
Siebel Advisor API
Reference
Version 8.0
December 2006

Copyright © 2005, 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information;
they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-
free. Except as may be expressly permitted in your license agreement for these Programs, no part of
these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are optional and
for which you may not have purchased a license. Siebel’s Sample Database also includes data related to
these optional modules. As a result, your software implementation may differ from descriptions in this
guide. To find out more about the modules your organization has purchased, see your corporate
purchasing agent or your Siebel sales representative.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial
technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the licensing restrictions set
forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA,
Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or
services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of
the agreement with the third party, including delivery of products or services and warranty obligations
related to purchased products or services. Oracle is not responsible for any loss or damage of any sort
that you may incur from dealing with any third party.

Contents
Siebel Advisor API Reference 1

Chapter 1: What’s New in This Release

Chapter 2: Application File Reference for Siebel Advisor
Setting Variables for Siebel Advisor in the Siebel Application CFG File 9

Files in the Siebel Advisor Base Directory 11

About the cs Directory 11

Files in the Custom Directory 11

Files in the ds Directory 17

Files in the jd Directory 17

Files in the pg Directory 19
Associating a Pageset UI Definition File with a Particular Pageset 25
Defining Which Frames Display Each of the Display Pages 26
Specifying Which Frame Displays Exception Messages 27

Files in the ui Directory 27

Chapter 3: Siebel Advisor Reserved Word Reference
Advisor Reserved Words 29

JavaScript Reserved Words 30

Chapter 4: Siebel-Specific Functions for Siebel Advisor
AddToSSCart 31

BuildAttributeList 33

BuildChildList 33

BuildProductStr 33

BuildQuestionAnswerString() 36

CreateOpportunity() 37

GetCDAEntryArg() 37

GetCDAEntryArgs() 38

GetPrice 38
Siebel Advisor API Reference Version 8.0 3

Contents ■
GotoSSConfigurator 40

GoToSSView 41

SendSelectionInformationToServer 42

ShowCDA 45

ShowCDAWithDynDefStr 46

ShowProductDetails 47

Chapter 5: Utility Functions for Siebel Advisor
ConvertFloatToCurrency 49

ConvertStrToDynDefObj 50

FrameToOLString 51

GetCSPath 52

GetCustomPath 52

GetDSPath 53

GetJDPath 53

GetPagesetDisplayArea() 54

GetPGPath 54

GetTopPath 54

GetUIPath 55

GetVisibleDisplayArea() 55

RegisterUI 56

RegisterUIElement 56

ShowAbout 57

ShowHelp 58

Chapter 6: User Interface Layout and Control Functions for
Siebel Advisor

RegisterCascade 59

RegisterExceptionFrames 59

RegisterFrameSet 60

RegisterMVar 61

RegisterPageLocation 62
Siebel Advisor API Reference Version 8.04

Contents ■
RegisterPriorityPages 63

Chapter 7: Pageset Functions for Siebel Advisor
Start On Active 65

BuildTarget 69

BuildWidget 77

LinkToSubConfig 83

LoadFile 84

LoadPageset 85

LoadPagesetWithDynDefObj 86

Chapter 8: Contents List Functions for Siebel Advisor
RegisterContentsListFrame 87

SetContentsListFrame 88

ShowContentsList 89

Chapter 9: Callout Point Functions for Siebel Advisor
About Callout Point Functions for Siebel Advisor 91

ClearAllOverrideFunctions 92

ClearOverrideFunction 92

OverrideFunction 92

COP_AppDataVersionCheck 93

COP_BeforeConfiguration 94

COP_BeforeDisplayPriceString 94

COP_InvalidItemAdded 98

COP_PagesetVersionCheck 98

COP_ValidItemAdded 99

InitApp 100

ORP_DisplayPrice 101

ORP_DisplayPriceString 101

Chapter 10: Data Access Functions for Siebel Advisor
GetCurrInstance 103
Siebel Advisor API Reference Version 8.0 5

Contents ■
GetFeatureData 104

GetInputState 104

GetInputValue 105

GetResultsValue 105

SetInputValue 106

PostThis() 107

Chapter 11: Data Objects in Siebel Advisor
ConfigTable_Obj 109

ConfigTableArray_Obj 110

FeatureTable_Obj 110

FeatureTableArray_Obj 111

InputState_Obj 112

Label_Obj 112

Label_Obj.GetLabelName 113

Label_Obj.GetNumLabels 113

Chapter 12: Siebel Advisor API Examples
Example of Creating a Custom Input UI Control 115

Example of Defining a Pageset Layout 116

Example of Creating a Custom Output Target 118

Example of Adding Custom Behavior with a Callout Point 118

Example of Using the CDA Service Broker 119

Index
Siebel Advisor API Reference Version 8.06

1 What’s New in This Release
What’s New in Oracle’s Siebel Advisor API Reference, Version 8.0
This guide has been updated to reflect product name changes for Oracle’s Siebel 8.0. The book was
previously published as Siebel Advisor API Reference, Version 7.8.
Siebel Advisor API Reference Version 8.0 7

What’s New in This Release ■
Siebel Advisor API Reference Version 8.08

2 Application File Reference for
Siebel Advisor
This chapter describes the files that make up an Oracle’s Siebel Advisor application. It also describes
the Siebel application file in which you can set variables that affect your application. It includes the
following sections:

■ “Setting Variables for Siebel Advisor in the Siebel Application CFG File” on page 9

■ “Files in the Siebel Advisor Base Directory” on page 11

■ “About the cs Directory” on page 11

■ “Files in the Custom Directory” on page 11

■ “Files in the ds Directory” on page 17

■ “Files in the jd Directory” on page 17

■ “Files in the pg Directory” on page 19

■ “Files in the ui Directory” on page 27

Setting Variables for Siebel Advisor in
the Siebel Application CFG File
In the Siebel application .cfg file (for example, uagent.cfg if you are using Call Center), you can set
up your application to reference other Siebel data by setting the variables shown in Table 1.
Siebel Advisor API Reference Version 8.0 9

Application File Reference for Siebel Advisor ■ Setting Variables for Siebel Advisor in
the Siebel Application CFG File
You can also configure these properties in Siebel Tools. When you create an applet in Siebel Tools,
you can specify what CFG properties to pass along to the ShowCDA function. For more information,
see the section about invoking the ShowCDA Method from a button in Siebel Advisor Administration
Guide.

Table 1. Siebel Application CFG File Variables

Variable Description

ISSCDAAutoDeployment Used in Mobile mode, this flag enables/disables automatic
projects deployment. If this value is TRUE, it will deploy the
project files to your local file system. If it is FALSE, it will turn
off automatic projects deployment. The default value is TRUE.

ISSCDADeploymentMode Used in conjunction with ISSCDAAutoDeployment, this flag
sets the automatic deployment mode. If the value is set to
"ONDEMAND," only the projects that are being referenced by
the browser-based engine are deployed to your local file
system. If the value is set to "ALL," all projects that can be
assessed by a user will be deployed to your local file system
when the browser-based engine tries to load the first project.

ISSCDAGetMyPriceFields The field names to be output to the client side in the GetPrice
function.

ISSCDAHeaderBusCompName The business Component name for the shopping cart. The
default value is Quote.

ISSCDAHeaderBusObjName The business Object name for the shopping cart. For example,
Quote or Catalog. The default value is Catalog.

ISSCDAHeaderViewName The view name the AddToCart function will switch to. This view
name is also used after exiting GotoConfigurator.

ISSCDAIntegrationObjName The integration object name to be used by EAI to query/sync/
upsert to the database. The default value is Quote.

ISSCDAListItemBusCompName The Business component at the item level. The default value is
Quote Item.

ISSCDAProdDetBusCompName The Business Component Name that a product detail view will
use.

ISSCDAProdDetBusObjName The Business Object Name that a product detail view will use.

ISSCDAProdDetViewName The product detail view name.

ISSCDASSConfiguratorViewName This view name the server-based Configurator will display.
Siebel Advisor API Reference Version 8.010

Application File Reference for Siebel Advisor ■ Files in the Siebel Advisor Base Directory
Files in the Siebel Advisor Base Directory
This section describes the files in the Siebel Advisor application base directory.

home.htm
This is the home page of the application and it is generated based on the application template you
use for the Advisor project. The application loads and runs when you open this file in a browser. Edit
the default content of this page to match the look and feel of the rest of your application.

kernel.htm
This file is part of the engine code set. Do not edit this file.

onl_boot.htm
This file specifies which browsers the application supports and defines alert messages that appear
when a user opens the application in an unsupported browser. The home page of a application must
reference this file.

Siebhome.htm
This file specifies the default project. Do not edit this file.

About the cs Directory
The cs directory contains the engine code for the application. Do not edit files in this directory.

Files in the Custom Directory
The custom directory contains JavaScript files that you can edit to customize the behavior of the
applications’ engine without modifying the core engine code itself.

app_config.js
The Application Configuration file contains variables that define properties of the application. The file
contains all required variables, set to their default values. You can add optional variables to further
customize the behavior of the application.

For variables that accept strings, all strings must be inside quotation marks.
Siebel Advisor API Reference Version 8.0 11

Application File Reference for Siebel Advisor ■ Files in the Custom Directory
Table 2 lists the variables that must be included in the Application Configuration file.

Table 2. Required Variables in the Application Configuration File

Variable Value Description

APP_DATA_VERSION string Defines a version number for the feature and
configuration data in your application. After a user
clicks a link from an order back to the application,
the engine reads this information to check data
versions.

APP_AUTO_LOAD_RESULTS boolean Enables automatic loading of output targets when a
pageset first loads.

APP_RELOAD_ALL boolean Defines whether all display pages reload when
output targets are generated.

APP_RELOAD_INPUTS_ON_EXC boolean Defines whether all display pages that contain input
UI controls reload as an exception message displays,
after a user selects an invalid configuration.

APP_DEFAULT_TIMEOUT integer Specifies the amount of time (in milliseconds) the
browser waits for a file to load before it times out.
Without this variable, the default time-out length is
5000 milliseconds.

APP_ABOUT_WIN_ARGS string Sets properties of the window into which the About
file loads. Use the same properties inside the string
(such as “scrollbars=1, resizable=0, width=450”)
that you would use to launch a separate browser
window from inside any HTML file.

APP_EXC_DISPLAY_NUM integer Defines the maximum number of exception
messages that should appear.

APP_HELP_WIN_ARGS string Sets properties of the window into which the Help file
set loads. Use the same properties inside the string
(such as “scrollbars=1, resizable=0, width=450”)
that you would use to launch a separate browser
window from inside any HTML file.

TRANSACT_URL string Defines the URL to a Transact Server™.

TRANSACT_THIRD_PARTY_CART boolean Defines whether the Transact Server uses a third-
party shopping cart.

TRANSACT_CART_WINARGS string Sets properties of the window into which the
Transact Server loads a shopping cart. Use the same
properties inside the string (such as “scrollbars=1,
resizable=0, width=450”) that you would use to
launch a separate browser window from inside any
HTML file.
Siebel Advisor API Reference Version 8.012

Application File Reference for Siebel Advisor ■ Files in the Custom Directory
The following four required configuration variables allow the engine to access module configuration
variables. Do not edit the content or location of these variables.

APP_ENGINE_CHANGED

APP_CONFIG_LOADED

ORDER_CONFIG_LOADED

TRANSACT_CONFIG_LOADED

These variables should appear at the end of the Application Configuration file. Do not add any
variables after them.

Table 3 lists optional variables you can add to the Application Configuration file to further customize
the appearance and behavior of the application.

Do not add any of these variables to the file after the *_CONFIG_LOADED variables.

TRANSACT_SHOW_CART_URL string Defines the URL to a third-party shopping cart. Use
the Transact ShowCart function to link from the
application to the shopping cart located at this URL.

TRANSACT_ACTIVE boolean Determines whether the application runs in
conjunction with Transact Server.

ORDER_SUBVAR string Specifies a string whose elements initialize the
variables that track subitem subtotal and order total.

Table 3. Optional Variables in the Application Configuration File

Variable Value Description

APP_ALWAYS_KEEP_BACK_STAT
E

boolean If you work with large pagesets, you can set this
variable to “false” in order to improve performance
speed. By default, this variable is set to “false.”

APP_DISPLAY_AREA_FRAME string Defines the location of the display area.
Use the syntax, APP_DISPLAY_AREA_FRAME =
ISSStr+".displayArea"
If top.swe.contentFrame is defined, it is used
instead, overriding the value in the config variable.

APP_LOAD_UI_ON_STARTUP boolean Shows the UI when the engine loads. If this variable
is set to false, the persistent engine is used.

APP_SIEBEL_INTEGRATION_ON boolean Determines whether or not to include Siebel
integration code.

APP_VERSION string Defines a version number for the application.

Table 2. Required Variables in the Application Configuration File

Variable Value Description
Siebel Advisor API Reference Version 8.0 13

Application File Reference for Siebel Advisor ■ Files in the Custom Directory
APP_HELP_URL string Specifies a URL that overrides the default Help page
location.

APP_ABOUT_URL string Specifies a URL that overrides the default About
page location.

APP_SHOW_DATA_LOADING_PA
GE

boolean Specifies whether a message appears inside the
application while the application is loading a
pageset. If you do not add this variable, a message
appears by default.

APP_SHOW_CALC_PAGE boolean Specifies whether a processing message appears in
the exception message area. This occurs after the
user makes a selection in an input UI control but
before the associated output target appears. If you
do not add this variable, a message appears by
default.

APP_PRECONFIG_SEP_CHAR string Defines the character used to separate items in a list
of dynamic default (DYNDEF) strings. The default
character is a comma.

APP_PRECONFIG_EQUALS_CHA
R

string Defines the character used to equate a key with a
value in a dynamic default (DYNDEF) string. The
default character is an equal sign.

APP_PRICE_DATA string Defines what appears in the Pricing window. The
strings you specify in this variable need to match
what is being sent from the server. For example, the
server sends an object that contains the attributes
'price,' 'description,' ‘quantity,’ ‘color,’ and ‘size.’ The
exact data sent is determined by the server. To
display the description, quantity, and price, set the
variable using the following line: “var
APP_PRICE_DATA=new Array(‘description’,
‘quantity’, ‘price’);

Default value:

'Product Name,' 'Net Price,' 'Start Price,' 'Pricing
Comments'

APP_PRICE_TITLE_ATTR string Defines the title for the pricing window. Default
value: “Pricing Window”

APP_PRICE_BODY_ATTR string Defines the behavior of the body tag in the Pricing
window, including background color, the onLoad
event, or any of the valid body attributes or events.
Default value: “bgcolor=#fffffff”

Table 3. Optional Variables in the Application Configuration File

Variable Value Description
Siebel Advisor API Reference Version 8.014

Application File Reference for Siebel Advisor ■ Files in the Custom Directory
APP_PRICE_FONT_ATTR string Determines the fonts displayed in the Pricing
window. Default value: “face=’Verdana, Arial’
size=2 color = ‘blue’”

APP_PRICE_TABLE_ATTR string Use this variable to define the Pricing table
attributes. All pricing information appears in a table.
Default value: “border = 0 cellpadding=2
cellspacing=2 width=100%”

APP_PRICE_CLOSE_ATTR string Specifies the text to display for the Close Window
link for the Pricing window. For AOL users, it may
become difficult to keep track of newly opened
windows, so a Close Window link appears in the
Pricing window. Default value: Close Window

APP_PRICE_WIN_ATTR string Defines attributes of the Pricing window. Using this
variable, you can adjust the size (height, width), the
controls displayed, whether or not the window is
resizable, and any other valid window attributes.
This variable is particularly useful for sizing the
window to the data that is expected to appear.
Default value:
“status=0,scrollbars=1,resizable=1,width=450,heig
ht=200”

APP_SOA_TOP_LOC string Defines location of frame containing the application.
Use this variable when Start on Active module is
being used and the application is in a nested
frameset. Default: top

TRANSACT_CART_TARGET string Determines the type of window in the Transact
Server loads. The type of window is defined in
Javascript.

TRANSACT_NOT_ACTIVE_MSSG string Specifies the text content of the message that
appears when users try to interact with an
unavailable Transact Server.

TRANSACT_OPEN_QUOTE_PROM
PT

string Specifies the text that precedes display of an open
quote from the Transact Server.

Table 3. Optional Variables in the Application Configuration File

Variable Value Description
Siebel Advisor API Reference Version 8.0 15

Application File Reference for Siebel Advisor ■ Files in the Custom Directory
Optional Variables for Use with Session Timeout Problems
Use the following optional variables if you are having problems with session timeout. Using these
variables, as shown in Table 4, puts you in session simulator mode. The session simulator will ping
the server at an interval equal to half the session length, as long as any qualifying client-side activity
has occurred within that time frame.

customCode.js
This is the file inside which you can write custom code to be associated with a callout point function.

Sample usage:

function COP_InvalidItemAdded(calloutPkg)

{

alert("Behold the invalid configuration.");

}

The customCode.js file also contains the InitApp function, which determines the behavior of the
application when it first loads. You can write custom code to define the behavior. You can also edit
either of the included InitApp examples to display the Contents List or a specific pageset when the
application loads. You can even use InitApp to return a string if you want to override the default
module registry file. InitApp can also be used to activate Start On Active when using an application
in a stand-alone environment.

NOTE: If using the persistent engine (APP_LOAD_UI_ON_STARTUP = false), InitApp should not
contain code that displays anything in the display area. This is because the display area is not
available until you call ShowCDA().

Sample Usage:

function InitApp() {

ISS.ShowContentsList();

}

Table 4. Session Timeout Variables

Variable Value Description

APP_SESSION_LENGTH integer Set this variable to the length of the Siebel server session
in minutes. Default = 15.0.

APP_PING_SERVER_URL string Specifies a URL to be “pinged.” A default values is
retrieved using ISS.GetTopURL().
Siebel Advisor API Reference Version 8.016

Application File Reference for Siebel Advisor ■ Files in the ds Directory
Files in the ds Directory
The ds directory contains the Pageset Properties file, pagesetID_x.js, as well as product data files
generated from the information you enter in Advisor Configuration and Feature tables.

pagesetID_x.js

Pageset Properties File
This file contains functions that define various pageset properties. Usually, you define these
properties inside Advisor, which writes them to this file when you generate application files from the
project. This file must not contain any HTML tags.

The file should start with the StartXInfo(pagesetID) function and end with the EndXInfo(pagesetID)
function. In between, the file can contain any of the following functions:

■ InitPagesetVersion(version_string)

Defines a version number string for the pageset. After a user clicks a link from an order back to
the application, the engine reads this information when checking data versions.

■ InitPagesetDesc(description_string)

Defines a text description for the pageset.

■ InitPagesetItemized(FALSE/TRUE)

Specifies whether the components of a product appear as subitems or main line items after they
are passed to an order-generating tool. To display product components as subitems, set the
variable to FALSE (the default). To display product components as main line items, set the
variable to TRUE.

■ InitAltOMSUrl(URL)

Specifies the URLs of additional order management systems to which configurations generated
by the pageset are sent. This is useful if you are using a Transact Server with the application and
need to send configuration information to more than one order management system.

prodlistdata.htm
This file is generated by Advisor, and it contains the data used to define Contents Lists in the
application.

Do not edit this file directly. If you need to update contents list data, edit the contents list table inside
your Advisor project and redeploy your project to recreate this file.

Files in the jd Directory
The jd directory contains the application module registry and its associated files. You will not need
to edit the files in this directory often, but if you plan to deploy your application in multiple
languages, you might want to customize text contained inside the intl.js file.
Siebel Advisor API Reference Version 8.0 17

Application File Reference for Siebel Advisor ■ Files in the jd Directory
intl.js
This file contains the text strings used in alert messages. You can edit these strings to
internationalize your application.

Additionally, if your application contains custom code that requires text strings, you should define
the strings inside this file.

To define a text string inside the intl.js file

1 Define a variable for the string.

2 Define the message content of the text string.

NOTE: All text strings must be in double quotes. You can use arguments inside the strings.

To call the text string you defined, use the following syntax inside your custom code:

ISS.ErrIntern(STRINGNAME[, arg1, arg2, ... arg_n])

where:

Sample usage:

Define the string variable:

var TESTMSG=0;

Define text message content:

_SWEmsgAry[“TESTMSG”]= "%1 Fish, %2 Fish, %3 Fish, %4 Fish";

Inside your code, call the text string:

ISS.ErrIntern(ISS.TESTMSG,"one","two","red","blue");

Loading and Processing Messages
You can optionally tailor the messages that users see when Siebel Advisor is loading the application
or is processing an input request. To do this:

1 Define the message content of one or both of the variables listed in Table 5.

STRINGNAME Name (variable) used to identify the text string inside the intl.js file

arg_n Optional arguments
Siebel Advisor API Reference Version 8.018

Application File Reference for Siebel Advisor ■ Files in the pg Directory
2 Modify the message arrays in the intl.js file.

Sample usage:

Open the intl.js file with a text editor and define one or both variables as follows:

_SWEmsgAry["ISSCDA_DEFAULT_DATA_LOAD_STR"] = "Data Loading...";

_SWEmsgAry["ISSCDA_DEFAULT_CALC_PAGE_STR"] = "Calculating...";

Replace the text string within quotes on the right side of the equal (=) sign with the text of your
choice.

Files in the pg Directory
The pg directory contains the Pageset UI Registry files, the Pageset UI Definition files, and the display
pages for all the pagesets in your application, as well as the cascading style sheet that defines the
appearance of the Contents List.

You should also use this directory to store any additional HTML and image files you use to customize
the appearance of display pages.

pagesetID_1.htm . . . pagesetID_”n”.htm

Display Pages
These are HTML files that display input UI controls and output targets to help users choose and
configure a product that meets their needs.

Display pages appear inside the frameset layout defined by the Pageset UI Definition file. This
specific layout in turn appears inside a smaller area of the larger application. This specific layout is
defined in the Application UI Definition file.

Table 5. Variables that customize user messages

Variable Value Description

ISSCDA_DEFAULT_DATA_LO
AD_STR

string Specifies the text content of the message that appears
inside the application while the application is loading a
pageset. If this variable is not defined, the default
message “Loading...” is used.

ISSCDA_DEFAULT_CALC_PA
GE_STR

string Specifies the text content of the processing message
that appears in the exception message area. This occurs
after the user makes a selection in an input UI control
but before the associated output target appears. If this
variable is not defined, the default message
“Calculating...” is used.
Siebel Advisor API Reference Version 8.0 19

Application File Reference for Siebel Advisor ■ Files in the pg Directory
Advisor generates default display pages for each pageset. The file names of the default display pages
begin with the pageset ID and are numbered sequentially. If you want to rename the display pages,
you must reassociate the new files names with pageset frames inside the Pageset UI Registry file.

Most applications place input UI controls and output targets on separate display pages, but you can
place input UI controls and output targets on the same page. Each pageset must contain at least one
display page.

NOTE: Advisor also provides the Input UI tab on which you can add UI controls without writing code.
See Siebel Advisor Administration Guide for information.

To add an input UI control to a display page

1 Open the HTML source file for the display page.

2 In the location where you want the input UI control to appear, add the following:

<SCRIPT>

document.write(ISS.BuildWidget(type,window,
name,[int1,int2,Prefill]));
Siebel Advisor API Reference Version 8.020

Application File Reference for Siebel Advisor ■ Files in the pg Directory
</SCRIPT>

where:

If necessary, use HTML just outside the input UI control definition to write a caption for the input UI
control.

The following sample code creates a list box input UI control whose selections are defined by the
values in a Feature table called SIZE. This list box input UI control appears as a drop-down list, as
specified by the 1 argument, that is approximately 50 characters wide, as specified by the 50
argument. The list box input UI control is preceded by a caption, Size:, defined with regular HTML.

Size:

<SCRIPT>

document.write(ISS.BuildWidget("LISTBOX",window,"SIZE",
1,50,true));

type Specifies the type of input UI control to create. Valid arguments are CHECKBOX,
GETTEXT, LISTBOX, RADIO, and MAP.

name Defines the source of the content that populates the input UI control.

For check box, list box, and radio button input UI controls, this is the name of a
Feature table in the Advisor project.

For text entry input UI controls, this is the name you want to give to the text entry
field. The application stores user input to this field under the name you use here.

int1 For list box input UI controls, this argument is an integer that specifies the number of
visible rows for the list box. Set this argument to 1 to create a drop-down list.

For radio button input UI controls, this argument is an integer that specifies which
Feature table row is associated with the particular radio button. To create a group of
radio buttons, you must create one input UI control for each radio button feature
value.

For text entry input UI controls, this argument is an integer that specifies the width
of the text entry field, as defined by the number of characters visible in the default
browser font.

Check box input UI controls do not take any arguments.

int2 For list box input UI controls only, this argument is an integer that specifies the width
of the list box, as defined by the number of characters visible in the default browser
font.

prefill For list box input UI controls only, this boolean value sets the width of the list box
control to accommodate the widest item in the list. If prefill is TRUE and Width is
greater than the number of characters in the longest line of text appearing in the list
box, the list box appears with a width equivalent to Width. If prefill is FALSE, the width
is set to accommodate the longest line of text that appears in the list box.
Siebel Advisor API Reference Version 8.0 21

Application File Reference for Siebel Advisor ■ Files in the pg Directory
</SCRIPT>

NOTE: Advisor also provides the Output UI tab on which you can add UI controls without writing
code. See Siebel Advisor Administration Guide for information.

To add an output target to a display page

1 Open the HTML source file for the display page.

2 In the location where you want the output target to appear, add the following:

<SCRIPT>

document.write(ISS.BuildTarget(type,window,
name[,arg1,arg2]));

/SCRIPT>
Siebel Advisor API Reference Version 8.022

Application File Reference for Siebel Advisor ■ Files in the pg Directory
where:

type Specifies the type of output target to create. Valid arguments are LINK, PICT, TEXT,
SUBCONFIG_LINK, OPT_SUBCONFIG_LINK, NB_LINK, and NB_RETURN.

name Defines the source of the content that populates the output target, which can be any
of the following:

■ A column in a Configuration table. In this case, the argument is simply the name
of the column.

■ A column in a Feature table. In this case, the argument is the name of the Feature
table and the name of the specific column inside of it, separated by a period, as
in COLOR.DESC.

■ The Feature table that populates an input UI control from which the user has
made a selection. In this case, the argument is simply the name of the Feature
table.

■ The name of a text entry input UI control in which text is typed and stored. In this
case, the argument is the name you used to define the text entry input UI control.

arg1 For image (PICT) output targets, this optional argument is an integer that defines the
width of the image, in pixels.

For link output targets, this argument is a Boolean value that determines whether
data in the column identified by the name argument is a pageset (TRUE) or a URL
(FALSE). If the data is a URL and you set the argument to FALSE, the URL loads into
a separate window, instead of inside the main application, when you click the link
output target.

arg2 For image (PICT) output targets, this optional argument is an integer that defines the
height of the image, in pixels.

For link output targets, this optional argument is a string that specifies the name of
a table column (or columns, separated by commas) in which a preconfigured
condition is defined for the pageset.

This optional argument is a string that specifies the name of a table column (or
columns, separated by commas) in which a preconfigured condition is defined for the
pageset.

When you click a link target containing a preconfigured condition, the application
overrides the default settings of input UI controls in the pageset with the settings
defined in the preconfigured condition.

The definition of a preconfigured condition must contain the name of the overriding
Feature table and the feature (CODE) value of the desired override setting.

If you define a preconfigured condition column in a Configuration table, the argument
references only the name of the Configuration table column whose values override
the defaults.

If you define a preconfigured column in a Feature table, the argument must contain
the name of the Feature table and the name of the specific column inside of it whose
values override the defaults, separated by a period (as in COLOR.PRECONFIG).
Siebel Advisor API Reference Version 8.0 23

Application File Reference for Siebel Advisor ■ Files in the pg Directory
If necessary, use HTML just outside the input UI control definition to write a caption for the input
UI control.

Sample usage:

The following sample code creates a text output target whose text content is defined inside the
DESC column of a Feature table named SIZE, as specified by the SIZE.DESC argument. The text
output target is preceded by a caption, Size:, defined with regular HTML. HTML formatting also
determines that the font of the text output target, like that of its caption, is Verdana or Helvetica.

Size:

<SCRIPT>

document.write(ISS.BuildTarget("TEXT",window,
"SIZE.DESC"));

</SCRIPT>

pagesetID_i.htm

Pageset UI Registry File
Advisor creates a Pageset UI Registry file for each pageset you define in an Advisor project. The
Pageset UI Registry file serves three purposes:

■ Associates a Pageset UI Definition file with a particular pageset, using the RegisterFrameSet
function

■ Defines which display pages appear in each of the frames defined in the Pageset UI Definition file
of the pageset, using the RegisterPageLocation function

■ Specifies which of the frames defined in the Pageset UI Definition file of the pageset display
exception messages, using the RegisterExceptionFrames function

The file should start with the StartUIInfo(pagesetID) function and end with the
EndUIInfo(pagesetID) function inside the onLoad event handler of the opening <BODY> tag. The file
must also reference the header.js file from inside the <HEAD> tags, as in:

<HEAD><SCRIPT src="../jd/header.js"></SCRIPT></HEAD>

onlink.css
This is the cascading style sheet that defines the appearance of the contents list in the application.

oc_default_ui.htm
This file, also called the Pageset UI Definition file, defines the HTML frameset layout of a pageset.
Specifically, the Pageset UI Definition file defines the nested frames, showing display pages, that
appear inside a single frame, called mainArea in the application templates, of the application.
Siebel Advisor API Reference Version 8.024

Application File Reference for Siebel Advisor ■ Files in the pg Directory
In other words, this file defines the frameset inside which display pages for a pageset appear.
Associate display pages with these frames inside the Pageset UI Registry file. For example, if the
Pageset UI Registry file contains the definition:

RegisterExceptionFrames
(ISS.GetPagesetDisplayArea() + “.uidata”);

the ol_ui (Application UI Definition) file must contain a frame called mainArea. The mainArea frame
in turn must contain nested frames, including a frame called uidata into which exception messages
load. The nested frames are defined inside the Pageset UI Definition file.

By default, Advisor associates the default Pageset UI Definition file, oc_default_ui.htm, with all the
pagesets in the Advisor project. In this case, all display pages in your application appear inside the
same frameset, regardless of which pageset they are part of.

If you want to change the frameset structure of the display page area based on which pageset the
display pages belong to, you can create additional Pageset UI Definition files, *_ui.htm, that define
unique framesets. Use the RegisterFrameSet function inside the Pageset UI Registry file to associate
a Pageset UI Definition file with a particular pageset.

Use the SetContentsListFrame function inside a Pageset UI Definition file to identify which frame
defined for the pageset displays the contents list. You can also use the RegisterContentsListFrame
function inside the Application UI Definition file to display the Contents List as part of the main
application layout, outside the display page area.

The Pageset UI Definition file must reference the header.js file from inside the <HEAD> tags, as in:

<HEAD><SCRIPT src="../jd/header.js"></SCRIPT></HEAD>

You must include a call to the SetLoaded function inside the onLoad event handler of the main
frameset definition in the Pageset UI Definition file. Use the name of the Pageset UI Definition file
without the extension, most likely oc_default_ui or pagesetID_ui, as the argument of the SetLoaded
function.

pl_bullet1.gif, pl_bullet2.gif, pl_bullet3.gif, pl_bullet4.gif
These are images used in front of the first four levels of Contents List entries in the application.

Associating a Pageset UI Definition File with a Particular
Pageset
Because each pageset can have its own frameset layout, you must specify which file defines the
frameset layout of the current pageset. Usually the Pageset UI Definition file is named
pagesetID_ui.htm.

Use the RegisterFrameSet function to identify the Pageset UI Definition file associated with the
current pageset. The syntax of this function is:

RegisterFrameSet(name,frameset_name,frame_name[,path])
Siebel Advisor API Reference Version 8.0 25

Application File Reference for Siebel Advisor ■ Files in the pg Directory
where:

Sample usage:

ISS.RegisterFrameSet(“dogs_ui","dogs_ui.htm",
ISS.GetPagesetDisplayArea()
“server_name/CDA_application_root_directory/ui”);

The first argument of the RegisterFrameSet function. In the example above, dogs_ui must be
identical to the string used as the setLoaded parameter, most commonly, oc_default_ui or
pagesetID_ui, inside the Pageset UI Definition file.

Defining Which Frames Display Each of the Display
Pages
Because your application can contain any number of display pages and any number of frames, you
must tell the engine which display pages appear in each frame defined for the pageset.

Use the RegisterPageLocation function to identify the frame that each display page loads into. The
syntax of this function is:

RegisterPageLocation(file_name, frame_name, visible[, path]);

where:

Sample usage:

RegisterPageLocation("dogs.htm",
“ISS.GetPagesetDisplayArea() + .ui_disp”

name String used as the setLoaded parameter of the Pageset UI Definition file. This is
usually the name of the frameset.

frameset_name String identifying the file name of the Pageset UI Definition file.

frame_name String identifying the complete path, from the top of the application, and name
of the application frame, by default, mainArea, inside which the pageset frameset
appears.

path Optional string identifying the complete path.

file_name String identifying the file name of the display page being assigned to a frame

frame_name String identifying the complete path, from the top of the application, to the
frame into which the display page loads

visible String that specifies whether the display page is visible, if the string value is
TRUE, or invisible, if the string value is FALSE, when it first loads into the frame

path Optional string identifying the complete path to the display page file name
Siebel Advisor API Reference Version 8.026

Application File Reference for Siebel Advisor ■ Files in the ui Directory
Specifying Which Frame Displays Exception Messages
Because your application can contain any number of frames, you must tell the engine which frame
displays exception messages defined for the pageset.

Use the RegisterExceptionFrames function to identify the frame that exception messages for the
pageset load into. The syntax of this function is:

RegisterExceptionFrames(frame_name);

where:

Sample usage:

RegisterExceptionFrames
("ISS.GetPagesetDisplayArea() + .uidata”);

Files in the ui Directory
The ui directory contains files that define the appearance of the application at its outermost level.
Definitions in these files apply to the application in general and not to any specific pagesets that
appear inside it.

This section lists the image and HTML files that are common to all applications. The ui directory of
your own application may contain additional files that define various user interface components
unique to your own application.

about.htm (example only)
The about.htm file contains generic content about applications that you can edit to address the
specifics of your own application.

Use the ShowAbout function to link to the About file.

help*.gif (example only)
These are default images used inside the files that load into the Help file, helpset.htm.

help_*.htm (example only)
These files contain default help text and images that load into the frames defined by the Help file,
helpset.htm.

helpset.htm (example only)
The helpset.htm file defines a frameset into which files containing generic help content, help_*.htm,
load. You can edit the text of these files to address the specifics of your own application.

frame_name String identifying the complete path, from the top of the application, to the frame
in which exception messages appear.
Siebel Advisor API Reference Version 8.0 27

Application File Reference for Siebel Advisor ■ Files in the ui Directory
Use the ShowHelp function to link to the Help file.

nf_white.htm
This file defines a blank frame. To define a blank frame, use:

<frame src=”javascript:''”>

ol_fly.htm (example only)
This file provides an example of how the Advisor APIs can be used to load the Contents List, Help
file, and About file. The Flyover frame appears at the top of the browser window and persists
throughout the entire application, regardless of which pageset is active.

ol_ui.htm
This file is also known as the Application UI Definition file. It defines the HTML frameset layout of the
application. Each application contains a single Application UI Definition file.

The HTML frameset layout defined in the Application UI Definition file represents what a user sees
when the application first loads, as well as the static areas surrounding the display pages as a user
continues to interact with the application.

One of the frames defined in the Application UI Definition file usually outlines the area, called
mainArea in the Advisor templates, into which all the display pages in your application load. You must
use the RegisterUI function to indicate which frame defines this pageset display page area. The
nested frameset structure of this single area is managed by a Pageset UI Definition file.

Use the RegisterContentsListFrame function to identify which frame defined in the Application UI
Definition file displays the contents list. You can also use the SetContentsListFrame function inside
a Pageset UI Definition file to display the Contents List inside the frameset of a pageset.

The Application UI Definition file must reference the header.js file from inside the <HEAD> tags, as
in:

<HEAD><SCRIPT src="../jd/header.js"></SCRIPT></HEAD>

You must include a call to the RegisterUI function inside the onLoad event handler of the main
frameset definition in the Application UI Definition file. The RegisterUI function identifies which of
the frames defined in this file contains the nested pageset framesets defined in Pageset UI Definition
files.

trans.gif
This is an image that creates transparent vertical and horizontal space. Use width and height
attributes within the Image tag to specify the size.

welcome.htm
This is a file that the application templates display inside the pageset UI definition area, called
mainArea in the templates, when the application first loads.
Siebel Advisor API Reference Version 8.028

3 Siebel Advisor Reserved Word
Reference
This chapter lists the reserved words in Oracle’s Siebel Advisor. It also lists reserved words in
JavaScript, which you cannot use when you create Siebel Advisor applications. It includes the
following sections:

■ “Advisor Reserved Words” on page 29

■ “JavaScript Reserved Words” on page 30

Advisor Reserved Words
Table 6 lists the reserved words in Advisor applications.

Advisor uses these reserved words to define specific areas of functionality, so you should not use
these terms in circumstances not related to the functionality they represent. For instance, you can
use the word RULE as a column name to define exceptions in an Advisor configuration table, but you
should not use it as the name of a feature table.

This rule applies to words used as names of Advisor tables and table columns or as definitions of
frames, variables, or functions in your browser-based application.

Table 6. Reserved Words in Advisor Applications

BNAME FAMILY RULE

BTYPE FLYOVER RELATIONSHIP

C FULLPRICE SINGLE

CATPAGE INDEX SINGLEINFO

CHILD ITEM SINGLEITEMS

CODE ITEM_VARS SUBITEMS

D ITEMS SUBITEMTOTAL

DEFAULT LINEDISC SUBPRICE

DESC LINKBACKSTR SUBPRICETOTAL

DESCR MAINCLOSED SUBTOTAL

DFT MULTI SUBVAR

DISCOUNT MULTIINFO TEMPLATES

DISCPRICE ISS TOP

DISCSUBPRICE ONLINK TOTAL
Siebel Advisor API Reference Version 8.0 29

Siebel Advisor Reserved Word Reference ■ JavaScript Reserved Words
JavaScript Reserved Words
Table 7 lists the reserved words in JavaScript. The reserved words in this list cannot be used as
names of tables, columns, variables, functions, methods, or objects.

DISCTOTAL ORDER_TYPE TOTALVAR

DYNAOBJ PAGE UNITPRICE

DYNAWIN PARENT URL

DYNDEF PRECONFIG_OBJ VALID

EXTDESC PRODSTR WINARGS

EXTPRICE QTY

EXTSUBPRICE QUANTITY

Table 7. Reserved Words in JavaScript

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

Table 6. Reserved Words in Advisor Applications
Siebel Advisor API Reference Version 8.030

4 Siebel-Specific Functions for
Siebel Advisor
Use Siebel-specific functions at various points in a browser-based application to integrate with other
Siebel applications. This chapter includes the following topics:

■ “AddToSSCart” on page 31

■ “BuildAttributeList” on page 33

■ “BuildChildList” on page 33

■ “BuildProductStr” on page 33

■ “BuildQuestionAnswerString()” on page 36

■ “CreateOpportunity()” on page 37

■ “GetCDAEntryArg()” on page 37

■ “GetCDAEntryArgs()” on page 38

■ “GetPrice” on page 38

■ “GotoSSConfigurator” on page 40

■ “GoToSSView” on page 41

■ “SendSelectionInformationToServer” on page 42

■ “ShowCDA” on page 45

■ “ShowCDAWithDynDefStr” on page 46

■ “ShowProductDetails” on page 47

NOTE: The functions in this chapter cannot be used in stand-alone applications. Stand-alone users
should skip this chapter.

AddToSSCart

Usage
Use the AddToSSCart function to add the currently selected product to the order or quote. The
product can be added without ending an application session.

AddtoSSCart can be called from any frame within the application and can be executed anywhere a
JavaScript function can be used. It is commonly called from the onClick event handler of a link, but
can also be referred to from an image map, set as the SUBMIT method of an embedded frame, or
called from another user-defined JavaScript function.

Refer to the Referencing Other Siebel Data chapter in Siebel Advisor Administration Guide.
Siebel Advisor API Reference Version 8.0 31

Siebel-Specific Functions for Siebel Advisor ■ AddToSSCart
Syntax
AddToSSCart(productDescriptionString, StayInAdvisor)

Examples
ISS.AddToSSCart();

ISS.AddToSSCart(ISS.GetBusCompId(“PROD.DESC”))

ISS.AddToSSCart("relationship=null&*prodID=
XFS-628&*qty=1&*attributes={}&*children={}");

ISS.AddToSSCart(ISS.GetBusCompId(“PROD.DESC”, true));

ISS.AddToSSCart(ISS.GetResultsValue("CONSTRUCTED_PROD"));

ISS.AddToSSCart(ISS.GetBusCompId("STEREO.PART_DESC"), false);

ISS.AddToSSCart(ISS.GetBusCompId(null, true));

ISS.AddToSSCart(null, true);

Argument Description

productDescriptionString Optional argument used as the description for the customizable
product to be added. If productDescriptionString is not specified, the
model and state are examined to automatically build a customizable
product description before adding the product to, and displaying, the
quote or order.

You can define ProductDescriptionString in the following ways:

■ As <product ID>

■ As a fully formed string, built by hand or using helper APIs (see
“BuildProductStr” on page 33). Use the form:

relationship=<relationship
name>&*prodID=<prodID>&*qty=<quantity>&*attributes={<k
ey1>=<value1>&*<key2>=<value2>&*...}&*children={<child
1>|*<child2>|*...}

■ As null to specify not to extract a string

StayInAdvisor Optional argument. The possible values are true or false.

If set to true, when a link is clicked, users will not leave the Advisor
session. Instead, users will get a javascript pop-up message
indicating success or failure of adding the product to the cart.

If set to false, when a link is clicked, users go directly to the
shopping cart.

AddToSSCart can be called with no parameters, but in order to
explicitly set the behavior of StayInAdvisor, you must have a value
in the first parameter, productDescriptionString.
Siebel Advisor API Reference Version 8.032

Siebel-Specific Functions for Siebel Advisor ■ BuildAttributeList
BuildAttributeList

Usage
BuildAttributeList takes 1..n arguments of attributes strings and creates an array of them, which can
be used for BuildProductStr.

Syntax
ISS.BuildAttributeList(AttrStr[] attrs)

BuildChildList

Usage
BuildChildList takes 1..n arguments of product strings and creates an array of them, which can be
used for BuildProductStr.

Syntax
ISS.BuildChildList(prodStr)

Example
ISS.BuildChildList(child1, child2, child3)

where childn is a prodstr

BuildProductStr

Usage
In cases where the customizable product string cannot be automatically generated from the model,
construct the string programmatically using BuildProductStr and the supporting cell functions
documented in this section.

Argument Description

attrs 1..n arguments of attribute strings.

Argument Description

prodStr Product string describing the product. 1...n prodstrings. Use null, without quotes
around it, to specify that no product string should be sent. Use “auto” to
automatically extract the product string. prodStr is added automatically when you
choose to use it in the other arguments. Do not set it manually.
Siebel Advisor API Reference Version 8.0 33

Siebel-Specific Functions for Siebel Advisor ■ BuildProductStr
The function may be called in cell functions or as part of a button/link/javascript that executes after
the configuration engine has run.

Syntax
ISS.BuildProductStr(id, qty, AttrStr[] attrs, ProdStr[] children, relationshipName)

Example

Example 1
var myChildStr = "relationship=ChildSlot&*prodID=ARS-625&*qty
=1&*attributes={}&*children={}";

ISS.BuildProductStr(“TRS-525”,1,ISS.BuildAttributeList(“Color
=Yellow”, “Texture=Coarse”), ISS.BuildChildList(myChildStr), “Slot1”);

Returns:

"relationship=Slot1&*prodID=TRS-525&*qty=1&*attributes
={Color=Yellow&*Texture=Coarse}&*children
={relationship=ChildSlot&*prodID=ARS-625&*qty=1&*attributes
={}&*children={}}"

Example 2
var child1 = ISS.BuildProductStr(ISS.GetBusCompID("CDPLAYER.PARTNUM"), 1, null, null,
"CD_PLAYER");

var child2Attrs = ISS.BuildAttributeList(ISS.GetAttribute("SPEAKERS.WATT"));

var child2 = ISS.BuildProductStr(ISS.GetBusCompID("SPEAKERS.PARTNUM"),4, child2Attrs,
null, "SPEAKERS");

var rootPart = ISS.BuildProductStr(ISS.GetBusCompID("ROOT"),1, null,
ISS.BuildChildList(child1, child2));

rootPart has value:

Argument Description

id A string for the product ID.

qty Optional argument. Integer value for the quantity. Defaults to 1.

attrs Optional argument. Array of attribute strings.

children Optional argument. Array of customizable product strings.

relationshipName Optional argument. String for the relationship name defined in the creation of
the customizable product.
Siebel Advisor API Reference Version 8.034

Siebel-Specific Functions for Siebel Advisor ■ BuildProductStr
"relationship=null&*prodID=KJR-157&*qty=1&*attributes={}&*children={relationship
=CD_PLAYER&*prodID=AFT-157&*qty=1&*attributes
={}&*children={}|*relationship=SPEAKERS&*prodID=HGT-697&*qty
=4&*attributes={Watts=60}&*children={}}"

Supporting Cell Functions
Table 8 lists the supporting cell functions to use when constructing a product string by hand.

Table 8. Supporting Cell Functions

Function Description

ISS.AddAttributeToProductStr
(ProdStr, newAttr)

Given a customizable product string and an attribute string,
this function adds the attribute to the customizable product
string, and returns the constructed string. The passed-in
strings are unchanged.

ISS.AddChildToProductStr
(ProdStr, newChild)

Given a customizable product string and a child customizable
product string, this function adds the child string as a child
of the customizable product string and returns the
constructed string. The passed in strings are unchanged.

ISS.AddProdIDToProductStr
(BuildProductStr, prodID)

Given a customizable product string and a product ID, this
function changes the product ID of the customizable product
string and returns the constructed string. The passed in
strings are unchanged.

ISS.AddQuantityToProductSt
(ProdStr, qty)

Given a customizable product string and a quantity, this
function changes the quantity of the customizable product
string and returns the constructed string. The passed in
strings are unchanged.

ISS.AddRelationshipNameToProduc
tStr
(BuildProductStr,
relationshipName)

Given a customizable product string and a relationship name,
this function adds the relationship name to the customizable
product string and returns the constructed string. The passed
in strings are unchanged.
Siebel Advisor API Reference Version 8.0 35

Siebel-Specific Functions for Siebel Advisor ■ BuildQuestionAnswerString()
BuildQuestionAnswerString()

Usage
Use the BuildQuestionAnswerString() function to augment the creation of a sales opportunity in
another Siebel application. This API returns a string of questions and answers corresponding to user
selections.

Syntax
BuildQuestionAnswerString(question1, answer1, question2, answer2)

ISS.GetAttribute(col) Given a column name, this function constructs an attribute
string representing the attribute name and value associated
with that column. Note that the value is dependent on the
selected row, and this function should only be called from
points after the engine has run.

Example:

ISS.GetAttribute(“COLOR.ATTR”);

Returns:

“Model color=Red”

GetBusCompID(col) Given a column name, this function returns the value of the
business component ID associated with that column. Note
that the ID is dependent on the selected row, and this
function should only be called from points after the engine
has run.

Example:

ISS.GetBusCompID(“MODEL.DESC”);

Returns:

“L523”

Table 8. Supporting Cell Functions

Function Description
Siebel Advisor API Reference Version 8.036

Siebel-Specific Functions for Siebel Advisor ■ CreateOpportunity()
The string is in the form: <question string> <answer string>, <question string> <answer string>.

Example
ISS.BuildQuestionAnswerString("How many users?", ISS.GetResultsValue("USERS.DESC"),
"What is the industry", ISS.GetResultsValue("INDUSTRY.SHORT_DESC"));

CreateOpportunity()

Usage
Use the CreateOpportunity() function to create a sales opportunity in another Siebel application. This
API sends information about the opportunity to the business service which creates a new sales
opportunity.

Syntax
CreateOpportunity(name, prodID, questionAnswerString)

Example
ISS.CreateOpportunity(ISS.GetResultsValue("ROOT_PROD"),
ISS.BuildQuestionAnswerString("How many users?", ISS.GetResultsValue("USERS.DESC")));

GetCDAEntryArg()

Usage
Use the GetCDAEntryArg() function to return a specified value in the argument array associated with
the pageset name last passed into the ShowCDA function.

Argument Description

question1 Example question:

“What is the industry?”

answer1 Example answer:

“Automotive”

Argument Description

name The name of the sales opportunity.

prodID A single simple product ID for the product to be added to the opportunity.

questionAnswerString The context string to be stored in a notes field. Often, the result of
BuildQuestionAnswerString will be used.
Siebel Advisor API Reference Version 8.0 37

Siebel-Specific Functions for Siebel Advisor ■ GetCDAEntryArgs()
var myArgs = new Object();

myArgs [“userDiscount”] = 10;

ISS.ShowCDA(“Cars|sedans”, null, myArgs);

Within the application, the arguments sent can be accessed as follows:

var discount = ISS.GetCDAEntryArg(“userDiscount”);

discount will get the value 10.

GetCDAEntryArgs()

Usage
Use the GetCDAEntryArgs() function to return the argument array last passed into the ShowCDA
function. ShowCDA is called as follows:

var myArgs = new Object();

myArgs["userDiscount"] = 10;

ISS.ShowCDA("Cars|sedans", null, myArgs);

Within the application, the arguments sent can be accessed as follows:

var discount = args["userDiscount"];

discount will get the value 10.

GetPrice

Usage
Use the GetPrice function to return and display the final price of the selected product for the user.
When the call is made, a pop-up window will display showing the current product price. The price will
include any pricing adjustments if configured within the Siebel pricing engine.

GetPrice can be called from any frame within the application and can be executed anywhere a
JavaScript function can be used. It is commonly called from the onClick event handler of a link, but
can also be referred to from an image map, set as the SUBMIT method of an embedded frame, or
called from another user-defined JavaScript function.

Refer to the Runtime Access to Your Pricing Information topic in Siebel Advisor Administration Guide
for more information.
Siebel Advisor API Reference Version 8.038

Siebel-Specific Functions for Siebel Advisor ■ GetPrice
Syntax
GetPrice(productDescriptionString)

Example
ISS.GetPrice(ISS.GetBusCompID(“CAR.COLOR”));

ISS.GetPrice();

ISS.GetPrice(ISS.GetResultsValue(”CONSTRUCTED_PRODUCT”));

Additional Pricing Functions
You can modify the behavior of GetPrice by using the following functions. Call these functions from
the customCode.js file if they are application specific. Call them from the _i file if they are page-level
specific.

■ ORP_DisplayPrice

Allows you to write custom code to bypass the entire code. The user is passed the same
information, including the price object, that is returned from the server and all the configuration
variables.

■ ORP_DisplayPriceString

Allows you to write custom code to bypass the entire code. This function allows you to override
the final display of the data. This function is useful if you want to override the default behavior
of opening a pop-up window for displaying the price.

■ COP_BeforeDisplayPriceString

Allows you to manipulate the HTML string before it appears in the window.

Argument Description

productDescriptionString Optional argument used as the description for the customizable
product to be added. If productDescriptionString is not specified, the
model and state are examined to automatically build a customizable
product description before adding the product to, and displaying, the
quote or order.

You can define ProductDescriptionString in the following ways:

■ As <product ID>

■ As a fully formed string, built by hand or using helper APIs (see
“BuildProductStr” on page 33). Use the form:

relationship=<relationship
name>&*prodID=<prodID>&*qty=<quantity>&*attributes={<k
ey1>=<value1>&*<key2>=<value2>&*...}&*children={<child
1>|*<child2>|*...}

■ As null to specify not to extract a string
Siebel Advisor API Reference Version 8.0 39

Siebel-Specific Functions for Siebel Advisor ■ GotoSSConfigurator
For more information on these functions, see “Callout Point Functions for Siebel Advisor” on page 91.

Accessing the Additional Pricing Functions
Use the following accessories to the price object to access the additional pricing functions:

■ GetField (fieldName)

Retrieves the value specified by fieldName.

■ GetChildren ()

Returns an array of price objects or an empty array if there are no children.

GotoSSConfigurator

Usage
Use the GotoSSConfigurator function to hand off a product to the Siebel server-based Configurator.

GotoSSConfigurator can be called from any frame within the application and can be executed
anywhere a JavaScript function can be used. It is commonly called from the onClick event handler
of a link, but can also be referred to from an image map, set as the SUBMIT method of an embedded
frame, or called from another user-defined JavaScript function.

Refer to the Referencing Other Siebel Data chapter in Siebel Advisor Administration Guide for more
information.
Siebel Advisor API Reference Version 8.040

Siebel-Specific Functions for Siebel Advisor ■ GoToSSView
Syntax
GotoSSConfigurator(productDescriptionString)

Example
ISS.GotoSSConfigurator();

ISS.GotoSSConfigurator(ISS.GetResultsValue(CONFIG_PROD))

ISS.GotoSSConfigurator(ISS.GetBusCompID(”ROOT_PART”));

GoToSSView

Usage
Use the GoToSSView() function to switch from the current browser-based view to any specified Siebel
application view. All Siebel views have an exact name. This does not select a particular record in that
view.

Syntax
GoToSSView(ViewName)

Argument Description

productDescriptionString Optional argument used to describe the customizable product, which
is used to start up the server-side configurator. If
ProductDescriptionString is not used, the current model and state of
the application are used to build a customizable product structure,
which is then passed on to the server-side Configurator to launch the
runtime instance of the customizable product.

You can define ProductDescriptionString in the following ways:

■ As product ID

■ As a fully formed string, built by hand or using helper APIs (see
“BuildProductStr” on page 33). Use the form:

relationship=<relationship
name>&*prodID=<prodID>&*qty=<quantity>&*attributes={<k
ey1>=<value1>&*<key2>=<value2>&*...}&*children={<child
1>|*<child2>|*...}

■ As null to specify not to extract a string

Argument Description

ViewName A string with the view name.
Siebel Advisor API Reference Version 8.0 41

Siebel-Specific Functions for Siebel Advisor ■ SendSelectionInformationToServer
Example
ISS.GotoSSView(“Product Detail View”);

SendSelectionInformationToServer

Usage
Use the SendSelectionInformationToServer function to post specified data to a business service and
method.

NOTE: To use this function, you need to write a business service and a method on that service.

You can use this function to create a variety of integration points with other applications as follows:

■ Create a new opportunity in Siebel Sales as a result of a web advisor session.

■ Store results of a session to a Business Component other than Quotes.

■ Call a string of Dynamic Defaults from a Business Component and open a pageset that displays
them.

■ Pass an optional field promoCode (promotional code) to the method so that it will specially price
the information based on that code.

■ Use a CDA Service Broker in the ISSCDA RT UI Service to:

■ Call another business service.

■ Accept information from a called business service.

■ Return a confirmation response to the client.

Syntax
SendSelectionInformationToServer(service, method, prodStr, enableLinkback, optArgs)

Argument Description

service Name of the Business Service to be executed.

method Method to be used on the business service.

prodStr Product string describing the product. Use null, without quotes around it, to specify
that no product string should be sent. Use “auto” to automatically extract the
product string. prodStr is added automatically when you choose to use it in the other
arguments. Do not set it manually.
Siebel Advisor API Reference Version 8.042

Siebel-Specific Functions for Siebel Advisor ■ SendSelectionInformationToServer
Example
To send the model and year of your car along with product and state information, call the function
as follows:

var optArgs = new Object();
optArgs["carModel"] = "Sedan";
optArgs["Year"] = 99;
ISS.SendSelectionInformationToServer("myService", "myMethod", "auto", true,
optArgs);

This call will automatically extract product information from the data model since auto is true. It will
also create a linkback string for the current state of the pageset. The linkback string can then be
used to open the pageset in this state.

Using the CDA Service Broker in the ISSCDA RT UI Service
You can call the CDAServiceBroker method in the ISSCDA RT UI Service to have the client receive a
confirmation response after it posts a request to a business service using
SendSelectionInformationToServer().

The CDA Service Broker in the ISSCDA RT UI business service acts as a broker to:

■ Call another business service

■ Accept information from that business service

■ Return a confirmation response back to the client

The following examples illustrate how to accomplish these tasks using the CDA Service Broker.

To invoke the CDA Service Broker, you must set the following parameters in the
SendSelectionInformationToServer function:

Service="ISSCDA RT UI Service"

Method="CDAServiceBroker"

Example 1

CDANoReturn
Use this parameter when no confirmation is needed from the server business component.

enableLinkb
ack

Boolean value specifying whether to build a linkback string used for restoring state.
If “true,” constructs and passes the appropriate linkback string. If “false,” takes no
action. The linkback string gets added automatically when you choose to use it in
the other arguments. It should not be set manually.

optArgs Object including at least the following special fields: prodStr and linkBackStr. Any
additional data should be included as fields in this object as a string or number. This
data will be associated with the field name when sent to the method.

Argument Description
Siebel Advisor API Reference Version 8.0 43

Siebel-Specific Functions for Siebel Advisor ■ SendSelectionInformationToServer
argObj["CDAExternalServiceName"] = "My Business Service";

argObj["CDAExternalMethodName"] = "My Business Service Method";

argObj[“CDANoReturn”]= “”;

OL.SendSelectionInformationToServer("ISSCDA RT UI Service", "CDAServiceBroker",
"auto", true, argObj);

Example 2

CDAReturnValue
This parameter requests the business service to select a value from the output property set and
return it to the client.

argObj["CDAExternalServiceName"] = "My Business Service";

argObj["CDAExternalMethodName"] = "My Business Service Method";

argObj[“CDAReturnValue”]= “ReturnName”;

OL.SendSelectionInformationToServer("ISSCDA RT UI Service", "CDAServiceBroker",
"auto", true, argObj);

In this example, the client specifies CDAReturnValue=ReturnName. After successful execution of the
method, the client can retrieve the returned property value from ReturnName.

Example 3

CDAReturnHandler
If you need to retrieve the entire output property set from the server, you can build a property set
handler for the client side. The name of the property set handler is passed to the server side to
process the property set object. The ISSCDA RT UI Service reconstructs the property set into
JavaScript objects and sends it back to the client.

argObj["CDAExternalServiceName"] = "My Business Service";

argObj["CDAExternalMethodName"] = "My Business Service Method";

argObj[“CDAReturnHandler”]= OL.FrameToString(window)+'.alertEvent');

OL.SendSelectionInformationToServer("ISSCDA RT UI Service", "CDAServiceBroker",
"auto", true, argObj);

function alertEvent(ps)

{

 if (ps != null)

 {
Siebel Advisor API Reference Version 8.044

Siebel-Specific Functions for Siebel Advisor ■ ShowCDA
 for (bFirst = true; (arg = ps.EnumProperties (bFirst)) != null; bFirst =
false)

 {

 value = ps.GetProperty (arg);

 alert(arg + "=" + value);

 }

 }

 else

 {

 alert("Empty PropertySet in function alertEvent");

 }

} </script>

NOTE: The JavaScript object constructed from the server side code uses the constructor (which
resides in the propset.js) in the SWE script. Be sure to include this script in the file where the
property set handler is in your JavaScript.

Example 4

Null value
If you use a null value for optArgs, the CDA Service Broker retrieves the default property set name
from the repository. The default name is defined in the Siebel repository under the
ReturnPropertyName in the user property of the business service CDA RT UI Service. The CDA
Service Broker calls the specified business service using the default property set name. If the default
property set name in the specified business service exists in the return output property set, it will
be returned to the client.

argObj["CDAExternalServiceName"] = "My Business Service";

argObj["CDAExternalMethodName"] = "My Business Service Method";

OL.SendSelectionInformationToServer("ISSCDA RT UI Service", "CDAServiceBroker",
"auto", true);

ShowCDA

Usage
Use the ShowCDA function to load a specified pageset using a linkback string.
Siebel Advisor API Reference Version 8.0 45

Siebel-Specific Functions for Siebel Advisor ■ ShowCDAWithDynDefStr
Syntax
ShowCDA(pagesetName,linkbackString,args[])

Example
var optArgs = new Object;

optArgs.ShowContents = true;

ISS.ShowCDA(“Cars|Sedans”, null, optArgs);

ShowCDAWithDynDefStr

Usage
Use the ShowCDAWithDynDefStr function to load a specified pageset using a Dynamic Default string.

Syntax
ShowCDAWithDynDefStr(pagesetName,dynDefStr,args[])

Argument Description

pagesetName Name of the pageset, specified in the format “project|pageset” (for example,
Cars|Sedans). If “project|pageset” is not specified, showCDA loads the
personalized contents list of the specified project. If a NULL parameter is
specified, ShowCDA loads the default project.

linkbackString Optional argument. linkbackString is the string used to restore a previous state.
Use the same string the browser-based engine passed off to the server and stored
in the database.

args Optional argument. Add a ShowContents property to the args[] object and set it
to “true” in order to display a contents list when the pageset appears. By default,
this variable is set to false. Use the GetCDAEntryArgs() and GetCDAEntryArg()
functions to return the argument array.

Argument Description

pagesetName Name of the pageset, specified in the format “project|pageset” (for example,
Cars|Sedans). If “project|pageset” is not specified, showCDA loads the
personalized contents list of the specified project. If a NULL parameter is
specified, ShowCDA loads the default project.
Siebel Advisor API Reference Version 8.046

Siebel-Specific Functions for Siebel Advisor ■ ShowProductDetails
Example
ISS.ShowCDAWithDynDefStr(“Cars|Sedans”);

ISS.ShowCDAWithDynDefStr(“Cars|Sedans”, “COLOR=BLUE, ENGINE=V6”);

ShowProductDetails

Usage
Use the ShowProductDetails function to open the detail view for the currently selected product ID.
This API uses the parameters defined in the Siebel config file to determine which Siebel application
view to open. The parameters are the same for all browser-based applications within the context of
a specific Siebel application. For example, within Call Center, all browser-based applications
executing this API would open the same Detail View. If the Detail View defined in uagent.cfg (the
config file for Call Center) is the Product Detail View, then the API always submits a request to switch
the view to the Product Details View.

ShowProductDetails can be called from any frame within the application and can be executed
anywhere a JavaScript function can be used. It is commonly called from the onClick event handler
of a link, but can also be referred to from an image map, set as the SUBMIT method of an embedded
frame, or called from another user-defined JavaScript function. Unless you pass in a product string,
the link to ShowProductDetails should be implemented in places that are active only if there is a valid
product.

Syntax
ShowProductDetails(product)

Example
ISS.ShowProductDetails(ISS.GetBusCompID("MODEL.DESC"));

dynDefStr Optional argument. String that defines key-value pairs of input Feature table
columns and their values. The default format of dynDefStr is
"key1=value1,key2=value2". Separator characters default to equal signs (=)
and commas (,).

args Optional argument. Add a ShowContents property to the args[] object and set
it to “true” in order to display a contents list when the pageset appears. By
default, this variable is set to false. Use the GetCDAEntryArgs() and
GetCDAEntryArg() functions to return the argument array.

Argument Description

product Id The product ID of the product. This is an optional argument. If no parameter is
specified, the root product id is used.

Argument Description
Siebel Advisor API Reference Version 8.0 47

Siebel-Specific Functions for Siebel Advisor ■ ShowProductDetails
ISS.ShowProductDetails(ISS.GetResultsValue(”PROD_DETAIL_ID”));
Siebel Advisor API Reference Version 8.048

5 Utility Functions for Siebel
Advisor
Use utility functions at various points in a browser-based application to support other browser-based
application functions.

This chapter includes the following topics:

■ “ConvertFloatToCurrency” on page 49

■ “ConvertStrToDynDefObj” on page 50

■ “FrameToOLString” on page 51

■ “GetCSPath” on page 52

■ “GetCustomPath” on page 52

■ “GetDSPath” on page 53

■ “GetJDPath” on page 53

■ “GetPagesetDisplayArea()” on page 54

■ “GetPGPath” on page 54

■ “GetTopPath” on page 54

■ “GetUIPath” on page 55

■ “GetVisibleDisplayArea()” on page 55

■ “RegisterUI” on page 56

■ “RegisterUIElement” on page 56

■ “ShowAbout” on page 57

■ “ShowHelp” on page 58

ConvertFloatToCurrency

Usage
Use the ConvertFloatToCurrency function to display numbers in output targets in currency format, to
two decimal places. If you do not use the ConvertFloatToCurrency function, you must write a custom
function to format and display output target numbers in currency format.

Use ConvertFloatToCurrency by itself or inside a BuildTarget function to format values before they
appear in the application.
Siebel Advisor API Reference Version 8.0 49

Utility Functions for Siebel Advisor ■ ConvertStrToDynDefObj
Syntax
ConvertFloatToCurrency(value)

Example
The following sample code uses ConvertFloatToCurrency with the BuildTarget function to convert and
return numbers in currency format:

<SCRIPT language="JavaScript">

document.write(ISS.BuildTarget("TEXT",window,"PRICE",
ISS.ConvertFloatToCurrency));

</SCRIPT>

In this example, ConvertFloatToCurrency returns numbers in text output targets in currency format.
For example:

■ 31.1 would return 31.10

■ 20 would return 20.00

■ 20.50 would return 20.50

■ 20.605 would return 20.61

Related TopicsRelated Topics
“BuildTarget” on page 69.

ConvertStrToDynDefObj

Usage
Use the ConvertStrToDynDefObj function to convert a string of arguments into an object for use in
the LoadPagesetWithDynDefObj function.

The LoadPageset function also translates strings to objects for you. Use the ConvertStrToDynDefObj
function only when you are writing substantial amounts of custom code and need to convert a string
of arguments into an object that you will subsequently modify.

Argument Description

value Value to be converted, in floating-point form.
Siebel Advisor API Reference Version 8.050

Utility Functions for Siebel Advisor ■ FrameToOLString
Syntax
ConvertStrToDynDefObj(str)

Example
ISS.ConvertStrToDynDefObj("PETTYPE=TABBY,SIZE=MEDIUM, COLOR=ORANGE");

Related Topics
“LoadPagesetWithDynDefObj” on page 86.

“LoadPageset” on page 85.

FrameToOLString

Usage
Use the FrameToOLString function to determine the appropriate Document Object Model (DOM) path
to a particular frame.

Browser-based applications establish a virtual document root at ISS. In many instances, you need
to define a path relative to ISS. This function performs the necessary translation.

This function returns a string value.

Syntax
FrameToOLString(frame)

Example
The Application UI Definition file (/ui/ol_ui.htm) contains the following reference:

ISS.RegisterUI(ISS.FrameToOLString(window)+'.mainArea')

In a standard browser-based application, this is equivalent to:

ISS.RegisterUI(ISSStr+'.ol_ui.mainArea');

Argument Description

str String to be converted. Default format of str is “key1=value1,key2=value2.”
Separator characters default to equal signs and commas.

Argument Description

frame DOM-based window object, returns a string.
Siebel Advisor API Reference Version 8.0 51

Utility Functions for Siebel Advisor ■ GetCSPath
GetCSPath

Usage
Use the GetCSPath function to return the file system path to the cs directory of the application.

Use this function instead of hard-coding a relative directory path (for example, ../cs/dog.js), because
the relative path can change depending on:

■ The location from which the function is called

■ The browser in which the application is running

Syntax
GetCSPath()

Example
If the application is installed at
http://server.company.com/myapp,you could define

var cspath = ISS.GetCSPath();

In this case, cspath would be the string "/myapp/cs/".

GetCustomPath

Usage
Use the GetCustomPath function to return the file system path to the custom directory of the
application.

Use this function instead of hard-coding a relative directory path (for example, ../custom/
app_config.js), because the relative path can change depending on:

■ The location from which the function is called

■ The browser in which the application is running

Syntax
GetCustomPath()

Example
If the application is installed at
http://server.company.com/myapp, you could define

var custompath = ISS.GetCustomPath();

In this case, custompath would be the string "/myapp/custom/".
Siebel Advisor API Reference Version 8.052

Utility Functions for Siebel Advisor ■ GetDSPath
GetDSPath

Usage
Use the GetDSPath function to return the file system path to the ds directory of the application.

Use this function instead of hard-coding a relative directory path (for example, ../ds/dog_x.js),
because the relative path can change depending on:

■ The location from which the function is called

■ The browser in which the application is running

Syntax
GetDSPath()

Example
If the application is installed at
http://server.company.com/myapp, you could define

var dspath = ISS.GetDSPath();

In this case, dspath would be the string "/myapp/ds".

GetJDPath

Usage
Use the GetJDPath function to return the file system path to the jd directory of the application.

Use this function instead of hard-coding a relative directory path (for example, ../jd/header.js),
because the relative path can change depending on:

■ The location from which the function is called

■ The browser in which the application is running

Syntax
GetJDPath()

Example
If the application is installed at
http://server.company.com/myapp, you could define

var jdpath = ISS.GetJDPath();

In this case, jdpath would be the string "/myapp/jd".
Siebel Advisor API Reference Version 8.0 53

Utility Functions for Siebel Advisor ■ GetPagesetDisplayArea()
GetPagesetDisplayArea()

Usage
GetPagesetDisplayArea() returns the string representing the frame location where the pagesets
should appear. It is set by RegisterUI. The frameset registered in the _i file loads in that frame.

Syntax
GetPagesetDisplayArea()

GetPGPath

Usage
Use the GetPGPath function to return the file system path to the pg directory of the application.

Use this function instead of hard-coding a relative directory path (for example, ../pg/dog_1.htm),
because the relative path can change depending on:

■ The location from which the function is called

■ The browser in which the application is running

Syntax
GetPGPath()

Example
If the application is installed at
http://server.company.com/myapp, you could define

var pgpath = ISS.GetPGPath();

In this case, pgpath would be the string "/myapp/pg".

GetTopPath

Usage
Use the GetTopPath function to return the file system path to the top-level application directory.

Use this function instead of hard-coding a relative directory path (for example, ../home.htm),
because the relative path can change depending on:

■ The location from which the function is called

■ The browser in which the application is running
Siebel Advisor API Reference Version 8.054

Utility Functions for Siebel Advisor ■ GetUIPath
Syntax
GetTopPath()

Example
If the application is installed at
http://server.company.com/myapp, you could define

var toppath = ISS.GetTopPath();

In this case, toppath would be the string "/myapp/".

GetUIPath

Usage
Use the GetUIPath function to return the file system path to the ui directory of the application.

Use this function instead of hard-coding a relative directory path (for example, ../ui/ol_ui.htm),
because the relative path can change depending on:

■ The location from which the function is called

■ The browser in which the application is running

Syntax
GetUIPath()

Example
If the application is installed at
http://server.company.com/myapp, you could define

var uipath = ISS.GetUIPath();

In this case, uipath would be the string "/myapp/ui".

GetVisibleDisplayArea()

Usage
GetVisibleDisplayArea returns a string representing the frame that displays the entire UI.

Syntax
GetVisibleDisplayArea()
Siebel Advisor API Reference Version 8.0 55

Utility Functions for Siebel Advisor ■ RegisterUI
RegisterUI

Usage
Use the RegisterUI function to register the user interface frameset name in the Application UI
Definition file (\ui\ol_ui.htm). The value set here can be later accessed using
ISS.GetPagesetDisplayArea(). RegisterUI tells the engine that the user interface frameset has loaded
completely and which frame will contain the display pages for pagesets.

Use RegisterUI in the onLoad handler of \ui\ol_ui.htm.

Syntax
ISS.RegisterUI(frameName)

Example
The frameset of \ui\ol_ui.htm might include the following code:

<FRAMESET cols=”240,*” frameborder=0 framespacing=0
onLoad="ISS.RegisterUI(ISS.FrameToOLString(window)
+'.mainArea');”>

Related Topics
“FrameToOLString” on page 51.

RegisterUIElement

Usage
For refresh purposes, use the RegisterUIElement function to inform the application whether a user
interface element is an input UI control or an output target.

Pages that do not contain output targets do not usually need to be refreshed after the engine
executes. For performance and UI benefits, applications track which pages have only input UI
controls, and therefore do not need to be refreshed.

If you write a custom input UI control or target, you must call RegisterUIElement to inform the
application whether your custom creation needs to be refreshed.

Argument Description

frameName Full path to the frame in which the pageset frameset for display pages will be
loaded. Path must be expressed relative to ISS.
Siebel Advisor API Reference Version 8.056

Utility Functions for Siebel Advisor ■ ShowAbout
Syntax
RegisterUIElement(elementName,window,mustRefresh)

Related Topics
“Example of Creating a Custom Input UI Control” on page 115

“Example of Creating a Custom Output Target” on page 118

ShowAbout

Usage
Use the ShowAbout function to open a separate window and display the information contained in the
\ui\about.htm file. The About information commonly contains the application version number, legal
notices, and company contact information.

You can call the ShowAbout function from any frame within an application, and the function can be
executed anywhere a JavaScript function can be used. It is commonly called from the onClick event
handler of a link, but it can also be referred to from an image map, set as the SUBMIT method of an
embedded frame, or called from another user-defined JavaScript function.

Syntax
ShowAbout()

Notes
■ The information that appears when the ShowAbout function is called must be located in an HTML

file called about.htm, and this file must be located in the application ui subdirectory.

■ When you create a new project, Advisor automatically generates an about.htm file in the
application ui subdirectory. Edit this file to contain information appropriate for your own
application.

■ The configuration variable APP_ABOUT_WIN_ARGS in the Application Configuration file
(\custom\app_config.js) defines the attributes of the About window, including size, whether a
status bar and scroll bars appear, and whether the window is resizable.

Argument Description

elementName For input UI controls, the name of the Feature table from which the UI control is
built.
For output targets, the name of the Configuration table column, Feature table, or
Feature table column for which the target is built.

window The DOM window object that contains the input UI control or output target.

mustRefresh Boolean variable used to specify whether elementName is an output target (true
= output target, false = input UI control).
Siebel Advisor API Reference Version 8.0 57

Utility Functions for Siebel Advisor ■ ShowHelp
Example
The following sample code creates a link to the About window using a link surrounding a button image
called btn_abt.gif.

<IMG src="btn_abt.gif" alt="Information about CDA(tm)" height=14 width=57 border=0
hspace=0 vspace=0 align=top>

ShowHelp

Usage
Use the ShowHelp function to open a separate window displaying the information contained in the
\ui\helpset.htm file. The helpset contains information about the application user interface and the
controls that it contains, and you can edit the generic information to customize the help for your own
application.

You can call the ShowHelp function from any frame within the application, and the function can be
executed anywhere a JavaScript function can be used. It is commonly called from the onClick event
handler of a link, but it can also be referred to from an image map, set as the SUBMIT method of an
embedded frame, or called from another user-defined JavaScript function.

Syntax
ShowHelp()

Notes
■ The information that appears when the ShowHelp function is called must be located in the file

helpset.htm, and this file must be located in the application ui subdirectory.

■ The configuration variable APP_HELP_WIN_ARGS in the Application Configuration file
(\custom\app_config.js) defines the attributes of the Help window, including size, whether a
status bar, menu bar, and scroll bars appear, and whether the window is resizable.

■ The helpset.htm file generated when you create a new project in Advisor contains a frameset that
refers to the following source files: help_top.htm, help_mnu.htm, help_ovr.htm, and
help_nav.htm. Using a frameset is optional. All of the Help information can appear in the
helpset.htm file only.

Example
The following sample code creates a link to the Help window using a link surrounding a button image
called btn_hlp.gif.

<IMG
src="btn_hlp.gif" alt="browser-based application Help" height=14 width=57 border=0
hspace=0 vspace=0 align=top>
Siebel Advisor API Reference Version 8.058

6 User Interface Layout and
Control Functions for Siebel
Advisor
User interface layout and control functions define the general structure and appearance of an
application. If you want to modify the default layout, you can use these functions to define virtually
any interface.

This chapter includes the following topics:

■ “RegisterCascade” on page 59

■ “RegisterExceptionFrames” on page 59

■ “RegisterFrameSet” on page 60

■ “RegisterMVar” on page 61

■ “RegisterPageLocation” on page 62

■ “RegisterPriorityPages” on page 63

RegisterCascade

Usage
Use the RegisterCascade function to identify the name of a Cascade Registry Table. Required for any
pageset that has a cascading trigger construct. RegisterCascade is called from the UI Information
file for the pageset. Multiple calls can be made to register multiple cascading trigger constructs.

Syntax
ISS.RegisterCascade(cascadeName);

RegisterExceptionFrames

Usage
Use the RegisterExceptionFrames function to define which frame in a browser-based application
displays exception messages. This function is always called from the Pageset UI Registry file
(\pg\pagesetID_i.htm).

Argument Description

cascadeName The name of the cascade trigger table.
Siebel Advisor API Reference Version 8.0 59

User Interface Layout and Control Functions for Siebel Advisor ■ RegisterFrameSet
A frame is often both a normal display frame and also an exception frame. For example, a pageset
user interface might contain two frames: one frame containing only input UI controls and another
containing only output targets. If you register the output target frame as an exception frame, it
displays results such as prices and pictures for a valid configuration but is completely overwritten to
display exception messages for an invalid configuration.

You cannot use a single-frame user interface for a pageset that can produce exception messages.

Syntax
RegisterExceptionFrames(frameName)

Example
The following sample code uses RegisterExceptionFrames to indicate that exception data should be
written into the uidata nested frame of the mainArea frame.

ISS.RegisterExceptionFrames
(ISS.GetPagesetDisplayArea()+”.uidata”);

Related Topics
“Example of Defining a Pageset Layout” on page 116

RegisterFrameSet

Usage
Use the RegisterFrameSet function to identify the file that contains the pageset UI definition
frameset. This function is always called from the Pageset UI Registry file (\pg\pagesetID_i.htm).
Each Pageset UI Registry file must contain a RegisterFrameSet function call.

Each pageset must point to a Pageset UI Definition file (located in the pg directory) that defines how
to subdivide the pageset display area defined in the Application UI Definition file (\ui\ol_ui.htm).
More than one pageset can point to the same Pageset UI Definition file, or each pageset can have its
own UI definition. RegisterFrameSet identifies the HTML file that is loaded into this area. This HTML
file must always contain a frameset definition that indicates how to subdivide the space.

Argument Description

frameName The name of the relevant frame. This is a string. It is not a pointer. This should
be a full path using ISS.GetPagesetDisplayArea.
Siebel Advisor API Reference Version 8.060

User Interface Layout and Control Functions for Siebel Advisor ■ RegisterMVar
Syntax
RegisterFrameSet(name,frameSetName,frameLoc,[path])

Example
The following sample code uses RegisterFrameSet to load the dogs_ui.htm Pageset UI Definition file
into the mainArea frame of an application.

ISS.RegisterFrameSet("dogs_ui","dogs_ui.htm",
ISS.GetPagesetDisplayArea());

The following example points to a frameset file that is located in the ui directory.

ISS.RegisterFrameSet("dogs_ui","dogs_ui.htm",
ISS.GetPagesetDisplayArea(),ISS.GetUIPath());

Related Topics
“RegisterContentsListFrame” on page 87

“Example of Creating a Custom Output Target” on page 118

RegisterMVar

Usage
Use the RegisterMVar function to identify the name of a Multi-Variable Trigger Table. Required for any
pageset that has a multi-variable trigger construct. RegisterMVar is called from the UI Information
file for the pageset. Multiple calls can be made to register multiple multi-variable trigger constructs.

Argument Description

name An identifier. When the pageset UI definition frameset finishes loading, it calls a
registration function that passes name as one of its arguments. Usually, this
identifier name is the same as the name of the HTML file that contains the
frameset.

frameSetName Name of the HTML file containing the frameset.

frameLoc A string. This argument is the fully qualified name of the target frame into which
the frameset will be loaded. In standard applications, this refers to the mainArea
frame defined in the Application UI Definition file (\ui\ol_ui.htm).

path Optional. This argument is the full path to the directory in which the HTML file
resides (pg, by default).
Siebel Advisor API Reference Version 8.0 61

User Interface Layout and Control Functions for Siebel Advisor ■
RegisterPageLocation
Syntax
ISS.RegisterMVar(mVarName);

RegisterPageLocation

Usage
Use the RegisterPageLocation function to map specific display pages into the frames defined for a
pageset. This function is always called from the Pageset UI Registry file (\pg\pagesetID_i.htm). This
function also defines which pages are visible when the pageset first loads.

You must call the RegisterPageLocation function once for each display page in the pageset, even if a
page is not initially visible. You can rotate two or more display pages through a single pageset frame.

Syntax
RegisterPageLocation(fileName,frameName,isVisible,[path]);

Example
The following sample code registers the dogs.htm display page (located in the pg directory) into the
ui_disp nested frame of the main display page frame (mainArea).

ISS.RegisterPageLocation("dogs.htm",
ISS.GetPagesetDisplayArea()+“.uidisp”,”true”);

The following example registers a display page that is located in the ui directory instead.

ISS.RegisterPageLocation("dogs.htm",
ISS.GetPagesetDisplayArea()+”.ui_disp","true",ISS.GetUIPath());

Related Topics
“Example of Defining a Pageset Layout” on page 116

Argument Description

mVarName The name of the multi-variable trigger table.

Argument Description

fileName Name of the HTML display page.

frameName Name of the frame in which the HTML display page appears.

isVisible String that indicates whether or not the file is visible when the pageset first
loads ("true" = visible, "false" = invisible).

Path Optional. The full path to the directory (pg by default) containing HTML file.
Siebel Advisor API Reference Version 8.062

User Interface Layout and Control Functions for Siebel Advisor ■
RegisterPriorityPages
RegisterPriorityPages

Usage
Use the RegisterPriorityPages function to identify the display pages that should be loaded before
engine results are calculated. This function is always called from the Pageset UI Registry file
(\pg\pagesetID_i.htm).

The RegisterPriorityPages function is most frequently used to indicate which pages should be loaded
first. The function often points to display pages containing only input UI controls whose content does
not change based on engine results.

Syntax
RegisterPriorityPages(fileNames)

Example
The following sample code uses RegisterPriorityPages to make sure that cats.htm and dogs.htm load
before other display files.

ISS.RegisterPriorityPages("cats.htm,dogs.htm");

Related Topics
“Example of Defining a Pageset Layout” on page 116

Argument Description

fileNames A single string containing one or more comma-separated file
names.
Siebel Advisor API Reference Version 8.0 63

User Interface Layout and Control Functions for Siebel Advisor ■
RegisterPriorityPages
Siebel Advisor API Reference Version 8.064

7 Pageset Functions for Siebel
Advisor
This chapter discusses pageset functions, which allow for a flexible user interface in a browser-based
application. Some pageset functions load and unload pagesets, while others map feature and
configuration data to user interface elements in a browser-based application.

This chapter includes the following topics:

■ “Start On Active” on page 65

■ “BuildTarget” on page 69

■ “BuildWidget” on page 77

■ “LinkToSubConfig” on page 83

■ “LoadFile” on page 84

■ “LoadPageset” on page 85

■ “LoadPagesetWithDynDefObj” on page 86

Start On Active
Several functions comprising the Start On Active function allow you to launch your application at a
particular pageset, from an external URL, with or without a preconfigured setting.

For those instances where no pageset ID is specified, you can pass a default start page as a
parameter in the SOALoadPageset function. Start On Active supports a variety of parameter passing
formats. In addition, you can implement custom URL string parsing functionality using Override
Points.

Start On Active can be called from any frame within the application and can be executed anywhere
a JavaScript function can be used. It is commonly called from the onClick event handler of a link, but
it can also be referred to from an image map, set as the SUBMIT method of an embedded frame, or
called from another user-defined JavaScript function.

Start On Active is used to load a particular pageset. The pageset ID is explicitly stated in the function
call. To load a pageset with an ID that is determined by the valid configuration of another product,
create a link output target using the BuildTarget function.

Parameter Passing Formats
The following URL parameter passing formats are supported, where home.htm is the top level
frameset:

http://…/home.htm

Launches the default application.
Siebel Advisor API Reference Version 8.0 65

Pageset Functions for Siebel Advisor ■ Start On Active
http://…/home.htm?pagesetid=xxx

Launches the application at pageset xxx with default Feature table selections as defined on the
pageset.

If information not related to the Start on Active function is being passed in the URL query string, it
should precede the pagesetid key/value pair (for example, a session ID).

http://…/home.htm?pagesetid=xxx¶m1=yyy¶m2=zzz

Launches the application at pageset xxx with preconfigured settings.

The syntax param1=yyy corresponds to FeatureTable/CodeValue pairs. Code value yyy is selected
for Feature table param1. Code value zzz is selected for Feature table param2. If information not
related to the Start on Active function is being passed in the URL query string, it should precede the
pagesetid key/value. Similarly, pagesetid should precede all dynamic default key/value pairs.

http://…/home.htm?pagesetid=xxx&dyndefs=param1+yyy+param2+zzz

Launches the application at pageset xxx with a preconfigured object.

The syntax param1+yyy corresponds to FeatureTable/CodeValue pairs in the preconfigured object.

Information not related to the Start on Active function may appear anywhere in the query string.

http://…/home.htm?pagesetid=xxx&configvars=true¶m1=yyy¶m2=zzz

Launches the application at pageset xxx with preconfigured settings.

The syntax param1=yyy corresponds to FeatureTable/CodeValue pairs. The key/value pair
configvars=true in the query string is used to indicate that a preconfigured setting is appended to
the URL. The preconfigured setting key/value pairs must immediately follow the configvars=true
parameter. If the parameter configvars is set to false, the application will launch at pageset xxx with
the default settings as defined on the pageset. If information not related to the Start on Active API
is being passed in the URL query string, it should precede the configvars key/value pair.

http://…/home.htm?config_file_path=filename.htm

Loads filename.htm, then launches the application at the pageset defined in that document's form,
with the preconfigured settings also defined in that form.

The path for filename.htm should be fully qualified. This approach is particularly valuable in
circumventing the URL length restrictions of most browsers (generally 2,000 characters in Microsoft
Internet Explorer and Netscape Navigator).

Implementing Start On Active
To implement the Start On Active function, use the following methods.

Modify InitApp()
Modify the function InitApp() in custom/customCode.js to call ISS.SOALoadPageset(). The function
takes two optional parameters:

■ The default start page if no pageset is specified in the query string.
Siebel Advisor API Reference Version 8.066

Pageset Functions for Siebel Advisor ■ Start On Active
■ A Boolean value indicating whether this default page is an active pageset (as opposed to a Splash
screen).

An example of how this function may look is shown below:

function InitApp() {

// insert initialization code here

// start with contents listing

ISS.ShowContentsList();

// can start with page in addition to or instead of showing contents list

ISS.SOALoadPageset(ISS.GetUIPath()+"welcome.htm", false);

}

To avoid a flash effect, verify that the source of the mainArea frame in ol_ui is “javascript:”

Use Hidden Frames
To implement Start on Active with hidden frames, create a new hidden frame in ol_ui called
“dynaframe” using the parameter string format http://…/home.htm?config_file_path=filename.htm.

NOTE: Be sure to add space for the hidden frame in the frameset's row/column definition.

The source for this file should be the empty javascript call:

<FRAME SRC="javascript:''" NAME="dynaframe" MARGINWIDTH="0"…>

Start on Active File Format Conventions
The contents of any Start on Active file specified in the config_file_path parameter of the URL query
string should adhere to the following convention:

<SCRIPT src="jd/header.js"></SCRIPT>

NOTE: Be sure to include the header.js file and verify that the path is correct relative to the location
of your Start on Active file.

Call “ISS.SOAPassDynaObject()” in the file's BODY onLoad handler:

<BODY onLoad="ISS.SOAPassDynaObject()">

Specify all key/value pairs as hidden INPUT fields. If information not related to the Start on Active
function is included in the form, it should precede the pagesetid key/value. Similarly, pagesetid
should precede all dynamic default key/value pairs.

The following is an example of a Start on Active file:

<HTML>

<HEAD>

<SCRIPT></SCRIPT> <SCRIPT src="jd/header.js"></SCRIPT>
Siebel Advisor API Reference Version 8.0 67

Pageset Functions for Siebel Advisor ■ Start On Active
</HEAD>

<BODY onLoad="ISS.SOAPassDynaObject()">

<FORM name=configuration>

<INPUT type=hidden name=pagesetid value=soa2>

<INPUT type=hidden name=A value=3>

<INPUT type=hidden name=B value=2>

<INPUT type=hidden name=C value=1>

</FORM>

</BODY>

</HTML>

Start on Active File Function Overview
InitApp(), a user-defined function customCode.js in the custom directory, is used to define the start
state of the application. The API ISS.SOALoadPageset() calls Start on Active from the InitApp()
function.

SOALoadPageset calls GetParmStr() to retrieve the URL query string. Before the string is returned,
it is cleaned of special characters using the API CleanQuery(). If there is no query string, the default
start page is passed as a parameter in ISS.SOALoadPageset() and loaded into the ISS.uiFrame.
Otherwise, StartActive() is called to evaluate the query string.

StartActive first checks whether the query string matches the parameter pattern for the hidden frame
approach. If so, the function LoadSOAFrame() is called to load the supplied file into ol_ui.dynaframe.
This approach relies on the onLoad handler of the supplied file to call SOAPassDynaObject().
SOAPassDynaObject will parse the form contents into query string format and pass that string back
into StartActive for evaluation.

If StartActive does not match the config_file_path pattern in the query string, it calls the
GetPagesetID() function to parse out the pagesetid key/value pair. If the key/value pair is found,
GetConfigObj() function is called to evaluate the string for dynamic defaults. If the pagesetid key/
value pair cannot be retrieved, the default start page is loaded.

GetConfigObj() evaluates the query string against the supported parameter formats. If a pattern
match is found, an ISS.DynDef_Obj is constructed with the key/value pairs specified in the query
string. This object is returned to StartActive.

Finally, StartActive checks whether a configuration object was returned. If so, it calls
ISS.LoadPagesetWithDynDefObj and passes the pagesetid and configuration object as parameters.
If not, it calls ISS.LoadPageset with the pagesetid.

NOTE: All calls to the Start On Active function should be of the form
ISS.FunctionName(arg1,…argN);
Siebel Advisor API Reference Version 8.068

Pageset Functions for Siebel Advisor ■ BuildTarget
SOALoadPageset (defaultPg, isActive)

Usage
Use this function to launch the Start On Active pageset functionality.

This function is called from the InitApp() function in customCode.js.

Syntax
SOALoadPageset (defaultPg, isActive)

SOAPassDynaObject ()

Usage
This function is called in the onLoad handler of a Start On Active file used to supply the parameters
in the hidden frame methodology. It parses the contents of the document form into URL query string
format and then passes the string on for StartActive evaluation.

Syntax
SOAPassDynaObject ()

BuildTarget

Usage
Use the BuildTarget function on a display page to create output target controls that display links,
images, or text in response to a user selection.

You call the BuildTarget function in the <BODY> section of a display page. Also, all BuildTarget calls
must be inside the <FORM> section of the HTML source of display pages. The function is usually
called from within a JavaScript document.write method.

Argument Description

default The name of a default start page to occupy the main area of the application. If the
page is a splash screen without ISS calls, it should be fully qualified filename with
the path and extension (for example, ISS.GetUIPath()+'welcome.htm'). If the page
is an active pageset, specify the pageset name as you would for ISS.LoadPageset
(for example, 'advisor'). This parameter is optional.

isActive Boolean value indicating whether defaultPg is an Active pageset or a splash screen.
This parameter is optional - defaults to false.
Siebel Advisor API Reference Version 8.0 69

Pageset Functions for Siebel Advisor ■ BuildTarget
Syntax
BuildTarget(type,window,name[,arg1,arg2])

Link Output Targets
Set the type argument for the BuildTarget function to LINK to create a link output target. The table
column specified by the name argument can contain pageset IDs or URLs. The isPage argument
defines how the data is handled. The dynDefCol argument points to a column that contains
information that dynamically overrides the defaults of the specified pageset.

The syntax used to create a link output target is:

Argument Description

type Specifies the type of output target control to create. Valid control types are:

■ LINK: see “Link Output Targets” on page 70.

■ SUBCONFIG_LINK: see “Subconfiguration Link Output Targets” on page 72.

■ OPT_SUBCONFIG_LINK: see “Optional Subconfiguration Link Output Targets” on
page 73.

■ PICT: see “Image Output Targets” on page 74.

■ TEXT: see “Text Output Targets” on page 74.

■ NB_LINK: see “N-Back Link Target” on page 76.

■ NB_RETURN: see “N-Back Return Target” on page 77.

name Defines the source of the content that populates the output target, which can be
any of the following:

■ A column in a Configuration table. In this case, the argument is simply the name
of the column.

■ A column in a Feature table. In this case, the argument is the name of the
Feature table and the name of the specific column inside of it, separated by a
period, as in COLOR.DESC.

■ The Feature table used to populate an input UI control from which the user has
made a selection. In this case, the argument is simply the name of the Feature
table.

■ The name of a text entry input UI control in which text is typed and stored. In
this case, the argument is the name you used to define the text entry input UI
control.

For syntax, see “Content Sources for Output Targets” on page 75.

arg1, arg2 Some output target types take additional arguments.
Siebel Advisor API Reference Version 8.070

Pageset Functions for Siebel Advisor ■ BuildTarget
BuildTarget("LINK",window,name,isPage[,dynDefCol])

NOTE: Pagesets must be located in the application pg subdirectory.

Example
The following sample code creates a link output target based on a Configuration table column named
CLINK:

<SCRIPT>

document.write(ISS.BuildTarget("LINK",window,"CLINK",
true));

</SCRIPT>If you liked this thing, you’ll definitely like these other things.

When the user selections match a valid configuration, a pageset ID in the CLINK column is returned.
When the user clicks the button, the pageset is loaded and displayed in the application.

Argument Description

name Column in a Configuration table or Feature table that contains pageset IDs or URLs.

isPage This optional argument is a Boolean value that determines whether data in the
column identified by the name argument is a pageset (TRUE) or a URL (FALSE). If the
data is a URL and you set the argument to FALSE, the URL loads into a separate
window, instead of inside the main application, when you click the link output target.

dynDefCol This optional argument is a string that specifies the name of a table column (or
columns, separated by commas) in which a preconfigured condition is defined for the
pageset.

When you click a link target containing a preconfigured condition, the application
overrides the default settings of input UI controls in the pageset being loaded with
the settings defined in the preconfigured condition.

The definition of a preconfigured condition must contain the name of the overriding
Feature table and the feature (CODE) value of the desired override setting.

If you define a preconfigured condition column in a Configuration table, the
dynDefCol argument references only the name of the Configuration table column
whose values override the defaults.

If you define a preconfigured column in a Feature table, the dynDefCol argument
must contain the name of the Feature table and the name of the specific column
inside of it whose values override the defaults, separated by a dot (as in
COLOR.PRECONFIG).
Siebel Advisor API Reference Version 8.0 71

Pageset Functions for Siebel Advisor ■ BuildTarget
Subconfiguration Link Output Targets
Set the type argument for the BuildTarget function to SUBCONFIG_LINK to create a subconfiguration
link output target. Use a subconfiguration link output target to navigate to the user interface of a
child pageset from its parent pageset, or from the child pageset back to the user interface of its
parent pageset.

The syntax used to create a subconfiguration link output target is:

BuildTarget("SUBCONFIG_LINK",window,instanceName)

NOTE: Pagesets must be located in the application pg subdirectory.

Example
The following sample code links from a parent page to a BURGER child page:

<SCRIPT>

document.write(ISS.BuildTarget("SUBCONFIG_LINK",
window,"BURGER"));

</SCRIPT>Link to Hamburger

Similarly, a child page links to its parent page using the following sample code:

<SCRIPT>

document.write(ISS.BuildTarget("SUBCONFIG_LINK",
window,"PARENT"));

</SCRIPT>Link to Burger Meal

Subconfiguration link output targets can link a child pageset, or a nested parent pageset, to the
topmost parent pageset by using the reserved word TOP as the instanceName argument:

Done selecting cheese for your burger?

<SCRIPT>

document.write(ISS.BuildTarget("SUBCONFIG_LINK", window,"TOP");)

</SCRIPT>Link to Burger Meal

Also, subconfiguration link output targets can link one child pageset to another by using the syntax
PARENT:CHILD as the instanceName argument:

Done creating your burger?

<SCRIPT>

Argument Description

instanceNam
e

Name of the relative instance that describes the
subconfigured child pageset.
Siebel Advisor API Reference Version 8.072

Pageset Functions for Siebel Advisor ■ BuildTarget
document.write(ISS.BuildTarget("SUBCONFIG_LINK", window,"PARENT:FRIES");)

</SCRIPT>Would you like fries with that?

Optional Subconfiguration Link Output Targets
Set the type argument for the BuildTarget function to OPT_SUBCONFIG_LINK to create an optional
subconfiguration link output target. Use an optional subconfiguration link output target when a
pageset is used for both a subconfigured item and a standalone item.

For example, if your application allows users to build fast food value meals, suppose that a user
wanted to buy a drink without purchasing any food. By using an optional subconfiguration target link
to the parent pageset on the DRINK pageset, the same DRINK pageset could be used, regardless of
whether the person is ordering a value meal.

A subconfiguration link back to the parent is not appropriate unless the user arrives at the pageset
from a parent pageset. The optional link does not appear unless the user arrives from a parent
pageset.

The syntax to create an optional subconfiguration link output target is:

BuildTarget("OPT_SUBCONFIG_LINK",window,instanceName,preText,postText)

NOTE: Pagesets must be located in the application pg subdirectory.

Example
Use the following sample code:

<SCRIPT>

document.write(ISS.BuildTarget("OPT_SUBCONFIG_LINK"
window, "PARENT","<TR><TD>","Link to Burger Meal
</TD></TR>"));

</SCRIPT>

returns:

"<TR><TD>Link to Burger
Meal</TD>
</TR>"

if there is a parent. If there is not a parent, it returns an empty string (" ").

Argument Description

preText HTML and text to be written before the optional subconfiguration link output target.

postText HTML and text to be written after the optional subconfiguration link output target.
Siebel Advisor API Reference Version 8.0 73

Pageset Functions for Siebel Advisor ■ BuildTarget
Image Output Targets
When the value for the type argument for the BuildTarget function is PICT, an image output target
is created. The image output target also uses optional Width and Height arguments.

The syntax used to create an image output target is:

BuildTarget("PICT",window,name[,width,height])

Argument Notes
■ If values for the width and height arguments are not defined, the application defaults to

displaying the image at the actual size specified by the image file. In some browsers, rendering
speed can be improved by explicitly specifying dimensions with the Width and Height arguments.

■ The path to an image file is relative to the pg subdirectory.

Example
The following sample code creates an image output target that displays the file listed in the IMG
column of a Configuration table:

<SCRIPT>

document.write(ISS.BuildTarget("PICT", window,"IMG"));

</SCRIPT>

When the user selections match a valid configuration, the value in the IMG column is returned. This
value is the name of the image file that appears in the output target.

Text Output Targets
When the type argument for the BuildTarget function is set to TEXT, a text output target control is
created.

The syntax used to create a text output target is:

Argument Description

name Column in a Configuration table or Feature table that
contains the name of an image file.

width Optional. Specifies the width of the image, in pixels.

height Optional. Specifies the height of the image, in pixels.
Siebel Advisor API Reference Version 8.074

Pageset Functions for Siebel Advisor ■ BuildTarget
BuildTarget("TEXT",window,name,[formatFunction])

Example
The following sample code creates a text output target that displays an interior color selection. When
the user selections match a valid configuration, a value in the DESC column is returned and displayed
in the text output target. Note that this column is located in the Feature table COLORINT.

<SCRIPT>

document.write(ISS.BuildTarget("TEXT", window,"COLORINT.DESC"));

</SCRIPT>

The following sample code displays a price text as a number with two decimal places.

<SCRIPT>

document.write(ISS.BuildTarget("TEXT", window,"PRICE",
ISS.ConvertFloatToCurrency));

</SCRIPT>

Content Sources for Output Targets
The name argument for the BuildTarget function refers to one of the following:

■ A column in a Configuration table. In this case, the argument is simply the name of the column.

If the output target control is populated with data from a column in a Configuration table, the
name argument is the column name only. The structure of the reference is:

ColumnName

For example, if an image output target is based on a Configuration table column called IMG, the
syntax might be:

BuildTarget("PICT",window,"IMG")

■ A column in a Feature table. In this case, the argument is the name of the Feature table and the
name of the specific column inside of it, separated by a period.

The reference structure is:

TableName.ColumnName

For example, if a text output target is based on a DESC column in the Feature table called COLOR,
the syntax might be:

Argument Description

name Column in a Configuration table, column in a Feature table, or a text UI control.

formatFunction Optional. A pointer to a function used to format the display of the value that
is often used to format numeric values.
Siebel Advisor API Reference Version 8.0 75

Pageset Functions for Siebel Advisor ■ BuildTarget
BuildTarget("TEXT",window,"COLOR.DESC")

■ The Feature table used to populate an input UI control from which the user has made a selection.
In this case, the argument is simply the name of the Feature table.

In this case, the data from the CODE column for that table is returned and displayed in the output
target. The reference structure is:

TableName

For example, if a text output target is based on a CODE column in the Feature table called
PROCESSOR, the syntax might be:

BuildTarget("TEXT",window,"PROCESSOR")

■ The name of a text entry input UI control in which text is typed and stored. In this case, the
argument is the name you used to define the text entry input UI control.

For example, the following sample code might be used to create a text box UI control:

<SCRIPT>document.write(ISS.BuildWidget
("GETTEXT",window,"PLATETEXT",8))</SCRIPT>

The text that a user enters into the UI control is then saved as part of the selection set with the
name reference PLATETEXT. The following sample code creates a text output target that displays
this data:

<SCRIPT>document.write(ISS.BuildTarget
("TEXT",window,"PLATETEXT"))</SCRIPT>

N-Back Link Target
The N-Back Link target saves the input state of the current pageset and then load a specified
pageset. You can create one or more N-Back Link targets per display page. The N-Back Link Target
is used in conjunction with the N-Back Return target. For more information, see “N-Back Return
Target” on page 77.

The syntax used to create an N-Back Link output target is:

BuildTarget (“NB_LINK”, winObj, linktext, pagesetcol, returntext)

Argument Description

NB_LINK Specifies that this function will be used to navigate to a new pageset.

winObj The window from which the call is made.

linktext The text to appear for the Link or Return HREF. If returntext is specified when a
Link is built, linktext is ignored during the construction of the corresponding
Return target.

pagesetcol Specifies the field of the data model that holds the name of the pageset to link
to.

returntext Optional Specifies the text to display for the return HREF.
Siebel Advisor API Reference Version 8.076

Pageset Functions for Siebel Advisor ■ BuildWidget
Example
document.write(ISS.BuildTarget("NB_LINK",window, "Accessories","DYNDEFS", ”Return to
Server Configuration”));

N-Back Return Target
The N-Back Return target is used to navigate back to the previous pageset and restore the saved
input state for that page. You can create one N-Back Return target per display page.

An N-Back Return target will only be constructed if called from a pageset of which the “TOP” instance
was traversed to by an N-Back Link. Otherwise an empty string is returned. For more information,
see “N-Back Link Target” on page 76.

The syntax used to create an N-Back Return output target is:

BuildTarget (“NB_RETURN”, winObj, linktext, tokencol)

Example
document.write(ISS.BuildTarget("NB_RETURN",window,"Return"));

BuildWidget

Usage
Use the BuildWidget function to add the following input UI controls to a display page in a browser-
based application:

■ Image map

■ List box

■ Radio button

■ Check box

■ Text box

Argument Description

NB_RETURN Specifies that this function will be used to traverse back to the previous pageset.

winObj The window from which the call is made.

linktext The text to appear for the Link or Return HREF. If returntext is specified when a
Link is built, linktext is ignored during the construction of the corresponding
Return target.

tokencol Optional Specifies the field of the data model that holds the key/value pairs of
a preconfigured object for the link.
Siebel Advisor API Reference Version 8.0 77

Pageset Functions for Siebel Advisor ■ BuildWidget
The image map, list box, radio button, and check box input UI controls allow a user to make feature
selections in a browser-based application. The text box input UI control allows the user to enter data
that can be reused in the application.

You call the BuildWidget function in the <BODY> section of a display page. Also, all BuildWidget calls
must be inside the <FORM> section of the HTML source of display pages. The function is usually
called from within a JavaScript document.write method.

Syntax
BuildWidget(type,window,name[,arg1,arg2,arg3,arg4,arg5])

Check Box Input UI Controls
The syntax used to create a check box input UI control is:

ISS.BuildWidget("CHECKBOX",window,name)

Notes
The Feature table associated with a check box input UI control defines whether the input UI control
is checked or cleared. Therefore:

■ Only the first two rows of the Feature table are significant for this input UI control.

■ The first row represents the cleared state, and the value in its CODE column must be equivalent
to false (F, FALSE, or 0).

Argument Description

type Specifies the type of input UI control to create. Valid control
types are:

CHECKBOX: see “Check Box Input UI Controls” on page 78.

MAP: see “Image Map Input UI Controls” on page 79.

LISTBOX: see “List Box Input UI Controls” on page 80.

RADIO: see “Radio Button Input UI Controls” on page 81.

GETTEXT: see “Text Entry Input UI Controls” on page 82.

name Defines the source of the content that populates the input UI
control.

arg1 - 5 Some input UI control types take additional arguments.

Argument Description

name Defines the source of the content that populates the input UI control. For check box
input UI controls, this is the name of a Feature table in the Advisor project.
Siebel Advisor API Reference Version 8.078

Pageset Functions for Siebel Advisor ■ BuildWidget
■ The second row represents the checked state, and the value in its CODE column must be
equivalent to true (T, TRUE,
or 1).

■ When a value is specified in the DEFAULT column of one row, the state represented by the row
is the state of the check box when the pageset is first loaded.

Example
The following sample code creates a check box input UI control:

<TR>

<TD>Personalized Plates
</TD>

<TD><SCRIPT> document.write(ISS.BuildWidget ("CHECKBOX",window,"PLATE"));</
SCRIPT></TD>

</TR>

Image Map Input UI Controls
An image map input UI control functions in much the same way as a group of radio button input UI
controls function. For example, an image map input UI control can take the form of a three-color
item. Users would click on a color, instead of a radio button, to make a selection.

In the relevant Feature table, you must specify the UI control name and its map name, input shape,
and coordinates. You can swap your own image files to represent a selected palette, but you must
provide your own browser-specific code to use DHTML to swap images.

The syntax used to create an image map input UI control is:

ISS.BuildWidget("MAP",window,name,mapName,fileCol, shapeCol,coordCol)

Example
The following sample code creates an image map input UI control whose image source file name is
defined in the PICT column of the COLOR Feature table:

Argument Description

name Feature table name and the name of the input UI control that corresponds to the
information represented by the image map (for example, COLOR).

mapName Name of the image map. All image maps must have unique names. Image maps
cannot be named map.

file File name of the image (or name of a table column that contains the file name of the
image) used.

shapeCol Advisor data column that contains the shape of the image map area.

coordCol Advisor data column that contains coordinates of the image map area.
Siebel Advisor API Reference Version 8.0 79

Pageset Functions for Siebel Advisor ■ BuildWidget
<SCRIPT>

document.write(ISS.BuildWidget("MAP",window,"COLOR",
"color_map","PICT","SHAPE","COORD"));

</SCRIPT>

The following sample code creates an image map input UI control that directly calls the image source
file called Flag.gif. This file should be located the pg directory.

<SCRIPT>

document.write(ISS.BuildWidget("MAP",window,"COLOR",
"color_map","Flag.gif","SHAPE","COORD"));

</SCRIPT>

List Box Input UI Controls
The name argument is the name of the Feature table that contains the data used to populate the list.
The data in the DESC column of this table is always used to populate the list. Additionally, you must
specify height, width, and prefill arguments for the input UI control.

The syntax used to create a list box input UI control is:

BuildWidget("LISTBOX",window,name,height,width,prefill)

Notes
■ In Internet Explorer 4.x and 5.x browsers, selections in the list box appear in the standard

system font. In Netscape 4.x, selections appear in the font in which text at that location would
normally appear—either in the font specified for the entire document, or a font specified by an
enclosing tag set.

Argument Description

name Defines the source of the content that populates the input UI control. For list box
input UI controls, this is the name of a Feature table in the Advisor project. Items in
the list box will be filled in sequentially using the entries in the DESC column of this
table.

height For list box input UI controls, this argument is an integer that specifies the number
of visible rows for the list box. Set this argument to 1 to create a drop-down list.

width Integer that specifies the width of the list box, as defined by the number of
characters visible in the default browser font.

prefill Boolean value that sets the width of the list box control to accommodate the widest
item in the list. If prefill is TRUE and width is greater than the number of characters
in the longest line of text appearing in the list box, the list box appears with a width
equivalent to width. If prefill is FALSE, the width is set to accommodate the longest
line of text that appears in the list box.
Siebel Advisor API Reference Version 8.080

Pageset Functions for Siebel Advisor ■ BuildWidget
■ The DEFAULT column in the associated Feature table determines which item in the list box is
selected when the pageset is initially loaded. If no row in the table contains the value DEFAULT,
the item that corresponds to the first row in the table is selected.

Example
The following sample code creates a list box that draws feature data from the Feature table
COLORINT. Note that the actual caption text is created using a separate HTML entry.

Choose an interior color:

<SCRIPT>

document.write(ISS.BuildWidget("LISTBOX",window,
"COLORINT",1,38,true));

</SCRIPT>

Radio Button Input UI Controls
You can create a radio button input UI control that uses a graphic caption for the radio button instead
of a text caption.The graphic specified for the imageFile argument will be used for the button caption.

The syntax used to create a radio button input UI control with a text caption is:

ISS.BuildWidget("RADIO",window,name,indexRow[,imageFile])

Notes
■ A separate BuildWidget function call is required for each row in a Feature table that is associated

with a radio button.

■ The DEFAULT column in the associated Feature table determines which radio button is selected
when the pageset is initially loaded. If no row in the table contains the value DEFAULT, the radio
button that corresponds to the first row in the table is selected.

Argument Description

name Defines the source of the content that populates the input UI control. For list box
input UI controls, this is the name of a Feature table in the Advisor project. A radio
button input UI control is associated with a particular row in the table. The row is
specified by the indexRow argument.

indexRow The row in the specified Feature table for which the button is created. (Note that the
first row in the table is considered row ‘0’.)

imageFile Optional. Advisor data column, such as PICT, that contains information about the
graphic, such as the name of the image file.
Siebel Advisor API Reference Version 8.0 81

Pageset Functions for Siebel Advisor ■ BuildWidget
Examples
The following sample code creates a radio button input UI control. This input UI control is based on
the first row of the Feature table BODY, and the indexRow argument is set to 0. The caption text is
created using a separate HTML entry.

<SCRIPT>

document.write(ISS.BuildWidget("RADIO",window,"BODY",0));

</SCRIPT>2-Door Coupe

The following sample code creates the same 2-Door Coupe radio button as in the
previous example, but with a graphic caption.

<SCRIPT>

document.write(ISS.BuildWidget("RADIO",window,
"BODY",0,"PICT"));

</SCRIPT>

The PICT argument will first attempt to get the graphic from BODY.PICT. If there is
no PICT column in BODY, it will get the graphic directly.

<SCRIPT>

document.write(ISS.BuildWidget("RADIO",window,"BODY",0,
"TwoDoorCoupe.gif"));

</SCRIPT>

TwoDoorCoupe.gif should reside in the pg directory.

Text Entry Input UI Controls
A text entry input UI control allows you to enter text in the application. This text is stored as a value
in the selection set under the name specified as the name argument.

The syntax used to create a text entry input UI control is:

BuildWidget("GETTEXT",window,name,width)

Notes
■ The name of a text entry input UI control:

Argument Description

name Name associated with the text box input UI control. Text entered in this input UI
control is stored under this name.

width Specifies the width of the text box. width is any positive integer. The value for width
is approximately equal to the number of characters (in the default browser font)
visible across the box at one time.
Siebel Advisor API Reference Version 8.082

Pageset Functions for Siebel Advisor ■ LinkToSubConfig
■ Must be a unique name throughout the pageset

■ Can contain letters and numbers, but must begin with a letter

■ Can contain no spaces or punctuation except for an underscore

■ There are currently no restrictions on the number of characters that can be typed into a text
entry field.

■ Do not enter the following text into a text entry field:

■ Unescaped double quotes

■ Any opening script tag such as <!-- or <SCRIPT>

Example
The following sample code creates a text entry input UI control. The caption text is created using a
separate HTML code. Text entered into this input UI control is saved under the name PLATETEXT.

Enter text for your custom license plate:

<SCRIPT>document.write(ISS.BuildWidget("GETTEXT",window,
"PLATETEXT",8));</SCRIPT>

LinkToSubConfig

Usage
The LinkToSubConfig function changes the display page from one portion of a subconfigured system
to another portion.

For example, a parent page might contain a link to a child page. When a user selects the link, the
parent user interface is replaced with the child user interface. This only affects the user interface
since in a subconfigured system, all parent and child data is always present.

Typically, you would use the SUBCONFIG_LINK OPT_SUBCONFIG_LINK arguments of the BuildTarget
function instead of calling the LinkToSubConfig function directly.

Syntax
LinkToSubConfig("TOP");

LinkToSubConfig("PARENT");

LinkToSubConfig(tableName);

Argument Description

tableName Name of the relative instance that describes the subconfigured child pageset.
Siebel Advisor API Reference Version 8.0 83

Pageset Functions for Siebel Advisor ■ LoadFile
Example
The following sample code uses LinkToSubConfig to link from the current pageset to a parent
pageset:

ISS.LinkToSubConfig("PARENT");

This sample code uses LinkToSubConfig to link from a parent pageset to a child pageset:

ISS.LinkToSubConfig("BURGER");

LoadFile

Usage
Use the LoadFile function to load a display page file into a specified frame. Use this call instead of
standard JavaScript calls such as location.href= and location.replace.

Syntax
ISS.LoadFile(frameName,fileName[,path])

Examples
The following sample code uses LoadFile to load the file dogs.htm (which resides in the pg directory)
into the current frame.

<A HREF=”#” onClick="ISS.LoadFile(window,'dogs.htm');
return false;">Click here to see dogs

The following sample code loads the file dogs.htm (which resides in the ui directory) into the current
frame:

<A HREF=”#” onClick="ISS.LoadFile(window,'dogs.htm',
ISS.GetUIPath());return false;">Click here to see dogs

The following sample code loads the file dogs.htm (which resides in the ui directory) into a particular
frame called descArea:

Argument Description

frameName Absolute path, in string form, to the frame where fileName should be loaded.
Alternately, you can specify window (but not as a string) if loading into the current
frame.

fileName Name of the HTML file.

path Optional. Full path to where fileName resides. Use one of the functions that returns
directory paths (such as GetUIPath) to return the full path to the directory where the
file resides. If no path is specified, path defaults to pg.
Siebel Advisor API Reference Version 8.084

Pageset Functions for Siebel Advisor ■ LoadPageset
<A HREF=”#”
onClick="ISS.LoadFile(ISS.GetPagesetDisplayArea()+'.descArea','dogs.htm’,ISS.GetUI
Path());return false;">Click here to see dogs

LoadPageset

Usage
Use the LoadPageset function to send a user to another pageset from within a pageset without having
to use the Contents List. LoadPageset can also be used to load a pageset with features that are not
the default preselected features.

You can call LoadPageset from any frame within the application, and the function can execute
anywhere a JavaScript function can be used.

Dynamic default strings are in the form "key1=value1,key2=value2". You can redefine the separator
characters by editing the APP_STR_SEP_CHAR and APP_STR_EQUALS_CHAR variable definitions in
the Application Configuration (\ui\app_config.js) file.

Syntax
LoadPageset(pagesetName,dynDefStr,optArgObj)

Example

Example 1
<A HREF=”#” onClick="ISS.LoadPageset('PC_all',
'PROCESSOR=750');return false;">Go to Next Computer

Instead of typing the key-value pairs in the function call, you can insert a reference to the column
in the data model that lists the dynamic defaults by using a call to BuildTarget. Use this method if
the dynamic defaults can vary depending on selections made on the page from which LoadPageset
was called. The function call would look like this:

<A HREF=”#” onClick="ISS.LoadPageset('PC_all',
ISS.BuildTarget('TEXT',window,'DYNDEFS'));return false;">Go to Next Computer

Note that you can call BuildTarget only from a pageset display page.

Argument Description

pagesetNa
me

The name of the pageset, specified in the format “project|pageset” (for example,
Cars|Sedans).

dynDefStr Optional. String that defines key-value pairs of input and value. The default format
of dynDefStr is "key1=value1,key2=value2". Separator characters default to equal
signs (=) and commas (,).

optArgObj Optional. Reserved for future use.
Siebel Advisor API Reference Version 8.0 85

Pageset Functions for Siebel Advisor ■ LoadPagesetWithDynDefObj
Example 2
This example shows switching to project Accessories.

<A HREF=”#” onClick="ISS.LoadPageset('AccessorieslStorageDevices');return
false;">Go to Storage Devices

LoadPagesetWithDynDefObj

Usage
Use the LoadPagesetWithDynDefObj function to load a pageset with a dynamic default object. A
dynamic default object represents a product with certain nondefault, preselected features.

LoadPagesetWithDynDefObj can be called from any frame within the application and can be executed
anywhere a JavaScript function can be used. It is commonly called from the onClick event handler
of a link, but it can also be referred to from an image map, set as the SUBMIT method of an
embedded frame, or called from another user-defined JavaScript function.

LoadPagesetWithDynDefObj is used to load a particular pageset. The pageset ID is explicitly stated
in the function call. To load a pageset with an ID that is determined by the valid configuration of
another product, create a link output target using the BuildTarget function.

Syntax
LoadPagesetWithDynDefObj(url[,dynDefObj,optArgObj])

Example
LoadPagesetWithDynDefObj("cats.htm",myDynDefObj);

LoadPagesetWithDynDefObj("cats.htm");

Usage
Use the LoadPagesetWithDynDefObj function to load a pageset with a dynamic default object. A
dynamic default object represents a product with certain nondefault, preselected features.

Argument Description

url The name of the pageset, specified in the format
“project|pageset” (for example, Cars|Sedans).

dynDefObj Optional. Object that defines key-value pairs of input and
value.

optArgObj Optional. Reserved for future use.
Siebel Advisor API Reference Version 8.086

8 Contents List Functions for
Siebel Advisor
This chapter discusses several functions that allow you to customize the Contents List. The Contents
List can appear in any visible frame of a browser-based application. You must set which frame should
be used using the functions RegisterContentsListFrame and SetContentsListFrame. Once the
contents list location has been set, calling ShowContentsList will display the Contents List in the
designated frame.

This chapter includes the following topics:

■ “RegisterContentsListFrame” on page 87

■ “SetContentsListFrame” on page 88

■ “ShowContentsList” on page 89

RegisterContentsListFrame

Usage
Use the RegisterContentsListFrame function to register which application frame displays the Contents
List.

RegisterContentsListFrame can only be called at the start of a browser-based application. It is
typically called from the onLoad event handler of the Application UI Definition file (\ui\ol_ui.htm).

NOTE: If there is no contents list, a blank must be registered. For example,
ISS.RegisterContentsListFrame(“ “);

Syntax
RegisterContentsListFrame(frameName)

Example
Register the Contents List frame in the frameset defined inside the Application UI Definition file
(\ui\ol_ui.htm):

<FRAMESET onLoad="ISS.RegisterContentsListFrame
(ISS.GetVisibleDisplayArea()+'.prodlist');">

Related Topics“FrameToOLString” on page 51.

Argument Description

frameName Full path to the frame in which the Contents List will appear. The path must be
expressed relative to ISS.GetVisibleDisplayArea();.
Siebel Advisor API Reference Version 8.0 87

Contents List Functions for Siebel Advisor ■ SetContentsListFrame
“SetContentsListFrame” on page 88.

SetContentsListFrame

Usage
Use the SetContentsListFrame function to redefine the Contents List display frame while the
application is running.

The Contents List frame is originally set during application startup through a call to
RegisterContentsListFrame. The SetContentsListFrame function redefines where the Contents List
appears while the application runs.

SetContentsListFrame can be called anytime the application is running. It is usually called at the
pageset level, from Pageset UI Registry file (\pg\pagesetID_i.htm). You must give the full path to
the frame, relative to the top of the application.

You must make sure that the target frame exists at the time the Contents List is loaded into it.
Because each pageset can have its own set of frames, it is easy to reference a frame that no longer
exists or does not yet exist.

Syntax
SetContentsListFrame(frameName)

Example
The following sample code uses SetContentsListFrame to reset the Contents List location to a frame
named uidata, located inside a pageset frameset. The two examples are equivalent, but the first
example is preferred.

ISS.SetContentsListFrame(ISS.GetPagesetDisplayArea()+".uidata")

or

ISS.SetContentsListFrame(ISS.GetVisibleDisplayArea()+".mainArea.uidata")

Related Topics
“FrameToOLString” on page 51.

“RegisterContentsListFrame” on page 87.

Argument Description

frameName Full path to the frame in which the Contents List will appear. The path must be
expressed relative to ISS.GetDisplayArea();.
Siebel Advisor API Reference Version 8.088

Contents List Functions for Siebel Advisor ■ ShowContentsList
ShowContentsList

Usage
Use the ShowContentsList function to show the Contents List in a previously registered frame.

ShowContentsList can be called from any frame within the application and it can be executed
anywhere a JavaScript function can be used. It is commonly called from the onClick event handler
of a link, but it can also be referred to from an image map, set as the SUBMIT method of an
embedded frame, or called from a custom JavaScript function.

ShowContentsList displays the Contents List in the frame defined by either
RegisterContentsListFrame or SetContentsListFrame, whichever is called last.

Syntax
ShowContentsList()

ShowContentsList(contentsListData)

Example
ISS.ShowContentsList("contentsListdata1.htm");

The contentsListData argument is optional. Omitting it loads the default Contents List:

<A HREF="#" onClick="ISS.ShowContentsList();
return false;">Show Contents List

Related Topics
“RegisterContentsListFrame” on page 87.

Argument Description

contentsListData Optional name of an HTML file containing Contents List data.
Siebel Advisor API Reference Version 8.0 89

Contents List Functions for Siebel Advisor ■ ShowContentsList
Siebel Advisor API Reference Version 8.090

9 Callout Point Functions for
Siebel Advisor
This chapter describes callout point functions. It includes the following topics:

■ “About Callout Point Functions for Siebel Advisor” on page 91

■ “ClearAllOverrideFunctions” on page 92

■ “ClearOverrideFunction” on page 92

■ “OverrideFunction” on page 92

■ “COP_AppDataVersionCheck” on page 93

■ “COP_BeforeConfiguration” on page 94

■ “COP_BeforeDisplayPriceString” on page 94

■ “COP_InvalidItemAdded” on page 98

■ “COP_PagesetVersionCheck” on page 98

■ “COP_ValidItemAdded” on page 99

■ “InitApp” on page 100

■ “ORP_DisplayPrice” on page 101

■ “ORP_DisplayPriceString” on page 101

About Callout Point Functions for Siebel
Advisor
The browser-based engine observes a well-defined set of rules for building and processing
configurations and orders. You may want to change the standard behavior of the engine running the
browser-based application. You can attach custom code to callout points to customize the runtime
experience of your application.

Callout point functions often require an understanding of the way that data flows through a browser-
based application. Some callout points have arguments that provide data from the runtime engine.
This data is strictly read-only and should never be overwritten under any circumstances.

These callout points are custom code written in JavaScript. The custom code lives in the
customCode.js file found in the custom directory. Any routine found inside the customCode.js file is
executed during runtime at a particular point in the browser-based engine code.

Using the set of override functions, you can override specific callout points at the pageset level. This
allows you to custom tailor callout points to specific pagesets.
Siebel Advisor API Reference Version 8.0 91

Callout Point Functions for Siebel Advisor ■ ClearAllOverrideFunctions
ClearAllOverrideFunctions

Usage
Use the ClearAllOverrideFunctions function to reset all pageset-level custom functions and return
them to their original states.

Because ClearAllOverrideFunctions is always called when a Pageset UI Registry file
(\pg\pagesetID_i.htm) loads, all pageset-level custom functions are cleared when a new pageset
loads.

Syntax
ClearAllOverrideFunctions()

Example
ISS.ClearOverrideFunctions();

ClearOverrideFunction

Usage
Use the ClearOverrideFunction function after a custom function override to reset the custom function
to the original function and to return the application to its original state.

Syntax
ClearOverrideFunction(fnName)

Example
ISS.ClearOverrideFunction("COP_BeforeConfiguration");

OverrideFunction

Usage
Use the OverrideFunction function to override a specified function.

You can use OverrideFunction to change a default callout point at the pageset level instead of the
application level. Override functions are automatically cleared when a Pageset UI Registry file
(\pg\pagesetID_i.htm) loads.

Argument Description

fnName Name of the overridden function you want to reset.
Siebel Advisor API Reference Version 8.092

Callout Point Functions for Siebel Advisor ■ COP_AppDataVersionCheck
Syntax
OverrideFunction(fnName,fnPointer)

Example
The following sample code shows how to use OverrideFunction in a Pageset UI Registry file
(\pg\pagesetID_i.htm) to call the custom function MY_COP_BeforeConfiguration in place of the
standard function COP_BeforeConfiguration.

function MY_COP_BeforeConfiguration(privateArg1,
privateArg2,instanceName,configData,featureData,
privateArg3,inputState, privateArg4, privateArg5)

{alert("my_function");

}

ISS.OverrideFunction("COP_BeforeConfiguration",
MY_COP_BeforeConfiguration);

COP_AppDataVersionCheck

Usage
COP_AppDataVersionCheck is called when a user tries to reopen an item from a saved order that is
out of date. The application compares the APP_DATA_VERSION variable in the current application to
the variable set for the saved configuration.

Use the COP_AppDataVersionCheck function to determine the action that occurs when a user tries
to link back from an order to a configured item that is out of date in a browser-based application.

The COP_AppDataVersionCheck function must return true or false. If the function returns true, the
pageset continues loading. If the function returns false, the pageset does not.

Set the data version of an application in the Application Configuration file (\custom\app_config.js)
using the variable APP_DATA_VERSION.

Argument Description

fnName Name of the standard function you want to override.

fnPointer Pointer to the custom function to be called in place of the original function.
Siebel Advisor API Reference Version 8.0 93

Callout Point Functions for Siebel Advisor ■ COP_BeforeConfiguration
Syntax
COP_AppDataVersionCheck(argObj)

COP_BeforeConfiguration

Usage

The browser-based engine calls COP_BeforeConfiguration prior to the configuration evaluation. After

this function executes, the engine uses input UI control values to evaluate engine results.

Syntax
COP_BeforeConfiguration(privateArg1,privateArg2,instanceName,configData,
featureData, privateArg3,inputState,privateArg4,privateArg5)

Related Topics
“Example of Adding Custom Behavior with a Callout Point” on page 118

COP_BeforeDisplayPriceString

Usage
This allows you to manipulate the HTML string before it appears in the Pricing window.

Whatever changes you make to the original string 's' must be returned by this function. In other
words, the end of this function must contain a 'return s' or whatever variable was chosen to hold the
HTML string.

Argument Description

argObj Object, with the following attribute:

argObj.appDataVersion: data version of the application in which the item was
originally created.

Argument Description

instanceName Name of the instance currently being evaluated.

configData Configuration table array object. See “ConfigTableArray_Obj” on page 110.

featureData Feature table array object. See “FeatureTableArray_Obj” on page 111.

inputState List of Feature tables for which the selection has changed since the last engine
run. See “InputState_Obj” on page 112.
Siebel Advisor API Reference Version 8.094

Callout Point Functions for Siebel Advisor ■ COP_BeforeDisplayPriceString
Syntax
COP_BeforeDisplayPriceString(PriceObj, s, cols, font, body, title, table, close)

Example
The following sample code uses COP_BeforeDisplayPriceString to replace the Close Window text with
an image.

 function COP_BeforeDisplayPriceString(PriceObj, s, cols, font, body, title,
table, close) {

 return s.replace(/Close Window/,"<img src='"+GetUIPath()+"close.gif'
border=0>");

 }

The following sample code displays the child pricing objects in indented format. The default pricing
display is just the parent object.

Sample output:

The ACME Sedan is the parent object. The Automatic Transmission, Air Conditioning and Stereo
Upgrade are children (and they are indented). The CD Changer is a child of the stereo upgrade so it
is further indented. For more information on parent/child modeling, refer to the Referencing Other
Siebel Data chapter in Siebel Advisor Administration Guide.

Argument Description

PriceObj A hierarchical price object sent from the server. This object may contain child objects
if available.

s A string containing the entire HTML output for the pop-up window. This includes
everything from <HTML> to </HTML> that gets assembled through the standard
code or through the callout point.

cols An array of strings that contain the data to be displayed, in the order in which they
appear.

font A string that controls the font display. tag.

body A string containing the attributes for the <BODY> tag, such as background color.

title A string that will display in the pop-up window title area. <TITLE> tag.

table A string that contains attributes for the <TABLE> tag. All data for the pricing window
appears in a table.

close A string that contains the text displayed in the optional Close Window link.

ACME Sedan 2001 ACME Sedan V8 $9,000

Automatic Transmission 5-speed Automatic Trans $1000

Air Conditioning Automatic Air Conditioning $900

Stereo Upgrade 8-Speaker Premium Sound $500

CD Changer Trunk-mounted CD Changer $500
Siebel Advisor API Reference Version 8.0 95

Callout Point Functions for Siebel Advisor ■ COP_BeforeDisplayPriceString
The sample code, which should be placed at the end of custom/customCode.js:

function COP_BeforeDisplayPriceString(PriceObj, s, cols, font, body, title, table,
close) {

if (typeof PriceObj != "undefined" && PriceObj != null) {

 var s = "<html><head><title>"+title+"</title></head><body "+body+">";

 s += "";

 s += "<table "+table+">";

 // display all rows of data.

 s += DisplayRow(PriceObj, cols, font);

 s += "</table>";

 // only display the close link if it is defined and if in a window (not frame)

 if (close != "" && dispFrame == false) s += "

<a href='javascript:void(0)'
onclick=self.close()>"+close+"";

 s += "";

 s += "</body></html>";

 return s;

}

}

// DisplayRow displays the PriceObj data as specified in cols. The depth determines how
far to indent the description.

// Recursively displays all of the children and grandchildren.

function DisplayRow(PriceObj, cols, font, depth) {

var s = ""; // return string

var length;

var indent = "";

if (depth == null) {depth = 0};

var children = PriceObj.GetChildren();
Siebel Advisor API Reference Version 8.096

Callout Point Functions for Siebel Advisor ■ COP_BeforeDisplayPriceString
s += "<tr>";

if (cols.length>0) {

 for (var i=0;i<cols.length;i++) {

 if (typeof PriceObj.GetField(cols[i]) != "undefined") {

 // indent only the first field

 if (i==0 && depth > 0) {

 for (var d=0;d<depth;d++) {

 indent += " "

 }

 } else {

 indent = "";

 }

 s += "<td>"+indent+PriceObj.GetField(cols[i])
 +"</td>";

 } else {

 s += "<td> </td>";

 }

}

}

s += "</tr>";

// check for children objects, if exist, display them.

length = children.length;

if (length > 0) {

 for (var j=0;j<length;j++) {

 s += DisplayRow(children[j],cols,font,++depth);

 depth--;
Siebel Advisor API Reference Version 8.0 97

Callout Point Functions for Siebel Advisor ■ COP_InvalidItemAdded
 }

}

return s;

}

COP_InvalidItemAdded

Usage

The COP_InvalidItemAdded function is called when a user configures an invalid item and tries to add

it to the order.

Syntax
COP_InvalidItemAdded()

Example
function COP_InvalidItemAdded()

{

alert("I'm sorry, the item that you are trying to order is not configured properly.\n
Please try again.");

}

COP_PagesetVersionCheck

Usage
COP_PagesetVersionCheck is called when a user tries to reopen an item from a saved order that is
out of date. The application compares the current pageset version to the pageset version of the saved
configuration. Set the data version of a pageset in the Pageset UI Registry file (\pg\pagesetID_i.htm)
using the InitPagesetVersion function.

Use the COP_PagesetVersionCheck function to determine the action that occurs when a user tries to
link back from an order to a pageset that is out of date in a browser-based application. If the
COP_PagesetVersionCheck function returns TRUE, the pageset continues loading. If the
COP_PagesetVersionCheck function returns FALSE, the pageset does not load.
Siebel Advisor API Reference Version 8.098

Callout Point Functions for Siebel Advisor ■ COP_ValidItemAdded
Syntax
COP_PagesetVersionCheck(argObj)

Example
function COP_PagesetDataVersionCheck(argObj)

{

// Checks to see how out of date the item is. If it is too
// far out of date, it won't allow the item to be brought back
// into the application. Otherwise, it gives the user an option.

 var retVal = null;

 if(parseFloat(argObj["linkbackVersion"])< 3.0) {

 retVal = false;

 }

 else {

 retVal = confirm("The item you are trying to edit may be out of date.\n Do you wish
to continue?");

 }

 return retVal;

}

COP_ValidItemAdded

Usage
The COP_ValidItemAdded function is called every time a user attempts to add a valid configuration
to the order. COP_ValidItemAdded returns a Boolean value indicating whether the item should be
added to the order (true) or not (false).

Syntax
COP_ValidItemAdded()

Argument Description

argObj Object, with the following attribute:

argObj.linkbackVersion, which is the data version of the application in which the
item was created.
Siebel Advisor API Reference Version 8.0 99

Callout Point Functions for Siebel Advisor ■ InitApp
Example
function COP_ValidItemAdded()

{

 var userResponse = confirm("Would you like to add this
item to the order?");

 return userResponse;

}

InitApp

Usage
The InitApp function is called when the application starts. You can use the InitApp function to specify
the actions that occur when the application loads.

InitApp must be defined for a browser-based application in the file customCode.js in the custom
directory. The default function included in the application template shows only the Contents List. No
default startup behavior is defined, so if no actions are specified by InitApp, no actions are
performed.

InitApp should only contain calls to display in the UI if LOAD_UI_ON_STARTUP = TRUE. This function
is called when the code loads. In the case of Siebel Integrated mode, the UI is not loaded when the
code loads.

Syntax
InitApp()

Example
In the following example, the application starts with the Contents List displayed and the dogs pageset
loaded and displayed:

function InitApp() {

 if (ISS.GetConfigVarWithDefault("APP","LOAD_UI_ON_STARTUP",true)) {

 ISS.ShowContentsList();

 ISS.LoadPageset("dogs");

 }

}

Siebel Advisor API Reference Version 8.0100

Callout Point Functions for Siebel Advisor ■ ORP_DisplayPrice
ORP_DisplayPrice

Usage
ORP_DisplayPrice allows you to write custom code to bypass the entire code for GetPrice. The user
is passed the same information, including the price object, that is returned from the server and all
the configuration variables.

Syntax
ORP_DisplayPrice(PriceObj, cols, title, body, font, table, close, hPriceWin, ‘PriceWin’, winAttr)

ORP_DisplayPriceString

Usage
ORP_DisplayPriceString allows you to write custom code to bypass the entire code for GetPrice. This
function allows you to override the final display of the data.

At the end of the this function, you must return the handle of the window that was opened. This
function is useful if you want to override the default behavior of opening a pop-up window for
displaying the price.

Argument Description

PriceObj The price object.

cols An array of strings that contain the data to be displayed, in the order they appear in.

title A string that will display in the pop-up window title area. <TITLE> tag.

body A string containing the attributes for the <BODY> tag.

font A string that controls the font display. tag.

table A string that contains attributes for the <TABLE> tag.

close A string that contains what the optional Close Window link will say.

hPriceWin Contains the pop-up window’s handle so that you can access the same pop-up
window that may have been opened previously.

‘PriceWin’ A string that indicates the name of the pop-up window. Note that this is a string and
not a variable.

winAttr A string containing the window attributes for the pop-up window.
Siebel Advisor API Reference Version 8.0 101

Callout Point Functions for Siebel Advisor ■ ORP_DisplayPriceString
Syntax
ORP_DisplayPriceString(PriceObj, s, hPriceWin, ‘PriceWin’, winAttr)

Argument Description

PriceObj The price object.

s A string containing the entire HTML output for the pop-up window. This includes
everything from <HTML> to </HTML> that gets assembled through the standard
code or through the callout point.

hPriceWin Contains the pop-up window’s handle so that you can access the same pop-up
window that was opened previously.

‘PriceWin’ A string that indicates the name of the pop-up window. Note that this is a string
and not a variable.

winAttr A string containing the window attributes for the pop-up window.
Siebel Advisor API Reference Version 8.0102

10 Data Access Functions for Siebel
Advisor
Data access functions provide structured access to complex data objects inside the browser-based
engine. These functions are provided for application developers who need internal engine data for
their custom code.

You can only call data access functions from within certain points of the application.

This chapter includes the following topics:

■ “GetCurrInstance” on page 103

■ “GetFeatureData” on page 104

■ “GetInputState” on page 104

■ “GetInputValue” on page 105

■ “GetResultsValue” on page 105

■ “SetInputValue” on page 106

■ “PostThis()” on page 107

GetCurrInstance

Usage
Use the GetCurrInstance function to get the instance name for the product currently being displayed.

A subconfigured system consists of a parent and one or more children. Each of the nodes in the
system (including the parent) is an “instance.” Occasionally you will need to know the name of the
instance currently being considered. Calling this function returns the name of the current instance.

The value returned by GetCurrInstance corresponds to the currently displayed pageset. For example,
if you are configuring a rack that contains four computers (all defined in the same pageset), the
current instance of the computer would be the one you are configuring at that moment (such as
TOP:COMPUTER2).

For children, the instance name is derived from the name of the Feature table in the parent pageset
that defines the subconfiguration relationship.

If you are at the top-level configuration, GetCurrInstance returns TOP.

Call this function while a product is actively being configured. Do not call this function when no
product has been selected (for example, right after the application starts).

Syntax
GetCurrInstance()
Siebel Advisor API Reference Version 8.0 103

Data Access Functions for Siebel Advisor ■ GetFeatureData
GetFeatureData

Usage
Use the GetFeatureData function to return the set of Feature tables from the current pageset.

In most instances where you would consider calling this function, the Feature table data is accessible
through another mechanism. For example, access to feature data is sometimes useful at
COP_BeforeConfiguration. However, the feature data was explicitly presented by an argument.

You should call this function while a product is actively being configured. Do not call this function
when no product has been selected (for example, right after the application starts).

Syntax
GetFeatureData()

Return Value
FeatureTableArray_Obj

GetInputState

Usage
Use the GetInputState function to return an input state object.

This object contains the current input state (the set of Feature table selections). This roughly
corresponds to the current set of interface UI control selections. Note that in some instances, there
are more Feature tables in the input state than there are UI controls in the interface.

In most instances where you would consider calling this function, the input state is accessible
through another mechanism. For example, access to the input state is sometimes useful at
COP_BeforeConfiguration. However, the input state is explicitly presented by an argument.

You should call this function while a product is actively being configured. Do not call this function
when no product has been selected (for example, right after the application starts).

Syntax
GetInputState()

Return Value
InputState_Obj
Siebel Advisor API Reference Version 8.0104

Data Access Functions for Siebel Advisor ■ GetInputValue
GetInputValue

Usage
Use the GetInputValue function to return the index of the current selection for a Feature table in the
input state.

For example, in a list box UI control, the items are pulled from the description field in a Feature table.
When a user selects a description, they are really selecting the corresponding row in the Feature
table. This function returns the index that identifies the row.

The index is different than the code. The index is the row number. The index is 0-based.

Function is most often used writing custom code for creating custom input UI controls.

Call this function while a product is actively being configured. Do not call this function when no
product has been selected (for example, right after the application starts).

Syntax
GetInputValue(featureTableName)

Example
If the SIZE input UI control choices are Small, Medium, and Large, and the current UI control
selection is Large, the following sample code returns 2:

var selection = ISS.GetInputValue("SIZE");

Related Topics
“SetInputValue” on page 106.

GetResultsValue

Usage
Use the GetResultsValue function to retrieve a single value from the results set generated by the
engine.

This function is called by the BuildTarget function. Consider calling this function directly if you are
developing a custom output target or trying to access a value from a display page.

Call this function while a product is actively being configured. Do not call this function when no
product has been selected (for example, right after the application starts).

Argument Description

featureTableName Name of the Feature table.
Siebel Advisor API Reference Version 8.0 105

Data Access Functions for Siebel Advisor ■ SetInputValue
Syntax
GetResultsValue(targetName)

Example
The following sample code returns the price of the current item, where PRICE is a Configuration table
column name:

var price = ISS.GetResultsValue("PRICE");

Related Topics
“Example of Creating a Custom Output Target” on page 118

SetInputValue

Usage
Use the SetInputValue function inside custom code. The function changes the input state and then
it causes the engine to run immediately.

The SetInputValue function is called by the BuildWidget function and should rarely be called directly.
Call this function only if you are developing a custom input UI control.

Call this function while a product is actively being configured. Do not call this function when no
product has been selected (for example, right after the application starts).

Syntax
SetInputValue(table,selIndex)

Example
When the BuildWidget function for a check box executes, it produces the following HTML and
JavaScript:

<INPUT type=checkbox name="CABLE_INCL" language="JavaScript"
onClick="ISS.SetInputValue('CABLE_INCL',(checked) ? 1:0)">

Argument Description

targetName Name of a data element that can be used as an output target
(for example, Configuration table column name, Feature
table name, Feature table column name, and so on.)

Argument Description

table name of Feature table that corresponds to the input UI control.

selIndex index that indicate which Feature table row has been selected.
Siebel Advisor API Reference Version 8.0106

Data Access Functions for Siebel Advisor ■ PostThis()
When a user selects the check box, the SetInputValue function is called. The SetInputValue function
then changes the value of the CABLE_INCL Feature table selection and runs the engine.

Related Topics
“GetInputValue” on page 105.

PostThis()

Usage
Use the PostThis() function to post data in the Siebel application database.

Syntax
PostThis()
Siebel Advisor API Reference Version 8.0 107

Data Access Functions for Siebel Advisor ■ PostThis()
Siebel Advisor API Reference Version 8.0108

11 Data Objects in Siebel Advisor
Oracle’s Siebel Advisor data is organized and exposed through structured data objects.

You can control many of the data objects described in this section with data access functions.
Whenever possible, use these data access functions instead of directly manipulating the data object
itself.

This chapter includes the following sections:

■ “ConfigTable_Obj” on page 109

■ “ConfigTableArray_Obj” on page 110

■ “FeatureTable_Obj” on page 110

■ “FeatureTableArray_Obj” on page 111

■ “InputState_Obj” on page 112

■ “Label_Obj” on page 112

■ “Label_Obj.GetLabelName” on page 113

■ “Label_Obj.GetNumLabels” on page 113

ConfigTable_Obj

Usage
The ConfigTable object contains data for one configuration table.

Methods

Example
See “Example of Adding Custom Behavior with a Callout Point” on page 118.

Method Description

GetBody() Returns the body information.

GetColType() Returns an array of column type information. Column types indicate whether a
particular column in the table is an output, input, or subtable column.

GetException() Returns an array representing the exceptions portion of the table.

GetHeader() Returns an array of table column names.
Siebel Advisor API Reference Version 8.0 109

Data Objects in Siebel Advisor ■ ConfigTableArray_Obj
Related Topics
“ConfigTableArray_Obj” on page 110.

ConfigTableArray_Obj

Usage
The ConfigTableArray object stores an array of Configuration table objects.

Methods

Example
See “Example of Adding Custom Behavior with a Callout Point” on page 118.

Related Topics
“ConfigTable_Obj” on page 109.

FeatureTable_Obj

Usage
The FeatureTable object contains Feature table data.

Notes
Each row in a Feature table is represented by an object that contains one field for each column in
the table. The field names are identical to column names. Feature table rows are indexed starting
with 0.

Method

Method Description

GetAllTables() Returns an array of all Configuration tables.

GetTable(tableName) Returns the ConfigTable_Obj for the tableName requested. Returns null if
the specified table does not exist.

Method Description

GetRows() Returns an array of rows from the Feature table.

GetRow(index) Returns the specified row from the Feature table. Returns null if the row
does not exist.
Siebel Advisor API Reference Version 8.0110

Data Objects in Siebel Advisor ■ FeatureTableArray_Obj
Example
See “Example of Adding Custom Behavior with a Callout Point” on page 118.

Related Topics
“FeatureTableArray_Obj” on page 111.

FeatureTableArray_Obj

Usage
The FeatureTableArray object stores an array of FeatureTable objects.

Methods

Example
See “Example of Adding Custom Behavior with a Callout Point” on page 118.

Related Topics
“FeatureTable_Obj” on page 110.

GetDefaultRow() Returns the default row.

GetDefaultRowNum() Returns the index number of the default row.

GetRowCode(rowNum) Returns the value from the CODE column for the specified row in the
table.

GetRowDesc(rowNum) Returns the value from the DESC column for the specified row in the
table.

GetRowNumFromCode(
CodeValue)

Returns the row number for a given CODE value. Returns null if the cell
does not exist.

GetTableCell(rowNum,c
olName)

Given a row number and a column name, returns the value of the table
cell. Returns null if the cell does not exist.

Method Description

GetAllTables() Returns an array of all Feature tables.

GetTable(tableName) Returns the FeatureTable_Obj for the tableName requested. Returns null if
the specified table does not exist.

Method Description
Siebel Advisor API Reference Version 8.0 111

Data Objects in Siebel Advisor ■ InputState_Obj
InputState_Obj

Usage
The InputState object contains all input selections.

Methods

Example
See “Example of Adding Custom Behavior with a Callout Point” on page 118.

Related Topics
“COP_BeforeConfiguration” on page 94.

Label_Obj

Usage
Use the Label_Obj object to provide access to the data in a Feature table.

The object has two methods, GetLabelName and GetNumLabels, which you can use to populate an
input UI control.

Use the Label_Obj function only when writing custom code for creating custom input UI controls and
output targets.

Syntax
new Label_Obj(featureTableName)

Method Description

GetValue(tableName,instanceName) Gets the value of an input.

Returns row index for inputs associated with
Feature tables. Returns literal value for inputs not
associated with a Feature table.

SetValue(tableName,instanceName,value) Sets the value of an input.

Sets row index for inputs associated with Feature
tables. Sets literal value for inputs not associated
with a Feature table.

Argument Description

featureTableName Name of a Feature table corresponding to the UI control.
Siebel Advisor API Reference Version 8.0112

Data Objects in Siebel Advisor ■ Label_Obj.GetLabelName
Methods

Example
See “Example of Creating a Custom Input UI Control” on page 115.

Label_Obj.GetLabelName

Usage
Use the GetLabelName method to return a value from a Feature table.

You can use GetLabelName to populate an input UI control. Given an index and column name, the
function returns the corresponding cell value.

You do not need to state the Feature table name here, as it was specified when the Label_Obj was
created. You are accessing Feature_table[row_index].column_name.

Use this function only when writing custom code for creating custom input UI controls and output
targets.

Syntax
label.GetLabelName(index,colName)

Example
See “Example of Creating a Custom Input UI Control” on page 115.

Label_Obj.GetNumLabels

Usage
Use the GetNumLabels function to return the number of rows in a Feature table.

Method Description

GetLabelName(index,colName) For a description, see “Label_Obj.GetLabelName” on page 113

GetNumLabels() For a description, see “Label_Obj.GetNumLabels” on page 113

Argument Description

index Integer that represents the index number of the desired row in the Feature table that
corresponds to this label.

colName Optional. Name of a Feature table column. If none specified, the name defaults to
DESC.
Siebel Advisor API Reference Version 8.0 113

Data Objects in Siebel Advisor ■ Label_Obj.GetNumLabels
You can use this function to iterate through possible selections or verify that a given index is valid
for a Feature table. Use this function only when writing custom code for creating custom input UI
controls and output targets.

Syntax
label.GetNumLabels()

Example
See “Example of Creating a Custom Input UI Control” on page 115.
Siebel Advisor API Reference Version 8.0114

12 Siebel Advisor API Examples
This chapter contains examples that use various API functions to perform common tasks. It contains
the following topics:

■ “Example of Creating a Custom Input UI Control” on page 115

■ “Example of Defining a Pageset Layout” on page 116

■ “Example of Creating a Custom Output Target” on page 118

■ “Example of Adding Custom Behavior with a Callout Point” on page 118

■ “Example of Using the CDA Service Broker” on page 119

Example of Creating a Custom Input UI
Control
The code in the following example defines a graphical radio button input UI control that uses images
instead of standard radio buttons to indicate whether the input UI control is selected. As with a radio
button, the state of this input UI control changes when users click the radio button image.

Some definitions in this example refer to the following:

function BuildImageWidget(winObj,featureTableName,index, pictON, pictOFF)

{

 ISS.RegisterUIElement(featureTableName, winObj, true);

 var bPict = false;

 var srcON, srcOFF;

 var label = new ISS.Label_Obj(featureTableName);

 if (index >= label.GetNumLabels()) { return ""; }

winObj Window that the input UI control is in.

featureTableName Name of the Feature table from which to build the UI control.

index Row of the Feature table you are currently accessing.

pictOn Column name in Feature table which contains path to "selected" image for this
row.

pictOff Column name in Feature table which contains path to "unselected" image for
this row.
Siebel Advisor API Reference Version 8.0 115

Siebel Advisor API Examples ■ Example of Defining a Pageset Layout
 var srcON = label.GetLabelName(index,pictON);

 var srcOFF = label.GetLabelName(index,pictOFF);

 var presel = ISS.GetInputValue(featureTableName);

 if (presel == null && typeof presel == "undefined") { return ""; }

 var src;

 if (presel==index) {

 src = srcON;

 } else {

 src = srcOFF;

 }

 var s = '<A HREF=”#” ' ;

 s += ' onClick="ISS.SetInputValue(';

 s += '\''+featureTableName+'\','+index;

 s += ');return false;">';

 s += '<IMG align="absmiddle" border = 0 src="'+src+
'"';

 return s;

}

Example of Defining a Pageset Layout
The code in the following example defines a pageset user interface inside the files xxx_i.htm and
oc_default_ui.htm, both of which would reside in the application pg directory. The user interface
defined in this example has the following characteristics:

■ The pageset display area is ISS.GetPagesetDisplayArea()+".oc_frame".

■ The pageset display area is subdivided based on the frameset defined in oc_default_ui.htm,
which defines three frames: oc_frame1, oc_frame2, and oc_frame3.

■ The HTML display page named xxx_1.htm is mapped into oc_frame1.

■ The HTML display page named xxx_2a.htm is mapped into oc_frame2.
Siebel Advisor API Reference Version 8.0116

Siebel Advisor API Examples ■ Example of Defining a Pageset Layout
■ The page xxx_1.htm displays before the engine executes.

■ Exception messages display in the frame oc_frame2.

■ The HTML display page named xxx_2b.htm can be mapped into oc_frame2 by using the LoadFile
function.

■ The Contents List displays in oc_frame3.

Contents of xxx_i.htm
<HTML>

<HEAD>

<TITLE>Interface Template</TITLE>

<SCRIPT src="../jd/header.js"></SCRIPT>

<SCRIPT language=javascript>

ISS.StartUIInfo('xxx');

ISS.RegisterFrameSet("oc_default_ui", "oc_default_ui.htm,
ISS.GetPagesetDisplayArea());

ISS.RegisterPageLocation("xxx_1.htm", ISS.GetPagesetDisplayArea()+".oc_frame1");

ISS.RegisterPageLocation("xxx_2a.htm",
ISSGetPagesetDisplayArea()+".oc_frame2","true");

ISS.RegisterPageLocation("xxx_2b.htm",
ISSGetPagesetDisplayArea()+".oc_frame2","false");

ISS.RegisterPriorityPages("xxx_1.htm");

ISS.RegisterExceptionFrames(
ISSGetPagesetDisplayArea()+".oc_frame2");

ISS.SetContentsListFrame(ISSGetPagesetDisplayArea()+".oc_frame3");

</SCRIPT>

</HEAD>

<BODY onLoad="ISS.EndUIInfo('xxx')"></BODY>

</HTML>

Contents of oc_default_ui.htm
<HTML>

<HEAD><TITLE>CDA(tm): 7.0 UI Definition</TITLE></HEAD>

<SCRIPT></SCRIPT><SCRIPT src="../jd/header.js"></SCRIPT>
Siebel Advisor API Reference Version 8.0 117

Siebel Advisor API Examples ■ Example of Creating a Custom Output Target
<FRAMESET cols = "200,200,*" border=0 frameborder=0 framespacing=0
onLoad="ISS.SetLoaded('oc_default_ui');">

 <FRAME marginwidth=0 marginheight=0 src="javascript:''" name="oc_frame1"
scrolling="auto">

 <FRAME marginwidth=0 marginheight=0 src="javascript:''" name="oc_frame2"
scrolling="auto">

 <FRAME marginwidth=0 marginheight=0 src="javascript:''" name="oc_frame3"
scrolling="auto">

</FRAMESET>

<NOFRAMES><BODY></BODY></NOFRAMES>

</HTML>

Example of Creating a Custom Output
Target
The code in the following example defines a “button” output target. Clicking the HTML button defined
by the output target launches a JavaScript alert window. The alert window contains a string that
varies depending on the current configuration.

function BuildSecretButtonTarget(winObj,name)

{

// Register that this element must be refreshed when
// results change

ISS.RegisterUIElement(name, winObj, true);

var secretStr = ISS.GetResultsValue(name);

if (secretStr == "") return "";

var retStr = '<INPUT TYPE="button" value="My Secret"
onclick="alert(\''+secretStr+'\')">';

return retStr;}

Example of Adding Custom Behavior
with a Callout Point
This example adds custom behavior to be executed before the configuration engine runs. Using
values from the Feature tables for selected rows, an input selection value is calculated and set.

function COP_BeforeConfiguration(privateArg1,
Siebel Advisor API Reference Version 8.0118

Siebel Advisor API Examples ■ Example of Using the CDA Service Broker
privateArg2,instanceName,configData,featureData,

privateArg3,inputState,privateArg4,privateArg5) {

// get the current selection for the packing method

var pmVal=inputState.GetValue("PACK_METHOD",instanceName);

// if the packing method selection is to use cartons,

// calculate and set the number of cartons

if (featureData.GetTable("PACK_METHOD").GetRowCode(pmVal)== "CARTON") {

// get quantity of eggs

var eggSel=inputState.GetValue("EGGS",instanceName);

var total=featureData.GetTable("EGGS").GetTableCell(eggSel,
"QTY");

// calculate how many cartons are needed

var eggsPerCarton= featureData.GetTable("PACK_METHOD").GetTableCell(pmVal,
"EGGS_PER_CONTAINER");

var numCartons=parseInt(total/eggsPerCarton);

if (total%eggsPerCarton!=0) numCartons++;

// set the selection of CARTONS to numCartons.

inputState.SetValue("CARTONS",instanceName,numCartons);

Example of Using the CDA Service Broker
This example shows how to use the CDA Service Broker method in the ISSCDA RT UI Service. The
example includes the following three parts:

■ Client JavaScript

■ Client HTML

■ Business service script
Siebel Advisor API Reference Version 8.0 119

Siebel Advisor API Examples ■ Example of Using the CDA Service Broker
Client JavaScript
This is an example of the client JavaScript.

<script>

//Include the propset.js file in the SWE scripts directory if you are using the
CDAReturnHandler parameter option

// Example function shows how to use the CDAServiceBroker

function PostThis(method, varName, varVal){

var argObj = new Array();

// Defines the business service that you want CDAServiceBroker to call

argObj["CDAExternalServiceName"] = "CDA Broker Test";

if(typeof method != 'undefined')

argObj["CDAExternalMethodName"] = method;

if(typeof varName != 'undefined' && typeof varVal != 'undefined')

argObj[varName]=varVal;

argObj["target"] = OL.FrameToString(OL)+"."+"dataFrame";

OL.SendSelectionInformationToServer("ISSCDA RT UI Service", "CDAServiceBroker",
"prodStr", true, argObj);

}

// Example event handler to demonstrate how the CDAServiceBroker can be used

function alertEvent(ps)

{

if (ps != null)

{

for (bFirst = true; (arg = ps.EnumProperties (bFirst)) != null; bFirst = false)

{

value = ps.GetProperty (arg);

alert(arg + "=" + value);

}

}

else

{

Siebel Advisor API Reference Version 8.0120

Siebel Advisor API Examples ■ Example of Using the CDA Service Broker
alert("Empty PropertySet in function alertEvent");

}

} </script>

Client HTML
The following HTML code is an example of the body (<BODY>) section of the output layout file.

<!—Client request requires no confirmation from the BC -->

<p>No return
specified

<!—Client request that requires no confirmation from the business service, but the BC
switches view ->

<p>No
return specified but the server will switch view

<!—Client request that requires a confirmation from the business service that calls an
event handler ->

<p><a href="javascript:''"
onClick="PostThis('OutputEventHandler','CDAReturnHandler',OL.FrameToString(window)+'.a
lertEvent');return false;">Using eventHandler for the propertyset

<!—Client request that requires a confirmation from the business service that sets the
default property set values ->

<p><a href="javascript:''" onClick="PostThis('OuputtoDefaultPropertySet'); return
false;">Default Output

<!—Client request that requires a confirmation from the business service that sets a
specific property set values->

<p><a href="javascript:''"onClick="PostThis('DefinedOutput','CDAReturnValue',
'myoutput'); return false;">defined output with myoutput

<p>

Business Service Script Called by CDAServiceBroker
This is an example business service script (CDA Broker Test) called by CDAServiceBroker. The
example shows how to set up the response messages for the client.

function Service_PreInvokeMethod(methodName, inputArg, outputArg)
Siebel Advisor API Reference Version 8.0 121

Siebel Advisor API Examples ■ Example of Using the CDA Service Broker
{

var outstr = "<html><head></head><body>";

var alertstr="from method: "+methodName;

outstr+="<script>alert(\'"+alertstr+"\');</script>";

outstr+="</body></html>";

if(methodName == "NoInput") {

return (CancelOperation);

}

else if(methodName == "NoInputGotoView") {

TheApplication().GotoView("Quote List View");

}

else if(methodName == "OuputtoDefaultPropertySet") {

outputArg.SetProperty("CDAReturnValue", outstr);

return (CancelOperation);

}

else if(methodName == "DefinedOutput") {

outputArg.SetProperty("myoutput", outstr);

return (CancelOperation);

}

else if(methodName == "OutputEventHandler") {

outputArg.SetProperty("method", methodName);

outputArg.SetProperty("method2", methodName);

return (CancelOperation);

}

else {

return (ContinueOperation);

}

}

Siebel Advisor API Reference Version 8.0122

Index
A
about page

override the default about page, specifying
URL 14

about.htm file
described 27
information contained in file, function to

display 57
AddToCart function, usage, syntax and

example 31
Advisor, reserved words, described and table

of 29, 30
alert messages, defining text string 18
APP_ABOUT_URL variable, described 14
APP_ABOUT_WIN_ARGS variable, described

about file 12
APP_AUTO_LOAD_RESULTS variable,

described 12
app_config.js file

optional values, described 13, 15
required variables 12, 13

APP_CONFIG_LOADED variable,
described 13

APP_DATA_VERSION variable, described 12
APP_DEFAULT_TIMEOUT variable,

described 12
APP_EXC_DISPLAY_NUM variable,

described 12
APP_HELP_URL variable, described 14
APP_HELP_WIN_ARGS variable,

described 12
APP_PRECONFIG_EQUALS_CHAR variable,

described 14
APP_PRECONFIG_SEP_CHAR variable,

described 14
APP_RELOAD_ALL variable, described 12
APP_RELOAD_INPUTS_ON_EXC variable,

described 12
APP_SHOW_CALC_PAGE variable,

described 14
APP_SHOW_DATA_LOADING_PAGE

variable, described 14
APP_VERSION variable, described 13
Application Configuration file

optional values, described 13
required variables, table of 12

Application UI Definition file 28

ol_ui.htm file, described 28
user interface frameset name, function to

register 56

B
blank frame, defined by html file 28
browser-based application

appearance, files that define 27, 28
behavior, file that determines 16
Contents List, function to redefine display

of 88
Contents List, function to register display

of 87
Flyover frame, defined by html file 28
HTML frameset layout, defined by html

file 28
loading, specifying actions that occur 100
out of date item, function to check

version 93
pageset, specifying message when

loading 19
pageset, specifying whether message appears

when loading 14
refresh after input/output widget, function

to 56
reopening out of date item, function to 98
reserved words, described and table of 29
top-level directory, function to return

path 54
version number, defining 13
welcome.htm file, described 28

utility functions 31
browser-based application base directory

files, content of 11
browser-based application module registry

jd directory 18
browsers, specifying support of 11
BuildTarget

image output target, creating 74
link output target, creating 70
optional subconfiguration link output target,

creating 73
output target, adding to display page 22
output target, identifying content sources 75
subconfiguration link output target,

creating 72
text output target, creating 74
Siebel Advisor API Reference Version 8.0 123

Index ■ C
usage and syntax 69
BuildWidget

check box input widget, creating 78
image map input widget, creating 79
input widget, adding to display page 20
list box input widget, creating 80
radio button input widget, creating 81
text entry input widget, creating 82
usage and syntax 77

C
callout point functions

adding custom behavior example 118
ClearAllOverrideFunction, usage, syntax, and

example 92
ClearOverrideFunction, usage, syntax, and

example 92
COP_AppDataVersionCheck, usage, syntax,

and example 93
COP_BeforeConfiguration 94
COP_InvalidItemAdded 98
COP_ValidiItemAdded 99
described and code location 91
InitApp 100
OverrideFunction, usage, syntax, and

example 92
ClearAllOverrideFunctions, usage, syntax,

and example 92
ClearOverrideFunction, usage, syntax, and

example 92
ConfigTable_Obj, usage, methods, and

example 109
ConfigTableArray_Obj, usage, methods, and

example 110
Configuration table

ConfigTable object, usage, methods, and
example 109

ConfigTableArray object, used to store an
array 110

configure
COP_ValidItemAdded, adding to order 99
invalid item, function called 98

Contents List
cascading style sheet, defining

appearance 24
data, updating 17
image files, used in 25

Contents List, customizing
RegisterContentsListFrame function 87
SetContentsListFrame function 88
ShowContentsList function 89

ConvertFloatToCurrency function, usage,
syntax, and example 49, 50

ConvertStrToDynDefObj function, usage,
syntax, and example 50

COP_AppDataVersionCheck function, usage,
syntax, and example 93

COP_BeforeConfiguration function, usage,
syntax, and example 94

COP_InvalidItemAdded function, usage,
syntax, and example 98

COP_PagesetVersionCheck function, usage,
syntax, and example 98

COP_ValidItemAdded function, usage,
syntax, and example 99

cs directory
file system path, function to return path 52

currency format, function to display 49, 50
custom directory

callout point code, located in 91
file system path, function to return 52
files contained in 11

customCode.js file, described and
example 16

D
data access functions

GetCurrInstance, usage and syntax 103
GetFeatureData, usage and syntax 104
GetInputState, usage and syntax 104
GetInputValue, usage, syntax, and

example 105
GetResultsValue, usage, syntax, and

example 105
RegisterUIElement, usage, syntax, and

example 56
SetInputValue, usage, syntax, and

example 106
data objects

ConfigTable_Obj, usage, methods, and
example 109

ConfigTableArray_Obj, usage, methods, and
example 110

FeatureTable_Obj, usage, notes, methods,
and example 110, 111

FeatureTableArray_Obj, usage, methods, and
example 111

InputState_Obj, usage, methods, and
example 112

Label_Obj, usage, syntax, and methods 112
Label_Obj.GetLabelName, usage and

syntax 113
Label_Obj.GetNumLabels, u sage and

syntax 113
display pages

changing from subconfigurated system,
Siebel Advisor API Reference Version 8.0124

Index ■ E
function to 83
frames, defining display of 26
input widget, adding 20, 22
loading into specific frame, function to 84
output widget, adding 22, 24

Do 17
Document Object Model, determining path to

particular frame 51
ds directory

about and contents 17
file system path, returning value 53

E
eConfiguration, handing off a product 40
examples

behavior, adding with callout point 118
custom input widget, creating 115
output target, creating custom 118
pageset layout, defining 116

exception messages
frames, defining display of 27
function defining display frame 59
input widget reload, defining 12
maximum number displayed, defining 12

F
Feature table

FeatureTable object, usage, notes, methods,
and example 110, 111

FeatureTableArray, storing an array 111
GetNumLabels, returning number of

rows 113
index, returning for current selection 105
Label_Obj, providing access to data 112
Label_Obj.GetLabelName, using to return

value 113
FeatureTable_Obj, usage, notes, methods,

and example 110
FeatureTableArray_Obj, usage, methods,

and example 111
Flyover frame, defined by html file 28
FrameToOLString function, usage, syntax,

and example 51

G
GetCDAEntryArgs() function, usage, syntax,

and example 38
GetCSPath function, usage, syntax, and

example 52
GetCurrInstance function, usage and

syntax 103
GetCustomPath function, usage, syntax, and

example 52

GetDSPath function, usage, syntax, and
example 53

GetFeatureData function, usage and
syntax 104

GetInputState function, usage and
syntax 104

GetInputValue function, usage, syntax, and
example 105

GetMyPrice function, usage, syntax, and
example 38

GetPGPath function, usage, syntax, and
example 54

GetResultsValue function, usage, syntax,
and example 105

GetTopPath function, usage, syntax, and
example 54

GetUIPath function, usage, syntax, and
example 55

GotoProductDetailView function, usage,
syntax, and example 47

GotoSSConfigurator function, usage, syntax,
and example 40

H
Help

override the default Help page, specifying
URL 14

window, setting properties of 12
help

frameset, defined by htm file 27
help.gif, described 27
help_*.htm, default help text 27
helpset.htm file, function displaying

information in file 58
home.htm file, described 11
HTML

display pages, directory used to store 19

I
images

help.gif, default images 27
PICT BuildTarget function argument, creating

output target 74
transparent vertical and horizontal space,

defined by gif 28
InitAltOMSUrl function, described 17
InitApp function, usage, syntax, and

example 100
InitApp, about 16
InitPagesetDesc function, described 17
InitPagesetItemized function, described 17
InitPagesetVersion function, described 17
input state
Siebel Advisor API Reference Version 8.0 125

Index ■ J
GetInputState function, usage and
syntax 104

GetInputValue function, usage, syntax, and
example 105

input widget
check box, creating 78, 79
display page, adding to 20, 22
example, creating custom 115, 116
image map, creating 79, 80
list box, creating 80, 81
radio buttons, creating 81, 82
text entry, creating 82, 83

InputState_Obj, usage, methods, and
example 112

intl.js, defining text string inside file 18
ISSCDA_DEFAULT_CALC_PAGE_STR

variable, described 19
ISSCDA_DEFAULT_DATA_LOAD_STR

variable, described 19

J
JavaScript, reserved words, table of 30
jd directory

described 18

K
kernel.htm file, described 11

L
Label_Obj, usage, syntax, and methods 112
Label_Obj.GetLabelName, usage and

syntax 113
Label_Obj.GetNumLabels, usage and

syntax 113
LinkToSubConfig function, usage, syntax,

and example 83
LoadFile function, usage, syntax, and

example 84
LoadPageset function, usage, syntax, and

example 85
LoadPagesetWithDynDefObj function

argument string, function to convert for use
by 50

LoadPagesetWithDynDefObj function,
usage, syntax, and example 86

M
mainArea, nested frames defined by HTML

file 24

N
nf_white.htm, described 28

O
ol_fly.htm file, described 28
ol_ui.htm file, described 28
onl_boot.htm file, described 11
onlink.css, described 24
order management systems, file specifying

URL 17
order total, specifying string that

initializes 13
ORDER_CONFIG_LOADED variable,

described 13
ORDER_SUBVAR variable, described 13
output targets

custom, creating button example 118
numbers in currency format, function

described 49, 50
variable defines reloading display pages 12
variable enabling automating loading 12

output widget, adding to display page 22,
24

OverrideFunctions, usage, syntax, and
example 92

P
pages, defining when to reload page 12
Pageset 19
pageset

display pages into frames, mapping
function 62

layout, defining user interface example 116,
118

linkback string, function using to load 45
loading dynamic default object, function

to 86
message, specifying if appears when

loading 14
message, specifying when loading 19
Pageset UI Definition file, associating

with 25
pageset-level custom function, resetting 92
sending user to another pageset, function

to 85
text description, file specifying 17
version number string, file specifying 17

pageset function
BuildTarget, identifying content sources for

output targets 75, 76
BuildTarget, image output target,

creating 74
BuildTarget, link output target, creating 70,

71
BuildTarget, optional subconfiguration link

output target, creating 73
Siebel Advisor API Reference Version 8.0126

Index ■ R
BuildTarget, subconfiguration link output
target, creating 72

BuildTarget, text output target, creating 74,
75

BuildTarget, usage and syntax 69, 70
BuildWidget, creating check box input

widget 78, 79
BuildWidget, creating image map input

widget 79, 80
BuildWidget, creating list box input

widget 80, 81
BuildWidget, creating radio button input

widget 81, 82
BuildWidget, creating text entry input

widget 82, 83
BuildWidget, usage and example 77, 78

Pageset Properties file, described 17
Pageset UI 59
Pageset UI Definition files

pageset, associating with 25
pageset UI definition frameset, identifying

file 59, 60, 61
Pageset UI Registry

display pages into frames, mapping
function 62

engine results, function used to identify
loading display pages 63

pageset UI definition frameset, identifying
file 60, 61

pagesetID_i.htm file. described 24
pagesetID_1.htm file

described 19
display page, adding input widget 20
display page, adding output widget 22

pagesetID_i.htm file. described 24
pagesetID_x.js, described 17
pg directory

display pages, defining which frames
display 26

exception messages, defining which frames
display 27

file system path, function to return 54
Pageset UI Definition file, associating with a

pageset 25
pagesetID_1.htm file 19, 24
pagesetID_i.htm file 24

pl_bullet.gif, described 25
price, displaying final price function

described 38
prodlistdata.htm file, described 17
product

adding order/quote, function described 31
displaying final price, function described 38
instance name, getting 103

product components, file specifying
subitems or main line items 17

product id
opening detail view, function described 47

R
radio buttons

graphic, creating input widget example 115,
116

input widgets, creating 81, 82
RegisterCascade function, usage, syntax,

and example 59
RegisterContentsListFrame function

identifying frame displaying Contents List 28
usage, syntax, and example 87

RegisterExceptionFrames function
identifying frame loading exception

message 27
RegisterExceptionFramesfunction

usage, syntax, and example 59
RegisterFrameSet function, usage, syntax,

and example 60
RegisterMVar function, usage, syntax, and

example 61
RegisterPageLocation function

identifying frame display page loads 26
usage, syntax, and example 62

RegisterPriorityPages function, usage,
syntax, and example 63

RegisterUI function, usage, syntax, and
example 56

RegisterUIElement function, usage, syntax,
and example 56

reserved words
Advisor, described 29
Advisor, table of 29
JavaScript, table of 30

resetting, returning to the original state 92

S
SetContentsListFrame function, usage,

syntax, and example 88
SetInputValue function, usage, syntax, and

example 106
ShowAbout function, usage, syntax, and

example 57
ShowCDA function

last argument array, function used to
return 38

usage, syntax, and example 45
ShowContentsList function, usage, syntax,

and example 89
ShowHelp function, usage, syntax, and
Siebel Advisor API Reference Version 8.0 127

Index ■ T
example 58
Siebel Application Integration functions

AddToCart, usage, syntax and example 31
GetCDAEntryArgs(), usage, syntax, and

example 38
GetMyPrice, usage, syntax, and example 38
GotoProductDetailView, usage, syntax, and

example 47
GotoSSConfigurator, usage, syntax, and

example 40
ShowCDA, usage, syntax, and example 45

subitem subtotal, specifying string that
initializes tracking 13

T
text entry input widgets, creating 82, 83
trans.gif, described 28
Transact Server

window, setting properties 12
Transact Server, defining URL 12
TRANSACT_ACTIVE variable, described

browser-based application 13
TRANSACT_CART_TARGET variable,

described 15
TRANSACT_CART_WINARGS variable,

described 12
TRANSACT_CONFIG_LOADED variable,

described 13
TRANSACT_NOT_ACTIVE_MSSG variable,

described 15
TRANSACT_OPEN_QUOTE_PROMPT variable,

described 15
TRANSACT_THIRD_PARTY_CART variable,

described
Transact Server 12

TRANSACT_URL variable, described 12
transparent space, defined by gif 28

U
ui directory

described 27
file system path, function to return 55

utility functions
ConvertFloatToCurrency, usage, syntax, and

example 49
ConvertStrToDynDefObj, usage, syntax, and

example 50
FrameToOLString, usage, syntax, and

example 51
GetCSPath, usage, syntax, and example 52
GetCustomPath, usage, syntax, and

example 52
GetDSPath, usage, syntax, and example 53
GetPGPath, usage, syntax, and example 54
GetTopPath, usage, syntax, and example 54
GetUIPath, usage, syntax, and example 55
RegisterUI, usage, syntax, and example 56
ShowAbout, usage, syntax, and example 57
ShowHelp, usage, syntax, and example 58

V
version number

browser-based application, defining 13
version number, defining for features and

configuration data 12

W
welcome.htm file, described 28
Siebel Advisor API Reference Version 8.0128

	Contents
	1 What’s New in This Release
	What’s New in Oracle’s Siebel Advisor API Reference, Version 8.0

	2 Application File Reference for Siebel Advisor
	Setting Variables for Siebel Advisor in the Siebel Application CFG File
	Files in the Siebel Advisor Base Directory
	home.htm
	kernel.htm
	onl_boot.htm
	Siebhome.htm

	About the cs Directory
	Files in the Custom Directory
	app_config.js
	Optional Variables for Use with Session Timeout Problems

	customCode.js

	Files in the ds Directory
	pagesetID_x.js
	Pageset Properties File

	prodlistdata.htm

	Files in the jd Directory
	intl.js

	Files in the pg Directory
	pagesetID_1.htm . . . pagesetID_”n”.htm
	Display Pages

	pagesetID_i.htm
	Pageset UI Registry File

	onlink.css
	oc_default_ui.htm
	pl_bullet1.gif, pl_bullet2.gif, pl_bullet3.gif, pl_bullet4.gif
	Associating a Pageset UI Definition File with a Particular Pageset
	Defining Which Frames Display Each of the Display Pages
	Specifying Which Frame Displays Exception Messages

	Files in the ui Directory
	about.htm (example only)
	help*.gif (example only)
	help_*.htm (example only)
	helpset.htm (example only)
	nf_white.htm
	ol_fly.htm (example only)
	ol_ui.htm
	trans.gif
	welcome.htm

	3 Siebel Advisor Reserved Word Reference
	Advisor Reserved Words
	JavaScript Reserved Words

	4 Siebel-Specific Functions for Siebel Advisor
	AddToSSCart
	Usage
	Syntax
	Examples

	BuildAttributeList
	Usage
	Syntax

	BuildChildList
	Usage
	Syntax
	Example

	BuildProductStr
	Usage
	Syntax
	Example
	Example 1
	Example 2
	Supporting Cell Functions

	BuildQuestionAnswerString()
	Usage
	Syntax
	Example

	CreateOpportunity()
	Usage
	Syntax
	Example

	GetCDAEntryArg()
	Usage

	GetCDAEntryArgs()
	Usage

	GetPrice
	Usage
	Syntax
	Example
	Additional Pricing Functions
	Accessing the Additional Pricing Functions

	GotoSSConfigurator
	Usage
	Syntax
	Example

	GoToSSView
	Usage
	Syntax
	Example

	SendSelectionInformationToServer
	Usage
	Syntax
	Example
	Using the CDA Service Broker in the ISSCDA RT UI Service
	Example 1
	CDANoReturn
	Example 2
	CDAReturnValue
	Example 3
	CDAReturnHandler
	Example 4
	Null value

	ShowCDA
	Usage
	Syntax
	Example

	ShowCDAWithDynDefStr
	Usage
	Syntax
	Example

	ShowProductDetails
	Usage
	Syntax
	Example

	5 Utility Functions for Siebel Advisor
	ConvertFloatToCurrency
	Usage
	Syntax
	Example
	Related TopicsRelated Topics

	ConvertStrToDynDefObj
	Usage
	Syntax
	Example
	Related Topics

	FrameToOLString
	Usage
	Syntax
	Example

	GetCSPath
	Usage
	Syntax
	Example

	GetCustomPath
	Usage
	Syntax
	Example

	GetDSPath
	Usage
	Syntax
	Example

	GetJDPath
	Usage
	Syntax
	Example

	GetPagesetDisplayArea()
	Usage
	Syntax

	GetPGPath
	Usage
	Syntax
	Example

	GetTopPath
	Usage
	Syntax
	Example

	GetUIPath
	Usage
	Syntax
	Example

	GetVisibleDisplayArea()
	Usage
	Syntax

	RegisterUI
	Usage
	Syntax
	Example
	Related Topics

	RegisterUIElement
	Usage
	Syntax
	Related Topics

	ShowAbout
	Usage
	Syntax
	Notes
	Example

	ShowHelp
	Usage
	Syntax
	Notes
	Example

	6 User Interface Layout and Control Functions for Siebel Advisor
	RegisterCascade
	Usage
	Syntax

	RegisterExceptionFrames
	Usage
	Syntax
	Example
	Related Topics

	RegisterFrameSet
	Usage
	Syntax
	Example
	Related Topics

	RegisterMVar
	Usage
	Syntax

	RegisterPageLocation
	Usage
	Syntax
	Example
	Related Topics

	RegisterPriorityPages
	Usage
	Syntax
	Example
	Related Topics

	7 Pageset Functions for Siebel Advisor
	Start On Active
	Parameter Passing Formats
	Implementing Start On Active
	Modify InitApp()
	Use Hidden Frames
	Start on Active File Format Conventions
	Start on Active File Function Overview
	SOALoadPageset (defaultPg, isActive)
	Usage
	Syntax

	SOAPassDynaObject ()
	Usage
	Syntax

	BuildTarget
	Usage
	Syntax
	Link Output Targets
	Example

	Subconfiguration Link Output Targets
	Example

	Optional Subconfiguration Link Output Targets
	Example

	Image Output Targets
	Argument Notes
	Example

	Text Output Targets
	Example

	Content Sources for Output Targets
	N-Back Link Target
	Example

	N-Back Return Target
	Example

	BuildWidget
	Usage
	Syntax
	Check Box Input UI Controls
	Notes
	Example

	Image Map Input UI Controls
	Example

	List Box Input UI Controls
	Notes
	Example

	Radio Button Input UI Controls
	Notes
	Examples

	Text Entry Input UI Controls
	Notes
	Example

	LinkToSubConfig
	Usage
	Syntax
	Example

	LoadFile
	Usage
	Syntax
	Examples

	LoadPageset
	Usage
	Syntax
	Example
	Example 1
	Example 2

	LoadPagesetWithDynDefObj
	Usage
	Syntax
	Example
	Usage

	8 Contents List Functions for Siebel Advisor
	RegisterContentsListFrame
	Usage
	Syntax
	Example

	SetContentsListFrame
	Usage
	Syntax
	Example
	Related Topics

	ShowContentsList
	Usage
	Syntax
	Example
	Related Topics

	9 Callout Point Functions for Siebel Advisor
	About Callout Point Functions for Siebel Advisor
	ClearAllOverrideFunctions
	Usage
	Syntax
	Example

	ClearOverrideFunction
	Usage
	Syntax
	Example

	OverrideFunction
	Usage
	Syntax
	Example

	COP_AppDataVersionCheck
	Usage
	Syntax

	COP_BeforeConfiguration
	Usage
	Syntax
	Related Topics

	COP_BeforeDisplayPriceString
	Usage
	Syntax
	Example

	COP_InvalidItemAdded
	Usage
	Syntax
	Example

	COP_PagesetVersionCheck
	Usage
	Syntax
	Example

	COP_ValidItemAdded
	Usage
	Syntax
	Example

	InitApp
	Usage
	Syntax
	Example

	ORP_DisplayPrice
	Usage
	Syntax

	ORP_DisplayPriceString
	Usage
	Syntax

	10 Data Access Functions for Siebel Advisor
	GetCurrInstance
	Usage
	Syntax

	GetFeatureData
	Usage
	Syntax
	Return Value

	GetInputState
	Usage
	Syntax
	Return Value

	GetInputValue
	Usage
	Syntax
	Example
	Related Topics

	GetResultsValue
	Usage
	Syntax
	Example
	Related Topics

	SetInputValue
	Usage
	Syntax
	Example
	Related Topics

	PostThis()
	Usage
	Syntax

	11 Data Objects in Siebel Advisor
	ConfigTable_Obj
	Usage
	Methods
	Example
	Related Topics

	ConfigTableArray_Obj
	Usage
	Methods
	Example
	Related Topics

	FeatureTable_Obj
	Usage
	Notes
	Method
	Example
	Related Topics

	FeatureTableArray_Obj
	Usage
	Methods
	Example
	Related Topics

	InputState_Obj
	Usage
	Methods
	Example
	Related Topics

	Label_Obj
	Usage
	Syntax
	Methods
	Example

	Label_Obj.GetLabelName
	Usage
	Syntax
	Example

	Label_Obj.GetNumLabels
	Usage
	Syntax
	Example

	12 Siebel Advisor API Examples
	Example of Creating a Custom Input UI Control
	Example of Defining a Pageset Layout
	Contents of xxx_i.htm
	Contents of oc_default_ui.htm

	Example of Creating a Custom Output Target
	Example of Adding Custom Behavior with a Callout Point
	Example of Using the CDA Service Broker
	Client JavaScript
	Client HTML
	Business Service Script Called by CDAServiceBroker

	Index

