
Oracle® WebCenter Framework
Tutorial

10g (10.1.3.2.0)

B31072-02

March 2007

Oracle WebCenter Framework Tutorial, 10g (10.1.3.2.0)

B31072-02

Copyright © 2007, Oracle. All rights reserved.

Primary Authors: Marcie Caccamo, Rosie Harvey

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

Part I Introducing WebCenter Framework Tutorial

1 Understanding Oracle WebCenter Suite

What is Oracle WebCenter Suite? ... 1-1
WebCenter Framework ... 1-3

Building and Consuming Portlets .. 1-3
Customizable Components ... 1-4
Content Integration... 1-4
Securing Your Application ... 1-4
Managing Your Application Throughout the Lifecycle ... 1-4

WebCenter Services ... 1-5
Oracle JDeveloper .. 1-6

What Will You Learn in this Tutorial? .. 1-6

2 Getting Started

Downloading Oracle JDeveloper With WebCenter Extensions.. 2-1
Downloading Sample Tutorial Files... 2-1
Copying the Sample system-jazn-data.xml File ... 2-2

Part II Hands-On Examples

3 Building and Testing Your First Portlet

Introduction... 3-1
Step 1: Using the JSR 168 Java Portlet Wizard .. 3-2
Step 2: Setting Up Your Connection .. 3-10
Step 3: Deploying Your Portlet ... 3-13
Step 4: Creating a JSF Page .. 3-16
Step 5: Registering Your Portlet with Oracle WebCenter Framework .. 3-20

iv

Step 6: Testing the Portlet .. 3-22
Step 7: Adding Some Simple Logic to the Portlet ... 3-26

4 Customizing Your Page

Introduction ... 4-1
Step 1: Allowing Users To Customize the Page.. 4-2
Step 2: Running and Customizing the Page.. 4-6
Step 3: Making Additional Customizations.. 4-9
Step 4: Testing the New Customizations .. 4-12
Step 5: Changing the Look and Feel .. 4-13

Step 5a: Changing showDetailFrame Background Using the Default ADF Faces Skin 4-14
Step 5b: Using Custom Skins to Apply Your Own Styles... 4-15

5 Adding the Rich Text Portlet

Introduction ... 5-1
Prerequisites .. 5-2
Step 1: Registering the Rich Text Producer ... 5-2
Step 2: Adding the Rich Text Portlet To Your Page .. 5-3
Step 3: Customizing the Rich Text Portlet at Run Time.. 5-5

6 Making Portlets Communicate

Introduction ... 6-1
Prerequisites .. 6-2
Step 1: Registering Portlet Producers ... 6-2
Step 2: Placing the Parameter Form Portlet on a Page ... 6-5
Step 3: Customizing the Parameter Form Portlet ... 6-9
Step 4: Placing an OmniPortlet on a Page .. 6-10
Step 5: Building an OmniPortlet That Uses a Web Service... 6-12
Step 6: Configuring the Portlets Together .. 6-15
Step 7: Testing Portlet Interaction .. 6-16

7 Adding Content to Your Page

Introduction ... 7-1
Prerequisites .. 7-2
Step 1: Creating a Data Control ... 7-2
Step 2: Adding Content to a Page at Design Time ... 7-5
Step 3: Displaying Folder Content in a Table ... 7-8
Step 4: Displaying Folder Content in a Tree .. 7-17
Step 5: Searching Folder Content ... 7-26

8 Providing Security

Introduction ... 8-1
Prerequisites .. 8-2
Step 1: Creating a Login Page... 8-2
Step 2: Configuring ADF Security Settings .. 8-5

v

Step 3: Creating a Welcome Page.. 8-10
Step 4: Securing Pages .. 8-22
Step 5: Mapping Security Roles in orion-web.xml ... 8-25
Step 6: Demonstrating the Security Features ... 8-30

Login as User Singh .. 8-30
Login as User Cho ... 8-32
Login as User Harvey ... 8-33
Login as User King.. 8-34
Try to Access a Secured Page Directly ... 8-34
Enter Invalid Credentials ... 8-35

Step 7: Authorizing Access to Your Data Controls ... 8-35

9 Deploying Your WebCenter Application

Introduction... 9-1
Prerequisites .. 9-1
Step 1: Creating a WebCenter Application Deployment Profile .. 9-2
Step 2: Deploying Directly to the Preconfigured OC4J .. 9-5
Step 3: Migrating Your Security Policy .. 9-6
Step 4: Running Your Deployed Application ... 9-7
Step 5: Using Application Server Control Console to Manage WebCenter Applications 9-8
Summary ... 9-10

Part III Appendixes

A How to Set Up the Tutorial Identity Store

Creating Users .. A-2
Creating Roles and Assigning User Members... A-4
Making Tutorial Users and Roles Available to JDeveloper's Authorization Editor A-6

Index

vi

vii

Preface

This tutorial introduces you to Oracle WebCenter Framework, one of the key
components of Oracle WebCenter Suite. As you work through this tutorial, you'll
become familiar with Oracle JDeveloper and the components that have been added to
support the new Oracle WebCenter Framework functionality. When you're ready to
begin building your own application, you can move on to the Oracle WebCenter
Framework Developer's Guide for assistance.

Audience
This tutorial does not assume any prior knowledge of Oracle JDeveloper or Oracle
WebCenter Suite. It does, however, assume that you are already somewhat familiar
with the following:

■ Oracle Application Development Framework (Oracle ADF) (Purpose and basic
architecture)

■ Oracle ADF Faces

■ Java

The tutorial is intended for the developer who wants to build a WebCenter
application, or the application developer who wants to use Oracle ADF to build
customization capabilities into their application.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

Note: For the portable document format (PDF) version of this
manual, when a URL breaks onto two lines, the full URL data is not
sent to the browser when you click it. To get to the correct target of
any URL included in the PDF, copy and paste the URL into your
browser's address field. In the HTML version of this manual, you can
click a link to directly display its target in your browser.

viii

accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information on Oracle WebCenter Framework, see the following documents:

■ Oracle WebCenter Framework Developer's Guide

■ Oracle WebCenter Framework Error Messages Guide

For more information on Application Development Framework, see the following
documents, both of which are available on Oracle Technology Network (OTN) at
http://www.oracle.com/technology/index.html:

■ Oracle Application Development Framework: Tutorial

■ Oracle Application Development Framework: Developer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Introducing WebCenter Framework Tutorial

Part I contains the following chapters:

■ Chapter 1, "Understanding Oracle WebCenter Suite"

■ Chapter 2, "Getting Started"

Understanding Oracle WebCenter Suite 1-1

1
Understanding Oracle WebCenter Suite

This chapter introduces you to Oracle WebCenter Suite and helps you understand how
you can use it to enhance your service-oriented applications. With Oracle WebCenter
Suite, you get services that you can integrate with your application to afford your
users improved communication, content management capabilities, customization, and
advanced search support. More important, you get a development framework that
provides essential capabilities, such as the ability to consume portlets and content in a
Java Server Faces application, declarative security, and life-cycle management tools.

In this chapter, you will discover answers to these key questions:

■ What is Oracle WebCenter Suite?

■ What Will You Learn in this Tutorial?

After you read this chapter, you'll be ready to start building your own Java EE 5
application.

What is Oracle WebCenter Suite?
As key technologies like Wiki, RSS, and blogs change the landscape of the Internet by
empowering individuals across the globe, user demand for applications that simplify
transactions becomes more pronounced. One way to simplify transactions is to
provide everything the user needs to support a given task within the application itself.
Consider the example shown in Figure 1–1:

What is Oracle WebCenter Suite?

1-2 Oracle WebCenter Framework Tutorial

Figure 1–1 Sample Application

In this example, a user who is new to the company is working with an application that
allows him to add dependents to his company insurance policy. Notice that the
transaction itself is surrounded by additional context that helps the user, including:

■ New Hires Tasks, in the upper left corner, provide an activity guide that shows
where the user is in the larger process of becoming acclimated to his new
company. The user's next task is also identified. This type of process orchestration
helps the user step through the entire multi-step flow quickly and easily.

■ Task and process analytics let users know where they are in the process and how
decisions are impacting them. In this case, the Task Analytics on the right show the
total cost impact of the benefit choices made so far.

■ The Help Center on the bottom left provides an up to date FAQ for quick access to
typical questions and a direct chat link to the help center where the user can ask
additional questions not addressed by the FAQ. Again, no need for the user to
leave the context of the transaction to get help.

■ Knowledge Exchange, on the bottom right, provides documentation relevant to
the current task. These documents, stored in the corporate repository, give detailed
advice on the different beneficiary and dependent scenarios applicable to the user.

Until Oracle WebCenter Suite, building this kind of application was a rather tedious
process. To gain access to the beneficiary scenarios, for example, used to involve
creating a portlet to gain a view into the Java Content Repository (JSR 170)—if the API
required to do so was available. Oracle WebCenter Suite reduces the front-end labor
historically required to bring necessary business components to the user by
capitalizing on the notion of Service Oriented Architecture (SOA). Thanks to Oracle
WebCenter Suite's commitment to SOA, as well as to the Java Content Repository (JSR
170) and other industry standards, you get a wide range of plug-and-play products,
tools, and services that make it easy to build the applications your users need.

Figure 1–2 shows what Oracle WebCenter Suite provides1:

1 Some components shown are not available in the initial release of Oracle WebCenter Suite:
Presence/IM, Discussions, and Wiki. In this chapter, we describe components relevant to this
release of Oracle WebCenter Framework.

What is Oracle WebCenter Suite?

Understanding Oracle WebCenter Suite 1-3

Figure 1–2 Oracle WebCenter Suite

Let's examine these building blocks in more detail.

WebCenter Framework
WebCenter Framework augments the Java Server Faces (JSF) environment by
providing additional integration and runtime customization options. In essence, it
integrates capabilities historically included in portal products directly into the "fabric"
of the JSF environment. This eliminates artificial barriers for the user and provides the
foundation for developing the kinds of context-rich applications depicted in
Figure 1–1.

Building and Consuming Portlets
Portlets help you bring data from the Web, database, and so on, into your application.
Using Oracle JDeveloper, you can create your own standards-based portlets to be
consumed by any JSR 168 or WSRP-compatible portal. The Oracle Application Server
Portal Developer Kit (PDK) has been enhanced to support extended portlet capabilities
as defined by WSRP 2.0 within the structure of the Java Portlet Standards APIs. From a
WebCenter application, you can consume JSR 168, WSRP 1.0, WSRP 2.0 or Oracle
PDK-Java portlets all within the same application, or even within the same page.

Several pre-built portlets are available for use through a preconfigured OC4J that is
automatically available to you through JDeveloper. Two such portlets, OmniPortlet
and Web Clipping, help empower users to gather their own data, while the Rich Text
portlet enables users to publish their own announcements and bulletins. You can make
these portlets available to users by dropping them on your page, or you can use them
yourself to create the specific portlets your users will need.

■ OmniPortlet: A portlet that enables users to easily publish data from a variety of
sources, using a variety of layouts. Users can base an OmniPortlet on almost any
kind of data source, such as spreadsheets (character-separated values), XML, Web
Services, and even application data from an existing Web page. Once the data has
been obtained, they can format it using layouts such as bulleted lists, charts,
HTML, and so on.

As a developer, you might want to use this tool to gather and format the data for
your users--for example, to create an employee directory--then place it on your

What is Oracle WebCenter Suite?

1-4 Oracle WebCenter Framework Tutorial

page for user consumption. Once you do so, the portlet becomes available through
JDeveloper's Component Palette for others to use in their applications.

■ Web Clipping: An extremely easy-to-use wizard that requires no technical
expertise whatsoever. Users simply locate the Web content they want to "clip",
then use the wizard to grab it and display it within their application. If the Web
content on the original site is updated, so is the user's associated Web Clipping.

■ Rich Text portlet: A tool that allows users to publish their own announcements
and broadcasts. When you place a Rich Text portlet on a page, during run time,
authorized users can access all the rich-text editing tools needed to insert, update,
and format display text.

Customizable Components
WebCenter Framework provides new JSF components that allow developers to make
any of their applications customizable. These new components act as containers into
which developers can drop another Faces view component or a portlet. With these
capabilities in place, administrators can customize virtually any JSF page by
minimizing/maximizing, hiding/showing, or moving any component on the page.

Content Integration
Suppose you have data in a content management system such as Oracle Content DB,
OracleAS Portal—or even on your file system—that you want to make available to
your application. WebCenter Framework provides you with the JCR adapters you
need to access that content. Using JDeveloper, you can then build JCR data controls to
grab the content and drop it onto your page in a variety of display modes. WebCenter
Framework also comes with Oracle Drive, through which you can represent the
contents of your OracleAS Portal repository as a tree-like structure, right on your
desktop.

Securing Your Application
With the ADF extensions provided in WebCenter Framework, you can define security
for an entire application, a page within the application, or for individual actions
provided by customizable components. In this tutorial, you will learn how to create a
simple login page and assign basic privileges to several distinct users.

In many cases, it is desirable to leverage existing applications that have their own
authentication mechanism, such as e-mail. WebCenter Framework provides the means
to embed those applications through the use of the External Application wizard. See
the Oracle WebCenter Framework Developer's Guide for more information.

Managing Your Application Throughout the Lifecycle
WebCenter Framework reduces the time required to build, deploy, and migrate your
applications through the use of several tools:

■ Development framework: Oracle JDeveloper and ADF provide the tools and
framework you need to build and update your application. Adding portlets,
content, and customization capabilities to your WebCenter application is simply a
matter of dragging and dropping the appropriate objects in either a source or
WYSIWYG environment. To simplify the test and debug phases, WebCenter
Framework includes a deployment profile (WebCenter Application WAR) that
packages and migrates your portlet customizations, content, and page
customizations to any J2EE container (such as the standalone OC4J provided) so
you can test and debug your application before deploying it to a production
server.

What is Oracle WebCenter Suite?

Understanding Oracle WebCenter Suite 1-5

■ Enterprise deployment: When you're ready to deploy your application to a
production environment, Oracle WebCenter Framework's Predeployment Tool
packages and migrates your portlet customizations to your production location,
changes the pointer to your content repository, and ensures that the application
points to your production Metadata Services location. When the Predeployment
Tool completes its work, you get a target EAR file that you can then deploy to the
final location using Enterprise Manager.

■ Standards-based administration: Browser-based tools allow administrators to
deploy, configure, and manage WebCenter applications. In addition, tools built on
industry standards-based JMX methods offer administrators granular control and
monitoring mechanisms for health status, performance, and popularity. Tools for
obtaining historical performance and status reporting over time (within a single
Oracle Application Server context) are also provided. WebCenter application
metrics are delivered using the familiar Application Server Control monitoring
and management interface.

WebCenter Services
WebCenter Services offer a variety of content management, search, and
communication services, including:

■ Oracle Content Database (Oracle Content DB), the default content repository for
Oracle WebCenter Services. Oracle Content DB is a full-fledged content
management system that enables users to manage content through the Web or
from desktop applications. A rich library of ready-to-use Web services is provided
to content-enable your enterprise in a service-oriented environment. With Oracle
Content DB, you can:

– Improve the productivity of individuals and teams with secure access to the
right content in the context of business processes

– Reduce risk associated with content, including information loss and legal
discovery

– Facilitate adaptability of business processes

– Reduce IT and administrative costs through content consolidation

Oracle Content DB bridges the gap between limited capability file servers and the
specialized, expensive, and complex content management applications that are so
widely available.

■ Oracle Secure Enterprise Search is a crawler-based service that can search a
multitude of sources, structured and unstructured, in a variety of file formats,
indexed or real-time. With Oracle Secure Enterprise Search, you can reduce the
time spent finding relevant documents on your company's information
repositories.

■ Communication Services, which help you better connect people and facilitate
communication. These services include:

– Instant Messaging: Lets users freely exchange ideas through audio and video
feeds, file exchange, and a range of other capabilities.

– Presence Server: Presence provides information about a person's availability to
every person or application that subscribes to that person's status. Chats and
other real-time services can be initiated from the associated user interface.

– Discussion forum: An interactive message board for sharing information,
questions, and comments.

What Will You Learn in this Tutorial?

1-6 Oracle WebCenter Framework Tutorial

■ Wiki is server software that allows users to freely edit and create Web page content
using a Web browser. This ease of interaction and operation makes Wiki an
effective tool for collaborative communication.

Oracle JDeveloper
Oracle JDeveloper is an integrated development environment (IDE) for building
service oriented applications using the latest industry standards for Java, XML, Web
services, and SQL. Oracle JDeveloper supports the complete software development life
cycle, with integrated features for modeling, coding, debugging, testing, profiling,
tuning, and deploying applications. Oracle JDeveloper's visual and declarative
approach and the Oracle Application Development Framework(ADF) work together
to simplify application development and to reduce mundane coding tasks. For
example, code for many standard user interface widgets, such as buttons, list of
values, and navigation bars, are pre-packaged for you. All you have to do is select the
appropriate widget from the Component Palette and drop it into your application.

As you work through this tutorial, you will become more familiar with Oracle
JDeveloper and the advantages it offers. For more information about Oracle
JDeveloper, access one of the many educational aids from the Oracle JDeveloper Start
Page (Figure 1–3), accessible from Oracle JDeveloper's Help menu.

Figure 1–3 Oracle JDeveloper Start Page

What Will You Learn in this Tutorial?
In this tutorial, you will use JDeveloper to build an application containing five simple
pages:

■ A Welcome page, which displays public content to public users and secure content
to authenticated users.

■ A Login page, through which you will learn the basics of how to allow users to
authenticate themselves.

What Will You Learn in this Tutorial?

Understanding Oracle WebCenter Suite 1-7

■ MyPage, upon which you will place a Java portlet, the Rich Text portlet, and
images from your file system.

■ MyContent, upon which you will publish content from your file system.

■ MyWeather, through which you will learn how to use OmniPortlet and the
Parameter Form Portlet, and how to enable communication between the two.

The logical flow between the pages is illustrated in the following graphic (Figure 1–4):

Figure 1–4 Flow Between Pages

Note that you will not develop these pages in the order they are presented in the
graphic. Rather, you will start with a very basic page, MyPage, then move gradually
from there into more complex topics.

What Will You Learn in this Tutorial?

1-8 Oracle WebCenter Framework Tutorial

This tutorial is designed for the chapters to be completed in the same sequence as they
are presented. Due to dependencies, completing them in a different order may result in
missing resources or even errors. The path through this tutorial is as follows:

■ Chapter 2, "Getting Started" tells you what you need to do before you can
complete the steps in this tutorial. Be sure to complete all the steps described in
this chapter.

■ Chapter 3, "Building and Testing Your First Portlet" shows you how to build a
basic page, MyPage, add a simple portlet, then enhance the portlet to embrace
more sophisticated logic.

■ Chapter 4, "Customizing Your Page" introduces you to the means by which you
enable customization for your application. In this lesson, you'll continue to work
with MyPage.

■ Chapter 5, "Adding the Rich Text Portlet" shows you how to place the Rich Text
portlet on MyPage.

■ In Chapter 6, "Making Portlets Communicate", you'll create a new page,
MyWeather, and add a Parameter Form Portlet and OmniPortlet to it. You'll also
learn how to set up parameters between the two portlets to enable simple
communication.

■ Chapter 7, "Adding Content to Your Page" shows you how to add content from
your file system onto a page called MyContent. You'll also learn how to add a
search form to the page.

■ In Chapter 8, "Providing Security", you'll learn how to implement security by
creating a Welcome page and a Login page. Only privileged users will have access
to MyPage, MyWeather, MyContent, and secure content on the Welcome page.

■ Chapter 9, "Deploying Your WebCenter Application" will show you the steps
involved in deploying your sample application.

If you've never used JDeveloper before, by the end of this tutorial you should have a
fairly solid grasp of the fundamental purpose and capability of the tool. Of course,
JDeveloper, as well as the framework it rests upon, ADF, both offer tremendous
powers that are only briefly explored in this tutorial. You will no doubt want to learn
more about both products before you begin developing in earnest. Here are two
excellent resources, both available on Oracle Technology Network,
http://www.oracle.com/technology/:

■ Application Development Framework Tutorial

■ Application Development Framework Developer's Guide

Let's get started!

Getting Started 2-1

2
Getting Started

This chapter tells you how to download the correct version of Oracle JDeveloper and
some files you'll need to complete the lessons in this tutorial.

Downloading Oracle JDeveloper With WebCenter Extensions
To complete this tutorial you'll need access to or have installed Oracle JDeveloper
Studio Edition (10.1.3.2.0 or later). This release includes all the functionality required
to build WebCenter applications.

You can download Oracle JDeveloper Studio Edition (10.1.3.2.0) from the Oracle
Technology Network at:

http://www.oracle.com/technology/products/jdev/index.html

Unzip to a directory of your choice, which in this tutorial is referred to as JDEVHOME.

Downloading Sample Tutorial Files
At various points throughout this tutorial, you'll be asked to include certain content
and images in your application. This material is contained in a zip file, which you can
download by following these instructions:

1. Open a browser, and enter the following in the Address field:
http://www.oracle.com/technology/products/webcenter/files/web
centertutorialcontent.zip

2. To open the zip file (webcentertutorialcontent.zip), click Open.

3. Unzip the file to a local drive, such as C.

Figure 2–1 shows the file unzipped to: C:\TutorialContent

Figure 2–1 Sample Content ZIP File Unzipped

Copying the Sample system-jazn-data.xml File

2-2 Oracle WebCenter Framework Tutorial

4. Make a note of the location where the sample content is now stored, as you'll need
to access it occasionally as you work through the tutorial.

Next, set up some user data required to complete Chapter 8, "Providing Security".

Copying the Sample system-jazn-data.xml File
The tutorial download (webcentertutorialcontent.zip) includes a sample
system-jazn-data.xml file. This file contains the user data you'll need to complete
Chapter 8, "Providing Security". To use the sample data, you'll need to copy the
sample system-jazn-data.xml file to several Oracle JDeveloper locations. These
instructions tell you where to copy the file, and we advise you to back up the original
files before doing so.

We provide this file for your convenience and to simplify the tutorial. Normally, when
building applications, you would not overwrite an existing system-jazn-data.xml
as you may lose users, roles, and policies you've added through JDeveloper.

To copy the sample system-jazn-data.xml file:

1. Locate the sample system-jazn-data.xml file in the directory where you
unzipped the sample tutorial content. For example: C:\TutorialContent

2. Back up system-jazn-data.xml files at the following locations before making
any modifications for the purposes of this tutorial:

■ Oracle JDeveloper's Embedded OC4J -
JDEVHOME\jdev\system\oracle.j2ee.10.1.3.xx.xx\embedded-oc4
j\config\system-jazn-data.xml

The system directory is created when you open JDeveloper for the first time. If
you do not see a system folder in your JDEVHOME\jdev directory, launch
JDeveloper and shut it down again before performing this step.

■ Oracle JDeveloper -
JDEVHOME\j2ee\home\config\system-jazn-data.xml

3. Copy the sample system-jazn-data.xml file to the following directories:

■ JDEVHOME\jdev\system\oracle.j2ee.10.1.3.xx.xx\embedded-oc4j\
config

When you copy this file you're making the user data available to JDeveloper's
embedded OC4J.

■ JDEVHOME\j2ee\home\config

When you copy this file you're making the user data available to the Oracle
JDeveloper Authorization Editor. More about this in Chapter 8.

Caution: If you are already building secure applications with
JDeveloper and have populated system-jazn-data.xml with user data
of your own, you might prefer to define the tutorial users/roles from
scratch so they co-exist alongside your current user data. If this is the
case, do not copy the sample system-jazn-data.xml file as
described here. Instead, follow all the instructions in Appendix A,
"How to Set Up the Tutorial Identity Store" before starting Chapter 8,
"Providing Security".

Copying the Sample system-jazn-data.xml File

Getting Started 2-3

You're now ready to move to your first lesson, Step 1: Using the JSR 168 Java Portlet
Wizard in Chapter 3, "Building and Testing Your First Portlet".

Copying the Sample system-jazn-data.xml File

2-4 Oracle WebCenter Framework Tutorial

Part II
Hands-On Examples

Part II contains the following lessons:

■ Chapter 3, "Building and Testing Your First Portlet"

■ Chapter 4, "Customizing Your Page"

■ Chapter 5, "Adding the Rich Text Portlet"

■ Chapter 6, "Making Portlets Communicate"

■ Chapter 7, "Adding Content to Your Page"

■ Chapter 8, "Providing Security"

■ Chapter 9, "Deploying Your WebCenter Application"

Building and Testing Your First Portlet 3-1

3
Building and Testing Your First Portlet

In this lesson you will learn how to build your first portlet. After you create the
portlet, you will test it, create a simple page, drop the portlet on the page, test it again,
then add some additional logic to the portlet. By the end of this lesson, you should
have a good handle on what's involved with building and testing a simple portlet.

Figure 3–1 shows a conceptual picture of what you'll have at the end of this lesson: a
WebCenter application named MySample containing a page called MyPage
(MyPage.jspx). You'll also create a portlet called MyJavaPortlet, which you'll place
upon MyPage and then customize.

Figure 3–1 MyPage.jspx at the End of Lesson 3

Introduction
We will build a portlet and test it in the following steps:

■ Step 1: Using the JSR 168 Java Portlet Wizard

■ Step 2: Setting Up Your Connection

■ Step 3: Deploying Your Portlet

■ Step 4: Creating a JSF Page

■ Step 5: Registering Your Portlet with Oracle WebCenter Framework

■ Step 6: Testing the Portlet

■ Step 7: Adding Some Simple Logic to the Portlet

The process will be roughly the same no matter what type of portlet you build using
JDeveloper.

Step 1: Using the JSR 168 Java Portlet Wizard

3-2 Oracle WebCenter Framework Tutorial

Step 1: Using the JSR 168 Java Portlet Wizard
Before you create a portlet, you must create an application to serve as a container for
your portlet. To create an application:

1. Start up JDeveloper by double clicking jdev.exe wherever JDeveloper resides.

2. If a Tip of the Day appears, click Close to close it.

3. Ensure that the Applications Navigator tab is highlighted (Figure 3–2).

Figure 3–2 Applications Navigator in JDeveloper

4. In the Applications Navigator, highlight Applications, and right-click.

5. Select New Application.

6. In the Application Name field, enter: MySample

7. Accept the default location for MySample, and make a note of it. You'll need it
later when you get to Step 3: Deploying Your Portlet.

8. From the Application Template pull-down as shown in Figure 3–3, choose
WebCenter Application.

This template creates the projects that you need, and helps target JDeveloper so
that only those options applicable to a WebCenter application are presented to
you.

Step 1: Using the JSR 168 Java Portlet Wizard

Building and Testing Your First Portlet 3-3

Figure 3–3 Creating a New Application

9. Click OK.

In the Applications Navigator as shown in Figure 3–4, you can see that a
WebCenter application consists of three projects:

■ Model, in which you define the JavaBeans and other data controls you need if
the application is to perform any back-end logic.

■ Portlets, in which you'll create your portlet.

■ ViewController, in which you'll create the JavaServer Faces page that will
consume the portlet.

Figure 3–4 The New MySample Application

Now let's invoke the JSR 168 Java Portlet Wizard to create your portlet.

10. In the Applications Navigator, right-click Portlets, and select New.

11. In the Categories pane as shown in Figure 3–5, expand the Web Tier category, and
click Portlets.

Step 1: Using the JSR 168 Java Portlet Wizard

3-4 Oracle WebCenter Framework Tutorial

Figure 3–5 New Gallery for Portlets

Notice there are two kinds of portlets you can create:

■ An Oracle PDK Java portlet. Select this option when the portlet you want to
build will be consumed by WebCenter applications, OracleAS Portal, or some
other type of Oracle-specific solution. You build an Oracle PDK Java portlet
using the APIs provided by the PDK.

■ A standards-based (JSR 168) Java portlet. Java portlets can be consumed by
portals from any vendor that supports the portlet standards. In this tutorial,
we're going to build a standards-based (JSR 168) Java portlet.

12. Highlight Standards-based Java Portlet (JSR 168), and click OK.

This opens the JSR 168 Java Portlet Wizard as shown in Figure 3–6.

Figure 3–6 JSR 168 Java Portlet Wizard Welcome Page

Step 1: Using the JSR 168 Java Portlet Wizard

Building and Testing Your First Portlet 3-5

The JSR 168 Java Portlet Wizard generates a skeleton for the portlet, to which you
add your own logic. Let's see how this is done.

13. Click Next to move beyond the Welcome page.

14. Leave the default specified on the Web Application page (Figure 3–7). The servlet
version makes certain tag libraries available. Because they are backward
compatible, it's always best to select the latest version, unless you have a specific
reason for selecting an older version.

Figure 3–7 Selecting a Web Application Version

15. Click Next.

16. On the General Portlet Properties page, change the Name and Class names to
MyJavaPortlet (no spaces) as shown in Figure 3–8.

It's usually a good idea to make the class name the same as the display name, so
the portlet that displays on the page has the same name as what appears in the
Applications Navigator.

Figure 3–8 General Portlet Properties Page

Step 1: Using the JSR 168 Java Portlet Wizard

3-6 Oracle WebCenter Framework Tutorial

17. Select Enable WSRP V2 inter-portlet communication using Oracle extensions.

You'll work with WSRP inter-portlet communication later in this tutorial.

18. Accept the other defaults that appear on the General Portlet Properties page
(Figure 3–8).

Make sure the Editable box is checked, as you'll want to allow users to personalize
this portlet during runtime. (The Editable box makes the portlet personalizable. A
user personalizes a portlet when he or she makes changes that are unique to that
user. A user with a higher set of permissions can customize the portlet to make
changes that everyone sees. More about this later.)

19. Click Next.

20. On the Name and Attributes page, enter the values shown in Figure 3–9.

Figure 3–9 Name and Attributes Page

21. Click Next.

Table 3–1 Name and Attribution Values

Property Value

Display Name Name that will appear in the JDeveloper Component Palette.
Because you entered MyJavaPortlet as the class name, this field
is already populated with that name.

Portlet Title Title that will appear on the portlet header. Because you entered
MyJavaPortlet as the class name, this field is already populated
with that name.

Short Title Title that will appear on the portlet header on mobile devices.
You can leave this field populated, although we won't use it.

Description Description of the portlet. This field is relevant only when the
portlet is used in an OracleAS Portal 10g environment. Leave
this field blank.

Keywords Enter sample, Tutorial. Keywords provide additional
information about a page, item, or portlet so that users can
locate it during a search. Although keywords are not supported
by Oracle WebCenter Suite or OracleAS Portal 10g, they are
supported by other vendors from whom you may have obtained
a deployment environment.

Step 1: Using the JSR 168 Java Portlet Wizard

Building and Testing Your First Portlet 3-7

On the Content Types and Portlet Modes page, notice that text/html is the default
content type. That means that the portlet will support text encoded with HTML.
View and edit are listed as the default portlet modes for text/html. View is always
available as a portlet mode; edit mode provides a page that allows users to
personalize the portlet instance.

Later on in this tutorial we'll want to test the difference between Personalize and
Customize using this portlet. That means we need to enable customization for the
portlet now. We do that by adding the edit_defaults content type to the
portlet's configuration.

22. In the Content Types and Portlet Modes pane as shown in Figure 3–10, highlight
view, and click Add.

The Portlet Modes window is displayed.

23. Highlight edit_defaults, and use the arrow to move it to the Selected pane.

Figure 3–10 Adding a Portlet Mode

24. Click OK.

Before we leave the Content Types and Portlet Modes page, take a look at the
Implementation Methods area as shown in Figure 3–11. These controls enable you
to specify whether you want to generate JSP for the portlet, or if you want to use
your own custom JSP code. In this lesson, we'll ask JDeveloper to generate JSPs for
us.

Step 1: Using the JSR 168 Java Portlet Wizard

3-8 Oracle WebCenter Framework Tutorial

Figure 3–11 Selecting an Implementation Method

25. Click Next.

Although you could click Finish here and produce a basic portlet, let's continue
working through the wizard so you can see what other options are available.

26. On the Customization Preferences page as shown in Figure 3–12, enter
MyJavaPortlet in the Default Values field.

Because we specified that we want this portlet to be Editable, users will be able to
change this title at runtime.

We're not interested in translating for this release, so de-select the Translate check
box.

Figure 3–12 Setting Default Values

We're not going to do anything with this page now, but in the future you can use it
to add other customization options for the portlet. For example, if your portlet
accepted a Zip Code parameter, you might want to allow users to personalize the

Step 1: Using the JSR 168 Java Portlet Wizard

Building and Testing Your First Portlet 3-9

Zip Code label. If this were the case, you would use the Add button to make the
Zip Code label personalizable.

27. Click Next.

28. On the Security Roles page, click Next.

This page is used to specify which of the application's security roles you want to
establish for this portlet.

29. On the Caching page, click Next.

The settings on this page enable you to define expiry-based caching for your
portlet. You do not need any caching conditions now.

30. On the Initialization Parameters page, click Next.

Initialization parameters provide the Web application developer a way to
configure the behavior of the portlet. For this tutorial, no initialization parameters
are needed.

31. On the Portlet Navigation Parameters page, click Next.

Navigation parameters are a WSRP 2.0 feature. This page enables you to specify
external parameters to be consumed by the JSR 168 portlet. Navigation parameters
are not required for this tutorial.

32. Click Finish.

After you click Finish, you should be able to locate several newly generated files
in the Applications Navigator under the Portlets project. The expanded Navigator
looks like Figure 3–13.

Figure 3–13 Files Generated for the New Portlet

Step 2: Setting Up Your Connection

3-10 Oracle WebCenter Framework Tutorial

■ Under Application Sources, in portlet and portlets.resource, two Java classes:

– MyJavaPortlet.java (under portlet) is invoked by the portlet container. It
contains all the methods required by the portlet standards.

– MyJavaPortletBundle.java (under portlet.resource) contains all the
translation strings for the portlet.

■ Under Web Content, MyJavaPortlet\html:

– edit_defaults.jsp, which contains the information needed to populate the
Customize dialog.

– edit.jsp, which contains the information needed to populate the
Personalize dialog.

– view.jsp, which is invoked when the portlet is sharing the page with other
components.

■ Under Web Content, WEB-INF, two deployment descriptors:

– oracle-portlet.xml, which contains information to support Oracle
extensions for import/export and inter-portlet communication. It appears
because you chose Enable WSRP V2 inter-portlet communication using Oracle
extensions on Step 2 of the wizard.

– portlet.xml, which specifies all the portlet resources (the information you
entered through the JSR 168 Java Portlet Wizard).

– web.xml, which specifies the Web application resources.

Now that you've created the portlet, it's time to run it to see what it does. To do
that, you first must deploy the portlet to an Oracle Application Server. When you
installed JDeveloper, you automatically downloaded a standalone OC4J called
WebCenter Preconfigured OC4J, so you can use that. However, you first have to
establish a connection between this OC4J and the instance of JDeveloper you're
using. Let's do that now.

Step 2: Setting Up Your Connection
Part of deploying a portlet includes establishing a connection to whichever application
server you are using. In this tutorial, your portlet will be deployed to the WebCenter
Preconfigured OC4J. Let's set up a connection to this OC4J.

1. Start the WebCenter Preconfigured OC4J by clicking the Start WebCenter
Preconfigured OC4J icon at the far right of the JDeveloper toolbar (Figure 3–14).

Figure 3–14 Starting the Preconfigured OC4J

Step 2: Setting Up Your Connection

Building and Testing Your First Portlet 3-11

Assuming that this is the first time you have started this OC4J, you will see a
message asking if you want to install the WebCenter Preconfigured OC4J.

2. Click Yes.

Wait for the message stating that the OC4J instance has initialized before you
proceed (see Figure 3–15).

Figure 3–15 OC4J Initialization Message

When you first start the preconfigured OC4J, its readme file displays in the
JDeveloper Editor. This document describes how to start, stop, test, and connect to
the preconfigured OC4J, lists the port defaults, and provides some useful
troubleshooting tips. If you need to access this file in the future, select Help,
WebCenter Preconfigured OC4J Readme from the main JDeveloper menu.

The preconfigured OC4J has been installed on your computer, but you still have to
establish a connection to it (so JDeveloper knows where to find it).

3. Click Connections Navigator (next to the Applications Navigator).

4. Right-click the Connections node, and choose New Application Server
Connection as shown in Figure 3–16.

Figure 3–16 Connecting JDeveloper to the Preconfigured OC4J

5. Click Next to exit the Welcome page.

6. In the Connection Name field, enter: MyLocalOC4J

7. From the Connection Type list, select Standalone OC4J 10g 10.1.3 as shown in
Figure 3–17.

Step 2: Setting Up Your Connection

3-12 Oracle WebCenter Framework Tutorial

Figure 3–17 Selecting a Connection Name and Type

8. Click Next.

9. Enter oc4jadmin as the username, and the password welcome.

welcome is the default password for the WebCenter Preconfigured OC4J.

10. Select Deploy Password to forgo the requirement of a password each time the
connection is established (Figure 3–18).

Figure 3–18 Entering Login Credentials

11. Click Next.

12. If the WebCenter Preconfigured OC4J resides on your computer, accept the default
Host Name localhost.

This tutorial has been written on the assumption that localhost can be used in a
URL to successfully refer to the local computer. However, some firewall
configurations can block access to this address. If this occurs, either change your
firewall configuration to allow localhost or alternatively, enter the fixed IP
address of your computer here. If your computer does not have a fixed IP address,

Step 3: Deploying Your Portlet

Building and Testing Your First Portlet 3-13

as it is configured to use DHCP, then reconfigure your firewall to allow
localhost to work.

13. Change the RMI Port to 22667, the default RMI port for the preconfigured OC4J.

You can leave the URL Path blank. This information is not required (Figure 3–19).

Figure 3–19 Entering Connection Details For the Preconfigured OC4J

14. Click Next.

15. Verify the connection by clicking Test Connection.

A success message appears in the Status pane if everything is correct. If the test
fails, error messages display in the Status field. Use the Back button to return to
earlier wizard pages to correct entries.

16. Click Finish.

Now that you have established a successful connection, you are ready to include it in a
WAR file. WAR stands for web application archive, and it packages together all the
resources, portlets, and deployment descriptors required to deploy your portlet.

Step 3: Deploying Your Portlet
In this lesson, you'll learn how to deploy the Java portlet to your local WebCenter
Preconfigured OC4J. When you deploy a portlet, you package it up so that it can run
on a J2EE server. If you're familiar with OracleAS Portal, we're in effect creating a
portlet provider, which in the WSRP world is known as a portlet producer.

1. Display the Applications Navigator.

2. Right-click the Portlets project, and click New.

3. In the Categories section, expand General, and click Deployment Profiles.

4. In the Items section, select WAR File (Figure 3–20).

Step 3: Deploying Your Portlet

3-14 Oracle WebCenter Framework Tutorial

Figure 3–20 Creating a WAR File

5. Click OK.

6. In the Create Deployment Profile - WAR File dialog box(Figure 3–21), enter the
following:

Figure 3–21 Creating a Deployment Profile -WAR File

7. Click OK.

8. In the WAR Deployment Profile Properties window, select Specify J2EE Web
Context Root, and then enter TutorialPortlets as shown in Figure 3–22.

Table 3–2 Create Deployment Profile - WAR File

Setting Value

Deployment Profile Name Enter: TutorialPortlets

Directory Navigate to the directory you chose in step 7 in Step 1: Using the
JSR 168 Java Portlet Wizard. You should be able to simply accept
the default.

Step 3: Deploying Your Portlet

Building and Testing Your First Portlet 3-15

Figure 3–22 Setting WAR Deployment Profile Properties

9. Click OK.

10. In the Applications Navigator, expand the Resources node.

You should see the deployment profile TutorialPortlets.deploy as shown in
Figure 3–23.

Figure 3–23 TutorialPortlets.deploy File

11. Right-click TutorialPortlets.deploy, and click Deploy To, MyLocalOC4J, the
connection you created earlier (see Step 2: Setting Up Your Connection.).

12. If the Configure Applications window displays during deployment, click OK.

Step 4: Creating a JSF Page

3-16 Oracle WebCenter Framework Tutorial

Wait for the Deployment Finished message in the Deployment Log (bottom of the
JDeveloper window) to verify that the deployment succeeded.

Now let's run the portlet to make sure it's functioning properly.

13. Bring up a browser window, and enter this URL:

http://<host>:<port>/<context-root>/portlets/wsrp2?WSDL

where:

So, for this tutorial the URL looks something like this:

http://localhost:6688/TutorialPortlets/portlets/wsrp2?WSDL

Make a note of this URL. You'll need it in Step 5: Registering Your Portlet with
Oracle WebCenter Framework.

14. In the browser, you should now see XML similar to that shown in Figure 3–24.

Figure 3–24 WSDL Describing Your Portlet as a Web Service

The portlet you just deployed has now been exposed as a Web service. What appears
in the browser is the Web Services Description Language (WSDL) that describes this
Web service. Assuming your WSDL looks something like Figure 3–24, the next step is
to create a JSF page that will consume the portlet.

Step 4: Creating a JSF Page
To create a JavaServer Faces (JSF) page:

Parameter Value

host The host name you used to connect to the WebCenter
Preconfigured OC4J. Earlier in this lesson, we accepted the
default, localhost.

(If you chose to use your computer's IP address, rather than
localhost, enter this here instead.)

port The HTTP Listener port. For the WebCenter Preconfigured OC4J,
use 6688, the default port on which this preconfigured OC4J
listens.1

1 To change the port on which the preconfigured OC4J listens, go to
JDEVHOME\jdev\extensions\oracle.adfp.seededoc4j.10.1.3.2.0\j2ee\home\config\default-web-
site.xml and change the following entry: <web-site port="6688" ...>

context-root TutorialPortlets, as established in step 8 in this lesson.

Step 4: Creating a JSF Page

Building and Testing Your First Portlet 3-17

1. In the Applications Navigator, right-click the ViewController project, and select
New.

2. In the Categories pane, under Web Tier, click JSF to create a JavaServer Faces page.

3. Under Items, select JSF JSP, and click OK.

The JSF JSP Wizard opens.

4. Click Next to exit the Welcome page.

5. In the File Name field as shown in Figure 3–25, enter: MyPage

You can accept the default location for the Directory Name.

6. Under Type, click JSP Document so an XML version of the page (that is, a .jspx
file) will be created.

Figure 3–25 Creating a JSP Page

7. Click Next.

8. We won't be adding any back-end logic to this page (at least, not in this lesson), so
we don't need a new managed bean. Leave the default setting as is (Do Not
Automatically Expose UI Components in a Managed Bean) as shown in
Figure 3–26.

Step 4: Creating a JSF Page

3-18 Oracle WebCenter Framework Tutorial

Figure 3–26 Component Binding Page of the Create JSF JSP Wizard

9. Click Next.

10. On the Tag Libraries page, use the double arrows to move all the libraries from the
Available Libraries pane to the Selected Libraries pane. The following libraries
should be included:

■ ADF Faces Components 10_1_3_2_0

■ ADF Faces HTML 10_1_3_2_0

■ ADF Portlet Components 10_1_3_2_0

■ Customizable Components Core 10_1_3_2

■ JSF Core 1.0

■ JSF HTML 1.0

11. Click Next.

12. We don't need any special HTML options, so click Finish on the page shown in
Figure 3–27.

Step 4: Creating a JSF Page

Building and Testing Your First Portlet 3-19

Figure 3–27 Creating a JSF JSP - HTML Options

You should now be able to see the page as shown in Figure 3–28 you just created
in the Applications Navigator, under ViewController, Web Content, MyPage.jspx.

Figure 3–28 MyPage in the Applications Navigator

You should also see your page open in the Visual Editor, ready for us to begin
adding components.

Step 5: Registering Your Portlet with Oracle WebCenter Framework

3-20 Oracle WebCenter Framework Tutorial

Step 5: Registering Your Portlet with Oracle WebCenter Framework
So far we have created a portlet, a portlet producer, and a JavaServer Faces page. Now
we need to tie them all together and tell the page how to access the producer. This is
also known as registering the producer with the application.

1. Right-click ViewController in the Applications Navigator, and click New.

2. In the New Gallery, under Web Tier, click Portlets as shown in Figure 3–29.

Figure 3–29 New WSRP Producer Registration

3. Select WSRP Producer Registration, and click OK.

This opens the WSRP Portlet Producer Registration Wizard.

4. Click Next to exit the Welcome page.

5. In the Name field, enter: TutorialProducer

6. Click Next.

7. On the Connection page (Figure 3–30), enter the URL you constructed in Step 3:
Deploying Your Portlet (sub step 13). For example:

http://localhost:6688/TutorialPortlets/portlets/wsrp2?WSDL

Step 5: Registering Your Portlet with Oracle WebCenter Framework

Building and Testing Your First Portlet 3-21

Figure 3–30 New WSRP Producer Connection Details

Proxy information isn't necessary for this tutorial as you're using a local
preconfigured OC4J.

8. Click Next.

9. Click Next again to accept the default timeout value of 30 seconds.

10. Click Next to accept the default security settings.

11. On the Key Store page, click Finish.

You should see a message that looks like Figure 3–31.

Figure 3–31 Successfully Registered Portlet Producer

12. Click OK to close this message box.

A Portlet Producers node now displays in the Applications Navigator as shown in
Figure 3–32. Expand this node and verify that TutorialProducer appears there.

Step 6: Testing the Portlet

3-22 Oracle WebCenter Framework Tutorial

Figure 3–32 TutorialProducer in the Applications Navigator

The page now knows where to locate the portlet MyJavaPortlet and how to access it.
Let's verify to make sure.

Step 6: Testing the Portlet
To test the portlet, we'll add it to MyPage.jspx, run the page, and see if the portlet
looks as we expect it to.

1. If MyPage.jspx isn't already open, locate the page name in the Applications
Navigator (under ViewController, Web Content) and double-click it.

This opens the page in Structure window, as shown in Figure 3–33.

Step 6: Testing the Portlet

Building and Testing Your First Portlet 3-23

Figure 3–33 MyPage.jspx Open in Structure Window

2. On the far right side of the JDeveloper window, click the Component Palette
drop-down list as shown in Figure 3–34, and verify that TutorialProducer is listed
there.

Note: Sometimes the Component Palette becomes hidden. If you
don't see it, select View, Component Palette from the JDeveloper
menu.

Step 6: Testing the Portlet

3-24 Oracle WebCenter Framework Tutorial

Figure 3–34 TutorialProducer in the Component Palette

3. Select TutorialProducer. You should see your portlet MyJavaPortlet listed there.

4. Select MyJavaPortlet, and drag it across to h:form, the last entry in the Structure
window. You want to make sure that the portlet is included IN the form, and the
Structure window makes it easy to do this.

You should now see something that looks like Figure 3–35.

Figure 3–35 MyJavaPortlet Added to MyPage.jspx

You should be able to locate several newly generated files and folders in the
Applications Navigator. The expanded Navigator looks like Figure 3–36. These
internal files are created when consuming portlets of WSRP producers. You won't
need to edit any of these files.

Step 6: Testing the Portlet

Building and Testing Your First Portlet 3-25

Figure 3–36 WEB-INF\wsdl Created in Application Navigator

Now let's run the page.

5. In the Applications Navigator, right-click MyPage.jspx, and select Run.

This may take a few moments. You may notice that the Message Log says
Running: Embedded OC4J Server. While the portlet is running in the
preconfigured OC4J you downloaded at the beginning of this tutorial, the page
itself is running in JDeveloper's embedded OC4J.

The page should open in a new browser window (Figure 3–37).

Figure 3–37 MyJavaPortlet in a Browser Window

6. Click the Actions menu on the portlet header.

You should see two options: Refresh and Customize (Figure 3–38). Notice that the
Personalize option does not display. MyJavaPortlet does support user
personalizations but you'll only see the Personalize option when the portlet
appears in an application that implements a security model and you're logged in
with valid user credentials. When we get to Chapter 8, "Providing Security", we'll
test the Personalize mode.

For now, let's test the Customize mode.

Step 7: Adding Some Simple Logic to the Portlet

3-26 Oracle WebCenter Framework Tutorial

Figure 3–38 Actions for MyJavaPortlet

7. From the Actions drop-down menu, select Customize.

8. In the Portlet Title field, change the portlet header to something else, such as My
First Java Portlet as shown in Figure 3–39.

Figure 3–39 Changing the Portlet Title

9. Click OK.

The portlet is redisplayed in the browser, with the name you chose displayed in
the header.

We now know that this portlet is working properly, but it isn't very interesting.
Let's now add some logic so that users can paste HTML into a text box for the
portlet to render.

Step 7: Adding Some Simple Logic to the Portlet
In this step, we'll add some code that allows a user to paste HTML into a text box for
the portlet to render.

1. Return to JDeveloper.

2. In the Applications Navigator, under Portlets, Web Content, MyJavaPortlet\html,
double-click view.jsp.

A new editing window opens to the right of the Applications Navigator.

3. Click the Source tab at the bottom of the new window.

4. To the existing JSP code, add the lines highlighted in Figure 3–40:

Step 7: Adding Some Simple Logic to the Portlet

Building and Testing Your First Portlet 3-27

Figure 3–40 Edits to view.jsp

Here is the code to copy and paste:

<%
String[] str = {"Portlet Content"};
PortletPreferences prefs = renderRequest.getPreferences();
str = prefs.getValues("portletContent",str);
for (int i=0; i<str.length; i++)
{
%><%=(i<str.length-1)?str[i]+", ":str[i]%><%}%>

This code will retrieve the preferences set in Personalize or Customize mode and
display them in the portlet's View mode so that users can see them.

5. Click the Save icon in JDeveloper's toolbar.

6. Double-click edit.jsp to open it in the Visual Editor.

7. Click the Source tab.

8. Add the code as shown in Figure 3–41 to implement a form field called Content.
Here is the code to copy and paste:

<%
 String[] str = {"Portlet Content"};
 str = prefs.getValues("portletContent",str);
%>
<tr><td width="20%">
 <p class="portlet-form-field" align="right"> Content</p>
</td><td width="80%">
 <textarea rows="10" cols="60" class="portlet-form-input-field"
name="portletContent"><%
 for (int i=0; i<str.length; i++)
 {%><%= (i<str.length-1) ? str[i]+", " : str[i] %><%}%>
</textarea>
</td></tr>

Step 7: Adding Some Simple Logic to the Portlet

3-28 Oracle WebCenter Framework Tutorial

Figure 3–41 Adding Code to edit.jsp

9. Click the Save icon in JDeveloper's toolbar.

10. Click the Design tab to see the form field you just added as shown in Figure 3–42.

Figure 3–42 Adding the Content Field

You've edited the file that will store the changes made through Personalize mode,
but now you must make the same changes to the file that stores the changes made
through Customize mode—that is, edit_defaults.jsp.

11. Double-click edit_defaults.jsp, and add the same code in the same location. Don't
forget to click the Save icon when you are through.

MyJavaPortlet.java, the file containing the java code for this portlet, must now be
edited as well.

Step 7: Adding Some Simple Logic to the Portlet

Building and Testing Your First Portlet 3-29

12. In the Applications Navigator, under Portlets, Application Sources, portlet, double
click MyJavaPortlet.java to open it in the Visual Editor's Source view.

13. Scroll down to the processAction method and locate the code line that says
//Save the preferences. Insert the following two lines of code (indicated in
bold):

// Save the preferences.
PortletPreferences prefs = request.getPreferences();
String param = request.getParameter(PORTLETTITLE_KEY);
prefs.setValues(PORTLETTITLE_KEY, buildValueArray(param));
String contentParam = request.getParameter("portletContent");
prefs.setValues("portletContent", buildValueArray(contentParam));
prefs.store();

14. Click the Save All icon to save your changes to view.jsp, edit.jsp, edit_defaults.jsp,
and MyJavaPortlet.java.

Because you've made some changes, you need to redeploy the portlet to your
preconfigured OC4J.

15. In the Applications Navigator, under Portlets, Resources, right-click
TutorialPortlets.deploy.

16. Click Deploy to MyLocalOC4J.

17. Click OK to dismiss the Configure Application dialog.

18. Because TutorialPortlets.deploy was already deployed, click Yes to confirm
undeploying the original version.

Wait for the Deployment Finished message. Notice how JDeveloper
automatically saves and compiles the code before deploying the portlet.

19. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

Alternatively, click the red square Terminate icon in the Embedded OC4J Server
Log window. It is good practice to stop the embedded OC4J server before testing
your pages. JDeveloper will automatically restart the embedded OC4J server,
when you run a page.

20. Make sure that MyPage.jspx appears in the Visual Editor, then click Run >
MyPage.jspx.

A new browser window opens displaying MyJavaPortlet.

21. Select Customize from the drop-down menu.

Because we added the Content field, the Customize action now displays a text box
that looks like Figure 3–43.

Step 7: Adding Some Simple Logic to the Portlet

3-30 Oracle WebCenter Framework Tutorial

Figure 3–43 New Customize Option

22. Change the Portlet Title back to MyJavaPortlet.

23. Copy and paste the following HTML text in the Content field as shown in
Figure 3–44.

<p>Read The Path to Portlet Interoperability by John Edwards in
Oracle Magazine - Nov-Dec 2005. </p>
<p>It discusses JSR 168 and WSRP open portals. </p>

Figure 3–44 Customize Portlet Title and Content

24. Click OK.

Your browser should now look like Figure 3–45.

Figure 3–45 New HTML Text in MyJavaPortlet

Step 7: Adding Some Simple Logic to the Portlet

Building and Testing Your First Portlet 3-31

If you want to remove the default text (Welcome, this is the view mode.), simply
double-click view.jsp, remove the final line of code, redeploy the portlet to your
preconfigured OC4J, then re-run the page.

In the next lesson, you'll add some additional content to your page in the form of
images.

Step 7: Adding Some Simple Logic to the Portlet

3-32 Oracle WebCenter Framework Tutorial

Customizing Your Page 4-1

4
Customizing Your Page

In this lesson you will extend the page created in the previous lesson by adding
customizable components to the page and experimenting with ways to affect the
component's look and feel. Along the way you will test your page to confirm that your
page is developing the way you expect it to.

Figure 4–1 shows how the components on your page will be laid out once you
complete this lesson.

Figure 4–1 MyPage.jspx at the End of Lesson 4

Introduction
We will customize the page by completing the following steps:

■ Step 1: Allowing Users To Customize the Page

■ Step 2: Running and Customizing the Page

■ Step 3: Making Additional Customizations

■ Step 4: Testing the New Customizations

■ Step 5: Changing the Look and Feel

Let's begin by examining some of the benefits that Oracle WebCenter Framework
provides.

Step 1: Allowing Users To Customize the Page

4-2 Oracle WebCenter Framework Tutorial

Step 1: Allowing Users To Customize the Page
One of the key features of Oracle WebCenter Framework is the concept of "Design
Time at Run Time", which allows site administrators to customize the page for others.
Customization is achieved through customizable components, specifically
PanelCustomizable and ShowDetailFrame. (Customizing pages is different from
customizing portlets, which you did using portlet actions in the last chapter.)

Using these two components, you can give users the option of hiding a certain piece of
content, or moving it to a different location on the page. Let's see how this works.

1. Make sure MyPage.jspx appears in the Visual Editor.

2. Open the Component Palette.

3. Using the drop-down list, select Customizable Components Core (Figure 4–2).

Figure 4–2 Customizable Components Core

There are two items in this group:

■ PanelCustomizable, which provides a horizontal or vertical layout in which
to include Oracle ADF components. By setting a few attributes in the Property
Inspector, you can enable actions for showing or hiding whatever content is
placed within the layout.

■ ShowDetailFrame, through which you can display the actions allowed for a
particular component. In this release of Oracle WebCenter Framework, users
can move, minimize, or maximize content. You can think of ShowDetailFrame
as the chrome, or border that goes around the components on the page.

Let's see these concepts in action.

4. In the Applications Navigator, highlight MyPage.jspx.

Notice how the structure of the page appears in the Structure window
(Figure 4–3).

Step 1: Allowing Users To Customize the Page

Customizing Your Page 4-3

Figure 4–3 Structure of MyPage.jspx

5. In the Component Palette, highlight PanelCustomizable, and drag it to the
Structure window. Drop it over the h:form tag.

Working with the Structure view provides greater certainty where a component is
being placed but you can also drag and drop components directly onto the Visual
Editor.

6. In the Component Palette, highlight ShowDetailFrame, and drag it to the
Structure window. Drop it over cust:panelCustomizable.

cust:showDetailFrame becomes a child of cust:panelCustomizable, as
shown in Figure 4–4.

Figure 4–4 Hierarchy in Structure Window

Tip: When you drop a component inside a form, make sure that
h:form has a box around it.

Step 1: Allowing Users To Customize the Page

4-4 Oracle WebCenter Framework Tutorial

In the Visual Editor (shown in Figure 4–5), you can see showDetailFrame1
within a grey box. The grey box indicates the cust:panelCustomizable, so we
know that we safely dropped showDetailFrame within it. The area that is
circled represents the control that users will use to customize the content of
showDetailFrame.

Figure 4–5 ShowDetailFrame Component Added to MyPage.jspx

Let's add some content now, in the form of a simple image.

7. In the Component Palette drop-down list, select ADF Faces Core.

This presents you with a list of commonly used ADF components.

8. Scroll down the alphabetical list until you see the ObjectImage component.

9. Highlight ObjectImage, and drag it to the Structure window. Drop it on top of
cust:showDetailFrame.

The Insert ObjectImage window opens.

10. Use the ... button to locate the directory where you unzipped
webcentertutorialcontent.zip (see Downloading Sample Tutorial Files).
For example: C:\TutorialContent

11. Highlight the image camera.gif, and click OK.

A dialog opens asking you if you want to locate the image under the document
root. If you choose Yes, a copy of the image is saved to a location that is
automatically included when you create the application deployment archive.

12. Click Yes.

13. Click Save, then OK.

Step 1: Allowing Users To Customize the Page

Customizing Your Page 4-5

Figure 4–6 Adding an Image to MyPage.jspx

The image camera.gif appears inside the showDetailFrame component as
shown in Figure 4–6.

Let's add another image so you can see how users will be able to move the images
around the page.

14. In the Component Palette drop-down list, select Customizable Components Core,
and select ShowDetailFrame.

15. Drag ShowDetailFrame to the Structure window and drop it on
cust:panelCustomizable.

16. In the Component Palette drop-down list, select ADF Faces Core, and select
ObjectImage.

17. Drag ObjectImage to the Structure window. Drop it on top of the second
cust:showDetailFrame.

18. Use the ... button to locate hula.gif (see Downloading Sample Tutorial Files),
and click OK.

A dialog opens asking you if you want to locate the image under the document
root.

19. Choose Yes.

20. Click Save, then OK.

The Design tab in the Visual Editor should now look something like Figure 4–7.

Tip: You can drag and drop images directly from your file system,
for example C:\TutorialContent\camera.gif, onto a
ShowDetailFrame component. An ObjectImage is created
automatically, and the image is copied to the project.

Step 2: Running and Customizing the Page

4-6 Oracle WebCenter Framework Tutorial

Figure 4–7 Two Images and a Portlet on MyPage.jspx

Each image has its own actions icon on the showDetailFrame header, so each
can be acted upon independently.

Now let's run the page and see what kind of customizations are possible.

Step 2: Running and Customizing the Page
In this step, we run the page and test the customizations that a user might make.

1. Right-click MyPage.jspx, and click Run.

Assuming there aren't any compiler errors, the page opens in another browser
window, as shown in Figure 4–8.

Step 2: Running and Customizing the Page

Customizing Your Page 4-7

Figure 4–8 MyPage.jspx with Two Images

2. Click the Actions icon on the first image.

You should see two actions: Move and Maximize as shown in Figure 4–9.

Figure 4–9 Actions Menu

These actions are automatically provided by showDetailFrame. Any
components you drop within a showDetailFrame can be moved or maximized
within the context of its parent panelCustomizable.

3. Click Maximize in the first image and see how its showDetailFrame expands to
fill the entire panelCustomizable as shown in Figure 4–10. The second image is
hidden.

Step 2: Running and Customizing the Page

4-8 Oracle WebCenter Framework Tutorial

Notice that MyJavaPortlet is unaffected by this action. That's because the portlet is
not part of this panelCustomizable.

Figure 4–10 One Image Maximized

4. Click the Actions menu, and then click Restore to return the image to its original
size.

5. On either of the images, click Move, Down or Move, Up to see the images switch
places on the page. Again, because MyJavaPortlet is not controlled by this
panelCustomizable, it remains stationary as the images trade places.

Figure 4–11 shows the browser after Move, Down was used on the first graphic,
the camera. The hula graphic is now on top of the camera graphic.

Figure 4–11 Moving Images Around

In the next step, we'll move MyJavaPortlet into cust:panelCustomizable, and
experiment with the Property Inspector to affect the behavior of different components
on the page.

Step 3: Making Additional Customizations

Customizing Your Page 4-9

Step 3: Making Additional Customizations
1. Close the browser, and return to JDeveloper.

2. In the Structure window, drag adfp:portlet, which represents MyJavaPortlet, and
drop it on cust:panelCustomizable (Figure 4–12).

Figure 4–12 Dropping the Portlet Onto PanelCustomizable

The portlet automatically goes to the bottom of the list of objects, and the Design
view follows suit. The portlet now appears beneath the second image.

Notice that we dropped the portlet directly onto cust:panelCustomizable
without inserting a showDetailFrame first. That's because the portlet comes
automatically equipped with the customization capabilities provided by the
portlet chrome; that is, the ability to maximize/minimize and to reposition the
portlet on the page.

Now let's choose a different orientation for the portlet and images. Rather than
displaying them vertically, let's display them horizontally.

3. In the Structure window, highlight cust:panelCustomizable.

4. In the Property Inspector, under General, click the field beside Layout.

The Property Inspector is to the right of your JDeveloper screen (Figure 4–13).

Step 3: Making Additional Customizations

4-10 Oracle WebCenter Framework Tutorial

Figure 4–13 JDeveloper Property Inspector

5. Select horizontal as shown in Figure 4–14.

Figure 4–14 Selecting a Horizontal Layout

You can see in the Visual Editor that the portlets and images are now side by side,
rather than on top of one another as seen in Figure 4–15.

Step 3: Making Additional Customizations

Customizing Your Page 4-11

Figure 4–15 Horizontal Layout View

Now let's activate the ability to hide or show content.

6. In the Property Inspector, under General, locate DisplayHeader, and change it to
true as shown in Figure 4–16.

Figure 4–16 Changing DisplayHeader to True

This displays a header area at the top of the layout so that there is room for the
Action icon to appear as part of the menu. (If for some reason you don't want to
display the header in your own applications, you can keep DisplayHeader set to
false. As long as you complete the next step, the menu actions for the component
are displayed by hovering over the panelCustomizable area.)

7. In the Property Inspector, under Actions, locate IsSeededInteractionAvailable, and
change it to true.

The IsSeededInteractionAvailable attribute makes it possible to display whatever
menu actions are supported by the component. In this case, the user will be able to
hide or show any content that appears within the layout.

Now let's change the name of MyJavaPortlet through the Property Inspector, just
so you can see how it's done.

Note that once you make changes through the Property Inspector, you can never
again customize or personalize the portlet's name at runtime. Although this
behavior is acceptable for the purposes of this tutorial, it's something you'll want
to keep in mind as you develop your own applications in the future.

8. In the Structure window, highlight adfp:portlet so that the Property Inspector now
reflects the portlet's properties.

9. In the Property Inspector, under General, locate the Text field, and enter: Sample
Portlet as shown in Figure 4–17.

This changes the name that appears in the portlet header.

Step 4: Testing the New Customizations

4-12 Oracle WebCenter Framework Tutorial

Figure 4–17 Renaming the Portlet

10. Click Save All in the JDeveloper toolbar.

Let's run the page again to see how these changes affect the page.

Step 4: Testing the New Customizations
To test the customizations, we run the page and make sure it looks as we expect it to:

1. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

Alternatively, click the red square Terminate icon in the Embedded OC4J Server
Log window.

2. Click MyPage.jspx in the Visual Editor, then click the green arrow in the toolbar to
run the page.

Assuming there aren't any compiler errors, the page opens in a new browser
window (Figure 4–18).

Figure 4–18 panelCustomizable with Two showDetailFrames and a Portlet

3. As a result of activating IsSeededInteractionAvailable, the container object's Action
icon now contains a Show Content action, through which you can hide or show
the images and portlet (Figure 4–19). Take a moment now to experiment with
them.

Step 5: Changing the Look and Feel

Customizing Your Page 4-13

Figure 4–19 Show Content Action

All the other page customizations we made in Step 3 are also there:

■ The title of the portlet has changed to Sample Portlet. Now that the portlet title
is driven by the Text property you can no longer customize or personalize the
title at runtime. If you click the Actions icon and choose Customize, you'll see
this for yourself.

■ The components are displayed horizontally, instead of vertically. If you click
the Actions icon on one of the images, you can see that the Move action now
says Left and Right instead of Up and Down.

■ Because we changed DisplayHeader to true, the container object,
panelCustomizable, now displays a header area. Recall that the layout had no
such header in Step 3, before we changed the DisplayHeader setting.

Everyone who runs the page will see these page customizations.

4. Before moving on, let's remove the permanent portlet title customization we made
through the Property Inspector. In Chapter 8, "Providing Security" we use the
portlet's title property to demonstrate page personalization so we must be able to
change the name at runtime:

a. Close the browser, and return to JDeveloper.

b. In the Structure Window for MyPage.jpsx, highlight adfp:portlet.

c. In the Property Inspector, click the Text field, and then click the Reset to
Default icon in the Property Inspector toolbar. This will remove the text
Sample Portlet.

In the Visual Editor, the name in the portlet header should change back to
MyJavaPortlet1.

In the future, you may want to use multiple panelCustomizable components on a
page, each containing one or more portlets or objects within a showDetailFrame
component. Because each layout has its own Move, Maximize, and Show/Hide
capabilities, placing multiple layouts on the page enables you to treat blocks of
components and portlets as separate entities. You'll find more information in the Oracle
WebCenter Framework Developer's Guide.

Step 5: Changing the Look and Feel
In Oracle WebCenter Framework, there are two ways to control the style (that is, look
and feel) of your application:

■ Use an Oracle ADF Faces skin to apply a global style to the entire application. If
you choose this option, you can use style selectors in your own custom skin to
modify selected aspects of a component or area of a component.

Step 5: Changing the Look and Feel

4-14 Oracle WebCenter Framework Tutorial

■ Use the Property Inspector to change style-related properties at design time.

In the following steps, you'll use both of these methods to change the look and feel of
MyPage.jspx:

■ Step 5a: Changing showDetailFrame Background Using the Default ADF Faces
Skin

■ Step 5b: Using Custom Skins to Apply Your Own Styles

Step 5a: Changing showDetailFrame Background Using the Default ADF Faces Skin
In this step, you'll use the default ADF Faces skin (called Oracle) to influence
style-related properties.

1. In the Structure window, highlight one of the cust:showDetailFrame entries.
We'll use this component to see how to specify style property values.

2. In the Property Inspector, expand the Background property.

The default ADF Faces skin offers three settings, light, medium, and dark. Let's
choose a dark background for this component.

3. Change the value to dark, as shown in Figure 4–20.

Figure 4–20 Property Inspector: Background

4. Click File, Save All to save your work.

5. Click the red square to stop the embedded OC4J in preparation to run your page
again.

6. Right-click MyPage.jspx, and click Run.

Assuming there aren't any compiler errors, the page opens in a new browser
window (Figure 4–21). Notice how the background decoration of the
showDetailFrame has changed.

Step 5: Changing the Look and Feel

Customizing Your Page 4-15

Figure 4–21 Image with Dark Background

Now let's see how to create a brand new skin and override the styles defined by
the default ADF Faces skin.

Step 5b: Using Custom Skins to Apply Your Own Styles
In this step you'll create a new skin, register the skin with your application, and learn
how to apply custom styles to components on MyPage.

1. First, return to JDeveloper and create a brand new style sheet (.css):

a. In the Applications Navigator, right-click ViewController, and choose New.

b. In the New Gallery under Categories, expand the Web Tier, and select HTML.

c. Under Items, select CSS File, and click OK.

d. For File Name, enter mystyle.css as shown in Figure 4–22.

Figure 4–22 Create Cascading Style Sheet

e. Click OK.

Your new style sheet appears in the Applications Navigator under ViewController,
Web Content, css and also displays in the Editor. Notice the default style selectors
BODY, H1, H2, and H3.

In the steps that follow, you'll register a new skin with your application. This
involves creating a file named adf-faces-skins.xml, and populating it with a
short list of tags that identify the skin's ID, location, .css, and the like.

2. Let's create adf-faces-skins.xml:

Step 5: Changing the Look and Feel

4-16 Oracle WebCenter Framework Tutorial

a. In the Applications Navigator, under ViewController, Web Content, right click
the WEB-INF folder, and select New.

b. In the New Gallery, set the Filter By scope to All Technologies.

c. Under the General node, select XML.

d. In the right pane, select XML Document, and click OK.

e. In the File Name field, enter the file name: adf-faces-skins.xml as shown
in Figure 4–23.

Figure 4–23 Create adf-faces-skins.xml

f. The file must be stored in the WEB-INF folder, so just click OK to create the
file.

An empty XML file displays in the Editor. It appears in the Applications
Navigator under WEB-INF.

3. Add tags to adf-faces-skins.xml to identify your new skin (and point to your
new style sheet mystyle.css):

a. Copy and paste the following code into the XML Editor:

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://xmlns.oracle.com/adf/view/faces/skin">
 <skin>
 <id>mystyle</id>
 <family>mystyle</family>
 <render-kit-id>oracle.adf.desktop</render-kit-id>
 <style-sheet-name>css/mystyle.css</style-sheet-name>
 </skin>
</skins>

Your file should look Figure 4–24.

Step 5: Changing the Look and Feel

Customizing Your Page 4-17

Figure 4–24 Configure adf-faces-skins.xml

b. Click File, Save to save adf-faces-skins.xml.

In the next step you'll configure your application to use this new skin by setting
the <skin-family> tag in adf-faces-config.xml.

4. Edit the <skin-family> tag in adf-faces-config.xml:

a. Open adf-faces-config.xml, located under ViewController, Web Content,
WEB-INF.

b. Replace oracle (the default skin) with the family name of your new skin.
Enter mystyle as shown in Figure 4–25.

Figure 4–25 Edit Skin Family in adf-faces-config.xml

c. Click File, Save.

Now the new skin is registered with your application, let's add some style
selectors to your style sheet that apply to showDetailFrame components on
MyPage.

5. Add the following style selectors to mystyle.css:

a. In the Applications Navigator, under ViewController, Web Content, css,
double-click mystyle.css.

b. Copy the following code, and paste it at the bottom of the file:

af|showDetailFrame::header-light
{
 color:Purple;
}
af|showDetailFrame::header-medium
{
 color:Purple;
}
af|showDetailFrame::header-dark
{
 color:White;
}

Step 5: Changing the Look and Feel

4-18 Oracle WebCenter Framework Tutorial

This code specifies the color for the text that displays in a showDetailFrame
component's header and a portlet's header. We've chosen purple text for
header-light and header-medium, and white text for header-dark. Choose
another color scheme if you prefer.

c. Copy the following code, and paste it at the bottom of the file:

af|showDetailFrame::content-light, af|showDetailFrame::content-medium,
af|showDetailFrame::content-dark
{
 color: Black;
 background-color: Silver;
 border-left:1px black solid;
 border-right:1px black solid;
 border-bottom:1px black solid;
}

This code changes the content of a showDetailFrame and portlet body to
have a silver background, with black text and black borders. Choose another
color scheme if you prefer.

For a full list of style selectors for showDetailFrame and
panelCustomizable components, see Oracle WebCenter Framework Developer's
Guide.

6. Now change the background color of your page. Scroll to the BODY tag at the top
of the style sheet, and change the background-color from White to Purple. The
BODY tag should look like this:

BODY
{
 background-color: Purple;
 color: black;
 font-family: Arial, Helvetica, sans-serif;
}

7. Click File, Save All to save your work.

8. Click the red square to stop the embedded OC4J in preparation to run your page
again.

9. Right-click MyPage.jspx, and click Run.

Assuming there aren't any compiler errors, the page opens in a new browser
window.

Take a moment to examine the new look and feel. If you used the styles we
suggested your page will look like Figure 4–26. Notice how showDetailFrames
display purple/white header text, black content text, and have a silver
background. The background of the page will be colored purple too.

Step 5: Changing the Look and Feel

Customizing Your Page 4-19

Figure 4–26 MyPage.jspx Using mystyle.css

During this lesson you've experimented with ways to affect the look and feel of
your application. You'll find more detailed information in the Oracle WebCenter
Framework Developer's Guide.

Before moving on, let's change back to the default Oracle skin.

10. To remove the custom skin:

a. Open adf-faces-config.xml, located under ViewController, Web Content,
WEB-INF.

b. Change the <skin-family> tag back to oracle as shown in Figure 4–27.

Figure 4–27 Edit Skin Family in adf-faces-config.xml

c. Click File, Save All.

In the next lesson, you'll learn how to add the Rich Text portlet, which provides a
bulletin board-like feature to users.

Step 5: Changing the Look and Feel

4-20 Oracle WebCenter Framework Tutorial

Adding the Rich Text Portlet 5-1

5
Adding the Rich Text Portlet

The Rich Text portlet is a useful tool for posting enterprise announcements and news
items at runtime. Once you add the portlet to a page, authorized users can use the
Actions icon to invoke a toolbar with all the rich-text editing tools needed to insert,
update, and format display text. Depending on the security privileges set for the page,
the Rich Text portlet can be used to broadcast information to a wide audience, or to a
more narrowly defined group.

The Rich Text portlet is available through the WebCenter Preconfigured OC4J.

Figure 5–1 shows what your page will look like at the end of the lesson.

Figure 5–1 MyPage.jspx at the End of Lesson 5

Introduction
This lesson shows you how to work with the Rich Text portlet through the following
steps:

■ Step 1: Registering the Rich Text Producer

■ Step 2: Adding the Rich Text Portlet To Your Page

■ Step 3: Customizing the Rich Text Portlet at Run Time

Prerequisites

5-2 Oracle WebCenter Framework Tutorial

Prerequisites
The Rich Text portlet is available through the WebCenter Preconfigured OC4J
(installed and initialized during Chapter 3 Step 2: Setting Up Your Connection). If this
OC4J instance is no longer running, click the Start WebCenter Preconfigured OC4J
icon at the far right of the JDeveloper toolbar before you begin this lesson.

Step 1: Registering the Rich Text Producer
In this step you'll register the Rich Text producer with your application. But first, let's
check that the Rich Text producer is available through the WebCenter Preconfigured
OC4J:

1. In a browser, enter the Rich Text producer test page URL:

http://localhost:6688/richtextportlet/info

If the producer is up and running you should see the WSRP Producer Test Page
shown in Figure 5–2.

Figure 5–2 Rich Text Producer Test Page

The test page displays two Rich Text producer registration URLs (WSDL
documents). You'll use the WSRP v2 WSDL URL in this WebCenter application:

http://localhost:6688/richtextportlet/portlets/wsrp2?WSDL

Now, let's register the Rich Text producer.

2. In the Applications Navigator, right-click Portlet Producers, then click New
WSRP Producer as shown in Figure 5–3.

Tip: Test pages for every portlet producer available through the
WebCenter Preconfigured OC4J are accessible from:
http://localhost:6688/

Step 2: Adding the Rich Text Portlet To Your Page

Adding the Rich Text Portlet 5-3

Figure 5–3 Registering the Rich Text Portlet with the Application

Because you already have one portlet producer registered, you can use this
right-click shortcut rather than having to navigate through the New... gallery.

3. Click Next to exit the wizard's Welcome screen.

4. In the Name field, enter: RichTextProducer

5. Click Next.

6. In the URL Endpoint field, enter:

http://localhost:6688/richtextportlet/portlets/wsrp2?WSDL

This tutorial assumes that localhost can be used in a URL to successfully refer
to the local computer on which your preconfigured OC4J installation resides. (If
this is not the case, replace localhost with your computer's IP address.)

7. Click Next.

8. Click Finish to exit the wizard.

9. Click OK to close the message box.

Now you are ready to drop the Rich Text portlet onto your page.

Step 2: Adding the Rich Text Portlet To Your Page
1. Display My Page.jspx in the Visual Editor.

2. From the Component Palette, select RichTextProducer (Figure 5–4).

Figure 5–4 Rich Text Portlet Producer

Step 2: Adding the Rich Text Portlet To Your Page

5-4 Oracle WebCenter Framework Tutorial

3. Select Rich Text Portlet, and drop it on top of h:form in the Structure window as
shown in Figure 5–5.

Figure 5–5 Adding the Rich Text Portlet to the Page

4. Select Rich Text Portlet1 in the Visual Editor and you'll see its properties
displayed in the Property Inspector.

5. In the Property Inspector, under Display Options, set AllModesSharedScreen to
true.

This directs the page to render all changes made through personalize/customize
inline, rather than by refreshing the entire page.

6. Select File, Save All to save your work.

7. Select Run, Run MyPage.jspx, or click the green arrow in the JDeveloper toolbar.

A new browser opens to display the page (Figure 5–6).

Figure 5–6 Default Rich Text Portlet

This is what the user sees when the page is displayed. The next step shows you how
easy it is to customize the Rich Text portlet, and may suggest some uses as you plan
your WebCenter application.

Step 3: Customizing the Rich Text Portlet at Run Time

Adding the Rich Text Portlet 5-5

Step 3: Customizing the Rich Text Portlet at Run Time
Once you've placed the Rich Text portlet on a page, users can use the Actions icon to
enter text that will be visible to everyone.

1. Click the Actions icon in the Rich Text portlet's header.

The Rich Text portlet should now look something like Figure 5–7.

Figure 5–7 The Rich Text Portlet's Action Menu

2. Click Customize to display the rich text controls (Figure 5–8).

Figure 5–8 The Rich Text Portlet's Text Controls

3. Enter some text of your own, and change the font size, type, and color, and
choosing a background color. For example, see Figure 5–9.

Figure 5–9 Text in Arial Font, Size 6, in Red

4. Experiment with the other controls. For example, display an image in the portlet:

a. Click the Insert Image icon.

Step 3: Customizing the Rich Text Portlet at Run Time

5-6 Oracle WebCenter Framework Tutorial

b. Enter the URL of any image, and click OK (Figure 5–10).

Figure 5–10 Insert Image Using the Rich Text Editor

5. When you have finished, click Submit.

The page is refreshed to display the new text and image.

For a complete description of the Rich Text portlet, as well as the other pre-packaged
portlets, see the Oracle WebCenter Framework Developer's Guide.

Now let's move on to see how to enable communication between two portlets—in
effect, how to pass a parameter from one portlet to drive the content that is displayed
in the other.

Making Portlets Communicate 6-1

6
Making Portlets Communicate

In this lesson you'll add two portlets to a page and learn how to configure them so that
one portlet drives the content of the other. To demonstrate inter-portlet
communication, you'll use a Parameter Form Portlet (one of the sample WSRP 2.0
portlets) and an instance of OmniPortlet (an Oracle PDK portlet). Both portlets are
available through the preconfigured OC4J you installed in Chapter 3, "Building and
Testing Your First Portlet".

Figure 6–1 illustrates what the page (called MyWeather.jspx) will look like at the end of
the lesson.

Figure 6–1 MyWeather.jspx at the End of Lesson 6

Introduction
You'll make two portlets communicate in the following steps:

■ Step 1: Registering Portlet Producers

■ Step 2: Placing the Parameter Form Portlet on a Page

■ Step 3: Customizing the Parameter Form Portlet

■ Step 4: Placing an OmniPortlet on a Page

■ Step 5: Building an OmniPortlet That Uses a Web Service

■ Step 6: Configuring the Portlets Together

■ Step 7: Testing Portlet Interaction

Prerequisites

6-2 Oracle WebCenter Framework Tutorial

Prerequisites
Both of the portlets we use in this lesson are available through the WebCenter
Preconfigured OC4J (installed and initialized during Chapter 3 Step 2: Setting Up Your
Connection). If this OC4J instance is no longer running, click the Start WebCenter
Preconfigured OC4J icon at the far right of the JDeveloper toolbar before you begin
this lesson.

Step 1: Registering Portlet Producers
Before you can add a portlet to a page, you must register its producer with the
WebCenter application. For this lesson you'll need to register producers for the
following portlets:

■ Parameter Form Portlet (WSRP portlet producer)

■ OmniPortlet (Oracle PDK portlet producer)

 Let's start with the Parameter Form Portlet producer:

1. Check that the Parameter Form Portlet producer is up and running. In a browser,
enter the following producer test page URL:

http://localhost:6688/portletapp/info

If the producer is up and running, you should see a WSRP Producer Test Page
displaying two WSRP producer registration URLs (WSDL documents). You'll use
the WSRP v2 WSDL URL in this WebCenter application:

http://localhost:6688/portletapp/portlets/wsrp2?WSDL

Now, let's register the producer with your application.

2. Right-click Portlet Producers in the Applications Navigator, and click New WSRP
Producer.

3. When the WSRP Portlet Producer Registration Wizard displays, click Next to
move beyond the Welcome page.

4. In the Name field, enter: SampleWSRPPortletsProducer

5. Click Next.

6. On the Connection page, enter the producer's URL Endpoint.

To produce the Parameter Form portlet through the WebCenter Preconfigured
OC4J, enter the following URL:

http://localhost:6688/portletapp/portlets/wsrp2?WSDL

This tutorial assumes that localhost can be used in a URL to refer to the local
computer on which your preconfigured OC4J installation resides. (If this is not the
case, replace localhost with your computer's IP address.)

Proxy information isn't necessary as we're using a local preconfigured OC4J. Make
sure that the Use proxy option is unchecked.

7. Click Next.

8. On the Registration Details page, accept the default timeout value of 30 seconds,
and click Finish. For this tutorial, there is no need to set any of the advanced
options.

You should see the following message (Figure 6–2):

Step 1: Registering Portlet Producers

Making Portlets Communicate 6-3

Figure 6–2 WSRP Portlet Producer Registration Successful

9. Click OK to close the message box.

The new producer appears in the Applications Navigator, under the section Portlet
Producers (Figure 6–3).

Figure 6–3 Successfully Registered Producer for the Sample WSRP Portlets

Open the Component Palette through the View menu, and expand its drop-down
list. Locate and select SampleWSRPPortletsProducer from this list. Several
portlets are available for selection. Among these, you will find the Parameter Form
Portlet, which you will use in this lesson. (If you can't see anything in the
Component Palette, try displaying a Java Server Faces page in Design view, such
as MyPage.jspx. This should reveal all the portlets).

You'll come back to the Parameter Form Portlet later. First you must register the
OmniPortlet producer.

10. First, check that the OmniPortlet producer is up and running. In a browser, enter
the following producer test page URL:

http://localhost:6688/portalTools/omniPortlet/providers/omniP
ortlet

If the producer is available, you'll see the OmniPortlet's Producer Test Page.

Now, let's register the OmniPortlet producer. So far in this tutorial you've
registered only WSRP producers. As OmniPortlet is an Oracle PDK portlet, you'll
be using a different wizard to register this producer.

Step 1: Registering Portlet Producers

6-4 Oracle WebCenter Framework Tutorial

11. Right-click Portlet Producers in the Applications Navigator, and click New Oracle
PDK Producer.

12. When the PDK Portlet Producer Registration Wizard appears, click Next.

13. In the Name field, enter: OmniPortletProducer

14. Click Next.

15. On the Connection page, enter the producer's URL Endpoint.

To produce OmniPortlet through the WebCenter Preconfigured OC4J, enter the
following URL:

http://localhost:6688/portalTools/omniPortlet/providers/omniP
ortlet

This tutorial assumes that localhost can be used in a URL to refer to the local
computer on which your preconfigured OC4J installation resides. (If this is not the
case, replace localhost with your computer's IP address.)

Make sure that the Use proxy option is unchecked.

16. Click Finish.

You should see the following message (Figure 6–4):

Figure 6–4 Oracle PDK Portlet Producer Registration Successful

17. Click OK to close the message box.

Both producers should now appear in the Applications Navigator, under the
section Portlet Producers (Figure 6–5).

Step 2: Placing the Parameter Form Portlet on a Page

Making Portlets Communicate 6-5

Figure 6–5 Successfully Registered Producer for OmniPortlet

18. Open the Component Palette again, and click the drop-down list to make sure that
OmniPortletProducer is displayed. Select OmniPortletProducer from this list.

Several portlets are available for selection. Among these, you'll find OmniPortlet,
which you will use in this lesson.

Now both producers are registered with the tutorial application you can drop their
portlets onto a page.

Step 2: Placing the Parameter Form Portlet on a Page
In this step, you'll place a Parameter Form Portlet on a page and see how JDeveloper
handles a portlet with public portlet parameters. Then you'll run the page and,
through portlet customization, create a portlet that invites a user to enter a ZIP code.
Later on in the lesson you'll learn how to pass the ZIP code as a parameter to an
OmniPortlet, where it'll be used to drive the content of a weather portlet.

Let's start by creating a brand new page called MyWeather.jspx, which you'll use to
learn about inter-portlet communication.

1. Create a new Java Server Faces page named MyWeather.jspx.

a. In the Applications Navigator, right-click ViewController, and select New.

b. In the Categories pane, under Web Tier, select JSF.

c. Under Items, select JSF JSP, and click OK.

d. Click Next to skip the Welcome page.

e. In the File Name field, enter: MyWeather

f. Under Type, click JSP Document, and then click Next.

g. Choose Automatically Expose UI Components in a New Managed Bean, and
then click Next.

h. On the Tag Libraries page, make sure the following libraries appear in the
Selected Libraries pane:

ADF Faces Components 10_1_3_2_0

Step 2: Placing the Parameter Form Portlet on a Page

6-6 Oracle WebCenter Framework Tutorial

ADF Faces HTML 10_1_3_2_0

ADF Portlet Components 10_1_3_2_0

Customizable Components Core 10_1_3_2

JSF Core 1.0

JSF HTML 1.0

i. There is no need to set any other options, so click Finish on this page.

MyWeather.jspx should open in the Visual Editor (Figure 6–6), ready for us to
begin adding portlets.

Figure 6–6 Empty MyWeather.jspx

2. Add a panelCustomizable component to your page. You'll use this component
to house both of your portlets (Parameter Form Portlet and OmniPortlet) and to
provide horizontal/vertical layout.

a. Open the Component Palette.

b. Scroll to the listing for Customizable Components Core (Figure 6–7).

Figure 6–7 Component Palette - Customizable Components Core

c. Select PanelCustomizable, and drag it over the h:form tag in the Structure
window.

The panelCustomizable component should display at the top of the page
(Figure 6–8).

Step 2: Placing the Parameter Form Portlet on a Page

Making Portlets Communicate 6-7

Figure 6–8 MyWeather.jspx - PanelCustomizable Component

The panelCustomizable component must be placed inside the h:form for
the page. Take a look in the Structure window to check that the frame is placed
inside the form. Remember, you don't need add a showDetailFrame because
portlets come automatically equipped with the customization capabilities; that
is, the ability to maximize/minimize and to reposition the portlet on the page.

3. Now you're ready for the Parameter Form Portlet. From the Component Palette,
select SampleWSRPPortletsProducer.

4. Select Parameter Form Portlet, then drag and drop it on top of the
cust:panelCustomizable component in the Structure window.

The Visual Editor should look like Figure 6–9.

Figure 6–9 MyWeather.jspx - Parameter Form Portlet Inside a panelCustomizable

Before you run the page, let's take a look at the underlying page definition to see
how JDeveloper responds to a portlet with built-in parameters like this one.

Right-click MyWeather.jspx in the Applications Navigator, and choose Go to Page
Definition. Click Yes if the Page Definition doesn't exist yet.

In the Structure window (Figure 6–10) you should see an entry for each of the
Parameter Form's portlet parameters (ora_wsrp_navigparam_Parameter1,
ora_wsrp_navigparam_Parameter2 and ora_wsrp_navigparam_
Parameter3). You should also see three page variable entries with corresponding

Step 2: Placing the Parameter Form Portlet on a Page

6-8 Oracle WebCenter Framework Tutorial

names and the prefix <portletname_n_> —in this case,
ParameterFormPortlet1_1_).

Figure 6–10 MyWeatherPageDef.xml - Parameter Form Portlet Parameters

When a portlet is dropped on a page, JDeveloper checks to see if the portlet has
public portlet parameters and, if it does, automatically adds the corresponding
number of page variables and maps them to the portlet parameters.

Use the Property Inspector to examine one of the mappings. You should see that
ora_wsrp_navigparam_Parameter1, for example, is mapped to the page
variable named ParameterFormPortlet1_1_ora_wsrp_navigparam_
Parameter1 (Figure 6–11).

Figure 6–11 Property Inspector - Portlet Parameter Mapped to Page Variable

Now let's run the page to see what a default Parameter Form Portlet looks like.

5. First, save all your changes. Click the Save All icon on the JDeveloper toolbar.

6. In the Applications Navigator, right-click MyWeather.jspx, and choose Run.

The default Parameter Form Portlet displays in your browser (Figure 6–12).

Step 3: Customizing the Parameter Form Portlet

Making Portlets Communicate 6-9

Figure 6–12 Default Parameter Form Portlet

As you can see, the initial version of the portlet displays some default text. In the
next step, you'll customize the portlet so that it invites users to enter a US ZIP
code. Remember, the purpose of this lesson is to work with this portlet so it will
accept a parameter value (such as a ZIP code) and pass it to another portlet.

Step 3: Customizing the Parameter Form Portlet
In this step you'll customize the Parameter Form Portlet by changing its title and
prompts. You'll also hide unwanted parameters. The Parameter Form Portlet provides
three parameter but this tutorial requires only one to demonstrate parameter passing
between portlets.

1. Display the portlet in a browser, then click the Actions icon in the portlet header.

2. Click the menu option Customize.

3. Change the Title to: Enter a ZIP code here:

4. For Parameter 1 Prompt, enter: ZIP Code:

5. You don't need the second and third parameters, so you can hide them. To do this,
remove the default prompt text taking care not to leave behind any spaces.

The Customize options should now look something like Figure 6–13.

Figure 6–13 Parameter Form Portlet Customization Options

6. Click OK.

When displayed in the browser, the portlet should look like Figure 6–14.

Step 4: Placing an OmniPortlet on a Page

6-10 Oracle WebCenter Framework Tutorial

Figure 6–14 Customized Parameter Form Portlet

Before moving on to the next step, let's review what you've built so far. First, you
created a page called MyWeather.jspx, and added a single Parameter Form Portlet.
Then, through portlet customization, you set up one of its parameters, ora_wsrp_
navigparam_Parameter1, to accept a US ZIP code. You may recall that JDeveloper
automatically mapped this particular parameter to a page variable named
ParameterFormPortlet1_1_ora_wsrp_navigparam_Parameter1. Later on,
you'll use this variable to pass the ZIP code on to another portlet.

But first, let's add the second portlet—an OmniPortlet.

Step 4: Placing an OmniPortlet on a Page
In this step you'll place an OmniPortlet under the Parameter Form Portlet.

1. Display MyWeather.jspx in JDeveloper. In the Applications Navigator, right-click
MyWeather.jspx, and click Open.

2. Open the Component Palette, and locate OmniPortletProducer.

3. Select OmniPortletProducer.

4. Select OmniPortlet, and drag it over cust:PanelCustomizable in the
Structure window.

The Visual Editor should now look like Figure 6–15.

Figure 6–15 MyWeather.jspx - OmniPortlet Added To PanelCustomizable

The Structure window should look like Figure 6–16.

Step 4: Placing an OmniPortlet on a Page

Making Portlets Communicate 6-11

Figure 6–16 Structure Window - Displays New OmniPortlet

5. Let's take another look at the underlying page definition. Right-click
MyWeather.jspx in the Applications Navigator, and choose Go to Page
Definition.

In the Structure window (Figure 6–17), you'll see a new entry for OmniPortlet.
This portlet has five portlet parameters (Param1 - Param5), and they too have been
automatically mapped to page variables OmniPortlet1_1_Param1 –
OmniPortlet1_1_Param5.

Figure 6–17 MyWeatherPageDef.xml - OmniPortlet Portlet Parameters

Step 5: Building an OmniPortlet That Uses a Web Service

6-12 Oracle WebCenter Framework Tutorial

In Step 6: Configuring the Portlets Together you'll use these portlet parameters to
configure inter-portlet communication. But first, let's see what an OmniPortlet
portlet looks like.

6. First, save all your changes. Click the Save All icon on the JDeveloper toolbar.

7. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

Alternatively, click the red square Terminate icon in the Embedded OC4J Server
Log window.

8. In the Applications Navigator, right-click MyWeather.jspx, and choose Run.

OmniPortlet displays in the browser underneath the Parameter Form Portlet
(Figure 6–18).

Figure 6–18 Default (Blank) OmniPortlet

As you can see, the initial version of the portlet is blank. In the next step you'll use
OmniPortlet to build a weather portlet based on a Web Service.

Step 5: Building an OmniPortlet That Uses a Web Service
As one of the most versatile portlets, OmniPortlet can publish data from a variety of
data sources using a variety of layouts. In this step you will build a weather portlet
based on a Web Service.

Step 5: Building an OmniPortlet That Uses a Web Service

Making Portlets Communicate 6-13

1. Display MyWeather.jspx in a browser. In the Applications Navigator, right-click
MyWeather.jspx, and choose Run.

2. In the browser, click the Define link to start the OmniPortlet wizard.

3. Choose Web Service, and click Next.

After you finish this tutorial, you'll probably want to learn how to use other data
sources with OmniPortlet, such as spreadsheets (character-separated values),
XML, and even application data from existing Web pages. All of these options are
described in the Oracle WebCenter Framework Developer's Guide.

4. Enter the WSDL URL of a demonstration weather Web Service available through
Oracle Technology Network at:

 http://webservices.oracle.com/WeatherWS/WeatherWS?WSDL

This Web Service has one method (WeatherWS.giveMeSomeWeatherInfo) and
accepts one parameter (param0). When you pass a valid US ZIP Code through
param0, the Web Service returns weather information for the area specified.

Note: This Web Service does not return live weather information. It is useful for
demonstration purposes only.

5. To access this method parameter, click Show Methods.

A parameter labeled param0 should display on the page.

6. Enter ##Param1## in the param0 parameter field.

This tells the Web Service to accept values from the Omniportlet parameter
Param1. Later on, you'll map portlet parameter Param1 to a page variable named
ParameterFormPortlet1_1_ora_wsrp_navigparam_Parameter1, see Step
6: Configuring the Portlets Together.

Note: If you are working behind a firewall, some additional
configuration is required to access the Weather Web Service.
Specifically, you will need to add HTTP proxy details to the
<proxyInfo> tag in your Omniportlet producer's provider.xml file.
This file is located at:

JDEV_
HOME\jdev\extensions\oracle.adfp.seededoc4j.10.1.3.2
.\j2ee\home\applications\portalTools\omniPortlet\WEB
-INF\providers\omniPortlet

When making changes to the provider.xml file, the portlet
producer must be refreshed on the WebCenter application side. To
update the proxy details and refresh the portlet producer, perform the
following steps:

1. Stop the WebCenter application (consumer).

2. Update the provider.xml file and save your changes.

3. In Oracle JDeveloper, refresh the portlet producer on the WebCenter
application (consumer) side.

4. Redeploy the WebCenter application.

For more information, see topic titled "B.2.1 Configuring the
OmniPortlet Producer to Access Data Outside a Firewall" in Oracle
WebCenter Framework Developer's Guide.

Step 5: Building an OmniPortlet That Uses a Web Service

6-14 Oracle WebCenter Framework Tutorial

7. Under Portlet Parameters, set a Default Value for Param1. Enter: 94065

This tells the Web Service to return weather information for ZIP code 94065
(Redwood City, CA) by default.

8. Click Next, and then Next again as you don't need to set any filter options.

9. On the View Page, enter the values shown in Table 6–1.

10. Click Next, then specify the Column Label, Column, and Display As properties
for the weather data as shown in Table 6–2.

11. Click Finish to display weather information for Redwood City. You should now
see both portlets in your browser (Figure 6–19).

Table 6–1 OmniPortlet View Page Settings

Settings Value

Title Enter a title for the portlet: Weather Forecast

Header Text Display the current value of Param1 (current ZIP code) in the portlet
header. Enter:
For ZIP Code ##Param1##

Table 6–2 Column Properties for the Weather Forecast Portlet

Name Column Label Column Display As

Field1 Day dayOfWeek Text

Field2 Hi hiTemp Text

Field3 Lo lowTemp Text

Field4 Sky sky Text

Field5 (Blank) img Image

Step 6: Configuring the Portlets Together

Making Portlets Communicate 6-15

Figure 6–19 OmniPortlet Displaying a Weather Web Service

The Omniportlet displays a weather forecast for Redwood City, CA, which has the ZIP
code 94065. The Web Service providing this data can return weather information for
other areas if it is passed a valid US ZIP code. In the next step you'll learn how to link
these two portlets and make the first portlet (Parameter Form Portlet) drive the
content of the Omniportlet.

Step 6: Configuring the Portlets Together
In this step you'll enable inter-portlet communication between two portlets.

1. In JDeveloper, display the page definition for MyWeather.jspx. In the Applications
Navigator, right-click MyWeather.jspx, and select Go to Page Definition.

2. Examine MyWeatherPageDef.xml through the Structure window. In the
executables section you'll find:

■ ParameterFormPortlet1_1 - with three portlet parameters ora_wsrp_
navigparam_Parameter1, ora_wsrp_navigparam_Parameter2 and
ora_wsrp_navigparam_Parameter3

■ OmniPortlet1_1 - with five portlet parameters Param1 - Param5

■ variables - eight page variables, each mapped to a different portlet parameter.
JDeveloper creates these mappings automatically when portlets (with
parameters) are placed on a page

Although each portlet supports several parameters you'll only use one from each
portlet to demonstrate inter-portlet communication:

Step 7: Testing Portlet Interaction

6-16 Oracle WebCenter Framework Tutorial

■ ora_wsrp_navigparam_Parameter1 - you configured the Parameter Form
Portlet to accept a ZIP Code through this parameter (Step 3: Customizing the
Parameter Form Portlet).

■ Param1 - you configured OmniPortlet to accept a ZIP code through this
parameter (Step 5: Building an OmniPortlet That Uses a Web Service).

In the next step you'll map these two parameters to the same page variable and in
doing so, facilitate parameter passing between two portlets. At the moment ora_
wsrp_navigparam_Parameter1 is mapped to page variable
ParameterFormPortlet1_1_ora_wsrp_navigparam_Parameter1, so let's
map Param1 to this page variable too.

3. Use the Structure window to link OmniPortlet and the Parameter Form Portlet:

a. Right-click Param1, and select Properties.

Param1 is located under MyWeatherPageDef\executables\OmniPortlet1_
1\parameters.

b. Click Advanced Properties.

c. From the pageVariable drop-down list, select ParameterFormPortlet1_1_ora_
wsrp_navigparam_Parameter1 (Figure 6–20).

Figure 6–20 OmniPortlet Param1 Mapped to Same Page Variable as the Parameter Form
Portlet

d. Click OK.

4. Click Save All in the JDeveloper toolbar.

Now, let's run the page to see the portlets working together.

Step 7: Testing Portlet Interaction
Let's see the portlets on MyWeather.jspx working together.

1. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

2. In the Applications Navigator, right-click MyWeather.jspx, and select Run.

Assuming there aren't any compiler errors, the page opens in a new browser
window and you should see a weather forecast for the Redwood City area (ZIP
Code 94065).

3. In the ZIP Code field, enter: 10001

This is the ZIP Code for New York.

4. Click OK.

Step 7: Testing Portlet Interaction

Making Portlets Communicate 6-17

The Weather Forecast portlet should change, showing weather information for
New York (something like Figure 6–21).

Figure 6–21 Portlets Show Weather for New York

Congratulations! You've completed this lesson and made two portlets communicate
with each other.

In the next lesson, you will learn how to publish file system content in your
WebCenter application.

Step 7: Testing Portlet Interaction

6-18 Oracle WebCenter Framework Tutorial

Adding Content to Your Page 7-1

7
Adding Content to Your Page

In this lesson you will learn how to publish content that resides on a file system in
your WebCenter application. You'll see how easy it is to build content rich applications
with Oracle JDeveloper and experiment with the various ways you can present file
and folder information.

Figure 7–1 illustrates what your page (MyContent.jspx) will look like at the end of the
lesson.

Figure 7–1 MyContent.jspx at the End of Lesson 7

Introduction
You'll add content to the tutorial application in the following steps:

■ Step 1: Creating a Data Control

■ Step 2: Adding Content to a Page at Design Time

■ Step 3: Displaying Folder Content in a Table

■ Step 4: Displaying Folder Content in a Tree

■ Step 5: Searching Folder Content

Prerequisites

7-2 Oracle WebCenter Framework Tutorial

Prerequisites
During this lesson you'll need access to the sample you downloaded in Chapter 2,
"Getting Started". Before you start, make a note of the location where the sample
content is stored, see also Downloading Sample Tutorial Files.

Step 1: Creating a Data Control
In this step you'll define a data control that can access and publish some sample
tutorial content stored on your file system. A data control is a container for all the data
objects, collections, methods, and operations used to create UI components within
your application.

1. In the Applications Navigator, right-click Model, and choose New.

2. Expand the Business Tier node and select Content Repository.

3. Select Content Repository Data Control, and then click OK to display the wizard.

This wizard creates a data control for a content repository, even when the content
is on a file system.

4. Click Next to skip the Welcome page.

5. Name the data control. Enter MyTutorialContent, and then click Next.

6. We want to publish content on your file system. Click the Repository Type
drop-down list, and choose File System.

You can also set up a data control to access content in an Oracle Content DB
repository, or an OracleAS Portal repository. For detailed information about how
to set up these types of data controls, see the Oracle WebCenter Framework
Developer's Guide.

7. In the Base Path field, enter the path to the sample content you unzipped earlier.
For example: C:\TutorialContent

This shows the data control where to find your content.

8. Click the Test button to check whether you've entered the connection details
correctly. You should see a Success! message like Figure 7–2.

Step 1: Creating a Data Control

Adding Content to Your Page 7-3

Figure 7–2 File System Data Control - Testing the Connection

9. If you get an error message, click OK and edit the Base Path, taking care to specify
the full path. If the test is successful, click OK to close the message box.

10. Click Next.

File system data controls expose several default attributes (name, path, URI,
primaryType) and optionally, one custom attribute (lastModified) —see
Figure 7–3.

Figure 7–3 File System Data Control - Custom Attribute Configuration

11. To accept the default attribute set, click Finish.

Take a look at the Applications Navigator. You should see several new entries
under Model, Application Sources (Figure 7–4). For more information about data
controls and the files they generate, see Oracle WebCenter Framework Developer's
Guide.

Step 1: Creating a Data Control

7-4 Oracle WebCenter Framework Tutorial

Figure 7–4 Files for File System Data Control MyTutorialContent

12. The new data control should be available in the Data Control Palette, so let's
display that now. From the View menu, select Data Control Palette.

Under MyTutorialContent, you should see a hierarchical list of objects, collections,
methods, parameters, and operations for the new data control (Figure 7–5).

Figure 7–5 Data Control Palette - MyTutorialContent

File system data controls (such as MyTutorialContent) provide several methods for
accessing and displaying file and folder information:

■ search - Enables you to perform searches on the content exposed through the
data control.

■ advancedSearch - Enables you to perform advanced searches on the content
exposed through the data control.

■ getItems - Returns files and folders stored in a specific location of the content
repository.

■ getAttributes - Returns a list of attributes and their values for a given file or
folder.

■ getURI - Returns the URI of a file. In this release, direct access to folders
through URIs is not supported.

Step 2: Adding Content to a Page at Design Time

Adding Content to Your Page 7-5

You'll find detailed information about these methods in the Oracle WebCenter
Framework Developer's Guide.

Let's see how to use some of these objects.

Step 2: Adding Content to a Page at Design Time
In this step, you'll learn how to publish a hyperlink to a file using the data control
method getURI. Let's start by creating a brand new page called MyContent.jspx on
which you'll add a link to one of the sample files (help.html).

1. Create a new Java Server Faces page named MyContent.jspx.

a. In the Applications Navigator, right-click ViewController, and select New.

b. In the Categories pane, under Web Tier, select JSF.

c. Under Items, select JSF JSP, and click OK.

d. Click Next to skip the Welcome page.

e. In the File Name field, enter: MyContent

f. Under Type, click JSP Document, and then click Next.

g. Choose Automatically Expose UI Components in a New Managed Bean, and
then click Next.

h. On the Tag Libraries page, make sure the following libraries appear in the
Selected Libraries pane:

ADF Faces Components 10_1_3_2_0

ADF Faces HTML 10_1_3_2_0

ADF Portlet Components 10_1_3_2_0

Customizable Components Core 10_1_3_2

JSF Core 1.0

JSF HTML 1.0

i. There is no need to set any other options, so click Finish on this page.

MyContent.jspx should open in the Visual Editor, ready for us to begin adding
content from the file system. (If the page doesn't appear, click the Design tab.)

2. In the Data Control Palette, expand the getURI(String) node for
MyTutorialContent.

You should see one parameter (path), as well as one method return attribute URI
listed here (Figure 7–6).

Step 2: Adding Content to a Page at Design Time

7-6 Oracle WebCenter Framework Tutorial

Figure 7–6 Data Control Palette - MyTutorialContent.getURI

3. Select the URI node, and drag and drop it onto MyContent.jspx.

When you drag an item from the Data Control Palette and drop it on a page,
JDeveloper displays a context menu of suitable components.

4. From the context menu, choose Links, and then ADF Go Link, as shown in
Figure 7–7.

Figure 7–7 JDeveloper Context Menu for getURI

5. To publish a link to a Help page located at C:\TutorialContent\help.html,
use the path parameter to point to the file by entering: /help.html

 Make sure that you include a forward slash (Figure 7–8).

Figure 7–8 GetURI - Action Binding Editor

6. Click OK.

Step 2: Adding Content to a Page at Design Time

Adding Content to Your Page 7-7

You should see a new goLink on MyContent.jspx with default link text goLink1.

7. In the Structure window, double-click af:goLink - goLink1 to edit the default
properties.

8. The default link text is goLink1. Replace this text with the word Help
(Figure 7–9).

The expression in the Destination field, #{bindings['getURI_
returnURI'].inputValue}, fetches the URI of the Help page.

Figure 7–9 GoLink Properties - Configuring Help Link

9. Click OK to close the GoLink Properties window.

10. Click the Save All icon in the JDeveloper toolbar.

11. Before running the page, stop the embedded OC4J Server. Choose Run, Terminate,
Embedded OC4J Server from the main menu.

12. Right-click MyContent.jspx, and select Run to see the Help link in action.

When the page appears in your browser window, you should see the new Help
link. Click the link to check that the correct file is displayed. Your browser should
look like the one displayed in Figure 7–10.

Step 3: Displaying Folder Content in a Table

7-8 Oracle WebCenter Framework Tutorial

Figure 7–10 File Link Through the File System Data Control

Step 3: Displaying Folder Content in a Table
In this step, you'll learn how to publish file and folder information in a table using the
data control method getItems. You'll then create a table (similar to the one shown in
Figure 7–11) that lists all the files located at C:\TutorialContent. Each file name in
the table will contain a hyperlink to the actual file.

Figure 7–11 File System Content Displayed as Hypertext Links

1. In the Applications Navigator, double click MyContent.jspx to open the page in
the Visual Editor.

2. In the Data Control Palette, expand the getItems node for MyTutorialContent.
You should see two parameters (path and type) and the Return options shown
in Figure 7–12.

Step 3: Displaying Folder Content in a Table

Adding Content to Your Page 7-9

Figure 7–12 Data Control Palette - MyTutorialContent.getItems

3. First, let's create a table that lists every file and folder available through this data
control. To do this, highlight the Return node, drag it onto the page, and drop it
below the Help link (af:goLink - Help).

When you drag an item from the Data Control Palette and drop it on a page,
JDeveloper displays a context menu of suitable UI components. File system items
can be displayed in a form, table, tree, or navigation item.

4. Choose Tables from the context menu, and then ADF Read-only Table, as shown
in Figure 7–13.

Figure 7–13 JDeveloper Context Menu for getItems

You should now see the Action Binding Editor (Figure 7–14).

5. To display everything under the data control's base path, enter / for the path
parameter. Make sure that you enter a forward slash, not a backslash here.

6. Leave the type blank for now. This implies that the table must display both files
and folders. Later on you'll configure the table to show files only.

Step 3: Displaying Folder Content in a Table

7-10 Oracle WebCenter Framework Tutorial

Figure 7–14 getItems - Action Binding Editor

7. Click OK.

You should see the Edit Table Columns window (Figure 7–15).

Figure 7–15 Edit Table Columns - Defaults

Let's take a quick look at some of the display options available on this page. In
addition to the file/folder name (name), you can publish additional content
attributes such as path, URI, primaryType, and lastModified. All attributes
are published by default, with default labels but you can customize the content
displayed. You can remove attributes, edit display labels, and change the display
order to suit your precise requirements.

For now, let's just edit the Display Labels to make them more meaningful.

8. Click <bound to attr label> (next to name) and enter: Name

Now edit the Display Label for the other attributes (path, URI, primaryType,
lastModified). Enter new Display Labels such as Path, URI, File or Folder,
and Last Modified as shown in Figure 7–16.

Step 3: Displaying Folder Content in a Table

Adding Content to Your Page 7-11

Figure 7–16 Edit Table Columns - Customizing DIsplay Labels

9. Click OK.

You should see a table on MyContent.jspx that looks something like Figure 7–17.

Figure 7–17 Read-Only Table for Publishing Folder Content

10. Let's see the page in a browser. Right-click MyContent.jspx, and select Run.

When the page appears in your browser window, you should see a list of all the
file and folders available through the MyTutorialContent data control (for
example, everything under the directory C:\TutorialContent) as shown in
Figure 7–18.

Figure 7–18 Browser - Folder Content Displayed in a Table

Step 3: Displaying Folder Content in a Table

7-12 Oracle WebCenter Framework Tutorial

By default, the table displays file/folder attributes as read-only text
(af:outputText). In the next step, you'll learn how to display the Name
attribute as an ADF GoLink (af:goLink).

11. In the Structure window as shown in Figure 7–19, expand the first column of the
table (af:column - Name) to reveal the default display format af:outputText
- #{row.name}.

Figure 7–19 Default Display Format for the Name Column

12. Right-click af:outputText - #{row.name}, and click Convert.

13. From the pull-down menu, choose ADF Faces Core.

14. Choose GoLink (Figure 7–20).

Step 3: Displaying Folder Content in a Table

Adding Content to Your Page 7-13

Figure 7–20 Convert OutputText to a GoLink

15. Click OK, and then click OK again to confirm the conversion.

For this tutorial, we want the GoLinks to display file/folder names (name) as
hyperlinks. To do this, you'll need to edit the default GoLink properties.

16. In the Structure window, right-click the new af:goLink - goLink 1, and click
Properties to display the default settings.

17. The default link text is goLink 1. To display file/folder names instead (name), use
the binding editor to build the required expression #{row.name} as shown in
Figure 7–21:

a. For the Text field, click Bind.

b. Expand JSP Objects, and then expand row.

c. Double-click name to select the expression #{row.name}.

d. Click OK.

18. To generate URIs for the HTTP hyperlinks:

a. For the Destination field, click Bind.

b. Expand JSP Objects, and then expand row.

c. Double-click URI to select the expression #{row.URI}.

d. Click OK.

Step 3: Displaying Folder Content in a Table

7-14 Oracle WebCenter Framework Tutorial

Figure 7–21 GoLink Properties - Configuring File Names as Hyperlinks

19. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

20. Run MyContent.jspx again.

This time you should see a list of hyperlinked file/folder names like the one
shown in Figure 7–22.

Figure 7–22 Browser - Folder Content Displayed as Hyperlinks

21. Click one of the file names.

The file you pick should display in a browser window.

22. Click the name of a folder.

This time you'll see an authorization error because you cannot access a folder
through a direct URL. Folders may be accessed through a data control only.

Before moving onto the next step, let's summarize what you've done so far. First
you created a table based on the MyTutorialContent data control. You saw how, by
default, the table publishes file system information in plain, unformatted text. You
then applied some formatting to the file and folder names to display them as
hypertext links.

To finish off, let's tidy up the table. Let's configure the table to show only the
Name column, and limit the display to files only.

23. Back in JDeveloper, configure the table to show the Name column only:

a. In the Structure window, right-click the af:table -table1 node, and choose
Properties.

b. Click the Column Summary tab. Use the Delete button to remove all but the
Name column (Figure 7–23).

Step 3: Displaying Folder Content in a Table

Adding Content to Your Page 7-15

Figure 7–23 Table Properties - Editing Columns

c. Click the Column Details tab.

d. For Header Text, enter My Tutorial Files as shown in Figure 7–24.

Figure 7–24 Table Properties - Editing Column Display Options

e. Click OK.

24. To configure the table to show files only (not folders), you'll need to edit the page
definition file:

a. Right-click MyContent.jspx, and select Go to Page Definition.

b. In the Structure window, expand bindings and getItems (Figure 7–25).

Figure 7–25 Configure the type Property in MyContentPageDef.xml

c. Double-click type.

d. The type options are nt:file and nt:folder. To specify display files only,
enter nt:file in the NDValue field, and click OK as shown in Figure 7–26.

Step 3: Displaying Folder Content in a Table

7-16 Oracle WebCenter Framework Tutorial

Figure 7–26 NDValue - Configuring File Display Only

25. Let's take a moment to examine a couple of binding settings for the data control
that are set by default in the page definition file. You may want to use these
settings for your own application, so it's important to understand what they do:

a. In Structure view, expand the executables section.

b. Select the method iterator getItemsIter.

c. From the View menu, choose Property Inspector to view the default settings.

d. The RangeSize property controls how many file/folder items are displayed on
each page. For this tutorial, let's keep the default RangeSize 10.

e. The CacheResults property determines whether table content is cached. By
default, the results are cached (true) but caching may not be desirable for
some applications where content changes frequently and real time updates are
critical. Set this property to false.

When you run the page, you'll see that the file list updates dynamically
whenever the page is refreshed.

26. Click the Save All icon in the JDeveloper toolbar.

27. Run the page again.

The list of files should look something like Figure 7–27. This time, no folders are
displayed.

Figure 7–27 Browser - Files Only Displayed as Hypertext Links

28. Test that caching is disabled. Rename one of the files on your file system, and then
refresh the browser.

As you chose not to cache the table content, you'll see the new file name
immediately.

In this lesson you learnt how to publish file system content in a table. In the next
lesson you'll display the same content in a tree.

Step 4: Displaying Folder Content in a Tree

Adding Content to Your Page 7-17

Step 4: Displaying Folder Content in a Tree
In this step you'll publish file and folder content in a hierarchal tree format using the
getItems method. You'll create a tree (similar to the one shown in Figure 7–28)
displaying files located at C:\TutorialContent and each file name in the tree will
provide a hyperlink to the actual file. But first, let's create a new data control.

Figure 7–28 File System Content Published in a Tree

1. In the Applications Navigator, right-click Model, and choose New.

2. Expand the Business Tier node, and select Content Repository.

3. Select Content Repository Data Control, and then click OK.

4. Click Next to skip the Welcome page.

5. Name the data control. Enter MyTutorialContent2, and then click Next.

6. We want to use this data control to publish content from a file system, so click the
Repository Type drop-down list, and choose File System.

7. In the Base Path field, enter the path to the content you unzipped earlier, for
example C:\TutorialContent, and then press Enter.

8. Click the Test button to check whether you've entered the connection details
correctly. You should see a Success! message.

9. If you get an error message, click OK and edit the Base Path, taking care to specify
the full path. If the test is successful, click OK to close the message box, then click
Finish.

10. The new data control should be available in the Data Control Palette, so let's
display that now. From the View menu, select Data Control Palette (Figure 7–29).

Step 4: Displaying Folder Content in a Tree

7-18 Oracle WebCenter Framework Tutorial

Figure 7–29 Data Control Palette - MyTutorialContent2

Now, let's publish content available through this data control in an hierarchal tree
format.

11. In the Applications Navigator, double click MyContent.jspx to open the page in
the Visual Editor.

12. In the Data Control Palette, expand the GetItems node under
MyTutorialContent2 (Figure 7–30).

Figure 7–30 MyTutorialContent2.getItems

13. Highlight the Return node, drag it onto the page, and drop it below the table
(af:Table - table1).

14. From the context menu, select Create Trees, ADF Tree as shown in Figure 7–31.

Step 4: Displaying Folder Content in a Tree

Adding Content to Your Page 7-19

Figure 7–31 JDeveloper Context Menu for getItems

You should see the Action Binding Editor.

15. To create a tree that displays everything under the base path
(C:\TutorialContent), enter / for the path parameter as shown in
Figure 7–32. Make sure you enter a forward slash, not a backslash.

Leave the type blank, as the tree must show both files and folders.

Figure 7–32 Action Binding Editor

16. Click OK.

The Tree Binding Editor is displayed (Figure 7–33). Let's take a quick look at this
page.

Step 4: Displaying Folder Content in a Tree

7-20 Oracle WebCenter Framework Tutorial

Figure 7–33 Tree Binding Editor - Default Edit Rule Tab

Rules define how tree data controls fetch and display hierarchical data. The
default rule settings (Figure 7–33) show getItems is the root of the tree, that tree
nodes (or branches) may display only the name attribute, and that tree nodes may
not display children—Branch Rule Accessor is <none>.

In the next few steps you'll edit these default settings and define a rule that will
expose files/folders under each node in a hierarchical format and enable you to
hyperlink file names.

17. In the Display Attribute list, multi-select the attributes name, URI, and
primaryType as shown in Figure 7–34.

You'll use the name attribute to display file/folder names in the tree, and you'll
use the URI, and primaryType attributes to build hyperlinks to file content. The
other attributes (path and lastModified) are not used in this tutorial so there is
no need to select them here.

Step 4: Displaying Folder Content in a Tree

Adding Content to Your Page 7-21

Figure 7–34 Tree Binding Editor - Rule Selections

18. For the Branch Rule Accessor, select Items.

This enables tree nodes to display any children that may exist in a hierarchical
format.

19. Click Add New Rule.

You should see the message shown in Figure 7–35.

Figure 7–35 New Rule Confirmation Dialog

20. Click OK to close the message box and display the Show Rules tab (Figure 7–36).

Step 4: Displaying Folder Content in a Tree

7-22 Oracle WebCenter Framework Tutorial

Figure 7–36 Tree Binding Editor - Show Rules Tab

21. Click OK.

Now you should see a tree structure similar to Figure 7–37 displayed on
MyContent.jspx.

Figure 7–37 Tree for Navigating Folder Content

22. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

23. Let's see the page in a browser. Right-click MyContent.jspx, and select Run.

When the page appears in your browser window, you should see a list of files and
folders available through the MyTutorialContent2 data control, for example,
everything under the directory C:\TutorialContent. Expand the More_
Images node to see access content in this subdirectory (Figure 7–38).

Step 4: Displaying Folder Content in a Tree

Adding Content to Your Page 7-23

Figure 7–38 Folder Content Displayed in a Tree

Now let's hide the URI and primaryType attribute. In a moment, you'll use these
attributes to build hyperlinks but they don't need to be displayed in the tree.

24. In the Applications Navigator, select MyContent.jspx.

25. In Structure window, right-click af: tree - tree1, and choose Properties.

26. Change the Node Stamp Value to #{node.name}, and click OK.

27. Let's see what the tree looks like now. Right-click MyContent.jspx, and select Run.

You should see file and folder names only (Figure 7–39).

Figure 7–39 Tree Displays File and Folder Names

Trees will display the first ten items (by default) but you can customize this
through the RangeSize property for the GetItems method in the page's
definition file.

By default, the tree displays file/folder names as read-only text, but let's display
them as hyperlinks as you did for the table. Like last time, you want to add
hyperlinks to the file names (not folders). Unlike last time, you cannot hide the
folders as they're required for navigation through the tree. As an alternative, you
can display the folder names as read only text. To accommodate this dual
functionality, let's use an ADF Faces Switcher component (af:switcher) with
two facets - one for folders and one for files.

28. In the Structure window, navigate down to the nodeStamp facet to reveal the
current display format af:outputText - #{node.name} (Figure 7–40).

Step 4: Displaying Folder Content in a Tree

7-24 Oracle WebCenter Framework Tutorial

Figure 7–40 Default Display Format for Trees

29. Add an ADF Switcher component:

a. Right-click nodeStamp, and choose Insert Inside nodeStamp, ADF Faces
Core.

b. Choose Switcher, and then click OK (Figure 7–41).

Figure 7–41 af:switcher Component

c. Right-click af:switcher, and click Properties.

d. For FacetName, enter the expression: #{node.primaryType}

e. Click the Advanced Properties tab.

f. For DefaultFacet, enter nt:file, and then click OK.

30. Now insert two facets for the switcher:

a. Right-click af:switcher, choose Insert Inside af:switcher, JSF Core, Facet.

b. Name the first facet nt:folder, and click OK.

c. Now repeat these steps, adding a second facet named nt:file (Figure 7–42).

Figure 7–42 Switcher Component with Two Facets

Step 4: Displaying Folder Content in a Tree

Adding Content to Your Page 7-25

31. Folder names require no additional formatting. Let's reuse the default display
format af:outputText -#{node.name} to display folder names in plain text:

a. In the Structure Window, select af:outputText - #{node.name}.

b. Drag and drop the af:outputText component on top of f:facet - nt:folder
(Figure 7–43).

Figure 7–43 Display nt:folder Facet as outputText

32. Use an af:goLink component to display file names as hyperlinks:

a. Right-click f:facet - nt:file, and then choose Insert Inside f:facet - nt:file, ADF
Faces Core.

b. Choose GoLink, and click OK.

c. Right-click af:goLink - goLink 1, and click Properties.

d. For the link's Text, enter the expression: #{node.name}

e. For the link's Destination, enter the expression: #{node.URI}

f. Click OK.

Use the Structure window to check the af:switcher configuration. It should
look like Figure 7–44.

Figure 7–44 Switcher Showing Configured Facets

33. Click the Save All icon in the JDeveloper toolbar.

34. Run the page again.

Step 5: Searching Folder Content

7-26 Oracle WebCenter Framework Tutorial

This time, you'll see a tree of hyperlinked file names similar to Figure 7–45.

Figure 7–45 Content Published in a Tree

35. Click any file name. You should see the content of that file displayed in a new
browser window.

Notice that folder names are plain text, a result of our Switcher component.

Step 5: Searching Folder Content
File system data controls provide a Search method for locating data and documents
that are exposed through a data control. In this step you'll learn how to use this
method to build a search form that enables users to search for content by file name and
keyword, and display search results in a table.

At the end of this exercise, your search form will look similar to that shown in
Figure 7–46. Let's get started!

Figure 7–46 Search Form Based On Data Control MyTutorialContent2

1. In the Data Control Palette, expand the Search node under MyTutorialContent2
(Figure 7–47).

Step 5: Searching Folder Content

Adding Content to Your Page 7-27

Figure 7–47 MyTutorialContent2.Search

2. Highlight the search node, drag it over to the Structure window, and drop it below
the tree (af:Tree - tree1).

3. From the context menu, select Create Method, ADF Command Button as shown
in Figure 7–48.

Figure 7–48 JDeveloper Context Menu for the Search Method

Now you should see the Action Binding Editor.

4. We want to search for everything under the base path (for example,
C:\TutorialContent), so enter / for the path parameter. Make sure you enter
a forward slash, not a backslash (Figure 7–49).

Step 5: Searching Folder Content

7-28 Oracle WebCenter Framework Tutorial

Figure 7–49 Action Binding Editor for Search Method

5. To automatically extend the search to all subdirectories under the location
specified through the path attribute, enter true for the isRecursive parameter
(Figure 7–49).

Leave the keyword and namePattern fields blank—you're not going to pre-define
any search terms or filename criteria for this search. Instead, you'll provide input
fields for both these parameters on the search form so that users can drive the
search.

6. Click OK.

You should see a command button labeled search displayed on your page. Now
let's add some input fields above this button into which a users may enter search
criteria.

7. To enable users to search by file name, add the namePattern parameter:

a. In the Data Control Palette, expand the Parameters node, and then select
namePattern.

b. Drag and drop the namePattern parameter above the Search button.

c. From the Create menu, choose Texts, ADF Input Text w/ Label.

d. In the Structure window, double-click af:inputText #{bindings.namePattern...,
and enter a suitable label, for example: Find files with all or part
of this file name:

e. For a Tip, enter: Use % for wildcard searches

f. Click OK.

8. To enable users to search for phrases or keyword within file content, add the
keyword parameter to the page:

Step 5: Searching Folder Content

Adding Content to Your Page 7-29

a. In the Data Control Palette, expand the Parameters node, and select keyword.

b. Drag and drop the keyword parameter above the Search button.

c. From the Create menu, choose Texts, ADF Input Text w/ Label.

d. In the Structure window, double-click af:inputText #{bindings.keyword...,
and enter a suitable label such as:
Find files containing this word or phrase:

e. Click OK.

Your page should look like Figure 7–50.

Figure 7–50 Search Form With Two Input Parameters

9. Now let's add a table for the search results:

a. In the Data Control Palette, select the return node below the Search method.

b. Drag the method return, and drop it below the Search button.

c. From the Create menu, choose Tables, ADF Read-only Table.

d. Use the Edit Table Columns dialog to edit some default display settings. First,
delete the URI and primaryType columns.

e. Next, edit the Display Labels for the name, path, and lastModifed columns.
For example, enter the labels Files Found, Location, and Last
Modified as shown in Figure 7–51.

Step 5: Searching Folder Content

7-30 Oracle WebCenter Framework Tutorial

Figure 7–51 Edit Display Labels for the Search Results Table

f. Click OK.

10. Click the Save All icon in the JDeveloper toolbar.

Now let's display the search form in a browser and run some searches.

11. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

12. Right-click MyContent.jspx, and select Run.

You should see a search form similar to that shown in Figure 7–52.

Figure 7–52 Search Form Based On Data Control MyTutorialContent2

13. The first field on the form exposes the namePattern parameter. Enter some file
name criteria, click the search button, and examine the content displayed in the

Step 5: Searching Folder Content

Adding Content to Your Page 7-31

search result table. Only files matching the name pattern you specify should be
displayed.

Try the following searches:

■ To search for files with the .html file extension, enter %html. Three files should
match this pattern.

■ To search for filenames containing the word help, enter %help%. Only
help.html should match.

14. The second field on the form exposes the keyword parameter. This parameter
enables you to search for content inside files. Enter a word or phrase, click the
search button, and examine the content displayed in the search result table. Only
files containing the words you specify should be displayed.

Remove %help% from the field above, and try the following keyword searches:

■ To search for files containing the word WebCenter, enter WebCenter. Two
files should display.

■ To search for files containing the words WebCenter and tutorial, enter
WebCenter AND tutorial. Only one file contains both these words.

This completes the content integration lesson. You've learnt how to publish file system
content in a WebCenter application and discovered how to add search capabilities too.
For more detailed information, on this subject, refer to the Oracle WebCenter Framework
Developer's Guide.

In the next lesson you'll use Oracle ADF security to secure the pages you've created
during this tutorial.

Step 5: Searching Folder Content

7-32 Oracle WebCenter Framework Tutorial

Providing Security 8-1

8
Providing Security

In this lesson you'll learn how to secure the pages of a WebCenter application using
Oracle ADF security. Figure 8–1 shows you what the tutorial application will look like
at the end of the lesson.

Figure 8–1 Your Pages at the End of Lesson 8

Introduction
We will add security to the tutorial application and test it in the following steps:

■ Step 1: Creating a Login Page

■ Step 2: Configuring ADF Security Settings

■ Step 3: Creating a Welcome Page

■ Step 4: Securing Pages

■ Step 5: Mapping Security Roles in orion-web.xml

Prerequisites

8-2 Oracle WebCenter Framework Tutorial

■ Step 6: Demonstrating the Security Features

■ Step 7: Authorizing Access to Your Data Controls

Prerequisites
In this chapter you'll authenticate users against the lightweight XML resource provider
system-jazn-data.xml supplied with the embedded OC4J. Before starting these
exercises, you'll need to add the following user data to this file:

Do one of the following:

■ Copy the sample system-jazn-data.xml to the JDeveloper locations described
in Chapter 2 Copying the Sample system-jazn-data.xml File. The sample contains
all the user data required to complete this chapter.

■ Add the user data from scratch, following instructions in Appendix A, "How to Set
Up the Tutorial Identity Store".

Use this method if you are already building secure applications with JDeveloper
and have populated system-jazn-data.xml with user data of your own.

Once you've completed this preliminary step, you're ready to move on to the actual
authentication work for your application.

Step 1: Creating a Login Page
In this step you'll create a login page that accepts user credentials and allows access to
secured pages (Figure 8–2). Even non-authenticated users will be able to see this page.

Figure 8–2 The Login Page

Role Name Users Description

page-viewer Singh This user may view secured pages.

page-personalizer Cho This user may personalize portlets on a secured page.

page-customizer Harvey This user may customize secured pages.

restricted-user King This user may not view secured pages.

users Singh, Cho, King,
Harvey, JtaAdmin,
oc4jadmin

The users role maintains a list of every valid user.

Step 1: Creating a Login Page

Providing Security 8-3

1. In the Applications Navigator, right-click ViewController, and select New.

2. In the categories pane, under Web Tier, click JSP.

We've chosen to implement the login page as a standard JSP rather than a
JavaServer Faces (JSF) page to bypass the complexity of the Faces Page Lifecycle.
In other applications the login page may require more advanced features such as
skinning or portlets and you can find more information about Faces-based login
pages in the Oracle WebCenter Framework Developer's Guide.

3. Under Items, click JSP, and then OK.

4. Click Next to skip the Welcome page.

5. In the File Name field, enter: Login.jspx

6. For Type, select JSP Document (*.jspx).

This creates an XML representation of a JSP page (.jspx). You could create the login
page as a JSP page in other applications, if you wish.

7. Click Next, and then Next again to skip the error page options.

8. Make no selection on the Tag Libraries page. If necessary, use the double arrows on
the Tag Libraries page to remove any libraries from the Selected Libraries pane.

9. Click Next.

10. Click Finish to display Login.jspx.

11. Click the Source tab.

Let's add some code to the body tags that will display a login form.

12. Replace the empty body tags <body></body> with the code shown in
Example 8–1.

Example 8–1 Login Form Code

<body>
 <h1>Login</h1>
 <p>Enter your user name and password to log in:</p>
 <form action='j_security_check' method='post'>
 <table align="center">
 <tr> <td>Name:</td>
 <td> <input type='text' name='j_username'></input> </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td> <input type='password' name='j_password' size='8'></input> </td>
 </tr>
 <tr> <td></td>
 <td> <input type='submit' value='Login'></input> </td>
 </tr>
 </table>

</br>
 </form>
 </body>

13. Click the Design tab to view the login form (Figure 8–4).

Step 1: Creating a Login Page

8-4 Oracle WebCenter Framework Tutorial

Figure 8–3 Login.jspx With Login Form

The login page uses the standard J2EE security container login method j_
security_check to validate user credentials. This security check method
appears on the <form> element. The form itself contains two input fields, one to
accept the user name and the other for the password. Values entered into these
fields get assigned to the container's login bean attributes j_username and j_
password, respectively.

14. Now, let's apply a style sheet to the login page. From the Components Palette
pulldown menu, choose CSS.

15. Drag JDeveloper, and drop it on the page.

 The login page refreshes with the new style sheet applied as shown in Figure 8–4.

Login Form Name/Value

Form Action j_security_check

Name (Text Field) j_username

Password (Text Field) j_password

Login (Submit Button) submit

Step 2: Configuring ADF Security Settings

Providing Security 8-5

Figure 8–4 Login.jspx With JDeveloper Style Sheet

Let's run Login.jspx to see the page in a browser.

16. Click the Save All icon in the JDeveloper toolbar.

17. Right-click Login.jspx, and select Run.

When the page appears in your browser you should see the login form shown in
Figure 8–5.

Figure 8–5 Final Login.jspx

18. Close the browser, and return to JDeveloper.

Now let's set Oracle ADF Security options for the tutorial application.

Step 2: Configuring ADF Security Settings
In this step you'll use the Oracle ADF Security Wizard to configure authentication
settings for the tutorial application. The options that you select are recorded in
web.xml or orion-application.xml. Here's a quick overview of what you'll do:

■ Enable Oracle ADF authentication.

■ Choose the lightweight XML resource provider for user authentication.

Step 2: Configuring ADF Security Settings

8-6 Oracle WebCenter Framework Tutorial

■ Specify the protocol for authentication as Form-Based.

■ Grant authenticated users (ValidUsers) access to the adfAuthentication servlet.

You'll find more information in Oracle WebCenter Framework Developer's Guide.

Let's start the ADF Security Wizard now:

1. In the Applications Navigator, select ViewController.

2. From the Tools menu, choose ADF Security Wizard.

The ADF Security wizard will guide you through the configuration process.

3. Click Next to skip the Welcome page.

4. Select Enforce Authorization as shown in Figure 8–6.

This option configures ADF Security functionality by configuring the
adfAuthentication servlet used for authentication and other servlets and filters
required to enforce authorization policies (the filters enforce for the checking of the
current user's permissions for the requested page).

Figure 8–6 ADF Security Wizard - Enabling Authentication

If you want users logging into your application to see a particular page after
authentication, you would choose Redirect After Successful Authentication and
name the required page. However, you're not going to configure the tutorial
application like this. Instead, you'll use the default behavior, which sends
authenticated users back to the page they tried to access prior to authentication.

5. Click Next to move on to the next page of the wizard.

6. Choose Lightweight XML Provider (Figure 8–7).

Figure 8–7 ADF Security Wizard - Choosing a JAAS Provider

Oracle ADF Security authenticates users against a given resource provider. For this
tutorial you'll use the lightweight resource provider system-jazn-data.xml
that you set up at the beginning of the lesson.

7. Click Next to display the next page of the wizard.

8. Set JAAS Mode to doAsPrivileged (Figure 8–8).

Oracle ADF Security requires this option to be set.

Step 2: Configuring ADF Security Settings

Providing Security 8-7

Figure 8–8 ADF Security Wizard - Configuring XML Settings

The default realm is jazn.com. Note that for this release, Oracle ADF security only
reads permissions at the system-level (JAZN file) and not at the application-level.

9. Click Next.

10. On the Login page, choose Form-Based Authentication as shown in Figure 8–9.
This specifies that the tutorial application will use a form to facilitate
authentication.

There is no need to generate default pages for the login form and login error
message (login.html and error.html) because you'll be using the login form
in Login.jspx.

11. For Login Page, enter: Login.jspx

12. For Error Page, you can also enter: Login.jspx

Figure 8–9 ADF Security Wizard - Configuring Form-Based Authentication

Although it's fairly simple to create a separate error page, for this tutorial you'll
use the same page. If you do want to create an error page (say, LoginError.jspx),
create a page that is identical to Login.jspx and add an error message that indicates
authentication failure.

13. Click Next to display the final page of the wizard - Resources (Figure 8–10).

This page defines resources within your application that should be secured, and
specifies which J2EE security roles can access each resource.

Step 2: Configuring ADF Security Settings

8-8 Oracle WebCenter Framework Tutorial

Figure 8–10 ADF Security Wizard - Securing the adfAuthentication Servlet

The adfAuthentication resource (the authentication servlet) is defined for you.
This servlet acts as a known endpoint for a login URL. As the servlet itself is
secured by a J2EE security constraint, it causes a redirect to the login page when a
user attempts to access it without a current active session.

You cannot edit or delete this resource, but you can specify the set of roles that
may access this resource.

To allow any valid user access to the adfAuthentication resource, you'll need to
create a J2EE role, which you'll name ValidUsers, and grant access to this role.
Let's do that now.

14. Click Manage Roles.

15. Click Add, and enter the name ValidUsers (Figure 8–11).

Later on, you'll map this J2EE role to an identity store role named users (defined
in system-jazn-data.xml, the resource provider that you set up at the
beginning of the lesson). The users role maintains a list of every valid user.

From a security perspective, allocating permissions to this role effectively defines
an authenticated Public resource. That is, it would be available to all users without
needing a specific permission to be defined.

Step 2: Configuring ADF Security Settings

Providing Security 8-9

Figure 8–11 ADF Security Wizard - Adding a J2EE Security Role

16. Click OK.

17. Click Close.

The ValidUsers role should appear in the list of Available Roles.

18. Click the double arrow (Add All) to move everything in the Available Roles list to
the Selected Roles list (Figure 8–12).

Figure 8–12 ADF Security Wizard - Granting Access to the adfAuthentication Resource

This completes the ADF Security wizard settings.

19. Click Next, and then Finish.

20. Click the Save All icon in the JDeveloper toolbar.

Before going on to the next step of this tutorial, take a look at the changes you've just
made to web.xml and orion-application.xml. You'll find these files in the
Applications Navigator, under:

Step 3: Creating a Welcome Page

8-10 Oracle WebCenter Framework Tutorial

■ ViewController, Web Content, WEB-INF, web.xml

■ ViewController, Application Sources, META-INF, orion-application.xml

Double-click the file name to display the file in the XML Editor.

One way to review file changes is through the History Tool. If you click the History
tab, you'll see the additions highlighted down the right-hand side. You can click
change highlights individually or use the Go to Next Difference icon to scroll through
the additions one by one. You'll find more information about these entries in the
Security Chapter of the Oracle WebCenter Framework Developer's Guide.

Now let's create a welcome page for the tutorial application.

Step 3: Creating a Welcome Page
In this step you'll create a welcome page, which will serve as the starting page for the
tutorial application. When non-authenticated users display the welcome page, they'll
see a simple login link that directs them to a login page for authentication. This is the
public view of the page (Figure 8–13).

Figure 8–13 Your Welcome Page - Public View

Authenticated users will see different information on the welcome page. After logging
in, authenticated users get redirected back to the welcome page, but this time they'll
see links to secured pages and a logout link as shown in Figure 8–14.

Figure 8–14 Welcome Page - Secured View

Let's create the welcome page now:

1. In the Applications Navigator, right-click ViewController, and select New.

2. In the categories pane, under Web Tier, click JSF to create a Java Server Faces page.

3. Under Items, click JSF JSP and click OK.

4. Click Next to skip the Welcome page.

Tip: You can expand any tab to fill the JDeveloper window by
double-clicking the tab. Double-clicking again, toggles the feature off.

Step 3: Creating a Welcome Page

Providing Security 8-11

5. In the File Name field, enter: Welcome.jspx

6. For Type, make sure JSP Document (*.jspx) is selected and then click Next.

7. You'll be adding some back end logic to this page, so you'll need managed bean.
Click the radio button Automatically Expose UI Components in a New Managed
Bean.

You can keep the defaults provided for Name, Class, and Package.

8. Click Next.

9. Ensure that the following libraries are in the Selected Libraries pane:

■ ADF Faces Components 10_1_3_2_0

■ ADF Faces HTML 10_1_3_2_0

■ ADF Portlet Components 10_1_3_2_0

■ Customizable Components Core 10_1_3_2

■ JSF Core 1.0

■ JSF HTML 1.0

10. Click Next.

11. Earlier, we applied the JDeveloper style sheet to the login page. Let's apply the
JDeveloper style sheet to the welcome page too. Click Add, double-click the css
folder, and then choose jdeveloper.css.

12. Click Finish.

An empty page named Welcome.jspx displays in Design view.

13. Let's use an ADF Faces PanelPage component to present content on the welcome
page:

a. From the Components Palette pulldown, choose ADF Faces Core.

b. Select the PanelPage option, and then drag and drop it on to the page. Use the
Structure window to verify that the PanelPage component gets placed inside
the h:form tag, as shown in Figure 8–15.

Figure 8–15 Welcome.jspx - ADF Faces panelPage Component

c. In the Structure window, double-click af:panelPage - Title1 to display the
PanelPage Properties dialog.

Step 3: Creating a Welcome Page

8-12 Oracle WebCenter Framework Tutorial

d. For the Title, enter: Welcome to the Oracle WebCenter Framework
Tutorial

e. Click OK.

Now your welcome page should look something like Figure 8–16. You don't need
to set any other af:panelPage properties for this tutorial.

Figure 8–16 Welcome.jspx with New panelPage Title

Now lets's add some Login/Logout links to the area named menuGlobal—one of
the PanelPage facets.

14. You'll use an af:goLink, another ADF Faces Core component, for the login link:

a. From the Component Palette pulldown, choose ADF Faces Core.

b. Select the GoLink option, and then drag and drop it on top of the area named
menuGlobal in the top right-hand corner. Use the Structure window to verify
that it is placed inside the menuGlobal facet as shown in Figure 8–17.

Step 3: Creating a Welcome Page

Providing Security 8-13

Figure 8–17 Welcome.jspx - ADF Faces GoLink Component

c. In the Structure window, double-click af:goLink - goLink1 to display its
Properties dialog.

d. For the link Text, enter: Login

e. In the Destination field, enter:

/adfAuthentication?success_url=faces/Welcome.jspx

The adfAuthentication servlet will prompt users to login. The parameter
success_url specifies which page to display after a successful login, which
for this tutorial will be the Welcome page.

f. Click OK.

You should see a Login hyperlink like the one in Figure 8–18.

Step 3: Creating a Welcome Page

8-14 Oracle WebCenter Framework Tutorial

Figure 8–18 Login Link on the Welcome Page

The page content you see now (Figure 8–18) is the public view of the Welcome page.
A little bit later on you'll add some page navigation buttons but you'll add some
code that will hide them from unauthenticated users.

Similarly, you'll need to add some code that will hide the Login link from
authenticated users. Clearly, there is no need to display a login link to users who are
already logged in! So let's add a backing bean that determines whether the current
user is authenticated and bind it to the login link.

15. First, double-click Welcome.java to open the file in the Editor.

You'll find this file under ViewController, Application Sources, view.backing.

16. Add some code that determines whether or not the current user is logged in, see
highlighted code shown in Figure 8–19.

Figure 8–19 Welcome.java

You can copy and paste the bold code shown here to the appropriate section of
Welcome.java:

Step 3: Creating a Welcome Page

Providing Security 8-15

package view.backing;

import javax.faces.component.html.HtmlForm;

import oracle.adf.share.ADFContext;
import oracle.adf.view.faces.component.core.layout.CorePanelPage;
import ...

public class Welcome {
 ...
 private CoreGoLink goLink1;
 private boolean authenticated;
 ...

 public CoreGoLink getGoLink1()
 {return goLink1;
 }
 public boolean isAuthenticated()
 {
 authenticated=ADFContext.getCurrent().getSecurityContext().isAuthenticated();
 return authenticated;
 }
}

The boolean property of the backing bean is TRUE if the current user is logged in
and FALSE if he is not. You can use this property to show/hide the links on the
Welcome page based on whether the user is logged in.

17. Before moving on, let's check that the updates to Welcome.java compile correctly.
Right-click Welcome.java, and choose Make.

You should see a Successful compilation message in the Messages Log
window.

18. Now bind this code to the Login link. Remember, we want to display the Login
link to unauthenticated users only:

a. In the Applications Navigator, double-click Welcome.jspx to display the page
in the Visual Editor.

b. In the Structure window, double-click af:goLink - Login to open the GoLink
Properties dialog.

c. Click the Advanced Properties tab, and select the Rendered property.

d. Click the Bind to Data icon in the toolbar (see Figure 8–20).

Step 3: Creating a Welcome Page

8-16 Oracle WebCenter Framework Tutorial

Figure 8–20 Command Button Rendered Property

e. Expand JSF Managed Beans and drill into the backing bean for the Welcome
page backing_Welcome. You should see the authenticated attribute listed
here.

f. Double-click authenticated. The expression #{backing_
Welcome.authenticated} should appear in the Expression field.

g. We want to display a Login link to users who are not authenticated. The
Authenticated property will be TRUE if the user is logged in, so you must
negate the expression to show the link only when the user is not logged in.
Add the ! operator to the expression like this: #{!backing_
Welcome.authenticated}

h. Click OK.

The Rendered property should now display the expression #{!backing_
Welcome.authenticated}.

i. Click OK again to close the GoLink Properties dialog.

19. Now let's add a logout link that's displayed only to authenticated users:

a. From the Component Palette pull-down, choose ADF Faces Core.

b. Select the GoLink option, and then drag and drop it below the Login link
(inside the menuGlobal facet). You can use the Structure window to verify
this.

c. In the Structure window, double-click af:goLink - goLink 1 to open the
GoLink Properties dialog.

d. For the link Text, enter: Logout

e. In the Destination field, enter:

/adfAuthentication?logout=true&end_url=faces/Welcome.jspx

Step 3: Creating a Welcome Page

Providing Security 8-17

The adfAuthentication servlet will prompt users to log out and the
parameter end_url specifies which page to display once the user is logged
out.

f. Now let's hide the Logout link from unauthenticated users. Click the
Advanced Properties tab, and select the Rendered property.

g. Click the Bind to Data icon in the toolbar.

h. To display this link to authenticated users, enter into the expression field:

#{backing_Welcome.authenticated}

i. Click OK.

j. Click OK again to close the properties dialog.

You should see a Logout hyperlink on the Welcome page (Figure 8–21).

Figure 8–21 Logout Link on Welcome Page

Finally, let's add some command buttons to the Welcome page that allow
authenticated users to navigate to the pages in your tutorial (MyPage.jspx,
MyWeather.jspx, and MyContent.jspx).

20. Let's use an ADF Faces panelGroup component to accommodate the page
navigation buttons. With this component you can arrange the content horizontally
or vertically.

a. From the Component Palette pulldown, choose ADF Faces Core.

b. Select the PanelGroup option, and then drag and drop it on top of the
af:panelPage component. Again, use the Structure window to verify that it
is placed inside the af:panelPage tag as shown in Figure 8–22.

Step 3: Creating a Welcome Page

8-18 Oracle WebCenter Framework Tutorial

Figure 8–22 Welcome.jspx - ADF Faces PanelGroup Component

c. In the Structure window, double-click af:panelGroup to display its Properties
dialog.

d. For Layout, choose horizontal.

e. Click OK.

You should see an empty panel under the page title (Figure 8–23).

Figure 8–23 Welcome.jspx - Empty panelGroup Component

21. Before you can add a command button that navigates from Welcome.jspx and to
MyPage.jspx, you'll need to create a JSF navigation rule between the two pages.
Then you may drop an ADF command button onto the page, and add some button
code that ensures the button displays to authorized users only.

a. First, let's define the navigation rule between Welcome.jspx and MyPage.jspx.
You do this in the configuration file faces-config.xml. In the Applications
Navigator, double-click faces-config.xml (under ViewController, Web
Content, WEB-INF).

b. Click the Diagram tab.

c. Drag Welcome.jspx from the Applications Navigator to the empty diagram,
and then do the same for MyPage.jspx (Figure 8–24).

Step 3: Creating a Welcome Page

Providing Security 8-19

Figure 8–24 JSF Navigation Diagram

Notice that the Component Palette automatically displays the JSF Navigation
Modeler components.

d. From the Component Palette, choose JSF Navigation Case to activate it. You'll
use this component to add a navigation rule.

e. On the diagram, click the icon for the source page (Welcome.jspx) and then
click the icon for the destination page (MyPage.jspx).

JDeveloper draws the navigation rule on the diagram as a solid line ending
with an arrow between the two pages,

f. By default, the link outcome says -success. Click this text, and change it to
something more explanatory, like Go To MyPage (Figure 8–25).

Figure 8–25 JSF Navigation Diagram With Rule

g. Now let's follow similar steps to create a navigation rule from MyPage.jspx to
Welcome.jspx. First, choose JSF Navigation Case from the Component Palette.
Next, click MyPage.jspx (on the diagram) followed by Welcome.jspx. Finally,
click the default -success text and change it to Go To Welcome Page
(Figure 8–26).

Figure 8–26 JSF Navigation Diagram With Two Rules

Now that navigation rules exist between the two pages, you can add a
Command button on the Welcome page for user navigation to MyPage.

h. In the Applications Navigator, double-click Welcome.jspx to display it in the
Visual Editor.

i. Choose ADF Faces Core from the Component Palette pulldown menu.

Step 3: Creating a Welcome Page

8-20 Oracle WebCenter Framework Tutorial

j. Select the CommandButton option, and then drag and drop it on top of
af:panelGroup. You can use the Structure window to verify this.

k. Right-click the new button (commandButton 1), and then choose Properties.

l. For the button Text, enter Go To MyPage as shown in Figure 8–27, and click
OK.

Figure 8–27 Welcome Page.jspx - Configuring Page Navigation Button

m. You define what the button actually does through the button's Action
property. You'll need to display the Property Inspector to do this, so select
View, Property Inspector from the JDeveloper menu.

n. In the Property Inspector, select Action, and then choose Go To MyPage from
the drop down list.

Now, let's hide the button from unauthenticated users—just like you did for
the Logout link. In addition, we'll add some code that will hide the button if
the logged-in user is not authorized to view MyPage.jspx. This time we'll use
the Property Inspector to enter the expression.

o. Select the Rendered property. In the Property Inspector, this property is
located under the Core section.

p. Now click the Bind to data icon in the Inspector's toolbar.

q. Enter the expression: #{backing_Welcome.authenticated &&
bindings.permissionInfo['MyPagePageDef'].allowsView}

Check there are no extra spaces at the beginning or end of this expression.

r. Click OK.

In JDeveloper, your Welcome page should look like Figure 8–28.

Figure 8–28 MyPage Navigation Button on Welcome Page

Step 3: Creating a Welcome Page

Providing Security 8-21

22. Now add two more buttons to the Welcome page that will enable authorized user
navigation to MyWeather.jspx and MyContent.jspx. Repeat step 21 very carefully.

a. First, add MyWeather.jspx and MyContent.jspx to the navigation diagram.
When complete, check that your navigation diagram looks similar to
Figure 8–29.

Figure 8–29 Completed JSF Navigation Diagram

b. Now, add two more navigation buttons to Welcome.jspx, and set the button
Text, Action, and Rendered properties.

When you edit the Text, Action, and Rendered properties for these navigation
buttons, remember to substitute the appropriate page names (as shown in
Table 8–1) and check for extra spaces at the beginning/end of the Rendered
expression.

Table 8–1 Command Button Properties

Button Text Action Rendered

Go To MyWeather Go To MyWeather #{backing_Welcome.authenticated &&
bindings.permissionInfo['MyWeatherPageDef'].all
owsView}

Go To MyContent Go To MyContent #{backing_Welcome.authenticated &&
bindings.permissionInfo['MyContentPageDef'].all
owsView}

Step 4: Securing Pages

8-22 Oracle WebCenter Framework Tutorial

Your Welcome page should look something like Figure 8–30.

Figure 8–30 Final Welcome Page

23. Click the Save All icon in the JDeveloper toolbar.

Let's run the Welcome page to see whether the links and buttons you've just added
display as expected.

24. Right-click Welcome.jspx, and choose Run.

In the browser, you should see the Welcome page with a Login link as shown in
Figure 8–31. Without authentication, the logout link and page navigation buttons
should not display.

If your page does not look like this, check the Rendered expression for any links or
buttons which do not display as expected.

Figure 8–31 Welcome Page - Public View

25. Close the browser, and return to JDeveloper.

In the next step you'll authorize access privileges for each page in your application
(Welcome.jspx, MyPage.jspx, MyWeather.jspx, and MyContent.jspx).

Step 4: Securing Pages
In this step you'll secure (restrict access to) the pages in this tutorial application:
Welcome.jspx, MyPage.jspx, MyWeather.jspx, MyContent.jpsx. You'll restrict page
access to the role members defined in the identity store (see Prerequisites) and dictate
the actions that role members can perform on the page. Secured pages also need
logout links, so you'll add logout links at the top of each page too.

Let's start with the Welcome page. This page already has a logout link, but you still
need to authorize access to the page and grant permissable actions. This configuration
takes place in the page's definition file (WelcomePageDef.xml). Let's get started.

Step 4: Securing Pages

Providing Security 8-23

1. Right-click Welcome.jspx in the Applications Navigator.

2. Choose Go to Page Definition.

If the Page Definition doesn't exist yet, click Yes to create one for Welcome.jspx.

3. In the Structure window, right-click WelcomePageDef, and choose Edit
Authorization.

The Authorization Editor should list the identity store roles shown in Figure 8–32.
If these roles do not display, check you've copied the file
system-jazn-data.xml from the embedded OC4J directory
JDEVHOME\jdev\system\oracle.j2ee.10.1.3.xx.xx\embedded-oc4j\c
onfig to the directory JDEVHOME\j2ee\home\config. This is one of the
Prerequisites for this chapter.

The Authorization Editor also enables you to choose which page actions each role
may perform:

■ Grant - Users may administer (grant/revoke) page permissions.

■ Edit - Users may edit content displayed on the page. The Edit action is not
applicable for this release.

■ Customize - Users may modify the page. If a user is not granted this
permission, he will not be able to modify the page.

■ Personalize - Users may personalize portlets on the page. If a user is not
granted this permission, links or buttons that put page portlets into
personalization mode are not displayed.

■ View - Users may view the page. If a user is not granted this permission he
will see an authorization error.

4. Anyone can view Welcome.jspx. Select the View check box against the anyone
role, as shown in Figure 8–32.

Figure 8–32 Welcome.jspx - Authorization Editor

5. Click OK.

Step 4: Securing Pages

8-24 Oracle WebCenter Framework Tutorial

Changes made through the Authorization Editor are saved in the embedded
OC4J's system-jazn-data.xml file, for immediate testing, and simultaneously
saved to app-jazn-data.xml in the application's .adf/META-INF directory.
The app-jazn-data.xml file packages application specific security policies along
with the application itself, to facilitate the deployment of secure WebCenter
applications. You'll learn more about app-jazn-data.xml in Chapter 9,
"Deploying Your WebCenter Application".

Let's secure MyPage.jspx next. First you'll add a logout link, and then you'll edit
page authorization details. Instead of creating a new Logout link from scratch,
copy the logout link you created for the Welcome page.

6. In the Applications Navigator, select Welcome.jspx.

7. In the Structure window, right-click af:goLink - Logout, and choose Copy.

8. In the Applications Navigator, select MyPage.jspx.

9. In the Structure window, select h:form, right-click, and select Paste.

af:goLink - Logout is placed at the bottom of the page by default. Drag it
above cust:panelCustomizable to move it to the top of the page
(Figure 8–33).

Figure 8–33 MyPage.jspx - Logout Link in Structure Window

Now let's authorize access to this page and specify permissable actions on a role
by role basis. As before, this configuration takes place in the page's definition file
(MyPagePageDef.xml).

10. Right-click MyPage.jspx in the Applications Navigator.

11. Choose Go to Page Definition.

12. In the Structure window, right-click MyPagePageDef, and choose Edit
Authorization.

13. Use the Authorization Editor to grant user permissions on MyPage.jspx. Select the
checkboxes shown in Figure 8–34.

Step 5: Mapping Security Roles in orion-web.xml

Providing Security 8-25

Figure 8–34 MyPage.jspx - Authorization Editor

Let's take a closer look at these settings. When a user assigned with the
page-customizer role logs in to the tutorial application (such as Harvey), that user
may view, personalize, and customize aspects of MyPage.jspx, but may not edit
page content or grant page permissions to any other users. Logged-in users with
the page-viewer role (such as Singh) are more restricted; those users can view
MyPage.jspx but no other page actions are allowed.

Notice that users with the restricted-user role (such as King) are not authorized to
view the page at all.

14. Click OK to save these selections.

Now that MyPage.jspx is secure, repeat exactly the same steps for MyWeather and
MyContent.

15. To secure MyWeather and MyContent, repeat steps 8 through 14.

After you copy and paste the Logout links, remember to move them to the top of
your pages (under the h:form).

16. Click the Save All icon in the JDeveloper toolbar.

All the pages in your application are now secure.

Step 5: Mapping Security Roles in orion-web.xml
There is one more step to secure your tutorial application. You need to map the J2EE
security role you defined using the Oracle ADF Security wizard (ValidUsers) to an
identity store role defined in your system-jazn-data.xml file (users).

First, you'll create the configuration file where such security role mappings are stored;
that is, the tutorial application's OC4J deployment descriptor file (orion-web.xml).
Let's create the file now.

1. In the Applications Navigator, right-click ViewController, and select New.

J2EE Security Role Identity Store Role

ValidUsers users

Step 5: Mapping Security Roles in orion-web.xml

8-26 Oracle WebCenter Framework Tutorial

2. Select All Technologies from the pull-down list at the top.

3. In the panel on the left, expand General, and then select Deployment Descriptors
as shown in Figure 8–35. The panel on the right lists the different types of
deployment descriptors that are available. Projects require different deployment
descriptors depending on the technologies the project uses and on the type of the
target application server.

This tutorial application will be deployed on the preconfigured OC4J server.

Figure 8–35 Deployment Descriptor Selection

4. Select OC4J Deployment Descriptor Wizard, and then click OK (Figure 8–35).

This brings up the OC4J Deployment Descriptor wizard. This wizard lets you
select the specific deployment descriptor type and version you require, and then
generates the .xml file. For this tutorial you need to select orion-web.xml 10.0
as the deployment descriptor. Later on you'll use this .xml file to package the
tutorial application before deployment to the application server.

5. Click Next to move beyond the Welcome page.

6. Select orion-web.xml (located at the bottom of the list), and then click Next.

The file name will be greyed out if the file already exists.

7. Select 10.0, and then click Finish.

After you click Finish, orion-web.xml displays in the Applications Navigator,
under ViewController, Web Content, WEB-INF.

8. Right-click orion-web.xml, and select Properties to set some additional
deployment options.

9. Select Security Role Mappings from the panel on the left.

This displays a panel on the right where you'll add the following security role
mapping:

Step 5: Mapping Security Roles in orion-web.xml

Providing Security 8-27

10. Create the security role mapping as follows:

a. Click Add.

This displays a window, as shown in Figure 8–36, where you'll enter the J2EE
security role name—ValidUsers.

Figure 8–36 Deployment Descriptor - Creating J2EE Security Role Mapping

b. For Name, enter the J2EE security role name: ValidUsers

c. Click OK.

The role name you just entered gets displayed in the mappings panel and also
on the General tab as shown in Figure 8–37. If you must edit the role name
you can do so by editing the Name property on the General tab.

Figure 8–37 Deployment Descriptor - New J2EE Security Role Mapping

d. Click the Groups tab.

Notice that the J2EE security role ValidUsers is highlighted in the mappings
panel. This means that you're about to map a group of users to this J2EE
security role (Figure 8–38).

J2EE Security Role Identity Store Role

ValidUsers users

Step 5: Mapping Security Roles in orion-web.xml

8-28 Oracle WebCenter Framework Tutorial

Figure 8–38 Deployment Descriptor - Security Role Mappings Groups Tab

e. Click the Add button to the right of the Group Names panel.

f. For Group Name, enter: users (Figure 8–39).

This the default identity store role which maintains a list of every valid user:
Singh, Cho, Harvey, JtaAdmin, and oc4jadmin. For details, see Appendix A,
"How to Set Up the Tutorial Identity Store".

Figure 8–39 Deployment Descriptor - Mapping Group of Users to the J2EE Security Role

g. Click OK.

In this step you mapped the J2EE security role ValidUsers to the identity store
role users (Figure 8–40).

Step 5: Mapping Security Roles in orion-web.xml

Providing Security 8-29

Figure 8–40 Deployment Descriptor - J2EE Security Role Mapped to the users Role

11. Choose JAZN in the panel on the left, and select Run as Mode and Do as
Privileged Mode as shown in Figure 8–41.

Figure 8–41 Deployment Descriptor - JAZN Settings

12. Click OK to save changes to the OC4J deployment descriptor.

13. Click the Save All icon in the JDeveloper toolbar.

If you take a look at the source code for the configuration file orion-web.xml, you
should see security-role-mapping entries and a jazn-web-app entry as
follows:

<security-role-mapping name="ValidUsers" impliesAll="false">
 <group name="users"></group>
 </security-role-mapping>

Step 6: Demonstrating the Security Features

8-30 Oracle WebCenter Framework Tutorial

<jazn-web-app runas-mode="true" doasprivileged-mode="true"/>

This completes the OC4J Web application deployment descriptor configuration. Now
you're ready to run the application and see the new security features in action.

Step 6: Demonstrating the Security Features
In this final step you'll run the tutorial application and take a look at the security
features that you've introduced. Here's a quick summary of what you're going to do:

■ Display the welcome page (Welcome.jspx) and test that the login link displays the
login page (Login.jspx).

■ Use the Login page to enter valid user credentials and check that the correct page
gets displayed (Welcome.jspx). Logged in users shouldn't see a login link on the
Welcome page—instead, they should see a logout link and, providing they have
the necessary page permissions, buttons that navigate to MyPage, MyContent, and
MyWeather.

■ Login with different user credentials (Singh, Cho, Harvey, and King) and see
which page actions each user is allowed to perform.

■ Try accessing a secure page directly, without prior authorization, and check that
you're redirected to the Login page.

■ Enter invalid user credentials and check that the correct error page gets displayed.

Let's run the tutorial application and see these security features in action.

Login as User Singh
First, let's login as user Singh. This user was assigned view privileges on MyPage,
MyWeather, and MyContent.

1. In the Applications Navigator, right-click Welcome.jspx, and choose Run.

In your Browser, you should see a Welcome page with a Login link as shown in
Figure 8–42. Earlier on, you configured this link to display the login page
Login.jspx.

Figure 8–42 Welcome Page - Public View

2. Click Login.

You should be directed to Login.jspx which contains an entry form for user
credentials as shown in Figure 8–43.

3. Enter login credentials for the user Singh. Both name and password are
case-sensitive, so take care when typing them in. For Name enter Singh, and for
Password enter welcome.

Step 6: Demonstrating the Security Features

Providing Security 8-31

Figure 8–43 Login Page - Login Credentials for User Singh

4. Click Login.

If authentication is successful, you should see Welcome.jspx with a Logout link at
the top of the page, as shown in Figure 8–44. Remember, you defined
Welcome.jspx as the success URL when you configured the Login link on the
Welcome page.

Figure 8–44 Welcome Page - Secured View

5. As user Singh, you should also see several command buttons. Click the button that
says Go To MyPage.

As user Singh you have privileges to view this page but you should not be able to
personalize or customize anything on the page. To verify this, take a look at the
Actions menu for MyJavaPortlet.

6. Click the Actions icon in the portlet banner to reveal the available options. As you
are logged in as Singh (with view privileges) only the Refresh option should be
available, as shown in Figure 8–45.

Figure 8–45 Portlet Actions Available to User Singh

7. Click Logout.

You should get directed back to the Welcome page.

Step 6: Demonstrating the Security Features

8-32 Oracle WebCenter Framework Tutorial

Login as User Cho
Next, you'll login as user Cho. This user was assigned the page-personalizer role with
both view and personalize privileges on MyPage, MyWeather, and MyContent.

1. Display the Welcome page, and click Login.

2. Enter login credentials for the user Cho remembering that both fields are
case-sensitive. For Name enter Cho, and for Password enter welcome
(Figure 8–46).

Figure 8–46 Login Page - Login Credentials for User Cho

3. Click Login.

If authentication is successful, you should see the Welcome page with a Logout
link at the top of the page and all three page navigation buttons.

4. Click Go To MyPage.

As user Cho you have privileges to both view and personalize portlets but you
should not be able to customize the page or portlets in any way. To verify this, take
a look at the Actions menu for MyJavaPortlet.

5. Click the Actions icon in the portlet banner to reveal the available options. As you
are logged in as Cho you should see two options: Refresh and Personalize, as
shown in Figure 8–47.

Figure 8–47 Portlet Actions Available to User Cho

6. Click Personalize.

7. Change the Portlet Title, for example, enter: Cho's Java Portlet

This title is only displayed when Cho is the logged on user. No other user will see
this title.

8. Click OK to see the personalizations for user Cho.

Step 6: Demonstrating the Security Features

Providing Security 8-33

9. Click Logout.

Login as User Harvey
Now login as user Harvey. This user was assigned the page-customizer role with view,
personalize, and customize privileges on MyPage, MyWeather, and MyContent.

1. Display the Welcome page, and click Login.

2. Enter login credentials for the user Harvey remembering that both fields are
case-sensitive. For Name, enter Harvey and for Password enter welcome
(Figure 8–48).

Figure 8–48 Login Page - Login Credentials for User Harvey

3. Click Login.

If authentication is successful, you should see Welcome.jspx with a Logout link at
the top of the page and several page navigation buttons as before.

4. Click Go To MyPage.

As user Harvey you have privileges to view, personalize portlets, and customize
this page. To verify this, take a look at the Actions menu for MyJavaPortlet.

5. Click the Actions icon in the portlet banner to reveal the available options. As you
are logged in as Harvey you should see five options: Move, Maximize, Refresh,
Customize, and Personalize, as shown in Figure 8–49.

Figure 8–49 Portlet Actions Available to User Harvey

Step 6: Demonstrating the Security Features

8-34 Oracle WebCenter Framework Tutorial

You can, as user Harvey, customize or move any content on this page and when
you do so you'll modify the page for all users. This differs from personalizations
which are only applicable to the user who is making the changes. Notice that as
user Harvey, you do not see the portlet title personalizations made earlier by user
Cho.

6. Click Logout.

Login as User King
Finally, let's login as user King. This user was assigned the restricted-user role and
may access public content only. This user may not view any of the secured pages
(MyPage, MyWeather, or MyContent).

1. Display the Welcome page, and click Login.

2. Enter login credentials for the user Harvey remembering that both fields are
case-sensitive. For Name, enter King, and for Password enter welcome
(Figure 8–50).

Figure 8–50 Login Page - Login Credentials for User King

3. Click Login.

If authentication is successful, you should see Welcome.jspx but you wont' see any
page navigation buttons as user King is not authorized to view MyPage,
MyWeather, or MyContent.

4. Click Logout.

Try to Access a Secured Page Directly
Earlier, you defined a security constraint that enforces login authentication for secured
pages. So, if an unauthenticated user tries to access a secured page he should be
redirected to the login page for authentication. Let's test this now.

1. In the Applications Navigator, right-click MyPage.jspx, and choose Run.

When the Browser opens to display the page the target URL looks something like
this:
http://123.4.56.789:8988/MySample-ViewController-context-root
/faces/MyPage.jspx

Because this is a secured page, you should be presented with the login form.

2. Enter valid login credentials such as Harvey/welcome, and click Login.

Step 7: Authorizing Access to Your Data Controls

Providing Security 8-35

As user Harvey is authorized to view MyPage, you should see MyPage in your
browser.

3. Click Logout.

4. Try to access MyPage again. In your browser, enter the same URL used in Step 1.

5. Now login as user King who is not authorized to view MyPage. Enter
King/welcome, and click Login.

This time, you should see an "Unauthorized" message.

Enter Invalid Credentials
As part of the tutorial application's login configuration you chose a login error page.
Try entering some invalid user credentials to see what happens. You should be
directed back to an empty login page.

1. In the Applications Navigator, right-click Welcome.jspx, and choose Run.

2. When the Welcome page appears in a browser window, click Login.

3. Enter some invalid user credentials or just leave both fields blank and see what
happens when you click Login.

This time you won't see the Welcome page. As an unauthenticated user, you'll be
directed back to a blank login form.

Step 7: Authorizing Access to Your Data Controls
When you apply access restrictions to a page you automatically restrict access to any
data controls on the page. Let's take a look at the data controls you placed on
MyContent.jpsx.

1. In the Applications Navigator, right-click MyContent.jspx, and choose Run.

2. Enter valid login credentials such as Harvey/welcome, and click Login.

MyContent.jspx should be displayed in your browser but this time you won't have
access to file system content (Figure 8–51).

Figure 8–51 File System Data Controls - Access Denied

To authorize access, you must grant permissions through the data control's
executables and bindings. Let's do that now.

Step 7: Authorizing Access to Your Data Controls

8-36 Oracle WebCenter Framework Tutorial

3. Right-click MyContent.jspx in the Applications Navigator, and select Go To Page
Definition.

4. In the Structure window, expand executables and bindings (Figure 8–52).

To make data control content accessible you must grant permissions through the
control's executable (methodIterator) and bindings (methodAction and
attributeValues). So, if we want to see the help link on MyContent.jpsx we'll need
to edit authorization settings for getURIIter (methodIterator), getURI
(methodAction), and getURI_returnURI (attributeValues).

Similarly, if we want to see the table of files, we'll need to edit authorization
settings for getItemsIter (methodIterator), getItems (methodAction), and
getItems1 (attributeValues). And, we'd need to do the same for the tree and
search form data controls too.

Figure 8–52 Data Control Executables and Bindings in MyContentPageDef.xml

Let's work through all the steps for the table data control to see how this is done.

5. First, edit authorizations for the table data control executable getItemsIter:

a. Under executables, right-click getItemsIter, and select Edit Authorization.

b. Let's grant full permissions to any logged-in user. To do this, check all the
boxes for the users role as shown in Figure 8–53.

Step 7: Authorizing Access to Your Data Controls

Providing Security 8-37

Figure 8–53 Authorization Editor for Data Control Executables

c. Click OK.

6. Now edit authorizations for the methodAction binding of table data control
getItems:

a. Under bindings, right-click getItems, and select Edit Authorization.

b. To grant permission to any logged-in user, check the boxes for the users role as
shown in Figure 8–54.

Figure 8–54 Authorization Editor for Data Control methodAction Bindings

c. Click OK.

7. And finally, edit authorizations for each attributeValues binding of table data
control getItems1:

a. Right-click getItems1, and select Edit Authorization.

b. To grant full permissions to the first attribute
MyTutorialContent.getItems.name, check all the boxes for the users role as
shown in Figure 8–55.

Step 7: Authorizing Access to Your Data Controls

8-38 Oracle WebCenter Framework Tutorial

Figure 8–55 Authorization Editor for Data Control attributeValues Bindings

c. Repeat for every attribute listed in the Grant Permissions box. For example,
expand the Grant Permissions box, choose MyTutorialContent.getItems.path,
check all the boxes, and repeat.

d. Click OK.

8. Before running the page again, stop the embedded OC4J Server. Choose Run,
Terminate, Embedded OC4J Server from the main menu.

9. Run MyContent.jspx again, and login with valid credentials such as
Harvey/welcome.

This time you should see files listed in the table data control as shown in
Figure 8–56.

Figure 8–56 Access Authorized to Table Data Control

If you want, you can enable access to the other data controls on MyContent.jspx by
repeating steps 5 through 7.

Congratulations! You've completed the lesson and secured your first WebCenter
application. In the final lesson you'll learn about deployment and how to use
Enterprise Manager (a browser-based tool that enables administrators to deploy,
configure, and manage WebCenter applications).

Deploying Your WebCenter Application 9-1

9
Deploying Your WebCenter Application

In this lesson you will deploy your tutorial application to the WebCenter
Preconfigured OC4J. Deploying an application involves packaging up all the required
files in a standard J2EE format and directory structure—a WAR file or an EAR file.

All the packaging and deployment instructions for a WebCenter application are
configured through a deployment profile. A deployment profile is a configuration file
that names the pages, portlets, customizations, and metadata comprising the
application, the type and name of the archive file to be created, dependency
information, platform-specific instructions, and more.

There is a special deployment profile, specifically for WebCenter applications—the
WebCenter Application Deployment Profile. This profile handles content that is unique to
WebCenter applications such as portlets, content repository data controls,
customizable component, and so on.

You can deploy WebCenter applications directly from Oracle JDeveloper to a
standalone OC4J instance providing that the standalone OC4J and Oracle JDeveloper
are on the same computer or have access to a common network drive. You'll learn
more about single-step deployment in this lesson. You'll also learn how to manage
WebCenter applications through the Application Server Control Console.

Introduction
You'll deploy the tutorial application by completing the following steps:

■ Step 1: Creating a WebCenter Application Deployment Profile

■ Step 2: Deploying Directly to the Preconfigured OC4J

■ Step 3: Migrating Your Security Policy

■ Step 4: Running Your Deployed Application

■ Step 5: Using Application Server Control Console to Manage WebCenter
Applications

Prerequisites
Before you deploy your WebCenter application:

1. Check that:

■ A connection exists between the WebCenter Preconfigured OC4J and Oracle
JDeveloper.

■ The WebCenter Preconfigured OC4J is running.

Step 1: Creating a WebCenter Application Deployment Profile

9-2 Oracle WebCenter Framework Tutorial

For more detail, see Step 2: Setting Up Your Connection (Chapter 3).

2. Migrate the tutorial users/roles to the WebCenter Preconfigured OC4J—the
deployment target. Run the JAZN Migration Tool in realm mode to merge the users
and roles on the target OC4J:

a. Before running the JAZN Migration Tool, update your class path to contain
references to: JDEVHOME\j2ee\home\jazn.jar and
JDEVHOME\BC4J\lib\adfshare.jar

For example, enter the following in a command prompt:
set
CLASSPATH=JDEVHOME\j2ee\home\jazn.jar;JDEVHOME\BC4J\lib\ad
fshare.jar

Where JDEVHOME points to your JDeveloper installation, for example
C:\myjdev.

b. Next, go to JDEVHOME, and open a command prompt.

c. Run the JAZN Migration Tool, as follows:

java oracle.security.jazn.tools.JAZNMigrationTool -sr
jazn.com -dr jazn.com -st xml -dt xml -sf
WEBCENTERSAMPLE\TutorialContent\system-jazn-data.xml -df
JDEVHOME\jdev\extensions\oracle.adfp.seededoc4j.10.1.3.2.0
\j2ee\home\config\system-jazn-data.xml -m realm

Where WEBCENTERSAMPLE points to where you installed the sample
tutorial files, for example: C:, and JDEVHOME points to your JDeveloper
installation, for example: C:\myjdev. See Figure 9–1.

Figure 9–1 Running the JAZN Migration Tool

The preconfigured OC4J's system-jazn-data.xml file will now contain the
users and roles required by your application.

Let's deploy your application.

Step 1: Creating a WebCenter Application Deployment Profile
In this step you'll create a deployment profile for the tutorial application called
MyTutorialApplication.deploy, and set some deployment options.

1. Right-click ViewController in the Applications Navigator, and select New.

2. Expand the General Category, and choose Deployment Profiles.

3. Select WebCenter Application WAR, and click OK.

4. Enter a name for the deployment profile (Figure 9–2). For File Name, enter:
MyTutorialApplication.

Step 1: Creating a WebCenter Application Deployment Profile

Deploying Your WebCenter Application 9-3

Figure 9–2 Create WebCenter Application Deployment Profile

5. Click OK.

You should see the new deployment profile displayed under ViewController,
Resources (Figure 9–3).

Figure 9–3 New Deployment Profile - MyTutorialApplication.deploy

6. To configure the deployment profile, right-click MyTutorialApplication.deploy in
the Applications Navigator, and select Properties.

7. In the WAR Deployment Profile Properties window (Figure 9–4), enter a suitable
context root for the application URL. Choose Specify J2EE Web Context Root, and
enter: MyTutorialApplication

Step 1: Creating a WebCenter Application Deployment Profile

9-4 Oracle WebCenter Framework Tutorial

Figure 9–4 WAR Deployment Profile Properties

8. Select Platform from the list on the left, and then choose the connection named
MyLocalOC4J from the Target Connection dropdown list (Figure 9–5).

You defined this connection earlier on, in Chapter 3, "Building and Testing Your
First Portlet".

Figure 9–5 WAR Deployment Profile Properties - Target Connection

You don't need to set any more deployment options on this page. If your
application required special libraries, you would select them here.

9. Click OK.

10. Click Save All in the JDeveloper tool bar.

During development, you can deploy WebCenter applications in a single step directly
from JDeveloper to a standalone OC4J. You'll see how this works in the next step.

You can deploy your WebCenter applications in a production environment using
Application Server Control Console. In the process, you package your WebCenter
application in a generic EAR or WAR file. After that, you run the Predeployment tool
against this file to remap the WebCenter application's external dependencies, for
example, portlet producer end points and the MDS location. The Predeployment tool
generates a targeted EAR file that is ready to deploy on the remote system.

Step 2: Deploying Directly to the Preconfigured OC4J

Deploying Your WebCenter Application 9-5

Additionally, some tasks related to security, content integration, and external
applications may need to be performed as part of the deployment process.

For more information on WebCenter application deployment, see Oracle WebCenter
Framework Developer's Guide.

Step 2: Deploying Directly to the Preconfigured OC4J
In this step you'll use the connection details you defined earlier to deploy the tutorial
application directly to your preconfigured OC4J. Let's do that now.

1. Right-click MyTutorialApplication.deploy, and choose Deploy to MyLocalOC4J.

A dialog asks you to define a suitable location for the MDS repository in your file
system (Figure 9–6).

2. For MDS Path, enter: C:\TutorialContent\mds

You can choose a different location on your local file system if you wish. If the
directory you specify does not exist, JDeveloper will create it for you.

Figure 9–6 Target MDS Path

3. Click OK.

4. Wait for the Configure Application window to be displayed (Figure 9–7), and then
click OK.

Caution: Do not create the MDS repository for your deployment
inside the working directory for your application (in this case
JDEVHOME\jdev\mywork\MySample). Keeping separate MDS
directories for development and deployment will not only avoid
confusion but will prevent content in your application's source MDS
repository from being overwritten.

Step 3: Migrating Your Security Policy

9-6 Oracle WebCenter Framework Tutorial

Figure 9–7 The Configure Application Window

WAR and EAR files are generated and deployed to the preconfigured OC4J. The
EAR file contain a WAR file and a number of configuration (.xml) files. WAR files
contain all the files and libraries used by the application.

At the end of deployment you should see -- Deployment finished -- in the
Deployment-Log window. If you get this message you should be able to access the
deployed application but you won't be able to log-in. You still need to migrate your
application's security policy (stored in app-jazn-data.xml) to the preconfigured
OC4J's system-jazn-data.xml file. Let's do that now.

Step 3: Migrating Your Security Policy
In this step you'll use the JAZN Migration Tool to merge your application's security
policy (stored in app-jazn-data.xml) into the preconfigured OC4J's
system-jazn-data.xml file.

In this tutorial, the location of these XML files are as follows:

Source app-jazn-data.xml
JDEVHOME\jdev\extensions\oracle.adfp.seededoc4j.10.1.3.2.0\j2ee\
home\applications\MyTutorialApplication\adf\META-INF\app-jazn-da
ta.xml

Destination system-jazn-data.xml
JDEVHOME\jdev\extensions\oracle.adfp.seededoc4j.10.1.3.2.0\j2ee\
home\config\system-jazn-data.xml

Complete the following steps:

1. Before running the JAZN Migration Tool, update your class path to contain
references to these .JAR files:

■ JDEVHOME\j2ee\home\jazn.jar

■ JDEVHOME\BC4J\lib\adfshare.jar

Note: You'll find more about the JAZN Migration Tool in the Oracle
WebCenter Framework Developer's Guide

Step 4: Running Your Deployed Application

Deploying Your WebCenter Application 9-7

For example, enter the following in a command prompt:
set
CLASSPATH=JDEVHOME\j2ee\home\jazn.jar;JDEVHOME\BC4J\lib\adfsh
are.jar

Where JDEVHOME points to your JDeveloper installation, for example
C:\myjdev.

2. Next, go to JDEVHOME, and open a command prompt.

3. Run the JAZN Migration Tool, as follows:

java oracle.security.jazn.tools.JAZNMigrationTool -sr
jazn.com -dr jazn.com -st xml -dt xml -sf
JDEVHOME\jdev\extensions\oracle.adfp.seededoc4j.10.1.3.2.0\j2
ee\home\applications\MyTutorialApplication\adf\META-INF\app-j
azn-data.xml -df
JDEVHOME\jdev\extensions\oracle.adfp.seededoc4j.10.1.3.2.0\j2
ee\home\config\system-jazn-data.xml -m policy

Where JDEVHOME points to your JDeveloper installation, for example
C:\myjdev. For example, see Figure 9–8.

Figure 9–8 Running the JAZN Migration Tool

The preconfigured OC4J's system-jazn-data.xml file will now contain your
application's security information. To make this information available, you'll need
to restart the WebCenter preconfigured OC4J.

4. To restart the WebCenter preconfigured OC4J from JDeveloper:

a. Click the Stop WebCenter Preconfigured OC4J icon at the far right of the
JDeveloper tool bar.

b. Click the Start WebCenter Preconfigured OC4J icon.

Wait for the message stating that the OC4J instance has initialized.

Now, let's try to display one of the pages of the deployed application.

Step 4: Running Your Deployed Application
1. Open a browser window and navigate to the tutorial's Welcome page. You'll need

to enter a URL that uses the context root defined in the deployment profile
(MyTutorialApplication), followed by /faces/, and the page name itself. The URL
format you require is:

http://<host>:<port>/<context-root>/faces/<page-name>

For example:

http://localhost:6688/MyTutorialApplication/faces/Welcome.jsp
x

Step 5: Using Application Server Control Console to Manage WebCenter Applications

9-8 Oracle WebCenter Framework Tutorial

This tutorial assumes that localhost can be used in a URL to refer to the local
computer on which your preconfigured OC4J installation resides. (If this is not the
case, replace localhost with your computer's IP address.)

2. Log in as user Harvey, and enter the password welcome.

3. Click each page navigation button to check that your application works as
expected.

Congratulations! You've just deployed your first WebCenter application.

Step 5: Using Application Server Control Console to Manage WebCenter
Applications

In this step you'll learn how to use the Oracle Enterprise Manager 10g Application
Server Control Console to deploy, redeploy, and undeploy a WebCenter application.
You'll also learn how to monitor portlet performance from the console.

1. To access Application Server Control Console for your preconfigured OC4J,
navigate to the following URL:

 http://<host>:<port>/em

For example: http://localhost:6688/em

This tutorial assumes that localhost can be used in a URL to refer to the local
computer on which your preconfigured OC4J installation resides. (If this is not the
case, replace localhost with your computer's IP address.)

For more information, select Help, WebCenter Preconfigured OC4J Readme from
the main JDeveloper menu.

2. Log in as user oc4jadmin.

3. Enter the default password: welcome

The home page for your preconfigured OC4J is displayed.

4. Select the Applications tab, and then the name of your application. The
application name is derived from the .EAR filename. In this tutorial the .EAR file
was named after the deployment profile — MyTutorialApplication.

5. When you click MyTutorialApplication, you should see the application's home
page, similar to that shown in Figure 9–9.

Note: The WebCenter Preconfigured OC4J is only suitable for test
deployments such as this tutorial. Normally, you would not deploy
WebCenter applications in the same OC4J instance that is used for the
portlet producers. To find out how to deploy to an OC4J in Oracle
Application Server or to a standalone OC4J instance, refer to the Oracle
WebCenter Framework Developer's Guide.

Step 5: Using Application Server Control Console to Manage WebCenter Applications

Deploying Your WebCenter Application 9-9

Figure 9–9 WebCenter Application Home Page in Enterprise Manager

From here you can use the buttons to redeploy and undeploy the application. You
can also stop and restart the application from here.

Under Related Links you should see a Producers and Portlets link. The
information available from here is specific to WebCenter applications and it
appears only when producer/portlet metrics are available. Statistics become
available when a page containing portlets is accessed for the first time. If you did
not display a page containing portlets during Step 4: Running Your Deployed
Application, do so now (open MyPage or MyWeather), and then refresh the
Application Server Control Console.

6. Click Producers and Portlets to browse the metrics available for your tutorial
application.

You should see the Portlet Producers page (similar to that shown in Figure 9–10).
From this page, you can monitor the status and performance of producers and
portlets used by your WebCenter application.

Summary

9-10 Oracle WebCenter Framework Tutorial

Figure 9–10 Portlet Producers Screen in Enterprise Manager

To find out more about deploying, configuring, and monitoring WebCenter
applications from the Application Server Control Console, refer to the Oracle
WebCenter Framework Developer's Guide.

Summary
In this tutorial you built a simple, secure WebCenter application. You tested and
deployed it, then used the Application Server Control Console to monitor its portlet
producers.

Now you're more familiar with Oracle JDeveloper and Oracle WebCenter Framework
functionality, you can start building your own application. For further assistance, refer
to the Oracle WebCenter Framework Developer's Guide.

Part III
Appendixes

Part III contains the following appendix:

■ Appendix A, "How to Set Up the Tutorial Identity Store"

How to Set Up the Tutorial Identity Store A-1

A
How to Set Up the Tutorial Identity Store

This Appendix describes how to set up an identity store—a requirement for Chapter 8,
"Providing Security".

Oracle ADF Security authenticates users against a given resource provider. In this
tutorial, we make use of the lightweight XML resource provider
system-jazn-data.xml supplied with the embedded OC4J. Well-suited to small
scale applications like this tutorial, this resource provider is located at:
JDEVHOME\jdev\system\oracle.j2ee.10.1.3.xx.xx\embedded-oc4j\conf
ig

For your convenience, we supply a sample system-jazn-data.xml file containing
all the user data required to complete this tutorial (see Chapter 2 Downloading Sample
Tutorial Files and Copying the Sample system-jazn-data.xml File). The following table
outlines the users/roles our sample file provides:

Only follow the instructions in this Appendix if you would like to enter these tutorial
users/roles from scratch for yourself. Maybe you want to learn more about the
process, or perhaps you are already building secure applications with JDeveloper and
you do not want to overwrite the users, roles, and policies that you've added.

To set up the identity store, completing the steps in the following sections:

■ Creating Users

■ Creating Roles and Assigning User Members

■ Making Tutorial Users and Roles Available to JDeveloper's Authorization Editor

Note: The system directory is created when you open JDeveloper for
the first time.

Role Name Users Description

page-viewer Singh This user may view secured pages.

page-personalizer Cho This user may personalize portlets on a secured page.

page-customizer Harvey This user may customize secured pages.

restricted-user King This user may not view secured pages.

users Singh, Cho, King,
Harvey, JtaAdmin,
oc4jadmin

The users role maintains a list of every valid user.

Creating Users

A-2 Oracle WebCenter Framework Tutorial

A.1 Creating Users
In this step, you'll add four users named Singh, Cho, Harvey, and King to the
embedded OC4J's system-jazn-data.xml file.

1. From the Tools menu, choose Embedded OC4J Server Preferences.

If the information message Embedded Server Currently Running displays, click No,
and then shut down the embedded OC4J Server (choose Run, Terminate -
Embedded OC4J Server from the main menu).

2. Under the Global branch, expand Authentication (JAZN), Realms, and then
jazn.com.

jazn.com is the default security realm for the tutorial application.

Don't select the branch called Authentication (JAZN) under the Current
Workspace node. This branch lets you define user data at the application-level but
it would not be used by the tutorial application — WebCenter applications only
make use of data defined under the global realm.

3. Select Users.

You should see three predefined users for the default global security realm,
jazn.com as shown in Figure A–1.

Figure A–1 Default Users for Global Security Realm jazn.com

The three default users are:

■ anonymous, a default guest/anonymous user

■ oc4jadmin, an OC4J administrator

■ JtaAdmin, another user for recovering propagated OC4J transactions

Do not remove any of these users or some administrative functions will not work.

4. Create a new user named Singh:

Creating Users

How to Set Up the Tutorial Identity Store A-3

a. Click Add.

b. For Name, enter Singh.

c. In the Credentials field, enter the password welcome.

d. Click OK. Singh should appear in the Users list.

e. For Description, enter This User may view pages.

5. Now repeat Step 4. Create three more users named Cho, Harvey, and King. Use the
credentials and descriptions shown in the following table:

All four new users should appear in the Users list as shown in Figure A–2.

Figure A–2 New Users

6. Click OK to save the user definitions in the embedded OC4J's
system-jazn-data.xml.

User Name Credentials Display Name Description

Singh welcome Singh This user may view secured pages.

Cho welcome Cho This user may personalize portlets on a
secured page.

Harvey welcome Harvey This user may customize secured pages.

King welcome Harvey This user may not view secured pages.

Creating Roles and Assigning User Members

A-4 Oracle WebCenter Framework Tutorial

A.2 Creating Roles and Assigning User Members
In this step, you'll add four roles named page-viewer, page-personalizer,
page-customizer, and restricted-user to the embedded OC4J's
system-jazn-data.xml file.

1. From the Tools menu, choose Embedded OC4J Server Preferences.

2. Expand Authentication (JAZN), Realms, and jazn.com.

3. Select Roles.

You'll see several predefined roles for the default global security realm jazn.com,
as shown in Figure A–3:

■ oc4j-administrators, an OC4J administrator role

■ oc4j-app-administrators, an OC4J application administrator role

■ users, a generic group to map all users in the system.

■ ascontrol_admin, an Enterprise Manager Application Server Control
administrator role

■ ascontrol_appadmin, an Enterprise Manager application administrator role

■ ascontrol_monitor, an Enterprise Manager monitoring role

Do not remove any of these roles, or some administrative functions will not work.
For more information, see Oracle Application Server Administrator's Guide.

Figure A–3 Default Roles for the Global Security Realm jazn.com

4. Create a new role named page-viewer, and assign user Singh to this role.

a. Click Add.

b. Enter the Name page-viewer, and click OK.

c. Click the Member Users tab, and move Singh to the list on the right.

Creating Roles and Assigning User Members

How to Set Up the Tutorial Identity Store A-5

5. Now repeat Step 4. Add three more roles and assign a member user to each role as
outlined in this table:

a. Add roles named page-personalizer, page-customizer, and restricted-user.

b. Assign member Cho to the page-personalizer role, member Harvey to the
page-customizer role, and member King to the restricted-user role as shown in
Figure A–4.

Figure A–4 Member Users Assigned to New Roles

6. Place all the users (except anonymous) into the users role:

a. Select the users role.

b. Click the Member Users tab, and move users (Singh, Cho, Harvey, King,
JtaAdmin, and oc4jadmin) to the list on the right as shown in Figure A–5.

Role Member Users

page-viewer Singh

page-personalizer Cho

page-customizer Harvey

restricted-user King

Making Tutorial Users and Roles Available to JDeveloper's Authorization Editor

A-6 Oracle WebCenter Framework Tutorial

Figure A–5 Assigning Members to the Users Role

The users role maintains a list of every valid user. In Chapter 8, "Providing
Security", you map this role to a J2EE security role called ValidUsers (for details,
see Step 2: Configuring ADF Security Settings).

7. Click OK to save the role definitions to the embedded OC4J's
system-jazn-data.xml file.

In the next step, you'll make these users/roles available through the Authorization
Editor in Oracle JDeveloper. You assign page permissions through this editor in
Chapter 8 Step 4: Securing Pages.

A.3 Making Tutorial Users and Roles Available to JDeveloper's
Authorization Editor

In this step you'll copy the tutorial users/roles to JDeveloper' home directory so they
are available to JDeveloper design-time dialogs.

1. Before making any modifications for the purposes of this tutorial, back up the
system-jazn-data.xml file located at JDEVHOME\j2ee\home\config.

2. Copy the system-jazn-data.xml file from the embedded OC4J directory
JDEVHOME\jdev\system\oracle.j2ee.10.1.3.xx.xx\embedded-oc4j\c
onfig to JDEVHOME\j2ee\home\config.

Making Tutorial Users and Roles Available to JDeveloper's Authorization Editor

How to Set Up the Tutorial Identity Store A-7

Note: If you already have a populated system-jazn-data.xml
file at this location you must merge the files rather than overwriting
the original. Run the JAZN Migration Tool in realm mode to merge the
users and roles:

1. First, set the CLASSPATH to:
JDEVHOME\j2ee\home\jazn.jar;JDEVHOME\BC4J\lib\adfshare
.jar

2. Run the JAZN Migration Tool with the following syntax:
java oracle.security.jazn.tools.JAZNMigrationTool -sr
jazn.com -dr jazn.com -st xml -dt xml -sf
JDEVHOME\jdev\system\oracle.j2ee.10.1.3.xx.xx\embedded
-oc4j\config\system-jazn-data.xml -df
JDEVHOME\j2ee\home\config\system-jazn-data.xml -m
realm

Where JDEVHOME points to your JDeveloper installation, for
example C:\myjdev, and 10.1.3.xx.xx refers to the version number
For more information, see the Oracle WebCenter Framework Developer's
Guide.

Making Tutorial Users and Roles Available to JDeveloper's Authorization Editor

A-8 Oracle WebCenter Framework Tutorial

Index-1

Index

A
ADF Security

see Oracle ADF Security, 8-1
ADF, see Application Development Framework, 1-6
adfAuthentication servlet, 8-6

granting access to, 8-8
ADFContext library, 8-14
advancedSearch method, 7-4
anyone role, 8-23
app-jazn-data.xml

about, 8-24
migrating security information, 9-6

Application Development Framework (ADF), 1-6
authentication

defining users and roles, A-1
enabling, 8-5
form-based, 8-7
testing, 8-30

Authorization Editor
data controls, 8-36
pages, 8-23

B
buttons (page navigation)

adding, 8-18
hiding from unauthorized users, 8-20

C
CacheResults property (content), 7-16
connection to preconfigured OC4J, 3-10
Content DB, 1-5
content publishing, 7-1
content repository data control, 7-2
context root, 9-3
customizable components

definition, 4-2
editing properties, 4-9

customize mode
enabling, 3-6
testing, 3-25

D
data control

defining, 7-2
see also file system data control, 7-2

deployment, 9-1
deploying to preconfigured OC4J, 9-5
using Enterprise Manager, 9-8

deployment descriptor
defining, 8-26

deployment profile
WAR file, 3-13
WebCenter Application WAR, 9-2

Do As Privileged mode, 8-6, 8-29

E
EAR deployment, 9-1
embedded OC4J

copying sample users and roles, 2-2
defining users and roles, A-1
terminating, 3-29
testing applications, 3-25

Enterprise Manager
accessing the Application Server Control

console, 9-8
monitoring producers and portlets, 9-9

F
faces-config.xml, 8-18
file system data control

applying security, 8-35
default attributes, 7-3, 7-10, 7-20
defining, 7-2
methods, 7-4
publishing a file, 7-5
publishing content in a table, 7-8
publishing content in tree format, 7-17

files
publishing a file link, 7-5
publishing content in a table, 7-8
publishing content in a tree, 7-17

folders
publishing content in a table, 7-8
publishing content in a tree, 7-17

Index-2

G
getAttributes method, 7-4
getItems method, 7-4

publishing content in a table, 7-8
publishing content in tree format, 7-17

getURL method, 7-4
publishing file links, 7-5

graphics
adding to a page, 4-4
adding to the Rich Text Portlet, 5-5

I
identity store

assigning page privileges, 8-23
creating roles, A-4
creating users, A-2
setting up system-jazn-data.xml, A-1
using tutorial sample, 2-2

images
adding to a page, 4-4
adding to the Rich Text Portlet, 5-5

J
J2EE security roles

configuring, 8-8
mapping identity store roles, 8-25

J2EE Web Context Root, 9-3
JAAS Mode, 8-6
JavaServer Faces page

creating, 3-16
running, 3-25

JAZN Migration Tool
merging application security policy, 9-6
merging users/roles, 9-2
setting class path, 9-2

JAZN settings, 8-7, 8-29
jazn.com, 8-7, A-2
JCR adapters, 1-4
JCR data controls, 1-4
JDeveloper

see Oracle JDeveloper, 1-6
JSF navigation rule

defining, 8-18
JSF Navigation Diagram, 8-19

JSR 168 Java portlet
building, 3-4
deploying, 3-13
registering, 3-20
testing, 3-22

L
library requirements, 3-18
lifecycle support, 1-4
lightweight XML provider, 8-6
login link

defining, 8-12
hiding from authenticated users, 8-14

Login page
creating, 8-2
error page, 8-7, 8-35

Login.jspx, 8-2
logout link

hiding from unauthenticated users, 8-17
on MyContent.jspx, 8-25
on MyPage.jpsx, 8-24
on MyWeather.jspx, 8-25
on Welcome.jspx, 8-16

M
MDS repository, 9-5
MyContent.jspx

authorizing access to data controls, 8-35
authorizing access to the page, 8-25
creating, 7-5

MyPage.jspx
authorizing access to, 8-24
creating, 3-16

MyTutorialContent (data control), 7-2
MyTutorialContent2 (data control), 7-17
MyWeather.jspx, 6-1

authorizing access to, 8-25
creating, 6-5

MyWeatherPageDef.xml, 6-7, 6-11

N
navigation rule

see JSF navigation rule, 8-18
NDValue, 7-15
nt file, 7-15
nt folder, 7-15

O
OC4J

deployment descriptor, 8-26
JDeveloper’s embedded, 3-25
starting the preconfigured, 3-10

OmniPortlet, 6-1
adding to a page, 6-10
configuring a Web Service, 6-12
description, 1-3
portlet parameters, 6-11
producer registration, 6-2
using, 6-10

Oracle ADF Security, 8-1
enabling, 8-5
Security Wizard, 8-5
settings, 8-5

Oracle Content Database, 1-5
Oracle JDeveloper

and ADF, 1-6
downloading, 2-1
embedded OC4J, 3-25

Oracle PDK portlet producer, 6-2
Oracle Technology Network, viii
Oracle WebCenter Suite, 1-2

Index-3

orion-web.xml, 8-25
OTN

see Oracle Technology Network, viii

P
page navigation

command buttons, 8-18
see JSF navigation rule, 8-18

page navigation buttons
adding, 8-18
hiding from unauthorized users, 8-20

page permissions, 8-22
page variables

mapping portlet parameters, 6-16
OmniPortlet parameter mappings, 6-11
Parameter Form Portlet parameter mappings, 6-7

panelCustomizable
description, 4-2
using, 4-3

Parameter Form Portlet, 6-1
adding to a page, 6-5
customization, 6-9
passing parameters, 6-15
portlet parameters, 6-5, 6-7
producer registration, 6-2

parameters
portlet parameters, 6-5, 6-10
Web Service parameters, 6-12

personalize mode, 3-6, 8-32
portlet

allowing users to customize, 3-7
allowing users to personalize, 3-6
building a JSR 168, 3-4
deploying to OC4J, 3-10, 3-13
exposing as a web service, 3-16
files generated for, 3-10
registering with WebCenter Framework, 3-20
testing, 3-22

portlet communication, 6-1
configuring, 6-15
testing, 6-16

portlet parameters
mapping to page variables, 6-8
OmniPortlet, 6-11
Parameter Form Portlet, 6-5, 6-7
passing parameters, 6-15

portlet producers
accessible through Preconfigured OC4J, 3-11
monitoring through Enterprise Manager, 9-9
Oracle PDK portlets, 6-2
WSRP portlets, 6-2

portlet provider
see WAR file, 3-13

preconfigured OC4J
accessing sample portlets, 6-1
accessing the Application Server Control

console, 9-8
connecting to, 3-10
deploying tutorial application, 9-5

installing, 3-10
migrating security policy, 9-2
readme, 3-11
starting and stopping, 3-10
test pages, 5-2

Predeployment Tool, 1-5, 9-4
producer registration

Omniportlet, 6-2
Rich Text portlet, 5-2
sample WSRP portlets, 6-2

R
RangeSize property (content), 7-16, 7-23
Rich Text portlet

adding to a page, 5-3
customizing at run time, 5-5
description, 1-4
producer registration, 5-2

roles
anyone role, 8-23
assigning page privileges, 8-23
default roles (embedded OC4J), A-4
defining (embedded OC4J), A-4
mapping in orion-web.xml, 8-25
migrating to preconfigured OC4J, 9-2, A-6
see also J2EE security roles, 8-8

rules (Tree Binding Editor), 7-20
Run As mode, 8-29

S
sample files

copying sample system-jazn-data.xml, 2-2
downloading, 2-1

search method, 7-4
security

ADF Security settings, 8-5
authorizing access to data controls, 8-35
authorizing access to pages, 8-22
creating a login page, 8-2
creating a Welcome page, 8-10
setting up an identity store, A-1

showDetailFrame
description, 4-2
using, 4-6

system-jazn-data.xml
adding users and roles, A-1
Authorization Editor, 8-23
copying sample data, 2-2
defining permissions on data controls, 8-36
defining permissions on pages, 8-23
making available to Authorization Editor, A-6
Oracle ADF Security, 8-6
preparing user data, 8-2

T
tag library requirements, 3-18

Index-4

U
users

assigning to roles (embedded OC4J), A-4
default users (embedded OC4J), A-2
defining users (embedded OC4J), A-2
migrating to preconfigured OC4J, 9-2, A-6

W
WAR file

creating, 3-13, 9-2
deployment, 9-1

Weather Web Service
configuring, 6-12
parameters, 6-12

web application archive
see WAR file, 3-13

Web Clipping portlet, 1-4
Web Service see Weather Web Service, 6-12
WebCenter application

context root, 9-3
creating new, 3-2
deployment, 9-1
deployment profile, 9-2
security, 8-1
WAR, 1-4, 9-2

WebCenter Framework, description, 1-3
WebCenter Services, 1-5
web.xml, 8-5, 8-9
Welcome page

authorizing public access, 8-22
creating, 8-10
login link, 8-12
logout link, 8-17
page navigation buttons, 8-18

Welcome.jspx, 8-10
WSDL

publishing a portlet as, 3-16
WSRP portlet producer

creating, 3-20
Parameter Form Portlet, 6-2

X
XML resource provider, 8-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Introducing WebCenter Framework Tutorial
	1 Understanding Oracle WebCenter Suite
	What is Oracle WebCenter Suite?
	WebCenter Framework
	Building and Consuming Portlets
	Customizable Components
	Content Integration
	Securing Your Application
	Managing Your Application Throughout the Lifecycle

	WebCenter Services
	Oracle JDeveloper

	What Will You Learn in this Tutorial?

	2 Getting Started
	Downloading Oracle JDeveloper With WebCenter Extensions
	Downloading Sample Tutorial Files
	Copying the Sample system-jazn-data.xml File

	Part II Hands-On Examples
	3 Building and Testing Your First Portlet
	Introduction
	Step 1: Using the JSR 168 Java Portlet Wizard
	Step 2: Setting Up Your Connection
	Step 3: Deploying Your Portlet
	Step 4: Creating a JSF Page
	Step 5: Registering Your Portlet with Oracle WebCenter Framework
	Step 6: Testing the Portlet
	Step 7: Adding Some Simple Logic to the Portlet

	4 Customizing Your Page
	Introduction
	Step 1: Allowing Users To Customize the Page
	Step 2: Running and Customizing the Page
	Step 3: Making Additional Customizations
	Step 4: Testing the New Customizations
	Step 5: Changing the Look and Feel
	Step 5a: Changing showDetailFrame Background Using the Default ADF Faces Skin
	Step 5b: Using Custom Skins to Apply Your Own Styles

	5 Adding the Rich Text Portlet
	Introduction
	Prerequisites
	Step 1: Registering the Rich Text Producer
	Step 2: Adding the Rich Text Portlet To Your Page
	Step 3: Customizing the Rich Text Portlet at Run Time

	6 Making Portlets Communicate
	Introduction
	Prerequisites
	Step 1: Registering Portlet Producers
	Step 2: Placing the Parameter Form Portlet on a Page
	Step 3: Customizing the Parameter Form Portlet
	Step 4: Placing an OmniPortlet on a Page
	Step 5: Building an OmniPortlet That Uses a Web Service
	Step 6: Configuring the Portlets Together
	Step 7: Testing Portlet Interaction

	7 Adding Content to Your Page
	Introduction
	Prerequisites
	Step 1: Creating a Data Control
	Step 2: Adding Content to a Page at Design Time
	Step 3: Displaying Folder Content in a Table
	Step 4: Displaying Folder Content in a Tree
	Step 5: Searching Folder Content

	8 Providing Security
	Introduction
	Prerequisites
	Step 1: Creating a Login Page
	Step 2: Configuring ADF Security Settings
	Step 3: Creating a Welcome Page
	Step 4: Securing Pages
	Step 5: Mapping Security Roles in orion-web.xml
	Step 6: Demonstrating the Security Features
	Login as User Singh
	Login as User Cho
	Login as User Harvey
	Login as User King
	Try to Access a Secured Page Directly
	Enter Invalid Credentials

	Step 7: Authorizing Access to Your Data Controls

	9 Deploying Your WebCenter Application
	Introduction
	Prerequisites
	Step 1: Creating a WebCenter Application Deployment Profile
	Step 2: Deploying Directly to the Preconfigured OC4J
	Step 3: Migrating Your Security Policy
	Step 4: Running Your Deployed Application
	Step 5: Using Application Server Control Console to Manage WebCenter Applications
	Summary

	Part III Appendixes
	A How to Set Up the Tutorial Identity Store
	A.1 Creating Users
	A.2 Creating Roles and Assigning User Members
	A.3 Making Tutorial Users and Roles Available to JDeveloper's Authorization Editor

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

