query
/'l instance
qry. keepCursorState(true); // Don't lose state after the first fetch
gry. set Rai seNoRowsExcepti on(true);
gry. set Rai seException(true);
}
catch (Exception e)
{
e.printStackTrace(Systemout);
}
}

/] Get the connection given the user name and password. .!
private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager. regi sterDriver(new oracle.jdbc. OacleDriver());
Connection conn =
Driver Manager. get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;

}

/1 Returns the next XM page..!

public String getResult(int startRow, int endRow)

{
gry. set MaxRows(endRowstartRow); // set the max # of rows to retrieve..!
return gry.get XM.String();

}
/1 Function to still performthe next page.
public String nextPage()
{
String result = getResult(lastRow, | ast Row+10);
| ast Row+= 10;
return result;
}

public void close() throws SQException

{
stm.close(); // close the statenent..
conn.close(); // close the connection
gry.close(); /'l close the query..

}

7-22 Oracle XML Developer's Kit Programmer's Guide

Generating XML from ResultSet Objects

public static void main(String[] argv)

{
String str;
try{
pageTest test = new pageTest("select * from enpl oyees");
int i =0
/1 Cet the data one page at a time..!!!!!
while ((str = test.getResult(i,i+10))!= null)
{
Systemout. printin(str);
i+= 10;
}
test.close();
}
catch (Exception e)
{
e.printStackTrace(System out);
}
}

}

XSU Generating XML Example 5: Generating XML from Procedure Return Values

The Or acl eXM_.Query class provides XML conversion only for query strings or
Resul t Set s. But in your application if you have PL/SQL procedures that return REF
cursors, how do you do the conversion?

In this case, you can use the earlier-mentioned Resul t Set conversion mechanism to
perform the task. REF cursors are references to cursor objects in PL/SQL. These cursor
objects are valid SQL statements that can be iterated upon to get a set of values. These
REF cursors are converted into Or acl eResul t Set objects in the Java world.

You can execute these procedures, get the Or acl eResul t Set object, and then send
that to the Or acl eXMLQuer y object to get the desired XML.

Consider the following PL/SQL function that defines a REF cursor and returns it:
CREATE OR REPLACE PACKAGE BODY testRef IS

function testRefCur RETURN enpREF is
a enmpREF,
begin
CPEN a FOR select * from hr.enpl oyees;
return a;
end;
end;
/

Every time this function is called, it opens a cursor object for the query, sel ect *
from enpl oyees and returns that cursor instance. To convert this to XML, you do
the following:

i nport org.w3c.dom *;

inport oracle.xm.parser.v2. *;

inport java.sql.*;

inport oracle.jdbc. *;

inport oracle.xm.sql.query.Oacl eXM.Query;
inport java.io.*;

public class REFCUR est

{

XML SQL Utility (XSU) 7-23

Raising NoRowsEXxception

public static void main(String[] argv)
throws SQLException

{
String str;
Connection conn = getConnection("hr","hr"); // create connection
/] Create a ResultSet object by calling the PL/SQ function
Cal | abl eStatenent stnt =
conn. prepareCal | ("begin ? := testRef.testRefCur(); end;");
stnt.regi sterQut Parameter(1, Oracl eTypes. CURSOR); // set the define type
stnt.execute(); // Execute the statenent.
Resul tSet rset = (ResultSet)stnt.getObject(1); // Get the Result Set
Oracl eXMQuery gqry = new Oracl eXM.Query(conn,rset); // prepare Query class
gry. set Rai seNoRowsException(true);
gry. set Rai seException(true);
qry. keepCursor St ate(true); Il set options (keep the cursor active.
while ((str = qry.getXM.String())!= null)
Systemout.println(str);
qry.close(); Il close the query..!
Il Note since we supplied the statenent and resultset, closing the
Il Oracl eXM_query instance will not close these. W need to
Il explicitly close this ourselves..!
stnt.close();
conn. cl ose();
}

/1 Get the connection given the user name and password. .!
private static Connection getConnection(String user, String passwd)
throws SQLException

{

DriverManager. regi sterDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =
Dri ver Manager. get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;

}
}

To apply the stylesheet, on the other hand, use the appl ySt yl esheet () command.
This forces the stylesheet to be applied before generating the output.

Raising NoRowsException

When there are no rows to process, XSU simply returns a null string. However, it
might be desirable to get an exception every time there are no more rows present, so
that the application can process this through exception handlers. When the

set Rai seNoRowsExcept i on() is set, then whenever there are no rows to generate
for the output XSU raises an or acl e. xnl . sgl . Or acl eXML.SQ_LNoRowsExcept i on.
This is a runtime exception and need not be caught unless needed.

XSU Generating XML Example 6: No Rows Exception (Java)

The following code extends the previous examples to use the exception instead of
checking for null strings:

7-24 Oracle XML Developer's Kit Programmer's Guide

Storing XML Back in the Database Using XSU OracleXMLSave

public class pageTest {
. Il rest of the class definitions....

public static void main(String[] argv)

{

pageTest test = new pageTest("select * from enpl oyees");

test.qgry.set Rai seNoRowsException(true); // ask it to generate exceptions
try

whi |l e(true)
Systemout. println(test.nextPage());

}
catch(oracl e.xm .sqgl . Oracl eXM_.SQLNoRowsException e)

{
Systemout.println(" END OF QUTPUT ");

try{
test.close();
}

catch (Exception ae)

{
}

ae.printStackTrace(System out);

}
}
}

Note: Notice how the condition to check the termination changed
from checking if the result is NULL to an exception handler.

Storing XML Back in the Database Using XSU OracleXMLSave

Now that you have seen how queries can be converted to XML, here is how you can
put the XML back into the tables or views using XSU. The class

oracl e.xm . sqgl.dnm . O acl eXM_Save provides this functionality. It has methods
to insert XML into tables, update existing tables with the XML document, and delete
rows from the table based on XML element values.

In all these cases the given XML document is parsed, and the elements are examined
to match tag names to column names in the target table or view. The elements are
converted to the SQL types and then bound to the appropriate statement. The process
for storing XML using XSU is shown in Figure 7-6.

XML SQL Utility (XSU) 7-25

Insert Processing Using XSU (Java API)

Figure 7-6 Storing XML in the Database Using XSU

1

ser / Browser /
Client /
Application

Storing XML in the Database Using the XML SQL Utility

REGISTER
the table

set

the options

insert
XML into
table

Consider an XML document that contains a list of ROW elements, each of which
constitutes a separate DML operation, namely, | NSERT, UPDATE, or DELETE on the
table or view.

Insert Processing Using XSU (Java API)

To insert a document into a table or view, simply supply the table or the view name
and then the document. XSU parses the document (if a string is given) and then creates
an | NSERT statement into which it binds all the values. By default, XSU inserts values
into all the columns of the table or view and an absent element is treated as a NULL
value. The following example shows you how the XML document generated from the
enpl oyees table, can be stored in the table with relative ease.

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)

This example inserts XML values into all columns:

/1 This programtakes as an argunment the file nane, or a url to
/1 a properly formated XM. docunent and inserts it into the HR EMPLOYEES table.
inport java.sql.*;
inport oracle.xm.sql.dm. O acl eXM.Save;
public class testlnsert
{
public static void main(String argv[])
throws SQLException
{
DriverManager.regi sterDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =
Dri ver Manager. get Connection("jdbc:oracle:oci: @, "hr","hr");

O acl eXM_Save sav = new Oracl eXM.Save(conn, "enpl oyees");
sav.insert XM_(sav. get URL(argv[0]));
sav. cl ose();

7-26 Oracle XML Developer's Kit Programmer's Guide

Insert Processing Using XSU (Java API)

}

An | NSERT statement of the form:

I NSERT | NTO hr. enpl oyees (enpl oyee_id, |ast_name, job_id, nanager _id,
hire_date, salary, departnment_id) VALUES(?,?,?,?,2,2,7?);

is generated, and the element tags in the input XML document matching the column
names are matched and their values bound.

If you store the following XML document:

<?xnm version='1.0"?>
<RONBET>
<ROW nume"1">

<EMPLOYEE_| D>7369</ EMPLOYEE_| D>
<LAST_NAME>Smi t h</ LAST_NAME>
<JOB_| D>CLERK</ JOB_I D>
<MANAGER _| D>7902</ MANAGER | D>
<H RE_DATE>12/17/ 1980 0: 0: 0</ H RE_DATE>

<SALARY>800</ SALARY>
<DEPARTNMENT _| D>20</ DEPARTMENT _| D>
</ ROW
<l-- additional rows ... -->
</ ROABET>

to a file and specify the file to the program described earlier, you get a new row in the
enpl oyees table containing the values 7369, Smth, CLERK, 7902,

12/ 17/ 1980, 800, 20 for the values named. Any element absent inside the row
element is taken as a NULL value.

XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)

In certain cases, you may not want to insert values into all columns. This may be true
when the group of values that you are getting is not the complete set and you need
triggers or default values to be used for the rest of the columns. The code following
shows how this can be done.

Assume that you are getting the values only for the employee number, name, and job
and that the salary, manager, department number, and hire date fields are filled in
automatically. First create a list of column names that you want the | NSERT statement
to work on and then pass it to the Or acl eXM_Sav e instance.

inport java.sql.*;
inport oracle.xm.sql.dm.O acl eXM_Save;
public class testlnsert
{
public static void main(String argv[])
throws SQLException
{
Connection conn = get Connection("hr","hr");
O acl eXM.Save sav = new Oracl eXM_Save(conn, "hr.enpl oyees");

String [] col Names = new String[3];

col Names[0] = "EMPLOYEE_ID";
col Names[1] = "LAST_NAME';
col Nanes[2] = "JOB ID";

sav. set Updat eCol unmLi st (col Names); // set the colums to update..!

/1 Assune that the user passes in this document as the first argunent!

XML SQL Utility (XSU) 7-27

Update Processing Using XSU (Java API)

sav.insertXM.(sav.getURL(argv[0]));
sav. cl ose();
}
/] Get the connection given the user name and password..!
private static Connection getConnection(String user, String passwd)
t hrows SQLException
{
DriverManager. regi sterDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =
Dri ver Manager. get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;
}
}

An | NSERT statement is generated

I NSERT | NTO hr. enpl oyees (enpl oyee_id, |ast_name, job_id) VALUES (?, ?, ?);

In the preceding example, if the inserted document contains values for the other
columns (HI RE_DATE, and so on), those are ignored. Also an insert operation is
performed for each ROWelement that is present in the input. These inserts are batched

by default.

Update Processing Using XSU (Java API)

Now that you know how to insert values into the table from XML documents, see how
you can update only certain values. In an XML document, to update the salary of an

employee and the department that they work in:

<ROWBET>
<ROW nun¥"1">
<EMPLOYEE_| D>7369</ EMPLOYEE | D>
<SALARY>1800</ SALARY>
<DEPARTMENT _| D>30</ DEPARTMVENT _I D>
</ RON
<RON
<EMPLOYEE_I D>2290</ EMPLOYEE | D>
<SALARY>2000</ SALARY>
<H RE_DATE>12/ 31/ 1992</ H RE_DATE>
<l-- additional rows ... -->
</ RONBET>

You can use the XSU to update the values. For updates, you must supply XSU with the
list of key column names. These form part of the WHERE clause in the UPDATE
statement. In the enpl oyees table shown earlier, employee number (enpl oyee_i d)

column forms the key. Use this for updates.

XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
This example updatest abl e, enp, using keyCol unms:

inport java.sql.*;
inport oracle.xn.sqgl.dm.Oacl eXM.Save;
public class testUpdate
{
public static void main(String argv[])
t hrows SQLException
{
Connection conn = get Connection("hr","hr");
Oracl eXM_Save sav = new Oracl eXM.Save(conn, "hr.enpl oyees");

7-28 Oracle XML Developer's Kit Programmer's Guide

Update Processing Using XSU (Java API)

String [] keyCol Names = new String[1];
keyCol Narres[0] = "EMPLOYEE I D';
sav. set KeyCol ummLi st (keyCol Nanes) ;

/] Assunme that the user passes in this document as the first argunment!
sav. updat eXM.(sav. get URL(argv[0]));
sav. cl ose();

}

/] Get the connection given the user name and password. .!

private static Connection getConnection(String user, String passwd)
throws SQLException

{
Driver Manager. regi sterDriver(new oracle.jdbc. acleDriver());
Connection conn =

Dri ver Manager . get Connection("j dbc: oracl e: oci : @, user, passwd) ;

return conn;

}

}

In this example, two UPDATE statements are generated. For the first ROMelement, you
generate an UPDATE statement to update the SALARY and HI RE_DATE fields as
follows:

UPDATE hr. enpl oyees SET sal ary = 2000 AND hire_date = 12/31/1992 WHERE enpl oyee_id = 2290;

For the second ROMNelement:

UPDATE hr. enpl oyees SET sal ary = 2000 AND hire_date = 12/31/1992 WHERE enpl oyee_id = 2290;

XSU Updating XML Example 10: Updating a Specified List of Columns (Java)

You may want to specify a list of columns to update. This speeds the processing since
the same UPDATE statement can be used for all the ROMelements. Also you can ignore
other tags in the XML document.

Note: When you specify a list of columns to update, if an element
corresponding to one of the update columns is absent, it will be
treated as NULL.

If you know that all the elements to be updated are the same for all the ROMelements
in the XML document, you can use the set Updat eCol utmNanes() function to set
the list of columns to update.

inport java.sql.*;
inport oracle.xm.sql.dm.O acl eXM_Save;
public class testUpdate
{
public static void main(String argv[])
throws SQLException
{
Connection conn = get Connection("hr","hr");
Oracl eXM.Save sav = new Oracl eXM_Save(conn, "hr.enpl oyees");

String [] keyCol Names = new String[1];
keyCol Names[0] = "EMPLOYEE_| D';
sav. set KeyCol ummLi st (keyCol Nanes) ;

/1 you create the list of colums to update..!

XML SQL Utility (XSU) 7-29

Delete Processing Using XSU (Java API)

}
11

/1 Note that if you do not supply this, then for each ROWelenent in the
/I XML document, you would generate a new update statenent to update all
/'l the tag values (other than the key col utms)present in that el enent.
String[] updateCol Names = new String[2];

updat eCol Narmes[0] = "SALARY";

updat eCol Nanes[1] = "JOB ID';

sav. set Updat eCol unmLi st (updat eCol Narmes); // set the colums to update..!

/'l Assume that the user passes in this docunent as the first argument!
sav. updat eXM.(sav. get URL(argv[0]));
sav. cl ose();

Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)

{

}

throws SQLException

DriverManager. regi sterDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =
Dri ver Manager. get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;

Delete Processing Using XSU (Java API)

When deleting from XML documents, you can set the list of key columns. These
columns are used in the WHERE clause of the DELETE statement. If the key column
names are not supplied, then a new DELETE statement is created for each ROMelement
of the XML document, where the list of columns in the WHERE clause of the DELETE
statement will match those in the ROW element.

XSU Deleting XML Example 11: Deleting Operations Per Row (Java)

Consider this delete example:

7-30

i mpor
i mpor
publ i
{

t java.sql.*;
t oracle.xnl.sqgl.dnl. QO acl eXM.Save;
c class testDelete

public static void main(String argv[])

{

}
1l

t hrows SQLException

Connection conn = get Connection("hr","hr");
Oracl eXM_Save sav = new Oracl eXM.Save(conn, "hr.enpl oyees");

Il Assume that the user passes in this docunent as the first argunent!
sav. del et eXM_(sav. get URL(argv[0]));
sav. cl ose();

Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)

{

}

throws SQLException

Driver Manager. regi sterDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =
Dri ver Manager. get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;

Oracle XML Developer's Kit Programmer's Guide

Advanced XSU Usage Techniques

Using the same XML document shown previously for the update example, you get
two DELETE statements:

DELETE FROM hr. enpl oyees WHERE enpl oyee_i d=7369 AND sal ary=1800 AND depart ment _i d=30;
DELETE FROM hr. enpl oyees WHERE enpl oyee_i d=2200 AND sal ary=2000 AND hire_dat e=12/ 31/ 1992;

The DELETE statements were formed based on the tag names present in each ROV
element in the XML document.

XSU Deleting XML Example 12: Deleting Specified Key Values (Java)

If instead, you want the DELETE statement to only use the key values as predicates,
you can use the set KeyCol unm function to set this.

inport java.sql.*;
inport oracle.xm.sql.dm.O acl eXM_Save;
public class testDelete

{
public static void main(String argv[])
throws SQLException
{

Connection conn = get Connection("hr","hr");
O acl eXM.Save sav = new Oracl eXM_.Save(conn, "hr.enpl oyees");

String [] keyCol Names = new String[1];
keyCol Names[0] = "EMPLOYEE_ID';
sav. set KeyCol ummLi st (keyCol Nanes) ;

/1 Assune that the user passes in this document as the first argunent!
sav. del et eXM.(sav. get URL(argv[0]));
sav. cl ose();

}

Il Get the connection given the user name and password. . !

private static Connection getConnection(String user, String passwd)
throws SQLException

{

Dri ver Manager . regi sterDriver(new oracle.jdbc. OacleDriver());
Connection conn =

Dri ver Manager . get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;

}
}

Here is the single generated DELETE statement:
DELETE FROM hr. enpl oyees WHERE enpl oyee_i d=?

Advanced XSU Usage Techniques

Here is more information about XSU.

XSU Exception Handling in Java

Exception handling is discussed next.
OracleXMLSQLException Class

XSU catches all exceptions that occur during processing and throws an
oracl e. xm . sqgl. O acl eXMLSQLExcept i on which is a runtime exception. The

XML SQL Utility (XSU) 7-31

Advanced XSU Usage Techniques

calling program thus does not have to catch this exception all the time, if the program
can still catch this exception and do the appropriate action. The exception class
provides functions to get the error message and also get the parent exception, if any.
For example, the program shown later, catches the run time exception and then gets
the parent exception.

OracleXMLNoRowsException Class

This exception is generated when the set Rai seNoRowsExcept i on is set in the
Or acl eXM_Quer y class during generation. This is a subclass of the

Oracl eXMLSQLExcept i on class and can be used as an indicator of the end of row
processing during generation.

inport java.sql.*;
inport oracle.xn.sql.query.Oracl eXM.Query;

public class testException

{
public static void main(String argv[])
throws SQLException
{
Connection conn = getConnection("hr","hr");
Il wong query this will generate an exception
Oracl eXMQuery gry = new Oracl eXM_Query(conn, "select * from enpl oyees
where sd = 322323");
gry. set Rai seException(true); // ask it to raise exceptions..!
try{
String str = qry.get XM.String();
}catch(oracl e. xn . sql. O acl eXM.SQLException e)
{
/] Get the original exception
Exception parent = e.getParentException();
if (parent instanceof java.sql.SQLException)
{
/1 performsome other stuff. Here you sinply print it out..
Systemout. println(" Caught SQL Exception:"+parent. get Message());
}
el se
Systemout. println(" Exception caught..!"+e.get Message());
}
}
/] Get the connection given the user name and password. .!
private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager. regi sterDriver(new oracle.jdbc. Oracl eDriver());
Connection conn =
Dri ver Manager. get Connection("j dbc: oracl e: oci: @, user, passwd) ;
return conn;
}
}

Hints for Using XML SQL Utility (XSU)
This section lists XSU hints.

7-32 Oracle XML Developer's Kit Programmer's Guide

Advanced XSU Usage Techniques

Schema Structure to use with XSU to Store XML
If you have the following XML in your cust oner . xmi file:

<RONBET>
<ROW nume" 1" >
<CUSTOMER>
<CUSTOVERI D>1044</ CUSTOVERI D>
<FI RSTNAMVE>Paul </ FI RSTNAVE>
<LASTNAME>Ast or i a</ LASTNAMVE>
<HOVEADDRESS>
<STREET>123 Cherry Lane</ STREET>
<CITY>SF</ CI TY>
<STATE>CA</ STATE>
<ZI P>94132</ ZI P>
</ HOVEADDRESS>
</ CUSTOMVER>
</ RON
</ ROABET>

what database schema structure can you use to store this XML with XSU?

Since your example is more than one level deep (that is, it has a nested structure), you
can use an object-relational schema. The XML preceding will canonically map to such
a schema. An appropriate database schema is:

CREATE TYPE address_type AS OBJECT
(

street VARCHAR2(40),

city VARCHAR2(20),

state VARCHAR2(10),

zi p VARCHAR2(10)

);

/

CREATE TYPE cust oner _type AS OBJECT
(

custoneri d NUMBER(10),
firstname VARCHAR2(20),

| ast nane VARCHAR2(20),

honeaddr ess address_type

);
/

CREATE TABLE custoner _tab (custoner customner_type);

In case you wanted to load cust oner . xm by means of XSU into a relational schema,
you can still do it by creating objects in views on top of your relational schema.

For example, you can have a relational table that contains all the following
information:

CREATE TABLE cust _tab

(custormerid NUMBER(10),
firstname VARCHAR2(20),
| astnane VARCHAR2(20),
street VARCHAR2(40),
city VARCHAR2(20),
state VARCHAR2(20),
zi p VARCHAR2(20)

);

Then, you create a customer view that contains a customer object on top of it, as in the
following example:

XML SQL Utility (XSU) 7-33

Advanced XSU Usage Techniques

CREATE VI EW cust oner _vi ew AS

SELECT cust omer _type(custonerid, firstname, |astnang,
address_type(street,city,state,zip)) custoner

FROM cust _t ab;

Finally, you can flatten your XML using XSLT and then insert it directly into your
relational schema. However, this is the least recommended option.

Storing XML Data Across Tables

Currently the XML SQL Utility (XSU) can only store data in a single table. It maps a
canonical representation of an XML document into any table or view. But there is a
way to store XML with XSU across tables. You can do this using XSLT to transform any
document into multiple documents and insert them separately. Another way is to
define views over multiple tables (using object views if needed) and then do the
insertions into the view. If the view is inherently non-updatable (because of complex
joins), then you can use | NSTEAD OF triggers over the views to do the inserts.

Using XSU to Load Data Stored in Attributes

You have to use XSLT to transform your XML document; that is, you must change the
attributes into elements. XSU does assume canonical mapping from XML to a database
schema. This takes away a bit from the flexibility, forcing you to sometimes resort to
XSLT, but at the same time, in the common case, it does not burden you with having to

specify a mapping.

XSU is Case-Sensitive

By default, XSU is case sensitive. You have two options: use the correct case or use the
ignoreCase feature.

XSU Cannot Generate the Database Schema from a DTD

Due to a number of shortcomings of the DTD, this functionality is not available. The
W3C XML Schema recommendation is finalized, but this functionality is not available
yet in XSU.

Thin Driver Connect String Example for XSU
An example of an JDBC thin driver connect string is:

j dbc: oracl e: t hi n: user/ passwor d@ost nane: por t nunber : DBSI D;
Furthermore, the database must have an active TCP/IP listener. A valid OCI connect
string is:

j dbc: oracl e: oci : user/ passwor d@wost nane

XSU and COMMIT After INSERT, DELETE, or UPDATE

Does XML SQL Utility commit after it is done inserting, deleting, or updating? What
happens if an error occurs?

By default the XSU executes a number of | NSERT, DELETE, or UPDATE statements at a
time. The number of statements batch together and executed at the same time can be
overridden using the set Bat chSi ze feature.

Also, by default XSU does no explicit commits. If AUTOCOWM T is on (default for the
JDBC connection), then after each batch of statement executions a commit occurs. You
can override this by turning AUTOCOWM T off and then specifying after how many

7-34 Oracle XML Developer's Kit Programmer's Guide

Advanced XSU Usage Techniques

statement executions a commit occurs, which can be done using the
set Conmi t Bat ch feature.

If an error occurs, XSU rolls back to either the state the target table was in before the
particular call to XSU, or the state right after the last commit made during the current
call to XSU.

Mapping Table Columns to XML Attributes Using XSU

From XSU release 2.1.0 you can map a particular column or a group of columns to an
XML attribute instead of an XML element. To achieve this, you have to create an alias
for the column name, and prepend the at sign (@) before the name of this alias. For
example:

* Oeate a file called select.sqgl with the follow ng content :
SELECT enpno " @MPNO', enane, job, hiredate
FROM enp
ORDER BY enpno

* Call the XML SQL Uility :
java Oracl eXM. get XML -user "scott/tiger" \
-conn "jdbc: oracl e: thin: @yhost: 1521: CRCL" \
-fileName "select.sqgl”

* As a result, the XML docunent will look like :
<?xm version = '1.0'?>
<RONBET>

<ROW num="1" EMPNO="7369">
<ENAME>SM TH</ ENAME>
<JOB>CLERK</ JOB>
<H REDATE>12/ 17/ 1980 0: 0: 0</ H REDATE>
</ ROW
<ROW nune"2" EMPNO="7499" >
<ENAMVE>ALLEN</ ENAME>
<JOB>SALESMANK/ JOB>
<HI REDATE>2/ 20/ 1981 0: 0: 0</ H REDATE>
</ RON
</ ROWBET>

Note: All attributes must appear before any non-attribute.

Since the XML document is created in a streamed manner, the following query:
SELECT enane, enpno " @MPNO',

does not generate the expected result. It is currently not possible to load XML data
stored in attributes. You will still need to use an XSLT transformation to change the

attributes into elements. XSU assumes canonical mapping from XML to a database
schema.

XML SQL Utility (XSU) 7-35

Advanced XSU Usage Techniques

7-36 Oracle XML Developer's Kit Programmer's Guide

38

XSQL Pages Publishing Framework

This chapter contains these topics:

« XSQL Pages Publishing Framework Overview

« Security Considerations for XSQL Pages

« What's New in XSQL Pages Release 10.1

« Overview of Basic XSQL Pages Features

« Setting Up and Using XSQL Pages in Your Environment
« Overview of All XSQL Pages Capabilities

« Description of XSQL Servlet Examples

« Advanced XSQL Pages Topics

« XSQL Servlet Limitations and Hints

XSQL Pages Publishing Framework Overview

The Oracle XSQL Pages publishing framework is an extensible platform for easily
publishing XML information in any format you desire. It greatly simplifies combining
the power of SQL, XML, and XSLT to publish dynamic Web content based on database
information.

Using the XSQL publishing framework, anyone familiar with SQL can create and use
declarative templates called "XSQL pages" to:

« Assemble dynamic XML "datagrams" based on parameterized SQL queries, and,

« Transform these "data pages" to produce a final result in any desired XML, HTML,
or text-based format using an associated XSLT transformation.

Assembling and transforming information for publishing requires no programming. In
fact, most of the common things you will want to do can be easily achieved in a
declarative way. However, since the XSQL publishing framework is extensible, if one
of the built-in features does not fit your needs, you can easily extend the framework
using Java to integrate custom information sources or to perform custom server-side
processing.

Using the XSQL Pages framework, the assembly of information to be published is
cleanly separated from presentation. This simple architectural detail has profound
productivity benefits. It enables you to:

« Present the same information in multiple ways, including tailoring the
presentation appropriately to the kind of client device making the request
(browser, cellular phone, PDA, and so on).

XSQL Pages Publishing Framework 8-1

XSQL Pages Publishing Framework Overview

« Reuse information easily by aggregating existing pages into new ones.

» Revise and enhance the presentation independently of the information content
being presented.

What Can | Do with Oracle XSQL Pages?

Using server-side templates — known as "XSQL pages” due to their. xsgl extension
— you can publish any information in any format to any device. The XSQL page
processor "engine" interprets, caches, and processes the contents of your XSQL page
templates. Figure 8-1 illustrates that the core XSQL page processor engine can be
"exercised" in four different ways:

« From the command line or in batch using the XSQL Command-Line Utility
« Over the Web, using the XSQL Servlet installed into your favorite Web server
« As part of JSP applications, using <j sp: i ncl ude> to include a template

« Programmatically, with the XSQLRequest object, the engine's Java API

Figure 8-1 Understanding the Architecture of the XSQL Pages Framework

Web Server

Servlet Engine

X5QLServlet lEee
X5QL Page Processor i
HhAL Parserf| ®hL 50QL F[HSLT Processor)|JDBC
' JavaVi
— XSQLCOI'I'ImEI'IdL'II'IE | {jgp:inc[ude}
xsql .jsp
— X5QLRequest | W

The same XSQL page templates can be used in any or all of these scenarios. Regardless
of the means by which a template is processed, the same basic steps occur to produce a
result. The XSQL page processor "engine":

1. Receives a request to process an XSQL template

2. Assembles an XML "datagram" using the result of one or more SQL queries
3. Returns this XML "datagram" to the requestor

4. Optionally transforms the "datagram" into any XML, HTML, or text format

During the transformation step in this process, you can use stylesheets that conform to
the W3C XSLT 1.0 standard to transform the assembled "datagram” into document
formats like:

« HTML for browser display

« Wireless Markup Language (WML) for wireless devices

« Scalable Vector Graphics (SVG) for data-driven charts, graphs, and diagrams
« XML Stylesheet Formatting Objects (XSL-FO), for rendering into Adobe PDF

8-2 Oracle XML Developer's Kit Programmer's Guide

Security Considerations for XSQL Pages

« Text documents, like e-mails, SQL scripts, Java programs, and so on
« Arbitrary XML-based document formats

XSQL Pages bring this functionality to you by automating the use of underlying
Oracle XML components to solve many common cases without resorting to custom
programming. However, when only custom programming will do — as we'll see in the
Advanced Topics section of this chapter — you can augment the framework's built-in
actions and serializers to assemble the XSQL "datagrams” from any custom source and
serialize the datagrams into any desired format, without having to write an entire
publishing framework from scratch.

Where Can | Obtain Oracle XSQL Pages?

XSQL Servlet is provided with Oracle and is also available for download from the
OTN site.

Where indicated, the examples and demos described in this chapter are also available
from OTN.

See Also: XSQL Servlet Release Notes on OTN at
http://ww. oracl e. com technol ogy/tech/ xml /

What Is Needed to Run XSQL Pages?

To run the Oracle XSQL Pages publishing framework from the command-line, all you
need is a Java VM (1.1.8, 1.2.2, or 1.3). The XSQL Pages framework depends on two
underlying components in the Oracle XML Developer's Kit:

« Oracle XML Parser and XSLT Processor (xnl par serv2. j ar)
« Oracle XML SQL Utility (xsul2. j ar)

Both of their Java archive files must be present in the CLASSPATH where the XSQL
pages framework is running. Since most XSQL pages will connect to a database to
guery information for publishing, the framework also depends on a JDBC driver. Any
JDBC driver is supported, but when connecting to Oracle, it's best to use the Oracle
JDBC driver (cl asses12. j ar) for maximum functionality and performance.

Lastly, the XSQL publishing engine expects to read its configuration file (by default,
named XSQLConf i g. xim) as a Java resource, so you must include the directory where
the configuration file resides in the CLASSPATH as well.

To use the XSQL Pages framework for Web publishing, you need a Web server that
supports Java Servlets.

See Also: For details on installing the XSQL Servlet on different
Web servers, configuring your environment, and running XSQL
Servlet, see the XSQL Servlet "Release Notes" on OTN at
http://ww. oracl e.com technol ogy/tech/ xm

Security Considerations for XSQL Pages

This section describes best practice security techniques for using the Oracle XSQL
Servlet.

Install Your XSQLConfig.xml File in a Safe Directory

The XSQ.Confi g. xm configuration file contains sensitive database
username/password information that must be kept secure on the server. This file

XSQL Pages Publishing Framework 8-3

What's New in XSQL Pages Release 10.1

should not reside in any directory that is mapped to a virtual path of your Web server,
nor in any of its subdirectories. The read permissions of the configuration file need
only be granted such that the UNIX account that owns the servlet engine can read it.

Failure to follow this recommendation could mean that a user of your site could
accidentally, or intentionally, browse the contents of your configuration file.

Disable Default Client Stylesheet Overrides

By default, the XSQL Page Processor allows the user to supply a stylesheet in the
request by passing a value for the special xm - st yl esheet parameter. If you want
the stylesheet that is referenced inside your server-side XSQL page to be the only
stylesheet that is used, then you can include the al | ow-cl i ent - st yl e="no"
attribute on the document element of your page. You also can globally change the
default setting to disallow client stylesheet overrides by changing a setting in your
XSQLConfi g. xm file. If you do this, then only pages that will allow client stylesheet
overrides are ones that include the al | ow- cl i ent - st yl e="yes" attribute on their
document element.

Be Alert for the Use of Substitution Parameters

With power comes responsibility. Any product such as XSQL Pages that supports the
use of lexical substitution variables in a SQL query can cause a developer problems.
Any time you deploy an XSQL page that allows important parts of a SQL statement
(or at the extreme, the entire SQL statement) to be substituted by a lexical parameter,
you must make sure that you have taken appropriate precautions against misuse.

For example, one of the demonstrations that comes with XSQL Pages is the "adhoc
query demo”. It illustrates how the entire SQL statement of an <xsql : quer y> action
handler can be supplied as a parameter. This is a powerful capability when in the right
users hands, but be aware that if you deploy a similar kind of page to your product
system, then the user can execute any query that the database security privileges for
the connection associated with the page allows. The demo is setup to use a connection
that maps to the SCOTT account, so a user of the "adhoc query demo" can query any
data that SCOTT would be allowed to query from the SQL*Plus command line.

Techniques that can be used to make sure your pages are not abused include:

« Making sure the database user account associated with the page has only the
privileges for reading the tables and views you want your users to see.

« Using true bind variables instead of lexical bind variables when substituting single
values in a SELECT statement. If you need to make syntactic parts of your SQL
statement parameterized, then lexical parameters are the only way to proceed.
Otherwise, true bind variables are recommended, so that any attempt to pass an
invalid value will generate an error instead of producing an unexpected result.

What's New in XSQL Pages Release 10.1

The following list highlights the key new features added in the release 10.1 to the
XSQL Pages publishing framework. You can now:

« Easily Work with Multi-Valued Parameters
« Bind Multi-Valued Parameters as Collections in SQL and PL/SQL
« Detect Action Handler Errors and React More Easily to Them

« Conditionally Execute Actions or Include Content

8-4 Oracle XML Developer's Kit Programmer's Guide

Overview of Basic XSQL Pages Features

= Use JDBC Datasources from Your Servlet Container

« Provide Custom XSQL Page Request Logging

« Provide Custom XSQL Page Error Handling

« Override the Name of the XSQL Configuration File

The XSQL servlet processor has the following new features in release 10.1:

« Support for Multi-Valued Parameters: This allows users to work with parameters
whose values are arrays of strings. The most common scenario where
multi-valued parameters occur is when a user submits an HTML form containing
multiple occurrences of input controls that share the same name.

« Conditionally Execute Actions or Include Content with xsql : i f - par am The
new <xsql : i f - par an® action enables you to conditionally include the elements
and actions that are nested inside it if some condition is true.

« New Commi t =" No" Flag on Actions That Performed an Implicit Commit: The
<xsql : del et e-request, xsgl:insert-request >,
xsql ;i nsert-request,and<xsql:insert-paraneter>action elements
each take a new optional commit attribute to control whether the action does an
implicit commit or not.

« Optionally Set an Error Parameter on Any Built-in Action: It is often convenient to
know whether an action encountered a non-fatal error during its execution.

« Use Your Servlet Container's DataSource Implementation: As an alternative to
defining your named connections in the XSQLConf i g. xm file, you may now
alternatively use the data sources available through your servlet container's
implementation of JDBC data sources.

« Provides Custom XSQLEr r or Handl er Implementation: A new interface is
introduced in release 1.1. or acl e. xm . xsql . XSQLEr r or Handl er allows
developers to achieve a programmatic control of how errors are reported to
customize the treatment of the errors.

« Provides Cust om XSQLLogger Implementation: Two new interfaces are
introduced in release 10.1: or acl e. xnl . xsql . XSQLLogger Fact ory and
oracl e. xm . xsqgl . XSQ@_Logger allow developers to log XSQL page requests.

= You can override the Default Name of the XSQ.Conf i g. xim file: You can easily
provide different configuration files for test and production environments. For
example, releases 10.1 introduces two ways to override the file name.

« By setting the Java System property xsql . confi g
« By defining a servlet initialization parameter xsql . confi g

« Support for Apache FOP 0.20.3: If you need to render PDF output from XSQL
pages, this release supports working with the 0.20.3 release candidate of Apache
FOP.

« Set Preserve Whitespace Config Option: It is now possible to control whether or
not the XSQL Page Processor uses the XML Parser to parse XSQL page templates
and XSLT stylesheets with whitespace-preserving mode.

Overview of Basic XSQL Pages Features

In this section, we take a brief look at the most basic features you can exploit in your
server-side XSQL page templates:

XSQL Pages Publishing Framework 8-5

Overview of Basic XSQL Pages Features

» Producing XML Datagrams from SQL Queries
« Transforming the XML Datagram into an Alternative XML Format

« Transforming the XML Datagram into HTML for Display

Producing XML Datagrams from SQL Queries

It is extremely easy to serve database information in XML format over the Web using
XSQL pages. For example, let us see how simple it is to serve a real-time XML
"datagram" from Oracle, of all available flights landing today at JFK airport. Using
Oracle JDeveloper, or your favorite text editor, just build an XSQL page template like
the one following, and save it in a file named, Avai | abl eFl i ght sToday. xsql :

<?xnm version="1.0"?>
<xsqgl : query connecti on="denmo" bind-parans="City" xm ns: xsql ="urn:oracl e-xsql ">
SELECT Carrier, FlightNunber, Oigin, TO CHAR(ExpectedTine,' HR24:M"') AS Due
FROM Fl i ght Schedul e
WHERE TRUNC(Expect edTi ne) = TRUNC(SYSDATE) AND Arrived = 'N
AND Destination = ? [/* The ? is a bind variable being bound */
ORDER BY Expect edTi ne /* to the value of the Gty parameter */
</ xsql : query>

With XSQL Servlet properly installed on your Web server, you just need to copy the
Avai | abl eFl i ght sToday. xsql file preceding to a directory under your Web
server's virtual directory hierarchy. Then you can access the template through a Web
browser by requesting the URL:

htt p: // your conpany. conf Avai | abl eFl i ght sToday. xsql ?G t y=JFK
The results of the query in your XSQL page are materialized automatically as XML
and returned to the requester. This XML-based "datagram" is typically requested by

another server program for processing, but if you are using a browser such as Internet
Explorer 5.0, you can directly view the XML result as shown in Figure 8-2.

8-6 Oracle XML Developer's Kit Programmer's Guide

Overview of Basic XSQL Pages Features

Figure 8-2 XML Result From XSQL Page (AvailableFlightsToday.xsq) Query

a http: #/localhost/examples/AvailableFlights T oday. xsql ?City=JFE, - Microsoit Internet .__ [lj[=] E3

J-‘*-E'dFESS I@ http: / Alocalhost/examples /Ay ailableFlights T oday. meql ?City=J FE vI tE‘J‘}GU |J Eile *

=?xml version="1.0" 7=
- <ROWESET =
- =ROW num="1"=
<CARRIER=VS</CARRIER >
<FLIGHTMNUMBER =344 < /FLIGHTMNUMBER =
<ORIGIMN=London=</ORIGIMN:=
<DUE=16:10</DUE=
< /ROW =
- <ROW num="2"=
<CARRIER=LH</CARRIER =
<FLIGHTMNUMBER =466 < /FLIGHTMNUMBER. =
<ORIGIMN=Frankfurt</ORIGIMN=>
<DIUE>»21:33</DILE=
</ROW =
- =ROW num="3"=>
<CARRIER=UA</CARRIER =
<FLIGHTMNIUMBER =32 </ /FLIGHTMNUMBER =
<(ORIGIN=San Francisco=/0ORIGIMN=
<DIUE=>23:154</DIUE=>
< RO =
< /ROWESET =

|@ Done I_I_ 26 Local intranet

a

Let us take a closer look at the XSQL page template we used. Notice the XSQL page
begins with:

<?xm version="1.0"?>

This is because the XSQL template is itself an XML file (with an *. xsql extension)
that contains any mix of static XML content and XSQL "action elements". The

Avai | abl eFl i ght sToday. xsgl example preceding contains no static XML
elements, and just a single XSQL action element <xsql : quer y>. It represents the
simplest useful XSQL page we can build, one that just contains a single query.

Notice that the first (and in this case, only!) element in the page <xsql : quer y>
includes a special attribute that declares the xsgl namespace prefix as a "synonym"
for the Oracle XSQL namespace identifier ur n: or acl e- xsql .

<xsql : query connection="demo" bind-paranms="City" xn ns:xsql ="urn: oracl e-xsql ">

This first, outermost element — known at the "document element” — also contains a
connect i on attribute whose value "demo" is the name of one of the pre-defined
connections in the XSQL configuration file (by default, named XSQLConf i g. xm):

<xsql : query connection="demo" bind-paranms="City" xn ns:xsql ="urn: oracl e-xsql ">

XSQL Pages Publishing Framework 8-7

Overview of Basic XSQL Pages Features

The details concerning the username, password, database, and JDBC driver that will
be used for the "demo” connection are centralized into the configuration file. Setting
up these connection definitions is discussed in a later section of this chapter.

Lastly, the <xsql : quer y> element contains a bi nd- par ans attribute that associates
the values of parameters in the request by name to bind parameters represented by
question marks in the SQL statement contained inside the <xsql : quer y> tag.

Note that if we wanted to include more than one query on the page, we need to invent
an XML element of our own creation to "wrap" the other elements like this:

<?xm version="1.0"?>
<page connection="dem" xm ns:xsql ="urn: oracl e-xsql ">
<xsql : query bind-paranms="City">
SELECT Carrier, FlightNunber, Oigin, TO CHAR(ExpectedTine,' HR24:M"') AS Due
FROM Fl i ght Schedul e
WHERE TRUNC(Expect edTi ne) = TRUNC(SYSDATE) AND Arrived = 'N
AND Destination = ? [/* The ? is a bind variable being bound */
ORDER BY ExpectedTime /* to the value of the City paraneter */
</xsql : query>
<I-- Oher xsql:query actions can go here inside <page> and </page> -->
</ page>

Notice in this example that the connect i on attribute and the xsql namespace
declaration always go on the document element, while the bi nd- par ans is specific to
the <xsqgl : quer y> action.

Transforming XML Datagrams into an Alternative XML Format

If the canonical <ROABET> and <ROW* XML output from Figure 8-2 is not the XML
format you need, then you can associate an XSLT stylesheet to your XSQL page
template to transform this XML "datagram" in the server before returning the
information in any alternative format desired.

When exchanging data with another program, typically you will agree in advance
with the other party on a specific Document Type Definition (DTD) that describes the
XML format you will be exchanging. A DTD is in effect, a "schema" definition. It
formally defines what XML elements and attributes that a document of that type can
have.

Let us assume you are given thef I i ght - I i st. dt d definition and are told to
produce your list of arriving flights in a format compliant with that DTD. You can use
a visual tool such as Extensibility's "XML Authority" to browse the structure of the
flight-list DTD as shown in Figure 8-3.

8-8 Oracle XML Developer's Kit Programmer's Guide

Overview of Basic XSQL Pages Features

Figure 8-3 Exploring the "industry standard" flight-list.dtd using Extensibility's XML Authority

¥ Flaght-list.dtd - XML Authority
e & e (2] Crverview [=] Atiringss [Advanosd [Hobes [
i ok e
1 il 3 - . : B
e flight-list flight+ arrives
[EH Tlighd)
=1 dirare Ill
B meminigr =
T8 orrives 3 ElementType # Test # Elem | Content Mods| AttrEtes
i E.gim-l 5]] B Mgkl)
& Mgkt | ¥ [arhes) airline, numbes
arves = |
- —

This shows that the standard XML formats for Flight Lists are:
« <flight-1ist>element, containing one or more...

« <flight>elements, having attributes airline and number, each of which contains
an...

« <arrives>element.

By associating the following XSLT stylesheet, f | i ght -1 i st . xsl , with the XSQL
page, you can change the default <ROASET> and <ROW, format of your arriving flights
into the "industry standard" DTD format.

<I-- XSLT Stylesheet to transform ROANSET/ RONresults into flight-1ist format
-->
<flight-list xmns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
xsl:version="1.0">
<xsl:for-each sel ect =" RONSET/ RON >
<flight airline="{CARRI ER}" nunber="{FLI GHTNUMBER}" >
<arrives><xsl:val ue-of select="DUE"/></arrives>

</flight>
</ xsl:for-each>
</flight-list>

The stylesheet is a template that includes the literal elements that you want produced
in the resulting document, such as, <f I i ght -1 i st >, <fli ght > and <arri ves>,
interspersed with special XSLT "actions" that allow you to do the following:

« Loop over matching elements in the source document using <xsl : f or - each>

« Plug in the values of source document elements where necessary using
<xsl : val ue- of >

« Plug in the values of source document elements into attribute values using
{'son®et hi ng}

Note two things have been added to the top-level <f | i ght - | i st > element in the
stylesheet:

« xmns:xsl="http://ww.w3.org/ 1999/ XSL/ Tr ansf or nf

This defines the XML Namespace (xmlns) named "xsl" and identifies the uniform
resource locator string that uniquely identifies the XSLT specification. Although it

XSQL Pages Publishing Framework 8-9

Overview of Basic XSQL Pages Features

looks just like a URL, think of the string

http://ww. w3. or g/ 1999/ XSL/ Tr ansf or m as the "global primary key" for
the set of elements that are defined in the XSLT 1.0 specification. Once the
namespace is defined, we can then make use of the <xsl : XXX> action elements in
our stylesheet to loop and plug values in where necessary.

« Xsl:version="1.0"

This attribute identifies the document as an XSLT 1.0 stylesheet. A version
attribute is required on all XSLT Stylesheets for them to be valid and recognized by
an XSLT Processor.

Associate the stylesheet to your XSQL Page by adding an <?xnl - st yl esheet ?>
processing instruction to the top of the page as follows:

<?xm version="1.0"?>
<?xm - styl esheet type="text/xsl" href="flight-list.xsl"?>
<xsql : query connection="deno" bind-parans="City" xnl ns:xsql ="urn:oracl e-xsqgl ">
SELECT Carrier, FlightNunber, Oigin, TO CHAR(ExpectedTine,' Hi24:M"') AS Due
FROM Fl i ght Schedul e
WHERE TRUNC(Expect edTi ne) = TRUNC(SYSDATE) AND Arrived = 'N
AND Destination = ? /* The ? is a bind variabl e being bound */
ORDER BY ExpectedTime /* to the value of the City paraneter */
</ xsql : query>

This is the W3C Standard mechanism of associating stylesheets with XML documents
(http://ww. w3. org/ TR/ xnl - st yl esheet). Specifying an associated XSLT
stylesheet to the XSQL page causes the requesting program or browser to see the XML
in the "industry-standard" format as specified by f I i ght -1 i st. dt d you were given
as shown in Figure 8-4.

Figure 8-4 XSQL Page Results in "industry standard" XML Format

3 http: #Zlocalhozt/examples/AvailableFlightsToday_xzql?City=JF___ [E[=]

J.-’-'-.gldress I@ hitp: #localhostexamplesAdoeailableFlight TI & Go |J File >

=7xml version="1.0" encoding="UTF-38" ?=
- =flight-list=
- =flight airline="¥8" number="344"=
<arrives=16:10</arrives=
= /flight=
- =flight airline="LH" number="466"=
<arrives=21:33</amrives:>
=/flight=
- =flight airline="UA" number="32"=
<arrives=23:54</arrives=
= /flight=
= /flight-list= —
- =

=== =

Transforming XML Datagrams into HTML for Display

To return the same XML information in HTML instead of an alternative XML format,
simply use a different XSLT stylesheet. Rather than producing elements like

8-10 Oracle XML Developer's Kit Programmer's Guide

Overview of Basic XSQL Pages Features

<flight-1ist>and<flight>,yourstylesheet produces HTML elements like

<t abl e>, <t r >, and <t d> instead. The result of the dynamically queried information
then looks like the HTML page shown in Figure 8-5. Instead of returning "raw" XML
information, the XSQL Page leverages server-side XSLT transformation to format the
information as HTML for delivery to the browser.

Figure 8-5 Using an Associated XSLT Stylesheet to Render HTML

“J http: flocalhastfezamplasAv ailableTightsT oday. szl ?City—ITE kxml-styleche. . = ER

Modreze @7 Fighes L odoy. sx3 U ke=dRR L] sty eshoo=lcht dieglag H$|ﬂ Fadcle [ER

#] Zonz

=

& VS 344 16:10
LH 466 21:33
UA 32 23:54

23 Lozal inlrai-et

|

Similar to the syntax of the f | i ght -1 i st. xsl stylesheet, the
flight-display.xsl stylesheet looks like a template HTML page, with
<xsl:for-each>, <xsl:val ue-of >and attribute value templates like { DUE} to
plug in the dynamic values from the underlying <ROASET> and <ROWs structured
XML query results.

<I-- XSLT Stylesheet to transform ROMET/ RONresults into HTM. -->
<htm xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Transf orni' xsl : version="1.0">
<head><link rel ="styl esheet" type="text/css" href="flights.css" /></head>
<body>
<cent er><tabl e border="0">
<tr><th>Flight</th><th>Arrives</th></tr>
<xsl:for-each sel ect="ROASET/ RON >

<tr>
<t d>
<tabl e border="0" cellspaci ng="0" cell paddi ng="4">
<tr>
<td><ing align="absm ddl e" src="inmages/{CARR ER}. gi f"/></td>
<td width="180">
<xsl :val ue- of sel ect="CARRI ER'/>
<xsl:text> </xsl:text>
<xsl :val ue-of sel ect =" FLI GHTNUMBER'/ >
</td>
</tr>
</tabl e>
</td>
<td align="center"><xsl:val ue-of select="DUE"/></td>
</tr>

</ xsl:for-each>

XSQL Pages Publishing Framework 8-11

Setting Up and Using XSQL Pages in Your Environment

</t abl e></center>
</ body>
</htnl >

Note: The stylesheet looks exactly like HTML, with one tiny
difference. It is well-formed HTML. This means that each opening
tag is properly closed (for example, <t d>...</ t d>) and that empty
tags use the XML empty element syntax <br / > instead of just

.

You can see that by combining the power of:

« Parameterized SQL statements to select any information you need from our Oracle
database,

« Industry-standard XML as a portable, interim data exchange format

« XSLT to transform XML-based "data pages" into any XML- or HTML-based format
you need

you can achieve very interesting and useful results quickly. You will see in later
sections that what you have seen earlier is just scratching the surface of what you can
do using XSQL pages.

See Also: For a detailed introduction to XSLT and a thorough
tutorial on how to apply XSLT to many different Oracle database
scenarios, see the book Building Oracle XML Applications, by Steve
Muench, from O'Reilly and Associates.

Setting Up and Using XSQL Pages in Your Environment

You can develop and use XSQL pages in a variety of ways. We start by describing the
easiest way to get started, using Oracle JDeveloper, then cover the details you'll need
to understand to use XSQL pages in your production environment.

Using XSQL Pages with Oracle JDeveloper

The easiest way to work with XSQL pages during development is to use Oracle
JDeveloper. Versions 3.1 and higher of the JDeveloper IDE support color-coded syntax
highlighting, XML syntax checking, and easy testing of your XSQL pages. In addition,
the JDeveloper 3.2 release supports debugging XSQL pages and adds new wizards to
help create XSQL actions.

To create an XSQL page in a JDeveloper project, you can:

« Click the plus icon at the top of the navigator to add a new or existing XSQL page
to your project

« Select File | New... and select "XSQL" from the "Web Obijects" tab of the gallery

To get assistance adding XSQL action elements like <xsqgl : quer y> to your XSQL
page, place the cursor where you want the new element to go and either:

« Select XSQL Element... from the right mouse menu, or
« Select Wizards | XSQL Element... from the IDE menu.

The XSQL Element wizard takes you through the steps of selecting which XSQL action
you want to use, and which attributes you need to provide.

8-12 Oracle XML Developer's Kit Programmer's Guide

Setting Up and Using XSQL Pages in Your Environment

To syntax-check an XSQL page template, you can select Check XML Syntax... at any
time from the right-mouse menu in the navigator after selecting the name of the XSQL
page you'd like to check. If there are any XML syntax errors, they will appear in the
message view and your cursor will be brought to the first one.

To test an XSQL page, simply select the page in the navigator and choose Run from the
right-mouse menu. JDeveloper automatically starts up a local Web-to-go Web server,
properly configured to run XSQL pages, and tests your page by launching your
default browser with the appropriate URL to request the page. Once you've run the
XSQL page, you can continue to make modifications to it in the IDE — as well as to
any XSLT stylesheets with which it might be associated — and after saving the files in
the IDE you can immediately refresh the browser to observe the effect of the changes.

Using JDeveloper, the "XSQL Runtime" library must be added to your project's library
list so that the CLASSPATH is properly setup. The IDE adds this entry automatically
when you go through the New Object gallery to create a new XSQL page, but you can
also add it manually to the project by selecting Project | Project Properties... and clicking
on the "Libraries" tab.

Setting the CLASSPATH Correctly in Your Production Environment

Outside of the JDeveloper environment, you need to make sure that the XSQL page
processor engine is properly configured to run. Oracle comes with the XSQL Servlet
pre-installed to the Oracle HTTP Server that accompanies the database, but using
XSQL in any other environment, you'll need to ensure that the Java CLASSPATH is
setup correctly.

There are three "entry points" to the XSQL page processor:

« oracle.xm.xsql.XSQ.Servl et, the servlet interface

« oracle.xm.xsql.XSQLCommandLi ne, the command-line interface
« oracle.xm.xsqgl.XSQLRequest , the programmatic interface

Since all three of these interfaces, as well as the core XSQL engine itself, are written in
Java, they are very portable and very simple to setup. The only setup requirements are
to make sure the appropriate JAR files are in the CLASSPATH of the JavaVM that will
be running processing the XSQL Pages. The JAR files include:

« oracl exsqgl.jar,the XSQL page processor

« xm parserv2.j ar, the Oracle XML Parser for Java v2
« Xsul2.j ar,the Oracle XML SQL utility

« classesl?2.jar,the Oracle JDBC driver

In addition, the directory where XSQL Page Processor's configuration file (by default,
named XSQLConf i g. xm) resides must also be listed as a directory in the
CLASSPATH.

Putting all this together, if you have installed the XSQL distribution in C: \ xsql , then
your CLASSPATH is:

C:\xsql\lib\classes12.classes12.jar; C\xsql\lib\xm parserv2.jar;
C\xsql\lib\xsul2.jar;C\xsqgl\lib\oracl exsql.jar;
directory_where_XSQ.Config. xm _resi des

On UNIX, if you extracted the XSQL distribution into your / web directory, the
CLASSPATH is:

/web/ xsql /1iblclassesl2.jarclassesl2.jar:/web/xsql/lib/xm parserv2.jar:

XSQL Pages Publishing Framework 8-13

Setting Up and Using XSQL Pages in Your Environment

/'web/ xsql /1i b/ xsul2.jar:/web/xsql/lib/oraclexsql.jar:
directory_where_XSQ.Confi g.xm _resides

To use the XSQL Servlet, one additional setup step is required. You must associate the
. xsql file extension with the XSQL Servlet Java class

oracl e. xm . xsql . XSQLSer vl et . How you set the CLASSPATH of the Web
server's servlet environment and how you associate a Servlet with a file extension are
done differently for each Web server. The XSQL Servlet Release Notes contain detailed
setup information for specific Web servers you might want to use with XSQL Pages.

Setting Up the Connection Definitions

XSQL pages refer to database connections by using a short name for the connection
defined in the XSQL configuration file. Connection names are defined in the
<connect i ondef s> section of the XSQL configuration file (by default, named
XSQLConfi g. xm) like this:

<connecti ondef s>
<connection nane="denp">
<user name>scot t </ user nane>
<passwor d>ti ger </ passwor d>
<dbur| >j dbc: oracl e: t hin: @ocal host : 1521: t est DB</ dbur | >
<driver>oracle.jdbc.driver.Oracl eDriver</driver>
<aut ocommi t >f al se</ aut ocommi t >
</ connecti on>
<connection name="lite">
<user name>syst enx/ user nane>
<passwor d>nmanager </ passwor d>
<dbur | >j dbc: Pol i te: PAite</dburl>
<driver>oracle.lite.poljdbc. POLIJDBCDri ver</driver>
</ connecti on>
</ connect i ondef s>

For each connection, you can specify five pieces of information:

1. <usernane>

2. <password>

3. <dburl >, the JDBC connection string

4, <dri ver >, the fully-qualified class name of the JDBC driver to use

5. <aut oconmi t >, optionally forces the AUTOCOW T to TRUE or FALSE

If the <aut oconmi t > element is omitted, then the XSQL page processor will use the
JDBC driver's default setting of the AUTOCOWM T flag.

Any number of <connect i on> elements can be placed in this file to define the
connections you need. An individual XSQL page refers to the connection it wants to
use by putting a connect i on="xxx" attribute on the top-level element in the page
(also called the "document element").

Note: For security reasons, when installing XSQL Servlet on your
production Web server, make sure the XSQLConf i g. xm file does
not reside in a directory that is part of the Web server's virtual
directory hierarchy. Failure to take this precaution risks exposing
your configuration information over the Web.

8-14 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

Using the XSQL Command-Line Utility

Often the content of a dynamic page will be based on data that is not frequently
changing in your environment. To optimize performance of your Web publishing, you
can use operating system facilities to schedule offline processing of your XSQL pages,
leaving the processed results to be served statically by your Web server.

You can process any XSQL page from the command line using the XSQL
command-line utility. The syntax is:

$ java oracl e. xnl . xsqgl . XSQLCommandLi ne xsql page [outfile] [paranmi=val uel ...]

Ifan out fi | e is specified, the result of processing xsql page is written to it,
otherwise the result goes to standard out. Any number of parameters can be passed to
the XSQL page processor and are available for reference by the XSQL page being
processed as part of the request. However, the following parameter names are
recognized by the command-line utility and have a pre-defined behavior:

« xm -styl esheet =styl esheet URL

Provides the relative or absolute URL for a stylesheet to use for the request. Also
can be set to the string none to suppress XSLT stylesheet processing for debugging
purposes.

« posted-xm =XM_Docunent URL

Provides the relative or absolute URL of an XML resource to treat as if it were
posted as part of the request.

« useragent=User Agent String

Used to simulate a particular HTTP User-Agent string from the command line so
that an appropriate stylesheet for that User-Agent type will be selected as part of
command-line processing of the page.

The / xdk/ j aval/ xsql / bi n directory contains a platform-specific command script to
automate invoking the XSQL command-line utility. This script sets up the Java
runtime to run or acl e. xm . xsgl . XSQLConmrandLi ne class.

Overview of All XSQL Pages Capabilities

So far we've only seen a single XSQL action element, the <xsql : quer y> action. This
is by far the most popular action, but it is not the only one that comes built-in to the
XSQL Pages framework. We explore the full set of functionality that you can exploit in
your XSQL pages in the following sections.

Using All of the Core Built-in Actions
This section provides a list of the core built-in actions, including a brief description of

what each action does, and a listing of all required and optional attributes that each
supports.

The <xsql:query> Action

The <xsql : quer y> action element executes a SQL select statement and includes a
canonical XML representation of the query's result set in the data page. This action
requires a database connection to be provided by supplying a

connect i on="connname" attribute on the document element of the XSQL page in
which it appears.

The syntax for the action is:

XSQL Pages Publishing Framework 8-15

Overview of All XSQL Pages Capabilities

<xsql : query>
SELECT Stat enent
</ xsql : query>

Any legal SQL select statement is allowed. If the select statement produces no rows, a
fallback query can be provided by including a nested <xsql:no-rows-query> element
like this:

<xsql : query>
SELECT St at ement
<xsql : no-rows- quer y>
SELECT Statement to use if outer query returns no rows
</ xsql : no-rows- query>
</ xsql : query>

An<xsql : no-rows- quer y> element can itself contain nested

<xsqgl : no-r ows- quer y> elements to any level of nesting. The options available on
the <xsqgl : no- r ows- quer y> are identical to those available on the <xsql : query>
action element.

By default, the XML produced by a query will reflect the column structure of its
resultset, with element names matching the names of the columns. Columns in the
result with nested structure like:

« Object Types
= Collection Types
» CURSOR Expressions

produce nested elements that reflect this structure. The result of a typical query
containing different types of columns and returning one row might look like this:

<RONBET>
<ROWNid="1">
<VARCHARCOL>Val ue</ VARCHARCOL >
<NUMBERCOL>12345</ NUMBERCOL>
<DATECQOL>12/ 10/ 2001 10: 13: 22</ DATECOL>
<OBJECTCOL>
<ATTRL1>Val ue</ ATTR1>
<ATTR2>Val ue</ ATTR2>
</ OBJECTCOL>
<COLLECTI ONCOL>
<COLLECTI ONCOL_| TEM>
<ATTR1>Val ue</ ATTRL>
<ATTR2>Val ue</ ATTR2>
</ COLLECTI ONCOL_| TEM>
<COLLECTI ONCOL_| TEM>
<ATTR1>Val ue</ ATTRL>
<ATTR2>Val ue</ ATTR2>
</ COLLECTI ONCOL_| TEM>
</ COLLECTI ONCOL>
<CURSORCOL>
<CURSORCOL_ROW®
<COL1>Val uel</ COL1>
<COL2>Val ue2</ COL2>
</ CURSORCOR_ROW
</ CURSORCOL>
</ RON
</ RONBET>

8-16 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

A <RON> element will repeat for each row in the result set. Your query can use
standard SQL column aliasing to rename the columns in the result, and in doing so
effectively rename the XML elements that are produced as well. Such column aliasing
is required for columns whose names otherwise are a illegal names for an XML
element.

For example, an <xsqgl : quer y> action like this:
<xsql : query>SELECT TO CHAR(hire_date,' DD-MON') FROM enpl oyees</ xsql : query>
produces an error because the default column name for the calculated expression will

be an illegal XML element name. You can fix the problem with column aliasing like
this:

<xsql : query>
SELECT TO CHAR(hire_date,' DD-MON') as hiredate FROM enpl oyees
</ xsql : query>

The optional attributes listed in Table 8-1 can be supplied to control various aspects of
the data retrieved and the XML produced by the <xsql : quer y> action.

Table 8-1 Attributes for <xsql:query>

Attribute Name Description

bi nd-parans = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

date-format = "string" Date format mask to use for formatted date column/attribute
values in XML being queried. Valid values are those
documented for the j ava. t ext . Si npl eDat eFor nat class.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

error-statenment = If set to no, suppresses the inclusion of the offending SQL
"bool ean" statement in any <xsql - er r or > element generated. Valid
values are yes and no. The default value isyes.

fetch-size = "integer” Number of records to fetch in each round-trip to the database.
If not set, the default value is used as specified by the
/ XSQ.Confi g/ processor/defaul t-fetch-size
configuration setting in XSQLConf i g. xm

id-attribute = "string" XML attribute name to use instead of the default numattribute
for uniquely identifying each row in the result set. If the value
of this attribute is the empty string, the row id attribute is

suppressed.
id-attribute-colum = Case-sensitive name of the column in the result set whose
"string" value must be used in each row as the value of the row id

attribute. The default is to use the row count as the value of the
row id attribute.

i ncl ude- schema = If setto yes, includes an inline XML schema that describes the
"bool ean" structure of the result set. Valid values are yes and no. The
default value is no.

max-rows = "integer" Maximum number of rows to fetch, after optionally skipping
the number of rows indicated by the ski p- r ows attribute. If
not specified, default is to fetch all rows.

XSQL Pages Publishing Framework 8-17

Overview of All XSQL Pages Capabilities

Table 8-1 (Cont.) Attributes for <xsql:query>

Attribute Name Description

nul | -indi cat or Indicates whether to signal that a column's value is NULL by

"bool ean" including the NULL="Y" attribute on the element for the
column. By default, columns with NULL values are omitted
from the output. Valid values are yes and no. The default
value is no.

row-el ement = "string" XML element name to use instead of the default <RON
element name for the entire r owset of query results. Set to the
empty string to suppress generating a containing <RO\¢
element for each row in the result set.

XML element name to use instead of the default <RONBET>

rowset - el enent

"string" element name for the entire r owset of query results. Set to the
empty string to suppress generating a containing <RONSET>
element.

skip-rows = "integer" Number of rows to skip before fetching rows from the result

set. Can be combined with nax- r ows for stateless paging
through query results.

tag-case = "string" Valid values are | ower and upper . If not specified, the default
is to use the case of column names as specified in the query as
corresponding XML element names.

The <xsgl:dml> Action

You can use the <xsql:dml> action to perform any DML or DDL operation, as well as
any PL/SQL block. This action requires a database connection to be provided by
supplying a connection="connname" attribute on the document element of the XSQL
page in which it appears.

The syntax for the action is:

<xsql :dm >
DM. Statenent or DDL Statement or PL/SQ. Bl ock
</xsql : dm >
Table 8-2 lists the optional attributes that you can use on the <xsql : dmi > action.

Table 8-2 Attributes for <xsql:dml>

Attribute Name Description

commt = "bool ean" If set to yes, calls commit on the current connection after a
successful execution of the DML statement. Valid values are
yes and no. The default value is no.

bi nd-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param= "string" Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

error-statement = If set to no, suppresses the inclusion of the offending SQL
"bool ean" statement in any <xsql - er r or > element generated. Valid
values are yes and no. The default value is yes.

8-18 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

The <xsql:ref-cursor-function> Action

The <xsql:ref-cursor-function> action enables you to include the XML results
produced by a query whose result set is determined by executing a PL/SQL stored
function. This action requires a database connection to be provided by supplying a
connection="connname" attribute on the document element of the XSQL page in
which it appears.

By exploiting PL/SQL's dynamic SQL capabilities, the query can be dynamically and
conditionally (or conditionally) constructed by the function before a cursor handle to
its result set is returned to the XSQL page processor. As its name implies, the return
value of the function being invoked must be of type REF CURSOR.

The syntax of the action is:

<xsql : ref-cursor-function>
[SCHEMA.] [PACKAGE.] FUNCTI ON_NAME(ar gs) ;
</xsql :ref-cursor-function>

With the exception of the fetch-size attribute, the optional attributes available for the
<xsql:ref-cursor-function> action are exactly the same as for the <xsql:query> action
that are listed Table 8-1.

For example, consider the PL/SQL package:

CREATE OR REPLACE PACKAGE DynCursor IS
TYPE ref_cursor 1S REF CURSCR;
FUNCTI ON Dynami cQuery(id NUMBER) RETURN ref_cursor;
END;
CREATE OR REPLACE PACKAGE BODY DynCursor IS
FUNCTI ON Dynami cQuery(id NUMBER) RETURN ref_cursor IS
the _cursor ref_cursor;

BEG N
-- Conditionally return a dynamc query as a REF CURSOR
IFid =1 THEN

OPEN the_cursor -- An enpl oyees Query
FOR ' SELECT enpl oyee_id, email FROM enpl oyees';
ELSE
OPEN the_cursor -- A departments Query
FOR ' SELECT departnent _nane, departnent_id FROM departments’;
END | F;
RETURN t he_cursor;
END;
END;

An <xsql : ref-cursor-functi on> can include the dynamic results of the REF
CURSOR returned by this function by doing:

<xsql : ref-cursor-function>

DynCur sor . Dynani cQuery(1);
</ xsql :ref-cursor-function>

The <xsql:include-owa> Action

The <xsql:include-owa> action enables you to include XML content that has been
generated by a database stored procedure. This action requires a database connection
to be provided by supplying a connection="connname" attribute on the document
element of the XSQL page in which it appears.

The stored procedure uses the standard Oracle Web Agent (OWA) packages (HTP and
HTF) to "print" the XML tags into the server-side page buffer, then the XSQL page
processor fetches, parses, and includes the dynamically-produced XML content in the

XSQL Pages Publishing Framework 8-19

Overview of All XSQL Pages Capabilities

data page. The stored procedure must generate a well-formed XML page or an
appropriate error is displayed.

The syntax for the action is:

<xsql : i ncl ude- owa>

PL/ SQ Bl ock invoking a procedure that uses the HTP and HTF (or HTF) packages
</ xsql : i ncl ude- owa>
Table 8-3 lists the optional attributes supported by this action.

Table 8-3 Attributes for <xsql:include-owa>

Attribute Name Description

bi nd-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param= "string" Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

error-statenment = If set to no, suppresses the inclusion of the offending SQL
"bool ean" statement in any <xsql - er r or > element generated. Valid
values are yes and no. The default value is yes.

Using Bind Variables

To parameterize the results of any of the preceding actions, you can use SQL bind
variables. This enables your XSQL page template to produce different results based on
the value of parameters passed in the request. To use a bind variable, simply include a
question mark anywhere in the statement where bind variables are allowed by SQL.
For example, your <xsql : quer y> action might contain the select statement:

SELECT s.ticker as "Synbol", s.last_traded_price as "Price"
FROM | at est _stocks s, custoner_portfolio p

WHERE p. customer _id = ?
AND s.ticker = p.ticker

Using a question mark to create a bind-variable for the customer id. Whenever the
SQL statement is executed in the page, parameter values are bound to the bind
variable by specifying the bind-params attribute on the action element. Using the
example preceding, we can create an XSQL page that binds the indicated bind
variables to the value of the cust i d parameter in the page request like this:

<lI-- CustomerPortfolio.xsql -->
<portfolio connnection="prod" xm ns:xsql ="urn:oracl e-xsql">
<xsql : query bi nd-paranms="custid">
SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
FROM | at est _stocks s, custoner_portfolio p
WHERE p. custoner _id = ?
AND s.ticker = p.ticker
</ xsql : query>
</portfolio>

The XML data for a particular customer's portfolio can then be requested by passing
the customer id parameter in the request like this:

http://yourserver.com fin/CQustomerPortfolio.xsql ?2custid=1001

8-20 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

The value of the bi nd- par ans attribute is a space-delimited list of parameter names
whose left-to-right order indicates the positional bind variable to which its value will
be bound in the statement. So, if your SQL statement has five question marks, then
your bind-params attribute needs a space-delimited list of five parameter names. If the
same parameter value needs to be bound to several different occurrences of a
guestion-mark-indicated bind variable, you simply repeat the name of the parameters
in the value of the bi nd- par ans attribute at the appropriate position. Failure to
include exactly as many parameter names in the bind-params attribute as there are
guestion marks in the query, will results in an error when the page is executed.

Bind variables can be used in any action that expects a SQL statement. The following
page gives additional examples:

<l-- CustonerPortfolio.xsql -->
<portfolio connnection="prod" xnlns:xsql ="urn:oracl e-xsqgl ">
<xsql:dm comit="yes" bind-parans="useri dCookie">
BEG N | og_user _hit(?); END
</ xsql : dm >
<current-prices>
<xsql : query bind- parans="custi d">
SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
FROM | at est _stocks s, custoner_portfolio p
WHERE p. custoner _id = ?
AND s.ticker = p.ticker
</ xsql : query>
</current-prices>
<anal ysi s>
<xsql : i ncl ude-owa bi nd- parans="custid user Cooki ">
BEG N portfolio_analysis.historical _data(?,5 /* years */, ?); END
</ xsql ;i ncl ude- owa>
</ anal ysi s>
</portfolio>

Using Lexical Substitution Parameters

For any XSQL action element, you can substitute the value of any attribute, or the text
of any contained SQL statement, by using a lexical substitution parameter. This
enables you to parameterize how the actions behave as well as substitute parts of the
SQL statements they perform. Lexical substitution parameters are referenced using the
syntax {@Par anet er Nane}.

The following example illustrates using two lexical substitution parameters, one which
allows the maximum number of rows to be passed in as a parameter, and the other
which controls the list of columns to ORDER BY.

<l-- DevOpenBugs. xsqgl -->
<open- bugs connection="dem" xni ns: xsql ="urn: oracl e-xsql ">
<xsql : query max-rows="{@muax}" bind-parans="dev prod">
SELECT bugno, abstract, status
FROM bug_t abl e
WHERE pr ogr ammer _assi gned
AND product _i d
AND status < 80
ORDER BY { @r der by}
</ xsql : query>
</ open- bugs>

UPPER(?)
?

This example can then show the XML for a given developer's open bug list by
requesting the URL.:

http://yourserver.conl bug/ DevQpenBugs. xsql ?dev=snuenché&pr 0d=817

XSQL Pages Publishing Framework 8-21

Overview of All XSQL Pages Capabilities

or using the XSQL Command-Line Utility to request:
$ xsgl DevOpenBugs. xsql dev=snuench prod=817

We close by noting that lexical parameters can also be used to parameterize the XSQL
page connection, as well as parameterize the stylesheet that is used to process the page
like this:

<?xm version="1.0"?>
<?xm -styl esheet type="text/xsl" href="{@heet}.xsl"?>
<!-- Dev(penBugs. xsql -->
<open- bugs connection="{@onn}" xm ns:xsqgl ="urn: oracl e-xsql ">
<xsql : query max-rows="{@max}" bind-parans="dev prod">
SELECT bugno, abstract, status
FROM bug_t abl e
WHERE pr ogr ammer _assi gned
AND product _id
AND status < 80
ORDER BY { @r der by}
</ xsql : query>
</ open- bugs>

UPPER(?)
?

Providing Default Values for Bind Variables and Parameters

It is often convenient to provide a default value for a bind variable or a substitution
parameter directly in the page. This allows the page to be parameterized without
requiring the requester to explicitly pass in all the values in each request.

To include a default value for a parameter, simply add an XML attribute of the same
name as the parameter to the action element, or to any ancestor element. If a value for
a given parameter is not included in the request, the XSQL page processor looks for an
attribute by the same name on the current action element. If it doesn't find one, it
keeps looking for such an attribute on each ancestor element of the current action
element until it gets to the document element of the page.

As a simple example, the following page defaults the value of the max parameter to 10
for both <xsqgl : quer y> actions in the page:

<exanpl e max="10" connection="dem" xmn ns:xsql ="urn: oracl e-xsql ">
<xsql : query max-rows="{@rmax}">SELECT * FROM TABLEl</xsql : query>
<xsql : query max-rows="{ @max}">SELECT * FROM TABLE2</xsql : query>
</ exanpl e>

This example defaults the first query to have a nax of 5, the second query to have a
mex of 7 and the third query to have a max of 10.

<exanpl e max="10" connecti on="dem" xmn ns:xsql ="urn: oracl e-xsql ">
<xsql :query max="5" max-rows="{@max}">SELECT * FROM TABLEl</xsql : query>
<xsql :query max="7" max-rows="{@mx}">SELECT * FROM TABLE2</xsql : query>
<xsql : query max-rows="{ @max}">SELECT * FROM TABLE3</xsql : query>

</ exanpl e>

Of course, all of these defaults are overridden if a value of max is supplied in the
request like:

http://yourserver. conl exanpl e. xsql ?max=3
Bind variables respect the same defaulting rules, so a not very useful, yet educational
page, like this:

<exanpl e val ="10" connection="dem" xm ns:xsqgl ="urn: oracl e-xsql ">

8-22 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

<xsql : query tag-case="|ower" bind-params="val val val">
SELECT ? as soneval ue
FROM DUAL
WHERE ? = ?
</ xsql : query>
</ exanpl e>

returns the XML datagram:

<exanpl e>
<r owset >
<r ow>
<soneval ue>10</ sormeval ue>
</row>
</row>
</ exanpl e>

if the page were requested without any parameters, while a request like:

http://yourserver.conl exanpl e. xsql ?val =3

returns:

<exanpl e>
<rowset >
<r ow>
<soneval ue>3</ soneval ue>
</ row>
</row>
</ exanpl e>

To illustrate an important point for bind variables, imagine removing the default value
for the val parameter from the page by removing the val attribute like this:

<exanpl e connection="denp" xnl ns:xsql ="urn: oracl e-xsql ">
<xsql : query tag-case="|ower" bind-params="val val val">
SELECT ? as soneval ue
FROM DUAL
WHERE ? = ?
</ xsql : query>
</ exanpl e>

Now a request for the page without supplying any parameters returns:

<exanpl e>
<rowset />
</ exanpl e>

because a bind variable that is bound to a parameter with neither a default value nor a
value supplied in the request will be bound to NULL, causing the WHERE clause in
our example page preceding to return no rows.

Understanding the Different Kinds of Parameters

XSQL pages can make use of parameters supplied in the request, as well as
page-private parameters whose names and values are determined by actions in the
page. If an action encounters a reference to a parameter named par amin either a
bi nd- par ans attribute or in a lexical parameter reference, the value of the par am
parameter is resolved by using:

1. The value of the page-private parameter named par am if set, otherwise

XSQL Pages Publishing Framework 8-23

Overview of All XSQL Pages Capabilities

2. The value of the request parameter named par am if supplied, otherwise

3. The default value provided by an attribute named par amon the current action
element or one of its ancestor elements, otherwise

4. The value NULL for bind variables and the empty string for lexical parameters

For XSQL pages that are processed by the XSQL Servlet over HTTP, two additional
HTTP-specific type of parameters are available to be set and referenced. These are
HTTP-Session-level variables and HTTP Cookies. For XSQL pages processed through
the XSQL Servlet, the parameter value resolution scheme is augmented as follows. The
value of a parameter par amis resolved by using:

1. The value of the page-private parameter par am if set, otherwise

2. The value of the cookie named par am if set, otherwise

3. The value of the session variable named par am if set, otherwise

4. The value of the request parameter named par am if supplied, otherwise
5

The default value provided by an attribute named par amon the current action
element or one of its ancestor elements, otherwise

6. The value NULL for bind variables and the empty string for lexical parameters

The resolution order is arranged this way so that users cannot supply parameter
values in a request to override parameters of the same name that have been set in the
HTTP session — whose lifetime is the duration of the HTTP session and controlled by
your Web server — or set as cookies, which can bet set to "live" across browser
sessions.

The <xsqgl:include-request-params> Action

The <xsql : i ncl ude-r equest - par ans> action enables you to include an XML
representation of all parameters in the request in your datagram. This is useful if your
associated XSLT stylesheet wants to refer to any of the request parameter values by
using XPath expressions.

The syntax of the action is:

<xsql : i ncl ude-request - par ans/ >

The XML included will have the form:

<request >
<par anet er s>
<par ammane>val uel</ par amname>
<Par amNane2>val ue2</ Par amName2>

</ par anet er s>
</ request >

or the form:

<request >
<par anet ers>
<par ammane>val uel</ par amnanme>
<Par amNane2>val ue2</ Par amName2>

</ par anet er s>

<sessi on>
<sessVar Nane>val uel</ sessVar Name>

8-24 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

</ sessi on>
<cooki es>
<cooki eName>val uel</ cooki eName>

</ cooki es>
</request >
when processing pages through the XSQL Servlet.

This action has no required or optional attributes.

The <xsql:include-param> Action

The <xsqgl : i ncl ude- par an® action enables you to include an XML representation
of a single parameter in your datagram. This is useful if your associated XSLT
stylesheet wants to refer to the parameter's value by using an XPath expression.

The syntax of the action is:

<xsql : i ncl ude- par am name="par amane" />

This nane attribute is required, and supplies the name of the parameter whose value
you want to include. This action has no optional attributes.

If you provide a simple parameter name like this:

<xsql : i ncl ude- par am name="producti d"/>

Then the XML fragment included in the data page will be:

<product i d>12345</ product i d>

If you use an array-parameter name to indicate that you want to treat the value as an
array, like this:

<xsql : i ncl ude- par am nane="productid[]"/>

then the XML fragment will reflect all of the array values like this:

<producti d>
<val ue>12345<val ue>
<val ue>33455</ val ue>
<val ue>88199</ val ue>
</ product i d>

In this array-parameter name scenario, if pr oduct i d happens to be a single-valued
parameter, then the fragment will look as if it were a one-element array like this:

<producti d>
<val ue>12345<val ue>
</ productid>

The <xsql:include-xmI> Action

The <xsql : i ncl ude- xm > action includes the XML contents of a local, remote, or
database-driven XML resource into your datagram. The resource is specified either by
URL or a SQL statement.

The syntax for this action is:

<xsql :include-xm href="URL"/>

or

XSQL Pages Publishing Framework 8-25

Overview of All XSQL Pages Capabilities

<xsql : i ncl ude- xn >
SQ select statenent selecting a single row containing a single
CLOB or VARCHAR2 col umm val ue

</ xsql :include-xm >

The URL can be an absolute, http-based URL to retrieve XML from another Web site,
or a relative URL. The hr ef attribute and the SQL statement are mutually exclusive. If
one is provided the other is not allowed.

Table 8-5 lists the attributes supported by this action. Attributes in bold are required.

Table 8-4 Attributes for <xsql:include-xm|>

Attribute Name Description

bi nd-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param= "string" Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

The <xsql:include-posted-xml> Action

The <xsql : i ncl ude- post ed- xm > action includes the XML document that has
been posted in the request into the XSQL page. If an HTML form is posted instead of
an XML document, the XML included will be similar to that included by the

<xsql : i ncl ude-request - par ans> action.

The <xsql:set-page-param> Action

The <xsql : set - page- par an® action sets a page-private parameter to a value. The
value can be supplied by a combination of static text and other parameter values, or
alternatively from the result of a SQL select statement.

The syntax for this action is:

<xsql : set - page- par am nanme="par amane" val ue="val ue"/>

or

<xsql : set - page- par am nanme="par anmnang" >
SQ sel ect statenent
</ xsql : set - page- par am>

or

<xsql : set - page- par am name="par anmmane" xpat h="XPat hExpressi on"/>

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This usage requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

As an alternative to providing the val ue attribute, or a SQL statement, you can
supply the xpat h attribute to set the page-level parameter to the value of an XPath
expression. The XPath expression is evaluated against an XML document or HTML
form that has been posted to the XSQL Page Processor. The value of the xpat h
attribute can be any valid XPath expression, optionally built using XSQL parameters
as part of the attribute value like any other XSQL action element.

8-26 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

Once a page-private parameter is set, subsequent action handlers can use this value as
a lexical parameter, for example { @o_i d}, or as a SQL bind parameter value by
referencing its name in the bi nd- par ans attribute of any action handler that
supports SQL operations.

If you need to set several session parameter values based on the results of a single SQL
statement, instead of using the namne attribute, you can use the nanes attribute and
supply a space-or-comma-delimited list of one or more session parameter names. For

example:

<xsql : set - page- param nanes="par ammanel paramane2 paranmmane3" >
SELECT expression_or_col uml, expression_or_colum2, expression_or_col um3

FROM t abl e

WHERE cl ause_i dentifying_a_single_row

</ xsql : set - page- par an>

Either the nane or the nanes attribute is required. The val ue attribute and the

contained SQL statement are mutually exclusive. If one is supplied, the other must not

be.

Table 8-5 lists the attributes supported by this action. Attributes in bold are required.

Table 8-5 Attributes for <xsql:set-page-param>

Attribute Name

Description

name = "string"

names = "string string

bi nd-parans = "string"

error-param = "string"

i gnor e-enpty-val ue =
"bool ean"

treat-list-as-array =
"bool ean"

i quot e-array-val ues =
"bool ean”

Name of the page-private parameter whose value you want to
set.

Space-or-comma-delimited list of the page parameter names
whose values you want to set. Either use the nane or the
nanes attribute, but not both.

Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Indicates whether the page-level parameter assignment is
ignored if the value to which it is being assigned is an empty
string.

Valid values are yes and no. The default value is no.

Indicates whether the string-value being assigned to the
parameter is tokenized into an array of separate values before
assignment. If any comma is present in the string, then the
comma is used for separating tokens, otherwise spaces are
used.

Valid values are yes and no. The default value is yes if the
parameter name being set is an array parameter name (for
example, mypar ani]), and default is no if the parameter name
being set is a simple-valued parameter name like mypar am

If the parameter name being set is a simple-valued parameter
name (for example, nypar am and if the
treat-list-as-array="yes" has been specified, then specifying
quote-array-values="yes" will surround each string token with
single quotes before separating the values with commas. Valid
values are yes and no. The default value is no.

XSQL Pages Publishing Framework 8-27

Overview of All XSQL Pages Capabilities

Table 8-5 (Cont.) Attributes for <xsql:set-page-param>

Attribute Name Description
xpath = Sets the value of the parameter to an XPath expression
" XPat hExpr essi on" evaluated against an XML document or HTML form that has

been posted to the XSQL Page Processor.

The <xsql:set-session-param> Action

The <xsqgl : set - sessi on- par an® action sets an HTTP session-level parameter to a
value. The value of the session-level parameter remains for the lifetime of the current
browser user's HTTP session, which is controlled by the Web server. The value can be
supplied by a combination of static text and other parameter values, or alternatively
from the result of a SQL select statement.

Since this feature is specific to Java Servlets, this action is only effective if the XSQL
page in which it appears is being processed by the XSQL Servlet. If this action is
encountered in an XSQL page being processed by the XSQL command-line utility or
the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsql : set - sessi on- par am nane="par anname" val ue="val ue"/>

or

<xsql : set - sessi on- par am nane="par annane" >
SQ sel ect statenent
</ xsql : set - sessi on- par anp

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

If you need to set several session parameter values based on the results of a single SQL
statement, instead of using the name attribute, you can use the names attribute and
supply a space-or-comma-delimited list of one or more session parameter names. For
example:

<xsql : set - sessi on- par am nanes="par ammanel paranmane2 par amane3" >
SELECT expressi on_or _col uiml, expression_or_col um2, expression_or_col um3
FROM t abl e
VHERE cl ause_i dentifying_a_single_row
</ xsql : set - sessi on- par anp

Either the nane or the nanes attribute is required. The val ue attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must not
be.

Table 8-6 lists the optional attributes supported by this action.

Table 8-6 Attributes for <xsql:set-session-param>

Attribute Name Description
name = "string" Name of the session-level variable whose value you want to
set.

names = "string string Space-or-comma-delimited list of the session parameter names
" whose values you want to set. Either use the nane or the
names attribute, but not both.

8-28 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

Table 8-6 (Cont.) Attributes for <xsql:set-session-param>

Attribute Name Description

bi nd-parans = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that is set to the string
'Er r or ' if a non-fatal error occurs while processing this action.
Valid value is any parameter name.

i gnor e-enpty-val ue = Indicates whether the session-level parameter assignment is
"bool ean" ignored if the value to which it is being assigned is an empty
string.

Valid values are yes and no. The default value is no.

only-if-unset = Indicates whether the session variable assignment only occurs
"bool ean" when the session variable currently does not exists.

Valid values are yes and no. The default value is no.

The <xsql:set-cookie> Action

The <xsqgl : set - cooki e> action sets an HTTP cookie to a value. By default, the
value of the cookie remains for the lifetime of the current browser, but its lifetime can
be changed by supplying the optional max- age attribute. The value to be assigned to
the cookie can be supplied by a combination of static text and other parameter values,
or alternatively from the result of a SQL select statement.

Since this feature is specific to the HTTP protocol, this action is only effective if the
XSQL page in which it appears is being processed by the XSQL Servlet. If this action is
encountered in an XSQL page being processed by the XSQL command-line utility or
the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsql : set - cooki e name="paramane" val ue="val ue"/>

or

<xsql : set - cooki e name="paramane" >
SQL sel ect statenent
</ xsql : set-cooki e>

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

If you need to set several cookie values based on the results of a single SQL statement,
instead of using the name attribute, you can use the names attribute and supply a
space-or-comma-delimited list of one or more cookie names. For example:

<xsql : set-cooki e names="paramanel paramane2 paramane3" >
SELECT expression_or_col umml, expression_or_col urm2, expression_or_col urm3
FROM t abl e
VWHERE cl ause_i dentifying_a_single_row
</ xsql : set-cooki e>

Either the nan®e or the nanes attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must not

XSQL Pages Publishing Framework 8-29

Overview of All XSQL Pages Capabilities

be. The number of columns in the select list must match the number of cookies being
set or an error message will result.

Table 8-7 lists the optional attributes supported by this action.

Table 8-7 Attributes for <xsql:set-cookie>

Attribute Name

Description

name = "string"

nanes = "string string

bi nd- params = "string"

domain = "string"

error-param= "string"

i gnor e-enpt y-val ue =
"bool ean"

max-age = "integer"

only-if-unset =
"bool ean"

path = "string"

i medi ate = "bool ean”

Name of the cookie whose value you want to set.

Space-or-comma-delimited list of the cookie names whose
values you want to set. Either use the name or the nanmes
attribute, but not both.

Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

Domain in which cookie value is valid and readable. If domain
is not set explicitly, then it defaults to the fully-qualified host
name (for example, bi gser ver . your conpany. comn of the
document creating the cookie.

Name of a page-private parameter that is set to the string
'Er r or ' if a non-fatal error occurs while processing this action.
Valid value is any parameter name.

Indicates whether the cookie assignment is ignored if the value
to which it is being assigned is an empty string.

Valid values are yes and no. The default value is no.

Sets the maximum age of the cookie in seconds. Default is to set
the cookie to expire when users current browser session
terminates.

Indicates whether the cookie assignment only occurs when the
cookie currently does not exists.

Valid values are yes and no. The default value is no.

Relative URL path within domain in which cookie value is
valid and readable. If path is not set explicitly, then it defaults
to the URL path of the document creating the cookie.

Indicates whether the cookie assignment is immediately visible
to the current page. Typically cookies set in the current request
are not visible until the browser sends them back to the server
in a subsequent request.Valid values are yes and no. The
default value is no.

The <xsql:set-stylesheet-param> Action

The <xsql : set - st yl esheet - par an® action sets a top-level XSLT stylesheet
parameter to a value. The value can be supplied by a combination of static text and
other parameter values, or alternatively from the result of a SQL select statement. The
stylesheet parameter will be set on any stylesheet used during the processing of the

current page.

The syntax for this action is:

<xsql : set - styl esheet - par am nane="par amane" val ue="val ue"/>

or

<xsql : set - styl esheet - par am name="par armane" >

SQ sel ect statenent

8-30 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

</ xsql : set-styl esheet - par an>

If you use the SQL statement option, a single row is fetched from the result set and the
parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connection="connname" attribute on the
document element of the XSQL page in which it appears.

If you need to set several stylesheet parameter values based on the results of a single
SQL statement, instead of using the nane attribute, you can use the names attribute
and supply a space-or-comma-delimited list of one or more stylesheet parameter
names. For example:

<xsql : set-styl esheet - par am names="paramanel paramane2 par atmane3" >
SELECT expression_or_col uml, expression_or_col um2, expression_or_col uim3
FROM t abl e
VWHERE cl ause_i dentifying_a_single_row
</ xsql : set-styl esheet - par an»

Either the nan®e or the nanes attribute is required. The val ue attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must not
be.

Table 8-8 lists the optional attributes supported by this action.

Table 8-8 Attributes for <xsql:set-stylesheet-param>

Attribute Name Description
name = "string" Name of the top-level stylesheet parameter whose value you
want to set.

names = "string string Space-or-comma-delimited list of the top-level stylesheet
" parameter names whose values you want to set. Either use the
namne or the nanes attribute, but not both.

bi nd-parans = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-param = "string" Name of a page-private parameter that has to be set to the
string 'Er r or " if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

i gnor e-enpty-val ue = Indicates whether the stylesheet parameter assignment is to be
"bool ean" ignored if the value to which it is being assigned is an empty
string.

Valid values are yes and no. The default value is no.

Working with Array-Valued Parameters

In addition to support for simple-string values, request parameters, session
parameters, and page-private parameters may have values that are arrays of strings.
To treat to the value of a parameter as an array, you add two empty square brackets to
the end of its name. For example, if an HTML form is posted having four occurrences
of a input control named pr oduct i d, then to refer to the array-valued productid
parameter you use the notation producti d[].

If you refer to an array-valued parameter as a lexical substitution parameter, either
inside an action handler attribute value or inside the content of an action handler
element, its value will be converted to a comma-delimited list of all non-null and
non-empty strings in the array in the order that they appear in the array. For example,
if you had a page like:

XSQL Pages Publishing Framework 8-31

Overview of All XSQL Pages Capabilities

<page xm ns:xsql ="urn:oracl e-xsql ">
<xsql : query>
sel ect description
from product
where productid in ({@roductid[]}) /* Using |exical paraneter */
</ xsql : query>
</ page>

and the request contains four values for the pr oduct i d parameter, then the
{@r oductid[]} lexical substitution expression will be replaced in the query by a
string like "111, 222, 333, 444",

If you refer to an array-valued parameter without using the array-brackets notation on
the end of the name, then the value used will be the value of the first array entry

Note: Use of a number inside the array brackets is not supported.
That is, you can refer to pr oduct i d or producti d[], but not
product i d[2] . Only the request parameters, page-private
parameters, and session parameters can use string arrays. The
<xsql : set - styl esheet - paranm> and <xsql : set - cooki e>
only support working with parameters as simple string values. To
refer to a multi-valued parameter in your XSLT stylesheet, use
<xsql : i ncl ude- par an® to include the multi-valued parameter
into your XSQL datapage, then use an appropriate XPath
expression in the stylesheet to refer to the values from the datapage.

Setting Array-Valued Page or Session Parameters from Strings

You can set the value of a page-private parameter or session parameter to a
string-array value simply by using the array-brackets notation on the name like this:

<I'-- Note, paramnane contains array brackets -->
<xsql : set - page- par am name="names[]" val ue="Tom Jane Joe"/>

or similarly for session parameters:

<I'-- Note, paramnane contains array brackets -->
<xsql : set - sessi on- param name="dates[]" val ue="12- APR- 1962 15-JUL-1968"/>

By default, when the name of the parameter being set is an name with array-brackets,
the value will be treated as a space-or-comma-delimited list and tokenized.

The resulting string array value will contain these separate tokens. In the examples
earlier, the names[] parameter is the string array {"Tont', "Jane", "Joe"} and the
dat es[] parameter is the string array {"12- APR- 1962", "15- JUL- 1968"}.

In order to handle strings that contain spaces, the tokenization algorithm first checks
the string being tokenized for the presence of any commas. If at least one comma is
found in the string, then commas are used as the token delimiter. So, for example, the
following action:

<I'-- Note, paramnane contains array brackets -->
<xsql : set - page- par am nanme="nanes[]" val ue="Tom Jones, Jane York"/>

sets the value of the nanmes[] parameter to the string array {"Tom Jones", "Jane
Yor k"}.

8-32 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

By default, when you set a parameter whose name does not end with the
array-brackets, then the string-tokenization does not occur. So, as in previous releases
of XSQL Pages, the following action:

<I-- Note, param name does NOT contain array brackets -->
<xsql : set - page- param nane="nanes" val ue="Tom Jones, Jane York"/>

Sets a parameter named nanes to the literal string "Tom Jones, Jane Yor k". For
convenience, you can optionally force the string to be tokenized by including the new
treat-list-as-array="yes" attribute on the <xsql : set - page- par an or
<xsgl : set - sessi on- par an® actions. The result will be to assign a
comma-delimited string of the tokenized values to the parameter. For example, the
action:

<I-- Note, param name does NOT contain array brackets -->
<xsql : set - page- param nane="names" val ue="Tom Jane Joe"
treat-list-as-array="yes"/>

sets the names parameter to the literal string "Tom Jane, Joe".

As a further convenience, when you are setting the value of a simple string-valued
parameter and you are tokenizing the value usingtreat-1ist-as-array="yes",
you can include the quot e- array-val ues="yes" attribute to have the
comma-delimited values be surrounded by single-quotes. So, an action like this:

<I-- Note, param name does NOT contain array brackets -->
<xsql : set - page- param nanme="names" val ue="Tom Jones, Jane York, Ji mmy"
treat-list-as-array="yes"
quot e-array-val ues="yes"/ >
assigns the literal string value ™
names parameter.

Tom Jones', ' Jane York','Ji my'"tothe

Binding Array-Valued Parameters in SQL and PL/SQL Statements

Anywhere in XSQL Pages where string-valued scalar bind variables are supported,
you may also bind array-valued parameters by simply using the array-parameter
name (for example, mypar anf]) in the list of parameter names that you supply for the
bi nd- par ans attribute.

This makes it very easy to process array-valued parameters in SQL statements and in
PL/SQL procedures. Array-valued parameters are bound as a nested table object type
named XSQL_TABLE_OF_VARCHAR that you must create in your current schema using
the DDL statement:

CREATE TYPE xsql _tabl e_of _varchar AS TABLE OF VARCHAR2(2000);

While the type must have this exact name, XSQL_TABLE_OF VARCHAR, you can
change the dimension of the VARCHAR? string if desired. Of course, you have to make
it as long as any string value you expect to handle in your array-valued string
parameters.

Consider the following PL/SQL stored procedure:

FUNCTI ON t est Tabl eFuncti on(p_name XSQL_TABLE OF VARCHAR,
p_val ue XSQL_TABLE OF VARCHAR)
RETURN VARCHAR2 | S

Iv_ret VARCHAR2(4000) ;
Iv_nunElts | NTEGER,
BEG N

IF p_nane |'S NOT NULL THEN

XSQL Pages Publishing Framework 8-33

Overview of All XSQL Pages Capabilities

[v_nunElts := p_name. COUNT;
FORj IN1. .lv_nunElts LOOP

IF (j >1) THEN
Iv_ret :=1lv_ret]|":";
END I F;
Iv_ret :=1lv_ret||p_nane(j)|]|"="||p_value(j);
END LOOP;
END | F;
RETURN | v _ret;

END;

The following page illustrates how to bind two array-valued parameters in a SQL
statement that uses this PL/SQL function taking XSQ._TABLE_OF VARCHAR-typed
arguments.

<page xm ns:xsql ="urn:oracle-xsql" connection="denp"
soneNanes="aa, bb, cc" soneVal ues="11, 22, 33" >
<xsql : query bind-parans="someNanes[] soneVal ues[]">
sel ect testTabl eFunction(?,?) as exanple from dual
</xsql : query>
</ page>

This produces a resulting XML data page of:

<page soneNames="aa, bb, cc" soneVal ues="11, 22, 33">
<RONBET>
<ROW nun¥"1">
<EXAMPLE>aa=11: bb=22: cc=33</ EXAMPLE>
</ RON
</ RONBET>
</ page>

illustrating that the array-valued soneNanes[] and soneVal ues[] parameters were
bound as table collection types and the values were iterated over and concatenated
together to produce the "aa=11: bb=22: cc=33" string value as the function's return
value.

You can mix any number of regular parameters and array-valued parameters in your
bind-params string. Just use the array-bracket notation for the ones you want to be
bound as arrays.

Note: If you try the example earlier and you have not created the
XSQ._TABLE_OF VARCHARtype as illustrated earlier, you will
receive an error like this:

<page soneNames="aa, bb, cc" soneVal ues="11, 22, 33">
<xsqgl -error code="17074" action="xsql:query">
<st at ement >
sel ect testTabl eFunction(?,?) as exanple fromdua
</ stat ement >
<nessage>
invalid name pattern; SCOIT. XSQL_TABLE_CF_VARCHAR
</ message>
</ xsql -error>
</ page>

Since the array parameters are bound as nested table collection types, you can use the
TABLE() operator in combination with the CAST() operator in SQL to treat the
nested table bind variable value as a table of values to query against. This can be quite

8-34 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

a powerful technigue to use in sub-select clauses of a SQL statement (but it's not
limited to this). The following page illustrates using an array-valued parameter
containing employee id's to restrict the rows queried from the familiar EMPLOYEES
table in the HR schema.

<page xm ns:xsqgl ="urn:oracl e-xsql" connection="hr">
<xsql : set - page- par am nane="soneEnpl oyees[]" val ue="196, 197"/>
<xsql : query bi nd- parans="soneEnpl oyees[] ">
select first_nane||' '||last_nane as name, salary
from enpl oyees
where enployee_id in (
sel ect * from TABLE(CAST(? as xsql _tabl e_of _varchar))
)

</ xsql : query>
</ page>

This produces a result like:

<page>
<ROWBET>
<ROW nume"1">
<NAME>Al ana Wl sh</ NAME>
<SALARY>3100</ SALARY>
</ ROW
<ROW nume"2" >
<NAME>Kevi n Feeny</ NAMVE>
<SALARY>3000</ SALARY>
</ ROW
</ RONBET>
</ page>

These examples have shown using bi nd- par ans with <xsqgl : quer y>, but these
new features work for <xsql : dm >, <xsql : i ncl ude- owa>,

<xsgl : ref-cursor-function>, and any other actions that accept SQL or PL/SQL
statements as part of their functionality.

Finally, some users might ask, "Why doesn't XSQL support using PL/SQL index-by
tables instead of nested table collection types for binding string-array values?" The
simple answer is that PL/SQL index-by-tables do not work with the JDBC Thin driver.
They only work using the OCI JDBC driver. By using the nested table collection type
XSQL_TABLE_OF VARCHAR we can use the array-valued parameters with both the
Thin driver and the OCI driver, without losing any of the programming flexibility of
working with the array of values in PL/SQL.

Supplying Multi-Valued Parameters on the Command Line

If you use the or acl e. xm . xsql . XSQLCommandLi ne command-line utility to run
XSQL pages, you can supply multi-valued parameters to the XSQL page processor by
simply including the same parameter name on the command line multiple times like
this:

java oracle.xm . xsql . XSQLConmandLi ne SonmePage. xsql user =St eve user=Paul user=Mary

This will result in having the user [] array-valued parameter set as a request
parameter to the value {"St eve","Paul ","Mar y"}.

XSQL Pages Publishing Framework 8-35

Overview of All XSQL Pages Capabilities

Supplying Multi-Valued Parameters Programmatically with XSQLRequest

The XSQLRequest programmatic API to the XSQL Page engine already takes a
java. util.Dictionary of named parameters. Typically users have used a

Hasht abl e and called its put (nane, val ue) method to add St ri ng-valued
parameters to the request. To add multi-valued parameters, simply put a value of type
String[] instead of type Stri ng.

Conditionally Executing Actions or Including Content with <xsql:if-param>

The <xsql : i f - par an action enables you to conditionally include the elements and
actions (or actions) that are nested inside it if some condition is true. If the condition
evaluates to true, then all nested XML content and actions are included in the page. If
the condition evaluates to false, then none of the nested XML content or actions are
included (and hence none of the nested actions is executed).

You specify which parameter value will be evaluated by supplying the required nane
attribute. Both simple parameter names as well as array-parameter names are
supported.

In addition to the name attribute, you must also pick exactly one of the following five
attributes to indicate how the parameter value (or values, in the array case) is tested:

1. exists="yes" orexists="no"

If you use exi st s="yes", then this tests whether the named parameter exists
and has a non-empty value. For an array-valued parameter, it tests whether the
array-parameter exists, and has at least one non-empty element. If you use

exi st s="no", then evaluates to true if the parameter does not exist, of if it exists
but has an empty value. For an array-valued parameter, it evaluates to true if the
parameter does not exist, or if all of the array elements are empty.

2. equal s="stringVal ue"

This tests whether the named parameter equals the string value provided. By
default the comparison is an exact string match. For an array-valued parameter, it
tests whether any element in the array has the indicated value.

3. not-equal s="stringVal ue"

This tests whether the named parameter does not equal the string value provided.
For an array-valued parameter, evaluates to true if none of the elements in the
array has the indicated value.

4. in-list="conme-or-space-separated-list"

This tests whether the named parameter matches any of the strings in the
provided list. The value of the i n-| i st parameter is tokenized into an array
using commas as the delimiter if any commas are detected in the string, otherwise
using space as the delimiter. For an array-valued parameter, it tests whether any
element in the array matches some element in the list.

5. not-in-list="conma-or-space-separated-|ist"

This tests whether the named parameter does not match any of the strings in the
provided list. The value of the not - i n-1i st parameter is tokenized into an array
using commas as the delimiter if any commas are detected in the string, otherwise
using space as the delimiter. For an array-valued parameter, it tests whether none
of the elements in the array matches any element in the list.

8-36 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

For the equal s, not -equal s,in-list,andnot-in-1ist tests, by default the
comparison is an exact string match. If you want a case-insensitive match, supply the
additional i gnor e- case="yes" attribute as well.

As with other XSQL actions, all of the attributes of the <xsql : i f - par an action can
contain lexical substitution parameter expressions (for example, { @ar anNane}) if
needed.

Note that any XML content and XSQL action elements (or XSQL action elements) can
be nested inside an <xsql : i f - par anmP, including other <xsql : i f - par an®
elements if needed.

For example, to test whether two different conditions are true, you can use nested
<xsql : i f - par an> elements like this:

<l--
| Set page param'foo' to value "bar" if paraneter 'a'
| exists, and if parameter 'b' has value equal to "X
+-->
<xsql :if-paramname="a" exists="yes">

<xsql :if-param nanme="b" equal s="X">

<xsql : set - page- param name="f 00" val ue="bar"/>

</xsql :if-paranp

</xsql :if-paranp

Note: If the parameter being tested does not exist, the test
evaluates to false.

Optionally Setting an Error Parameter on Any Built-in Action

It is often convenient to know whether an action encountered a non-fatal error during
its execution. For example, an attempt to insert a row or call a stored procedure can fail
with a database exception which will get included into your XSQL data page as an
<xsql - error>element.

Now you can optionally have any built-in XSQL action set a page-private parameter of
your choice when that action reports a non-fatal error by using the er r or - par am
attribute on your action.

For example, to have the parameter named "dm - er r or " set if the statement inside
the <xsqgl : dm > action encounters a database error, use an action like this:

<xsql:dm error-param="dm -error" bind-params="val ">
insert into yourtable(sonecol) val ues(?)
</ xsql : dnl >

If the execution of this action encounters an error, then the page-private parameter
named dml - er r or will be set to the string "Er r or ".

If the execution of the action is successful, the error parameter is not assigned any
value. In the example earlier, this means that if the page-private parameter

dm - error already exists, it will retain its current value. If it does not exist, it will
continue to not exist.

By using this new error parameter in combination with <xsql : i f - par an> you can
achieve conditional behavior in your XSQL page template, depending on the success
or failure of certain actions. For example, assuming your connection definition sets the
AUTOCOW T flag to f al se on the connection named "demo” in the XSQL
configuration file (by default, named XSQLConf i g. xml), then the following page

XSQL Pages Publishing Framework 8-37

Overview of All XSQL Pages Capabilities

illustrates how you might rollback the changes made by a previous action if a
subsequent action encounters an error.

<l-- NOTE: Connection "demp" nust not set to autocommit! -->
<page connection="denp" xm ns:xsqgl ="urn:oracl e-xsql ">
<xsql :dm error-param="dn -error” bind-paranms="val ">
insert into yourtabl e(sonecol) val ues(?)
</xsql: dm >
<l-- This second statement will commt if it succeeds -->
<xsql :dm comit="yes" error-param="dnl-error” bind-params="val 2">
insert into anothertabl e(anothercol) val ues(?)
</xsql: dm >
<xsql :if-param name="dm -error" exists="yes">
<xsql : dm >rol | back</ xsql : dm >
</xsql :if-paranp
</ page>

If you've written any custom action handlers and your custom actions call

report M ssingAttribute(),reportError(),or

report Errorlncl udi ngSt at erent () to report non-fatal action errors, then they
will automatically pickup this new feature as well.

Aggregating Information Using <xsql:include-xsql>

The <xsql : i ncl ude- xsql > action makes it very easy to include the results of one
XSQL page into another page. This enables you to easily aggregate content from a
page that you've already built and find another purpose for it. The examples that
follow illustrate two of the most common uses of <xsql : i ncl ude- xsql >.

Assume you have an XSQL page that lists discussion forum categories:

<I'-- Categories.xsqgl -->
<xsql : query connection="forun xm ns:xsqgl ="urn: oracl e-xsql ">
SELECT nane
FROM cat egori es
CORDER BY nane
</ xsql : query>

You can include the results of this page into a page that lists the ten most recent topics
in the current forum like this:

<l-- TopTenTopi cs. xsql -->
<top-ten-topics connection="forunm' xnl ns:xsql ="urn:oracl e-xsql ">
<t opi cs>
<xsql : query max-rows="10">
SELECT subj ect FROM topi cs ORDER BY | ast_nodified DESC
</ xsql : query>
</topics>
<cat egori es>
<xsql :incl ude-xsql href="Categories.xsql"/>
</ cat egories>
</top-ten-topics>

You can use <xsql : i ncl ude- xsql > to include an existing page to apply an XSLT
stylesheet to it as well. So, if we have two different XSLT stylesheets:
«» cats-as-htnl . xsl,which renders the topics in HTML, and

« cats-as-wnl . xsl, which renders the topics in WML

8-38 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

Then one approach for catering to two different types of devices is to create different
XSQL pages for each device. We can create:

<?xm version="1.0"?>

<l'-- HTM.Cat egories.xsqgl -->

<?xm -styl esheet type="text/xsl" href="cats-as-htnm.xsl"?>

<xsql :include-xsql href="Categories.xsql" xmns:xsql="urn:oracle-xsqgl"/>

which aggregates Cat egori es. xsqgl and applies the cat s- as-ht i . xsl
stylesheet, and another page:

<?xm version="1.0"?>

<I'-- WM.Categories. xsgl -->

<?xm -styl esheet type="text/xsl" href="cats-as-htm.xsl"?>

<xsql :include-xsql href="Categories.xsql" xmns:xsqgl ="urn: oracl e-xsqgl"/>

which aggregates Cat egori es. xsqgl and applies the cat s- as- wrl . xs| stylesheet
for delivering to wireless devices. In this way, we've re-purposed the reusable
Categories.xsgl page content in two different ways.

If the page being aggregated contains an <?xml - st yl esheet ?> processing
instruction, then that stylesheet is applied before the result is aggregated, so using
<xsgl : i ncl ude- xsql > you can also easily chain the application of XSLT stylesheets
together.

When one XSQL page aggregates another page's content using

<xsql : i ncl ude- xsql > all of the request-level parameters are visible to the "nested"
page. For pages processed by the XSQL Servlet, this also includes session-level
parameters and cookies, too. As you expect, none of the aggregating page's page-private
parameters are visible to the nested page.

Table 8-9 lists the attributes supported by this action. Required attributes are in bold.

Table 8-9 Attributes for <xsql:include-xsql>

Attribute Name Description

href = "string" Relative or absolute URL of XSQL page to be included.

error-param = "string" Name of a page-private parameter that has to be set to the
string 'Er r or " if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

reparse = "hool ean" Indicates whether output of included XSQL page has to be
reparsed before it is included. Useful if included XSQL page is
selecting the text of an XML document fragment that the
including page wants to treat as elements.

Valid values are yes and no. The default value is no.

Including XMLType Query Results

Oracle9i introduced the XMLType for use with storing and querying XML-based
database content. You can exploit database XML features to produce XML for
inclusion in your XSQL pages using one of two techniques:

« <xsql : quer y> handles any query including columns of type XMLType, however
it handles XML markup in CLOB/VARCHAR?2 columns as literal text.

« <xsql :include-xmn > parses and includes a single CLOB or String-based XML
document retrieved from a query

The difference between the two approaches lies in the fact that the
<xsql : i ncl ude- xm > action parses the literal XML appearing in a CLOB or

XSQL Pages Publishing Framework 8-39

Overview of All XSQL Pages Capabilities

String-value to turn it on the fly into a tree of elements and attributes. On the other
hand, using the <xsql : quer y> action, XML markup appearing in CLOB or String
valued-columns is left as literal text.

Another difference is that while <xsql : quer y> can handle query results of any
number of columns and rows, the <xsqgl : i ncl ude- xm > is designed to work on a
single column of a single row. Accordingly, when using <xsql : i ncl ude- xm >, the
SELECT statement that appears inside it returns a single row containing a single
column. The column can either be a CLOB or a VARCHAR?2 value containing a
well-formed XML document. The XML document will be parsed and included into
your XSQL page.

The following example uses nested xm agg() functions to aggregate the results of a
dynamically-constructed XML document containing departments and nested
employees into a single XML "result” document, wrapped in a <Depart ment Li st >
element:

<xsql : query connection="hr" xn ns: xsql ="urn: oracl e-xsqgl ">
sel ect Xm El enent (" DepartnentList",
X Agg(
Xm El enent (" Depart ment ",

Xnl Attributes(department _id as "1d"),

Xnl For est (depart nent _name as "Nane"),

(sel ect Xnm El enent ("Enpl oyees",

Xm Agg(
Xm El ement (" Enpl oyee",
Xm Attributes(enmployee_id as "1d"),
X Forest(first_name||" '||last_name as "Nane",
salary as "Salary",
job_id as "Job")
)
)
)
from enpl oyees e
where e.departnent _id = d.departnent _id
)
)
)

) as result
fromdepartnents d
order by department _name

</ xsql : query>

Considering another example, suppose you have a number of <Movie> XML
documents stored in a table of X Type called MOVI ES. Each document might look
something like this:

<Mvie Title="The Talented M.R pley" RunningTi mne="139" Rating="R'>
<Director>

<Fi rst >Ant hony</ Fi rst >

<Last >M nghel | a</ Last >
</Director>

<Cast >

<Actor Rol e="TomRipley">
<First>Matt</First>

<Last >Danon</ Last >

</ Act or >

<Actress Rol e="Marge Sherwood">
<Fi r st >Gwynet h</ Fi rst >

<Last >Pal t r ow</ Last >

</ Actress>

8-40 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

<Actor Role="Di ckie Geenleaf">

<Fi rst>Jude</ First>

<Last >Lawx/ Last >

<Awar d Frome"BAFTA" Cat egory="Best Supporting Actor"/>
</ Actor>

</ Cast >

</ Movi e>

You can use the built-in Oracle XPath query features to extract an aggregate list of all
cast members who have received Oscar awards from any movie in the database using
a query like this:

sel ect xni el enent (" Awar dedAct ors",
xm agg(extract (val ue(n,
"I Movi e/ Cast/ *[Awar d[@r on+"Cscar"]]"')))
fromnovies m

To include this query result of XMLType into your XSQL page, simply paste the query
inside an <xsql : quer y> element, and make sure you include an alias for the query
expression (for example "as result” following):

<xsql : query connection="orcl 92" xm ns: xsql ="urn: or acl e-xsql ">
sel ect xnl el enent (" Awar dedAct ors",
xm agg(extract (val ue(n,
"I Movi e/ Cast/*[Awar d[@ron"Qscar"]]'))) as result
frommovies m
</ xsql : query>

Note that again we use the conbination of xmelenment() and xm agg() to have the
dat abase aggregate all of the XM. fragnents identified by the query into
single, well-formed XM. docurment. The conbination of xmelenent() and xm agg()
work together to produce a well-formed result like this:
<Awar dedAct or s>
<Actor>...</Actor>
<Actress>...</Actress>
</ Awar dedAct or s>

Notice that you can use the standard XSQL Pages bind variable capabilities in the
middle of an XPath expression, too, if you concatenate the bind variable into the
expression. For example, to parameterize the value "Oscar" into a parameter named
award-from, you can use an XSQL Page like this:

<xsql : query connection="orcl 92" xm ns: xsqgl ="urn: oracl e-xsql "
awar d-from="QGscar" bind- parans="awar d- f roni'>
/* Using a bind variable in an XPath expression */
sel ect xni el enent (" Awar dedAct ors",
xm agg(extract (val ue(n,
"I Movi el Cast/*[Award[@rom=""|| ? |]|'"]]"))) as result
frommovies m

</ xsql : query>

Handling Posted Information

In addition to simplifying the assembly and transformation of XML content, the XSQL
Pages framework makes it easy to handle posted XML content as well. Built-in actions
simplify the handling of posted information from both XML document and HTML
forms, and allow that information to be posted directly into a database table using the
underlying facilities of the Oracle XML SQL Utility.

XSQL Pages Publishing Framework 8-41

Overview of All XSQL Pages Capabilities

The XML SQL Utility provides the ability to data database inserts, updates, and
deletes based on the content of an XML document in canonical form with respect to a
target table or view. For a given database table, the canonical XML form of its data is
given by one row of XML output from a SELECT * FROMt abl ename query against
it. Given an XML document in this canonical form, the XML SQL Utility can automate
the insert, update, and delete for you. By combining the XML SQL Utility with an
XSLT transformation, you can transform XML in any format into the canonical format
expected by a given table, and then ask the XML SQL Utility to insert, update, delete
the resulting canonical XML for you.

The following built-in XSQL actions make exploiting this capability easy from within
your XSQL pages:

«» <xsql:insert-request>

Insert the optionally transformed XML document that was posted in the request
into a table.Table 8-10 lists the required and optional attributes supported by this
action.

« <xsql:update-request >

Update the optionally transformed XML document that was posted in the request
into a table or view. Table 8-11 lists the required and optional attributes supported
by this action.

« <xsql:del ete-request>

Delete the optionally transformed XML document that was posted in the request
from a table or view. Table 8-12 lists the required and optional attributes
supported by this action.

« <xsql:insert-paranr

Insert the optionally transformed XML document that was posted as the value of a
request parameter into a table or view. Table 8-13 lists the required and optional
attributes supported by this action.

If you target a database view with your insert, then you can create | NSTEAD OF

| NSERT triggers on the view to further automate the handling of the posted
information. For example, an | NSTEAD OF | NSERT trigger on a view can use
PL/SQL to check for the existence of a record and intelligently choose whether to do
an | NSERT or an UPDATE depending on the result of this check.

Table 8-10 Attributes for <xsql:insert-request>

Attribute Name Description

table = "string" Name of the table, view, or synonym to use for inserting the
XML information.

transform= "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

col ums = "string" Space-delimited or comma-delimited list of one or more

column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

comit = "bool ean" If set to yes, calls commit on the current connection after a
successful execution of the insert. Valid values are yes and no.
The default value isyes.

8-42 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

Table 8-10 (Cont.) Attributes for <xsgl:insert-request>

Attribute Name

Description

commi t-batch-size =
"integer"

date-format = "string"

error-param= "string"

If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
j ava. text . Si npl eDat eFor mat class.

Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Table 8-11 Attributes for <xsql:update-request>

Attribute Name

Description

table = "string"

key-colums = "string"

transform= "URL"

colums = "string"

commit = "bool ean”

commi t -batch-size =
"integer"

date-format = "string"

error-param= "string"

Name of the table, view, or synonym to use for inserting the
XML information.

Space-delimited or comma-delimited list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

Space-delimited or comma-delimited list of one or more
column names whose values will be updated. If supplied, then
only these columns will be updated. If not supplied, all
columns will be updated, with NULL values for columns
whose values do not appear in the XML document.

If set to yes, calls commit on the current connection after a
successful execution of the update. Valid values are yes and
no. The default value isyes.

If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
j ava. text. Si npl eDat eFor mat class.

Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Table 8-12 Attributes for <xsql:delete-request>

Attribute Name

Description

table = "string"

key-colums = "string"

Name of the table, view, or synonym to use for inserting the
XML information.

Space-delimited or comma-delimited list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

XSQL Pages Publishing Framework 8-43

Overview of All XSQL Pages Capabilities

Table 8-12 (Cont.) Attributes for <xsql:delete-request>

Attribute Name Description

transform= "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

comit = "bool ean" If set to yes, calls commit on the current connection after a

successful execution of the delete. Valid values are yes and no.
The default value isyes.

comit - batch-size = If a positive, nonzero number N is specified, then after each

"integer" batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

error-param= "string" Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Table 8-13 Attributes for <xsql:insert-param>

Attribute Name Description

name = "string" Name of the parameter whose value contains XML to be
inserted.

table = "string" Name of the table, view, or synonym to use for inserting the
XML information.

transform= "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

colums = "string" Space-delimited or comma-delimited list of one or more

column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commt = "bool ean" If set to yes, calls commit on the current connection after a
successful execution of the insert. Valid values are yes and no.
The default value isyes.

comit - batch-size = If a positive, nonzero number N is specified, then after each

"integer" batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
j ava. text . Si npl eDat eFor mat class.

error-param = "string" Name of a page-private parameter that must be set to the
string 'Er r or ' if a non-fatal error occurs while processing this
action. Valid value is any parameter name.

Understanding Different XML Posting Options
There are three different ways that the XSQL pages framework can handle posted
information.

1. Aclient program can send an HTTP POST message that targets an XSQL page,
whose request body contains an XML document and whose HTTP header reports
aCont ent Type of "t ext/ xm ".

8-44 Oracle XML Developer's Kit Programmer's Guide

Overview of All XSQL Pages Capabilities

In this case, you can use the <xsql : i nsert -request >,

<xsql : updat e- r equest >, or the <xsql : del et e- r equest > action and the
content of the posted XML will be insert, updated, or deleted in the target table as
indicated. If you transform the posted XML document using an XSLT
transformation, the posted XML document is the source document for this
transformation.

2. Aclient program can send an HTTP GET request for an XSQL page, one of whose
parameters contains an XML document.

In this case, you can use the <xsql : i nsert - par an action and the content of
the posted XML parameter value will be inserted in the target table as indicated. If
you transform the posted XML document using an XSLT transformation, the XML
document in the parameter value is the source document for this transformation.

3. A browser can submit an HTML form with met hod=" POST" whose action targets
an XSQL page. In this case, by convention the browser sends an HTTP POST
message whose request body contains an encoded version of all of the HTML
form's fields and their values with a ContentType of
"appl i cation/ x-wwformurl encoded”

In this case, there request does not contain an XML document, but instead an
encoded version of the form parameters. However, to make all three of these cases
uniform, the XSQL page processor will (on demand) materialize an XML
document from the set of form parameters, session variables, and cookies
contained in the request. Your XSLT transformation then transforms this
dynamically-materialized XML document into canonical form for insert, update,
or delete using <xsql : i nsert >, <xsql : updat e- r equest >, or

<xsql : del et e-r equest > respectively.

When working with posted HTML forms, the dynamically materialized XML
document will have the following form:

<request >
<par anet er s>
<firstparamane>firstparanval ue</firstparamame>

<l ast par ammane>| ast par anval ue</ | ast par amane>
</ par anet er s>
<sessi on>
<firstparamane>firstsessionparanval ue</firstparamame>

<| ast par amane>| ast sessi onpar amval ue</ | ast par amane>
</ sessi on>
<cooki es>

<firstcooki e>firstcookieval ue</firstcooki enane>

<l ast cooki e>fir st cooki eval ue</ | ast cooki ename>
</ cooki es>
</ request >

If multiple parameters are posted with the same name, then they will automatically be
"row-ified" to make subsequent processing easier. This means, for example, that a
request which posts or includes the following parameters:

= id=101
« hane = Steve
=« 1d=102

= nane =Sita

XSQL Pages Publishing Framework 8-45

Overview of All XSQL Pages Capabilities

= operation=update
Will create a "row-ified" set of parameters like:

<request >
<par anet er s>
<r ow>
<id>101</id>
<name>St eve</ nane>
</ row>
<row>
<i d>102</id>
<name>Si t a</ nane>
</ row>
<oper at i on>updat e</ oper at i on>
</ par anet er s>

</ request >

Since you will need to provide an XSLT stylesheet that transforms this materialized
XML document containing the request parameters into canonical format for your
target table, it might be useful to build yourself an XSQL page like this:

<l--
| ShowRequest Docunent . xsql

| Show Materialized XM. Document for an HTM. Form

+-->
<xsql :incl ude-request - parans xm ns: xsql ="urn: oracl e-xsql "/>

With this page in place, you can temporarily modify your HTML form to post to the
ShowRequest Docunent . xsql page, and in the browser you will see the "raw" XML
for the materialized XML request document which you can save out and use to
develop the XSLT transformation.

Using Custom XSQL Action Handlers

When you need to perform tasks that are not handled by the built-in action handlers,
the XSQL Pages framework allows custom actions to be invoked to do virtually any
kind of job you need done as part of page processing. Custom actions can supply
arbitrary XML content to the data page and perform arbitrary processing. See Writing
Custom XSQL Action Handlers later in this chapter for more details on writing custom
action handlers in Java. Here we explore how to make use of a custom action handler,
once it's already created.

To invoke a custom action handler, use the built-in <xsql : act i on> action element. It
has a single, required attribute named handl er whose value is the fully-qualified Java
class name of the action you want to invoke. The class must implement the

oracl e. xm . xsql . XSQLAct i onHandl er interface. For example:

<xsql : action handl er ="your package. Your Cust onHandl er "/ >
Any number of additional attribute can be supplied to the handler in the normal way.

For example, if the your package. Your Cust omHandl er is expecting a attributes
named par aml and par an®, you use the syntax:

<xsql : action handl er ="your package. Your Cust onHandl er" parantl="xxx" param="yyy"/>

Some action handlers, perhaps in addition to attributes, may expect text content or
element content to appear inside the <xsqgl : act i on> element. If this is the case,
simply use the expected syntax like:

8-46 Oracle XML Developer's Kit Programmer's Guide

Description of XSQL Servlet Examples

<xsql : action handl er="your package. Your Cust onHandl| er" paraml="xxx" paran="yyy">
Some Text Coes Here
</ xsql :action>

or this:

<xsql : action handl er ="your package. Your Cust omHandl er" paraml="xxx" paran2="yyy">
<some>
<ot her/>
<el ement s/ >
<here/ >
</ sone>
</xsql :action>

Description of XSQL Servlet Examples

Figure 8-14 lists the XSQL Servlet example applications supplied with the software in
the . / deno directory.

Table 8-14 XSQL Servlet Examples

Demonstration Name Description

Hello World

Simplest possible XSQL page.

./ deno/ hel | owor | d

Do You XML Site
./ deno/ doyouxm

Employee Page

XSQL page which shows how a simple, data-driven Web site can be built using an
XSQL page which makes clever use of SQL, XSQL-substitution variables in the
queries, and XSLT for formatting the site.

Demonstrates using substitution parameters in both the body of SQL query
statements within <xsql : quer y> tags, as well as within the attributes to
<xsql : quer y> tags to control things like how many records to display and to
skip (for "paging" through query results in a stateless way).

XSQL page showing XML data from the HR schema's EMPLOYEES table, using
XSQL page parameters to control what employees are returned and what

-/ demo/ enp column(s) to use for the database sort.
Uses an associated XSLT Stylesheet for format the results as an HTML Form
containing the enp. xsql page as the form action so the user can refine their
search criteria.

Insurance Claim Page Demonstrates a number of sample queries over the richly-structured, Insurance

./ deno/insclaim

Claim object view. The i nscl ai m sql sets up the INSURANCE_CLAIM_VIEW
object view and populates some sample data.

Invalid Classes Page XSQL Page which uses invalidclasses.xsl to format a "live" list of current Java class

./ deno/cl asserr

compilation errors in your schema. The accompanying SQL script sets up the
XSQ.Javad assesVi ew object view used by the demo. The master/detail
information from the object view is formatted into HTML by the

i nval i dcl asses. xsl stylesheet in the server.

XSQL Pages Publishing Framework 8-47

Description of XSQL Servlet Examples

Table 8-14 (Cont.) XSQL Servlet Examples

Demonstration Name

Description

Airport Code Validation
./ deno/ ai r port

Airport Code Display
./ deno/ ai r port

Airport Code Display
./ deno/ ai r port

Emp/Dept Object Demo
. | deno/ empdept

Adhoc Query
Visualization

./ deno/ adhocsql

XML Document Demo
./ deno/ docunent

XSQL page returns a "datagram” of information about airports based on their
three-letter codes and uses <xsqgl : no- r ows- quer y> as alternative queries when
initial queries return no rows. After attempting to match the airport code passed
in, the XSQL page tries a fuzzy match based on the airport description.

ai rport. ht mpage demonstrates how to use the XML results of ai rport. xsql
page from a Web page using JavaScript to exploit built-in XML Document Object
Model (DOM) functionality in Internet Explorer 5.0.

When you enter the three-letter airport code on the Web page, a JavaScript fetches
the XML datagram from XSQL Servlet over the Web corresponding to the code you
entered. If the return indicates no match, the program collects a "picklist" of
possible matches based on information returned in the XML "datagram” from
XSQL Servlet

Demonstrates using the same XSQL page as the previous example but supplying
an XSLT Stylesheet name in the request. This causes the airport information to be
formatted as an HTML form instead of being returned as raw XML.

Demonstrates returning Airport information as a SOAP Service.

Demonstrates using an object view to group master/detail information from two
existing flat tables like EMP and DEPT. The empdeptobjs.sql script creates the
object view (along with INSTEAD OF INSERT triggers allowing the master/detail
view to be used as an insert target of xsql : i nsert - r equest).

The empdept.xsl stylesheet illustrates an example of the simple form of an XSLT
stylesheet that can look just like an HTML page without the extra

xsl : styl esheet orxsl : transfor matthe top. This is part of the XSLT 1.0
specification called using a Literal Result Element as Stylesheet. It also
demonstrates how to generate an HTML page that includes the <I i nk

rel ="styl esheet " > to allow the generated HTML to fully leverage CSS for
centralized HTML style information, found in the cool col or s. css file.

Demonstrates passing the entire SQL query and XSLT Stylesheet to use as
parameters to the server.

Demonstrates inserting XML documents into relational tables. The docdeno. sql
script creates a user-defined type called XMLDOCFRAG containing an attribute of
type CLOB.

Try inserting the text of the documentin . / xsql / deno/ xm 99. xm and
providing the name xm 99. xsl as the stylesheet, as well as
.1 xsql / deno/ JDevRel Not es. xm with the stylesheetr el not es. xsl .

The docst yl e. xsql page illustrates an example of the <xsql : i ncl ude- xsql >
action element to include the output of the doc. xsql page into its own page
before transforming the final output using a client-supplied stylesheet name.

The demo uses the client-side XML features of Internet Explorer 5.0 to check the
document for well-formedness before allowing it to be posted to the server.

8-48 Oracle XML Developer's Kit Programmer's Guide

Description of XSQL Servlet Examples

Table 8-14 (Cont.) XSQL Servlet Examples

Demonstration Name

Description

XML Insert Request Demo Demonstrates posting XML from a client to an XSQL Page that handles inserting

./ deno/insertxn

SVG Demo

./ deno/ svg

PDF Demo
./ deno/ f op

the posted XML information into a database table using the
<xsql : i nsert-request > action element. The demo is setup to accept XML
documents in the moreover.com XML-based news format.

In this case, the program doing the posting of the XML is a client-side Web page
using Internet Explorer 5.0 and the XMLHt t pRequest object from JavaScript. If
you look at the source for the i nsert newsst ory. xsql page, you'll see it's
specifying a table name and an XSLT Transform name. The
moreover-to-newsstory.xsl stylesheet transforms the incoming XML information
into the canonical format that the OracleXMLSave utility knows how to insert.

Try copying and pasting the example <ar t i cl e> element several times within the
<nor eover news> element to insert several new articles in one shot.

The newsstory.sgl script shows how INSTEAD OF triggers can be used on the
database views into which you ask XSQL Pages to insert to the data to customize
how incoming data is handled, default primary key values, and so on.

The dept | i st. xsql page displays a simple list of departments with hyperlinks
to the Sal Chart . xsql page. The Sal Chart. xsql page queries employees for a
given department passed in as a parameter and uses the associated

Sal Chart. xsql stylesheet to format the result into a Scalable Vector Graphics
drawing, a bar chart comparing salaries of the employees in that department.

enpt abl e. xsql page displays a simple list of employees. The enpt abl e. xsl
stylesheet transforms the datapage into the XSL-FO Formatting Objects which,
combined with the built-in FOP serializer, render the results in Adobe PDF format.

Setting Up the Demo Data

To set up the demo data do the following:

1.
2.

Change directory to the . / deno directory.

In this directory, run SQLPLUS. Connect to your database as CTXSYS/CTXSYS —
the schema owner for Oracle Text (Intermedia Text) packages — and issue the
command

CRANT EXECUTE ON ctx_ddl TO scott;

Connect to your database as SYSTEM/MANAGER and issue the command:
GRANT QUERY REWRI TE TO scott;

This allows SCOTT to create a function-based index that one of the demos uses to
perform case-insensitive queries on descriptions of airports.

Connect to your database as SCOTT/TIGER.

Run the scripti nst al | . sql inthe./ deno directory. This script runs all SQL
scripts for all the demos.

install.sql

@ nscl ai i nscl ai m sql
@locunent / docdeno. sql

@®l asserr/invalidcl asses. sql
@i rport/airport.sql

@ nsertxm / newsstory. sql
@@npdept / enpdept obj s. sql

Change directory to . / doyouxm subdirectory, and run the following:

inp scott/tiger file=doyouxm .dnp

XSQL Pages Publishing Framework 8-49

Advanced XSQL Pages Topics

to import sample data for the "Do You XML? Site" demo.

7. To experience the Scalable Vector Graphics (SVG) demonstration, install an SVG
plug-in into your browser, such as Adobe SVG Plug-in.

Advanced XSQL Pages Topics

These sections discuss XSQL Pages advanced topics.

Using a Custom XSQL Configuration File Name

By default, the XSQL Pages framework expects its configuration file to be named
XSQLConfi g. xm . When going between development, test, and production
environments, you might want to easily switch between different versions of an XSQL
configuration file. To override the name of the configuration file the XSQL page
processor will read, do one of the following:

Set the Java system property xsql . conf i g. The simplest way is to specify a Java VM
command-line flag like - Dxsql . confi g=MyConfi gFi | e. xnml by defining a servlet
initialization parameter xsql . confi g

This is accomplished by adding an <i ni t - par an® element to your web. xm file as
part of the <ser vl et > tag that defines the XSQL Servlet as follows:

<servlet>
<servl et - nane>XSQL</ ser vl et - name>
<servl et-class>oracl e. xm . xsql . XSQ.Servl et </ servl et - cl ass>
<init-paranp
<par am nanme>xsql . confi g</ par am name>
<par am val ue>MyConfi gFi | e. xm </ par am val ue>
<descri ption>
Pl ease Use MyConfigFile.xn instead of XSQL.Config.xni
</ descri pti on>
</init-paranp
</servlet>

Of course, the servlet initialization parameter is only applicable to the servlet-based
use of the XSQL Pages engine. When using the XSQLConmrandLi ne or XSQLRequest
programmatic interfaces, use the System parameter instead.

Note: The config file is always read from the CLASSPATH. For
example, if you specify a custom configuration parameter file
named MyConf i gFi | e. xm , then the XSQL page processor will
attempt to read the XML file as a resource from the CLASSPATH. In
a J2EE-style servlet environment, that means you must put your
MyConfi gFi | e. xm into the .\ VEB- | NF\ cl asses directory (or
some other top-level directory that will be found on the
CLASSPATH). If both the servlet initialization parameter and the
System parameter are provided, the servlet initialization parameter
value is used.

8-50 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

Understanding Client Stylesheet-Override Options

If the current XSQL page being requested allows it, you can supply an XSLT stylesheet
URL in the request to override the default stylesheet that is used, or to apply a
stylesheet where none is applied by default. The client-initiated stylesheet URL is
provided by supplying the xm - st yl esheet parameter as part of the request. The
valid values for this parameter are:

« Any relative URL, interpreted relative to the XSQL page being processed

« Any absolute URL using the http protocol scheme, provided it references a trusted
host (as defined in the XSQL configuration file, by default named
XSQLConfi g. xm)

« The literal value none

This last value, xnl - st yl esheet =none, is particularly useful during development
to temporarily "short-circuit” the XSLT stylesheet processing to see what XML
datagram your stylesheet is actually seeing. This can help understand why a stylesheet
might not be producing the expected results.

Client-override of stylesheets for an XSQL page can be disallowed either by:

« Settingtheal | owcl i ent - styl e configuration parameter to no in the XSQL
configuration file, or

« Explicitly includingan al | ow cl i ent - styl e="no" attribute on the document
element of any XSQL page

If client-override of stylesheets has been globally disabled by default in the XSQL
configuration file, any page can still enable client-override explicitly by including an
al lowclient-style="yes" attribute on the document element of that page.

Controlling How Stylesheets Are Processed
Here are some points to consider:

Controlling the Content Type of the Returned Document

Setting the content type of the information you serve is very important. It allows the
requesting client to correctly interpret the information that you send back.If your
stylesheet uses an <xsl : out put > element, the XSQL Page Processor infers the media
type and encoding of the returned document from the medi a- t ype and encodi ng
attributes of <xsl : out put >.

For example, the following stylesheet uses the

nedi a-type="application/vnd. ms- excel " attribute on <xsl : out put >to
transform the results of an XSQL page containing a standard query over the HR
schema's enpl oyees table into Microsoft Excel spreadsheet format.

<?xm version="1.0"?>
<I'-- enpToExcel . xsl -->
<xsl : styl esheet version="1.0" xnlns:xsl="http://ww.w3.org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:output method="htm " nedi a-type="application/vnd. nms-excel"/>
<xsl:tenplate match="/">
<htm >
<tabl e>
<t r><t h>| d</ t h><t h>Emai | </t h><t h>Sal ary</th></tr>
<xsl:for-each sel ect =" RONSET/ ROW >
<tr>
<t d><xsl : val ue-of sel ect ="EMPLOYEE | D"/ ></t d>
<t d><xsl : val ue-of sel ect="EMAIL"/></td>

XSQL Pages Publishing Framework 8-51

Advanced XSQL Pages Topics

<t d><xsl : val ue-of sel ect="SALARY"/></td>
<[tr>
</ xsl:for-each>
</tabl e>
</htn >
</xsl:tenpl ate>
</ xsl :styl esheet >

An XSQL page that makes use of this stylesheet looks like this:

<?xm version="1.0"?7>
<?xm - styl esheet href="enpToExcel . xsl" type="text/xsl"?>
<xsql : query connection="hr" xm ns:xsqgl ="urn: oracl e-xsql ">
sel ect EMPLOYEE ID, EMAIL, SALARY from enpl oyees order by salary desc
</ xsql : query>

Assigning the Stylesheet Dynamically

As we've seen, if you include an <?xm - st yl esheet ?> processing instruction at the
top of your . xsql file, it will be considered by the XSQL page processor for use in
transforming the resulting XML datagram. For example:

<?xm version="1.0"?>
<?xm -styl esheet type="text/xsl" href="enp. xsl"?>
<page connection="denp" xm ns:xsqgl ="urn: oracl e-xsql ">
<xsql : query>
SELECT * FROM enpl oyees ORDER BY sal ary DESC
</ xsql : query>
</ page>

uses the enp. xsl stylesheet to transform the results of the enpl oyees query in the
server tier, before returning the response to the requestor. The stylesheet is accessed by
the relative or absolute URL provided in the hr ef pseudo-attribute on the

<?xnl - styl esheet ?> processing instruction.

By including one or more parameter references in the value of the hr ef
pseudo-attribute, you can dynamically determine the name of the stylesheet. For
example, this page selects the name of the stylesheet to use from a table by assigning
the value of a page-private parameter using a query.

<?xm version="1.0"?>
<?xm -styl esheet type="text/xsl" href="{@heet}.xsl"?>
<page connection="denp" xm ns:xsqgl ="urn:oracl e-xsql ">
<xsql : set - page- par am bi nd- par ans=" User Cooki e" name="sheet">
SELECT styl esheet _name
FROM user _prefs
WHERE user name = ?
</ xsql : set - page- par an»
<xsql : query>
SELECT * FROM enpl oyees ORDER BY sal ary DESC
</ xsql : query>
</ page>

Processing Stylesheets in the Client

Some browsers like Microsoft's Internet Explorer 5.0 and higher support processing
XSLT stylesheets in the client. These browsers recognize the stylesheet to be processed
for an XML document in the same way that a server-side XSQL page does, using an
<?xnl - st yl esheet ?> processing instruction. This is not a coincidence. The use of
<?xm - styl esheet ?> for this purpose is part of the W3C Recommendation from
June 29, 1999 entitled "Associating Stylesheets with XML Documents, Version 1.0"

8-52 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

By default, the XSQL page processor performs XSLT transformations in the server,
however by adding on additional pseudo-attribute to your <?xmni - st yl esheet ?>
processing instruction in your XSQL page —cl i ent =" yes" — the page processor
will defer the XSLT processing to the client by serving the XML datagram "raw", with
the current <?xm - st yl esheet ?> at the top of the document.

One important point to note is that Internet Explorer 5.0 shipped in late 1998,
containing an implementation of the XSL stylesheet language that conformed to a
December 1998 Working Draft of the standard. The XSLT 1.0 Recommendation that
finally emerged in November of 1999 had significant changes from the earlier working
draft version on which IE5 is based. This means that IE5 browsers understand a
different "dialect" of XSLT than all other XSLT processors — like the Oracle XSLT
processor — which implement the XSLT 1.0 Recommendation syntax.

Toward the end of 2000, Microsoft released version 3.0 of their MSXML components as
a Web-downloadable release. This latest version does implement the XSLT 1.0 standard,
however in order for it to be used as the XSLT processor inside the IE5 browser, the
user must go through additional installation steps. There is no way for a server to
detect that the IE5 browser has installed the latest XSLT components, so until the
Internet Explorer 6.0 release emerges, which will contain the latest components by
default and which will send a detectable and different User-Agent string containing
the 6.0 version number, stylesheets delivered for client processing to IE5 browsers
have to use the earlier IE5-"flavor" of XSL.

What we need is a way to request that an XSQL page use different stylesheets
depending on the User-Agent making the request. Luckily, the XSQL Pages framework
makes this easy and we learn how in the next section.

Providing Multiple, UserAgent-Specific Stylesheets

You can include multiple <?xml - st yl esheet ?> processing instructions at the top of
an XSQL page and any of them can contain an optional nedi a pseudo-attribute. If
specified, the medi a pseudo-attribute's value is compared case-insensitively with the
value of the HTTP header's User-Agent string. If the value of the nedi a
pseudo-attribute matches a part of the User-Agent string, then the processor selects the
current <?xm - st yl esheet ?> processing instruction for use, otherwise it ignores it
and continues looking. The first matching processing instruction in document order
will be used. A processing instruction without a medi a pseudo-attribute matches all
user agents so it can be used as the fallback/default.

For example, the following processing instructions at the top of an .xsql file...

<?xm version="1.0"?>

<?xm - styl esheet type="text/xsl" media="lynx" href="doyouxn -1ynx.xsl" ?>
<?xm -styl esheet type="text/xsl" media="msie 5" href="doyouxm -ie.xsl" ?>
<?2xm -styl esheet type="text/xsl" href="doyouxm .xsl" ?>

<page xm ns:xsqgl ="urn:oracl e-xsql" connection="denp">

will use doyouxml - | ynx. xsl for Lynx browsers, doyouxm -i e. xsl| for Internet
Explorer 5.0 or 5.5 browsers, and doyouxmi . xs| for all others.

Table 8-15 summarizes all of the supported pseudo-attributes allowed on the
<?xm - st yl esheet ?> processing instruction.

XSQL Pages Publishing Framework 8-53

Advanced XSQL Pages Topics

Table 8-15 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name Description

type = "string" Indicates the MIME type of the associated stylesheet. For XSLT
stylesheets, this attribute must be set to the string t ext / xsl .

This attribute may be present or absent when using the
seri al i zer attribute, depending on whether an XSLT
stylesheet has to execute before invoking the serializer, or not.

href = "URL" Indicates the relative or absolute URL to the XSLT stylesheet to
be used. If an absolute URL is supplied that uses the htt p
protocol scheme, the IP address of the resource must be a
trusted host listed in the XSQL configuration file (by default,
named XSQ.Confi g. xm).

media = "string" This attribute is optional. If provided, its value is used to
perform a case-insensitive match on the User - Agent string
from the HTTP header sent by the requesting device. The
current <?xml - st yl esheet ?> processing instruction will
only be used if the User - Agent string contains the value of
the nedi a attribute, otherwise it is ignored.

client = "bool ean" If set to yes, caused the XSQL page processor to defer the
processing of the associated XSLT stylesheet to the client. The
"raw" XML datagram will be sent to the client with the current
<?xm - styl esheet ?> processing instruction at the top of the
document. The default if not specified is to perform the
transform in the server.

serializer = "string" By default, the XSQL page processor uses the:
« XML DOM serializer if no XSLT stylesheet is used
« XSLT processor's serializer, if XSLT stylesheet is used

Specifying this pseudo-attribute indicates that a custom
serializer implementation must be used instead.

Valid values are either the name of a custom serializer defined
in the <seri al i zer def s> section of the XSQL configuration
file (by default, named XSQLConf i g. xm), or the string
java: fully. qualified. C assnane. If both an XSLT
stylesheet and the serializer attribute are present, then the
XSLT transform is performed first, then the custom serializer is
invoked to render the final result to the Qut put St r eamor
PrintWiter.

Using XSQL Configuration File to Tune Your Environment

You can use the XSQL configuration file (by default, named XSQLConfi g. xm) to
tune your XSQL pages environment. Table 8-16 defines all of the parameters that can
be set.

8-54 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

Table 8-16 XSQL Configuration File Settings

Configuration Setting Name Description

XSQ.Confi g/ servl et/ out put - buf f er-si ze Sets the size (in bytes) of the buffered
output stream. If your servlet engine
already buffers 1/0 to the Servlet
Output Stream, then you can setto 0
to avoid additional buffering.

Default value is 0. Valid value is any
non-negative integer.

XSQ.Confi g/ servl et/ suppress-n me- char set/ medi a-t ype The XSQL Servlet sets the HTTP
Cont ent Type header to indicate the
MIME type of the resource being
returned to the request. By default,
the XSQL Servlet includes the
optional character set information in
the MIME type. For a particular
MIME type, you can suppress the
inclusion of the character set
information by including a
<medi a-t ype> element, with the
desired MIME type as its contents.

You may list any number of
<medi a-t ype> elements.

Valid value is any string.

XSQLConfi g/ processor/ character-set-conversion/defaul t-charset By default, the XSQL page processor
does character set conversion on the
value of HTTP parameters to
compensate for the default character
set used by most servlet engines. The
default base character set used for
conversion is the Java character set
8859 _1 corresponding to IANA's
| SO 8859- 1 character set. If your
servlet engine uses a different
character set as its base character set
you can now specify that value here.

To suppress character set conversion,
specify the empty element <none/ >
as the content of the

<def aul t - char set > element,
instead of a character set name. This
is useful if you are working with
parameter values that are correctly
representable using your servlet
default character set, and eliminates a
small amount of overhead associated
with performing the character set
conversion.

Valid values are any Java character
set name, or the element <none/ >.

XSQL Pages Publishing Framework 8-55

Advanced XSQL Pages Topics

Table 8-16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name

Description

XSQ.Confi g/ processor/ rel oad- connect i ons- on- error

XSQ.Confi g/ processor/ def aul t-f et ch-size

XSQ.Conf i g/ processor/ page- cache-si ze

XSQ.Confi g/ processor/ styl esheet - cache- si ze

XSQ.Confi g/ processor/styl esheet - pool /initial

8-56 Oracle XML Developer's Kit Programmer's Guide

Connection definitions are cached
when the XSQL Page Processor is
initialized. Set this setting to yes to
cause the processor to reread the
XSQLConfi g. xm file to reload
connection definitions if an attempt
is made to request a connection name
that's not in the cached connection
list. The yes setting is useful during
development when you might be
adding new <connect i on>
definitions to the file while the
servlet is running. Set to no to avoid
reloading the connection definition
file when a connection name is not
found in the in-memory cache.

Defaultisyes. Valid values are yes
and no.

Sets the default value of the row fetch
size for retrieving information from
SQL queries from the database. Only
takes effect if you are using the
Oracle JDBC Driver, otherwise the
setting is ignored. Useful for
reducing network round-trips to the
database from the servlet engine
running in a different tier.

Default is 50. Valid value is any
nonzero positive integer.

Sets the size of the XSQL cache for
XSQL page templates. This
determines the maximum number of
XSQL pages that will be cached.
Least recently used pages get
"bumped" out of the cache if you go
beyond this number.

Default is 25. Valid value is any
nonzero positive integer.

Sets the size of the XSQL cache for
XSLT stylesheets. This determines the
maximum number of stylesheets that
will be cached. Least recently used
stylesheets get "bumped" out of the
cache if you go beyond this number.

Default is 25. Valid value is any
nonzero positive integer.

Each cached stylesheet is actually a
pool of cached stylesheet instances to
improve throughput. Sets the initial
number of stylesheets to be allocated
in each stylesheet pool.

Default is 1. Valid value is any
nonzero positive integer.

Advanced XSQL Pages Topics

Table 8-16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name

Description

XSQLConfi g/ processor/ styl esheet - pool /i ncr enent

XSQLConfi g/ processor/styl esheet - pool / ti nmeout - seconds

XSQ.Confi g/ processor/ connecti on-pool /initial

XSQ.Confi g/ processor/ connecti on-pool /i ncr enent

XSQ.Confi g/ processor/ connecti on-pool / ti meout - seconds

XSQLConfi g/ processor/connecti on-pool / dunp- al | oned

XSQLConfi g/ processor/connecti on-manager/factory

Sets the number of stylesheets to be
allocated when the stylesheet pool
must grow due to increased load on
the server.

Default is 1. Valid value is any
nonzero positive integer.

Sets the number of seconds of

inactivity that must transpire before a
stylesheet instance in the pool will be
removed to free resources as the pool
tries to "shrink" back to its initial size.

Default is 60. Valid value is any
nonzero positive integer.

The XSQL page processor's default
connection manager implements
connection pooling to improve
throughput. This setting controls the
initial number of JDBC connections
to be allocated in each connection
pool.

Default is 2. Valid value is any
nonzero positive integer.

Sets the number of connections to be
allocated when the connection pool
must grow due to increased load on
the server.

Default is 1. Valid value is any
nonzero positive integer.

Sets the number of seconds of
inactivity that must transpire before a
JDBC connection in the pool will be
removed to free resources as the pool
tries to "shrink" back to its initial size.

Default is 60. Valid value is any
nonzero positive integer.

Determines whether a diagnostic
report of connection pool activity can
be requested by passing the

dunp- pool =y parameter in the page
request.

Default is no. Valid value is yes or
no.

Specifies the fully-qualified Java class
name of the XSQL connection
manager factory implementation. If
not specified, this setting defaults to
oracl e. xm . xsqgl . XSQLConnect
i onManager Fact oryl npl .

Default is

oracl e. xm . xsqgl . XSQLConnect
i onManager Fact oryl npl . Valid
value is any class name that
implements the

oracl e. xm . xsqgl . XSQLConnect
i onManager Fact ory interface.

XSQL Pages Publishing Framework 8-57

Advanced XSQL Pages Topics

Table 8-16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name

Description

XSQ.Confi g/ processor/ owa/ f et ch-styl e

XSQ.Conf i g/ processor/tini ng/ page

XSQ.Confi g/ processor/tining/ action

XSQ.Confi g/ processor/ | ogger/factory

XSQ.Confi g/ processor/error-handl er/class

8-58 Oracle XML Developer's Kit Programmer's Guide

Sets the default OWA Page Buffer
fetch style used by the
<xsql:include-owa> action.Valid
values are CLOB or TABLE, and the
default if not specified is CLOB.

If set to CLOB, the processor uses
temporary CLOB to retrieve the
OWA page buffer.

If set to TABLE the processor uses a
more efficient approach that requires
the existence of the Oracle
user-defined type named XSQL_
OMA_ARRAY which must be created
by hand using the DDL statement:

CREATE TYPE xsql _owa_array
AS TABLE OF VARCHAR2(32767)

Determines whether a the XSQL page
processor adds an xsql - ti m ng
attribute to the document element of
the page whose value reports the
elapsed number of milliseconds
required to process the page.

Default is no. Valid value is yes or
no.

Determines whether a the XSQL page
processor adds comment to the page
just before the action element whose
contents reports the elapsed number
of milliseconds required to process
the action.

Default is no. Valid value is yes or
no.

Specifies the fully-qualified Java class
name of a custom XSQL logger
factory implementation. If not
specified, then no logger is used.

Valid value is any class name that
implements the

oracl e. xm . xsql . XSQ.Logger F
act ory interface.

Specifies the fully-qualified Java class
name of a custom XSQL error
handler to be the default error
handler implementation. If not
specified, then the default error
handler is used.

Valid value is any class name that
implements the

oracl e. xm . xsql . XSQLEr r or Ha
ndl er interface.

Advanced XSQL Pages Topics

Table 8-16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name

Description

XSQLConf i g/ processor/ xm - par si ng/ preser ve- whi t espace

XSQLConfi g/ processor/security/styl esheet/defaul ts/allowclient
-style

Determines whether the XSQL page
processor preserves whitespace when
parsing XSQL page templates and
XSLT stylesheets.

The default value is t r ue. Valid
values are t r ue or f al se. Changing
the default to false can slightly speed
up the processing of XSQL pages and
stylesheets since ignoring whitespace
while parsing is faster than
preserving it.

While developing an application, it is
frequently useful to take advantage
of the XSQL page processor's for each
request stylesheet override capability
by providing a value for the special
xm - styl esheet parameter in the
request. One of the most common
uses is to provide the

xm - styl esheet =none
combination to temporarily disable
the application of the stylesheet to
"peek" underneath at the raw XSQL
data page for debugging purposes.

When development is completed,
you can explicitly add the

al l owclient-styl e="no"
attribute to the document element of
each XSQL page to prohibit client
overriding of the stylesheet in the
production application. However,
using this configuration setting, you
can globally change the default
behavior foral | owclient-style
in a single place.

Note that this only provides the
default setting for this behavior. If the
al l owclient-style="yes| no"
attribute is explicitly specified on the
document element for a given XSQL
page, its value takes precedence over
this global default.

Valid values are yes and no.

XSQL Pages Publishing Framework 8-59

Advanced XSQL Pages Topics

Table 8-16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name

Description

XSQ.Confi g/ processor/security/styl esheet/trusted-hosts/host

XSQ.Confi g/ htt p/ proxyhost

XSQ.Confi g/ http/ proxyport

XSQ Conf i g/ connecti ondef s/ connecti on

XSQ.Conf i g/ connect i ondef s/ connecti on/ user nane

XSQ.Confi g/ connecti ondef s/ connecti on/ password

XSQ-Conf i g/ connect i ondef s/ connecti on/ dbur|

XSQ.Confi g/ connecti ondef s/ connecti on/ dri ver

8-60 Oracle XML Developer's Kit Programmer's Guide

XSLT stylesheets can invoke
extension functions. In particular, the
Oracle XSLT processor — which the
XSQL page processor uses to process
all XSLT stylesheets — supports Java
extension functions. Typically your
XSQL pages will refer to XSLT
stylesheets using relative URL's The
XSQL page processor enforces that
any absolute URL to an XSLT
stylesheet that is processed must be
from a trusted host whose name is
listed here in the configuration file.

You may list any number of <host >
elements inside the

<t r ust ed- host s> element. The
name of the local machine,

| ocal host,and 127. 0. 0. 1 are
considered trusted hosts by default.

Valid values are any hostname or IP
address.

Sets the name of the HTTP proxy
server to use when processing URLS
with the http protocol scheme.

Valid value is any hostname or IP
address.

Sets the port number of the HTTP
proxy server to use when processing
URLs with the http protocol scheme.

Valid value is any nonzero integer.

Defines a "nickname" and the JDBC
connection details for a named
connection for use by the XSQL page
processor.

You may supply any humber of
<connect i on>element children of
<connect i ondef s>. Each
connection definition must supply a
narme attribute, and may supply
appropriate children elements
<user name>, <password>,
<driver>, <dburl > and

<aut oconmi t >.

Defines the username for the current
connection.

Defines the password for the current
connection.

Defines the JDBC connection URL for
the current connection.

Specifies the fully-qualified Java class
name of the JDBC driver to be used
for the current connection. If not
specified, defaults to

oracl e.jdbc.driver. Oracl eDr
iver.

Advanced XSQL Pages Topics

Table 8-16 (Cont.) XSQL Configuration File Settings

Configuration Setting Name Description

XSQLConfi g/ connect i ondef s/ connect i on/ aut ocommi t Explicitly sets the Auto Commit flag
for the current connection. If not
specified, connection uses JDBC
driver's default setting for Auto
Commit.

XSQ.Config/serializerdefs/serializer Defines a named custom serializer
implementation.

You may supply any number of
<seri al i zer > element children of
<seri al i zer def s>. Each must
specify both a <nanme>and a

<cl ass> child element.

XSQLConfig/serializerdefs/serializer/name Defines the name of the current
custom serializer definition.

XSQLConfi g/ connect i ondef s/ connecti on/ cl ass Specifies the fully-qualified Java class
name of the current custom serializer.
The class must implement the
oracl e. xm . xsqgl . XSQLDocunen
t Seriali zer interface.

Using the FOP Serializer to Produce PDF Output

Using the XSQL Pages framework's support for custom serializers, the

oracl e.xm . xsql .serializers. XSQLFOPSeri al i zer is provided for
integrating with the Apache FOP processor (http://xml.apache.org/fop). The FOP
processor renders a PDF document from an XML document containing XSL
Formatting Objects (ht t p: / / www. wW3. or g/ TR/ xsl).

For example, given the following XSLT stylesheet, EnpTabl eFO. xsl :

<?xm version="1.0"?>
<fo:root xmns:fo="http://ww.w3.org/1999/ XSL/ Format" xsl:version="1.0"
xm ns: xsl ="http:// www w3. or g/ 1999/ XSL/ Tr ansf or n{ >

<I-- defines the | ayout naster -->
<fo:layout - master-set>
<f o: si npl e- page- nast er master-name="first"
page- hei ght =" 29. 7cnf
page-w dt h="21cnf
mar gi n-t op="1cnt
mar gi n- bott om=" 2cnf
margi n- | eft="2. 5cnf
mar gi n-ri ght="2. 5cm'>
<f o: regi on- body margi n-top="3cni/>
</fo:si npl e- page- nast er >
</fo:layout-nmaster-set>

<l-- starts actual layout -->
<f 0: page- sequence master-reference="first">

<fo:flow fl ow name="xsl - r egi on- body" >
<fo: bl ock font-size="24pt" |ine-height="24pt" font-weight="bold"

start-indent="15pt">
Total of Al Salaries is $<xsl:val ue-of select="sun(/RONBET/ ROW SAL)"/ >

XSQL Pages Publishing Framework 8-61

Advanced XSQL Pages Topics

</fo: bl ock>

<l-- Here starts the table -->
<fo: bl ock border-w dth="2pt">
<fo:tabl e>
<fo:tabl e-col um col um-w dt h="4cni'/ >
<fo:tabl e-col um col um-w dth="4cnf/>
<fo:tabl e-body font-size="10pt" font-fanily="sans-serif">
<xsl:for-each sel ect =" RONSET/ ROW >
<fo:tabl e-row | ine-hei ght="12pt">
<fo:table-cell>
<f 0: bl ock><xsl : val ue- of sel ect ="ENAME"/ ></ f 0: bl ock>
</fo:table-cell>
<fo:table-cell>
<f 0: bl ock><xsl : val ue- of sel ect ="SAL"/></fo: bl ock>
</fo:table-cell>
</fo:table-row
</ xsl:for-each>
</fo:tabl e-body>
</fo:tabl e>
</fo:block>
</fo:flow
</ f o: page- sequence>
</fo:root>

Note: To use the XSQL FOP Serializer, you need to add these
additional Java archives to your server's CLASSPATH:

« Xsql serializers.jar -supplied with Oracle XSQL
« fop.jar - from Apache, version 0.20.3 or higher

« batik.jar - from the FOP distribution

« avalon-framework-4.0.jar - from FOP distribution

« logkit-1.0.jar - from FOP distribution

For reference, in case you might want to customize the implementation, the source
code for the FOP Serializer provided in this release looks like this:

package oracl e.xnl.xsql.serializers;
i nport org.w3c. dom Docunent ;
i nport org. apache. | og. Logger;
i nport org.apache. | og. H erarchy;
i nport org.apache. f op. messagi ng. MessageHand| er;
i nport org.apache. | og. LogTar get;
import oracle.xnl.xsql . XSQ.PageRequest ;
inmport oracle.xn.xsql.XSQ.Docunent Seri al i zer;
i nport org.apache. fop. apps. Dri ver;
i nport org.apache. | og. out put. Nul | Qut put LogTar get ;
/**
* Tested with the FOP 0.20.3RC rel ease from 19-Jan- 2002
*/
public class XSQFCOPSerializer inplenents XSQLDocunent Seri alizer {
private static final String PDFM ME = "application/pdf";
public void serialize(Document doc, XSQ.PageRequest env) throws Throwabl e {
try {
Il First make sure we can | oad the driver
Driver FOPDriver = new Driver();

8-62 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

[/ Tell FOP not to spit out any messages by default.

/1 You can modify this code to create your own FOP Serializer

/1 that logs the output to one of many different |ogger targets

/] using the Apache LogKit API

Logger | ogger=Hierarchy. get Defaul t H erarchy() . get Logger For (" XSQ.Servlet");
| ogger . set LogTarget s(new LogTarget [] {new Nul | Qut put LogTarget()});
FOPDx i ver . set Logger (1 ogger);

/1 Some of FOP's messages appear to still use MessageHandler.
MessageHandl er. set Qut put Met hod(MessageHand! er. NONE) ;

/1 Then set the content type before getting the reader

env. set Cont ent Type(PDFM ME) ;

FOPDri ver. set Qut put St rean(env. get Qut put St rean());

FOPDx i ver. set Render er (FOPDr i ver. RENDER_PDF); FOPDri ver.render(doc);

}
catch (Exception e) {

/] Cannot wite PDF output for the error anyway.
/1 So maybe this stack trace will be useful info
e.printStackTrace(Systemerr);

}
}
}

Using XSQL Page Processor Programmatically

The XSQLRequest class, enables you to utilize the XSQL page processor "engine”
from within your own custom Java programs. Using the API is simple. You construct
an instance of XSQLRequest , passing the XSQL page to be processed into the
constructor as one of the following:

« Stringcontaining a URL to the page

« URL object for the page

« In-memory XM.Docunent

Then you invoke one of the following methods to process the page:

« process() towritetheresulttoaPrintWiter orQutput Streamor
« processToXM.() to return the result as an XML Document

If you want to use the built-in XSQL Connection Manager — which implements JDBC
connection pooling based on XSQL configuration file definitions — then the XSQL
page is all you need to pass to the constructor. Optionally, you can pass in a custom
implementation for the XSQ_Connect i onManager Fact ory interface as well, if you
want to use your own connection manager implementation.

Note that the ability to pass the XSQL page to be processed as an in-memory XML
Document object means that you can dynamically generate any valid XSQL page for
processing using any means necessary, then pass the page to the XSQL engine for
evaluation.

When processing a page, there are two additional things you may want to do as part of
the request:

« Pass a set of parameters to the request

You accomplish this by passing any object that implements the Di cti onary
interface, to the process() or processToXM.() methods. Passing a
HashTabl e containing the parameters is one popular approach.

« Setan XML document to be processed by the page as if it were the "posted XML"
message body

XSQL Pages Publishing Framework 8-63

Advanced XSQL Pages Topics

You can do this using the set Post edDocunent () method on the XSQLRequest
object.

Here is a simple example of processing a page using XSQLRequest :

import oracle.xn.xsql.XSQLRequest ;
inport java.util.Hashtable;
inport java.io.PrintWiter;
i mport java.net. URL;
public class XSQRequest Sanpl e {
public static void main(String[] args) throws Exception {
/1 Construct the URL of the XSQL Page
URL pageUr! = new URL("file:///C /foolbar.xsql");
/1 Construct a new XSQL Page request
XSQ.Request req = new XSQLRequest (pagelr!);
/] Setup a Hashtable of named paranmeters to pass to the request
Hashtabl e parans = new Hashtabl e(3);
par ans. put (" paraml", "val uel");
par ans. put (" paranm", "val ue2");
[* If needed, treat an existing, in-nenory XM.Docurment as if
** it were posted to the XSQL Page as part of the request
req. set Post edDocunent (myXM.Docunent) ;

* %
*/
/1 Process the page, passing the paraneters and witing the output
I/ to standard out.
req. process(params, new PrintWiter(Systemout)
,new PrintWiter(Systemerr));

Writing Custom XSQL Action Handlers

When the task at hand requires custom processing, and none of the built-in actions
does exactly what you need, you can augment your repertoire by writing your own
actions that any of your XSQL pages can use.

The XSQL page processor at its very core is an engine that processes XML documents
containing "action elements". The page processor engine is written to support any
action that implements the XSQLAct i onHandl er interface. All of the built-in actions
implement this interface.

The XSQL Page Processor processes the actions in a page in the following way. For
each action in the page, the engine:

1. Constructs an instance of the action handler class using the default constructor

2. Initializes the handler instance with the action element object and the page
processor context by invoking the method i ni t (El enent
acti onEl t, XSQLPageRequest context)

3. Invokes the method that allows the handler to handle the action handleAction
(Node result)

For built-in actions, the engine knows the mapping of XSQL action element name to
the Java class that implements the action's handler. Table 8-17, " Built-In XSQL
Elements and Action Handler Classes" lists that mapping explicitly for your reference.
For user-defined actions, you use the built-in:

<xsqgl :action handler="fully.qualified. Classnane" ... />

8-64 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

action whose handl er attribute provides the fully-qualified name of the Java class
that implements the custom action handler.

Table 8-17 Built-In XSQL Elements and Action Handler Classes

Handler Class in
XSQL Action Element oracle.xml.xsql.actions Description

<xsql : query> XSQLQuer yHandl er Execute an arbitrary SQL
statement and include its
result in canonical XML
format.

<xsql : dm > XSQ.DML.Handl er Execute a SQL DML
statement or a PL/SQL
anonymous block.

<xsql : set-styl esheet - par anp XSQ.St yl esheet Par anet er Handl er Set the value of a top-level
XSLT stylesheet parameter.

<xsql :insert-request> XSQLI nsert Request Handl er Insert the XML document
(or HTML form) posted in
the request into a database
table or view.

<xsql : i ncl ude- xm > XSQLI ncl udeXM_Handl er Include arbitrary XML
resources at any point in
your page by relative or
absolute URL.

<xsql : i ncl ude-request - par ans> XSQLI ncl udeRequest Handl er Include all request
parameters as XML
elements in your XSQL

page.
<xsql : i ncl ude- post ed- xm > XSQLI ncl udePost edXM_Hand! er

<xsql : i ncl ude- xsql > XSQLI ncl udeXSQ.Handl er Include the results of one
XSQL page at any point
inside another.

<xsql : i ncl ude- owa> XSQLI ncl udeOMHandl er Include the results of
executing a stored
procedure that makes use
of the Oracle Web Agent
(OWA) packages inside the
database to generate XML.

<xsql:action> XSQLExt ensi onAct i onHandl er Invoke a user-defined
action handler,
implemented in Java, for
executing custom logic
and including custom
XML information into
your XSQL page.

<xsql : ref-cursor-function> XSQLRef Cur sor Funct i onHandl er Includes the canonical
XML representation of the
result set of a cursor
returned by a PL/SQL
stored function.

<xsql : i ncl ude- paran» XSQ.Cet Par anet er Handl er Include a parameter and
its value as an element in
your XSQL page.

<xsql ;i f-paran XSQLI f Par anHand| er Conditionally include
XML content and other
XSQL actions (or other
XSQL actions).

XSQL Pages Publishing Framework 8-65

Advanced XSQL Pages Topics

Table 8-17 (Cont.) Built-In XSQL Elements and Action Handler Classes

Handler Class in

XSQL Action Element oracle.xml.xsql.actions Description

<xsql : set - sessi on- par anp XSQLSet Sessi onPar anHandl er Set an HTTP-Session level
parameter.

<xsql : set - page- par an» XSQ.Set PagePar anHandl| er Set an HTTP-Session level

<xsql

<xsql

<xsql

<xsql

<xsql

parameter. Set a page-level
(local) parameter that can
be referred to in
subsequent SQL
statements in the page.

. set-cooki e> XSQLSet Cooki eHandl er Set an HTTP Cookie.

insert-paranp XSQLI nsert Par anet er Handl er Inserts the XML document

contained in the value of a
single parameter.

:updat e-request > XSQ.Updat eRequest Handl er Update an existing row in

the database based on the
posted XML document
supplied in the request.

: del et e-request > XSQLDel et eRequest Handl er Delete an existing row in

the database based on the
posted XML document
supplied in the request.

Includes nested actions
and literal XML content
(or literal XML content) if
some condition based on a
parameter value is true.

All the demos are listed at htt p: / /| ocal host/ xsql /i ndex. ht ml.

Writing your Own Action Handler

To create a custom Action Handler, you need to provide a class that implements the
oracl e. xm . xsqgl . XSQLAct i onHandl er interface. Most custom action handlers
extend or acl e. xm . xsql . XSQLAct i onHandl er | npl that provides a default
implementation of the i ni t () method and offers a set of useful helper methods that
will prove very useful.

When an action handler's handleAction method is invoked by the XSQL page
processor, the action implementation gets passed the root node of a DOM Document
Fragment to which the action handler appends any dynamically created XML content
that is returned to the page.

The XSQL Page Processor conceptually replaces the action element in the XSQL page
template with the content of this Document Fragment. It is completely legal for an
Action Handler to append nothing to this document fragment, if it has no XML
content to add to the page.

While writing you custom action handlers, several methods on the
XSQ_Act i onHandl er | npl class are worth noting because they make your life a lot
easier. Table 8-18 lists the methods that will likely come in handy for you.

8-66 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

Table 8-18 Helpful Methods on oracle.xml.xsql.SQLActionHandlerimpl

Method Name

Description

get Acti onEl erment

get Act i onEl emrent Cont ent

get PageRequest

get Attri but eAl | owi ngParam

appendSecondar yDocunent

addResul t El enent

firstCol umO First Row

bi ndVari abl eCount

Returns the current action element being handled

Returns the text content of the current action element,
with all lexical parameters substituted appropriately.

Returns the current XSQL page processor context.
Using this object you can then do things like:

« set PagePar an()
Set a page parameter value

« get Post edDocunent () / set Post edDocunent ()
Get or set the posted XML document

« translateURL()
Translate a relative URL to an absolute URL

« get Request Ohj ect ()/ set Request Ohj ect ()

Get or set objects in the page request context that
can be shared across actions in a single page.

« get JDBCConnecti on()

Gets the JDBC connection in use by this page
(possible null if no connection in use).

« get Request Type()

Detect whether you are running in the "Servlet",
"Command Line" or "Programmatic” context. For
example, if the request type is "Servlet" then you
can cast the XSQLPageRequest object to the more
specific XSQLSer vl et PageRequest to access
addition Servlet-specific methods like

get Ht t pSer vl et Request

get Ht t pSer vl et Response, and

get Ser vl et Cont ext

Retrieve the attribute value from an element, resolving
any XSQL lexical parameter references that might
appear in the attribute's value. Typically this method is
applied to the action element itself, but it is also useful
for accessing attributes of any of its sub-elements. To
access an attribute value without allowing lexical
parameters, use the standard get Att ri but e()
method on the DOM Element interface.

Append the entire contents of an external XML
document to the root of the action handler result
content.

Simplify appending a single element with text content
to the root of the action handler result content.

Return the first column value of the first row of a SQL
statement passed in. Requires the current page to have
a connection attribute on its document element, or an
error is returned.

Returns the number of tokens in the space-delimited
list of bi nd- par ans, indicating how many bind
variables are expected to be bound to parameters.

XSQL Pages Publishing Framework 8-67

Advanced XSQL Pages Topics

Table 8-18 (Cont.) Helpful Methods on oracle.xml.xsql.SQLActionHandlerimpl

Method Name

Description

handl eBi ndVari abl es

report Errorlncludi ngSt at ement

reportFatal Error
report M ssingAttribute

report Status

requi redConnect i onProvi ded

vari abl eVal ue

Manage the binding of JDBC bind variables that appear
in a prepared statement with the parameter values
specified in the bi nd- par ans attribute on the current
action element. If the statement already is using a
number of bind variables prior to call this method, you
can pass the number of existing bind variable "slots" in
use as well.

Report an error, including the offending (SQL)
statement that caused the problem, optionally
including a numeric error code.

Report a fatal error.

Report an error that a required action handler attribute
is missing using the standard <xsql - er r or > element.

Report action handler status using the standard
<xsql - st at us> element.

Checks whether a connection is available for this
request, and outputs an "errorgram” into the page if no
connection is available.

Returns the value of a lexical parameter, taking into
account all scoping rules which might determine its
default value.

The following example shows a custom action handler Myl ncl udeXSQLHandl er that

leverages one of the built-in action handlers and then uses arbitrary Java code to
modify the resulting XML fragment returned by that handler before appending its

result to the XSQL page:

oracle.xnl.xsql.*;
oracle.xnl.xsql.actions.
org.w3c. dom *;
import java.sql.SQ.Exception;
public class M ncl udeXSQ.Handl
XSQLAct i onHandl er nest edHandl
public void init(XSQLPageRequ
super.init(req, action);
Il Oreate an instance of an
/1 and init() the handler b
[l This assunes the XSQ.Inc
Il href="xxx.xsql" attribut
nest edHandl er = new XSQLI nc
nestedHandl er.init(req, acti
}
public void handl eAction(Node r
Docurent Fragnent df=result.g
nest edHandl er. handl eAction(d
/1 Custom Java code here can

i mport
i mpor t
i mport

XSQLI ncl udeXSQLHandl er;

er extends XSQLActionHandl erlnpl {
er = null;
est req, Elenent action) {

XSQLI ncl udeXSQLHandl er

y passing the current request/action
| udeXSQHandl er will pick upits

e fromthe current action el ement.

| udeXSQ Handl er () ;

on);

esult) throws SQLException {

et Oaner Docunent () . cr eat eDocunent Fragnent () ;
f);

work on the returned docunent fragment

/1 before appending the final, nodified docunent to the result node.

/] For exanple, add an attri
El enent e
if (e!=null) {

bute to the first child

(El enent)df.getFirstChild();

e.setAttribute("ExtraAttribute","SomeVal ue");

}
resul t.appendChil d(df);

}

8-68 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

If you create custom action handlers that need to work differently based on whether
the page is being requested through the XSQL Servlet, the XSQL Command-line
Utility, or programmatically through the XSQLRequest class, then in your Action
Handler implementation you can call get PageRequest () to get a reference to the
XSQLPageRequest interface for the current page request. By calling

get Request Type() on the XSQLPageRequest object, you can see if the request is
coming from the "Servlet", "Command Line", or "Programmatic" routes respectively. If
the return value is "Servlet", then you can get access to the HTTP Servlet request,
response, and servlet context objects by doing:

XSQ.Ser vl et PageRequest xspr = (XSQLSer vl et PageRequest) get PageRequest () ;
if (xspr.getRequest Type().equal s("Servlet")) {

Ht t pSer vl et Request req = xspr.getHtpServletRequest();
H t pServl et Response resp = xspr.getHtpServletResponse();
Ser vl et Cont ext cont = xspr.getServletContext();

/1 do sonething fun here with req, resp, or cont however

[/ witing to the response directly froma handl er wll

/1 produce unexpected results. Allow the XSQL Servl et

/1 or your custom Serializer to wite to the servlet

/1 response output streamat the wite nmonent |ater when all
/1 action elenents have been processed.

Using Multi-Valued Parameters in Custom XSQL Actions

The base class for custom XSQL actions, XSQLAct i onHandl er | npl supports
working with array-named lexical parameter substitution and array-named bind
variables as well as simple-valued parameters. If your custom actions are use methods
like get Att ri but eAl | owi ngParam(), get Acti onEl enent Content (), or

handl eBi ndVari abl es() methods from this base class, you pickup the
multi-valued parameter functionality for free in your custom actions.

Use the get Par anmet er Val ues() method on the XSQLPageRequest interface to
explicitly get a parameter valueasa St ri ng[] . The helper method

vari abl eVal ues() inXSQLActi onHandl er | npl makes it easy to use this
functionality from within a custom action handler if you need to do so
programmatically.

Writing Custom XSQL Serializers

You can provide a user-defined serializer class to programmatically control how the
final XSQL datapage's XML document is serialized to a text or binary stream. A
user-defined serializer must implement the

oracl e. xm . xsqgl . XSQLDocunent Seri al i zer interface which comprises the
single method:

void serialize(org.wdc.dom Docunent doc, XSQ.PageRequest env) throws Throwabl e;
In this release, DOM-based serializers are supported. A future release may support

SAX2-based serializers as well. A custom serializer class is expected to perform the
following tasks in the correct order:

1. Set the content type of the serialized stream before writing any content to the
output Pri nt Wit er (or Qut put St ream.

You set the type by calling set Cont ent Type() on the XSQLPageRequest that
is passed to your serializer. When setting the content type, you can either set just a
MIME type like this:

XSQL Pages Publishing Framework 8-69

Advanced XSQL Pages Topics

env. set Cont ent Type("text/htm ");

or a MIME type with an explicit output encoding character set like this:
env. set Cont ent Type(“"text/htm ; charset=Shift_JIS");

2. Callget Witer() orget CQut put St rean() — but not both! — on the
XSQ.PageRequest to get the appropriate Pri nt Wit er or Qut put Stream
respectively to use for serializing the content.

For example, the following custom serializer illustrates a simple implementation
which simply serializes an HTML document containing the name of the document
element of the current XSQL data page:

package oracl e.xnl.xsql.serializers;
i nport org.w3c. dom Docunent ;

inport java.io.PrintWiter;

import oracle.xnl.xsql.*;

public class XSQSanpl eSerializer inplements XSQLDocunent Serializer {
public void serialize(Docunent doc, XSQ.PageRequest env) throws Throwabl e {
String encoding = env.getPageEncoding(); // Use sanme encoding as XSQ. page
/] tenmplate. Set to specific
/'l encoding if necessary
String mmeType = "text/htm"; // Set this to the appropriate content type
/1 (1) Set content type using the setContent Type on the XSQ.PageRequest
if (encoding !'= null && !encoding.equal s("")) {
env. set Cont ent Type(m neType+"; char set =" +encodi ng) ;
}
el se {
env. set Cont ent Type(m neType);
}
Il (2) Get the output witer fromthe XSQPageRequest
PrintWiter e = env.getWiter();
Il (3) Serialize the docunent to the witer
e.println("<htm >Docunent el ement is "+
doc. get Document El ement () . get NodeNane() +
"</ b></html >");
}
}

There are two ways to use a custom serializer, depending on whether you need to first
perform an XSLT transformation before serializing or not. To perform an XSLT
transformation before using a custom serializer, simply add the
serializer="java:fully.qualified.C assNane" inthe

<?xm - styl esheet ?> processing instruction at the top of your page like this:

<?xm version="1.0?>
<?xm -styl esheet type="text/xsl" href="nystyle.xsl"
serializer="java: ny. pkg. M/Seri alizer"?>

If you only need the custom serializer, simply leave out the t ype and hr ef attributes
like this:

<?xm version="1.0?>
<?xm - styl esheet serializer="java:ny.pkg. M/Serializer"?>

You can also assign a short name to your custom serializers in the
<seri al i zer def s> section of the XSQL configuration file (by default, named
XSQ.Confi g. xn) and then use the nickname (case-sensitive) in the serializer

8-70 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

attribute instead to save typing. For example, if you have the following in the XSQL
configuration file:

<XSQLConfi g>
<l--and so on. -->
<serializerdefs>
<serializer>
<nane>Sanpl e</ name>
<cl ass>oracl e. xm . xsql . serializers. XSQLSanpl eSeri al i zer </ cl ass>
</serializer>
<serializer>
<name>FOP</ name>
<cl ass>oracle. xm . xsqgl . serial i zers. XSQLFOPSeri al i zer </ cl ass>
</serializer>
</serializerdefs>
</ XSQ.Conf i g>

then you can use the nicknames "Sample" and "FOP" (or "FOP") as shown in the
following examples:

<?2xnl -styl esheet type="text/xsl" href="enp-to-xslfo.xsl" serializer="FOP"?>

or

<?xm - styl esheet serializer="Sanpl e"?>

The XSQLPageRequest interface supports bothaget Witer() anda

get Qut put St r ean() method. Custom serializers can call get Qut put St rean() to
return an Qut put St r eaminstance into which binary data (like a dynamically
produced GIF image, for example) can be serialized. Using the XSQL Servlet, writing
to this output stream results in writing the binary information to the servlet output
stream.

For example, the following serializer illustrates an example of writing out a dynamic
GIF image. In this example the GIF image is a static little "ok" icon, but it shows the
basic technique that a more sophisticated image serializer needs to use:

package oracle.xnl .xsql.serializers;
i nport org.w3c. dom Docunent ;

inport java.io.*;

inport oracle.xm.xsql.*;

public class XSQ.Sanpl el nageSeri al i zer inplenents XSQ.Docunent Seri alizer {
Il Byte array representing a small "ok" G F inage
private static byte[] okGf =
{(byte) 0x47, (byt e) 0x49, (byt e) 0x46, (byt) 0x38,
(byte) 0x39, (byte) 0x61, (byt e) 0xB, (byt e) 0x0,
(byte) 0x9, (byt e) 0x0, (byt e) OXFFFFFF80, (byt e) 0x0,
(byte) 0x0, (byt e) 0x0, (byt e) 0x0, (byt e) 0xO0,
(byt e) OXFFFFFFFF, (byt e) OXFFFFFFFF, (byt e) OXFFFFFFFF, (byt e) 0x2C,
(byte) 0x0, (byt e) 0x0, (byt e) 0x0, (byt) 0x0,
(byte) 0xB, (byt e) 0x0, (byt e) 0x9, (byt e) 0xO0,
(byte) 0x0, (byt e) 0x2, (byt e) 0x14, (byt e) OXFFFFFF8C,
(byt e) OxF, (byt e) OXFFFFFFA?, (byt e) OXFFFFFFBS, (byt e) Ox FFFFFFIB,
(byte) OxA, (byt e) OXFFFFFFA2, (byt e) 0x79, (byt e) OxXFFFFFFE9,
(byt e) OXFFFFFF85, (byt e) Ox7A, (byt e) 0x27, (byt e) OxFFFFFF93,
(byte) Ox5A, (byt e) OXFFFFFFE3, (byt €) OxFFFFFFEC, (byt e) 0x75,
(byte)0x11, (byt e) OXFFFFFF85, (byt €) 0x14, (byt e) 0x0,
(byte) 0x3B};

XSQL Pages Publishing Framework 8-71

Advanced XSQL Pages Topics

public void serialize(Document doc, XSQLPageRequest env) throws Throwabl e {
env. set Cont ent Type("i mage/ gif");
Qut put Stream os = env. get Qut put Strean();
os.wite(okGf,0,0kGf.length);
os. flush();
}
}

Using the XSQL Command-line utility, the binary information is written to the target
output file. Using the XSQLRequest programmatic API, two constructors exist that
allow the caller to supply the target Qut put St r eamto use for the results of page
processing.

Note that your serializer must either call get Wi t er () (for textual output) or
get Qut put St rean() (for binary output) but not both. Calling both in the same
request will raise an error.

Using a Custom XSQL Connection Manager for JDBC Datasources

As an alternative to defining your named connections in the XSQL configuration file,
you may use one of the two provided XSQLConnectionManager implementations that
let you use your servlet container's JDBC Datasource implementation and related
connection pooling features.

This XSQL Pages release comes with two of these alternative connection manager
implementations:

«» oracle.xm.xsqgl.XSQLDat asour ceConnect i onManager

Consider using this alternative connection manager if your servlet container's
datasource implementation does not use the Oracle JDBC driver under the covers.
Certain features of the XSQL Pages system will not be available when you are not
using an Oracle JDBC driver, like <xsql : ref - cursor-functi on>and

<xsql : i ncl ude- owa>.

« oracle.xml.xsql.XSQLOracleDatasourceConnectionManager

Consider using this alternative connection manager when you know that your
datasource implementation returns JDBC Pr epar edSt at enent and

Cal I abl eSt at enent objects that implement the

oracl e. jdbc. PreparedSt at enent and

oracl e. jdbc. Cal | abl eSt at emrent interfaces respectively. The Oracle
Application Server has a datasource implementation that does this.

When using either of these alternative connection manager implementations, the value
of the connection attribute in your XSQL page template is the INDI name used to
lookup your desired datasource. For example, the value of the connection attribute
might look something like:

« jdbc/scottDS
« java:conp/env/jdbc/ MyDat asource

Remember that if you are not using the default XSQL Pages connection manager, then
any connection pooling functionality that you need must be provided by the
alternative connection manager implementation. In the case of the earlier two options
that are based on JDBC Datasources, you are relying on properly configuring your
servlet container to supply the connection pooling. See your servlet container's
documentation for instructions on how to properly configure the datasources to offer
pooled connections.

8-72 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

Writing Custom XSQL Connection Managers

You can provide a custom connection manager to replace the built-in connection
management mechanism. To provide a custom connection manager implementation,
you must provide:

1. A connection manager factory object that implements the
oracl e. xm . xsqgl . XSQLConnect i onManager Fact or y interface.

2. A connection manager object that implements the
oracl e. xm . xsqgl . XSQLConnect i onManager interface.

Your custom connection manager factory can be set to be used as the default
connection manager factory by providing the class name in the XSQL configuration
file (by default, named XSQLConf i g. xm) in the section:

<I--
| Set the name of the XSQ. Connection Manager Factory
| inplementation. The class nust inplement the
| oracle.xnl.xsqgl.XSQ@ Connecti onManager Factory i nterface.
| If unset, the default is to use the built-in connection
| manager inplementation in
| oracle.xm .xsqgl.XSQConnecti onManager Fact oryl npl
+-->
<connecti on- manager >
<fact ory>oracl e. xm . xsqgl . XSQLConnect i onManager Fact oryl npl </ f act ory>
</ connecti on- manager >

In addition to specifying the default connection manager factory, a custom connection
factory can be associated with any individual XSQLRequest object using APIs
provided.

The responsibility of the XSQLConnect i onManager Fact ory is to return an instance
of an XSQ_.Connect i onManager for use by the current request. In a multithreaded
environment like a servlet engine, it is the responsibility of the

XSQLConnect i onManager object to insure that a single XSQLConnect i on instance
is not used by two different threads. This can be assured by marking the connection as
"in use" for the span of time between the invocation of the get Connecti on()
method and ther el easeConnecti on() method. The default XSQL connection
manager implementation automatically pools named connections, and adheres to this
thread-safe policy.

If your custom implementation of XSQ_Connect i onManager implements the
optional or acl e. xm . xsqgl . XSQLConnect i onManager Cl eanup interface as well,
then your connection manager will be given a chance to cleanup any resources it has
allocated. For example, if your servlet container invokes the dest r oy () method on
the XSQLSer vl et servlet, which can occur during online administration of the servlet
for example, this will give the connection manager a chance to clean up resources as
part of the servlet destruction process.

Providing a Custom XSQLErrorHandler Implementation

You may want to control how serious page processor errors (like a connection's being
unavailable) are reported to users. Writing a class that implements the

oracl e. xm . xsqgl . XSQLEr r or Handl er interface enables you to do this. The
interface contains the single method:

public interface XSQLErrorHandl er {
public void handl eError(XSQ.Error err, XSQ.PageRequest env);

}

XSQL Pages Publishing Framework 8-73

Advanced XSQL Pages Topics

You can provide a class that implements the XSQLEr r or Handl er interface to
customize how the XSQL page processor writes out any page processor error
messages. The new XSQLEr r or object encapsulates the error information and
provides access to the error code, formatted error message, and so on.

For example, here is a sample implementation of XSQLEr r or Handl er:

package exanpl e;
import oracle.xn.xsql.*;
inport java.io.*;
/**
* Exanpl e of a custom XSQLErrorHandl er inplementation
*|
public class MyErrorHandl er inplements XSQErrorHandl er {
public void |ogError(XSQError err, XSQ.PageRequest env) {
Il Must set the content type before witing anything out
env. set Content Type("text/htm");
PrintWiter pw = env.getErrorWiter();
pw. pri ntl n("<HL>ERROR</ H1><hr >" +err. get Message()) ;

}
}

You can control which custom XSQLEr r or Handl er implementation gets used in two
distinct ways:

1. You can define the name of a custom XSQLEr r or Handl er implementation class
in the XSQL configuration file (by default, named XSQLConf i g. xm) by
providing the fully-qualified class name of your error handler class as the value of
the / XSQLConfi g/ processor/ error-handl er/ cl ass entry.

2. If the Page Processor can load this class and it correctly implements the
XSQLEr r or Handl er interface, then this class is used as a singleton and replaces
the default implementation globally, wherever page processor errors are reported.

3. You can override the error writer on a for each page basis using the new, optional
error Handl er (or xsql : err or Handl er) attribute on the document element of
your page.

4. The value of this attribute is the fully-qualified class name of a class that
implements the XSQLEr r or Handl er interface. This class will be used to report
the errors for just this page and the class is instantiated on each page request by
the page engine.

You can use a combination of both approaches if needed.

Providing a Custom XSQL Logger Implementation

You can optionally register custom code to handle the logging of the start and end of
each XSQL page request. Your custom logger code must provide an implementation of
the two interfaces or acl e. xm . xsql . XSQ.Logger Fact ory and

oracl e. xm . xsqgl . XSQ.Logger.

The XSQLLogger Fact ory interface contains the single method:

public interface XSQ.LoggerFactory {
public XSQ.Logger create(XSQ.PageRequest env);
}

You can provide a class that implements the XSQLLogger Fact or y interface to decide
how XSQLLogger objects are created (or reused) for logging. The XSQL Page
processor holds a reference to the XSQ.Logger object returned by the factory for the

8-74 Oracle XML Developer's Kit Programmer's Guide

Advanced XSQL Pages Topics

duration of a page request and uses it to log the start and end of each page request by
invoking the | ogRequest Start () and | ogRequest End() methods on it.

The XSQLLogger interface looks like this:

public interface XSQ.Logger {
public void | ogRequest St art (XSQLPageRequest env) ;
public voi d | ogRequest End(XSQLPageRequest env);

}

The following two classes illustrate a trivial implementation of a custom logger. First is
the XSQLLogger implementation which notes the time the page request started and
then logs the page request end by printing the name of the page request and the
elapsed time to Syst em out :

package exanpl e;
inport oracle.xm.xsql.*;
public class Sanpl eCustoniogger inplenents XSQLLogger {
long start = 0;
public void | ogRequest Start (XSQLPageRequest env) {
start = SystemcurrentTimeMI1lis();
}
public void | ogRequest End(XSQLPageRequest env) {
long secs = SystemcurrentTimeMIlis() - start;
Systemout. println("Request for " + env. get Sour ceDocument URI ()
+ " took "+ secs + "ns");
}
1

Next, the factory implementation:

package exanpl e;
inport oracle.xm.xsql.*;
public class Sanpl eCustonLogger Factory i nplenents XSQLLogger Factory {
public XSQLLogger create(XSQPageRequest env) {
return new Sanpl eCust onlogger () ;

}
}

To register a custom logger factory, edit the XSQLConf i g. xm file and provide the
name of your custom logger factory class as the content to the
/ XSQLConfi g/ processor /| ogger/fact ory element like this:

<XSQLConfi g>
<processor >
<l ogger >
<fact or y>exanpl e. Sanpl eCust onLogger Fact or y</ f act ory>

</ | ogger >

</ processor>
</ XSQLConf i g>

By default, this <l ogger > section is commented out, and there is no default logger.

Formatting XSQL Action Handler Errors

Errors raised by the processing of any XSQL Action Elements are reported as XML
elements in a uniform way so that XSL Stylesheets can detect their presence and
optionally format them for presentation.

XSQL Pages Publishing Framework 8-75

XSQL Servlet Limitations and Hints

The action element in error will be replaced in the page by:

<xsql -error action="xxx">

Depending on the error the <xsql - er r or > element contains:
=« A nested <nessage> element

« A<st at enent > element with the offending SQL statement

Displaying Error Information on Screen

Here is an example of an XSLT stylesheet that uses this information to display error
information on the screen:

<xsl:if test="//xsql-error">
<tabl e styl e="background: yel | ow'>
<xsl:for-each select="//xsql-error">
<tr>
<t d>Act i on</ b></t d>
<t d><xsl : val ue-of sel ect="@ction"/></td>
</tr>
<tr valign="top">
<t d>Message</ b></t d>
<t d><xsl : val ue-of sel ect ="message"/></td>
</tr>
</xsl :for-each>
</tabl e>
</xsl:if>

XSQL Servlet Limitations and Hints

XSQL Servlet has the following limitations:

HTTP Parameters with Multibyte Names

HTTP parameters with multibyte names, for example, a parameter whose name is in
Kaniji, are properly handled when they are inserted into your XSQL page using
<xsql : i ncl ude-request - par ans>. An attempt to refer to a parameter with a
multibyte name inside the query statement of an <xsqgl : quer y> tag will return an
empty string for the parameter's value.

As a workaround use a non-multibyte parameter name. The parameter can still have a
multibyte value which can be handled correctly.

CURSOR() Function in SQL Statements

If you use the CURSOR() function in SQL statements you may get an "Exhausted
ResultSet" error if the CURSOR() statements are nested and if the first row of the query
returns an empty result set for its CURSOR() function.

Hints for Using the XSQL Servlet
This section lists XSQL Servlet hints.

Specifying a DTD While Transforming XSQL Output to a WML Document

There is a way to specify a particular DTD while transforming XSQL output to a WML
document for a wireless application.

8-76 Oracle XML Developer's Kit Programmer's Guide

XSQL Servlet Limitations and Hints

The way you do it is using a built-in facility of the XSLT stylesheet called
<xsl : out put >. Here is an example:

<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n{ >
<xsl:output type="xnm" doctype-systen="your.dtd"/>
<xsl:tenplate match="/">
</xsl:tenpl ate>

</ xsl :styl esheet >

This will produce an XML result with the following code in it:
<! DOCTYPE xxxx SYSTEM "your.dtd">

where "your . dt d" can be any valid absolute or relative URL.

Writing XSQL Servlet Conditional Statements
It is possible to write conditional statements in an XSQL file such as:

<xsql : choose>
<xsql :when test="@ecurity="admn ">
<xsql : query>
SELECT
</ xsql : query>
</ xsq: when>
<xsql : when test="@ecurity="user'">
<xsql : query>
SELECT
</ xsql : query>
</ xsql : when>
</xsql:if>

Use <xsql : ref-cursor-functi on>tocall a PL/SQL procedure that conditionally
returns a REF CURSOR to the appropriate query.

Using a Value Retrieved in One Query in Another Query's Where Clause

If you have two queries in an XSQL file, you can use the value of a select list item of
the first query in the second query, using page parameters:

<page xm ns:xsqgl ="urn:oracl e-xsql" connection="denmo">
<I'-- Value of page param"xxx" will be first colum of first row-->
<xsql : set - page- par am nane="xxx">
select one fromtablel where ...
</ xsl: set - par am par an»
<xsql : query bi nd- parans="xxx">
sel ect col 3,col4 fromtabl e2
where col 3 = ?
</ xsql : query>
</ page>

Using the XSQL Servlet with Non-Oracle Databases

The XSQL Servlet can connect to any database that has JDBC support. Just indicate the
appropriate JDBC driver class and connection URL in the XSQL configuration file (by

default, named XSQLConf i g. xm) connection definition. Of course, object/relational
functionality only works when using Oracle with the Oracle JDBC driver.

XSQL Pages Publishing Framework 8-77

XSQL Servlet Limitations and Hints

Handling Multi-Valued HTML Form Parameters

There is a way to handle multi-valued HTML <f or m» parameters which are needed
for <i nput nanme="choi ces" type="checkbox">.

Use the parameter array notation on your parameter name (for example, choi ces[])
to refer to the array of values from the selected check boxes.

For example, if you have a multi-valued parameter named guy, then you can use the
array-parameter notation in an XSQL page like this:

<page xm ns:xsql ="urn: oracle-xsql ">
<xsql : set - page- param name="guy- i st" value="{@uy[]}"
treat-list-as-array="yes"/>
<xsql : set - page- par am name="quot ed- guys" val ue="{@uy[]}"
treat-list-as-array="yes" quote-array-val ues="yes"/>
<xsql : i ncl ude- param name="guy-list"/>
<xsql : i ncl ude- param name="quot ed- guys"/ >
<xsql : i ncl ude- param nane="guy[]"/>
</ page>

If this page is requested with the URL following, containing multiple parameters of
the same name to produce a multi-valued attribute:

http://yourserver. conl page. xsql ?guy=Cur | y&guy=Lar r y&guy=NNoe

then the page returned will be:

<page>
<guy-list>Curly, Larry, Me</guy-1list>
<quot ed- guys>' Curly", ' Larry',"' Me' </ quot ed- guys>
<guy>
<val ue>CQur | y</ val ue>
<val ue>Larry</val ue>
<val ue>Me</val ue>
</ guy>
</ page>

You can also use the value of the multi-valued page parameter preceding nonzero in a
SQL statement by using the following code:

<page connection="denp" xm ns:xsqgl ="urn:oracl e-xsql ">
<xsql : set - page- par am name="quot ed- guys" val ue="{@uy[]}"
treat-list-as-array="yes" quote-array-val ues="yes"/>
<xsql : query>
SELECT * FROM sonet abl e WHERE name I N ({ @uot ed- guys})
</ xsql : query>
</ page>

Running the XSQL Servlet with Oracle Release 7.3

Make sure you're using the JDBC driver, which can connect to an Oracle release 7.3
database with no problems.

Out Variable is not Supported in <xsql:dml>

You cannot set parameter values by binding them in the position of OUT variables in
this release using <xsql : dm >. Only | N parameters are supported for binding. You
can create a wrapper procedure that constructs XML elements using the HTTP
package and then your XSQL page can invoke the wrapper procedure using

<xsql : i ncl ude- owa> instead.

For an example, suppose you had the following procedure:

8-78 Oracle XML Developer's Kit Programmer's Guide

XSQL Servlet Limitations and Hints

CREATE OR REPLACE PROCEDURE addnul t (ar gl NUMBER,
arg2 NUMBER,
sunval QUT NUMBER,
prodval QUT NUMBER) IS

BEG N
sunval := argl + arg2;
prodval := argl * arg2;
END;

You can write the following procedure to wrap it, taking all of the | Narguments that
the procedure preceding expects, and then encoding the OUT values as a little XML
datagram that you print to the OWA page buffer:

CREATE OR REPLACE PROCEDURE addnul twrapper (argl NUMBER, arg2 NUMBER) |S
sumval NUMVBER
prodval NUMBER;
xm VARCHAR2(2000) ;
BEG N
- Call the procedure with QUT val ues
addnul t (argl, ar g2, sunval , prodval) ;
- Then produce XM that encodes the OUT val ues
xm = '<addmul t>' | |
"<sunp' || sunval | | ' </ sunmp' ||
' <product>'| | prodval || " </ product>'| |
"</ addnul t>';
- Print the XML result to the OM page buffer for return
HTP. P(xm) ;
END;

This way, you can build an XSQL page like this that calls the wrapper procedure:

<page connection="demp" xnins:xsqgl ="urn:oracl e-xsqgl">
<xsql ;i ncl ude- owa bi nd- parans="argl arg2">
BEG N addnmul t wrapper (?, ?); END;
</ xsql :incl ude- ona>
</ page>

This allows a request like the following:

http://yourserver.confaddmul t. xsql ?ar g1=30&ar g2=45

to return an XML datagram that reflects the OUT values like this:

<page>
<addmul t ><sun>75</ sunp<pr oduct >1350</ pr oduct ></ addnul t >
</ page>

Receiving "Unable to Connect" Errors

Suppose that you are unable to connect to a database and get errors running a
program like the hel | owor | d. xsql sample:

Oracle XSQ Servlet Page Processor 9.0.0.0.0 (Beta)

XSQ@.-007: Cannot acquire a database connection to process page.
Connecti on refused(DESCRI PTI ON=(TMP=) (VSNNUM=135286784) (ERR=12505)
(ERROR_STACK=(ERROR=(CODE=12505) (EMFI =4))))

If you get this far, it's actually attempting the JDBC connection based on the

<connect i ondef > information for the connection named deno, assuming you did
not modify the hel | owor | d. xsgl demo page.

XSQL Pages Publishing Framework 8-79

XSQL Servlet Limitations and Hints

By default the XSQLConf i g. xm file comes with the entry for the deno connection
that looks like this:

<connection name="dem">
<user name>scot t </ user nane>
<passwor d>t i ger </ passwor d>
<dbur| >j dbc: oracl e: thi n: @ocal host: 1521: ORCL</ dbur | >
<driver>oracle.jdbc.driver.OacleDriver</driver>
</ connecti on>

The error you're getting is likely because of one of the following reasons:
1. Your database is not on the | ocal host machine.

2. Your database S| Dis not ORCL.

3. Your TNS Listener Port is not 1521.

Make sure those values are appropriate for your database and you have no problems.

Using Other File Extensions Besides .xsql

The. xsql extension is just the default extension used to recognize XSQL pages. You
can modify your servlet engine's configuration settings to associate any extension you
like with the or acl e. xm . xsqgl . XSQLSer vl et servlet class using the same
technique that was used to associate the *. xsql extension with it.

Receiving "No Posted Document to Process" when you Try to Post XML

When trying to post XML information to an XSQL page for processing, it must be sent
by the HTTP POST method. This can be an HTTP POST-ed HTML Form or an XML
document sent by HTTP POST. If you try to use HTTP GET instead, there is no posted
document, and hence you get this error. Use HTTP POST instead to have the correct
behavior.

XSQL Supports SOAP

Your page can access contents of the inbound SOAP message using the

<xsql : set - page- par an® action's xpath="Xpat hExpr essi on" attribute.
Alternatively, your customer action handlers can gain direct access to the posted SOAP
message body by calling get PageRequest () . get Post edDocunent () . To create
the SOAP response body to return to the client, you can either use an XSLT stylesheet
or a custom serializer implementation to write out the XML response in an appropriate
SOAP-encoded format.

See the supplied AirportSOAP demo that comes with the XSQL Pages framework for
an example of using an XSQL page to implement a SOAP-based Web Service.

Passing the Connection for XSQL

Reference an XSQL parameter in your page's connect i on attribute, making sure to
define an attribute of the same name to serve as the default value for the connection
name. For example:

<xsql : query conn="testdb" connection="{@onn}" xm ns:xsql="urn: oracl e-xsql ">
</ xsql : query>

If you retrieve this page without any parameters, the value of the conn parameter will
be t est db, so the page will use the connection named t est db defined in the XSQL
configuration file (by default, named XSQLConf i g. xm). If instead you request the

8-80 Oracle XML Developer's Kit Programmer's Guide

XSQL Servlet Limitations and Hints

page with conn=pr oddb, then the page will use the connection named pr oddb
instead.

Controlling How Database Connections and Passwords Are Stored

If you need a more sophisticated set of username and password management than the
one that is provided by default in XSQL using the XSQL configuration file.

You can completely redefine the way the XSQL Page Processor handles database
connections by creating your own implementation of the XSQLConnect i onManager
interface. To achieve this, you need to write a class that implements the

oracl e. xm . xsqgl . XSQLConnect i onManager Fact or y interface and a class that
implements the or acl e. xm . xsgl . XSQLConnect i onManager interface, then
change the name of the XSQLConnect i onManager Fact or y class to use in your
XSQL configuration file. Once you've done this, your connection management scheme
will be used instead of the XSQL Pages default scheme.

Accessing Authentication Information in a Custom Connection Manager

If you want to use the HTTP authentication mechanism to get the username and
password to connect to the database. It is possible to get this kind of information in a
custom connection manager's get Connecti on() method.

The get Connecti on() method is passed an instance of the XSQLPageRequest
interface. From it, you can get the HTTP Request object by:

1. Testing the request type to make sure it's "Ser vl et "
2. Casting XSQLPageRequest to XSQLSer vl et PageRequest
3. Callingget Ht t pSer vl et Request () on the result of (2)

You can then get the authentication information from that HTTP Request object.

Retrieving the Name of the Current XSQL Page

There is a way for an XSQL page to access its own name in a generic way at runtime in
order to construct links to the current page. You can use a helper method like this to
retrieve the name of the page inside a custom action handler:

/] Get the name of the current page fromthe current page's URI
private String curPageNane(XSQLPageRequest req) {
String thisPage = req.get SourceDocunent UR () ;;
int pos = thisPage.lastlndexOi('/");
if (pos >=0) thisPage = thisPage.substring(pos+l);
pos = thisPage.indexCf (" ?");
if (pos >=0) thisPage = thisPage.substring(0,pos-1);
return thisPage;

Resolving Errors When Using the FOP Serializer

You can format XML into PDF using Formatting Object (FOP). If you get an error
trying to use the FOP Serializer, typically the problem is that you do not have all of the
required JAR files in the CLASSPATH. The XSQLFOPSer i al i zer class resides in the
separate xsql seri al i zers. j ar file, and this must be in the CLASSPATH to use the
FOP integration.

Then, the XSQLFOPSer i al i zer class itself has dependencies on several libraries from
Apache. For example, here is the source code for a FOP Serializer that works with the
Apache FOP 0.20.3RC release candidate of the FOP software:

XSQL Pages Publishing Framework 8-81

XSQL Servlet Limitations and Hints

package sanpl e;

i mpor t
i mport
i mport
i mport
i mpor t
i nport
i mport
i mpor t
i mport

/**

org. w3c. dom Docunent ;

or g. apache. | og. Logger ;

org. apache. | og. H erarchy;

org. apache. f op. nessagi ng. MessageHand! er;
org. apache. | og. LogTar get ;

oracle.xn . xsql . XSQLPageRequest ;
oracle.xn . xsql . XSQLDocunent Seri al i zer;;
or g. apache. f op. apps. Dri ver;

or g. apache. | og. out put. Nul | Qut put LogTar get ;

* Tested with the FOP 0.20. 3RC rel ease from 19-Jan-2002

*|

public class Sanpl eFOPSeri alizer inplenments XSQLDocument Serializer {
private static final String PDFM ME = "application/ pdf";

publ
tr

}

ic void serialize(Document doc, XSQLPageRequest env) throws Throwabl e {
y {
Il First make sure we can load the driver
Driver FOPDriver = new Driver();
/1 Tell FCP not to spit out any nessages by defaul t.
/'l You can nodify this code to create your own FOP Serializer
Il that logs the output to one of many different |ogger targets
/'l using the Apache LogKit API
Logger |ogger = H erarchy. getDefaul tH erarchy()
. get Logger For (" XSQLServl et");
| ogger. set LogTar get s(new LogTarget []{new Nul | Qut put LogTarget()});
FOPDr i ver. set Logger (| ogger);
/1 Sone of FOP's messages appear to still use MessageHandl er.
MessageHandl er . set Qut put Met hod(MessageHandl er . NONE) ;
/'l Then set the content type before getting the reader/
env. set Cont ent Type(PDFM ME) ;
FCPDr i ver. set Qut put St rean(env. get Qut put Strean());
FOPDr i ver . set Render er (FOPDr i ver . RENDER_PDF) ;
FOPDr i ver. render (doc);

catch (Exception e) {

}
}
}

/] Cannot wite PDF output for the error anyway.
Il So maybe this stack trace will be useful info
e.printStackTrace(Systemerr);

This FOP serializer depends on having the following additional Apache JAR files in
the CLASSPATH at runtime:

1. fop.jar - Apache FOP Rendering Engine

bati k.] ar - Apache Batik SVG Rendering Engine

2
3. aval on-framework-4.0.jar - APIs for Apache Avalon Framework
4

| ogkit-1.0.]jar - APIs for the Apache Logkit

See Also:
« http://xm.apache. org/fop/
« http://ww. xm . conlf pub/rg/ 75

8-82 Oracle XML Developer's Kit Programmer's Guide

XSQL Servlet Limitations and Hints

Tuning XSQL Pages for Fastest Performance

The biggest thing that affects the performance is the size of the data you are querying
(and of course the pure speed of the queries). Assuming you have tuned your queries
and used bind variables instead of lexical bind variables wherever allowed by SQL,
then the key remaining tip is to make sure you are only querying the minimum
amount of data needed to render the needed result.

If you are querying thousands of rows of data, only to use your XSLT stylesheet to
filter the rows to present only 10 of those rows in the browser, then this is a bad choice.
Use the database's capabilities to the maximum to filter the rows and return only the
10 rows you care about if at all possible. Think of XSQL as a thin coordination layer
between Oracle database and the power of XSLT as a transformation language.

Using XSQL with Other Connection Pool Implementations

You can set up XSQL pages to use connections taken from a connection pool, if for
example, you are running XSQL servlet in a WebLogic Web server.

XSQL implements it's own connection pooling so in general you don't have to use
another connection pool, but if providing the JDBC connection string of appropriate
format is not enough to use the WebL ogic pool, then you can create your own custom
connection manager for XSQL by implementing the interfaces

XSQLConnect i onManager Fact ory and XSQLConnect i onManager .

Including XML Documents Stored in CLOBs in Your XSQL Page
Use <xsql : i ncl ude- xn > with a query to retrieve the CLOB value.

Combining JavaServer Pages and XSQL in the Same Page

Is it possible to combine XSQL and JavaServer Pages (JSP) tags in the same page or do
you use include tags for that?

JSP and XSQL are two different models. JSP is a model that is based on writing streams
of characters to an output stream. XSQL is a model that is pure XML and XSLT-based.
At the end of the day, some result like HTML or XML comes back to the user, and
there really isn't anything that you can implement with XSQL that you cannot
implement in JSP by writing code and working with XML documents as streams of
characters, doing lots of internal reparsing. XSQL fits the architecture when customers
want to cleanly separate the data content (represented in XML) from the data
presentation (represented by XSLT stylesheets). Since it specializes in this XML/XSLT
architecture, it is optimized for doing that.

You can, for example, use <j sp: i ncl ude> or <j sp: f or war d> to have a JSP page
include/forward to an XSQL page. This is the best approach.

Choosing a Stylesheet Based on Input Arguments
It is possible to change stylesheets dynamically based on input arguments.

You can achieve this by using a lexical parameter in the href attribute of your
xml-stylesheet processing instruction.

<?xm -styl esheet type="text/xsl" href="{@il enane}.xsl"?>

The value of the parameter can be passed in as part of the request, or by using the
<xsql : set - page- par an® you can set the value of the parameter based on a SQL

query.

XSQL Pages Publishing Framework 8-83

XSQL Servlet Limitations and Hints

Sorting the Result Within the Page
The following question was presented:

I have a set of 100 records, and | am showing 10 at a time. On each column name |
have made a link. When that link is clicked, | want to sort the data in the page alone,
based on that column.

If you are writing for IE5 alone and receiving XML data, you can use Microsoft's XSL
to sort data in a page. If you are writing for another browser and the browser is getting
the data as HTML, then you have to have a sort parameter in XSQL script and use it in
ORDER BY clause. Just pass it along with the skip-rows parameter.

8-84 Oracle XML Developer's Kit Programmer's Guide

9

Pipeline Definition Language for Java

This chapter contains these topics:
« Using Pipeline Definition Language
« Example of a Pipeline Definition Language Application

« The Command-line Pipeline Tool orapipe

Using Pipeline Definition Language

XML Pipeline definition Language from W3C, enables you to describe the processing
relations between XML resources. A pipeline document specifies input and output of
processes. A pipeline controller uses the pipeline document to execute the specified
processes.

Oracle XML Pipeline Processor is built upon the XML Pipeline Definition Language
Version 1.0, W3C Note 28 February 2002. The processor can take an input XML
pipeline document and execute the pipeline processes according to the derived
dependencies. The pipeline document is an XML document, and specifies the
processes to be executed in a declarative manner. In addition to the XML Pipeline
Processor, the XDK defines several Pipeline Processes which can be piped together in a
pipeline document.

There are some differences between the W3C Note and the Oracle implementation.
They are:

« The parser processes (DOMPar ser Process and SAXPar ser Pr ocess) are
included in the XML pipeline (Section 1 of the note).

« Currently XML Base is not supported (Section 2.1)

= Only the final target output is checked to see if it is up-to-date with respect to the
available pipeline inputs. The intermediate output of every process is not checked
for being up-to-date. (Section 2.2).

« For the select attribute, anything between double-quotes "™ is considered to be a

string literal.

« The processor throws an error if more that one process produces the same infoset
(Section 2.4.2.3).

« The document element is not supported, because it is redundant functionality
(Section 2.4.2.8).

The Pipeline Definition Language is described at;

See Also: http://ww. w3. org/ TR/ xm - pi pel i ne/

Pipeline Definition Language for Java 9-1

Example of a Pipeline Definition Language Application

Example of a Pipeline Definition Language Application

The files for this example are in / xdk/ deno/ j ava/ pi pel i ne/ . The application

Pi pel i neSanpl e. j ava calls the pipeline document (an instance of the Pipeline
Definition Language) named pi pedoc. xnl , which names book. xs| as the
stylesheet to be used, nyr esul t . ht m as the output HTML file, and book. xm as
the XML document to be parsed. The processes are p2, p3, and pl in the order given in
pi pedoc. xnl . However, the processes are run in the order p1, p2, p3.

To run this example:

1. Addxnl parserv2.jar and the current directory to the CLASSPATH.
2. Use nake to generate . cl ass files.

3. Run the sample program:

make denp

Or run:

java PipelineSanpl e pipedoc.xnm pipel og seq

The first argument (pi pedoc. xml) is the required pipeline document. pi pel og
is an optional log file that you name. If omitted, the default log file created is
pi peline.l og.

seq can be either "para" or "seq", entered without the quotes. "seq" requests
sequential processing. If omitted, the default mode is processing parallel threads,
the same mode as if you entered "para".

4. View the pipeline target created, in this case nyresul t. ht m .
The error handler called by the Java program is Pi pel i neSanpl eErr Hdl r. j ava.
Here is book. xn , the input XML document with which you started the processing:

<?xm version="1.0"?>
<bookl i st >

<book>
<title>Twel ve Red Herrings</title>
<aut hor >Jef frey Archer</author>
<publ i sher >Har per Col | i ns</ publ i sher>
<price>7.99</ pri ce>

</ book>

<book>
<title |anguage="English">The El eventh Commandnent</title>
<aut hor>Jeffrey Archer</author>
<publ i sher>M:G aw H I | </ publ i sher >
<price>3.99</ pri ce>

</ book>

<book>
<title |anguage="English" country="USA"'>C++ Priner</title>
<aut hor >Li ppmann</ aut hor >
<publ i sher >Har per Col | i ns</publ i sher>
<price>4.99</ pri ce>

</ book>

<book>
<title>Enperor's New M nd</title>
<aut hor >Roger Penr ose</ aut hor >
<publ i sher>xford Publ i shing Conpany</publisher>
<price>15.9</ pri ce>

</ book>

<book>

9-2 Oracle XML Developer's Kit Programmer's Guide

Example of a Pipeline Definition Language Application

<title>Evening News</title>
<aut hor >Art hur Hai | ey</ aut hor>
<publ i sher>MaM | | an Publ i shers</ publ i sher>
<price>9.99</pri ce>
</ book>
</ bookl i st >

Here is pi pedoc. xm , the pipeline document:

<pi pel ine xm ns="http://ww. w3. org/ 2002/ 02/ xm - pi pel i ne"
xm : base="http://exanple.org/">

<param name="target" select="nyresult.htm"/>

<processdef name="donparser.p"
definition="oracl e.xnl. pi pel i ne. processes. DOVPar ser Process" />

<processdef name="xsl styl esheet. p"
definition="oracl e.xn . pipeline.processes. XSLSt yl esheet Process"/>

<processdef name="xsl process. p"
definition="oracle.xn . pi peline.processes. XSLProcess"/>

<process id="p2" type="xslstylesheet.p" ignore-errors="fal se">
<input name="xsl" | abel ="book. xsl "/>
<out param nane="styl esheet" | abel ="xsl style"/>

</ process>

<process id="p3" type="xsl process.p" ignore-errors="fal se">
<par am nane="styl esheet" | abel ="xslstyle"/>
<i nput name="docunent" | abel ="xni doc"/>
<out put name="result" |abel ="nyresult.htm"/>

</ process>

<process id="pl" type="donparser.p" ignore-errors="true">
<input nane="xm source" |abel ="book.xm "/>
<out put name="don{ | abel ="xn doc"/>
<par am nane="pr eser ve\Wi t espace" sel ect ="t rue"></ paranp
<error nane="don'>
<htm xm ns="http://ww w3/ org/ 1999/ xht m ">
<head>
<title>DOWParser Failure!</title>
</ head>
<body>
<h1>Error parsing document</hi>
</ body>
</htm >
</error>
</ process>

</ pi pel i ne>

The stylesheet book. xsl is listed next:

<?xm version="1.0"?>
<xsl : styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transfornf versi on="1.0">
<xsl :out put nmethod="xm "/>

<xsl:tenplate match="/">

Pipeline Definition Language for Java 9-3

Example of a Pipeline Definition Language Application

<HTM.>
<HEAD>
</ HEAD>
<xsl : appl y-tenpl ates/ >
</ HTM.>
</xsl:tenpl ate>

<!I-- docunent xsl:tenplate -->

<xsl:tenplate match="booklist">
<BODY BGCOLOR="#CCFFFF" >
<H1>Li st of books</H1>
<P> This will illustrate the transformation of an XM file containing
a list of books to an HTM. table form</P>
<xsl :appl y-tenpl ates/ >
</ BODY>
</xsl:tenpl ate>

<xsl:tenpl ate match="bookl i st/book">

<xsl : appl y- t enpl at es/ ></ B></ BR>
</xsl:tenpl ate>

<xsl:tenpl ate match="booklist/book/title">
<xsl : appl y-tenpl at es/ >
</xsl:tenpl ate>

<xsl :tenpl ate match="bookl i st/book/ aut hor" >
<xsl : appl y-tenpl ates/ >
</xsl:tenpl ate>

<xsl :tenpl ate match="bookl i st/ book/ publisher">
</xsl:tenpl ate>

<xsl :tenpl ate match="bookl i st/book/price">
Price: $<xsl:apply-tenplates/>
</xsl:tenpl ate>

</ xsl :styl esheet >

The outputisnmyresul t. ht m inthe/| og subdirectory

<?xm version = '1.0'?>
<HTM_><HEAD/ ><BCDY BGCOLOR="#CCFFFF"'><H1>Li st of books</HL><P> This will
illustrate the transformation of an XM file containing |ist of books to an
HTM. table form</P>
<BR/ >
Twel ve Red Herrings
Jeffrey Archer

Price: $7.99
<BR/ >
The El eventh Commandment
Jeffrey Archer
Price: $3.99

<BR/ >

9-4 Oracle XML Developer's Kit Programmer's Guide

The Command-line Pipeline Tool orapipe

C++ Primer
Li ppmann

Price: $4.99

<BR/ >
Enperor's New M nd
Roger Penrose

Price: $15.9

<BR/ >
Eveni ng News
Arthur Hailey

Price: $9.99

</ BODY></ HTML>

The Command-line Pipeline Tool orapipe

The command-line pipeline tool is named or api pe. Before running it for the first
time, add xml par serv2. j ar to your CLASSPATH. or api pe must have at least one
argument, the pipeline document (pi pedoc. xnl in the code example presented in
the preceding section).

To run orapipe, use the following syntax, where pi pedoc is the required pipeline
document you prepare in advance:

orapi pe options pipedoc
Table 9-1 describes the available options:

Table 9-1 orapipe: Command-line Options

Option Purpose

-hel p Prints the help message

-loglogfile Writes errors and messages to the log file you name. The default is
pi pel i ne. | og.

-noi nfo Do not log informational items. The default is on.

- nowar ni ng Do not log any warnings. The default is on.

-validate Validate the input pi pedoc with the pipeline schema. The default is do
not validate.

-version Prints the release version.

-sequenti al Executes the pipeline in sequential mode. The default is parallel.

Pipeline Definition Language for Java 9-5

The Command-line Pipeline Tool orapipe

9-6 Oracle XML Developer's Kit Programmer's Guide

10

This chapter contains these topics:

Accessing Oracle XDK JavaBeans
DOMBuilder JavaBean
XSLTransformer JavaBean
DBAccess JavaBean

XMLD:iff JavaBean
XMLCompress JavaBean
XMLDBAccess JavaBean
XSDValidator JavaBean

JavaBean Examples

Accessing Oracle XDK JavaBeans

The Oracle XDK JavaBeans are provided as part of XDK with the Enterprise and
Standard Editions.

XDK JavaBeans

The following new JavaBeans were added in release 10.1:

XSDVal i dat or - encapsulates or acl e. xnl . par ser. scherma. XSDVal i dat or
class and adds capabilities for validating a DOM tree.

XMLConpr ess - encapsulates XML compression functionality.

XM_DBAccess - extension of DBAccess JavaBean to support the XML Type
column in which XML documents are stored in an Oracle database table.

XDK JavaBeans facilitate the addition of graphical interfaces to your XML
applications.

Bean encapsulation includes documentation and descriptors that can be accessed
directly from Java Integrated Development Environments like JDeveloper.

See Also: Oracle XML API Reference contains listings of the

methods in all the JavaBeans.

Database Connectivity

Database Connectivity is included with the XDK JavaBeans. The beans can now
connect directly to a JDBC-enabled database to retrieve and store XML and XSL files.

XDK JavaBeans 10-1

Accessing Oracle XDK JavaBeans

XDK JavaBeans Overview
XDK JavaBeans comprises the following beans:

DOMBuilder

The DOVBuUi | der JavaBean is a non-visual bean. It builds a DOM Tree from an XML
document.

The DOVBUI | der JavaBean encapsulates the XML Parser for Java's DOVPar ser class
with a bean interface and extends its functionality to permit asynchronous parsing. By
registering a listener, Java applications can parse large or successive documents and
then allow control to return immediately to the caller.

See Also: "DOMBuilder JavaBean" on page 10-3

XSLTransformer
The XSLTr ansf or mer JavaBean is a non-visual bean. It accepts an XML file, applies

the transformation specified by an input XSL stylesheet and creates the resulting
output file.

XSLTr ansf or mer JavaBean enables you to transform an XML document to almost
any text-based format including XML, HTML, and DDL, by applying the appropriate
XSL stylesheet.

= When integrated with other beans, XSLTransformer JavaBean enables an
application or user to view the results of transformations immediately.

= This bean can also be used as the basis of a server-side application or servlet to
render an XML document, such as an XML representation of a query result, into
HTML for display in a browser.

See Also: "XSLTransformer JavaBean" on page 10-4

DBAccess

DBAccess JavaBean maintains CLOB tables that contain multiple XML and text
documents.

XMLDiff

The XMLDi f f JavaBean performs a tree comparison on two XML DOM trees. It
displays the two XML DOM trees and shows the differences between the XML trees. A
node can be inserted, deleted, moved, or modified. Each of these operations is shown
in a different color or style.

XMLCompress

This JavaBean is an encapsulation of the XML compression functionality. The
supported functions are compression of the internal DOM tree obtained by means of a
DOMParser, compression of the SAX events thrown by the SAX parser, and
un-compression of the serialized XML data, returning an XM_Docunent object.

XMLDBAccess

This JavaBean is an extension of the DBAcess bean to support the XMLType column,
in which XML documents are stored in an Oracle database table. Methods are
provided to list, delete, or retrieve XML Ty pe instances and their tables.

10-2 Oracle XML Developer's Kit Programmer's Guide

DOMBuilder JavaBean

XSDValidator

This JavaBean is a class file that encapsulates the
oracl e. xm . parser. schema. XSDVal i dat or class and adds capabilities for
validating a DOM tree.

DOMBuilder JavaBean

DOMBuUI | der class implements an XML 1.0 parser according to the World Wide Web
Consortium (W3C) recommendation. It parses an XML document and builds a DOM
tree. The parsing is done in a separate thread and the DOVBuI | der Li st ener
interface must be used for notification when the tree is built.

Use for Asynchronous Parsing in the Background

The DOMBUI | der bean encapsulates the XML Parser for Java with a bean interface. It
extends its functionality to permit asynchronous parsing. By registering a listener, a
Java application can parse documents and return control return to the caller.

Asynchronous parsing in a background thread can be used interactively in visual
applications. For example, when parsing a large file with the normal parser, the user
interface freezes until the parsing has completed. This can be avoided with the
DOMBuUI | der bean. After calling the DOVBUI | der bean parse method, the application
can immediately regain control and display "Parsing, please wait". If a "Cancel" button
is included you can also cancel the operation. The application can continue when
domBuilderOver() method is called by DOVBui | der bean when background parsing
task has completed.

When parsing a large number of files, DOVBui | der JavaBean can save time. Response
times that are up to 40% faster have been recorded when compared to parsing the files
one by one.

DOMBuilder JavaBean Usage
Figure 10-1 illustrates DOVBUI | der JavaBean usage.
1. The XML document to be parsed is input as a file, string buffer, or URL.

2. This inputs the method
DOMBUI | der . addDOMBuUI | der Li st ener (DOVBUI | der Li st ener) and adds
DOMBuilderListener.

3. The DOMBUI | der . par ser () method parses the XML document.
4. Optionally, the parsed result undergoes further processing.

5. DOMBuUI | der Listener API is called using DOVBUI | der Over () method. This is
called when it receives an asynchronous call from an application. This interface
must be implemented to receive notifications about events during asynchronous
parsing. The class implementing this interface must be added to the DOVBuI | der
using addDOMBuUI | der Li st ener method.

Available DOVBuUI | der Li st ener methods are:

« donBui |l der Error (DOVBuUI | der Event) . This method is called when parse
errors occur.

« donBui | der Over (DOVBUI | der Event) . This method is called when the
parse completes.

XDK JavaBeans 10-3

XSLTransformer JavaBean

« donBuil der St art ed(DOVBui | der Event). This method is called when
parsing begins.

6. DOMBui | der. get Docunent () fetches the resulting DOM document and
outputs the DOM document.

Figure 10-1 DOMBuilder JavaBean Usage

file,
string buffer,
or URL
xml input

DOMBuilder.
addDOMBuilder
Listener()

DOMBuilder.
parse()

perform other

tasks

see the list of
available
methods

.DOMBuilder
Listener()

.DOMBuilder
Started()

.DOMBuilder
Error()

DOMBuilderListener. async call
DOMBuilderOver() ~

DOM
Document

DOMBuilder.
getDocument()

XSLTransformer JavaBean

The XSLTr ansf or mer JavaBean accepts an XML file and applies the transformation
specified by an input XSL stylesheet to create and output file. It enables you to
transform an XML document to almost any text-based format, including XML, HTML,
and DDL, by applying an XSL stylesheet.

When integrated with other beans, XSLTr ansf or mer JavaBean enables an application
or user to immediately view the results of transformations.

This bean can also be used as the basis of a server-side application or servlet to render
an XML document, such as an XML representation of a query result, into HTML for
display in a browser.

The XSLTr ansf or mer bean encapsulates the Java XML Parser XSLT processing
engine with a bean interface and extends its functionality to permit asynchronous

10-4 Oracle XML Developer's Kit Programmer's Guide

XSLTransformer JavaBean

transformation. By registering a listener, your Java application can transform large and
successive documents by having the control returned immediately to the caller.

XSL transformations can be time consuming. Use XSLTr ansf or ner bean in
applications that transform large numbers of files and it can concurrently transform
multiple files.

XSLTr ansf or ner bean can be used for visual applications for a responsive user
interface. There are similar issues here as with DOVBui | der .

By implementing XSLTr ansf or ner Li st ener () method, the caller application can
be notified when the transformation is complete. The application is free to perform
other tasks in between requesting and receiving the transformation.

XSLTransformer JavaBean: Regenerating HTML Only When Data Changes

This scenario illustrates one way of applying XSLTr ansf or ner JavaBean.

1.
2.

Create a SQL query. Store the selected XML data in a CLOB table.

Using the XSLTr ansf onmer JavaBean, create an XSL stylesheet and interactively
apply this to the XML data until you are satisfied with the data presentation. The
output can be HTML produced by the XSL transformation.

Now that you have the desired SQL (data selection) and XSL (data presentation),
create a trigger on the table or view used by your SQL query. The trigger can
execute a stored procedure. The stored procedure, do the following:

« Run the query

« Apply the stylesheet

« Store the resulting HTML in a CLOB table

This process can repeat whenever the source data table is updated.

The HTML stored in the CLOB table always mirrors the last data stored in the
tables being queried. A JSP (JavaServer Page) can display the HTML.

In this scenario, multiple end users do not produce multiple data queries that
contribute to increased use of the database. The HTML is regenerated only when
the underlying data changes.

How to Use XSLTransformer JavaBean
Figure 10-2 illustrates XSLTr ansf or ner bean usage.

XDK JavaBeans 10-5

DBAccess JavaBean

Figure 10-2 XSLTransformer JavaBean Usage

XSL
stylesheet,
XML document
input

R

XListener. ﬁ
xsITransformer)= async call
Over()

XSLTransformer:
addSXSL?'rasngfor%qer XSLTransformer. perform other
Listener() processXSL() tasks

see the list of
available
methods

XSLTransformer.
getResult()

%

XML Document
fragment

An XSL stylesheet and XML document are input to the XSLTr ansf or ner using
the XSLTr ansf oner . addXSLTr ansf or ner Li st ener
(XSLTr ansf or mer Li st ener) net hod. This adds a listener.

The XSLTr ansf oner. processXSL() method initiates the XSL transformation
in the background.

Optionally, other work can be assigned to the XSLTr ansf or ner bean.

When the transformation is complete, an asynchronous call is made and the
XSLTr ansf ormer Li st ener. xsl Transf or mer Over () method is called. This
interface must be implemented to receive notifications about events during the
asynchronous transformation. The class implementing this interface must be
added to the XSLTr ansf or mer event queue using the method

addXSLTr ansf or ner Li st ener.

The XSLTr ansf or mer . get Resul t () method returns the XML document
fragment for the resulting document.

It outputs the XML document fragment.

DBAccess JavaBean

DBAccess JavaBean maintains CLOB tables that can hold multiple XML and text
documents. Each table is created using the following statement:

CREATE TABLE tabl enane FI LENAVE CHAR(16) UNI QUE, FILEDATA CLOB) LOB(FI LEDATA)

STORE AS (DI SABLE STORAGE I N ROW

Each XML (or text) document is stored as a row in the table. The FILENAME field
holds a unique string used as a key to retrieve, update, or delete the row. Document

10-6 Oracle XML Developer's Kit Programmer's Guide

XMLDiff JavaBean

text is stored in the FILEDATA field. This is a CLOB object. DBAccess bean does the
following tasks:

« Creates and deletes CLOB tables
« Listsa CLOB table's contents

« Adds, replaces, or deletes text documents in the CLOB tables

DBAcess JavaBean Usage

Figure 10-3 illustrates the DBAccess bean usage. It shows how DBAccess bean
maintains, and manipulates XML documents stored in CLOBs.

Figure 10-3 DBAccess JavaBean Usage Diagram

From:

Loads
CLOB tables

SQL result_set
files
CLOBs

’ Files

DB
Access

Database Bean

Lists
CLOB tables

Text documents:

Manipulates \ _ _ Adds
»(CLOB tables Replaces
Deletes

XMLDiff JavaBean

The XMLDi f f JavaBean performs a tree comparison on two XML DOM trees. It
displays the two XML trees and shows the differences between the XML trees. A node
can be inserted, deleted, moved, or modified. Each of these operations is shown in a
different color or style as in the following list:

. Red—Used to show a modified Node or Attribute

. Blue—Used to show a new Node or Attribute

. Black—Used to show a deleted Node or Attribute

Moves will be displayed visually as a delete or insert operation.

You can generate the differences between the two XML trees in the form of XSL code.
The first XML file can be transformed into the second XML file by using the XSL code
generated.

Note: Currently you cannot customize the GUI display.

XDK JavaBeans 10-7

XMLCompress JavaBean

XMLCompress JavaBean

This bean class is a simple encapsulation of the XML Compression functionality. The
capabilities that are supported in this class are essentially compression of the internal
DOM tree obtained via a DOMParser,

Compression of the SAX events thrown by the SAX Parser, decompression of the
serialized XML data, returning an XM_Documnent object. The input for compression
can be from an InputStream, a Java string, a database CLOB object, or an XM_Type
object. In all cases the out put St r eamhas to be set beforehand so that the compressed
data is written to it. If the input data is unparsed, the parsing for it is done with no
validation.

To use different parsing options, parse the document before input and then pass the
XM_Docurment object to the compressor bean. The compression factor is a rough value
based on the file size of the input XML file and the compressed file. The limitation of
the compression factor method is that it can only be used when the compression is
done using the j ava. i 0. Fi | e objects as parameters.

XMLDBAccess JavaBean

This bean is an extension of the DBAcess bean to support the XMLType column, in
which XML documents are stored in an Oracle database table. Methods are provided
to list, delete, or retrieve XM_Type instances and their tables.

XSDValidator JavaBean

This class file encapsulates the or acl e. xml . par ser. scherma. XSDVal i dat or class
and adds capabilities for validating a DOM tree. The schema document is a constant
and the validation is done for XML Documents that can be passed as InputStreams,
URLs, and so on.

The validation is done only after the DOM tree is built in all the cases. Nodes with
errors are returned in a vector of stack trees where the top element of the stack
represents the root node and child nodes are obtained by popping the elements of the
stack.

JavaBean Examples

The XDK JavaBean sample directory, / xdk/ denmo/ j aval/ t r ansvi ewer/ , contains
sample applications that illustrate how to use JavaBeans.

Table 10-1 lists the example files. The subsequent sections show how to install these
samples.

10-8 Oracle XML Developer's Kit Programmer's Guide

JavaBean Examples

Table 10-1 JavaBean Example Files

File Name

Description

AsyncTr ansf or nSanpl e. j ava. Sample nonvisual application using XSLTr ansf or ner

bean and DOVBUI | der bean. It applies the XSLT stylesheet
specified indoc. xsl onall. xni files from the current
directory. The results are in the files with extension . | og.

XM_DBAccessSanpl e. j ava A non-GUI sample for the XM_.DBAccess bean which

demonstrates the way that the XM_LDBAccess bean APIs
can be used to store and retrieve the XML documents inside
the database, using XMLType tables.

To use XMLType, an Oracle9i, or later, installation is
necessary along with the xdb. j ar . Sanpl e5 will run
XMLDBAccessSanpl e using the values for HOSTNAME,
PORT, SI D, USERI D, and PASSWORD as defined in the
Makef i | e. These must be modified if required. The file
bookl i st. xm isused to insert data into the database. The
output is copied to xm dbaccess. | og.

XMLDi f f Sanpl e. j ava Sample visual application that uses XMLDi f f bean to find

conpvi ewer . j ava

differences between two XML files and generate an XSL
stylesheet. This stylesheet can be used to transform the first
input XML into the second input XML file. See
"XMLDiffSample.java" on page 10-10.

Sample visual application that uses XM_Conpr ess bean to
compress an XML file or XML data from the database
obtained through SQL query or from a CLOB or an
XMLType Table. The application also lets you decompress
the compressed stream and view the resulting DOM tree.

XSDVal i dat or Sanpl e. j ava Sample application for XSDVal i dat or bean. It takes two

arguments as input, an XML file and a schema file. The
error occurring during validation, including line numbers,
are displayed. See "XSDValidatorSample.java" on

page 10-10.

Installing the JavaBean Examples
The JavaBeans require, as a minimum, JDK 1.2.2.

Here are the steps you take to generate the sample executables:

1.

Download and install the following components used by the XDK JavaBeans:
« Oracle JDBC Driver for thin client (file cl asses12. zi p)

« Oracle XML SQL Utility (xsul2.jar)

« JARfile containing the XMLTy pe definitions (fi |l e xdb. jar)

After installing these components, include the files in your CLASSPATH.

Change JDKPATH in Makef i | e to point to your JDK path. If you do not have an
ORACLE_HOME set, then set it to the root directory of your XDK JavaBeans
installation.

Generate . cl ass files. Run the sample programs using the following commands,
which use labels in the file Makefi | e:

gmeke sanpl e3
gnmeke sanpl e5
gneke sanpl e6
gmeke sanpl e7
gmake sanpl el0

XDK JavaBeans 10-9

JavaBean Examples

See Also: README contains details of the various programs
labelled sample3 through samplel0.

XMLDiffSample.java

Sanpl e6 isa demo for XMLDi f f JavaBean. It invokes a GUI which allows you to
choose the input data files from the Fi | e menu using 'Conpare XM. Fi | es'item.
The XSLT generated can be applied on input XML fi | el using Tr ansf or mmenu.
The resulting XML file (which is the same as input fi | e2) can be saved using 'Save'
As item under Fi | e menu. By default, the two XML files XMLDi f f Dat al. t xt and
XMLDi f f Dat a2. t xt are compared and the output XSLT is stored as

XM.Di f f Sampl e. xsl .

If the input XML files have a DTD which accesses a URL outside the firewall, then
modify XMLDi f f Sanpl e. j ava to include the proxy server settings before the
set Fil es() call:

/* Set proxy to access dtd through firewal | */
Properties p = System get Properties();
p. put ("proxyHost", "waww. proxyservernane.cont);
p. put ("proxyPort", "80");
p. put ("proxySet", "true");

You also have to import java. util.*;

XSDValidatorSample.java

Sanpl €10 is a demonstration for the XSDVal i dat or JavaBean. It takes as default the
data file pur chaseor der. xm and the pur chaseor der . xsd schema file. The
output displays the validation errors.

10-10 Oracle XML Developer's Kit Programmer's Guide

11

Using XDK and SOAP

This chapter contains these topics:
= What Is SOAP?

« What Are UDDI and WSDL?
=« What Is Oracle SOAP?

« SOAP Example

What Is SOAP?

The term Web Services is used to describe a functionality made available by an entity
over the Web. It is an application that uses XML standards and is published, located
and executed through the Web.

The Simple Object Access Protocol (SOAP) is a lightweight protocol for sending and
receiving requests and responses across the Internet. Because it is based on XML and
simple transport protocols such as HTTP, it is not blocked by firewalls and is very easy
to use. SOAP is independent of operating system, implementation language, and any
single object model.

SOAP supports remote procedure calls. Its messages are only of the three types:

« arequest for a service, including input parameters

« aresponse to the requested service, including return value and output parameters
« an optional fault element containing error codes and information

SOAP messages consist of:

« an envelope that contains the message, defines how to process the message, who
should process the message, and whether processing is optional or mandatory.
This is a required part.

« encoding rules that describe the datatypes for the application. These rules define a
serialization mechanism that converts the application datatypes to XML and XML
to datatypes.

= remote procedure call and responses definitions. This is called a body element and is
a required part.

SOAP 1.1 specification is a World Wide Web Consortium (W3C) note. The W3C XML
Protocol Working Group has been formed to create a standard that will supersede
SOAP 1.1. Oracle is a member of this group. The standard will be called SOAP 1.2.

A SOAP service remote procedure call (RPC) request and response sequence includes
the steps:

Using XDK and SOAP 11-1

What Are UDDI and WSDL?

1. A SOAP client writes a request for service in a conforming XML document, using
either an editor or the Oracle SOAP client API.

2. The client sends the document to a SOAP Request Handler running as a servlet on
a Web server.

3. The Web Server dispatches the message as a service request to an appropriate
server-side application providing the requested service.

4. The application must verify that the message contains supported parts. The
response from the service is returned to the SOAP Request Handler servlet and
then to the caller using the SOAP payload format.

See Also:
« http://ww. w3. or g/ TR/ SOAP/
« http://xm .apache. org/ soap

What Are UDDI and WSDL?

The Universal Description, Discovery and Integration (UDDI) specification provides a
platform-independent framework using XML to describe services, discover businesses,
and integrate business services on the Internet. The UDDI business registry is the
public database where companies are registered. The UDDI business registration is an
XML file with three sections:

= white pages that include address, contact, and known identifiers
« yellow pages include industrial categorization
= green pages containing the technical information about exposed services

The Web Services Description Language (WSDL) is a general purpose XML language
for describing the interface, protocol bindings, and deployment details of Web
Services. WSDL provides a method of describing the abstract interface and arbitrary
network services. A WSDL service is registered or embedded in the UDDI registry.

The stack of protocol stack used in Web Services is summarized in the following list:
« Universal Service Interoperability Protocols (WSDL, and so on.)

« Universal Description, Discovery Integration (UDDI)

« Simple Object Access Protocol (SOAP)

= XML, XML Schema

= Internet Protocols (HTTP, HTTPS, TCP/IP)

What Is Oracle SOAP?

Oracle SOAP is an implementation of the Simple Object Access Protocol. Oracle SOAP
is based on the SOAP open source implementation developed by the Apache Software
Foundation.

How Does Oracle SOAP Work?

Consider this example: a Get Last Tr adePr i ce SOAP request is sent to a

St ockQuot e service. The request takes a string parameter, the company stock symbol,
and returns a float in the SOAP response. The XML document represents the SOAP
message. The SOAP envelope element is the top element of the XML document. XML

11-2 Oracle XML Developer's Kit Programmer's Guide

What Is Oracle SOAP?

namespaces are used to clarify SOAP identifiers from application-specific identifiers.
The following example uses HTTP as the transport protocol. The rules governing XML
payload format in SOAP are independent of the fact that the payload is carried in
HTTP. The SOAP request message embedded in the HTTP request is:

POST / StockQuote HTTP/ 1.1

Host: wwwv. st ockquot eserver. com

Content- Type: text/xm; charset="utf-8"

Cont ent - Length: nnnn

SOAPActi on: " Some- URI "

<SCQAP- ENV: Envel ope xni ns: SOAP- ENV="htt p: // schemas. xni soap. or g/ soap/
envel ope/" SQOAP-

ENV: encodi ngStyl e="htt p: // schemas. xnl soap. or g/ soap/ encodi ng/ " >
<SCAP- ENV: Body>

<m Get Last TradePrice xm ns: n¥" Sone- UR ">

<symbol >ORCL</ synbol >

<m Cet Last Tr adePri ce>

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

Here is the response HTTP message:

HTTP/ 1.1 200 OK
Content- Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<SCAP- ENV: Envel ope xni ns: SOAP-

ENV=ht t p: / / schemas. xm soap. or g/ soap/ / envel ope/ SQAP-

ENV: encodi ngStyl e="ht t p: // schemas. xnl soap. or g/ soap/ encodi ng/ "/ >
<SCAP- ENV: Body>

<m Get Last TradePri ceResponse xm ns: m=" Sone- UR " >
<Price>34.5</Price>

</ m Cet Last Tr adePri ceResponse>

</ SOAP- ENV: Body>

</ SOAP- ENV: Envel ope>

Oracle SOAP and IDAP

IDAP is an XML-based specification to perform AQ operations. SOAP defines a
generic mechanism to invoke a service. IDAP defines these mechanisms to perform
AQ operations.

IDAP has the following key properties not defined by SOAP:

« Transactional behavior - You can perform AQ operations in a transactional
manner. Your transaction can span multiple IDAP requests.

« Security - All the IDAP operations can be done only by authorized and
authenticated users.

= You can also perform AQ operations through the SOAP interface. AQ encapsulates
operations in IDAP format.

« Character set transformations - This is a very important requirement for any
communication. Internet user's machine may have different character set id than
the server machine.

« Extensible AQ Servlet for AQ Internet operations - The AQ servlet performing AQ
operations is extensible. You can specify time-out, connection pooling, TAF, apply
XML stylesheets, perform post AQ and pre-AQ database operations in the AQ
Servlet.

Using XDK and SOAP 11-3

What Is Oracle SOAP?

There is no difference in SOAP and IDAP access to AQ except the line specifying the
namespace for the envelope.

For IDAP that line is:

<Envel ope xm ns="http://ns. oracl e. com AQ schenmas/ envel ope" >

While in SOAP, it is:

<Envel ope xm ns="http://schemas. xn soap. or g/ soap/ envel ope/ ">

Everything else remains the same.

What Is a SOAP Client?

A SOAP client application represents a user-written application that makes SOAP
requests. The SOAP client has these capabilities:

« Gathers all parameters that are needed to invoke a service.

« Creates a SOAP service request message. This is an XML message that is built
according to the SOAP protocol and that contains all the values of all input
parameters encoded in XML. This process is called serialization.

« Submits the request to a SOAP server using some transport protocol that is
supported by the SOAP server.

« Receives a SOAP response message.

« Determines the success or failure of the request by handling the SOAP Fault
element.

« Converts the returned parameter from XML to native datatype. This process is
called deserialization.

« Uses the result as needed.

SOAP Client API

SOAP clients generate the XML documents that compose a request for a SOAP service
and handle the SOAP response. Oracle SOAP processes requests from any client that
sends a valid SOAP request. To facilitate client development, Oracle SOAP includes a
SOAP client API that provides a generic way to invoke a SOAP service.

The SOAP client API supports a synchronous invocation model for requests and
responses. The SOAP client APl makes it easier for you to write a Java client
application to make a SOAP request. The SOAP client API encapsulates the creation of
the SOAP request and the details of sending the request over the underlying transport
protocol. The SOAP client API also supports a pluggable transport, allowing the client
to easily change the transport (available transports include HTTP and HTTPS).

What Is a SOAP Server?
A SOAP server has the following capabilities:

= The server receives the service request.

» The server parses the XML request and then decides to execute the message or
reject it.

« If the message is executed, the server determines if the requested service exists.

11-4 Oracle XML Developer's Kit Programmer's Guide

What Is Oracle SOAP?

= The server converts all input parameters from XML into datatypes that the service
understands.

« The server invokes the service.

« The return parameter is converted to XML and a SOAP response message is
generated.

« The response message is sent back to the caller.

Oracle SOAP Security Features

Oracle SOAP uses the security capabilities in the transport to support secure access
and to support other security features. For example, using HTTPS, Oracle SOAP
provides confidentiality, authentication, and integrity over the Secure Sockets Layer
(SSL). Other security features such as logging and authorization are provided by the
service provider.

SOAP Transports

SOAP transports are the protocols that carry SOAP messages. Oracle SOAP supports
the following transports:

« HTTP: This protocol is the basic SOAP transport. The Oracle SOAP Request
Handler Servlet manages HTTP requests and supplies responses directly over
HTTP. This protocol is becoming a standard because of its popularity.

« HTTPS: The Oracle SOAP Request Handler Servlet manages HTTPS requests and
supplies responses, with different security levels supported.

Administrative Clients

SOAP administrative clients include the Service Manager and the Provider Manager.
These administrative clients are services that support dynamic deployment of new
services and new providers.

SOAP Request Handler

The SOAP Request Handler is a Java servlet that receives SOAP requests, looks up the
appropriate service provider, handles the service provider that invokes the requested
method (service), and returns the SOAP response, if any.

SOAP Provider Interface and Providers

Oracle SOAP includes a provider implementation for Java classes. Other providers can
be added.

Provider Interface

The provider interface allows the SOAP server to uniformly invoke service methods
regardless of the type of provider (Java class, stored procedure, or some other provider
type). There is one provider interface implementation for each type of service provider,
and it encapsulates all provider-specific information. The provider interface makes
SOAP implementation easily extensible to support new types of service providers.

Provider Deployment Administration

Oracle SOAP provides the provider deployment administration client to manage
provider deployment information.

Using XDK and SOAP 11-5

SOAP Example

SOAP Services Provided

SOAP application developers provide SOAP services. These services are made
available using the supplied default Java class provider or custom providers. Oracle
SOAP includes a service deployment administration client that runs as a service to
manage SOAP services. SOAP services, including Java services, represent user-written
applications that are provided to remote SOAP clients.

Advantages of XML Over EDI

Here are facts about Electronic Data Interchange (EDI):

SOAP Example

EDI is a difficult technology: EDI enables machine-to-machine communication in a
format that developers cannot easily read and understand.

EDI messages are very difficult to debug. XML documents are readable and easier
to edit.

EDI is not flexible: It is very difficult to add a new trading partner as part of an
existing system; each new trading partner requires its own mapping. XML is
extremely flexible and has the ability to add new tags on demand and to transform
an XML document into another XML document, for example, to map two different
formats of purchase order numbers.

EDI is expensive: developer training costs are high, and deployment of EDI
requires very powerful servers that need a specialized network. EDI runs on Value
Added Networks, which are expensive. XML works with inexpensive Web servers
over existing Internet connections.

See Also: For more information about Oracle SOAP and Web
Services, including documentation and downloads, see:

« http://ww. oracl e.com t echnol ogy/ docunentation/ia
s. ht m for the OracleAS SOAP Developer's Guide

« Oracle Simple Object Access Protocol Developer®s Guide

» Oracle Streams Advanced Queuing User’s Guide and Reference for a
discussion of Internet access to AQ

« Oracle XML API Reference

« The SOAP API is on the Product CD, Disk 1, in file
doc/ readnes/ ADDEN rdbns. ht m

Consider an enterprise or government entity that has inventories to be maintained at
its headquarters, and at multiple remote branches. The SOAP solution to be described
in this chapter considers the headquarters as a message server and the branches as
message clients. Among the several tasks to be performed are:

Branch registration. Each branch must be known to headquarters for inventory
updates to be made.

Branch inventory management based on sales. The branches order more supplies
from headquarters when the item in the branch inventory is low.

Headquarters (HQ) inventory monitoring. The branches must be informed of new
items that headquarters has added to its inventory stock.

11-6 Oracle XML Developer's Kit Programmer's Guide

SOAP Example

Consider HQ inventory monitoring and the task of informing the branches when a
new item is added to the HQ inventory. This example solves this problem with SOAP
messaging and several XML features.

The branches can be using non-Oracle databases, because SOAP is not dependent on
any DBMS. You can generalize this example so that it can be used for communicating
with customers, suppliers, or other entities that are not part of your organization.

XML Features Used in the SOAP Example

The SOAP messages employ the following features:

Advanced Queuing (AQ). This Oracle feature uses asynchronous communications
between applications and users, with transaction control and security. AQ keeps
users from being blocked when they enter new inventory items at HQ.

AQ provides the Java Messaging Service (JMS) APIs to enqueue and dequeue the
messages.

Columns with datatype XML Ty pe are used to store SOAP messages in database
tables, so that data about new items will not be lost.

XML Compression reduces the payload size and speeds the transmission of
messages.

XSQL Servlet is used to publish content and for interacting with administrators.
The message server at HQ invokes remote procedure calling (RPC).

The SOAP call generates an HTTP request, encapsulates the inventory update
request in a SOAP message, and invokes the SOAP service on all branches.

Each branch either returns a confirmation or returns a fault (defined in the SOAP
standard) to the message server.

Prerequisite Software for the SOAP Example

Oracle Database

XML Developer's Kit (XDK), Java components

0OC4)

The SOAP example, "Build an XML-Powered Distributed Application”, can be
downloaded from the OTN:

See Also: Download the SOAP example at
http://ww. oracl e. com technol ogy/tech/xm /

How Is the SOAP Example Implemented?

An overview of the distributed inventory application is shown in the following
illustration:

Using XDK and SOAP 11-7

SOAP Example

Figure 11-1 Using Soap in a Distributed Inventory Application

Beijing SOAP SOAP London
C i+ ><J—> (>
Message Message

Los Angeles SOAP SOAP Atlanta

Message Message

X
(10

Internet

| Message Broker |

1222

Headquarters

SOAP is used to manage inventory at each of the remote branches and at
headquarters. The headquarters inventory application is a message server and the
branch inventory application is a message client, each using SOAP services.

When headquarters adds a new item to its inventory, it broadcasts a message to all
remote client branches that have registered with the message server. A message broker
creates a message and pushes it onto the message queue, using AQ. AQ enables
asynchronous communications between user applications, providing transaction
control, security and preventing blocking of the entry of new items by the users at
headquarters.

A message dispatcher process, which is listening to the message queue, detects the
enqueued messages and calls the branches' SOAP services to dequeue the message
and to update their local inventories.

The messages are stored in the database with complete logging information. The
SOAP messages are stored in XM_Ty pe datatype instances and are thus a record of
sent and received messages. This insures data integrity in the inventories.

At headquarters a table is created initially that has three columns: an identification
number, a message of datatype XM_Type, and a creation time.

XML Compression is another technology used to lower payloads, making throughput
greater in large applications.

11-8 Oracle XML Developer's Kit Programmer's Guide

SOAP Example

Setting Up the Tables and the SOAP Service

To store inventory data, log messages, and perform message queuing, run the

cr eat edb. sql script from the downloaded source files to set up database schemas
for headquarters and a branch. This script calls a set of SQL scripts that creates a
headquarters user and a branch user with proper privileges. It also creates tables and
triggers for storing inventory information and messages and inserts sample data in
both schemas.

In the headquarters user schema, create a table named message_out _t ype. This
stores the inventory information update broadcast messages from headquarters to the
branches. There are three columns in the table: | D, MESSAGE, and CREATE_TI ME. The
MESSAGE column datatype is XMLTy pe.

Next, run the PL/SQL procedure, CREATE_QUEUE, that sets up message queues at
both headquarters and the branches. This procedure uses functions in the DBVS_
AQADMpackage to create the queue table, create the queue, and start the queue. Once
the queue is started, enqueuing and dequeuing operations on the message queue are
enabled.

The following PL/SQL procedure uses the SYS. AQs_JMS_BYTES MESSAGE message
type to manage the compressed SOAP messages. This creates a queue called
br oadcast b_queue at the headquarters location:
begi n
create_queue(' broadcastb_queue_tbl"',
" broadcastb_queue',

' SYS. AQs_JMS_BYTES _MESSAGE') ;
end;

Thei nvent oryBranchServer Java class is the branch's service for inserting a new
item into the branch inventory. When this service program receives a SOAP request, it
decompresses the request content and saves it in the i nvent or y_i t emtable, using
Oracle XML SQL Utility (XSU) to insert the item into the database. Oracle XSU creates
canonical mappings between the XML document and database schema to perform
SQL data operations. See the file

client/src/oracl e/xm /pn deno/ branch/ servi cel/ i nventoryServer.java

in the downloaded software.

Requesting SOAP Service

The application makes requests to the headquarters SOAP service using a servlet
calledi nsertltentervl et,alavaclass that extends Ht t pSer vl et . This serviet
inserts a new item in the headquarters inventory.

The servlet request uses XSQL pages and the user's input in the application's Web
interface (click "New Items") to generate an XML document. Oracle XSU then directly
inserts the XML content into the database. Thei nsert |t enSer vl et performs
several actions. For example, to broadcast an update message to the branches, it:

« Initializes the Message Dispatcher process.
« Compresses the XML document by calling the Conpr essi onAgent class.
« Creates a SOAP message and stores it in the message logging table.

« Pushes the compressed XML document onto the message queue (enqueue).

Using XDK and SOAP 11-9

SOAP Example

Initializing the MessageDispatcher Process

When itis first called, i nsert |t enServl et initializes the MessageDi spat cher
object. This object is stored in the Ser vl et Cont ext when the process is successfully
initialized. This code initializes the MessageDi spat cher object;

Servl et Context context = get ServletContext();
MessageDi spat cher nsgDi spatcher =
(MessageDi spat cher) context.getAttribute("D spatcher");

if (msgDispatcher == null) {
Systemout.printIn("Initialize Receiver.");
msgDi spat cher = new MesageDi spat cher();
context.set Attribute("Dispatcher", msgDi spat cher);

}

The MessageDi spat cher Java class creates a MessageBr oker, which in turn,
creates a MessageCl i ent to monitor each message queue and dispatch messages to
the registered branches.

Compressing the XML Document
The following code fromi nsert | t enfSer vl et creates the Compression Agent:

Conpr essi onAgent cagent = new
Conpr essi onAgent (" or acl e: conpr essi on");
byte [] input = cagent.conpression(mcontent);

Creating a SOAP Message

The message is stored in a column defined as XMLType. The code from
insertltemServlet that creates the SOAP message and stores it in the MESSAGE_OUT _
XMLTYPE table is:

O acl ePreparedSt at enent pstnt =
(Oracl ePreparedSt at ement) conn. prepar eSt at enent (
"Insert into nmessage_out _xnitype(message) val ues(?)");

m_cont ent =cr eat eSOAPMessage(m content) ;
oracl e. xdb. XM.Type xt = oracl e. xdb. XM_Type. cr eat eXM_.(conn, m content);

pstnt.setQhject (1, xt);

pstnt. execute();

Using XMLType lets us use XPATH with the sys. XMLType. extract () member
function to query the portions of the message documents:

sel ect e.nmessage.extract('//item.info')
.getStringVal () as result
from nessage_out _xni type;

Enqueuing the XML Document

The following code fromi nsert | t enSer vl et creates the MessageBr oker and
enqueues the message:

MessageBr oker nmesgBroker =
new MessageBroker ("host _name",
"Oracle_SID', "port_nunt,
"thin', "cnf', "cnt, "broadcastb_queue");
mesgBr oker . enqueueMessage(i nput);

11-10 Oracle XML Developer's Kit Programmer's Guide

SOAP Example

Wheninsert|tenServl et finishes, the message is pushed onto the message queue
and the Oracle AQ and MessageDi spat cher processes update the branch inventory
information. This ensures that the headquarters inventory system is not blocked
during the branch system updates.

Listing of the Java Source File inserltemServlet.java
Thisfileisfound at./ server/src/insertltenBServlet.java:
/**
* FileNanme: insertltenBervlet.java
* Description:
* Insert new Inventory Iteminto HQ database and broadcase the nessage to
* the branches.
*/
inport java.io.?*;
inport java.util.*;
inport java.sql.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

Il XsuU

i nport org.w3c.dom*;

inport oracle.xm .parser.v2. *;

inport oracle.xm.sql.dm.O acl eXM_Save;

[l XM.Type

i nport oracl e. xdb. XM.Type. *;
inport oracle.jdbc.driver.*;
inport oracle.sql.*;

/1 SCAP Message

inport oracle.AQ *;

inport oracle.xm.pm queue. *;

i nport oracle.xm .pm conpression. Conpr essi onAgent ;

/1 Configuration
inport oracle.xm .pmutil.ConfigMnager;

/**

* This class inplenents Message Borker

*/

public class insertltenBServl et extends HttpServl et
{

String mcontent=null;
String mdblink = null;
String musr = null;
String mpasswd = nul | ;
String mhostnane = null;
String msid = null;
String mport = null;

/**

* |nitialize global variables

* @aramconfig - ServletConfig

* @xeception - ServletException thrown if super.init fails
*/

public void init(ServletConfig config) throws ServletException
{

super.init(config);

Using XDK and SOAP 11-11

SOAP Example

[l Initialize the JDBC Connection from Configuration Files
try

{
Confi gManager xm _config = new ConfigManager (" DEMOConfig. xm ", "cni');

mdblink = xm _confi g. dblink;
musr= xm _config. usr;
m passwd = xm _confi g. passwd;
m host name = xnl _confi g. host nane;
msid = xn _config.db_sid;
mport = xm _config.db_port;
}
cat ch(Exception ex)
{
Il ex.printStackTrace();
t hrow new Servl et Excepti on(ex. get Message());
}
}

/**

* HTTP Cet

* @aramreq - HtpServlet Request

* @aramres - HtpServlet Response

* @xeception - | OException, ServletException

*|

public void doGet (HttpServl et Request req, HtpServletResponse res)
throws | CException, ServletException

{

}

/**

* HTTP PCST

* @aramreq - HtpServlet Request

* @aramres - HtpServlet Response

* @xeception - | OException, ServletException

*|

public void doPost (HttpServletRequest req, HtpServletResponse res)
throws | OException, ServletException

{
Servl et Context context = get Servl et Context();

doPost (req, res);

Il Initialize MessageDispatcher for broadcast nessages
MessageDi spat cher nsgDi spat cher =
(MessageDi spat cher) context.getAttribute("MessageDi spatcher");

i f (msgDi spatcher == null)

{
megDi spat cher = new MessageDi spat cher (" broadcast b_queue", m host nane,
msid, mport, musr,mpasswd, mdblink);
context.setAttribute("MssageD spatcher", nsgDi spat cher);
}

/] Initialize MessageBroker for broadcasting nessages
MessageBr oker nsgBroker = (MessageBroker)
context.get Attribute("MessageBroker");
i f(nmsgBroker == null)
{
try
{

11-12 Oracle XML Developer's Kit Programmer's Guide

SOAP Example

msgBr oker = new MessageBroker (m_ hostname, msid, mport, "thin", musr,
m passwd, " br oadcast b_queue", m dbl i nk);

context.set Attribut e("MessageBroker", nsgBroker);

}

cat ch(Exception ex)

{
Systemout. println("Error:"+ex. get Message());

}

}

PrintWiter out = res.getWiter();
m content = req.getParanmeter("content");

/1 Save new Iteminformation into database
try
{

Connection conn = get Connection();

O acl eXM_Save sav = new Oracl eXM.Save(conn, "inventory_itemview');
sav.insert XM.(m content);

sav. cl ose();

conn. cl ose();

out.println("lInsert Successful\n");

}

cat ch(Exception e)

{
out.println("Exception caught "+e.get Message());
return;

}

/1 Create and Enqueue the Message
byte[] input = createMessage(mcontent);
megBr oker . enqueueByt esMessage(i nput);

return;

}

/1 Subject to change to validate and using XM. Update |anguage

/1 Since this message is not public we keep it with sinplified SOAP format
public byte[] createMessage(String content)

{

String message = null;

message="<Envel ope>" +
" <Header >" +
"<branch_sql >"+"sel ect id, soapurl from branch"+"</branch_sql >"+
"<obj URI >"+"i nvent oryServer" +"</ obj UR >" +
"<met hod>" +"addl t eni' +" </ net hod>" +
"</ Header >" +
" <Body>"+cont ent +" </ Body>" +
"</ Envel ope>";

/'l Conpress the Message Content
Conpr essi onAgent cagent = new Conpressi onAgent ("oracl e: xm : conpressi on");
byte [] input = cagent.conpress(nessage);

return input;

Using XDK and SOAP 11-13

SOAP Example

/**

* Get JDBC Connection

* @eturn Connection - JDBC Connection

* @xception SQLException - thrown if the connection can't be gotten.
x|

public Connection getConnection() throws SQLException

{

Driver Manager . regi sterDriver(new oracle.jdbc.driver.OaclebDriver());
Connection conn =DriverManager . get Connection (m.dblink, musr, m passwd);
return conn;

}
}

Queuing Messages with AQ

The MessageBr oker class is the agent that communicates with the message queue
and invokes SOAP Remote Procedure Call (RPC).

The MessageBr oker provides the following functionality:

Message Enqueuing and Dequeuing. AQ provides standard Java Message Service (JMS)
APIs to enqueue and dequeue the messages. Before these operations, however, you
need to get a QueueConnect i on, create a QueueSessi on with it, and get the
message queue. During each QueueSessi on, QueueSessi oncomi t () is used for
transactional control. If anything goes wrong when our messaging system sends
messages to the branches, the commit will not occur and the message will remain in
the database.

Invoking Remote SOAP Services. MessageBr oker invokes the remote SOAP service
with RPCCal | Agent (in the RPCCal | Java class). The SOAP RPCCal | creates a Call
object to specify the SOAP service and adds parameters to the parameters vector for
the Cal | object. The Cal | object will invoke the remote SOAP service and return
"Fault code"” if there are errors. We define a Service object in the Service Java class to
describe the Service information.

The SOAP call will generate the HTTP request, encapsulate the inventory update
request in a SOAP message, and invoke the SOAP service on all branches. When
headquarters calls a branch inventory service, the branch sends a confirmation back to
it.

XML Compression

To make the messaging system more efficient, use XML compression. This lets you
compress or decompress a message by using Java object serialization, such as:

XM.Docunent.writeExternal (...);
XM.Docunent . readExternal (...);

Our sample application uses the Conpr essi onAgent Java class to provide the
compress and decompress functionality. Conpr essi onAgent includes both compress
and decompress methods. The compress method returns a byte array and the
decompress method returns an XML document.

Listing of the Java Source File MessageBroker.java
This lengthy source file is found at . / xm agent s/ src/ oracl e/ xm / pnl queue
Some of the more important functions are sendSOAPMessage() , which sends SOAP

files and dequeueText Message() , which dequeues information for each inventory
item.

11-14 Oracle XML Developer's Kit Programmer's Guide

SOAP Example

Summary of the SOAP Example

Using AQ and XDK in a SOAP messaging system can greatly improve reliability and
performance. Inventory update messages are delivered quickly. If they cannot be
delivered, they are stored and logged for sending again. These features provide

reliable and asynchronous message queuing and speed the transfer of XML message
data.

Using XDK and SOAP 11-15

SOAP Example

11-16 Oracle XML Developer's Kit Programmer's Guide

12

TransX Utility

This chapter contains these topics:

« Overview of the TransX Utility

« Installing TransX Utility

« TransX Utility Command-Line Syntax
« Sample Code for TransX Utility

Overview of the TransX Utility

The TransX Utility simplifies the loading of translated seed data and messages into a
database. It also reduces globalization costs by:

« Preparing strings to be translated.
« Translating the strings.
« Loading the strings to the database.

The TransX Utility minimizes translation data format errors and accurately loads the
translation contents into pre-determined locations in the database. Other advantages
of the TransX Utility are:

« Translation vendors no longer have to work with unfamiliar SQL and PL/SQL
scripts.

« Syntax errors due to varying Globalization Support settings are eliminated.
« The UNISTR construct is no longer required for every piece of NCHAR data.

Development groups that need to load translated messages and seed data can use the
TransX Utility to simplify what it takes to meet globalization requirements. Once the
data is in a predefined format, the TransX Utility validates its format.

Choosing the correct encoding when loading translated data is automated because
loading with TransX takes advantage of XML which describes the encoding. This
means that loading errors due to incorrect encoding is impossible as long as the data
file conforms to the XML standard.

Primary TransX Utility Features
This section describes the following features of the TransX Utility:

« Simplified Multilingual Data Loading

« Simplified Data Format Support and Interface

TransX Utility 12-1

Overview of the TransX Utility

» Loading Dataset in the Standard XML Format
« Handling Existing Data
« Other TransX Utility Features

Simplified Multilingual Data Loading

Traditionally, the typical translation data loading method was to switch the NLS_LANG
setting when you switch files to be loaded. Each of the load files is encoded in a
particular character set suitable for the particular language. This was required because
translations must be done in the same file format (typically in a SQL script) as the
original.

The NLS_LANGsetting changes as files are loaded to adapt to the character set that
corresponds to the language. The TransX Utility loading tool frees the development
and translation groups maintaining the correct character set throughout the process
until they successfully load the data into the database using XML.

Simplified Data Format Support and Interface

The TransX Utility data loading tool complies with a data format defined to be the
canonical method for the representation of any seed data to be loaded to the database.
The format is intuitive and easy to understand. The format is also simplified for
translation groups to use. The format specification defines how translators can
describe the data to load it in the expected way.

The data loading tool has a command-line interface and programmable API. Both of
them are straightforward and require little time to learn.

Loading Dataset in the Standard XML Format

Given the dataset (the input data) in the canonical format, the TransX Utility loads the
data into the designated locations in the database. It does not, however, create objects,
including the table that the data is going to be loaded to. In addition to literal values
represented in XML, the following expressions can be used to describe the data to be
loaded:

Constant Expression A constant expression allows you to specify a constant value. A
column with a fixed value for each row does not have to repeat the same value.

Sequence A column can be loaded with a value obtained from a sequence in the
database.

Query A SQL query can be used to load a column. A query can use parameters.

Handling Existing Data

The data loading tool determines whether there are duplicate rows in the database. It
also lets you choose how it processes duplicate rows from one of the options in the
following list. A row is considered duplicate if the values of all columns specified as
lookup-key are the same. The processing options are:

« Skip the duplicate rows or leave them as they are (default)
« Update or overwrite the duplicate rows with the data in provided dataset

« Display an error

12-2 Oracle XML Developer's Kit Programmer's Guide

Installing TransX Utility

Other TransX Utility Features
The lists describes other TransX Utility features:

Command-line Interface—The data loading tool provides easy-to-use commands.
User API—The data loading tool exposes a Java API.
Validation—The data loading tool validates the data format and reports errors.

White Space Handling—White space characters in the dataset are not significant,
unless otherwise specified in various granularity.

Unloading—Based on a query, the data loading tool exports the result into the
standard data format.

Intimacy with Translation Exchange Format—Designed for transformation to and
from translation exchange format

Localized User Interface—Messages are provided in many languages.

Installing TransX Utility

Here is how to install TransX, and the dependencies of TransX.

Dependencies of TransX
The Oracle TransX utility needs the following components in order to function:

Database connectivity -- JDBC drivers. The utility can work with any JDBC drivers
but is optimized for Oracle's JDBC drivers. Oracle does not guarantee or provide
support for TransX running against non-Oracle databases.

XML Parser -- Oracle XML Parser, Version 2. The Oracle XML Parser, Version 2, is
part of the Oracle database installations, and is also available from the Oracle
Technology Network (OTN) Web site.

XML Schema Processor -- Oracle XML Schema Processor. The Oracle XML Schema
Processor is part of the Oracle database installations, downloadable from the
Oracle Technology Network (OTN) Web site.

XML SQL Utility-- Oracle XML SQL Utility (XSU). The Oracle XSU is part of the
Oracle database installation, and is also available from Oracle Technology
Network (OTN) Web site.

Installing TransX Using the Oracle Installer

TransX is packaged with Oracle database. The TransX utility is made up of three
executable files:

$ORACLE_HOVE/ rdbns/j | i b/ transx. zi p -- contains all the java classes which
make up TransX $ORACLE_HOVE/ r dbrs/ bi n/ t r ansx -- a shell script to invoke
TransX from the UNIX command line.

$ORACLE_HQOMVE\ r dbrrs\ bi n\ t ransx. bat -- a batch file to invoke TransX from
the Windows command line.

By default, the Oracle installer installs TransX on your hard drive in the locations
specified above.

TransX Utility 12-3

TransX Utility Command-Line Syntax

Installing TransX Downloaded from OTN

Download the correct XDK Java components distribution archive from the Oracle
Technology Network. Expand the downloaded archive. Depending on the usage
scenario, perform the following install tasks:

To Use the TransX Front-end or Its Java API:

Set up the environment (that is, set CLASSPATH) using the env. xxx script (located in
the bin directory inside the directory created by extracting the XDK download
archive):

UNIX users: make sure that the path names in env. csh are correct and then enter:

source env. csh

If you are using a shell other than csh ort csh, you will have to edit the file to use
your shell's syntax.

Windows users: make sure that the path names in env. bat are correct; execute the
file.

TransX Utility Command-Line Syntax
The following describes the command-line syntax for the TransX Utility.

java oracle.xm .transx.|oader [options] connect_string usernane password

dat asource [dat asource]

java oracle.xn .transx.|oader -v datasource [datasource]

java oracle.xm .transx.|oader -x connect_string username password table [col um]
java oracle.xm .transx.|oader -s connect_string username password filenanme table
[col um]

TransX Utility Command-Line Examples
The following are command-line examples for the TransX Utility:

java oracle.xm .transx.|oader "dl sun9999: 1521: nydb" scott tiger foo.xnl

java oracle.xm .transx.|oader "jdbc:oracle:oci: @ydb" scott tiger foo.xmn

java oracle.xn .transx.|oader -v foo.xm

java oracle.xm .transx.|oader -x "dl sun9999: 1521: nydb" scott tiger enp

java oracle.xm .transx.|oader -s "dl sun9999: 1521: nydb" scott tiger enp.xm enp
enane job

TransX Utility Command-line Parameters
Table 12-1 shows the command-line parameters.

Table 12-1 TransX Utility Command-line Parameters

Parameter Meaning

connect _string JDBC connect string You can omit the connect string information
through the '@' symbol. ‘jdbc:oracle:thin:@' will be supplied.

user name Database user name.

passwor d Password for the database user name.

dat asour ce An XML data source.

option Options in Table 12-2, " TransX Utility Command-line Options".

12-4 Oracle XML Developer's Kit Programmer's Guide

Sample Code for TransX Utility

TransX Utility Command-line Options

Table 12-2 TransX Utility Command-line Options

Option Meaning

Description

-u Update existing rows.

-e Raise exception if a row is already
existing in the database.

- X Print data in the database in the
predefined format.

-S Save data in the database into a file
in the predefined format.

-p Print the XML to load.
-t Print the XML for update.
-0 Omit validation (as the dataset is

parsed it is validated by default).

-V Validate the data format and exit
without loading.

-w Preserve white space.

When this option is specified, existing rows
are not skipped but updated. To exclude a
column from the update operation, specify
the usef or updat e attribute to be "no".

When this option is specified, an exception
will be thrown if a duplicate row is found.
By default, duplicate rows are simply
skipped. Rows are considered duplicate if
the values for lookup-key column(s) in the
database and the dataset are the same.

Similar to the -s option, it causes TransX to
perform the opposite operation of loading.
Unlike the -s option, it prints the output to
st dout . Note: Redirecting this output to a
file is discouraged, because intervention of
the operating system may result in data loss
due to unexpected transcoding.

This is an option to perform unloading. It
queries the database, formats the result into
the predefined XML format and stores it
under the specified file name.

Prints out the dataset for insert in the
canonical format of XSU.

Prints out the dataset for update in the
canonical format of XSU.

Causes TransX to skip the format validation,
which is performed by default.

Causes TransX to perform validation and
exit.

Causes TransX to treat whitespace characters
(such as \t, \r, \n, and ') as significant.
Consecutive whitespace characters in string
data elements are condensed into one space
character by default.

Command-line Option Exceptions The following are the command-line option exceptions:

=« -Uuand - e are mutually exclusive

« - Vv must be the only option followed by data, as in the examples

« - X must be the only option followed by connect info and SQL query as in the

examples

Omitting all arguments will result in the display of the front-end usage information

shown in the table.

See Also:
Java API for TransX Utility

Sample Code for TransX Utility

Oracle XML API Reference for complete details of the

The following is sample code for the TransX Utility:

TransX Utility 12-5

Sample Code for TransX Utility

String datasrc[] = {"datal.xm", "data2.xm", "data3.xm"};

/] instantiate a | oader
TransX transx = | oader. getLoader();

/] start a data | oading session
transx. open(jdbc_con_str, usr, pwd);

/'l specify operation nodes
transx. set Loadi nghode(Loadi nghbde. SKI P_DUPLI CATES) ;
transx. set Val i dati onMbde(fal se);

/1 load the dataset(s)

for (int i =0; i <datasrc.length ; i++)
{

transx.load(datasrc[i]);

}

Il cl eanup

transx. cl ose();

12-6 Oracle XML Developer's Kit Programmer's Guide

13

Getting Started with XDK C Components

This chapter contains these topics:

Specifications of XDK C/C++ Components
Globalization Support for the C XDK Components

Specifications of XDK C/C++ Components

Oracle XDK C/C++ components are built on W3C recommendations. The list of
supported standards for release 10.1 are:

XML 1.0 (Second Edition)

DOM Level 2.0 Specifications

« DOM Level 2.0 Core

« DOM Level 2.0 Traversal and Range
SAX 2.0 and SAX Extensions
XSLT/XPath Specifications

« XSL Transformations (XSLT) 1.0
« XML Path Language (XPath) 1.0
XML Schema Specifications

« XML Schema Part 0: Primer

« XML Schema Part 1: Structures
« XML Schema Part 2: Datatypes

What Are the XDK C Components

XDK C components are the basic building blocks for reading, manipulating,
transforming, and validating XML documents. Oracle XDK C components consist of
the following:

XML Parser for C: checks if an XML document is well-formed, and optionally
validates it against a DTD. The parser constructs an object tree which can be
accessed via a DOM interface or operates serially via a SAX interface.

XSLT Processor for C: provides the ability to format an XML document according
to a stylesheet bundled with the parser.

XVM: high performance XSLT transformation engine.

Getting Started with XDK C Components 13-1

Specifications of XDK C/C++ Components

XML Schema Processor for C: supports parsing and validating XML files against
an XML Schema definition file.

See Also: "Using the XML Parser for C" on page 14-9 for further
discussion of the XDK C components.

Installing the C Components of XDK

If you have installed Oracle Database or Oracle Application Server, then you already
have the XDK C components installed. You can also download the latest versions of
XDK C components from OTN by following these steps:

1.
2.

N oo g &

Navigate to ht t p: / / www. or acl e. conf t echnol ogy/tech/ xm /.
Click the Software link in the right-hand bar.

Logon with your OTN username and password (registration is free if you don't
already have an account).

Select the Windows or UNIX version to download.
Accept all conditions in the licensing agreement.
Click the appropriate *. t ar. gz or *. zi p file.
Extract the files in the distribution:

a. Choose a directory under which you would like the xdk directory and
subdirectories to go.

b. Change to that directory; then extract the XDK download archive file using:

UNI X tar xvfz xdk_xxx.tar.gz
W ndows: use WnZip visual archive extraction tool

Setting the UNIX Environment
After installing the UNIX version of XDK, the directory structure is:

- $XDK_HOVE

| - bin: executable files
| - lib: library files
| - nls/data: G obalization Support data files(*.nlb)
| - xdk
| - demo/c: denmonstration code
| - doc/c: docunentation
| - public: header files
| - mesg: nessage files (*.nsh)

Here are all the libraries that come with the UNIX version of XDK C components:

Table 13-1 XDK C Components Libraries

Component Library Notes

XML Parser libxml10.a XML Parser for C, which includes DOM, SAX,
XSLT Processor
XML Schema Processor

and XSLT APIs
XML Schema Processor for C

The XDK C components (UNIX) depend on the Oracle CORE and Globalization
Support libraries in the following table:

13-2 Oracle XML Developer's Kit Programmer's Guide

Specifications of XDK C/C++ Components

Table 13-2 Dependent Libraries of XDK C Components on UNIX

Component Library Notes

CORE Library libcorel0.a Oracle CORE library

Globalization libnls10.a Oracle Globalization Support common library
Support Library libunls10.a Oracle Globalization Support library for Unicode

support

Command Line Environment Setup

The parser may be called as an executable by invoking bin/xml, which has the
following options:

Table 13-3 Parser Command Line Options

Option

Meaning

-C

-e encodi ng

Conformance check only, no validation

Specify default input file encoding ("incoding")

- Eencodi ng Specify DOM/SAX encoding ("outcoding")
-ffile File - Interpret as filespec, not URI

-h Help - show usage help and full list of flags
-in Number of times to iterate the XSLT processing
-1 language Language for error reporting

-n Traverse DOM and report number of elements
-0 XSLoutfile Specify output file of XSLT processor

-p Print document after parsing

-r

-s styl esheet
-V

-V var val ue

Do not ignore <xs! : out put > instruction in XSLT
processing

Style sheet - specifies the XSL style sheet
Version - display parser version and then exit

To test top level variables in CXSLT

-w Whitespace - preserve all whitespace
-W Warning - stop parsing after a warning
- X SAX - exercise SAX interface and print document

Check if the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files. If you install the Oracle database, you can set it to be:

setenv ORA_NLS10 ${ ORACLE _HOWVE}/ nl s/ dat a

If no Oracle database is installed, you can use the Globalization Support data files that
come with the XDK release by setting:

setenv ORA NLS10 ${ XDK_HOME}/ nl s/ dat a

Error message files are provided in the mesg subdirectory. Files ending in . msb are
machine-readable and needed at runtime; files ending in . nsg are human-readable

and contain cause and action descriptions for each error. The messages files also exist
in the $ORACLE_HOVE/ xdk/ mesg directory.

Getting Started with XDK C Components 13-3

Specifications of XDK C/C++ Components

If you do not have an ORACLE_HOME, check if the environment variable ORA_ XM__
MESGis set to point to the absolute path of the mesg directory. If the Oracle database is
installed, you can set ORA XM._ MESG although this is not required:

setenv ORA_XML_MESG ${ CRACLE_HQOVE} / xdk/ nesg

If no Oracle database is installed, you must set the environment variable ORA XM._
MESGto point to the absolute path of the mesg subdirectory:

setenv ORA XM._MESG ${ XDK_HOVE}/ xdk/ mesg

The parser may also be invoked by writing code to use the supplied APIs. The code
must be compiled using the headers in the i ncl ude subdirectory and linked against

the libraries in the | i b subdirectory. See Makef i | e in the deno subdirectory for full
details of how to build your program.

To get the XDK version you are using on UNIX:
strings libxm 10.a | grep -i Version

Setting the Windows Environment
These are the Windows libraries that come with the XDK C components:

Table 13-4 XDK C Components Libraries on Windows

Component Library Notes
XML Parser oraxml10.lib XML Parser for C, which includes DOM, SAX, and
XSL Processor oraxml10.dll XSLT APls

XML Schema XML Schema Processor for C

Processor

The XDK C components (Windows) depend on the Oracle CORE and Globalization
Support libraries in the following table:

Table 13-5 Dependent Libraries of XDK C Components on Windows

Component Library Notes

CORE Library oracorel0.dll Oracle CORE library

Globalization oranls10.dll Oracle Globalization Support common library
Support Library

Globalization oraunls10.dll Oracle Globalization Support library for Unicode
Support Library support

Environment for Command Line Usage

For the parser and schema validator options, see Table 13-3, " Parser Command Line
Options".

Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support encoding definition files. You can set it this way:

setenv ORA_NLS10 %ORACLE_HOVE% nl s\ dat a
If no Oracle database is installed, you can use the Globalization Support encoding

definition files that come with the XDK release (a subset of which are in the Oracle
database):

13-4 Oracle XML Developer's Kit Programmer's Guide

Specifications of XDK C/C++ Components

set ORA_NLS10 =9%XDK_HOME% nl s\ dat a

Error message files are provided in the mesg subdirectory. Files ending in . nmsb are
machine-readable and needed at runtime; files ending in . nsg are human-readable
and include cause and action descriptions for each error. The messages files also exist
in the $ORACLE_HOVE/ xdk/ mesg directory.

If there is an Oracle database installed, you can set ORA_XM._MESG, although this is
not required:

set ORA XM__MESG =%ORACLE HOMVE% xdk\ nesg

If no Oracle database is installed, you must set the environment variable ORA_ XM _
MESGto point to the absolute path of the nesg subdirectory:

set ORA XM._MESG =9%XDK_HOVE% xdk\ mesg

In order to compile the sample code, you set the path for the cl compiler.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties pops up. Select Environment Tab and input the path of cl . exe to the
PATH variable shown in Figure 13-1, "Setting the Path for the cl Compiler in
Windows".

Figure 13-1 Setting the Path for the cl Compiler in Windows
Sypztem Properties Ed

Startup/Shutdown I Hardware Profiles | I1zer Profiles |
General I Ferformance Environment

Swztern Variables:

" ariahble | W alle |:|
Path d:hweslickhmingd: wweb_servicedtomeat-3_2_3..
PaTHEXT COM ;. EXE BAT.CMD WBS WBE.JS JSE ..

PROCESSOR_AR... =86 —I
PROCESSOR_IDE... =86 Family & Model & Stepping 5, Genuinelntel
PROCESSOR LE.. & hd

Uszer Y ariables for jiwang;

" ariable | " alue |
TEMP CATEMP
TMF CATEMP

" ariable: IF'ath

Yalue: I2_D_DE'\I:-in;D:'\F'r::ugram Filez\Microsoft Wisual 5tudio W C93bir|

Set Delete |

] | Cancel | Apply |

Getting Started with XDK C Components 13-5

Specifications of XDK C/C++ Components

You need to update the Make. bat by adding the path of the libraries and the header
files to the compile and link commands as shown in the following example of a
Make. bat file:

. COWI LE

set filename=%

cl -c -Fo%il enane% obj %opt _fl g% / DCRTAPI 1=_cdecl /DCRTAPI 2=_cdecl /nol ogo /ZI
/Gy /DWN32 /D WN32 /DN N_NT /DW N32COWMON /D DLL /D_MT /D _X86_=1

/Doratext=OraText -1. -1..\..\..\include -

| D:\ Progra~1\ M cros~1\ VC98\ I ncl ude % il enanme% c
goto : EOF

(LINK

set filename=%

link %ink_dbg%/out:..\..\..\..\bin\%ilename% exe /Iibpath: %ORACLE_HOVE% | i b
/libpath: D:\Progra~1\Mcros~1\VC98\lib /libpath:..\..\..\..\lib %il enane% obj
oraxm 10.1ib oracorel0.lib oranls10.lib oraunlsl10.lib user32.1ib kernel32.1ib
msvert.lib ADVAPI32.1ib ol dnames.lib winmmlib

. ECF

where:

D: \ Progra~1\ M cr os~1\ VC98\ | ncl ude: is the path for header files and
D: \ Progra~1\M cr os~1\ VC98\ | i b: is the path for library files.

Using the XDK C Components with Visual C++
If you are using Microsoft Visual C++ compiler:

Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files.

In order to use Visual C++, you need to employ the system setup for Windows to
define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop up window of Control
Panel, select System icon and double click. A window named System Properties pops
up. Select Environment Tab and input ORA_NLS10, and its value d: \ xdk\ nl s\ dat a,
as shown in Figure 13-2:

13-6 Oracle XML Developer's Kit Programmer's Guide

Specifications of XDK C/C++ Components

Figure 13-2 Setting Up the ORA_NLS10 Environment Variable

System Properties E |
Startup/Shutdown 1 Hardware Profilez i Llzer Profiles i
General | Ferfarmance Enwiraimert
Systerm Yariahles:
ariable | Vale -]
i d:hwdkhnlshdata
as Windows MT i
Dz2LibPath CAWAMM T Saystem32hos2hdll;
Fath d:wezlick win D horaclehora81bbing D ydew 76, .
PATHEXT LOMEXE BAT .CMD WVBS WBE .S JSE;.. _'.j

U=zer Yanables for jmang:

R G
TEMP CATEMP
THP CATEMP

Wariable: [ORA_NL510

Walue: [d\wdkhrls\data

Gef l Delete i

k. l Cancel I Apply i

Check that the environment variable ORA_XM._ MESGiis set to point to the absolute
path of the nesg directory.

In order for Visual C++ to use the environment variable, you need to employ the
system setup for Windows to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window nhamed System
Properties pops up. Select Environment Tab and input ORA_ XM._MESG as in
Figure 13-3, (the illustrations show screens for a previous release).

Getting Started with XDK C Components 13-7

Specifications of XDK C/C++ Components

Figure 13-3 Setting Up the ORA_XML_MESG Environment Variable

System Properties H

Startup/Shutdown I Hardware Profiles I Izer Profiles |
General I Performance Ervviranment

System Y ariables:

" ariable | Walue | ﬂ
MNUMBER_OF_FR... 1

ORA_MLS33 Or:hkemphotnghiphedk_c_ 3 0 2 0 0Chnlzdata _I
s Wiindows_MT

Dz2LibPath CAWIMMNT weypstemZ2hoz24dll;

Fath d: heslickaingd weeb servicestorncat-3 2 3. ﬂ

Uzer Yanables for jwwang:

"W anable | W alue |
TEMP CATEMP
TMP CATEMP

Wariable: |ORA_XML_MESG

W alue: ID:'\temp"mtnship'\:-:dk ¢ 9 0 2 0 0Ch=dkimesg

Set Delete |

k. | Cancel | Appls |

Figure 13-4 shows the setup of the PATH for DLLSs:

13-8 Oracle XML Developer's Kit Programmer's Guide

Specifications of XDK C/C++ Components

Figure 13-4 Setup of the PATH for DLLs

System Properties EH
StartupsShutdown I Hardware Profiles | I1zer Prafiles |
General I Perfarmance Ervirarimnent

System YW ariables:

" aniable | Y alue |:|
ORA_MHL533 D:htemphotnghiphedk_c 3 0 2 0 0Chnlzdata

as Windows _MT

OzzZLibPath CAIMMN T waypstemZ2hoz24dll;

Fath d:heglickwined: web_servicettomeat-3_2_ 3.
PATHE=T LOM:EXE . BAT.CMD.VBS.VBE.JS; J5E.... LI

Uzer Yanables for jprang:

'Y ariable | YW alue |
TEMP CATEMP
THP CATEMP

W ariable: IF'ath

Walue: [EL\OUTPUT=T5BIN.D:Mempotrishipiudk_c_3_0_2_0_0Ckbirl

Set Delete |

Q. I Cancel | Apply |

After you open a workspace in Visual C++ and include the *. c files for your project,
you must set the path for the project. Go to the Tools menu and select Options. A
window will pop up. Select the Directory tab and set your include path as shown in
Figure 13-5:

Getting Started with XDK C Components 13-9

Specifications of XDK C/C++ Components

Figure 13-5 Setting Your Include Path in Visual C++

4 E3

Editor | Tab= | Debug | Compatibility | Buld Directones |.:; 4|>

Options

Flatfarrm; Show directaries faor:
[CEEE | [1nclde fies =
|Qireu:tu:uries: X r 4

Ainclude

O:\Program FilestMicrosoft Yisual Studio'WC38M nolude

Mk I Canrel

Then set your library path as shown in Figure 13-6:

Figure 13-6 Setting Your Static Library Path in Visual C++

E ditar I Tabs | Debug | Compatibility | Build Directories | { EE

Platfarm: Show directonies faor:
[win32 =l |Librany files =
Directaries: Fr A

O:MProgram FilesMicrozoft Visual Studic'\WC3ENLIE
D:\Program Files\Microsaft Wisual ShudichWCI8WFCLLIB
d c 902 00Ckb

Ok, I Cancel

After setting the paths for the static libraries in %XDK_HOVE% | i b, you also need to
set the library name in the compiling environment of Visual C++.

Go to the Project menu in the menu bar and select Settings. A window pops up. Please
select the Link tab in the Object/Library Modules field enter the name of XDK C

components libraries, as shown in Figure 13-7:

13-10 Oracle XML Developer's Kit Programmer's Guide

Globalization Support for the C XDK Components

Figure 13—7 Setting Up the Static Libraries in Visual C++ Project

| Project Settings |
|

Settings For:

EBEE FuIDOM

Win32 Debug j General I Debug | C/C++ Link | Hesuurcg EE

Categony: I General j Beszet |

Output file narme:
|Debug/FulDOM.exe

Objectdlibrary modules:

Iu:ll:u:u:pEE.IiI:u oracored. ik aranled b oraxml9.lib oraunle b

¥ Gererate debuginfo [|gnaore all default libraries
¥ Lirk incrementally [Generate maplile
[~ Enable profiling

Froject Options:

kernel32.lib uzer32 lib gdid2 ib winzpool ib comdlg32. lib) -
advapid2.lib shell22.ib ole32 b oleaut32 lib uwid.ib
odbz32 lib odbeop3aZ. lib oracored.lib oranlzS.lib j

(] I Cancel |

Optionally, compile and run the demo programs. Then you can start using C XDK
components.

Globalization Support for the C XDK Components

The parser supports over 300 IANA character sets. These character sets include the
following:

UTF-8, UTF-16, UTF16-BE, UTF16-LE, US-ASCII, I1SO-10646-UCS-2, 1ISO-8859-{1-9,
13-15}, EUC-JP, SHIFT_JIS, BIG5, GB2312, GB_2312-80, HZ-GB-2312, KOI8-R, KSC5601,
EUC-KR, ISO-2022-CN, 1SO-2022-JP, ISO-2022-KR, WINDOWS-{1250-1258},
EBCDIC-CP-{US,CA NL,WT,DK,NO,FI,SE,IT,ES,GB,FR,HE,BE,CH,ROECE,YU,IS,AR1}
, IBM{037,273,277,278,280,284,285,297,420,424,437,500,775,850,852,855,857,00858,
860,861,863,865,866,869,870,871,1026,01140,01141,01142,01143,01144,01145,01146,
01147,01148}

Any alias of the above character sets that is found here may also be used. In addition,
any character set specified in Appendix A, Character Sets, of the Oracle Database
Globalization Support Guide can be used with the exception of IW71S960.

However, it is recommended that you use IANA character set names for
interoperability with other XML parsers. Also note that XML parsers are only required
to support UTF-8 and UTF-16 so those character sets should be preferred.

In order to be able to use these encodings, you should have the ORACLE_HOME
environment variable set and pointing to the location of your Oracle installation. This
enables the use of the globalization support data files which contain data for all
supported encodings. On UNIX systems, they are usually in $SORACLE _

HOVE/ nl s/ dat a. On Windows, they are usually in “%O0RACLE_HOVE% nl s\ dat a. C
and C++ XDK releases that are downloaded from OTN contain an nl s/ dat a

Getting Started with XDK C Components 13-11

Globalization Support for the C XDK Components

subdirectory. You must set the environment variable ORA_NLS10 to the absolute path
of the nl s/ dat a subdirectory if you do not have an Oracle installation.

The default input encoding ("incoding”) is UTF-8. If an input document's encoding is
not self-evident (by HTTP character set, Byte Order Mark, XMLDecl, and so on), then
the default input encoding is assumed. It is recommended that you set the default
encoding explicitly if using only single byte character sets (such as US-ASCII or any of
the I1SO-8859 character sets) since single-byte performance is by far the fastest. The flag
XM__FLAG _FORCE_I NCODI NGsays that the default input encoding should always be
applied to input documents, ignoring any BOM or XMLDecl. However, a protocol
declaration (such as HTTP character set) is always honored.

The data encoding for DOM and SAX ("outcoding") should be chosen carefully.
Single-byte encodings are the fastest, but can represent only a very limited set of
characters. Next fastest is Unicode (UTF-16), and slowest are the multibyte encodings
such as UTF-8. If input data cannot be converted to the outcoding without loss, an
error occurs. So for maximum utility, a Unicode-based outcoding should be used, since
Unicode can represent any character. If outcoding is not specified, it defaults to the
incoding of the first document parsed.

13-12 Oracle XML Developer's Kit Programmer's Guide

14

XML Parser for C

This chapter contains these topics:

=« What Is the Unified C API for XDK and Oracle XML DB?
« Using DOM for XDK

« Using OCI and the C API

« Using the XML Parser for C

« XML Parser for C Calling Sequence

« XML Parser for C Default Behavior

« DOM and SAX APIs Compared

« Using the Sample Files

What Is the Unified C API for XDK and Oracle XML DB?

The single DOM is part of the unified C API, which is a C API for XML, whether the
XML is in the database or in documents outside the database. DOM means DOM 2.0
plus non-standard extensions in XDK for XML documents or for Oracle XML DB for
XML stored as an XMLType column in a table, usually for performance improvements.

Note: Use the new unified C API for new XDK and Oracle XML
DB applications. The old C functions are deprecated and supported
only for backward compatibility, but will not be enhanced. They
will be removed in a future release.

The unified C API is a programming interface that includes the union of all
functionality needed by XDK and Oracle XML DB, with XSLT and XML Schema as
primary customers. The DOM 2.0 standard was followed as closely as possible, though
some naming changes were required when mapping from the objected-oriented DOM
specification to the flat C namespace (overloaded get Nane() methods changed to
get At tr Nanme() and so on).

Unification of the functions is accomplished by conforming contexts: a top-level XML
context (xm ct x) intended to share common information between cooperating XML
components. Data encoding, error message language, low-level memory allocation
callbacks, and so on, are defined here. This information is needed before a document
can be parsed and DOM or SAX output.

Both the XDK and the Oracle XML DB need different startup and tear-down functions
for both contexts (top-level and service). The initialization function takes

XML Parser for C 14-1

Using DOM for XDK

implementation-specific arguments and returns a conforming context. A conforming
context means that the returned context must begin with a xmi ct x; it may have any
additional implementation-specific parts following that standard header.

Initialization (getting an xnl ct x) is an implementation-specific step. Once that
xm ct x has been obtained, unified DOM calls are used, all of which take an xm ct x
as the first argument.

This interface (new for release 10.1) supersedes the existing C API. In particular, the
or axm interfaces (top-level, DOM, SAX and XSLT) and or axsd (Schema) interfaces
are deprecated.

Using DOM for XDK

When the XML resides in a traditional file system, or the Web, or something similar,
the XDK package is used. Again, only for startup are there any
implementation-specific steps.

First a top-level xm ct x is needed. This contains encoding information, low-level
memory callbacks, error message language, and encoding, and so on (in short, those
things which should remain consistent for all XDK components). An xm ct x is
allocated with Xm Cr eat e().

xm ctx *xctx;

xnerr err;
xctx = (xmctx *) Xm Create(&err, "xdk context", "data-encoding", "ascii", ...,
NULL) ;

Once the high-level XML context has been obtained, documents may be loaded and
DOM events generated. To generate DOM:

xn docnode *donct x;
xmerr err;

donttx = Xnl LoadDon(xctx, &err, "file", "foo.xm ", NULL);

To generate SAX events, a SAX callback structure is needed:

xm saxch saxch = {
User AttrDecl Noti fy, /* user's own callback functions */
User CDATANot i fy,

b

if (Xm LoadSax(xctx, &saxch, NULL, "file", "foo.xm", NULL) != 0)
[* an error occured */

The tear-down function for an XML context, xm ct x, is Xm Destroy().

Loading an XML Document with the C API

Once an xnl ct x is obtained, a serialized XML document is loaded with the
Xm LoadDon() or Xm LoadSax() functions. Given the Document node, all API
DOM functions are available.

Data Encoding of XML Documents for the C API

XML data occurs in many encodings. You have control over the encoding in three
ways:

14-2 Oracle XML Developer's Kit Programmer's Guide

Using DOM for XDK

« specify a default encoding to assume for files that are not self-describing
« specify the presentation encoding for DOM or SAX
» re-encode when a DOM is serialized

Input data is always in some encoding. Some encodings are entirely self-describing,
such as UTF-16, which requires a specific BOM before the start of the actual data. A
document's encoding may also be specified in the XM_LDecl or MIME header. If the
specific encoding cannot be determined, your default input encoding is applied. If no
default is provided by you, UTF-8 is assumed on ASCII platforms and UTF-E on
EBCDIC platforms.

A provision is made for cases when the encoding information of the input document is
corrupt. For example, if an ASCII document which contains an XM_Dec| saying
encodi ng=asci i isblindly converted to EBCDIC, the new EBCDIC document
contains (in EBCDIC), an XM_Decl which claims the document is ASCII, when it is
not. The correct behavior for a program which is re-encoding XML data is to
regenerate the XMLDecl, not to convert it. The XMLDecl is metadata, not data itself.
However, this rule is often ignored, and then the corrupt documents result. To work
around this problem, an additional flag is provided which allows the input encoding
to be forcibly set, overcoming an incorrect XM_Decl .

The precedence rules for determining input encoding are as follows:

1. Forced encoding as specified by the user.

Caution: This can result in a fatal error if there is a conflict. For
example, the input document is UTF-16 and starts with a UTF-16
BOM, but the user specifies a forced UTF-8 encoding. Then the
parser will object about the conflict.

2. Protocol specification (HTTP header, and so on).

3. XMLDec! specification is used.

4. User's default input encoding.

5. The default: UTF-8 (ASCII platforms) or UTF-E (EBCDIC platforms).

Once the input encoding has been determined, the document can be parsed and the
data presented. You are allowed to choose the presentation encoding; the data will be
in that encoding regardless of the original input encoding.

When a DOM is written back out (serialized), you can choose at that time to re-encode
the presentation data, and the final serialized document can be in any encoding.

NULL-Terminated and Length-Encoded C API Functions

The native string representation in C is NULL-terminated. Thus, the primary DOM
interface takes and returns NULL-terminated strings. However, Oracle XML DB data
when stored in table form, is not NULL-terminated but length-encoded, so an additional
set of length-encoded APIs are provided for the high-frequency cases to improve
performance (if you deliberately choose to use them). Either set of functions works.

In particular, the following DOM functions are invoked frequently and have dual
APIs:

XML Parser for C 14-3

Using OCI and the C API

Error Handling

Table 14-1 NULL-Terminated and Length-Encoded C API Functions

NULL-Terminated API Length-Encoded API

Xm DontGet NodeNane() Xm Dontet NodeNaneLen()
Xm DontGet NodeLocal () Xm Donteet NodelLocal Len()
Xm DonGet NodeUR! () Xm DonGet NodeURI Len()
Xm DontGet NodeVal ue() Xm Donteet NodeVal uelLen()
Xm DonGet At t r Name() Xm Dontzet At t r NameLen()
Xm DontGet At tr Local () Xm DontGet Att r Local Len()
Xm DonGet At t r URI () Xnl DonGet At t r URI Len()
Xm DontGet At t r Val ue() Xm DontGet At t r Val ueLen()

The API functions typically either return a numeric error code (0 for success, honzero
on failure), or pass back an error code through a variable. In all cases, error codes are
stored and the last error can be retrieved with Xm DonGet Last Error () .

Error messages, by default, are output to st der r . However, you can register an error
message callback at initialization time. When an error occurs, that callback will be
invoked and no error printed.

Installing the C API

There are no special installation or first-use requirements. The XML DOM does not
require an ORACLE_HOME. It can run out of a reduced root directory such as those
provided on OTN releases.

However, since the XML DOM requires globalization support, the globalization
support data files must be present (and found through the environment variables
ORACLE_HOME or ORA_NLS10).

Using OCI and the C API

XML Context

The C API for XML can be used for XMLType columns in the database. XML data that
is stored in a database table can be accessed in an Oracle Call Interface (OCI) program
by initializing the values of OCI handles, such as environment handle, service handle,
error handle, and optional parameters. These input values are passed to the function
OCl Xm Dbl ni t Xml Ct x() and an XML context is returned. After the calls to the C
API are made, the context is freed by the function OCl Xm DbFr eeXm Ct x() .

An XML context is a required parameter in all the C DOM API functions. This opaque
context encapsulates information pertaining to data encoding, error message language,
and so on. The contents of this XML context are different for XDK applications and for
Oracle XML DB applications.

Caution: Do not use an XML context for XDK in an XML DB
application, or an XML context for XML DB in an XDK application.

14-4 Oracle XML Developer's Kit Programmer's Guide

Using OCI and the C API

For Oracle XML DB, the two OCI functions that initialize and free an XML context
have as their prototypes:

xmctx *OC Xm Dol nit Xm Ctx (OC Env *envhp, OCl SveCtx *svchp, OClError *errhp,
oci xm dbparam *par ans, ub4 num parans);

voi d OC Xm DbFreeXm Ctx (xm ctx *xctx);

See Also:

« Oracle Call Interface Programmer’s Guide, "OCI XML DB
Functions" for reference material on the functions.

« Oracle Call Interface Programmer*s Guide, "OCI Support for XML"
for a discussion about OCI support for XML.

= Oracle XML API Reference, "DOM APIs for C".

Creating XMLType Instances on the Client

New XM_Type instances on the client can be constructed using the Xm LoadDom()
calls. You first have to initialize the xm ct x, as in the example in Using DOM for XDK
on page 14-2. The XML data itself can be constructed from a user buffer, local file, or
URI. The return value from these is an (xml docnode *) which can be used in the
rest of the common C API. Finally, the (xm docnode *) can be casttoa (void *)
and directly provided as the bind value if required.

Empty XML Ty pe instances can be constructed using the Xm Cr eat eDocunent () call.
This would be equivalent to an OClI Obj ect New() for other types. You can operate on
the (xm docnode *) returned by the above call and finally castittoa (voi d *) ifit
needs to be provided as a bind value.

XML Data on the Server

XML data on the server can be operated on by means of OCI statement calls. You can
bind and define XML Ty pe values using xm docnode, as with other object instances.
OCI statements are used to select XML data from the server. This data can be used in
the C DOM functions directly. Similarly, the values can be bound back to SQL
statements directly.

XMLType Functions and Descriptions
The following table describes a few of the functions for XML operations.

Table 14-2 XMLType Functions

Description Function Name

Create empty XMLType instance Xm Cr eat eDocunent ()

Create from a source buffer Xm LoadDon() and so on

Extract an XPat h expression Xm XPat hEval expr () and family
Transform using an XSL stylesheet Xm Xsl| Process() and family
Check if an XPat h exists Xm XPat hEval expr () and family
Is document schema-based? Xm Dom sSchenaBased()

Get schema information Xm Donfeet Schema()

Get document namespace Xm DontGet NodeURI ()

XML Parser for C 14-5

Using OCI and the C API

Table 14-2 (Cont.) XMLType Functions

Description Function Name

Validate using schema Xm SchemaVal i dat e()

Obtain DOM from XM.Type Cast (voi d *) to(xm docnode *)
Obtain XMLType from DOM Cast (xm docnode *) to(void *)

OCI Examples

Here is an example of how to construct a schema-based document using the DOM API
and save it to the database (you must include the header files xni . h and
oci xm db. h):

#i ncl ude <xni.h>

#incl ude <oci xm db. h>

static oratext tlpxm _test_sch[] = "<TOP xm ns=' exanpl el. xsd' \ n\
xm ns: xsi =" http://ww. w3. org/ 2001/ XM_Schenma- i nst ance' \n\

xsi: schemalLocat i on=" exanpl el. xsd exanpl el. xsd"/>";

voi d exanpl el()

{
OCl Env *envhp;
OCl Error *errhp;
OCl SveCtx *svchp;
OCl Stnt *stnt hp;
COCl Duration dur;
OCl Type *xnltdo;

xm docnode *doc;

oci xm dbpar am par ans[1] ;

xm node *quux, *foo, *foo_data;
xm err err;

[* Initialize envhp, svchp, errhp, dur, stnthp */
I oo */

[* Get an xm context */

par ans[0] . name_oci xm dbparam = XCTXI NI T_OCl DUR;

params[0] . val ue_oci xm dbparam = &dur;

xctx = OCl Xm Dbl ni t Xml &t x(envhp, svchp, errhp, parans, 1);

/* Start processing */
printf("Supports XM 1.0: 9%\n",
Xm HasFeat ure(xctx, (oratext *) "xm", (oratext *) "1.0") ?
"YES' @ "NO');

/* Parsing a schema-based docunent */

if (!(doc = Xnl LoadDom(xctx, &err, "buffer", tlpxm _test_sch,
"buffer_length", sizeof(tlpxm _test_sch)-1,
"validate", TRUE, NULL)))

printf("Parse failed, code %\n");
return;

}

/* Create sone elenents and add themto the document */

top = Xnl DonGet DocEl em(xct x, doc);

quux = (xm node *) Xm DonCreat eEl en{xctx ,doc, (oratext *) "QUUX");
foo = (xm node *) Xm DonCreat eEl en{xctx, doc, (oratext *) "FOO');

14-6 Oracle XML Developer's Kit Programmer's Guide

Using OCI and the C API

foo_data = (xm node *) Xm DonCreateText(xctx, doc, (oratext *)"foo's data");
foo_data = Xm DomAppendChil d(xctx, (xm node *) foo, (xmnode *) foo_data);
foo = Xnl DomAppendChi I d(xct x, quux, foo);

quux = Xm DomAppendChi | d(xctx, top, quux);

Xm SaveDon(xctx, &err, top, "stdio", stdout, NULL);
Xl SaveDon(xctx, &err, doc, "stdio", stdout, NULL);

/* Insert the docunent to my_table */
ins_stnt = "insert into ny_table values (:1)";

status = OCl TypeByNane(envhp, errhp, svchp, (const text *) "SYS',
(ub4) strlen((char *)"SYS'), (const text *) "XM.TYPE',
(ub4) strlen((char *)"XM.TYPE"), (CONST text *) O,
(ub4) 0, dur, OCl _TYPEGET_HEADER,
(OC Type **) &mtdo)) ;

if (status == OCl _SUCCESS)
{

}

[* free xm ctx */
OCl X DoFreeXm Ct x(xct x);

exec_bind_xm (svchp, errhp, stnthp, (void *)doc, xmtdo, ins_stm));

}

/* __ */
/* execute a sqgl statement which binds xm data */

/* __ */

sword exec_bi nd_xm (svchp, errhp, stnmhp, xm, xmtdo, sqglstnt)
QOCl SveCt x *svchp;
OClError *errhp;
OCl Stnt *stnt hp;
void *xnm ;
CCl Type *xni t do;
OraText *sql stnt;
{
OCl Bi nd *bndhpl
QOCl Bi nd *bndhp2
sword status =
OClInd ind = OC _I ND_NOTNULL;
QClInd *indp = & nd;

(OCIBind *) 0
(OCIBind *) 0

o

if(status = OCI StntPrepare(stnthp, errhp, (OraText *)sglstnt,
(ub4)strlen((char *)sglstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT)) {
return OCl _ERROR;

}

i f(status = OCl Bi ndByPos(stnthp, &bndhpl, errhp, (ub4) 1, (dvoid *) O,
(sb4) 0, SQT_NTY, (dvoid *) 0, (ub2 *)O,
(ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCl_DEFAULT)) {
return OC _ERROR,
}

i f(status = OCl Bi ndbj ect (bndhpl, errhp, (CONST CCl Type *) xnitdo,
(dvoid **) &m, (ub4 *) 0, (dvoid **) & ndp, (ub4 *) 0)) {
return OCl _ERROR,
}

XML Parser for C 14-7

Using OCI and the C API

if(status = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OClI Snapshot*) 0, (OCl Snapshot*) 0, (ub4) OCl _DEFAULT)) {
return OCl _ERROR;

return OC _SUCCESS;
}

Here is an example of how to get a document from the database and modify it using
the DOM API:

#i ncl ude <xm . h>

#i ncl ude <oci xn db. h>

sword exampl e2()

{
OCl Env *envhp;
OCl Error *errhp;
QOCl SveCt x *svchp;
OCl Stnt *stnthp;
OCl Dur ation dur;
OCl Type *xnitdo;

xm docnode *doc;

xm nodelist *itemlist; ub4d ilist _|;

oci xm dbpar am par ans[1] ;

text *sel _xm _stnt = (text *)"SELECT xml _col FROM ny_table";
ub4 xm size = 0;

sword status = 0;

COCl Define *defnp = (OCl Define *) O;

[* Initialize envhp, svchp, errhp, dur, stnthp */
I oo x|

/* CGet an xnmi context */

par ans[0] . name_oci xm dbpar am = XCTXI NI T_OCl DUR;

par ans[0] . val ue_oci xm dbparam = &dur;

xctx = OCl X Dol ni t Xm & x(envhp, svchp, errhp, params, 1);

/* Start processing */
i f(status = OCl TypeByName(envhp, errhp, svchp, (const text *) "SYS',
(ub4) strlen((char *)"SYS"), (const text *) "XM.TYPE",
(ub4) strlen((char *)"XM.TYPE'), (CONST text *) O,
(ub4) 0, dur, OC _TYPEGET_HEADER,
(OCl Type **) xnitdo_p)) {
return OO _ERROR

}

if(!(*xmtdo_p)) {
printf("NULL tdo returned\n");
return OC _ERROR

}

if(status = OCIStntPrepare(stnthp, errhp, (OraText *)selstnt,
(ub4)strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OC _DEFAULT)) {
return OCl _ERRCR,
}

i f(status = OCl DefineByPos(stnthp, &defnp, errhp, (ub4) 1, (dvoid *) O,
(sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)O,
(ub2 *)0, (ub4) OCl _DEFAULT)) {

14-8 Oracle XML Developer's Kit Programmer's Guide

Using the XML Parser for C

return OCl _ERRCR,
t

i f(status = OC Defi netoj ect (def np, errhp, (OC Type *) *xm tdo_p,
(dvoid **) &doc,
&m si ze, (dvoid **) 0, (ub4 *) 0)) {
return OCl _ERROR
}

i f(status = OO Stnt Execute(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST Qd Snapshot*) 0, (OClI Snapshot*) 0, (ub4) OCI _DEFAULT)) {
return OCl _ERROR

}

/* W have the doc. Now we can operate on it */
printf("CGetting Itemlist...\n");

itemlist = Xnl DonmCet El ensByTag(xct x, (xn el ermode *) el em (oratext *)"ltent);

ilist_| = Xm DontCet NodeLi st Lengt h(xctx, itemlist);
printf(" Itemlist length = % \n", ilist_|);
for (i =0; i <ilist_|I; i+4)

{
el em = Xml DonGet NodeLi stltem(xctx, itemlist, i);

printf("El em Name: %\ n", Xnl DonGet NodeNane(xctx, fragelen));
Xm DonRenoveChi | d(xct x, fragelem;

}
X SaveDon(xctx, &err, doc, "stdio", stdout, NULL);

[* free xm ctx */
OCl Xm DoFreeXm Ct x(xct x);

return OCl _SUCCESS;

Using the XML Parser for C

The XML Parser for C is provided with the Oracle Database and the Oracle
Application Server. It is also available for download from
http://ww. oracl e. com technol ogy/tech/ xml .

It is located in $ORACLE_HOVE/ xdk/ on UNIX systems.

readne. ht m inthe doc directory of the software archive contains release specific
information including bug fixes and API additions.

The XML Parser for C checks if an XML document is well-formed, and optionally,
validates it against a DTD. The parser constructs an object tree which can be accessed
through a DOM interface or the parser operates serially through a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at
http://ww. oracl e. com technol ogy/tech/ xml .

There are several sources of information on specifications:

XML Parser for C 14-9

XML Parser for C Calling Sequence

See Also:

= Oracle XML API Reference "DOM APIs for C"

= Oracle XML API Reference "SAX APIs for C"

= Oracle XML API Reference "Callback APIs for C"
« Oracle XML API Reference "Datatypes for C"

« http://ww. oracl e.com technol ogy/tech/xm/

Memory Allocation

The memory callback functions XML_ALLOC_F and XML_FREE_F can be used if you
want to use your own memory allocation. If they are used, both of the functions
should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and
data stored with the DOM parse tree are not freed until one of the following is done:

« Xm FreeDocunent () is called.
« Xm Destroy() iscalled.

Thread Safety

If threads are forked off somewhere in the init-parse-term sequence of calls, you get
unpredictable behavior and results.

Data Types Index
Table 14-3 lists the datatypes used in XML Parser for C.

Table 14-3 Datatypes Used in XML Parser for C

Datatype Description

or at ext String pointer

xm ct x Master XML context

xm saxch SAX callback structure (SAX only)
ub4 32-bit (or larger) unsigned integer
uwor d Native unsigned integer

Error Message Files

Error messages files are in the $ORACLE_HOVE/ xdk/ mesg directory. You may set the
environment variable ORA_XM._MESGto point to the absolute path of the mesg
subdirectory, although this not required.

XML Parser for C Calling Sequence
Figure 14-1 describes the XML Parser for C calling sequence as follows:
1. Xml Creat e() function initializes the parsing process.

2. The parsed item can be an XML document (file) or string buffer. The input is
parsed using the Xm LoadDom() function.

3. DOM or SAX API:

14-10 Oracle XML Developer's Kit Programmer's Guide

XML Parser for C Calling Sequence

5.

DOM: If you are using the DOM interface, include the following steps:
« The Xml LoadDon() function calls Xm DonGet DocEl en() .

« This first step calls other DOM functions as required. These other DOM
functions are typically node or print functions that output the DOM
document.

« You can first invoke Xm Fr eeDocunent () to clean up any data structures
created during the parse process.

SAX: If you are using the SAX interface, include the following steps:

« Process the results of the parser from Xm LoadSax () using callback
functions.

« Register the callback functions. Note that any of the SAX callback functions
can be set to NULL if not needed.

Use Xm FreeDocunent () to clean up the memory and structures used during a
parse, and go to Step 5. or return to Step 2.

Terminate the parsing process with Xm Destroy()

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

Xm Create() - Xm LoadDom() - Xnl Destroy()

Xm Create() - Xm LoadDon() - Xm FreeDocunent() -

Xm LoadDonm() - Xml FreeDocunent() - ... - Xm Destroy()
Xm Create() - Xm LoadDom() -... - Xml Destroy()

XML Parser for C 14-11

XML Parser for C Default Behavior

Figure 14-1 XML Parser for C Calling Sequence

error handler set

el XmlCreate() D SAX callback set

}

error callbacks

XmiLoadSax() < xml input file, buffer,

SAX:
callbacks invoked

el or
XmlLoadDom() db, URL, ...
/ 1 o\
another

N

another DOM constructed

!

t

SAX completes

DOM:
—pp| XmlIFreeDocument() | <= query, edit, . . .

: !

XML Parser for

> XmIDestroy() DOM document

C Default Behavior

The following is the XML Parser for C default behavior:

Character set encoding is UTF-8. If all your documents are ASCI|I, you are
encouraged to set the encoding to US-ASCII for better performance.

Messages are printed to st der r unless an error handler is provided.

The default behavior for the parser is to check that the input is well-formed but
not to check whether it is valid. The property "validate" can be set to validate the
input. The default behavior for whitespace processing is to be fully conforming to
the XML 1.0 specification, that is, all whitespace is reported back to the application
but it is indicated which whitespace is ignorable. However, some applications may
prefer to set the property "discard-whitespace"which discards all whitespace
between an end-element tag and the following start-element tag.

Note: Itis recommended that you set the default encoding
explicitly if using only single byte character sets (such as US-ASCI|I
or any of the 1SO-8859 character sets) for performance up to 25%
faster than with multibyte character sets, such as UTF-8.

14-12 Oracle XML Developer's Kit Programmer's Guide

DOM and SAX APIs Compared

DOM and SAX APIs Compared

Oracle XML parser for C checks if an XML document is well-formed, and optionally
validates it against a DTD. The parser constructs an object tree which can be accessed
through one of the following interfaces:

DOM: Tree-based APIs. A tree-based APl compiles an XML document into an
internal tree structure, then allows an application to navigate that tree using the
Document Object Model (DOM), a standard tree-based APl for XML and HTML
documents.

Tree-based APIs are useful for a wide range of applications, but they often put a
great strain on system resources, especially if the document is large (under very
controlled circumstances, it is possible to construct the tree in a lazy fashion to
avoid some of this problem). Furthermore, some applications need to build their
own, different data trees, and it is very inefficient to build a tree of parse nodes,
only to map it onto a new tree.

SAX: Event-based APIs. An event-based API, on the other hand, reports parsing
events (such as the start and end of elements) directly to the application through
callbacks, and does not usually build an internal tree. The application implements
handlers to deal with the different events, much like handling events in a
graphical user interface.

An event-based API provides a simpler, lower-level access to an XML document.
You can parse documents much larger than your available system memory, and
you can construct your own data structures using your callback event handlers.

Using the SAX API

To use SAX, an xnl saxchb structure is initialized with function pointers and passed to
the Xml LoadSax() call. A pointer to a user-defined context structure can also be
included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure can be found at:

See Also: Oracle XML API Reference, SAX

Command Line Usage

The XML Parser and XSLT Processor can be called as an executable by invoking
bi n/ xm :

xm [options] [document URI]

or

xm -f [options] [document filespec]

Table 14-4 lists the command line options.

Table 14-4 XML Parser and XSLT Processor: Command Line Options

Option Description

-B Baselri Set the Base URI for XSLT processor: BaseUr i of

-C

http://pgr/xsl.txt resolvespgr.txt to
http://pqgr/pgr.txt

Conformance check only, no validation.

-e encodi ng Specify input file encoding.

XML Parser for C 14-13

Using the Sample Files

Table 14-4 (Cont.) XML Parser and XSLT Processor: Command Line Options

Option

Description

- E encodi ng
-f

-G xptrexprs
-h

Specify DOM or SAX encoding.
File - interpret as filespec, not URI.
Evaluates XPointer schema examples given in afile.

Help - show this usage. (-hh for more options.)

-hh Show complete options list.

-in Number of times to iterate the XSLT processing.

-1 language Language for error reporting.

-n Number - DOM traverse and report number of elements.
-0 XSLoutfile Specifies output file of XSLT processor.

-p Print document and DTD structures after parse.

-P Pretty print from root element.

- PE encodi ng Specifies encoding for -P or -PP output.

-PP Pretty print from root node (DOC); includes XMLDecl.
-PX Include XMLDecl in output always.

-r

-s styl esheet

Do not ignore <xsl : out put > instruction in XSLT processing.

Specifies the XSLT stylesheet.

-V \ersion - display parser version then exit.
-V var val ue Test top-level variables in C XSLT.

- W Whitespace - preserve all whitespace.

-W Warning - stop parsing after a warning.

Exercise SAX interface and print document.

Writing C Code to Use Supplied APIs

XML Parser for C can also be invoked by writing code to use the supplied APIs. The
code must be compiled using the headers in thei ncl ude/ subdirectory and linked
against the libraries in the | i b/ subdirectory. Please see the Makef i | e in the
deno/ c/ subdirectory for full details of how to build your program.

Using the Sample Files

The $ORACLE_HOVE/ xdk/ deno/ c/ directory contains several XML applications to
illustrate how to use the XML Parser for C with the DOM and SAX interfaces.

To build the sample programs, change directories to the sample directory ($ORACLE _
HOVE/ xdk/ dermo/ ¢/ on UNIX) and read the READMVE file. This file explains how to
build the sample programs.

Table 14-5 lists the sample files:

Table 14-5 XML Parser for C Sample Files

Sample File Name Description

DOWNanespace. c Source for DOVNanespace program.

14-14 Oracle XML Developer's Kit Programmer's Guide

Using the Sample Files

Table 14-5 (Cont.) XML Parser for C Sample Files

Sample File Name

Description

DOWNanespace. std
DOVsanpl e. ¢
DOMsanpl e. std

Ful | DOM c

Ful | DOM std
Makefile

NSExanpl e. xm
SAXNanmespace. c
SAXNanespace. std
SAXSanpl e. ¢
SAXSanpl e. st d
XSLSanmpl e. ¢
XSLSanpl e. std
XVMsanpl e. ¢
XVMsanpl e. std
XSLXPat hSanpl e. ¢

XSLXPat hSanpl e. std

XVMXPat hSanpl e. ¢

XVMXPat hSanpl e. st d

cl ass. xnl
i den. xsl

cl eo. xm

Expected output from DOVNanmespace.
Source for DOVBanpl e program.

Expected output from DOMBanpl e.

Sample usage of DOM interface.

Expected output from Ful | DOM

Batch file for building sample programs.
Sample XML file using namespaces.

Source for SAXNanmespace program.
Expected output from SAXNanmespace.
Source for SAXSanpl e program.

Expected output from SAXSanpl e.

Source for XSLSanpl e program.

Expected output from XSLSanpl e.

Source for XVYMSanpl e program.

Expected output from XVMSanpl e.

Source for XSLXPat hSanpl e program.
Expected output from XSLXPat hSanpl e program.
Source for X\VMXPat hSanpl e program.
Expected output from XVMXPat hSanpl e program.
XML file that may be used with XSLSanpl e.
Stylesheet that may be used with XSLSanpl e.

The Tragedy of Antony and Cleopatra, XML version of
Shakespeare's play.

Table 14-6 lists the programs built by the sample files:

Table 146 XML Parser for C: Sample Built Programs

Built Program

Description

DOVsanpl e

SAXSanpl e word

DOVWNanespace
SAXNanespace

Ful | DOM

A sample application using DOM APIs (shows an outline of
Cleopatra, that is, the XML elements ACT and SCENE).

A sample application using SAX APls. Given a word, shows all
lines in the play Cleopatra containing that word. If no word is
specified, 'death’ is used.

Same as SAXNanmespace, except using DOM interface.

A sample application using Namespace extensions to SAX API;
prints out all elements and attributes of NSExanpl e. xmi
along with full namespace information.

Sample usage of full DOM interface. Exercises all the calls.

XML Parser for C 14-15

Using the Sample Files

Table 14-6 (Cont.) XML Parser for C: Sample Built Programs

Built Program Description

XSLSanpl e xmlfile xslss Sample usage of XSL processor. It takes two file names as
input, the XML file and XSL stylesheet

XVMsanpl e xmlfile Sample usage of the XSLT Virtual Machine and Compiler. It

xslfile takes two files as input - the XML file and the XSL stylesheet.

XSLXPat hSanpl e Sample usage of XSL/XPath processor. It takes an XML file

xmlfile xpathexpr and an XPath expression as input. Generates the result of the
evaluated XPath expression.

XVMXPat hSanpl e Sample usage of the XSLT Virtual Machine and Compiler. It

xmlfile xpathexpr takes an XML file and an XPath expression as input. Generates

the result of the evaluated XPath expression.

14-16 Oracle XML Developer's Kit Programmer's Guide

15

XSLT Processors for C

This chapter contains these topics:
« XVM Processor
« XSL Processor

« Using the Demo Files Included with the Software

Note: Use the new unified C API for new XDK and Oracle XML
DB applications. The old C functions are deprecated and supported
only for backward compatibility, but will not be enhanced. They
will be removed in a future release.

The new C API is described in Chapter 14, "XML Parser for C".

XVM Processor

The Oracle XYM Package implements the XSL Transformation (XSLT) language as
specified in the W3C Recommendation of 16 November 1999. The package includes
XSLT Compiler and XSLT Virtual Machine (XVM). The implementation by Oracle of
the XSLT compiler and the XVM enables compilation of XSLT (Version 1.0) into
bytecode format, which is executed by the virtual machine. XSLT Virtual Machine is
the software implementation of a "CPU" designed to run compiled XSLT code. The
virtual machine assumes a compiler compiling XSLT stylesheets to a sequence of
bytecodes or machine instructions for the "XSLT CPU". The bytecode program is a
platform-independent sequence of 2-byte units. It can be stored, cached and run on
different XVMs. The XVM uses the bytecode programs to transform instance XML
documents. This approach clearly separates compile-time from run-time computations
and specifies a uniform way of exchanging data between instructions. The benefits of
this approach are:

= An XSLT stylesheet can be compiled, saved in a file, and re-used often, even on
different platforms.

« The XVM is significantly faster and uses less memory than other XSL processors.

« The bytecodes are not language-dependent. There is no difference between code
generated from a C or C++ XSLT compiler.

XVM Usage Example

A typical scenario of using the package APIs has the following steps:

1. Create and use an XML meta-context object.

XSLT Processors for C 15-1

XVM Processor

xctx = Xm Create(&err,...);

Create and use an XSLT compiler object.
conp = Xnl XvnCr eat eConp(xctx);

Compile an XSLT stylesheet or XPath expression and store or cache the resulting
bytecode.

code = Xml XvnConpi | eFi l e(conp, xslFile, baseuri, flags, &err);
or

code = Xm XvnConpi | eDom (conp, xsl Dondoc, flags, &err);

or

code = Xm XvnConpi | eXPath (conp, xpathexp, nanespaces, &err);

Create and use an XVM object. The explicit stack size setting is needed when XVM
terminates with a "Stack Overflow" message or when smaller memory footprints
are required. See Xm XvnCreate().

vm = Xm XvnCreate(xctx, "StringStack", 32, "NodeStack", 24, NULL);

Set the output (optional). Default is a stream.

err = Xm XvnBet Qut put Dom (vm NULL);

or

err = Xm XvnBet Qut put Strean(vm &xvm strean);

or

err = Xm XvnBet Qut put Sax(vm &xvm cal | back, NULL);

Set a stylesheet bytecode to the XVVM object. Can be repeated with other bytecode.

| en = Xm XvnCet Byt ecodelLengt h(code, &err);
err = Xm XvnBet Byt ecodeBuffer(vm code, |en);

or

err = Xm XvnBet Byt ecodeFil e (vm xsl| Byt ecodeFil e);

Transform an instance XML document or evaluate a compiled XPath expression.
Can be repeated with the same or other XML documents.

err = Xm XvniTransfornFil e(vm xm File, baseuri);

or

err = Xm XvnTransf or mDom (vm xni Dondoc) ;

or

obj = (xvnobj*)Xm XvnEval uat eXPath (vm code, 1, 1, node);

Get the output tree fragment (if DOM output is set at step 5).
node = Xm XvnGet Qut put Dom (vn);

Delete the objects.

15-2 Oracle XML Developer's Kit Programmer's Guide

XSL Processor

Xm XvmDest roy(vm ;
Xm XvnDest r oy Conp(conp) ;
X Destroy(xctx);

Command-Line Access of the XVM Processor
The XVM processor is accessed from the command-line this way:

Xxvm

Usage:

xvmoptions xslfile xmfile
Xxvmoptions xpath xmfile

Options:

-C Conpile xslfile. The bytecode is in "xnifile. xvni.
-ct Conpile xslfile and transformxnmfile.

-t Transform xn file using bytecode fromxslfile.

- XC Conpi | e xpath. The bytecode is in "code.xvni.

- xct Conpi | e and evaluate xpath with xmfile.

- xt Eval uate XPath bytecode fromxpath with xmfile.
Examples:

xvm-ct db.xsl db.xm
xvm -t db. xvm db. xm
xvm -xct "doc/ enpl oyee[15]/fam |y" db. xm

Accessing XVM Processor for C

Oracle XVM Processor for C is provided with the database and the Application Server.
It is also available for download from the OTN site:

See Also:
. Oracle XML API Reference "XSLTVM APIs for C"
« http://otn.oracle.comtech/ xm/

XSL Processor

The Oracle XSL/XPath Package implements the XSL Transformation (XSLT) language
as specified in the W3C Recommendation of 16 November 1999. The package includes
XSL Processor and XPath Processor. The Oracle implementation of XSL processor
follows the more common design approach, which melts ‘compiler' and 'processor
into one object.

XSL Processor Usage Example
A typical scenario of using the package APIs has the following steps:

1. Create and use an XML meta-context object.
xctx = Xnl Create(&err,...);

2. Parse the XSLT stylesheet.
xsl Dondoc = Xm LoadDom(xctx, &err, "file", xslFile, "base_uri", baseuri, NULL);

3. Create an XSL Processor for the stylesheet

XSLT Processors for C 15-3

XSL Processor

xslproc = Xm Xsl Create (xctx, xslDomdoc, baseuri, &err);

4. Parse the instance XML document.

xm Dondoc = Xml LoadDonm{xctx, &err, "file", xmFile, "base_uri", baseuri,
NULL) ;

5. Set the output (optional). Default is DOM.
err = Xm Xsl Set Qut put Strean(xsl proc, &streanj;

6. Transform the XML document. This step can be repeated with the same or other
XML documents.

err = Xm Xsl Process (xsl proc, xm Dondoc, FALSE);

7. Get the output (if DOM).
node = Xm Xsl Get Qut put (xsl proc);

8. Delete objects.

Xm Xs| Dest roy(xsl proc);
Xm Dest roy(xctx);

XPath Processor Usage Example
A typical scenario of using the package APIs has the following steps:

1. Create and use an XML meta-context object.
xctx = Xm Create(&err,...);

2. Parse the XML document or get the current node from already existing DOM.
node = Xm LoadDon{xctx, &err, "file", xm File, "base_uri", baseuri, NULL);

3. Create an XPath processor.
xptproc = Xm XPat hCreat eCt x(xctx, NULL, node, 0, NULL);

4. Parse the XPath expression.

exp = Xm XPat hParse (xptproc, xpathexpr, &err);

5. Evaluate the XPath expression.

obj = Xm XPat hEval (xptproc, exp, &err);

6. Delete the objects.

Xm XPat hDestroyCt x (xpt proc);
Xm Dest roy(xctx);

Command Line Usage of the XSL Processor
The Oracle XSL processor for C can be called as an executable by invoking bi n/ xsl :

xsl [switches] stylesheet instance
or
xsl -f [switches] [docunent filespec]

If no style sheet is provided, no output is generated. If there is a style sheet, but no
output file, output goes to st dout .

15-4 Oracle XML Developer's Kit Programmer's Guide

Using the Demo Files Included with the Software

Table 15-1 lists the command line options.

Table 15-1 XSLT Processor for C: Command Line Options

Option Description

-B BaseUri Set the Base URI for XSLT processor: BaseUr i of
http://pgr/xsl.txt resolves pqr.txt to
http://pqgr/pgr.txt

-e encodi ng Specify default input file encoding (- ee to force).

-E encoding Specify DOM or SAX encoding.

-f

-G xptrexprs
-h

-hh

-in

-1 language

-0 XSLoutfile
-V

-V var val ue
-w

-W

File - interpret as filespec, not URI.

Evaluates XPointer schema examples given in afile.
Help - show this usage. (Use - hh for more options.)
Show complete options list.

Number of times to iterate the XSLT processing.
Language for error reporting.

Specifies output file of XSLT processor.

Version - display parser version then exit.

Test top-level variables in C XSLT.

Whitespace - preserve all whitespace.

Warning - stop parsing after a warning.

Accessing Oracle XSL Processor for C

Oracle XSL Processor for C is provided with the database and the Application Server.
Itis also available for download from the OTN site:

See Also:

. Oracle XML API Reference "XSLT APIs for C"
. Oracle XML API Reference "XPath APIs for C"

« http://otn.oracle.comtech/ xm/

Using the Demo Files Included with the Software

$ORACLE_HOVE/ xdk/ deno/ c/ par ser/ directory contains several XML applications
to illustrate how to use the XSLT for C.

Table 15-2 lists the files in that directory:

Table 15-2 XSLT for C Demo Files

Sample File Name

Description

XSLSampl e. ¢
XSLSampl e. std
cl ass. xm

iden. xsl

cl eo. xm

Source for XSLSample program

Expected output from XSLSample

XML file that can be used with XSLSample
Stylesheet that can be used with XSLSample
XML version of Shakespeare's play

XSLT Processors for C 15-5

Using the Demo Files Included with the Software

Table 15-2 (Cont.) XSLT for C Demo Files

Sample File Name Description

XVMBanpl e. ¢ Sample usage of XSLT Virtual Machine and compiler. It takes
two filenames as input - XML file and XSL stylesheet file.

XVMXPat hSanpl e. ¢ Sample usage of XSLT Virtual Machine and compiler. It takes
XML file name and XPat h expression as input. Generates the
result of the evaluated XPat h expression.

XSLXPat hSanpl e. ¢ Sample usage of XSL/ XPat h processor. It takes XML file name
and XPat h expression as input. Generates the result of the
evaluated XPat h expression.

Building the C Demo Programs for XSLT

Change directories to the demo directory and read the README file. This will explain
how to build the sample programs according to your operating system.

Here is the usage of XSLT processor sample XSLSanpl e, which takes two files as
input, the XML file and the XSL stylesheet:

XSLSanple xmfile xslss

15-6 Oracle XML Developer's Kit Programmer's Guide

16

XML Schema Processor for C

This chapter contains these topics:

« Oracle XML Schema Processor for C

« Invoking XML Schema Processor for C

« XML Schema Processor for C Usage Diagram

« How to Run XML Schema for C Sample Programs

Note: Use the new unified C API for new XDK and Oracle XML
DB applications. The old C functions are deprecated and supported
only for backward compatibility, but will not be enhanced. They
will be removed in a future release.

The new C API is described in Chapter 14, "XML Parser for C".

Oracle XML Schema Processor for C

The XML Schema Processor for C is a companion component to the XML Parser for C.
It allows support for simple and complex datatypes in XML applications.

The XML Schema Processor for C supports the W3C XML Schema Recommendation.
This makes writing custom applications that process XML documents straightforward,
and means that a standards-compliant XML Schema Processor is part of the XDK on
every operating system where Oracle is ported.

See Also: Chapter 3, "XML Parser for Java", for more information
about XML Schema and why you would want to use XML Schema.

Oracle XML Schema for C Features
XML Schema Processor for C has the following features:

« Supports simple and complex types
« Built on XML Parser for C
« Supports the W3C XML Schema Recommendation

See Also:
=« Oracle XML API Reference "Schema APIs for C"

« [/ xdk/ deno/c/schema/ -sample code

XML Schema Processor for C 16-1

Invoking XML Schema Processor for C

Standards Conformance
The Schema Processor conforms to the following standards:

« W3C recommendation for Extensible Markup Language (XML) 1.0
« W3C recommendation for Document Object Model Level 1.0
« W3C recommendation for Namespaces in XML

« W3C recommendation for XML Schema

XML Schema Processor for C: Supplied Software
Table 16-1 lists the supplied files and directories for this release:

Table 16-1 XML Schema Processor for C: Supplied Files

Directory and Files Description

bi n schema processor executable, schema
lib XML/XSL/Schema & support libraries
nl s/ data Globalization Support data files

xdk/ deno/ c/ schena example usage of the Schema processor
xdk/ i ncl ude header files

xdk/ mesg error message files

xdk/ readme. ht m introductory file

Table 16-2 lists the included libraries:

Table 16-2 XML Schema Processor for C: Supplied Libraries

Included Library Description

l'i bxm 10. a XML Parser, XSL Processor, XML Schema Processor
l'i bcorel0. a CORE functions

libnlsl0.a Globalization Support

Invoking XML Schema Processor for C

XML Schema Processor for C can be called as an executable by invoking bi n/ schena
in the install area. This takes two arguments:

« XML instance document
« Optionally, a default schema

The XML Schema Processor for C can also be invoked by writing code using the
supplied APIs. The code must be compiled using the headers in thei ncl ude
subdirectory and linked against the libraries in the | i b subdirectory. See Makefi | e in
the xdk/ deno/ ¢/ schema subdirectory for details on how to build your program.

Error message files in different languages are provided in the mesg/ subdirectory.

XML Schema Processor for C Usage Diagram

Figure 16-1 describes the calling sequence for the XML Schema Processor for C, as
follows:

16-2 Oracle XML Developer's Kit Programmer's Guide

How to Run XML Schema for C Sample Programs

The sequence of calls to the processor is: initialize, load, validate, validate, ..., validate,
terminate.

1.

The initialize call is invoked once at the beginning of a session; it returns a schema
context which is used throughout the session.

Schema documents to be used in the session are loaded in advance.
The instance document to be validated is first parsed with the XML parser.

The top of the XML element subtree for the instance is then passed to the schema
validate function.

If no explicit schema is defined in the instance document, any pre-loaded schemas
will be used.

More documents can then be validated using the same schema context.

When the session is over, the Schema tear-down function is called, which releases
all memory allocated for the loaded schemas.

Figure 16-1 XML Schema Processor for C Usage Diagram

XMLSchemaCreate()

)

XMLSchemaSetValidateOptions()

!

XMLSchemalLoad() Parsed XML Doc Input

iy

— XMLSchemaValidate() ey Validation Results

!

XMLSchemabDestroy()

How to Run XML Schema for C Sample Programs

The directory xdk/ denp/ ¢/ schena contains sample XML Schema applications that
illustrate how to use Oracle XML Schema Processor with its API. Table 16-3 lists the
provided sample files.

XML Schema Processor for C 16-3

How to Run XML Schema for C Sample Programs

Table 16-3 XML Schema for C Samples Provided

Sample File Description

Makefil e Makefile to build the sample programs and run them, verifying
correct output.

xsdtest.c Program which invokes the XML Schema for C API

car.{xsd, xm , std} Sample schema, instance document, and expected
output respectively, after running xsdt est on them.

aqg. {xsd, xm , st d} Second sample schema, instance document, and expected
output respectively, after running xsdt est on them.

pub. {xsd, xm , std} Thirdsample schema, instance document, and expected
output respectively, after running xsdt est on them.

To build the sample programs, run make.
To build the programs and run them, comparing the actual output to expected output:

neke sure

16-4 Oracle XML Developer's Kit Programmer's Guide

17

Getting Started with XDK C++ Components

This chapter contains this topic:

Installation of the XDK C++ Components

Installation of the XDK C++ Components

XDK C++ components are the basic building blocks for reading, manipulating, and
transforming XML documents.

Oracle XDK C++ components consist of the following:

XML Parser for C++; supports parsing XML documents with the DOM or SAX
interfaces.

XSL Processor for C++: supports transforming XML documents.

XML Schema Processor for C++: supports parsing and validating XML files
against an XML Schema definition file (default extension. xsd).

Class Generator for C++: generates a set of C++ source files based on an input
DTD or XML Schema.

Getting the C++ Components of XDK

If you have installed the Oracle Database or Oracle Application Server, you will
already have the XDK C++ components installed. You can also download the latest
versions of XDK C++ components from OTN.

In order to download the XDK from OTN, follow these steps:

1.
2.

N o &

Gotothe URL http://ww. oracl e. com technol ogy/tech/ xm /
Click the XML Developer's Kit link.

Logon with your OTN username and password (registration is free if you don't
already have an account).

Select the version that you want to download.
Accept all conditions in the licensing agreement.
Click the appropriate *. t ar. gz or *. zi p file.
Extract the files in the distribution:

a. Choose a directory under which you would like the xdk directory and
subdirectories to go.

Getting Started with XDK C++ Components 17-1

Installation of the XDK C++ Components

b. Change to that directory; then extract the XDK download archive file with the
tool:

UNI X tar xvfz xdk_xxx.tar.gz
W ndows: use WnZip visual archive extraction tool

Libraries in the UNIX Environment for C++ XDK
After installing the XDK, the directory structure is:

- $XDK_HOMVE

| - bin: executable files
| - lib: library files.
| - nls/data: Gobalization Support data files(*.nlb)
| - xdk

| - deno/cpp: denmonstration code

| - doc/cpp: docunentation

| - public: header files

| - mesg: nessage files (*.nsh)

The libraries that come with the UNIX version of XDK C++ components are listed in
the following table:

Table 17-1 XDK Libraries for C++ (UNIX)

Component Library Notes

XML Parser, XSL Processor, |ibxm 10.a XML Parser V2 for C++, which includes DOM,
XML Schema Processor, SAX, and XSLT APIs, XML Schema Processor

for C++, Class Generator for C++
Class Generator

The XDK C++ components package depends on the Oracle CORE and Globalization
Support libraries, which are listed in the following table:

Table 17-2 Dependent Libraries of XDK C++ Components on UNIX

Component Library Notes

CORE Library libcorel0.a Oracle CORE library

Globalization l'ibnlsl0.a Oracle Globalization Support common library
Support Library

Globalization libunls10.a Oracle Globalization Support library for Unicode
Support Library support

Setting the UNIX Environment for C++

Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files. If you install the Oracle database, you can set it to be:

setenv ORA_NLS10 ${ORACLE_HOVE}/nl s/ data

If no Oracle database is installed, you must use the Globalization Support data files
that come with the XDK release:

setenv ORA_NLS10 ${XDK_HOVE}/nl s/ dat a

Check that the environment variable ORA_XM._MESGis set to point to the absolute

path of the mesg directory. If you install the Oracle database, although this is not
required, you can set it to:

setenv ORA_XM._MESG ${ CRACLE_HOVE}/ xdk/ mesg

17-2 Oracle XML Developer's Kit Programmer's Guide

Installation of the XDK C++ Components

If no Oracle database is installed, you must set it to be the directory of the error
message files that comes with the XDK release:

setenv ORA_XM__MESG ${ XDK_HOVE}/ xdk/ nmesg

The XDK components can be invoked by writing your own programs to use the
supplied API. Compile the programs using the headers in the xdk/ i ncl ude/
subdirectory and link against the libraries in the | i b/ subdirectory. See Makefil e in
the xdk/ deno/ subdirectory for full details of how to build your programs.

Command Line Environment Setup

The parser may be called as an executable by invoking bi n/ xm , which has the
following options:

See Also: For information about Command Line Parser usage, see
Table 13-3, " Parser Command Line Options"

To get the XDK version you are using on UNIX:

strings libxm10.a | grep -i Version

You can now use the Makefi | es to compile and link the demo code and start
developing your program using XDK C++ components.

Windows Environment Setup for C++ XDK
These are the Windows libraries that come with the XDK C++ components:

Table 17-3 XDK C++ Components Libraries on Windows

Component Library Notes

XML Parser oraxm 10.1ib XML Parser V2 for C++, which includes DOM, SAX,
oraxni 10. dl | and XSLT APIs

XSL Processor

XML Schema
Processor Class Generator for C++

XML Schema Processor for C++

Class Generator

The XDK C++ components (Windows) depends on the Oracle CORE and
Globalization Support libraries in the following table:

Table 17-4 Dependent Libraries of XDK C++ Components on Windows

Component Library Notes
CORE Library oracorel0.dl| Oracle CORE library
Globalization oranls.dll Oracle Globalization Support common library

Support Library

Globalization oraunls.dll Oracle Globalization Support library for Unicode
Support Library support

Environment for Command Line Usage on Windows

Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files. If you install the Oracle database:

Getting Started with XDK C++ Components 17-3

Installation of the XDK C++ Components

set ORA_NLS10 = %ORACLE HOME% nl s\ dat a
If no Oracle database is installed, you must use the Globalization Support data files
that come with the XDK release:

set ORA NLS10 =9%DK HOME% nl s\ dat a

Check that the environment variable ORA_XM._ MESGis set to point to the absolute
path of the mesg directory. If you install the Oracle database, although it is not
required, you can set it to:

set ORA_XM._MESG =%ORACLE_HOVE% xdk\ mesg

If no Oracle database is installed, you must set it to be the directory of the error
message files, which comes with the XDK release:

set ORA XM_._MESG =%DK_HOVE% xdk\ nesg

See Also: For information about Command Line Parser usage, see
Table 13-3, " Parser Command Line Options"

Setting the Windows Environment for C++ XDK

Set the path for cI compiler, if you need to compile the code using make. bat ina
command line.

Go to the Start Menu and select Settings > Control Panel. In the pop up window of
Control Panel, select System icon and double click. A window named System
Properties will pop up. Select Environment Tab and input the path of cl . exe to the
PATH variable shown in Figure 17-1.

17-4 Oracle XML Developer's Kit Programmer's Guide

Installation of the XDK C++ Components

Figure 17-1 Setting the PATH for the cl Compiler
System Properties [2]

Startup/Shutdown I Hardware Frofiles | I1zer Praofiles |
eneral I Perfarmance Enviranment

Systemn Yariables:

" ariable | Walue |:|
Path d:heeglickhwinod: weeb_servicehtomcat-3_2_ 3.
PATHERT COM ;. E=E BAT.CMD;VBS WVBE J5 JSE; ..
PROCESSOR_AR... =86 —I

PROCESSOR_IDE... =86 Family 6 Model B Stepping 5, Genuinel ntel
PROCESSOR LE.. & hd

Uzer W ariables for jiwarg:

" ariable | Walue |
TEMP CATEMP
THP CATEMP

"W ariable: IF'ath

Yalue: |2_EI_EIE"\I:|in;D:"xF'r|:|gram Filez\Microsoft Yizual 5tudio’WC984bir|

Set Delete |

Q. I Cancel | Apply |

You must update the file Make. bat by adding the path of the libraries and header
files to the compile and link commands:

» COWI LE

set filename=%

cl -c -Fo%il ename% obj %opt _fl g% / DCRTAPI 1=_cdecl /DCRTAPI 2=_cdecl /nol ogo /ZI
/Gy /DWN32 /D WN32 /DWN_NT / DWN32COWON /D DLL /D MT /D_X86_=1

/ Doratext =OraText -I. -I..\..\..\include -

I D:\ Progra~1\M cros~1\ VC98\ | ncl ude % il ename% c
goto : EOF

D LINK

set filenane=%4

link %ink_dbg%/out:..\..\..\..\bin\%ilename% exe /I|ibpath: %ORACLE_HOVE% | i b
/libpath: D:\Progra~1\M cros~1\VCA8\lib /libpath:..\..\..\..\lib %ilename% obj
oraxm 10.1ib oracorel0.lib oranls10.lib oraunls10.lib user32.1ib kernel32.1ib
msvert.lib ADVAPI32.1ib ol dnanes.lib winmmlib

. ECOF

where

D: \ Progra~1\M cros~1\ VCO8\ | ncl ude: is the path for header files and
D: \ Progra~1\M cros~1\ VCO8\ | i b: isthe path for library files.

Now you can start developing with XDK C++ components.

Getting Started with XDK C++ Components 17-5

Installation of the XDK C++ Components

Using XDK C++ Components with Visual C++
Check that the environment variable ORA_NLS10 is set to point to the location of the
Globalization Support data files.

In order for Visual C++ to know the environment variable, you need to use the system
setup for Windows to define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will be popped up. Select Environment Tab and input ORA_NLS10.

In order for Visual C++ to employ the environment variable, you need to use the
system setup for Windows to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will pop up. Select Environment Tab and input the ORA_XML_MESG, as
shown in Figure 17-2:

Figure 17-2 Setting Up ORA_XML_MESG Environment Variable
System Properties

Startup/Shutdown I Hardware Frofiles | I1zer Prafiles |
General I Performance Ervironment

Swztemn Variables:

Y ariable | W alle | il
MNUMBER_OF_FR... 1

ORA_MLS33 Or:htemphotnghiphadk_c_ 3 0 2 0 0Chnlzdata _I
a5 Windowes MT

Qs2LibFPath C:NwAMMT Sapstern32hos2hdll;

Path d:Mveshckhwind: web servicebtomeat-3 2 3. LI

Uzer W anables far iwang:

" ariable | " alue |
TEMP CATEMP
TMP CATEMP

Wariable: |ORA_XML_MESG

W alue: ID:'\temp'xn:ntnship'\:-:dk ¢ 9.0 2 0 0Ckedkimesg

Set Delete |

] | Cancel | Appls |

Figure 17-3, "Setup of the PATH for DLLs" shows how to set up the PATH for DLL
libraries:

17-6 Oracle XML Developer's Kit Programmer's Guide

Installation of the XDK C++ Components

Figure 17-3 Setup of the PATH for DLLs

System Properties EH
StartupsShutdown I Hardware Profiles | I1zer Prafiles |
General I Perfarmance Ervviranriemt
System YW ariables:

" ariable | Walue |:|

ORA_MHL533 D:htemphotnghiphedk_c 3 0 2 0 0Chnlzdata

as Windows _MT

OzzZLibPath CAIMMN T waypstemZ2hoz24dll;

Fath d:heglickwined: web_servicettomeat-3_2_ 3.

PATHE=T LOM:EXE . BAT.CMD.VBS.VBE.JS; J5E.... LI

Uzer Yanables for jprang:

'Y ariable | YW alue |
TEMP CATEMP
THP CATEMP

W ariable: IF'ath

Walue: [EL\OUTPUT=T5BIN.D:Mempotrishipiudk_c_3_0_2_0_0Ckbirl

Set Delete |

Q. I Cancel | Apply |

After you open a workspace in Visual C++ and include the *. cpp files for your
project, you must set the path for the project. Go to the Tools menu and select Options.
A window will pop up. Select the Directory tab and set your include path as shown in

Figure 17-4:

Getting Started with XDK C++ Components 17-7

Installation of the XDK C++ Components

Figure 17-4 Setting Your Include Path in Visual C++
Options EHE

Editor | Tab= | Debug | Compatibility | Buld Directones |.:; 4|>

Flatfarrm; Show directaries faor:
[CEEE | [1nclde fies =
|Qireu:tu:uries: X r 4

Ainclude

O:\Program FilestMicrosoft Yisual Studio'WC38M nolude

Mk I Canrel

Then set your library path as shown in Figure 17-5:

Figure 17-5 Setting Your Static Library Path in Visual C++

E ditar I Tabs | Debug | Compatibility | Build Directories | { EE

Platfarm: Show directonies faor:
[win32 =l |Librany files =
Directaries: Fr A

O:MProgram FilesMicrozoft Visual Studic'\WC3ENLIE
D:\Program Files\Microsaft Wisual ShudichWCI8WFCLLIB
d c 902 00Ckb

Ok, I Cancel

This illustration is of an Options window in Visual C++ as described in the section
"Using XDK C++ Components with Visual C++" that surrounds it. The tab
"Directories"” is selected. The static library path is set in this window.

khkkkkhkhkhhhhhkAkkkhkkhkhkhhhhhhrrhhkkkkkhkkhhhkhhhhhhhkkkhkkhhkhhhhhhdrhhrrkkxhkrhhkhhhhhhhrrrhkixikrkix

After setting the paths for the static libraries in %XDK_HOME%\lIib, you also need to
set the library name in the compiling environment of Visual C++.

17-8 Oracle XML Developer's Kit Programmer's Guide

Installation of the XDK C++ Components

Go to the Project menu in the menu bar and select Settings. A window will pop up.
Please select the Link tab in the Object/Library Modules field enter the name of XDK
C++ components libraries, as shown in Figure 17-6:

Figure 17—-6 Setting Up the Static Libraries in Visual C++ Project

|l Project Settings |
|

Settings For: |\win32 Debug

[

=B8R FulD O

General | Debug I C/C++ Link | Hesu:uur-:€ EE

Categorny; I General j Bezet |

DOukput file narme:
IDebuga’FuIIDDM.exe

Cbjectdibran modules:
||:||:|t:|::|:|32.li|:| oracored.lib aranlsH.lib orasml9.lib oraunlzd.lib

¥ Gernerate debuginfo [~ Igrore all default libraries
¥ Link incrementally [Generate mapfile
™ Enable profiling

Project Options:

kemel32 b userd2 lib gdid2. ib winzpoolib comdlg3z. b«
advapidZ. lib shel32 ik ale32.lib aleaut32.lib uuid.lib
odbz32 lib odboop3Z. lib oracored.lib oranlzS. lib LI

|] I Cancel |

You can now compile and run the demo programs, and start using XDK C++

components.

See Also:

Chapter 19, "XML Parser for C++" for further

discussion of the XDK C++ components

Getting Started with XDK C++ Components 17-9

Installation of the XDK C++ Components

17-10 Oracle XML Developer's Kit Programmer's Guide

18

Unified C++ Interfaces

This chapter contains these topics:
« What is the Unified C++ API?
« Accessing the C++ Interface

« OracleXML Namespace

« Ctx Namespace

« 10 Namespace

« Tools Package

« Error Message Files

What is the Unified C++ API?

Unified C++ APIs for XML tools represent a set of C++ interfaces for Oracle XML
tools. This unified approach provides a generic, interface-based framework that allows
XML tools to be improved, updated, replaced, or added without affecting any
interface-based user code, and minimally affecting application drivers and, possibly,
application configuration. All three kinds of C++ interfaces: abstract classes, templates,
and implicit interfaces represented by generic template parameters, are used by the
unified framework.

Note: Use the new unified C++ APl in xm . hpp for new XDK
applications. The old C++ APl in or axml . hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

These C++ APIs support the W3C specification as closely as
possible; however, Oracle cannot guarantee that the specification is
fully supported by our implementation because the W3C
specification does not cover C++ implementations.

Accessing the C++ Interface

The C++ interface is provided with the database and the Oracle Application Server
and is also available for download from the OTN site:
http://ww. oracl e. com technol ogy/tech/ xml .

Sample files are located at xdk/ deno/ cpp.

Unified C++ Interfaces 18-1

OracleXML Namespace

readme. ht m in the root directory of the software archive contains release specific
information including bug fixes and API additions.

OracleXML Namespace

Or acl exXmi is the C++ namespace for all XML C++ interfaces. It contains common
interfaces and namespaces for different XDK packages. The following hamespaces are
included:

« Ct x - namespace for TCtx related declarations

« Dom- namespace for DOM related declarations

« Parser - namespace for parser and schema validator declarations
« | O- namespace for input and output source declarations

« Xsl - namespace for XSLT related declarations

« XPat h- namespace for XPath related declarations

« Tool s - namespace for Tools::Factory related declarations

Or acl eXml is fully defined in the file xm . hpp. Another namespace, Xm Ct xNS,
visible to users, is defined in xnl ct x. hpp. That namespace contains C++ definitions
of data structures corresponding to C level definitions of the xm ct x context and
related data structures. While there is no need for users to know details of that
namespace, xm ct x. hpp needs to be included in most application main modules.

Multiple encodings are currently supported on the base of the or at ext type that is
currently supposed to be used by all implementations. All strings are represented as
or at ext *.

OracleXML Interfaces

XMLException Interface - This is the root interface for all XML exceptions.

Ctx Namespace

The Ctx namespace contains data types and interfaces related to the TCtx interface.

OracleXML Datatypes

Ctx Interfaces

DATATYPE encoding - a particular supported encoding. The following kinds of
encodings (or encoding names) are supported:

« data_encoding

» default_input_encoding

= input_encoding - overwrites the previous one

= error_language - gets overwritten by the language of the error handler, if specified

DATATYPE encodings - array of encodings.

Er r or Handl er Interface - This is the root error handler class. It deals with local
processing of errors, mainly from the underlying C implementation. It may throw
Xm Except i on in some implementations. But this is not specified in its signature in
order to accommodate needs of all implementations. However, it can create exception

18-2 Oracle XML Developer's Kit Programmer's Guide

Tools Package

objects. The error handler is passed to the TCt x constructor when TCt X is initialized.
Implementations of this interface are provided by the user.

MemAl | ocat or Interface - This is a simple root interface to make the TCt x interface
reasonably generic so that different allocator approaches can be used in the future. It is
passed to the TCt x constructor when TCt x is initialized. It is a low level allocator that
does not know the type of an object being allocated. The allocators with this interface
can also be used directly. In this case the user is responsible for the explicit
deallocation of objects (with deal | oc).

If the MemAl | ocat or interface is passed as a parameter to the TCt x constructor, then,
in many cases, it makes sense to overwrite the operator new. In this case all memory
allocations in both C and C++ can be done by the same allocator.

Tct x Interface - This is an implicit interface to XML context implementations. It is
primarily used for memory allocation, error (not exception) handling, and different
encodings handling. The context interface is an implicit interface that is supposed to be
used as type parameter. The name TCt x will be used as a corresponding type
parameter name. Its actual substitutions are instantiations of implementations
parameterized (templatized) by real context implementations. In the case of errors

Xm Excepti on might be thrown.

All constructors create and initialize context implementations. In a shared server
environment a separate context implementation has to be initialized for each thread.

|O Namespace

The | Onamespace specifies interfaces for the different input and output options for all
XML tools.

|O Datatypes

Datatype | nput Sour ceTy pe specifies different kinds of input sources supported
currently. They include:

« | SRC_URI -Inputisto be read from the specified URI.
« | SRC _FI LE- Input is to be read from a file.

« | SRC BUFFER- Input is to be read from a buffer.

« | SRC_DOM- Input is a DOM tree.

« | SRC_CSTREAM- Input is a C level stream.

IO Interfaces
URI Sour ce - This is an interface to inputs from specified URIs.

Fi | eSour ce - This is an interface to inputs from a file.
Buf f er Sour ce - This is an interface to inputs from a buffer.
DOMSour ce - This is an interface to inputs from a DOM tree.

CSt r eanSour ce - This is an interface to inputs from a C level stream.

Tools Package

Tool s is the package (sub-space of Or acl exXml) for types and interfaces related to the
creation and instantiation of Oracle XML tools.

Unified C++ Interfaces 18-3

Error Message Files

Tools Interfaces
Fact or yExcept i on - Specifies tool's factory exceptions. It is derived from
XM_Excepti ons.

Fact ory - XML tools factory. Hides implementations of all XML tools and provides
methods to create objects representing these tools based on their ID values.

Error Message Files

Error message files are provided in the mesg subdirectory. The messages files also
exist in the $ORACLE_HOVE/ xdk/ nesg directory. You can set the environment
variable ORA_XM._MESGto point to the absolute path of the mesg subdirectory,
although this not required.

See Also: Oracle XML API Reference

18-4 Oracle XML Developer's Kit Programmer's Guide

19

XML Parser for C++

This chapter contains these topics:

Introduction to Parser for C++

Dom Namespace

DOM Interfaces

Parser Namespace

Thread Safety

XML Parser for C++ Usage

XML Parser for C++ Default Behavior

C++ Sample Files

Note: Use the new unified C++ APl in xnl . hpp for new XDK
applications. The old C++ APl in or axmnl . hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

Introduction to Parser for C++

Oracle XML Parser for C++ checks if an XML document is well-formed, and optionally
validates it against a DTD or XML schema. The parser constructs an object tree which
can be accessed through one of the following two XML APIs:

DOM: Tree-based APIs. A tree-based APl compiles an XML document into an
internal tree structure, then allows an application to navigate that tree using the
Document Object Model (DOM), a standard tree-based APl for XML and HTML
documents.

SAX: Event-based APIs. An event-based API, on the other hand, reports parsing
events (such as the start and end of elements) directly to the application through a
user defined SAX even handler, and does not usually build an internal tree. The
application implements handlers to deal with the different events, much like
handling events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a great
strain on system resources, especially if the document is large (under very controlled
circumstances, it is possible to construct the tree in a lazy fashion to avoid some of this
problem). Furthermore, some applications need to build their own, different data trees,
and it is very inefficient to build a tree of parse nodes, only to map it onto a new tree.

XML Parser for C++ 19-1

Dom Namespace

Dom Namespace

This is the namespace for DOM-related types and interfaces.

DOM interfaces are represented as generic references to different implementations of
the DOM specification. They are parameterized by Node that supports various
specializations and instantiations. Of them, the most important is xim node which
corresponds to the current C implementation

These generic references do not have a NULL-like value. Any implementation must
never create a reference with no state (like NULL). If there is a need to signal that
something has no state, an exception should be thrown.

Many methods might throw the SYNTAX_ERR exception, if the DOM tree is incorrectly
formed, or throw UNDEFI NED_ERR, in the case of wrong parameters or unexpected
NULL pointers. If these are the only errors that a particular method might throw, it is
not reflected in the method signature.

Actual DOM trees do not depend on the context, TCt x. However, manipulations on
DOM trees in the current, xml ct x-based implementation require access to the current
context, TCt x. This is accomplished by passing the context pointer to the constructor
of DOM npl Ref . In multithreaded environment DOM npl Ref is always created in the
thread context and, so, has the pointer to the right context.

DOM npl Ref provides a way to create DOM trees. Dom npl Ref is a reference to the
actual DOM npl enent at i on object that is created when a regular, non-copy
constructor of Donl npl Ref is invoked. This works well in a multithreaded
environment where DOM trees need to be shared, and each thread has a separate
TCt x associated with it. This works equally well in a single threaded environment.

DOMString is only one of the encodings supported by Oracle implementations. The
support of other encodings is an Oracle extension. The or at ext * data type is used for
all encodings.

Interfaces represent DOM level 2 Core interfaces according to

http://ww. w3. or g/ TR/ DOM Level - 2- Cor e/ cor e. ht m . These C++ interfaces
support the DOM specification as closely as possible. However, Oracle cannot
guarantee that the specification is fully supported by our implementation because the
W3C specification does not cover C++ binding.

DOM Datatypes

DATATYPE DomNodeType - Defines types of DOM nodes.
DATATYPE DomExceptionCode - Defines exception codes returned by the DOM API.

DOM Interfaces

DOVExcept i on Interface - See exception DOVExcept i on in the W3C DOM
documentation. DOM operations only raise exceptions in "exceptional” circumstances:
when an operation is impossible to perform (either for logical reasons, because data is
lost, or because the implementation has become unstable). The functionality of
XMLException can be used for a wider range of exceptions.

NodeRef Interface - See interface Node in the W3C documentation.
Document Ref Interface - See interface Document in the W3C documentation.

Docunent Fr agnent Ref Interface - See interface Docunent Fr agnent in the W3C
documentation.

El ement Ref Interface - See interface El enent in the W3C documentation.

19-2 Oracle XML Developer's Kit Programmer's Guide

Dom Namespace

At t r Ref Interface - See interface At t r in the W3C documentation.

Char act er Dat aRef Interface - See interface Char act er Dat a in the W3C
documentation.

Text Ref Interface - See Text nodes in the W3C documentation.

CDATASect i onRef Interface - See CDATASect i on nodes in the W3C documentation.
Conmment Ref Interface - See Conment nodes in the W3C documentation.

Pr ocessi ngl nst ruct i onRef Interface - See PI nodes in the W3C documentation.
Entit yRef Interface - See Enti t y nodes in the W3C documentation.

Entit yRef er enceRef Interface - See Enti t yRef er ence nodes in the W3C
documentation.

Not at i onRef Interface - See Not at i on nodes in the W3C documentation.
Docunent TypeRef Interface - See DTD nodes in the W3C documentation.

DOM npl Ref Interface - See interface DOM npl enent at i on in the W3C DOM
documentation. DOM npl enment at i on is fundamental for manipulating DOM trees.
Every DOM tree is attached to a particular DOM implementation object. Several DOM
trees can be attached to the same DOM implementation object. Each DOM tree can be
deleted and deallocated by deleting the document object. All DOM trees attached to a
particular DOM implementation object are deleted when this object is deleted.

DOM npl enment at i on object is not visible to the user directly. It is visible through
class DOM npl Ref . This is needed because of requirements in the case of
multithreaded environments

NodeLi st Ref Interface - Abstract implementation of node list. See interface NodeL.ist
in the W3C documentation.

NanmedNodeMapRef Interface - Abstract implementation of a node map. See interface
NamedNodeMap in the W3C documentation.

DOM Traversal and Range Datatypes

DATATYPE Accept NodeCode defines values returned by node filters provided by
the user and passed to iterators and tree walkers.

DATATYPE What ToShowCode specifies codes to filter certain types of nodes.

DATATYPE RangeExcept i onCode specifies Exception kinds that can be thrown by
the Range interface.

DATATYPE Conpar eHowCode specifies kinds of comparisons that can be done on
two ranges.

DOM Traversal and Range Interfaces
NodeFi | t er Interface - DOM 2 Node Filter.

Nodel t er at or Interface - DOM 2 Node Iterator.

Tr eeVl ker Interface - DOM 2 TreeWalker.

Docunent Tr aver sal Interface - DOM 2 interface.

RangeExcept i on Interface - Exceptions for DOM 2 Range operations.
Range Interface - DOM 2 Range.

Docurnent Range Interface - DOM 2 interface.

XML Parser for C++ 19-3

Parser Namespace

Parser Namespace

DOWPar ser Interface - DOM parser root class.

GPar ser Interface - Root class for XML parsers.

Par ser Except i on Interface - Exception class for parser and validator.
SAXHandl er Interface - Root class for current SAX handler implementations.
SAXHand! er Root Interface - Root class for all SAX handlers.

SAXPar ser Interface - Root class for all SAX parsers.

SchemnVal i dat or Interface - XML schema-aware validator.

GParser Interface

GPar ser Interface - Root class for all XML parser interfaces and implementations. It is
not an abstract class, that is, it is not an interface. It is a real class that allows users to
set and check parser parameters.

DOMParser Interface

DOWPar ser Interface - DOM parser root abstract class or interface. In addition to
parsing and checking that a document is well formed, DOMParser provides means to
validate the document against DTD or XML schema.

SAXParser Interface

SAXPar ser Interface - Root abstract class for all SAX parsers.

SAX Event Handlers

To use SAX, a SAX event handler class should be provided by the user and passed to
the SAXParser in a call to par se() or set before such call.

SAXHandl er Root Interface - root class for all SAX handlers.

SAXHandl er Interface - root class for current SAX handler implementations.

Thread Safety

If threads are forked off somewhere in the midst of the init-parse-term sequence of
calls, you will get unpredictable behavior and results.

XML Parser for C++ Usage

A call to Tool s: : Fact or y to create a parser initializes the parsing process.

The XML input can be any of the | nput Sour ce kinds (see | Onamespace).

1

2

3. DOWPar ser invocation results in the DOM tree.
4. SAXPar ser invocation results in SAX events.

5

A call to par ser destructor terminates the process.

XML Parser for C++ Default Behavior

The following is the XML Parser for C++ default behavior:

19-4 Oracle XML Developer's Kit Programmer's Guide

C++ Sample Files

« Character set encoding is UTF-8. If all your documents are ASCII, you are
encouraged to set the encoding to US-ASCII for better performance.

« Messages are printed to st der r unless nsghdl r is specified.

« XML Parser for C++ will check if an XML document is well-formed, and
optionally validate it against a DTD. The parser will construct an object tree which
can be accessed through a DOM interface or operate serially through a SAX
interface.

« A parse tree which can be accessed by DOM APIs is built unless saxcb is set to
use the SAX callback APIs. Note that any of the SAX callback functions can be set
to NULL if not needed.

« The default behavior for the parser is to check that the input is well-formed but
not to check whether it is valid. The flag XM._FLAG_VALI DATE can be set to
validate the input. The default behavior for whitespace processing is to fully
conform to the XML 1.0 spec, that is, all whitespace is reported back to the
application but it is indicated which whitespace is ignorable. However, some
applications may prefer to set the XM._FLAG_DI SCARD_WHI TESPACE which will
discard all whitespace between an end-element tag and the following
start-element tag.

Note: Itis recommended that you set the default encoding
explicitly if using only single byte character sets (such as US-ASCI|I
or any of the 1SO-8859 character sets) for performance up to 25%
faster than with multibyte character sets, such as UTF-8.

« In both of these cases, an event-based API provides a simpler, lower-level access to
an XML document: you can parse documents much larger than your available
system memory, and you can construct your own data structures using your
callback event handlers.

C++ Sample Files

xdk/ deno/ cpp/ par ser/ directory contains several XML applications to illustrate
how to use the XML Parser for C++ with the DOM and SAX interfaces.

Change directories to the sample directory ($ORACLE_HOVE/ xdk/ denmo/ cpp on
Solaris, for example) and read the READVE file. This will explain how to build the
sample programs.

Table 19-1 lists the sample files in the directory. Each file * Mai n. cpp hasa
corresponding * Gen. cpp and * Gen. hpp.

Table 19-1 XML Parser for C++ Sample Files

Sample File Name Description

DOVBanpl eMai n. cpp Sample usage of C++ interfaces of XML Parser and DOM.
Ful | DOVBanpl eMai n. cpp Manually build DOM and then exercise.
SAXSanpl eMai n. cpp Source for SAXSample program.

See Also: Oracle XML API Reference

XML Parser for C++ 19-5

C++ Sample Files

19-6 Oracle XML Developer's Kit Programmer's Guide

20

XSLT Processor for C++

This chapter contains these topics:

« Accessing XSLT for C++

« Xsl Namespace

« XSLT for C++ DOM Interface Usage

« Invoking XSLT for C++

« Using the Sample Files Included with the Software

Note: Use the new unified C++ APl in xnl . hpp for new XDK
applications. The old C++ APl in or axml . hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

Accessing XSLT for C++

XSLT for C++ is provided with the database and the Application Server. It is also
available for download from the OTN site
http://ww. oracl e. com technol ogy/tech/ xml .

Sample files are located at xdk/ deno/ cpp/ new.

readne. ht m in the root directory of the software archive contains release specific
information including bug fixes and APl additions.

See Also: "XVM Processor" on page 15-1

Xsl Namespace

Xsl Interfaces

This is the namespace for XSLT compilers and transformers.

Xsl Except i on Interface - Root interface for all XSLT-related exceptions.

Tr ansf or mer Interface -Basic XSLT processor. This interface can be used to invoke all
XSLT processors.

CompTr ansf or mer Interface - Extended XSLT processor. This interface can be used
only with processors that create intermediate binary bytecode (currently X\VM-based
processor only).

XSLT Processor for C++ 20-1

XSLT for C++ DOM Interface Usage

Conpi | er Interface - XSLT compiler. It is used for compilers that compile XSLT into
binary bytecode.

See Also: Oracle XML API Reference

XSLT for C++ DOM Interface Usage
1. There are two inputs to XM_Par ser . xm parse():
=« The XML document
« The stylesheet to be applied to the XML document

2. Any XSLT processor is initiated by calling the tools factory to create a particular
XSLT transformer or compiler.

3. The stylesheet is supplied to any transformer by calling set XSL() member
functions.

4. The XML instance document is supplied as a parameter to the transform member
functions.

5. The resultant document (XML, HTML, VML, and so on) is typically sent to an
application for further processing. The document is sent as a DOM tree or as a
sequence of SAX events. SAX events are produced if a SAX event handler is
provided by the user.

6. The application terminates the XSLT processors by invoking their destructors.

Invoking XSLT for C++
XSLT for C++ can be invoked in two ways:
« By invoking the executable on the command line

« By writing C++ code and using the supplied APls

Command Line Usage
XSLT for C++ can be called as an executable by invoking bi n/ xni .

See Also: Table 14-4, " XML Parser and XSLT Processor: Command Line
Options"

Writing C++ Code to Use Supplied APIs

XSLT for C++ can also be invoked by writing code to use the supplied APIs. The code
must be compiled using the headers in the publ i ¢ subdirectory and linked against
the libraries in the | i b subdirectory. Please see the Makefi | e or make. bat in

xdk/ deno/ cpp/ newfor full details of how to build your program.

Using the Sample Files Included with the Software

The $ORACLE_HOWVE/ xdk/ deno/ cpp/ par ser/ directory contains several XML
applications to illustrate how to use the XSLT for C++.

Table 20-1 lists the sample files.

20-2 Oracle XML Developer's Kit Programmer's Guide

Using the Sample Files Included with the Software

Table 201 XSLT for C++ Sample Files

Sample File Name

Description

XSLSanpl eMai n. cpp
XSLSanpl eGen. cpp
XSLSanpl eGen. hpp

XVMBanpl eMai n. cpp
XVMBanpl eGen. cpp
XVNMBanpl eGen. hpp

Sources for sample XSLT usage program. XSLSanpl e takes
two arguments, the XSL stylesheet and the XML file. If you
redirect st dout of this program to a file, you may have some
output missing, depending on your environment.

Sources for the sample XVM usage program.

XSLT Processor for C++ 20-3

Using the Sample Files Included with the Software

20-4 Oracle XML Developer's Kit Programmer's Guide

21

XML Schema Processor for C++

This chapter contains these topics:
=« Oracle XML Schema Processor for C++
= XML Schema Processor API

« Running the Provided XML Schema for C++ Sample Programs

Note: Use the new unified C++ APl in xnl . hpp for new XDK
applications. The old C++ APl in or axmnl . hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

Oracle XML Schema Processor for C++

The XML Schema Processor for C++ is a companion component to the XML Parser for
C++ that allows support to simple and complex datatypes into XML applications.

The XML Schema Processor for C++ supports the W3C XML Schema
Recommendation. This makes writing custom applications that process XML
documents straightforward, and means that a standards-compliant XML Schema
Processor is part of the XDK on each operating system where Oracle is ported.

Oracle XML Schema for C++ Features
XML Schema Processor for C++ has the following features:

« Supports simple and complex types
« Built upon the XML Parser for C++
« Supports the W3C XML Schema Recommendation

The XML Schema Processor for C++ class is
Oracl eXml : : Par ser: : SchemaVal i dat or .

See Also: Oracle XML API Reference
Online Documentation

Documentation for Oracle XML Schema Processor for C++ is located in
/ xdk/ doc/ cpp/ schena directory in your install area.

XML Schema Processor for C++ 21-1

XML Schema Processor API

Standards Conformance
The XML Schema Processor for C++ conforms to the following standards:

« W3C recommendation for Extensible Markup Language (XML) 1.0
« W3C recommendation for Document Object Model Level 1.0
« W3C recommendation for Namespaces in XML 1.0

« W3C recommendation for XML Schema 1.0

XML Schema Processor API

Interface SchenmaVal i dat or is an abstract template class to handle XML
schema-based validation of XML documents.

Invoking XML Schema Processor for C++

The XML Schema Processor for C++ can be called as an executable by invoking
bi n/ schenma in the install area. This takes the arguments:

« XML instance document
« Optionally, a default schema
« Optionally, the working directory

Table 21-1 lists the options (can be listed if the option is invalid or -h is the option):

Table 21-1 XML Schema Processor for C++ Command Line Options

Option Description

-0 Always exit with code 0 (success).

- e encodi ng Specify default input file encoding.

- Eencodi ng Specify output/data/presentation encoding.
-h Help. Prints these choices.

-1 Ignore provided schema.

-onum Validation option.

-p Print document instance to st dout on success.
-u Force the Unicode path.

-V Version - display version, then exit.

The XML Schema Processor for C++ can also be invoked by writing code using the
supplied APIs. The code must be compiled using the headers in thei ncl ude
subdirectory and linked against the libraries in the | i b subdirectory. See Makefi |l e
or Make. bat in the xdk/ deno/ cpp/ schemna directory for details on how to build
your program.

Error message files in different languages are provided in the nesg subdirectory.

Running the Provided XML Schema for C++ Sample Programs

The directory xdk/ deno/ cpp/ schenma contains a sample application that illustrates
how to use Oracle XML Schema Processor for C++ with its API. Table 21-2 lists the
sample files provided.

21-2 Oracle XML Developer's Kit Programmer's Guide

Running the Provided XML Schema for C++ Sample Programs

Table 21-2 XML Schema Processor for C++ Samples Provided

Sample File Description

Makefil e Makefile to build the sample programs and run them, verifying
correct output.

xsdt est. cpp Trivial program which invokes the XML Schema for C++ API

car.{xsd, xm ,std} Sample schema, instance document, expected
output respectively, after running xsdt est on them.

aqg. { xsd, xnl , st d} Second sample schema's, instance document, expected
output respectively, after running xsdt est on them.

pub. {xsd, xm , std} Third sample schema's, instance document, expected
output respectively, after running xsdt est on them.

To build the sample programs, run make.
To build the programs and run them, comparing the actual output to expected output:

make sure

XML Schema Processor for C++ 21-3

Running the Provided XML Schema for C++ Sample Programs

21-4 Oracle XML Developer's Kit Programmer's Guide

22

XPath Processor for C++

This chapter contains these topics:
« XPath Interfaces

« Sample Programs

Note: Use the new unified C++ APl in xnl . hpp for new XDK
applications. The old C++ APl in or axmnl . hpp is deprecated and
supported only for backward compatibility, but will not be
enhanced. It will be removed in a future release.

XPath Interfaces

Pr ocessor Interface - basic XPath processor interface that any XPath processor is
supposed to conform to.

ConpPr ocessor Interface - extended XPath processor that adds an ability to use
XPath expressions pre-compiled into an internal binary representation. In this release
this interface represents Oracle virtual machine interface.

Conpi | er Interface - XPath compiler into binary representation.

NodeSet Ref Interface - defines references to node sets when they are returned by the
XPath expression evaluation.

XPat hExcept i on Interface - exceptions for XPath compilers and processors.

XPat hCbj ect Interface - interface for XPath 1.0 objects.

Sample Programs
Sample programs are located in xdk/ deno/ cpp/ new.
The programs Xsl XPat hSanpl e and XvmXPat hSanpl e have sources:

Xsl XPat hSanpl eGen. hpp, XsIXPathSampleGen.cpp, Xs| XPat hSanpl eMai n. cpp,
Xs| XPat hSanpl eFor ce. cpp;

and XvnXPat hSanpl eGen. hpp, XvmXPat hSanpl eGen. cpp,
XvmXPat hSanmpl eMai n. cpp, XvmXPat hSanpl eFor ce. cpp.

See Also: Oracle XML API Reference

XPath Processor for C++ 22-1

Sample Programs

22-2 Oracle XML Developer's Kit Programmer's Guide

23

XML Class Generator for C++

This chapter contains these topics:

« Accessing XML C++ Class Generator

« Using XML C++ Class Generator

« XML C++ Class Generator Usage

« Using the XML C++ Class Generator Examples

Accessing XML C++ Class Generator

The XML C++ Class Generator is provided with the database and is also available for
download from the OTN site htt p: / / ww. or acl e. com t echnol ogy/tech/ xm .

Using XML C++ Class Generator

The XML C++ Class Generator creates source files from an XML DTD or XML Schema.
The Class Generator takes the Document Type Definition (DTD) or the XML Schema,
and generates classes for each defined element. Those classes are then used in a C++
program to construct XML documents conforming to the DTD.

This is useful when an application wants to send an XML message to another
application based on an agreed-upon DTD or XML Schema, or as the back end of a
Web form to construct an XML document. Using these classes, C++ applications can
construct, validate, and print XML documents that comply with the input.

The Class Generator works in conjunction with the Oracle XML Parser for C++, which
parses the input and passes the parsed document to the class generator.

External DTD Parsing

The XML C++ Class Generator can also parse an external DTD directly without
requiring a complete (dummy) document by using the Oracle XML Parser for C++
routine xnl par sedt d() .

The provided command-line program xm cg has a -d' option that is used to parse
external DTDs.

Error Message Files

Error message files are provided in the mesg/ subdirectory. The messages files also
exist in the $ORACLE_HOVE/ xdk/ nmesg directory. You may set the environment
variable ORA_XM._MESGto point to the absolute path of the mesg subdirectory
although this not required.

XML Class Generator for C++ 23-1

XML C++ Class Generator Usage

XML C++ Class Generator Usage

The standalone class generator can be called as an executable by invoking
bi n/ xm cg.

1. The C++ command line class generator, bi n/ xm cg is invoked in the following
way:

xm cg [options] input_file
where the options are described in Table 23-1:

Table 23-1 Class Generator Options

Option Meaning

- d nane Input is an external DTD or a DTD file. Generates nane. cpp
and nane. h.

-odirectory Output directory for generated files (the default is the current
directory).

- e encodi ng Default input file encoding.

-h Show this usage help.

-V Show the class generator version validator options.

-S name Input is an XML Schema file with the given name. Generates

name. cpp and nane. h.

i nput _f il e name is the name of the parsed XML document with <IDOCTYPE>
definitions, or parsed DTD, or an XML Schema document. The XML document
must have an associated DTD.

The DTD input to the XML C++ Class Generator is an XML document containing
aDTD, or an external DTD. The document body itself is ignored; only the DTD is
relevant, though the document must conform to the DTD.

2. If invalid options, or no input is provided, a usage message with the above
information is output.

3. Two source files are output, a name.h header file and a C++ file, name.cpp. These
are named after the DTD file.

4. The output files are typically used to generate XML documents.

Constructors are provided for each class (element) that allow an object to be created in
the following two ways:

« Initially empty, then adding the children or data after the initial creation
« Created with the initial full set of children or initial data

A method is provided for #PCDATA (and Mixed) elements to set the data and, when
appropriate, set an element's attributes.

Input to the XML C++ Class Generator

The input is an XML document containing a DTD. The document body itself is
ignored; only the DTD is relevant, though the dummy document must conform to the
DTD. The underlying XML parser only accepts file names for the document and
associated external entities.

23-2 Oracle XML Developer's Kit Programmer's Guide

Using the XML C++ Class Generator Examples

Using the XML C++ Class Generator Examples
Table 23-2 lists the demo XML C++ Class Generator files:

Table 23-2 XML C++ Class Generator Files

File Name Description

CG cpp Sample program

CG xm XML file contains DTD and dummy document
CG dtd DTD file referenced by CG.xml

Make. bat on Windows NT Batch file (on Windows) or Make file (on UNIX) to generate
Makef i | e on UNIX classes and build the sample programs.

README A readme file with these instructions

The make. bat batch file (on Windows NT) or Makef i | e (on UNIX) do the following:
« Generate classes based on CG. xnl into Sample.h and Sample.cpp

« Compile the program CG. cpp (using Sanpl e. h), and link this with the Sample
object into an executable named CG. exe in the..\ bi n (or .../ bi n) directory.

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml

This XML file, CG xm , inputs XML C++ Class Generator. It references the DTD file,
CG. dt d.

<?xm version="1.0"?>
<! DOCTYPE Sanpl e SYSTEM "CG dtd">
<Sanpl e>
Be! </ B>
<D attr="val ue"></ D>

<F>For nul al</ F>
<F>For nul a2</ F>
</ B>
</ Sanpl e>

XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd

This DTD file, CG. dt d is referenced by the XML file CG. xm . CG xm inputs XML
C++ Class Generator.

< ELEMENT Sanple (A | (B, (C| (D E)) | F)>
< ELEMENT A (#PCDATA) >

<I ELEMENT B (#PCDATA | F)*>

<I ELEMENT C (#PCDATA) >

<I ELEMENT D (#PCDATA) >

<IATTLIST D attr CDATA #REQUI RED>

<IELEMENT E (F, F)>

< ELEMENT F (#PCDATA) >

XML C++ Class Generator Example 3: CG Sample Program
The CG sample program, CG. cpp, does the following:

1. Initializes the XML parser.

XML Class Generator for C++ 23-3

Using the XML C++ Class Generator Examples

2. Loads the DTD (by parsing the DTD-containing file-- the dummy document part is
ignored).

3. Creates some objects using the generated classes.

4. Invokes the validation function which verifies that the constructed classes match
the DTD.

5. Writes the constructed document to Sanpl e. xni .

FEEETECEEEE i b n e e e b e iy
/1 NAME CG. cpp

/1 DESCRI PTI ON Denonstration programfor Ct+ O ass Generator usage
FEEETECEEEE i b n e e e b b iy

#i f ndef ORAXMLDOM ORACLE
include <oraxm dom h>
#endi f

#include <fstream h>
#i ncl ude "Sanpl e. h"

#define DTD_DOCUMENT " CG. xni "
#define OUT_DOCUMENT Sanpl e. xm "

int main()

{
XM.Par ser parser;
Document *doc;

Sanple *sanp;

B *b;

D *d;

E *e;

F *f1, *f2;

fstream *out;

ub4 flags = XM._FLAG VALI DATE;
uwor d ecode;

Il Initialize XM parser
cout << "Initializing XM parser...\n";
if (ecode = parser.xminit())
{
cout << "Failed to initialize parser, code " << ecode << "\n";
return 1;

}

/'l Parse the docunent containing a DTD; parsing just a DID is not

Il possible yet, so the file nust contain a valid docunent (which

Il is parsed but we're ignoring).

cout << "Loading DTD from" << DTD DOCUMENT << "...\n";

if (ecode = parser.xm parse((oratext *) DTD_DOCUMENT, (oratext *)0, flags))

{
cout << "Failed to parse DTD docunent " << DTD DOCUMENT <<
code " << ecode << "\n";
return 2;
}

/1 Fetch dumy document
cout << "Fetching dummy docunent...\n";

23-4 Oracle XML Developer's Kit Programmer's Guide

Using the XML C++ Class Generator Examples

doc = parser. get Docunent ();

/I Create the constituent parts of a Sanple

cout << "Creating conponents...\n";

b = new B(doc, (String) "Be there or be square");
d = new D(doc, (String) "Dt dah");
d->setattr((String) "attribute value");

f1 = new F(doc, (String) "Fornmulal");

f2 = new F(doc, (String) "Formula2");

e = new E(doc, f1, f2);

/1 Create the Sanple
cout << "Creating top-level elenent...\n";
sanp = new Sanpl e(doc, b, d, e);

/1 Validate the construct
cout << "Validating...\n";
if (ecode = parser.validate(sanp))

{

cout << "Validation failed, code " << ecode << "\n";
return 3;

}

/1 Wite out doc
cout << "Witing docunent to " << QUT_DOCUMENT << "\n";
if (!(out = new fstream OQUT_DOCUMENT, io0s::out)))
{
cout << "Failed to open output streamn";
return 4;

1
sanp->print(out, 0);
out->cl ose();

/] Bverything's OK
cout << "Success.\n";

/1 Shut down
parser.xmtern();
return 0;

}

/'l end of CG cpp

XML Class Generator for C++ 23-5

Using the XML C++ Class Generator Examples

23-6 Oracle XML Developer's Kit Programmer's Guide

24

XSU for PL/SQL

This chapter contains these topics:

« XSUPL/SQL API

« Setting Stylesheets in XSU (PL/SQL)

« Binding Values in XSU (PL/SQL)

« Storing XML in the Database Using DBMS_XMLSave
« Insert Processing Using XSU (PL/SQL API)

« Update Processing Using XSU (PL/ZSQL API)

« Delete Processing Using XSU (PL/SQL API)

See Also:: Chapter 7, "XML SQL Utility (XSU)" for information
about XSU in general.

XSU PL/SQL API

XML SQL Utility (XSU) PL/SQL API reflects the Java API in the generation and
storage of XML documents from and to a database. DBM5S_XM_Query and DBNMS
XM_.Save are the two packages that reflect the functions in the Java classes -

Oracl eXM_Query and Or acl eXM.Save. Both of these packages have a context
handle associated with them. Create a context by calling one of the constructor-like
functions to get the handle and then use the handle in all subsequent calls.

XSU Supports XMLType

From Oracle9i Release 2 (9.2), XSU supports XMLType. Using XSU with XMLType is
useful if, for example, you have XMLType columns in objects or tables.

See Also: Oracle XML DB Developer's Guide, in particular, the
chapter on Generating XML, for examples on using XSU with
XMLType.

Generating XML with DBMS_XMLQuery()

Generating XML results in a CLOB that contains the XML document. To use DBMS _
XM_Query and the XSU generation engine, follow these steps:

1. Create a context handle by calling the DBMS_XM_Quer y. get Ct x function and
supplying it the query, either as a CLOB or a VARCHAR2.

2. Bind possible values to the query using the DBMS_XM.Quer y. bi nd function. The
binds work by binding a name to the position. For example, the query can be

XSU for PL/SQL 24-1

XSU PL/SQL API

select * from enpl oyees where enpl oyee_id = : EMPNO_VAR Here
you are binding the value for the EMPNO_VAR using the set Bi ndVal ue function.

3. Setoptional arguments like the ROWtag name, the ROABET tag name, or the
number of rows to fetch, and so on.

4. Fetch the XML as a CLOB using the get XM_() functions. get XM_() can be called
to generate the XML with or without a DTD or schema.

5. Close the context.
Here are some examples that use the DBMS_XM_Quer y PL/SQL package.

XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)

In this example, you select rows from table enpl oyees, and obtain an XML document
as a CLOB. First get the context handle by passing in a query and then call the

get XMLCl ob routine to get the CLOB value. The document is in the same encoding as
the database character set.

declare
queryC x DBMS_XM.query. ctxType;
result CLOB;

begin

- set up the query context...!
queryQx := DBMB_XM.Query. newContext (' select * from enpl oyees');

- get the result..!

result := DBMS_XM.Query. get XM.(quer yCt x) ;

- Now you can use the result to put it in tables/send as nessages..

printd obQut(result);

DBMS_XM.Query. cl oseCont ext (queryCtx); -- you must close the query handle..
end;

XSU Generating XML Example 2: Printing CLOB to Output Buffer

print C obCQut () isasimple function that prints the CLOB to the output buffer. If
you run this PL/SQL code in SQL*Plus, the result of the CLOB is printed to the screen.
Set the ser ver out put to on in order to see the results. You may have to increase your
display buffer to see all the output:

set serveroutput on size 200000
set | ong 20000

Here is the code:

CCREATE OR REPLACE PROCEDURE printC obQut (result IN OUT NOCOPY CLOB) is
xm str varchar2(32767);
|'ine varchar2(2000);
begin
xm str := dbrms_| ob. SUBSTR(resul t, 32767) ;
| oop
exit when xmstr is null;
line := substr(xmstr,1,instr(xmstr,chr(10))-1);

dbms_out put.put_line('| "||line);
xm str ;= substr(xmstr,instr(xmstr,chr(10))+1);
end | oop;
end;

24-2 Oracle XML Developer's Kit Programmer's Guide

XSU PL/SQL API

XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names

With the XSU PL/SQL API you can also change the RONand the ROASET tag names.
These are the default names placed around each row of the result, and round the
whole document, respectively. The procedures, set RowTagNane and

set RowSet TagNane accomplish this as shown in the following example:

--Setting the RONtag nanes

decl are
queryCtx DBMS_XM.Query. ct xType;
result CLOB;
begin
-- set the query context.
queryCtx : = DBMB_XM.Query. newCont ext (' sel ect * from enpl oyees');

DBMS_XM_Query. set RowTag(queryC x, ' EMP'); -- sets the row tag name

DBMS_XM.Query. set RowSet Tag(queryCtx, ' EMPSET'); -- sets rowset tag nane

resul't := DBMS_XM.Query. get XM_(queryCtx); -- get the result

printClobQut(result); -- print the result..!

DBVS_XM.Query. cl oseCont ext (queryCtx); -- close the query handl e;
end;

The resulting XML document has an EMPSET document element. Each row is
separated using the EMP tag.

XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()

The results from the query generation can be paginated by using:

« set MaxRows function. This sets the maximum number of rows to be converted to
XML. This is relative to the current row position from which the last result was
generated.

« set Ski pRows function. This specifies the number of rows to skip before
converting the row values to XML.

For example, to skip the first 3 rows of the employees table and then print out the rest
of the rows 10 at a time, you can set the ski pRows to 3 for the first batch of 10 rows
and then set ski pRows to 0 for the rest of the batches.

As in the case of XML SQL Utility's Java API, call the keepObj ect Open() function to
ensure that the state is maintained between fetches. The default behavior is to close the
state after a fetch. For multiple fetches, you must determine when there are no more
rows to fetch. This can be done by setting the set Rai seNoRowsExcepti on(). This
causes an exception to be raised if no rows are written to the CLOB. This can be caught
and used as the termination condition.

- Pagination of results
--Setting the RONtag nanes

decl are
queryCtx DBMS_XM.Query. ct xType;
result CLOB;
begin
-- set the query context.
queryCtx : = DBMB_XM.Query. newCont ext (' sel ect * from enpl oyees');

XSU for PL/SQL 24-3

Setting Stylesheets in XSU (PL/SQL)

DBVS_XM.Query. set RowTag(queryCtx,' EMP'); -- sets the row tag nane
DBVS_XM.Query. set RowSet Tag(queryCtx, ' EMPSET'); -- sets rowset tag nane

result := DBMB_XM.Query.get XM_(queryCtx); -- get the result

printC obQut(result); -- print the result..!
DBVE_XM.Query. cl oseCont ext (queryCtx); -- close the query handl e;
end;

Setting Stylesheets in XSU (PL/SQL)

The XSU PL/SQL API provides the ability to set stylesheets on the generated XML
documents as follows:

« Set the stylesheet header in the result XML. To do this, use
set St yl esheet Header () procedure, to set the stylesheet header in the result.
This simply adds the XML processing instruction to include the stylesheet.

= Apply astylesheet to the result XML document, before generation. This method is
a huge performance win since otherwise the XML document has to be generated
as a CLOB, sent to the parser again, and then have the stylesheet applied. XSU
generates a DOM document, calls the parser, applies the stylesheet and then
generates the result. To apply the stylesheet to the resulting XML document, use
the set XSLT() procedure. This uses the stylesheet to generate the result.

Binding Values in XSU (PL/SQL)

The XSU PL/SQL API provides the ability to bind values to the SQL statement. The
SQL statement can contain named bind variables. The variables must be prefixed with
a colon (0) to declare that they are bind variables. To use the bind variable follow these
steps:

1. Initialize the query context with the query containing the bind variables. For
example, the following statement registers a query to select the rows from the
enpl oyees table with the where clause containing the bind variables
:EMPLOYEE_| Dand :FI RST_NAME. You will bind the values for employee
number and employee first name later.

queryCtx = DBMS_XM.Query.get tx('select * from enpl oyees where enployee_id =
:EMPLOYEE I D and first_nanme = :FI RST_NAME);

2. Set the list of bind values. The cl ear Bi ndVal ues() clears all the bind variables
set. The set Bi ndVal ue() sets a single bind variable with a string value. For
example, you will set the enpno and enane values as shown later:

DBVS_XM.Query. cl ear Bi ndVal ues(queryCt x);
DBVS_XM.Query. set Bi ndVal ue(queryCt x, ' EMPLOYEE_I D , 20);
DBVS_XM.Query. set Bi ndVal ue(queryCt x, ' FI RST_NAME' , ' John');

3. Fetch the results. This will apply the bind values to the statement and then get the
result corresponding to the predicate enpl oyee_id = 20andfirst_nane =
" John'.

DBVS_XM.Query. get XM.O ob(queryQt x);

4. Re-bind values if necessary. For example to change the FI RST_NAME alone to
scot t and reexecute the query,

DBVS_XM.Query. set Bi ndVal ue(queryCt x, ' FI RST_NAME' , ' Scott');

24-4 Oracle XML Developer's Kit Programmer's Guide

Storing XML in the Database Using DBMS_XMLSave

The rebinding of FI RST_NAME will now use Scot t instead of John.

XSU Generating XML Example 5: Binding Values to the SQL Statement

The following example illustrates the use of bind variables in the SQL statement:

decl are
queryCt x DBMS_XM.query. ct xType;
result CLOB;

begin

queryCtx : = DBMS_XM.Query.newContext (' select * from enpl oyees where enpl oyee_id
= :EMPLOYEE_ID and first_name = :FI RST_NAME);

--No | onger needed:

- - DBMS_XM.Query. cl ear Bi ndVal ues(queryCt x);

DBMS_XM.Query. set Bi ndVal ue(queryQt x, ' EMPLOYEE_I D , 100) ;
DBMB_XM.Query. set Bi ndVal ue(queryQt x, ' FI RST_NAME' , ' Steven');
result := DBMS_XM.Query. get XM_(quer yCt x) ;

--printC obQut(result);

DBVS_XM.Query. set Bi ndVal ue(queryQt x, ' FI RST_NAME' , ' Neena');
result := DBMS_XM.Query. get XM_(queryCt x) ;

--printCl obQut(result);
end;

create or replace procedure insProc(xm Doc IN CLCB, tableNane |N VARCHAR?) is
i nsC x DBMS_XM.Save. ct xType;

rows numnber;
begi n
insCtx := DBMS_XM.Save. newCont ext (tabl eName); -- get the context handle
rows := DBMS_XM.Save.insert XM.(i nsCtx,xm Doc); -- this inserts the docunent
DBVE_XM.Save. cl oseCont ext (i nsCt x); -- this closes the handle
end;

Storing XML in the Database Using DBMS_XMLSave

To use DBMS_XM_Save and XML SQL Utility storage engine, follow these steps:

1. Create a context handle by calling the DBM5_XM_Save. get Ct x function and
supplying it the table name to use for the DML operations.

2. Forinserts. You can set the list of columns to insert into using the
set Updat eCol Nanes function. The default is to insert values into all the
columns.

For updates. The list of key columns must be supplied. Optionally the list of
columns to update may also be supplied. In this case, the tags in the XML
document matching the key column names will be used in the WHERE clause of
the UPDATE statement and the tags matching the update column list will be used
in the SET clause of the UPDATE statement.

For deletes. The default is to create a WHERE clause to match all the tag values
present in each ROW element of the document supplied. To override this behavior
you can set the list of key columns. In this case only those tag values whose tag

XSU for PL/SQL 24-5

Insert Processing Using XSU (PL/SQL API)

names match these columns will be used to identify the rows to delete (in effect
used in the WHERE clause of the DELETE statement).

3. Supply an XML document to the i nsert XM_, updat eXM., or del et eXM.
functions to insert, update and delete respectively.

4. You can repeat the last operation any number of times.
5. Close the context.

Use the same examples as for the Java case, Or acl eXM_Save class examples.

Insert Processing Using XSU (PL/SQL API)

To insert a document into a table or view, simply supply the table or the view name
and then the XML document. XSU parses the XML document (if a string is given) and
then creates an INSERT statement, into which it binds all the values. By default, XSU
inserts values into all the columns of the table or view and an absent element is treated
as a NULL value.

The following code shows how the document generated from the enpl oyees table
can be put back into it with relative ease.

XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)

This example creates a procedure, i nsPr oc, which takes in:
=« An XML document as a CLOB

« A table name to put the document into

and then inserts the XML document into the table:

create or replace procedure insProc(xm Doc IN CLOB, tableNane | N VARCHAR?) is
insCtx DBVS_XM.Save. ct xType;

rows numnber;
begi n
insGx := DBVMS_XM.Save.newCont ext (tabl eNane); -- get the context handle
rows := DBMS_XM.Save.insert XM.(i nsCtx,xm Doc); -- this inserts the docunent
DBVMS_XM.Save. cl oseCont ext (i nsCtx); -- this closes the handle
end;

This procedure can now be called with any XML document and a table name. For
example, a call of the form:

execut e i nsProc(xm Document, ' hr.enployees');

generates an INSERT statement of the form:

I NSERT I NTO hr. enpl oyees (enployee_id, |ast_name, job_id, nanager_id, hire_date,
sal ary, department_id VALUES(?,?,?7,?2,2,?,7);

and the element tags in the input XML document matching the column names will be
matched and their values bound. For the code snippet shown earlier, if you send it the
following XML document:

<?xm version='1.0"?>
<ROWBET>
<RON num="1">
<EMPLOYEE_| D>7369</ EMPLOYEE_| D>
<LAST_NAME>Sni t h</ LAST_NAMVE>
<JOB_ | D>CLERK</ JOB | D>
<MANAGER | D>7902</ MANAGER | D>

24-6 Oracle XML Developer's Kit Programmer's Guide

Insert Processing Using XSU (PL/SQL API)

<HI RE_DATE>12/ 17/ 1980 0: 0: 0</ Hl RE_DATE>

<SALARY>800</ SALARY>
<DEPARTNMENT _| D>20</ DEPARTMENT _| D>
</ RON
<l-- additional rows ... -->
</ ROABET>

you would have a new row in the enpl oyees table containing the values 7369, Smith,
CLERK, 7902, 12/17/1980, 800, 20 for the columns named. Any element absent inside
the row element would is considered a null value.

XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)

In certain cases, you may not want to insert values into all columns. This might be true
when the values that you are getting is not the complete set and you need triggers or
default values to be used for the rest of the columns. The code that appears later shows
how this can be done.

Assume that you are getting the values only for the employee number, name, and job,
and that the salary, manager, department number and hiredate fields are filled in
automatically. You create a list of column names that you want the insert to work on
and then pass it to the DBMS_XM_Save procedure. The setting of these values can be
done by calling set Updat eCol unmNare() procedure repeatedly, passing in a
column name to update every time. The column name settings can be cleared using
cl ear Updat eCol utmNanes() .

create or replace procedure testinsert(xm Doc IN clob) is
insCtx DBVS_XM.Save. ct xType;

doc cl ob;
rows nunber;
begin
insGx := DBMS_XM.Save. newContext (' hr.enployees'); -- get the save context..!
DBVMS_XM.Save. cl ear Updat eCol ummLi st (i nsCtx); -- clear the update settings

-- set the colums to be updated as a list of values..
DBVMS_XM_Save. set Updat eCol unm(insCtx, ' EMPLOYEE_I D);
DBVS_XM.Save. set Updat eCol umn(i nsCt x, ' LAST_NAME') ;
DBVMS_XM.Save. set Updat ecol um(insCtx,' JOB_ID);

-- Now insert the doc. This will only insert into EMPLOYEE | D, LAST_NAME, and
-~ JOB_ID colums

rows := DBM5_XM.Save.insertXM.(insCtx, xn Doc);

DBMS_XM_Save. cl oseCont ext (i nsCt x) ;

end,

/

If you call the procedure passing in a CLOB as a document, an INSERT statement of
the form:

I NSERT | NTO hr. enpl oyees (enpl oyee_id, |ast_name, job_id) VALUES (?, ?, ?);
is generated. Note that in the earlier example, if the inserted document contains values
for the other columns (HI RE_DATE, and so on), those are ignored.

An insert is performed for each ROMelement that is present in the input. These inserts
are batched by default.

XSU for PL/SQL 24-7

Update Processing Using XSU (PL/SQL API)

Update Processing Using XSU (PL/SQL API)

Now that you know how to insert values into the table from XML documents, let us
see how to update only certain values. If you get an XML document to update the
salary of an employee and also the department that she works in:

<ROWBET>
<ROWN nume"1">
<EMPLOYEE_| D>7369</ EMPLOYEE | D>
<SALARY>1800</ SALARY>
<DEPARTMENT _| D>30</ DEPARTMENT _| D>
</ RON
<RON
<EMPLOYEE_| D>2290</ EMPLOYEE_| D>
<SAARY>2000</ SALARY>
<H RE_DATE>12/ 31/ 1992</ H RE_DATE>
<l-- additional rows ... -->
</ RONBET>

you can call the update processing to update the values. In the case of update, you
need to supply XSU with the list of key column names. These form part of the WHERE
clause in the UPDATE statement. In the enpl oyees table shown earlier, the employee
number (EMPLOYEE_| D) column forms the key and you use that for updates.

XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
Consider the PL/SQL procedure:

create or replace procedure testUpdate (xm Doc INclob) is
updCt x DBM5_XM.Save. ct xType;

rows number;
begi n
updCtx : = DBM5_XM.Save. newCont ext (' hr.enmpl oyees'); -- get the context
DBVS_XM.Save. cl ear Updat eCol ummLi st (updCt x) ; -- clear the update settings..
DBVS_XM.Save. set KeyCol um(updCt x, ' EMPLOYEE ID'); -- set EMPLOYEE_ ID as key
col um
rows : = DBMS_XM.Save. updat eXM_(updC x, xm Doc); -- update the table.
DBMS_XM.Save. cl oseCont ext (updCt x) ; -- close the context..!
end,

/

In this example, when the procedure is executed with a CLOB value that contains the
document described earlier, two UPDATE statements would be generated. For the first
ROWelement, you would generate an UPDATE statement to update the fields as shown
next:

UPDATE hr. enpl oyees SET salary = 1800 AND departnent _id = 30 WHERE enpl oyee_id = 7369;

and for the second ROW element,

UPDATE hr. enpl oyees SET salary = 2000 AND hire_date = 12/31/1992 WHERE enpl oyee_id = 2290;

XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)

You may want to specify the list of columns to update. This would speed up the
processing since the same UPDATE statement can be used for all the ROWelements.
Also you can ignore other tags which occur in the document. Note that when you

24-8 Oracle XML Developer's Kit Programmer's Guide

Delete Processing Using XSU (PL/SQL API)

specify a list of columns to update, an element corresponding to one of the update
columns, if absent, will be treated as NULL.

If you know that all the elements to be updated are the same for all the ROMelements
in the XML document, then you can use the set Updat eCol utmNane() procedure to
set the column name to update.

create or replace procedure testUpdate(xm Doc IN CLOB) is
updCtx DBMS_XM.Save. ct xType;

rows nunber;
begi n
updC x : = DBMS_XM.Save. newCont ext (' hr. enpl oyees');
DBVS_XM.Save. set KeyCol um(updQ x, ' EMPLOYEE ID'); -- set EMPLOYEE_ID as key
col um

-- set list of columst to update.
DBVS_XM.Save. set Updat eCol umn(updCt x, " SALARY") ;
DBMS_XM.Save. set Updat eCol urm(updCtx, ' JOB_ID);

rows : = DBMS_XM.Save. updat eXM_(updCt x, xml Doc); -- update the XML docunent..!
DBMS_XM.Save. cl oseCont ext (updQ x) ; -- close the handl e

end;

Delete Processing Using XSU (PL/SQL API)

For deletes, you can set the list of key columns. These columns will be put as part of
the WHERE clause of the DELETE statement. If the key column names are not supplied,
then a new DELETE statement will be created for each ROWelement of the XML
document where the list of columns in the WHERE clause of the DELETE will match
those in the ROWelement.

XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)

Consider the del et e example shown here:

create or replace procedure testDel ete(xm Doc IN clob) is
del Ctx DBMS_XM.Save. ct xType;
rows nunber;

begi n

del G x := DBMS_XM.Save.newContext (' hr.enpl oyees');
DBMS_XM.Save. set KeyCol uim(del Gt x, ' EMPLOYEE | D');

rows : = DBMS_XM.Save. del et eXM_(del Ct x, xm Doc) ;
DBVMS_XM.Save. cl oseCont ext (del & x);
end;

If you use the same XML document shown for the update example, you would end up
with two DELETE statements,

DELETE FROM hr. enpl oyees WHERE enpl oyee_i d=7369 AND sal ary=1800 AND depart ment _i d=30;
DELETE FROM hr. enpl oyees WHERE enpl oyee_i d=2200 AND sal ary=2000 AND hire_dat e=12/ 31/ 1992;

The DELETE statements were formed based on the tag names present in each ROV
element in the XML document.

XSU for PL/SQL 24-9

Delete Processing Using XSU (PL/SQL API)

XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)

If instead you want the delete to only use the key values as predicates, you can use the
set KeyCol um function to set this.

create or replace package testDML AS
saveCt x DBMS_XM.Save. ctxType := nul | ; -- a single static variable

procedure insertXM.(xm Doc in clob);
procedure updateXM.(xm Doc in clob);
procedure del eteXM.(xm Doc in clob);

end;
create or replace package body testDML AS
rows number;
procedure insert XM.(xm Doc in clob) is
begi n
rows : = DBMS_XM.Save. i nsert XM.(saveCt x, xni Doc) ;
end;
procedure updateXM_(xm Doc in clob) is
begi n
rows := DBMS_XM.Save. updat eXM.(saveCt x, xn Doc);

end;

procedure del eteXM.(xm Doc in clob) is

begi n
rows : = DBMS_XM.Save. del et eXM_(saveCt x, xn Doc) ;
end;
begi n
saveCt x : = DBM5_XM.Save. newCont ext (' hr. enpl oyees'); -- create the context once
DBMS_XM.Save. set KeyCol uim(saveCtx, 'EMPLOYEE ID); -- set the key col um nane.
end;

Here a single DELETE statement of the form,
DELETE FROM hr. enpl oyees WHERE enpl oyee_i d=?

will be generated and used for all RONelements in the document.

XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)

In all the three cases described earlier (insert, update, and delete) the same context
handle can be used to do more than one operation. That is, you can perform more than
one insert using the same context provided all of those inserts are going to the same
table that was specified when creating the save context. The context can also be used
to mix updates, deletes, and inserts.

For example, the following code shows how one can use the same context and settings
to insert, delete, or update values depending on the user's input.

The example uses a PL/SQL supplied package static variable to store the context so
that the same context can be used for all the function calls.

create or replace package testDML AS
saveCt x DBMS_XM.Save. ctxType := nul | ; -- a single static variable

24-10 Oracle XML Developer's Kit Programmer's Guide

Delete Processing Using XSU (PL/SQL API)

procedure insert(xm Doc in clob);
procedure update(xm Doc in clob);
procedure del ete(xm Doc in clob);

end;
/

create or replace package body testDML AS

procedure insert(xmDoc in clob) is

row nunber;
begin

row : = DBMB_XM.Save. i nsert XM (saveCtx, xni Doc);
end;

procedure update(xm Doc in clob) is
begin

row : = DBMB_XM.Save. updat eXM.(saveCt x, xni Doc);
end;

procedure delete(xm Doc in clob) is
begin

row : = DBMS_XM.Save. del et eXM_(saveCt x, xni Doc);
end;

begin
saveCt x : = DBMB_XM.Save. newCont ext (' hr. enpl oyees'); -- create the context
once. . !
DBVS_XM.Save. set KeyCol uim(saveCtx, 'EMPLOYEE_ID); -- set the key colum
nane.
end;
end;
/

In the earlier package, you create a context once for the whole package (thus the
session) and then reuse the same context for performing inserts, updates and deletes.

Note: The key column EMPNOwould be used both for updates
and deletes as a way of identifying the row.

Users of this package can now call any of the three routines to update the enpl oyees
table:

test DM.. i nsert(xm cl ob);
t est DM.. del et e(xm cl ob) ;
t est DML. updat e(xm cl ob) ;

All of these calls would use the same context. This would improve the performance of
these operations, particularly if these operations are performed frequently.

XSU Exception Handling in PL/SQL
Here is an XSU PL/SQL exception handling example:

decl are
queryCt x DBMS_XM.Query. ct xType;
result clob;
error Num NUMBER;
errorvsg VARCHAR2(200);

XSU for PL/SQL 24-11

Delete Processing Using XSU (PL/SQL API)

begi n
queryQx := DBMS_XM.Query. newContext('select * fromenpl oyees where df = dfdf');

- set the raise exception to true..
DBMS_XM.Query. set Rai seException(queryCtx, true);
DBMS_XM.Query. set Rai seNoRowsExcepti on(queryCQx, true);

- set propagate original exception to true to get the original exception..!
DBMS_XM.Query. propagat eQri gi nal Excepti on(queryCtx,true);
result := DBMS_XM.Query. get XM_(queryCtx);

exception
when others then
-- get the original exception
DBMS_XM_Query. get Except i onCont ent (queryCt x, errorNum errorMg);
dbns_out put . put _li ne(' Exception caught ' || TO_CHAR(errorNum
|| errorMsg);
end;

24-12 Oracle XML Developer's Kit Programmer's Guide

Glossary

access control entry (ACE)
An entry in the access control list that grants or denies access to a given principal.

access control list (ACL)

A list of access control entries that determines which principals have access to a given
resource or resources.

ACE

Access Control Entry. See access control entry.

ACL
Access Control List. See access control list.

API
Application Program Interface. See application program interface.

application programming interface (API)

A set of public programmatic interfaces that consist of a language and message format
to communicate with an operating system or other programmatic environment, such
as databases, Web servers, JVMs, and so forth. These messages typically call functions
and methods available for application development.

application server

A server designed to host applications and their environments, permitting server
applications to run. A typical example is OAS, which is able to host Java, C, C++, and
PL/SQL applications in cases where a remote client controls the interface. See also
Oracle Application Server.

attribute

A property of an element that consists of a name and a value separated by an equals
sign and contained within the start-tags after the element name. In this example,
<Price units="USD >5</Pri ce>, units is the attribute and USD is its value,
which must be in single or double quotes. Attributes may reside in the document or
DTD. Elements may have many attributes but their retrieval order is not defined.

BFILE

External binary files that exist outside the database tablespaces residing in the
operating system. BFI LEs are referenced from the database semantics, and are also
known as External LOBs.

Glossary-1

Glossary-2

binary large object (BLOB)

A large object datatype whose content consists of binary data. Additionally, this data is
considered raw because its structure is not recognized by the database.

BLOB

See binary large object.

Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods and
services to each other. The software infrastructure to enable this is referred to as an
exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the
selling of goods and services.

callback

A programmatic technique in which one process starts another and then continues.
The second process then calls the first as a result of an action, value, or other event.
This technique is used in most programs that have a user interface to allow continuous
interaction.

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the
database to understand and manipulate a new datatype. Cartridges interface through
the Extensibility Framework within Oracle8 or later. Oracle Text is such a cartridge,
adding support for reading, writing, and searching text documents stored within the
database.

Cascading Style Sheets
A simple mechanism for adding style (fonts, colors, spacing, and so on) to Web
documents.

CDATA
See character data.

Cal
See Common Gateway Interface.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This
allows for the inclusion of characters that would otherwise have special functions,
such as &, <, >, and so on. CDATA sections can be used in the content of an element or
in attributes.

child element

An element that is wholly contained within another, which is referred to as its parent
element. For example <Par ent ><Chi | d></ Chi | d></ Par ent > illustrates a child
element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have
corresponding functionality. In the case of the XML Class Generator, the input file is a

DTD and the output is a series of classes that can be used to create XML documents
conforming with the DTD.

CLASSPATH

The operating system environmental variable that the JVM uses to find the classes it
needs to run applications.

client/server

The term used to describe the application architecture where the actual application
runs on the client but accesses data or other external processes on a server across a
network.

character large object (CLOB)

The LOB datatype whose value is composed of character data corresponding to the
database character set. A CLOB can be indexed and searched by the Oracle Text search
engine.

CLOB

See character large object.

command line

The interface method in which the user enters in commands at the command
interpreter prompt.

Common Gateway Interface (CGI)

The programming interfaces enabling Web servers to run other programs and pass
their output to HTML pages, graphics, audio, and video sent to browsers.
Common Object Request Broker API (CORBA)

An Object Management Group standard for communicating between distributed
objects across a network. These self-contained software modules can be used by
applications running on different platforms or operating systems. CORBA objects and
their data formats and functions are defined in the Interface Definition Language
(IDL), which can be compiled in a variety of languages including Java, C, C++,
Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create code
that can be easily ported to virtually any platform and operating system.

Content

The body of a resource is what you get when you treat the resource like a file and ask
for its contents. Content is always an XMLTy pe.

CORBA

See Common Object Request Broker API.

CSS
See Cascading Style Sheets.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD
specifies information such as the database name or the Oracle Net service name, the

Glossary-3

Glossary-4

ORACLE_HQOVE directory, and Globalization Support configuration information such as
language, sort type, and date language.

datagram

A text fragment, which may be in XML format, that is returned to the requester
embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DBUriType

The datatype used for storing instances of the datatype that permits XPath-based
navigation of database schemas.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML
document. For example, <! DOCTYPE per son SYSTEM "person. dt d" > declares
the root element name as person and an external DTD as person.dtd in the file system.
Internal DTDs are declared within the DOCTYPE declaration.

Document Location Hint

Oracle XML DB uses the Document Location Hint to determine which XML schemas
are relevant to processing the instance document. It assumes that the Document
Location Hint will map directly to the URL used when registering the XML schema
with the database. When the XML schema includes elements defined in multiple
namespaces, an entry must occur in the schenalLocat i on attribute for each of the
XML schemas. Each entry consists of the namespace declaration and the Document
Location Hint. The entries are separated from each other by one or more whitespace
characters. If the primary XML schema does not declare a target namespace, then the
instance document also needs to include a noNanespaceSchemalLocat i on attribute
that provides the Document Location Hint for the primary XML schema.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables
programmatic access to its elements and attributes. The DOM object and its interface is
a W3C recommendation. It specifies the Document Object Model of an XML
Document including the APIs for programmatic access. DOM views the parsed
document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the allowable structure of an XML document. DTDs are text
files that derive their format from SGML and can either be included in an XML
document by using the DOCTYPE element or by using an external file through a
DOCTYPE reference.

DOM
See Document Object Model.

DOM fidelity

To assure the integrity and accuracy of this data, for example, when regenerating XML
documents stored in Oracle XML DB, Oracle XML DB uses a data integrity
mechanism, called DOM fidelity. DOM fidelity refers to when the returned XML
documents are identical to the original XML document, particularly for purposes of
DOM traversals. Oracle XML DB assures DOM fidelity by using a binary attribute,
SYS_XDBPDS$.

DTD
See Document Type Definition.

EDI
Electronic Data Interchange.

element

The basic logical unit of an XML document that can serve as a container for other
elements such as children, data, and attributes and their values. Elements are
identified by start-tags, such as <nane>, and end-tags, such as </ nane>, or in the case
of empty elements, <nane/ >.

empty element

An element without text content or child elements. It can only contain attributes and
their values. Empty elements are of the form <nane/ > or <name></ nanme>, where
there is no space between the tags.

Enterprise JavaBean (EJB)

An independent program module that runs within a JVM on the server. CORBA
provides the infrastructure for EJBs, and a container layer provides security,
transaction support, and other common functions on any supported server.

empty element

An element without text content or child elements. It may only contain attributes and
their values. Empty elements are of the form <name/> or <name></name> where
there is no space between the tags.

entity

A string of characters that may represent either another string of characters or special
characters that are not part of the document character set. Entities and the text that is
substituted for them by the parser are declared in the DTD.

existsNode

The SQL operator that returns a TRUE or FALSE based upon the existence of an XPat h
within an XMLType.

eXtensible Markup Language (XML)

An open standard for describing data developed by the World Wide Web Consortium
(W3C) using a subset of the SGML syntax and designed for Internet use.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents. There
are two W3C recommendations covering XSL stylesheets—XSL Transformations
(XSLT) and XSL Formatting Objects (XSLFO).

XSL consists of two W3C recommendations: XSL Transformations for transforming
one XML document into another and XSL Formatting Objects for specifying the
presentation of an XML document. XSL is a language for expressing stylesheets. It
consists of two parts:

« Alanguage for transforming XML documents (XSLT), and
« An XML vocabulary for specifying formatting semantics (XSLFO).

Glossary-5

Glossary-6

An XSL stylesheet specifies the presentation of a class of XML documents by
describing how an instance of the class is transformed into an XML document that
uses the formatting vocabulary.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying
formatting semantics. See FOP.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a
transformation language to convert one XML document into another.

extract
The SQL operator that retrieves fragments of XML documents stored as XM_Ty pe.

Folder

A directory or node in the Oracle XML DB repository that contains or can contain a
resource. A folder is also a resource.

Foldering

A feature in Oracle XML DB that allows content to be stored in a hierarchical structure
of resources.

FOP

Print formatter driven by XSL formatting objects. It is a Java application that reads a
formatting object tree and then renders the resulting pages to a specified output.
Output formats currently supported are PDF, PCL, PS, SVG, XML (area tree
representation), Print, AWT, MIF and TXT. The primary output target is PDF.
function-based index

A database index that, when created, permits the results of known queries to be
returned much more quickly.

HASPATH

The SQL operator that is part of Oracle Text and used for querying XMLType
datatypes for the existence of a specific XPath.

hierarchical indexing

The data relating a folder to its children is managed by the Oracle XML DB
hierarchical index, which provides a fast mechanism for evaluating path names similar
to the directory mechanisms used by operating system filesystems. Any path
name-based access will normally use the Oracle XML DB hierarchical index.

HTML
See Hypertext Markup Language.

HTTP
See Hypertext Transport Protocol.

HTTPS
See Hypertext Transport Protocol, Secure.

HTTPUriType

The datatype used for storing instances of the datatype that permits XPath-based
navigation of database schemas in remote databases.

hypertext

The method of creating and publishing text documents in which users can navigate
between other documents or graphics by selecting words or phrases designated as
hyperlinks.

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves as
the basis of the World Wide Web. The next version of HTML will be called XHTML
and will be an XML application.

Hypertext Transport Protocol (HTTP)

The application protocol used for transporting HTML files across the Internet between
Web servers and browsers.

Hypertext Transport Protocol, Secure (HTTPS)

The use of Secure Sockets Layer (SSL) as a sub-layer under the regular HTTP
application layer. Developed by Netscape.

iAS

See Internet Application Server.

IDE

See Integrated Development Environment.

iFS

See Internet File System.

INPATH

The SQL operator that is part of Oracle Text and is used for querying XMLType
datatypes for searching for specific text within a specific XPath.

instantiate

A term used in object-based languages such as Java and C++ to refer to the creation of
an object of a specific class.

Integrated Development Environment (IDE)

A set of programs designed to aid in the development of software run from a single
user interface. JDeveloper is an IDE for Java development, because it includes an
editor, compiler, debugger, syntax checker, help system, and so on, to permit Java
software development through a single user interface.

interMedia

The collection of complex datatypes and their access in Oracle. These include text,
video, time-series, and spatial data.

Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as the
Internet.

Glossary-7

Glossary-8

J2EE
See Java 2 Platform, Enterprise Edition.

Java

A high-level programming language developed and maintained by Sun Microsystems
where applications run in a virtual machine known as a JVM. The JVM is responsible
for all interfaces to the operating system. This architecture permits developers to create
Java applications that can run on any operating system or platform that has a JVM.

Java 2 Platform, Enterprise Edition (J2EE)
The Java platform (Sun Microsystems) that defines multitier enterprise computing.

Java API for XML Processing (JAXP)

Enables applications to parse and transform XML documents using an API that is
independent of a particular XML processor implementation.

Java Architecture for XML Binding (JAXB)

API and tools that map to and from XML documents and Java objects. A JSR
recommendation.

JavaBeans

An independent program module that runs within a JVM, typically for creating user
interfaces on the client. Also known as Java Bean. The server equivalent is called an
Enterprise JavaBean (EJB). See also Enterprise JavaBean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through the
SQL language. JDBC drivers are written in Java for platform independence but are
specific to each database.

Java Developer's Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code
for a version of Java that makes up a Java development environment. JDKs are
designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Naming and Directory Interface (JNDI)

A programming interface from Sun for connecting Java programs to naming and
directory services such as DNS, LDAP, and NDS. Oracle XML DB Resource API for
Java/JNDI supports JNDI.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a
platform. JREs are designated by versions, and Java 2 is used to designate versions
from 1.2 onward.

JavaServer Pages (JSP)

An extension to the servlet functionality that enables a simple programmatic interface
to Web pages. JSPs are HTML pages with special tags and embedded Java code that is
executed on the Web server or application server providing dynamic functionality to
HTML pages. JSPs are actually compiled into servlets when first requested and run in
the JVM of the server.

Java Specification Request (JSR)
A recommendation of the Java Community Process organization (JCP), such as JAXB.

Java Virtual Machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine
language of the platform and runs it. J)VMs can run on a client, in a browser, in a
middle tier, on an intranet, on an application server, or in a database server.
JAXB

See Java Architecture for XML Binding.

JAXP
See Java API for XML Processing.

JDBC
See Java Database Connectivity.

JDeveloper

Oracle Java IDE that enables application, applet, and servlet development and
includes an editor, compiler, debugger, syntax checker, help system, an integrated
UML class modeler, and so on. JDeveloper has been enhanced to support XML-based
development by including the Oracle XDK Java components, integrated for easy use
along with XML support, in its editor.

JDK

See Java Developer's Kit.

JNDI
See Java Naming and Directory Interface

JSR
See Java Specification Request

JVM
See Java virtual machine.

large object (LOB)

The class of SQL data type that is further divided into Internal LOBs and External
LOBs. Internal LOBs include BLOBs, CLOBs, and NCLOBs while External LOBs include
BFI LEs. See also BFI LEs, binary large object, character large object, national character
large object.

lazy type conversions

A mechanism used by Oracle XML DB to only convert the XML data for Java when the
Java application first asks for it. This saves typical type conversion bottlenecks with
JDBC.

listener
A separate application process that monitors the input process.

LOB
See large object.

Glossary-9

Glossary-10

name-level locking

Oracle XML DB provides for name-level locking rather than collection-level locking.
When a name is added to a collection, an exclusive write lock is not placed on the
collection, only that name within the collection is locked. The name modification is put
on a queue, and the collection is locked and modified only at commit time.

namespace

The term to describe a set of related element names or attributes within an XML
document. The namespace syntax and its usage is defined by a W3C
Recommendation. For example, the <xsl : appl y-t enpl at es/ >elementis
identified as part of the XSL namespace. Namespaces are declared in the XML
document or DTD before they are used, with the following attribute syntax:

xm ns: xsl ="http://ww. w3. org/ TR/ WD xsl ".

national character large object (NCLOB)
The LOB datatype whose value is composed of character data corresponding to the
database national character set.

NCLOB
See national character large object.

node
In XML, the term used to denote each addressable entity in the DOM tree.

notation attribute declaration

In XML, the declaration of a content type that is not part of those understood by the
parser. These types include audio, video, and other multimedia.

An-tier

The designation for a computer communication network architecture that consists of
one or more tiers made up of clients and servers. Typically two-tier systems are made
up of one client level and one server level. A three-tier system utilizes two server tiers,
typically a database server as one and a Web or application server along with a client
tier.

OAG

Open Applications Group.

OASIS
See Organization for the Advancement of Structured Information.

Object Request Broker (ORB)

Software that manages message communication between requesting programs on
clients and between objects on servers. ORBs pass the action request and its
parameters to the object and return the results back. Common implementations are
JCORB and EJBs. See also CORBA.

OCT

See Ordered Collection in Tables.

0C4J
Oracle Containers for J2EE, a J2EE deployment tool that comes with JDeveloper.

Oracle Application Server (Oracle AS)

The Oracle Application Server product integrates all the core services and features
required for building, deploying, and managing high-performance, n-tier,
transaction-oriented Web applications within an open standards framework.
ORACLE_HOME

The operating system environmental variable that identifies the location of the Oracle
database installation for use by applications.

Oracle Content Management SDK

The Oracle file system and Java-based development environment that either runs
inside the database or on a middle tier and provides a means of creating, storing, and
managing multiple types of documents in a single database repository. Formerly
known as Oracle Internet File System.

Ordered Collection in Tables (OCT)

When elements of a VARRAY are stored in a separate table, they are referred to as an
Ordered Collection in Tables.

Oracle Text

An Oracle tool that provides full-text indexing of documents and the capability to do
SQL queries over documents, along with XPath-like searching.

Oracle XML DB

A high-performance XML storage and retrieval technology provided with Oracle
database server. It is based on the W3C XML data model.

Oracle9i JVM

The Java Virtual Machine that runs within the memory space of the Oracle database.

ORB
See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information standards
through conferences, seminars, exhibits, and other educational events. XML is a
standard that OASIS is actively promoting as it is doing with SGML.

parent element

An element that surrounds another element, which is referred to as its child element.
For example, <Par ent ><Chi | d></ Chi | d></ Par ent > illustrates a parent element
wrapping its child element.

parser
In XML, a software program that accepts as input an XML document and determines
whether it is well-formed and, optionally, valid. The Oracle XML Parser supports both
SAX and DOM interfaces.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag or
nonparsed data.

Glossary-11

Glossary-12

path name

The name of a resource that reflects its location in the repository hierarchy. A path
name is composed of a root element (the first /), element separators (/) and various
sub-elements (or path elements). A path element may be composed of any character in
the database character set except ("\", "/"). These characters have a special meaning
for Oracle XML DB. Forward slash is the default name separator in a path name and
backward slash may be used to escape characters.

PCDATA
See Parsed Character Data.

PDA
Personal Digital Assistant, such as a Palm Pilot.

Pipeline Definition Language

W3C recommendation that enables you to describe the processing relations between
XML resources.

PL/SQL

The Oracle procedural database language that extends SQL. It is used to create
programs that can be run within the database.

principal

An entity that may be granted access control privileges to an Oracle XML DB resource.
Oracle XML DB supports as principals:

. Database users.

« Database roles. A database role can be understood as a group, for example, the
DBA role represents the DBA group of all the users granted the DBA role.

Users and roles imported from an LDAP server are also supported as a part of the
database general authentication model.

prolog

The opening part of an XML document containing the XML declaration and any DTD
or other declarations needed to process the document.

PUBLIC

The term used to specify the location on the Internet of the reference that follows.

RDF
Resource Definition Framework.

renderer
A software processor that produces a document in a specified format.

repository

The set of database objects, in any schema, that are mapped to path names. There is
one root to the repository (/") which contains a set of resources, each with a path
name.

resource
An object in the repository hierarchy.

resource name

The name of a resource within its parent folder. Resource names must be unique
(potentially subject to case-insensitivity) within a folder. Resource names are always in
the UTF-8 character set (NVARCHAR2).

result set
The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is between
the optional prolog and epilog. An XML document is only permitted to have one root
element.

SAX
See Simple API for XML.

schema

The definition of the structure and data types within a database. It can also be used to
refer to an XML document that support the XML Schema W3C recommendation.

schema evolution

The process used to modify XML schemas that are registered with Oracle XML DB.
Oracle XML DB provides the PL/SQL procedure DBMS_XM_SCHENMA. CopyEvol ve() .
This copies existing XML instance documents to temporary tables, drops and
re-registers the XML schema with Oracle XML DB, and copies the XML instance
documents to the new XM_Type tables.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet; it utilizes a public key /private key
form of encryption between browsers and servers.

Server-Side Include (SSI)

The HTML command used to place data or other content into a Web page before
sending it to the requesting browser.

servlet

A Java application that runs in a server, typically a Web or application server, and
performs processing on that server. Servlets are the Java equivalent to CGI scripts.
session

The active connection between two tiers.

SGML
See Structured Generalized Markup Language.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based
applications.

Simple Object Access Protocol (SOAP)

An XML-based protocol for exchanging information in a decentralized, distributed
environment.

Glossary-13

Glossary-14

SOAP
See Simple Object Access Protocol.

SQL
See Structured Query Language.

SQL/XML

An ANSI specification for representing XML in SQL. Oracle SQL includes SQL/XML
functions that query XML. The specification is not yet completed.

SSi

See Server-side Include.

SSL
See Secure Sockets Layer.

Structured Generalized Markup Language (SGML)

An 1SO standard for defining the format of a text document implemented using
markup and DTDs.

Structured Query Language (SQL)
The standard language used to access and process data in a relational database.

stylesheet

In XML, the term used to describe an XML document that consists of XSL processing
instructions used by an XSL processor to transform or format an input XML document
into an output one.

SYSTEM

Specifies the location on the host operating system of the reference that follows.

SYS_XMLAGG

The native SQL function that returns as a single XML document the results of a
passed-in SYS_XM_GEN SQL query. This can also be used to instantiate an XMLType.

SYS_XMLGEN
The native SQL function that returns as an XML document the results of a passed-in
SQL query. This can also be used to instantiate an XMLType.

tag

A single piece of XML markup that delimits the start or end of an element. Tags start
with < and end with >. In XML, there are start-tags (<nane>), end-tags (</ nane>),
and empty tags (<namne/ >).

TransX Utility

TransX Utility is a Java API that simplifies the loading of translated seed data and
messages into a database.

UDDI

See Universal Description, Discovery and Integration.

UIX
See User Interface XML.

Uniform Resource Identifier (URI)
The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLs are used
by browsers to navigate the World Wide Web and consist of a protocol prefix, port
number, domain name, directory and subdirectory names, and the file name. For
example http://otn.oracl e.com 80/tech/xm /i ndex. ht mspecifies the
location and path a browser will travel to find the OTN XML site on the World Wide
Web.

Universal Description, Discovery and Integration (UDDI)
This specification provides a platform-independent framework using XML to describe
services, discover businesses, and integrate business services on the Internet.

URI
See Uniform Resource ldentifier.

URL
See Uniform Resource Locator.

User Interface XML (UIX)
A set of technologies that constitute a framework for building web applications.

valid

The term used to refer to an XML document when its structure and element content is
consistent with that declared in its referenced or included DTD.

w3cC
See World Wide Web Consortium (W3C).

WebDAV
See World Wide Web distributed authoring and versioning.

Web Request Broker (WRB)

The cartridge within OAS that processes URLs and sends them to the appropriate
cartridge.

Web Services Description Language (WSDL)

A general purpose XML language for describing the interface, protocol bindings, and
deployment details of Web services.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML
version declared in its XML declaration. This includes having a single root element,
properly nested tags, and so forth.

Working Group (WG)

The committee within the W3C that is made up of industry members that implement
the recommendation process in specific Internet technology areas.

Glossary-15

Glossary-16

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the
World Wide Web. It is located at ht t p: / / www. w3c. or g.

World Wide Web Distributed Authoring and Versioning (WebDAV)

The Internet Engineering Task Force (IETF) standard for collaborative authoring on the
Web. Oracle XML DB Foldering and Security features are WebDAV-compliant.

wrapper
The term describing a data structure or software that wraps around other data or
software, typically to provide a generic or object interface.

WSDL
See Web Services Description Language.

World Wide Web
A worldwide hypertext system that uses the Internet and the HTTP protocol.

XDBbinary

An XML element defined by the Oracle XML DB schema that contains binary data.
XDBbinary elements are stored in the repository when completely unstructured binary
data is uploaded into Oracle XML DB.

XDK
See XML Developer's Kit.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks in
XML documents. These rules are being developed by the XML Linking Group under
the W3C recommendation process. This is one of the three languages XML supports to
manage document presentation and hyperlinks (XLink, XPointer, and XPath).

XML
See eXtensible Markup Language.

XML Base

A W3C recommendation that describes the use of the xi : base attribute, which can
be inserted in an XML document to specify a base URI other than the base URI of the
document or external entity. The URI s in the document are resolved by means of the

given base.

XML Developer's Kit (XDK)

The set of libraries, components, and utilities that provide software developers with
the standards-based functionality to XML-enable their applications. In the case of the
Oracle Java components of XDK, the Kit contains an XML parser, an XSLT processor,
the XML Class Generator, the JavaBeans, and the XSQL Servlet.

XML Gateway

A set of services that allows for easy integration with the Oracle E-Business Suite to
create and consume XML messages triggered by business events.

XML Query

The on-going effort of the W3C to create a standard for the language and syntax to
query XML documents.

XML Schema

W3C is creating a standard to enable the use of simple data types and complex
structures within an XML document. It addresses areas currently lacking in DTDs,
including the definition and validation of data types. Oracle XML Schema Processor
automatically ensures validity of XML documents and data used in e-business
applications, including online exchanges. It adds simple and complex datatypes to
XML documents and replaces DTD functionality with an XML Schema definition XML
document.

XMLSchema-instance mechanism

Allows Oracle XML DB protocol servers to recognize that an XML document inserted
into Oracle XML DB repository is an instance of a registered XML schema. This means
that the content of the instance document is automatically stored in the default table
defined by that XML schema. Defined by the W3C XML Schema working group and
based on adding attributes that identify the target XML schema to the root element of
the instance document. These attributes are defined by the XMLSchema-instance
namespace.

XMLSchema-instance namespace

Used to identify an instance document as a member of the class defined by a particular
XML schema. You must declare the XMLSchema-instance namespace by adding a
namespace declaration to the root element of the instance document. For example:

xm ns: xsi =http://ww. wW3. org/ 2001/ XM_Schenma- i nst ance.

XML schema registration

When using Oracle XML DB, you must first register your XML schema. You can then
use the XML schema URLs while creating XML Ty pe tables, columns, and views.

XML SQL Utility (XSU)

This Oracle utility can generate an XML document (string or DOM) given a SQL query
or a JDBC ResultSet object. It can also extract the data from an XML document, then
insert the data into a DB table, update a DB table, or delete corresponding data from a
DB table.

XMLType

XM_Type is an Oracle datatype that stores XML data using an underlying CLOB
column or object-relational columns within a table or view.

XMLType views

Oracle XML DB provides a way to wrap existing relational and object-relational data
in XML format. This is especially useful if, for example, your legacy data is not in XML
but you have to migrate it to an XML format.

XPath

The open standard syntax for addressing elements within a document used by XSL
and XPointer. XPath is currently a W3C recommendation. It specifies the data model
and grammar for navigating an XML document utilized by XSLT, XLink and XML

Query.

Glossary-17

Glossary-18

XPath rewrite

Can be used when the XMLType is stored in structured storage (object-relational) using
an XML schema. Queries using XPath can potentially be rewritten directly to
underlying object-relational columns. XPath query rewrite is used for XPaths in SQL
functions such as exi st sNode(), extract (), extract Val ue(), and

updat eXM.() . It enables the XPath to be evaluated against the XML document
without constructing the XML document in memory.

XPointer

The term and W3C recommendation to describe a reference to an XML document
fragment. An XPointer can be used at the end of an XPath-formatted URI. It specifies
the identification of individual entities or fragments within an XML document using
XPath navigation.

XSL

See eXtensible Stylesheet Language.

XSLFO
See eXtensible Stylesheet Language Formatting Object.

XSLT
See eXtensible Stylesheet Language Transformation.

XVM

Oracle's XSLT Virtual Machine is the software implementation of a "CPU" designed to
run compiled XSLT code. The concept of virtual machine assumes a compiler
compiling XSLT stylesheets to a program of byte-codes, or machine instructions for the
"XSLT CPU".

XSQL

The designation used by the Oracle Servlet providing the ability to produce dynamic
XML documents from one or more SQL queries and optionally transform the
document in the server using an XSL stylesheet.

XSU
See XML SQL Utility.

Symbols
&, 3-32
', 3-32
>, 3-32
&It, 8-29
&It;, 3-32
", 3-32

<xsgl:dml> action, 8-18
<xsgl:include-owa> action, 8-19
<xsgl:include-param> action, 8-25
<xsql:include-posted-xml> action, 8-26
<xsgl:include-request-params> action, 8-24
<xsgl:include-xml> action, 8-25
<xsgl:include-xsql> action, 8-38
<xsql:query> action, 8-15
<xsql:ref-cursor-function> action, 8-19
<xsql:set-page-param> action, 8-26
<xsql:set-session-param> action, 8-28
<xsql:set-stylesheet-param> action, 8-30

A

accented characters, 3-30
access control entry, definition, Glossary-1
access control list, definition, Glossary-1
ACE, definition, Glossary-1
ACL, definition, Glossary-1
action, 8-29
ambiguous content mode, 3-35
Apache Web Server, 1-17
API, definition, Glossary-1
Application Program Interface,

definition, Glossary-1
application server, definition, Glossary-1
asynchronous parsing, 10-3
attribute, definition, Glossary-1

B

B2B standards, 1-19

B2B, definition, Glossary-2
B2C, definition, Glossary-2
based on two tables, 3-35
BFILES, definition, Glossary-1
binary data, 3-31

Index

binary large object, definition, Glossary-2
binding

clearBindValues(), 24-4

setBindValue, 24-2

values to queries in XSU PL/SQL API, 24-1
BLOB, definition, Glossary-2
browser support for XML, 1-13
Built-in Action Handler, 8-69
Built-in Action Handler, XSQL, 8-69
Business-to-Business, definition, Glossary-2
Business-to-Consumer, definition, Glossary-2

C

C++ class generator, 1-5
C++ interface, 18-1
callback, definition, Glossary-2
cartridge, definition, Glossary-2
Cascading Style Sheets, definition, Glossary-2,
Glossary-3
CDATA Section, 3-28
CDATA, definition, Glossary-2
character sets
XML Schema Processor for Java, supported
by, 5-4
characters, special
inserting in XML documents, 3-32
Class Generator
XML C++, 23-1
Class Generator, definition, Glossary-2
classes
DOMBuilder(), 10-3
setSchemaValidationMode(), 5-5
CLASSPATH
configuring to run XSU, 7-12
XSQL Pages, 8-13
CLASSPATH, definition, Glossary-3
clearBindValues(), 24-4
clearUpdateColumnNames(), 24-7
client/server, definition, Glossary-3
CLOB, definition, Glossary-3
command-line interface
oraxml, 3-37
Common Gateway Interface (CGl),
definition, Glossary-3
Common Object Request Broker API,

Index-1

definition, Glossary-3
Common Oracle Runtime Environment,
definition, Glossary-3
compression of XML, 3-10
connecting
to a database with a thin driver, 7-17
to the database, 7-16
Connection Definitions, 8-14
Content, definition, Glossary-3
context, creating one in XSU PL/SQL API, 24-11
CORBA, definition, Glossary-3
CORE, definition, Glossary-3
creating anode, 3-25
creating context handles
getCtx, 24-1
CURSOR() function, 8-76
custom connection manager, 8-81

D

DAD, definition, Glossary-3
data compression, XML Parser for Java, 3-9
Data Provider for .NET, 1-14
data variables into XML, 3-27
Database Access Descriptor, definition, Glossary-3
datagram, definition, Glossary-4
DB Access JavaBean, 10-2
DBAccess JavaBean, 1-6
DBMS_XMLQuery
bind, 24-1
clearBindValues(), 24-4
getXMLClob, 24-4
DBMS_XMLQuery(), 24-1
DBMS_XMLSave, 24-5
deleteXML, 24-6
getCtx, 24-5
insertXML, 24-6
updateXML, 24-6
DBMS_XMLSave(), 24-5
DBURITYPE, definition, Glossary-4
Default SQL to XML Mapping, 7-6
delete
using XSU, 7-12,7-30
delete processing, 7-30, 24-9
development tools, 1-12
differ (XMLDiff) bean, 10-7
DOCTYPE, definition, Glossary-4
document clones in multiple threads, 4-15
Document Location Hint, definition, Glossary-4
Document Object Model, definition, Glossary-4
Document Type Definition, definition, Glossary-4
DOCUMENT_TYPE_NODE, 3-7
DOM
API, 3-25
specifications, 2-2
tree-based API, 3-7
DOM and SAX APIs, 3-7,14-13
guidelines for usage, 3-8
DOM fidelity, definition, Glossary-4
DOM, definition, Glossary-4

Index-2

DOMBuilder Bean, 1-6, 10-2, 10-3

asynchronous parsing, 10-3
DOMEXxception when Setting Node Value, 3-28
DOMNamespace() class, 3-16
DOMNamespace.java sample, 3-16
DOMParser class, 3-12
DOMSample java, 3-13
DOMSample.java sample, 3-14
DTD

limitations, 5-1
DTD caching enabling, 3-5
DTD, definition, Glossary-4
DTDs

external, 3-6

Web site with examples, 3-7

E

EDI, definition, Glossary-5

EJB, definition, Glossary-5

Electronic Data Interchange, definition, Glossary-5

element, definition, Glossary-5

empty element, definition, Glossary-5

encoding, setting, 3-31

Enterprise JavaBean, definition, Glossary-5

entity references, 3-32, 3-33

entity, definition, Glossary-5

existsNode, definition, Glossary-5

eXtensible Stylesheet Language Formatting Object,
definition, Glossary-6

eXtensible Stylesheet Language Transformation,
definition, Glossary-6

eXtensible Stylesheet Language,
definition, Glossary-5

external XML document, 3-32

extract, definition, Glossary-6

=

FAQ

XSU, 7-32
file extensions allowed, 3-7
FileReader not for system files, 3-28
Folder, definition, Glossary-6
Foldering, definition, Glossary-6
FOP

errors, 8-81

serializer, 8-49

serializer to produce PDF, 8-61
FOP, definition, Glossary-6
function-based index, definition, Glossary-6

G

generated XML
customizing, 7-8
generating XML, 7-12,7-21
using DBMS_XMLQuery, 24-1
using XSU command line, getXML, 7-12
getCtx, 24-1,24-5
getXML, 7-12

getXMLClob, 24-4

H

hash tables values into XML, 3-27
HASPATH, definition, Glossary-6
hierarchical indexing, definition, Glossary-6
hierarchical mapping, 3-34
HTML

translate to XML, 4-14
HTML Form Parameters, 8-78
HTML, definition, Glossary-7
HTTP Parameters, 8-76
HTTP POST method, 8-80
HTTP, definition, Glossary-7
HTTPS, definition, Glossary-7
HTTPURITYPE, definition, Glossary-7

Hypertext Markup Language, definition, Glossary-7
Hypertext Transport Protocol, definition, Glossary-7

Hypertext Transport Protocol, Secure,
definition, Glossary-7
hypertext, definition, Glossary-7

IDAP, 11-3
IDE, definition, Glossary-7
IIOP, definition, Glossary-7
INPATH, definition, Glossary-7
insert, XSU, 7-10
inserting special characters into XML, 3-32
inserting XML
using XSU, 7-26
insertXML, 24-6
instantiate, definition, Glossary-7
Integrated Development Environment,
definition, Glossary-7
interMedia, definition, Glossary-7
invalid characters, 3-32

J

JAR files, DTDs, 3-6
Java 2 Platform, Enterprise Edition,
definition, Glossary-8
Java API for XML Processing (JAXP),
definition, Glossary-8
Java Architecture for XML Binding (JAXB),
definition, Glossary-8
Java Components
specification, 2-1
Java components
directories, 2-3,2-4
environment in UNIX, 2-4,2-5
environment in Windows, 2-5
installation, 2-3
Java Database Connectivity, definition, Glossary-8
Java Naming and Directory Interface,
definition, Glossary-8
Java Runtime Environment, definition, Glossary-8
Java, definition, Glossary-8

JavaBean, definition, Glossary-8
JAXB
API reference, 6-3
binding compiler orajaxb, 6-2
class generator, 1-5, 6-2
code, 6-3
command-line interface, 6-3
compared with JAXP, 6-1, 6-3
examples, 6-3
features not supported, 6-2
marshalling and unmarshalling, 6-3
validating, 6-3
what is, 6-1
JAXP
compared with JAXB, 6-3
JAXP (Java API for XML Processing), 3-36
JDBC driver, 7-17
JDBC, definition, Glossary-8, Glossary-9
JDeveloper, 1-15
JDeveloper, definition, Glossary-9
JDK, definition, Glossary-8
JNIDI, definition, Glossary-8
JRE, definition, Glossary-8
JSP, definition, Glossary-8
JSR, definition, Glossary-9
JVM, definition, Glossary-9

K

keepObjectOpen(), 7-20, 24-3

L

lazy type conversions, definition, Glossary-9
listener, definition, Glossary-9
LOB, definition, Glossary-9

M

mapping
hierarchical, 3-34
primer, XSU, 7-6
maxRows, 7-20
merging XML documents, 3-33
method
getDocument(), DOMBuilder Bean, 10-4
methods
addXSLTransformerListener(), 10-6
domBuilderError(), 10-3
DOMBuilderOver(), 10-3
domBuilderStarted(), 10-4
Microsoft .NET, 1-14
multiple outputs, 4-14

N

name-level locking, definition, Glossary-10
namespace, definition, Glossary-10
namespaces

XML, 3-3
national character large object,

Index-3

definition, Glossary-10
NCLOB, definition, Glossary-10
.NET, 1-14
no rows exception, 7-24
node, child, 3-26
node, definition, Glossary-10
notation attribute declaration,
definition, Glossary-10
n-tier, definition, Glossary-10

O

OAG, definition, Glossary-10
OASIS, definition, Glossary-11
OC4), definition, Glossary-10
OCl examples, 14-6
Open Applications Group, definition, Glossary-10
ora
node-set, 4-8
output, 4-8
Oracle Application Server, definition, Glossary-11
Oracle Content Management SDK,
definition, Glossary-11
Oracle release 7.3, using, 1-18
Oracle Text, definition, Glossary-11
Oracle XML DB, definition, Glossary-11
ORACLE_HOME, definition, Glossary-11
Oracle9i JVM, 3-32
Oracle9i VM, definition, Glossary-11
OracleXML
putXmL, 7-14
XSU command line, 7-12
OracleXml namespace, 18-2
OracleXMLNoRowsException, 7-32
OracleXMLQuery, 7-15
OracleXMLSave, 7-15,7-25, 7-26, 7-28, 7-30
OracleXMLSQLException, 7-31
orajaxb binding compiler, 6-2
orapipe, pipeline tool, 9-5
oraxml, 3-37
oraxsl
command line interfaces, 4-5
ORB, definition, Glossary-10
Ordered Collection in Tables,
definition, Glossary-11
Out Variable, using xsqgl
dml, 8-78
Output Escaping, 4-15

P

paginating results, 7-20
parent element, definition, Glossary-11
parseDTD() method, 3-6
Parser for Java, 3-1
constructor extension functions, 4-7
oraxsl, 4-5
return value extension function, 4-7
supported database, 3-32
using DTDs, 3-5
validation modes, 3-3

Index-4

Parser for Java, overview, 3-1
Parser for Java, removing, 3-31
parser, definition, Glossary-11
parsers
case-sensitive, 3-7
path name, definition, Glossary-12
PCDATA, definition, Glossary-11
PDA, definition, Glossary-12
PDF results using FOP, 8-49
Personal Digital Assistant, definition, Glossary-12
Pipeline
command-line tool, 9-5
example, 9-2
Pipeline Definition Language, 9-1
Pipeline Definition Language,
definition, Glossary-12
PL/SQL
binding values in XSU, 24-4
generating XML with DBMS_XMLQuery, 24-1
XSU, 24-1
PL/SQL, definition, Glossary-12
principal, definition, Glossary-12
printing data, 3-27

processing
delete, 24-9
insert, 7-26

insertin PL/SQL, 24-6
update, 7-28,24-8
prolog, definition, Glossary-12
PUBLIC, definition, Glossary-12
putXML, 7-14

Q

Query, XML, 1-20

R

readme, XDK, 1-1

release notes, XDK, 1-1

renderer, definition, Glossary-12

repository, definition, Glossary-12

Resource Definition Framework,
definition, Glossary-12

resource name, definition, Glossary-13

resource, definition, Glossary-12

result set objects, 7-21

result set, definition, Glossary-13

root element, definition, Glossary-13

S

SAX

event -based API, 3-8
SAX API, 3-7,14-13
SAX, definition, Glossary-13
SAXNamespace.java sample, 3-22
SAXParser() class, 3-17
SAXSample. java sample, 3-19
schema evolution, definition, Glossary-13
schema, definition, Glossary-13

Secure Sockets Layer, definition, Glossary-13
security, XSQL Pages, 8-3
select

with XSU, 7-10
Server-Side Include (SSI), definition, Glossary-13
Servlet Conditional Statements, 8-77
servlet, definition, Glossary-13
servlet, XSQL, 8-1
session, definition, Glossary-13
setBindValue, 24-2
setkeyColumn, 7-31
setkKeyColumn(), 24-10
setMaxRows, 24-3
setRaiseNoRowsException(), 24-3
setSkipRows, 24-3
setStylesheetHeader(), 24-4
setUpdateColumnName(), 24-7, 24-9
setUpdateColumnNames()

XML SQL Utility (XSU)

setUpdateColumnNames(), 7-29

setXSLT(), 24-4
SGML, definition, Glossary-14
Simple API for XML, definition, Glossary-13
Simple Object Access Protocol (SOAP),

definition, Glossary-13
skipRows, 7-20
SOAP

distributed inventory application figure, 11-7

example, 11-6

server, 11-4

whatis, 11-1
SOAP, definition, Glossary-14
sorting result, 8-84
special characters, 3-31
SQL*Loader

nesting support, 1-17
SQL, definition, Glossary-14
SQL/XML, definition, Glossary-14
SSl, definition, Glossary-13
storing XML, 7-25

using XSU command line, putXML, 7-14
storing XML in the database, 24-5
string data, 3-32, 3-33
stylesheet, definition, Glossary-14
stylesheet, input argument, 8-83
stylesheets

XSU, 24-4
SYS_XMLAGG, definition, Glossary-14
SYS_XMLGEN, definition, Glossary-14
SYSTEM, definition, Glossary-14
System.out.printin(), 3-31

T

tag, definition, Glossary-14
thin driver
connecting XSU, 7-17
TransX Utility, 12-1
command-line syntax, 12-4
sample code, 12-5

TransXUtility, definition, Glossary-14
Tuning with XSQL, 8-54

U
uDDI, 11-2
uIX, 1-16

UIX, definition, Glossary-15
Unicode in a system file, 3-28

Uniform Resource Identifier, definition, Glossary-15

Uniform Resource Locator, definition, Glossary-15
update processing, 24-8
update, XSU, 7-11
updating
table using keyColumns, XSU, 7-28
using XSU, 7-28
URI, definition, Glossary-15
URL, definition, Glossary-15
usage techniques, 7-31
User Interface XML, 1-16
User Interface XML (UIX), definition, Glossary-15
UTF-16 Encoding, 3-30
UTF-8 encoding, 3-30
UTF-8 output, 3-29

Vv

valid, definition, Glossary-15
validation
auto validation mode, 3-4
DTD validating Mode, 3-4
partial validation mode, 3-4
schema validation, 3-4
schema validation mode, 3-4

w

Wa3C, definition, Glossary-16
Web Request Broker, definition, Glossary-15
web services, 11-1
WebDAV, definition, Glossary-15, Glossary-16
well-formed, definition, Glossary-15
WG, definition, Glossary-15
WML Document, 8-76
World Wide Web Consortium,
definition, Glossary-16
World Wide Web Distributed Authoring and
Versioning, definition, Glossary-16
World Wide Web, definition, Glossary-16
wrapper, definition, Glossary-16
WRB, definition, Glossary-15
WRONG_DOCUMENT_ERR, 3-27

WSDL, 11-2
X
XDBbinary, definition, Glossary-16
XDK

functionality illustration, 1-4
XDK C components

parts, 13-1

Index-5

XDK C++ components
installation, 17-1
XDK components, 1-1
XDK for Java
globalization support, 2-6
XDK JavaBeans, 10-1
XDK version
using Java, 2-7
XDK, definition, Glossary-16
XLink, definition, Glossary-16
XML
direction and plans, 1-19
serialization/compression, 3-10
XML Base, 1-1
XML Base, definition, Glossary-16
XML books, 1-16
XML C++ Class Generator, 23-1
XML Compressor, 3-9
XML Developer's Kit (XDK), definition, Glossary-16
XML discussion forum, 14-9
XML document, 3-35
displaying, 3-31
external, 3-32
XML documents
generating from C, 1-10
generating from C++, 1-11
generating from Java, 1-9
illegal characters, 3-33
merging, 3-33
XML Gateway, 1-14
XML Gateway, definition, Glossary-16
XML Namespaces, 3-3
XML Namespaces 1.0, 1-1
XML output in UTF-8, 3-29
XML Parser
oraxml command-line interface, 3-37
XML Parser for C
sample programs, 15-6
XML Parser for Java
compression
XML data, using XML Parser for Java, 3-9
XML parsers
XML program-created, 1-17
XML Query, definition, Glossary-17
XML Schema
compared to DTD, 5-1
DTD limitations, 5-1
explained, 5-1
features, 5-2
processor for Java
how to run the sample program, 5-6
supported character sets, 5-4
usage, 5-4
processor for Java features, Oracle's, 5-3
XML schema registration, definition, Glossary-17
XML Schema, definition, Glossary-17
XML schema, definition, 3-1
XML SQL Utility, Glossary-17
XML SQL Utility (XSU), 1-7,24-1
advanced techniques, exception handling

Index-6

(PL/SQL), 24-11
binding values
PL/SQL API, 24-4
clearBindValues() with PL/SQL API, 24-4
command line usage, 7-12
connecting to the database, 7-16
connecting with a thin driver, 7-17
connecting with OCI* JDBC driver, 7-17
customizing generated XML, 7-8
DBMS_XMLQuery, 24-1
DBMS_XMLSave(), 24-5
deletes, 7-12
deleting from XML documents, 7-30
dependencies and installation, 7-3
explained, 7-1
for Java, 7-15
getXML command line, 7-12
getXMLClob, 24-4
how it works, 7-10
inserting with command line and putXML, 7-14
inserting XML into database, 7-26
inserts, 7-10
keepObjectOpen function, 7-20
mapping primer, 7-6
OracleXLIQuery API, 7-15
OracleXMLSave API, 7-15
putting XML back in database with
OracleXMLSave, 7-25
selects, 7-10
setKeycolumn function, 7-31
setRaiseNoRowsException(), 24-3
setting stylesheets, PL/SQL, 24-4
updates, 7-11
updating, 7-28
updating XML documents in tables, 7-28
XML SQL Utility XSU)
setXSLT(), 24-4
XML SQL Utility(XSU)
creating context handles with getCtx, 24-1
XML standards for B2B, 1-19
XML Tree, Traversing, 3-26
XML Web sites, 1-16
XML, definition, Glossary-5
xmlcg usage, 23-2
XMLCompress JavaBean, 1-6, 10-2
XMLDBAccess JavaBean, 1-6, 10-2
XMLDBAccess Javabean, 10-8
XMLDiff Bean, 10-7
XMLD:iff JavaBean, 1-6,10-2
XMLGEN, is obsolete. See DBMS_XMLQUERY and
DBMS_XMLSAVE, 7-3
XMLNode.selectNodes() method, 3-26
XMLSchema-instance mechanism,
definition, Glossary-17
XMLSchema-instance namespace,
definition, Glossary-17
XMLType views, definition, Glossary-17
XPath rewrite, definition, Glossary-18
XPath, definition, Glossary-17
XPointer, definition, Glossary-18

XSDBuilder, 3-4
XSL
document clones, 4-15
keeping white spaces, 4-14
multiple threads, 4-14
produces multiple output, 4-14
XSL namespace
URI, 4-14
XSL Parser for Java
output method html, 4-13
XSL processor, 15-3
XSL stylesheets
setStylesheetHeader() in XSU PL/SQL, 24-4
setXSLT() with XSU PL/SQL, 24-4
XSL Transformation (XSLT) Processor, 1-5, 3-1, 3-3
XSL Transformation (XSLT) Processor for Java, 4-1
XSL Transformations Specifications, 2-2
XSL, definition, Glossary-5
XSLFO, definition, Glossary-6
XSLT
ora
node-set built in extension, 4-8
output built in extension, 4-8
XSLTransformer bean, 10-4
XSLT compiler, 15-1
XSLT Processor for Java
hints for using, 4-11
XSLT, definition, Glossary-6
XSLTransformer JavaBean, 1-6, 10-2, 10-4
XSLValidator JavaBean, 1-7, 10-3
XSQL
action handler errors, 8-75
advanced topics, 8-50
built-in action handler elements, 8-69
CLOBs, 8-83
compared to JSP, 8-83
connection, 8-80
connection pool, 8-83
current page name, 8-81
errors, 8-79
non-Oracle databases, 8-77
setting up demos, 8-49
SOAP support, 8-80
stylesheets, 8-51

tuning, 8-83

two queries, 8-77
xsql

set-cookie>, 8-29
XSQL Pages

extensions, 8-80
XSQL Pages security, 8-3
XSQL servlet

hints, 8-76
XSQL Servlet examples, 8-47
XSQL, definition, Glossary-18
XSQLCommandLine Utility, 8-15
XSQLConfig.xml, 8-54

XSU
client-side, 7-12
FAQ, 7-32

generating XML, 7-12
generating XML strings from a table,
example, 7-16
insert processing in PL/SQL, 24-6
mapping primer, 7-6
PL/SQL, 24-1
stylesheets, 24-4
usage guidelines, 7-6
using, 7-1
where you can run, 7-4
XSU (XML SQL Utility), 1-7
xvm
XSLT compiler, 15-3
XVM (XSLT Virtual Machine) processor,
XVM, definition, Glossary-18

15-1

Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	What's New in Oracle XML Developer's Kit?
	Oracle Database 10g Release 1 (10.1) New Features in Oracle XML Developer's Kit

	1 Overview of XML Developer's Kit Components
	Introducing Oracle XML Developer's Kit
	Overview of Oracle XDK Components

	XDK Functionality Applied to XML Documents
	XML Parsers
	XSL Transformation (XSLT) Processors
	JAXB and C++ Class Generators
	XML Schema Processor
	XDK JavaBeans
	DOMBuilder
	XSLTransformer
	DBAccess
	XMLDiff
	XMLCompress
	XMLDBAccess
	XSDValidator

	Oracle XML SQL Utility (XSU) for Java
	XSQL Pages Publishing Framework
	TransX Utility
	Soap Services

	Using XDK-supported Languages to Generate XML Documents
	Using XSU for Java to Generate XML Documents
	Generating XML from Query Results
	XML Document Structure: Columns Are Mapped to Elements
	XSU Generates the XML Document as a String or DOM Element Tree
	XSU Generates a DTD Based on Queried Table's Schema

	Using Oracle XDK Java Components to Generate XML Documents
	Using Oracle XDK C Components to Generate XML Documents
	Using Oracle XDK C++ Components to Generate XML Documents

	XDK and Application Development Tools
	Browsers That Support XML
	Oracle XML Gateway
	Oracle Data Provider for .NET
	JDeveloper
	User Interface XML (UIX)
	Recommended Books and Web Sites About XML

	Using Oracle XML-Enabled Technology
	Information for Using the XDK
	Using Apache Web Server Instead of the Oracle9i Application Server
	Need for an XML Parser If all the XML Was Created By Programs
	SQL*Loader and Nesting in XML Documents

	Information About Previous Oracle Releases
	Using Oracle Database Version 7 and XML
	Doing Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4
	Using Versions Prior to Oracle8i and Oracle XML Tools?

	XML Standards That Oracle Supports
	B2B Standards and Development Tools that Oracle Supports
	Oracle Corporation's Direction Regarding XML
	Oracle Corporation's Plans for XML Query

	Maximum XML File Sizes
	Limitations on the Size of an XML File
	Size Limit for XML Documents Generated from the Database
	Maximum Size for an XML Document for PL/SQL

	2 Getting Started with XDK Java Components
	XDK Java Components Specifications
	DOM Specifications
	XSL Transformations Specifications

	Installing XDK Java Components
	XDK Java Components Directory Structure
	XDK Java Components Environment Settings
	UNIX Environment Settings for XDK Java Components
	Windows Environment Settings for XDK Java Components

	XDK Java Components Globalization Support
	XDK Java Components Dependencies
	Verifying the XDK Java Components Version

	3 XML Parser for Java
	XML Parser for Java Overview
	Namespace Support
	XML Parser for Java Validation Modes
	Using DTDs with the XML Parser for Java
	Enabling DTD Caching
	Recognizing External DTDs
	Loading External DTDs from a JAR File
	Checking the Correctness of Constructed XML Documents
	Parsing a DTD Object Separately from an XML Document
	XML Parsers Case-Sensitivity
	Allowed File Extensions in External Entities
	Creating a DOCUMENT_TYPE_NODE
	Standard DTDs That Can be Used for Orders, Shipments, and So On

	About DOM and SAX APIs
	DOM: Tree-Based API
	SAX: Event-Based API
	Guidelines for Using DOM and SAX APIs
	DOM
	SAX

	About XML Compressor
	XML Serialization and Compression

	Running the Sample Applications for XML Parser for Java
	Using XML Parser for Java: DOMParser Class
	Without DTD Input
	With a DTD Input
	Comments on Example 1: DOMSample.java
	XML Parser for Java Example 1: DOMSample.java

	Using XML Parser for Java: DOMNamespace Class
	XML Parser for Java Example 2: Parsing a URL - DOMNamespace.java

	Using XML Parser for Java: SAXParser Class
	XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)
	XML Parser for Java Example 4: (SAXNamespace.java)

	Using the XML Parser for Java
	Using DOM and SAX APIs for Java
	Using the DOM API to Count Tagged Elements
	Creating a Node with a Value to Be Set Later
	Traversing the XML Tree Using XPATH
	Finding the First Child Node Element Value
	Using the XMLNode.selectNodes() Method
	Generating an XML Document from Data in Variables
	Using the DOM API to Print Data in the Element Tags
	Building XML Files from Hash Table Value Pairs
	DOM Exception WRONG_DOCUMENT_ERR on Node.appendChild()
	Getting DOMException when Setting Node Value
	Extracting Embedded XML from a CDATA Section
	Extracting PAYLOAD to do Extra Processing

	Using Character Sets with the XML Parser for Java
	Reading a Unicode XML File
	Writing an XML File in UTF-8
	Writing Parsing XML Stored in NCLOB with UTF-8 Encoding
	Parsing a Document Containing Accented Characters
	Storing Accented Characters in an XML Document
	You Cannot Dynamically Set the Encoding for an Input XML File
	Using System.out.println() and Special Characters

	General Questions About XML Parser for Java
	Including Binary Data in an XML Document
	Displaying an XML Document
	Including an External XML File in Another XML File
	You Do Not Need Oracle9i or Higher to Run XML Parser for Java
	Inserting Characters <, >, ', ", and & into XML Documents
	Invalid Special Characters in Tags
	Parsing XML from Data of Type String
	Extracting Data from an XML Document into a String
	Illegal Characters in XML Documents
	Using Entity References with the XML Parser for Java
	Merging XML Documents
	The XML Parser for Java Does Not Need a Utility to View the Parsed Output
	Support for Hierarchical Mapping
	Support for Ambiguous Content Mode
	Generating an XML Document Based on Two Tables

	Using JAXP
	oraxml: XML Parser for Java Command-line

	4 XSLT Processor for Java
	XSLT Processor for Java Overview
	Using XSLT Processor for Java
	XSLT Processor for Java Example

	XSLT Command-Line Interface: oraxsl
	XML Extension Functions for XSLT Processing
	XSLT Processor for Java Extension Functions and Namespaces
	Static Versus Non-Static Methods
	XML Parser for Java - XSL Example 1: Static function

	Constructor Extension Function
	XML Parser for Java - XSL Example 2: Constructor Extension Function

	Return Value Extension Function
	XML Parser for Java XSL- XSL Example 3: Return Value Extension Function

	Datatypes Extension Function
	XML Parser for Java - XSL Example 4: Datatype Extension Function

	XSLT Processor for Java Built-In Extensions: ora:node-set and ora:output
	ora:output
	ora:node-set
	Example of Use of Oracle XSL Extensions

	Hints for Using the XSLT Processor for Java and XSL
	Merging Two XML Documents
	Example: Using importNode() from DOM Level 2
	Example: Using adoptNode from DOM Level 3
	Example: demo1.xml
	Example: demo2.xml
	Example: demomerge.xsl

	Extracting Embedded XML Using Only XSLT
	Support of Output Method "html" in the XSL Parser
	Creating an HTML Input Form
	Correct XSL Namespace URI
	XSL Processor Produces Multiple Outputs
	Keeping White Spaces in Your Output
	XDK Utilities That Translate Data from Other Formats to XML
	Multiple Threads Using a Single XSLProcessor and Stylesheet
	Using Document Clones in Multiple Threads
	Disabling Output Escaping Is Supported

	5 XML Schema Processor for Java
	What Is XML Schema?
	What Are DTDs?
	DTD Limitations

	Comparison of XML Schema Features to DTD Features
	XML Schema Processor for Java Features
	Supported Character Sets
	Requirements to Run XML Schema Processor for Java

	XML Schema Processor for Java Usage
	Using the XML Schema API

	XML Schema Processor for Java Sample Programs

	6 Using JAXB Class Generator
	What Is JAXB?
	Replacing the XML Class Generator with JAXB Class Generator
	Unmarshalling, Marshalling, and Validating Using JAXB
	Using JAXB Class Generator
	Features Not Supported in JAXB
	JAXB Class Generator Command-Line Interface
	JAXB Compared with JAXP

	7 XML SQL Utility (XSU)
	What Is XML SQL Utility (XSU)?
	Generating XML from the Database
	Storing XML in the Database
	Accessing XSU Functionality
	XSU Features

	XSU Dependencies and Installation
	Dependencies of XSU
	Installing XSU

	Where XSU can be Installed
	XML SQL Utility in the Database
	XML SQL Utility in the Middle Tier
	XML SQL Utility in a Web Server

	SQL-to-XML and XML-to-SQL Mapping Primer
	Default SQL-to-XML Mapping
	SQL-to-XML Mapping Against Object-Relational Schema
	Mapping Complex Type Columns to XML
	Mapping Collections to XML

	Customizing the Generated XML: Mapping SQL to XML
	Source Customizations
	Mapping Customizations
	Post-Generation Customizations

	Default XML-to-SQL Mapping

	How XML SQL Utility Works
	Selecting with XSU
	Queries That XSU Cannot Handle
	Inserting with XSU
	Updating with XSU
	Deleting with XSU

	Using the XSU Command-Line Front End OracleXML
	Generating XML Using the XSU Command Line
	XSU's OracleXML getXML Options
	Inserting XML Using XSU's Command Line (putXML)
	XSU OracleXML putXML Options

	XSU Java API
	Generating XML with XSU's OracleXMLQuery
	Generating XML from SQL Queries Using XSU
	XSU Generating XML Example 1: Generating a String from Table employees (Java)
	How to Run This Program

	XSU Generating XML Example 2: Generating DOM from Table employees (Java)

	Paginating Results: skipRows and maxRows
	Keeping the Object Open for the Duration of the User's Session
	When the Number of Rows or Columns in a Row Is Too Large
	keepObjectOpen Function
	XSU Generating XML Example 3: Paginating Results: (Java)

	Generating XML from ResultSet Objects
	XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
	XSU Generating XML Example 5: Generating XML from Procedure Return Values

	Raising NoRowsException
	XSU Generating XML Example 6: No Rows Exception (Java)

	Storing XML Back in the Database Using XSU OracleXMLSave
	Insert Processing Using XSU (Java API)
	XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
	XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)

	Update Processing Using XSU (Java API)
	XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
	XSU Updating XML Example 10: Updating a Specified List of Columns (Java)

	Delete Processing Using XSU (Java API)
	XSU Deleting XML Example 11: Deleting Operations Per Row (Java)
	XSU Deleting XML Example 12: Deleting Specified Key Values (Java)

	Advanced XSU Usage Techniques
	XSU Exception Handling in Java
	OracleXMLSQLException Class
	OracleXMLNoRowsException Class

	Hints for Using XML SQL Utility (XSU)
	Schema Structure to use with XSU to Store XML
	Storing XML Data Across Tables
	Using XSU to Load Data Stored in Attributes
	XSU is Case-Sensitive
	XSU Cannot Generate the Database Schema from a DTD
	Thin Driver Connect String Example for XSU
	XSU and COMMIT After INSERT, DELETE, or UPDATE
	Mapping Table Columns to XML Attributes Using XSU

	8 XSQL Pages Publishing Framework
	XSQL Pages Publishing Framework Overview
	What Can I Do with Oracle XSQL Pages?
	Where Can I Obtain Oracle XSQL Pages?
	What Is Needed to Run XSQL Pages?

	Security Considerations for XSQL Pages
	Install Your XSQLConfig.xml File in a Safe Directory
	Disable Default Client Stylesheet Overrides
	Be Alert for the Use of Substitution Parameters

	What's New in XSQL Pages Release 10.1
	Overview of Basic XSQL Pages Features
	Producing XML Datagrams from SQL Queries
	Transforming XML Datagrams into an Alternative XML Format
	Transforming XML Datagrams into HTML for Display

	Setting Up and Using XSQL Pages in Your Environment
	Using XSQL Pages with Oracle JDeveloper
	Setting the CLASSPATH Correctly in Your Production Environment
	Setting Up the Connection Definitions
	Using the XSQL Command-Line Utility

	Overview of All XSQL Pages Capabilities
	Using All of the Core Built-in Actions
	The <xsql:query> Action
	The <xsql:dml> Action
	The <xsql:ref-cursor-function> Action
	The <xsql:include-owa> Action
	Using Bind Variables
	Using Lexical Substitution Parameters
	Providing Default Values for Bind Variables and Parameters
	Understanding the Different Kinds of Parameters
	The <xsql:include-request-params> Action
	The <xsql:include-param> Action
	The <xsql:include-xml> Action
	The <xsql:include-posted-xml> Action
	The <xsql:set-page-param> Action
	The <xsql:set-session-param> Action
	The <xsql:set-cookie> Action
	The <xsql:set-stylesheet-param> Action

	Working with Array-Valued Parameters
	Setting Array-Valued Page or Session Parameters from Strings
	Binding Array-Valued Parameters in SQL and PL/SQL Statements
	Supplying Multi-Valued Parameters on the Command Line
	Supplying Multi-Valued Parameters Programmatically with XSQLRequest
	Conditionally Executing Actions or Including Content with <xsql:if-param>
	Optionally Setting an Error Parameter on Any Built-in Action
	Aggregating Information Using <xsql:include-xsql>
	Including XMLType Query Results
	Handling Posted Information
	Understanding Different XML Posting Options

	Using Custom XSQL Action Handlers

	Description of XSQL Servlet Examples
	Setting Up the Demo Data

	Advanced XSQL Pages Topics
	Using a Custom XSQL Configuration File Name
	Understanding Client Stylesheet-Override Options
	Controlling How Stylesheets Are Processed
	Controlling the Content Type of the Returned Document
	Assigning the Stylesheet Dynamically
	Processing Stylesheets in the Client
	Providing Multiple, UserAgent-Specific Stylesheets

	Using XSQL Configuration File to Tune Your Environment
	Using the FOP Serializer to Produce PDF Output
	Using XSQL Page Processor Programmatically
	Writing Custom XSQL Action Handlers
	Writing your Own Action Handler

	Using Multi-Valued Parameters in Custom XSQL Actions
	Writing Custom XSQL Serializers
	Using a Custom XSQL Connection Manager for JDBC Datasources
	Writing Custom XSQL Connection Managers
	Providing a Custom XSQLErrorHandler Implementation
	Providing a Custom XSQL Logger Implementation
	Formatting XSQL Action Handler Errors
	Displaying Error Information on Screen

	XSQL Servlet Limitations and Hints
	HTTP Parameters with Multibyte Names
	CURSOR() Function in SQL Statements
	Hints for Using the XSQL Servlet
	Specifying a DTD While Transforming XSQL Output to a WML Document
	Writing XSQL Servlet Conditional Statements
	Using a Value Retrieved in One Query in Another Query's Where Clause
	Using the XSQL Servlet with Non-Oracle Databases
	Handling Multi-Valued HTML Form Parameters
	Running the XSQL Servlet with Oracle Release 7.3
	Out Variable is not Supported in <xsql:dml>
	Receiving "Unable to Connect" Errors
	Using Other File Extensions Besides .xsql
	Receiving "No Posted Document to Process" when you Try to Post XML
	XSQL Supports SOAP
	Passing the Connection for XSQL
	Controlling How Database Connections and Passwords Are Stored
	Accessing Authentication Information in a Custom Connection Manager
	Retrieving the Name of the Current XSQL Page
	Resolving Errors When Using the FOP Serializer
	Tuning XSQL Pages for Fastest Performance
	Using XSQL with Other Connection Pool Implementations
	Including XML Documents Stored in CLOBs in Your XSQL Page
	Combining JavaServer Pages and XSQL in the Same Page
	Choosing a Stylesheet Based on Input Arguments
	Sorting the Result Within the Page

	9 Pipeline Definition Language for Java
	Using Pipeline Definition Language
	Example of a Pipeline Definition Language Application
	The Command-line Pipeline Tool orapipe

	10 XDK JavaBeans
	Accessing Oracle XDK JavaBeans
	Database Connectivity
	XDK JavaBeans Overview
	DOMBuilder
	XSLTransformer
	DBAccess
	XMLDiff
	XMLCompress
	XMLDBAccess
	XSDValidator

	DOMBuilder JavaBean
	Use for Asynchronous Parsing in the Background
	DOMBuilder JavaBean Usage

	XSLTransformer JavaBean
	XSLTransformer JavaBean: Regenerating HTML Only When Data Changes
	How to Use XSLTransformer JavaBean

	DBAccess JavaBean
	DBAcess JavaBean Usage

	XMLDiff JavaBean
	XMLCompress JavaBean
	XMLDBAccess JavaBean
	XSDValidator JavaBean
	JavaBean Examples
	Installing the JavaBean Examples
	XMLDiffSample.java
	XSDValidatorSample.java

	11 Using XDK and SOAP
	What Is SOAP?
	What Are UDDI and WSDL?
	What Is Oracle SOAP?
	How Does Oracle SOAP Work?
	Oracle SOAP and IDAP
	What Is a SOAP Client?
	SOAP Client API
	What Is a SOAP Server?
	Oracle SOAP Security Features
	SOAP Transports
	Administrative Clients
	SOAP Request Handler
	SOAP Provider Interface and Providers
	Provider Interface
	Provider Deployment Administration
	SOAP Services Provided

	Advantages of XML Over EDI

	SOAP Example
	XML Features Used in the SOAP Example
	Prerequisite Software for the SOAP Example
	How Is the SOAP Example Implemented?
	Setting Up the Tables and the SOAP Service
	Requesting SOAP Service
	Initializing the MessageDispatcher Process
	Compressing the XML Document
	Creating a SOAP Message
	Enqueuing the XML Document
	Listing of the Java Source File inserItemServlet.java
	Queuing Messages with AQ
	Message Enqueuing and Dequeuing.
	Invoking Remote SOAP Services.

	XML Compression
	Listing of the Java Source File MessageBroker.java
	Summary of the SOAP Example

	12 TransX Utility
	Overview of the TransX Utility
	Primary TransX Utility Features
	Simplified Multilingual Data Loading
	Simplified Data Format Support and Interface
	Loading Dataset in the Standard XML Format
	Constant Expression
	Sequence
	Query

	Handling Existing Data
	Other TransX Utility Features

	Installing TransX Utility
	Dependencies of TransX
	Installing TransX Using the Oracle Installer
	Installing TransX Downloaded from OTN
	To Use the TransX Front-end or Its Java API:

	TransX Utility Command-Line Syntax
	TransX Utility Command-Line Examples
	TransX Utility Command-line Parameters
	TransX Utility Command-line Options
	Command-line Option Exceptions

	Sample Code for TransX Utility

	13 Getting Started with XDK C Components
	Specifications of XDK C/C++ Components
	What Are the XDK C Components
	Installing the C Components of XDK
	Setting the UNIX Environment
	Command Line Environment Setup
	Setting the Windows Environment
	Environment for Command Line Usage
	Using the XDK C Components with Visual C++

	Globalization Support for the C XDK Components

	14 XML Parser for C
	What Is the Unified C API for XDK and Oracle XML DB?
	Using DOM for XDK
	Loading an XML Document with the C API
	Data Encoding of XML Documents for the C API
	NULL-Terminated and Length-Encoded C API Functions
	Error Handling
	Installing the C API

	Using OCI and the C API
	XML Context
	Creating XMLType Instances on the Client
	XML Data on the Server
	XMLType Functions and Descriptions
	OCI Examples

	Using the XML Parser for C
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files

	XML Parser for C Calling Sequence
	Parser Calling Sequence

	XML Parser for C Default Behavior
	DOM and SAX APIs Compared
	Using the SAX API
	SAX Callback Structure

	Command Line Usage
	Writing C Code to Use Supplied APIs

	Using the Sample Files

	15 XSLT Processors for C
	XVM Processor
	XVM Usage Example
	Command-Line Access of the XVM Processor
	Accessing XVM Processor for C

	XSL Processor
	XSL Processor Usage Example
	XPath Processor Usage Example
	Command Line Usage of the XSL Processor
	Accessing Oracle XSL Processor for C

	Using the Demo Files Included with the Software
	Building the C Demo Programs for XSLT

	16 XML Schema Processor for C
	Oracle XML Schema Processor for C
	Oracle XML Schema for C Features
	Standards Conformance
	XML Schema Processor for C: Supplied Software

	Invoking XML Schema Processor for C
	XML Schema Processor for C Usage Diagram
	How to Run XML Schema for C Sample Programs

	17 Getting Started with XDK C++ Components
	Installation of the XDK C++ Components
	Getting the C++ Components of XDK
	Libraries in the UNIX Environment for C++ XDK
	Setting the UNIX Environment for C++
	Command Line Environment Setup
	Windows Environment Setup for C++ XDK
	Environment for Command Line Usage on Windows

	Setting the Windows Environment for C++ XDK
	Using XDK C++ Components with Visual C++

	18 Unified C++ Interfaces
	What is the Unified C++ API?
	Accessing the C++ Interface
	OracleXML Namespace
	OracleXML Interfaces

	Ctx Namespace
	OracleXML Datatypes
	Ctx Interfaces

	IO Namespace
	IO Datatypes
	IO Interfaces

	Tools Package
	Tools Interfaces

	Error Message Files

	19 XML Parser for C++
	Introduction to Parser for C++
	Dom Namespace
	DOM Datatypes
	DOM Interfaces
	DOM Traversal and Range Datatypes
	DOM Traversal and Range Interfaces

	Parser Namespace
	GParser Interface
	DOMParser Interface
	SAXParser Interface
	SAX Event Handlers

	Thread Safety
	XML Parser for C++ Usage
	XML Parser for C++ Default Behavior
	C++ Sample Files

	20 XSLT Processor for C++
	Accessing XSLT for C++
	Xsl Namespace
	Xsl Interfaces

	XSLT for C++ DOM Interface Usage
	Invoking XSLT for C++
	Command Line Usage
	Writing C++ Code to Use Supplied APIs

	Using the Sample Files Included with the Software

	21 XML Schema Processor for C++
	Oracle XML Schema Processor for C++
	Oracle XML Schema for C++ Features
	Online Documentation

	Standards Conformance

	XML Schema Processor API
	Invoking XML Schema Processor for C++

	Running the Provided XML Schema for C++ Sample Programs

	22 XPath Processor for C++
	XPath Interfaces
	Sample Programs

	23 XML Class Generator for C++
	Accessing XML C++ Class Generator
	Using XML C++ Class Generator
	External DTD Parsing
	Error Message Files

	XML C++ Class Generator Usage
	Input to the XML C++ Class Generator

	Using the XML C++ Class Generator Examples
	XML C++ Class Generator Example 1: XML - Input File to Class Generator, CG.xml
	XML C++ Class Generator Example 2: DTD - Input File to Class Generator, CG.dtd
	XML C++ Class Generator Example 3: CG Sample Program

	24 XSU for PL/SQL
	XSU PL/SQL API
	Generating XML with DBMS_XMLQuery()
	XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)
	XSU Generating XML Example 2: Printing CLOB to Output Buffer
	XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names
	XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()

	Setting Stylesheets in XSU (PL/SQL)
	Binding Values in XSU (PL/SQL)
	XSU Generating XML Example 5: Binding Values to the SQL Statement

	Storing XML in the Database Using DBMS_XMLSave
	Insert Processing Using XSU (PL/SQL API)
	XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)
	XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)

	Update Processing Using XSU (PL/SQL API)
	XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
	XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)

	Delete Processing Using XSU (PL/SQL API)
	XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)
	XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)
	XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)
	XSU Exception Handling in PL/SQL

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

