ORACLE

Oracle® Containers for J2EE
Job Scheduler Developer's Guide
109 (10.1.3.1.0)

B28954-01

September 2006

Oracle Containers for J2EE Job Scheduler Developer’s Guide, 10g (10.1.3.1.0)
B28954-01

Copyright © 2006, Oracle. All rights reserved.

Primary Author: Kevin Yu Hwang

Contributors: Gary Moyer, Tony D’Silva

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

Pl B C 8 ettt ettt ettt ettt ettt ettt ettt ettt Xi
F AN [11T [T Xi
Documentation ACCESSIDIITYc.cviiicec e sr et Xi
REIAted DOCUMEBNTALIONvviiiveiecet e ettt ettt e e ettt e e st e s sb et e e st et e s aaeeessabeesabseseasaeeessaeessasseesasseserrbeessasesesns Xii
(O00] 0 1V/=T 1 1 T0] o 1T Xii

1 Overview of Oracle Application Server Containers for J2EE

11 Job Scheduler Concepts and TermMinNOIOgYccociiiieeriiinieeese e 1-1
1.1.1 (N[) or= Ua o] g TSR= g T B I g [T T SR 1-1
1.1.2 K3 To] 1= 0 11 1= T 1-2
1.1.3 JODS o bt b ettt b et e b b et e 1-2
114 2] FoTod @ 10§ A4V T T (oS R 1-2
1.2 Basic Job Scheduler Implementation EXample ... 1-2

2 Adding and Removing Jobs

21 AAAING JODS .. 2-1
21.1 Implementing a Job with the Executable Interface...........cccooveiiiieiin v 2-1
21.2 SUDMITEING @ J0D ...t e 2-2
2.1.3 Examples of AddING JODS ..o 2-2
2.2 Accessing Job Scheduler Using INDI LOOKUPccoiiiriiiinieeeseee e 2-4
2.3 REMOVING JODS ...ttt bbbt 2-4
24 Best Practices for Adding and RemoViNg JODSc.ccoveiiiiiie i 2-4
25 Frequently Asked Questions About Adding and Removing JObS...........ccccviiiiiiiincnns 2-5

3 Oracle Application Server Containers for J2EE Scheduling Options

3.1 o] g = Lo [[T ST 1= o o] o RSP 3-1
3.1.1 SiNGIE-ACtioN SChEAUIES ..o 3-1
3.1.2 Repeating SCREAUIES.........ccci et en e 3-2
3.1.21 Fixed-Interval SChedUIES ... 3-2
3.1.2.2 Fixed-Delay SChEAUIES..........ccooiiiiiece et sere e 3-3
3.1.2.3 iCalendar Recurrence SChedUIES............ccoiiiiiii i 3-3
3.2 Retry Period and Execution Threshold.........cccoooieiiiin e 3-4
3.21 RETIY PEIIOM ...ttt bbbttt 3-4
3.2.2 EXecution TRreShOId. s 3-4
3.2.3 Submitting a Job with a Retry Period and Execution Threshold.............c.ccccooeinennnn. 3-4

3.3 Frequently Asked Questions About iCalendar and Execution Threshold........................ 3-5

Oracle Application Server Containers for J2EE Blackout Windows

4.1 Adding and Removing BIackout WINAOWS...........cccceeviriiiiiiiiie e 4-1
4.2 Jobs Scheduled in BIaCKOUL WINAOWSccviiiiiiiiiieiceeeeic e 4-2
4.3 Frequently Asked Questions About Blackout WIiNAOWS.........c.cccevevieciine e 4-2

Pausing Jobs

5.1 What Does [t Mean t0 PAUSE @ JOD?.......ccooiiiiiiii ittt s 5-1
5.2 [L0 AV R (o Y =10 (Y- o o R 5-2
5.3 Frequently Asked Questions About Pausing JODS ... 5-2

Canceling Jobs

6.1 What Does it Mean to Cancel @ JOD? ... s 6-1
6.2 (O TaTot=] 1Tg o J= W o] o TSSOSO 6-1
6.3 Frequently ASKed QUESTIONS.........ccviieiiie ettt se e sae e e e e e s e sneeneenreeees 6-3

Oracle Application Server Containers for J2EE Events and Listeners

7.1 EVeNts and EVENT LISTENEIScoiiiiiiiieeeie e bbbt 7-1
7.2 Implementing and Binding a EVENT LISTENET ... 7-2
7.3 Best Practices for Implementing and Binding Event Listeners.........cccccocvvvvieivcivcnesnen, 7-3
7.4 Frequently Asked Questions About JOb LiSteners.........ccocvvveveii i 7-3

Oracle Application Server Containers for J2EE Triggers and Notifications

8.1 LI g [e [Tl BT A= I] oL TSSO 8-1
8.1.1 Triggers and NOTITICAtIONS.......c.ciiiiiic e 8-1
8.1.2 Cautions For Using the NOT OPEeratorcccvieiviiieiiee it 8-2
8.2 How Do | Submit a Job With @ THQQEI? ..c..ccuvee e 8-3
8.3 How Do | Send Notifications t0 @ JOD? ..ot 8-3
8.4 Frequently Asked Questions About Triggers and Notifications..........ccccccevvvveevicicinen, 8-4

Deploying Job Scheduler-Enabled Applications

9.1 Bundling Job Scheduler with a J2EE Applicationcccccooveviiiiiii i, 9-1
9.1.1 Generating the scheduler-gjb.jar Fileccccvovii i 9-1
9.1.2 Bundling scheduler-ejb.jar in an Enterprise Archive (EAR) File......c.ccoccoeoviininne. 9-2
9.2 Configuring Persistence for Job Scheduler............coovviiii e 9-2
9.2.1 Configuring JDBC PerSiStENCEcuciiiiriieiieiiresie et 9-2
9.2.2 Configuring JMS PeISISTENCE.ccveiiecieriieesie et see e ere e e e sae e eenes 9-3
9.3 Configuring Security for Job SChedUler...........coiiiiii e 9-3
9.4 Configuring Logging for Job SChedUIEr ... 9-4
9.5 Configuring DMS for JOb SCheUIEK ..o 9-5
9.6 Configuring JIMX for JOb SChEAUIETccccviiiie e 9-5
9.7 Configuring Execution Interval Threshold Recovery for Job Schedulerc.ccocee.... 9-6

10

Managing the Oracle Application Server Containers for J2EE
10.1 JOb ManagemeNnt BEAN...........cciiriiuiiiiiiiiririeieie sttt bbbt et 10-1
10.2 Job Scheduler Management BEANccccuieieiiieie ettt 10-1
10.3 Job Scheduler Aggregation Management BEaAN..........c.ccccvvveverieeriineeneeeesie e seee e 10-2
RFC 2445 Excerpt: Recurrence

A.l RFC 2445, Section 4.3.10. RECUITENCe RUIE ...ttt A-1
A.2 Job Scheduler Implementation of the Recurrence RUle............cccocoviiiinncnccce A-6
A.3 RFC 2445, Section 4.8.5.4. Recurrence Rule EXamples........cccccooeviiiiiieccc e A-6

Oracle Application Server Containers for J2EE Semantics

B.1 L= 0 F= T gL (o1 B-1
B.2 N [o] o 24 £=To1=T0 [T o Lot TSR B-2

JSP Tag Library Reference

Cl Configuring an Application with the JSP Tag Librarycccooiinniiiiincee C-1
C.2 JSP Tag Library SUMMAIY ..ottt enae C-1
C3 JSP Tag Library REFEFENCEcccoi i e C-2
C31 SCRBAUIET ... bbbttt bttt bbb bbb e bt C-2
C.3.2 =T (o o] o OSSR C-2
C.3.21 ClASSINAIMIE ...ttt bbb bbbt et e b C-3
C.3.2.2 (0 122 od | o1 Lo o OSSP C-3
C.3.23 SCREBAUIE ... e e ettt r ettt n e C-3
c.3.24 Lo o = SR C-10
C.3.25 FEEIY s C-10
C.3.2.6 [oTo - 7= PSSR C-11
C.3.3 LT 010)= o] o TSRS C-11
C.34 PAUSEIOD ... e e et be e reenreers C-11
C.35 FESUIMEBIOD .o ettt sr et eens C-12
C.3.6 CANCEIIOD ... e C-12
C.3.7 AdABIACKOUTWINAOWcoviiiiiiiciieiiie et C-12
C.3.8 remoVeEBIACKOUTWINUOWcooiiiiiie e C-13
c4 JSP Tag Library EXAMPIES.......cccooiiiie ettt C-13

JMX MBean Reference

D.1 Job Management Bean AtIriDULES...........cccviii i D-1
D.2 Job Scheduler Management Bean AttriDULEScccoovveiiii e D-2
D.3 Job Scheduler Aggregation Management Bean Attributes. ... D-3
D.4 Frequently Asked Questions ADOUt JIMX MBEANS.........ccccveiereerenieeieie e e seesre e D-4

Troubleshooting Oracle Application Server Containers for J2EE

E.1l Oracle Diagnostic LOGgiNg (ODL)ccoiiiiiiiiie ettt E-1
E.1.1 TYPES OF LOGGING .viieieieiivie sttt ettt et ebe et teenteeneeneeeneaneas E-1
E.1.11 IMPLICIEJOD LOGGING ... ittt E-1

E.1.1.2 EXPHCIt JOD LOGGINGiniiiiieieieiesiei e E-2

E.1.2 Configuring the Global LOg LEVEIS.........coocieiii e E-2

E.1.3 LOGQING EXAMIPIE ..ot bbb E-2

E.2 DIMS IMIBEIICS ...ttt ettt bbb bbbt bbbt bbb b e et ne e e E-4

E.3 Frequently Asked Questions About Job Scheduler Monitoring........cccccoevvevvevvnnvcieenen, E-5

E.4 Frequently Asked Questions About Job Scheduler LOgQging........cccocvvveveiieeiieiecvene e, E-5
Index

vi

List of Examples

2-1 Implementing a Job t0 Perform BaCKUPS.........cccoiiiiiiiiieiccee e st ens 2-2
2-2 Specifying Job Properties and SUBMItLING 8 JOD ..o 2-3
2-3 REMOVING @ J0D ..o e 2-4
3-1 Submitting a Job at @ SPECITIC TIME ...c.iiiiii e e 3-1
3-2 Submitting a Repeating Job with a Fixed-Interval Schedule.............ccccoooiiiniiinincinn, 3-2
3-3 Submitting a Repeating Job with a Fixed-Delay Schedulecccooriniiniiniiinn, 3-3
34 Submitting a Repeating Job with an iCalendar Recurrence Schedulec.ccooevvieinnns 3-3
3-5 Submitting a Job with a Retry Period and Execution Threshold............cccccoooninniiiinne. 3-5
4-1 Adding @ BIackOUL WINAOWc.oiiiiiiiiiie e e 4-2
5-1 PaUSING Q0D ..o e 5-2
5-2 Resuming a Job WithOUEt REPIAYc..ciiiiiiiiciiice e 5-2
5-3 Resuming a Job With REPIAY ..o 5-2
6-1 Backing Up Data on a Regular Basis with an Option to Cancelc.ccccooveeveivie e, 6-1
7-1 Job Listener IMPIemMENTAtiONccoiiiiiiiie e 7-2
7-2 Binding @ LIStENEr t0 @ JODc.ciiiiiiiiiiiie et bbb 7-2
8-1 SUbMItting @ JOD With @ THIQQETiiiii et re s 8-3
8-2 Submitting a Job with a Trigger and a Schedule............cccocoiiiiini e 8-3
8-3 Sending a NOtIfication 0 8 JOD ..o e 8-4
9-1 Sample scheduler-gjb.jar File........coo i e 9-2
9-2 Adding the Job Scheduler to the application.Xml File...........ccocooiiiiiiniiinieee 9-2
9-3 TWO-TIEr SECUTILY IMOGE ... e 9-4
9-4 Changing the LOG LEVEL ...ttt s 9-4
9-5 COoNFIGUITNG DIMS..... bbbt bbbttt b et 9-5
9-6 CONFIGUITNG JIMX Lot b bbb bbbttt 9-5
9-7 Configuring Execution Threshold RECOVEIY ... 9-6
C-1 Listing All SUDMITEE JODS ..o C-13
C-2 Submitting a Job t0 JOD SChEAUIETccooiiiiicece e C-14
Cc-3 Removing a Job from JOb SChedUIEr ..o C-14
E-1 Job Implementation With LOGQINGcccooiiniiiiiiiiiec et E-3

Vii

List of Figures

viii

RELIY PEIIOM ...t bttt bbb st b e et sbe b bt 3-4
EXECULION TRIESNOIA.o bbb 3-4
Jobs Scheduled in a Blackout Window with Retry Period Enabled.............c.ccooeiiiiinnnen. 4-2
Pausing and Resuming a Job with a Single-Action Schedule..............ccccoiniiiiiniiinnen, 5-1
Pausing and Resuming a Job with a Repeating Schedule...........ccccccooeiiiiiiviiicie e, 5-2
System MBean Browser for Job Scheduler Aggregation MBeanccccooeeveiiiinien 10-2
JOD SChedUIET SEMANTICSo b e B-1

List of Tables

4-1 addBlackoUtWINAOW Parameters.........cc.eiiieieiiieiieeee ettt see s 4-1
7-1 JOD SCHEAUIET EVENTS ...t ettt b et 7-1
9-1 <env-entry> Values and LOg LEVEISccocciiieiiiee et 9-5
10-1 JMX MBEAN SUMMEIYoiiviiriiiiiiieiieieiste ettt sr e sn e 10-1
B-1 Precedence of Job Scheduler Operations............ccccvinieiicicsi e B-3
C-1 JSP Tag Library SUMMAIY ..ottt sre e C-2
Cc-2 Scheduler Tag AtIFIDULES. ... C-2
Cc-3 Helper Tags for the addob Tag......ccccveieiiie e C-3
c-4 Helper Tags for the schedule Helper Tag........ccccoevieiiie e C-3
C-5 Helper Tags for the duration Helper Tag........ccoeiiiiniinieerse e C-4
C-6 Helper Tags for the interval Helper Tagccooeiiiii e C-8
Cc-7 Helper Tags for the end HElPer Tagcc.ccoveviiieiece st C-9
Cc-8 Helper Tags for the threshold Helper Tag ... C-9
c-9 Helper Tags for the retry Helper Tag... ..ottt s C-10
C-10 Helper Tags for the addBlackOUtWINAOW Tag.......cccceieiieiieiieiiee e C-12
D-1 Job Management Bean ALIFIDULES ..o e D-1
D-2 Job Management Bean OPerations.........cccccvciveieiieiieiicese et D-2
D-3 Job Management Bean DMS MELFICS.......ccciieiieiieiiciece s ere e D-2
D-4 Job Scheduler Management Bean AttribULES ... D-2
D-5 Job Scheduler Management Bean OpPerationsccccevvevereeniiiee e seese e D-3
D-6 Job Scheduler Management Bean DIMS MELIICScovcvviiiieeie it D-3
D-7 Job Scheduler Aggregation Management Bean AttribULeS...........ccocevveiiinieiceincnene, D-3
D-8 Job Scheduler Aggregation Management Bean Operations...........c.ccceceveeevieveeivneeieeeenns D-4
E-1 Statistic Types for SCheduler MEtIICScoiviiiiii e E-4
E-2 Statistic TYPES FOr JODSTALS.......e i E-4

Audience

Preface

This guide describes how to use the Oracle Application Server Containers for J2EE,
and how to configure Job Scheduler-enabled applications for deployment.

This guide is intended for anyone developing Enterprise JavaBeans for OC4J client
applications. Written especially for programmers, it will also be of value to architects,
systems analysts, project managers, and others interested in J2EE applications. To use
this guide effectively, you must have a working knowledge of J2EE.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

ht t p: // www. or acl e. com accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Xi

Related Documentation

For more information, see the following guides in the Oracle Containers for J2EE 10g
Release 10.1.3 documentation set:

« Oracle Containers for J2EE Services Guide

« Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLS, code
in examples, text that appears on the screen, or text that you enter.

Xi

1

Overview of Oracle Application Server

Containers for J2EE

Oracle Application Server Containers for J2EE enables J2EE clients to submit
asynchronous, autonomous background jobs to be run in Oracle Containers for J2EE
(OC4)). Some major features of this component are:

API for submitting, controlling, and monitoring jobs

APIl-level Java Transaction API (JTA) support for job submission and control
Temporal- and trigger-based jobs

Automatic retry of failed jobs

Job blackout windows

Java Management Extensions (JMX) MBeans for monitoring and administering
Oracle Application Server Containers for J2EE

Configurable logging of various system, error, and warning messages

This chapter provides an overview of Oracle Application Server Containers for J2EE.
The following topics are covered:

Job Scheduler Concepts and Terminology

Basic Job Scheduler Implementation Example

1.1 Job Scheduler Concepts and Terminology

This section introduces basic concepts and terminology you should know before using
Job Scheduler. The following topics are covered:

Notifications and Triggers
Schedules
Jobs

Blackout Windows

1.1.1 Notifications and Triggers

A notification is a message sent from the application to a trigger. The message contains
information about the occurrence of a specific condition or conditions in the
application.

The recipient of a notification is known as the trigger. Each trigger contains a
description of a condition that is evaluated against any incoming notifications. When a

Overview of Oracle Application Server Containers for J2EE 1-1

Basic Job Scheduler Implementation Example

trigger (or multiple triggers) evaluates to true, a job associated with the condition is
started.

Triggers are described by logical expressions, where the operands are the notifications.
Notifications are generated either programatically by the application or as a result of a
timer expiration (for example, if a job does not execute by a specific time). A
notification may be sent to either a specific trigger or sets of triggers. Triggers,
however, do not generate notifications when they receive notifications.

For more information, see Chapter 8.

1.1.2 Schedules

A schedule specifies the time and period or periods when a timeout notification is sent
to the associated trigger. The specific point in time is expressed as the expiration, and
the frequency is expressed as an interval. A schedule instance can be categorized as
either single-action (non repeating) or repeating.

For more information about schedules, please refer to Chapter 3.

1.1.3 Jobs

For every job, there is an associated trigger. When the trigger expression evaluates to
true, the job is executed. A job is implemented using a Java class and must comply
with the job contract, which is a system-supplied Java interface implemented by all
jobs. This contract specifies the interface used by Job Scheduler to run the job.

1.1.4 Blackout Windows

A blackout window specifies a period of time during which all jobs are suppressed. A
blackout window contains a schedule and a duration (for example, Friday between
6:00 p.m. and 12:00 a.m.). A blackout window may also be repeating (for example,
every Tuesday between 6:00 p.m. and 8:00 p.m.).

For more information, see Chapter 4.

1.2 Basic Job Scheduler Implementation Example

In this example, the application developer wants to create a report that can be run
periodically according to the application’s needs. The application will submit requests
to run the report, supplying some query input parameters and stating how often to
run the report.

1. The developer writes a class that implements the Job Scheduler Execut abl e
interface, using the execut e() and get Cont ext () methods. The execut e()
method is written by the developer and will be called by Job Scheduler. The
application calls the system-supplied get Cont ext () method to get the input
parameters.

For more information about adding jobs, see Chapter 2.

2. The developer writes a client program for the application through which a user
can submit a report request, cancel a report request, or check to see what requests
were made. To service requests, the client program gets a reference to a Scheduler
Enterprise Java Bean (EJB) deployed with the application (the Job Scheduler is
deployed as a stateless session EJB). Note that the client program could be
implemented as a standalone GUI, a servlet, or indirectly through another EJB.

1-2 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

Basic Job Scheduler Implementation Example

For more information about deploying Job Scheduler-enabled applications, see
Chapter 9.

a.

To submit a job, the program parameters are specified using the
java. util.Properti es class. Then, the Schedul er. add() method is
used to submit the job to be run at a particular time.

To find out what jobs were submitted, use the Schedul er . get Jobs()
method. Both pending and completed jobs are displayed.

To remove a job, use the Schedul er. renpve() method. This action
terminates any future scheduling of a job.

To cancel jobs that are running, use the Schedul er. cancel () method.

For more information about canceling jobs, see Chapter 6.

The developer packages the application, including:

a.

b.

The classes described previously.

An EJB JAR file referencing Job Scheduler EJB. This is a pre-written,
system-supplied EJB that has methods for submitting, querying, and
controlling jobs.

The client portion of the application.

For more information, see Chapter 9.

Overview of Oracle Application Server Containers for J2EE 1-3

Basic Job Scheduler Implementation Example

1-4 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

2

Adding and Removing Jobs

This chapter describes how to add and remove jobs use Oracle Application Server
Containers for J2EE. The following topics are covered:

« Adding Jobs

« Accessing Job Scheduler Using JNDI Lookup
« Removing Jobs

« Best Practices for Adding and Removing Jobs

« Frequently Asked Questions About Adding and Removing Jobs

2.1 Adding Jobs

Before a job can be run, it must first be submitted to Job Scheduler.

To add a job, you must implement the or acl e. i as. schedul er. Execut abl e
interface, then submit the job to Job Scheduler using the
oracl e.i as. schedul er. Schedul er. add() API method.

For more information about add() , see Oracle Containers for J2EE Job Scheduler API
Reference.

2.1.1 Implementing a Job with the Executable Interface
The or acl e. i as. schedul er. Execut abl e interface is defined as follows:

public interface Executable {
public void execute (JobContext context) throws JobExecuti onException,
JobCancel | ati onExcepti on;

}

This interface specifies the contract by which a Java class is invoked by the Job
Scheduler. All Java classes submitted to Job Scheduler must implement this interface.

Note: Any class implementing this interface must provide an empty
constructor. Each time a submitted job is run, a new instance of the
object is created using this constructor. As such, a job implementation
should not rely on instance or static member variables for maintaining
state.

The execut e() method is invoked by Job Scheduler when the associated job’s trigger
fires. Use the or acl e. i as. schedul er. JobCont ext object as the input parameter

Adding and Removing Jobs 2-1

Adding Jobs

to enable a job to examine and evaluate all associated metadata related to the job
definition and access to the logging subsystem.

Theoracl e. i as. schedul er. JobCont ext object provides the following methods

=« getlLogger()

This method returns a JDK 1.4-compliant logger object
java. util.loggi ng. Logger that references the application's log.

« getJob()

This method returns an or acl e. i as. schedul er. Job object used to access the
job's configuration information.

Theoracl e.i as. schedul er. JobCont ext object provides access to the job’s data
and associated subsystems. For more information, refer to Oracle Containers for J2EE Job
Scheduler API Reference.

2.1.2 Submitting a Job

For a job to run, it must first be submitted to Job Scheduler. This is done using the
oracl e. i as. schedul er. Schedul er. add() method. As part of the submission,
input parameters may be specified as name-value pairs using a

java. util. Properti es object. For maintenance and reusability purposes, job
parameters should be used whenever possible (see Example 2-1).

With the or acl e. i as. schedul er. Schedul er. add() method, you can add a job
with a schedule, a trigger, or both.

Once the job is submitted, the specified class is executed by Job Scheduler according to
the specified schedule or trigger. If the schedule does not repeat, the job becomes
inactive after the timer expiration notification is sent to the associated trigger.

When a job is successfully submitted, an or acl e. i as. schedul er. JobHandl e
object is returned. This object functions as a handle to the submitted job. This handle
may be used to perform certain administration tasks on the job (for example, pausing
the job). Additionally, this object may be stored by the application for later use.

The add() method provides transaction support. If the transaction is rolled back for
any reason, the operation is canceled and the job is not created. In addition, a job will
not run until the transaction is committed.

2.1.3 Examples of Adding Jobs

This section provides examples of how to implement and submit a job to Job
Scheduler.

Example 2-1 Implementing a Job to Perform Backups

Scenario: A legacy application was migrated to the J2EE environment, part of which
includes data stored in a file system. As part of the J2EE application, a job is required
to back up the data on a regular basis. The job requires two input parameters:

1. Source directory: the directory from which files will be copied
2. Destination directory: the directory to which files will be copied

The source and destination directories could have been included in the job
implementation. However, by specifying these as parameters to the job properties, the
job can be used again without modification. See Example 2-2 for an example of how
properties are specified.

2-2 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

Adding Jobs

inport java.io.File;

inport java.io.lCOException;

inport oracle.ias.schedul er.Job;

inport oracle.ias.schedul er. Execut abl e;

inport oracle.ias.schedul er.JobContext;

inport oracle.ias.schedul er.JobExecuti onExcepti on;

public class BackupJob inpl ements Executable {
public void execute(JobContext context) throws JobExecutionException {

/I retrieve the source/destination directories
Job job = context.getJob();
String source = job.getProperties().getProperty("SourceDirectory");
String destination =
j ob. get Properties().getProperty("DestinationDirectory");

Il get the list of files to copy
File directory = new File(source);
File[] files = directory.listFiles();

Il copy the files
Runtime runtine = Runtime. getRuntine();
Process process;
for (int x =0; x <files.length; x++) {
try {
process = runtine.exec("/binfcp " + files[x].toString() +
" " + destination);
process. wait For ();
} catch(ICexception e) {
t hrow new Runti neException("copy failed: "+files[x],e);
} catch(InterruptedException e) {
throw new Runti neException("copy failed: "+files[x],e);

}

}

Notice that the get Pr opert y() object is used to retrieve the source and destination
directories. Instead of specifying these directories directly in the job implementation,
they are specified when the job is submitted to Job Scheduler (see Example 2-2).

Using the execut e() method fulfills the contract for implementing the
oracl e. i as. schedul er. Execut abl e interface. This method is invoked every
time the job is executed.

Example 2-2 Specifying Job Properties and Submitting a Job

Once a job is created, it must be submitted to Job Scheduler. A job is submitted using
the add() method provided by Job Scheduler. The following code example shows
how the job is submitted with properties (in this case, the source and destination
directories):

/] set up the properties

java.util.Properties properties = new Properties();
properties. put("SourceDirectory","/mt/data");
properties.put("DestinationDirectory","/mt/backup");

[l submt the job

Adding and Removing Jobs 2-3

Accessing Job Scheduler Using JNDI Lookup

jobHandl e = schedul er.add("file backup job, runs every week",
new BackupJob(). get O ass(). get Nang(),
new Schedul e(),
properties);

Notice that the job properties and schedule are specified when the job is submitted to
Job Scheduler. For more information about specifying scheduling options, see
Chapter 3.

2.2 Accessing Job Scheduler Using JNDI Lookup

The Java Naming and Directory Interface (JNDI) is a native Java API that enables any
Java-based application to store and retrieve any Java object. It provides naming and
directory services for Java applications, enabling them to store and retrieve named
Java objects of any type.

The following code example shows how to perform a JNDI lookup to access Job
Scheduler:

Initial Context ic = new Initial Context();

hj ect obj Ref = ic.|ookup("java: conp/ env/ ej b/ schedul er");
Schedul er Home hone = (Schedul er Hone)

Por t abl eRenot eChj ect . nar r ow(obj Ref, Schedul er Hone. cl ass) ;
Schedul er schedul er = hone.create();

For more information about JNDI, go to:

http://java. sun. com products/jndi/index.jsp

2.3 Removing Jobs

After a job is submitted, it can be removed with the

oracl e. i as. schedul er. Schedul er. renove() method. This method does not
remove any job executions that are running, but it does remove the job definition, thus
preventing any job executions from being run in the future.

For more information about the r enove() method, see Oracle Containers for J2EE Job
Scheduler API Reference.

The following code example shows how to remove the BackupJob job implemented
in Example 2-1 and submitted in Example 2-2:

Example 2-3 Removing a Job

/] remove a job
schedul er. renove(j obHandl e) ;

If you want to stop a job execution that is currently running, you must cancel the job.
For more information about canceling jobs, see Chapter 6.

If you want to stop scheduled jobs from running but do not want to have their
definitions removed from the system, thereby preventing them from ever running
again, you should pause the job. For more information about pausing jobs, see
Chapter 5.

2.4 Best Practices for Adding and Removing Jobs

When designing and implementing a job, keep the following in mind:

2-4 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

Frequently Asked Questions About Adding and Removing Jobs

« All job metadata is available at run time. Use the
oracl e.i as. schedul er. JobCont ext object to access it.

« Input parameters can improve job reuse. During implementation, identify input
parameters and use properties as necessary.

« Ajob that needs to be canceled must use the oracle.ias.scheduler.Cancellable
interface. Trying to cancel a job that does not use this interface causes an
exception.

« Implementation of the execute() method must eventually return control to the
caller. Avoid gating job completion based on an application condition or
conditions that require a long time before the condition is met (for example, in
excess of one minute). Instead, use a trigger to start the job execution when the
application’s condition or conditions have ben met. In doing so, you minimize the
processing resources required by the application.

2.5 Frequently Asked Questions About Adding and Removing Jobs

What are the possible states for a job?
At any point in time, a job can be in one of three states: active, paused, or completed.

In the active state, a job can receive notifications and evaluate the trigger expression. If
the trigger evaluates to true in the active state, the job is executed and the trigger is
reset to false.

In the paused state, a job can receive notifications and evaluate trigger expressions.
However, if a trigger evaluates to true in the paused state, the trigger is not reset to
false and the job execution is suppressed.

In the completed state (which is a valid state for schedule-based jobs), scheduling of
jobs is completed and no new jobs can be scheduled. If a job is not schedule-based,
then it cannot be in the completed state. For more information about schedule-based
jobs, see Chapter 3.

Does removing a job also remove the outstanding retry (of ajob that failed to
run) and replay (of a paused job) executions?
Yes, removing a job means no job executions will occur.

For more information about retry, see Chapter 3. For more information about replay,
see Chapter 5.

Adding and Removing Jobs 2-5

Frequently Asked Questions About Adding and Removing Jobs

2-6 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

3

Oracle Application Server Containers for
J2EE Scheduling Options

This chapter describes how to create jobs based on schedules. The following topics are
covered:

« Schedule-Based Jobs
« Retry Period and Execution Threshold
« Frequently Asked Questions About iCalendar and Execution Threshold

3.1 Schedule-Based Jobs

This section contains descriptions and some job implementation examples for
schedule-based jobs.

A schedule-based (or schedule-driven) job is associated with a schedule, meaning that
the job is time-based. In contrast, a job associated with a trigger is event-based and
typically driven by events initiated by the application. When a schedule expires, a
timeout is generated, which is used to trigger the execution of the job.

There are two primary types of schedule-based jobs:
« Single-action schedules.

This type of schedule has a single expiration, and should be used when a job is run
only once.

« Repeating Schedules.

This type of schedule has multiple expirations, and should be used when a job is
run repeatedly.

3.1.1 Single-Action Schedules

Single-action schedules are implemented with the
oracl e.i as. schedul er. Schedul e class. This type of schedule has a single
attribute called expi r at i on, which is the initial expiration of the schedule.

Example 3-1 Submitting a Job at a Specific Time

In continuing the example started in Example 2-1, the developer and administrator
need to run the backup jobs on an as-needed basis. To do this, a single-action schedule
will be used. The following code example shows how the job is set up with a
single-action schedule and submitted:

/1 set up the properties

Oracle Application Server Containers for J2EE Scheduling Options 3-1

Schedule-Based Jobs

java.util.Properties properties = new Properties();
properties. put("SourceDirectory","”/mt/data");
properties. put("DestinationDirectory","/ mt/backup");

Il set up the schedul e, single-action at nidnight
Schedul e schedul e = new Schedul e();

Cal endar midni ght = Cal endar. get|nstance();

m dni ght . set (Cal endar . HOUR_OF_DAY, 24) ;

m dni ght . set (Cal endar. M NUTE, 0) ;

m dni ght . set (Cal endar . SECOND, 0) ;

schedul e. set Expi rati on(ni dni ght);

/1 subnmt the job

schedul er. add("file backup job, runs at midnight",
new BackupJob(). get O ass(). get Nange(),
schedul e,
properties);

3.1.2 Repeating Schedules

There are three types of repeating schedules:
« Fixed-interval schedule

This type of schedule uses the or acl e. i as. schedul er. I nt erval Schedul e
class for repeating jobs with a fixed interval (for example, a job that runs once per
week, every friday at midnight).

« Fixed-delay schedule

This type of schedule uses the or acl e. i as. schedul er. | nt erval Schedul e
class for repeating jobs with a fixed interval between job executions (for example, a
job where the end of one job execution and the start of the next job execution is one
week).

= iCalendar recurrence schedule

This type of schedule uses the or acl e. i as. schedul er. Recur Schedul e class
for repeating jobs with a schedule that does not repeat at regular intervals (for
example, the first day of every month, which is not a fixed interval because the
number of days in each month varies).

3.1.2.1 Fixed-Interval Schedules
A fixed-interval schedule has the following attributes:

Attribute Description

expiration Initial expiration

i nterval Interval (specified in milliseconds) between expirations
end date Date and time at which the schedule ends

Example 3-2 Submitting a Repeating Job with a Fixed-Interval Schedule

To expand on Example 3-1, suppose the developer and administrator need to run the
backup job on a weekly basis. To do this, a fixed-interval repeating schedule will be
used, as shown in the following code example:

Il set up the properties
java.util.Properties properties = new Properties();
properties. put("SourceDirectory","”/mt/data");

3-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Schedule-Based Jobs

properties.put("DestinationDirectory","/mt/backup");

/'l set up the schedule, repeats every week
I nterval Schedul e schedul e = new I nterval Schedul e();
schedul e. set I nterval (I nterval Schedul e. EVERY_WEEK) ;

[l submt the job

schedul er. add("file backup job, runs at m dnight",
new BackupJob().get O ass(). get Nane(),
schedul e,
properties);

3.1.2.2 Fixed-Delay Schedules

To expand on Example 3-1, suppose the developer and administrator need to run the
backup job on a more regular basis (for example, one week between each backup). To
do this, a fixed-delay repeating schedule will be used, as shown in the following code
example:

Example 3-3 Submitting a Repeating Job with a Fixed-Delay Schedule

/] set up the properties

java.util.Properties properties = new Properties();
properties. put("SourceDirectory","/mt/data");
properties. put("DestinationDirectory","/mt/backup");

/'l set up the schedule, repeats every week

I nterval Schedul e schedul e = new I nterval Schedul e();
schedul e. set I nterval (I nterval Schedul e. EVERY_WEEK) ;
schedul e. set Fi xedDel ay(true);

/1 subnit the job

schedul er. add("file backup job, runs at m dnight",
new BackupJob().get d ass(). get Nane(),
schedul e,
properties);

3.1.2.3 iCalendar Recurrence Schedules

The attributes for an iCalendar recurrence schedule are based on RFC 2445, "Internet
Calendaring and Scheduling Core Object Specification (iCalendar)." For more
information, see Appendix A.

Example 3-4 Submitting a Repeating Job with an iCalendar Recurrence Schedule

To expand on Example 3-1, suppose the developer and administrator need to run the
backup job on a monthly basis, on the first of each month. To do this, an iCalendar
recurrence schedule will be used, as shown in the following code example:

/1 set up the properties

java.util.Properties properties = new Properties();
properties. put("SourceDirectory","/mt/data");
properties.put("DestinationDirectory","/mt/backup");

/] set up the schedule, repeats on the first day of every nonth
Recur Schedul e schedul e = new Recur Schedul e("freg=nont hl y; bymont hday=1;");

/] submt the job

schedul er. add("file backup job, runs at mdnight",
new BackupJob().get O ass(). get Nane(),
schedul e,

Oracle Application Server Containers for J2EE Scheduling Options 3-3

Retry Period and Execution Threshold

properties);

3.2 Retry Period and Execution Threshold

This section discusses retry period and execution threshold, and provides an example
of each in relation to a scheduled job.

3.2.1 Retry Period

A job execution that fails may be retried after a time period. This time period is called
the retry period and is specified in milliseconds. If this period is not set as part of the
job definition, the job's executions will not be retried. For example, consider

Figure 3-1:

Figure 3-1 Retry Period

Scheduled Scheduled
Run-Time Job Retry Run-Time
Y
)' Y
X ® X >
12:00 a.m. 6:00 a.m. 12:00 p.m. 6:00 p.m. 12:00 a.m,

This illustration depicts a repeating schedule, where the job should run each night at
midnight. The retry period is three hours, meaning that if the initial job execution fails,
the job will be retried again three hours later, at 3:00a.m. If the job execution fails again
at 3:00a.m., the job execution for this particular instance is discarded, and another
attempt will not be made until the next scheduled run-time (in this case, midnight the
following night).

3.2.2 Execution Threshold

If a job's scheduled execution is delayed beyond a specified time threshold, then the
job execution will be discarded. This time threshold is called the execution threshold
and is specified in milliseconds. If an execution threshold is not specified as part of
job's definition, resultant job executions will not be constrained by an execution
threshold. For example, consider Figure 3-2:

Figure 3-2 Execution Threshold

Scheduled
Run-Time Execution Threshold
Y ¥
- >
12:00 a.m. 6:00 a.m. 12:00 p.m. 6:00 p.m. 12:00 a.m.

The job execution is scheduled to run at midnight on Monday, and the execution
threshold is 6 hours. The job execution would be discarded if it did not run by 6:00a.m.
Monday.

3.2.3 Submitting a Job with a Retry Period and Execution Threshold

To further expand on Example 3-1, a retry period and execution threshold were added
to Example 3-5. In this example, if the job's executions do not occur within 30 seconds

3-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Frequently Asked Questions About iCalendar and Execution Threshold

(execution threshold) of the scheduled time, they will be discarded. If the executions
do occur, but fail, they will be retried 3 seconds (retry period) later.

Example 3-5 Submitting a Job with a Retry Period and Execution Threshold

/] set up the properties

java.util.Properties properties = new Properties();
properties.put("SourceDirectory","/mt/data");
properties. put("DestinationDirectory","/mt/backup");

/1 set up the schedule, repeats every week
I nterval Schedul e schedul e = new I nterval Schedul e();
schedul e. set I nterval (Interval Schedul e. EVERY_WEEK) ;

/1 subnit the job

schedul er. add("file backup job, runs at m dnight",
new BackupJob().get d ass(). get Nane(),
schedul e,
properties,
3000,
30000) ;

3.3 Frequently Asked Questions About iCalendar and Execution
Threshold

Does Job Scheduler check the execution threshold if the job trigger is
something other than a timeout?

No. Because the execution threshold is based on time, notifications other than timeouts
do not cause Job Scheduler to check the execution threshold.

Can | update the execution threshold or retry period for a job?

Currently, this is not possible, because a job is configured with these parameters at
creation time.

Can a fixed-delay schedule be submitted in conjunction with a trigger in a job
definition?

No. The period for a fixed-delay schedule is based on the completion of the previous
job execution. When a trigger is used, this period cannot be determined because it is
dependent on the receipt of one or more notifications as specified by the trigger.

Oracle Application Server Containers for J2EE Scheduling Options 3-5

Frequently Asked Questions About iCalendar and Execution Threshold

3-6 Oracle Containers for J2EE Job Scheduler Developer’s Guide

A

Oracle Application Server Containers for
J2EE Blackout Windows

This chapter describes how to create and remove blackout windows. The following
topics are covered:

« Adding and Removing Blackout Windows
» Jobs Scheduled in Blackout Windows
« Frequently Asked Questions About Blackout Windows

4.1 Adding and Removing Blackout Windows

A blackout window is a period of time during which job executions are not permitted.
A blackout window should be used when the system or dependent subsystems are
unavailable for a pre-determined amount of time (for example, when the database is
down for scheduled maintenance).

To create or add a blackout window, use the
oracl e.i as. schedul er. Schedul er. addBl ackout W ndow() method, which is
defined as follows:

public void addBl ackout Wndow(j ava. | ang. String w ndowNane,
Schedul e schedul e,
| ong duration)
throws Duplicat eW ndowException,
I nval i dW ndowExcepti on,
j ava.rm . Renot eException

This method provides the parameters described in Table 4-1.

Table 4-1 addBlackoutWindow Parameters

Parameter Description

wi ndowNanme Name of the blackout window.

schedul e Start time of the blackout window. Note that the schedule may be a
repeating schedule.

duration Duration (in minutes) of the blackout window.

For more information about the addBl ackout W ndow() method, see Oracle
Containers for J2EE Job Scheduler API Reference.

Example 4-1 shows how to create a blackout window called "Not in prime time",
which is in effect from 8 a.m. to midnight:

Oracle Application Server Containers for J2EE Blackout Windows 4-1

Jobs Scheduled in Blackout Windows

Example 4-1 Adding a Blackout Window

Il set up the schedule, daily starting at 8 a.m

Schedul e schedul e = new Schedul e();

Cal endar bl ackout WndowSt art Ti me = Cal endar . get | nst ance();
bl ackout W ndowsSt ar t Ti me. set (Cal endar . HOUR_OF_DAY, 8) ;

bl ackout W ndowSt ar t Ti ne. set (Cal endar . M NUTE, 0) ;

bl ackout W ndowSt ar t Ti ne. set (Cal endar . SECOND, 0) ;

/1 create blackout w ndow
schedul er. addBl ackout Wndow("Not in prime time", schedule, 960);

4.2 Jobs Scheduled in Blackout Windows

If a job execution occurs when a blackout window is in effect, the job execution is
suppressed. If the job was submitted with a retry period enabled, then the job
execution will be retried at the period specified.

Figure 4-1 Jobs Scheduled in a Blackout Window with Retry Period Enabled

Blackout Blackout
Window Scheduled Window
Start Job Execution End
Y Y M
X L J X >

10:00 pm. 11:00p.m. 12:00a.m. 1:00am. 2:00am. 3:00 a.m.

In Figure 4-1, a job execution is scheduled to occur at midnight, which falls in a
blackout window starting at 11:00 p.m. and ending at 2:00 a.m. If this job had a retry
period enabled, the job execution would be retried at 2:00 a.m., when the blackout
window ends. Without the retry period enabled, the jobs execution would be
suppressed and no attempt to run the job would be made.

Blackout windows takes the highest precedence among all Job Scheduler operations.
For more information about job precedence, see Appendix B.

4.3 Frequently Asked Questions About Blackout Windows

What happens if ajob is scheduled to be retried (in the event the job fails to run)
or replayed (in the event the job is paused) in a blackout window?

The retry (or replay) of the job is suppressed. In other words, the job execution will not
occur.

4-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

D

Pausing Jobs

This chapter describes what it means to pause a job and how to pause a job. The
following topics are covered:

= What Does It Mean to Pause a Job?
= How to Pause a Job

« Frequently Asked Questions About Pausing Jobs

5.1 What Does It Mean to Pause a Job?

Pausing a job causes a scheduled job execution to be skipped. It does not stop a job
execution that is currently running (to do this, you must cancel the job). Pausing a job
does not remove the job’s definition from the system, thus preventing the job from
running in the future (to do this, you must remove the job). Use the

oracl e. i as. schedul er. Schedul er. pause() method to pause a job.

For more information about canceling jobs, see Chapter 6. For more information about
removing jobs, see Chapter 2.

For more information about the pause() method, see Oracle Containers for J2EE Job
Scheduler API Reference.

A job execution that was skipped because it was paused can be run again by resuming
the job with the replay parameter set to true. Use the
oracl e.i as. schedul er. Schedul er. resunme() method to resume a job.

To illustrate more clearly the effect of pausing and resuming a job, consider the
following timeline in Figure 5-1.

Figure 5—-1 Pausing and Resuming a Job with a Single-Action Schedule

Scheduled
Pause Job Execution Resume
Y Y
X o X >

10:00 pm. 11:00p.m. 12:00am. 1:00am. 2:00am. 3:00am.

There is a pause implemented for a particular job at around 10:30 p.m., and it is
scheduled to resume at 2:00 a.m. However, this job is scheduled to run at 12:00 a.m.
Will this job run?

Due to the pause at 10:30 p.m., the job execution scheduled to run at midnight will be
skipped. However, if the job is resumed at 2:00 a.m. with replay set to true, then the job

Pausing Jobs 5-1

How to Pause a Job

execution scheduled to run at midnight will run at 2:00 a.m. If replay is set to false,
then the job execution scheduled to run at midnight will not run.

In contrast, consider Figure 5-2, which illustrates the effect of pausing and resuming
on a job with a repeating schedule.

Figure 5-2 Pausing and Resuming a Job with a Repeating Schedule

Scheduled Job Executions

Pause Resume
y ¥ Y A M
* @ ® L] X

10:00 pm. 11:00p.m. 12:00a.m. 1:00am. 200am. 3:00am.

In this scenario, there is a job with a repeating schedule (multiple job executions
scheduled) that falls between pause and resume. If the job is resumed at 2:00 a.m. with
replay set to true, then only the first job execution (the one at 11:00 p.m.) will run. The
job executions at midnight and 1:00 a.m. will be skipped.

5.2 How to Pause a Job

This section shows some code examples of how to pause and resume a job.

Example 5-1 Pausing a Job

This example shows how to use the
oracl e. i as. schedul er. Schedul er. pause() method to pause the job called
BackupJob.

/I pause the "BackupJob" job
schedul er. pause(j obHandl e)

Example 5-2 Resuming a Job Without Replay

This example shows how to set replay to false, so that a job execution that was skipped
will not be run again.

/Iresune the "BackupJob" job without replay
schedul er. resume(j obHandl e, FALSE)

Example 5-3 Resuming a Job with Replay

This example shows how to set replay to true, so that a job execution that was skipped
will be run again.

//resume the "BackupJob" job with replay
schedul er. resume(j obHandl e, TRUE)

5.3 Frequently Asked Questions About Pausing Jobs

What happens if you pause a job that is currently running?

Pausing a job that is currently running does not interrupt the job. However, pausing a
job prevents the job from running in the future until it is resumed.

5-2 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

Frequently Asked Questions About Pausing Jobs

At execution time, what is the difference between a blackout window and a
paused job?

A blackout window suppresses all job executions while a paused job suppresses only
job executions that result from a trigger being fired. For example, pausing a job would
not suppress replayed or retried job executions, but running a job in a blackout
window would.

What happens if retry is attempted when a job is paused?

A paused job suppresses any job executions that occur due to a trigger expression
evaluating to true. During a retry, the trigger expression is never evaluated and the job
is allowed to run.

Pausing Jobs 5-3

Frequently Asked Questions About Pausing Jobs

5-4 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

6

Canceling Jobs

This chapter describes the meaning of canceling a job and also describes how to cancel
a job. The following topics are covered:

= What Does it Mean to Cancel a Job?
« Canceling aJob

« Frequently Asked Questions

6.1 What Does it Mean to Cancel a Job?

Canceling a job is the only way to stop a job execution while it is running. It is
important to note that while canceling a job stops a job execution that is currently
running, it does not prevent that job from being executed in the future. To eliminate all
traces of a job from the system, you must remove the job. For more information about
removing jobs, see Section 2.3.

Once a job is canceled, it is possible to run the job again by using retry. For more
information about retry, see Section 3.2.

6.2 Canceling a Job

To cancel a job, the job must use the or acl e. i as. schedul er. Cancel | abl e
interface, respond to the cancellation request, and then create the necessary exception,
JobCancel | edExcept i on, to designate the job as canceled.

Any Java job class submitted to Job Scheduler can provide an implementation of the
oracl e. i as. schedul er. Cancel | abl e interface. Every time a job is canceled (by
invoking the Job Scheduler cancel () method), it causes the implementing class’s
cancel () method to be invoked on all the job’s instances.

For more information about the or acl e. i as. schedul er. Cancel | abl e interface
or cancel () method, see Oracle Containers for J2EE Job Scheduler API Reference.

Example 6-1 shows how to cancel a job with the
oracl e.i as. schedul er. Cancel | abl e interface.

Example 6-1 Backing Up Data on a Regular Basis with an Option to Cancel

During testing of the application outlined earlier in Example 2-1, it becomes apparent
that the job execution may run for long periods of time. Therefore, there may be need
to cancel the job execution when it is running.

Canceling Jobs 6-1

Canceling a Job

The following code example shows the modified implementation that provides both
oracl e. i as. schedul er. Execut abl e and
oracl e. i as. schedul er. Cancel | abl e interfaces:

inport java.io.File;

inport java.io.lCOException;

inport oracle.ias.schedul er. Job;

inmport oracle.ias.schedul er. Execut abl e;

inport oracle.ias.schedul er. Cancel | abl e;

inport oracle.ias.schedul er.JobContext;

inport oracle.ias.schedul er.JobCancel | edExcepti on;
inport oracle.ias.schedul er.JobExecutionExcepti on;

public class Cancel |l abl eBackupJob inplenents Executable, Cancellable {

bool ean m cancel | ed = fal se;

public void cancel () {
m cancel l ed = true;

public void execute(JobContext context) throws
JobExecut i onException, JobCancel | edException {

Il retrieve the source and destination directories
Job job = context.getJob();
String source = job.getProperties().getProperty("”SourceDirectory");
String destination =
job. getProperties().getProperty("DestinationDirectory");

Il get the list of files to copy
File directory = new File(source);
File[] files = directory.listFiles();

/'l copy the files

Runtime runtine = Runtime. get Runtine();
Process process;

for (int x = 0; x <files.length;, x++) {

/'l cancel | ed?
if (mcancelled) {
t hrow new JobCancel | edException();

}

try {
process = runtime.exec("/binfcp " + files[x].toString() +

" " + destination);
process. wai t For ();
} catch(l OException e) {
t hrow new RuntineException("copy failed: "+files[x],e);
} catch(InterruptedException e) {
t hrow new Runti meException("copy failed: "+files[x],e);

}

6-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Frequently Asked Questions

At a minimum, canceling a job means the following:

« The implementation must use the or acl e. i as. schedul er. Cancel | abl e
interface.

« For the job execution to be canceled, you must invoke the cancel () method,
which causes the or acl e. i as. schedul er. JobCancel | edExcepti on
exception that will stop the job execution.

« It may not always be possible to immediately invoke the cancel () method; take
this into account when you program.

6.3 Frequently Asked Questions

Is there a way to re-execute a job that has been canceled?

No. There is no mechanism to retry an execution that has been canceled. Only failed
job executions can be retried.

For more information, see Section 3.2.

Canceling Jobs 6-3

Frequently Asked Questions

6-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

v

Oracle Application Server Containers for

J2EE Events and Listeners

This chapter describes the Job Scheduler event listener framework. The following
topics are covered:

Events and Event Listeners
Implementing and Binding a Event Listener
Best Practices for Implementing and Binding Event Listeners

Frequently Asked Questions About Job Listeners

7.1 Events and Event Listeners

An event represents a change in a job's state; each change in a job’s state is represented
by a corresponding event. An application can be programmed to react to these events

using an event listener. An event listener can be bound to one or more jobs at any time
during the life cycle of a job.

The Job Scheduler uses numerous events to represent job state changes. These events
are listed in Table 7-1.

Table 7-1 Job Scheduler Events

Event Description

oracl e.ias. schedul er. event. JobBl ackout Event Job was suppressed due to a
blackout window.

oracl e.i as. schedul er. event. JobConpl et edEvent Job scheduled end date
passed.

oracl e.ias. schedul er. event. JobCr eat edEvent Job was created.

oracl e.ias. schedul er. event. JobExecuti onCancel | edEvent Job was canceled.

oracl e.ias. schedul er. event. JobExecuti onFai | edEvent Job failed.

oracl e.ias. schedul er. event. JobExecut i onPausedEvent Job was suppressed because
the job is currently paused.

oracl e.ias. schedul er. event . JobExecut i onSucceededEvent Job successful.

oracl e.ias. schedul er. event. JobExecuti onThr eshol dExceededEvent Job was suppressed because

the execution threshold was
exceeded.

Oracle Application Server Containers for J2EE Events and Listeners 7-1

Implementing and Binding a Event Listener

Table 7-1 (Cont.) Job Scheduler Events

Event Description

oracl e.ias. schedul er. event . JobPausedEvent Job was paused.

oracl e.ias. schedul er. event. JobRenovedEvent Job was removed.

oracl e.ias. schedul er. event. JobResunedEvent Previously paused job was
resumed.

7.2 Implementing and Binding a Event Listener

To receive events, an event listener is required. An event listener must use the
oracl e.i as. schedul er. event . Event Li st ener interface. This interface is
defined as follows:

public interface EventListener extends java.util.EventListener {
public void di spatch(Schedul erEvent event) throws Exception;
public dass[] wants();

}

Thewant s() method is used to specify the events for which this listener is interested,
and returns the associated class object for those specified events. After the listener is
implemented, the di spat ch() method is invoked every time one of the desired
events occurs.

For more information about the or acl e. i as. schedul er. event. Event Li st ener
interface and its methods, see Oracle Containers for J2EE Job Scheduler API Reference.

Example 7-1 shows how to implement an event listener that is interested in the
JobExecuti onFai | edEvent and JobExecuti onSucceededEvent events.

Example 7-1 Job Listener Implementation
i mport oracle.ias.schedul er.event.*;

public class TestListener inplenents EventListener {

public void dispatch(Schedul erEvent event) {
Systemout.println("Cot event, "+event.getC ass().getName());

}
public dass[] wants() {
return new Cass[] {

oracl e.ias.schedul er. event. JobExecut i onFai | edEvent. cl ass,
oracl e.ias. schedul er. event. JobExecut i onSucceeded. cl ass

b
}

Example 7-2 shows how to bind the Test Li st ener listener created in Example 7-1.

Example 7-2 Binding a Listener to a Job
JobHandl e handl e = schedul er.add(...);

/1 bind the listener to the job
schedul er . addLi st ener (handl e, Test Li st ener. cl ass) ;

7-2 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

Frequently Asked Questions About Job Listeners

7.3 Best Practices for Implementing and Binding Event Listeners
When implementing and binding job listeners, keep the following in mind:

« Keep job listener processing to a minimum. Events are processed serially by job
listeners and lengthy processing should be avoided. If lengthy processing cannot
be avoided, consider serializing the event for later processing.

7.4 Frequently Asked Questions About Job Listeners

Can | use the same job listener for every job?

Yes. Use the event's get Handl e() method to determine which event is associated
with which job.

If l use the same job listener for every job, how many instances of the job
listener will there be?

There will be one job listener instance per job.

Is the job listener dispatch() method reentrant (can this method be called while
itis already in use)?

Yes. Use appropriate measures when modifying job listener member variables (for
example, using locks to avoid resource conflicts).

Is the job listener instance state persistent across container restarts?
No. The job listener instance state is not persistent.

Oracle Application Server Containers for J2EE Events and Listeners 7-3

Frequently Asked Questions About Job Listeners

7-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

38

Oracle Application Server Containers for
J2EE Triggers and Notifications

This chapter describes triggers and notifications. The following topics are covered:
« Trigger-Driven Jobs

« How Do I Submit a Job with a Trigger?

« How Do | Send Noatifications to a Job?

« Frequently Asked Questions About Triggers and Notifications

8.1 Trigger-Driven Jobs

This section introduces two concepts: triggers and notifications. Notifications are
messages sent from one object to another, in effect notifying the recipient that
something happened. The recipient of a notification is called a trigger. A trigger
contains certain conditions that are evaluated against one or more notifications that it
receives. When a specified condition is met, an associated job is run.

A trigger’s conditions are described by a logical expression where the operands are job
notification assertions. Notifications can be generated in either of the following ways:

« Programatically by the application
« As the result of a timer expiration

Likewise, notifications can either be sent to a specific trigger or to a specified set of
triggers. On receipt, however, triggers do not generate notifications. By employing the
use of triggers, jobs can be enabled to respond to specific application conditions (for
example, triggering a job based on revenue exceeding a certain threshold).

8.1.1 Triggers and Notifications

The system-supplied or acl e. i as. schedul er. Tri gger class is used to specify the
conditions by which the associated job is run. A condition is expressed as a logical
combination of operands. The following logical operators are allowed:

=« AND (represented as '&&")
« OR (represented as '] |9
« NOT (represented as ")

Precedence can be specified using parentheses. The following are a few example
expressions:

= N

Oracle Application Server Containers for J2EE Triggers and Notifications 8-1

Trigger-Driven Jobs

Execute when the N notification is received.
« N1 || N2

Execute when either notification is received.
« N1 && N2

Execute when both notifications are received.
= N1 || (N2 && N3)

Execute when either the N1 notification is received or when both N2 and N3
notifications are received.

The operand in a condition is the name associated with the notifications sent using the
Job Scheduler’'snoti fy() method. For example, to send the Dat aHasArri ved
notification to all triggers, the application uses the following code:

Schedul er. notify(new Notification("DataHasArrived"));

Job Scheduler evaluates triggers when a notification is sent. The result of a trigger
evaluation is boolean. If the trigger evaluates to true, then the associated job starts.
After the trigger fires, it is immediately reset, before the job runs. When the trigger is
reset, the record of all previously received notifications by the trigger is erased. A
trigger is reset only when the job runs. If the trigger does not fire, the notification is
recorded by the trigger for later use.

For example, suppose a trigger has the following condition:
N1 && N2
Assume the trigger receives only notification N1; the trigger evaluates to false, and the

notification is recorded. Later, the trigger receives notification N2. Now that both
conditions are met, the trigger evaluates to true; the job runs, and the trigger is reset.

Jobs can be associated with a schedule, trigger, or both a schedule and trigger. When a
job is associated with a schedule only, an implicit trigger is associated with the job. A
trigger of this type provides the following condition:

ti meout
When the schedule expires, a timeout notification is sent to the associated trigger for
processing. In this case, the trigger fires; the job runs, and the trigger is reset. The

t i meout notification may also be used in a trigger expression along with other
notifications. For example:

« timeout || N

Run when the either N notification is received or the schedule expires.
« timeout && N

Run when the N notification is received and the schedule expires.

Theti meout notification can only be used in cases where the job is associated with
both a schedule and a trigger. The t i neout notification name is likewise reserved and
can not be used or sent by an application to the scheduler. This behavior is consistent
with the Notification class. Additionally, the t i meout notification must be referenced
in the condition expression of the trigger.

8.1.2 Cautions For Using the NOT Operator

If you use the NOT operator in a trigger expression, then be aware of the following:

8-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

How Do | Send Notifications to a Job?

« NOT expressions should include at least two operators. Otherwise, the trigger
fires when any other notification is received. For example, the expression ! N
would cause the trigger to fire whenever any notification except N was received.

« NOT expressions should not be used with a schedule that repeats indefinitely.
This may result in a permanently hung trigger. Recall that a trigger retains all
notifications that were received until the trigger fires. If the trigger receives a
notification that satisfies the NOT condition, the trigger will never fire.

8.2 How Do | Submit a Job with a Trigger?

To submit a job with a trigger, use the or acl e. i as. schedul er. Tri gger class. For
more information, see Oracle Containers for J2EE Job Scheduler APl Reference.

Example 8-1 shows how to create a trigger to run a job when the di skl sFul |
notification is received.

Example 8—1 Submitting a Job with a Trigger

/'l set up the trigger, run when 'disklsFull' notification is received
Trigger trigger = new Trigger("disklsFull");

/] submit the job

schedul er. add("disk is full job",
di skFul | Job. cl ass. get Nane(),
trigger,
null);

To embellish Example 8-1, Example 8-2 shows how to create a trigger to run a job
every night at midnight if either the di skl sFul | orti neout notifications is
received.

Example 8-2 Submitting a Job with a Trigger and a Schedule

/] set up the schedule, repeats every night at midnight
Recur Schedul e schedul e = new Recur Schedul e("freqg=dail y, byhour=0;");

/1 set up the trigger, run when either 'disklsFull'
/I notification is received or the schedul e expires
Trigger trigger = new Trigger("disklsFull || timeout");

/1 subnit the job
schedul er. add("disk is full job",
Di skFul I Job. cl ass. get Name(),
schedul e,
trigger,
nul I,
Level . WARN,
oL,
oL);

8.3 How Do | Send Notifications to a Job?

To send a notification to a job, use the
oracl e. i as. schedul er. Schedul er. noti fy() method. For more information,
see Oracle Containers for J2EE Job Scheduler API Reference.

Example 8-3 shows how to send the di skl sFul | notification to a job.

Oracle Application Server Containers for J2EE Triggers and Notifications 8-3

Frequently Asked Questions About Triggers and Notifications

Example 8-3 Sending a Notification to a Job

Il send the "disklsFull' notification
schedul er. notify(new Notification("disklsFull");

8.4 Frequently Asked Questions About Triggers and Notifications

When are timeout notifications sent?
Timeout notifications are sent when a job expires.

Can a user send a timeout notification to a trigger?
No. Timeouts can only be sent by the Job Scheduler.

8-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

9

Deploying Job Scheduler-Enabled
Applications

This chapter provides information on how to configure Job Scheduler-enabled
applications for deployment. The following topics are covered:

« Bundling Job Scheduler with a J2EE Application
« Configuring Persistence for Job Scheduler

« Configuring Security for Job Scheduler

« Configuring Logging for Job Scheduler

« Configuring DMS for Job Scheduler

« Configuring JIMX for Job Scheduler

« Configuring Execution Interval Threshold Recovery for Job Scheduler

9.1 Bundling Job Scheduler with a J2EE Application

Job Scheduler is deployed as a stateless session Enterprise Java Bean (EJB). Unlike a
typical EJB, the actual class files do not need to be deployed with Job Scheduler.
Instead, these files are included as part of Oracle Containers for J2EE (OCA4)).

9.1.1 Generating the scheduler-gjb.jar File

As is the case with all EJBs, a deployment descriptor is required. For Job Scheduler,
there are two:

1. ej b-jar.xm (Job Scheduler deployment descriptor)
2. orion-ejb-jar.xm (OC4J-specific Job Scheduler deployment descriptor)

Note that both of these files must be present in the schedul er - ej b. j ar archive file
for Job Scheduler to function correctly.

To deploy Job Scheduler with an application, an application deployer needs to include
the schedul er - ej b. j ar archive. In addition to the ej b-j ar. xm and
orion-ejb-jar.xnm files, this archive must also include the following:

« All job implementations
« All event listener implementations

For Job Scheduler to access job and event listener implementations, the class files must
be included in the schedul er - ej b. j ar archive. It is the application deployer’s
responsibility to generate this file and bundle it with the application.

Deploying Job Scheduler-Enabled Applications 9-1

Configuring Persistence for Job Scheduler

Example 9-1 shows a sample schedul er - ej b. j ar file. A Job Scheduler-enabled
application uses thet est . j ob job and t est . wat ch event listener implementations
as part of the application.

Example 9—-1 Sample scheduler-ejb.jar File

test/job.class

test/watch. cl ass

META- | NF/ ej b-j ar. xm
META- | NF/ ori on-ej b-j ar. xni

9.1.2 Bundling scheduler-gjb.jar in an Enterprise Archive (EAR) File

Once the schedul er - ej b. j ar file is generated, it must be bundled in the
application’s EAR file. In addition, the archive's appl i cat i on. xm file must contain
a module entry for Job Scheduler.

In Example 9-2, Job Scheduler is deployed with a J2EE application. The addition of Job
Scheduler to the application is accomplished by adding a <nodul e> element as
shown in Example 9-2.

Example 9-2 Adding the Job Scheduler to the application.xml File

<modul e>
<ej b>schedul er-ej b.jar</ej b>
</ nodul e>

9.2 Configuring Persistence for Job Scheduler

Job Scheduler provides three basic types of persistent job storage:
« In-memory (JMS persistence)

« File-based (JMS persistence)

« Database-backed (JDBC persistence)

To configure JMS persistence, set the j obSt or ePr ovi der Cl assNane <env-entry>
tooracl e.ias. schedul er. core. jobstore.jdbc. Provder| npl .In-memory or
file-based persistence is achieved by configuring JMS queues to be in-memory or
file-based, respectively.

To configure database-backed persistence, run the J2EE

HOVE/ dat abase/ schedul er _j obst or e. sql script to create the database tables,
set the j obSt or ePr ovi der O assNane <env-entry>to

oracl e.ias.schedul er.core. jobstore.jdbc. Provi derl npl.

Examples of how to configure both JDBC and JMS persistence are provided in the
following sub-sections.

9.2.1 Configuring JDBC Persistence

To configure JDBC persistence:
1. Runtheschedul er _j obstore. sql SQL script to create the database tables.

2. Intheej b-jar.xmn file, setthej obSt or eProvi der O assNane <env-entry>
value as follows:

<env-entry>
<env-ent ry-nane>j obSt or ePr ovi der G assNane</ env-ent ry- nane>
<env-entry-type>j ava. |l ang. String</env-entry-type>

Oracle Containers for J2EE Job Scheduler Developer’s Guide

Configuring Security for Job Scheduler

<env-entry-val ue>
oracle.ias.schedul er.core.jobstore.jdbc. Providerlnpl </env-entry-val ue>
</env-entry>

3. Create a new <managed- dat a- sour ce> entry in dat a- sour ces. xm , making
sure that the specified connection pool references an existing
<connect i on- pool >:

<managed- dat a- sour ce nane="Schedul er Jobst ore"
connect i on-pool - nane="Exanpl e Connection Pool "
j ndi - name="schedul er/j obstore" />

For a complete example on configuring JDBC persistence, refer to the following
How-To located on OTN:

http://ww. oracl e. com technol ogy/tech/javal/ oc4j/ 1013/ how_
t o/ howt o- schedul er - db/ doc/ r eadne. ht m

9.2.2 Configuring JMS Persistence

To configure JMS persistence:

1. Intheej b-jar.xnl file, setthej obSt or eProvi der Cl assNane <env-entry>
value as follows:

<env-entry>
<env-entry-name>j obSt or ePr ovi der 0 assNane</ env- ent ry- name>
<env-entry-type>java.lang. String</env-entry-type>
<env-entry-val ue>
oracle.ias.schedul er.core.jobstore.jns.Providerlnpl
</ env-entry-val ue>
</env-entry>

2. Inthejms. xm file, create a new <queue> entry as shown below:

<queue name="j s/ schedul er_j obst ore"
persistence file="schedul er_jobstore">
<descri ption>schedul er job store queue</description>
</ queue>

The queue destinations defined in j ns. xm are persistent only if the
per si st ence- fi | e attribute on each queue destination is set. Please refer to the IMS
documentation for more information about creating a persistent queue destination.

For a complete example on configuring JMS persistence, refer to the following How-To
located on OTN:

http://ww. oracl e. com t echnol ogy/tech/javal/ oc4j/ 1013/ how_
t o/ howt o- schedul er-j ns/ doc/ r eadne. ht ni

9.3 Configuring Security for Job Scheduler

Job Scheduler’s ej b-j ar. xm deployment descriptor file contains information about
the security configuration for Job Scheduler. This information can be modified to limit
access to one or more of Job Scheduler APIs to a specific role. For example, removing a
job can be limited to users with administrative privileges.

In Example 9-3, application users are divided into two general categories: users and
administrators. Users can only submit jobs, while administrators can submit, pause,
resume, cancel, and remove jobs.

Deploying Job Scheduler-Enabled Applications 9-3

Configuring Logging for Job Scheduler

Example 9-3 Two-Tier Security Model

<I-- role declarations -->
<security-rol e>

<rol e-name>user </ rol e- nane>
</security-rol e>

<security-rol e>
<rol e- nane>admi ni strat or</rol e- nane>
</security-rol e>

<I'— nethods that can be invoked by the group 'user' -->
<net hod- per mi ssi on>
<rol e-nane>user </ r ol e- nane>

<net hod>
<ej b- name>schedul er </ ej b- nane>
<met hod- nane>add</ net hod- name>
</ net hod>
</ met hod- permi ssi on>

<I'— nethods that can be invoked by the group 'adninistrator' -->
<net hod- per mi ssi on>
<rol e- nane>adm ni strat or </ rol e- nane>
<net hod>
<ej b- nane>schedul er </ ej b- nane>
<met hod- nanme>r enove</ net hod- name>
</ met hod>

<net hod>
<ej b- name>schedul er </ ej b- nane>
<met hod- nane>pause</ net hod- name>
</ met hod>

<net hod>
<ej b- nane>schedul er </ ej b- name>
<met hod- name>r esune</ net hod- name>
</ met hod>

<net hod>
<ej b- name>schedul er </ ej b- nane>
<met hod- nanme>cancel </ net hod- name>
</ net hod>
</ met hod- permi ssi on>

9.4 Configuring Logging for Job Scheduler

This section discusses the available log level settings for Job Scheduler. The root logger
has a default log level set to Level . WARNI NG since unexpected and fatal errors will
be logged by the root logger. However, the log level can be changed by setting the
string value of the <env- ent r y> called gl obal LogLevel intheej b-j ar. xml file,
as shown in Example 9-4.

Example 9—4 Changing the Log Level

<env-entry>
<env-ent ry-nane>gl obal LogLevel </ env-entry- name>
<env-entry-type>j ava. |l ang. String</env-entry-type>

9-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Configuring JMX for Job Scheduler

<env-entry-val ue>FI NEST</ env- ent ry- val ue>
</env-entry>

Table 9-1 shows the mapping between the <env- ent r y> values and the
corresponding log levels to which they match.

Table 9-1 <env-entry> Values and Log Levels

<env-entry> Value Log Level

OFF Level . OFF

FI NEST Level . FI NEST
FI NER Level . FI NER

FI NE Level . FI NE
CONFI G Level . CONFI G
I NFO Level . | NFO
WARNI NG Level . WARNI NG
SEVERE Level . SEVERE
ALL Level . ALL

9.5 Configuring DMS for Job Scheduler

To configure whether or not DMS statistics are published, set the <env- ent r y> value
intheej b-jar.xn file as shown in Example 9-5.

Example 9-5 Configuring DMS

<env-entry>
<env-entry-nanme>or acl e. i as. schedul er. dns</ env-entry- nane>
<env-entry-type>j ava. | ang. String</env-entry-type>
<env-entry-val ue>true</env-entry-val ue>

</env-entry>

The <env- ent ry- val ue> is set to true, meaning DMS statistics will be published. Set
this value to false if you do not want DMS statistics published.

9.6 Configuring JMX for Job Scheduler

To configure whether or not IMX MBeans are published, set the <env- ent r y> value
intheej b-jar.xn file as shown in Example 9-6.

Example 9—6 Configuring JMX

<env-entry>
<env-ent ry-nane>or acl e. i as. schedul er. j nx</ env-entry- nane>
<env-entry-type>j ava. | ang. String</env-entry-type>
<env-entry-val ue>true</env-entry-val ue>

</env-entry>

The <env- ent ry-val ue> is set to true, meaning JIMX MBeans will be published. Set
this value to false if you do not want JIMX MBeans published.

Deploying Job Scheduler-Enabled Applications 9-5

Configuring Execution Interval Threshold Recovery for Job Scheduler

9.7 Configuring Execution Interval Threshold Recovery for Job Scheduler

Some job executions might be scheduled during the time when the container has been
shutdown. The Job Scheduler provides the ability to recover these missed executions.
One or more executions scheduled during the time the container is down will result in
one job execution when the container starts up.

In the case of fixed-interval and fixed-delay schedules, it is possible to enable
execution recovery for jobs whose repetition interval is greater than a configurable
execution recovery threshold duration.

To do so, set the <env- ent r y> value with the desired threshold value in minutes, as
shown in Example 9-7. If this value is not set, the value defaults to 30 minutes. Job
execution recovery is performed only for fixed-interval and fixed-delay jobs executing
at intervals greater than 30 minutes.

Example 9—7 Configuring Execution Threshold Recovery

<env-entry>
<env-ent ry-nane>i nt er val Thr eshol dM nut es</ env- ent ry- nane>
<env-entry-type>j ava. | ang. Long</env-entry-type>
<env-entry-val ue>35</ env-entry-val ue>

</env-entry>

9-6 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

10

Managing the Oracle Application Server
Containers for J2EE

This chapter provides information on how to manage Job Scheduler using IMX
MBeans.

The JMX MBeans are chosen to represent Job Scheduler and associated data types.
Each MBean reveals attributes, operations, and relevant JSR77 statistics gathered by
the Oracle Dynamic Monitoring Service (DMS).

Table 10-1 summarizes the MBeans that are provided.

Table 10-1 JMX MBean Summary

Management Bean Description
JobMBean Provides access to a job instance for management and monitoring.
Schedul er MBean Provides access to a scheduler instance for management and monitoring.

Schedul er Aggr egat i onMBean Provides access to all scheduler instances for management and monitoring
purposes.

10.1 Job Management Bean

One Job MBean instance is registered for each job submitted to Job Scheduler, and
persists until either the job is removed or the hosting application is undeployed. This
MBean can be used to monitor and configure a job, including:

« Suppressing or resuming a previously suppressed job
« Canceling any outstanding scheduled jobs

For more information, see Appendix D.

10.2 Job Scheduler Management Bean

One instance of the Job Scheduler MBean is registered for each Job Scheduler
application component deployed, and persists until the hosting application is
undeployed. The management bean can be used to monitor and configure the Job
Scheduler instance, including:

« Examining the run-time configuration.
= Retrieving all jobs associated with the instance.
« Creating, listing, or removing execution blackout windows.

For more information, see Appendix D.

Managing the Oracle Application Server Containers for J2EE 10-1

Job Scheduler Aggregation Management Bean

10.3 Job Scheduler Aggregation Management Bean

The Aggregation MBean provides an aggregated view of all Job Scheduler and job
instances. This MBean can be used to monitor and configure all Job Scheduler and job
instances, including:

Retrieving all Job Scheduler instances.

Retrieving all jobs on all Job Scheduler instances.

Creating a blackout window across all Job Scheduler instances.
Pausing or resuming jobs across all Job Scheduler instances.

Canceling all jobs across all Job Scheduler instances.

For more information, see Appendix D.

The Job Scheduler Aggregation MBean can also be manage from the Application
Server Control Console, as illustrated in Figure 10-1.

Figure 10-1 System MBean Browser for Job Scheduler Aggregation MBean

ORACLE Enterprise Manager 10g

Cluster Topology = Application Server: appsmr khwano-pe.us.oracle.com > 0OC4.0 home >
System MBean Browser
For an introduction to the capabilities of the MBean Browser, see About the MBean Browser.

search | MBean Narme [MBean: OracleASSchedulerAggregate:singleton
= Find | Page F
E‘;ﬁ MName ocdj:ij2eeType=0OracleASSchedulerAggregate, name=singleton,
) J2EEServer=standalone
escription Aggregation mbean that is used to manage all Schedulers on this OC4J in
@00 ocd] Description A i | hat i 1 11 Schedul his OC4.J i
o J2EEDormain Persist Policy never
Antributes (7) | Oparations (5)
EH_1 J2EEServer ‘
standalone Name EDescription Acc
{7 ClassLoading eventProvider If true, the MBean iz an event provider as defined by JSR-77 F
#(7 EJBCompiler Jops Gets the list of gII OracleAS Scheduler job mbeans F
®(7 JIEEApplication oh gctName The MEleanls un?que JMK name F
) ObjectMarme The MEean's unique JMX name F
PO J2EELOgg|n.g Schedulers Gets the list of all OracleAS Scheduler mbeans F
©{] J2EEWebSite | || stateMlanageable Iftrue, the MBean provides State Management capabilities as defined by JSR-77 F
{0 JMSAdministratorResource statisticsProvider If true, the MBean is a statistic provider as defined by J5R-77 F
0 JMSResource : Attributes (7) Operations (5]
&7 JMNDINamespace
(] JMDIResource
(] JSPConfig
{1 JTAResource
T Jh
J OracleASSchedulerAggregate
Bingleton

To access this screen:

1.
2.

Login to Application Server Control Console.

In the Members section, expand the entries in the "Name" column until you see the
home link for OC4J. Click on home.

On the OC4J home page, click on Administration.

10-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Job Scheduler Aggregation Management Bean

On the administration page, look for "System MBean Browser" under
Administration Tasks > JMX. Click on the icon in the "System MBean Browser"
row in the "Go to Task" column.

In the System MBean Browser page, scroll down in the left navigation pane until
you see "OracleASSchedulerAggregate." Expand this entry and click on singleton.
The Job Scheduler Aggregation MBean attributes are displayed.

Click on the "Operations" tab to view the Job Scheduler Aggregation MBean
operations.

Managing the Oracle Application Server Containers for J2EE 10-3

Job Scheduler Aggregation Management Bean

10-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

A

RFC 2445 Excerpt: Recurrence

This appendix contains an excerpt of RFC 2445, "Internet Calendaring and Scheduling
Core Obiject Specification (ICalendar)." Section 4.3.10 of this RFC is used as the basis
for iCalendar recurrence schedules. This appendix provides a listing of Section 4.3.10,
and highlights specific areas that are not supported. Some examples are also provided.

A.1 RFC 2445, Section 4.3.10. Recurrence Rule

This section provides a listing of RFC 2445, Section 4.3.10.

4.3.10 Recurrence Rule
Val ue Name: RECUR

Purpose: This value type is used to identify properties that contain
a recurrence rul e specification.

Formal Definition: The value type is defined by the follow ng
not ati on:

recur = "FREQ' =freq *(

; either UNTIL or COUNT nay appear in a 'recur',
: but UNTIL and COUNT MUST NOT occur in the same 'recur’

(";" "UNTIL" "
("5 "OONT" "

enddate)
1*DAT)

/
/

; the rest of these keywords are optional,
; but MUST NOT occur nore than once

(";" "INTERVAL" "=" 1*DIGT) /
(":" "BYSECOND' "=" byseclist) /
(";" "BYMNUTE' "=" byninlist) /
("t "BYHOUR' M= byhrllst) /
("erovBYDAY" M= bywdayllst) /
(":" "BYMONTHDAY' "=" bymodaylist)
(":" "BYYEARDAY" "=" byyrdaylist) /
("Lt " BYWEEKNO' =" byV\knolist) /
(";" "BYMONTH' "=" bynolist) /
(";" "BYSETPCS' "=" bysplist) /
(""" "VKST" "=" weekday) /
(";" x-name "=" text)

RFC 2445 Excerpt: Recurrence A-1

RFC 2445, Section 4.3.10. Recurrence Rule

freq

—

enddat e
enddat e

/
bysecl i st
seconds
bym nl i st
m nut es
byhrli st
hour
bywdayl i st

weekdaynum

pl us

m nus

or dwk

weekday

"SECONDLY" / "M NUTELY" / "HOURLY" /
“WEEKLY" / "MONTHLY" / "YEARLY"

“DAILY"

date

date-tine ; An UTC val ue
seconds / (seconds *("," seconds))
IDGAT/ 2DIAT ;0 to 59
mnutes / (mnutes *("," minutes))
IDGAT/ 2DIAT ;0 to 59

hour / (hour *("," hour))

IDGAT/ 2DIAT ;0 to 23

weekdaynum / (weekdaynum *("," weekdaynum)

[([plus] ordwk / ninus ordwk)] weekday

"

IDGET/ 2DIGAT ;1 to 53

"sut /MO tTU O "WET ["TH ["FR' ["SAT

; Correspondi ng to SUNDAY, MONDAY, TUESDAY, VEDNESDAY, THURSDAY,
; FRI DAY, SATURDAY and SUNDAY days of the week.

bymodayl i st = nonthdaynum/ (nmont hdaynum *(","

mont hdaynum =

or dnoday

mont hdaynum))
([plus] ordmoday) / (minus ordnmoday)

IDGET/ 2DIGAT ;1 to 31

byyrdaylist = yeardaynum/ (yeardaynum *("," yeardaynun))

year daynum

or dyr day

bywknol i st

weeknum
bynol i st
mont hnum

byspl i st

set posday

Description: If
specified by a

([plus] ordyrday) / (minus ordyrday)

IDAT/ 2DGT/ 3DAT ;1 to 366

weeknum / (weeknum*("," weeknum)
([plus] ordwk) / (mnus ordwk)

mont hnum /(- nonthnum *("," nonthnun))
IDAT/ 2DIGAT ;1 to 12
setposday / (setposday *("," setposday))
year daynum

the property permts, multiple "recur” values are
COWA character (US-ASCI| deci mal 44) separated li st

A-2 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

RFC 2445, Section 4.3.10. Recurrence Rule

of values. The value type is a structured val ue consisting of a |ist
of one or nore recurrence grammar parts. Each rule part is defined by
a NAME=VALUE pair. The rule parts are separated fromeach other by
the SEM COLON character (US-ASCI| decinmal 59). The rule parts are not
ordered in any particular sequence. Individual rule parts MJST only
be specified once.

The FREQ rule part identifies the type of recurrence rule. This rule
part MJUST be specified in the recurrence rule. Valid values include
SECONDLY, to specify repeating events based on an interval of a
second or nore; M NUTELY, to specify repeating events based on an
interval of a minute or nore; HOURLY, to specify repeating events
based on an interval of an hour or nore; DAILY, to specify repeating
events based on an interval of a day or nore; WEEKLY, to specify
repeating events based on an interval of a week or nmore; MONTHLY, to
specify repeating events based on an interval of a nonth or nore; and
YEARLY, to specify repeating events based on an interval of a year or
nmor e.

The INTERVAL rule part contains a positive integer representing how
often the recurrence rule repeats. The default value is "1", meaning
every second for a SECONDLY rule, or every mnute for a M NUTELY
rule, every hour for an HOURLY rule, every day for a DAILY rule,
every week for a WEEKLY rule, every nonth for a MONTHLY rul e and
every year for a YEARLY rule.

The UNTIL rule part defines a date-time val ue which bounds the
recurrence rule in an inclusive nmanner. |f the val ue specified by
UNTIL is synchronized with the specified recurrence, this date or
date-time becomes the last instance of the recurrence. If specified
as a date-time value, then it MIST be specified in an UTC tine
format. I|f not present, and the COUNT rule part is also not present,
the RRULE is considered to repeat forever.

The COUNT rul e part defines the nunber of occurrences at which to
range-bound the recurrence. The "DTSTART" property value, if
specified, counts as the first occurrence.

The BYSECOND rul e part specifies a COWA character (US-ASCI| decinal
44) separated |ist of seconds within a mnute. Valid values are 0 to
59. The BYM NUTE rul e part specifies a COWA character (US-ASCl I
decimal 44) separated list of minutes within an hour. Valid val ues
are 0 to 59. The BYHOUR rule part specifies a COWA character (US
ASCI | decimal 44) separated |ist of hours of the day. Valid val ues
are 0 to 23.

The BYDAY rule part specifies a COWA character (US-ASCI| decinmal 44)
separated list of days of the week; MO indicates Mnday; TU indicates
Tuesday; VE indicates Wednesday; TH indicates Thursday; FR indicates
Friday; SA indicates Saturday; SU indicates Sunday.

Each BYDAY val ue can also be preceded by a positive (+n) or negative
(-n) integer. If present, this indicates the nth occurrence of the
specific day within the MONTHLY or YEARLY RRULE. For exanple, within
a MONTHLY rule, +1MD (or sinply 1IMD) represents the first Mnday
within the month, whereas -1MO represents the |ast Monday of the
month. |f an integer nodifier is not present, it nmeans all days of
this type within the specified frequency. For exanple, within a
MONTHLY rule, MO represents all Mndays within the nonth.

RFC 2445 Excerpt: Recurrence A-3

RFC 2445, Section 4.3.10. Recurrence Rule

The BYMONTHDAY rul e part specifies a COWA character (ASCI| decimal

44) separated list of days of the nonth. Valid values are 1 to 31 or
-31 to -1. For exanple, -10 represents the tenth to the last day of

the nonth.

The BYYEARDAY rul e part specifies a COWA character (US-ASC| decinal
44) separated list of days of the year. Valid values are 1 to 366 or
-366 to -1. For exanple, -1 represents the last day of the year
(Decenber 31st) and -306 represents the 306th to the last day of the
year (March 1st).

The BYWEEKNO rul e part specifies a COWA character (US-ASC | deci nal
44) separated list of ordinals specifying weeks of the year. Valid
values are 1 to 53 or -53 to -1. This corresponds to weeks according
to week nunmbering as defined in [1SO 8601]. A week is defined as a
seven day period, starting on the day of the week defined to be the
week start (see WKST). \eek nunber one of the cal endar year is the
first week which contains at |east four (4) days in that cal endar
year. This rule part is only valid for YEARLY rules. For exanple, 3
represents the third week of the year.

Not e: Assumi ng a Monday week start, week 53 can only occur when
Thursday is January 1 or if it is a |eap year and Wednesday is
January 1.

The BYMONTH rul e part specifies a COWA character (US-ASCI| decimal
44) separated list of months of the year. Valid values are 1 to 12.

The WKST rul e part specifies the day on which the workweek starts.
Valid values are MO, TU, WE, TH, FR SA and SU. This is significant
when a WEEKLY RRULE has an interval greater than 1, and a BYDAY rul e
part is specified. This is also significant when in a YEARLY RRULE
when a BYWEEKNO rul e part is specified. The default value is M.

The BYSETPCS rule part specifies a COWA character (US-ASC | deci nal
44) separated list of values which corresponds to the nth occurrence
within the set of events specified by the rule. Valid values are 1 to
366 or -366 to -1. It MJUST only be used in conjunction with another
BYxxx rule part. For exanple "the last work day of the nonth" could
be represented as:

RRULE: FREQ=MONTHLY; BYDAY=MO, TU, E, TH, FR, BYSETPOS=- 1

Each BYSETPOS val ue can include a positive (+n) or negative (-n)
integer. If present, this indicates the nth occurrence of the
specific occurrence within the set of events specified by the rule.

If BYxxx rule part values are found which are beyond the available
scope (ie, BYMONTHDAY=30 in February), they are sinply ignored.

Information, not contained in the rule, necessary to determ ne the
various recurrence instance start tinme and dates are derived fromthe
Start Tine (DTSTART) entry attribute. For exanple,

"FREQ=YEARLY; BYMONTH=1" doesn't specify a specific day within the
month or a tinme. This information would be the sane as what is
specified for DTSTART.

BYxxx rule parts nodify the recurrence in sone manner. BYxxx rule

parts for a period of time which is the sane or greater than the
frequency generally reduce or limt the number of occurrences of the

A-4 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

RFC 2445, Section 4.3.10. Recurrence Rule

recurrence generated. For exanple, "FREQ=DAILY; BYMONTH=1" reduces the
nunber of recurrence instances fromall days (if BYMONTH tag i s not
present) to all days in January. BYxxx rule parts for a period of
tine less than the frequency generally increase or expand the nunber
of occurrences of the recurrence. For exanple,

" FREQ=YEARLY; BYMONTH=1, 2" increases the nunber of days within the
yearly recurrence set from1 (if BYMONTH tag is not present) to 2.

If multiple BYxxx rule parts are specified, then after evaluating the
specified FREQ and I NTERVAL rul e parts, the BYxxx rule parts are
applied to the current set of evaluated occurrences in the follow ng
order: BYMONTH, BYWEEKNO, BYYEARDAY, BYMONTHDAY, BYDAY, BYHOUR,

BYM NUTE, BYSECOND and BYSETPCS; then COUNT and UNTIL are eval uated.

Here is an exanple of evaluating nultiple BYxxx rule parts.

DTSTART; TZI D=US- East er n: 19970105T083000
RRULE: FREQ=YEARLY; | NTERVAL=2; BYMONTH=1; BYDAY=SU; BYHOUR=8, 9;
BYM NUTE=30

First, the "INTERVAL=2" woul d be applied to "FREQ=YEARLY" to arrive
at "every other year". Then, "BYMONTH=1" would be applied to arrive
at "every January, every other year". Then, "BYDAY=SU' woul d be
applied to arrive at "every Sunday in January, every other year".
Then, "BYHOUR=8, 9" would be applied to arrive at "every Sunday in
January at 8 AMand 9 AM every other year". Then, "BYM NUTE=30"
woul d be applied to arrive at "every Sunday in January at 8:30 AM and
9:30 AM every other year". Then, lacking information fromRRULE, the
second is derived from DTSTART, to end up in "every Sunday in January
at 8:30:00 AM and 9:30:00 AM every other year". Similarly, if the
BYM NUTE, BYHOUR, BYDAY, BYMONTHDAY or BYMONTH rule part were

m ssing, the appropriate mnute, hour, day or nonth woul d have been
retrieved fromthe "DTSTART" property.

No additional content value encoding (i.e., BACKSLASH character
encoding) is defined for this value type.

Exanpl e: The following is a rule which specifies 10 neetings which
occur every other day:

FREQ=DAI LY; COUNT=10; | NTERVAL=2

There are other exanples specified in the "RRULE" specification.

Ful | Copyright Statenent
Copyright (C The Internet Society (1998). Al R ghts Reserved.

Thi's document and translations of it may be copied and furnished to
others, and derivative works that conment on or otherw se explain it
or assist inits inplementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of

devel opi ng Internet standards in which case the procedures for

RFC 2445 Excerpt: Recurrence A-5

Job Scheduler Implementation of the Recurrence Rule

copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |anguages other than
Engl i sh.

A.2 Job Scheduler Implementation of the Recurrence Rule

Oracle Application Server Containers for J2EE implements the recurrence rule of RFC
2445 as follows:

The UNTIL rule is not supported. Similar functionality can be achieved by using
the set EndDat e() method of the r ecur Schedul e object.

The COUNT rule is not supported. Similar functionality can be achieved by using
the set Count () method of the r ecur Schedul e object.

The BYDAY clause supports both two- and three-letter abbreviations for days of
the week (for example, either MOor MON may be used to represent Monday).

The BYSETPOS rule is not supported.
The WKST rule is not supported.

A.3 RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

This section provides a listing of RFC 2445, Section 4.8.5.4. This section contains many
examples which you might find helpful.

Note: The examples that use the BYSETPOS and WKST rules are
omitted, because these rules are not supported by Oracle Application
Server Containers for J2EE.

4.8.5.4 Recurrence Rule

Property Name: RRULE

Purpose: This property defines a rule or repeating pattern for
recurring events, to-dos, or time zone definitions.

Val ue Type: RECUR

Property Paraneters: Non-standard property paraneters can be
specified on this property.

Conformance: This property can be specified one or nore tines in
recurring "VEVENT", "VTODO' and "VJOURNAL" cal endar components. It
can al so be specified once in each STANDARD or DAYLI GHT sub- conponent
of the "VTIMEZONE" cal endar conponent.

Description: The recurrence rule, if specified, is used in conputing
the recurrence set. The recurrence set is the conplete set of
recurrence instances for a cal endar conponent. The recurrence set is
generated by considering the initial "DISTART" property along with
the "RRULE', "RDATE', "EXDATE' and "EXRULE" properties contained
within the iCal endar object. The "DISTART" property defines the first
instance in the recurrence set. Miltiple instances of the "RRULE' and
"EXRULE" properties can also be specified to define nore

sophi sticated recurrence sets. The final recurrence set is generated
by gathering all of the start date/tines generated by any of the

A-6 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

speci fied "RRULE" and "RDATE" properties, and excluding any start
date/times which fall wthin the union of start date/times generated
by any specified "EXRULE' and "EXDATE" properties. This inplies that
start date/times within exclusion related properties (i.e., "EXDATE"
and "EXRULE') take precedence over those specified by inclusion
properties (i.e., "RDATE' and "RRULE'). \Were duplicate instances are
generated by the "RRULE" and "RDATE" properties, only one recurrence
i s considered. Duplicate instances are ignored.

The "DTSTART" and "DTEND"' property pair or "DTSTART" and " DURATI ON'
property pair, specified within the iCal endar object defines the
first instance of the recurrence. Wen used with a recurrence rule,
the "DTSTART" and "DTEND' properties MUST be specified in local time
and the appropriate set of "VTIMEZONE" cal endar conponents MJST be
included. For detail on the usage of the "VTI MEZONE" cal endar
conponent, see the "VTI MEZONE" cal endar conponent definition.

Any duration associated with the iCal endar object applies to all
menbers of the generated recurrence set. Any modified duration for
specific recurrences MJUST be explicitly specified using the "RDATE"
property.

Format Definition: This property is defined by the follow ng

not at i on:
rrule = "RRULE" rrulparam":" recur CRLF
rrul param = *(";" xparan

Exanpl e: All exanples assume the Eastern United States time zone.
Daily for 10 occurrences:

DTSTART; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=DAI LY; COUNT=10

==> (1997 9: 00 AM EDT) Sept enber 2-11
Daily until Decenber 24, 1997:

DTSTART; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=DAI LY; UNTI L=19971224T000000Z

==> (1997 9: 00 AM EDT) Sept enber 2-30; Cct ober 1-25
(1997 9: 00 AM EST) Cct ober 26- 31; Novenber 1-30; Decenber 1-23

Every other day - forever:

DTSTART; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=DAI LY; | NTERVAL=2
==> (1997 9: 00 AM EDT) Sept enber 2, 4, 6, 8. .. 24, 26, 28, 30;
Cctober 2,4,6...20,22,24
(1997 9:00 AM EST) Cct ober 26, 28, 30; Novenber 1,3,5,7... 25,27, 29;
Dec 1,3,...

Every 10 days, 5 occurrences:

DTSTART; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=DAI LY; | NTERVAL=10; COUNT=5

RFC 2445 Excerpt: Recurrence A-7

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

==> (1997 9:00 AM EDT) Septenber 2,12, 22; Cct ober 2,12
Everyday in January, for 3 years:

DTSTART; TZI D=US- East ern: 19980101T090000

RRULE: FREQ=YEARLY; UNTI L=20000131T090000Z;
BYMONTH=1; BYDAY=SU, MO, TU, VE, TH, FR, SA

or

RRULE: FREQ=DAI LY; UNTI L=20000131T090000Z; BYMONTH=1

==> (1998 9: 00 AM EDT)January 1-31
(1999 9: 00 AM EDT) January 1-31
(2000 9: 00 AM EDT) January 1-31

Vekly for 10 occurrences

DTSTART; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=VEEKLY; COUNT=10

==> (1997 9:00 AM EDT) Sept enber 2,9, 16, 23, 30; Cct ober 7, 14,21
(1997 9: 00 AM EST) Cct ober 28; Novenber 4

Wekly until Decenber 24, 1997

DTSTART; TZI D=US- East er n: 19970902T7090000
RRULE: FREQ=VEEEKLY; UNTI L=19971224T000000Z

==> (1997 9:00 AM EDT) Sept enber 2,9, 16, 23, 30; Cctober 7, 14,21
(1997 9: 00 AM EST) Cct ober 28; Novenber 4, 11, 18, 25;
Decenber 2,9, 16, 23
Monthly on the 1st Friday for ten occurrences:

DTSTART; TZI D=US- East er n: 19970905T090000
RRULE: FREQ=MONTHLY; COUNT=10; BYDAY=1FR

==> (1997 9: 00 AM EDT) Sept enber 5; Cct ober 3
(1997 9: 00 AM EST) Novenber 7;Dec 5
(1998 9: 00 AM EST)January 2; February 6; March 6; April 3
(1998 9: 00 AM EDT) May 1; June 5

Monthly on the 1st Friday until Decenber 24, 1997:

DTSTART; TZI D=US- East er n: 19970905T090000
RRULE: FREQ=MONTHLY; UNTI L=19971224T000000Z; BYDAY=1FR

==> (1997 9:00 AM EDT) Sept enber 5; Cctober 3
(1997 9: 00 AM EST) Novenber 7;Decenber 5

Every other nonth on the 1st and | ast Sunday of the month for 10
occurrences:

DTSTART; TZI D=US- East ern: 19970907T090000
RRULE: FREQ=MONTHLY; | NTERVAL=2; COUNT=10; BYDAY=1SU, - 1SU

==> (1997 9: 00 AM EDT) Sept enber 7, 28
(1997 9: 00 AM EST) Novenber 2, 30
(1998 9: 00 AM EST)January 4, 25; March 1, 29
(1998 9: 00 AM EDT) May 3, 31

Monthly on the second to |ast Monday of the month for 6 nonths:

A-8 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

DTSTART; TZI D=US- East er n: 19970922T090000
RRULE: FREQ=MONTHLY; CQUNT=6; BYDAY=- 2MD

==> (1997 9:00 AM EDT) Sept enber 22; Cct ober 20
(1997 9: 00 AM EST) Novenber 17; Decenber 22
(1998 9: 00 AM EST) January 19; February 16

Monthly on the third to the |ast day of the nonth, forever:

DTSTART; TZI D=US- East er n: 19970928T090000
RRULE: FREQ=MONTHLY; BYMONTHDAY=- 3

==> (1997 9: 00 AM EDT) Sept enber 28
(1997 9: 00 AM EST) Cct ober 29; Novenber 28; Decenber 29
(1998 9: 00 AM EST) January 29; February 26

Monthly on the 2nd and 15th of the nmonth for 10 occurrences:

DTSTART; TZI D=US- East er n: 199709027090000
RRULE: FREQ=MONTHLY; CQUNT=10; BYMONTHDAY=2, 15

==> (1997 9: 00 AM EDT) Sept enber 2, 15; Cctober 2,15
(1997 9: 00 AM EST) Novenber 2, 15; Decenber 2,15
(1998 9: 00 AM EST) January 2,15

Monthly on the first and |ast day of the month for 10 occurrences:

DTSTART; TZI D=US- East er n: 19970930T090000
RRULE: FREQ=MONTHLY; COUNT=10; BYMONTHDAY=1, - 1

==> (1997 9: 00 AM EDT) Sept enber 30; Cct ober 1
(1997 9: 00 AM EST) Cct ober 31; Novenber 1, 30; Decenber 1,31
(1998 9:00 AM EST) January 1, 31;February 1

Every 18 nonths on the 10th thru 15th of the nmonth for 10
occurrences:

DTSTART; TZI D=US- East er n: 19970910T090000
RRULE: FREQ=MONTHLY; | NTERVAL=18; COUNT=10; BYMONTHDAY=10, 11, 12, 13, 14,
15

==> (1997 9:00 AM EDT) Sept enber 10, 11, 12, 13, 14,15
(1999 9:00 AM EST) March 10, 11,12, 13

Every Tuesday, every other nonth:

DTSTART; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=MONTHLY; | NTERVAL=2; BYDAY=TU

==> (1997 9: 00 AM EDT) Sept enber 2,9, 16, 23, 30
(1997 9:00 AM EST) Novenber 4, 11, 18, 25
(1998 9: 00 AM EST) January 6, 13, 20, 27; March 3, 10, 17, 24, 31

Yearly in June and July for 10 occurrences:

DTSTART; TZI D=US- East er n: 19970610T090000
RRULE: FREQ=YEARLY; COUNT=10; BYMONTH=6, 7

RFC 2445 Excerpt: Recurrence A-9

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

==> (1997 9: 00 AM EDT) June 10;July 10

(1998 9: 00 AM EDT) June 10;July 10

(1999 9: 00 AM EDT)June 10;July 10

(2000 9: 00 AM EDT)June 10;July 10

(2001 9: 00 AM EDT) June 10;July 10
Note: Since none of the BYDAY, BYMONTHDAY or BYYEARDAY conponents
are specified, the day is gotten from DTSTART

Every other year on January, February, and March for 10 occurrences:

DTSTART; TZI D=US- East er n: 19970310T090000
RRULE: FREQ=YEARLY; | NTERVAL=2; COUNT=10; BYMONTH=1, 2, 3

==> (1997 9:00 AM EST)March 10
(1999 9: 00 AM EST)January 10; February 10; March 10
(2001 9: 00 AM EST)January 10; February 10; March 10
(2003 9: 00 AM EST)January 10; February 10; March 10

Every 3rd year on the 1st, 100th and 200th day for 10 occurrences:

DTSTART; TZI D=US- East ern: 199701017090000
RRULE: FREQ=YEARLY; | NTERVAL=3; COUNT=10; BYYEARDAY=1, 100, 200

==> (1997 9:00 AM EST)January 1
(1997 9:00 AM EDT) April 10;July 19
(2000 9: 00 AM EST)January 1
(2000 9:00 AM EDT) April 9;July 18
(2003 9: 00 AM EST)January 1
(2003 9: 00 AM EDT) April 10;July 19
(2006 9: 00 AM EST)January 1

Every 20th Monday of the year, forever:

DTSTART; TZI D=US- East ern: 19970519T090000
RRULE: FREQ=YEARLY; BYDAY=20MO

==> (1997 9: 00 AM EDT) May 19
(1998 9:00 AM EDT) May 18
(1999 9:00 AM EDT) May 17

Monday of week nunber 20 (where the default start of the week is
Monday), forever:

DTSTART; TZI D=US- East ern: 19970512T090000
RRULE: FREQ=YEARLY; BYWEEKNO=20; BYDAY=MO

==> (1997 9: 00 AM EDT) May 12

(1998 9:00 AM EDT) May 11
(1999 9:00 AM EDT) May 17

Every Thursday in March, forever:

DTSTART; TZI D=US- East ern: 19970313T090000
RRULE: FREQ=YEARLY; BYMONTH=3; BYDAY=TH

==> (1997 9:00 AM EST)March 13, 20, 27

(1998 9: 00 AM EST) March 5,12, 19, 26
(1999 9: 00 AM EST) March 4,11, 18, 25

A-10 Oracle Containers for J2EE Job Scheduler Developer’s Guide

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

Every Thursday, but only during June, July, and August, forever:

DTSTART; TZI D=US- East er n: 19970605T090000
RRULE: FREQ=YEARLY; BYDAY=TH, BYMONTH=6, 7, 8

==> (1997 9:00 AM EDT) June 5,12,19, 26; July 3,10, 17, 24, 31;
August 7, 14,21, 28
(1998 9: 00 AM EDT) June 4, 11,18, 25;July 2,9, 16, 23, 30;
August 6, 13, 20, 27
(1999 9: 00 AM EDT) June 3,10, 17,24;July 1,8, 15, 22, 29;
August 5, 12,19, 26

Every Friday the 13th, forever:

DTSTART; TZI D=US- East er n: 19970902T090000
EXDATE; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=MONTHLY; BYDAY=FR; BYMONTHDAY=13

==> (1998 9:00 AM EST) February 13; March 13; Novenber 13
(1999 9:00 AM EDT) August 13
(2000 9:00 AM EDT) Cct ober 13

The first Saturday that follows the first Sunday of the nonth,
forever:

DTSTART; TZI D=US- East er n: 19970913T090000

RRULE: FREQ=MONTHLY; BYDAY=SA; BYMONTHDAY=7, 8, 9, 10, 11, 12, 13
==> (1997 9:00 AM EDT) Sept enber 13; Cct ober 11

1997 9: 00 AM EST) Novenber 8; Decenber 13

1998 9: 00 AM EST) January 10; February 7;March 7
1998 9:00 AM EDT) April 11;May 9;June 13...

[P —

Every four years, the first Tuesday after a Monday in Novenber,
forever (U S. Presidential Election day):

DTSTART; TZI D=US- East er n: 19961105T090000
RRULE: FREQ=YEARLY; | NTERVAL=4; BYMONTH=11; BYDAY=TU; BYMONTHDAY=2, 3, 4,
56,7,8
==> (1996 9:00 AM EST) Novenber 5
(2000 9:00 AM EST) November 7
(2004 9:00 AM EST) Novenber 2
Every 3 hours from9:00 AMto 5:00 PMon a specific day:

DTSTART; TZI D=US- East er n: 199709027090000
RRULE: FREQ=HOURLY; | NTERVAL=3; UNTI L=19970902T170000Z

==> (Septenmber 2, 1997 EDT)09: 00, 12: 00, 15: 00
Every 15 ninutes for 6 occurrences:

DTSTART; TZI D=US- East er n: 19970902T090000

RFC 2445 Excerpt: Recurrence A-11

RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

RRULE: FREQ=M NUTELY; | NTERVAL=15; COUNT=6
==> (Septenber 2, 1997 EDT)09: 00, 09: 15, 09: 30, 09: 45, 10: 00, 10: 15
Every hour and a half for 4 occurrences:

DTSTART; TZI D=US- East er n: 19970902T090000
RRULE: FREQ=M NUTELY; | NTERVAL=90; COUNT=4

==> (Septenber 2, 1997 EDT)09: 00, 10: 30; 12: 00; 13: 30
Every 20 nminutes from9:00 AMto 4:40 PM every day:

DTSTART; TZI D=US- East er n: 19970902T7090000

RRULE: FREQ=DAI LY; BYHOUR=9, 10, 11, 12, 13, 14, 15, 16; BYM NUTE=0, 20, 40
or

RRULE: FREQ=M NUTELY; | NTERVAL=20; BYHOUR=9, 10, 11, 12, 13, 14, 15, 16

==> (Septenber 2, 1997 EDT)9: 00, 9: 20, 9: 40, 10: 00, 10: 20,
16: 00, 16: 20, 16: 40
(Septenber 3, 1997 EDT) 9: 00, 9: 20, 9: 40, 10: 00, 10: 20,
... 16: 00, 16: 20, 16: 40

A-12 Oracle Containers for J2EE Job Scheduler Developer’s Guide

B

Oracle Application Server Containers for
J2EE Semantics

This appendix summarizes the differences in semantics among several closely related
terms: remove, pause, cancel, retry, replay, and execution threshold. The following
topics are covered:

= Semantics

= Job Precedence

B.1 Semantics

This section provides a summary of the differences in semantics of the various job
operations. Figure B-1 illustrates the various job operations:

Figure B-1 Job Scheduler Semantics

Scheduled Job Scheduled Job Scheduled Job
Job Retry Job Retry Job Retry
' 61]]' am. 12:00 pm. 600 p.m. " 6:00am. 12:00 pm. 6:00pm. y
X : x | X >
12z00am. | 12,09 a.m. 12:00 a.m.
Monday | Tuedday Wedresday
I | I |
| | | |
LA A LA A
Execution Blackout Execution Blackout
Threshold Window Threshold Window

Here is a job with a repeating schedule. The job is scheduled to run each night at
midnight, with a retry period of 1 hour, an execution threshold of 6 hours, and a
blackout window from 6:00 a.m. to midnight each day.

Removing a Job

Removing a job deletes the job definition, thus preventing the job from being run in
the future. For example, if a job were removed at 2:00 a.m. on Monday, all future
scheduled executions would be removed, and the job would not be run again on
Tuesday, or Wednesday, or at any point in the future. If a job execution was running at
the time the job was removed, the job execution would finish before the job was
removed. To immediately stop a job execution that is running, you must cancel the job.

For more information about removing jobs, see Section 2.3.

Oracle Application Server Containers for J2EE Semantics B-1

Job Precedence

Canceling a Job

Canceling a job stops the job execution while it is running. This is the only way to stop
a job execution that is currently running. If you want to re-run the canceled job
execution at some future point, you must specify a retry period.

For more information about canceling jobs, see Chapter 6.

Pausing a Job

Pausing a job causes future scheduled job executions to be skipped until the point at
which the job is resumed. For example, if you pause a job at 2:00 a.m. on Monday, and
resume the job at 2:00 a.m. on Tuesday, then the scheduled job execution at midnight
on Tuesday would be skipped.

If you want the skipped job execution to run, set replay to true when you resume the
job and the skipped job execution will be run when the job is resumed. If replay is set
to false, then the skipped job execution is ignored and is not run.

It is important to note that replay will only attempt to run one skipped job execution.
If you have a job with a repeating schedule and multiple job executions are skipped,
replay will only attempt to run the first skipped job execution; all others are ignored.

For more information about pausing jobs, see Chapter 5.

Job Retry

If a job execution fails, job retry allows that job execution to be attempted again after a
specified period of time. For example, if the job execution at midnight on Monday
failed due to a power outage, that job execution would be attempted once at 1:00 a.m.
If the job execution failed again, it would be ignored, and another attempt would not
be made until the next scheduled run time (midnight on Tuesday).

For more information about job retry, see Section 3.2.

Execution Threshold

Execution threshold is essentially a time limit for a job to be run; if the job is not run
within a specified period of time, then it is ignored and another attempt to run it is not
made until the next scheduled run time. For example, a job scheduled to run nightly at
midnight has a 6 hour execution threshold. If the job is not started by 6:00 a.m. on any
day, then it is ignored and no attempt will be made to run the job again until midnight
that night.

For more information about execution threshold, see Section 3.2.

Blackout Window

A blackout window is a period of time in which all job executions are suppressed. Any
job execution that is scheduled to take place between 6:00 a.m. and midnight, for
example (either directly scheduled or indirectly through a retry or replay), would be
suppressed until the blackout window ends.

For more information about blackout windows, see Chapter 4.

B.2 Job Precedence

The combination of job semantics (for example, job retry or blackout windows) and
associated operations (for example, pause and resume) requires precedence to ensure
the overall correctness of Job Scheduler and resolve possible conflicts.

For example, consider the following scenarios:

B-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Job Precedence

= Ajob execution is resumed with replay during the time in which a blackout
window is in effect. Does the job run?

« Ajob execution fails and is retried. Does execution threshold apply to the retry
too?

« Ajob execution is paused and resumed with replay. Does execution threshold
apply to the replay too?

Table B-1 specifies the precedence of these operations.

Table B-1 Precedence of Job Scheduler Operations

Precedence Attribute/Operation Discussion

1 (highest) Blackout windows All job executions are suppressed when a blackout
window is active.
2 Job resume with When a job execution is resumed with the replay
replay parameter set to true, the job execution will run
regardless of lower precedence attributes or
operations.
3 Job retry When a job execution fails, retry takes precedence

over execution threshold or a (repeating) schedule
end date. The same holds true if the job execution is
paused after it is started, but before the retry period.

4 Job execution Execution threshold pertains to the initial running of
threshold the job execution only and not a retry (as a result of a
failed attempt) or replay (as a result of resume).

5 Job pause When a job execution is paused, execution may be
postponed until the job is resumed. Both retry and
replay take precedence.

6 (lowest) Schedule end date The job execution runs when not paused and falls
within the execution threshold (if specified).

Oracle Application Server Containers for J2EE Semantics B-3

Job Precedence

B-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

C

JSP Tag Library Reference

The Job Scheduler JSP Tag Library is used to interact with the Oracle Application
Server Containers for J2EE. It is used to add, remove, pause, resume, and query jobs,
as well as add, remove, and query blackout windows. In addition, a number of helper
tags are provided for conditional operations on jobs and audit records (for example,
distributing content based on the status of a job).

The following sections are covered:

« Configuring an Application with the JSP Tag Library
» JSP Tag Library Summary

» JSP Tag Library Reference

» JSP Tag Library Examples

C.1 Configuring an Application with the JSP Tag Library
Follow these steps to configure a web application with the JSP Tag Library:

1. Copy the JSP Tag Library descriptor file to the / EB- | NF subdirectory of your
Web application.

2. Copy the JSP Tag library JAR file to the / WEB- | NF/ | i b subdirectory of your Web
application.

3. Addac<tagli b>element to your Web application deployment descriptor in
/ VEEB- | NF/ web. xm . For example:

<taglib>

<taglib-uri>schedul er-taglib</taglib-uri>
<taglib-1ocation> WEB- | NF/ schedul er.tld</taglib-I|ocation>

</taglib>

To use the tags from this library in a JSP page, add the following directive at the top of
each page:

<V@taglib uri="schedul er-taglib" prefix="s" %

The s is the tag name prefix for tags from this library, although any prefix can be
specified.

C.2 JSP Tag Library Summary

Table C-1 provides a summary of the primary tags included in this library.

JSP Tag Library Reference C-1

JSP Tag Library Reference

Table C-1 JSP Tag Library Summary

Tag Description

scheduler Top-level tag for all Job Scheduler tags.
addJob Adds a new job.

removelob Removes an existing job.

pauselob Pauses a job.

resumelob Resumes a paused job.

cancellob Cancels a job.

addBlackoutWindow Adds a new blackout window.
removeBlackoutWindow Removes an existing blackout window.

C.3 JSP Tag Library Reference

This section provides reference information for each of the tags listed in Section C.2.

C.3.1 scheduler

The schedul er tag provides an implicit EJB context for interacting with Job
Scheduler. Because context is implicit, this tag must be the parent of all other tags
provided by this library.

Table C-2 describes the supported attributes for the schedul er tag.

Table C-2 scheduler Tag Attributes

Attribute Required? Description

id Yes Instance name of the Job Scheduler EJB by which the Job
Scheduler may be accessed.

name Yes JNDI name of the Job Scheduler EJB responsible for processing
all operations in the body of this tag.

scope No Scope! of the implicit EJB context. Valid values are page,
request, sessi on, orappl i cati on. The default is page.

! This is equivalent to the JSP PAGECONTEXT scope.

Example:

<s:schedul er id="schedul er" name="j ava: conp/ env/ ej b/ schedul er"
scope="appl i cation">

</'s:schedul er>

C.3.2 addJob

The addJob tag adds a new job to Job Scheduler. This tag must be enclosed within a
schedul er tag.

Table C-3 describes the supported helper tags for the addJob tag.

C-2 Oracle Containers for J2EE Job Scheduler Developer's Guide

JSP Tag Library Reference

Table C-3 Helper Tags for the addJob Tag

Helper Tag Required? Description

className Yes Class name of the job.

description No Description of the job.

schedule No Job schedule (specifies how often a timeout is sent to the
trigger).

trigger No Job trigger (specifies a condition to be met before a job is run).

retry No Job retry period.

logLevel No Job log level.

C.3.2.1 className

Use this helper tag to specify the class name when adding a new job. This tag must be
enclosed in an addJob tag.

Example:

<s:schedul er id="schedul er" name="java: conp/ env/ej b/ schedul er">
<s: addJob>
<s: cl assName>Test Jobl npl </ s: ¢l assNane>
</ s:addJob>
</ s: schedul er>

C.3.2.2 description

Use this helper tag to specify a job description when adding a new job. This tag must
be enclosed in an addJob tag.

Example:

<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er" >
<s:addJob>
<s: cl assNanme>Test Jobl npl </ s: ¢l assNanme>
<s:description>Exanpl e job description</s:description>
</ s:addJob>
</'s: schedul er >

C.3.2.3 schedule

Use this helper tag to specify a schedule for a job or blackout window. This tag must
be enclosed in either an addJob or addBl ackout W ndowtag.

Table C-4 describes the supported helper tags for the schedul e helper tag.

Table C-4 Helper Tags for the schedule Helper Tag

Helper Tag Required? Description

duration No Initial expiration duration of the schedule.

interval No Repeat interval of the schedule.

threshold No Execution threshold for the job (applicable only when used in

conjunction with the addJob tag).

C.3.2.3.1 duration

Use this helper tag to specify the initial expiration duration of the schedule. This tag
must be enclosed in a schedul e tag. The body of this tag is used to specify the

JSP Tag Library Reference C-3

JSP Tag Library Reference

duration. The duration is specified as an arbitrary number of units and associated
values or a specific date and time.

Some example durations are:

« 1week

« 1 month, 5 days

= March 15, 2005

« January 5 2004 16:00:00 PST

Table C-5 describes the supported helper tags for the dur at i on helper tag.

Table C-5 Helper Tags for the duration Helper Tag

Helper Tag Required? Description

date No Date of initial expiration. This tag can be combined with the
ti ne tag.

time No Time of initial expiration. This tag can be combined with the
dat e tag.

years No Expiration in years relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

months No Expiration in months relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

weeks No Expiration in weeks relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

days No Expiration in days relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

hours No Expiration in hours relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

minutes No Expiration in minutes relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

seconds No Expiration in seconds relative to the time at which the job is
submitted. This tag can be combined with any other helper tag.

milliseconds No Expiration in milliseconds relative to the time at which the job
is submitted. This tag can be combined with any other helper
tag.

Detailed descriptions and examples of the helper tags described in Table C-5 are
provided in the following sections.

Note: To avoid repetition, full code examples are provided for the
first few tags. Partial code examples are provided for the remainder of
the tags in this section.

date

Use this helper tag to specify an exact date for the initial expiration of a job. This tag
must be enclosed in a dur at i on tag. The format of the date expression must comply
with the date parsing routines provided by the j ava. t ext . Dat eFor mat class. If this
tag is not used in conjunction with at i me tag, the enclosing body of the dur at i on
tag uses the default time of 12:00:00 a.m.

Use the following code to set the schedule duration to October 27, 2003 12:00 a.m. PST.

C-4 Oracle Containers for J2EE Job Scheduler Developer's Guide

JSP Tag Library Reference

<s:schedul er i d="schedul er" nane="java: conp/env/ejb/schedul er">
<s: addJob>
<s: cl assNane>Test Jobl npl </ s: cl assNanme>
<s:schedul e>
<s:duration>
<s: dat e>Cct ober 27, 2003</s: date>
</ s:duration>
</ s:schedul e>
</ s:addJob>
</ s: schedul er>

time

Use this helper tag to specify an exact time for the initial expiration of a job. This tag
must be enclosed in a dur at i on tag. The format of the time expression specified must
comply with the time parsing routines provided by the j ava. t ext . Ti neFor mat
class. If this tag is not used in conjunction with a dat e tag, the enclosing body of the
duration tag defaults to use the date on which the job was submitted.

Use the following code to set the schedule duration to October 27, 2003 4:30 p.m. PST.

<s:schedul er id="schedul er"” nane="j ava: conp/ env/ ej b/ schedul er" >
<s: addJob>
<s: cl assNanme>Test Jobl npl </ s: cl assNanme>
<s:schedul e>
<s:duration>
<s: dat e>Cct ober 27, 2003</s: date>
<s:time>16:30: 00 PST</s: date>
</s:duration>
</ s: schedul e>
</ s: addJob>
</ s:schedul er>

years
Use this unit tag in conjunction with either the dur ati on ori nt er val tag to specify
the number of years to expiration. This tag can be used in conjunction with any of the
other unit tags (mont hs, weeks, days, hour s, or m nut es). The body of the tag must
be a positive non-zero integer. If the duration or interval occurs on a leap day, the
expiration will be rounded to the last day of the month. For example, February 29
would be rounded to February 28 of the following year.

Use the following code to set the schedule duration to one year from the time of
submission.

<s:schedul er id="schedul er” nane="java: conp/env/ejb/schedul er">
<s:addJob>
<s: cl assNane>Test Jobl npl </ s: cl assNanme>
<s: schedul e>
<s:duration>
<s:years>1</s:years>
</s:duration>
</ s: schedul e>
</ s:addJob>
</ s:schedul er>

The following example shows how to set the schedule interval to 1 year:

<s:schedul er id="schedul er” nane="j ava: conp/ env/ ej b/ schedul er" >
<s:addJob>

JSP Tag Library Reference C-5

JSP Tag Library Reference

<s: cl assNanme>Test Jobl npl </ s: cl assNanme>
<s:schedul e>
<s:interval >
<s:years>1</s:years>
</s:interval >
</ s: schedul e>
</ s: addJob>
</ s: schedul er >

months

Use this unit tag in conjunction with either the dur ati on ori nt erval tag to specify
the number of months to expiration. This tag can be used in conjunction with any of
the other unit tags (year s, weeks, days, hour s, or ni nut es). The body of the tag
must be a positive non zero integer. If the duration or interval occurs at the end of the
month, some rounding may occur so that the interval remains at the end of the month.
For example, January 31 would be rounded to February 28 of the following month.

Use the following code to set the schedule to expire after 1 month.

<s:schedul er id="schedul er" nanme="java: conp/ env/ ej b/ schedul er">
<s:addJob>
<s: cl assNane>Test Jobl npl </ s: cl assNane>
<s:schedul e>
<s:duration>
<s: nont hs>1</s: nont hs>
</s:duration>
</ s: schedul e>
</ s: addJob>
</ s: schedul er >

The following example shows how to set the schedule to repeat every 3 months.

<s:schedul er id="schedul er" nane="java: conp/ env/ ej b/ schedul er">
<s:addJob>
<s: cl assNane>Test Jobl npl </ s: cl assNanme>
<s:schedul e>
<s:interval >
<s: nont hs>3</s: nont hs>
</s:interval >
</ s: schedul e>
</ s: addJob>
</ s: schedul er >

weeks

Use this unit tag in conjunction with either the dur ati on ori nt er val tag to specify
the number of weeks to expiration. This tag can be used in conjunction with any of the
other unit tags (year s, nont hs, days, hour s, m nut es, seconds, or

m | | i seconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to expire after 1 week:

<s:duration>
<s: weeks>1</s: weeks>
</s:duration>

C-6 Oracle Containers for J2EE Job Scheduler Developer's Guide

JSP Tag Library Reference

days

Use this unit tag in conjunction with either the dur ati on ori nt er val tag to specify
the number of days to expiration. This tag can be used in conjunction with any of the
other unit tags (year s, mont hs, weeks, hour s, m nut es, seconds, or

m | i seconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to repeat every 14 days:

<s:interval >
<s: days>14</s: days>
</s:interval >

hours

Use this unit tag in conjunction with either the dur ati on ori nt er val tag to specify
the number of hours to expiration. This tag can be used in conjunction with any of the
other unit tags (year s, mont hs, weeks, hour s, m nut es, seconds, or

m | 1i seconds). The body of the tag must be a positive non zero integer.

Use this code to set the schedule to expire after 48 hours:

<s:duration>
<s: hour s>48</s: hour s>
</ s:duration>

minutes

Use this unit tag in conjunction with either the dur at i on ori nt er val tag to specify
the number of minutes to expiration. This tag can be used in conjunction with any of
the other unit tags (year s, nont hs, weeks, hour s, days, seconds, or

m | | i seconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to repeat every 720 minutes:

<s:interval >
<s:m nut es>720</s: m nut es>
</s:interval >

seconds

Use this unit tag in conjunction with either the dur at i on ori nt er val tag to specify
the number of seconds to expiration. This tag can be used in conjunction with any of
the other unit tags (year s, nont hs, weeks, hour s, days, nm nut es, or

m | | i seconds). The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to expire after 86,400 seconds (24 hours):

<s:duration>
<s: seconds>86400</ s: seconds>
</s:duration>

JSP Tag Library Reference C-7

JSP Tag Library Reference

milliseconds

Use this unit tag in conjunction with either the dur ati on ori nt erval tag to specify
the number of milliseconds to expiration. This tag can be used in conjunction with any
of the other unit tags (year s, mont hs, weeks, hour s, days, m nut es, or seconds).
The body of the tag must be a positive non zero integer.

Use the following code to set the schedule to repeat every 43,200,000 milliseconds:

<s:interval >
<s:mlliseconds>43200000</s:ni|lliseconds>
</s:interval >

C.3.2.3.2 interval

Use this helper tag to specify the interval of the schedule. This tag must be enclosed in
aschedul e tag. The body of this tag is used to specify the schedule interval. The
interval is specified as an arbitrary number of units and associated values.

Some example intervals are:

« 1lweek

« 1 month, 5days

« 1 month, 6 days, 3 hours

Table C-6 describes the supported helper tags for the i nt er val helper tag.

Table C-6 Helper Tags for the interval Helper Tag

Helper Tag Required? Description

end No End date of a repeating interval.
years No Repeating interval in years relative to the time at which the job is
submitted. This tag may be combined with any other unit tag.
nont hs No Repeating interval in months relative to the time at which the job
is submitted. This tag may be combined with any other unit tag.
weeks No Repeating interval in weeks relative to the time at which the job
is submitted. This tag may be combined with any other unit tag.
days No Repeating interval in days relative to the time at which the job is
submitted. This tag may be combined with any other unit tag.
hour s No Repeating interval in hours relative to the time at which the job
is submitted. This tag may be combined with any other unit tag.
n nut es No Repeating interval in minutes relative to the time at which the
job is submitted. This tag may be combined with any other unit
tag.

Use the end helper tag to specify an end date for a repeating interval. This tag must be
enclosed inani nt er val tag. The interval is specified as an arbitrary number of units
and associated values.

Use the following code to set an end date of 1 year for a monthly repeating interval:

<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er">
<s: addJob>
<s: cl assNanme>Test Jobl npl </ s: cl assNane>
<s: schedul e>
<s:interval >

C-8 Oracle Containers for J2EE Job Scheduler Developer's Guide

JSP Tag Library Reference

<s: mont hs>1</s: nont hs>
<s: end>
<s:years>1</s:years>
<[s:end>
</s:interval >
</ s: schedul e>
</s:addJob>
</'s:schedul er>

Table C-7 describes the unit tags supported be the end helper tag.

Table C-7 Helper Tags for the end Helper Tag

Helper Tag Required? Description

date No Date on which the schedule ends. This tag can be combined with
theti me tag.
tinme No Time at which the schedule ends. This tag can be combined with

the dat e tag.

years No End date in years relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

nont hs No End date in months relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

weeks No End date in weeks relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

days No End date in days relative to the time at which the job is submitted.
This tag can be combined with any other unit tag.

hours No End date in hours relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

m nut es No End date in minutes relative to the time at which the job is
submitted. This tag can be combined with any other unit tag.

These unit tags are used in the same manner as with the dur at i on helper tag. For
more information, see Section C.3.2.3.1.
C.3.2.3.3 threshold

Use this helper tag to specify the execution threshold of the schedule; if the schedule is
not run before the specified threshold, the job is suppressed and will be retried only if
aretry tag is specified. This tag must be enclosed in a schedul e tag. The body of
this tag is used to specify the schedule threshold. The threshold is specified as an
arbitrary number of units and associated values.

Some example thresholds are:
« lday
« 10 hours, 26 minutes

Table C-8 describes the helper tags available for the t hr eshol d tag.

Table C-8 Helper Tags for the threshold Helper Tag

Helper Tag Required? Description

days No Threshold in days. This tag can be combined with any of the
other unit tags.

hour s No Threshold in hours. This tag can be combined with any of the
other unit tags.

JSP Tag Library Reference C-9

JSP Tag Library Reference

Table C-8 (Cont.) Helper Tags for the threshold Helper Tag

Helper Tag Required? Description

nm nut es No Threshold in minutes. This tag can be combined with any of the
other unit tags.

These unit tags are used in the same manner as with the dur at i on helper tag. For
more information, see Section C.3.2.3.1.

C.3.2.4 trigger

Use this helper tag to specify the trigger for the job. This tag must enclosed in an
addJob tag. The body is used to specify the associated expression for the trigger. If no
trigger is specified, a default trigger is provided for execution based on the associated
schedule's expiration.

Example:

<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er">
<s:addJob>
<s: cl assNanme>Test Jobl npl </ s: cl assNane>
<s:trigger>do_it_now</s:trigger>
</'s: addJob>
</'s:schedul er>

C.3.2.5 retry

Use this helper tag to specify the retry period for the job. This tag must be enclosed in
an addJob tag. The body of this tag is used to specify the retry period and is specified
as an arbitrary number of units and associated values.

Table C-9 describes the supported helper tags for ther et r y helper tag:

Table C-9 Helper Tags for the retry Helper Tag

Helper Tag Required? Description

nont hs No Retry period in months. This tag can be combined with any of
the other unit tags.

weeks No Retry period in weeks. This tag can be combined with any of the
other unit tags.

days No Retry period in days. This tag can be combined with any of the
other unit tags.

hour s No Retry period in hours. This tag can be combined with any of the
other unit tags.

m nut es No Retry period in minutes. This tag can be combined with any of
the other unit tags.

If a job fails and you want it to retry in 1 hour and 30 minutes, then use the following

code:
<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er">
<s: addJob>
<s: cl assName>Test Jobl npl </ s: cl assName>
<s:retry>

<s: hours>1</s: hour s>
<s:m nut es>30</s: m nut es>
</s:retry>

C-10 Oracle Containers for J2EE Job Scheduler Developer’s Guide

JSP Tag Library Reference

</'s:addJob>
</'s:schedul er>

The unit tags described in Table C-9 are used in the same manner as with the
dur at i on helper tag. For more information, see Section C.3.2.3.1.

C.3.2.6 logLevel

Use this helper tag to set the log level for the job. This tag must be enclosed in an
addJob tag. The body of this tag is used to specify the log level. The following values
are supported:

« WARNING
Logs a message each time a job results in a run time exception. This is the lowest
logging level.

« FINE

Logs a message each time a job begins and ends.
« FINER

Logs a message each time the job's associated trigger is evaluated, and logs the
result of the evaluation.

« FINEST

Logs a message when the job completes, and logs the cumulative time it took to
run This is the highest level of logging.

C.3.3 removeJob

Use this tag to remove an existing job from the Job Scheduler. This tag must be
enclosed within a schedul er tag. Specify the or acl e. i as. schedul er. Job bean
instance name of the job you want to remove.

The nane attribute is the only supported attribute for the r enoveJob tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to remove a job named "job":

<Y@taglib uri="schedul er-taglib" prefix="s" %

<j sp: useBean id="job" class="oracle.ias.schedul er.Job" scope="session"/>

<s:schedul er id="schedul er" nane="java:conp/env/ejb/schedul er">
<s:renoveJob nanme="job"/>

</ s: schedul er>

C.3.4 pauseJob

Use this tag to pause an existing job in Job Scheduler. This tag must be enclosed within
aschedul er tag. Specify the or acl e. i as. schedul er. Job instance name of the
job you want to pause.

The nane attribute is the only supported attribute for the pauseJob tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to pause a job named job:

<v@taglib uri="scheduler-taglib" prefix="s" %
<j sp: useBean id="job" class="oracl e.ias.schedul er.Job" scope="session"/>
<s:schedul er id="schedul er" name="java: conp/ env/ej b/ schedul er">

JSP Tag Library Reference C-11

JSP Tag Library Reference

<s: pauseJob name="job"/>
</ s:schedul er >

C.3.5 resumeJob
Use this tag to resume a job in Job Scheduler. This tag must be enclosed within a
schedul er tag. Specify the or acl e. i as. schedul er. Job instance name of the job
you want to resume.

The nane attribute is the only supported attribute for the r esuneJob tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to resume a job named job:

<Y@taglib uri="scheduler-taglib" prefix="s" %

<j sp: useBean i d="job" class="oracle.ias.schedul er.Job" scope="session"/>

<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er" >
<s:resumeJob nane="job"/>

</ s:schedul er >

C.3.6 cancelJob

Use this tag to cancel an existing job in Job Scheduler. This tag must be enclosed
within aschedul er tag. Specify the or acl e. i as. schedul er. Job instance name
of the job you want to cancel.

The nane attribute is the only supported attribute for the cancel Job tag. It is an
optional attribute used to specify the bean instance name by which the associated job
is accessed.

The following example shows how to cancel a job named job:

<v@taglib uri="scheduler-taglib" prefix="s" %
<j sp: useBean i d="job" class="oracl e.ias.schedul er.Job" scope="session"/>
<s:schedul er id="schedul er" nanme="java: conp/ env/ ej b/ schedul er">
<s: cancel Job nanme="job"/>
</'s:schedul er>

C.3.7 addBlackoutWindow

Use this tag to add a blackout window to Job Scheduler. This tag must be enclosed
within aschedul er tag

Table C-10 describes the helper tags supported by the addBl ackout W ndowtag.

Table C-10 Helper Tags for the addBlackoutWindow Tag

Helper Tag Required? Description

description Yes Description of the blackout window.

duration Yes Duration of the blackout window.

schedul e No Schedule for the blackout window; specifies when, how

often, and for how long the blackout window is in effect. If
no schedule is specified, the blackout window is effective
starting at the time of submission.

The following example adds a blackout window lasting 2 hours, effective
immediately:

<¥@taglib uri="scheduler-taglib" prefix="s" %

C-12 Oracle Containers for J2EE Job Scheduler Developer’s Guide

JSP Tag Library Examples

<s:schedul er id="schedul er" name="java: conp/ env/ej b/ schedul er">
<s: addBl ackout W ndow>
<s:description>two hour downtine, effective inmediately</s:description>
<s:duration>
<s: hour s>2</ s: hour s>
</s:duration>
</'s: addBl ackout W ndow>
</ s: schedul er>

C.3.8 removeBlackoutWindow

Use this tag to remove an existing blackout window from Job Scheduler. This tag must
be enclosed within a schedul er tag.

The following example shows how to remove a an existing blackout window using the
blackout window’s description. (See Section C.3.7, where the blackout window was
created).

<Y@taglib uri="schedul er-taglib" prefix="s" %

<s:schedul er id="schedul er" name="java: conp/ env/ej b/ schedul er">
<s: renoveBl ackout Wndow>t wo hour downtine, effective

i medi at el y</s: renoveBl ackout W ndow>

</ s: schedul er>

C.4 JSP Tag Library Examples

This section contains more comprehensive examples illustrating the use of the various
tags described in this chapter.

Example C-1 shows how to list all submitted jobs.

Example C-1 Listing All Submitted Jobs

<Y@taglib uri="schedul er-taglib" prefix="s" %
<HTM.>
<HEAD>
<TITLE>Oracl eAS Job Schedul er: all jobs</TITLE>
</ HEAD>
<BCDY>
<TABLE>
<TR>
<TH>Descri pti on</ TH>
<TH>d ass Nane</ TH>
</ TR>
<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er">
<s:joblterator id="jobh">
<TR>
<TD><j sp: get Property name="j ob" property="Description"/></TD>
<TD><j sp: get Property nanme="j ob" property="0 assNane"/></ TD>
</ TR>
</s:joblterator>
</'s: schedul er>
</ TABLE>
</ BODY>
</ HTM.>

Example C-2 shows how to submit a job to Job Scheduler. In this example, an HTTP
request is sent to the JSP page. Once the request is processed, the JSP forwards the
request to a status page. The parameters in the request are described in the following
table:

JSP Tag Library Reference C-13

JSP Tag Library Examples

Parameter Description

descri ption Job description.

cl ass Job implementation class name.

expi rati onDat e Job schedule’s expiration date.

expirationTine Job schedule’s time of expiration on the specified expi r at i onDat e.
i nterval Days Job schedule’s repeat interval.

Example C-2 Submitting a Job to Job Scheduler

<v@taglib uri="scheduler-taglib" prefix="s" %
<j sp: useBean i d="parans" scope="request" class="Request Paranet er sBean" />
<j sp:setProperty name="parans" property="*" />
<HTM.>
<BODY>
<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er">
<s: addJob>
<s:description><jsp: get Property nane="parans"
property="description"/></s:description>
<s:class><j sp: getProperty name="parans" property="cl ass"/></s: cl assNane>
<s: schedul e>
<s:duration><jsp: getProperty name="parans"
property="expirationDate"/></s:duration>
<s:interval ><j sp: get Property nane="parans
property="expirationTime"/></s:interval >
</'s: schedul e>
</ s: addJob>
</ s:schedul er >
<jsp:forward url="/JobSchedul ed. htm"/>
</ BCDY>
</ HTM.>

Example C-3 shows how to remove a job from Job Scheduler. In this example, a job is
removed based on its description and class. Once the job has been removed, the JSP
forwards the request to a status page.

Example C-3 Removing a Job from Job Scheduler

<v@taglib uri="scheduler-taglib" prefix="s" %

<HTM.>

<BODY>

<s:schedul er id="schedul er" name="java: conp/ env/ ej b/ schedul er">
<s:joblterator id="job" desc="description of job to renove" class="test">

<s: renovelJob/ >

</s:joblterator>

</'s:schedul er>

<jsp:forward url="/JobRenoved. htm "/ >

</ BODY>

</ HTM.>

C-14 Oracle Containers for J2EE Job Scheduler Developer’s Guide

D

JMX MBean Reference

This appendix contains detailed information about the JIMX MBeans provided by Job
Scheduler and their attributes and values. The following topics are covered:

« Job Management Bean Attributes

« Job Scheduler Management Bean Attributes

« Job Scheduler Aggregation Management Bean Attributes

D.1 Job Management Bean Attributes

Table D-1 summarizes the Job MBean attributes for monitoring the job.

Table D-1 Job Management Bean Attributes

Attribute Access Type Description

Description Read-only java.lang.string Job description.

Cl assNanme Read-only java.lang.string Job implementation class name.
This class provides an
implementation of the
oracl e.ias. schedul er.
Execut abl e interface.

Schedul e Read-only oracl e. i as. schedul er. Schedul e Job schedule.

Tri ggers Read-only oracl e.ias. schedul er. Tri gger Job trigger.

Properties Read-only java.util.Properties Job properties.

State Read-only java.lang.string Job state (ACTI VE, PAUSED, or
COVPLETE).

LogLevel Read/ java. lang.string String representation of log

write levels for the job. Possible values

Executi onThreshol d Read-only

Ret ryPeri od

Read-only

| ong

| ong

are ALL, OFF, SEVERE,
WARNI NG, CONFI G, | NFO, FI NE,
FI NER, and FI NEST.

Job execution threshold (in
milliseconds).

Job retry period (in
milliseconds).

Table D-2 summarizes the operations provided for configuring the job.

JMX MBean Reference D-1

Job Scheduler Management Bean Attributes

Table D-2 Job Management Bean Operations

Operation Name Parameters Return Type Description

pause None None Pauses the job.

resumne replay:boolean None Resumes the job. If the parameter is true, then replay the job
if the trigger is set on resumption.

cancel None None Cancels any currently running jobs.

Table D-3 summarizes the DMS metrics for a job.

Table D-3 Job Management Bean DMS Metrics

Metric Name Metric Type
Noti fications count
Executi on average

Fai | edExecuti ons value
Cancel | edExecuti ons value
Successf ul Executi ons value

Bl ackout Execut i ons value
ExceededThr eshol dExecuti ons value

For more information about the metric types, see Oracle Application Server Performance
Guide.

D.2 Job Scheduler Management Bean Attributes

Table D-4 summarizes Job Scheduler attributes for monitoring Job Scheduler.

Table D-4 Job Scheduler Management Bean Attributes

Attribute Access Type Description

j obs Read-only java.util.Collection Allsubmitted jobs represented as a collection of
j avax. managenent . Cbj ect Nane objects,
each of which references its associated job
management bean instance.

j obst oreProvi der Read-only java.lang.string Class name of the configured job store provider
implementation. The class specified implements
the oracl e. i as. schedul er. j obstore.
JobSt or eProvi der interface.

Table D-5 summarizes the operations provided for configuring Job Scheduler.

D-2 Oracle Containers for J2EE Job Scheduler Developer’s Guide

Job Scheduler Aggregation Management Bean Attributes

Table D-5 Job Scheduler Management Bean Operations

Operation Name Parameters Return Type Description

addBl ackout W ndow java.lang. String None Create a new execution blackout
W ndownane, window with the specified window
java.lang. String name. The date, time, and length of
dat eti ne, time the blackout window is in effect.
| ong durationM nutes The format of the date/time string

must conform to the requirement of
java. t ext . Dat eFor mat using the
java. text . Dat eFor mat . FULL style
for both date and time components.
The duration is specified in minutes.

removeBl ackout Wndow java.lang. String None Remove a previously defined
wi ndowNane execution blackout window identified
by the specified window name.

| i st Bl ackout W ndows None java. util. Listthe names of all defined blackout
Col | ecti on windows.

Table D-6 summarizes the DMS metrics for a Job Scheduler.

Table D-6 Job Scheduler Management Bean DMS Metrics

Metric Name Metric Type
ExecJobl nst ances value
ActiveJobs value
PausedJobs value
Conpl et edJobs value
Noti fi cations count

For more information about the metric types, see Oracle Application Server Performance
Guide.

D.3 Job Scheduler Aggregation Management Bean Attributes

Table D-7 summarizes the Job Scheduler Aggregation MBean.

Table D-7 Job Scheduler Aggregation Management Bean Attributes

Attribute Access Type Description

schedul ers Read-only java.util.Collection All Job Scheduler instances represented as a
collection of j avax. managemnent . Cbj ect Nane
objects, each of which references its associated
Job Scheduler management bean instance.

j obs Read-only java.util.Collection All job instances represented as a collection of
j avax. managenent . Cbj ect Nane objects, each
of which references its associated job
management bean instance.

Table D-8 summarizes the clusterwide operations provided to configure the Job
Scheduler Aggregation MBean.

JMX MBean Reference D-3

Frequently Asked Questions About JMX MBeans

Table D-8 Job Scheduler Aggregation Management Bean Operations

Operation Name Parameters Return Type Description

pause none None Pause all jobs across all Job Scheduler instances.

resumne repl ay; boolean None Resume all paused jobs across all Job Scheduler
instances. Replay jobs whose triggers are set on
resumption.

cancel None None Cancel any currently running jobs across all Job
Scheduler instances.

addBl ackout Wndow java.lang. String None Create a new blackout window across all Job

w ndowname
java.lang. String
dateti nme

| ong

dur ati onM nut es

Scheduler instances with the specified window
name. The date, time, and duration determine
when and for how long the blackout window is
in effect. The format of the date/time string must
conform to format required by

j ava. t ext . Dat eFor mat . The duration is
specified in minutes.

D.4 Frequently Asked Questions About JMX MBeans

Does Job Scheduler expose a management interface?

Job Scheduler does expose a management interface that can be access through IMX
MBeans. Two kinds of MBeans are published: Schedul er MBean and JobMBean. The
former is used to manage a Job Scheduler instance and the later a specific job instance.
These MBeans are accessible from the OC4J Administration Console.

Can | enable and disable MBean publication?

Yes. If the <env- ent ry> value of or acl e. i as. schedul er. j nx is set to true, then
MBean publication is enabled; otherwise, the beans are not published.

What privileges are required to access the Job, Job Scheduler, and Job Scheduler

Aggregation MBeans?

Access to the Job and Job Scheduler MBeans requires the same privileges as those of
the user application in which they are defined. Access to the Job Scheduler
Aggregation MBean requires OC4J administrator privileges.

D-4 Oracle Containers for J2EE Job Scheduler Developer’s Guide

E

Troubleshooting Oracle Application Server
Containers for J2EE

This appendix describes tools and methods that can be used to troubleshoot Oracle
Application Server Containers for J2EE or any scheduler-based applications. The
following topics are covered:

» Oracle Diagnostic Logging (ODL)

« DMS Metrics

« Frequently Asked Questions About Job Scheduler Monitoring
« Frequently Asked Questions About Job Scheduler Logging

E.1 Oracle Diagnostic Logging (ODL)

To simplify integration with Oracle Application Server, the standard JDK1.4.1

java. util .l oggi ng APIs are used. These APIs make a clear separation of the
logging APIs (j ava. uti | . 1 oggi ng. Logger) from the APIs that control writing
logged messages to various destinations (j ava. uti | . | oggi ng. Handl er) and also
from APIs that control message formatting and localization

(java. util .l oggi ng. Formatt er). The message are logged in ODL format using
Oracle’s ODL handler.

E.1.1 Types of Logging
Job Scheduler provides the following types of logging:

= Run time logging, which is performed on behalf of the scheduler subsystem (for
example, a warning message as a result of misconfiguration).

« Job logging, which is related to a job’s execution. There are two types of job
logging:
— Implicit Job Logging. This type of logging is primarily performed by Job
Scheduler and is specified as part of the job’s definition.

— Explicit Job Logging. This type of logging is performed by the actual job
implementation, meaning that it is user-defined.

E.1.1.1 Implicit Job Logging

Implicit job logging is specified as part of the job's definition. Because Job Scheduler
uses the Java logging APIs, log levels are specified using the log levels provided by the
java. util .l oggi ng. Level class.

Troubleshooting Oracle Application Server Containers for J2EE E-1

Oracle Diagnostic Logging (ODL)

The default level of implicit logging is set at Level . FI NER Job Scheduler uses only a
subset of these levels to log messages.

If the logging level is set to Level . WARNI NG, log entries are written under the
following conditions:

« Running the job resulted in a JobExecut i onExcept i on exception.
« Running the job resulted in a Runt i nreExcept i on exception.

If the logging level is set to a value of Level . FI NE, the following additional
information is written to the log:

« Date and time at which the job started.
» Date and time at which the job ended.

If the logging level is set to a value of Level . FI NER, the following additional
information is written to the log:

« Date and time at which the associated trigger evaluated a notification, and the
result of the evaluation.

If the logging level is set to a value of Level . FI NEST, the following additional
information is written to the log:

« Total elapsed time of the job.

Each log entry contains the following:

= Job description

« Job implementation class name

« Date and time

« Stack trace (if the job results in an exception)

» Associated message parameters

E.1.1.2 Explicit Job Logging

The same logging facilities used by implicit job logging are also available to the job
implementation when the job runs. The logging context is available through the
context that is passed to the job when it is run through the JobCont ext object:

public interface JobContext extends Serializable {

public Job getJob();

public java.util.logging.Logger getLogger();

public java.util.logging. Logger getLogger(String resourceBundl eNane);
}

Either of the get Logger () methods can be used, but the latter method allows a
resource bundle to be specified.

E.1.2 Configuring the Global Log Levels

You can configure the global log level of Job Scheduler. For more information, see
Section 9.4.

E.1.3 Logging Example

Example E-1 shows how to add logging capabilities to a job. Specifically, an
information log entry is written before every file is copied. This is done by retrieving

E-2 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

Oracle Diagnostic Logging (ODL)

the logger from the job context and writing an informational log message before
performing the copy command.

Example E-1 Job Implementation with Logging

i nport
i nport
i mpor t
i nport
i nport
i nport
i mpor t
i nport
i nport

java.io.File;

java.io. | OCException;

java.util.logging. Logger;

oracl e. i as. schedul er. Job;

oracl e.ias. schedul er. Execut abl e;

oracl e.ias. schedul er. Cancel | abl e;

oracl e.ias. schedul er. JobCont ext ;

oracl e.ias. schedul er. JobCancel | ati onExcepti on;
oracl e.ias.schedul er. JobExecuti onExcepti on;

public class Cancel | abl eBackupJobLogged i npl enents Executable, Cancellable {

bool ean m cancel |l ed = fal se;

public void cancel () {

}

m cancel l ed = true;

public void execute(JobContext context) throws JobExecuti onExcepti on,
JobCancel | ati onException {

/'l retrieve the source/destination directories

Job job = context.getJob();

Logger |og = context. getLogger();

String source = job.getProperties().getProperty("SourceD rectory");
String destination =

job. getProperties().qgetProperty("DestinationDrectory");

/1 get the list of files to copy
File directory = new File(source);
File[] files = directory.listFiles();

/'l copy the files

Runtime runtinme = Runtime. getRuntine();
Process process;

for (int x = 0; x < files.length; x++) {

/'l cancel | ed?
if (mcancelled) {
t hrow new JobCancel | ati onException();

}

log.info("copying file "+files[x]);
try {
process = runtime.exec("/binfcp " + files[x].toString() +
' + destination);
process. wai t For ();
} catch(ICException e) {
throw new Runti neException("copy failed: "+files[x],e);
} catch(InterruptedException e) {
t hrow new Runti neException("copy failed: "+files[x],e);

}

Troubleshooting Oracle Application Server Containers for J2EE E-3

DMS Metrics

}

The log level can be set by invoking the appropriate API on the logger. For example:

<code>
Logger |ogger = jobContext.getLogger();
| ogger. set Logl evel (Level . FI NEST);

</ code>

Note: Since all jobs share a single logger instance, setting the log
level will affect the logging of all subsequent messages for all
instances of the job.

E.2 DMS Metrics

Oracle Dynamic Monitoring Service (DMS) is used to measure application specific
performance information. Two types of metrics are provided:

= Scheduler metrics. Provides statistics pertaining to a specific Job Scheduler
instance (for example, total number of executing job instances, total number of
active jobs, or total number of paused jobs).

« Job metrics. Provides aggregate job statistics as well as information pertaining to a
specific job (for example, the job description, state of the job, or number of failed
executions).

Table E-1 lists the information provided by scheduler metrics:

Table E-1 Statistic Types for Scheduler Metrics

Metric Name Description

schedul er Start Ti ne System current TimeM | I i s() when Job Scheduler starts.
execut i ngJobs Total number of job instances that are currently running.
activeJdobs Total number of active jobs.

pausedJobs Total number of paused jobs.

conpl et edJobs Total number of completed jobs.

Table E-2 lists the information provided by job metrics:

Table E-2 Statistic Types for JobStats

Metric Name Description

j obSchedul e String version of the schedule.

jobTrigger String version of the trigger.

j obLogLevel Log level.

j obdl assNane String version of the class name.

j obDescription Job description.

j obExecuti onThr eshol d Execution threshold (in millliseconds).

j obRetryPeri od Retry period (in milliseconds).

jobState State of the job (active, paused, or complete)
execution Duration for which an instance of this job runs.

E-4 Oracle Containers for J2EE Job Scheduler Developer's Guide

Frequently Asked Questions About Job Scheduler Logging

Table E-2 (Cont.) Statistic Types for JobStats

Metric Name Description

fai |l edExecuti ons Number of failed runs.

cancel | edExecutions Number of canceled runs since JVM startup.

successf ul Executi ons Number of successful runs since JVM startup.

bl ackout Execut i ons Number of runs that were blacked out since JVM
startup.

exceededThr eshol dExecuti ons Number of executions that exceeded the execution
threshold since JVM startup.

For more information about DMS, please refer to the Oracle Application Server
Performance Guide.

E.3 Frequently Asked Questions About Job Scheduler Monitoring

How do | monitor Job Scheduler activities?

You can connect to the DMS Spy servlet to look at statistics for Job Scheduler and its
various jobs (for example, the number of currently active, completed, and currently

running jobs). For each job, information is provided about its current state, duration,
and result (for example, whether or not the job failed). For detailed information, see
the DMS Addendum.

Can | disable DMS statistics collection?
Yes. For more information, see Chapter 9.

E.4 Frequently Asked Questions About Job Scheduler Logging

How do I configure logging for Job Scheduler?
For more information about configuring logging for Job Scheduler, see Chapter 9.

How can | use logging to troubleshoot problems?

To troubleshoot a particular job, you can increase the granularity of the log messages
by changing the log level of the particular job in question. This can be accomplished
dynamically through the job MBean management interface in the Administration
Console, or by directly invoking the remote scheduler interface. The global root
logger's default level is set to Level . WARNI NG

Troubleshooting Oracle Application Server Containers for J2EE E-5

Frequently Asked Questions About Job Scheduler Logging

E-6 Oracle Containers for J2EE Job Scheduler Developer’'s Guide

A

adding a blackout window, 4-1
example, 4-2

adding a job, 2-1
best practices, 2-4
example, 2-2
FAQs, 2-5

appl i cation. xm file, 9-2

B

best practices
for adding and removing a job, 2-4
for designing and implementing a job, 2-4
for events and listeners, 7-3
for implementing and binding event listeners, 7-3
blackout window
adding, 4-1
job execution, 4-2
overview, 1-2
blackout windows
FAQs, 4-2
bundling schedul er - ej b. j ar with an EAR
file, 9-2
bundling the Job Scheduler with a J2EE
application, 9-1

C

canceling ajob, 6-1
FAQs, 6-3
configuring DMS for the Job Scheduler, 9-5
configuring execution interval threshold recovery for
the Job Scheduler, 9-6
configuring JMX for the Job Scheduler, 9-5
configuring Job Scheduler-enabled applications for
deployment, 9-1
configuring logging for the Job Scheduler, 9-4
configuring persistent job storage for the Job
Scheduler, 9-2
configuring security for Job Scheduler, 9-3

D

deploying Job Scheduler-enabled applications, 9-1
designing and implementing a job

Index

best practices, 2-4
disabling DMS, E-5
DMS metrics, E-4
how to disable, E-5
job metrics, E-4
scheduler metrics, E-4
DMS metrics for Job MBean, D-2
DMS metrics for Job Scheduler MBean, D-3
DMS Spy servilet, E-5

E

ej b-jar.xm file, 9-1
event listeners
binding to ajob, 7-2
implementing and binding, 7-2
events and event listeners, 7-1

FAQs, 7-3
execution threshold, 3-4
FAQs, 35
=
FAQs

adding and removing a job, 2-5
blackout windows, 4-2
canceling ajob, 6-3

events and event listeners, 7-3
execution threshold, 3-5
iCalendar, 3-5

JMX MBeans, D-4

logging, E-5

monitoring the OracleAS Job Scheduler, E-5
pausing and resuming a job, 5-2
triggers and notifications, 8-4

iCalendar
FAQs, 3-5
iCalendar recurrence schedules, A-1
implementing and binding event listeners, 7-2
best practices, 7-3

Index-1

J

java.util.logging API, E-1
java.util.logging. Formatter API, E-1
java.util .l ogging. Handl er API, E-1
java.util .l ogging. Level API, E-1
java.util.logging. Logger API, E-1
java. util.Properties object, 2-2
JMX MBeans

FAQs, D-4

job execution in a blackout window, 4-2
job execution precedence, B-2
Job MBean
attributes, D-1
DMS metrics, D-2
operations, D-1
Job Scheduler
See Oracle Containers for J2EE Job Scheduler
Job Scheduler Aggregation MBean
attributes, D-3
operations, D-3
Job Scheduler MBean
attributes, D-2
DMS metrics, D-3
operations, D-2
job states, 2-5
JobCancel | edException, 6-1

jobs

adding, 2-1

canceling, 6-1

example of adding a job, 2-2

example of removing ajob, 2-4

execution threshold, 3-4

FAQs for adding and removing a job, 2-5
overview, 1-2

pausing, 5-1

removing, 2-4

resuming, 5-1

retry period, 3-4

schedule-based jobs and scheduling options, 3-1
sending notifications, 8-3

submitting with a retry period and execution

threshold, 3-4

submitting with a trigger, 8-3

submitting with a trigger and schedule, 8-3
JSP tag library, C-1

addBl ackout W ndowtag, C-12

addJobtag, C-2

cl assName helper tag, C-3
descri pti on helpertag, C-3
| ogLevel helpertag, C-11
retry helpertag, C-10
schedul e helper tag, C-3
trigger helpertag, C-10

cancel Job tag, C-12
configuring an application with the tag

library, C-1

examples, C-13

pauseJob tag, C-11

removeBl ackout W ndowtag, C-13
removelJob tag, C-11

Index-2

resunmeJob tag, C-12
schedul er tag, C-2
summary of tags, C-1

L
log level
how to set, E-4
logging
example, E-2
explicit job logging, E-2
FAQs, E-5
implicit job logging, E-1
log levels, 9-4
types of logging, E-1
M

monitoring Job Scheduler activities, E-5
monitoring the OracleAS Job Scheduler
FAQs, E-5

N

NOT operator, 8-2

notifications
example of sending to a job, 8-3
how they are generated, 8-1
overview, 1-1
sending to a trigger, 8-2
ti meout notification, 8-2

O

Oracle Containers for J2EE Job Scheduler
basic implementation example, 1-2
bundling with J2EE applications, 9-1
configuring DMS, 9-5
configuring execution interval threshold
recovery, 9-6
configuring IMX, 9-5
configuring logging, 9-4
configuring persistent job storage, 9-2
configuring security, 9-3
events, 7-1
events and event listeners, 7-1
overview, 1-1
troubleshooting, E-1
Oracle Diagnostic Logging (ODL)
See logging
Oracle Dynamic Monitoring Service (DMS)
See DMS metrics
oracl e.ias. schedul er. Cancel | abl e
interface, 6-1
oracl e.ias. schedul er. event. Event Li st ener
interface, 7-2
oracl e.ias. schedul er. Execut abl e
interface, 2-1
oracl e. i as. schedul er. JobCont ext object, 2-1
oracl e.ias. schedul er. Schedul e class, 3-1
oracl e.ias. schedul er. Schedul er. add()

method, 2-1

oracl e.i as. schedul er. Schedul er. addBl acko
ut Wndow() method, 4-1

oracl e.ias. schedul er. Schedul er. cancel ()
method, 6-1

oracl e.ias. schedul er. Schedul er. notify()
method, 8-2

oracl e.ias. schedul er. Schedul er. pause()
method, 5-1

oracl e.i as. schedul er. Schedul er. renove()
method, 2-4

oracl e.ias. schedul er. Schedul er. resunme()
method, 5-1

oracl e.i as. schedul er. Tri gger class, 8-1

orion-ejb-jar.xm file, 9-1

overview of the Oracle Containers for J2EE Job
Scheduler, 1-1

P

pausing ajob, 5-1

FAQs, 5-2
persistent job storage

JDBC persistence, 9-2

JMS persistence, 9-3
precedence

see job execution precedence

R

recurrence rule, A-1
as defined in RFC 2445, A-1
BYDAY clause, A-6
BYSETPOS rule, A-6
COUNT rule, A-6
examples, A-6
UNTIL rule, A-6
WKST rule, A-6

removing ajob, 2-4
best practices, 2-4
example, 2-4
FAQs, 25

repeating schedules
fixed-delay schedules, 3-3
fixed-interval schedules, 3-2
iCalendar recurrence schedules, 3-3
types of, 3-2

resuming a job, 5-1
FAQs, 5-2

retry period, 3-4

RFC 2445, A-1

S

schedule
overview, 1-2
types, 1-2
schedule-based jobs
types, 3-1
schedule-based jobs and scheduling options, 3-1
schedul er _j obstore. sql script, 9-2

schedul er - ej b. j ar archive file, 9-1
bundling with an EAR file, 9-2
sample, 9-2
security
configuring for Job Scheduler, 9-3
sending notifications to a job, 8-3
set Count () method (in lieu of the COUNT
rule), A-6
set EndDat e() method (in lieu of the UNTIL
rule), A-6
setting the log level, E-4
single-action schedules, 3-1
states of a job, 2-5
submitting a job
with a retry period and execution threshold, 3-4
with a trigger, 8-3
with a trigger and schedule, 8-3

T

tag library
See JSP tag library
ti meout notification, 8-2
trigger
overview, 1-1
triggers
allowed logical operators, 8-1
example of submitting a job with a trigger, 8-3
example of submitting a job with both a trigger
and schedule, 8-3
implicit trigger associated with a schedule-only
job, 8-2
troubleshooting the Job Scheduler, E-1

Index-3

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Overview of Oracle Application Server Containers for J2EE
	1.1 Job Scheduler Concepts and Terminology
	1.1.1 Notifications and Triggers
	1.1.2 Schedules
	1.1.3 Jobs
	1.1.4 Blackout Windows

	1.2 Basic Job Scheduler Implementation Example

	2 Adding and Removing Jobs
	2.1 Adding Jobs
	2.1.1 Implementing a Job with the Executable Interface
	2.1.2 Submitting a Job
	2.1.3 Examples of Adding Jobs

	2.2 Accessing Job Scheduler Using JNDI Lookup
	2.3 Removing Jobs
	2.4 Best Practices for Adding and Removing Jobs
	2.5 Frequently Asked Questions About Adding and Removing Jobs

	3 Oracle Application Server Containers for J2EE Scheduling Options
	3.1 Schedule-Based Jobs
	3.1.1 Single-Action Schedules
	3.1.2 Repeating Schedules
	3.1.2.1 Fixed-Interval Schedules
	3.1.2.2 Fixed-Delay Schedules
	3.1.2.3 iCalendar Recurrence Schedules

	3.2 Retry Period and Execution Threshold
	3.2.1 Retry Period
	3.2.2 Execution Threshold
	3.2.3 Submitting a Job with a Retry Period and Execution Threshold

	3.3 Frequently Asked Questions About iCalendar and Execution Threshold

	4 Oracle Application Server Containers for J2EE Blackout Windows
	4.1 Adding and Removing Blackout Windows
	4.2 Jobs Scheduled in Blackout Windows
	4.3 Frequently Asked Questions About Blackout Windows

	5 Pausing Jobs
	5.1 What Does It Mean to Pause a Job?
	5.2 How to Pause a Job
	5.3 Frequently Asked Questions About Pausing Jobs

	6 Canceling Jobs
	6.1 What Does it Mean to Cancel a Job?
	6.2 Canceling a Job
	6.3 Frequently Asked Questions

	7 Oracle Application Server Containers for J2EE Events and Listeners
	7.1 Events and Event Listeners
	7.2 Implementing and Binding a Event Listener
	7.3 Best Practices for Implementing and Binding Event Listeners
	7.4 Frequently Asked Questions About Job Listeners

	8 Oracle Application Server Containers for J2EE Triggers and Notifications
	8.1 Trigger-Driven Jobs
	8.1.1 Triggers and Notifications
	8.1.2 Cautions For Using the NOT Operator

	8.2 How Do I Submit a Job with a Trigger?
	8.3 How Do I Send Notifications to a Job?
	8.4 Frequently Asked Questions About Triggers and Notifications

	9 Deploying Job Scheduler-Enabled Applications
	9.1 Bundling Job Scheduler with a J2EE Application
	9.1.1 Generating the scheduler-ejb.jar File
	9.1.2 Bundling scheduler-ejb.jar in an Enterprise Archive (EAR) File

	9.2 Configuring Persistence for Job Scheduler
	9.2.1 Configuring JDBC Persistence
	9.2.2 Configuring JMS Persistence

	9.3 Configuring Security for Job Scheduler
	9.4 Configuring Logging for Job Scheduler
	9.5 Configuring DMS for Job Scheduler
	9.6 Configuring JMX for Job Scheduler
	9.7 Configuring Execution Interval Threshold Recovery for Job Scheduler

	10 Managing the Oracle Application Server Containers for J2EE
	10.1 Job Management Bean
	10.2 Job Scheduler Management Bean
	10.3 Job Scheduler Aggregation Management Bean

	A RFC 2445 Excerpt: Recurrence
	A.1 RFC 2445, Section 4.3.10. Recurrence Rule
	A.2 Job Scheduler Implementation of the Recurrence Rule
	A.3 RFC 2445, Section 4.8.5.4. Recurrence Rule Examples

	B Oracle Application Server Containers for J2EE Semantics
	B.1 Semantics
	B.2 Job Precedence

	C JSP Tag Library Reference
	C.1 Configuring an Application with the JSP Tag Library
	C.2 JSP Tag Library Summary
	C.3 JSP Tag Library Reference
	C.3.1 scheduler
	C.3.2 addJob
	C.3.2.1 className
	C.3.2.2 description
	C.3.2.3 schedule
	C.3.2.3.1 duration
	C.3.2.3.2 interval
	C.3.2.3.3 threshold

	C.3.2.4 trigger
	C.3.2.5 retry
	C.3.2.6 logLevel

	C.3.3 removeJob
	C.3.4 pauseJob
	C.3.5 resumeJob
	C.3.6 cancelJob
	C.3.7 addBlackoutWindow
	C.3.8 removeBlackoutWindow

	C.4 JSP Tag Library Examples

	D JMX MBean Reference
	D.1 Job Management Bean Attributes
	D.2 Job Scheduler Management Bean Attributes
	D.3 Job Scheduler Aggregation Management Bean Attributes
	D.4 Frequently Asked Questions About JMX MBeans

	E Troubleshooting Oracle Application Server Containers for J2EE
	E.1 Oracle Diagnostic Logging (ODL)
	E.1.1 Types of Logging
	E.1.1.1 Implicit Job Logging
	E.1.1.2 Explicit Job Logging

	E.1.2 Configuring the Global Log Levels
	E.1.3 Logging Example

	E.2 DMS Metrics
	E.3 Frequently Asked Questions About Job Scheduler Monitoring
	E.4 Frequently Asked Questions About Job Scheduler Logging

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T

