
Oracle® Containers for J2EE
Job Scheduler Developer’s Guide

10g (10.1.3.1.0)

B28954-01

September 2006

Oracle Containers for J2EE Job Scheduler Developer’s Guide, 10g (10.1.3.1.0)

B28954-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Kevin Yu Hwang

Contributors: Gary Moyer, Tony D’Silva

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documentation ... xii
Conventions .. xii

1 Overview of Oracle Application Server Containers for J2EE

1.1 Job Scheduler Concepts and Terminology.. 1-1
1.1.1 Notifications and Triggers.. 1-1
1.1.2 Schedules... 1-2
1.1.3 Jobs... 1-2
1.1.4 Blackout Windows... 1-2
1.2 Basic Job Scheduler Implementation Example ... 1-2

2 Adding and Removing Jobs

2.1 Adding Jobs ... 2-1
2.1.1 Implementing a Job with the Executable Interface ... 2-1
2.1.2 Submitting a Job... 2-2
2.1.3 Examples of Adding Jobs ... 2-2
2.2 Accessing Job Scheduler Using JNDI Lookup.. 2-4
2.3 Removing Jobs... 2-4
2.4 Best Practices for Adding and Removing Jobs ... 2-4
2.5 Frequently Asked Questions About Adding and Removing Jobs....................................... 2-5

3 Oracle Application Server Containers for J2EE Scheduling Options

3.1 Schedule-Based Jobs ... 3-1
3.1.1 Single-Action Schedules ... 3-1
3.1.2 Repeating Schedules.. 3-2
3.1.2.1 Fixed-Interval Schedules ... 3-2
3.1.2.2 Fixed-Delay Schedules... 3-3
3.1.2.3 iCalendar Recurrence Schedules .. 3-3
3.2 Retry Period and Execution Threshold.. 3-4
3.2.1 Retry Period.. 3-4
3.2.2 Execution Threshold.. 3-4
3.2.3 Submitting a Job with a Retry Period and Execution Threshold.................................. 3-4

iv

3.3 Frequently Asked Questions About iCalendar and Execution Threshold......................... 3-5

4 Oracle Application Server Containers for J2EE Blackout Windows

4.1 Adding and Removing Blackout Windows.. 4-1
4.2 Jobs Scheduled in Blackout Windows ... 4-2
4.3 Frequently Asked Questions About Blackout Windows .. 4-2

5 Pausing Jobs

5.1 What Does It Mean to Pause a Job?.. 5-1
5.2 How to Pause a Job... 5-2
5.3 Frequently Asked Questions About Pausing Jobs ... 5-2

6 Canceling Jobs

6.1 What Does it Mean to Cancel a Job? .. 6-1
6.2 Canceling a Job .. 6-1
6.3 Frequently Asked Questions... 6-3

7 Oracle Application Server Containers for J2EE Events and Listeners

7.1 Events and Event Listeners ... 7-1
7.2 Implementing and Binding a Event Listener.. 7-2
7.3 Best Practices for Implementing and Binding Event Listeners .. 7-3
7.4 Frequently Asked Questions About Job Listeners ... 7-3

8 Oracle Application Server Containers for J2EE Triggers and Notifications

8.1 Trigger-Driven Jobs .. 8-1
8.1.1 Triggers and Notifications.. 8-1
8.1.2 Cautions For Using the NOT Operator .. 8-2
8.2 How Do I Submit a Job with a Trigger? .. 8-3
8.3 How Do I Send Notifications to a Job? .. 8-3
8.4 Frequently Asked Questions About Triggers and Notifications ... 8-4

9 Deploying Job Scheduler-Enabled Applications

9.1 Bundling Job Scheduler with a J2EE Application .. 9-1
9.1.1 Generating the scheduler-ejb.jar File .. 9-1
9.1.2 Bundling scheduler-ejb.jar in an Enterprise Archive (EAR) File 9-2
9.2 Configuring Persistence for Job Scheduler.. 9-2
9.2.1 Configuring JDBC Persistence ... 9-2
9.2.2 Configuring JMS Persistence.. 9-3
9.3 Configuring Security for Job Scheduler... 9-3
9.4 Configuring Logging for Job Scheduler .. 9-4
9.5 Configuring DMS for Job Scheduler .. 9-5
9.6 Configuring JMX for Job Scheduler ... 9-5
9.7 Configuring Execution Interval Threshold Recovery for Job Scheduler 9-6

v

10 Managing the Oracle Application Server Containers for J2EE

10.1 Job Management Bean... 10-1
10.2 Job Scheduler Management Bean .. 10-1
10.3 Job Scheduler Aggregation Management Bean... 10-2

A RFC 2445 Excerpt: Recurrence

A.1 RFC 2445, Section 4.3.10. Recurrence Rule ... A-1
A.2 Job Scheduler Implementation of the Recurrence Rule.. A-6
A.3 RFC 2445, Section 4.8.5.4. Recurrence Rule Examples.. A-6

B Oracle Application Server Containers for J2EE Semantics

B.1 Semantics... B-1
B.2 Job Precedence.. B-2

C JSP Tag Library Reference

C.1 Configuring an Application with the JSP Tag Library ... C-1
C.2 JSP Tag Library Summary .. C-1
C.3 JSP Tag Library Reference .. C-2
C.3.1 scheduler .. C-2
C.3.2 addJob... C-2
C.3.2.1 className... C-3
C.3.2.2 description .. C-3
C.3.2.3 schedule .. C-3
C.3.2.4 trigger .. C-10
C.3.2.5 retry ... C-10
C.3.2.6 logLevel... C-11
C.3.3 removeJob .. C-11
C.3.4 pauseJob ... C-11
C.3.5 resumeJob .. C-12
C.3.6 cancelJob... C-12
C.3.7 addBlackoutWindow ... C-12
C.3.8 removeBlackoutWindow ... C-13
C.4 JSP Tag Library Examples... C-13

D JMX MBean Reference

D.1 Job Management Bean Attributes.. D-1
D.2 Job Scheduler Management Bean Attributes ... D-2
D.3 Job Scheduler Aggregation Management Bean Attributes.. D-3
D.4 Frequently Asked Questions About JMX MBeans.. D-4

E Troubleshooting Oracle Application Server Containers for J2EE

E.1 Oracle Diagnostic Logging (ODL)... E-1
E.1.1 Types of Logging .. E-1
E.1.1.1 Implicit Job Logging.. E-1

vi

E.1.1.2 Explicit Job Logging .. E-2
E.1.2 Configuring the Global Log Levels.. E-2
E.1.3 Logging Example.. E-2
E.2 DMS Metrics ... E-4
E.3 Frequently Asked Questions About Job Scheduler Monitoring ... E-5
E.4 Frequently Asked Questions About Job Scheduler Logging... E-5

Index

vii

List of Examples

2–1 Implementing a Job to Perform Backups... 2-2
2–2 Specifying Job Properties and Submitting a Job... 2-3
2–3 Removing a Job ... 2-4
3–1 Submitting a Job at a Specific Time .. 3-1
3–2 Submitting a Repeating Job with a Fixed-Interval Schedule.. 3-2
3–3 Submitting a Repeating Job with a Fixed-Delay Schedule ... 3-3
3–4 Submitting a Repeating Job with an iCalendar Recurrence Schedule 3-3
3–5 Submitting a Job with a Retry Period and Execution Threshold ... 3-5
4–1 Adding a Blackout Window.. 4-2
5–1 Pausing a Job ... 5-2
5–2 Resuming a Job Without Replay... 5-2
5–3 Resuming a Job with Replay ... 5-2
6–1 Backing Up Data on a Regular Basis with an Option to Cancel .. 6-1
7–1 Job Listener Implementation ... 7-2
7–2 Binding a Listener to a Job... 7-2
8–1 Submitting a Job with a Trigger.. 8-3
8–2 Submitting a Job with a Trigger and a Schedule.. 8-3
8–3 Sending a Notification to a Job.. 8-4
9–1 Sample scheduler-ejb.jar File... 9-2
9–2 Adding the Job Scheduler to the application.xml File... 9-2
9–3 Two-Tier Security Model ... 9-4
9–4 Changing the Log Level ... 9-4
9–5 Configuring DMS.. 9-5
9–6 Configuring JMX... 9-5
9–7 Configuring Execution Threshold Recovery .. 9-6
C–1 Listing All Submitted Jobs.. C-13
C–2 Submitting a Job to Job Scheduler ... C-14
C–3 Removing a Job from Job Scheduler ... C-14
E–1 Job Implementation with Logging .. E-3

viii

List of Figures

3–1 Retry Period ... 3-4
3–2 Execution Threshold... 3-4
4–1 Jobs Scheduled in a Blackout Window with Retry Period Enabled 4-2
5–1 Pausing and Resuming a Job with a Single-Action Schedule... 5-1
5–2 Pausing and Resuming a Job with a Repeating Schedule... 5-2
10–1 System MBean Browser for Job Scheduler Aggregation MBean 10-2
B–1 Job Scheduler Semantics ... B-1

ix

List of Tables

4–1 addBlackoutWindow Parameters.. 4-1
7–1 Job Scheduler Events ... 7-1
9–1 <env-entry> Values and Log Levels ... 9-5
10–1 JMX MBean Summary.. 10-1
B–1 Precedence of Job Scheduler Operations... B-3
C–1 JSP Tag Library Summary ... C-2
C–2 scheduler Tag Attributes.. C-2
C–3 Helper Tags for the addJob Tag.. C-3
C–4 Helper Tags for the schedule Helper Tag.. C-3
C–5 Helper Tags for the duration Helper Tag.. C-4
C–6 Helper Tags for the interval Helper Tag ... C-8
C–7 Helper Tags for the end Helper Tag .. C-9
C–8 Helper Tags for the threshold Helper Tag .. C-9
C–9 Helper Tags for the retry Helper Tag... C-10
C–10 Helper Tags for the addBlackoutWindow Tag... C-12
D–1 Job Management Bean Attributes... D-1
D–2 Job Management Bean Operations ... D-2
D–3 Job Management Bean DMS Metrics.. D-2
D–4 Job Scheduler Management Bean Attributes .. D-2
D–5 Job Scheduler Management Bean Operations .. D-3
D–6 Job Scheduler Management Bean DMS Metrics ... D-3
D–7 Job Scheduler Aggregation Management Bean Attributes... D-3
D–8 Job Scheduler Aggregation Management Bean Operations ... D-4
E–1 Statistic Types for Scheduler Metrics ... E-4
E–2 Statistic Types for JobStats... E-4

x

xi

Preface

This guide describes how to use the Oracle Application Server Containers for J2EE,
and how to configure Job Scheduler-enabled applications for deployment.

Audience
This guide is intended for anyone developing Enterprise JavaBeans for OC4J client
applications. Written especially for programmers, it will also be of value to architects,
systems analysts, project managers, and others interested in J2EE applications. To use
this guide effectively, you must have a working knowledge of J2EE.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

xii

Related Documentation
For more information, see the following guides in the Oracle Containers for J2EE 10g
Release 10.1.3 documentation set:

■ Oracle Containers for J2EE Services Guide

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Overview of Oracle Application Server Containers for J2EE 1-1

1
Overview of Oracle Application Server

Containers for J2EE

Oracle Application Server Containers for J2EE enables J2EE clients to submit
asynchronous, autonomous background jobs to be run in Oracle Containers for J2EE
(OC4J). Some major features of this component are:

■ API for submitting, controlling, and monitoring jobs

■ API-level Java Transaction API (JTA) support for job submission and control

■ Temporal- and trigger-based jobs

■ Automatic retry of failed jobs

■ Job blackout windows

■ Java Management Extensions (JMX) MBeans for monitoring and administering
Oracle Application Server Containers for J2EE

■ Configurable logging of various system, error, and warning messages

This chapter provides an overview of Oracle Application Server Containers for J2EE.
The following topics are covered:

■ Job Scheduler Concepts and Terminology

■ Basic Job Scheduler Implementation Example

1.1 Job Scheduler Concepts and Terminology
This section introduces basic concepts and terminology you should know before using
Job Scheduler. The following topics are covered:

■ Notifications and Triggers

■ Schedules

■ Jobs

■ Blackout Windows

1.1.1 Notifications and Triggers
A notification is a message sent from the application to a trigger. The message contains
information about the occurrence of a specific condition or conditions in the
application.

The recipient of a notification is known as the trigger. Each trigger contains a
description of a condition that is evaluated against any incoming notifications. When a

Basic Job Scheduler Implementation Example

1-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

trigger (or multiple triggers) evaluates to true, a job associated with the condition is
started.

Triggers are described by logical expressions, where the operands are the notifications.
Notifications are generated either programatically by the application or as a result of a
timer expiration (for example, if a job does not execute by a specific time). A
notification may be sent to either a specific trigger or sets of triggers. Triggers,
however, do not generate notifications when they receive notifications.

For more information, see Chapter 8.

1.1.2 Schedules
A schedule specifies the time and period or periods when a timeout notification is sent
to the associated trigger. The specific point in time is expressed as the expiration, and
the frequency is expressed as an interval. A schedule instance can be categorized as
either single-action (non repeating) or repeating.

For more information about schedules, please refer to Chapter 3.

1.1.3 Jobs
For every job, there is an associated trigger. When the trigger expression evaluates to
true, the job is executed. A job is implemented using a Java class and must comply
with the job contract, which is a system-supplied Java interface implemented by all
jobs. This contract specifies the interface used by Job Scheduler to run the job.

1.1.4 Blackout Windows
A blackout window specifies a period of time during which all jobs are suppressed. A
blackout window contains a schedule and a duration (for example, Friday between
6:00 p.m. and 12:00 a.m.). A blackout window may also be repeating (for example,
every Tuesday between 6:00 p.m. and 8:00 p.m.).

For more information, see Chapter 4.

1.2 Basic Job Scheduler Implementation Example
In this example, the application developer wants to create a report that can be run
periodically according to the application’s needs. The application will submit requests
to run the report, supplying some query input parameters and stating how often to
run the report.

1. The developer writes a class that implements the Job Scheduler Executable
interface, using the execute() and getContext() methods. The execute()
method is written by the developer and will be called by Job Scheduler. The
application calls the system-supplied getContext() method to get the input
parameters.

For more information about adding jobs, see Chapter 2.

2. The developer writes a client program for the application through which a user
can submit a report request, cancel a report request, or check to see what requests
were made. To service requests, the client program gets a reference to a Scheduler
Enterprise Java Bean (EJB) deployed with the application (the Job Scheduler is
deployed as a stateless session EJB). Note that the client program could be
implemented as a standalone GUI, a servlet, or indirectly through another EJB.

Basic Job Scheduler Implementation Example

Overview of Oracle Application Server Containers for J2EE 1-3

For more information about deploying Job Scheduler-enabled applications, see
Chapter 9.

a. To submit a job, the program parameters are specified using the
java.util.Properties class. Then, the Scheduler.add() method is
used to submit the job to be run at a particular time.

b. To find out what jobs were submitted, use the Scheduler.getJobs()
method. Both pending and completed jobs are displayed.

c. To remove a job, use the Scheduler.remove() method. This action
terminates any future scheduling of a job.

d. To cancel jobs that are running, use the Scheduler.cancel() method.

For more information about canceling jobs, see Chapter 6.

3. The developer packages the application, including:

a. The classes described previously.

b. An EJB JAR file referencing Job Scheduler EJB. This is a pre-written,
system-supplied EJB that has methods for submitting, querying, and
controlling jobs.

c. The client portion of the application.

For more information, see Chapter 9.

Basic Job Scheduler Implementation Example

1-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Adding and Removing Jobs 2-1

2
Adding and Removing Jobs

This chapter describes how to add and remove jobs use Oracle Application Server
Containers for J2EE. The following topics are covered:

■ Adding Jobs

■ Accessing Job Scheduler Using JNDI Lookup

■ Removing Jobs

■ Best Practices for Adding and Removing Jobs

■ Frequently Asked Questions About Adding and Removing Jobs

2.1 Adding Jobs
Before a job can be run, it must first be submitted to Job Scheduler.

To add a job, you must implement the oracle.ias.scheduler.Executable
interface, then submit the job to Job Scheduler using the
oracle.ias.scheduler.Scheduler.add() API method.

For more information about add(), see Oracle Containers for J2EE Job Scheduler API
Reference.

2.1.1 Implementing a Job with the Executable Interface
The oracle.ias.scheduler.Executable interface is defined as follows:

public interface Executable {
 public void execute (JobContext context) throws JobExecutionException,
JobCancellationException;
}

This interface specifies the contract by which a Java class is invoked by the Job
Scheduler. All Java classes submitted to Job Scheduler must implement this interface.

The execute() method is invoked by Job Scheduler when the associated job’s trigger
fires. Use the oracle.ias.scheduler.JobContext object as the input parameter

Note: Any class implementing this interface must provide an empty
constructor. Each time a submitted job is run, a new instance of the
object is created using this constructor. As such, a job implementation
should not rely on instance or static member variables for maintaining
state.

Adding Jobs

2-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

to enable a job to examine and evaluate all associated metadata related to the job
definition and access to the logging subsystem.

The oracle.ias.scheduler.JobContext object provides the following methods

■ getLogger()

This method returns a JDK 1.4-compliant logger object
java.util.logging.Logger that references the application's log.

■ getJob()

This method returns an oracle.ias.scheduler.Job object used to access the
job's configuration information.

The oracle.ias.scheduler.JobContext object provides access to the job’s data
and associated subsystems. For more information, refer to Oracle Containers for J2EE Job
Scheduler API Reference.

2.1.2 Submitting a Job
For a job to run, it must first be submitted to Job Scheduler. This is done using the
oracle.ias.scheduler.Scheduler.add() method. As part of the submission,
input parameters may be specified as name-value pairs using a
java.util.Properties object. For maintenance and reusability purposes, job
parameters should be used whenever possible (see Example 2–1).

With the oracle.ias.scheduler.Scheduler.add() method, you can add a job
with a schedule, a trigger, or both.

Once the job is submitted, the specified class is executed by Job Scheduler according to
the specified schedule or trigger. If the schedule does not repeat, the job becomes
inactive after the timer expiration notification is sent to the associated trigger.

When a job is successfully submitted, an oracle.ias.scheduler.JobHandle
object is returned. This object functions as a handle to the submitted job. This handle
may be used to perform certain administration tasks on the job (for example, pausing
the job). Additionally, this object may be stored by the application for later use.

The add() method provides transaction support. If the transaction is rolled back for
any reason, the operation is canceled and the job is not created. In addition, a job will
not run until the transaction is committed.

2.1.3 Examples of Adding Jobs
This section provides examples of how to implement and submit a job to Job
Scheduler.

Example 2–1 Implementing a Job to Perform Backups

Scenario: A legacy application was migrated to the J2EE environment, part of which
includes data stored in a file system. As part of the J2EE application, a job is required
to back up the data on a regular basis. The job requires two input parameters:

1. Source directory: the directory from which files will be copied

2. Destination directory: the directory to which files will be copied

The source and destination directories could have been included in the job
implementation. However, by specifying these as parameters to the job properties, the
job can be used again without modification. See Example 2–2 for an example of how
properties are specified.

Adding Jobs

Adding and Removing Jobs 2-3

import java.io.File;
import java.io.IOException;
import oracle.ias.scheduler.Job;
import oracle.ias.scheduler.Executable;
import oracle.ias.scheduler.JobContext;
import oracle.ias.scheduler.JobExecutionException;

public class BackupJob implements Executable {

 public void execute(JobContext context) throws JobExecutionException {

 // retrieve the source/destination directories
 Job job = context.getJob();
 String source = job.getProperties().getProperty("SourceDirectory");
 String destination =
 job.getProperties().getProperty("DestinationDirectory");

 // get the list of files to copy
 File directory = new File(source);
 File[] files = directory.listFiles();

 // copy the files
 Runtime runtime = Runtime.getRuntime();
 Process process;
 for (int x = 0; x < files.length; x++) {
 try {
 process = runtime.exec("/bin/cp " + files[x].toString() +
 " " + destination);
 process.waitFor();
 } catch(IOException e) {
 throw new RuntimeException("copy failed: "+files[x],e);
 } catch(InterruptedException e) {
 throw new RuntimeException("copy failed: "+files[x],e);
 }
 }
 }
}

Notice that the getProperty() object is used to retrieve the source and destination
directories. Instead of specifying these directories directly in the job implementation,
they are specified when the job is submitted to Job Scheduler (see Example 2–2).

Using the execute() method fulfills the contract for implementing the
oracle.ias.scheduler.Executable interface. This method is invoked every
time the job is executed.

Example 2–2 Specifying Job Properties and Submitting a Job

Once a job is created, it must be submitted to Job Scheduler. A job is submitted using
the add() method provided by Job Scheduler. The following code example shows
how the job is submitted with properties (in this case, the source and destination
directories):

// set up the properties
java.util.Properties properties = new Properties();
properties.put("SourceDirectory","/mnt/data");
properties.put("DestinationDirectory","/mnt/backup");

// submit the job

Accessing Job Scheduler Using JNDI Lookup

2-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

jobHandle = scheduler.add("file backup job, runs every week",
 new BackupJob().getClass().getName(),
 new Schedule(),
 properties);

Notice that the job properties and schedule are specified when the job is submitted to
Job Scheduler. For more information about specifying scheduling options, see
Chapter 3.

2.2 Accessing Job Scheduler Using JNDI Lookup
The Java Naming and Directory Interface (JNDI) is a native Java API that enables any
Java-based application to store and retrieve any Java object. It provides naming and
directory services for Java applications, enabling them to store and retrieve named
Java objects of any type.

The following code example shows how to perform a JNDI lookup to access Job
Scheduler:

InitialContext ic = new InitialContext();
Object objRef = ic.lookup("java:comp/env/ejb/scheduler");
SchedulerHome home = (SchedulerHome)
PortableRemoteObject.narrow(objRef, SchedulerHome.class);
Scheduler scheduler = home.create();

For more information about JNDI, go to:

http://java.sun.com/products/jndi/index.jsp

2.3 Removing Jobs
After a job is submitted, it can be removed with the
oracle.ias.scheduler.Scheduler.remove() method. This method does not
remove any job executions that are running, but it does remove the job definition, thus
preventing any job executions from being run in the future.

For more information about the remove() method, see Oracle Containers for J2EE Job
Scheduler API Reference.

The following code example shows how to remove the BackupJob job implemented
in Example 2–1 and submitted in Example 2–2:

Example 2–3 Removing a Job

// remove a job
scheduler.remove(jobHandle);

If you want to stop a job execution that is currently running, you must cancel the job.
For more information about canceling jobs, see Chapter 6.

If you want to stop scheduled jobs from running but do not want to have their
definitions removed from the system, thereby preventing them from ever running
again, you should pause the job. For more information about pausing jobs, see
Chapter 5.

2.4 Best Practices for Adding and Removing Jobs
When designing and implementing a job, keep the following in mind:

Frequently Asked Questions About Adding and Removing Jobs

Adding and Removing Jobs 2-5

■ All job metadata is available at run time. Use the
oracle.ias.scheduler.JobContext object to access it.

■ Input parameters can improve job reuse. During implementation, identify input
parameters and use properties as necessary.

■ A job that needs to be canceled must use the oracle.ias.scheduler.Cancellable
interface. Trying to cancel a job that does not use this interface causes an
exception.

■ Implementation of the execute() method must eventually return control to the
caller. Avoid gating job completion based on an application condition or
conditions that require a long time before the condition is met (for example, in
excess of one minute). Instead, use a trigger to start the job execution when the
application’s condition or conditions have ben met. In doing so, you minimize the
processing resources required by the application.

2.5 Frequently Asked Questions About Adding and Removing Jobs

What are the possible states for a job?
At any point in time, a job can be in one of three states: active, paused, or completed.

In the active state, a job can receive notifications and evaluate the trigger expression. If
the trigger evaluates to true in the active state, the job is executed and the trigger is
reset to false.

In the paused state, a job can receive notifications and evaluate trigger expressions.
However, if a trigger evaluates to true in the paused state, the trigger is not reset to
false and the job execution is suppressed.

In the completed state (which is a valid state for schedule-based jobs), scheduling of
jobs is completed and no new jobs can be scheduled. If a job is not schedule-based,
then it cannot be in the completed state. For more information about schedule-based
jobs, see Chapter 3.

Does removing a job also remove the outstanding retry (of a job that failed to
run) and replay (of a paused job) executions?
Yes, removing a job means no job executions will occur.

For more information about retry, see Chapter 3. For more information about replay,
see Chapter 5.

Frequently Asked Questions About Adding and Removing Jobs

2-6 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Oracle Application Server Containers for J2EE Scheduling Options 3-1

3
Oracle Application Server Containers for

J2EE Scheduling Options

This chapter describes how to create jobs based on schedules. The following topics are
covered:

■ Schedule-Based Jobs

■ Retry Period and Execution Threshold

■ Frequently Asked Questions About iCalendar and Execution Threshold

3.1 Schedule-Based Jobs
This section contains descriptions and some job implementation examples for
schedule-based jobs.

A schedule-based (or schedule-driven) job is associated with a schedule, meaning that
the job is time-based. In contrast, a job associated with a trigger is event-based and
typically driven by events initiated by the application. When a schedule expires, a
timeout is generated, which is used to trigger the execution of the job.

There are two primary types of schedule-based jobs:

■ Single-action schedules.

This type of schedule has a single expiration, and should be used when a job is run
only once.

■ Repeating Schedules.

This type of schedule has multiple expirations, and should be used when a job is
run repeatedly.

3.1.1 Single-Action Schedules
Single-action schedules are implemented with the
oracle.ias.scheduler.Schedule class. This type of schedule has a single
attribute called expiration, which is the initial expiration of the schedule.

Example 3–1 Submitting a Job at a Specific Time

In continuing the example started in Example 2–1, the developer and administrator
need to run the backup jobs on an as-needed basis. To do this, a single-action schedule
will be used. The following code example shows how the job is set up with a
single-action schedule and submitted:

// set up the properties

Schedule-Based Jobs

3-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

java.util.Properties properties = new Properties();
properties.put("SourceDirectory","/mnt/data");
properties.put("DestinationDirectory","/mnt/backup");

// set up the schedule, single-action at midnight
Schedule schedule = new Schedule();
Calendar midnight = Calendar.getInstance();
midnight.set(Calendar.HOUR_OF_DAY,24);
midnight.set(Calendar.MINUTE,0);
midnight.set(Calendar.SECOND,0);
schedule.setExpiration(midnight);

// submit the job
scheduler.add("file backup job, runs at midnight",
 new BackupJob().getClass().getName(),
 schedule,
 properties);

3.1.2 Repeating Schedules
There are three types of repeating schedules:

■ Fixed-interval schedule

This type of schedule uses the oracle.ias.scheduler.IntervalSchedule
class for repeating jobs with a fixed interval (for example, a job that runs once per
week, every friday at midnight).

■ Fixed-delay schedule

This type of schedule uses the oracle.ias.scheduler.IntervalSchedule
class for repeating jobs with a fixed interval between job executions (for example, a
job where the end of one job execution and the start of the next job execution is one
week).

■ iCalendar recurrence schedule

This type of schedule uses the oracle.ias.scheduler.RecurSchedule class
for repeating jobs with a schedule that does not repeat at regular intervals (for
example, the first day of every month, which is not a fixed interval because the
number of days in each month varies).

3.1.2.1 Fixed-Interval Schedules
A fixed-interval schedule has the following attributes:

Example 3–2 Submitting a Repeating Job with a Fixed-Interval Schedule

To expand on Example 3–1, suppose the developer and administrator need to run the
backup job on a weekly basis. To do this, a fixed-interval repeating schedule will be
used, as shown in the following code example:

// set up the properties
java.util.Properties properties = new Properties();
properties.put("SourceDirectory","/mnt/data");

Attribute Description

expiration Initial expiration

interval Interval (specified in milliseconds) between expirations

end date Date and time at which the schedule ends

Schedule-Based Jobs

Oracle Application Server Containers for J2EE Scheduling Options 3-3

properties.put("DestinationDirectory","/mnt/backup");

// set up the schedule, repeats every week
IntervalSchedule schedule = new IntervalSchedule();
schedule.setInterval(IntervalSchedule.EVERY_WEEK);

// submit the job
scheduler.add("file backup job, runs at midnight",
 new BackupJob().getClass().getName(),
 schedule,
 properties);

3.1.2.2 Fixed-Delay Schedules
To expand on Example 3–1, suppose the developer and administrator need to run the
backup job on a more regular basis (for example, one week between each backup). To
do this, a fixed-delay repeating schedule will be used, as shown in the following code
example:

Example 3–3 Submitting a Repeating Job with a Fixed-Delay Schedule

// set up the properties
java.util.Properties properties = new Properties();
properties.put("SourceDirectory","/mnt/data");
properties.put("DestinationDirectory","/mnt/backup");

// set up the schedule, repeats every week
IntervalSchedule schedule = new IntervalSchedule();
schedule.setInterval(IntervalSchedule.EVERY_WEEK);
schedule.setFixedDelay(true);

// submit the job
scheduler.add("file backup job, runs at midnight",
 new BackupJob().getClass().getName(),
 schedule,
 properties);

3.1.2.3 iCalendar Recurrence Schedules
The attributes for an iCalendar recurrence schedule are based on RFC 2445, "Internet
Calendaring and Scheduling Core Object Specification (iCalendar)." For more
information, see Appendix A.

Example 3–4 Submitting a Repeating Job with an iCalendar Recurrence Schedule

To expand on Example 3–1, suppose the developer and administrator need to run the
backup job on a monthly basis, on the first of each month. To do this, an iCalendar
recurrence schedule will be used, as shown in the following code example:

// set up the properties
java.util.Properties properties = new Properties();
properties.put("SourceDirectory","/mnt/data");
properties.put("DestinationDirectory","/mnt/backup");

// set up the schedule, repeats on the first day of every month
RecurSchedule schedule = new RecurSchedule("freq=monthly;bymonthday=1;");

// submit the job
scheduler.add("file backup job, runs at midnight",
 new BackupJob().getClass().getName(),
 schedule,

Retry Period and Execution Threshold

3-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 properties);

3.2 Retry Period and Execution Threshold
This section discusses retry period and execution threshold, and provides an example
of each in relation to a scheduled job.

3.2.1 Retry Period
A job execution that fails may be retried after a time period. This time period is called
the retry period and is specified in milliseconds. If this period is not set as part of the
job definition, the job's executions will not be retried. For example, consider
Figure 3–1:

Figure 3–1 Retry Period

This illustration depicts a repeating schedule, where the job should run each night at
midnight. The retry period is three hours, meaning that if the initial job execution fails,
the job will be retried again three hours later, at 3:00a.m. If the job execution fails again
at 3:00a.m., the job execution for this particular instance is discarded, and another
attempt will not be made until the next scheduled run-time (in this case, midnight the
following night).

3.2.2 Execution Threshold
If a job's scheduled execution is delayed beyond a specified time threshold, then the
job execution will be discarded. This time threshold is called the execution threshold
and is specified in milliseconds. If an execution threshold is not specified as part of
job's definition, resultant job executions will not be constrained by an execution
threshold. For example, consider Figure 3–2:

Figure 3–2 Execution Threshold

The job execution is scheduled to run at midnight on Monday, and the execution
threshold is 6 hours. The job execution would be discarded if it did not run by 6:00a.m.
Monday.

3.2.3 Submitting a Job with a Retry Period and Execution Threshold
To further expand on Example 3–1, a retry period and execution threshold were added
to Example 3–5. In this example, if the job's executions do not occur within 30 seconds

Frequently Asked Questions About iCalendar and Execution Threshold

Oracle Application Server Containers for J2EE Scheduling Options 3-5

(execution threshold) of the scheduled time, they will be discarded. If the executions
do occur, but fail, they will be retried 3 seconds (retry period) later.

Example 3–5 Submitting a Job with a Retry Period and Execution Threshold

// set up the properties
java.util.Properties properties = new Properties();
properties.put("SourceDirectory","/mnt/data");
properties.put("DestinationDirectory","/mnt/backup");

// set up the schedule, repeats every week
IntervalSchedule schedule = new IntervalSchedule();
schedule.setInterval(IntervalSchedule.EVERY_WEEK);

// submit the job
scheduler.add("file backup job, runs at midnight",
 new BackupJob().getClass().getName(),
 schedule,
 properties,
 3000,
 30000);

3.3 Frequently Asked Questions About iCalendar and Execution
Threshold

Does Job Scheduler check the execution threshold if the job trigger is
something other than a timeout?
No. Because the execution threshold is based on time, notifications other than timeouts
do not cause Job Scheduler to check the execution threshold.

Can I update the execution threshold or retry period for a job?
Currently, this is not possible, because a job is configured with these parameters at
creation time.

Can a fixed-delay schedule be submitted in conjunction with a trigger in a job
definition?
No. The period for a fixed-delay schedule is based on the completion of the previous
job execution. When a trigger is used, this period cannot be determined because it is
dependent on the receipt of one or more notifications as specified by the trigger.

Frequently Asked Questions About iCalendar and Execution Threshold

3-6 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Oracle Application Server Containers for J2EE Blackout Windows 4-1

4
Oracle Application Server Containers for

J2EE Blackout Windows

This chapter describes how to create and remove blackout windows. The following
topics are covered:

■ Adding and Removing Blackout Windows

■ Jobs Scheduled in Blackout Windows

■ Frequently Asked Questions About Blackout Windows

4.1 Adding and Removing Blackout Windows
A blackout window is a period of time during which job executions are not permitted.
A blackout window should be used when the system or dependent subsystems are
unavailable for a pre-determined amount of time (for example, when the database is
down for scheduled maintenance).

To create or add a blackout window, use the
oracle.ias.scheduler.Scheduler.addBlackoutWindow() method, which is
defined as follows:

public void addBlackoutWindow(java.lang.String windowName,
 Schedule schedule,
 long duration)
 throws DuplicateWindowException,
 InvalidWindowException,
 java.rmi.RemoteException

This method provides the parameters described in Table 4–1.

For more information about the addBlackoutWindow() method, see Oracle
Containers for J2EE Job Scheduler API Reference.

Example 4–1 shows how to create a blackout window called "Not in prime time",
which is in effect from 8 a.m. to midnight:

Table 4–1 addBlackoutWindow Parameters

Parameter Description

windowName Name of the blackout window.

schedule Start time of the blackout window. Note that the schedule may be a
repeating schedule.

duration Duration (in minutes) of the blackout window.

Jobs Scheduled in Blackout Windows

4-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Example 4–1 Adding a Blackout Window

// set up the schedule, daily starting at 8 a.m.
Schedule schedule = new Schedule();
Calendar blackoutWindowStartTime = Calendar.getInstance();
blackoutWindowStartTime.set(Calendar.HOUR_OF_DAY,8);
blackoutWindowStartTime.set(Calendar.MINUTE,0);
blackoutWindowStartTime.set(Calendar.SECOND,0);

// create blackout window
scheduler.addBlackoutWindow("Not in prime time", schedule, 960);

4.2 Jobs Scheduled in Blackout Windows
If a job execution occurs when a blackout window is in effect, the job execution is
suppressed. If the job was submitted with a retry period enabled, then the job
execution will be retried at the period specified.

Figure 4–1 Jobs Scheduled in a Blackout Window with Retry Period Enabled

In Figure 4–1, a job execution is scheduled to occur at midnight, which falls in a
blackout window starting at 11:00 p.m. and ending at 2:00 a.m. If this job had a retry
period enabled, the job execution would be retried at 2:00 a.m., when the blackout
window ends. Without the retry period enabled, the jobs execution would be
suppressed and no attempt to run the job would be made.

Blackout windows takes the highest precedence among all Job Scheduler operations.
For more information about job precedence, see Appendix B.

4.3 Frequently Asked Questions About Blackout Windows

What happens if a job is scheduled to be retried (in the event the job fails to run)
or replayed (in the event the job is paused) in a blackout window?
The retry (or replay) of the job is suppressed. In other words, the job execution will not
occur.

Pausing Jobs 5-1

5
Pausing Jobs

This chapter describes what it means to pause a job and how to pause a job. The
following topics are covered:

■ What Does It Mean to Pause a Job?

■ How to Pause a Job

■ Frequently Asked Questions About Pausing Jobs

5.1 What Does It Mean to Pause a Job?
Pausing a job causes a scheduled job execution to be skipped. It does not stop a job
execution that is currently running (to do this, you must cancel the job). Pausing a job
does not remove the job’s definition from the system, thus preventing the job from
running in the future (to do this, you must remove the job). Use the
oracle.ias.scheduler.Scheduler.pause() method to pause a job.

For more information about canceling jobs, see Chapter 6. For more information about
removing jobs, see Chapter 2.

For more information about the pause() method, see Oracle Containers for J2EE Job
Scheduler API Reference.

A job execution that was skipped because it was paused can be run again by resuming
the job with the replay parameter set to true. Use the
oracle.ias.scheduler.Scheduler.resume() method to resume a job.

To illustrate more clearly the effect of pausing and resuming a job, consider the
following timeline in Figure 5–1.

Figure 5–1 Pausing and Resuming a Job with a Single-Action Schedule

There is a pause implemented for a particular job at around 10:30 p.m., and it is
scheduled to resume at 2:00 a.m. However, this job is scheduled to run at 12:00 a.m.
Will this job run?

Due to the pause at 10:30 p.m., the job execution scheduled to run at midnight will be
skipped. However, if the job is resumed at 2:00 a.m. with replay set to true, then the job

How to Pause a Job

5-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

execution scheduled to run at midnight will run at 2:00 a.m. If replay is set to false,
then the job execution scheduled to run at midnight will not run.

In contrast, consider Figure 5–2, which illustrates the effect of pausing and resuming
on a job with a repeating schedule.

Figure 5–2 Pausing and Resuming a Job with a Repeating Schedule

In this scenario, there is a job with a repeating schedule (multiple job executions
scheduled) that falls between pause and resume. If the job is resumed at 2:00 a.m. with
replay set to true, then only the first job execution (the one at 11:00 p.m.) will run. The
job executions at midnight and 1:00 a.m. will be skipped.

5.2 How to Pause a Job
This section shows some code examples of how to pause and resume a job.

Example 5–1 Pausing a Job

This example shows how to use the
oracle.ias.scheduler.Scheduler.pause() method to pause the job called
BackupJob.

//pause the "BackupJob" job
scheduler.pause(jobHandle)

Example 5–2 Resuming a Job Without Replay

This example shows how to set replay to false, so that a job execution that was skipped
will not be run again.

//resume the "BackupJob" job without replay
scheduler.resume(jobHandle, FALSE)

Example 5–3 Resuming a Job with Replay

This example shows how to set replay to true, so that a job execution that was skipped
will be run again.

//resume the "BackupJob" job with replay
scheduler.resume(jobHandle, TRUE)

5.3 Frequently Asked Questions About Pausing Jobs

What happens if you pause a job that is currently running?
Pausing a job that is currently running does not interrupt the job. However, pausing a
job prevents the job from running in the future until it is resumed.

Frequently Asked Questions About Pausing Jobs

Pausing Jobs 5-3

At execution time, what is the difference between a blackout window and a
paused job?
A blackout window suppresses all job executions while a paused job suppresses only
job executions that result from a trigger being fired. For example, pausing a job would
not suppress replayed or retried job executions, but running a job in a blackout
window would.

What happens if retry is attempted when a job is paused?
A paused job suppresses any job executions that occur due to a trigger expression
evaluating to true. During a retry, the trigger expression is never evaluated and the job
is allowed to run.

Frequently Asked Questions About Pausing Jobs

5-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Canceling Jobs 6-1

6
Canceling Jobs

This chapter describes the meaning of canceling a job and also describes how to cancel
a job. The following topics are covered:

■ What Does it Mean to Cancel a Job?

■ Canceling a Job

■ Frequently Asked Questions

6.1 What Does it Mean to Cancel a Job?
Canceling a job is the only way to stop a job execution while it is running. It is
important to note that while canceling a job stops a job execution that is currently
running, it does not prevent that job from being executed in the future. To eliminate all
traces of a job from the system, you must remove the job. For more information about
removing jobs, see Section 2.3.

Once a job is canceled, it is possible to run the job again by using retry. For more
information about retry, see Section 3.2.

6.2 Canceling a Job
To cancel a job, the job must use the oracle.ias.scheduler.Cancellable
interface, respond to the cancellation request, and then create the necessary exception,
JobCancelledException, to designate the job as canceled.

Any Java job class submitted to Job Scheduler can provide an implementation of the
oracle.ias.scheduler.Cancellable interface. Every time a job is canceled (by
invoking the Job Scheduler cancel() method), it causes the implementing class’s
cancel() method to be invoked on all the job’s instances.

For more information about the oracle.ias.scheduler.Cancellable interface
or cancel() method, see Oracle Containers for J2EE Job Scheduler API Reference.

Example 6–1 shows how to cancel a job with the
oracle.ias.scheduler.Cancellable interface.

Example 6–1 Backing Up Data on a Regular Basis with an Option to Cancel

During testing of the application outlined earlier in Example 2–1, it becomes apparent
that the job execution may run for long periods of time. Therefore, there may be need
to cancel the job execution when it is running.

Canceling a Job

6-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

The following code example shows the modified implementation that provides both
oracle.ias.scheduler.Executable and
oracle.ias.scheduler.Cancellable interfaces:

import java.io.File;
import java.io.IOException;
import oracle.ias.scheduler.Job;
import oracle.ias.scheduler.Executable;
import oracle.ias.scheduler.Cancellable;
import oracle.ias.scheduler.JobContext;
import oracle.ias.scheduler.JobCancelledException;
import oracle.ias.scheduler.JobExecutionException;

public class CancellableBackupJob implements Executable, Cancellable {

 boolean m_cancelled = false;

 public void cancel() {
 m_cancelled = true;
}

 public void execute(JobContext context) throws
 JobExecutionException, JobCancelledException {

 // retrieve the source and destination directories
 Job job = context.getJob();
 String source = job.getProperties().getProperty("SourceDirectory");
 String destination =
 job.getProperties().getProperty("DestinationDirectory");

 // get the list of files to copy
 File directory = new File(source);
 File[] files = directory.listFiles();

 // copy the files
 Runtime runtime = Runtime.getRuntime();
 Process process;
 for (int x = 0; x < files.length; x++) {

 // cancelled?
 if (m_cancelled) {
 throw new JobCancelledException();
 }

 try {
 process = runtime.exec("/bin/cp " + files[x].toString() +
 " " + destination);
 process.waitFor();
 } catch(IOException e) {
 throw new RuntimeException("copy failed: "+files[x],e);
 } catch(InterruptedException e) {
 throw new RuntimeException("copy failed: "+files[x],e);
 }
 }
 }
}

Frequently Asked Questions

Canceling Jobs 6-3

At a minimum, canceling a job means the following:

■ The implementation must use the oracle.ias.scheduler.Cancellable
interface.

■ For the job execution to be canceled, you must invoke the cancel() method,
which causes the oracle.ias.scheduler.JobCancelledException
exception that will stop the job execution.

■ It may not always be possible to immediately invoke the cancel() method; take
this into account when you program.

6.3 Frequently Asked Questions

Is there a way to re-execute a job that has been canceled?
No. There is no mechanism to retry an execution that has been canceled. Only failed
job executions can be retried.

For more information, see Section 3.2.

Frequently Asked Questions

6-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Oracle Application Server Containers for J2EE Events and Listeners 7-1

7
Oracle Application Server Containers for

J2EE Events and Listeners

This chapter describes the Job Scheduler event listener framework. The following
topics are covered:

■ Events and Event Listeners

■ Implementing and Binding a Event Listener

■ Best Practices for Implementing and Binding Event Listeners

■ Frequently Asked Questions About Job Listeners

7.1 Events and Event Listeners
An event represents a change in a job's state; each change in a job’s state is represented
by a corresponding event. An application can be programmed to react to these events
using an event listener. An event listener can be bound to one or more jobs at any time
during the life cycle of a job.

The Job Scheduler uses numerous events to represent job state changes. These events
are listed in Table 7–1.

Table 7–1 Job Scheduler Events

Event Description

oracle.ias.scheduler.event.JobBlackoutEvent Job was suppressed due to a
blackout window.

oracle.ias.scheduler.event.JobCompletedEvent Job scheduled end date
passed.

oracle.ias.scheduler.event.JobCreatedEvent Job was created.

oracle.ias.scheduler.event.JobExecutionCancelledEvent Job was canceled.

oracle.ias.scheduler.event.JobExecutionFailedEvent Job failed.

oracle.ias.scheduler.event.JobExecutionPausedEvent Job was suppressed because
the job is currently paused.

oracle.ias.scheduler.event.JobExecutionSucceededEvent Job successful.

oracle.ias.scheduler.event.JobExecutionThresholdExceededEvent Job was suppressed because
the execution threshold was
exceeded.

Implementing and Binding a Event Listener

7-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

7.2 Implementing and Binding a Event Listener
To receive events, an event listener is required. An event listener must use the
oracle.ias.scheduler.event.EventListener interface. This interface is
defined as follows:

public interface EventListener extends java.util.EventListener {
 public void dispatch(SchedulerEvent event) throws Exception;
 public Class[] wants();
}

The wants() method is used to specify the events for which this listener is interested,
and returns the associated class object for those specified events. After the listener is
implemented, the dispatch() method is invoked every time one of the desired
events occurs.

For more information about the oracle.ias.scheduler.event.EventListener
interface and its methods, see Oracle Containers for J2EE Job Scheduler API Reference.

Example 7–1 shows how to implement an event listener that is interested in the
JobExecutionFailedEvent and JobExecutionSucceededEvent events.

Example 7–1 Job Listener Implementation

import oracle.ias.scheduler.event.*;

public class TestListener implements EventListener {

 public void dispatch(SchedulerEvent event) {
 System.out.println("Got event, "+event.getClass().getName());
 }

 public Class[] wants() {
 return new Class[] {
 oracle.ias.scheduler.event.JobExecutionFailedEvent.class,
 oracle.ias.scheduler.event.JobExecutionSucceeded.class
 };
 }
}

Example 7–2 shows how to bind the TestListener listener created in Example 7–1.

Example 7–2 Binding a Listener to a Job

JobHandle handle = scheduler.add(...);

// bind the listener to the job
scheduler.addListener(handle,TestListener.class);

oracle.ias.scheduler.event.JobPausedEvent Job was paused.

oracle.ias.scheduler.event.JobRemovedEvent Job was removed.

oracle.ias.scheduler.event.JobResumedEvent Previously paused job was
resumed.

Table 7–1 (Cont.) Job Scheduler Events

Event Description

Frequently Asked Questions About Job Listeners

Oracle Application Server Containers for J2EE Events and Listeners 7-3

7.3 Best Practices for Implementing and Binding Event Listeners
When implementing and binding job listeners, keep the following in mind:

■ Keep job listener processing to a minimum. Events are processed serially by job
listeners and lengthy processing should be avoided. If lengthy processing cannot
be avoided, consider serializing the event for later processing.

7.4 Frequently Asked Questions About Job Listeners

Can I use the same job listener for every job?
Yes. Use the event's getHandle() method to determine which event is associated
with which job.

If I use the same job listener for every job, how many instances of the job
listener will there be?
There will be one job listener instance per job.

Is the job listener dispatch() method reentrant (can this method be called while
it is already in use)?
Yes. Use appropriate measures when modifying job listener member variables (for
example, using locks to avoid resource conflicts).

Is the job listener instance state persistent across container restarts?
No. The job listener instance state is not persistent.

Frequently Asked Questions About Job Listeners

7-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Oracle Application Server Containers for J2EE Triggers and Notifications 8-1

8
Oracle Application Server Containers for

J2EE Triggers and Notifications

This chapter describes triggers and notifications. The following topics are covered:

■ Trigger-Driven Jobs

■ How Do I Submit a Job with a Trigger?

■ How Do I Send Notifications to a Job?

■ Frequently Asked Questions About Triggers and Notifications

8.1 Trigger-Driven Jobs
This section introduces two concepts: triggers and notifications. Notifications are
messages sent from one object to another, in effect notifying the recipient that
something happened. The recipient of a notification is called a trigger. A trigger
contains certain conditions that are evaluated against one or more notifications that it
receives. When a specified condition is met, an associated job is run.

A trigger’s conditions are described by a logical expression where the operands are job
notification assertions. Notifications can be generated in either of the following ways:

■ Programatically by the application

■ As the result of a timer expiration

Likewise, notifications can either be sent to a specific trigger or to a specified set of
triggers. On receipt, however, triggers do not generate notifications. By employing the
use of triggers, jobs can be enabled to respond to specific application conditions (for
example, triggering a job based on revenue exceeding a certain threshold).

8.1.1 Triggers and Notifications
The system-supplied oracle.ias.scheduler.Trigger class is used to specify the
conditions by which the associated job is run. A condition is expressed as a logical
combination of operands. The following logical operators are allowed:

■ AND (represented as '&&')

■ OR (represented as '||')

■ NOT (represented as '!')

Precedence can be specified using parentheses. The following are a few example
expressions:

■ N

Trigger-Driven Jobs

8-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Execute when the N notification is received.

■ N1 || N2

Execute when either notification is received.

■ N1 && N2

Execute when both notifications are received.

■ N1 || (N2 && N3)

Execute when either the N1 notification is received or when both N2 and N3
notifications are received.

The operand in a condition is the name associated with the notifications sent using the
Job Scheduler’s notify() method. For example, to send the DataHasArrived
notification to all triggers, the application uses the following code:

Scheduler.notify(new Notification("DataHasArrived"));

Job Scheduler evaluates triggers when a notification is sent. The result of a trigger
evaluation is boolean. If the trigger evaluates to true, then the associated job starts.
After the trigger fires, it is immediately reset, before the job runs. When the trigger is
reset, the record of all previously received notifications by the trigger is erased. A
trigger is reset only when the job runs. If the trigger does not fire, the notification is
recorded by the trigger for later use.

For example, suppose a trigger has the following condition:

N1 && N2

Assume the trigger receives only notification N1; the trigger evaluates to false, and the
notification is recorded. Later, the trigger receives notification N2. Now that both
conditions are met, the trigger evaluates to true; the job runs, and the trigger is reset.

Jobs can be associated with a schedule, trigger, or both a schedule and trigger. When a
job is associated with a schedule only, an implicit trigger is associated with the job. A
trigger of this type provides the following condition:

timeout

When the schedule expires, a timeout notification is sent to the associated trigger for
processing. In this case, the trigger fires; the job runs, and the trigger is reset. The
timeout notification may also be used in a trigger expression along with other
notifications. For example:

■ timeout || N

Run when the either N notification is received or the schedule expires.

■ timeout && N

Run when the N notification is received and the schedule expires.

The timeout notification can only be used in cases where the job is associated with
both a schedule and a trigger. The timeout notification name is likewise reserved and
can not be used or sent by an application to the scheduler. This behavior is consistent
with the Notification class. Additionally, the timeout notification must be referenced
in the condition expression of the trigger.

8.1.2 Cautions For Using the NOT Operator
If you use the NOT operator in a trigger expression, then be aware of the following:

How Do I Send Notifications to a Job?

Oracle Application Server Containers for J2EE Triggers and Notifications 8-3

■ NOT expressions should include at least two operators. Otherwise, the trigger
fires when any other notification is received. For example, the expression !N
would cause the trigger to fire whenever any notification except N was received.

■ NOT expressions should not be used with a schedule that repeats indefinitely.
This may result in a permanently hung trigger. Recall that a trigger retains all
notifications that were received until the trigger fires. If the trigger receives a
notification that satisfies the NOT condition, the trigger will never fire.

8.2 How Do I Submit a Job with a Trigger?
To submit a job with a trigger, use the oracle.ias.scheduler.Trigger class. For
more information, see Oracle Containers for J2EE Job Scheduler API Reference.

Example 8–1 shows how to create a trigger to run a job when the diskIsFull
notification is received.

Example 8–1 Submitting a Job with a Trigger

// set up the trigger, run when 'diskIsFull' notification is received
Trigger trigger = new Trigger("diskIsFull");

// submit the job
scheduler.add("disk is full job",
 diskFullJob.class.getName(),
 trigger,
 null);

To embellish Example 8–1, Example 8–2 shows how to create a trigger to run a job
every night at midnight if either the diskIsFull or timeout notifications is
received.

Example 8–2 Submitting a Job with a Trigger and a Schedule

// set up the schedule, repeats every night at midnight
RecurSchedule schedule = new RecurSchedule("freq=daily,byhour=0;");

// set up the trigger, run when either 'diskIsFull'
// notification is received or the schedule expires
Trigger trigger = new Trigger("diskIsFull || timeout");

// submit the job
scheduler.add("disk is full job",
 DiskFullJob.class.getName(),
 schedule,
 trigger,
 null,
 Level.WARN,
 0L,
 0L);

8.3 How Do I Send Notifications to a Job?
To send a notification to a job, use the
oracle.ias.scheduler.Scheduler.notify() method. For more information,
see Oracle Containers for J2EE Job Scheduler API Reference.

Example 8–3 shows how to send the diskIsFull notification to a job.

Frequently Asked Questions About Triggers and Notifications

8-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Example 8–3 Sending a Notification to a Job

// send the 'diskIsFull' notification
scheduler.notify(new Notification("diskIsFull");

8.4 Frequently Asked Questions About Triggers and Notifications

When are timeout notifications sent?
Timeout notifications are sent when a job expires.

Can a user send a timeout notification to a trigger?
No. Timeouts can only be sent by the Job Scheduler.

Deploying Job Scheduler-Enabled Applications 9-1

9
Deploying Job Scheduler-Enabled

Applications

This chapter provides information on how to configure Job Scheduler-enabled
applications for deployment. The following topics are covered:

■ Bundling Job Scheduler with a J2EE Application

■ Configuring Persistence for Job Scheduler

■ Configuring Security for Job Scheduler

■ Configuring Logging for Job Scheduler

■ Configuring DMS for Job Scheduler

■ Configuring JMX for Job Scheduler

■ Configuring Execution Interval Threshold Recovery for Job Scheduler

9.1 Bundling Job Scheduler with a J2EE Application
Job Scheduler is deployed as a stateless session Enterprise Java Bean (EJB). Unlike a
typical EJB, the actual class files do not need to be deployed with Job Scheduler.
Instead, these files are included as part of Oracle Containers for J2EE (OC4J).

9.1.1 Generating the scheduler-ejb.jar File
As is the case with all EJBs, a deployment descriptor is required. For Job Scheduler,
there are two:

1. ejb-jar.xml (Job Scheduler deployment descriptor)

2. orion-ejb-jar.xml (OC4J-specific Job Scheduler deployment descriptor)

Note that both of these files must be present in the scheduler-ejb.jar archive file
for Job Scheduler to function correctly.

To deploy Job Scheduler with an application, an application deployer needs to include
the scheduler-ejb.jar archive. In addition to the ejb-jar.xml and
orion-ejb-jar.xml files, this archive must also include the following:

■ All job implementations

■ All event listener implementations

For Job Scheduler to access job and event listener implementations, the class files must
be included in the scheduler-ejb.jar archive. It is the application deployer’s
responsibility to generate this file and bundle it with the application.

Configuring Persistence for Job Scheduler

9-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Example 9–1 shows a sample scheduler-ejb.jar file. A Job Scheduler-enabled
application uses the test.job job and test.watch event listener implementations
as part of the application.

Example 9–1 Sample scheduler-ejb.jar File

test/job.class
test/watch.class
META-INF/ejb-jar.xml
META-INF/orion-ejb-jar.xml

9.1.2 Bundling scheduler-ejb.jar in an Enterprise Archive (EAR) File
Once the scheduler-ejb.jar file is generated, it must be bundled in the
application's EAR file. In addition, the archive's application.xml file must contain
a module entry for Job Scheduler.

In Example 9–2, Job Scheduler is deployed with a J2EE application. The addition of Job
Scheduler to the application is accomplished by adding a <module> element as
shown in Example 9–2.

Example 9–2 Adding the Job Scheduler to the application.xml File

<module>
 <ejb>scheduler-ejb.jar</ejb>
</module>

9.2 Configuring Persistence for Job Scheduler
Job Scheduler provides three basic types of persistent job storage:

■ In-memory (JMS persistence)

■ File-based (JMS persistence)

■ Database-backed (JDBC persistence)

To configure JMS persistence, set the jobStoreProviderClassName <env-entry>
to oracle.ias.scheduler.core.jobstore.jdbc.ProvderImpl. In-memory or
file-based persistence is achieved by configuring JMS queues to be in-memory or
file-based, respectively.

To configure database-backed persistence, run the J2EE_
HOME/database/scheduler_jobstore.sql script to create the database tables,
set the jobStoreProviderClassName <env-entry> to
oracle.ias.scheduler.core.jobstore.jdbc.ProviderImpl.

Examples of how to configure both JDBC and JMS persistence are provided in the
following sub-sections.

9.2.1 Configuring JDBC Persistence
To configure JDBC persistence:

1. Run the scheduler_jobstore.sql SQL script to create the database tables.

2. In the ejb-jar.xml file, set the jobStoreProviderClassName <env-entry>
value as follows:

<env-entry>
 <env-entry-name>jobStoreProviderClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

Configuring Security for Job Scheduler

Deploying Job Scheduler-Enabled Applications 9-3

 <env-entry-value>
 oracle.ias.scheduler.core.jobstore.jdbc.ProviderImpl</env-entry-value>
</env-entry>

3. Create a new <managed-data-source> entry in data-sources.xml, making
sure that the specified connection pool references an existing
<connection-pool>:

<managed-data-source name="SchedulerJobstore"
 connection-pool-name="Example Connection Pool"
 jndi-name="scheduler/jobstore" />

For a complete example on configuring JDBC persistence, refer to the following
How-To located on OTN:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/how-to-scheduler-db/doc/readme.html

9.2.2 Configuring JMS Persistence
To configure JMS persistence:

1. In the ejb-jar.xml file, set the jobStoreProviderClassName <env-entry>
value as follows:

<env-entry>
 <env-entry-name>jobStoreProviderClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 oracle.ias.scheduler.core.jobstore.jms.ProviderImpl
 </env-entry-value>
</env-entry>

2. In the jms.xml file, create a new <queue> entry as shown below:

<queue name="jms/scheduler_jobstore"
 persistence file="scheduler_jobstore">
 <description>scheduler job store queue</description>
</queue>

The queue destinations defined in jms.xml are persistent only if the
persistence-file attribute on each queue destination is set. Please refer to the JMS
documentation for more information about creating a persistent queue destination.

For a complete example on configuring JMS persistence, refer to the following How-To
located on OTN:

http://www.oracle.com/technology/tech/java/oc4j/1013/how_
to/how-to-scheduler-jms/doc/readme.html

9.3 Configuring Security for Job Scheduler
Job Scheduler’s ejb-jar.xml deployment descriptor file contains information about
the security configuration for Job Scheduler. This information can be modified to limit
access to one or more of Job Scheduler APIs to a specific role. For example, removing a
job can be limited to users with administrative privileges.

In Example 9–3, application users are divided into two general categories: users and
administrators. Users can only submit jobs, while administrators can submit, pause,
resume, cancel, and remove jobs.

Configuring Logging for Job Scheduler

9-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Example 9–3 Two-Tier Security Model

<!-- role declarations -->
<security-role>
 <role-name>user</role-name>
</security-role>

<security-role>
 <role-name>administrator</role-name>
</security-role>

<!—- methods that can be invoked by the group 'user' -->
<method-permission>
 <role-name>user</role-name>

 <method>
 <ejb-name>scheduler</ejb-name>
 <method-name>add</method-name>
 </method>
</method-permission>

<!—- methods that can be invoked by the group 'administrator' -->
<method-permission>
 <role-name>administrator</role-name>
 <method>
 <ejb-name>scheduler</ejb-name>
 <method-name>remove</method-name>
 </method>

 <method>
 <ejb-name>scheduler</ejb-name>
 <method-name>pause</method-name>
 </method>

 <method>
 <ejb-name>scheduler</ejb-name>
 <method-name>resume</method-name>
 </method>

 <method>
 <ejb-name>scheduler</ejb-name>
 <method-name>cancel</method-name>
 </method>
</method-permission>

9.4 Configuring Logging for Job Scheduler
This section discusses the available log level settings for Job Scheduler. The root logger
has a default log level set to Level.WARNING, since unexpected and fatal errors will
be logged by the root logger. However, the log level can be changed by setting the
string value of the <env-entry> called globalLogLevel in the ejb-jar.xml file,
as shown in Example 9–4.

Example 9–4 Changing the Log Level

<env-entry>
 <env-entry-name>globalLogLevel</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

Configuring JMX for Job Scheduler

Deploying Job Scheduler-Enabled Applications 9-5

 <env-entry-value>FINEST</env-entry-value>
</env-entry>

Table 9–1 shows the mapping between the <env-entry> values and the
corresponding log levels to which they match.

9.5 Configuring DMS for Job Scheduler
To configure whether or not DMS statistics are published, set the <env-entry> value
in the ejb-jar.xml file as shown in Example 9–5.

Example 9–5 Configuring DMS

<env-entry>
 <env-entry-name>oracle.ias.scheduler.dms</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>true</env-entry-value>
</env-entry>

The <env-entry-value> is set to true, meaning DMS statistics will be published. Set
this value to false if you do not want DMS statistics published.

9.6 Configuring JMX for Job Scheduler
To configure whether or not JMX MBeans are published, set the <env-entry> value
in the ejb-jar.xml file as shown in Example 9–6.

Example 9–6 Configuring JMX

<env-entry>
 <env-entry-name>oracle.ias.scheduler.jmx</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>true</env-entry-value>
</env-entry>

The <env-entry-value> is set to true, meaning JMX MBeans will be published. Set
this value to false if you do not want JMX MBeans published.

Table 9–1 <env-entry> Values and Log Levels

<env-entry> Value Log Level

OFF Level.OFF

FINEST Level.FINEST

FINER Level.FINER

FINE Level.FINE

CONFIG Level.CONFIG

INFO Level.INFO

WARNING Level.WARNING

SEVERE Level.SEVERE

ALL Level.ALL

Configuring Execution Interval Threshold Recovery for Job Scheduler

9-6 Oracle Containers for J2EE Job Scheduler Developer’s Guide

9.7 Configuring Execution Interval Threshold Recovery for Job Scheduler
Some job executions might be scheduled during the time when the container has been
shutdown. The Job Scheduler provides the ability to recover these missed executions.
One or more executions scheduled during the time the container is down will result in
one job execution when the container starts up.

In the case of fixed-interval and fixed-delay schedules, it is possible to enable
execution recovery for jobs whose repetition interval is greater than a configurable
execution recovery threshold duration.

To do so, set the <env-entry> value with the desired threshold value in minutes, as
shown in Example 9–7. If this value is not set, the value defaults to 30 minutes. Job
execution recovery is performed only for fixed-interval and fixed-delay jobs executing
at intervals greater than 30 minutes.

Example 9–7 Configuring Execution Threshold Recovery

<env-entry>
 <env-entry-name>intervalThresholdMinutes</env-entry-name>
 <env-entry-type>java.lang.Long</env-entry-type>
 <env-entry-value>35</env-entry-value>
</env-entry>

Managing the Oracle Application Server Containers for J2EE 10-1

10
Managing the Oracle Application Server

Containers for J2EE

This chapter provides information on how to manage Job Scheduler using JMX
MBeans.

The JMX MBeans are chosen to represent Job Scheduler and associated data types.
Each MBean reveals attributes, operations, and relevant JSR77 statistics gathered by
the Oracle Dynamic Monitoring Service (DMS).

Table 10–1 summarizes the MBeans that are provided.

10.1 Job Management Bean
One Job MBean instance is registered for each job submitted to Job Scheduler, and
persists until either the job is removed or the hosting application is undeployed. This
MBean can be used to monitor and configure a job, including:

■ Suppressing or resuming a previously suppressed job

■ Canceling any outstanding scheduled jobs

For more information, see Appendix D.

10.2 Job Scheduler Management Bean
One instance of the Job Scheduler MBean is registered for each Job Scheduler
application component deployed, and persists until the hosting application is
undeployed. The management bean can be used to monitor and configure the Job
Scheduler instance, including:

■ Examining the run-time configuration.

■ Retrieving all jobs associated with the instance.

■ Creating, listing, or removing execution blackout windows.

For more information, see Appendix D.

Table 10–1 JMX MBean Summary

Management Bean Description

JobMBean Provides access to a job instance for management and monitoring.

SchedulerMBean Provides access to a scheduler instance for management and monitoring.

SchedulerAggregationMBean Provides access to all scheduler instances for management and monitoring
purposes.

Job Scheduler Aggregation Management Bean

10-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

10.3 Job Scheduler Aggregation Management Bean
The Aggregation MBean provides an aggregated view of all Job Scheduler and job
instances. This MBean can be used to monitor and configure all Job Scheduler and job
instances, including:

■ Retrieving all Job Scheduler instances.

■ Retrieving all jobs on all Job Scheduler instances.

■ Creating a blackout window across all Job Scheduler instances.

■ Pausing or resuming jobs across all Job Scheduler instances.

■ Canceling all jobs across all Job Scheduler instances.

For more information, see Appendix D.

The Job Scheduler Aggregation MBean can also be manage from the Application
Server Control Console, as illustrated in Figure 10–1.

Figure 10–1 System MBean Browser for Job Scheduler Aggregation MBean

To access this screen:

1. Login to Application Server Control Console.

2. In the Members section, expand the entries in the "Name" column until you see the
home link for OC4J. Click on home.

3. On the OC4J home page, click on Administration.

Job Scheduler Aggregation Management Bean

Managing the Oracle Application Server Containers for J2EE 10-3

4. On the administration page, look for "System MBean Browser" under
Administration Tasks > JMX. Click on the icon in the "System MBean Browser"
row in the "Go to Task" column.

5. In the System MBean Browser page, scroll down in the left navigation pane until
you see "OracleASSchedulerAggregate." Expand this entry and click on singleton.
The Job Scheduler Aggregation MBean attributes are displayed.

Click on the "Operations" tab to view the Job Scheduler Aggregation MBean
operations.

Job Scheduler Aggregation Management Bean

10-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

RFC 2445 Excerpt: Recurrence A-1

A
RFC 2445 Excerpt: Recurrence

This appendix contains an excerpt of RFC 2445, "Internet Calendaring and Scheduling
Core Object Specification (ICalendar)." Section 4.3.10 of this RFC is used as the basis
for iCalendar recurrence schedules. This appendix provides a listing of Section 4.3.10,
and highlights specific areas that are not supported. Some examples are also provided.

A.1 RFC 2445, Section 4.3.10. Recurrence Rule
This section provides a listing of RFC 2445, Section 4.3.10.

.

.

.
4.3.10 Recurrence Rule

 Value Name: RECUR

 Purpose: This value type is used to identify properties that contain
 a recurrence rule specification.

 Formal Definition: The value type is defined by the following
 notation:

 recur = "FREQ"=freq *(

 ; either UNTIL or COUNT may appear in a 'recur',
 ; but UNTIL and COUNT MUST NOT occur in the same 'recur'

 (";" "UNTIL" "=" enddate) /
 (";" "COUNT" "=" 1*DIGIT) /

 ; the rest of these keywords are optional,
 ; but MUST NOT occur more than once

 (";" "INTERVAL" "=" 1*DIGIT) /
 (";" "BYSECOND" "=" byseclist) /
 (";" "BYMINUTE" "=" byminlist) /
 (";" "BYHOUR" "=" byhrlist) /
 (";" "BYDAY" "=" bywdaylist) /
 (";" "BYMONTHDAY" "=" bymodaylist) /
 (";" "BYYEARDAY" "=" byyrdaylist) /
 (";" "BYWEEKNO" "=" bywknolist) /
 (";" "BYMONTH" "=" bymolist) /
 (";" "BYSETPOS" "=" bysplist) /
 (";" "WKST" "=" weekday) /
 (";" x-name "=" text)

RFC 2445, Section 4.3.10. Recurrence Rule

A-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

)

 freq = "SECONDLY" / "MINUTELY" / "HOURLY" / "DAILY"
 / "WEEKLY" / "MONTHLY" / "YEARLY"

 enddate = date
 enddate =/ date-time ;An UTC value

 byseclist = seconds / (seconds *("," seconds))

 seconds = 1DIGIT / 2DIGIT ;0 to 59

 byminlist = minutes / (minutes *("," minutes))

 minutes = 1DIGIT / 2DIGIT ;0 to 59

 byhrlist = hour / (hour *("," hour))

 hour = 1DIGIT / 2DIGIT ;0 to 23

 bywdaylist = weekdaynum / (weekdaynum *("," weekdaynum))

 weekdaynum = [([plus] ordwk / minus ordwk)] weekday

 plus = "+"

 minus = "-"

 ordwk = 1DIGIT / 2DIGIT ;1 to 53

 weekday = "SU" / "MO" / "TU" / "WE" / "TH" / "FR" / "SA"
 ;Corresponding to SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 ;FRIDAY, SATURDAY and SUNDAY days of the week.

 bymodaylist = monthdaynum / (monthdaynum *("," monthdaynum))

 monthdaynum = ([plus] ordmoday) / (minus ordmoday)

 ordmoday = 1DIGIT / 2DIGIT ;1 to 31

 byyrdaylist = yeardaynum / (yeardaynum *("," yeardaynum))

 yeardaynum = ([plus] ordyrday) / (minus ordyrday)

 ordyrday = 1DIGIT / 2DIGIT / 3DIGIT ;1 to 366

 bywknolist = weeknum / (weeknum *("," weeknum))

 weeknum = ([plus] ordwk) / (minus ordwk)

 bymolist = monthnum / (monthnum *("," monthnum))

 monthnum = 1DIGIT / 2DIGIT ;1 to 12

 bysplist = setposday / (setposday *("," setposday))

 setposday = yeardaynum

 Description: If the property permits, multiple "recur" values are
 specified by a COMMA character (US-ASCII decimal 44) separated list

RFC 2445, Section 4.3.10. Recurrence Rule

RFC 2445 Excerpt: Recurrence A-3

 of values. The value type is a structured value consisting of a list
 of one or more recurrence grammar parts. Each rule part is defined by
 a NAME=VALUE pair. The rule parts are separated from each other by
 the SEMICOLON character (US-ASCII decimal 59). The rule parts are not
 ordered in any particular sequence. Individual rule parts MUST only
 be specified once.

 The FREQ rule part identifies the type of recurrence rule. This rule
 part MUST be specified in the recurrence rule. Valid values include
 SECONDLY, to specify repeating events based on an interval of a
 second or more; MINUTELY, to specify repeating events based on an
 interval of a minute or more; HOURLY, to specify repeating events
 based on an interval of an hour or more; DAILY, to specify repeating
 events based on an interval of a day or more; WEEKLY, to specify
 repeating events based on an interval of a week or more; MONTHLY, to
 specify repeating events based on an interval of a month or more; and
 YEARLY, to specify repeating events based on an interval of a year or
 more.

 The INTERVAL rule part contains a positive integer representing how
 often the recurrence rule repeats. The default value is "1", meaning
 every second for a SECONDLY rule, or every minute for a MINUTELY
 rule, every hour for an HOURLY rule, every day for a DAILY rule,
 every week for a WEEKLY rule, every month for a MONTHLY rule and
 every year for a YEARLY rule.

 The UNTIL rule part defines a date-time value which bounds the
 recurrence rule in an inclusive manner. If the value specified by
 UNTIL is synchronized with the specified recurrence, this date or
 date-time becomes the last instance of the recurrence. If specified
 as a date-time value, then it MUST be specified in an UTC time
 format. If not present, and the COUNT rule part is also not present,
 the RRULE is considered to repeat forever.

 The COUNT rule part defines the number of occurrences at which to
 range-bound the recurrence. The "DTSTART" property value, if
 specified, counts as the first occurrence.

 The BYSECOND rule part specifies a COMMA character (US-ASCII decimal
 44) separated list of seconds within a minute. Valid values are 0 to
 59. The BYMINUTE rule part specifies a COMMA character (US-ASCII
 decimal 44) separated list of minutes within an hour. Valid values
 are 0 to 59. The BYHOUR rule part specifies a COMMA character (US-
 ASCII decimal 44) separated list of hours of the day. Valid values
 are 0 to 23.

 The BYDAY rule part specifies a COMMA character (US-ASCII decimal 44)
 separated list of days of the week; MO indicates Monday; TU indicates
 Tuesday; WE indicates Wednesday; TH indicates Thursday; FR indicates
 Friday; SA indicates Saturday; SU indicates Sunday.

 Each BYDAY value can also be preceded by a positive (+n) or negative
 (-n) integer. If present, this indicates the nth occurrence of the
 specific day within the MONTHLY or YEARLY RRULE. For example, within
 a MONTHLY rule, +1MO (or simply 1MO) represents the first Monday
 within the month, whereas -1MO represents the last Monday of the
 month. If an integer modifier is not present, it means all days of
 this type within the specified frequency. For example, within a
 MONTHLY rule, MO represents all Mondays within the month.

RFC 2445, Section 4.3.10. Recurrence Rule

A-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 The BYMONTHDAY rule part specifies a COMMA character (ASCII decimal
 44) separated list of days of the month. Valid values are 1 to 31 or
 -31 to -1. For example, -10 represents the tenth to the last day of
 the month.

 The BYYEARDAY rule part specifies a COMMA character (US-ASCII decimal
 44) separated list of days of the year. Valid values are 1 to 366 or
 -366 to -1. For example, -1 represents the last day of the year
 (December 31st) and -306 represents the 306th to the last day of the
 year (March 1st).

 The BYWEEKNO rule part specifies a COMMA character (US-ASCII decimal
 44) separated list of ordinals specifying weeks of the year. Valid
 values are 1 to 53 or -53 to -1. This corresponds to weeks according
 to week numbering as defined in [ISO 8601]. A week is defined as a
 seven day period, starting on the day of the week defined to be the
 week start (see WKST). Week number one of the calendar year is the
 first week which contains at least four (4) days in that calendar
 year. This rule part is only valid for YEARLY rules. For example, 3
 represents the third week of the year.

 Note: Assuming a Monday week start, week 53 can only occur when
 Thursday is January 1 or if it is a leap year and Wednesday is
 January 1.

 The BYMONTH rule part specifies a COMMA character (US-ASCII decimal
 44) separated list of months of the year. Valid values are 1 to 12.

 The WKST rule part specifies the day on which the workweek starts.
 Valid values are MO, TU, WE, TH, FR, SA and SU. This is significant
 when a WEEKLY RRULE has an interval greater than 1, and a BYDAY rule
 part is specified. This is also significant when in a YEARLY RRULE
 when a BYWEEKNO rule part is specified. The default value is MO.

 The BYSETPOS rule part specifies a COMMA character (US-ASCII decimal
 44) separated list of values which corresponds to the nth occurrence
 within the set of events specified by the rule. Valid values are 1 to
 366 or -366 to -1. It MUST only be used in conjunction with another
 BYxxx rule part. For example "the last work day of the month" could
 be represented as:

 RRULE:FREQ=MONTHLY;BYDAY=MO,TU,WE,TH,FR;BYSETPOS=-1

 Each BYSETPOS value can include a positive (+n) or negative (-n)
 integer. If present, this indicates the nth occurrence of the
 specific occurrence within the set of events specified by the rule.

 If BYxxx rule part values are found which are beyond the available
 scope (ie, BYMONTHDAY=30 in February), they are simply ignored.

 Information, not contained in the rule, necessary to determine the
 various recurrence instance start time and dates are derived from the
 Start Time (DTSTART) entry attribute. For example,
 "FREQ=YEARLY;BYMONTH=1" doesn't specify a specific day within the
 month or a time. This information would be the same as what is
 specified for DTSTART.

 BYxxx rule parts modify the recurrence in some manner. BYxxx rule
 parts for a period of time which is the same or greater than the
 frequency generally reduce or limit the number of occurrences of the

RFC 2445, Section 4.3.10. Recurrence Rule

RFC 2445 Excerpt: Recurrence A-5

 recurrence generated. For example, "FREQ=DAILY;BYMONTH=1" reduces the
 number of recurrence instances from all days (if BYMONTH tag is not
 present) to all days in January. BYxxx rule parts for a period of
 time less than the frequency generally increase or expand the number
 of occurrences of the recurrence. For example,
 "FREQ=YEARLY;BYMONTH=1,2" increases the number of days within the
 yearly recurrence set from 1 (if BYMONTH tag is not present) to 2.

 If multiple BYxxx rule parts are specified, then after evaluating the
 specified FREQ and INTERVAL rule parts, the BYxxx rule parts are
 applied to the current set of evaluated occurrences in the following
 order: BYMONTH, BYWEEKNO, BYYEARDAY, BYMONTHDAY, BYDAY, BYHOUR,
 BYMINUTE, BYSECOND and BYSETPOS; then COUNT and UNTIL are evaluated.

 Here is an example of evaluating multiple BYxxx rule parts.

 DTSTART;TZID=US-Eastern:19970105T083000
 RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU;BYHOUR=8,9;
 BYMINUTE=30

 First, the "INTERVAL=2" would be applied to "FREQ=YEARLY" to arrive
 at "every other year". Then, "BYMONTH=1" would be applied to arrive
 at "every January, every other year". Then, "BYDAY=SU" would be
 applied to arrive at "every Sunday in January, every other year".
 Then, "BYHOUR=8,9" would be applied to arrive at "every Sunday in
 January at 8 AM and 9 AM, every other year". Then, "BYMINUTE=30"
 would be applied to arrive at "every Sunday in January at 8:30 AM and
 9:30 AM, every other year". Then, lacking information from RRULE, the
 second is derived from DTSTART, to end up in "every Sunday in January
 at 8:30:00 AM and 9:30:00 AM, every other year". Similarly, if the
 BYMINUTE, BYHOUR, BYDAY, BYMONTHDAY or BYMONTH rule part were
 missing, the appropriate minute, hour, day or month would have been
 retrieved from the "DTSTART" property.

 No additional content value encoding (i.e., BACKSLASH character
 encoding) is defined for this value type.

 Example: The following is a rule which specifies 10 meetings which
 occur every other day:

 FREQ=DAILY;COUNT=10;INTERVAL=2

 There are other examples specified in the "RRULE" specification.
.
.
.
11. Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for

Job Scheduler Implementation of the Recurrence Rule

A-6 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

A.2 Job Scheduler Implementation of the Recurrence Rule
Oracle Application Server Containers for J2EE implements the recurrence rule of RFC
2445 as follows:

■ The UNTIL rule is not supported. Similar functionality can be achieved by using
the setEndDate() method of the recurSchedule object.

■ The COUNT rule is not supported. Similar functionality can be achieved by using
the setCount() method of the recurSchedule object.

■ The BYDAY clause supports both two- and three-letter abbreviations for days of
the week (for example, either MO or MON may be used to represent Monday).

■ The BYSETPOS rule is not supported.

■ The WKST rule is not supported.

A.3 RFC 2445, Section 4.8.5.4. Recurrence Rule Examples
This section provides a listing of RFC 2445, Section 4.8.5.4. This section contains many
examples which you might find helpful.

4.8.5.4 Recurrence Rule

 Property Name: RRULE

 Purpose: This property defines a rule or repeating pattern for
 recurring events, to-dos, or time zone definitions.

 Value Type: RECUR

 Property Parameters: Non-standard property parameters can be
 specified on this property.

 Conformance: This property can be specified one or more times in
 recurring "VEVENT", "VTODO" and "VJOURNAL" calendar components. It
 can also be specified once in each STANDARD or DAYLIGHT sub-component
 of the "VTIMEZONE" calendar component.

 Description: The recurrence rule, if specified, is used in computing
 the recurrence set. The recurrence set is the complete set of
 recurrence instances for a calendar component. The recurrence set is
 generated by considering the initial "DTSTART" property along with
 the "RRULE", "RDATE", "EXDATE" and "EXRULE" properties contained
 within the iCalendar object. The "DTSTART" property defines the first
 instance in the recurrence set. Multiple instances of the "RRULE" and
 "EXRULE" properties can also be specified to define more
 sophisticated recurrence sets. The final recurrence set is generated
 by gathering all of the start date/times generated by any of the

Note: The examples that use the BYSETPOS and WKST rules are
omitted, because these rules are not supported by Oracle Application
Server Containers for J2EE.

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

RFC 2445 Excerpt: Recurrence A-7

 specified "RRULE" and "RDATE" properties, and excluding any start
 date/times which fall within the union of start date/times generated
 by any specified "EXRULE" and "EXDATE" properties. This implies that
 start date/times within exclusion related properties (i.e., "EXDATE"
 and "EXRULE") take precedence over those specified by inclusion
 properties (i.e., "RDATE" and "RRULE"). Where duplicate instances are
 generated by the "RRULE" and "RDATE" properties, only one recurrence
 is considered. Duplicate instances are ignored.

 The "DTSTART" and "DTEND" property pair or "DTSTART" and "DURATION"
 property pair, specified within the iCalendar object defines the
 first instance of the recurrence. When used with a recurrence rule,
 the "DTSTART" and "DTEND" properties MUST be specified in local time
 and the appropriate set of "VTIMEZONE" calendar components MUST be
 included. For detail on the usage of the "VTIMEZONE" calendar
 component, see the "VTIMEZONE" calendar component definition.

 Any duration associated with the iCalendar object applies to all
 members of the generated recurrence set. Any modified duration for
 specific recurrences MUST be explicitly specified using the "RDATE"
 property.

 Format Definition: This property is defined by the following
 notation:

 rrule = "RRULE" rrulparam ":" recur CRLF

 rrulparam = *(";" xparam)

 Example: All examples assume the Eastern United States time zone.

 Daily for 10 occurrences:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=DAILY;COUNT=10

 ==> (1997 9:00 AM EDT)September 2-11

 Daily until December 24, 1997:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=DAILY;UNTIL=19971224T000000Z

 ==> (1997 9:00 AM EDT)September 2-30;October 1-25
 (1997 9:00 AM EST)October 26-31;November 1-30;December 1-23

 Every other day - forever:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=DAILY;INTERVAL=2
 ==> (1997 9:00 AM EDT)September2,4,6,8...24,26,28,30;
 October 2,4,6...20,22,24
 (1997 9:00 AM EST)October 26,28,30;November 1,3,5,7...25,27,29;
 Dec 1,3,...

 Every 10 days, 5 occurrences:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=DAILY;INTERVAL=10;COUNT=5

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

A-8 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 ==> (1997 9:00 AM EDT)September 2,12,22;October 2,12

 Everyday in January, for 3 years:

 DTSTART;TZID=US-Eastern:19980101T090000
 RRULE:FREQ=YEARLY;UNTIL=20000131T090000Z;
 BYMONTH=1;BYDAY=SU,MO,TU,WE,TH,FR,SA
 or
 RRULE:FREQ=DAILY;UNTIL=20000131T090000Z;BYMONTH=1

 ==> (1998 9:00 AM EDT)January 1-31
 (1999 9:00 AM EDT)January 1-31
 (2000 9:00 AM EDT)January 1-31

 Weekly for 10 occurrences

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=WEEKLY;COUNT=10

 ==> (1997 9:00 AM EDT)September 2,9,16,23,30;October 7,14,21
 (1997 9:00 AM EST)October 28;November 4

 Weekly until December 24, 1997

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=WEEKLY;UNTIL=19971224T000000Z

 ==> (1997 9:00 AM EDT)September 2,9,16,23,30;October 7,14,21
 (1997 9:00 AM EST)October 28;November 4,11,18,25;
 December 2,9,16,23
 Monthly on the 1st Friday for ten occurrences:

 DTSTART;TZID=US-Eastern:19970905T090000
 RRULE:FREQ=MONTHLY;COUNT=10;BYDAY=1FR

 ==> (1997 9:00 AM EDT)September 5;October 3
 (1997 9:00 AM EST)November 7;Dec 5
 (1998 9:00 AM EST)January 2;February 6;March 6;April 3
 (1998 9:00 AM EDT)May 1;June 5

 Monthly on the 1st Friday until December 24, 1997:

 DTSTART;TZID=US-Eastern:19970905T090000
 RRULE:FREQ=MONTHLY;UNTIL=19971224T000000Z;BYDAY=1FR

 ==> (1997 9:00 AM EDT)September 5;October 3
 (1997 9:00 AM EST)November 7;December 5

 Every other month on the 1st and last Sunday of the month for 10
 occurrences:

 DTSTART;TZID=US-Eastern:19970907T090000
 RRULE:FREQ=MONTHLY;INTERVAL=2;COUNT=10;BYDAY=1SU,-1SU

 ==> (1997 9:00 AM EDT)September 7,28
 (1997 9:00 AM EST)November 2,30
 (1998 9:00 AM EST)January 4,25;March 1,29
 (1998 9:00 AM EDT)May 3,31

 Monthly on the second to last Monday of the month for 6 months:

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

RFC 2445 Excerpt: Recurrence A-9

 DTSTART;TZID=US-Eastern:19970922T090000
 RRULE:FREQ=MONTHLY;COUNT=6;BYDAY=-2MO

 ==> (1997 9:00 AM EDT)September 22;October 20
 (1997 9:00 AM EST)November 17;December 22
 (1998 9:00 AM EST)January 19;February 16

 Monthly on the third to the last day of the month, forever:

 DTSTART;TZID=US-Eastern:19970928T090000
 RRULE:FREQ=MONTHLY;BYMONTHDAY=-3

 ==> (1997 9:00 AM EDT)September 28
 (1997 9:00 AM EST)October 29;November 28;December 29
 (1998 9:00 AM EST)January 29;February 26
 ...

 Monthly on the 2nd and 15th of the month for 10 occurrences:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=MONTHLY;COUNT=10;BYMONTHDAY=2,15

 ==> (1997 9:00 AM EDT)September 2,15;October 2,15
 (1997 9:00 AM EST)November 2,15;December 2,15
 (1998 9:00 AM EST)January 2,15

 Monthly on the first and last day of the month for 10 occurrences:

 DTSTART;TZID=US-Eastern:19970930T090000
 RRULE:FREQ=MONTHLY;COUNT=10;BYMONTHDAY=1,-1

 ==> (1997 9:00 AM EDT)September 30;October 1
 (1997 9:00 AM EST)October 31;November 1,30;December 1,31
 (1998 9:00 AM EST)January 1,31;February 1

 Every 18 months on the 10th thru 15th of the month for 10
 occurrences:

 DTSTART;TZID=US-Eastern:19970910T090000
 RRULE:FREQ=MONTHLY;INTERVAL=18;COUNT=10;BYMONTHDAY=10,11,12,13,14,
 15

 ==> (1997 9:00 AM EDT)September 10,11,12,13,14,15
 (1999 9:00 AM EST)March 10,11,12,13

 Every Tuesday, every other month:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=MONTHLY;INTERVAL=2;BYDAY=TU

 ==> (1997 9:00 AM EDT)September 2,9,16,23,30
 (1997 9:00 AM EST)November 4,11,18,25
 (1998 9:00 AM EST)January 6,13,20,27;March 3,10,17,24,31
 ...

 Yearly in June and July for 10 occurrences:

 DTSTART;TZID=US-Eastern:19970610T090000
 RRULE:FREQ=YEARLY;COUNT=10;BYMONTH=6,7

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

A-10 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 ==> (1997 9:00 AM EDT)June 10;July 10
 (1998 9:00 AM EDT)June 10;July 10
 (1999 9:00 AM EDT)June 10;July 10
 (2000 9:00 AM EDT)June 10;July 10
 (2001 9:00 AM EDT)June 10;July 10
 Note: Since none of the BYDAY, BYMONTHDAY or BYYEARDAY components
 are specified, the day is gotten from DTSTART

 Every other year on January, February, and March for 10 occurrences:

 DTSTART;TZID=US-Eastern:19970310T090000
 RRULE:FREQ=YEARLY;INTERVAL=2;COUNT=10;BYMONTH=1,2,3

 ==> (1997 9:00 AM EST)March 10
 (1999 9:00 AM EST)January 10;February 10;March 10
 (2001 9:00 AM EST)January 10;February 10;March 10
 (2003 9:00 AM EST)January 10;February 10;March 10

 Every 3rd year on the 1st, 100th and 200th day for 10 occurrences:

 DTSTART;TZID=US-Eastern:19970101T090000
 RRULE:FREQ=YEARLY;INTERVAL=3;COUNT=10;BYYEARDAY=1,100,200

 ==> (1997 9:00 AM EST)January 1
 (1997 9:00 AM EDT)April 10;July 19
 (2000 9:00 AM EST)January 1
 (2000 9:00 AM EDT)April 9;July 18
 (2003 9:00 AM EST)January 1
 (2003 9:00 AM EDT)April 10;July 19
 (2006 9:00 AM EST)January 1

 Every 20th Monday of the year, forever:

 DTSTART;TZID=US-Eastern:19970519T090000
 RRULE:FREQ=YEARLY;BYDAY=20MO

 ==> (1997 9:00 AM EDT)May 19
 (1998 9:00 AM EDT)May 18
 (1999 9:00 AM EDT)May 17
 ...

 Monday of week number 20 (where the default start of the week is
 Monday), forever:

 DTSTART;TZID=US-Eastern:19970512T090000
 RRULE:FREQ=YEARLY;BYWEEKNO=20;BYDAY=MO

 ==> (1997 9:00 AM EDT)May 12
 (1998 9:00 AM EDT)May 11
 (1999 9:00 AM EDT)May 17
 ...

 Every Thursday in March, forever:

 DTSTART;TZID=US-Eastern:19970313T090000
 RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=TH

 ==> (1997 9:00 AM EST)March 13,20,27
 (1998 9:00 AM EST)March 5,12,19,26
 (1999 9:00 AM EST)March 4,11,18,25

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

RFC 2445 Excerpt: Recurrence A-11

 ...

 Every Thursday, but only during June, July, and August, forever:

 DTSTART;TZID=US-Eastern:19970605T090000
 RRULE:FREQ=YEARLY;BYDAY=TH;BYMONTH=6,7,8

 ==> (1997 9:00 AM EDT)June 5,12,19,26;July 3,10,17,24,31;
 August 7,14,21,28
 (1998 9:00 AM EDT)June 4,11,18,25;July 2,9,16,23,30;
 August 6,13,20,27
 (1999 9:00 AM EDT)June 3,10,17,24;July 1,8,15,22,29;
 August 5,12,19,26
 ...

 Every Friday the 13th, forever:

 DTSTART;TZID=US-Eastern:19970902T090000
 EXDATE;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=MONTHLY;BYDAY=FR;BYMONTHDAY=13

 ==> (1998 9:00 AM EST)February 13;March 13;November 13
 (1999 9:00 AM EDT)August 13
 (2000 9:00 AM EDT)October 13
 ...

 The first Saturday that follows the first Sunday of the month,
 forever:

 DTSTART;TZID=US-Eastern:19970913T090000
 RRULE:FREQ=MONTHLY;BYDAY=SA;BYMONTHDAY=7,8,9,10,11,12,13

 ==> (1997 9:00 AM EDT)September 13;October 11
 (1997 9:00 AM EST)November 8;December 13
 (1998 9:00 AM EST)January 10;February 7;March 7
 (1998 9:00 AM EDT)April 11;May 9;June 13...
 ...

 Every four years, the first Tuesday after a Monday in November,
 forever (U.S. Presidential Election day):

 DTSTART;TZID=US-Eastern:19961105T090000
 RRULE:FREQ=YEARLY;INTERVAL=4;BYMONTH=11;BYDAY=TU;BYMONTHDAY=2,3,4,
 5,6,7,8

 ==> (1996 9:00 AM EST)November 5
 (2000 9:00 AM EST)November 7
 (2004 9:00 AM EST)November 2
 ...

 Every 3 hours from 9:00 AM to 5:00 PM on a specific day:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=HOURLY;INTERVAL=3;UNTIL=19970902T170000Z

 ==> (September 2, 1997 EDT)09:00,12:00,15:00

 Every 15 minutes for 6 occurrences:

 DTSTART;TZID=US-Eastern:19970902T090000

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

A-12 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 RRULE:FREQ=MINUTELY;INTERVAL=15;COUNT=6

 ==> (September 2, 1997 EDT)09:00,09:15,09:30,09:45,10:00,10:15

 Every hour and a half for 4 occurrences:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=MINUTELY;INTERVAL=90;COUNT=4

 ==> (September 2, 1997 EDT)09:00,10:30;12:00;13:30

 Every 20 minutes from 9:00 AM to 4:40 PM every day:

 DTSTART;TZID=US-Eastern:19970902T090000
 RRULE:FREQ=DAILY;BYHOUR=9,10,11,12,13,14,15,16;BYMINUTE=0,20,40
 or
 RRULE:FREQ=MINUTELY;INTERVAL=20;BYHOUR=9,10,11,12,13,14,15,16

 ==> (September 2, 1997 EDT)9:00,9:20,9:40,10:00,10:20,
 ... 16:00,16:20,16:40
 (September 3, 1997 EDT)9:00,9:20,9:40,10:00,10:20,
 ...16:00,16:20,16:40
 ...

Oracle Application Server Containers for J2EE Semantics B-1

B
Oracle Application Server Containers for

J2EE Semantics

This appendix summarizes the differences in semantics among several closely related
terms: remove, pause, cancel, retry, replay, and execution threshold. The following
topics are covered:

■ Semantics

■ Job Precedence

B.1 Semantics
This section provides a summary of the differences in semantics of the various job
operations. Figure B–1 illustrates the various job operations:

Figure B–1 Job Scheduler Semantics

Here is a job with a repeating schedule. The job is scheduled to run each night at
midnight, with a retry period of 1 hour, an execution threshold of 6 hours, and a
blackout window from 6:00 a.m. to midnight each day.

Removing a Job
Removing a job deletes the job definition, thus preventing the job from being run in
the future. For example, if a job were removed at 2:00 a.m. on Monday, all future
scheduled executions would be removed, and the job would not be run again on
Tuesday, or Wednesday, or at any point in the future. If a job execution was running at
the time the job was removed, the job execution would finish before the job was
removed. To immediately stop a job execution that is running, you must cancel the job.

For more information about removing jobs, see Section 2.3.

Job Precedence

B-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Canceling a Job
Canceling a job stops the job execution while it is running. This is the only way to stop
a job execution that is currently running. If you want to re-run the canceled job
execution at some future point, you must specify a retry period.

For more information about canceling jobs, see Chapter 6.

Pausing a Job
Pausing a job causes future scheduled job executions to be skipped until the point at
which the job is resumed. For example, if you pause a job at 2:00 a.m. on Monday, and
resume the job at 2:00 a.m. on Tuesday, then the scheduled job execution at midnight
on Tuesday would be skipped.

If you want the skipped job execution to run, set replay to true when you resume the
job and the skipped job execution will be run when the job is resumed. If replay is set
to false, then the skipped job execution is ignored and is not run.

It is important to note that replay will only attempt to run one skipped job execution.
If you have a job with a repeating schedule and multiple job executions are skipped,
replay will only attempt to run the first skipped job execution; all others are ignored.

For more information about pausing jobs, see Chapter 5.

Job Retry
If a job execution fails, job retry allows that job execution to be attempted again after a
specified period of time. For example, if the job execution at midnight on Monday
failed due to a power outage, that job execution would be attempted once at 1:00 a.m.
If the job execution failed again, it would be ignored, and another attempt would not
be made until the next scheduled run time (midnight on Tuesday).

For more information about job retry, see Section 3.2.

Execution Threshold
Execution threshold is essentially a time limit for a job to be run; if the job is not run
within a specified period of time, then it is ignored and another attempt to run it is not
made until the next scheduled run time. For example, a job scheduled to run nightly at
midnight has a 6 hour execution threshold. If the job is not started by 6:00 a.m. on any
day, then it is ignored and no attempt will be made to run the job again until midnight
that night.

For more information about execution threshold, see Section 3.2.

Blackout Window
A blackout window is a period of time in which all job executions are suppressed. Any
job execution that is scheduled to take place between 6:00 a.m. and midnight, for
example (either directly scheduled or indirectly through a retry or replay), would be
suppressed until the blackout window ends.

For more information about blackout windows, see Chapter 4.

B.2 Job Precedence
The combination of job semantics (for example, job retry or blackout windows) and
associated operations (for example, pause and resume) requires precedence to ensure
the overall correctness of Job Scheduler and resolve possible conflicts.

For example, consider the following scenarios:

Job Precedence

Oracle Application Server Containers for J2EE Semantics B-3

■ A job execution is resumed with replay during the time in which a blackout
window is in effect. Does the job run?

■ A job execution fails and is retried. Does execution threshold apply to the retry
too?

■ A job execution is paused and resumed with replay. Does execution threshold
apply to the replay too?

Table B–1 specifies the precedence of these operations.

Table B–1 Precedence of Job Scheduler Operations

Precedence Attribute/Operation Discussion

1 (highest) Blackout windows All job executions are suppressed when a blackout
window is active.

2 Job resume with
replay

When a job execution is resumed with the replay
parameter set to true, the job execution will run
regardless of lower precedence attributes or
operations.

3 Job retry When a job execution fails, retry takes precedence
over execution threshold or a (repeating) schedule
end date. The same holds true if the job execution is
paused after it is started, but before the retry period.

4 Job execution
threshold

Execution threshold pertains to the initial running of
the job execution only and not a retry (as a result of a
failed attempt) or replay (as a result of resume).

5 Job pause When a job execution is paused, execution may be
postponed until the job is resumed. Both retry and
replay take precedence.

6 (lowest) Schedule end date The job execution runs when not paused and falls
within the execution threshold (if specified).

Job Precedence

B-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

JSP Tag Library Reference C-1

C
JSP Tag Library Reference

The Job Scheduler JSP Tag Library is used to interact with the Oracle Application
Server Containers for J2EE. It is used to add, remove, pause, resume, and query jobs,
as well as add, remove, and query blackout windows. In addition, a number of helper
tags are provided for conditional operations on jobs and audit records (for example,
distributing content based on the status of a job).

The following sections are covered:

■ Configuring an Application with the JSP Tag Library

■ JSP Tag Library Summary

■ JSP Tag Library Reference

■ JSP Tag Library Examples

C.1 Configuring an Application with the JSP Tag Library
Follow these steps to configure a web application with the JSP Tag Library:

1. Copy the JSP Tag Library descriptor file to the /WEB-INF subdirectory of your
Web application.

2. Copy the JSP Tag library JAR file to the /WEB-INF/lib subdirectory of your Web
application.

3. Add a <taglib> element to your Web application deployment descriptor in
/WEB-INF/web.xml. For example:

<taglib>
<taglib-uri>scheduler-taglib</taglib-uri>
 <taglib-location>/WEB-INF/scheduler.tld</taglib-location>
</taglib>

To use the tags from this library in a JSP page, add the following directive at the top of
each page:

<%@ taglib uri="scheduler-taglib" prefix="s" %>

The s is the tag name prefix for tags from this library, although any prefix can be
specified.

C.2 JSP Tag Library Summary
Table C–1 provides a summary of the primary tags included in this library.

JSP Tag Library Reference

C-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

C.3 JSP Tag Library Reference
This section provides reference information for each of the tags listed in Section C.2.

C.3.1 scheduler
The scheduler tag provides an implicit EJB context for interacting with Job
Scheduler. Because context is implicit, this tag must be the parent of all other tags
provided by this library.

Table C–2 describes the supported attributes for the scheduler tag.

Example:

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler"
scope="application">
.
.
.
</s:scheduler>

C.3.2 addJob
The addJob tag adds a new job to Job Scheduler. This tag must be enclosed within a
scheduler tag.

Table C–3 describes the supported helper tags for the addJob tag.

Table C–1 JSP Tag Library Summary

Tag Description

scheduler Top-level tag for all Job Scheduler tags.

addJob Adds a new job.

removeJob Removes an existing job.

pauseJob Pauses a job.

resumeJob Resumes a paused job.

cancelJob Cancels a job.

addBlackoutWindow Adds a new blackout window.

removeBlackoutWindow Removes an existing blackout window.

Table C–2 scheduler Tag Attributes

Attribute Required? Description

id Yes Instance name of the Job Scheduler EJB by which the Job
Scheduler may be accessed.

name Yes JNDI name of the Job Scheduler EJB responsible for processing
all operations in the body of this tag.

scope No Scope1 of the implicit EJB context. Valid values are page,
request, session, or application. The default is page.

1 This is equivalent to the JSP PAGECONTEXT scope.

JSP Tag Library Reference

JSP Tag Library Reference C-3

C.3.2.1 className
Use this helper tag to specify the class name when adding a new job. This tag must be
enclosed in an addJob tag.

Example:

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 </s:addJob>
</s:scheduler>

C.3.2.2 description
Use this helper tag to specify a job description when adding a new job. This tag must
be enclosed in an addJob tag.

Example:

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:description>Example job description</s:description>
 </s:addJob>
</s:scheduler>

C.3.2.3 schedule
Use this helper tag to specify a schedule for a job or blackout window. This tag must
be enclosed in either an addJob or addBlackoutWindow tag.

Table C–4 describes the supported helper tags for the schedule helper tag.

C.3.2.3.1 duration

Use this helper tag to specify the initial expiration duration of the schedule. This tag
must be enclosed in a schedule tag. The body of this tag is used to specify the

Table C–3 Helper Tags for the addJob Tag

Helper Tag Required? Description

className Yes Class name of the job.

description No Description of the job.

schedule No Job schedule (specifies how often a timeout is sent to the
trigger).

trigger No Job trigger (specifies a condition to be met before a job is run).

retry No Job retry period.

logLevel No Job log level.

Table C–4 Helper Tags for the schedule Helper Tag

Helper Tag Required? Description

duration No Initial expiration duration of the schedule.

interval No Repeat interval of the schedule.

threshold No Execution threshold for the job (applicable only when used in
conjunction with the addJob tag).

JSP Tag Library Reference

C-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

duration. The duration is specified as an arbitrary number of units and associated
values or a specific date and time.

Some example durations are:

■ 1 week

■ 1 month, 5 days

■ March 15, 2005

■ January 5 2004 16:00:00 PST

Table C–5 describes the supported helper tags for the duration helper tag.

Detailed descriptions and examples of the helper tags described in Table C–5 are
provided in the following sections.

date
Use this helper tag to specify an exact date for the initial expiration of a job. This tag
must be enclosed in a duration tag. The format of the date expression must comply
with the date parsing routines provided by the java.text.DateFormat class. If this
tag is not used in conjunction with a time tag, the enclosing body of the duration
tag uses the default time of 12:00:00 a.m.

Use the following code to set the schedule duration to October 27, 2003 12:00 a.m. PST.

Table C–5 Helper Tags for the duration Helper Tag

Helper Tag Required? Description

date No Date of initial expiration. This tag can be combined with the
time tag.

time No Time of initial expiration. This tag can be combined with the
date tag.

years No Expiration in years relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

months No Expiration in months relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

weeks No Expiration in weeks relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

days No Expiration in days relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

hours No Expiration in hours relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

minutes No Expiration in minutes relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

seconds No Expiration in seconds relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

milliseconds No Expiration in milliseconds relative to the time at which the job
is submitted. This tag can be combined with any other helper
tag.

Note: To avoid repetition, full code examples are provided for the
first few tags. Partial code examples are provided for the remainder of
the tags in this section.

JSP Tag Library Reference

JSP Tag Library Reference C-5

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:schedule>
 <s:duration>
 <s:date>October 27, 2003</s:date>
 </s:duration>
 </s:schedule>
 </s:addJob>
</s:scheduler>

time
Use this helper tag to specify an exact time for the initial expiration of a job. This tag
must be enclosed in a duration tag. The format of the time expression specified must
comply with the time parsing routines provided by the java.text.TimeFormat
class. If this tag is not used in conjunction with a date tag, the enclosing body of the
duration tag defaults to use the date on which the job was submitted.

Use the following code to set the schedule duration to October 27, 2003 4:30 p.m. PST.

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:schedule>
 <s:duration>
 <s:date>October 27, 2003</s:date>
 <s:time>16:30:00 PST</s:date>
 </s:duration>
 </s:schedule>
 </s:addJob>
</s:scheduler>

years
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of years to expiration. This tag can be used in conjunction with any of the
other unit tags (months, weeks, days, hours, or minutes). The body of the tag must
be a positive non-zero integer. If the duration or interval occurs on a leap day, the
expiration will be rounded to the last day of the month. For example, February 29
would be rounded to February 28 of the following year.

Use the following code to set the schedule duration to one year from the time of
submission.

 <s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:schedule>
 <s:duration>
 <s:years>1</s:years>
 </s:duration>
 </s:schedule>
 </s:addJob>
</s:scheduler>

The following example shows how to set the schedule interval to 1 year:

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>

JSP Tag Library Reference

C-6 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 <s:className>TestJobImpl</s:className>
 <s:schedule>
 <s:interval>
 <s:years>1</s:years>
 </s:interval>
 </s:schedule>
 </s:addJob>
</s:scheduler>

months
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of months to expiration. This tag can be used in conjunction with any of
the other unit tags (years, weeks, days, hours, or minutes). The body of the tag
must be a positive non zero integer. If the duration or interval occurs at the end of the
month, some rounding may occur so that the interval remains at the end of the month.
For example, January 31 would be rounded to February 28 of the following month.

Use the following code to set the schedule to expire after 1 month.

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:schedule>
 <s:duration>
 <s:months>1</s:months>
 </s:duration>
 </s:schedule>
 </s:addJob>
</s:scheduler>

The following example shows how to set the schedule to repeat every 3 months.

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:schedule>
 <s:interval>
 <s:months>3</s:months>
 </s:interval>
 </s:schedule>
 </s:addJob>
</s:scheduler>

weeks
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of weeks to expiration. This tag can be used in conjunction with any of the
other unit tags (years, months, days, hours, minutes, seconds, or
milliseconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to expire after 1 week:

...
 <s:duration>
 <s:weeks>1</s:weeks>
 </s:duration>
...

JSP Tag Library Reference

JSP Tag Library Reference C-7

days
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of days to expiration. This tag can be used in conjunction with any of the
other unit tags (years, months, weeks, hours, minutes, seconds, or
milliseconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to repeat every 14 days:

...
 <s:interval>
 <s:days>14</s:days>
 </s:interval>
...

hours
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of hours to expiration. This tag can be used in conjunction with any of the
other unit tags (years, months, weeks, hours, minutes, seconds, or
milliseconds). The body of the tag must be a positive non zero integer.

Use this code to set the schedule to expire after 48 hours:

 ...
 <s:duration>
 <s:hours>48</s:hours>
 </s:duration>
...

minutes
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of minutes to expiration. This tag can be used in conjunction with any of
the other unit tags (years, months, weeks, hours, days, seconds, or
milliseconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to repeat every 720 minutes:

...
 <s:interval>
 <s:minutes>720</s:minutes>
 </s:interval>
...

seconds
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of seconds to expiration. This tag can be used in conjunction with any of
the other unit tags (years, months, weeks, hours, days, minutes, or
milliseconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to expire after 86,400 seconds (24 hours):

 ...
 <s:duration>
 <s:seconds>86400</s:seconds>
 </s:duration>
...

JSP Tag Library Reference

C-8 Oracle Containers for J2EE Job Scheduler Developer’s Guide

milliseconds
Use this unit tag in conjunction with either the duration or interval tag to specify
the number of milliseconds to expiration. This tag can be used in conjunction with any
of the other unit tags (years, months, weeks, hours, days, minutes, or seconds).
The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to repeat every 43,200,000 milliseconds:

...
 <s:interval>
 <s:milliseconds>43200000</s:milliseconds>
 </s:interval>
...

C.3.2.3.2 interval

Use this helper tag to specify the interval of the schedule. This tag must be enclosed in
a schedule tag. The body of this tag is used to specify the schedule interval. The
interval is specified as an arbitrary number of units and associated values.

Some example intervals are:

■ 1 week

■ 1 month, 5 days

■ 1 month, 6 days, 3 hours

Table C–6 describes the supported helper tags for the interval helper tag.

Use the end helper tag to specify an end date for a repeating interval. This tag must be
enclosed in an interval tag. The interval is specified as an arbitrary number of units
and associated values.

Use the following code to set an end date of 1 year for a monthly repeating interval:

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:schedule>
 <s:interval>

Table C–6 Helper Tags for the interval Helper Tag

Helper Tag Required? Description

end No End date of a repeating interval.

years No Repeating interval in years relative to the time at which the job is
submitted. This tag may be combined with any other unit tag.

months No Repeating interval in months relative to the time at which the job
is submitted. This tag may be combined with any other unit tag.

weeks No Repeating interval in weeks relative to the time at which the job
is submitted. This tag may be combined with any other unit tag.

days No Repeating interval in days relative to the time at which the job is
submitted. This tag may be combined with any other unit tag.

hours No Repeating interval in hours relative to the time at which the job
is submitted. This tag may be combined with any other unit tag.

minutes No Repeating interval in minutes relative to the time at which the
job is submitted. This tag may be combined with any other unit
tag.

JSP Tag Library Reference

JSP Tag Library Reference C-9

 <s:months>1</s:months>
 <s:end>
 <s:years>1</s:years>
 </s:end>
 </s:interval>
 </s:schedule>
 </s:addJob>
</s:scheduler>

Table C–7 describes the unit tags supported be the end helper tag.

These unit tags are used in the same manner as with the duration helper tag. For
more information, see Section C.3.2.3.1.

C.3.2.3.3 threshold

Use this helper tag to specify the execution threshold of the schedule; if the schedule is
not run before the specified threshold, the job is suppressed and will be retried only if
a retry tag is specified. This tag must be enclosed in a schedule tag. The body of
this tag is used to specify the schedule threshold. The threshold is specified as an
arbitrary number of units and associated values.

Some example thresholds are:

■ 1 day

■ 10 hours, 26 minutes

Table C–8 describes the helper tags available for the threshold tag.

Table C–7 Helper Tags for the end Helper Tag

Helper Tag Required? Description

date No Date on which the schedule ends. This tag can be combined with
the time tag.

time No Time at which the schedule ends. This tag can be combined with
the date tag.

years No End date in years relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

months No End date in months relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

weeks No End date in weeks relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

days No End date in days relative to the time at which the job is submitted.
This tag can be combined with any other unit tag.

hours No End date in hours relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

minutes No End date in minutes relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

Table C–8 Helper Tags for the threshold Helper Tag

Helper Tag Required? Description

days No Threshold in days. This tag can be combined with any of the
other unit tags.

hours No Threshold in hours. This tag can be combined with any of the
other unit tags.

JSP Tag Library Reference

C-10 Oracle Containers for J2EE Job Scheduler Developer’s Guide

These unit tags are used in the same manner as with the duration helper tag. For
more information, see Section C.3.2.3.1.

C.3.2.4 trigger
Use this helper tag to specify the trigger for the job. This tag must enclosed in an
addJob tag. The body is used to specify the associated expression for the trigger. If no
trigger is specified, a default trigger is provided for execution based on the associated
schedule's expiration.

Example:

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:trigger>do_it_now</s:trigger>
 </s:addJob>
</s:scheduler>

C.3.2.5 retry
Use this helper tag to specify the retry period for the job. This tag must be enclosed in
an addJob tag. The body of this tag is used to specify the retry period and is specified
as an arbitrary number of units and associated values.

Table C–9 describes the supported helper tags for the retry helper tag:

If a job fails and you want it to retry in 1 hour and 30 minutes, then use the following
code:

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:className>TestJobImpl</s:className>
 <s:retry>
 <s:hours>1</s:hours>
 <s:minutes>30</s:minutes>
 </s:retry>

minutes No Threshold in minutes. This tag can be combined with any of the
other unit tags.

Table C–9 Helper Tags for the retry Helper Tag

Helper Tag Required? Description

months No Retry period in months. This tag can be combined with any of
the other unit tags.

weeks No Retry period in weeks. This tag can be combined with any of the
other unit tags.

days No Retry period in days. This tag can be combined with any of the
other unit tags.

hours No Retry period in hours. This tag can be combined with any of the
other unit tags.

minutes No Retry period in minutes. This tag can be combined with any of
the other unit tags.

Table C–8 (Cont.) Helper Tags for the threshold Helper Tag

Helper Tag Required? Description

JSP Tag Library Reference

JSP Tag Library Reference C-11

 </s:addJob>
</s:scheduler>

The unit tags described in Table C–9 are used in the same manner as with the
duration helper tag. For more information, see Section C.3.2.3.1.

C.3.2.6 logLevel
Use this helper tag to set the log level for the job. This tag must be enclosed in an
addJob tag. The body of this tag is used to specify the log level. The following values
are supported:

■ WARNING

Logs a message each time a job results in a run time exception. This is the lowest
logging level.

■ FINE

Logs a message each time a job begins and ends.

■ FINER

Logs a message each time the job's associated trigger is evaluated, and logs the
result of the evaluation.

■ FINEST

Logs a message when the job completes, and logs the cumulative time it took to
run This is the highest level of logging.

C.3.3 removeJob
Use this tag to remove an existing job from the Job Scheduler. This tag must be
enclosed within a scheduler tag. Specify the oracle.ias.scheduler.Job bean
instance name of the job you want to remove.

The name attribute is the only supported attribute for the removeJob tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to remove a job named "job":

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<jsp:useBean id="job" class="oracle.ias.scheduler.Job" scope="session"/>
<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:removeJob name="job"/>
</s:scheduler>

C.3.4 pauseJob
Use this tag to pause an existing job in Job Scheduler. This tag must be enclosed within
a scheduler tag. Specify the oracle.ias.scheduler.Job instance name of the
job you want to pause.

The name attribute is the only supported attribute for the pauseJob tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to pause a job named job:

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<jsp:useBean id="job" class="oracle.ias.scheduler.Job" scope="session"/>
<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">

JSP Tag Library Reference

C-12 Oracle Containers for J2EE Job Scheduler Developer’s Guide

 <s:pauseJob name="job"/>
</s:scheduler>

C.3.5 resumeJob
Use this tag to resume a job in Job Scheduler. This tag must be enclosed within a
scheduler tag. Specify the oracle.ias.scheduler.Job instance name of the job
you want to resume.

The name attribute is the only supported attribute for the resumeJob tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to resume a job named job:

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<jsp:useBean id="job" class="oracle.ias.scheduler.Job" scope="session"/>
<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:resumeJob name="job"/>
</s:scheduler>

C.3.6 cancelJob
Use this tag to cancel an existing job in Job Scheduler. This tag must be enclosed
within a scheduler tag. Specify the oracle.ias.scheduler.Job instance name
of the job you want to cancel.

The name attribute is the only supported attribute for the cancelJob tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to cancel a job named job:

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<jsp:useBean id="job" class="oracle.ias.scheduler.Job" scope="session"/>
<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:cancelJob name="job"/>
</s:scheduler>

C.3.7 addBlackoutWindow
Use this tag to add a blackout window to Job Scheduler. This tag must be enclosed
within a scheduler tag

Table C–10 describes the helper tags supported by the addBlackoutWindow tag.

The following example adds a blackout window lasting 2 hours, effective
immediately:

<%@ taglib uri="scheduler-taglib" prefix="s" %>

Table C–10 Helper Tags for the addBlackoutWindow Tag

Helper Tag Required? Description

description Yes Description of the blackout window.

duration Yes Duration of the blackout window.

schedule No Schedule for the blackout window; specifies when, how
often, and for how long the blackout window is in effect. If
no schedule is specified, the blackout window is effective
starting at the time of submission.

JSP Tag Library Examples

JSP Tag Library Reference C-13

<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addBlackoutWindow>
 <s:description>two hour downtime, effective immediately</s:description>
 <s:duration>
 <s:hours>2</s:hours>
 </s:duration>
 </s:addBlackoutWindow>
</s:scheduler>

C.3.8 removeBlackoutWindow
Use this tag to remove an existing blackout window from Job Scheduler. This tag must
be enclosed within a scheduler tag.

The following example shows how to remove a an existing blackout window using the
blackout window’s description. (See Section C.3.7, where the blackout window was
created).

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:removeBlackoutWindow>two hour downtime, effective
immediately</s:removeBlackoutWindow>
</s:scheduler>

C.4 JSP Tag Library Examples
This section contains more comprehensive examples illustrating the use of the various
tags described in this chapter.

Example C–1 shows how to list all submitted jobs.

Example C–1 Listing All Submitted Jobs

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<HTML>
<HEAD>
<TITLE>OracleAS Job Scheduler: all jobs</TITLE>
</HEAD>
<BODY>
<TABLE>
 <TR>
 <TH>Description</TH>
 <TH>Class Name</TH>
 </TR>
 <s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:jobIterator id="job">
 <TR>
 <TD><jsp:getProperty name="job" property="Description"/></TD>
 <TD><jsp:getProperty name="job" property="ClassName"/></TD>
 </TR>
 </s:jobIterator>
 </s:scheduler>
</TABLE>
</BODY>
</HTML>

Example C–2 shows how to submit a job to Job Scheduler. In this example, an HTTP
request is sent to the JSP page. Once the request is processed, the JSP forwards the
request to a status page. The parameters in the request are described in the following
table:

JSP Tag Library Examples

C-14 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Example C–2 Submitting a Job to Job Scheduler

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<jsp:useBean id="params" scope="request" class="RequestParametersBean" />
<jsp:setProperty name="params" property="*" />
<HTML>
<BODY>
<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:addJob>
 <s:description><jsp:getProperty name="params"
property="description"/></s:description>
 <s:class><jsp:getProperty name="params" property="class"/></s:className>
 <s:schedule>
 <s:duration><jsp:getProperty name="params"
property="expirationDate"/></s:duration>
 <s:interval><jsp:getProperty name="params"
property="expirationTime"/></s:interval>
 </s:schedule>
 </s:addJob>
</s:scheduler>
<jsp:forward url="/JobScheduled.html"/>
</BODY>
</HTML>

Example C–3 shows how to remove a job from Job Scheduler. In this example, a job is
removed based on its description and class. Once the job has been removed, the JSP
forwards the request to a status page.

Example C–3 Removing a Job from Job Scheduler

<%@ taglib uri="scheduler-taglib" prefix="s" %>
<HTML>
<BODY>
<s:scheduler id="scheduler" name="java:comp/env/ejb/scheduler">
 <s:jobIterator id="job" desc="description of job to remove" class="test">
 <s:removeJob/>
 </s:jobIterator>
</s:scheduler>
<jsp:forward url="/JobRemoved.html"/>
</BODY>
</HTML>

Parameter Description

description Job description.

class Job implementation class name.

expirationDate Job schedule’s expiration date.

expirationTime Job schedule’s time of expiration on the specified expirationDate.

intervalDays Job schedule’s repeat interval.

JMX MBean Reference D-1

D
JMX MBean Reference

This appendix contains detailed information about the JMX MBeans provided by Job
Scheduler and their attributes and values. The following topics are covered:

■ Job Management Bean Attributes

■ Job Scheduler Management Bean Attributes

■ Job Scheduler Aggregation Management Bean Attributes

D.1 Job Management Bean Attributes
Table D–1 summarizes the Job MBean attributes for monitoring the job.

Table D–2 summarizes the operations provided for configuring the job.

Table D–1 Job Management Bean Attributes

Attribute Access Type Description

Description Read-only java.lang.string Job description.

ClassName Read-only java.lang.string Job implementation class name.
This class provides an
implementation of the
oracle.ias.scheduler.
Executable interface.

Schedule Read-only oracle.ias.scheduler.Schedule Job schedule.

Triggers Read-only oracle.ias.scheduler.Trigger Job trigger.

Properties Read-only java.util.Properties Job properties.

State Read-only java.lang.string Job state (ACTIVE, PAUSED, or
COMPLETE).

LogLevel Read/
write

java.lang.string String representation of log
levels for the job. Possible values
are ALL, OFF, SEVERE,
WARNING, CONFIG, INFO, FINE,
FINER, and FINEST.

ExecutionThreshold Read-only long Job execution threshold (in
milliseconds).

RetryPeriod Read-only long Job retry period (in
milliseconds).

Job Scheduler Management Bean Attributes

D-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Table D–3 summarizes the DMS metrics for a job.

For more information about the metric types, see Oracle Application Server Performance
Guide.

D.2 Job Scheduler Management Bean Attributes
Table D–4 summarizes Job Scheduler attributes for monitoring Job Scheduler.

Table D–5 summarizes the operations provided for configuring Job Scheduler.

Table D–2 Job Management Bean Operations

Operation Name Parameters Return Type Description

pause None None Pauses the job.

resume replay:boolean None Resumes the job. If the parameter is true, then replay the job
if the trigger is set on resumption.

cancel None None Cancels any currently running jobs.

Table D–3 Job Management Bean DMS Metrics

Metric Name Metric Type

Notifications count

Execution average

FailedExecutions value

CancelledExecutions value

SuccessfulExecutions value

BlackoutExecutions value

ExceededThresholdExecutions value

Table D–4 Job Scheduler Management Bean Attributes

Attribute Access Type Description

jobs Read-only java.util.Collection All submitted jobs represented as a collection of
javax.management.ObjectName objects,
each of which references its associated job
management bean instance.

jobstoreProvider Read-only java.lang.string Class name of the configured job store provider
implementation. The class specified implements
the oracle.ias.scheduler.jobstore.
JobStoreProvider interface.

Job Scheduler Aggregation Management Bean Attributes

JMX MBean Reference D-3

Table D–6 summarizes the DMS metrics for a Job Scheduler.

For more information about the metric types, see Oracle Application Server Performance
Guide.

D.3 Job Scheduler Aggregation Management Bean Attributes
Table D–7 summarizes the Job Scheduler Aggregation MBean.

Table D–8 summarizes the clusterwide operations provided to configure the Job
Scheduler Aggregation MBean.

Table D–5 Job Scheduler Management Bean Operations

Operation Name Parameters Return Type Description

addBlackoutWindow java.lang.String
Windowname,
 java.lang.String
datetime,
 long durationMinutes

None Create a new execution blackout
window with the specified window
name. The date, time, and length of
time the blackout window is in effect.
The format of the date/time string
must conform to the requirement of
java.text.DateFormat using the
java.text.DateFormat.FULL style
for both date and time components.
The duration is specified in minutes.

removeBlackoutWindow java.lang.String
windowName

None Remove a previously defined
execution blackout window identified
by the specified window name.

listBlackoutWindows None java.util.
Collection

List the names of all defined blackout
windows.

Table D–6 Job Scheduler Management Bean DMS Metrics

Metric Name Metric Type

ExecJobInstances value

ActiveJobs value

PausedJobs value

CompletedJobs value

Notifications count

Table D–7 Job Scheduler Aggregation Management Bean Attributes

Attribute Access Type Description

schedulers Read-only java.util.Collection All Job Scheduler instances represented as a
collection of javax.management.ObjectName
objects, each of which references its associated
Job Scheduler management bean instance.

jobs Read-only java.util.Collection All job instances represented as a collection of
javax.management.ObjectName objects, each
of which references its associated job
management bean instance.

Frequently Asked Questions About JMX MBeans

D-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

D.4 Frequently Asked Questions About JMX MBeans

Does Job Scheduler expose a management interface?
Job Scheduler does expose a management interface that can be access through JMX
MBeans. Two kinds of MBeans are published: SchedulerMBean and JobMBean. The
former is used to manage a Job Scheduler instance and the later a specific job instance.
These MBeans are accessible from the OC4J Administration Console.

Can I enable and disable MBean publication?
 Yes. If the <env-entry> value of oracle.ias.scheduler.jmx is set to true, then
MBean publication is enabled; otherwise, the beans are not published.

What privileges are required to access the Job, Job Scheduler, and Job Scheduler
Aggregation MBeans?
Access to the Job and Job Scheduler MBeans requires the same privileges as those of
the user application in which they are defined. Access to the Job Scheduler
Aggregation MBean requires OC4J administrator privileges.

Table D–8 Job Scheduler Aggregation Management Bean Operations

Operation Name Parameters Return Type Description

pause none None Pause all jobs across all Job Scheduler instances.

resume replay; boolean None Resume all paused jobs across all Job Scheduler
instances. Replay jobs whose triggers are set on
resumption.

cancel None None Cancel any currently running jobs across all Job
Scheduler instances.

addBlackoutWindow java.lang.String
windowname
java.lang.String
datetime
long
durationMinutes

None Create a new blackout window across all Job
Scheduler instances with the specified window
name. The date, time, and duration determine
when and for how long the blackout window is
in effect. The format of the date/time string must
conform to format required by
java.text.DateFormat. The duration is
specified in minutes.

Troubleshooting Oracle Application Server Containers for J2EE E-1

E
Troubleshooting Oracle Application Server

Containers for J2EE

This appendix describes tools and methods that can be used to troubleshoot Oracle
Application Server Containers for J2EE or any scheduler-based applications. The
following topics are covered:

■ Oracle Diagnostic Logging (ODL)

■ DMS Metrics

■ Frequently Asked Questions About Job Scheduler Monitoring

■ Frequently Asked Questions About Job Scheduler Logging

E.1 Oracle Diagnostic Logging (ODL)
To simplify integration with Oracle Application Server, the standard JDK1.4.1
java.util.logging APIs are used. These APIs make a clear separation of the
logging APIs (java.util.logging.Logger) from the APIs that control writing
logged messages to various destinations (java.util.logging.Handler) and also
from APIs that control message formatting and localization
(java.util.logging.Formatter). The message are logged in ODL format using
Oracle’s ODL handler.

E.1.1 Types of Logging
Job Scheduler provides the following types of logging:

■ Run time logging, which is performed on behalf of the scheduler subsystem (for
example, a warning message as a result of misconfiguration).

■ Job logging, which is related to a job’s execution. There are two types of job
logging:

– Implicit Job Logging. This type of logging is primarily performed by Job
Scheduler and is specified as part of the job’s definition.

– Explicit Job Logging. This type of logging is performed by the actual job
implementation, meaning that it is user-defined.

E.1.1.1 Implicit Job Logging
Implicit job logging is specified as part of the job's definition. Because Job Scheduler
uses the Java logging APIs, log levels are specified using the log levels provided by the
java.util.logging.Level class.

Oracle Diagnostic Logging (ODL)

E-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

The default level of implicit logging is set at Level.FINER. Job Scheduler uses only a
subset of these levels to log messages.

If the logging level is set to Level.WARNING, log entries are written under the
following conditions:

■ Running the job resulted in a JobExecutionException exception.

■ Running the job resulted in a RuntimeException exception.

If the logging level is set to a value of Level.FINE, the following additional
information is written to the log:

■ Date and time at which the job started.

■ Date and time at which the job ended.

If the logging level is set to a value of Level.FINER, the following additional
information is written to the log:

■ Date and time at which the associated trigger evaluated a notification, and the
result of the evaluation.

If the logging level is set to a value of Level.FINEST, the following additional
information is written to the log:

■ Total elapsed time of the job.

Each log entry contains the following:

■ Job description

■ Job implementation class name

■ Date and time

■ Stack trace (if the job results in an exception)

■ Associated message parameters

E.1.1.2 Explicit Job Logging
The same logging facilities used by implicit job logging are also available to the job
implementation when the job runs. The logging context is available through the
context that is passed to the job when it is run through the JobContext object:

public interface JobContext extends Serializable {
 public Job getJob();
 public java.util.logging.Logger getLogger();
 public java.util.logging.Logger getLogger(String resourceBundleName);
}

Either of the getLogger() methods can be used, but the latter method allows a
resource bundle to be specified.

E.1.2 Configuring the Global Log Levels
You can configure the global log level of Job Scheduler. For more information, see
Section 9.4.

E.1.3 Logging Example
Example E–1 shows how to add logging capabilities to a job. Specifically, an
information log entry is written before every file is copied. This is done by retrieving

Oracle Diagnostic Logging (ODL)

Troubleshooting Oracle Application Server Containers for J2EE E-3

the logger from the job context and writing an informational log message before
performing the copy command.

Example E–1 Job Implementation with Logging

import java.io.File;
import java.io.IOException;
import java.util.logging.Logger;
import oracle.ias.scheduler.Job;
import oracle.ias.scheduler.Executable;
import oracle.ias.scheduler.Cancellable;
import oracle.ias.scheduler.JobContext;
import oracle.ias.scheduler.JobCancellationException;
import oracle.ias.scheduler.JobExecutionException;

public class CancellableBackupJobLogged implements Executable, Cancellable {

 boolean m_cancelled = false;

 public void cancel() {
 m_cancelled = true;
 }

 public void execute(JobContext context) throws JobExecutionException,
JobCancellationException {

 // retrieve the source/destination directories
 Job job = context.getJob();
 Logger log = context.getLogger();
 String source = job.getProperties().getProperty("SourceDirectory");
 String destination =
job.getProperties().getProperty("DestinationDirectory");

 // get the list of files to copy
 File directory = new File(source);
 File[] files = directory.listFiles();

 // copy the files
 Runtime runtime = Runtime.getRuntime();
 Process process;
 for (int x = 0; x < files.length; x++) {

 // cancelled?
 if (m_cancelled) {
 throw new JobCancellationException();
 }

 log.info("copying file "+files[x]);
 try {
 process = runtime.exec("/bin/cp " + files[x].toString() +
 " " + destination);
 process.waitFor();
 } catch(IOException e) {
 throw new RuntimeException("copy failed: "+files[x],e);
 } catch(InterruptedException e) {
 throw new RuntimeException("copy failed: "+files[x],e);
 }
 }
 }

DMS Metrics

E-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

}

The log level can be set by invoking the appropriate API on the logger. For example:

<code>
 Logger logger = jobContext.getLogger();
 logger.setLoglevel(Level.FINEST);
</code>

E.2 DMS Metrics
Oracle Dynamic Monitoring Service (DMS) is used to measure application specific
performance information. Two types of metrics are provided:

■ Scheduler metrics. Provides statistics pertaining to a specific Job Scheduler
instance (for example, total number of executing job instances, total number of
active jobs, or total number of paused jobs).

■ Job metrics. Provides aggregate job statistics as well as information pertaining to a
specific job (for example, the job description, state of the job, or number of failed
executions).

Table E–1 lists the information provided by scheduler metrics:

Table E–2 lists the information provided by job metrics:

Note: Since all jobs share a single logger instance, setting the log
level will affect the logging of all subsequent messages for all
instances of the job.

Table E–1 Statistic Types for Scheduler Metrics

Metric Name Description

schedulerStartTime System.currentTimeMillis() when Job Scheduler starts.

executingJobs Total number of job instances that are currently running.

activeJobs Total number of active jobs.

pausedJobs Total number of paused jobs.

completedJobs Total number of completed jobs.

Table E–2 Statistic Types for JobStats

Metric Name Description

jobSchedule String version of the schedule.

jobTrigger String version of the trigger.

jobLogLevel Log level.

jobClassName String version of the class name.

jobDescription Job description.

jobExecutionThreshold Execution threshold (in millliseconds).

jobRetryPeriod Retry period (in milliseconds).

jobState State of the job (active, paused, or complete)

execution Duration for which an instance of this job runs.

Frequently Asked Questions About Job Scheduler Logging

Troubleshooting Oracle Application Server Containers for J2EE E-5

For more information about DMS, please refer to the Oracle Application Server
Performance Guide.

E.3 Frequently Asked Questions About Job Scheduler Monitoring

How do I monitor Job Scheduler activities?
You can connect to the DMS Spy servlet to look at statistics for Job Scheduler and its
various jobs (for example, the number of currently active, completed, and currently
running jobs). For each job, information is provided about its current state, duration,
and result (for example, whether or not the job failed). For detailed information, see
the DMS Addendum.

Can I disable DMS statistics collection?
Yes. For more information, see Chapter 9.

E.4 Frequently Asked Questions About Job Scheduler Logging

How do I configure logging for Job Scheduler?
For more information about configuring logging for Job Scheduler, see Chapter 9.

How can I use logging to troubleshoot problems?
To troubleshoot a particular job, you can increase the granularity of the log messages
by changing the log level of the particular job in question. This can be accomplished
dynamically through the job MBean management interface in the Administration
Console, or by directly invoking the remote scheduler interface. The global root
logger's default level is set to Level.WARNING.

failedExecutions Number of failed runs.

cancelledExecutions Number of canceled runs since JVM startup.

successfulExecutions Number of successful runs since JVM startup.

blackoutExecutions Number of runs that were blacked out since JVM
startup.

exceededThresholdExecutions Number of executions that exceeded the execution
threshold since JVM startup.

Table E–2 (Cont.) Statistic Types for JobStats

Metric Name Description

Frequently Asked Questions About Job Scheduler Logging

E-6 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Index-1

Index

A
adding a blackout window, 4-1

example, 4-2
adding a job, 2-1

best practices, 2-4
example, 2-2
FAQs, 2-5

application.xml file, 9-2

B
best practices

for adding and removing a job, 2-4
for designing and implementing a job, 2-4
for events and listeners, 7-3
for implementing and binding event listeners, 7-3

blackout window
adding, 4-1
job execution, 4-2
overview, 1-2

blackout windows
FAQs, 4-2

bundling scheduler-ejb.jar with an EAR
file, 9-2

bundling the Job Scheduler with a J2EE
application, 9-1

C
canceling a job, 6-1

FAQs, 6-3
configuring DMS for the Job Scheduler, 9-5
configuring execution interval threshold recovery for

the Job Scheduler, 9-6
configuring JMX for the Job Scheduler, 9-5
configuring Job Scheduler-enabled applications for

deployment, 9-1
configuring logging for the Job Scheduler, 9-4
configuring persistent job storage for the Job

Scheduler, 9-2
configuring security for Job Scheduler, 9-3

D
deploying Job Scheduler-enabled applications, 9-1
designing and implementing a job

best practices, 2-4
disabling DMS, E-5
DMS metrics, E-4

how to disable, E-5
job metrics, E-4
scheduler metrics, E-4

DMS metrics for Job MBean, D-2
DMS metrics for Job Scheduler MBean, D-3
DMS Spy servlet, E-5

E
ejb-jar.xml file, 9-1
event listeners

binding to a job, 7-2
implementing and binding, 7-2

events and event listeners, 7-1
FAQs, 7-3

execution threshold, 3-4
FAQs, 3-5

F
FAQs

adding and removing a job, 2-5
blackout windows, 4-2
canceling a job, 6-3
events and event listeners, 7-3
execution threshold, 3-5
iCalendar, 3-5
JMX MBeans, D-4
logging, E-5
monitoring the OracleAS Job Scheduler, E-5
pausing and resuming a job, 5-2
triggers and notifications, 8-4

I
iCalendar

FAQs, 3-5
iCalendar recurrence schedules, A-1
implementing and binding event listeners, 7-2

best practices, 7-3

Index-2

J
java.util.logging API, E-1
java.util.logging.Formatter API, E-1
java.util.logging.Handler API, E-1
java.util.logging.Level API, E-1
java.util.logging.Logger API, E-1
java.util.Properties object, 2-2
JMX MBeans

FAQs, D-4
job execution in a blackout window, 4-2
job execution precedence, B-2
Job MBean

attributes, D-1
DMS metrics, D-2
operations, D-1

Job Scheduler
See Oracle Containers for J2EE Job Scheduler

Job Scheduler Aggregation MBean
attributes, D-3
operations, D-3

Job Scheduler MBean
attributes, D-2
DMS metrics, D-3
operations, D-2

job states, 2-5
JobCancelledException, 6-1
jobs

adding, 2-1
canceling, 6-1
example of adding a job, 2-2
example of removing a job, 2-4
execution threshold, 3-4
FAQs for adding and removing a job, 2-5
overview, 1-2
pausing, 5-1
removing, 2-4
resuming, 5-1
retry period, 3-4
schedule-based jobs and scheduling options, 3-1
sending notifications, 8-3
submitting with a retry period and execution

threshold, 3-4
submitting with a trigger, 8-3
submitting with a trigger and schedule, 8-3

JSP tag library, C-1
addBlackoutWindow tag, C-12
addJob tag, C-2

className helper tag, C-3
description helper tag, C-3
logLevel helper tag, C-11
retry helper tag, C-10
schedule helper tag, C-3
trigger helper tag, C-10

cancelJob tag, C-12
configuring an application with the tag

library, C-1
examples, C-13
pauseJob tag, C-11
removeBlackoutWindow tag, C-13
removeJob tag, C-11

resumeJob tag, C-12
scheduler tag, C-2
summary of tags, C-1

L
log level

how to set, E-4
logging

example, E-2
explicit job logging, E-2
FAQs, E-5
implicit job logging, E-1
log levels, 9-4
types of logging, E-1

M
monitoring Job Scheduler activities, E-5
monitoring the OracleAS Job Scheduler

FAQs, E-5

N
NOT operator, 8-2
notifications

example of sending to a job, 8-3
how they are generated, 8-1
overview, 1-1
sending to a trigger, 8-2
timeout notification, 8-2

O
Oracle Containers for J2EE Job Scheduler

basic implementation example, 1-2
bundling with J2EE applications, 9-1
configuring DMS, 9-5
configuring execution interval threshold

recovery, 9-6
configuring JMX, 9-5
configuring logging, 9-4
configuring persistent job storage, 9-2
configuring security, 9-3
events, 7-1
events and event listeners, 7-1
overview, 1-1
troubleshooting, E-1

Oracle Diagnostic Logging (ODL)
See logging

Oracle Dynamic Monitoring Service (DMS)
See DMS metrics

oracle.ias.scheduler.Cancellable
interface, 6-1

oracle.ias.scheduler.event.EventListener
interface, 7-2

oracle.ias.scheduler.Executable
interface, 2-1

oracle.ias.scheduler.JobContext object, 2-1
oracle.ias.scheduler.Schedule class, 3-1
oracle.ias.scheduler.Scheduler.add()

Index-3

method, 2-1
oracle.ias.scheduler.Scheduler.addBlacko

utWindow() method, 4-1
oracle.ias.scheduler.Scheduler.cancel()

method, 6-1
oracle.ias.scheduler.Scheduler.notify()

method, 8-2
oracle.ias.scheduler.Scheduler.pause()

method, 5-1
oracle.ias.scheduler.Scheduler.remove()

method, 2-4
oracle.ias.scheduler.Scheduler.resume()

method, 5-1
oracle.ias.scheduler.Trigger class, 8-1
orion-ejb-jar.xml file, 9-1
overview of the Oracle Containers for J2EE Job

Scheduler, 1-1

P
pausing a job, 5-1

FAQs, 5-2
persistent job storage

JDBC persistence, 9-2
JMS persistence, 9-3

precedence
see job execution precedence

R
recurrence rule, A-1

as defined in RFC 2445, A-1
BYDAY clause, A-6
BYSETPOS rule, A-6
COUNT rule, A-6
examples, A-6
UNTIL rule, A-6
WKST rule, A-6

removing a job, 2-4
best practices, 2-4
example, 2-4
FAQs, 2-5

repeating schedules
fixed-delay schedules, 3-3
fixed-interval schedules, 3-2
iCalendar recurrence schedules, 3-3
types of, 3-2

resuming a job, 5-1
FAQs, 5-2

retry period, 3-4
RFC 2445, A-1

S
schedule

overview, 1-2
types, 1-2

schedule-based jobs
types, 3-1

schedule-based jobs and scheduling options, 3-1
scheduler_jobstore.sql script, 9-2

scheduler-ejb.jar archive file, 9-1
bundling with an EAR file, 9-2
sample, 9-2

security
configuring for Job Scheduler, 9-3

sending notifications to a job, 8-3
setCount() method (in lieu of the COUNT

rule), A-6
setEndDate() method (in lieu of the UNTIL

rule), A-6
setting the log level, E-4
single-action schedules, 3-1
states of a job, 2-5
submitting a job

with a retry period and execution threshold, 3-4
with a trigger, 8-3
with a trigger and schedule, 8-3

T
tag library

See JSP tag library
timeout notification, 8-2
trigger

overview, 1-1
triggers

allowed logical operators, 8-1
example of submitting a job with a trigger, 8-3
example of submitting a job with both a trigger

and schedule, 8-3
implicit trigger associated with a schedule-only

job, 8-2
troubleshooting the Job Scheduler, E-1

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Overview of Oracle Application Server Containers for J2EE
	1.1 Job Scheduler Concepts and Terminology
	1.1.1 Notifications and Triggers
	1.1.2 Schedules
	1.1.3 Jobs
	1.1.4 Blackout Windows

	1.2 Basic Job Scheduler Implementation Example

	2 Adding and Removing Jobs
	2.1 Adding Jobs
	2.1.1 Implementing a Job with the Executable Interface
	2.1.2 Submitting a Job
	2.1.3 Examples of Adding Jobs

	2.2 Accessing Job Scheduler Using JNDI Lookup
	2.3 Removing Jobs
	2.4 Best Practices for Adding and Removing Jobs
	2.5 Frequently Asked Questions About Adding and Removing Jobs

	3 Oracle Application Server Containers for J2EE Scheduling Options
	3.1 Schedule-Based Jobs
	3.1.1 Single-Action Schedules
	3.1.2 Repeating Schedules
	3.1.2.1 Fixed-Interval Schedules
	3.1.2.2 Fixed-Delay Schedules
	3.1.2.3 iCalendar Recurrence Schedules

	3.2 Retry Period and Execution Threshold
	3.2.1 Retry Period
	3.2.2 Execution Threshold
	3.2.3 Submitting a Job with a Retry Period and Execution Threshold

	3.3 Frequently Asked Questions About iCalendar and Execution Threshold

	4 Oracle Application Server Containers for J2EE Blackout Windows
	4.1 Adding and Removing Blackout Windows
	4.2 Jobs Scheduled in Blackout Windows
	4.3 Frequently Asked Questions About Blackout Windows

	5 Pausing Jobs
	5.1 What Does It Mean to Pause a Job?
	5.2 How to Pause a Job
	5.3 Frequently Asked Questions About Pausing Jobs

	6 Canceling Jobs
	6.1 What Does it Mean to Cancel a Job?
	6.2 Canceling a Job
	6.3 Frequently Asked Questions

	7 Oracle Application Server Containers for J2EE Events and Listeners
	7.1 Events and Event Listeners
	7.2 Implementing and Binding a Event Listener
	7.3 Best Practices for Implementing and Binding Event Listeners
	7.4 Frequently Asked Questions About Job Listeners

	8 Oracle Application Server Containers for J2EE Triggers and Notifications
	8.1 Trigger-Driven Jobs
	8.1.1 Triggers and Notifications
	8.1.2 Cautions For Using the NOT Operator

	8.2 How Do I Submit a Job with a Trigger?
	8.3 How Do I Send Notifications to a Job?
	8.4 Frequently Asked Questions About Triggers and Notifications

	9 Deploying Job Scheduler-Enabled Applications
	9.1 Bundling Job Scheduler with a J2EE Application
	9.1.1 Generating the scheduler-ejb.jar File
	9.1.2 Bundling scheduler-ejb.jar in an Enterprise Archive (EAR) File

	9.2 Configuring Persistence for Job Scheduler
	9.2.1 Configuring JDBC Persistence
	9.2.2 Configuring JMS Persistence

	9.3 Configuring Security for Job Scheduler
	9.4 Configuring Logging for Job Scheduler
	9.5 Configuring DMS for Job Scheduler
	9.6 Configuring JMX for Job Scheduler
	9.7 Configuring Execution Interval Threshold Recovery for Job Scheduler

	10 Managing the Oracle Application Server Containers for J2EE
	10.1 Job Management Bean
	10.2 Job Scheduler Management Bean
	10.3 Job Scheduler Aggregation Management Bean

	A RFC 2445 Excerpt: Recurrence
	A.1 RFC 2445, Section 4.3.10. Recurrence Rule
	A.2 Job Scheduler Implementation of the Recurrence Rule
	A.3 RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

	B Oracle Application Server Containers for J2EE Semantics
	B.1 Semantics
	B.2 Job Precedence

	C JSP Tag Library Reference
	C.1 Configuring an Application with the JSP Tag Library
	C.2 JSP Tag Library Summary
	C.3 JSP Tag Library Reference
	C.3.1 scheduler
	C.3.2 addJob
	C.3.2.1 className
	C.3.2.2 description
	C.3.2.3 schedule
	C.3.2.3.1 duration
	C.3.2.3.2 interval
	C.3.2.3.3 threshold

	C.3.2.4 trigger
	C.3.2.5 retry
	C.3.2.6 logLevel

	C.3.3 removeJob
	C.3.4 pauseJob
	C.3.5 resumeJob
	C.3.6 cancelJob
	C.3.7 addBlackoutWindow
	C.3.8 removeBlackoutWindow

	C.4 JSP Tag Library Examples

	D JMX MBean Reference
	D.1 Job Management Bean Attributes
	D.2 Job Scheduler Management Bean Attributes
	D.3 Job Scheduler Aggregation Management Bean Attributes
	D.4 Frequently Asked Questions About JMX MBeans

	E Troubleshooting Oracle Application Server Containers for J2EE
	E.1 Oracle Diagnostic Logging (ODL)
	E.1.1 Types of Logging
	E.1.1.1 Implicit Job Logging
	E.1.1.2 Explicit Job Logging

	E.1.2 Configuring the Global Log Levels
	E.1.3 Logging Example

	E.2 DMS Metrics
	E.3 Frequently Asked Questions About Job Scheduler Monitoring
	E.4 Frequently Asked Questions About Job Scheduler Logging

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T

