
Oracle® WebCenter Framework
Building a WebCenter Application Step by Step

10g (10.1.3.2.0)

B31073-01

June 2007

Oracle WebCenter Framework Building a WebCenter Application Step by Step 10g (10.1.3.2.0)

B31073-01

Copyright © 2007, Oracle. All rights reserved.

Contributing Authors: Lalithashree Rajesh, Peter Lubbers, Promila Chitkara, Vanessa Wang

Contributors: Barry Hiern, Candace Fender, Oliver Ricordel, Peter Moskovits, Philipp Weckerle, Sue
Vickers

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

1 Introduction to the WebCenter Suite Example

What is Oracle WebCenter Suite? ... 1-1
Oracle WebCenter Framework... 1-3

Building and Consuming Portlets .. 1-3
Customizable Components ... 1-4
Content Integration... 1-4
Securing Your Application ... 1-4
Managing Your Application Throughout the Life Cycle ... 1-5

Oracle WebCenter Services... 1-5
Oracle JDeveloper .. 1-6

What Will I Create in this Example?... 1-7
How Do I Get Started? .. 1-9
How Do I Navigate the Completed Demo?... 1-9

Running the Demo.. 1-10
Viewing the Demo as a Customer .. 1-11
Viewing the Demo as a Technician .. 1-11
Viewing the Demo as a Manager.. 1-11

2 Building Your Portlets

Before You Begin .. 2-1
Creating a Project for Your Portlets... 2-1
Creating an Application Server Connection to
the Oracle WebCenter Preconfigured OC4J .. 2-3

Step 1: Building the Product Details Portlet (a JSR 168 Portlet) ... 2-4
Creating a JSR 168 Portlet ... 2-5
Creating a Web Service Proxy for Your JSR 168 Portlet ... 2-7
Adding Portlet Logic to a JSR 168 Portlet.. 2-10
Deploying a JSR 168 Portlet to an Application Server... 2-11
Register the Producer ... 2-14

iv

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet) 2-16
Creating a PDK-Java Portlet and Producer ... 2-16
Adding Portlet Logic to a PDK-Java Portlet.. 2-21
Deploying a PDK-Java Portlet to an Application Server... 2-26

Summary ... 2-28

3 Setting Up Skins

Step 1: Verifying that the Skins are Registered .. 3-1
Step 2: Verifying that Your Application is Configured to Use the New Skins 3-2
Summary .. 3-2

4 Setting Up Your Content Repository

Step 1: Setting Up a Content Directory for the Sample Content .. 4-1
Step 2: Creating a Content Project... 4-1
Step 3: Configuring a JCR Data Control .. 4-3
Summary .. 4-6

5 Creating a Public Welcome Page

Step 1: Adding a Rich Text Component ... 5-1
Step 2: Displaying a File In Place.. 5-4
Step 3: Adding Global Navigation Links .. 5-6
Step 4: Making the Welcome Page Public .. 5-11
Summary ... 5-13

6 Creating a Login Page

Step 1: Creating a Login Page... 6-2
Step 2: Creating a Login Error Page ... 6-11
Step 3: Adding a Rich Text Portlet to the Login Page... 6-14
Step 4: Editing Authorization for the Login Page ... 6-15
Step 5: Configuring the Application to Use ADF Security and the Login Page 6-16
Step 6: Updating Web.xml to Call the New Login Page .. 6-18
Step 7: Running the Application .. 6-20
Summary ... 6-20

7 Building a Page and Adding Components

Step 1: Creating the MyAcme Page... 7-2
Step 2: Registering the OmniPortlet Producer ... 7-4
Step 3: Adding Customization Components .. 7-5
Step 4: Wiring the SelectOneChoice to the ADF Table .. 7-11
Step 5: Adding a JavaServer Faces Drop-Down Component.. 7-12
Step 6: Adding a Service Request History Portlet .. 7-13
Step 7: Adding the Service Request Status Portlet ... 7-14
Step 8: Wiring the Table to the Portlets ... 7-14

Wire the OmniPortlet to the Table.. 7-15

v

Wire the Service Request Status and the Service Request History Portlets to
the Service Request Table .. 7-16

Step 9: Adding a Product Details Portlet .. 7-16
Step 10: Displaying Folder Content... 7-17
Step 11: Adding the Schedule On-Site Services Portlet... 7-18

Registering a Web Clipping Producer ... 7-19
Adding the Web Clipping Portlet... 7-19
Selecting the Web Page to Display in the Web Clipping Portlet.. 7-19

Step 12: Adding a Current Contract Based on the User ... 7-22
Step 13: Applying Security to the My Acme Page .. 7-23
Step 14: Applying Security to the Components .. 7-24
Summary ... 7-24

8 Building a Dashboard Page

Step 1: Creating the Dashboard Page ... 8-2
Step 2: Creating the Page Layout... 8-4
Step 3: Adding Instances of OmniPortlet to Your Page .. 8-9
Step 4: Adding a SelectOneChoice Component for the Service Request Volume Portlet 8-10
Step 5: Adding a Search for Customer Contracts .. 8-11
Step 6: Defining the Most Productive Employees Portlet ... 8-11
Step 7: Defining the Service Request Volume Portlet.. 8-12
Step 8: Defining the Most Requested Products Portlet ... 8-13
Step 9: Defining the Most Active Customers Portlet ... 8-13
Step 10: Defining the Customer Details Portlet .. 8-14
Step 11: Wiring the Page Content Together .. 8-15
Summary ... 8-16

9 Building a Site Administration Page

Step 1: Creating the Site Administration Page ... 9-2
Step 2: Adding the Skin Selector to the Page.. 9-3
Step 3: Enabling Customization of the Login Page ... 9-7
Step 4: Adding the Site Administration Page as a Subtab of the Management Page................. 9-9
Step 5: Using the Site Administration Page for Customization... 9-10

Changing the Skin for the Application .. 9-10
Customizing the Login Page ... 9-11

Summary ... 9-13

10 Deploying Your Application

Step 1: Creating the Generic EAR file ... 10-1
Step 2: Creating the Targeted EAR File ... 10-3
Step 3: Setting Up the Users and Roles ... 10-5
Step 4: Setting Up the Sample Content ... 10-6
Step 5: Deploying the Application... 10-6
Step 6: Deploying the Security Policy ... 10-8
Step 7: Accessing the Application .. 10-9

vi

Summary ... 10-9

Index

vii

Preface

This manual describes how to build a WebCenter application using Oracle WebCenter
Framework. The example used in this manual is based on the ADF application shown
in the Oracle Application Development Framework Developer's Guide, and shows you how
to add portal-like capabilities to an existing Oracle ADF application.

Audience
This manual is intended for the WebCenter application developer who wants to build
a WebCenter application, or the application developer who wants to use Oracle Oracle
WebCenter Framework to add customization capabilities to their application.
Accordingly, this manual assumes that the developer is already familiar with:

■ Java

■ Oracle JDeveloper

■ Oracle Application Development Framework (Oracle ADF)

■ Oracle ADF Faces

■ Oracle WebCenter Framework Tutorial

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

viii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents:

■ Oracle WebCenter Framework Release Notes

■ Oracle WebCenter Framework Developer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction to the WebCenter Suite Example 1-1

1
Introduction to the WebCenter Suite Example

This chapter introduces you to the Oracle WebCenter Suite, its features, and an
overview of the scenario used in this book.

In this chapter, you will discover answers to these key questions:

■ What is Oracle WebCenter Suite?

■ What Will I Create in this Example?

■ How Do I Get Started?

■ How Do I Navigate the Completed Demo?

After you read this chapter, you'll be ready to start creating your own WebCenter
application.

What is Oracle WebCenter Suite?
As key technologies like Wiki, RSS, and blogs change the landscape of the Internet by
empowering individuals across the globe, user demand for applications that simplify
transactions becomes more pronounced. One way to simplify transactions is to
provide everything the user needs to support a given task within the application itself.
Consider the example shown in Figure 1–1.

What is Oracle WebCenter Suite?

1-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 1–1 Sample Application

In this example, a user who is new to the company is working with an application that
enables him to add dependents to his company insurance policy. Notice that the
transaction itself is surrounded by additional context that helps the user, including the
following:

■ New Hires Tasks, in the upper left corner, provide an activity guide that shows
where the user is in the larger process of becoming acclimated to his new
company. The user's next task is also identified. This type of process orchestration
helps the user step through the entire multistep flow quickly and easily.

■ Task and process analytics let users know where they are in the process and how
decisions are affecting them. In this case, the Task Analytics on the right show the
total cost effect of the benefit choices made so far.

■ The Help Center on the bottom left provides an up to date FAQ for quick access to
typical questions and a direct chat link to the help center where the user can ask
additional questions not addressed by the FAQ. Again, no need for the user to
leave the context of the transaction to get help.

■ Knowledge Exchange, on the bottom right, provides documentation relevant to
the current task. These documents, stored in the corporate repository, give
detailed advice on the different beneficiary and dependent scenarios applicable to
the user.

Until Oracle WebCenter Suite, building this kind of application was a rather tedious
process. To gain access to the beneficiary scenarios, for example, used to involve
creating a portlet to gain a view into the JCR 1.0 Java Content Repository (JSR 170)--if
the application programming interface (API) required to do so was available. Oracle
WebCenter Suite reduces the front-end labor historically required to bring necessary
business components to the user by capitalizing on the notion of Service Oriented
Architecture (SOA). Thanks to Oracle WebCenter Suite's commitment to SOA, as well
as to the JCR 1.0 Java Content Repository (JSR 170) and other industry standards, you
get a wide range of plug-and-play products, tools, and services that make it easy to

What is Oracle WebCenter Suite?

Introduction to the WebCenter Suite Example 1-3

build the applications your users need. Figure 1–2 shows what Oracle WebCenter
Suite provides1:

Figure 1–2 Oracle WebCenter Suite

Let's examine these building blocks in more detail.

Oracle WebCenter Framework
Oracle WebCenter Framework augments the Java Server Faces (JSF) environment by
providing additional integration and run-time customization options. In essence, it
integrates capabilities historically included in Oracle Application Server Portal
(OracleAS Portal) products directly into the "fabric" of the JSF environment. This
eliminates artificial barriers for the user and provides the foundation for developing
the kinds of context-rich applications depicted in Figure 1–1.

Building and Consuming Portlets
Portlets help you bring data from the Web, database, and so on, into your application.
Using Oracle JDeveloper, you can create your own standards-based portlets to be
consumed by any JSR 168 or WSRP-compatible portal. The Oracle Application Server
Portal Developer Kit (PDK) has been enhanced to support extended portlet capabilities
as defined by WSRP 2.0 within the structure of the Java Portlet Standards APIs. From a
WebCenter application, you can consume JSR 168, WSRP 1.0, WSRP 2.0 or Oracle
PDK-Java portlets all within the same application, or even within the same page.

Several prebuilt portlets are available for use through a preconfigured Oracle
Containers for J2EE (OC4J) that is automatically available to you through JDeveloper.
Two such portlets, OmniPortlet and Web Clipping, help empower users to gather their
own data, while the Rich Text portlet enables users to publish their own
announcements and bulletins. You can make these portlets available to users by
dropping them on your page, or you can use them yourself to create the specific
portlets your users will need.

■ OmniPortlet: A portlet that enables users to easily publish data from a variety of
sources, using a variety of layouts. Users can base an OmniPortlet on almost any

1 Some components shown are not available in the initial release of Oracle WebCenter Suite:
Presence/IM, Discussions, and Wiki. This chapter provides a description of components
relevant to this release of Oracle WebCenter Framework.

What is Oracle WebCenter Suite?

1-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

kind of data source, such as spreadsheets (character-separated values), XML, Web
Services, and even application data from an existing Web page. Once the data has
been obtained, they can format it using layouts such as bulleted lists, charts,
HTML, and so on.

As a developer, you might want to use this tool to gather and format the data for
your users--for example, to create an employee directory--then place it on your
page for user consumption. Once you do so, the portlet becomes available through
JDeveloper's Component Palette for others to use in their applications.

■ Web Clipping: An extremely easy-to-use wizard that requires no technical
expertise whatsoever. Users simply locate the Web content they want to "clip",
then use the wizard to grab it and display it within their application. If the Web
content on the original site is updated, then so is the user's associated Web
Clipping.

■ Rich Text portlet: A tool that enables users to publish their own announcements
and broadcasts. When you place a Rich Text portlet on a page, during run time,
authorized users can access all the rich-text editing tools needed to insert, update,
and format display text.

Customizable Components
WebCenter Framework provides new JSF components that enable developers to make
any of their applications customizable. These new components act as containers into
which developers can drop another Faces view component or a portlet. With these
capabilities in place, administrators can customize virtually any JSF page by
minimizing or maximizing, hiding or showing, or moving any component on the
page.

Content Integration
Suppose you have data in a content management system such as Oracle Content DB,
OracleAS Portal—or even on your file system—that you want to make available to
your application. WebCenter Framework provides you with the JCR adapters you
must access that content. Using JDeveloper, you can then build JCR data controls to
grab the content and drop it onto your page in a variety of display modes. WebCenter
Framework also comes with Oracle Drive, through which you can represent the
contents of your OracleAS Portal repository as a tree-like structure, right on your
desktop.

Securing Your Application
With the Oracle ADF extensions provided in WebCenter Framework, you can define
security for an entire application, a page within the application, or for individual
actions provided by customizable components. This manual contains an illustration of
how to create a publicly accessed login page that allows users to enter their credentials
and thus gain access to various pages or components within a page. Examples are also
provided for how to create login/logout links and how to associate privileges with
various roles.

In many cases, it is desirable to leverage existing applications that have their own
authentication mechanism, such as e-mail. WebCenter Framework provides the means
to embed those applications through the use of the External Application wizard. See
the Oracle WebCenter Framework Developer's Guide for more information.

What is Oracle WebCenter Suite?

Introduction to the WebCenter Suite Example 1-5

Managing Your Application Throughout the Life Cycle
WebCenter Framework reduces the time required to build, deploy, and migrate your
applications through the use of several tools as follows:

■ Development framework: Oracle JDeveloper and Oracle ADF provide the tools
and framework you must build and update your application. Adding portlets,
content, and customization capabilities to your WebCenter application is simply a
matter of dragging and dropping the appropriate objects in either a source or
WYSIWYG environment. To simplify the test and debug phases, WebCenter
Framework includes a deployment profile (WebCenter Application WAR) that
packages and migrates your portlet customizations, content, and page
customizations to any J2EE container (such as the standalone OC4J provided) so
you can test and debug your application before deploying it to a production
server.

■ Enterprise deployment: When you're ready to deploy your application to a
production environment, Oracle WebCenter Framework's Predeployment Tool
packages and migrates your portlet customizations to your production location,
changes the pointer to your content repository, and ensures that the application
points to your production Metadata Services location. When the Predeployment
Tool completes its work, you get a target EAR file that you can then deploy to the
final location using Enterprise Manager.

■ Standards-based administration: Browser-based tools enable administrators to
deploy, configure, and manage WebCenter applications. In addition, tools built on
industry standards-based JMX methods offer administrators granular control and
monitoring mechanisms for health status, performance, and popularity. Tools for
obtaining historical performance and status reporting over time (within a single
Oracle Application Server context) are also provided. WebCenter application
metrics are delivered using the familiar Application Server Control monitoring
and management interface.

Oracle WebCenter Services
Oracle WebCenter Services offer a variety of content management, search, and
communication services, including the following:

■ Oracle Content Database (Oracle Content DB), the default content repository for
Oracle WebCenter Services. Oracle Content DB is a full-fledged content
management system that enables users to manage content through the Web or
from desktop applications. A rich library of ready-to-use Web services is provided
to content-enable your enterprise in a service-oriented environment. With Oracle
Content DB, you can do the following:

– Improve the productivity of individuals and teams with secure access to the
right content in the context of business processes

– Reduce risk associated with content, including information loss and legal
discovery

– Facilitate adaptability of business processes

– Reduce Information Technology (IT) and administrative costs through content
consolidation

Oracle Content DB bridges the gap between limited capability file servers and the
specialized, expensive, and complex content management applications that are so
widely available.

What is Oracle WebCenter Suite?

1-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

■ Oracle Secure Enterprise Search is a crawler-based service that can search a
multitude of sources, structured and unstructured, in a variety of file formats,
indexed or real-time. With Oracle Secure Enterprise Search, you can reduce the
time spent finding relevant documents on your company's information
repositories.

■ Communication Services, which help you better connect people and facilitate
communication. These services include the following:

– Instant Messaging: Lets users freely exchange ideas through audio and video
feeds, file exchange, and a range of other capabilities.

– Presence Server: Presence provides information about a person's availability to
every person or application that subscribes to that person's status. Chats and
other real-time services can be initiated from the associated user interface.

– Discussion forum: An interactive message board for sharing information,
questions, and comments.

■ Wiki is server software that enables users to freely edit and create Web page
content using a Web browser. This ease of interaction and operation makes Wiki
an effective tool for collaborative communication.

Oracle JDeveloper
Oracle JDeveloper is an integrated development environment (IDE) for building
service oriented applications using the latest industry standards for Java, XML, Web
services, and SQL. Oracle JDeveloper supports the complete software development life
cycle, with integrated features for modeling, coding, debugging, testing, profiling,
tuning, and deploying applications. Oracle JDeveloper's visual and declarative
approach and Oracle ADF work together to simplify application development and to
reduce mundane coding tasks. For example, code for many standard user interface
widgets, such as buttons, list of values, and navigation bars, are prepackaged for you.
All you have to do is select the appropriate widget from the Component Palette and
drop it into your application.

As you work through this guide, you will become more familiar with Oracle
JDeveloper and the advantages it offers. For more information about Oracle
JDeveloper, access one of the many educational aids from the Oracle JDeveloper Start
Page (Figure 1–3), accessible from Oracle JDeveloper's Help menu.

What Will I Create in this Example?

Introduction to the WebCenter Suite Example 1-7

Figure 1–3 Oracle JDeveloper Start Page

What Will I Create in this Example?
The steps in this manual show you how to add portlets, integrate existing content, and
add customization to your application, as well as create interactivity. Such
interactivity includes portlet-to-portlet communication and ADF Faces
component-to-portlet interactivity. You will also learn how to allow administrators to
customize pages at runtime.

In this manual, you will take an existing ADF application for tracking customer service
requests and add portal capabilities to the application without altering the existing
application. This service request application enables customers, technicians, and
managers view information about service requests all from the same interface. The
three scenarios are:

■ Customer (a customer of the My Acme Corporation)

■ Technician (a technician who handles service requests for the My Acme
Corporation)

■ Manager (a manager who administers the Web site and runs a team of technicans
for the My Acme Corporation)

Customer

The customer logs into the application and can view current announcements, his
existing service requests, and details about these requests, as shown in Figure 1–4. He
can also view information about the products he has purchased, as well as a list of his
current contracts with the company providing the services. He can also submit
feedback on existing service requests.

What Will I Create in this Example?

1-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 1–4 Customer View of the Service RequestApplication

Technician

The technician logs into the application and views the service requests assigned to
him, as shown in Figure 1–5, and can update existing service requests.

Figure 1–5 Technician View of the Service Request Application

Manager

How Do I Navigate the Completed Demo?

Introduction to the WebCenter Suite Example 1-9

The manager logs into the application and, at runtime, can update the announcements
that the customer views. He can also modify the page at runtime using content in the
content repository. For example, if a new service is now available to customers, the
manager can add information about this new service at runtime. The manager can also
review the feedback the customer has returned and add his own notes. He can also
view site statistics through a dashboard page, which shows the current service request
volume, the most active customers, and so on, as well as customize this dashboard
page. The manager also has access to general site administration from a single page,
where he can change the look and feel by switching skins and customize the login.
Figure 1–6 shows the manager’s view of the application.

Figure 1–6 Manager View of the Service Request Application

How Do I Get Started?
Before you begin, download and set up the sample application and supporting files.
The sample files associated with this manual are located on the Oracle WebCenter
Suite Documentation page on Oracle Technology Network (OTN) at
http://www.oracle.com/technology/products/webcenter/documentatio
n.html. Download and extract the file SRDemo_App_Download.ZIP, then follow
the instructions in the install.html file. After you have set up the files, you can
view the completed demo, as described in the next section, or continue to Chapter 2,
"Building Your Portlets" to start building the application.

How Do I Navigate the Completed Demo?
After you install and set up the sample files, you can view the completed, working
version of the demo so you can see what you are going to build in the following
chapters. This section describes the demo and how to use the demo at runtime.

How Do I Navigate the Completed Demo?

1-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Running the Demo
To run the demo:

1. In your browser, go to the following URL:

http://localhost:8888/SRDemo/faces/app/SRWelcome.jspx

2. Log into the application using the following login information:

User ID: sking

Password: welcome

3. The first page that displays is the welcome page for the Service Request
application. The page is visible to the public (unauthenticated) users, and contains
a Help and About page. There are two components on the welcome page: a Rich
Text portlet and HTML content from a content repository.

■ The Rich Text Portlet provides an easy way for site administrators to provide
new announcements, text, and other HTML updates at runtime directly from
the running application. Users who are not logged in can only view and
refresh the portlet.

■ The images and text for the welcome page is HTML content located in a
file-based content repository.

4. Click the My Acme tab to set up and view some of the other components in the
application.

5. On the My Acme page, click the Schedule On-Site Service sub-tab to access the
Web Clipping portlet.

6. Click Customize. Then, you can follow the steps in Section , "Step 11: Adding the
Schedule On-Site Services Portlet" to select the Web page for the portlet.

7. Next, you will need to set up the database connection for the OmniPortlets in the
demo, so that you can run them. Click the SR Information sub-tab.

8. Next to the Service Request History portlet, click Customize.

9. On the Source tab, click Edit Connection, then enter the database connection
details. The database connection information should be the same as the
information you entered when you installed the sample files.

10. Click Finish. You should now be able to use the portlets in the application.

Note: The application uses portlets that already have a hostname for
its URL or DB connection. You will need to modify the hostname for
the application to be fully functional.

Note: Once you edit the connection of one OmniPortlet instance in
the demo, all OmniPortlet instances should use the same connection
information (for example, all the portlets on the My Dashboard page
should now work properly). You can always customize each
OmniPortlet if you find they do not use the same connection.

How Do I Navigate the Completed Demo?

Introduction to the WebCenter Suite Example 1-11

Viewing the Demo as a Customer
There are three different types of users built into the application: customer, technician,
and manager. To view the application from a customer’s perspective, log in using the
following information:

■ User ID: dfaviet

■ Password: welcome

As the customer you can view the status and history of your service requests. Click
the MyAcme tab and then select a service request to view more details.

Viewing the Demo as a Technician
To view the application from a customer’s perspective, log in using the following
information:

■ User ID: ahunold

■ Password: welcome

As the technician, you can also view customer service request status and histories.
Click the My Acme tab and select one of the open service requests to view the latest
information about that service request. You can modify that service request on the My
Service Requests tab.

You also have access to additional components that a customer is not able to see. On
the My Acme page, on the Product Information sub-tab, a new component (JSR 168
portlet) lets you view product details about the specific washers, dryers, and so on.

Finally, you have access to the Schedule On-Site Service sub-tab where an external
application enables you to view the next available on site service that can be
scheduled.

Viewing the Demo as a Manager
To view the application from a customer’s perspective, log in using the following
information:

■ User ID: sking

■ Password: welcome

As the manager, you see all tabs available within the application. Click the
Management tab, then click the Dashboard sub-tab to see information about service
requests within the application. You can view the following details:

■ Search for customer contracts. For example, type "df%" and click Search to view
the contact for the customer dfaviet.

■ View details of the most active customers. For example, click Urman to view the
customer details for Jose Manul Urman.

■ View the service volume over a specified time period.

The manager is also the Site Administrator. Click the Management tab again, then
click Site Administration. You can modify the skin of the application by selecting one
of the available skins.

How Do I Navigate the Completed Demo?

1-12 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Building Your Portlets 2-1

2
Building Your Portlets

In this chapter, you will learn how to build two different types of portlets: a Java
portlet that uses JSR 168 and a PDK-Java portlet that uses Oracle-specific APIs.

This chapter contains the following sections:

■ Before You Begin

■ Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

■ Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

Before You Begin
Before you begin the steps in this chapter, ensure that you have completed the steps in
the install.html file located in the sample files you downloaded. Then, perform
the following steps:

■ Creating a Project for Your Portlets

■ Creating an Application Server Connection to the Oracle WebCenter
Preconfigured OC4J

Creating a Project for Your Portlets
To make it easy to find things in your application, you can create projects to contain
your portlets.

To create a project for your portlets:

1. In the Applications Navigator, right-click the SRDemoSample _Starter
application and select New Project.

2. In the Items list, shown in Figure 2–1, select Empty Project and click OK.

Before You Begin

2-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–1 Create an Empty Project

3. In the Project Name field, enter ProdDetailPortlet.

4. Use the default directory name, then click OK to create the project.

5. To view the project properties, right-click the project name (in this case,
ProdDetailPortlet), then choose Project Properties from the pop-up menu.

6. Select the technology scope of the project (that is, the technologies you will be
including in the project): Java, JSP and Servlets, and Portlet, as shown in
Figure 2–2.

Before You Begin

Building Your Portlets 2-3

Figure 2–2 Technology Scope of Your New Project

7. Click OK.

8. Create a second project by following steps 1 through 7 again, and name the project
SRStatusPortlet.

9. Save the application.

Creating an Application Server Connection to the Oracle WebCenter Preconfigured
OC4J

Before you can deploy portlets to your application serverOracle JDeveloper, you first
need to establish a connection to your Oracle WebCenter Preconfigured OC4J, which
is embedded in Oracle JDeveloper.

To create an application server connection to the preconfigured OC4J:

1. In Oracle JDeveloper, click the Start WebCenter Preconfigured OC4J icon. A
readme.html file displays that contains the connection information for the
preconfigured OC4J.

2. In the Connections Navigator, right-click Connections and select New
Application Server Connection.

3. If you are on the Welcome page of the Create Application Server Connect Wizard,
click Next to display the Type page.

4. In the Connection Name field, shown in Figure 2–3, enter SRDemoConnection.

5. From the Connection Type list, select Standalone OC4J 10g 10.1.3.

Tip: If you cannot see the Connections Navigator, select Connection
Navigator from the View menu.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

2-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–3 Create Application Server Connection: Type

6. Click Next to display the Authentication page.

7. Enter the Application Server Control Console administrator's user name and
password for the relevant middle tier. Typically, the administrator’s user name is
oc4jadmin and the password is welcome.

8. Click Next to display the Connection page.

9. In the Host Name field, enter localhost.

10. In the RMI Port field, enter the port number to which the Remote Method
Invokation (RMI) server binds to the OC4J server. The default value for the
preconfigured OC4J is 22667.

11. Click Next to display the Test page.

12. Click Test Connection to verify the connection. A success message should appear
if everything is correct. If the test fails, you may need to review your connection
information.

13. Click Finish.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)
To build a simple JSR 168 portlet, we've included steps for building a sample Service
Requests Status portlet. Once you deploy this portlet, you will be able to add it to your
My Acme page. To view a live demo version of a more highly interactive JSR 168
portlet using Ajax, simply run the completed version of the Service Request Demo.

For more information about JSR 168 portlets, refer to Oracle WebCenter Framework
Developer's Guide.

Building a JSR 168 portlet involves the following tasks:

■ Creating a JSR 168 Portlet

■ Adding Portlet Logic to a JSR 168 Portlet

■ Deploying a JSR 168 Portlet to an Application Server

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

Building Your Portlets 2-5

Creating a JSR 168 Portlet
Oracle WebCenter Framework provides a Java Portlet Wizard that enables you to
quickly create a simple implementation for each mode of your portlet. Let us use this
wizard to get started creating our portlet.

To create a JSR 168 portlet:

1. In Oracle JDeveloper, the Applications Navigator, within the SRDemoSample_
Starter application, right-click the ProdDetailsPortlet project and select New.

2. In the New Gallery, expand the Web Tier category and select Portlets.

3. In the Items list, shown in Figure 2–4, select Standards-based Java Portlet (JSR
168) to build a JSR 168 portlet.

Figure 2–4 Create a New JSR 168 Portlet

4. Click OK to display the JSR 168 Java Portlet Wizard.

5. If you are on the Welcome page of the wizard, click Next to display the Web
Application page.

6. Select Servlet 2.4\JSP 2.0 (J2EE 1.4).

7. Click Next to display the General Portlet Properties page.

8. In the Name and Class fields, shown in Figure 2–5, enter
ProductDetailsPortlet and clear the Enable WSRP V2-inter-portlet
communication using Oracle extensions check box.

Tip: If this project does not exist, follow the instructions provided in
Creating a Project for Your Portlets earlier in this chapter.

Tip: If a Web application has already been created for the project,
you may not see this page of the wizard and instead go straight to the
General Portlet Properties page.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

2-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

The wizard creates a class with this name to represent the portlet.

Figure 2–5 JSR 168 Portlet General Portlet Properties

9. Click Next.

10. In the Display Name field, shown in Figure 2–6, enter Product Details
Portlet.

11. In the Portlet Title field, enter Product Details Portlet.

12. In the Short Title field, enter Product Details.

Figure 2–6 JSR 168 Portlet Name and Attributes

13. Click Finish to accept the default settings for the rest of the portlet attributes.

Your Product Details portlet now displays in the Applications Navigator as shown
in Figure 2–7.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

Building Your Portlets 2-7

Figure 2–7 Product Details Portlet in the Applications Navigator

14. Save your work.

Creating a Web Service Proxy for Your JSR 168 Portlet
This JSR 168 portlet uses a Web Service as its data source. Before you can use a Web
Service with a portlet in your application, you must first create a Web Service proxy
for your portlet project.

To create a Web Service proxy:

1. Right-click the ProdDetailPortlet project that contains your ProductDetailsPortlet,
then choose New.

2. Under the Business Tier node, shown in Figure 2–8, choose Web Services, then
choose Web Service Proxy.

Tip: If you do not see the Business Tier node in the New Gallery, you
may need to Filter By All Technologies by selecting the option from
the drop-down list.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

2-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–8 New Gallery: Web Service Proxy

3. Click OK.

4. On the Welcome page of the wizard, click Next.

5. On the Web Service Description page, shown in Figure 2–9, enter the WSDL of the
Web Service , such as:

http://localhost:8888/ProductDetailsWS/ProductDetailsWSSoapHttpPo
rt?WSDL

Note: In this WSDL, localhost and port refer to the system where
you deployed the Web Service. The Web Service is deployed in the
SRDemo OC4J.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

Building Your Portlets 2-9

Figure 2–9 Set the Web Service Description

6. Click Next.

7. After Oracle JDeveloper builds the model for the Web Service, you should see the
page shown in Figure 2–10, where you can validate the end point URL for your
Web Service:

Figure 2–10 Validate the Web Service Port Endpoints

8. Click Finish to accept the default values for the rest of the Web Service Proxy
parameters.

9. Close the ProductDetailsWSSSoapHttpPortClient.java file.

Note: You may need to click Next again if you do not see the
Building Model dialog box display.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

2-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Adding Portlet Logic to a JSR 168 Portlet
At the moment your portlet does not do very much. In fact, it just displays a Welcome
message and allows the end user to personalize the portlet title. To make the portlet
perform the specific function that you require, you need to extend the sample code
with the business logic that implements the desired functionality and features.

First, your portlet will display a list of product types. The list is retrieved from a Web
service. Later on, you will extend the portlet, allowing the end user to pick a product
type, and select a particular product. When selecting a product, detailed information
will display, including a brief description, and an image.

To add portlet logic to a JSR 168 portlet:

1. In the Applications Navigator, expand the Web Content node, right-click
view.jsp, then select Open to open the file in the Visual Editor.

2. At the bottom of the Visual Editor, click the Source tab to view the source code of
the page.

3. Replace the existing code with the code shown in Example 2–1.

Example 2–1 Code for view.jsp

<%@ page contentType="text/html"
import="javax.portlet.*,java.util.*,portlets.ProductDetailsPortlet,portlets.resour
ce.ProductDetailsPortletBundle"%>

<%@ page contentType="text/html"
import="portlets.proxy.ProductDetailsWSSoapHttpPortClient,portlets.proxy.types.pro
ductdetailsws.types.ProductDetailsBean"%>

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>

<portlet:defineObjects/>

<%
 String prodType = renderRequest.getParameter("prodType");
%>

<table cellpadding="10%">
 <tr>
 <td>

 Product Types

 </td>
 <td>

 Products

 </td>
 <td>

 Details

 </td>

Tip: To locate view.jsp, expand the following nodes under the
SRDemoSample_Starter application: Portlets > Web Content >
ProductDetailsPortlet\html.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

Building Your Portlets 2-11

 </tr>
 <tr>
 <td>
<%
 ProductDetailsWSSoapHttpPortClient proxy = new
ProductDetailsWSSoapHttpPortClient();
 Vector productTypes = proxy.getProductTypes();
 for (int i=0; i<productTypes.size(); i++)
 {
 PortletURL productURL = renderResponse.createRenderURL();
 productURL.setParameter ("prodType",
productTypes.elementAt(i).toString());
%>

 <a href="<%=productURL%>">
 <%= productTypes.elementAt(i) %>

<%
 }
%>

 </td>
 </tr>
</table>

4. From the File menu, select Save All.

Deploying a JSR 168 Portlet to an Application Server
After you have finished building your portlet, you need package it and deploy to the
portlet container.

1. In the Applications Navigator, right-click the ProdDetailPortlet project and select
New.

2. In the New Gallery, expand the General category and select Deployment Profiles.

3. In the Items list, shown in Figure 2–11, select WAR File.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

2-12 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–11 Create a WAR Deployment File

4. Click OK to display the Create Deployment Profile -- WAR File dialog box.

5. In the Deployment Profile Name field, shown in Figure 2–12, enter
ProductDetailsPortlet.

6. Use the default directory.

Figure 2–12 Create Deployment Profile -- WAR File Dialog Box

7. Click OK to display the WAR Deployment Profile Properties dialog box.

8. Select Specify J2EE Web Context Root, and in the corresponding field, enter
ProductDetailsPortlet as shown in Figure 2–13.

Tip: You can also get to this dialog box by right-clicking the web.xml
file in the Applications Navigator and selecting Create WAR
Deployment File.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

Building Your Portlets 2-13

Figure 2–13 WAR Deployment Profile Properties

9. Click OK.

10. In the Applications Navigator, shown in Figure 2–14, expand the Portlets >
Resources node to see the deployment file.

Figure 2–14 ProductDetailsPortlet.deploy in the Applications Navigator

11. From the File menu, choose Save All.

12. Right-click ProductDetailsPortlet.deploy and, from the Deploy to menu, shown in
Figure 2–15, choose SRDemoConnection.

The Configure Application dialog box displays.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

2-14 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–15 Configure Application Dialog Box

13. Click OK.

14. When the Deployment finished message displays in the Deployment Log, verify
that no errors occurred.

Register the Producer
Now that you have created and deployed your portlet, you are ready to consume it in
your application. You register the portlet producer with the application which enables
you (or the application developer) to add the portlet to a page.

To register the producer:

1. Since portlet producers are associated with your application, you can right-click
the application or any project within the application to invoke. The easiest way,
however, is to open the New Gallery from the UserInterface project. The
technology scope of the UserInterface project is set up so that the producer
registration wizards show up in your New Gallery.

2. Choose New from the pop-up menu.

3. Under Web Tier > Portlets, choose WSRP Producer Registration, then click OK.

4. On the Welcome page, click Next.

Note: If SRDemoConnection does not appear in the menu, follow the
steps provided in the step Creating an Application Server Connection
to the Oracle WebCenter Preconfigured OC4J earlier in this chapter.

Tip: If you do not see the Business Tier node in the New Gallery, you
may need to Filter By All Technologies by selecting the option from
the drop-down list.

Step 1: Building the Product Details Portlet (a JSR 168 Portlet)

Building Your Portlets 2-15

5. On the Name page, shown in Figure 2–16, enter ProductDetailsProducer in
the Name field, then click Next.

Figure 2–16 WSRP Producer Name

6. On the Connection page, shown in Figure 2–17, enter the URL for the WSRP
container of your preconfigured OC4J, for example:

http://localhost:6688/ProductDetailsPortlet/portlets/wsrp1?WSDL

Figure 2–17 WSRP Producer URL

7. Click Next.

8. After Oracle JDeveloper creates the connection, click Finish. When the success
message displays, click OK.

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

2-16 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–18 Successful WSRP Producer Registration Message

9. The portlet is now ready for you to add to a page.

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)
In our Service Request application, we want to be able to display the current status of
a particular service request, given the service request ID. We can build a portlet to
display this information.

For more information about PDK-Java portlets, refer to the Oracle WebCenter
Framework Developer's Guide.

Building a PDK-Java portlet involves the following tasks:

■ Creating a PDK-Java Portlet and Producer

■ Adding Portlet Logic to a PDK-Java Portlet

■ Deploying a PDK-Java Portlet to an Application Server

Creating a PDK-Java Portlet and Producer
Oracle WebCenter Framework provides a Java Portlet Wizard that enables you to
quickly create a simple implementation for each mode of your portlet. Let's use this
wizard to get started creating our portlet.

1. In Oracle JDeveloper, in the Applications Navigator, expand the
SRDemoSample_Starter application.

2. Right-click the SRStatusPortlet project and select New.

3. In the New Gallery, expand the Web Tier category and select Portlets.

4. In the Items list, select Oracle PDK-Java Portlet, as shown in Figure 2–19

Tip: If this project does not exist, follow the instructions provided in
Creating a Project for Your Portlets earlier in this chapter.

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

Building Your Portlets 2-17

Figure 2–19 Create a New PDK-Java Portlet

5. Click OK to display the Java Portlet Wizard.

6. If you are on the Welcome page of the wizard, click Next to display the Web
Application page.

7. Click Next to display the Portlet Description page.

8. In the Portlet Name field, enter SRStatusPortlet.

This is an internal name only and is not exposed to end users.

9. In the Display Name field, enter Service Request Status Portlet.

This is the name that appears in portlet selection lists, such as the Oracle
JDeveloper Component Palette, where users choose which portlets to add to a
page.

10. In the Description field, enter:

This portlet displays status information about a given
service request.

11. In the Timeout (seconds) field, leave the default value of 40.

12. In the Timeout message field, enter:

Service Request Status Portlet timed out

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

2-18 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–20 Portlet Description Page

13. Click Next to display the View Modes page.

14. The Show page check box is selected by default. For Show mode:

a. In the Implementation style list, make sure JSP is selected.

b. In the File name field, keep the default value of
SRStatusPortletShowPage.jsp.

15. We will not have a Show Details mode for this portlet, so leave the Show details
page check box cleared.

Figure 2–21 Show Modes Page

16. Click Next to display the Customize Modes page.

17. The Edit page check box is selected by default. For the Edit mode:

a. In the Implementation style list, make sure that JSP is selected.

b. In the File name field, keep the default value of
SRStatusPortletEditPage.jsp.

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

Building Your Portlets 2-19

18. We will not have an Edit Defaults mode for this portlet, so leave the Edit Defaults
page check box cleared.

Figure 2–22 Customize Modes Page

19. Click Next to display the Additional Modes page.

20. Select the Help page check box. For Help mode:

a. From the Implementation style list, select HTML File.

b. In the File name field, keep the default value of
SRStatusPortletHelpPage.html.

21. Select the About page check box. For About mode:

a. From the Implementation style list, select HTML File.

b. In the File name field, keep the default value of
SRStatusPortletAboutPage.html.

Figure 2–23 Additional Modes Page

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

2-20 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

22. Click Next to display the Public Portlet Parameters page.

23. On the Public Portlet Parameters page, click Add.

24. Change the Name of the new parameter to ServiceReqID.

25. Change the Display Name of the new parameter to ServiceReqID.

26. Change the Description of the new parameter to Service Request ID.

Figure 2–24 Public Portlet Parameter

27. Click Next to display the Public Portlet Events page.

28. Click Next to display the Producer Description page.

29. In the Producer name field, enter srstatusproducer.

30. Ensure all the check boxes are selected: Generate deployment properties file,
Generate XML entries, Generate index JSP.

Figure 2–25 Producer Description Page

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

Building Your Portlets 2-21

31. Click Finish to generate the files for your portlet. If you expand all the nodes
under the SRStatusPortlet project in the Applications Navigator, you should see
the following files:

■ A file for each portlet mode you selected:

– SRStatusPortletAboutPage.html

– SRStatusPortletEditPage.jsp

– SRStatusPortletHelpPage.html

– SRStatusPortletShowPage.jsp

■ web.xml

■ _default.properties

■ srstatusproducer.properties

■ provider.xml

■ index.jsp

All of these files are required to deploy and run the portlet successfully, except for
index.jsp, which is used by Oracle JDeveloper for testing purposes.

Figure 2–26 Files Generated for the Service Request Status Portlet

32. From the File menu, select Save All.

Adding Portlet Logic to a PDK-Java Portlet
At the moment, your portlet does not do very much. In fact, it just displays a welcome
message and allows the end user to personalize the portlet title. To make the portlet
perform the specific function that you require, you need to extend the sample code
with wht business logic that implements the desired functionality and features.

The Service Request Portlet needs to query the SRDemo database to find out the status
of a particular service request, given its service request ID, and then display that
information in a table.

1. In the Applications Navigator, right-click the SRStatusPortlet project and select
New.

2. In the New Gallery, expand the General category and select Simple Files.

3. In the Items list, select Java Class.

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

2-22 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 2–27 Create a Java Class

4. Click OK to display the Create Java Class dialog box.

5. In the Name field, enter SRConnectionUtil.

6. Leave the rest of the options in this dialog box as their default values.

Figure 2–28 Create Java Class Dialog Box

7. Click OK.

8. Replace the generated code with the code shown in Example 2–2.

Example 2–2 Code to Create a Connection to the SRDemo Database

package srstatusportlet;

import java.sql.Connection;
import java.sql.SQLException;

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

Building Your Portlets 2-23

import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.sql.DataSource;

public class SRConnectionUtil {
 public SRConnectionUtil() {
 }

 public static Connection getConnection ()
 {
 InitialContext ctx;
 DataSource ds;
 Connection conn = null;
 try
 {
 ctx = new InitialContext();
 ds = (DataSource) ctx.lookup("jdbc/SRDemoCoreDS");
 conn = ds.getConnection();
 }
 catch (NamingException ne)
 {
 conn = null;
 }
 catch (SQLException sqle)
 {
 conn = null;
 };
 return conn;
 }

}

This class creates a connection to the SRDemo database, against which we will
execute a query in the portlet code.

9. Save the file.

10. If you have not already done so, create a database connection pointing to your
srdemo schema as described in the install.html file located in the sample files
you downloaded.

11. In the Applications Navigator, right-click SRStatusPortletShowPage.jsp and
select Open.

12. Select the Source tab to view the source code for the page.

13. Select the existing code and replace it with the code shown in Example 2–3.

Example 2–3 Code for the Service Request Status Portlet

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="oracle.portal.provider.v2.ParameterDefinition"
 import="srstatusportlet.SRConnectionUtil"
 import="java.sql.Connection"
 import="java.sql.Statement"
 import="java.sql.ResultSet"
 import="java.sql.SQLException"
%>

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

2-24 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);

 // Reading the service request ID, as a parameter
 String SRID = pReq.getParameter("ServiceReqID");

 // Creating the database connection
 Connection conn = SRConnectionUtil.getConnection();

 // Testing if the parameter has been wired. If no parameter is passed
 // it is set to 104, by default.
 if (SRID == null)
 {
 %>
 Please map the service request ID to this portlet's input parameter.
 <%
 SRID = "104";
 }

 if (conn == null) {
 %>
 Couldn't connect to the database.
 <%
 }
 else
 try
 {
 Statement stmt = conn.createStatement();
 // Constructing the SELECT statement
 String query =
 "SELECT svr_id, status, " +
 "users1.first_name || ' ' || users1.last_name createdby, " +
 "users2.first_name || ' ' || users2.last_name assignedto, " +
 "TO_CHAR(assigned_date, 'Dy, Mon DD, YYYY') " +
 "FROM service_requests, users users1, users users2 " +
 "WHERE svr_id = " + SRID + " AND " +
 "users1.user_id = service_requests.created_by AND " +
 "users2.user_id = service_requests.assigned_to";

 // Executing the query.
 ResultSet rs = stmt.executeQuery(query);
 // Stepping through the result set.
 while (rs.next())
 {
%>
<table>
 <tr>
 <td>

 Service Request ID:

 </td>
 <td>

 <%=rs.getInt(1)%>

 </td>
 </tr>

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

Building Your Portlets 2-25

 <tr>
 <td>

 Status:

 </td>
 <td>

 <%=rs.getString(2)%>

 </td>
 </tr>
 <tr>
 <td>

 Created on:

 </td>
 <td>

 <%=rs.getString(5)%>

 </td>
 </tr>
 <tr>
 <td>

 Created By:

 </td>
 <td>

 <%=rs.getString(3)%>

 </td>
 </tr>
 <tr>
 <td>

 Assigned To:

 </td>
 <td>

 <%=rs.getString(4)%>

 </td>
 </tr>
</table>

<%
 } //while
 } // try
 catch (SQLException sqle)
 {
 System.out.println ("DB Connection established successfully but ran into
an issue while working with the DB.");
 System.out.println (sqle);
 }
 conn.close();

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

2-26 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

%>

This code first calls the Java class we created earlier to connect to the database.
Then it sets the service request ID based on a parameter passed to it (if no
parameter is passed, the service request ID is set to a default value of 100). Using
this service request ID, the portlet then queries the SRDemo database to find the
status of the service request. Finally the results of this query are printed in an
HTML table.

14. Save the file.

15. Right-click SRStatusPortletAboutPage.html and select Open.

16. In the Design view, enter the following text:

Service Request Status Portlet

MyAcme, Copyright

17. Save the file.

18. Right-click SRStatusPortletHelpPage.html and select Open.

19. In the Design view, enter the following text:

This portlet displays status information about a given
service request, based on a parameter (service request ID) it
receives. If the portlet does not work as expected, it may
not have been wired properly.

20. Save the file.

Deploying a PDK-Java Portlet to an Application Server
After you have finished building your portlet, you are ready to deploy it to your
preconfigured OC4J.

1. In the Applications Navigator, locate the web.xml file under SRStatusPortlet >
Web Content > WEB-INF.

2. Right-click the web.xml and select Create WAR Deployment Profile

3. In the Deployment Profile Name field, enter SRStatusPortletApp.

4. Use the default directory.

Figure 2–29 Create Deployment Profile -- WAR File Dialog Box

5. Click OK to display the WAR Deployment Profile Properties dialog box.

6. Select Specify J2EE Web Context Root, and in the corresponding field, enter
SRStatusPortlet.

Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)

Building Your Portlets 2-27

Figure 2–30 WAR Deployment Profile Properties Dialog Box

7. Click OK.

8. In the Applications Navigator, expand the Resources node to see the deployment
file.

Figure 2–31 SRStatus Portlet Deployment File

9. From the File menu, choose Save All.

10. Right-click SRStatusPortletApp.deploy and from the Deploy to menu, select
SRDemoConnection.

The Configure Application dialog box displays.

Note: If SRDemoConnection does not appear in the menu, follow the
steps provided in Creating an Application Server Connection to the
Oracle WebCenter Preconfigured OC4J earlier in this chapter.

Summary

2-28 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

11. You can accept the defaults here, so click OK.

12. When the Deployment finished message displays in the Deployment Log, verify
that no errors occurred.

Figure 2–32 Deployment Log

13. Register the producer following the same steps you used in "Register the
Producer" for the JSR 168 portlet, using the URL:

http://localhost:6688/SRStatusPortlet/providers

The JSR 168 portlet and PDK-Java portlet you created are now ready for you to
add to your application.

Summary
In this chapter, you learned how to build a JSR 168 portlet and a PDK-Java portlet and
how to deploy them for use with a WebCenter application. You can now register the
producer with an application and add the portlet to a page. You will do just that in
Chapter 7, "Building a Page and Adding Components". Before you move onto building
the page and adding components however, you can continue to Chapter 3, "Setting Up
Skins".

Setting Up Skins 3-1

3
Setting Up Skins

In this chapter, you will configure your application to use the skins you downloaded
as part of the demo application, so that they are available for selection when running
your application.

Before you can perform the tasks in this chapter, you must have extracted the skins
from the skins.zip file to the appropriate folder by performing the steps in the
install.html document available as part of the SRDemo_App_Download.ZIP.
This ZIP file contains two skins, myCompany and limerine, and the corresponding
image files you may require. By default, the srdemo skin is available as part of the
SRDemoSample_Starter application.

This chapter includes the following sections:

■ Step 1: Verifying that the Skins are Registered

■ Step 2: Verifying that Your Application is Configured to Use the New Skins

Step 1: Verifying that the Skins are Registered
To apply the new skins, myCompany and limerine for your application, you must
first ensure that these skins are registered with your WebCenter application. For this,
you must ensure that the adf-faces-skins.xml file, which contains information
about all the skins available for the application, contains entries for these three skins.

For more information about skins, including how to create new skins, refer to Oracle
Application Development Framework Developer's Guide.

To verify that the three new skins are registered with your application, perform the
following steps:

1. In the Applications Navigator, expand the UserInterface project.

2. Expand the Web Content folder, then the WEB-INF folder.

3. Right-click adf-faces-skins.xml and select Open.

4. Ensure that the code in bold text in Example 3–1 exists in the file.

Example 3–1 Entries for Skins in adf-faces-skins.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://xmlns.oracle.com/adf/view/faces/skin">

 <skin>
 <id>srdemo.desktop</id>
 <family>srdemo</family>
 <render-kit-id>oracle.adf.desktop</render-kit-id>

Step 2: Verifying that Your Application is Configured to Use the New Skins

3-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

 <style-sheet-name>skins/srdemo/srdemo.css</style-sheet-name>
 </skin>
 <skin>
 <id>mycompany.desktop</id>
 <family>mycompany</family>
 <render-kit-id>oracle.adf.desktop</render-kit-id>
 <style-sheet-name>skins/mycompany/myCompanySkin.css</style-sheet-name>
 </skin>
 <skin>
 <id>limerine.desktop</id>
 <family>limerine</family>
 <render-kit-id>oracle.adf.desktop</render-kit-id>
 <style-sheet-name>skins/limerine/limerine.css</style-sheet-name>
 </skin>
</skins>

5. Close the file.

Step 2: Verifying that Your Application is Configured to Use the New
Skins

To use a different skin, the <skin-family> tag in the adf-faces-config.xml file
must have been updated with the family name of the desired skin. The
adf-faces-config.xml file contains information about the skin to be used at run
time. In most cases, the skin family name is hardcoded in the configuration file.

However, in our application we want the administrator to be able to select a skin at
run time. For this, the skin family name in the adf-faces-config.xml file must use
expression language (EL), instead of being hardcoded. This section describes the
procedure to verify this.

To verify that the adf-faces-config.xml file uses an EL for the skin family name,
perform the following steps:

1. In the Applications Navigator, expand the <SRDemoSample> application.

2. Expand the UserInterface project.

3. Expand the Web Content node, then the WEB-INF node.

4. Right-click adf-faces-config.xml and select Open.

5. In the Structure pane, select skin-family.

6. In the Property Inspector, ensure that skin-family is set to
#{skinBean.currentSkin}.

Summary
In this chapter, you learned how to register new skins with your application and
configure the application to use the new skins. You can now provide users the option
to change the skin at run time. Chapter 11, "Building a Site Administration Page"
describes the steps involved in enabling this type of customization.

Setting Up Your Content Repository 4-1

4
Setting Up Your Content Repository

In this chapter, you will learn how to set up your content repository from a content
directory located on your local drive. Later, you will integrate content from this
repository with the JSPX pages that you will build, as you implement procedures in
other chapters.

To setup your content repository, you will configure your local directory as a File
System Java Content Repository (JCR) data control that provides you with search,
advancedSearch, getURI, and getItems methods. The getURI and getItems
methods enable you to add content as links, tables, and hierarchical trees. The search
and advancedSearch methods enable you to provide the search and advanced
search functionality for the content that you add.

In this chapter, you will perform the following steps:

■ Step 1: Setting Up a Content Directory for the Sample Content

■ Step 2: Creating a Content Project

■ Step 3: Configuring a JCR Data Control

Step 1: Setting Up a Content Directory for the Sample Content
Before configuring the File System data control, set up the content directory on your
local drive by performing the steps in section titled "Set Up the Sample Content" in the
install.html file located in the sample files you downloaded.

Step 2: Creating a Content Project
In this section, you will create a project for which you will configure the data control in
the next step.

To create your project, perform the following steps:

1. In Oracle JDeveloper, go to the Applications Navigator. Under Applications,
right-click SRDemoSample_Starter and select New. The New Gallery dialog box
is displayed.

2. Under Items, select Empty Project, as shown in Figure 4–1 and click OK. The
Create Project dialog box is displayed.

Step 2: Creating a Content Project

4-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 4–1 The New Gallery Dialog Box - Empty Project

3. Enter Content in the Project Name field, as shown in Figure 4–2 and click OK. The
Content project displays in the Applications Navigator, as shown in Figure 4–3.

Figure 4–2 New Project

Step 3: Configuring a JCR Data Control

Setting Up Your Content Repository 4-3

Figure 4–3 Applications Navigator - Content Project

Step 3: Configuring a JCR Data Control
In this section, you will configure a File System JCR data control that can access and
publish content located on your local drive.

To configure your File System data control, perform the following steps:

1. Under the Applications Navigator, right-click Content and select New. The New
Gallery dialog box is displayed.

2. Under Categories, expand the Business Tier node and select Content Repository.
Then, under Items select Content Repository Data Control as shown in
Figure 4–4, and click OK. The Create Data Control dialog box is displayed.

Step 3: Configuring a JCR Data Control

4-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 4–4 The New Gallery Dialog Box - Content Repository Data Control

3. In the Create Data Control dialog box, click Next to skip the Welcome page.

4. On step 1, enter SRContentRepository as the name for the data control, and
then click Next.

5. On step 2, select File System from the Repository Type box.

6. In the Base Path field, enter the path to the folder in which your content is placed,
that is, C:\srdemo\SRContentRepository.

7. Click the Test button to check the connection. You should see the Success!
message, as shown in Figure 4–5.

Figure 4–5 Test Connection to the SRContentRepository

8. Click OK to close the message box, and then click Finish.

Step 3: Configuring a JCR Data Control

Setting Up Your Content Repository 4-5

Your Applications Navigator should show new entries under
Content\Application Sources, as shown in Figure 4–6.

Figure 4–6 Files for the New Data Control

9. To display the methods of the SRContentRepository data control, select Data
Control Palette from the View menu.

Under SRContentRepository, you should see a hierarchical list of methods,
parameters, and operators for the new data control, as shown in Figure 4–7.

Summary

4-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 4–7 Data Control Palette - SRContentRepository

Summary
In this chapter, you learned to configure your content repository from a content
directory located on your local drive. You will access the content repository in
Chapter 5, "Creating a Public Welcome Page".

Creating a Public Welcome Page 5-1

5
Creating a Public Welcome Page

This chapter shows you how to create a welcome page in the SRDemo application and
customize it for your users. You will add a rich text component that displays
announcement text to the end user and display a file in place from the sample content
repository you set up in Chapter 4, "Setting Up Your Content Repository". You will
then make the welcome page public so that any user can view it, as well as add a
Login link so that users can enter their user ID and password to view information in
the application specific to them. The welcome page you create will look like the
Figure 5–1.

Figure 5–1 Overview of the Welcome Page

This chapter includes the following sections:

■ Step 1: Adding a Rich Text Component

■ Step 2: Displaying a File In Place

■ Step 3: Adding Global Navigation Links

■ Step 4: Making the Welcome Page Public

Step 1: Adding a Rich Text Component
The steps in this section show you how to add a rich text component to the existing
welcome page in the application. This rich text component will display

Step 1: Adding a Rich Text Component

5-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

announcements to the public user. The manager of the company, who has site
administration access, can update this announcement at runtime.

To add a rich text component:

1. From the SRDemoSample_Starter application, open the Design view of the
SRWelcome.jspx page, located under UserInterface, Web Content, app.

2. Locate the image acmecenter.jpg.

3. Click the Source tab to view the source code of the page.

4. Delete the image from the page by removing the following code:

 <af:objectImage height="376"
 width="800"
 source="../images/acmecenter.jpg"/>

This snippet of source code should now look like Figure 5–2.

Figure 5–2 panelGroup with the Acmecenter.jpg Deleted

You will now add the Rich Text portlet at this location.

5. Before you can add the Rich Text portlet, you must first register it. However, to
find the registration URL for the Rich Text Portlet Producer, do the following first:

a. Start the preconfigured OC4J.

b. If the readme page does not open by default, from the Help menu, select
WebCenter Preconfigured OC4J Readme.

c. On the readme page, click the index page link in the Index Page section.

d. On the WebCenter Preconfigured OC4J index page, click Rich Text Portlet
Producer under WSRP Portlet Producers.

e. Click WSRP v2 WSDL.

f. Save the URL from the address bar of the browser. Use this URL during the
producer registration.

6. To register the Rich Text portlet producer, right-click the UserInterface project and
choose New.

7. In the New Gallery dialog box, filter by All Technologies, then choose Web Tier,
Portlets, WSRP Producer Registration.

8. In the Name field, enter RichTextPortletProducer, then click Next.

9. In the URL Endpoint field, enter the URL for the WSDL of the WSRP v2 Producer
in your preconfigured OC4J. This is the URL you saved in step 5.

10. Click Next, then click Finish.

11. In the Structure pane, click to select the panelHorizontal component that
originally contained the image.

12. From the Component Palette, choose RichTextPortletProducer, then select Rich
Text Portlet from the list. The new portlet displays within the panelHorizontal
component.

Step 1: Adding a Rich Text Component

Creating a Public Welcome Page 5-3

13. Select the Rich Text Portlet and open the Property Inspector.

14. Set the AllModesSharedScreen property to true.

15. Set the Width to 600 pixels.

16. Right-click SRWelcome.jspx and go to the page definition.

17. Edit authorization and grant Customize privilege to manager.

You must do this as managers should be able to customize the content of the Rich
Text portlet on the page.

18. Save the page.

19. In the Applications Navigator, right-click SRWelcome.jspx and choose Run.

Due to a standard J2EE security constraint on all JSP and JSPX files, you will
automatically be redirected to the default SRDemo login page, which is a simple
JSP page that contains static HTML. You can log on as three different users:
ahunold, sking, and dfaviet as shown in Figure 5–3.

Figure 5–3 The SRDemo Login Page

If you log in as sking, then you will see all the tabs, including the management
tab shown on the far right in the following figure.

The portlet at runtime looks like Figure 5–4.

Figure 5–4 Tabs Displayed When Logged In As Manager

If you log in as ahunold, you will not see the management tab, because ahunold
is not a manager.

20. In your browser, click the arrow on the Rich Text portlet, then choose Customize
to customize the text of the portlet.

21. Customize the portlet to include the following text:

Step 2: Displaying a File In Place

5-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Welcome to My Acme Corporation!

Introducing the Service Request Portal (Version 5.0)

Here you can get help with questions and/or issues with your My Acme appliance.

View the My Acme page to view your current service request information such as
status, history, and much more. Now available, product manuals for the new
Fridge Freezer F011s appliance.

To format this text:

a. Select the first sentence and choose a larger font, then click the Bold icon.

b. To create a hyperlink in the text, select the My Acme text (underlined in the
sample text), then click the Hyperlink icon in the Rich Text Editor. Enter the
URL you selected into the field, for example:

http://localhost:port/SRDemo/faces/app/SRWelcome.jspx

Step 2: Displaying a File In Place
Users have many options on how to display content by using content management
systems. While a common way is to display the content as links, developers may also
want to display the content of a text or HTML file directly within the application, due
to formatting or for other reasons. Using JCR, you can display the file in place and still
manage the content from within the content management system.

The steps in this section show you how to display a file from your content repository
on an existing page. This lets you edit the page without changing the application that
is rendering the page.

To display a file in place:

1. If it is not already open, open the existing SRWelcome.jspx page from
SRDemoStarter, UserInterface, Web Content, app.

2. From the ADF Faces Core library, select a panelHorizontal and drag it on to
the panelPage, below the panelHorizontal that contains the Rich Text portlet.

3. Set the panelHorizontal halign to center.

4. In the Data Control Palette, expand SRContentRepository. You created this data
control earlier in Chapter 4, "Step 3: Configuring a JCR Data Control".

5. Under getURI(String), expand the Return node and drag URI (Figure 5–5)
into the panelHorizontal.

Note: To avoid issues with text formatting, first copy this text to
Notepad and then copy it from there to your portlet.

Tip: If you cannot see the Data Control Palette, select Data Control
Palette from the View menu.

Step 2: Displaying a File In Place

Creating a Public Welcome Page 5-5

Figure 5–5 getURI in the Data Control Palette

6. From the Create menu, select Text and ADF Output Text.

This displays the Action Binding Editor, as shown in Figure 5–6.

Figure 5–6 Action Binding Editor

7. In the Value field for the path parameter, enter /welcome.html.

8. Click OK.

9. View the source of the page and add the code shown in Example 5–1 below the
OutputText:

Example 5–1 getURI Sample Code

<f:verbatim>
 <iframe height="450" width="850"
src="${pageContext.request.contextPath}${bindings['getURI_returnURI'].inputValue}"
frameborder="0">
</iframe>
</f:verbatim>

Step 3: Adding Global Navigation Links

5-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

10. Save the file.

11. Run SRWelcome.jspx.

Enable Public Users to Execute the getURI Method
Since the welcome page is a public page, you must define that the getURI method
(used to show the file from the content repository) can be executed by public users.

To change the access privileges:

1. Open the page definition.

2. Under bindings in the structure pane, right-click getURI1.

3. From the pop-up menu, select Edit Authorization.

Refer to the chapter titled "Securing Your WebCenter Application" in Oracle
WebCenter Framework Developer's Guide for more information about setting user
privileges.

4. In the dialog box, select invoke against the Anyone role for the method
oracle.SRDemo.......getURI1_return.

You should see the welcome page displayed as well as a URL which is produced by
the OutputText. Go back to Oracle JDeveloper and delete the OutputText from the
structure pane.

Step 3: Adding Global Navigation Links
You will have noticed that running SRWelcome.jspx redirects you to the default
SRDemo application login page. In the initial starter version of the SRDemo,
authorization within the application is implemented through J2EE security role
membership.

J2EE security secures a path based on roles. Constraints are defined for specific URL
patterns and these are mapped to constraints that are in turn mapped to roles. For
example, the URL pattern faces/app/* can be mapped to all available roles so that
everybody in those specific roles can access all the pages in the application. You can
configure constraints for your application to recognize in the web.xml file. For
example, you can configure a constraint that maps the manager role to the URL
pattern faces/app/manager/* as shown in Example 5–2 (new constraint shown in
bold text):

Example 5–2 Example of the Security Constraints in the web.xml file

<!-- Security Constraints == -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>J2EE-Secured-Application</web-resource-name>
 <url-pattern>faces/app/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 <role-name>staff</role-name>
 <role-name>technician</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
 </security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>J2EE-Secured-Application</web-resource-name>

Step 3: Adding Global Navigation Links

Creating a Public Welcome Page 5-7

 <url-pattern>faces/app/manager/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>
 </security-constraint>

Refer to the chapter titled "Securing Your WebCenter Application" in Oracle WebCenter
Framework Developer's Guide for more information about defining security constraints.

At runtime, a deployment descriptor maps the roles to the identity store. The policies,
that is, the definition of which users belong to which roles and what they have access
to, are specified in a JAZN resource providers, like JAZN-XML, which specifies its
settings in the file system-jazn-data.xml or JAZN-LDAP, which can use Oracle
Internet Directory. In the Oracle JDeveloper development environment, we use the
system-jazn-data.xml file to store this policy information as shown in
Example 5–3.

Example 5–3 Definition of the User and Role Mapping in the system-jazn-data.xml File

<role>
 <name>manager</name>
 <members>
 <member>
 <type>user</type>
 <name>sking</name>
 </member>
 </members>
</role>

Additionally, Expression Language can be used in the application to show and hide
particular menu items like the management tab, which only shows up for managers.
Figure 5–7 shows how the management tab is shown or hidden based on the
membership of the Manager role.

Step 3: Adding Global Navigation Links

5-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 5–7 Display of UI Elements Based on Membership

This internally maps to the isManager function in the UserInfo class, which
determines membership of the named role as shown in Example 5–4.

Example 5–4 EL to Define What UI Elements Must Be Displayed

/**
 * Function designed to be used from EL for rendering UI Features based on
 * membership of the "manager" role.
 * @return boolean
 */
 public boolean isManager() {
 return (checkIsUserInRole("manager"));
 }

In the WebCenter version of the SRDemo, we want to implement a finer-grained
security model, based on the ability to perform a specific action, rather than role
membership.

Unlike J2EE security, which is based on URLs, the use of JAAS-based ADF Security
allows us to implement different levels of access for a given page. For example, View,
Customize, and Edit.

To add ADF security-based global navigation links to the page, perform the following
steps:

1. In the Applications Navigator, open SRWelcome.jspx.

2. In the Structure pane, navigate to menuGlobal PanelPage facets.

3. In the design view, drag a menuButtons component onto the menuGlobal.

4. Next, drag three CommandMenuItems into the menuGlobal facet on the top right
corner of the page. You can also drop them into the appropriate node in the
structure pane.

Step 3: Adding Global Navigation Links

Creating a Public Welcome Page 5-9

5. For the first commandMenuItem, select the Text property in the Property Inspector
and add an expression to the text property by clicking the Bind to Data icon as
shown in Figure 5–8. This displays the Bind to Data dialog box.

Figure 5–8 CommandMenuItem Properties

6. Under JSP Objects, open the res class and scroll down to the
srdemo.menu.home entry. Select this and press the right arrow to return the
required expression language, and click OK.

7. Set the Action property for the commandMenuItem to GlobalWelcomeHome.

The icons for the various skins we are going to use are stored in individual skin
images directories and we can use the skin bean (described in chapter 4) to return
the directory structure that relates to the current skin which can be wrapped in EL

8. Set the Icon property for the first commandMenuItem as follows:

/skins/#{skinBean.currentSkin}/skin_images/home.gif

9. As the default skin already has labels in the icons, you must turn off the
navigation buttons' text labels by setting the Text property of the
commandMenuItem to the following:

text="#{skinBean.iconOnly ? null : res['srdemo.menu.home']}"

10. Repeat the same steps for the other two commandMenuItems and set the
properties as follows:

■ For commandMenuItem two, select GlobalHelp for the Action property and
srdemo.menu.help for the Text property.

Set the Icon property for the second commandMenuItem as follows:

/skins/#{skinBean.currentSkin}/skin_images/help.gif

Note: Some of the skins' icons contain text to indicate the action,
while others require a separate text label. The skin bean has a function
to define which skins require just an icon and which skins require
icons plus text.

Step 3: Adding Global Navigation Links

5-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

■ For commandMenuItem three, select GlobalAbout for the Action property
and srdemo.menu.info for the Text property.

Set the Icon property for the third commandMenuItem as follows:

/skins/#{skinBean.currentSkin}/skin_images/info.gif

In the Source view, the commandMenuItem definitions will now look like
Example 5–5.

Example 5–5 Example Language Used for the Action of a Command Button

<af:menuButtons>
 <af:commandMenuItem text="#{skinBean.iconOnly ? null : res['srdemo.menu.home']}"
 action="GlobalWelcomeHome"
 icon="/skins/#{skinBean.currentSkin}/skin_images/home.gif"/>
 <af:commandMenuItem text="#{skinBean.iconOnly ? null : res['srdemo.menu.help']}"
 action="GlobalHelp"
 icon="/skins/#{skinBean.currentSkin}/skin_images/help.gif"/>
 <af:commandMenuItem text="#{skinBean.iconOnly ? null : res['srdemo.menu.info']}"
 action="GlobalAbout"
 icon="/skins/#{skinBean.currentSkin}/skin_images/info.gif"/>
</af:menuButtons>

11. In the structure pane, add a goMenuItem right before the first
commandMenuItem.

a. Select the Text property in the Property Inspector and add an expression to the
text property by clicking the Bind to Data icon. Under JSF Managed Beans,
scroll down to the authNLink entry. Select the label property and press the
right arrow to return the required expression language,
text="#{authNLink.label }", which is then further updated.

b. Click OK.

Because some skins have text included in their icons, you must update the text
property to allow for icons that contain a label by setting the property as
follows:

text="#{skinBean.iconOnly ? null : authNLink.label }"

c. Set the Destination property to the JSF Managed Beans, authNLink URL as
follows:

destination="#{authNLink.URL}"

d. Set the icon property to a context-sensitive skin icon as follows:

/skins/#{skinBean.currentSkin}/skin_images/#{authNLink.icon}

AuthnLink is a managed bean that keeps track of the user's authenticated state
and sets the login and logout link and associated icons automatically. See the
chapter titled "Securing Your WebCenter Application" in the Oracle WebCenter
Framework Developer's Guide for more information.

Step 4: Making the Welcome Page Public

Creating a Public Welcome Page 5-11

12. To display the name of the user who has logged in, open the Component Palette
and select JSF HTML and then select OutputFormat. Drag it on the top of
infoUser in the Structure pane.

13. Bind the Value property to srdemo.connectedUser under JSP Objects/res.

14. Bind the rendered property to #{authNLink.authenticated} under JSF
Managed Beans (the value is a boolean that returns true or false based on the
authenticated status).

15. In the Component Palette, select JSF Core and then select a Param component.
Drag it to the Structure pane on top of the outputFormat object and set the
following properties:

■ Name: currentUserparam

■ Value: #{userInfo.userName} (exposing the current user) (under JSF
Managed Beans/userInfo)

■ Set escape: false

Step 4: Making the Welcome Page Public
To make the welcome page ultimately publicly accessible (after ADF Security has been
configured), you must define an access policy which states that the page will be
viewable by all users, whether they are authenticated or anonymous (that is, available
to anyone) To do this, perform the following steps:

1. Right-click SRWelcome.jspx and go to the page definition.

2. Edit authorization and grant View privilege to anyone, as shown in Figure 5–9.

Note: The SRDemo version of the AuthnLink login component
defines a boolean managed property (returnHomeOnLogout) that
allows the developer to specify that the user should be returned to the
application's home page (specified in the authnLink's homePage
managed property) rather than staying on the current page when they
log out of the application.

Note: The AuthnLink.currentUser property also returns the
name of the current authenticated user and could be used to display
the logged in user. In this case, however, we are using the userInfo
bean for backward compatibility with the previous version of the
SRDemo application.

Step 4: Making the Welcome Page Public

5-12 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 5–9 Authorization Editor

This will add the view privilege to the anyone role in the
system-jazn-data.xml file. In an application protected by ADF security, (This
will be turned on in the next chapter) each user is automatically made a member
of this pseudo role (the anyone role principal is automatically added to the user's
subject) Therefore, a public page is a special type of secured page that is available
to everyone. This is different from J2EE security, in which a public page is defined
by the simple lack of security constraints against that page. The ADF security
model therefore differentiates between a page secured for public access and the
absence of a secured implementation.

3. In the Applications Navigator, under the Web Content/WEB-INF folder,
right-click the orion-web.xml file and choose Properties. The OC4J Web
Application Deployment Descriptor dialog box is displayed.

4. Make sure the Run as Mode and Do as Privileged Mode options under JAZN are
already selected, as shown in Figure 5–10.

Note: We will run the page after we build the login page and activate
ADF Security in the next chapter.

Summary

Creating a Public Welcome Page 5-13

Figure 5–10 orion-web.xml Properties

5. Click OK.

Summary
In this chapter, you learned how to create a welcome page, add portlets to it, and add
content from a content repository. You also learned to make the page publicly available
and add a login link for users to access information using their credentials.

Summary

5-14 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Creating a Login Page 6-1

6
Creating a Login Page

In this chapter you will create the new login page that users are redirected to for
authentication. WebCenter applications typically have a notion of public pages and
allow for explicit as well as implicit authentication. This means that users can log into
the application by clicking the login link before they navigate to secured content
(explicit), or they can navigate to a secured page, which will redirect them to the login
page for the application (implicit). See "Securing your WebCenter Application" in the
Oracle WebCenter Framework Developer's Guide for more information about implicit and
explicit authentication. Figure 6–1 shows a sample login page you are going to build in
this chapter.

Figure 6–1 Login Page From the SRDemo Application

The SRDemoSample_Starter application already contains a login page,
SRLogin.jspx, which is located as shown in Figure 6–2.

Step 1: Creating a Login Page

6-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 6–2 Original SRDemo Login Page

Since the login page uses a login form, you do not typically use an ADF Faces page for
a login page, because the ADF Faces lifecycle will remap the login form's submit action
and its form fields to internal references, which would break the login functionality.
However, the login page is an important part of the application. It can contain
customizable information such as portlets and data controls and it can also benefit
from skinning features that are available to ADF Faces pages. Alternatively, you may
also want to implement a login portlet. In this chapter you will learn how you can
build an ADF Faces-based login page for the SRDemo application. This login page's
form also uses the J2EE security container login method, j_security_check. This
chapter includes the following sections:

■ Step 1: Creating a Login Page

■ Step 2: Creating a Login Error Page

■ Step 3: Adding a Rich Text Portlet to the Login Page

■ Step 4: Editing Authorization for the Login Page

■ Step 5: Configuring the Application to Use ADF Security and the Login Page

■ Step 6: Updating Web.xml to Call the New Login Page

■ Step 7: Running the Application

Step 1: Creating a Login Page
To create the ADF Faces-based login page, perform the following steps:

1. In the Applications Navigator, under the UserInterface project, expand the Web
Content folder if necessary.

2. Right-click the infrastructure folder (shown in Figure 6–2) and select New.

3. In the New Gallery dialog box, expand the Web Tier node.

4. Select JSF.

5. In the Items list, select JSF JSP.

6. Click OK to display the Create JSF JSP dialog box.

7. If you are on the Welcome page of the wizard, click Next to display the JSP File
page.

8. In the File Name field, enter SRLoginADF.jspx.

9. Select JSP Document (*.jspx).

10. Click Next to display the Component Binding page.

11. Select Automatically Expose UI Components in a New Managed Bean.

Step 1: Creating a Login Page

Creating a Login Page 6-3

12. Click Next to display the Tag Libraries page and select ALL Libraries.

13. Make sure that the following libraries are listed in Selected Libraries:

■ JSF Core

■ JSF HTML

■ ADF Faces Components

■ ADF Faces HTML

■ ADF Portlet Components

■ Customizable Components Core

14. Click Finish to create the page.

15. Save the page.

16. In the Source View of the SRLoginADF.jspx page, copy the code shown in
Example 6–1 and paste just before the f:view tag.

Example 6–1 Reference to the SRDemo Resource Bundle

<!-- Resource Bundle for Translatable Strings within Application =========== -->
<f:loadBundle basename="oracle.srdemo.view.resources.UIResources" var="res"/>

17. Save the file.

18. Switch to Design View.

19. From the Component Palette, select ADF Faces Core.

20. Select a PanelPage component and drag it on to the body element in the Structure
pane. When prompted, do not add a form, because we will add our own form later
and delete the default form element.

21. Change the Title property, by binding it to a string from the resource bundle
that ships with the application. In the Property Inspector, click Title.

22. Click the Bind to Data icon (the database icon at the top of the Property Inspector).
This displays the Bind to Data dialog box.

23. Under JSP objects, select res and find the srlogin.pageTitle variable.

24. Move it to the Expression field and click OK.

25. Add some facets in the page title key, srlogin.pageTitle. To do so, find the
existing branding facet code shown in Example 6–2.

Example 6–2 The Original Branding Facet

<f:facet name="branding"/>

26. Replace the branding image facet code with the facet code shown in Example 6–3.
This will set the logo image within the branding facet to reflect the appropriate
company branding logo for the chosen skin.

Example 6–3 The New Branding Facet

<!-- Site Branding Section (Top Left of Page) ============================== -->
 <f:facet name="branding">
 <af:objectImage source="/skins/#{skinBean.currentSkin}/skin_
images/SRBranding.gif"/>
 </f:facet>

Step 1: Creating a Login Page

6-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

27. Next, add the copyright facet to the new login page. In the SRLoginADF.jspx
page, find the existing copyright facet code shown in Example 6–4.

Example 6–4 The original Copyright facet

<f:facet name="appCopyright"/>

28. Replace this copyright facet with the facet shown in Example 6–5. This will load
the branding image from the skin bean, which ensures that it can be changed at
run time, when the skin is changed.

Example 6–5 The Copyright Facet

<!-- Copyright Message -->
 <f:facet name="appCopyright">
 <h:panelGroup>
 <af:outputText value="#{res['srdemo.copyright']}"/>
 <af:objectSpacer width="10" height="10"/>
 </h:panelGroup>
 </f:facet>

29. Now that you have created the login page as an ADF Faces page, you cannot just
add the login form using form elements from the Component Palette. This would
cause the form elements to be serialized and remapped at runtime by the ADF
Faces lifecycle. Instead, we will design the page such that the login component is
independent from the form surrounding the active JSF components (Those that
submit back to the Faces lifecycle). While this could be achieved by using verbatim
tags inside the JSF page, it greatly increases the complexity and limits the
flexibility available. To allow the login component to be treated as a single element
(rather than a series of escaped HTML tags), which can be moved around the page
and easily skinned, you can separate the HTML form from the User Interface and
inject it dynamically at runtime. This can be achieved by including it in the
backing bean and exposing the returned HTML in an OutputText object that is
rendered in the User Interface. To do this, perform the following steps:

a. Open the Backing Bean, SRLoginADF.java, located in the
backing/infrastructure folder, as shown in Figure 6–3, to add the
HTML injection code to the Backing Bean so that it can be pulled into the page
at runtime. The basis for this code is to generate the appropriate HTML
directly in the page. As such, the various getter methods return the
appropriately marked up HTML as a simple string. The advantage of using
this dynamically generated HTML is the ability to include references to the
skin information. The integration of the HTML into the Faces page is
simplified by removing the need for verbatim tags and CDATA escapes
within the page.

Note: The code is available in the SRLoginADF_Backing_
Code.txt file located in the starter ZIP file (in the root directory).

Step 1: Creating a Login Page

Creating a Login Page 6-5

Figure 6–3 Location of SRLoginADF.java in the Applications Navigator

b. Now add the Java code to the file. To do so, add the import statements shown
in Example 6–6.

Example 6–6 Import Statement

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpSession;
import oracle.adf.share.ADFContext;
import oracle.adf.view.faces.component.core.output.CoreMessages;
import oracle.srdemo.view.util.JSFUtils;

c. Add Backing Bean properties to top of SRLoginADF.java, as shown in
Example 6–7. These getter methods for these properties will later be
referenced in Expression Language in the login page.

Example 6–7 Backing Bean Properties

private String _loginStyleBlock = null;
private String _loginScriptBlock = null;
private String _loginFormBlock = null;
private boolean _validLoginAttempt = true;

Table 6–1 describes these properties.

d. Insert the getloginStyleBlock getter method in the Backing Bean. See
Example 6–8.

Table 6–1 Backing Bean Properties in the SRLoginADF.java File

Variable Description

loginStyleBlock Contains the HTML for defining a CSS class

loginScriptBlock Contains the HTML for the required JavaScript used by the login
form

loginFormBlock Contains the HTML for the login form itself

validLoginAttempt A boolean value that indicates whether the current user is able
to perform another login attempt or not. This is set to false if
the user exceeds the number of valid login attempts.

Step 1: Creating a Login Page

6-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

This generates a simple stylesheet that defines flashing text that is used by the
login form to indicate that the authentication process is taking place. The
HTML that is generated by this method is invisible, and as such, the output
string can be rendered outside of the body of the page.

Example 6–8 getloginStyleBlock Getter Methods

/**
 * ==
 * Function to generate the CSS style class referenced in Login Form
 * ==
 * @return
 */
public String getloginStyleBlock()
{
 _loginStyleBlock = "\n\n"
 + "<!--
========= CSS Style Block Generated in Backing Bean ========= -->\n"
 + "<style type=\"text/css\">\n"
 + ".VP_Blink {text-decoration: blink;}\n"
 + "</style>\n"
 + "<!--
 === -->"
 + "\n\n";
 return (_loginStyleBlock);
}

e. Insert the getloginScriptBlock getter method the Backing Bean. See
Example 6–9.

This method generates the <script> block that contains the JavaScript
functions that are used by the login form. These include field validation and
form-submission actions. As the JavaScript is dynamically generated, it is
possible to include the references to the current skin as well as appropriate
strings from the resource bundle. For example, if the current skin is set to
myCompany, then the following line sets the JavaScript alert message to be the
value that is defined in the resource bundle key:
SRLoginADF.myCompany.jsAlert.

String alertMsg = JSFUtils.getStringFromBundle("SRLoginADF." +
currentSkin + ".jsAlert");

In a similar way, the method determines the correct icon to indicate that the
authentication is in progress and generates the URL to that icon based on the
Faces external context.

Example 6–9 getloginScriptBlock Getter Methods

/**
 * ==
 * Method getloginScriptBlock() to generate a JScript Submit form block.
 * This function implements the current skin and generates simple JavaScript
 * to validation the user input prior to the Authentication submit action.
 * ==
 * @return
 */
public String getloginScriptBlock()
{
 String currentSkin = (String)
 JSFUtils.getManagedBeanValue("skinBean.currentSkin");

Step 1: Creating a Login Page

Creating a Login Page 6-7

 String alertMsg = JSFUtils.getStringFromBundle("SRLoginADF."
 + currentSkin +
 ".jsAlert");
 String valPwdMsg = JSFUtils.getStringFromBundle("SRLoginADF."
 + currentSkin +
 ".AuthMsg");
 String urlBaseRef =
FacesContext.getCurrentInstance().getCurrentInstance().getExternalContext().getReq
uestContextPath();
 String processIcon = urlBaseRef + "/skins/" + currentSkin + "/skin_
images/process_animation.gif";

 _loginScriptBlock = "\n\n"
 + "<!--
======== JavaScript Block Generated in Backing Bean ========= -->\n"
 + "<SCRIPT language=\"JavaScript\" type=\"text/JavaScript\">\n"
 + "(new Image(32,32)).src=\"" + processIcon +"\";\n"
 + "function SubmitForm(AuthFrm){\n"
 + "var alertMsg =\"" + alertMsg + "\";\n"
 + "var valPwdMsg = \"" + valPwdMsg + "\";\n\n"
 + "if (((AuthFrm.j_username.value == null) || (AuthFrm.j_
username.value ==\"\")) ||\n"
 + " ((AuthFrm.j_password.value == null) || (AuthFrm.j_
password.value ==\"\")))\n"
 + " {\n alert(alertMsg);\n return false;\n }\n else\n {\n"
 + " var divTag = document.getElementById(\"vp\");\n"
 + " divTag.innerHTML = '<table width=\"50\" border=\"0\"><tr>'
+\n"
 + " '<td align=\"center\"><img src=\""
 + processIcon + "\" width=\"32\"
 height=\"32\"></td>' +\n"
 + " '<td align=\"left\"><font size=\"-2\"
 class=\"VP_Blink\">' + valPwdMsg +
 '</td>' +\n"
 + " '</tr></table>';\n"
 + " return true;\n"
 + " }\n}\n"
 + "</SCRIPT>\n"
 + "<!--
 === -->"
 + "\n\n";
return (_loginScriptBlock);
}

f. Insert the getLoginFormBlock getter method in the Backing Bean. See
Example 6–10.

This method generates a string that defines the HTML login form that is
rendered inside the page. As the HTML is dynamic it is able to include
references to the current skin as well as keys in the resource bundle.
Furthermore, as the login page is designed to be customized after login, the
HTML is sensitive to the authenticated state of the user in that the HTML
disabled property is dynamically set using the ADF security context's
isAuthenticated(); method.

In this case, if the login page is accessed once the user is authenticated, then
the login page (while rendered) is deactivated to prevent subsequent login
attempts. For example, this is the case when the page is accessed from the site
administration page, as discussed in Chapter 9, "Building a Site
Administration Page".

Step 1: Creating a Login Page

6-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

In the following example, you can see that the string variable htmlDisable is
either "disabled="true"", or null, based on the ADF Security context's
isAuthenticated state:

String htmlDisable
=(ADFContext.getCurrent().getSecurityContext().isAuthenticated() ?
"disabled=\"true\"" : null);

The following code snippet shows you how the htmlDisable string is
subsequently used to activate or disable the form elements, such as input
fields and Submit button:

<input type=\"text\" name=\"j_username\" "+ htmlDisable + "/></td>\n"

Example 6–10 getLoginFormBlock Getter Method

/**
 * ===
 * Method getLoginFormBlock() generates the standard Credential Form used
 * by container security. The function implements the current skin values and
 * returns the required HTML which is subsequently output using an OutputText
 * object populated using EL. While this could also have been achieved by
 * directly using the Verbatim tags within the JSPX itself, this would require the
 * use of CDATA escapes and complicates the design of the page (the login form
 * is exposed through a faces component in this case.)
 *
 * Note as the Login Page contains customizable components, the HTML form elements
 * generated are disabled if the user is currently authenticated.
 * ==
 * @return
 */

public String getLoginFormBlock()
{
 String currentSkin = (String)
JSFUtils.getManagedBeanValue("skinBean.currentSkin");
 String userNameLabel = JSFUtils.getStringFromBundle("SRLoginADF."
 + currentSkin +
 ".userName");
 String passwordLabel = JSFUtils.getStringFromBundle("SRLoginADF."
 + currentSkin +
 ".password");
 String submitButtonLabel = JSFUtils.getStringFromBundle("SRLoginADF." +
 currentSkin +
 ".buttonLabel");
 String htmlDisable =
(ADFContext.getCurrent().getSecurityContext().isAuthenticated() ?
"disabled=\"true\"" : null);

 _loginFormBlock = "\n\n"
 + "<!--
======== Login Form Block Generated in Backing Bean ========= -->\n"
 + "<form name=\"LoginForm\" id=\"LoginForm\" \n"
 + " action=\"j_security_check\" method=\"POST\"
 onSubmit=\"return SubmitForm(this)\" >\n"
 + "<table cellspacing=\"5\" cellpadding=\"0\" border=\"0\"
 width=\"50%\" bgcolor=\"#FFFFFF\" width=\"240\" >\n"
 + " <tr>\n"
 + " <td nowrap>" + userNameLabel + "</td>\n"
 + " <td nowrap><input type=\"text\" name=\"j_username\"
 " + htmlDisable + "/></td>\n"

Step 1: Creating a Login Page

Creating a Login Page 6-9

 + " </tr>\n"
 + " <tr>\n"
 + " <td nowrap>" + passwordLabel + "</td>\n"
 + " <td nowrap><input type=\"password\" name=\"j_password\"
 " + htmlDisable + "/></td>\n"
 + " </tr>\n"
 + " <tr>\n"
 + " <td nowrap height=\"34\"><DIV id=\"vp\"></DIV></td>\n"
 + " <td nowrap>\n"
 + " <input type=\"submit\" value=\"" + submitButtonLabel +
 "\" " + htmlDisable + "/></td>\n"
 + " </td>\n"
 + " </tr>\n"
 + "</table>\n"
 + "</form>\n"
 + "<!--
 === -->"
 + "\n\n" ;
 return (_loginFormBlock);
}

g. Save the file.

30. From the Component Palette, select ADF Faces Core.

31. Select PanelHorizontal and drag it on to the page component.

32. Set the Valign property to middle in the Property Inspector.

33. Select ObjectImage from the ADF Faces Core Component Palette and drag it onto
the PanelHorizontal component. Set the source attribute to the following
value:

/skins/#{skinBean.currentSkin}/skin_images/LoginSplash.gif

34. Select ObjectSpacer and drag it on to the page just below the ObjectImage
component.

35. From the Component Palette, select Customizable Components Core.

36. Select PanelCustomizable and drag it below the ObjectSpacer element you just
added in the Structure pane. When prompted, do not add a form, because we will
add our own form later and delete the default form element.

37. Set the Layout property for the PanelCustomizable component to vertical.

38. From the Component Palette, select ADF Faces Core.

39. Now add the following to the PanelCustomizable component:

■ an objectSpacer

■ an objectSeparator

■ an objectSpacer

■ a panelHorizontal

set the Halign property to center

■ an objectSpacer

■ an objectSeparator

■ an objectSpacer

40. Select PanelBox and drag it onto the PanelHorizontal component.

Step 1: Creating a Login Page

6-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

41. Set the Text property of the PanelBox to be the login component header by
referencing the resource bundle, using expression language (EL). To do this, click
the Bind to Data icon. This displays the Bind to Data dialog box.

42. Under JSP objects, select res and find the SRLoginADF.credentialHeader
variable.

43. Select OutputText from the ADF Faces Core Component Palette and drag it onto
the PanelBox component.

44. In the Property Inspector, bind the Value property of the OutputText
component to data from a managed bean by selecting JSF Managed Beans,
backing_infrastructure_SRLoginADF, and then loginFormBlock as shown in
Figure 6–4.

Figure 6–4 Bind to Data

45. Set the OutputText component's Escape property to false.

46. Drag another OutputText component above the body tag in the Structure pane,
just below the top of the page, as shown in Figure 6–5.

Step 2: Creating a Login Error Page

Creating a Login Page 6-11

Figure 6–5 Structure Pane

47. Bind the Value property to data from the backing bean by selecting JSF Managed
Beans, backing_infrastructure_SRLoginADF, and loginStyleBlock and set the
Escape property to false.

48. Drag another OutputText component onto the Structure pane, just above the body
tag.

49. Bind the Value property to data from the backing bean by selecting JSF Managed
Beans, backing_infrastructure_SRLoginADF, and loginScriptBlock, and then set
the Escape property to false.

50. In the SRLoginADF.jspx page, open the panelPage node in the Structure pane,
then drag the Messages component onto the messages facet.

51. Save the file.

Step 2: Creating a Login Error Page
To create a login error page, perform the following steps:

1. In the Applications Navigator, under the UserInterface project, expand the Web
Content node, if necessary.

2. Right-click the infrastructure folder (shown in Figure 6–2) and select New.

3. In the New Gallery dialog box, expand the Web Tier node.

4. Select JSP.

5. In the Items list, select JSP.

6. Click OK to display the Create JSP dialog box.

Step 2: Creating a Login Error Page

6-12 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

7. If you are on the Welcome page of the wizard, click Next to display the Create JSP
page.

8. In the File Name field, enter SRLoginErrorPage.jsp.

9. On the Error Page Options page of the wizard, select Do Not Use an Error Page to
Handle Uncaught Exceptions in This File.

10. On the Tag Libraries page, select All Libraries, and then select JSTL Core 1.1 and
move it to the Selected Libraries list.

11. Click Finish.

12. Add the JSTL code shown in Example 6–11 just before the <html> element to
track the login attempts.

Example 6–11 JSTL Code to Track the Number of Login Attempts

<!-- ===
 For the SRDemo Demo we will track the number of Login Attempts against the file
 based repository (In a deployed system this would be handled by the IdM system).
 This counter is then used in the backing bean to define if the login attempt
 is valid (referenced in EL as "loginAttemptValid").
 === -->
<c:set var="LoginErrorCount"
 scope="session"
 value="${sessionScope.LoginErrorCount == null ? 1
:sessionScope.LoginErrorCount + 1}"/>
<c:redirect url="/faces/infrastructure/SRLoginADF.jspx"/>

This JSTL code stores in a simple session variable the number of times the error
page is called (due to invalid login) and redirects the user back to the original
login page where the actual processing takes place.

13. Save the SRLoginErrorPage.jsp file.

14. Open the backing bean, SRLoginADF.java and add the getMessages1()
method shown in Example 6–12.

The following two methods use the Faces external context to return the session
variable that was set by the JSTL in the error page, to determine the number of
times the user has attempted to log in.

The following code snippet shows you how to return the session variable based on
the Faces context and the associated HTTP session. The returned object is
converted to a local integer to evaluate whether the user's login attempt is valid or
not. For example, a three-attempt limit can thus be enforced.

FacesContext facesContext = FacesContext.getCurrentInstance();
HttpSession session =
(HttpSession)facesContext.getExternalContext().getSession(true);
Object loginAttempts = session.getAttribute("LoginErrorCount");
Integer loginAttemptCount = (loginAttempts == null)? 0 :
Integer.parseInt(loginAttempts.toString());

Step 2: Creating a Login Error Page

Creating a Login Page 6-13

Example 6–12 getMessage1() Method

/**
 * ===
 * Function getMessages1() determines the current number of login failures and
 * sets the appropriate error message in the Faces Context
 * ===
 * @return
 */
 public CoreMessages getMessages1()
 {
 if (!ADFContext.getCurrent().getSecurityContext().isAuthenticated())
 {
 String currentSkin = (String)
 JSFUtils.getManagedBeanValue("skinBean.currentSkin");
 FacesContext facesContext = FacesContext.getCurrentInstance();
 HttpSession session = (HttpSession)
 facesContext.getExternalContext().getSession(true);
 Object loginAttempts = session.getAttribute("LoginErrorCount");
 Integer loginAttemptCount = (loginAttempts == null)? 0 :
 Integer.parseInt(loginAttempts.toString());
 String loginErrorMessage = null;
 if (loginAttemptCount >0)
 {
 if (loginAttemptCount >2) {
 loginErrorMessage = JSFUtils.getStringFromBundle(
 "SRLoginADF." + currentSkin +
 ".tooManyLoginAttempts");
 }
 else {
 loginErrorMessage = JSFUtils.getStringFromBundle(
 "SRLoginADF." + currentSkin + ".invalidLogin");
 }
 FacesMessage fm = new FacesMessage(
 FacesMessage.SEVERITY_INFO,loginErrorMessage,null);
 facesContext.addMessage(null, fm);
 }
 }
 return messages1;
 }

15. Open the backing bean, SRLoginADF.java and add the
isValidLoginAttempt method shown in Example 6–13.

The boolean value returned by the isValidLoginAttempt method is referenced
in the rendered property of the output text component which holds the login form
HTML code. In this case, when the number of valid attempts is greater than three,

Note: The getMessages1 method is the default getter method
created for the message component of the PanelPage. If your
message component is not messages1, you must change the name of
the method.

Having determined the current number of logging attempts, the
getMessages1 method sets the appropriate error string (returned
from the resource bundle) for the Faces message component. In this
case greater than one attempt indicates an invalid username and
password combination and greater than three attempts indicate that
the user has exceeded the legal limit.

Step 3: Adding a Rich Text Portlet to the Login Page

6-14 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

the login form is not rendered on the page and the user is prevented from logging
in again.

Example 6–13 isValidLoginAttempt Method

 /**
 * ===
 * Method isValidLoginAttempt() evaluates the number of invalid login attempts
 * performed by the user and returns false if greater than 3. (used in EL to
 * show/hide the Login Page components.
 * ===
 * @return
 */
 public boolean isValidLoginAttempt()
 {
 _validLoginAttempt = true;
 if (!ADFContext.getCurrent().getSecurityContext().isAuthenticated()) {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 HttpSession session = (HttpSession)
 facesContext.getExternalContext().getSession(true);
 Object loginAttempts = session.getAttribute("LoginErrorCount");
 Integer loginAttemptCount = (loginAttempts == null)? 0
 : Integer.parseInt(loginAttempts.toString());

 if (loginAttemptCount >2){ _validLoginAttempt = false; }
 }
 return (_validLoginAttempt);
 }

16. Save the file.

17. Open SRLoginADF.jspx.

18. Drag an ObjectImage into the PanelBox below the OutputText object, and set
the source property to the following value:

source="/skins/#{skinBean.currentSkin}/skin_images/BadLoginAttempt.gif"

19. Bind the rendered property to the negated (opposite) value of the
isValidLoginAttempt() method in the backing bean. Set the rendered
property to the following value:

#{!backing_infrastructure_SRLoginADF.validLoginAttempt}

By doing this, the image will be rendered only if the login attempt is invalid.

20. Set the rendered property of the OutputText object to the value of the
isValidLoginAttempt() method as follows:

#{backing_infrastructure_SRLoginADF.validLoginAttempt}

This ensures the login form is rendered only when it is valid for a user to try to
login.

Step 3: Adding a Rich Text Portlet to the Login Page
In this section, you will add a Rich Text portlet to the login page. To do this, perform
the following steps:

Step 4: Editing Authorization for the Login Page

Creating a Login Page 6-15

1. Make sure your Rich Text portlet has been registered before proceeding. Refer to
"Step 1: Adding a Rich Text Component" in Chapter 5, "Creating a Public Welcome
Page" for the details.

2. From the Component Palette, choose RichTextPortletProducer, then select Rich
Text from the list. In the Structure pane, drag the Rich Text Portlet above the
top-most objectSpacer within the panelCustomizable.

3. Select the Rich Text portlet and open the Property Inspector.

4. Set the following properties:

5. From the Component Palette, choose RichTextPortletProducer, then select Rich
Text from the list. In the Structure pane, drag the Rich Text Portlet below the last
objectSpacer within the panelCustomizable.

6. Select the Rich Text portlet and open the Property Inspector.

7. Set the following properties:

8. Save the page.

You can now customize this Rich Text Portlet by going back to the login page after you
have logged in. Chapter 9, "Building a Site Administration Page" describes how you
can do this.

Step 4: Editing Authorization for the Login Page
Next, we need to define the appropriate privileges for the login page. All users should
be able to view the page and managers should also be able to edit the page, so that
they can update the Rich Text portlet, for example. To set the security on the login
page, perform the following steps:

1. In the Applications Navigator, right-click SRLoginADF.jspx.

2. Select Go to Page Definition.

3. Click Yes, if you are prompted to create a new page definition. The page definition
file opens in the Structure pane.

4. Right-click the Page Definition file and select Edit Authorization. This displays
the Authorization Editor.

Properties Value

AllModesSharedScreen true

IsMinimizable false

IsMaximizable false

DisplayHeader false

Properties Value

AllModesSharedScreen true

IsMinimizable false

IsMaximizable false

DisplayHeader false

Step 5: Configuring the Application to Use ADF Security and the Login Page

6-16 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

5. Grant View privilege to anyone and Edit privilege to manager, as shown in
Figure 6–6.

Figure 6–6 Authorization Editor to define Security for the Login Page

Step 5: Configuring the Application to Use ADF Security and the Login
Page

In this step, you will use the Oracle ADF Security Wizard to configure authentication
settings for the SRDemo application. All the options that you select are recorded in
web.xml. To configure authentication settings, you must perform the following
configuration tasks:

■ Enable Oracle ADF authentication

■ Choose the lightweight XML resource provider for user authentication

■ Specify Form-Based as the protocol for authentication

■ Grant authenticated users (ValidUser) access to the adfAuthentication
servlet

To configure the SRDemo application to use ADF Security and the login page, perform
the following steps:

1. In the Applications Navigator, select UserInterface.

2. From the Tools menu, choose ADF Security Wizard. The ADF Security wizard
will guide you through the configuration process.

3. If needed, click Next to skip the Welcome page.

Step 5: Configuring the Application to Use ADF Security and the Login Page

Creating a Login Page 6-17

4. Ensure that Enforce Authorization is selected. This option configures the
adfAuthentication servlet and configures authorization rules (appropriate
filters to allow for checking of the current user's permissions on the page).

5. Click Next to move to the next page of the wizard.

6. Choose Lightweight XML Provider. Oracle ADF Security authenticates users
against a given resource provider. For the SRDemo we will use the lightweight
resource provider system-jazn-data.xml that you copied while following the
steps in the install.html file located in the sample files you downloaded.

7. Click Next to display the next page of the wizard.

8. On this page, set the Location to Application Repository, Default Realm to
jazn.com, JAAS Mode to doAsPrivileged, and then click Next.

9. On the login page, choose Form-Based Authentication (Figure 7-8). This specifies
that the SRDemo application will use a form to facilitate authentication.

There is no need to generate default pages for the login form and login error
message (login.html and error.html) because we will be using the login
form we built earlier in SRLoginADF.jspx.

10. In the Login Page field, enter /infrastructure/SRLoginADF.jspx.

11. In the Error Page field, you can also enter
faces/infrastructure/SRLoginErrorPage.jsp, as shown in Figure 6–7.

Figure 6–7 Form-Based Authentication Details

12. Click Next to display the final page of the wizard.

This page defines resources within your application that should be secured, and
specifies which J2EE security roles can access each resource. The
adfAuthentication resource (the authentication servlet) is defined for you.
You cannot edit or delete this resource, but you can specify the set of roles that
may access this resource. One J2EE role, named oc4j-administrators, is
selected by default, but we want any valid user to be able to access the
adfAuthentication resource, so you will need to create another J2EE role,
which you will name ValidUser, and grant access to this role.

13. Remove the Web resource J2EE-Secured-Application, if it shows up.

Step 6: Updating Web.xml to Call the New Login Page

6-18 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

14. Click Manage Roles.

15. Click Add, and enter the name ValidUser.

Later on, you will map this J2EE role to one of the identity store roles, users,
which you defined at the start of this lesson. This role maintains a list of every
valid user. From a security perspective, allocating permissions to this role
effectively defines an authenticated Public resource. That is, it would be available
to all users without a need for the definition of specific permissions.

16. Click OK. The ValidUser role should appear in the list.

17. Click Close.

18. Click the double arrow (Add All) to move everything in the Available Roles list to
the Selected Roles list.

19. This completes ADF Security wizard settings, so click Next and then Finish.

20. You can now run the application's SRWelcome.jspx page and this should take
you to the publicly accessible welcome page.

21. Click the login link. This will take you to the login page you built in this chapter.

22. Log in as a manager (sking). The contents of the RTP would normally be defined
in a site administration page. This page will be built later.

Step 6: Updating Web.xml to Call the New Login Page
The steps to update web.xml to call the new login page are as follows:

1. In the Applications Navigator, expand the WEB-INF node and open the web.xml
property palette (choose Properties from the right-click menu).

2. Select Filter Mappings in the left panel and add a new filter mapping for the
adfBindings Filter as shown Figure 6–8.

Note: Prior to creating the site administration, you can customize the
login page by directly accessing the page URL as a user with
Customize privilege on the page.

Step 6: Updating Web.xml to Call the New Login Page

Creating a Login Page 6-19

Figure 6–8 New Filter Mappings for the adfBindings Filter

Make sure that the Servlet Name = Faces Servlet and that the Forward and
Include dispatcher types are set.

3. Click OK to save the changes to web.xml.

4. Right-click the SRLoginADF.jspx page in the application navigator and select
Go to Page Definition. Confirm creation of the page definition file if it currently
does not exist.

5. Right-click the page definition file and select Edit Authorization.

6. Grant View privilege to the anyone role, as shown in Figure 6–9.

Note: As the login page is also a JSPX page (and hence secured by
ADF security) it must be defined as a public page. If the page is not
defined as public then the container will continually redirect to the
defined authentication point before allowing access to this page
(which of course is this page resulting in a continuous loop).

Step 7: Running the Application

6-20 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 6–9 Authorization Editor

7. As the login page contains customizable portlets, the appropriate role must have
customize privilege on the page.

Step 7: Running the Application
You can now run the application and test whether the login and error pages you
created are displayed correctly. To do this, perform the following steps:

1. Run the SRWelcome.jspx page.

2. Click the login link. This displays the login page.

3. Log in using a valid username and password.

You are logged in to the demo application successfully.

4. Log out from the application.

5. To test whether the error page is displayed correctly, login using incorrect
credentials three times. The error page is displayed.

Summary
In this chapter, you learned how to build an ADF Faces-based login page and
configure the SRDemo application to use this login page. You can now enable
administrators to customize the login page at run time. Chapter 9, "Building a Site
Administration Page" describes the steps involved in enabling this type of
customization.

Building a Page and Adding Components 7-1

7
Building a Page and Adding Components

This chapter describes how to build a new page for your application that contains
portlets, ADF Faces components, and interactivity between these items on the page, as
shown in Figure 7–1.

Figure 7–1 My Acme Page Containing Portlets and ADF Components Wired Together

This chapter contains the following sections:

■ Step 1: Creating the MyAcme Page

■ Step 2: Registering the OmniPortlet Producer

Note: Before you can create the elements on this page, ensure you
have registered the producers as described in Chapter 2, "Building
Your Portlets" and set up your content repository, as described in
Chapter 4, "Setting Up Your Content Repository".

Step 1: Creating the MyAcme Page

7-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

■ Step 3: Adding Customization Components

■ Step 4: Wiring the SelectOneChoice to the ADF Table

■ Step 5: Adding a JavaServer Faces Drop-Down Component

■ Step 6: Adding a Service Request History Portlet

■ Step 7: Adding the Service Request Status Portlet

■ Step 8: Wiring the Table to the Portlets

■ Step 9: Adding a Product Details Portlet

■ Step 10: Displaying Folder Content

■ Step 11: Adding the Schedule On-Site Services Portlet

■ Step 12: Adding a Current Contract Based on the User

■ Step 13: Applying Security to the My Acme Page

■ Step 14: Applying Security to the Components

Step 1: Creating the MyAcme Page
Let’s begin by building a page where we will add the components. In this section, we
will create the page and apply the template we have provided in the sample files.

1. In the Applications Navigator, under the UserInterface project, expand the Web
Content folder if necessary.

2. Right-click the app folder and select New.

3. In the New Gallery, expand the Web Tier node.

4. Select JSF.

5. In the Items list, select JSF JSP.

6. Click OK to display the Create JSF JSP dialog box.

7. If you are on the Welcome page of the wizard, click Next to display the JSP File
page.

8. In the File Name field, enter SRMyAcme.

9. Select JSP Document (*.jspx), as shown in Figure 7–2.

Step 1: Creating the MyAcme Page

Building a Page and Adding Components 7-3

Figure 7–2 Create the JSF JSP

10. Click Next to display the Component Binding page.

11. On the Component Binding page, select the Automatically Expose UI
Components in a New Managed Bean option, as shown in Figure 7–3.

Figure 7–3 Create JSF JSP Component Binding

12. Click Next to display the Tag Libraries page.

13. Filter by Portlet Technologies, then move all the Available Libraries to the Selected
Libraries list, as shown in Figure 7–4.

Step 2: Registering the OmniPortlet Producer

7-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 7–4 Create JSF JSP Tag Libraries List

14. Click Finish to create the page.

15. Expand the WEB-INF/template folder.

16. Right-click SRDemoTemplate.jspx and select Open.

17. Select and copy the source code from the SRDemoTemplate.jspx file and
replace the existing code of your new SRMyAcme.jspx page.

18. Search for the following line in the source of the SRMyAcme.jspx page:

<af:panelPage title="#{res['_PAGE_NAME_.pageTitle']}">

and replace it with:

<af:panelPage title="#{res['SRMyAcmePage.pageTitle']}">

19. Save the file.

20. Open the UIResources.properties file, located under UserInterface >
Application Sources > oracle.srdemo.view > resources.

21. At the end of the file, add a new entry:

==
Resource Bundle Strings for new WebCenter version of SRDemo

==

WC_SRMyAcmePage
SRMyAcmePage.pageTitle=My Acme

22. Save the file.

Step 2: Registering the OmniPortlet Producer
In a later step in this chapter, you will create a Service Request History portlet to the
My Acme page. You will use OmniPortlet to build this portlet; to do so, you must first
register the OmniPortlet producer. You will add the PDK-Java portlet (SRStatus) you
created in Chapter 2, "Building Your Portlets" to your page, as well, but if you

Step 3: Adding Customization Components

Building a Page and Adding Components 7-5

followed the steps in that chapter, you've already deployed and registered the
SRStatus portlet.

To register the OmniPortlet producer:

1. In the Applications Navigator, right-click UserInterface, then select New from the
pop-up menu.

2. In New Gallery, under Categories, expand the Web Tier node and select Portlets.

3. Under Items, select Oracle PDK-Java Producer Registration, then click OK.

4. In the Oracle PDK Portlet Producer Registration wizard, on Step 1 of 3, enter the
name: OmniPortlet Producer, then click Next.

5. In the URL Endpoint field, enter the URL of the OmniPortlet Producer, similar to
Example 7–1.

Example 7–1 Sample URL Endpoint for the OmniPortlet Producer

http://localhost:6688/portalTools/omniPortlet/providers/omniPortlet

6. Click Next.

7. Fill out the remaining options according to your preferences, then click Finish.

Step 3: Adding Customization Components
Before you include portlets and content on the SRMyAcme.jspx page, you must add
certain customizable layout components that allow you to define how these portlets
and content are displayed to users.

In the Structure pane of the SRMyAcme.jspx page, you will see an af:panelPage
component as shown in Figure 7–5.

Figure 7–5 PanelPage Component

Add the following components within that PanelPage component:

1. PanelCustomizable Component

Note: For information on registering producers, refer to Chapter 3,
"Populating Pages" of the Oracle WebCenter Framework Developer's
Guide.

Step 3: Adding Customization Components

7-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Add a PanelCustomizable component within the PanelPage component to
provide the ability to show or hide child components.

To do this, select PanelCustomizable from the Customizable Components Core
library and drag it on to the af:panelPage component in the Structure pane. Set
Layout to horizontal. Figure 7–6 shows the position of the
cust:panelCustomizable component in the Structure pane.

Figure 7–6 PanelCustomizable Component

2. ShowDetailFrame Component

Add a ShowDetailFrame component within the PanelCustomizable
component to provide view-level customization of content. For example, options
to move, minimize, or maximize the display of content.

To do this, select ShowDetailFrame from the Customizable Components Core
library and drag it on to the cust:panelCustomizable component in the
Structure pane and set Text to My Service Requests. Figure 7–7 shows the
cust:showDetailFrame in the Structure pane.

Figure 7–7 ShowDetailFrame Component

3. SelectOneChoice Component

Step 3: Adding Customization Components

Building a Page and Adding Components 7-7

Add a SelectOneChoice component within this ShowDetailFrame
component, to select the status for service requests that must be displayed.

To do this, select SelectOneChoice from the ADF Faces Core library and drag it
on to the cust:showDetailFrame component in the Structure pane. In the
Insert SelectOneChoice dialog box displayed, click the appropriate tab and set
values for few of the attributes as follows:

■ Label: Status

■ Value: Open

■ AutoSubmit: true

■ Binding: #{backing_app_SRMyAcme.statusPicker}

■ Id: statusPicker

Figure 7–8 shows the af:selectOneChoice component in the Structure pane.

Figure 7–8 SelectOneChoice Component

4. SelectItem Component

Add three SelectItem components within the SelectOneChoice component,
to include components that will be displayed as options under the
SelectOneChoice component.

To add a SelectItem component, select SelectItem from the ADF Faces Core
library and drag it on to the af:selectOneChoice component in the Structure
pane.

For each of the new components, set values for few of the attributes as follows:

First SelectItem component:

■ Label: Open

■ Value: Open

■ Binding: #{backing_app_SRMyAcme.selectItem1}

■ Id: selectItem1

Second SelectItem component:

■ Label: Pending

Step 3: Adding Customization Components

7-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

■ Value: Pending

■ Binding: #{backing_app_SRMyAcme.selectItem2}

■ Id: selectItem2

Third SelectItem component:

■ Label: Closed

■ Value: Closed

■ Binding: #{backing_app_SRMyAcme.selectItem3}

■ Id: selectItem3

Figure 7–9 shows the SelectItem components in the Structure pane.

Figure 7–9 SelectItem Component

5. PanelHorizontal Component

Add a PanelHorizontal component within the PanelPage component to
arrange child elements horizontally.

To do this, select PanelHorizontal from the ADF Faces Core component library
and drag it on to the af:panelPage component in the Structure pane. Ensure
that is it located below the cust:panelCustomizable component in the
Structure pane as shown in Figure 7–10.

Step 3: Adding Customization Components

Building a Page and Adding Components 7-9

Figure 7–10 PanelHorizontal Component

6. ObjectSpacer Component

Add an ObjectSpacer component (set height to 30 and width to 10) below the
PanelHorizontal component to include a fixed amount of space between
components in the layout.

To do this, select ObjectSpacer from the ADF Faces Core component library and
drag it on to the af:panelPage component in the Structure pane. Ensure that it
is located below the af:panelHorizontal component in the Structure pane as
shown in Figure 7–11. Set the following attributes:

■ Height: 30

■ Width: 10

Figure 7–11 ObjectSpacer Component

7. ShowOneTab Component

Add a ShowOneTab within the PanelPage component to include a series of
items defined by ShowDetailItem components.

Step 3: Adding Customization Components

7-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

To do this, select ShowOneTab from the ADF Faces Core component library and
drag it on to the af:panelPage component in the Structure pane. Ensure that it
is located below the af:objectSpacer component in the Structure pane. Then,
select the ShowOneTab and set the Position property to above.

8. ShowDetailItem Component

Add four ShowDetailItem components within the ShowOneTab to include
components that will be displayed as tabs in the ShowOneTab component.

Set the Text property for these ShowDetailItem components to SR
Information, Product Information, Schedule On-Site Service, and
My Current Contracts. Later, you will add four components within these
ShowDetailItem components.

To add a ShowDetailItem, select ShowDetailItem from the ADF Faces Core
component library and drag it on to the af:showOneTab component in the
Structure pane. Figure 7–12 shows the af:showOneTab component with the four
child af:showDetailItem components in the Structure pane.

Figure 7–12 ShowOneTab Component

9. PanelHorizontal Component

Add a PanelHorizontal component within the ShowDetailItem component
titled SR Information to arrange child elements horizontally.

To do this, select PanelHorizontal from the ADF Faces Core component library
and drag it on to the cust:showDetailItem component - SR
Information component in the Structure pane.

Later, you will add an OmniPortlet and an Oracle Java PDK portlet within this
component to display the service request history and service request status
respectively.

10. Add a PanelCustomizable component within the ShowDetailItem
component titled Product Information by performing the steps described
earlier in this section. Set Layout to horizontal. Figure 7–13 shows the new
cust:panelCustomizable component in the Structure pane.

Step 4: Wiring the SelectOneChoice to the ADF Table

Building a Page and Adding Components 7-11

Figure 7–13 ShowDetailItem Components

Figure 7–14 shows how these components appear in the Structure pane of
SRMyAcme.jspx.

Figure 7–14 Structure Pane Showing Layout Components in the SRMyAcme.jspx Page

The following steps in this chapter provide details about adding portlets and content
within these customization components.

Step 4: Wiring the SelectOneChoice to the ADF Table
To display a list of service requests with a particular status, you must add an ADF
Read Only Table based on top of Toplink and EJB Session Beans. When a user clicks a
service request number in this table, the history and status for that service request are
displayed in portlets at the bottom of the page.

Step 5: Adding a JavaServer Faces Drop-Down Component

7-12 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

To add an ADF table that displays your service requests, perform the following steps:

1. In the Data Control Palette, locate and extract findServiceRequestByStatus.

2. In the Structure Pane, drag ServiceRequest on to the showDetailFrame
component (that you added in the previous section).

3. From the context menu, select ADF Read Only Table. This displays the Action
Binding Editor. If you see a note about client libraries being added, click OK.

4. In the Value field for the statusParam parameter, enter ${"Open"}.

This hard codes the status of the service request to Open. Later on, we will provide
dynamic values.

5. Click OK.

This displays the Edit Table Columns dialog box.

6. Rearrange and delete the columns so that you have the following columns:

■ svrId

■ status

■ problemDescription

■ assignedDate

■ requestDate

7. Select Enable sorting.

8. Click OK.

9. Right-click SRMyAcme.jspx and select Run.

All open service requests are displayed in the table.

10. To reduce the number of rows displayed, go to the page definition and make the
change indicated in bold:

Example 7–2 Editing the Page Definition for Number of Rows Displayed

<methodIterator id="findServiceRequestByStatusIter"
 Binds="findServiceRequestByStatus.result"
 DataControl="SRPublicFacade" RangeSize="4"
 BeanClass="oracle.srdemo.model.entities.ServiceRequest"/>

11. Run the page again to see your changes.

Step 5: Adding a JavaServer Faces Drop-Down Component
In the previous section, we had hard coded the status to be Open. As a result, you
could only view a list of open service requests. Now, we can add a component that
allows end users to select the service request status from a list, rather than have this
value hard coded. This section shows how to add a list that you can use to select a
status and display all service requests with the selected status. To do this, perform the
following steps:

1. In the Applications Navigator, expand the Application Sources folder.

Tip: If you cannot see the Data Control Palette, select Data Control
Palette from the View menu.

Step 6: Adding a Service Request History Portlet

Building a Page and Adding Components 7-13

2. Expand oracle.srdemo.view > pageDefs and select app_
SRMyAcmePageDef.xml.

3. In the Structure Pane, expand the bindings node.

4. Expand the findServiceRequestByStatus node.

5. Double-click statusParam to display the NamedData Properties dialog box.

6. In the NDValue field, replace the existing value with the following:

${(backing_app_SRMyAcme.statusPicker.value == null) ? "Open" : backing_app_
SRMyAcme.statusPicker.value}

7. To ensure the table always reflects the most recent selection of the statusPicker, set
the table's partialTrigger property to statusPicker. To do so, select the
table component on the page.

From the list, select statusPicker.

8. In the Property Inspector, locate the Partial Trigger property of the table.

9. Click the Edit button to display the Partial Trigger window.

10. Click New and select statusPicker from the list.

11. Run the page to view your changes.

12. Select a status from the list and see how the table changes.

Step 6: Adding a Service Request History Portlet
The steps in this section show you how to use OmniPortlet to create a portlet that
displays the service request history. To create a portlet that displays the service
request history using OmniPortlet, perform the following steps:

1. Make sure you have registered the OmniPortlet producer as described in Step 2:
Registering the OmniPortlet Producer.

2. In the Component Palette, select OmniPortlet Producer, and then select
OmniPortlet. Drag this on to the panelHorizontal component in the Structure
pane, located on the SR Information tab.

3. Run the page to view it in a browser.

4. In your browser, click Define in your OmniPortlet to change its definition:

a. On the Type page, choose SQL, then click Next.

b. On the Source tab, enter the query shown in Example 7–3.

Example 7–3 SQL Statement for the Service Request History Portlet

select svr_id, to_char(svh_date, 'Dy, Mon DD, YYYY') created_on, notes, svh_type,
users.first_name || ' ' || users.last_name createdby
from service_histories, users
where svr_id = substr ('##Param1##', 1, 3)
and users.user_id = service_histories.created_by
order by line_no

c. Edit the Connection, and define the connection to your database.

d. Specify 104 as the default value of Param1, then click Next until the View tab
is displayed.

e. On the View tab, make the following changes:

Step 7: Adding the Service Request Status Portlet

7-14 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

– Title: Service Request History

– Header Text: Request ID: ##Param1##

– Layout Style: Tabular

f. On the Layout tab, set the Tabular Style to Alternating and specify the
Column Layout as shown in Table 7–1.

5. Click Finish.

Step 7: Adding the Service Request Status Portlet
In Chapter 2, "Building Your Portlets" you created a portlet that displays the current
status of a specific service request, given its service request ID. In this section, you will
add that portlet to the MyAcme page.

To add the Service Request Status portlet to a page:

1. Make sure that you have registered the PDK-Java producer as described in
Chapter 2, "Building Your Portlets".

2. In the Component Palette, select SRStatusProducer from the list.

3. Drag the Service Request Status Portlet onto the panelHorizontal component,
just below the Service Request History portlet you added earlier.

4. The Service Request Status portlet expects to receive a parameter containing a
service request ID. For our page, we want the portlet to display the status of the
service request selected in the table at the top of the page. Steps for passing the
service request ID to the portlet are provided in Step 8: Wiring the Table to the
Portlets.

Step 8: Wiring the Table to the Portlets
Now that you have added all your components and portlets to your page, you can
wire them together to create interactivity on the page. In this section, you will set up

Table 7–1 Layout Settings for the Service Request History OmniPortlet

Column Label Column Display As

ID SVR_ID Hidden

Comments NOTES Text

Created by CREATEDBY Text

Created on CREATED_ON Text

Comment type SVH_TYPE Text

Note: For more information on OmniPortlet, see Chapter 13,
"Creating Portlets with OmniPortlet" in Oracle WebCenter Framework
Developer's Guide, as well as the steps to building an OmniPortlet in
Oracle WebCenter Framework Tutorial.

Tip: The producer you registered in Chapter 2, "Building Your
Portlets" is the SRStatusProducer, located at
http://host:port/SRStatusPortlet/providers.

Step 8: Wiring the Table to the Portlets

Building a Page and Adding Components 7-15

the page to enable the customer and/or technician to view the status and history of
each service request they select from the table on the page. You will also wire the
components together using partial page refresh so that the end users will be able to
view this information without refreshing the entire page.

In this step, you will do the following:

■ Wire the OmniPortlet to the Table

■ Wire the Service Request Status and the Service Request History Portlets to the
Service Request Table

Wire the OmniPortlet to the Table
While OmniPortlet can display the service request history based on the customization
we performed in the previous steps, we now want the portlet to display the history
based on a selection that the user makes in the table. The OmniPortlet can receive
information from the table and use that information to display the history for a specific
service request.

1. In the table you created in Step 4: Wiring the SelectOneChoice to the ADF Table,
add a commandLink to the problemDescription column of the table.

In the Component Palette, under ADF Faces Core, choose commandLink and drag
it onto the Structure pane within the third af column and above the outputText.

2. Delete the outputText.

3. Set the commandLink properties as follows:

■ Text: #{row.problemDescription}

■ Id: commandLink1

■ Action: #{backing_app_SRMyAcme.commandLink1_action}

4. Enter the code in Example 7–4 as the commandLink1_action() method. You
can find this method in the backing.app.SRMyServiceRequests.java class,
which is located under Application Source > oracle.srdemo.view >
backing.app.SRMyAcme.java.

Example 7–4 commandLink_action () method

public String commandLink1_action() {
 FacesContext context = FacesContext.getCurrentInstance();
 context.getExternalContext().getSessionMap().put("serviceID",
(Integer)outputText1.getValue());
 return "setCurrentRowWithKey";
 }

5. Expand the import section and add the following line to the top of the Java class:

import javax.faces.context.FacesContext;

Note: In case outputText1 is not recognized (it is underlined by
Oracle JDeveloper), make sure that the svrId outputText column
of the table has an ID, and that it is called outputText1. Then, ensure
that the binding is defined as id="outputText1"
binding="#{backing_app_SRMyAcme.outputText1.

Step 9: Adding a Product Details Portlet

7-16 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

6. In the Structure pane, navigate to the page definition and go to executables >
variables, then click OmniPortlet1_1_Param1.

7. In the Property Inspector, set the DefaultValue property to

${sessionScope.serviceID}

8. Create a page parameter for OmniPortlet to receive the service ID. In beginning of
the page definition, you will see the following:

<parameters/>

Replace this tag with the following code to set a page parameter called
serviceID:

<parameters>
<parameter id="pageParam" value="${sessionScope.serviceID}"/>
</parameters>

9. Run the page to test the portlet wiring.

10. Click the hyperlinks in the Problem column of the table to test it. Your portlet
should be updated every time you click a link.

Wire the Service Request Status and the Service Request History Portlets to the
Service Request Table

The Service Request Status and Service Request History portlets both expect to receive
a service request ID as a parameter. They then display the status or history of the
specific service request identified by that ID. We will set the service request ID to be
that of the service request selected in the table at the top of the page.

To wire the Service Request Portlet to the Service Request table:

1. Navigate to the page definition and in the structure pane expand executables >
variables and click OmniPortlet1_1_Param1.

2. In the Property Inspector, set the DefaultValue property to
${sessionScope.serviceID}.

3. In the Structure pane, locate and select the variable
ServiceRequestStatusPortlet1_1_ServiceReqID.

4. In the Property Inspector, set the DefaultValue property to
${sessionScope.serviceID}.

5. Save the page, then run it to your browser. You can now test the portlet by
clicking a service request in the table. The Service Request History and Service
Request Status portlets update accordingly.

Step 9: Adding a Product Details Portlet
The steps in this section show you how to display a JSR 168 portlet on the page. Here,
you will add the Product Details portlet you created in Chapter 2, "Building Your
Portlets". On the Product Information tab, in the panelCustomizable component,
add the following:

Tip: You can find this by expanding the following nodes:
executables > variables > ServiceRequestStatusPortlet1_1_
ServiceReqID.

Step 10: Displaying Folder Content

Building a Page and Adding Components 7-17

1. Make sure that you have registered the PDK-Java producer as described in
Chapter 2, "Building Your Portlets".

2. In the Component Palette, select ProductDetailPortlet from the list.

3. Drag the Product Details Portlet onto the panelHorizontal component.

4. Save the page, then run it to your browser to test the portlet on the Product
Information tab.

Step 10: Displaying Folder Content
The steps in this section show you how to display a folder’s contents on a page. On the
Product Information tab, in the panelCustomizable component, add the following:

1. In the Data Control Palette, expand SRContentRepository. You created this data
control in Chapter 4, "Setting Up Your Content Repository".

2. Expand getItems(String, String).

3. Add a panelBox to the panelCustomizable.

4. Drag the Return node into the panelBox.

5. From the menu select Trees, then ADF Tree.

This displays the Action Binding Editor.

6. In the Value field for the path parameter, enter /manuals.

7. Leave the Value field for the type parameter empty.

8. Click OK.

This displays the Tree Binding Editor.

9. In the Tree binding Editor, select Name, URI, and Primary Type from the top right
list.

10. In the Branch Rule Accessor list, select Items.

11. Click Add New Rule.

12. Click OK.

13. Click OK.

14. In the page source, find the code that looks something like:

<af:panelBox>
<af:tree value="#{bindings.getItems1.treeModel}" var="node">
<f:facet name="nodeStamp">
<af:outputText value="#{node}"/>
</f:facet>
</af:tree>
</af:panelBox>

Tip: The producer you registered in Chapter 2, "Building Your
Portlets" is the ProductDetailsPortlet, located at
http://host:port/ProductDetailsPortlet/portlets/wsrp
1?WSDL.

Tip: If you cannot see the Data Control Palette, select Data Control
Palette from the View menu.

Step 11: Adding the Schedule On-Site Services Portlet

7-18 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

15. In the Component Palette, select ADF Faces Core.

16. Drag the Switcher component inside the <f:facet> tag.

17. Set the facetName attribute to
#{node.currentRow.dataProvider.primaryType}.

18. Create one facet named nt:file and one named nt:folder. To do so,
right-click Switcher, then choose Insert Inside af:switcher > JSF Core > Facet.

19. For nt:folder, use the output text that was generated.

20. For nt:file, create a goLink and an objectImage.

21. The code for the switcher should look something like Example 7–5.

Example 7–5 Code for the Switcher

<af:switcher facetName="#{node.primaryType}">
<f:facet name="nt:file">
<h:panelGroup>
<af:objectImage source="/images/file.gif"/>
<af:goLink text="#{node.name}" destination="#{node.URI}" targetFrame="_blank"/>
</h:panelGroup>
</f:facet>
<f:facet name="nt:folder">
<af:outputText value="#{node.name}"/>
</f:facet>
</af:switcher>

22. Run index.html.

23. Click the Product Information tab.

24. Click one of the links in the table.

25. Expand one of the product categories to see the different models.

26. Expand one of the models to view a list of manuals for that model.

27. Select a manual to view.

Step 11: Adding the Schedule On-Site Services Portlet
The Schedule On-Site Services portlet enables you to schedule an on-site service for
your product after you have created a service request in the application. By specifying
the service ID for your request, and selecting a convenient date and time or a
technician of your choice, you can schedule for a technician to come to the specified
location and attend to the problem.

This section covers the following topics:

■ Registering a Web Clipping Producer

■ Adding the Web Clipping Portlet

■ Selecting the Web Page to Display in the Web Clipping Portlet

Note: If the output text is not generated automatically, you may
need to add an output text inside the facet, than set the value
attribute.

Step 11: Adding the Schedule On-Site Services Portlet

Building a Page and Adding Components 7-19

Registering a Web Clipping Producer
To register the Web Clipping producer:

1. In the Applications Navigator, right-click SRDemoSample_Starter under which
to create the producer and select New from the context menu.

2. In New Gallery, under Categories, expand the Web Tier node and select Portlets.

3. In New Gallery, under Items, select Oracle PDK-Java Producer Registration.

4. Click OK.

5. On the Welcome page, click Next.

Optionally, before clicking Next, select Skip this Page Next Time to forego
display of the Welcome page on subsequent uses of this wizard. The Welcome
page may not display if the option to skip was selected on earlier use of the
wizard.

6. In the Name field, enter WebClipping Producer as the name for the Web
Clipping producer.

The name must be unique within this application. Use only letters, numbers, and
the underscore character.

7. Click Next.

8. In the URL Endpoint field, enter the URL of the Web Clipping producer as shown
in Example 7–6.

Example 7–6 Sample URL Endpoint for the Web Clipping Producer

http://localhost:6688/portalTools/webClipping/providers/webClipping

9. Click Finish to complete registration of the PDK-Java portlet producer.

Adding the Web Clipping Portlet
To add the On-Site Web Clipping Service, perform the following steps:

1. If the SRMyAcme.jspx file is not already open, in the Applications Navigator,
right-click the SRMyAcme.jspx file, and select Open from the context menu.

2. In the Component Palette, select WebClipping Producer.

3. Select WebClippingPortlet, and drag it on to the showDetailItem component
called Schedule On-Site Service in the Structure pane.

4. Save your changes.

5. Right-click the SRMyAcme.jspx file and select Run from the context menu.

This will start the embedded OC4J server, launch your default browser, and
display the Web Clipping Portlet. On the resulting page, you will select a Web
page that you want to expose in your WebCenter application. You will then use
Web Clipping Studio to select a section of the Web page for inclusion.

Selecting the Web Page to Display in the Web Clipping Portlet
In this section, you will see how to display information from the ACME Technician
Assignment System external application in your Web Clipping portlet. This external
application is deployed to the OC4J instance available as part of the SRDemo

Step 11: Adding the Schedule On-Site Services Portlet

7-20 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

application. Using this external application, you can request for an on-site service for
your product.

Prior to performing the steps in this section, you must grant appropriate privileges on
the page. See Step 13: Applying Security to the My Acme Page for the steps to grant
privileges.

To display the ACME Technician Assignment System application in your Web
Clipping portlet, perform the following steps:

1. Click the Actions icon on the header of the Web Clipping portlet, and select
Customize, to select a Web page that can be used by all users.

This displays the Find a Web clipping page.

2. In the URL Location field, enter the following URL:

http://host:port/ExternalApp/preConfirmation.jsp?date=Tue,%2010:00am&technician
=Peter

Specify the host name and port number of the system where you downloaded the
SRDemo application.

3. Click Start.

The Web Clipping Studio displays the page you specified, as shown in
Figure 7–15.

Figure 7–15 Web Clipping Portlet with Standalone Application to Be Clipped

4. Specify Next Available Time as a comment and click Next.

5. Click Select in the Web Clipping Studio banner. The Web Clipping Studio
displays the Find a Web clipping page, with the properties of the clipping.

6. In the Find a Web Clipping page shown in Figure 7–16, specify the following:

■ Title: Schedule On-Site Services

Step 11: Adding the Schedule On-Site Services Portlet

Building a Page and Adding Components 7-21

■ Description: Embed external scheduling application with the
SR application

■ URL Rewriting: Inline

Figure 7–16 The Find a Web Clipping Page

7. For the Parameterize Inputs section, specify the following values:

■ Parameter: ServiceID

■ Personalize: Param1

■ Display: ServiceID

■ Default Value: 104

8. Click OK to display the selected Web clipping in the Web Clipping portlet on your
page.

Figure 7–17 shows the content added to the Web Clipping portlet.

Note: If you have integrated with an external application or are
logged into the clipped site, and if you choose Inline for URL
Rewriting, then the session to the clipped site is maintained while
browsing.

Step 12: Adding a Current Contract Based on the User

7-22 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 7–17 Web Clipping Portlet with Clipped Content

Using this portlet, users can schedule on-site services for products.

Step 12: Adding a Current Contract Based on the User
The steps in this section show you how to add a current contract component to your
page.

1. Add a panelBox to the My Current Contracts tab.

2. In the Data Control Palette, expand SRContentRepository.

3. Expand getItems(String, String).

4. Drag the Return node into the panelBox.

5. From the menu, select Tables, then ADF Read-only Table.

This displays the Edit Table Columns dialog box.

6. Delete all the columns except for name.

7. Click OK.

8. In the page definition file (app_SRMyAcmePageDef.xml), under executables,
duplicate the methodIterator tab with the ID "getItemster" and modify the
code as shown in Example 7–7.

Example 7–7 First Modified Code in the app_SRMyAcmePageDef.xml File

<methodIterator id="getContractsIter" Binds="getContracts.result"
DataControl="SRContentRepository"
RangeSize="10" BeanClass="SRContentRepository.getItems_return"/>

9. Under Bindings, duplicate <methodAction> with the ID "getItems" and
modify the code as shown in Example 7–8

Example 7–8 Second Modified Code in the app_SRMyAcmePageDef.xml File

<methodAction id="getContracts" InstanceName="SRContentRepository"
 DataControl="SRContentRepository" MethodName="getItems"
RequiresUpdateModel="true"

Tip: If you cannot see the Data Control Palette, select Data Control
Palette from the View menu.

Step 13: Applying Security to the My Acme Page

Building a Page and Adding Components 7-23

 Action="999" ReturnName="SRContentRepository.methodResults.SRContentRepository_
 getContracts_result">
 <NamedData NDName="path" NDValue="/contracts/${userInfo.userName}"
 NDType="java.lang.String"/>
 <NamedData NDName="type" NDType="java.lang.String"/>
</methodAction>

10. Look for <table id="getItems2"... and modify it to <table
id="getItems2" IterBinding="getContractsIter">

11. View the source of the page.

12. Locate the table, then locate the inputText element.

13. In the Component Palette, select ADF Core.

14. Drag a GoLink component next to the outputText for name in the table cell on the
page.

15. Copy the expression #{row.name}from outputText into the text attribute of
GoLink.

16. Add destination attribute to GoLink with the value #{row.URI}.

17. Add a targetFrame attribute with the value _blank.

18. Delete the outputText element.

19. Set the access privileges:

a. Open the page definition.

b. Under bindings in the Structure Pane right-click getItems2.

c. From the context menu, select Edit authorization.

d. In the dialog box, check the Anyone box for
SRContentRepository.getItems.name and all other values in the list.

20. Run index.html.

Step 13: Applying Security to the My Acme Page
The page’s authorization policies are defined against the Page Definition file. The
Authorization Editor is used to read enterprise roles from the local System JAZN file.
The editor lets you define the actions that can be set against a given resource, for
example, page, method, iterator, and attribute. It writes the permission to the Policy
Store and allows for declarative definition of granular JAAS permissions for different
roles. Also, the Authorization Editor is used to define a Public page for which the
permission is granted to the pseudo role anybody.

Perform the following steps to set up permissions for the SRMyAcme.jpsx page:

1. Right-click the SRMyAcme.jpsx page and select Go to Page Definition.

2. In the Structure window, right-click the page definition and select Edit
Authorization. This displays the Authorization Editor.

3. Grant View privilege to anyone, Customize to manager, and Personalize to
technician, as shown in Figure 7–18.

Step 14: Applying Security to the Components

7-24 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 7–18 Authorization Editor to Set Privileges on the MyAcme Page

Step 14: Applying Security to the Components
On the SRMyAcme.jspx page, we want only technicians and managers to be able to
view the On-Site Service tab and the Product Details portlet. This section describes
how to set these components to be rendered only when a user with the correct
permissions is accessing the page.

To apply security to the On-Site Service tab and Product Details portlet, perform the
following steps:

1. Open the SRMyAcme.jspx page.

2. Select the product details portlet.

3. In the Property Inspector set the Rendered property to the following:

#{authNLink.authenticated && bindings.permissionInfo['app_
SRMyAcmePageDef'].allowsPersonalize}

4. Now select the On-Site Service tab on the SRMyAcme.jspx page.

5. In the Property Inspector for this tab set the Rendered property to the following:

#{authNLink.authenticated && bindings.permissionInfo['app_
SRMyAcmePageDef'].allowsPersonalize}

Summary
In this chapter, you learned how to add various types of components to a page and
organize them into tabs and sub-tabs. You also learned how to apply security to the
page and to each of the components.

Building a Dashboard Page 8-1

8
Building a Dashboard Page

In this chapter, you will build a dashboard page for your WebCenter application. A
dashboard page is an easy-to-read user interface that organizes and presents metrics
and key performance indicators related to business activity and business intelligence.

In this sample dashboard, your end user will be able to view site statistic information
and search customer contacts and view volume distribution for each day. The end user
can also view information about customers that are the most active, customer details,
most productive customers, and products with the most requests, as shown in
Figure 8–1.

Figure 8–1 Overview of the Dashboard Page

This chapter shows you how to build a page and use OmniPortlet to create the
dashboard page shown in Figure 8–1 and includes the following sections:

■ Step 1: Creating the Dashboard Page

■ Step 2: Creating the Page Layout

■ Step 3: Adding Instances of OmniPortlet to Your Page

Step 1: Creating the Dashboard Page

8-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

■ Step 4: Adding a SelectOneChoice Component for the Service Request Volume
Portlet

■ Step 5: Adding a Search for Customer Contracts

■ Step 6: Defining the Most Productive Employees Portlet

■ Step 7: Defining the Service Request Volume Portlet

■ Step 8: Defining the Most Requested Products Portlet

■ Step 9: Defining the Most Active Customers Portlet

■ Step 10: Defining the Customer Details Portlet

■ Step 11: Wiring the Page Content Together

Step 1: Creating the Dashboard Page
This section shows you how to build the page on which you will place your portlets to
create the dashboard page. Before you begin, ensure that you have the required
sample files and initialized your preconfigured OC4J, as described in the
install.html file located in the sample files.

1. Create a new JSF JSP page, ensuring that you select the following options in the
Create JSF JSP Wizard:

■ Step 1 of 4: Name the page SRDashboard.jspx, point the directory path to
UserInterface\public_html\app\management\, and select the JSP
Document (*.jspx) type.

■ Step 2 of 4: Select the Automatically Expose UI Components in a New
Managed Bean option and leave the remaining defaults on this page.

■ Step 3 of 4: Ensure that the following libraries are listed in Selected Libraries:

– JSF Core

– JSF HTML

– ADF Faces Components

– ADF Faces HTML

– ADF Portlet Components

– Customizable Components Core

Note: To access the Create JSF JSP Wizard, from the File menu,
choose New, and in the New Gallery dialog box, under Web Tier,
choose JSF.

Note: Make sure that the name of the New Managed bean is app_
management_SRDashboard.

Note: For information on building and populating a page, refer to
the Populating Pages chapter in the Oracle WebCenter Framework
Developer's Guide.

Step 1: Creating the Dashboard Page

Building a Dashboard Page 8-3

2. Once you have completed the wizard and created your page, expand
SRDemoSample_Starter, UserInterface, and WEB-INF\template folders of your
application.

3. Right-click SRDemoTemplate.jspx and choose Open.

4. Click the Source tab, then copy the source code from the SRDemoTemplate.jspx
page and paste it into the source of your new SRDashboard.jspx page,
replacing all the existing code in your new page.

5. Search for _PAGE_NAME_ and replace it with srdashboard so that the
panelPage tag looks like:

<af:panelPage title="#{res['srdashboard.pageTitle']}">

6. To provide a translatable page title for the new page, expand SRDemoSample_
Starter, UserInterface, Application Sources, oracle.srdemo.view, resources, and
then open the UIResources.properties file.

7. In the UIResources.properties file, add the following lines to the end of file:

#WC_DashboardPage
srdashboard.pageTitle=Dashboard

8. In the WEB-INF folder of the UserInterface project, open
faces-config.xml.

9. If necessary, click the Source tab.

10. At the end of the file, before the closing </faces-config> tag, add the managed
bean shown in Example 8–1 to the existing code to instantiate the bean that
manages the menu item for the Dashboard subtab.

Example 8–1 Managed Bean for the Dashboard Subtab

<managed-bean>
 <managed-bean-name>subMenuItem_Manage_Dashboard</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage.dashboard']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRDashboard.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>Dashboard</value>
 </managed-property>
<!-- ADF Authorization -->
 <managed-property>
 <property-name>targetPageDef</property-name>
 <value>app_management_SRDashboardPageDef</value>
 </managed-property>
<!-- End ADF Authorization -->
</managed-bean>

Step 2: Creating the Page Layout

8-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

11. Save the file.

12. Add the following line to the end of the UIResources.properties file:

srdemo.menu.manage.dashboard=My Dashboard

13. Open the faces-config.xml file and search for
<managed-bean-name>menuItem_Manage.

14. Now that you have created the subtab, you must add it as a menu item to the
parent menu. You can do so by adding the following to the list-entries tag:

Example 8–2 Code for Adding the Dashboard Subtab to the Management Page

<value>#{subMenuItem_Manage_Dashboard}</value>

15. Link the new dashboard menu item to the JSPX page by adding the code shown in
Example 8–3 to the navigation rule.

Example 8–3 Code for Linking the Dashboard Subtab to the Dashboard.jspx page

<navigation-rule>
 <from-view-id>/app/management/SRManage.jspx</from-view-id>
 <navigation-case>
 <from-outcome>Dashboard</from-outcome>
 <to-view-id>/app/management/SRDashboard.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

16. Save the page.

Step 2: Creating the Page Layout
This section shows you how to use customizable components, specifically the
PanelCustomizable component, to design the layout of your page. For more
information on using customizable components, refer to the Customizable
Components section in Chapter 7, "Building a Page and Adding Components".

You can view the code of the completed page by opening the SRDashboard.jspx
page in the completed demo and viewing its source.

1. To add the first row of the dashboard, first open the source of your
SRDashboard.jspx file.

2. Search for the text "Please Insert Main Page Content Here!" and place
your cursor below this line.

3. From the Component Palette, choose Customizable Components Core.

4. On the Customizable Components Core list, click PanelCustomizable to add a
PanelCustomizable component to your page. The code displays as shown in
Figure 8–2.

Step 2: Creating the Page Layout

Building a Dashboard Page 8-5

Figure 8–2 Placement of the First PanelCustomizable

5. In the Structure Pane, select the cust:panelCustomizable you just added, and set
the IsMovable property in the Property Inspector to false.

6. Add a second PanelCustomizable below the one you just created.

7. In the Structure Pane, select the cust:panelCustomizable you just added, and set
the following properties in the Property Inspector:

■ DisplayHeader to true

■ Id to panelCustomizable2

■ Layout to horizontal

■ Text to Business Analysis

■ IsMovable to true

■ IsSeededInteraction to true

The source code of your page should now look like Figure 8–3.

Figure 8–3 PanelCustomizable in the Source Code

8. Create a ShowDetailFrame component below the PanelCustomizable you
just created by choosing ShowDetailFrame from the Customizable Components
Core Component Palette.

9. Set the Text property for the new ShowDetailFrame to Customer
Contracts. The code displays as shown in Figure 8–4.

Step 2: Creating the Page Layout

8-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 8–4 ShowDetailFrame in the Source Code

10. Insert a spacer after the ShowDetailFrame component you just created. To do so,
choose ADF Faces Core from the Component Palette, then select ObjectSpacer.
The code displays as shown in Figure 8–5.

Figure 8–5 ObjectSpacer in the Source Code

11. Add a second row to your page by creating a second PanelCustomizable
component with the following properties:

12. Add a ShowDetailFrame with the Text property set to Service Requests
Volume.

The source code of your page should now look like Figure 8–6.

Property Value

DisplayHeader false

Layout horizontal

Text Service Requests Volume

IsMovable true

IsSeededInteractionAvailable true

Step 2: Creating the Page Layout

Building a Dashboard Page 8-7

Figure 8–6 Source Code of Dashboard Page Containing Two Customizable Components

13. Next, you will add a horizontal panel inside the ShowDetailFrame called
"Customer Contracts."

To do so, place your cursor on the line after the ShowDetailFrame. From the
Component Palette, choose ADF Faces Core, then choose PanelHorizontal from
the list.

14. Next, add an Input Text field inside the PanelHorizontal.

To do so, place your cursor on the line after the PanelHorizontal you just
added, then choose InputText from the Component Palette.

15. Select the InputText component in your source.

16. In the Property Inspector, set the Label property to Customer.

17. Set the Value property to: "%".

18. Set the Binding property to: #{backing_app_management_
SRDashboard.inputText1}. Figure 8–7 shows the Property Inspector with the
appropriate values.

Step 2: Creating the Page Layout

8-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 8–7 Property Inspector for the Input Text Field

The resulting code should look like the source shown in Figure 8–8.

Figure 8–8 Input Text Field Source Code

19. Next, add a command button that will enable users to search for customer
contracts.

To do so, place your cursor below the InputText component, then choose
CommandButton from the Component Palette.

20. Set the Text property to Search.

21. Set the Action property to: #{backing_app_management_
SRDashboard.commandButton_action}.

22. In the Property Inspector, set the Binding property to: #{backing_app_
management_SRDashboard.commandButton1}.

23. In the Source, add a Disabled property with the definition:
#{!bindings.search.enabled}.

Your code should now look like Figure 8–9.

Step 3: Adding Instances of OmniPortlet to Your Page

Building a Dashboard Page 8-9

Figure 8–9 Source of the Input Text Field and Command Button

24. Add a table below the InputText and CommandButton, so that the various
portlets display horizontally across the page.

Step 3: Adding Instances of OmniPortlet to Your Page
In this section, you will add instances of OmniPortlet to the page layout. You will
define the portlets in the later steps of this chapter, and, finally, wire the portlets
together.

1. Now that you have created your layout, you can add the portlets to your page.

In the source of your page, place your cursor after the ShowDetailFrame called
"Customer Contracts," and before the ObjectSpacer you created, then, place
your cursor on the first PanelCustomizable in the Structure view.

2. From the Component Palette, choose OmniPortlet Producer, then click
OmniPortlet. You should now see the source code of your page, as shown in
Figure 8–10.

Figure 8–10 OmniPortlet in the Source Code of Your Page

3. Select the OmniPortlet and, in the Property Inspector and set the ID to
customerContracts.

Note: If you do not see the OmniPortlet Producer listed in the
drop-down list of the Component Palette, you may need to register
the producers associated with this example.

Step 4: Adding a SelectOneChoice Component for the Service Request Volume Portlet

8-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

4. In the source of your page, place your cursor after the OmniPortlet you just added,
then add a second instance of OmniPortlet, and change the ID to
mostProductiveEmployees.

5. In the Structure pane, below the third PanelCustomizable, select the
ShowDetailFrame and add an OmniPortlet, then set the ID to
serviceRequestVolume.

6. In the Structure pane, select the third PanelCustomizable and add another
OmniPortlet, then set the ID to mostRequestedProducts.

7. Select the third PanelCustomizable again and add another OmniPortlet, then
set the ID to customerDetails.

Step 4: Adding a SelectOneChoice Component for the Service Request
Volume Portlet

In this section, you will add a SelectOneChoice component for the Service Request
Volume portlet.

1. In the Structure view, below the third PanelCustomizable, select the
ShowDetailFrame, then add a SelectOneChoice component from the ADF
Core Component palette.

2. Set the following properties for the SelectOneChoice component:

■ ID = dayPicker

■ label = Volume for last

■ default value = 360

■ items = 1,2,3,5,10,30,60,90,180 and 360 days

■ autoSubmit = true

The following code should appear in the JSPX:

<af:selectOneChoice label="Label 1" value="360" autoSubmit="true"
id="dayPicker">
<af:selectItem label="1 day" value="1"/>
<af:selectItem label="2 days" value="2"/>
<af:selectItem label="3 days" value="3"/>
<af:selectItem label="5 days" value="5"/>
<af:selectItem label="10 days" value="10"/>
<af:selectItem label="30 days" value="30"/>
<af:selectItem label="60 days" value="60"/>
<af:selectItem label="90 days" value="90"/>
<af:selectItem label="180 days" value="180"/>
<af:selectItem label="360 days" value="360"/>
</af:selectOneChoice>

3. In the Structure view, select the ShowDetailFrame from the second
PanelCustomizable.

4. In the first tab, select Create list to fill the content of the drop-down list.

5. Click Add Item.

6. In the Item label field, type 1 day and in the Item Value field, type 1.

7. Repeat the previous step for the following days: 2, 3, 5, 10, 30, 60, 90, 180, and 360.

8. Click the Common Properties Tab.

Step 6: Defining the Most Productive Employees Portlet

Building a Dashboard Page 8-11

9. In the Label field, type Volume for last.

10. In the Value field, enter 360.

11. In Advanced Properties tab, for the autoSubmit option, enter true.

12. Click OK to create the component.

13. In the Property view, for SelectOneChoice, update the id to dayPicker.

14. Within the ShowDetailFrame, drag and drop the dayPicker component above
the OmniPortlet.

Step 5: Adding a Search for Customer Contracts
In the following steps, you will add a component that allows your users to search for
existing customer contracts.

1. In the page source, locate the ShowDetailFrame called "Customer Contracts"
and place your cursor under the PanelHorizontal that is located under the
ShowDetailFrame.

2. In the Data Control palette, expand the ContentRepository data control, then
expand Search.

3. Drag and drop the Search method as an ADF Command Button below the
PanelHorizontal.

4. In the Structure Pane, select the Search method.

5. In the Action Binding Editor, specify "/contracts" as the path.

6. Set isRecursive to true, then click OK.

7. In the Data Control palette, under Search, expand Parameters.

8. Drag and drop the NamePattern method as an Input Text with Label component
before the Search Button.

9. In the Structure Pane, select the InputText component you just added and set the
Label property to Name (use % as wildcard).

10. In the Data Control palette, under Search, drag and drop the Return method as an
ADF Read Only table below the PanelHorizontal.

11. Save the page.

Step 6: Defining the Most Productive Employees Portlet
In the following steps, you will define your OmniPortlets. Then, at the end of the
chapter, you will wire them together to create interactivity.

In this section, you will define the portlet that displays the most productive employees
in the organization. To define your OmniPortlet instances, you must first run your
JSPX page to your browser, then use the OmniPortlet wizard to define the portlets.

1. Run the SRDashboard.jspx page to your browser.

Note: For more information on using the OmniPortlet wizard, refer
to the "Creating Portlets with OmniPortlet" chapter in the Oracle
WebCenter Framework Developer's Guide.

Step 7: Defining the Service Request Volume Portlet

8-12 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

2. Click the Define link for the first portlet, and choose SQL as the data type, then
click Next.

3. On the Source tab, enter the SQL statement shown in Example 8–4.

Example 8–4 SQL Statement for the Most Productive Employees Portlet

select count(SH.CREATED_BY) as NB_REQ, SH.CREATED_BY,U.FIRST_NAME, U.LAST_NAME
FROM SERVICE_HISTORIES SH INNER JOIN USERS U ON U.USER_ID = SH.CREATED_BY WHERE
SH.SVH_TYPE = 'Technician' OR SH.SVH_TYPE = 'Hidden' GROUP BY SH.CREATED
BY,U.FIRST_NAME,U.LAST_NAME ORDER BY NB_REQ DESC

4. Click Next, then click Next again.

5. On the View tab, select Tabular, then click Next.

6. On the Layout tab, update the following options:

Title: Most Productive Employees

Layout: Service Request (NB_REQ)

First Name (FIRST_NAME)

Last Name (LAST_NAME)

7. Click Finish.

Step 7: Defining the Service Request Volume Portlet
The steps in this section will show you how to display information about the service
requests in a pie chart.

1. In your browser, on the SRDashboard.jspx page, click the Define link for the
second portlet.

2. On the Type tab, select SQL, then click Next.

3. On the Source tab, in the SQL Statement field, enter the following:

Example 8–5 SQL Statement for the Service Request Volume Portlet

select count(SVR_ID) as NB_REQ, STATUS FROM SERVICE_REQUESTS
WHERE REQUEST_DATE > (SYSDATE - ##Param1##)
GROUP BY STATUS ORDER BY NB_REQ

4. Set up a global connection to the database.

Under Connection, click Edit Connection.

5. In the Connection Name field, type SRDemo.

6. In the Username field, type hr.

7. In the Password field, type hr. These are the username and password for the
SRDemo schema you installed when you downloaded the sample files.

8. In the Connection String field, type the path to your database, for example
mydemo.mycompany.com:1522:XE, then click OK. You should now see the
connection information in the Connection section of the Source tab.

9. Create a portlet parameter called Param1 with the default value of 360, then click
Next.

10. On the Filter tab, click Next.

Step 9: Defining the Most Active Customers Portlet

Building a Dashboard Page 8-13

11. On the View tab, select Chart, then click Next.

12. On the Layout tab, select Pie, and enter 300 for the Width and 200 for the Height.

13. Set the Legend to Right and check the 3D effect checkbox.

14. From the Group list, choose None.

15. From the Category list, choose Status.

16. From the Value list, choose NB_REQ, then click Finish.

Step 8: Defining the Most Requested Products Portlet
The steps in this section show you how to define the portlet that displays the most
requested products using a SQL statement to access the data in a database.

1. In your browser, on the SRDashboard.jspx page, click the Define link for the
third portlet.

2. On the Type tab, select SQL, then click Next.

3. On the Source tab, in the SQL statement field, enter the following:

Example 8–6 SQL Statement for the Products Most Requested Portlet

select count(SR.SVR_ID) as NB_REQ, SR.PROD_ID, P.NAME FROM
SERVICE_REQUESTS SR INNER JOIN PRODUCTS P ON SR.PROD_ID = P.PROD_ID
GROUP BY SR.PROD_ID, P.NAME ORDER BY NB_REQ DESC

4. Click Next.

5. On the Filter tab, click Next.

6. On the View tab, choose Chart, then click Next.

7. On the Layout tab, choose Bar, then set the following options:

Width: 300

Height: 250

Group: Name

Category: <none>

Value: NB_REQ

8. Click Finish.

Step 9: Defining the Most Active Customers Portlet
The steps in this section will show how to define a portlet that displays the most active
customers.

To create the two portlets in the Customer Information section of your page:

1. In your browser, on the SRDashboard.jspx page, click the Define link for the
fourth portlet.

2. On the Type tab, choose SQL, then click Next.

3. On the Source tab, enter the following SQL statement, then click Next.

Step 10: Defining the Customer Details Portlet

8-14 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Example 8–7 SQL Statement for the Most Active Customers Portlet

select count(SH.CREATED_BY) as NB_REQ, SH.CREATED_BY , U.FIRST_NAME, U.LAST_NAME
FROM SERVICE_HISTORIES SH INNER JOIN USERS U ON U.USER_ID = SH.CREATED_BY WHERE
SH.SVH_TYPE = 'Customer' GROUP BY SH.CREATED_BY,U.FIRST_NAME,U.LAST_NAME ORDER BY
NB_REQ DESC

4. On the Filter tab, make no changes and click Next.

5. On the View tab, choose the HTML Layout and enter a title: Most Active
Customers, then click Next.

6. On the Layout tab, choose the Sortable Template, then click Apply.

7. Leave the default code in the Heading Section.

8. In the Repeating Section, update the code so that it looks like the following:

<tr class="portlet-section-alternate opRowColorPI1146522302846_##OP_ROWNUM_
MOD2##">
<td class=PortletText1>##NB_REQ##</td>
<td class=PortletText1>##CREATED_BY##</td>
<td class=PortletText1>##FIRST_NAME##</td>
<td class=PortletText1><a href="/SRDemo/faces/app/management/SRDashboard.jspx?
customerID=##CREATED_BY##" target="_top">##LAST_NAME##</td>
</tr>

9. In the Footer Section, update the code so that it looks like the following:

</tbody>
</table>
Total Rows: ##OP_ROWNUM##

10. Click Finish.

Step 10: Defining the Customer Details Portlet
In this section, you will define a portlet that displays details about a particular
customer.

1. In your browser, on the SRDashboard.jspx page, click the Define link for the
fifth portlet.

2. On the Type tab, choose SQL, then click Next.

3. On the Source tab, enter the following SQL statement:

Example 8–8 SQL Statement for the Customer Details Portlet

select * from USERS where USER_ID = '##Param1##')

4. Set Param1 to the default value 320, then click Next.

5. On the View tab, choose the HTML Layout and enter a title: Customer
Details, then click Next.

6. On the Layout tab, clear the fields.

7. Choose Sortable Table from the Template drop-down list, and enter the following
code in the Heading Section:

<TABLE BORDER='0' WIDTH="100%">

8. Replace the code in the Repeating Section with the following:

Step 11: Wiring the Page Content Together

Building a Dashboard Page 8-15

<TR CLASS='PortletText1'>
<TD CLASS='PortletHeading1'>ID</TD>
<TD>##USER_ID##</TD>
</TR>
<TR CLASS='PortletText1'>
<TD CLASS='PortletHeading1'>Email</TD>
<TD>##EMAIL##</TD>
</TR>
<TR CLASS='PortletText1'>
<TD CLASS='PortletHeading1'>First Name</TD>
<TD>##FIRST_NAME##</TD>
</TR>
<TR CLASS='PortletText1'>
<TD CLASS='PortletHeading1'>Last Name</TD>
<TD>##LAST_NAME##</TD>
</TR>
<TR CLASS='PortletText1'>
<TD CLASS='PortletHeading1'>Street</TD>
<TD>##STREET_ADDRESS##</TD>
</TR>
<TR CLASS='PortletText1'>
<TD CLASS='PortletHeading1'>City</TD>
<TD>##CITY##</TD>
</TR>
<TR CLASS='PortletText1'>
<TD CLASS='PortletHeading1'>State</TD>
<TD>##STATE_PROVINCE##</TD>
</TR>

9. Replace the code in the Footer Section with the following:

</tbody>
</table>
Total Rows: ##OP_ROWNUM##

10. Click Finish.

Step 11: Wiring the Page Content Together
The steps in this section show you how to add interactivity to the portlets you've just
created. In this section, you will create a page parameter and portlet parameters, then
wire the portlets together on the page.

1. To create the page parameter, return to Oracle JDeveloper and open the file
SRDashboardPageDef.xml.

2. Create a page parameter called custID.

To do so, in the Structure Pane, right-click Parameters, then insert a new page
parameter with the following:

<parameter id ="custID" value="$param.customerID)"/>

3. Open the source for the SRDashboard.jspx page you created.

4. Add a portlet parameter to the Customer Details portlet.

5. For Param1 set the value to the page parameter value from the bindings.custID
(set the default value to 320 so that at least a customer shows up and the page is
activated and no customers are selected):

<parameter name="Param1" value="${(bindings.custID == null || bindings.custID

Summary

8-16 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

== '') ? 320 : bindings.custID }"/>

6. Add a parameter for the Service Request Volume portlet so that the portlet is
refreshed when the value is selected from the SelectOneChoice.

In the Structure view, right-click parameters.

7. Select Insert Inside Parameters, then select parameter.

8. Set the value of Param1 to 360. By default we use 1 year or 360 days to show all
the results.

9. Select OmniPortlet3_1_Param1 within executables/variables of the page defs.

10. In the Property Inspector, in the DefaultValue field, type the following:

${(app_management_SRDashboard.dayPicker.value == null) ? 360 : app_management_
SRDashboard.dayPicker.value}

11. In the Structure pane, choose the fifth portlet, the Most Active Customers portlet.

12. In the Property Inspector, set the SubmitUrlParameters property to true.
Doing so enables the portlet to submit the parameter through a URL to the page.

13. Save your page.

14. Run the SRDashboard.jspx page to your browser to view the portlets you just
added.

Summary
The steps in this chapter showed you how to build a dashboard page for your
WebCenter application. You learned how to create a page using customizable
components and ADF Faces Core components to create the layout. You also learned
how to create portlets that display related information and wire them together on a
page, so that your end users can easily view information about their customers for a
single entry point.

Building a Site Administration Page 9-1

9
Building a Site Administration Page

You have already created your WebCenter application. In this chapter, you will create
a site administration page that can be used by the administrator to change the look
and feel of the application and to customize the login page. This site administration
page is then added as a subtab of the Management page.

The SRDemo ZIP file contains three skins, myCompany, limerine, and original,
and the corresponding image files you may require. Using the site administration page
that you create in this chapter, end users will be able to change the skin of the
application at run time by choosing from the three skins. In addition, they will be able
to customize the login page of the application. At run time, the site administration
page would look like Figure 9–1.

Figure 9–1 The Site Administration Page at Run Time

Before you can perform the tasks in this chapter, you must set up skins for your
application by performing the steps in Chapter 3, "Setting Up Skins".

This chapter contains the following sections:

■ Step 1: Creating the Site Administration Page

■ Step 2: Adding the Skin Selector to the Page

■ Step 3: Enabling Customization of the Login Page

Step 1: Creating the Site Administration Page

9-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

■ Step 4: Adding the Site Administration Page as a Subtab of the Management Page

■ Step 5: Using the Site Administration Page for Customization

Step 1: Creating the Site Administration Page
The next step is to build the SRSiteAdmin.jspx page with controls that will let
administrators change the look and feel of the application and customize the login
page.

To create the site administration page, perform the following steps:

1. In the Applications Navigator, expand the UserInterface node and the Web
Content node, if necessary.

2. Under the app node, right-click the management folder and select New.

3. In the New Gallery, expand the Web Tier node.

4. Select JSF.

5. In the Items list, select JSF JSP.

6. Click OK to display the Create JSF JSP dialog box.

7. If you are on the Welcome page of the wizard, click Next to display the JSP File
page.

8. In the File Name field, enter SRSiteAdmin.jspx.

9. Select JSP Document (*.jspx).

10. Click Next to display the Component Binding page.

11. Select Automatically Expose UI Components in a New Managed Bean and
ensure that the Name field displays app_management_SRSiteAdmin.

12. Click Next to display the Tag Libraries page.

13. Make sure that the following libraries are listed under Selected Libraries:

■ JSF Core

■ JSF HTML

■ ADF Faces Components

■ ADF Faces HTML

■ ADF Portlet Components

■ Customizable Components Core

14. Click Finish to create the page.

15. Expand the WEB-INF node and the template node.

16. Right-click SRDemoTemplate.jspx and select Open.

17. Copy the source code from the SRDemoTemplate.jspx page and paste it into
the source of your new SRSiteAdmin.jspx page, replacing all the existing code
in your new page.

Note: This page will set the value of the skin to be used in the skin
bean we created earlier.

Step 2: Adding the Skin Selector to the Page

Building a Site Administration Page 9-3

18. Search for the following line in the source of the SRSiteAdmin.jspx page:

<af:panelPage title="#{res['_PAGE_NAME_.pageTitle']}">

and replace it with:

<af:panelPage title="#{res['SRSiteAdmin.pageTitle']}">

19. Save the file.

Step 2: Adding the Skin Selector to the Page
Now we must provide the capability to select a specific skin for the application. We
will do this by creating a radio group where the administrator can select a skin to use
at run time. We will also provide a preview of what each skin looks like.

To add a skin selector to the page, perform the following steps:

1. In the Structure pane, expand the nodes, f:view, af:document, af:form, and
af:panelPage, as shown in Figure 9–2.

Figure 9–2 Expanded Structure Pane

2. In the Component Palette, select ADF Faces Core.

3. Drag a PanelHorizontal component into the Structure pane so that it appears
between Page Content Start and Page Content End.

4. Add three more panelHorizontal components in the same way, making sure
that they are all at the same level, and are child components of the panelPage
component.

5. Drag a Message component from the Component Palette into the Structure pane
so that it appears within the first panelHorizontal component, as shown in
Figure 9–3.

Step 2: Adding the Skin Selector to the Page

9-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 9–3 Message Component in the Structure Pane of Your Page

6. In the Property Inspector, change the properties for the Message component as
follows:

■ Message: Select a skin below to change the look and feel
for the Service Request Portal

■ InlineStyle/font-size: large

7. Drag an ObjectSpacer component from the Component Palette into the Structure
pane so that it appears between the first and second panelHorizontal
component.

8. Drag a ShowOneRadio component into the second panelHorizontal
component.

9. Add three showDetailItem components under the showOneRadio component
as shown in Figure 9–4.

Figure 9–4 ShowOneRadio Component In the Structure Pane of Your Page

10. Drag an ObjectImage component into the first showDetailItem component.
This displays the Insert ObjectImage dialog box.

Step 2: Adding the Skin Selector to the Page

Building a Site Administration Page 9-5

11. Next to the Source field, click the Show Advanced Editor button.

12. Select srdemo_mycompany.gif from the list, and click OK.

13. Click OK.

14. Repeat the preceding four steps for the other two showDetailItem components
to add the following images:

■ srdemo_limerine.gif

■ srdemo_original.gif

These components are displayed in the Structure pane as shown in Figure 9–5.

Figure 9–5 Images for the Radio Buttons

15. Select the first showDetailItem component and, in the Property Inspector, set
the following properties:

■ Binding: #{backing_SRSiteAdmin.showDetailItem1}

■ DisclosureListener: #{skinBean.processDisclosure}

■ Text: My Company Skin

16. Select the second showDetailItem component and set the following properties:

■ Binding: #{backing_SRSiteAdmin.showDetailItem2}

■ DisclosureListener: #{skinBean.processDisclosure}

■ Text: Limerine Skin

17. Select the third showDetailItem component and set the following properties:

■ Binding: #{backing_SRSiteAdmin.showDetailItem3}

■ DisclosureListener: #{skinBean.processDisclosure}

■ Text: Original SRDemo Skin

18. Drag a CommandButton component between the second and third
panelHorizontal components as shown in Figure 9–6.

Step 2: Adding the Skin Selector to the Page

9-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Figure 9–6 Change Skin Command Button

19. Set the Text property of the commandButton to Change Skin.

20. Drag an ObjectSpacer component from the Component Palette into the Structure
pane so that it appears between the first and second panelHorizontal
components.

21. Save the file. The site administration page now looks like Figure 9–7.

Step 3: Enabling Customization of the Login Page

Building a Site Administration Page 9-7

Figure 9–7 Site Administration Page

Step 3: Enabling Customization of the Login Page
You will now see how to customize the login page to include information that can be
updated at run time, without redeploying the application. By performing the steps in
this section, you can go back to the login page after you have logged in and customize
the Rich Text Portlet that you added in "Step 3: Adding a Rich Text Portlet to the Login
Page" in Chapter 6, "Creating a Login Page".

To enable customization of the login page, perform the following steps:

1. Create a navigation case to navigate from the site administration page to the login
page. To do this, add the code in Example 9–1 to the faces-config.xml file:

Example 9–1 Navigation Rule to Navigate from Site Administration Page to Login Page

<navigation-rule>
 <from-view-id>/app/management/SRSiteAdmin.jspx</from-view-id>
 <navigation-case>
 <from-outcome>CustomizeLoginPage</from-outcome>
 <to-view-id>/infrastructure/SRLoginADF.jspx</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

Step 3: Enabling Customization of the Login Page

9-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

2. Create a navigation case to navigate from the login page to the site administration
page. To do this, add the code in Example 9–2 to the faces-config.xml file:

Example 9–2 Navigation Rule to Navigate from Login Page to Site Administration Page

<navigation-rule>
 <from-view-id>/infrastructure/SRLoginADF.jspx</from-view-id>
 <navigation-case>
 <from-outcome>ReturnToSiteAdmin</from-outcome>
 <to-view-id>/app/management/SRSiteAdmin.jspx</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

3. Drag an ObjectSpacer component between the commandButton and the third
panelHorizontal.

4. Drag an OutputFormatted component into the third panelHorizontal and set
the following properties in the Property Inspector:

■ Value: #{res['srsiteadmin.editLoginPagePrompt']}

This EL returns the appropriate string from the resource bundle.

■ InlineStyle/font-size: large

5. Drag a commandButton into the fourth panelHorizontal component and set
the following properties:

■ Text: Customize Login Page

■ Action: CustomizeLoginPage

This button will use the previously defined ADF Faces navigation to take the user
to the login page.

6. To prevent all managers from being able to customize the login page, and to
expose the button only to those who have customize privilege on the page, the
Rendered property for the commandButton must be set as follows:

Render: #{bindings.permissionInfo['SRLoginADFPagePageDef'].allowsCustomize}

7. Save the file.

8. Open the SRLogin.jspx page and drag a commandButton on the page and set
the following properties:

■ Text: Return

■ Action: ReturnToSiteAdmin

This button will use the previously defined ADF Faces navigation to take the user
back to the site administration page after performing the required customizations.

Note: Unlike the case where a public user accesses the login page to
authenticate, when accessing the page from the site administration
page, the user's identity is already defined. Therefore, to prevent a
subsequent login attempt while customizing the login page, the login
component on the screen must be deactivated. This deactivation is
handled by the backing bean code that was added in "Step 1: Creating
a Login Page" in Chapter 6, "Creating a Login Page".

Step 4: Adding the Site Administration Page as a Subtab of the Management Page

Building a Site Administration Page 9-9

9. Set the Rendered property for the commandButton as follows:

Render: #{authNLink.authenticated}

10. Save the file.

Step 4: Adding the Site Administration Page as a Subtab of the
Management Page

Finally, you must add the SRSiteAdmin.jspx page as a subtab of the main
Management page. To do this, you must perform the following steps:

1. In the WEB-INF folder of the UserInterface project, right-click faces-config.xml
and select Open.

2. If necessary, click the Source tab.

3. Add the managed bean shown in Example 9–3 to the existing code after the
managed bean for the Dashboard subtab.

Example 9–3 Managed Bean for the Site Administration Subtab

<managed-bean>
 <managed-bean-name>subMenuItem_Manage_SiteAdmin</managed-bean-name>
 <managed-bean-class>oracle.srdemo.view.menu.MenuItem</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>label</property-name>
 <value>#{resources['srdemo.menu.manage.siteadmin']}</value>
 </managed-property>
 <managed-property>
 <property-name>shown</property-name>
 <value>#{userInfo.manager}</value>
 </managed-property>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/app/management/SRSiteAdmin.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>SRSiteAdmin</value>
 </managed-property>
<!-- ADF Authorization -->
 <managed-property>
 <property-name>targetPageDef</property-name>
 <value>app_management_SRSiteAdminPageDef</value>
 </managed-property>
<!-- End ADF Authorization -->
</managed-bean>

4. Open the UIResources.properties file, located under UserInterface,
Application Sources, oracle.srdemo.view, resources.

5. Locate the Admin page area and include the following:

srdemo.menu.manage.siteadmin=Administration

6. Search for <managed-bean-name>menuItem_Manage.

7. Add the code in Example 9–4 to the list-entries tag.

Step 5: Using the Site Administration Page for Customization

9-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Example 9–4 Code to Be Added to the list-entries Tag

<value>#{subMenuItem_Manage_SiteAdmin}</value>

8. Search for <from-view-id>/app/management/SRManage.jspx.

9. Add the code in Example 9–5 to the navigation rule.

Example 9–5 Code to Be Added to the navigation-case Tag

<navigation-case>
 <from-outcome>SRSiteAdmin</from-outcome>
 <to-view-id>/app/management/SRSiteAdmin.jspx</to-view-id>
</navigation-case>

10. Make sure that the code in Example 9–6 is already included.

Example 9–6 Code to Be Added to the managed-bean Tag

<managed-bean>
 <managed-bean-name>backing_SRSiteAdmin</managed-bean-name>
<managed-bean-class>oracle.srdemo.view.backing.app.management.SRSiteAdmin</managed
-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

11. Save the file.

12. In the Applications Navigator, under the UserInterface project, right-click
index.jspx and select Run.

Refer to Chapter 8, "Building a Dashboard Page" for more information about adding a
page as a subtab on another page.

Step 5: Using the Site Administration Page for Customization
You will now see how you can customize your application by using the site
administration page. You can perform the following tasks on this page:

■ Changing the Skin for the Application

■ Customizing the Login Page

Changing the Skin for the Application
To change the skin for your application, perform the following steps:

1. Log in to the Service Request portal as sking with a password of welcome.

2. Click the Management tab. This page now includes a subtab for your site
administration page as shown in Figure 9–8.

Step 5: Using the Site Administration Page for Customization

Building a Site Administration Page 9-11

Figure 9–8 Management Tab on the Service Request Portal page

3. Click the Site Administration subtab. This page contains a radio group where the
administrator can select the skin to use for the application, as shown in Figure 9–9.
The default skin used by the application is MyCompany Skin.

Figure 9–9 Site Administration Tab with Customization Options

4. Select Limerine Skin. The image updates to give a preview of the skin selected.

5. Click Change Skin. The appearance of the page changes to use the Limerine
skin. This change applies to the complete application.

Customizing the Login Page
If you are a manager, you can customize the login page and edit the text that is
displayed to users on this page. To do this, use the Customize Login Page button on
the site administration page.

Step 5: Using the Site Administration Page for Customization

9-12 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

To customize the login page for your application, perform the following steps:

1. Log in to the Service Request portal as sking with a password of welcome.

2. Click the Management tab. This page now includes a subtab for your site
administration page, as shown in Figure 9–8.

3. Click the Site Administration subtab. This page provides options to change the
skin for your application and to customize the login page, as shown in Figure 9–9.

4. Click the Customize Login Page button.

5. On the login page, move your mouse over the text area and click the actions
button that is displayed. Select Customize from the list displayed.

6. Add the text in Example 9–7 to the Rich Text portlet at the top of the page:

Example 9–7 First Rich Text Portlet on the Login Page

Please Log In to the Acme Service Request Application
This demonstration application has a number of predefined user accounts
which equate to different roles within the company.
For example:
 sking - a manager
 ahunold - a technician
 dfaviet - a user (customer)
All usernames should be in lowercase with a password of "welcome"
Note: If you copy and paste the user IDs from here, be sure to remove any trailing
spaces to ensure that the ID is valid

Use the formatting features of the rich text editor and format this text to appear as
shown in Figure 9–10.

7. Add the text in Example 9–8 to the second Rich Text portlet on the page.

Example 9–8 Second Rich Text Portlet on the Login Page

Acme's computer systems and networks are intended solely for use by authorized
Acme employees and contractors. Use of Acme computer systems and networks is
subject to the company policies, including the Employee Code of Conduct, Internal
Privacy Policy, the Acceptable Use Policy and the Information Protection Policy.
Unauthorized access or use may result in disciplinary action, up to and including
a really, really serious talking to and being sent into the corner! Further
information about Acme security and privacy policies is available at the GIS
Policy Portal.to ensure that the ID is valid

Decrease the font size for this text and set the color to a light grey so that the text
appears as shown in Figure 9–10.

Note: The Customize Login Page button is displayed only to
authenticated users who have customize privilege on the login
page. As you had granted customize privilege to the manager role
while performing the steps in "Step 4: Editing Authorization for the
Login Page" in Chapter 6, "Creating a Login Page", only a manager
can customize the login page.

The Customize Login Page button is not displayed to users who have
only view privilege on the login page.

Summary

Building a Site Administration Page 9-13

Figure 9–10 Login Page After Customizing

8. Click Return to get back to the site administration page.

Summary
In this chapter, you learned how to create a site administration page and add it as a
subtab of the Management page. You also learned how to use the site administration
page to change the look and feel of the application and to customize the login page.

Summary

9-14 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Deploying Your Application 10-1

10
Deploying Your Application

The steps in this chapter will show you how to deploy your application using the
Application Server Control Console. To learn how to deploy your application to a
production environment, refer to the Oracle WebCenter Framework Developer's Guide.

To deploy the SRDemo application to an Oracle Application Server or a standalone
OC4J, you must perform the following steps:

■ Step 1: Creating the Generic EAR file

■ Step 2: Creating the Targeted EAR File

■ Step 3: Setting Up the Users and Roles

■ Step 4: Setting Up the Sample Content

■ Step 5: Deploying the Application

■ Step 6: Deploying the Security Policy

■ Step 7: Accessing the Application

Step 1: Creating the Generic EAR file
To create the generic EAR file, perform the following steps:

1. Open your Oracle JDeveloper, go to Applications Navigator, right-click User
Interface, and select New. The New Gallery displays.

2. Under General, select Deployment Profiles and under Items select WebCenter
Application WAR. The Create WebCenter Application Deployment Profile dialog
box displays.

3. In the File Name field, enter SRDemoSample_WebCenter.deploy, as shown in
Figure 10–1, and click OK.

Figure 10–1 Create WebCenter Application Deployment Profile

Step 1: Creating the Generic EAR file

10-2 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

4. The deployment profile is created in the Resources folder under User Interface, as
shown in Figure 10–2.

Figure 10–2 Deployment Profile

5. Right-click the deployment profile and select Properties. The WAR Deployment
Profile Properties dialog box is displayed.

6. Select Profile Dependencies, then go to DataModel.jpr, and select the
SRFacade.deploy check box, as shown in Figure 10–3.

Figure 10–3 SRFacade.deploy

7. Click OK.

8. Under Resources, right-click SRDemoSample_WebCenter.deploy and select
Deploy to EAR file. This generates the EAR file. The Deployment - Log shows an
output similar to Example 10–1.

Example 10–1 Deployment - Log

---- Deployment started. ---- May 29, 2007 1:24:32 PM
Target platform is Standard J2EE.
Exporting portlet metadata and customizations
Wrote EJB JAR file to C:\SRDemo\wc_starter\SRDemoSample_

Step 2: Creating the Targeted EAR File

Deploying Your Application 10-3

WCS\DataModel\deploy\SRFacade.jar
Wrote WAR file to C:\SRDemo\wc_starter\SRDemoSample_
WCS\UserInterface\deploy\SRDemoSample_WebCenter.war
Wrote EAR file to C:\SRDemo\wc_starter\SRDemoSample_
WCS\UserInterface\deploy\SRDemoSample_WebCenter.ear
Elapsed time for deployment: 25 seconds
---- Deployment finished. ---- May 29, 2007 1:24:57 PM

9. Locate the EAR file.

10. Copy it to the machine that has Oracle Application Server running on it. You can
do this using a mapped drive on Windows, or by using FTP.

Step 2: Creating the Targeted EAR File
Now, switch to the machine that has your Oracle Application Server installed on it
and perform the following steps:

1. Open a command prompt.

2. Run the Predeployment tool to create a targeted EAR file as follows:

C:\java\srdemo_oc4j>C:\java\jdev\jdk\bin\java -jar C:\java\srdemo_
oc4j\adfp\lib\portlet-client-deploy.jar -predeploy -source
C:\Temp\SRDemoSample_WebCenter.ear -target C:\Temp\SRDemoSample_WC_target.ear

Where the source file is the generic EAR file created earlier.

You will be prompted to specify various settings while you run the
Predeployment tool. The output will look like Example 10–2 (user defined settings
in bold):

Example 10–2 Output of the Predeployment Tool

Processing Arguments
Run Mode : 1
Source : C:\Temp\SRDemoSample_WebCenter.ear
Target : C:\Temp\SRDemoSample_WC_target.ear
Deployed App : null
Mapping File : null
Deployed App : null
Cleaning up C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\
May 16, 2007 12:25:33 PM oracle.adf.share.config.ADFConfigFactory findOrCreateADF
Config
INFO: oracle.adf.share.config.ADFConfigFactory No META-INF/adf-config.xml found
Processing source EAR file
Source EAR file processed
Processing adf-config.xml
adf-config.xml processed
Processing connections.xml
connections.xml processed

Creating a new Deployment Profile for : C:\Temp\SRDemoSample_WebCenter.ear

Note: The syntax to create a targeted EAR must be in a single line. It
is wrapped in this example for readability.

See chapter titled Deploying Your WebCenter Application" in Oracle
WebCenter Framework Developer's Guide for explanation of this syntax.

Step 2: Creating the Targeted EAR File

10-4 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Development MDS Repository Path : ../../mds/;../../
Enter new MDS Repository Path :
C:\java\srdemo_oc4j\mds\SRDemo

Producer : OmniPortletProducer_11743434494566c52fb80-0111-1000-8001-a9fe02025106

Current Service URL : http://pdtsdemo1.us.oracle.com:8888/portalTools/omniPortl
et/providers/omniPortlet
Current Proxy URL :
Current Proxy Port : 0
Do you want to modify this connection? (Y/N [default=N]) :
N

Validating producer OmniPortletProducer_
11743434494566c52fb80-0111-1000-8001-a9fe02025106
.
.
.
Do you wish to save this new Deployment Profile (Y/N [default=N]) :
y
Enter a name for this Deployment Profile (e.g. 'Production') :
srdemo_deploy
Enter the path for the Deployment Profile XML file (e.g. 'C:\profile.xml'):
C:\temp\srdemo_deploy.xml
Saving to C:\temp\srdemo_deploy.xml
Cleaning up C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\
Extracting View Documents, MDS and connections.xml from source EAR file
Examining contents of SRDemoSample_WebCenter.war
Moving C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\tmppkg\views\SRDemoSample_
WebCenter\WEB-INF to
C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\view\UserInterface\public_
html\WEB-INF
.
.
.
MDS extracted from source EAR file
Creating target EAR file
Processing source EAR file
.
.
.
Source EAR file processed
Processing adf-config.xml
adf/META-INF/adf-config.xml [Recreated]
adf-config.xml processed
Processing connections.xml
Validating producer OmniPortletProducer_
11743434494566c52fb80-0111-1000-8001-a9fe02025106
.
.
.
adf/META-INF/connections.xml [Recreated]
connections.xml processed
Processing SRDemoSample_WebCenter.war
WEB-INF/lib/META-INF/adf-config.xml [Recreated in WAR file]
WEB-INF/classes/META-INF/connections.xml [Recreated in WAR file]
WEB-INF/lib/META-INF/connections.xml [Recreated in WAR file]
SRDemoSample_WebCenter.war [Recreated]
WAR file processed

Step 3: Setting Up the Users and Roles

Deploying Your Application 10-5

Creating target EAR file
WAR file processed
source MDS Path (temp) : C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\mds
Production MDS Path : C:\java\srdemo_oc4j\mds\SRDemo
Connections.xml Path :
C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\connections.xml.new
Export ID : /export
May 16, 2007 12:25:58 PM oracle.mds
NOTIFICATION:
"oracle.portlet.client.persistenceimpl.mds.ImportListener"::"preOperation" is
being invoked.
.
.
.
NOTIFICATION: Transferring the document /UserInterface/public_html/app/staff/SRS
taffSearch.jspx.
NOTIFICATION: import is completed. Total number of documents successfully proces
sed : 24, total number of documents failed : 0.
Moving C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\SRDemoSample_WC_target.ear t
o C:\Temp\SRDemoSample_WC_target.ear
Target EAR C:\Temp\SRDemoSample_WC_target.ear created
Cleaning up C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\predeploy\

Step 3: Setting Up the Users and Roles
Since the SRDemo users and roles will not yet exist on Oracle Application Server to
which you want to deploy the application, you must update the global
system-jazn-data.xml file for the application server or standalone OC4J by
running the JAZN Migration Tool in realm mode.

To add the SRDemo users and roles, perform the following steps:

1. Locate the system-jazn-data-starter.xml file in the starter ZIP file. This
contains the users and roles.

2. Backup your OC4J's system-jazn-data.xml file, located in ORACLE_
HOME\j2ee\home\config\system-jazn-data.xml.

3. Open a command prompt.

4. Set the classpath as follows:

set CLASSPATH = ORACLE_HOME/j2ee/home/jazn.jar;ORACLE_
HOME/BC4J/lib/adfshare.jar

For example, if your ORACLE_HOME is C:\java\srdemo_oc4j, set the
classpath as follows:

Note: in Example 10–2, existing settings for all the portlet producers
remain unchanged. You can change them by specifying Y and then
providing the appropriate path to the new producer location.

Note: You have already performed this step in the development
environment, but since you may not have Oracle JDeveloper installed
on the system that hosts your Oracle Application Server, these steps
will show you how to do it by calling the JAZN Migration tool
directly.

Step 4: Setting Up the Sample Content

10-6 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

set CLASSPATH = C:\java\srdemo_oc4j/j2ee/home/jazn.jar; C:\java\srdemo_
oc4j/BC4J/lib/adfshare.jar

5. Run the JAZN Migration tool as follows (This assumes the same Oracle home
location again.)

java oracle.security.jazn.tools.JAZNMigrationTool -sr jazn.com -dr jazn.com -st
xml -dt xml -sf C:\Temp\system-jazn-data-starter.xml -df C:\java\srdemo_
oc4j\j2ee\home\config\system-jazn-data.xml -m realm

Step 4: Setting Up the Sample Content
You must set up the sample content on the system that hosts your Oracle Application
Server in the same way you did this for the development environment. To do this,
extract the content of srcontentrepository.zip from C:\SDemo_App_
Download to C:\srdemo.

Step 5: Deploying the Application
Now that you have generated the targeted EAR file, you are ready to deploy it. You do
this using Application Server Control Console as follows:

1. To access Application Server Control Console, navigate to the following URL:
http://<host_name>.<domain>:<port>/em.

For example, http://test.acme.com:8888/em.

To find the exact URL for your Application Server Control Console, look at
readme.txt. After installation, this text file is saved to the following Oracle
Application Server location:

On UNIX: ORACLE_HOME/install/readme.txt

On Windows: ORACLE_HOME\install\readme.txt

2. Log in to the Application Server Control Console. The Cluster Topology page is
displayed.

3. On the Cluster Topology page, click the link to your application server.

4. Select the Applications tab (Figure 10–4) and click Deploy. The Deploy: Select
Archive page is displayed.

Note: If you are using UNIX, you will need to update your
connections.xml file with the path to the content repository. Open
the connections.xml file and search for
C:\srdemo\SRContentRepository, and update the path to point
to the directory where you extracted the sample content.

If you are using Windows and you chose not to extract the content to
the suggested directory, you will also need to update your
connections.xml file with the path you chose.

Step 5: Deploying the Application

Deploying Your Application 10-7

Figure 10–4 Applications Tab of Application Server Control Console

5. Select the Archive is present on local host option and browse to the location of the
EAR file. Then, click Next.

6. In the Deploy: Application Attributes page, enter the context root of your Web
application as the application name or what you configured while creating the
deployment profile.

7. Deployment Settings page is displayed. If required, then make the changes in this
page and click Deploy.

8. The deployment confirmation page is displayed with output like Figure 10–3.

Example 10–3 Deployment Confirmation Output

[May 16, 2007 5:05:11 PM] Application Deployer for SRDemo STARTS.
[May 16, 2007 5:05:11 PM] Copy the archive to C:\java\srdemo_
oc4j\j2ee\home\applications\SRDemo.ear
[May 16, 2007 5:05:12 PM] Initialize C:\java\srdemo_
oc4j\j2ee\home\applications\SRDemo.ear begins...
[May 16, 2007 5:05:12 PM] Unpacking SRDemo.ear
[May 16, 2007 5:05:15 PM] Done unpacking SRDemo.ear
[May 16, 2007 5:05:15 PM] Unpacking SRDemoSample_WebCenter.war
[May 16, 2007 5:05:25 PM] Done unpacking SRDemoSample_WebCenter.war
[May 16, 2007 5:05:26 PM] Initialize C:\java\srdemo_
oc4j\j2ee\home\applications\SRDemo.ear ends...
[May 16, 2007 5:05:26 PM] Starting application : SRDemo
[May 16, 2007 5:05:26 PM] Initializing ClassLoader(s)
[May 16, 2007 5:05:26 PM] Initializing EJB container
[May 16, 2007 5:05:26 PM] Loading connector(s)
[May 16, 2007 5:05:27 PM] Starting up resource adapters
[May 16, 2007 5:05:27 PM] Processing EJB module: SRFacade.jar
[May 16, 2007 5:05:29 PM] Initializing EJB sessions
[May 16, 2007 5:05:29 PM] Committing ClassLoader(s)
[May 16, 2007 5:05:29 PM] Initialize SRDemoSample_WebCenter begins...
[May 16, 2007 5:05:29 PM] Initialize SRDemoSample_WebCenter ends...
[May 16, 2007 5:05:29 PM] Started application : SRDemo

Step 6: Deploying the Security Policy

10-8 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

[May 16, 2007 5:05:29 PM] Binding web application(s) to site default-web-site
begins...
[May 16, 2007 5:05:29 PM] Binding SRDemoSample_WebCenter web-module for
application SRDemo to site default-web-site under context root SRDemo
[May 16, 2007 5:06:54 PM] Initializing Servlet: javax.faces.webapp.FacesServlet
for web application SRDemoSample_WebCenter
[May 16, 2007 5:06:55 PM] Initializing
Servlet:oracle.adfinternal.view.faces.renderkit.html.portlet.ADFPortletServlet for
web application SRDemoSample_WebCenter
[May 16, 2007 5:06:55 PM] Binding web application(s) to site default-web-site
ends...
[May 16, 2007 5:06:55 PM] Application Deployer for SRDemo COMPLETES. Operation
time: 103484 msecs

9. Go to the Applications tab and select your application. Then, click
Administration.

10. Under Administration Tasks, click Configure Class Loading.

11. De-select Apache.commons.logging.

The application is now deployed, but you cannot access it yet. You must first deploy
the security policies.

Step 6: Deploying the Security Policy
The security policy is bundled in the application's EAR file in the
app-jazn-data.xml file. To deploy the policies for your application, perform the
following steps:

1. Locate the app-jazn-data.xml file. If your ORACLE_HOME is
C:\java\srdemo_oc4j , then this file should be located at C:\java\srdemo_
oc4j\j2ee\home\applications\SRDemo\adf\META-INF\app-jazn-data
.xml.

2. Open a command prompt.

3. Set the classpath as follows:

set CLASSPATH = ORACLE_HOME/j2ee/home/jazn.jar;ORACLE_
HOME/BC4J/lib/adfshare.jar

For example, if your ORACLE_HOME is C:\java\srdemo_oc4j, set the
classpath as follows:

set CLASSPATH = C:\java\srdemo_oc4j/j2ee/home/jazn.jar; C:\java\srdemo_
oc4j/BC4J/lib/adfshare.jar

4. Run the JAZN Migration tool as follows (This assumes that C:\java\srdemo_
oc4j is the Oracle home location.):

Note: For this example, we expect that the sample still resides in the
same database. The targeted EAR file will be configured to use the
database connection that you configured in the development
environment. If this connection does not exist, you may need to use
Application Server Control Console to create a new database
connection using the same name that you used in the development
environment. See the installation file section titled "Running the
Completed Demo." for more information about running the database
scripts.

Summary

Deploying Your Application 10-9

java oracle.security.jazn.tools.JAZNMigrationTool -sr jazn.com -dr jazn.com
-st xml -dt xml -sf C:\java\srdemo_
oc4j\j2ee\home\applications\SRDemo\adf\META-INF\app-jazn-data.xml -df
C:\java\srdemo_oc4j\j2ee\home\config\system-jazn-data.xml -m policy

5. Restart OC4J.

This migrates the policy information. You are now ready to run the application.

Step 7: Accessing the Application
You can now access the SRDemo. To do this, perform the following steps:

1. Open a browser and navigate to

http://appserver_host_name:appserver_port_
number/SRDemo/faces/app/SRWelcome.jspx

2. Log in to see the SRDemo.

Summary
This chapter showed you how to take your application and deploy it. You should now
be able to run your application and view the pages and components you created
throughout this manual. You can also compare your application to the completed
version provided to you in the sample files. To do so, follow the instructions to run the
completed demo in the install.html file.

Summary

10-10 Oracle WebCenter Framework: Building a WebCenter Application Step by Step

Index-1

Index

A
ADF table

wiring a SelectOneChoice, 7-11
wiring portlets, 7-14

ADF, See Application Development Framework, 1-6
application

deploying, 10-1
deploying the security policy, 10-8
deploying using the JAZN migration tool, 10-6
setting up users and roles, 10-5
using Application Server Control Console, 10-6
using the predeployment tool, 10-3

Application Development Framework (ADF), 1-6
Application Service

connecting, 2-3
authorization

editing for login page, 6-15

C
component

adding a JavaServer Faces drop-down
component, 7-12

adding a search component to a page, 8-11
adding a SelectOneChoice, 8-10
adding an ADF table to a page, 7-22
adding security, 7-24
wiring a SelectOneChoice to an ADF table, 7-11
wiring components together on a page, 8-15

connection
creating a connection to your Application

Server, 2-3
Content DB

about, 1-5
content repository

configuring JCR data controls, 4-3
displaying a file in place, 5-4
setting up, 4-1

customization
site administration page, 9-10

customization components
adding to SRMyAcme.jspx page, 7-5
using to create a page layout, 8-4

D
dashboard page

about, 8-1
creating, 8-2

data controls
configuring, 4-3

deployment
creating the generic EAR file, 10-1
creating the targeted EAR file, 10-3
using the Application Server Control

Console, 10-6

E
example

description, 1-7

G
generic EAR file

creating, 10-1

I
interactivity

adding to a page, 7-14

J
JavaServer Faces drop-down component

adding to a page, 7-12
JAZN migration tool

deploying your application, 10-6
JCR adapters, 1-4
JCR data controls, 1-4
JSR 168 portlet

adding logic, 2-10
creating, 2-4, 2-5
deploying to an Application Server, 2-11
registering the producer, 2-14

L
layout components

adding to SRMyAcme.jspx page, 7-5
lifecycle support

Index-2

about, 1-5
login page

adding Rich Text portlet, 6-14
authentication settings, 6-16
configuring the application, 6-16
creating, 6-1, 6-2
creating a login error page, 6-11
customizing, 9-12
editing authorization, 6-15
getLoginFormBlock getter method, 6-7
getloginScriptBlock getter method, 6-6
getloginStyleBlock getter method, 6-5
Oracle ADF Security Wizard, 6-16

O
ObjectSpacer

adding, 7-9
OmniPortlet

adding instances to a page, 8-9
defining with a pie chart layout, 8-13
defining with a piechart layout, 8-12
defining with a SQL data source, 7-13
defining with a tabular layout, 8-11
defining with an HTML layout, 8-13, 8-14
description, 1-3
registering the producer, 7-4

Oracle ADF Security Wizard, 6-16
Oracle Content Database

about, 1-5
Oracle JDeveloper

and ADF, 1-6
Oracle WebCenter Suite

contents, 1-3

P
page

about a dashboard page, 8-1
adding a PDK-Java portlet, 7-14
adding an ADF table, 7-22
adding interactivity, 7-14
adding OmniPortlet instances, 8-9
adding security, 7-23
creating, 7-2
creating a dashboard, 8-2
creating a site administration page, 9-1
using customization components, 8-4
wiring content on a page, 8-15

page layout
creating, 8-4

PanelCustomizable
adding, 7-5

PanelHorizontal
adding, 7-10
using, 7-8

PDK-Java portlet
adding logic, 2-21
adding to a page, 7-14
building, 2-16

deploying to an Application Server, 2-26
portlets

adding a PDK-Java portlet to a page, 7-14
adding a Web Clipping portlet, 7-18
adding logic to a JSR 168 portlet, 2-10
adding logic to a PDK-Java portlet, 2-21
adding OmniPortlet instances to a page, 8-9
building a PDK-Java portlet, 2-16
creating a JSR 168 portlet, 2-4, 2-5
creating a PDK-Java portlet and producer, 2-16
creating a project, 2-1
defining an OmniPortlet, 7-13
defining an OmniPortlet with a pie chart

layout, 8-12, 8-13
defining an OmniPortlet with a tabular

layout, 8-11
defining an OmniPortlet with an HTML

layout, 8-13, 8-14
deploying a JSR 168 portlet, 2-11
deploying a PDK-Java portlet, 2-26
registering a JSR 168 portlet producer, 2-14
wiring to an ADF table, 7-14

predeployment tool
using, 10-3

producer
creating a PDK-Java portlet producer, 2-16
registering, 2-14
registering a Web Clipping producer, 7-19
registering the OmniPortlet producer, 7-4

R
rich text component

adding to welcome page, 5-1
Rich Text portlet

description, 1-4
roles

setting up for your application, 10-5

S
schedule on-site services portlet

creating, 7-18
search

adding a search component to a page, 8-11
security

adding to a page, 7-23
applying to components, 7-24

security policy
deploying, 10-8

SelectItem
adding, 7-7

SelectOneChoice
adding, 7-6
adding to a page, 8-10
wiring to an ADF table, 7-11

Service Request Demo
description, 1-7

ShowDetailFrame
adding, 7-6

Index-3

ShowDetailItem
adding, 7-10

ShowOneTab
adding, 7-9

site administration page
changing skin, 9-10
creating, 9-1
customizing login page, 9-12

skin selector
adding, 9-3

skins
configuring your application, 3-2
registering, 3-1
selecting, 9-10
using, 9-10

SRLogin.jspx
creating, 6-1

SRMyAcme.jspx
adding customization components, 7-5
adding Web Clipping portlet, 7-18

SRSiteAdmin.jspx
creating, 9-2

T
targeted EAR file

creating, 10-3

U
URLs

specifying for Web Clipping, 7-20
users and roles

setting up for your application, 10-5

W
Web Clipping portlet

adding, 7-19
creating, 7-18
description, 1-4
registering, 7-19
selecting the Web page, 7-19

Web content
specifying, 7-20

WebCenter applications
WAR, 1-5

WebCenter Framework
description, 1-3

WebCenter Services
about, 1-5

web.xml
updating, 6-18

welcome page
adding global navigation links, 5-8
adding rich text component to, 5-1
creating, 5-1
displaying a file in place, 5-4
making publicly accessible, 5-11

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to the WebCenter Suite Example
	What is Oracle WebCenter Suite?
	Oracle WebCenter Framework
	Building and Consuming Portlets
	Customizable Components
	Content Integration
	Securing Your Application
	Managing Your Application Throughout the Life Cycle

	Oracle WebCenter Services
	Oracle JDeveloper

	What Will I Create in this Example?
	How Do I Get Started?
	How Do I Navigate the Completed Demo?
	Running the Demo
	Viewing the Demo as a Customer
	Viewing the Demo as a Technician
	Viewing the Demo as a Manager

	2 Building Your Portlets
	Before You Begin
	Creating a Project for Your Portlets
	Creating an Application Server Connection to the Oracle WebCenter Preconfigured OC4J

	Step 1: Building the Product Details Portlet (a JSR 168 Portlet)
	Creating a JSR 168 Portlet
	Creating a Web Service Proxy for Your JSR 168 Portlet
	Adding Portlet Logic to a JSR 168 Portlet
	Deploying a JSR 168 Portlet to an Application Server
	Register the Producer

	Step 2: Building the Service Request Status Portlet (a PDK-Java Portlet)
	Creating a PDK-Java Portlet and Producer
	Adding Portlet Logic to a PDK-Java Portlet
	Deploying a PDK-Java Portlet to an Application Server

	Summary

	3 Setting Up Skins
	Step 1: Verifying that the Skins are Registered
	Step 2: Verifying that Your Application is Configured to Use the New Skins
	Summary

	4 Setting Up Your Content Repository
	Step 1: Setting Up a Content Directory for the Sample Content
	Step 2: Creating a Content Project
	Step 3: Configuring a JCR Data Control
	Summary

	5 Creating a Public Welcome Page
	Step 1: Adding a Rich Text Component
	Step 2: Displaying a File In Place
	Step 3: Adding Global Navigation Links
	Step 4: Making the Welcome Page Public
	Summary

	6 Creating a Login Page
	Step 1: Creating a Login Page
	Step 2: Creating a Login Error Page
	Step 3: Adding a Rich Text Portlet to the Login Page
	Step 4: Editing Authorization for the Login Page
	Step 5: Configuring the Application to Use ADF Security and the Login Page
	Step 6: Updating Web.xml to Call the New Login Page
	Step 7: Running the Application
	Summary

	7 Building a Page and Adding Components
	Step 1: Creating the MyAcme Page
	Step 2: Registering the OmniPortlet Producer
	Step 3: Adding Customization Components
	Step 4: Wiring the SelectOneChoice to the ADF Table
	Step 5: Adding a JavaServer Faces Drop-Down Component
	Step 6: Adding a Service Request History Portlet
	Step 7: Adding the Service Request Status Portlet
	Step 8: Wiring the Table to the Portlets
	Wire the OmniPortlet to the Table
	Wire the Service Request Status and the Service Request History Portlets to the Service Request Table

	Step 9: Adding a Product Details Portlet
	Step 10: Displaying Folder Content
	Step 11: Adding the Schedule On-Site Services Portlet
	Registering a Web Clipping Producer
	Adding the Web Clipping Portlet
	Selecting the Web Page to Display in the Web Clipping Portlet

	Step 12: Adding a Current Contract Based on the User
	Step 13: Applying Security to the My Acme Page
	Step 14: Applying Security to the Components
	Summary

	8 Building a Dashboard Page
	Step 1: Creating the Dashboard Page
	Step 2: Creating the Page Layout
	Step 3: Adding Instances of OmniPortlet to Your Page
	Step 4: Adding a SelectOneChoice Component for the Service Request Volume Portlet
	Step 5: Adding a Search for Customer Contracts
	Step 6: Defining the Most Productive Employees Portlet
	Step 7: Defining the Service Request Volume Portlet
	Step 8: Defining the Most Requested Products Portlet
	Step 9: Defining the Most Active Customers Portlet
	Step 10: Defining the Customer Details Portlet
	Step 11: Wiring the Page Content Together
	Summary

	9 Building a Site Administration Page
	Step 1: Creating the Site Administration Page
	Step 2: Adding the Skin Selector to the Page
	Step 3: Enabling Customization of the Login Page
	Step 4: Adding the Site Administration Page as a Subtab of the Management Page
	Step 5: Using the Site Administration Page for Customization
	Changing the Skin for the Application
	Customizing the Login Page

	Summary

	10 Deploying Your Application
	Step 1: Creating the Generic EAR file
	Step 2: Creating the Targeted EAR File
	Step 3: Setting Up the Users and Roles
	Step 4: Setting Up the Sample Content
	Step 5: Deploying the Application
	Step 6: Deploying the Security Policy
	Step 7: Accessing the Application
	Summary

	Index

