
Oracle® Configurator
Constraint Definition Language Guide
Release 12.1
Part No. E14319-01

April 2009

Oracle Configurator Constraint Definition Language Guide, Release 12.1

Part No. E14319-01

Copyright © 1999, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Mark Sawtelle

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

This software and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third party content, products and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third
party content, products or services.

 iii

Contents

Send Us Your Comments

Preface

1 Introduction
Overview of the Constraint Definition Language (CDL)...1-1
Relationships Expressed in CDL.. 1-2
Terminology.. 1-2
Syntax Notation... 1-4

2 Principles of CDL
Before You Begin... 2-1

What Model Structure Nodes and Properties Are Participants in the Rule?2-1
Is the Model Structure Likely To Change Often? .. 2-2
What Does the Rule Need To Do? ...2-2
What Types of Expressions Define the Relationships or Constraints You Need? 2-2

Anatomy of a Configuration Rule Written in CDL.. 2-3
Rule Definition... 2-3
Rule Statements... 2-4
Comments and Whitespace... 2-5
Case Sensitivity.. 2-5
Quotation Marks.. 2-5

Data Types... 2-5

3 Model Example
The House Model and its Window Submodel... 3-1

iv

Example Explicit Statements... 3-2
Example Iterator Statements .. 3-3
CDL Flexibility.. 3-3

Incremental Rules.. 3-4
Alternative Rule Designs... 3-4

4 CDL Elements
CDL Statements... 4-1

Explicit Statements... 4-2
Iterator Statements... 4-2

Multiple Iterators in One Statement.. 4-3
Expressions.. 4-3
Keywords... 4-4

CONSTRAIN... 4-5
CONTRIBUTE...TO.. 4-5

CONTRIBUTE...TO with Decimal Operands and BOM Option Classes or Collections
... 4-6

COMPATIBLE...OF.. 4-7
FOR ALL....IN.. 4-7
WHERE.. 4-8
COLLECT.. 4-8

Operators... 4-9
Predefined Operators Supported By CDL... 4-9
Operator Results.. 4-12
Operator Precedence.. 4-12
LIKE and NOT LIKE Operators... 4-13
Text Concatenation Operator... 4-14
COLLECT Operator... 4-14

Functions... 4-15
Arithmetic.. 4-16
Trigonometric.. 4-18
Logical..4-19
Set.. 4-20
Text.. 4-20
Hierarchy or Compound..4-21
Function Overflows and Underflows.. 4-21

Operands... 4-23
References.. 4-23

Model Object Identifiers.. 4-23
Simple Model Node References...4-24
Compound Model Node References Showing Context... 4-24

 v

Property References...4-25
Formal Parameters... 4-28

Local Variables and Data Types.. 4-28
Local Variables and References... 4-28

Literals... 4-29
Numeric Literals.. 4-29
Boolean Literals... 4-30
Text Literals... 4-30
Collection Literals..4-31

Separators.. 4-32
Comments and Whitespace... 4-33

Comments.. 4-33
Whitespace and Line Terminators... 4-34

A CDL Formal Grammar
Notation Used in Presenting CDL Grammar... A-1

Examples of Notation Used in Presenting CDL Grammar.. A-3
Terminal Symbols... A-3

Keyword Symbols... A-4
Operator Symbols.. A-4
Literal Symbols.. A-5
Separator Symbols... A-6
Identifier Symbols... A-6
Comment Symbols.. A-8
Whitespace Symbols.. A-8

Nonterminal Symbols... A-8
EBNF Source Code Definitions for CDL Terminal Symbols.. A-11

B CDL Validation
Validation of CDL... B-1

The Parser.. B-1
Calling the Oracle Configurator Parser... B-1
The Parser's Validation Criteria.. B-2

The Compiler... B-2
Calling the Oracle Configurator Compiler..B-3
The Compiler's Validation Criteria... B-3

The Input Stream to the Oracle Configurator Parser... B-3
Unicode Characters... B-4

Name Substitution.. B-4
Name Persistency.. B-4

vi

Ambiguity Resolution... B-4

Common Glossary for Oracle Configurator

Index

 vii

Send Us Your Comments

Oracle Configurator Constraint Definition Language Guide, Release 12.1
Part No. E14319-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 ix

Preface

Intended Audience
Welcome to Release 12.1 of the Oracle Configurator Constraint Definition Language Guide.

This guide describes the semantics and syntax of the Constraint Definition Language, or
CDL. Use this document together with the other books in the Oracle Configurator
documentation set to prepare for and implement rule definitions that are entered as text
rather than created interactively in Oracle Configurator Developer. Typically, CDL is
used to create Statement Rules in Configurator Developer. Rules can also be defined in
another environment and then imported into the CZ schema.

This preface describes how the guide is organized, who the intended audience is, and
how to interpret the typographical conventions and syntax notation.

This guide is intended for anyone responsible for creating and supporting rule
definitions written in CDL, including Statement Rules in Oracle Configurator
Developer. This guide assumes that you understand the kinds and behavior of
configuration rules that are available in Oracle Configurator.

See Related Information Sources on page xi for more Oracle Applications product
information.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is
available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

x

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible
to all users, including users that are disabled. To that end, our documentation includes
features that make information available to users of assistive technology. This
documentation is available in HTML format, and contains markup to facilitate access by
the disabled community. Accessibility standards will continue to evolve over time, and
Oracle is actively engaged with other market-leading technology vendors to address
technical obstacles so that our documentation can be accessible to all of our customers.
For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Introduction
This chapter provides a high-level overview of CDL and the criteria for valid,
executable rule definitions.

2 Principles of CDL
This chapter introduces the principles of defining configuration rules using CDL.

3 Model Example
This chapter introduces an example Model that is used to illustrate correct CDL
semantics and syntax.

4 CDL Elements
This chapter presents detailed information about the elements of CDL.

For an overview of CDL elements, as well as details about case sensitivity and quotation
marks, see Anatomy of a Configuration Rule Written in CDL, page 2-3.

For syntax abstracts, see Notation Used in Presenting CDL Grammar, page A-1.

A CDL Formal Grammar
This appendix provides a programmer's reference of CDL syntax.

 xi

B CDL Validation
This appendix provides additional information about the Oracle Configurator parser's
expectations and requirements during rule validation.

Common Glossary for Oracle Configurator

Related Information Sources
Important: The Fusion Configurator Engine (FCE) is an alternative to
the configuration engine described in this document, and provides
significant enhancements. For all information about the Fusion
Configurator Engine, see the Oracle Configurator Fusion Configurator
Engine Guide.

For a full list of documentation resources for Oracle Configurator, see Oracle
Configurator Documentation Resources, Release 12, Oracle MetaLink Document
394478.1.

For a full list of documentation resources for Oracle Applications Release 12, see Oracle
Applications Documentation Resources, Release 12, Oracle MetaLink Document
394692.1.

Additionally, be sure you are familiar with current release or patch information for
Oracle Configurator on MetaLink, Oracle's technical support Web site.

Integration Repository
The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle Applications data unless
otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle Applications data, you risk destroying the integrity of your
data and you lose the ability to audit changes to your data.

xii

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a
row in one table without making corresponding changes in related tables. If your tables
get out of synchronization with each other, you risk retrieving erroneous information
and you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track
of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Introduction 1-1

1
Introduction

This chapter provides a high-level overview of CDL and the criteria for valid,
executable rule definitions.

This chapter covers the following topics:

• Overview of the Constraint Definition Language (CDL)

• Relationships Expressed in CDL

• Terminology

• Syntax Notation

Overview of the Constraint Definition Language (CDL)
The Constraint Definition Language (CDL) is a modeling language. CDL allows you to
define configuration rules, the constraining relationships among items in configuration
models, by entering them as text. A rule defined in CDL is an input string of characters
that is stored in the CZ schema of the Oracle Applications database, validated by a
parser, translated into executable code by a compiler, and interpreted at runtime by
Oracle Configurator.

You use CDL to define a Statement Rule in Oracle Configurator Developer by entering
the rule's definition as text rather than interactively assembling the rule's elements.
Because you use CDL to define them, Statement Rules can express more complex
constraining relationships than interactively defined configuration rules.

For information about creating Statement Rules in Configurator Developer, see the
overview of Statement Rules section, Oracle Configurator Developer User's Guide.

CDL also supports writing rules in rule-writing environments other than Configurator
Developer for the purpose of importing rules directly into the CZ schema. For details
about the availability of this functionality, see the Oracle Configurator Implementation
Guide.

1-2 Oracle Configurator Constraint Definition Language Guide

Relationships Expressed in CDL
Using CDL, you can define the following relationships that are supported by the rules
available in Oracle Configurator Developer:

• Logical

• Numeric

• Property-based compatibility

• Comparison

The other types of relationships that can be defined in Configurator Developer (Explicit
Compatibility Rules and Design Charts) cannot be expressed in CDL.

For more information about the kinds of relationships that are supported in CDL, see
Kinds of Relationships or Constraints Available in CDL, page 2-2.

Terminology
The table Terminology Used in This Book, page 1-2 describes the terms that are used
throughout this guide. For a description of the Model that is used for all of the examples
in this guide, see The House Model and its Window Submodel, page 3-1.

Terminology Used in This Book

Term Description

Cartesian product A set of tuples that is constructed from two or more given sets
and comprises all permutations of single elements from each set
such that the first element of the tuple is from the first set and
the second is from the second set, and so on.

clause A segment of a rule statement consisting of a keyword and
expression.

collection A set of multiple operands within parentheses and separated by
commas.

compiler The part of Oracle Configurator that first parses rule definitions
and then generates code that is executable at runtime.

Introduction 1-3

Term Description

explicit statement Explicit statements express relations among explicitly identified
participants and restrict execution of the rule to those
participants and the Model containing those participants.

expression A subset of the statement that contains operators and operands

formal identifier A variable that is defined in the scope of an iterator statement to
represent an iterating identifier.

iterator statement Iterators are query-like statements that iterate, or repeat, over
one or multiple relations or constraints.

non-terminal The kind of symbols used in the notation for presenting CDL
grammar that represent the names of grammar rules.

parser A component of the Oracle Configurator compiler that analyzes
the syntactic and semantic correctness of statements used in rule
definitions.

relationship A type of constraint expressed in a single statement or clause. A
relationship can be equivalent to a simple rule. A Statement Rule
expresses one or more relationship types but is not itself a type
of relationship.

signature The distinct combination of a function's attributes, such as name,
number of parameters, type of parameters, return type,
mutability, and so on.

singleton A single operand that is not within a collection.

statement The entire sentence that expresses the rule's intent. A CDL rule
definition can consist of multiple statements, each consisting of
clauses containing expressions, and separated by semi-colons.

terminal The kind of symbols used in the notation for presenting CDL
grammar that represent the names, characters, or literal strings
of tokens.

token The result of translating characters into recognizable lexical
meaning. All text strings in the input stream to the parser, except
whitespace characters and comments, are tokens. For more
information about the use of special characters, see the Oracle
Configurator Developer User's Guide.

1-4 Oracle Configurator Constraint Definition Language Guide

Term Description

unicode A 16-bit character encoding scheme allowing characters from
Western European, Eastern European, Cyrillic, Greek, Arabic,
Hebrew, Chinese, Japanese, Korean, Thai, Urdu, Hindi and all
other major world languages, to be encoded in a single character
set.

Additional terms are listed in the Glossary.

Syntax Notation
CDL Statement Syntax Notation, page 1-4 describes the valid statement syntax
notation for CDL. The table lists the available symbols and provides a description of
each. This notation is used throughout this book for CDL examples and in the syntax
reference in Notation Used in Presenting CDL Grammar, page A-1.

CDL Statement Syntax Notation

Symbol Description

-- or // A double hyphen or double slash begins a single line comment that
extends to the end of the line.

/* */ A slash asterisk and an asterisk slash delimits a comment that spans
multiple lines.

&lower case Lower case prefixed by the ampersand sign is used for names of formal
parameters and iterator local variables.

UPPER CASE Upper case is used for keywords and names of predefined variables or
formal parameters.

Mixed Case Mixed case is used for names of user-defined Model nodes, names of
user-defined rules

; A semi-colon indicates the end of one statement and the beginning of the
next

In the examples in this book, an implied carriage return occurs at the end of each line,
unless otherwise noted. You must press the Enter key at the end of a line of input. The
table below lists the typographic and symbol conventions used in this book, such as
ellipses, bold face, italics.

Introduction 1-5

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean
that information not directly related to the
example has been omitted.

. . . Horizontal ellipsis points in statements or
commands mean that parts of the statement or
command not directly related to the example
or relevant to the discussion have been
omitted

boldface text Boldface type in text indicates a new term, a
term defined in the glossary, specific keys,
and labels of user interface objects. Boldface
type also indicates a menu, command, or
option, especially within procedures

italics Italic type in text, tables, or code examples
indicates user-supplied text. Replace these
placeholders with a specific value or string.

[] Brackets enclose optional clauses from which
you can choose one or none.

> The left bracket alone represents the MS DOS
prompt.

$ The dollar sign represents the DIGITAL
Command Language prompt in Windows and
the Bourne shell prompt in Digital UNIX.

% The per cent sign alone represents the UNIX
prompt.

name() In text other than code examples, the names of
programming language methods and
functions are shown with trailing parentheses.
The parentheses are always shown as empty.
For the actual argument or parameter list, see
the reference documentation. This convention
is not used in code examples.

Principles of CDL 2-1

2
Principles of CDL

This chapter introduces the principles of defining configuration rules using CDL.

This chapter covers the following topics:

• Before You Begin

• Anatomy of a Configuration Rule Written in CDL

• Data Types

Before You Begin
Before defining a rule in CDL, consider the following key questions:

• What Model Structure Nodes and Properties Are Participants in the Rule? , page 2-
1

• Is the Model Structure Likely To Change Often? , page 2-2

• What Does the Rule Need To Do? , page 2-2

• What Types of Expressions Define the Relationships or Constraints You Need? ,
page 2-2

What Model Structure Nodes and Properties Are Participants in the Rule?
The answer matters because it helps you choose which kind of CDL statement to use.
CDL supports explicit and iterator statements. You use explicit statements to express
relationships involving specifically named individual nodes or Properties in your
Model structure. If you want a set of related nodes (such as all window models of a
house) to participate in a series of identical rules, use iterator statements instead of
repeating the same rule for each individual node.

2-2 Oracle Configurator Constraint Definition Language Guide

Is the Model Structure Likely To Change Often?
If the structure is not static and expected to change often, you may want to define rules
that use Properties, rather than explicitly including nodes in the rule's definition. This
reduces the amount of required maintenance whenever the Model structure changes.
For more information, see the Oracle Configurator Modeling Guide.

What Does the Rule Need To Do?
In other words, what type of relationship do you need to define? The answer matters
because not all types of relationships can be expressed using CDL.

The available types of constraints and relationships that can be expressed in CDL
include Logic, Numeric, Property-based Compatibility, and Comparison. See Kinds of
Relationships or Constraints Available in CDL, page 2-2 for details.

For information about each type of relation, see the section on logical relationships,
Oracle Configurator Developer User's Guide.

What Types of Expressions Define the Relationships or Constraints You Need?
Kinds of Relationships or Constraints Available in CDL, page 2-2 shows which CDL
keywords are used to express which type of relationship. For example, to define a
Numeric constraint that contributes a value of 10 to Total X when Option A is selected,
use the CONTRIBUTE and TO keywords.

The table below shows the available Rule Types and CDL keywords available in CDL.

Kinds of Relationships or Constraints Available in CDL

Rule Types CDL Keywords

Logical or Comparison Use the CONSTRAIN keyword and one operator. If you need to
express a constraint between one or more options in your Model,
then, at a minimum, use the CONSTRAIN keyword with the
IMPLIES, EXCLUDES, DEFAULTS, NEGATES, or REQUIRES
relation keyword

Numeric Use the CONTRIBUTE and TO keywords when adding a value
to a Numeric Feature, Option Count, Total, Resource, or the
minimum or maximum total number of instances.

Use the CONTRIBUTE (-1)* and TO keywords when subtracting
a numeric values from a Numeric Feature, Option count, Total,
Resource or instance count.

Principles of CDL 2-3

Rule Types CDL Keywords

Compatibility Use the COMPATIBLE keyword and at least two identifiers to
indicate the nodes you want to compare.

Anatomy of a Configuration Rule Written in CDL
Important: There is new functionality available for CDL when using the
Fusion Configurator Engine (FCE). The FCE is an alternative to the
configuration engine described in this document. For all information
about CDL with the FCE, see the Oracle Configurator Fusion Configurator
Engine Guide.

This section provides an overview of how the syntax, semantics, and lexical structure of
a rule written in CDL relate to one another. This section contains the following topics:

• Rule Definition, page 2-3

• Rule Statements, page 2-4

• Comments and Whitespace, page 2-5

• Case Sensitivity, page 2-5

• Quotation Marks, page 2-5

For details about converting an existing rule to a Statement Rule as a way to study CDL,
see the section on defining a Statement Rule, Oracle Configurator Developer User's Guide.

Rule Definition
A configuration rule has a name, associated Model, definition, other attributes such as
Effectiveness and Usage, and optionally a description. The rule definition can be written
in CDL and consists of whitespace characters, comments, and one or more individual
statements that express the intent of the rule.

When creating a Statement Rule in Oracle Configurator Developer, you enter the name
and description in input fields and the rule definition in the text box provided for that
purpose.

For more information about entering rule definitions in Oracle Configurator Developer,
see the section on defining rules, Oracle Configurator Developer User's Guide.

2-4 Oracle Configurator Constraint Definition Language Guide

Rule Statements
Statements define the rule's intent, such as to contribute a value of 10 to Total X when
Option A is selected.

Multiple statements in a rule definition must be separated from one another with
semi-colons (;). CDL supports two kinds of statements: Explicit and Iterator. For more
information, see CDL Statements, page 4-1.

CDL statements are parsed as tokens; everything in CDL is a token, except whitespace
characters and comments. For more information about how CDL is parsed, see
Validation of CDL, page B-1.

Statements consist of one or more clauses. Clauses consist of keywords and one or more
expressions. Keywords are predefined tokens that determine CDL syntax and make it
more readable and easy to use. CONSTRAIN and CONTRIBUTE are examples of
keywords.

An expression is the part of a statement that contains an operator and the operands
involved in a rule operation. An operator is a predefined keyword, function, or
character that involves the operands in logical, functional, or mathematical operations.
REQUIRES and the plus sign (+) are examples of operators. Operands are also called
rule participants. An operand can be an expression, a literal, or an identifier. The literal
or identifier operand can be present in the rule as a singleton or as a collection.

Literals are tokens of a specific data type, such as Numeric, Boolean (True or False), or
Text. An identifier is a token that consists of a sequence of letters and digits. Identifiers
identify Model objects or formal parameters. When an identifier identifies a Model
object it refers to a Model node or Property and the sequence of letters and digits starts
with a letter. These kinds of identifiers are called references. When an identifier is a
formal parameter, it identifies a local variable and is used in an iterator statement.
Formal parameters are a sequence of letters and digits prefixed with an ampersand (&).

For greater readability and to convey meaning such as the order of operations, CDL
supports separators. Separators are tokens that maintain the structure of the rule by
establishing boundaries between tokens, grouping them based on some syntactic
criteria. Separators are single characters such as the semi-colon between statements or
the parentheses around an expression.

For more information about these statements and the CDL elements they contain, see
CDL Statements, page 4-1. For help with determining the CDL elements that
correspond to particular rules, assemble a Logic, Numeric, Compatibility, or
Comparison rule interactively in Oracle Configurator Developer, and then convert it to
a Statement Rule. When you do this, Configurator Developer displays the rule's current
definition in CDL. You can then expand or enhance the rule by typing additional
statements, keywords, identifiers, structure node names, and so on.

Principles of CDL 2-5

Comments and Whitespace
Comments are included in rule definitions at your discretion to explain the rule.
Whitespace, which includes spaces, line feeds, and carriage returns, format the input for
better readability. See Comments, page 4-33 and Whitespace and Line Terminators,
page 4-34 for details.

Case Sensitivity
Keywords are not case sensitive.

Keyword operators are not case sensitive.

Model object identifiers are case sensitive.

Formal parameters are case sensitive and cannot be in quotes.

The constants E and PI as well as the scientific E are not case sensitive.

The keywords TRUE and FALSE are not case sensitive.

Text literals are case sensitive.

All keywords, constant literals, and so on are not case sensitive.

Note: Operands are not case sensitive with the exception of Model
object identifiers (node names), formal parameters or variables, User
Property names, and text literals.

Quotation Marks
Model structure nodes that have the same name as a keyword must be quoted when
referred to in CDL

Data Types
Following are valid data types when defining a rule in CDL:

• INTEGER

• DECIMAL

• BOOLEAN

• TEXT

• Node types

Under certain circumstances, a data type of a variable is not compatible with the type

2-6 Oracle Configurator Constraint Definition Language Guide

expected as an argument. The Oracle Configurator parser does not support explicit
conversion or casting between the data types. The parser performs implicit conversion
between compatible types. See Implicit Conversion of Data Type, page 2-6 for details.

If a rule definition has wrong data types, the parser returns a type mismatch error
message. Invalid Collection, page 4-32 shows a collection whose data types cannot be
implicitly converted to be compatible.

The table Implicit Conversion of Data Type, page 2-6 shows which data type each
source data type implicitly converts.

Implicit Conversion of Data Type

Source data type

(or collection of the same type)

Implicitly converts to

(or collection of the same type)

INTEGER DECIMAL

NODE of type BOM Standard Item, BOM Option Class,
BOM Model, Option Feature, Option, or Boolean Feature

BOOLEAN

INTEGER

DECIMAL

Node type

NODE of type Integer Feature INTEGER

DECIMAL

NODE of type Decimal Feature DECIMAL

NODE of type Text Feature TEXT

Unless specified otherwise, all references to matching types throughout this document
assume the implicit data type conversions.

Note: Although TEXT is included as a data type here, it can only be
used in a static context. You cannot use a TEXT literal, reference, or
expression in the actual body of a CONSTRAINT or CONTRIBUTE
expression. The Oracle Configurator compiler validates this condition
when you generate logic for the Model.

Model Example 3-1

3
Model Example

This chapter introduces an example Model that is used to illustrate correct CDL
semantics and syntax.

This chapter covers the following topics:

• The House Model and its Window Submodel

• Example Explicit Statements

• Example Iterator Statements

• CDL Flexibility

The House Model and its Window Submodel
The parent Model is House and its child (referenced) Model is Window. The figure
below shows structure diagrams of the House and the Window Models. The House
Model contains a Total for Material, a Color Feature with the Options Black and White,
and References to the Window Model for three FrontWindows and three SideWindows.
The References each have a Position and a Size Property. The FrontWindows have
Position = Front and the SideWindows have Position = Side. There are two small and
one large Window in both positions, determined by the Size Property being set to small
and large, respectively.

The Window Model contains two Components, Frame and Glass. The Frame
Component contains numerous Features including Border, Color (with the Options
White, Black, and Silver), and Finish (with the Options Matte and Glossy). The Glass
Component contains several Features including Tint (with the Options Clear and Dark).

3-2 Oracle Configurator Constraint Definition Language Guide

Example House Model

Example House Model, page 3-2 shows the Model House as the parent Model, and a
Model called Window is its child (referenced) Model. The Window Model contains a
Frame Component and a Glass Component, and both Components have various types
of Feature nodes.

Example Explicit Statements
For a description and general information about explicit statements, see Explicit
Statements, page 4-2.

An example configuration rule calculates the size of glass to be put into a window
frame for each Window instance. The glass is to be inserted into the Frame 1/2 inch at
each side. To capture such a rule, you enter a name, such as WindowGlassSize, a
description, and then associate the rule with the Window Model.

Example Explicit Statement in CDL, page 3-3 shows the definition of
WindowGlassSize written in CDL.

Model Example 3-3

Example Explicit Statement in CDL
CONTRIBUTE Frame.Width - 2 * Frame.Border + 2 * 0.5
TO Glass.Width;
CONTRIBUTE Frame.Height - 2 * Frame.Border + 2 * 0.5
TO Glass.Height;

Two statements explicitly express two Contributes to relationships between the value
of the Frame's dimensions and the glass to determine the required glass size. A
semi-colon indicates the end of each statement and the whole rule definition.

Example Iterator Statements
For a description and general information about iterators, see Iterator Statements, page
4-2.

An example configuration rule constrains the window frame color so that for some
colors, the finish is glossy. An iterator lets you define a rule that selects the glossy finish
based on a Property.

In Example Iterator Statement in CDL, page 3-3, the variable &color refers to all the
Options of the Feature Color, in the Frame Component of the Window Model. The rule
selects a glossy finish when one of those colors is selected AND the Property
RequiresGlossyFinish is true.

Example Iterator Statement in CDL
CONSTRAIN &color IMPLIES Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)
WHERE &color.Property ("RequiresGlossyFinish") = "True";

The reference to a particular Property value allows the constraining relation to be
applied to a subset of the Color Options without explicitly naming the specific color.
During validation, every node in Color is checked for a Property
RequiresGlossyFinish. The result is that the rule iterates over all the children of Color,
and for each color with the Property value set to true, the rule constrains the finish to
Glossy.

The advantage of using an iterator statement is that if you add another color to the
Frame Model, the rule definition does not have to be modified. Iterator statements
significantly reduce the development and maintenance cost of the Model. With proper
planning, the complete set of constraints could stay constant while the Model structure
evolves over numerous publications.

For alternative rule definitions with similar intent, see CDL Flexibility, page 3-3.

CDL Flexibility
CDL flexibly supports many ways of writing the same or similar rules. This section
presents the following topics:

• Incremental Rules, page 3-4

3-4 Oracle Configurator Constraint Definition Language Guide

• Alternative Rule Designs, page 3-4

Incremental Rules
CDL provides the flexibility to express complex rules as a series of incremental rules or
those incremental rules as the subexpressions of a single, rolled up rule. Incremental
Rules and Their Equivalent As a Rolled Up Rule, page 3-4 shows two rule anatomies
that express the same behavior.

Incremental Rules and Their Equivalent As a Rolled Up Rule
Incremental rules of a complex Numeric Rule.
CONTRIBUTE Frame.Width TO Glass.Width;
CONSUMES 2* Frame.Border FROM Glass.Width;
CONTRIBUTE 2 * 0.5 TO Glass.Width;

Rolled up complex Numeric Rule express the same behavior as the incremental rules.
CONTRIBUTE Frame.Width - (2 * Frame.Border) TO Glass.Width;

Alternative Rule Designs
As with Oracle Configurator, generally, CDL provides flexibility to express similar rule
intent in various ways. Consider Example Iterator Statement in CDL, page 3-3, which
could be designed differently, as shown in Alternative Rule Designs With Equivalent
Rule Intent, page 3-4.

Alternative Rule Designs With Equivalent Rule Intent
To select a glossy finish for every Option of the Feature Color, make the Boolean
Property RequiresGlossyFinish imply a glossy finish.
CONSTRAIN &color.Property("RequiresGlossyFinish") IMPLIES
Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)

In this rule, logic generation executes the rule on every RequiresGlossyFinish
Property in the Options of the frame's Color Feature. Alternatively, you could write a
WHERE clause that limits the rule to only those Options of the frame's Color Feature
whose RequiresGlossyFinish Property equals true, as shown in Example Iterator
Statement in CDL, page 3-3.

Limiting the logic generation to the condition expressed in the WHERE clause is
equivalent to applying a filter before execution, which usually results in better
performance. When a rule iterates over a large number of options or combinations (for
example, a Cartesian product), the WHERE clause does not necessarily improve
performance.

Alternative Rule Design with Narrowed Conditions
In Alternative Rule Designs With Equivalent Rule Intent, page 3-4, the rule binds
Frame.Finish.Glossy to true at startup, merely because Property
RequiresGlossyFinish exists. A different approach might be to add a Special
Property that limits the Options over which the rule iterates to those that alone should

Model Example 3-5

have a glossy finish.
CONSTRAIN &color IMPLIES Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)
WHERE &color.Property ("Special") = "True"
AND &color.Property("RequiresGlossyFinish") = "True";

Here, the variable &color refers to all the Options of the Feature Color, in the Frame
Component of the Window Model. All Options in the Feature Color have the Special
Property and this rule only iterates over those colors that are identified by
&color.Property("Special")= "True". Of that subset of colors, the rule selects a
glossy finish when one of those colors is selected AND the Property
RequiresGlossyFinish is true.

Alternative Rule Design using AllTrue function, page 3-5 shows the same rule intent
as Alternative Rule Design with Narrowed Conditions, page 3-4 using the AllTrue
function.

Alternative Rule Design using AllTrue function
CONSTRAIN AllTrue (&color, &color.Property ("RequiresGlossyFinish"))
IMPLIES Frame.Finish.Glossy
FOR ALL &color IN OptionsOf(Frame.Color)
WHERE &color.Property ("Special") = "True";

CDL Elements 4-1

4
CDL Elements

This chapter presents detailed information about the elements of CDL.

For an overview of CDL elements, as well as details about case sensitivity and quotation
marks, see Anatomy of a Configuration Rule Written in CDL, page 2-3.

For syntax abstracts, see Notation Used in Presenting CDL Grammar, page A-1.

This chapter covers the following topics:

• CDL Statements

• Expressions

• Keywords

• Operators

• Functions

• Operands

• Separators

• Comments and Whitespace

CDL Statements
A rule definition written in CDL consists of one or more statements that define the
rule's intent. The two kinds of statements are:

• Explicit Statements, page 4-2

• Iterator Statements, page 4-2

The difference between explicit and iterator statements is in the types of participants
involved.

4-2 Oracle Configurator Constraint Definition Language Guide

Explicit Statements
Explicit statements express relationships among explicitly identified participants and
restrict execution of the rule to those participants and the Model containing those
participants.

In an explicit statement, you must identify each node and Property that participates in
the rule by specifying its location in the Model structure. An explicit statement applies
to a specific Model, thus all participants of an explicit statement are explicitly stated in
the rule definition.

CDL supports several kinds of explicit statements, which are identified by the
keywords CONSTRAIN, CONTRIBUTE, and COMPATIBLE.

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
statements.

Constraint Statements with the CONSTRAIN Keyword, page 4-5, shows such an
explicit statement consisting of a single expression of the logical implies relation.

See Expressions, page 4-3 for more information about the precise syntax of explicit
statements.

Iterator Statements
Iterators are query-like statements that iterate, or repeat, over elements such as
constants, Model references, or expressions of these. Iterators express relations among
participants that are Model node elements of a collection or participants that are
identified by their Properties and allow the rule to be applied to Options of Option
Features with the same Properties. Iterators allow you to use the Properties of Model
nodes to specify the participants of constraints or contributions. This is especially useful
for maintaining persistent sets of constraints when the Model structure or its Properties
change frequently. Iterators can also be used to express relationships between
combinations of participants, such as with Property-based Compatibility Rules.

Iterator statements can use local variables that are bound to one or more iterators over
collections. This is a way of expressing more than one constraint or contribution in a
single implicit form. During compilation, a single iterator statement explodes into one
or more constraints or contributions. See COLLECT Operator, page 4-14 for more
information.

The available iterators that make a rule statement an iterator statement are:

• FOR ALL....IN, page 4-7

• WHERE, page 4-8

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
statements.

Constraint Statement with the FOR ALL...IN Iterator, page 4-5 shows an iterator

CDL Elements 4-3

statement consisting of a single expression of the logical Defaults relation and the
iterator.

See Expressions, page 4-3 for more information about the precise syntax of kinds of
iterator statements.

For an additional example of a rule statement that contains an iterator, see Example
Iterator Statement in CDL, page 3-3.

Multiple Iterators in One Statement
The syntax of the FOR ALL clause allows for multiple iterators. The statement can be
exploded to a Cartesian product of two or more collections.

Multiple Iterators in One CONSTRAIN Statement, page 4-3, is an example of a
Cartesian product as the rule iterates over all the Options of the Tint Feature in the
Glass Component and over all the Options of the Color Feature in the Frame
Component of the Window Model in Example House Model, page 3-2. Whenever the
Stain Property of the Color Options equals the Stain Property of the Tint Options,
the selected color pushes the corresponding stain true. So, for example, when
&color.Property ("stain") and &tint.Property ("stain") both equal
Clear, selecting the White Option causes the Clear Option to be selected.

Multiple Iterators in One CONSTRAIN Statement
CONSTRAIN &color IMPLIES &tint
FOR ALL
&color IN OptionsOf(Frame.Color),
&tint IN OptionsOf(Glass.Tint)
WHERE &color.Property ("stain") = &tint.Property ("stain");

The difference between this and a Property-based Compatibility Rule is that Multiple
Iterators in One CONSTRAIN Statement, page 4-3selects participants without over
constraining them, while a compatibility test deselects participants that do not pass the
test. For more information on designing rules and the impact on performance, see
Alternative Rule Designs, page 3-4.

In Multiple Iterators in One CONTRIBUTE...TO Statement, page 4-3, the numeric
value of Feature a contributes to Feature b for all the Options of a and b when the value
of their Property Prop2 is equal.

Multiple Iterators in One CONTRIBUTE...TO Statement
CONTRIBUTE &var1 TO &var2
FOR ALL &var1 IN {OptionsOf(a)}, &var2 IN {OptionsOf(b)}
WHERE &var1.Property("Prop2") = &var2.Property("Prop2");

Expressions
An expression is part of a CDL statement. It has two operands that are connected by an
operator, or functions and their arguments. See Notation Used in Presenting CDL
Grammar, page A-1 for the syntax definition of expressions. See Operators, page 4-9
, Operands, page 4-23, and Functions, page 4-15 for details.

Simple Mathematical Expression in a CDL Rule, page 4-4 shows a simple

4-4 Oracle Configurator Constraint Definition Language Guide

mathematical expression where the two operands are 2 and frame.border, and the
operator is * (multiplication).

Simple Mathematical Expression in a CDL Rule
2 * frame.border

Nested Mathematical Expression in a CDL Rule, page 4-4 shows a simple
mathematical expression of Simple Mathematical Expression in a CDL Rule, page 4-4
used as the second operand in another expression, where the first operand is
window.frame.width and the operator is - (subtraction).

Nested Mathematical Expression in a CDL Rule
window.frame.width - 2 * frame.border

See Operator Precedence, page 4-12 for details about the precedence of operators.

For an example of CDL rules using these expressions, consider the Window Model in
Example Explicit Statement in CDL, page 3-3. If you want to calculate the size of the
glass to be put into a window frame where the glass is inserted in the frame 1/2 inch at
each side, and the frame border is 1 inch, you might write the two Contributes To rules
in Mathematical Expressions in Rule Statements, page 4-4.

Mathematical Expressions in Rule Statements
CONTRIBUTE window.frame.width - 2 * frame.border + 2 * 0.5 TO
glass.width;
CONTRIBUTE window.frame.height - 2 * frame.border + 2 * 0.5 TO
glass.height;

Following are some additional examples of expressions.

Expressions Resulting in a BOOLEAN Value
a > b
a AND b
(a + b) * c > 10
a.prop LIKE "%abc%"

Expressions Resulting in an INTEGER or DECIMAL Value
a + b
((a + b) * c)^10

Keywords
Keywords consist of Unicode characters and are predefined identifiers within a
statement. Model structure nodes with the same name as a CDL keyword, must be
enclosed in quotes when used in CDL. For example: Contribute 'Contribute' To B.

Keywords include the following:

• CONSTRAIN, page 4-5

• CONTRIBUTE...TO, page 4-5

• COMPATIBLE...OF, page 4-7

• FOR ALL....IN, page 4-7

CDL Elements 4-5

• WHERE, page 4-8

• COLLECT, page 4-8

See Keyword Symbols, page A-4 for the syntax definition of these keywords in
expressions.

CONSTRAIN
The CONSTRAIN keyword is used at the beginning of a constraint statement. A
constraint statement uses an expression to express constraining relationships. You can
omit the CONSTRAIN keyword from a constraint statement.

Each constraint statement must contain one and only one of the following keyword
operators:

• IMPLIES

• EXCLUDES

• REQUIRES

• NEGATES

• DEFAULTS

For a description of these constraints, see the section on Logic Rules in the section on
logical relationships, Oracle Configurator Developer User's Guide.

Constraint Statements with the CONSTRAIN Keyword, page 4-5 and Constraint
Statements Without the CONSTRAIN Keyword , page 4-5 show constraint statements
with and without the CONSTRAIN keyword.

Constraint Statements with the CONSTRAIN Keyword
CONSTRAIN a IMPLIES b;
CONSTRAIN (a+b) * c > 10 NEGATES d;

Constraint Statements Without the CONSTRAIN Keyword
a IMPLIES b;
(a + b) * c > 10 NEGATES d;

Constraint Statement with the FOR ALL...IN Iterator, page 4-5 expresses that if one
Option of Feature F1 is selected, then by default select all the rest of the Options. See
Alternative Rule Designs, page 3-4 for other examples of a CONSTRAIN statement with
a FOR ALL iterator.

Constraint Statement with the FOR ALL...IN Iterator
CONSTRAIN F1 DEFAULTS &var1
FOR ALL &var1 IN F1.Options();

CONTRIBUTE...TO
Unlike constraint statements, contribute statements contain numeric expressions. In a

4-6 Oracle Configurator Constraint Definition Language Guide

contribute statement, the CONTRIBUTE and TO keywords are required. See Notation
Used in Presenting CDL Grammar, page A-1 for the syntax definition of these
keywords in expressions.

CONTRIBUTE...TO Statements
CONTRIBUTE a TO b;
CONTRIBUTE (a + b) * c TO d;

CONTRIBUTE...TO is the CDL representation of the Numeric Rule in Oracle
Configurator Developer.

For a description of a Contributes to rule, see the section on Numeric Rules, Oracle
Configurator Developer User's Guide.

CONTRIBUTE...TO with Decimal Operands and BOM Option Classes or Collections
Plan carefully when writing rules with decimal operands and BOM Option Classes, or
collections. The table CONTRIBUTE A TO B where B is a BOM Option Class or a
Collection, page 4-6 explains what action should be taken when A contributes to B
and B is either a BOM Option Class with multiple options, or B is a collection. The
columns are If, AND, and Then.

CONTRIBUTE A TO B where B is a BOM Option Class or a Collection

If AND Then

A resolves to a
decimal

Option 1 and Option 2 are both
integers

Use the Round() function on A

Option 1 and Option 2 are both
decimals

No further action is needed on A

Option 1 is decimal and Option 2 is
integer

Use Round() function on A to
meet the most limiting restriction
- Option 2 an integer.

A is an integer Option 1 and Option 2 are both
integers

No further action is needed on A

Option 1 and Option 2 are both
decimals

Option 1 is decimal and Option 2 is
integer

CDL Elements 4-7

COMPATIBLE...OF
The COMPATIBLE keyword is used at the beginning of a compatibility statement that
defines compatibility based on Property values between Options of different Features,
Standard Items of different BOM Option Classes, or between Options of a Feature and
Standard Items of a BOM Option Class. COMPATIBLE...OF is the CDL representation
of a Property-based Compatibility Rule in Oracle Configurator Developer.

A Compatibility statement requires the keyword COMPATIBLE and two or more
identifiers. The syntax of COMPATIBLE...OF is essentially the same as that of FOR
ALL....IN, page 4-7. For each formal identifier in the COMPATIBLE clause, there
must be a matching identifier in the OF clause. The conditional expression determining
the set of desired combinations is in the WHERE clause.

The CDL of a Property-based Compatibility must include at least two iterators. For
additional information about using a WHERE clause, see WHERE, page 4-8.

In Property-based Compatibility Rule, page 4-7, the rule iterates over all the Options
of the Tint Feature in the Glass Component and over all the Options of the Color
Feature in the Frame Component of the Window Model in Example House Model, page
3-2. A color and tint are compatible whenever the Color Option's Stain Property
equals the Tint Option's Stain Property.

Property-based Compatibility Rule
COMPATIBLE
&color OF Frame.Color,
&tint OF Glass.Tint
WHERE &color.Property("stain") = &tint.Property("stain");

For a description of Compatibility, including order of evaluation, see the section on
Property-based Compatibility Rules, Oracle Configurator Developer User's Guide.

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
these keywords in expressions.

FOR ALL....IN
The FOR ALL and IN keywords begin the two clauses of an iterator statement. The IN
keyword specifies the source of iteration

Note: The IN clause can contain only literal collections or collections of
model nodes, such as OptionsOf. There is no specification of instances,
so all instances of a given Model use the same iteration.

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
these keywords in iterator expressions.

In FOR ALL ... IN ... Clause, page 4-8, the result is 3 contributions to option d.

4-8 Oracle Configurator Constraint Definition Language Guide

FOR ALL ... IN ... Clause
CONTRIBUTE &var TO d
FOR ALL &var IN {a, b, c};

In FOR ALL ... IN ... and WHERE Clause using Node Properties, page 4-8, the result is
as many contributions to Feature d as there are children in Feature a, whose Property
prop3 is less than 5. This example also shows a collection enclosed in braces (see
Collection Literals, page 4-31).

FOR ALL ... IN ... and WHERE Clause using Node Properties
CONTRIBUTE &var.Property("NumProp") + 10 TO d
FOR ALL &var IN {OptionsOf(a)}
WHERE &var.Property("prop3") < 5;

In both examples, a single statement explodes into one or more constraints or
contributions without explicitly repeating each one. In both examples, the iterator
variable can also participate in the left hand side of the contribute statement.

WHERE
The WHERE keyword begins a clause of an iterator statement that acts as a filter to
eliminate iterations that do not match with the WHERE criteria.

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
this keyword in iterator expressions.

In FOR ALL ... IN ... and WHERE Clause using Node Properties, page 4-8, the result is
only as many contributions to option d as there are children in the criteria specified in
the WHERE clause.

Note: The conditional expression in the WHERE clause must be static.
When using the COLLECT operation in a WHERE and an IN clause,
the operands must be static. All User Properties on nodes and all
constants are static operands. As a result, operands in the WHERE
clause of a COMPATIBLE...OF statement can only be Properties.

Note: Configurator Developer evaluates Property-based Compatibility
Rules from the top down, and gives no priority or precedence to an
expression based on its use of the AND or OR operator. In other words,
the system evaluates the first relation you enter, followed by the
second, and so on.

COLLECT
The COLLECT keyword is used exclusively as an operator. For details about the
COLLECT keyword, see COLLECT Operator, page 4-14.

CDL Elements 4-9

Operators
Operators are predefined tokens consisting of Unicode characters to be used as the
expression operators among the expression operands. An operator specifies the
operation to be performed at runtime between the operands. This section includes the
following topics:

• Predefined Operators Supported By CDL, page 4-9

• Operator Results, page 4-12

• Operator Precedence, page 4-12

• LIKE and NOT LIKE Operators, page 4-13

• Text Concatenation Operator, page 4-14

• COLLECT Operator, page 4-14

Important: There are new operators available for CDL when using the
Fusion Configurator Engine (FCE). The FCE is an alternative to the
configuration engine described in this document. For all information
about CDL with the FCE, see the Oracle Configurator Fusion Configurator
Engine Guide.

Predefined Operators Supported By CDL
See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
operators. Operators Listed by Type, page 4-9 lists the predefined operators
supported by CDL.

The table Operators Listed by Type, page 4-9 lists the predefined operators supported
by CDL and includes all operator types, their available operators, and a description of
each. Comparison types include comparing a numeric valued Feature with a property
of a selected Option, or comparing a Property value with the name of an Option.

Operators Listed by Type

Operator Type Operators Description

Logical AND AND requires two operands and returns true if both are
true.

4-10 Oracle Configurator Constraint Definition Language Guide

Operator Type Operators Description

Logical OR OR requires two operands and returns true if either is
true.

Logical NOT NOT requires one operand and returns its opposite
value: false if the operand is true, true if the operand is
false.

Logical NotTrue NotTrue requires one operand and returns true if its logic
state is false or unavailable. For additional information
about using NotTrue, see the Oracle Configurator Modeling
Guide.

Logical REQUIRES REQUIRES requires two operands. See the Oracle
Configurator Developer User's Guide for details.

Logical IMPLIES IMPLIES requires two operands. See the Oracle
Configurator Developer User's Guide for details.

Logical EXCLUDES EXCLUDES requires two operands. See the Oracle
Configurator Developer User's Guide for details.

Logical NEGATES NEGATES requires two operands. See the Oracle
Configurator Developer User's Guide for details.

Logical DEFAULTS DEFAULTS requires two operands. See the Oracle
Configurator Developer User's Guide for details.

Logical and
Comparison

LIKE LIKE requires two text literal operands and returns true
if they match. See LIKE and NOT LIKE Operators, page
4-13 for restrictions.

Logical and
Comparison

NOT LIKE NOT LIKE requires two text literal operands and returns
true if they do not match. See LIKE and NOT LIKE
Operators, page 4-13 for restrictions

Logical,
Arithmetic, and
Comparison

= Equals requires two operands and returns true if both are
the same.

Logical,
Arithmetic, and
Comparison

> Greater than requires two operands and returns true if
the first is greater than the second.

CDL Elements 4-11

Operator Type Operators Description

Logical,
Arithmetic, and
Comparison

< Less than requires two operands and returns true if the
first is less than the second.

Logical,
Arithmetic, and
Comparison

<> Not equal requires two operands and returns true if they
are different.

Logical,
Arithmetic, and
Comparison

<= Less than or equal to requires two operands and returns
"true" if the first operand is less than or equal to the
second.

Logical,
Arithmetic, and
Comparison

>= Greater than or equal requires two operands and returns
"true" if the first operand is greater than or equal to the
second.

Arithmetic * Performs arithmetic multiplication on numeric operands.

Arithmetic / Performs arithmetic division on numeric operands.

Arithmetic - Performs arithmetic subtraction on numeric operands.

Arithmetic + Performs arithmetic addition on numeric operands.

Arithmetic ^ Performs arithmetic exponential on numeric operands.

Arithmetic % Performs arithmetic modulo on numeric operands.

Text + Performs a concatenation of text strings. See Text
Concatenation Operator, page 4-14 for restrictions.

Other () , . - parentheses () are used to group sub-expressions

comma (,) is used to separate function arguments

dot (.) is used for referencing objects in the Model tree
structure

unary minus (-) is used to make positive values negative
and negative values positive.

4-12 Oracle Configurator Constraint Definition Language Guide

Operator Results
The result of each expression operator can participate as an operand of another operator
as long as the return type of the former matches with the argument type of the latter.

See Data Types, page 2-5 for more information about allowable data types of operands.

The table Mapping of Operators and Data Types, page 4-12 lists the basic return data
types of each operator.

Mapping of Operators and Data Types

Operator(s) Data type

Arithmetic INTEGER, DECIMAL

Logical BOOLEAN

Comparison BOOLEAN

Operator Precedence
Operators are processed in the order given in the following table. Operators with equal
precedence are evaluated left to right.

The table Precedence of Operators, page 4-12 lists the precedence of expression
operators in CDL. The columns are Operator, Precedence (direction), and Description.

Precedence of Operators

Operator Precedence (direction) Description

() 1 (right) Parenthesis

. 2 (left) Navigation

^ 3 (right) Arithmetic power

Unary +, - NOT,
NotTrue

4 Unary plus and minus, Not and
NotTrue

*, /, % 5 (left) Arithmetic multiplication and divisions

CDL Elements 4-13

Operator Precedence (direction) Description

Binary +, - 6 (left) Arithmetic plus and minus, text
concatenation

<, >, =, <=, >=,
<>

LIKE, NOT LIKE

7 (left) Comparison operators

AND 8 (left) Logical AND

OR 9 (left) Logical OR

DEFAULTS,
EXCLUDES, NEGATES,
IMPLIES, REQUIRES

10 (left) Logic operators

LIKE and NOT LIKE Operators
Although LIKE and NOT LIKE are included as text relational operators, they can only
be used in static context; for example, the WHERE clause of iterators. As with any TEXT
data type, you cannot use LIKE and NOT LIKE with runtime participants unless it
evaluates to a constant string. Oracle Configurator Developer validates this condition
when you generate logic.

LIKE Expression Resulting in a BOOLEAN Value
a.prop LIKE "%eig%"

A TRUE result is returned if the text of a.prop contains the characters 'eig', such as
a.prop ='weight' or 'eight'. FALSE is returned if the text of a.prop='rein'. For more
information on the LIKE operator and the use of wildcards, see the section on
Property-based Compatibility Rules in the Oracle Configurator Developer User's Guide.

In the following example, selecting option A and B implies that options within C are
selected when the value of their associated Property is "A1B1".

LIKE Expression that Selects Options Based on a Property Value
Constrain Alltrue('A','B') implies &C
for all &C in {optionsof('C')}
where &C.property("AB Compatibility") like "A1B1"

In the example below, selecting option A and B implies that options within C are
selected when the value of their associated Property is something other than "A1B1".

NOT LIKE Expression that Selects Options Based on a Property Value
Constrain Alltrue('A','B') implies &C
for all &C in {optionsof('C')}
where not (&C.property("AB Compatibility") like "A1B1")

For a list of comparison operators, see Operators Listed by Type, page 4-9.

4-14 Oracle Configurator Constraint Definition Language Guide

Text Concatenation Operator
Although "+" is included as a text concatenation operator, it can only be used in static
context; for example, the WHERE clause of iterators. As with any TEXT data type, you
cannot use text concatenation in the actual body of a constrain or contributor statement
unless it evaluates to a constant string. Oracle Configurator Developer validates this
condition when you generate logic.

COLLECT Operator
A collection of values can be created using an aggregation function such as Min(...),
Max(...), Sum(...), AnyTrue(...). An iterator can use the COLLECT operator to specify the
domain of the collection that is passed to the aggregation function. In many cases FOR
ALL serves that purpose. COLLECT Operator, Single Contribution, page 4-14 shows a
single contribution of the maximum value of the collection of children of Feature a
using a COLLECT operator and a FOR ALL iterator.

COLLECT Operator, Single Contribution
CONTRIBUTE Max({COLLECT &var FOR ALL &var IN {OptionsOf(a)}}) TO d;

has the same result as
CONTRIBUTE Max &var TO d
FOR ALL &var IN {OptionsOf(a)} ;

The COLLECT operator is necessary when limiting an aggregate. COLLECT Operator,
Single Contribution, page 4-14 shows a rule where the iteration of the FOR ALL and
WHERE clauses result in an error for every element of the collection {Option11,
Option32, OptionsOf(Feature1)} that does not contain the Property P1.

COLLECT Operator, Single Contribution
CONSTRAIN &varA IMPLIES Component.Featuure.Option
FOR ALL &varA IN {Option11, Option32, OptionsOf(Feature1)}
WHERE &varA.Property("P1") = 5;

COLLECT Operator Contributions, page 4-14 uses COLLECT, which prevents the
error.

COLLECT Operator Contributions
CONSTRAIN &varA IMPLIES Component.Feature.Option
FOR ALL &varA IN {Option11, Option32, {COLLECT &varB
FOR ALL &varB IN OptionsOf(Feature2)
WHERE &varB.Property("P1") = 5}};

COLLECT can be used in any context that expects a collection. The COLLECT operator
can be used along with a complex expression and a WHERE clause for filtering out
elements of the source domain of the collection. See WHERE, page 4-8 for more
information.

Since COLLECT is an operator that returns a collection, it can also be used inside of a
collection literal, as long as the collection literal has a valid inferred data type. The
Oracle Configurator compiler flattens the collection literal during logic generation,
which allows collections to be concatenated. See Collection Literals, page 4-31 for

CDL Elements 4-15

details.

The COLLECT operator can have only one iterator, because the return type is a
collection of singletons. CDL does not support using a Cartesian product with the
COLLECT operator.

The COLLECT operator cannot put dynamic variables in the IN and WHERE clauses, as
this may result in a collection that is unknown at compile time. For additional
information, see WHERE, page 4-8.

The COLLECT operator can use the DISTINCT keyword to collect distinct values from
a Property, as shown in COLLECT Operator with DISTINCT, page 4-15, which
prevents the selection of options having different values for the Property Shape from
the Option Feature Feature3. Feature3 has zero Minimum Selections and no limit
on Maximum Selections.

COLLECT Operator with DISTINCT
AnyTrue({COLLECT &opt1
 FOR ALL &opt1 IN {'Feature3'.Options()}
 WHERE &opt1.Property("Shape") = &shape})
EXCLUDES
AnyTrue({COLLECT &opt2
 FOR ALL &opt2 IN {'Feature3'.Options()}
 WHERE &opt2.Property("Shape") <> &shape})
FOR ALL &shape IN
 {COLLECT DISTINCT &node.Property("Shape")
 FOR ALL &node IN 'Feature3'.Options()}

Functions
In addition to operators, expressions can also contain functions, which may take
arguments and return results that can be used in the rest of the expression. All standard
mathematical functions are implemented in CDL.

The result of each function can participate as an operand of another operator or
function as long as the return type of the former matches with the argument type of the
latter.

Functions perform operations on their arguments and return values which are used in
evaluating the entire statement. Functions must have their arguments enclosed in
parentheses and separated by commas if there is more than one argument. Function
arguments can be expressions.

For example, both of the following operations have the correct syntax for the Round
function, provided that Feature-1 and Feature-2 are numeric Features:

Example
Round (13.4)
Round (Feature-1 / Feature-2)

CDL supports the following functions:

• Arithmetic, page 4-16

4-16 Oracle Configurator Constraint Definition Language Guide

• Trigonometric, page 4-18

• Logical, page 4-19

• Set, page 4-20

• Text, page 4-20

• Hierarchy or Compound, page 4-21

This section also contains information about Function Overflows and Underflows, page
4-21.

Important: There are new functions available for CDL when using the
Fusion Configurator Engine (FCE). The FCE is an alternative to the
configuration engine described in this document. For all information
about CDL with the FCE, see the Oracle Configurator Fusion Configurator
Engine Guide.

Arithmetic
The table Arithmetic Functions, page 4-16 lists the arithmetic functions that are
available in CDL. The term infinity is defined as a number without bounds. It can be
either positive or negative. The columns are Function and Description.

Arithmetic Functions

Function Description

Abs(x) Takes a single number as an argument and returns the positive
value (0 to +infinity). The domain range is -infinity to +infinity.
Returns the positive value of x. Abs(-12345.6) results in 12345.6

Round(x) Takes a single decimal number as an argument and returns the
nearest integer. If the A side of a numeric rule is a decimal
number, contributing to an imported BOM that accepts decimal
quantities, then the Round(x) function is unavailable. The reason
that the Round(x) function is unavailable is that the contributed
value does not need to be rounded as the B side accepts decimal
quantities. This function is available when the BOM item accepts
only integer values.

CDL Elements 4-17

Function Description

RoundDownToNearest(x,y) This is a binary function. x is a number between -infinity and
+infinity, y is a number greater than 0 and less than +infinity. A
number is returned between -infinity and +infinity. The first
argument is rounded to the nearest smaller multiple of the
second argument. For example, RoundDownToNearest(433,75)
returns 375.

RoundToNearest(x,y) This is a binary function. x is a number between -infinity and
+infinity, y is a number greater than 0 and less than +infinity. A
number is returned between -infinity and +infinity.
RoundToNearest(433,10) returns 430.

RoundUpToNearest(x,y) This is a binary function. The number x is between -infinity and
+infinity, and the number y is greater than 0 and less than
+infinity. A number is returned between -infinity and +infinity.
The first argument is rounded up to the nearest multiple of the
second argument. For example, RoundUpToNearest(34.1,0.125)
returns 34.125.

Ceiling(x) Takes a single decimal number as an argument and returns the
next higher integer. For example, ceiling(4.3) returns 5, and
ceiling(-4.3) returns -4.

Floor(x) Takes a single decimal number as an argument and returns the
next lower integer. For example, floor(4.3) returns 4, and
floor(-4.3) returns -5.

Log(x) Takes a single number greater than 0 and less than +infinity and
returns a number between -infinity and +infinity. Returns the
logarithmic value of x. An error occurs if x=0.

Log10(x) Takes a single number greater than 0 and less than +infinity and
returns a number between -infinity and +infinity. Returns the
base 10 logarithm of x. An error occurs if x=0.

Min(x,y,z...) Returns the smallest of its numeric arguments.

Max(x,y,z...) Returns the largest of its numeric arguments.

Mod(x,y) This is a binary function. Returns the remainder of x/y where x
and y are numbers between -infinity and +infinity. If y is 0, then
division by 0 is treated as an error. If x=y, then the result is 0. For
example, Mod(7,5) returns 2.

4-18 Oracle Configurator Constraint Definition Language Guide

Function Description

Exp(x) Returns e raised to the x power. Takes a single number between
-infinity and +infinity and returns a value between 0 and
+infinity.

Pow(x,y) This is a binary function. Returns the result of x raised to the
power of y. The number x is between -infinity and +infinity. The
integer y is between -infinity and +infinity and the returned
result is between -infinity and +infinity. If y=0, then the result is
1. For example, Pow(6,2) returns 36.

Sqrt(x) Sqrt(x) returns the square root of x. Takes a single number
between 0 and +infinity and returns a value between 0 and
+infinity. An input of -x results in an error.

Truncate(x,y) Truncate(x,y) takes a single number x and truncates it to the
number of y integers after the decimal point. The default value
of y is 0. For example, truncate(4.15678) returns 4 and
truncate(4.15678,2) returns 4.15.

Trigonometric
The table Trigonometric Functions, page 4-18 lists the trigonometric functions that are
available in CDL. The columns are Function and Description.

Trigonometric Functions

Function Description

Sin(x) Takes a single number x between -infinity and +infinity and
returns a value between -1 and +1.

ASin(x) Takes a single number between -1 and +1 and returns a value
between -pi/2 and +pi/2. ASin(x) returns the arc sine of x. An
input outside the range between -1 and +1 results in an error.

Sinh(x) Returns the hyperbolic sine of x in radians. Takes a single
number between -infinity and +infinity and returns a value
between -1 and +infinity. An error is returned when the result
exceeds the double. For example, sinh(-99) is valid but sinh(999)
results in an error.

CDL Elements 4-19

Function Description

Cos(x) Takes a single number between -infinity and +infinity and
returns a value between -1 and +1. Returns the cosine of x.

ACos(x) Takes a single number between -1 and +1 and returns a value
between 0 and pi. ACos(x) returns the arc cosine of x. An input
outside the range between -1 and +1 results in an error.

Cosh(x) Takes a single number between -infinity and +infinity and
returns a value between -infinity and +infinity. Returns the
hyperbolic cosine of x in radians. An error is returned if x
exceeds the max of a double: cosh(-200) is valid whereas
cosh(-2000) results in an error.

Tan(x) Takes a single number x between -infinity and +infinity and
returns a value between -infinity and +infinity.

ATan(x) Takes a single number between -infinity and +infinity and
returns a value between -pi/2 and +pi/2. ATan(x) returns the arc
tangent of x.

Tanh(x) Returns the hyperbolic tangent of x. Takes a single number x
between -infinity and +infinity and returns a value between -1
and +1.

ATan2(x,y) The arc tangent function is a binary function. The x and y values
are between -infinity and +infinity. It returns a value between -pi
and +pi. This is the four-quadrant tangent inverse.

Logical
The table Logical Functions, page 4-19 lists the logical functions that are available in
CDL. The columns are Function and Description.

Logical Functions

Function Description

AllTrue A logical AND expression. Accepts one or more logical values or
expressions. Returns true if all of the arguments are true, or false
if any argument is false. Otherwise, the value of AllTrue is
unknown.

4-20 Oracle Configurator Constraint Definition Language Guide

Function Description

AnyTrue A logical OR expression. Accepts one or more logical values or
expressions. Returns true if any of the arguments are true, or
false if all arguments are false. Otherwise, the value of AnyTrue
is unknown.

NotTrue Accepts a single logical value or expression. Returns True if the
argument is False or unknown. If the argument is True, the value
of NotTrue is unknown. For additional information about using
NotTrue, see the Oracle Configurator Modeling Guide.

Set
The table Set Functions, page 4-20 lists the set functions that are available in CDL. The
columns are Function and Description.

Set Functions

Function Description

Count Returns the count or number of members in the collection.

Min Returns the smallest numeric member in the collection.

Max Returns the largest numeric member in the collection.

Text
Although the Text functions are included here, they can only be used in static context;
for example the WHERE clause of iterators.

Note: As with any TEXT data type, do not use a text function in the
body of a CONSTRAINT or CONTRIBUTE statement unless it
evaluates to a constant string. The compiler validates this condition.

The table Text Functions, page 4-21 lists the text functions that are available in CDL.
The columns are Function and Description.

CDL Elements 4-21

Text Functions

Function Description

Matches Compares two operands of text literals and returns true if they
match.

NotMatches Compares two operands of text literals and returns true if they
do not match.

BeginsWith Compares two operands of text literals and returns true if the
first begins with the character(s) of the second.

EndsWith Compares two operands of text literals and returns true if the
first ends with the character(s) of the second.

Equals Compares two operands of text literals and returns true if the
first equals the second.

NotEquals Compares two operands of text literals and returns true if the
first does not equal the second

Hierarchy or Compound
In addition, several functions are available to support backward compatibility for
functions in Configurator Developer that operate over the Model structure hierarchy.

The table Compound Function, page 4-21 lists the compound function that is available
in CDL. The columns are Function and Description.

Compound Function

Function Description

OptionsOf Takes BOM Option Class, Component, or Feature as an
argument and returns its Options.

Function Overflows and Underflows
It is possible that some arithmetic functions produce an error either because of the
resulting size (larger than the largest positive or negative double) or an invalid input.
Entering a meaningful rule violation message can be helpful when debugging errors.

4-22 Oracle Configurator Constraint Definition Language Guide

For more information about violation messages, see the section on violation messages,
Oracle Configurator Developer User's Guide.

Following are some examples of possible error messages.

Invalid Input Range Error
Consider a Numeric rule in which Acos(A-integer) contributes to a Total. When the
input is out of the valid domain range (-1 to 1), Oracle Configurator returns the
following error message.
There is a contradiction selecting A-Integer

To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.
Calculation of ACos(x) - x is not a valid value.

Intermediate Value Propagation Error
It is possible that propagation through some math functions results in an unexpected
error because of an intermediate value propagated to the argument of the function. The
following Model has a Feature with two counted Options (Option1 and Option2), a
Resource (R) with no initial value (default is 0), and a Total (T) with no initial value
(default is 0).

Numeric Rule 1: Contribute Option1 *-1 to R

Numeric Rule 2: Sqrt(R) contribute to T

If Option1 is 1, then R has a value of -1. Numeric rule 2 tried to calculate the Sqrt(-1)
and Oracle Configurator returns the following error message.
There is a contradiction selecting 0ption1.

To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.
The result of an intermediate rule gives R an invalid value.

Calculated Input Value Out of Range Error
The following Model has a Boolean Feature (B1), a Feature with two counted Options
(Option1 and Option2), a Resource (R) with no initial value (default is 0), and a Total (T)
with no initial value (default is 0).

Numeric Rule 1: (Option1)*2000 contribute to T

Numeric Rule 2: Contribute CosH(T) * -1 to R

If Option1 is 1, then T has a value of 2000 and CosH(T) produces a result that is
greater than the max of a double and Oracle Configurator returns the following error
message.
There is a contradiction selecting 0ption1.

To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.
This rule uses the value calculated from Numeric Rule 1 - 0ption1 *
2000.

CDL Elements 4-23

Calculated Value Not Within Valid Range Error
A Model has two integer Features (I1 and I2) with initial values of 0. Totals (T1 and T2)
with no specified initial values. The Numeric rule ACos(I1-I2) contributes to T1. If I1 is 1
and I2 is 3, then I1-I2 is outside the valid range (-1 to 1) for ACos(x). Oracle
Configurator returns the following error message.
There is a contradiction selecting I2.

To enhance the usability of this error based on the particular rule, you can specify the
following violation message to appear after the system error.
The resulting value of I1 - I2 is outside the valid range of ACos(x).

Note: This behavior depends on the order in which the relations are
propagated.

Operands
Operands are the rule participants upon which the actions of keywords and operators
are executed. The following are kinds of operands:

• References, page 4-23

• Formal Parameters, page 4-28

• Literals, page 4-29

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
operands.

References
References are identifiers that refer to Model objects by name (Model nodes or Model
Properties). At runtime, the object or its value is used in the rule. A reference could be a
Model node or a Property reference.

Model Object Identifiers
A Model object identifier is a token that refers by name to a particular object in the
Model structure. At runtime it's the node or the value that is actually used in the rules
they participate in depending on the context.

Model object identifiers have two different representations: quoted with the single
quote ('...'), or not quoted. They do not have to be quoted if they refer to Model nodes
with names that contain only letters or digits, but they must be quoted otherwise (for
example, if the name contains a space, special character or is the same as a keyword.).
The table Representations of Model Object Identifiers , page 4-24 lists several
representation of Model object identifiers, quoted and unquoted.

4-24 Oracle Configurator Constraint Definition Language Guide

For example:

Representations of Model Object Identifiers

Model Object Identifier Refers to...

House Model called House.

'House' Model called House.

'Total Material' Node called Total Material. Because the node name contains a
space, it must be quoted.

See References, page 4-23 for details.

Simple Model Node References
References to Model nodes can be made using simple identifiers that specify the name
of the Model node. Model node references are context dependent. Since there may be
nodes that have the same name within a Model, just using a Model identifier may be
ambiguous depending on the context. (Model nodes created in Configurator Developer
must be unique only within the same parent. In other words, nodes that are siblings in
the Model structure cannot have the same name.)

For example, based on the House Model shown in Example House Model, page 3-2, the
context of the node called Color is ambiguous because it could refer to the Feature in
the House Model or to the Feature of the same name in the referenced Window Model.

Descendant Model nodes in the current Model context are always with higher priority
than ancestor nodes. Thus Color in context Frame is not ambiguous (since Frame is a
descendant node of House), but Color of the House is ambiguous. When it is not
possible to uniquely refer to a Model node in the context of a rule, you must use
compound identifiers. For details, see Compound Model Node References Showing
Context, page 4-24.

Compound Model Node References Showing Context
Compound Model node references are sequences of Model node identifiers separated
by the dot character (.). Compound references uniquely identify Model nodes in a
particular context by presenting Model node paths. Compound references are necessary
because Configurator Developer allows Model nodes to have identical names in the
same Model structure as long as they are not siblings. In other words, Compound
references are used for navigation in the Model structure. The most explicit path is the
full path. A full path contains all levels of the hierarchy by node name, including
Model, nested components, references, Option Classes, and Features.

In Full Path Model Node References, page 4-25, the first line shows the full path of

CDL Elements 4-25

Option Dark in the Feature Tint in the Component Glass in the referenced Model
SideWindow2 in the parent Model House. The second line shows the full path of Color
in Frame in FrontWindow1 in House.

Full Path Model Node References
...
House.SideWindow2.Glass.Tint.Dark
...
House.FrontWindow1.Frame.Color
...

You can omit any head of the path that does not disambiguate the reference. So to refer
precisely and only to Color in the context of House, you must specify enough of the
head of the path. The reference in Relative Path Model Node Reference, page 4-25
unambiguously refers to Color in Frame in FrontWindow1 in the House Model.

Relative Path Model Node Reference
...
FrontWindow1.Frame.Color

...

Property References
Identifiers that refer to System and User Properties of Model nodes must also be
compound. When referring to User Properties, you must use the explicit method
Property(). For example, in the context of Example House Model, page 3-2, House.
FrontWindow1.Property("Position")refers to the User Property called
Position. House.FrontWindow1.Position instead refers to a child Model node
called Position.

When referring to System Properties, use the name of the System Property name
directly. For example, FrontWindow1.MinInstances() refers to the
MinInstances System Property.

The table Property References, page 4-25 lists all methods available on Model node
identifiers. Return Type indicates the data type of the value returned by the method
cited in the Relationship column. Mutable, if Yes, means the value returned is affected
by changes in the state of the Model at runtime including instantiation of nodes. The
columns are Relationship, Applies to, Mutable, Return type, and Description.

Property References

Relationship Applies to Mutable Return
type

Description

<identifier>.Name() All model
nodes

No TEXT Resolves to the
model node name
of the current
identifier.

4-26 Oracle Configurator Constraint Definition Language Guide

Relationship Applies to Mutable Return
type

Description

<identifier>.Description() All model
nodes

No TEXT Resolves to the
model node
description of the
current identifier.

<identifier>.Options(), Option
Features,
BOM
Option
Classes,
BOM
Models

Yes NODE[] Resolves to a
collection of
references to all
child model
nodes of the
current identifier.

<identifier>.Property("<text
literal>")

All model
nodes

No BOOLEAN,
INTEGER,
DECIMAL,
or TEXT

Resolves to a
reference to the
named
user-defined
property of the
current identifier.
Return type
depends on the
type of the
user-defined
property.

<identifier>.MinInstances()
<identifier>.MaxInstances()

Component
s and BOM
models

Yes INTEGER Resolves to the
dynamic
min/max number
of instances
available at
runtime.

<identifier>.InstanceName() Component
s and BOM
models

No TEXT Resolves to the
instance name of
the current
identifier.

CDL Elements 4-27

Relationship Applies to Mutable Return
type

Description

<identifier>.Selection() Features
and option
classes that
have
Maximum
Number of
Selections =
1

Yes NODE Resolves to the
dynamic child
model node of
the current
identifier that is
selected at
runtime.

<identifier>.State() Boolean
Features,
Option
Features,
Options,
and BOM
nodes

Yes BOOLEAN Resolves to the
dynamic state of
the model node.

<identifier>.Value() Features
and BOM
nodes

Yes INTEGER,
DECIMAL
or TEXT

Resolves to the
dynamic value of
the model node.
Return type
depends on the
model node type.

<identifier>.Quantity() Options
and BOM
nodes

Yes INTEGER
or
DECIMAL

Resolves to the
dynamic quantity
of the model
node. Return type
depends on the
model node type.

The Oracle Configurator parser does not allow the following property references on the
left hand side of the rule when using CONTRIBUTE...TO statements:

• <identifier>.Selection.State

• <identifier>.Property("<text literal>")

Formal Parameter, page 4-28 shows invalid use of property references used in
CONTRIBUTE...TO statements.

Invalid Property References with CONTRIBUTE...TO Statements
CONTRIBUTE a TO b.Selection().State()
CONTRIBUTE a TO b.Property("RequiresGlossyFinish")

For details about using Model nodes and System Properties when defining rules, see

4-28 Oracle Configurator Constraint Definition Language Guide

the section on node types and System Properties, Oracle Configurator Developer User's
Guide.

Formal Parameters
Formal parameters are local variables defined in rule iterators. They consist of the name
of the identifier, prefixed with the ampersand character (&). Each parameter must be
unique among the others. Since formal parameters are always prefixed there is no
danger of ambiguity with model node references. Model nodes with the same name as a
formal parameter (&win) must be in quotes when referred to in CDL ('&win').

In Formal Parameter, page 4-28, the parameter &var is used in the CONTRIBUTE
statement. It is declared in the FOR ALL iterator, and it is used in the WHERE clause.

Formal Parameter
CONTRIBUTE &var.Property("NumProp") + 10 TO d
FOR ALL &var IN a.Options()
WHERE &var.Property("prop3") < 5;

Local Variables and Data Types
Local variables are used exclusively for rule iterators (FOR ALL) and are implicitly
declared a data type equivalent to the inferred type of the iterator collection. This allows
the Oracle Configurator parser to catch data type errors rather than leaving it to the
compiler.

Valid Local Variable of Inferred Data Type, page 4-28 shows an acceptable use of a
local variable of inferred type NODE.

Valid Local Variable of Inferred Data Type
...
CONSTRAIN &Color.Selection().property("dark") IMPLIES
Frame.Glass.Tint.Dark
FOR ALL &Color in OptionsOf(Color);
...

Once the inferred type of the local variable is determined, the Oracle Configurator
parser can validate its use in the context. For example, a local variable of type NODE
can be combined with a Model object identifier to produce a compound reference to a
Model node or Property.

Local Variables and References
The Oracle Configurator parser allows the reference shown in Valid Formal Parameter
and Reference, page 4-28, but an error displays when you generate logic if &LocalVar
evaluates to a node or a Property (not the name).

Valid Formal Parameter and Reference
...
&NodeArg.Child(&LocalVar)
...

The Oracle Configurator parser does not allow the references shown in Formal
Parameter and an Invalid Reference, page 4-29. In the first line, a formal parameter can

CDL Elements 4-29

appear only at the beginning of a Model object reference. In the second line, a Property
must evaluate to Property value.

Formal Parameter and an Invalid Reference
...
&NodeArg.&LocalVar
&NodeArg.Property(&LocalVar)
...

Literals
CDL supports the use of literals of any of the primitive data types:

• Numeric Literals, page 4-29

• Boolean Literals, page 4-30

• Text Literals, page 4-30

• Collection Literals, page 4-31

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
literals.

Numeric Literals
Numeric literals are simply presented as a sequence of digits as in Java. The table Types
of Numeric Literals, page 4-29 lists the type or numeric literals available in CDL. The
columns are Numeric Literal and Description.

Types of Numeric Literals

Numeric Literal Description

3 Integer literal

128 Integer literal

25.1234 Decimal literal

.01 Decimal literal

6.137E+23 Decimal literal

1e-9 Decimal literal

4-30 Oracle Configurator Constraint Definition Language Guide

Numeric Literal Description

E Decimal literal, the constant e

PI Decimal literal, the constant PI

Boolean Literals
Boolean literals are presented by the keywords TRUE and FALSE.

Text Literals
Text literals are presented by a sequence of Unicode characters enclosed in double
double-quotes ("..."). Comments and whitespace characters are not detected inside text
literals. Literal concatenation is allowed using the plus (+) operator - this allows long
text literals to be placed on multiple lines. The resulting terminal symbol is still
returned as a single literal.

Text Literals
..."This is a text literal"...
"This text is not a /*comment*/. "+
"All symbols are included in the literal"
...

Text Literal with Escapes
...
"This \"text\"\n is quoted and on two lines"...

Multiple-Line Text Literal
...
"This is also a text literal "+
"that continues on this line "+
"and this. It forms one long line of text"
...

The table Escaped Characters Inside Double Quotes, page 4-30 lists the escaped
characters that can be used inside the double quotes, and the hexadecimal value,
abbreviation, and a description of each.

Escaped Characters Inside Double Quotes

Escaped
Character

Hexadecimal Value Abbreviation Description

\t \u0009 HT horizontal tab

\n \u000a LF linefeed

CDL Elements 4-31

Escaped
Character

Hexadecimal Value Abbreviation Description

\f \u000c FF form feed

\r \u000d CR carriage return

\" \u0022 " double quote

\\ \u005c \ backslash

Collection Literals
Collection literals are not exactly literals in the token sense as they are described in the
syntactical grammar. They consist of a sequence of tokens (identifiers or literals)
separated by commas (",") and enclosed by braces ("{" and "}"), as shown in A Valid
Collection of Integer Literals, page 4-31 through Invalid Collection , page 4-32.

In the example Valid Collection of Integer Literals, page 4-31, Collection 2 shows an
element of a collection being specified as another collection. Collections that contain
other collections are flattened into a flat list of elements when the rule is compiled. In
other words, the content of the inner collection is substituted into the outer collection.

Valid Collection of Integer Literals
Collection 1
...
{3, 25, 0, -34, 128}
...

Collection 2
...
{3, 25, {0, -34}, 128}
...

The example Valid Collection of Nodes, page 4-31 shows several valid collections of
Model nodes.

Valid Collection of Nodes
Collection 1
...
{A, B, OptionsOf(C)}
...

Collection 2
...
{A, B, C1, C2, C3}
...

Collection 3

4-32 Oracle Configurator Constraint Definition Language Guide

...
{MyTotal, MyFeature}
...

Collection 4
...
{FrontWindow1, FrontWindow3, SideWindow2}
...

In the example Valid Collection of Nodes, page 4-31, Collection 2 is the same as
Collection 1 with exploded children of C. And Collections 3 and 4 contain Model node
names.

Only collections of homogenous data types are allowed in CDL. That means you cannot
mix integer and text literals in a single collection. But you can mix them if the different
literals can be implicitly converted to the same type. See Data Types, page 2-5 for more
information about implicit conversions. Validation of a homogeneous collection checks
that all elements in the collection are valid for all uses of the collection.

As shown in the following examples, the inferred data type of the collection is the least
common type of all elements:

In the example Valid Collections of Decimals, page 4-32, Collection 1 is a valid
collection of decimal literals. Collection 2 is also a valid collection of decimals because
MyTotal converts to a decimal.

Valid Collections of Decimals
Collection 1
...
{3, 25.0, 1e-9, -34}
...

Collection 2
...
{MyTotal, {1e-9, -34}}
...

The example Invalid Collection , page 4-32shows an invalid collection because there is
no distinct data type that can be inferred.

Invalid Collection
...
{"aha", 25, 128, true}
...

Separators
Separators are characters that serve as syntactic filling between the keywords and the
expressions. Their goal is to maintain the structure of the token stream by introducing
boundaries between the tokens and by grouping the tokens through some syntactic
criteria. See Notation Used in Presenting CDL Grammar, page A-1 for the syntax
definition of separators.

The table Valid CDL Separators, page 4-33 lists the separators that are valid in CDL.

CDL Elements 4-33

The columns are Separator and Description.

Valid CDL Separators

Separator Description

(The open parenthesis indicates the beginning of function
arguments or the beginning of an expression.

) The close parenthesis indicates the end of function arguments or
the end of an expression

, The comma separates arguments or collection elements.

; The semi-colon separates statements.

. The dot character separates identifiers in compound references.

Comments and Whitespace
Both comments and the whitespace category of elements are not tokens and therefore
ignored by the Oracle Configurator parser.

See Notation Used in Presenting CDL Grammar, page A-1 for the syntax definition of
comments and whitespace.

Comments
You can add either single-line or multi-line comments to a rule written in CDL.
Single-line comments are preceded by two hyphens ("- -") or a two slashes ("//") and end
with the new line separator (such as a carriage return or line feed). A multi-line
comment is preceded by a slash and an asterisk ("/*"). An asterisk followed by a slash ("
*/") indicates the end of the comment.

CDL Comments, page 4-33 shows single-line and multi-line comments.

CDL Comments
-- This is a single-line comment
// This is also a single-line comment
/* This is a multi-line comment,
 spanning across lines */

Multiple Line Comments within a Statement Rule, page 4-34 shows multiple comment
lines within a Statement Rule.

4-34 Oracle Configurator Constraint Definition Language Guide

Multiple Line Comments within a Statement Rule
/******************
* This constrains the color of the frame
* to the tint of the glass.
*/
BLACK -- This comes from Frame.Color.Black
IMPLIES
Dark -- This comes from Glass.Tint.Dark

The constraint shown in Multiple Line Comments within a Statement Rule, page 4-34
can also be written as follows without losing its syntax and semantics:

Black IMPLIES Dark

See Comment Symbols, page A-8 for more information.

Whitespace and Line Terminators
Whitespace characters include the following:

• Blank spaces (' ')

• Tabs ('\t')

• New lines ('\n')

• Line feed ('\l')

• Carriage return ('\r')

• Form feed ('\f')

CDL Formal Grammar A-1

A
CDL Formal Grammar

This appendix provides a programmer's reference of CDL syntax.

This appendix covers the following topics:

• Notation Used in Presenting CDL Grammar

• Terminal Symbols

• Nonterminal Symbols

• EBNF Source Code Definitions for CDL Terminal Symbols

Notation Used in Presenting CDL Grammar
The notation used in this appendix to present the lexical grammar of CDL follows the
Extended Backus-Naur Form (EBNF) symbols. The table Notation Used in Presenting
CDL Grammar (EBNF), page A-1 lists the symbols used in presenting CDL Grammar
using EBNF, and provides a description of each. The symbols help you read this
appendix.

Notation Used in Presenting CDL Grammar (EBNF)

Symbol Description

| A vertical bar separates alternatives within brackets, braces, or
alternative productions.

[] Square brackets enclose optional items.

{} Braces enclose repetition.

A-2 Oracle Configurator Constraint Definition Language Guide

Symbol Description

* An asterisk shows that the preceding element can be repeated 0
or more times.

+ A plus shows that the preceding element can be repeated 1 or
more times.

? A question mark shows that the preceding element can be
repeated 0 or 1 times.

- A minus shows that the trailing element has been excluded from
the preceding element.

: A colon shows assignment of the production(s) that follow,
separated by a vertical bar (|) if multiple.

::= In Nonterminal Symbols, page A-8, a doubled colon followed
by an equals sign shows assignment of the production(s) that
follow.

In EBNF Source Code Definitions for CDL Terminal Symbols,
page A-11, a pound sign shows that a symbol name is private to
the set of terminal symbols.

< > Angle brackets enclose the name of a terminal symbol. In EBNF
Source Code Definitions for CDL Terminal Symbols, page A-11,
angle brackets also enclose the definition of a terminal symbol.

TERMINAL Terminal symbols represent the names, characters, or literal
strings of tokens. Quoted upper case is used for terminal
symbols. CONSTRAIN and WHERE are examples of terminal
symbols.

NonTerminal Nonterminal symbols represent the names of grammar rules.
Unquoted mixed case is used for non-terminals.
ConstrainingExpression and BooleanExpression are examples of
nonterminal symbols.

The grammar presented in this appendix includes productions containing a
nonterminal symbol followed by a sequence of terminal or nonterminal symbols.
Alternative sequences start with a vertical bar. For an explanation of syntax
typographical conventions and symbols, see also Syntax Notation, page 1-4.

CDL Formal Grammar A-3

Examples of Notation Used in Presenting CDL Grammar
This section provides examples of the use of the notation described in Notation Used in
Presenting CDL Grammar (EBNF), page A-1. You can use it to interpret the definitions
provided in Terminal Symbols, page A-3 and Nonterminal Symbols, page A-8.

Example 1
The following definition is from Keyword Symbols, page A-4:

Example
CONSTRAIN
: "CONSTRAIN"

This definition means that the terminal symbol CONSTRAIN is defined as the character
string CONSTRAIN.

Example 2
The following definition is from Literal Symbols, page A-5:

Example
INTEGER_LITERAL
: "0" | <NONZERO_DIGIT> (<DIGIT>)*

This definition means that the terminal symbol INTEGER_LITERAL is defined as:

• the digit 0, or

• a single occurrence of the symbol NONZERO_DIGIT, page A-6 followed by 0 or
more occurrences of the symbol DIGIT, page A-5

Example 3
The following definition is from Nonterminal Symbols:, page A-8

Example
Constraint
::= (<CONSTRAIN>)? ConstrainingExpression

This definition means that the nonterminal symbol Constraint is defined as 0 or 1
occurrences of the symbol CONSTRAIN, page A-4 followed by the symbol
ConstrainingExpression , page A-9.

Terminal Symbols
This section summarizes the terminal symbols (lexical productions) for CDL, in the
form of EBNF. For your convenience in using this section, the names of symbols
referenced in another symbols or rule are cross-references linked to their definitions.
For example, the cross-reference link CONSTRAIN, page A-3 is used in some rules; in
that rule you can use the link to jump to the definition of the symbol CONSTRAIN.

A-4 Oracle Configurator Constraint Definition Language Guide

The format of the EBNF coding in this section has been edited slightly for easier
reading. To examine the precise set of terminal symbol definitions, see EBNF Source
Code Definitions for CDL Terminal Symbols, page A-11.

See Notation Used in Presenting CDL Grammar (EBNF), page A-1 for information on
the notation used in this section.

Keyword Symbols
See Keywords, page 4-4 for an explanation of this topic.

EBNF for Keyword Symbols
CONSTRAIN
: "CONSTRAIN"
CONTRIBUTE
: "CONTRIBUTE"
COMPATIBLE
: "COMPATIBLE"

OF
: "OF"
FORALL
: "FOR ALL"
IN
: "IN"
WHERE
: "WHERE"
COLLECT
: "COLLECT"
DISTINCT
: "DISTINCT"
WHEN
: "WHEN"
WITH
: "WITH"
TO
: "TO"
REQUIRES
: "REQUIRES"
IMPLIES
: "IMPLIES"
EXCLUDES
: "EXCLUDES"
NEGATES
: "NEGATES"
DEFAULTS
: "DEFAULTS"
FUNC_PTR
: "@"

Operator Symbols
See Operators, page 4-9 for an explanation of this topic.

CDL Formal Grammar A-5

EBNF for Operator Symbols
PLUS
: "+"
MINUS
: "-"
MULTIPLY
: "*"
DIVIDE
: "/"
ZDIV
: "ZDIV"
MOD
: "%"
EXP
: "^"
EQUALS
: "="
NOT_EQUALS
: "<>"
GT
: ">"
GE
: ">="
LT
: "<"
LE
: "<="
NOT
: "NOT"

NOTTRUE
: "NOTTRUE"
AND
: "AND"
OR
: "OR"
LIKE
: "LIKE"

Literal Symbols
See Literals, page 4-29 for an explanation of this topic. Escaped Characters Inside
Double Quotes, page 4-30 describes the values of TEXT_LITERAL, page A-6.

EBNF for Literal Symbols
END
: "\\0"

DIGITS
: (<DIGIT>)+

DIGIT
: "0" | <NONZERO_DIGIT>

A-6 Oracle Configurator Constraint Definition Language Guide

NONZERO_DIGIT
: ["1"-"9"]
TEXT_LITERAL
: "\"" (~["\"","\\","\n","\r"]
| "\\" ["n","t","b","r","f","\\","\""]
)* "\""
INTEGER_LITERAL
: "0" | <NONZERO_DIGIT> (<DIGIT>)*
DECIMAL_LITERAL

: (<INTEGER_LITERAL> "." (<DIGITS>)? (<EXPONENTIAL>)?
| <INTEGER_LITERAL> <EXPONENTIAL>
| "." <DIGITS> (<EXPONENTIAL>)?
| "PI"
| "E"
)

EXPONENTIAL
: "E" (<PLUS> | <MINUS>)? <INTEGER_LITERAL>BOOLEAN_LITERAL
: "TRUE"
| "FALSE"

Separator Symbols
See Separators, page 4-32 for an explanation of this topic.

EBNF for Separator Symbols
Example
DOT
: "."
COMMA
: ","
SEMICOLON
: ";"
LPAREN
: "("
RPAREN
: ")"
LBRACKET
: "{"
RBRACKET
: "}"

Identifier Symbols
See the following sections for an explanation of this topic:

• References, page 4-23

• Model Object Identifiers, page 4-23

• Property References, page 4-25

• Unicode Characters, page B-4

Values for Unicode Escapes Allowed in Identifiers, page A-7 lists the character values

CDL Formal Grammar A-7

for the Unicode escapes that are allowed in the LETTER, page A-8 symbol. The
columns are Unicode and Character.

Values for Unicode Escapes Allowed in Identifiers

Unicode Character

"\u0024" $ (dollar sign)

"\u0041"-"\u005a" A through Z

"\u005f" _ (underscore)

"\u0061"-"\u007a" a through z

"\u00c0"-"\u00d6" Latin Capital Letter A With Grave through Latin Capital Letter
O With Diaeresis

"\u00d8"-"\u00f6" Latin Capital Letter O With Stroke through Latin Small Letter O
With Diaeresis

"\u00f8"-"\u00ff" Latin Small Letter O With Stroke through Latin Small Letter Y
With Diaeresis

"\u0100"-"\u1fff" Latin Capital Letter A With Macron through Greek Dasia

"\u3040"-"\u318f" Hiragana Letter Small A through Hangul Letter Araeae

"\u3300"-"\u337f" Square Apaato through Square Corporation

"\u3400"-"\u3d2d" CJK Unified Ideographs

"\u4e00"-"\u9fff" CJK Unified Ideographs

"\uf900"-"\ufaff" CJK Compatibility Ideographs

EBNF for Identifier Symbols
USER_PROP_IDENTIFIER
: "property"

SIMPLE_IDENTIFIER
: <LETTER> (<LETTER_OR_DIGIT>)*
FORMAL_IDENTIFIER
: "&" <LETTER> (<LETTER_OR_DIGIT>)*
QUOTED_IDENTIFIER
: "'" (~["\'"] | "\\'")* "'"

A-8 Oracle Configurator Constraint Definition Language Guide

LETTER
: ["\u0024", "\u0041"-"\u005a", "\u005f", "\u0061"-"\u007a",
 "\u00c0"-"\u00d6", "\u00d8"-"\u00f6", "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff", "\u3040"-"\u318f", "\u3300"-"\u337f",
 "\u3400"-"\u3d2d", "\u4e00"-"\u9fff", "\uf900"-"\ufaff"]

LETTER_OR_DIGIT
: <LETTER> | <DIGIT> | ("\\" ("\"" | "\'" | "\\") | "\'") >

Comment Symbols
See Comments, page 4-33 for an explanation of this topic.

EBNF for Comment Symbols
"//"
: IN_SINGLE_LINE_COMMENT
"--"
: IN_SINGLE_LINE_COMMENT
"/*"
: IN_MULTI_LINE_COMMENT

IN_SINGLE_LINE_COMMENT

:

<SINGLE_LINE_COMMENT: "\n" | "\r" | "\r\n" > : DEFAULT

IN_MULTI_LINE_COMMENT

:

< : "*/" > : DEFAULT

IN_SINGLE_LINE_COMMENT,IN_MULTI_LINE_COMMENT

:

< ~[] >

Whitespace Symbols
See Whitespace and Line Terminators, page 4-34 for an explanation of this topic.

EBNF for Whitespace Symbols
WHITESPACE
: (" " | "\t" | "\f" | <LINE_BREAK>)+
LINE_BREAK
: "\n" | "\r" | "\r\n"

Nonterminal Symbols
This section summarizes the nonterminal symbols for CDL, in the form of EBNF. For
your convenience in using this section, the names of symbols referenced in another
symbols or rule are cross-references linked to their definitions. For example, the
cross-reference link Expression, page A-10 is used in some rules; in that rule you can
use the link to jump to the definition of the symbol Expression.

See Notation Used in Presenting CDL Grammar (EBNF), page A-1 for information on
the notation used in this section.

CDL Formal Grammar A-9

Important: There are new symbols available for CDL when using the
Fusion Configurator Engine (FCE). The FCE is an alternative to the
configuration engine described in this document. For all information
about CDL with the FCE, see the Oracle Configurator Fusion Configurator
Engine Guide.

EBNF for Nonterminal Symbols
Statements
::= ((Statement)?) (";" (Statement)?)* (<END> | <EOF>)

Statement

::= (Constraint | Contribute | Compatible)

Constraint
::= (<CONSTRAIN>)? ConstrainingExpression

ConstrainingExpression
::= (Expression ((ConstrainingOperator Expression) (ForAll)?)?)

ConstrainingOperator
::= (<REQUIRES> | <IMPLIES> | <EXCLUDES> | <NEGATES> | <DEFAULTS>)

Contribute
::= (<CONTRIBUTE> Expression <TO> Reference) (ForAll)?

Compatible
::= (<COMPATIBLE> (<FORMAL_IDENTIFIER> <OF> Reference) ((","
<FORMAL_IDENTIFIER> <OF> Reference))+ Where)

Method
::= (<SIMPLE_IDENTIFIER> Arguments)

Event
::= (<SIMPLE_IDENTIFIER> (":" <TEXT_LITERAL>)?)

EventScope
::= (<SIMPLE_IDENTIFIER>)

A-10 Oracle Configurator Constraint Definition Language Guide

ForAll
::= (<FORALL> Iterator ("," Iterator)* (Where)?)

Where
::= (<WHERE> Expression)

Iterator
::= (<FORMAL_IDENTIFIER> <IN> (CollectionExpression |
CollectionLiteral | Function | Reference))

Expression
::= OrExpression

OrExpression
::= (AndExpression (<OR> OrExpression)?)

AndExpression
::= (EqualityExpression (<AND> AndExpression)?)

EqualityExpression
::= (RelationalExpression ((<EQUALS> | <NOT_EQUALS> | <LIKE>)
EqualityExpression)?)

RelationalExpression
::= (AdditiveExpression ((<GT> | <GE> | <LT> | <LE>)
RelationalExpression)?)

AdditiveExpression
::= (MultiplicativeExpression (((<PLUS> | <MINUS>)
AdditiveExpression))?)

MultiplicativeExpression
::= (UnaryExpression (((<MULTIPLY> | <DIVIDE> | <ZDIV> | <MOD>)
MultiplicativeExpression))?)

UnaryExpression
::= ((((<PLUS> | <MINUS> | <NOT> | <NOTTRUE>))? ExponentExpression
))

ExponentExpression
::= (PrimaryExpression ("^" ExponentExpression)?)

PrimaryExpression
::= (CollectionExpression | Literal | "(" Expression ")" | Function |
Reference)

CollectionExpression
::= "{" "COLLECT" ((<DISTINCT>))? Expression ForAll "}"

CDL Formal Grammar A-11

Literal
::= ((<INTEGER_LITERAL>) | (<DECIMAL_LITERAL>) | (
<BOOLEAN_LITERAL>) | (<TEXT_LITERAL>) | CollectionLiteral)

Arguments
::= "(" (ExpressionList)? ")"

ExpressionList
::= ExpressionElement ("," ExpressionElement)*

ExpressionElement
::= ((<FUNC_PTR> (FunctionName | AnyOperator)) | Expression)

CollectionLiteral
::= "{" (ExpressionList)? "}"

Function
::= (FunctionName Arguments)
See Functions for a list of available functions.
Reference
::= ((ModelIdentifier (<DOT> ModelIdentifier)* (<DOT>
SysPropIdentifier)* (<DOT> UserPropIdentifier)?) | (
ArgumentIdentifier (<DOT> SysPropIdentifier)* (<DOT>
UserPropIdentifier)?))

UserPropIdentifier
::= (<USER_PROP_IDENTIFIER> "(" <TEXT_LITERAL> ")")

SysPropIdentifier
::= (<SIMPLE_IDENTIFIER> Arguments)

ModelIdentifier
::= ((<SIMPLE_IDENTIFIER> | <QUOTED_IDENTIFIER>))

ArgumentIdentifier
::= <FORMAL_IDENTIFIER>

FunctionName
::= (<SIMPLE_IDENTIFIER> | <FORMAL_IDENTIFIER> | <QUOTED_IDENTIFIER>)

AnyOperator
::= (ConstrainingOperator | <CONTRIBUTE> | <COMPATIBLE> | <PLUS> |
<MINUS> | <MULTIPLY> | <DIVIDE> | <ZDIV> | <MOD> | <EXP> | <EQUALS> |
<NOT_EQUALS> | <GT> | <GE> | <LT> | <LE> | <NOT> | <NOTTRUE> | <AND> |
<OR> | <LIKE>)

EBNF Source Code Definitions for CDL Terminal Symbols
This section provides the precise set of definitions for the terminal symbols of CDL,
taken directly from the defining source code. For a version of these definitions that is
edited slightly for easier reading, see Terminal Symbols, page A-3.

A-12 Oracle Configurator Constraint Definition Language Guide

EBNF Source Code for Terminal Symbols
SPECIAL_TOKEN : /* whitespace */
{
 < WHITESPACE: (" " | "\t" | "\f" | <LINE_BREAK>)+ >
| < LINE_BREAK: "\n" | "\r" | "\r\n" >}

MORE : /* comments */{

 "//" : IN_SINGLE_LINE_COMMENT
| "--" : IN_SINGLE_LINE_COMMENT
| "/*" : IN_MULTI_LINE_COMMENT}

<IN_SINGLE_LINE_COMMENT>
SPECIAL_TOKEN :{

 <SINGLE_LINE_COMMENT: "\n" | "\r" | "\r\n" > : DEFAULT}

<IN_MULTI_LINE_COMMENT>
SPECIAL_TOKEN :{

 <MULTI_LINE_COMMENT: "*/" > : DEFAULT}

<IN_SINGLE_LINE_COMMENT,IN_MULTI_LINE_COMMENT>
MORE :{

 < ~[] >}

TOKEN : /* literals */{ < END: "\\0" >
| < #DIGITS: (<DIGIT>)+ >
| < #DIGIT: "0" | <NONZERO_DIGIT> >
| < #NONZERO_DIGIT: ["1"-"9"] >
| < TEXT_LITERAL: "\"" (~["\"","\\","\n","\r"]
 | "\\" ["n","t","b","r","f","\\","\""]
)* "\"" >

| < INTEGER_LITERAL: "0" | <NONZERO_DIGIT> (<DIGIT>)* >
| < DECIMAL_LITERAL: (<INTEGER_LITERAL> "." (<DIGITS>)? (
<EXPONENTIAL>)?
 | <INTEGER_LITERAL> <EXPONENTIAL>
 | "." <DIGITS> (<EXPONENTIAL>)?
 | "PI"
 | "E"
) >
| < #EXPONENTIAL: "E" (<PLUS> | <MINUS>)? <INTEGER_LITERAL> >
| < BOOLEAN_LITERAL: "TRUE" | "FALSE" >}

TOKEN : /* operators */{
 < PLUS: "+" >
| < MINUS: "-" >
| < MULTIPLY: "*" >
| < DIVIDE: "/" >
| < ZDIV: "ZDIV" >
| < MOD: "%" >
| < EXP: "^" >
| < EQUALS: "=" >
| < NOT_EQUALS: "<>" >
| < GT: ">" >
| < GE: ">=" >

CDL Formal Grammar A-13

| < LT: "<" >
| < LE: "<=" >
| < NOT: "NOT" >
| < NOTTRUE: "NOTTRUE" >
| < AND: "AND" >
| < OR: "OR" >
| < LIKE: "LIKE" >}

TOKEN : /* keywords */{
 < CONSTRAIN: "CONSTRAIN" >
| < CONTRIBUTE: "CONTRIBUTE" >
| < COMPATIBLE: "COMPATIBLE" >

| < OF: "OF" >
| < FORALL: "FOR ALL" >
| < IN: "IN">
| < WHERE: "WHERE" >
| < COLLECT: "COLLECT" >
| < DISTINCT: "DISTINCT" >
| < WHEN: "WHEN" >
| < WITH: "WITH" >
| < TO: "TO" >
| < REQUIRES: "REQUIRES" >
| < IMPLIES: "IMPLIES" >
| < EXCLUDES: "EXCLUDES" >
| < NEGATES: "NEGATES" >
| < DEFAULTS: "DEFAULTS" >
| < FUNC_PTR: "@" >
}

TOKEN : /* separators */{
 < DOT: "." >
| < COMMA: "," >
| < SEMICOLON: ";" >
| < LPAREN: "(" >
| < RPAREN: ")" >
| < LBRACKET: "{" >
| < RBRACKET: "}" >}

TOKEN : /* identifiers */{

 < USER_PROP_IDENTIFIER: "property" >

| < SIMPLE_IDENTIFIER: <LETTER> (<LETTER_OR_DIGIT>)* >
| < FORMAL_IDENTIFIER: "&" <LETTER> (<LETTER_OR_DIGIT>)* >
| < QUOTED_IDENTIFIER: "'" (~["\'"] | "\\'")* "'" >
| < #LETTER: ["\u0024", "\u0041"-"\u005a", "\u005f", "\u0061"-"\u007a",
 "\u00c0"-"\u00d6", "\u00d8"-"\u00f6", "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff", "\u3040"-"\u318f", "\u3300"-"\u337f",
 "\u3400"-"\u3d2d", "\u4e00"-"\u9fff", "\uf900"-"\ufaff"] >
| < #LETTER_OR_DIGIT: <LETTER> | <DIGIT> | ("\\" ("\"" | "\'" | "\\")
| "\'") >}

CDL Validation B-1

B
CDL Validation

This appendix provides additional information about the Oracle Configurator parser's
expectations and requirements during rule validation.

This appendix covers the following topics:

• Validation of CDL

• The Input Stream to the Oracle Configurator Parser

• Name Substitution

Validation of CDL
As with any language, CDL requires a precise syntax and grammar to ensure that it can
be interpreted by Oracle Configurator. The Oracle Configurator parser handles
validation at the level of individual rules. A compiler uses the parser to validate the
entire set of rules in a configuration model, and then translates them into executable
code.

The Parser
The Oracle Configurator parser analyzes the CDL input stream of a rule definition. The
parser ignores whitespace and comments and only analyzes the tokens of the input
stream to determine if the rule definition is valid.

The parser validates the grammar and structure of rule definition tokens according to
the Extended Backus-Naur Form (EBNF). For more information, see Notation Used in
Presenting CDL Grammar, page A-1. The parser is part of the compiler. For details
about the compiler, see The Compiler, page B-2.

Calling the Oracle Configurator Parser
In Configurator Developer, clicking the following buttons in the Statement Rule Details
page calls the Oracle Configurator parser:

B-2 Oracle Configurator Constraint Definition Language Guide

• Validate Rule Text

• Apply

• Apply and Create Another

The Parser's Validation Criteria
Unless all of the following are true, the parser returns an error:

• All tokens are known CDL elements

• The token order is correct according to CDL syntax

• Data types match within an expression

• Model nodes specified in the rule exist in the Model structure, and can be
unambiguously identified by the specified path.

Note that it is possible for the parser to successfully validate a rule, but an
"ambiguous reference" error message then appears when generating Model logic.
This is because Model structure changes can cause a reference to become
ambiguous after the parser validates a rule. For more information, see Simple
Model Node References, page 4-24.

• Operators are valid

• Model names that are identical to a CDL keyword are in quotation marks

• Node names containing spaces are in single quotation marks

• Comment statements are properly delimited with a double hyphen, double slash, or
/* and */

• A variable (formal identifier) contains an ampersand (&) preceding the variable
name

• A variable name is declared only once in the same scope

• A variable appears only once in a single statement (&NodeArg.&LocalVar)

The Compiler
The Oracle Configurator compiler parses all the rule definitions in a Model and then
translates the rule set into executable code that can be interpreted by the runtime Oracle
Configurator engine.

CDL Validation B-3

Calling the Oracle Configurator Compiler
The compiler runs when you generate Model logic in Configurator Developer.

For more information, see the section on generating Model logic, Oracle Configurator
Developer User's Guide.

For information about generating logic programmatically using
CZ_modelOperations_pub.GENERATE_LOGIC and
CZ_modelOperations_pub.REFRESH_JRAD_UI, see the Oracle Configurator
Implementation Guide.

The Compiler's Validation Criteria
Unless the following are true, the compiler returns an error:

• Text expressions evaluate to a static string (information that does not change at
runtime)

• The data type of arguments match

• The passed parameter resolves to a reference to an existing Model node or Property

• User Properties must be static strings

For example, &A.Property("Hi") but not &A.Property(B.value)

• Participants of LIKE and NOT LIKE evaluate to a static string

• All rule participants exist in the Model structure

The Input Stream to the Oracle Configurator Parser
The input stream presented to the Oracle Configurator parser for lexical analysis is a
sequence of Unicode characters. The input stream is processed through the following
translations:

• All Unicode escaped characters from the input stream are translated into raw
Unicode characters. For information about the format, see Unicode Characters, page
B-4.

• All input characters are translated via the lexical rules into lexemes. The lexemes
are whitespace characters, comments, and tokens. Whitespace characters and
comments are ignored.

If there are errors in the lexical translation of characters into tokens they will be
raised as parser errors.

• Successfully translated tokens are presented for syntactical analysis as a stream of

B-4 Oracle Configurator Constraint Definition Language Guide

terminal symbols. Tokens in the input stream can be one of the following types:

• Keyword

• Operator

• Literal

• Identifiers

• Separator.

Additional details about each token type are provided in CDL Statements, page 4-1.

Unicode Characters
Unicode escaped characters are of the format \uxxxx where xxxx is the hexadecimal
value representing the character in the Unicode character set. For example the Unicode
escape of the character "?" is "\u003f".

Name Substitution
When parsing identifiers that are references, the Oracle Configurator parser extracts the
identity of each identifier (ps_node_id/model_ref_expl_id) and stores it with the
intermediate representation of the identifier. This preserves the semantics of the rules
regardless of name changes or modifications to the Model structure.

Name Persistency
Since the model object identifiers are case insensitive, the Oracle Configurator parser
must preserve the original format of the rule definition. If the Model structure or node
names participating in the rule do not change, Configurator Developer displays the
original text exactly as it was entered.

If the name of a rule participant changes, Configurator Developer automatically
updates the displayed rule definition at the time of viewing or in the Model Report to
prevent you from being misdirected to a different or no longer existing Model node.

Ambiguity Resolution
Model structure changes or changes to a node can cause one or more of the references
participating in a rule definition to become ambiguous. You must manually resolve
ambiguities by inserting or removing identifiers from the reference, as needed.

Glossary-1

Glossary

This glossary contains definitions relevant to working with Oracle Configurator.

A

Archive Path

The ordered sequence of Configurator Extension Archives for a Model that determines
which Java classes are loaded for Configurator Extensions and in what order.

B

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

batch validation

A background process for validating selections in a configuration.

binding

Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM Standard
Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO (Assemble To Order)
rules, and other data are also imported into Configurator Developer. In Configurator
Developer, you can extend the structure of the BOM Model, but you cannot modify the
BOM Model itself or any of its attributes.

Glossary-2

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM Model
created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

C

CDL (Constraint Definition Language)

A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

CIO (Oracle Configuration Interface Object)

A server in the runtime application that creates and manages the interface between the
client (usually a user interface) and the underlying representation of model structure
and rules in the generated logic.

command event

An event that is defined by a character string and detected by a command listener.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to determine
the selection state of a logical Item (Option, Boolean Feature, or List-of-Options Feature)
based on a comparison of two numeric values (numeric Features, Totals, Resources,
Option counts, or numeric constants). The numeric values being compared can be
computed or they can be discrete intervals in a continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,

Glossary-3

Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility relationship
where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration model

Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime Oracle
Configurator window. See also model.

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which end
users make selections to configure an orderable product. A configuration session is

Glossary-4

limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Developer

See OCD.

Configurator Extension

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so that
the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node's parent to a referenced Model.

Constraint Definition Language

See CDL

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models that support connectivity and
contain trackable components. Configurations created from Container Models can be
tracked and updated in Oracle Install Base

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total value.
See also Total.

Glossary-5

Consumes from

A relation used to create a specific type of Numeric Rule that decrements a total value,
such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

CZ

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well as
specific tables used during the construction of the configurator.

D

default

In a configuration, the automatic selection of an option based on the preselection rules
or the selection of another option.

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state of
Features or Options in a default relation to other Features and Options. For example, if
A Defaults B, and you select A, B becomes Logic True (selected) if it is available (not
Logic False).

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a table view.

E

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly

Glossary-6

accessing the application via a Web browser or kiosk. Compare user.

event

An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure inside
which a listener listens for an event is called the event binding scope. The part of model
structure that is the source of an event is called the event execution scope. See also
command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User False),
there is no effect on B, meaning it could be User or Logic True, User or Logic False, or
Unknown. See Negates relation.

F

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

G

generated logic

The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling

Needs assessment questions in the runtime UI to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided selling
questions trigger configuration rules that automatically select some product options
and exclude others based on the end user's responses.

H

Glossary-7

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

I

implementer

The person who uses Oracle Configurator Developer to build the model structure, rules,
and UI customizations that make up a runtime Oracle Configurator. Commonly also
responsible for enabling the integration of Oracle Configurator in a host application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For example,
if A Implies B, and you select A, B becomes Logic True. If you deselect A (set to User
False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Requires relation.

import server

A database instance that serves as a source of data for Oracle Configurator's Populate,
Refresh, Migrate, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

initialization message

The XML (Extensible Markup Language) message sent from a host application to the
Oracle Configurator Servlet, containing data needed to initialize the runtime Oracle
Configurator. See also termination message.

instance

A runtime occurrence of a component in a configuration that is determined by the
component node's Instance attribute specifying a minimum and maximum value. See
also instantiate. Compare count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component in
the runtime user interface of a configuration model.

item

A product or part of a product that is in inventory and can be delivered to customers.

Glossary-8

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either entered
manually in Oracle Configurator Developer or imported from Oracle Applications or a
legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.

L

listener

A class in the CIO that detects the occurrence of specified events in a configuration
session.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the logical
state (User or Logic True, User or Logic False, or Unknown) of Features and Options in
the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

M

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

Model

The entire hierarchical "tree" view of all the data required for configurations, including
model structure, variables such as Resources and Totals, and elements in support of
intermediary rules. Includes both imported BOM Models and Models created in
Configurator Developer. May consist of BOM Option Classes and BOM Standard Items.

Glossary-9

model structure

Hierarchical "tree" view of data composed of elements (Models, Components, Features,
Options, BOM Models, BOM Option Class nodes, BOM Standard Item nodes,
Resources, and Totals). May include reusable components (References).

N

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic state
of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). Compare Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents a
Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes from.

O

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.

OCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the

Glossary-10

runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator Developer

The tool in the Oracle Configurator product used for constructing and maintaining
configuration models.

Oracle Configurator engine

The part of the Oracle Configurator product that uses configuration rules to validate
runtime selections. Compare generated logic. See also generated logic.

Oracle Configurator schema

See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering legacy user interfaces for Oracle
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by end
users to make the selections of a configuration.

P

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model, Oracle
Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

publication

A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same configuration

Glossary-11

model, but each publication corresponds to only one Model and User Interface.

publishing

The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and running
an Oracle Applications concurrent process to copy data to a specific database.

R

reference

The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options. For
example, if A Requires B, and if you select A, B is set to Logic True (selected). Similarly,
if you deselect A, B is set to Logic False (deselected). See Implies relation.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can have
an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

rules

Also called business rules or configuration rules. In the context of Oracle Configurator
and CDL, a rule is not a business rule. Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and Numeric
Rule.

Glossary-12

runtime

The environment in which an implementer (tester), end user, or customer configures a
product whose model was developed in Oracle Configurator Developer. See also
configuration session.

S

Statement Rule

An Oracle Configurator Developer rule type defined by using the Oracle Configurator
Constraint Definition Language (text) rather than interactively assembling the rule's
elements.

T

termination message

The XML (Extensible Markup Language) message sent from the Oracle Configurator
Servlet to a host application after a configuration session, containing configuration
outputs. See also initialization message.

Total

A variable in the Model used to accumulate a numeric total, such as total price or total
weight.

Also a specific node type in Oracle Configurator Developer. See also node.

U

UI

See User Interface.

UI Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

Glossary-13

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

V

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

W

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and UI Templates.

Index-1

Index

A
Abs

arithmetic function, 4-16
ACos

trigonometric function, 4-19
adding

literals concatenation, 4-30
text concatenation, 4-11

addition
concatenation, 4-30

addition (operator)
description, 4-11
precedence, 4-13

AllTrue logical function
definition, 4-19
example, 3-5

AND (logical operator)
precedence, 4-13

AND (logical operator)
description, 4-9

AnyTrue logical function
defined, 4-20

arithmetic
CDL functions, 4-16

Arithmetic
operator type, 4-11

ASin
trigonometric function, 4-18

ATan
trigonometric function, 4-19

ATan2

trigonometric function, 4-19

B
BeginsWith

text function, 4-21
BOOLEAN data type, 2-5
Boolean literals

See literals
braces (CDL separator)

collections, 4-31
example, 4-7

usage, A-1
brackets (CDL separator)

usage, A-1

C
Cartesian product

definition, 1-2
iterator statements, 4-3
restriction in CDL, 4-15

case-sensitivity
constants, 2-5
formal parameters, 1-4, 2-5
identifiers, 1-4, 2-5, B-4
iterators, 1-4
keywords, 2-5
literals, 2-5

Boolean, 2-5
text, 2-5

Model nodes, 2-5, B-4
operands, 2-5
predefined CDL keywords, 1-4

Index-2

CDL (Constraint Definition Language)
conditional expressions, 4-7, 4-8
considerations, 2-1
expressing

configuration rules, 1-2
flexibility, 3-4
overview, 1-1
precedence of operators, 4-12
readability, 2-5
rule anatomy, 2-3
terminology, 1-2
unavailable rule relationships, 1-2

CDL functions
arithmetic, 4-16
logical, 4-19
set, 4-20
text, 4-20
trigonometric, 4-18

CDL keywords
case sensitivity, 2-5, 2-5, 2-5
COLLECT, 4-14

with DISTINCT, 4-15
COMPATIBLE, 4-7

explicit statements, 4-2
CONSTRAIN

explicit statements, 4-2
keyword operators, 4-5
Logic and Comparison Rules, 2-2
restriction, 2-6
text functions, 4-20

CONTRIBUTE
explicit statements, 4-2

DEFAULTS, 4-5, 4-10, 4-13
DISTINCT, 4-15
EXCLUDES, 4-5, 4-10, 4-13
FOR ALL...IN, 4-3, 4-7
IMPLIES, 4-5, 4-10, 4-13
NEGATES, 4-5, 4-10, 4-13
predefined, 1-4
REQUIRES, 4-5, 4-10, 4-13
WHERE, 3-4, 4-8

CDL separators
-, A-2
:, A-2
::=, A-2
?, A-2
[], A-1

{}, A-1
*, A-2
+, A-2
|, A-1

Ceiling
arithmetic function, 4-17

characters
whitespace, 4-30, 4-34

clause
definition, 1-2

COLLECT (CDL keyword)
static operands, 4-8

COLLECT (operator)
iterator statement, 4-14
with Property values, 4-15

collection literals
See literals

collections, 1-2
COLLECT (operator), 4-14
definition, 1-2
valid data types, 4-32

colon
assignment, A-2

comma (CDL separator)
collections, 4-31
definition, 4-33
function arguments, 4-11, 4-15

comments, 4-33
adding to rule definition, 4-33
definition, 2-5
detection in text literals, 4-30
multi-line, 4-33
single-line, 4-33
validation, B-2

Comparison Rules
CDL operators, 4-10

COMPATIBLE (CDL keyword)
explicit statements, 4-2
Property-based Compatibility Rule
representation, 4-7

compiler
See Oracle Configurator compiler

concatenation (operator)
description, 4-11
static usage, 4-14

constants
case sensitivity, 2-5, 2-5

Index-3

CONSTRAIN (CDL keyword)
constraint statement, 4-5
explicit statement, 4-2
restriction, 2-6, 4-20
use, 2-2

CONTRIBUTE (CDL keyword)
explicit statements, 4-2
expression example, 4-4

Cos
trigonometric function, 4-19

Cosh
trigonometric function, 4-19

Count set function
definition, 4-20

D
data types

rules, 2-5
validation, B-3

DECIMAL data type, 2-5
DEFAULTS (logical keyword operator), 4-5

precedence, 4-13
DEFAULTS (logical keyword operator)

definition, 4-10
designing

rules, 2-1, 3-4
design questions

CDL rules, 2-1
Statement Rules, 2-1

division (operator)
description, 4-11
precedence, 4-12

dot (CDL separator)
precedence, 4-12
use in identifiers, 4-11

double quotes, 4-30

E
E (CDL numeric constant), 2-5, 4-30
EBNF

definition, A-1
EndsWith (operator)

text function, 4-21
equals (operator)

description, 4-10
precedence, 4-13

text function, 4-21
EXCLUDES (logical keyword operator), 4-5

precedence, 4-13
EXCLUDES (logical keyword operator)

definition, 4-10
exclusion

minus, A-2
Exp

arithmetic function, 4-18
explicit statements

compared to iterator, 2-1
definition, 1-3
how to use, 4-2

expressions
conditional, 4-7, 4-8
definition, 1-3, 4-3
equivalency, 3-4
precedence based on operator, 4-8

F
FALSE (Boolean literal keyword), 2-5, 4-30
Floor

arithmetic function, 4-17
FOR ALL...IN (CDL keyword)

iterator statement, 4-3, 4-7
formal parameters

case sensitivity, 2-5
functions

arithmetic, 4-16
CDL, 4-15
logical, 4-19
set, 4-20
text, 4-20
trigonometric, 4-18

G
greater than (operator), 4-10

precedence, 4-13
greater than or equal (operator)

description, 4-11
precedence, 4-13

H
hierarchy

CDL function OptionsOf, 4-21

Index-4

I
identifiers

case sensitivity, 1-4, 2-5, B-4
definition, 1-3
Model object, 4-23

IMPLIES (logical keyword operator), 4-5
definition, 4-10
precedence, 4-13

importing
rules, 1-1

INTEGER data type, 2-5
iterators

case-sensitivity, 1-4
Property-based Compatibility Rules, 4-2

iterator statements
advantage of using, 3-3
Cartesian product, 4-3
compared to explicit, 2-1
definition, 1-3, 4-2
local variables, 4-28
multiple, 4-3

K
keywords

See CDL keywords

L
less than (operator)

description, 4-11
precedence, 4-13

less than or equal (operator)
description, 4-11
precedence, 4-13

LIKE (operator)
precedence, 4-13
usage, 4-13

LIKE (operator)
description, 4-10

literals
Boolean operand, 4-30
case sensitivity, 2-5
collection, 4-14
collection operand, 4-31
concatenation, 4-30

numeric operand, 4-29
text, 4-30

case sensitivity, 2-5
concatenation, 4-14
containing comments, 4-30
multiple lines, 4-30

text operand, 4-30
types, 4-29

Log
arithmetic function, 4-17

Log10
arithmetic function, 4-17

logic
generating

OptionsOf function, 3-4
logical

functions
CDL, 4-19

operator type, 4-9

M
maintenance

rule design, 2-2
Matches

text function, 4-21
Max

arithmetic function, 4-17
Max set function

definition, 4-20
messages

function overflows and underflows, 4-21
Min

arithmetic function, 4-17
Min set function

defined, 4-20
Mod

arithmetic function, 4-17
Models

design
structure changes, 2-2, 4-2

identification in rules, 2-3
Model structure

identifiers, 4-23
nodes

use in rules, 2-2
multiplication (operator)

Index-5

description, 4-11
precedence, 4-12

N
NEGATES (logical keyword operator), 4-5

definition, 4-10
precedence, 4-13

NoMatches
text function, 4-21

NonTerminal symbols
::=, A-2
Constraint, A-3
definition, A-2

NOT (operator)
description, 4-10
precedence, 4-12

not equal (operator)
description, 4-11
precedence, 4-13

NotEquals
text function, 4-21

NOT LIKE (operator)
description, 4-10
precedence, 4-13
usage, 4-13

NotTrue logical function
CDL operator, 4-10

NotTrue logical function
definition, 4-20
precedence, 4-12

O
operands

case sensitivity, 2-5
definition, 4-23
References, 4-23

operators
Arithmetic, 4-11
comparison, 4-10
definition, 4-9
Logical, 4-9
precedence, 4-12
validation, B-2

OptionsOf compound function
definition, 4-21
iterator statement, 4-3

usage of logic generation, 3-4
OR (logical operator)

description, 4-10
precedence, 4-13

Oracle Configurator compiler
definition, 1-2
validation criteria, B-3

Oracle Configurator Developer
importing data to, 1-1

Oracle Configurator parser
definition, 1-3
Statement Rules, B-1
validating, B-1
validation criteria, B-2

P
parameters

formal definition, 4-28
parentheses (CDL separator)

function arguments, 4-15
precedence, 4-12
use in expressions, 4-11, 4-33

parser
See Oracle Configurator parser

percent (operator)
description, 4-11
precedence, 4-12

PI (CDL numeric constant), 2-5, 4-30
Pow

arithmetic function, 4-18
power (operator)

description, 4-11
precedence, 4-12

precedence of operators, 4-12
Properties, 2-2

example, 3-3
Property-based Compatibility Rules, 4-7
referring to, 4-25
System Properties, 4-25
User Properties, 2-5, 4-8, B-3

Property-based Compatibility Rules
CDL, 4-7
evaluation, 4-8
iterators, 4-2

R

Index-6

References
compound Model nodes, 4-24
compound Properties, 4-25
Model structure, 4-23
operands, 4-23
path, 4-24

relationships
CDL keywords, 2-2
definition, 1-3, 2-2

repetition
asterisk, A-2
braces, A-1
plus, A-2
question mark, A-2

REQUIRES (logical keyword operator), 4-5
definition, 4-10
precedence, 4-13

Round
arithmetic function, 4-16

RoundDownToNearest
arithmetic function, 4-17

RoundToNearest
arithmetic function, 4-17

RoundUpToNearest
arithmetic function, 4-17

rules, 1-2
anatomy, 3-4
CDL rule definition, 2-3
data types in rule definitions, 2-5
description, 2-3
designing, 2-1, 3-4
format of input, 2-5
Model association, 2-3
naming, 2-3
persistent constraints, 4-2
subexpressions

grouping, 4-11, 4-33
rolled up, 3-4

validation, B-3

S
scientific E (CDL numeric constant), 2-5, 4-30
semi-colon (CDL separator)

separating statements, 2-4, 4-33
separators

definition, 4-32

signatures
definition, 1-3

Sin
trigonometric function, 4-18

singleton
definition, 1-3

SinH
trigonometric function, 4-18

Sqrt
arithmetic function, 4-18

Statement Rules
defining, 2-3
definition, 1-1
Oracle Configurator parser, B-1

statements
constraint, 4-5
contributes, 4-5
definition, 1-3, 4-1
explicit, 1-3, 4-2
explicit versus iterator, 2-1, 4-1
iterators

Cartesian product, 4-3
compared to explicit, 2-1
definition, 1-3, 4-2
multiple, 4-3

multiple in one CDL rule definition, 2-4
subtraction (operator)

description, 4-11
precedence, 4-13

System Properties
referring to, 4-25

T
Tan

trigonometric function, 4-19
TanH

trigonometric function, 4-19
Terminal symbols

((lt))>, A-2
#, A-2
CONSTRAIN, A-3
definition, A-2
INTEGER_LITERAL, A-3

text
CDL functions, 4-20

TEXT data type, 2-5

Index-7

text expressions
validation, B-3

text literals
See literals

tokens
definition, 1-3

trigonometric CDL functions, 4-18
TRUE (Boolean literal keyword), 2-5, 4-30
Truncate

arithmetic function, 4-18

U
unary minus (operator)

description, 4-11
precedence, 4-12

unary plus (operator)
precedence, 4-12

unicode
definition, 1-4

User Properties
validation, B-3

V
validation

Oracle Configurator compiler, B-3
Oracle Configurator parser, B-2
Statement Rules, B-1

variables
local, 4-28

vertical bar (CDL separator)
usage, A-1

violation messages
function overflows and underflows, 4-21

W
WHERE (CDL keyword)

conditional expression, 4-7
example, 3-4
iterator statement, 4-8

whitespace, 4-30, 4-33
characters, 4-34

in literals, 4-30
definition, 2-5

	Oracle Configurator Constraint Definition Language Guide
	Preface
	Introduction
	Overview of the Constraint Definition Language (CDL)
	Relationships Expressed in CDL
	Terminology
	Syntax Notation

	Principles of CDL
	Before You Begin
	What Model Structure Nodes and Properties Are Participants in the Rule?
	Is the Model Structure Likely To Change Often?
	What Does the Rule Need To Do?
	What Types of Expressions Define the Relationships or Constraints You Need?

	Anatomy of a Configuration Rule Written in CDL
	Rule Definition
	Rule Statements
	Comments and Whitespace
	Case Sensitivity
	Quotation Marks

	Data Types

	Model Example
	The House Model and its Window Submodel
	Example Explicit Statements
	Example Iterator Statements
	CDL Flexibility
	Incremental Rules
	Alternative Rule Designs

	CDL Elements
	CDL Statements
	Explicit Statements
	Iterator Statements
	Multiple Iterators in One Statement

	Expressions
	Keywords
	CONSTRAIN
	CONTRIBUTE...TO
	CONTRIBUTE...TO with Decimal Operands and BOM Option Classes or Collections

	COMPATIBLE...OF
	FOR ALL....IN
	WHERE
	COLLECT

	Operators
	Predefined Operators Supported By CDL
	Operator Results
	Operator Precedence
	LIKE and NOT LIKE Operators
	Text Concatenation Operator
	COLLECT Operator

	Functions
	Arithmetic
	Trigonometric
	Logical
	Set
	Text
	Hierarchy or Compound
	Function Overflows and Underflows

	Operands
	References
	Model Object Identifiers
	Simple Model Node References
	Compound Model Node References Showing Context
	Property References

	Formal Parameters
	Local Variables and Data Types
	Local Variables and References

	Literals
	Numeric Literals
	Boolean Literals
	Text Literals
	Collection Literals

	Separators
	Comments and Whitespace
	Comments
	Whitespace and Line Terminators

	CDL Formal Grammar
	Notation Used in Presenting CDL Grammar
	Examples of Notation Used in Presenting CDL Grammar

	Terminal Symbols
	Keyword Symbols
	Operator Symbols
	Literal Symbols
	Separator Symbols
	Identifier Symbols
	Comment Symbols
	Whitespace Symbols

	Nonterminal Symbols
	EBNF Source Code Definitions for CDL Terminal Symbols

	CDL Validation
	Validation of CDL
	The Parser
	Calling the Oracle Configurator Parser
	The Parser's Validation Criteria

	The Compiler
	Calling the Oracle Configurator Compiler
	The Compiler's Validation Criteria

	The Input Stream to the Oracle Configurator Parser
	Unicode Characters

	Name Substitution
	Name Persistency
	Ambiguity Resolution

	Common Glossary for Oracle Configurator
	Index

