ORACLE

Oracle® Configurator

Extensions and Interface Object Developer's Guide
Release 12.1

Part No. E14321-01

April 2009

Oracle Configurator Extensions and Interface Object Developer's Guide , Release 12.1
Part No. E14321-01

Copyright © 1999, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Mark Sawtelle

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

This software and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third party content, products and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third
party content, products or services.

Contents

Send Us Your Comments

Preface

Part1 Configurator Extensions

1 Configurator Extension Basics

Introduction to Configurator Extensions...................ccoooiiiiiiiii 1-1
What are Configurator EXtensions?.............cccccooiiiiiiiiiiiii 1-2
Prerequisite Skills for Developing Configurator Extensions..............cc.cccocooiiiininiiiininnn, 1-2
Important Facts About Configurator Extensions...............cccocooiiiiiiiiiiiiiiiccecceee 1-3
Requirements and Restrictions for Configurator Extensions................ccccooeiiiiiiiiiiiiins 1-4
Requirements for Configurator EXtensions..............ccocoiiiiiiiiiiiii 1-4
Restrictions for Configurator EXteNnsions.cccoouiiiiieiiiiiiiiic e 1-5
Configurator Extensions and the CIO..................ccoiiiiiiii 1-5
Installation Requirements for Configurator Extensions..............c.cccciviiiiiiiiniiiiniccinien, 1-5
Installation Requirements for Developing Configurator Extensions..............cccecooevreiennn. 1-5
Installation Requirements for Compiling Configurator Extensions...........cccccccoveviiriiiennen. 1-6
Installation Requirements for Testing Configurator Extensions............c..ccooveviiiiiicinennne 1-7
CONVENIONS ..ot s 1-7
Product SUPPOTIL.........oooi s 1-8
TroubleShOOtNEG.cc.oiiii 1-9

2 Building Configurator Extensions

Overview of Building Configurator Extensions..............cccccciiiiiiiiiiiiiiis 2-1

Implementing Behavior with Java Classes.............ccccciiiiiiiiiiiiii e 2-3

Incorporating Behavior into Configuration Models..............cccoooiiiiiiiniiiiic e 2-3

Developing Java Classes and Archives...............cc.ccooiiiiiiiiiin 2-4
Example of Configurator Extension Development.................cccooiiiiiiiiiiiiii e 2-6
Example of Configurator Extension Coding............ccoocoeviiiiiiiiiiiie 2-6
Example of Configurator Extension Modeling...........ccccoouiiiiiiiiiiiiiiiie e, 2-7
Suggested Development Practices...............cccooiiiiiiiiiiiii 29
Observing Project Requirements............c.ccceiiiiiiiiiiiiiiiii e 2-10
Avoiding CommON EITOTS.ccooiiiiiiiii e 2-10
Observing Thread Safety...........cccooviiiiiiiiiiiii 2-10
Handling Exceptions Properly..........oooiiiiiiiiii e 2-11
Avoiding Circularity and Recursion............c.ccoooiiiiiiiiii 2-12
Taking Advantage of Argument Binding............cccoooioiiiiiiiiii e 2-13
Sharing Class INStANCes...........c.cocuiiiiiiiiiee e 2-13
Disabling Configurator EXteNSIONS.cciiiiiiiiiiic i 2-14
Testing for a Null User Interface............c.ccooooiiiiii e, 2-14
Using Logging to Examine Problems.............ccccooiiiiiiiiiiiiii e 2-15
Checking for Deleted or Discontinued Nodes.............cccooieiiiiiiiiiiiii 2-15
Managing JDBC CONNECHIONS.........ccuiiiiiiiiiiiiiiie e 2-15
Accessing More Node and Text IDs...........ccoiiiiiiiiiiiiiiccec e 2-16

3 Uses for Configurator Extensions

Types of Configuration EVents..............ccccooiiiiiiiiiii e 3-1
Generating Custom OUEPUL............ccooiiiiiiii e e 3-2
Filtering for Connectivity..............ccooiiiiiiii 3-5
Defining a Connection Filter Configurator EXtension.............ccocccociiiiiiiiiiiinc e 3-5
Behavior of Connection Filter Configurator Extensions..............ccccooviiiiiiiiniiiiiiiicnn, 3-6
Example of a Connection Filter Configurator EXtension............ccccocevciiiiiniciii i 3-7
Requiring Text Input Dynamically.............cccocooiiiii e, 3-7

Part2 The Configuration Interface Object (CIO)

4

CIO Basics

Background to the CIO.............cccooiiiiiii 4-1
WHhat i the CIO?... ..o 4-1
The CIO and Configurator EXtensions.............ccociiiiiiiiiiiic e 4-2

The CIO's Runtime Node Interfaces...............cccccoiiiiiiiiiiiiiiinii 4-2

Initializing the CIO............ccoii e 4-4

5 Working with Configurations

Overview of Configurations..............cooiiiiiiiiiii e 5-1
Creating Configurations................ccoooiiiiiiiii 5-2
Removing Runtime Configurations................cccoooiiiiiiiiiiii i 5-6
Saving Configurations.coocoiiiiiiii i 5-6
Monitoring Changes to Configurations.................ccccoiiiiiiiiii e, 5-7

How the CIO Monitors Changes to Configurations............ccccoevviiriiiiiiciiiiciecccece e 5-7

How You Can Monitor Changes to Configurations...............cccocoooiiiiiiiiiiii 5-8
Restoring Configurations................ccooiiiiiiiiiiiic i 5-8
Restarting Configurations...............ccoooiiiiiiiiiiiii s 5-11
Automatic Behavior for Configurations................cc.occoiiiiiiiii e 5-11
Dispatching Command Events.................cccooiiiiiiiii 5-12
Access to Configuration Parameters................cccoooiiiiiiiiii i 5-13
Sharing a Configuration Session................cccocoiiiiiiiiiiiii e 5-14

Redirecting to a Framework Page.............cccooioiiiiiiiiiiiiii e 5-16

6 Working with Model Entities

Accessing Runtime Nodes..............ccooiiiiiiiiiiiii 6-1
Opportunities for Modifying the Configuration.................c.cocoiiiiiiiiiii e 6-2
Accessing COMPONENES............coiiiiiiiiiiii et 6-2
Adding and Deleting Instantiable Components..............ccccoeoiiiiiiiiiiiic 6-3
Renaming Instances of COMPONENES...........cocuieiiiiiiiiieier e 6-4
Accessing Features. ..o 6-5
Getting and Setting Logic States................c.cccoiiiiiiiiiiiii 6-6
Getting and Setting Numeric Values.................cccooiiii e 6-9
Working with Decimal Quantities............c.ccccoiiiiiiiiiniiii e, 6-11
AccesSING PrOPerties.c..ooiiiiiiiiii e 6-12
User String Properties. ... 6-12
Access t0 OPHONS.........occiiiiiiiiii 6-13
Introspection through IRuntimeNode................cccooiiiiiiii 6-15

7 Using Logic Transactions

Using Logic Transactions............cccoiiiviiiiiiiiiii i 7-1

8 Validation, Contradictions, and Exceptions

Introduction to Validation, Contradictions, and Exceptions.............ccccocceviniieniieicnenieeee 8-1
Validating Configurations..............cccooiiiiiiiiiiiii 8-1
Handling Logical Contradictions................ccoccooiiiiiiiiiiiiciccc e 8-5

Generating Error Messages from Contradictions..............ccocviieiiiiciiiininicce e, 8-5

Overriding Contradictions.cocueiuiiiiiii e 8-8
Handling EXCEPHONS.ooiiiiiiiii e s 8-9
Handling Types of EXCOPHIONS.c.ooiuiiuiiiiiice e 8-10
Raising Fatal EXCEPHONS.ccciuiiiiiiiiiiiiiii s 8-10
Presenting Messages for EXCeptions............c.occooiiiiiiiiiiii 8-11
Compeatibility of Certain Deprecated EXCEPLIONS.c.ccoeeiciiiiiiiiiii e 8-12

9 Using Requests

10

11

vi

ADOUt REQUESES. ..o 9-1
Getting Information about Requests..............ccocoooiiiiiiiiiiii e 9-2
USEI REQUESES.........ooiiiiiii e 9-3
Nonoverridable Requests...............cccooiiiiiiiiiii e 9-3

Usage Notes on Nonoverridable Requests.............ccccooiiiiiiiiiiiniiiii 9-4

Limitations on Nonoverridable Requests.............cccccooiiiiiiiiiiiii 9-5
Failed ReqUESES..........cccoiiiiiiiiiii 9-5

Configuration Session Change Tracking

Introduction to Configuration Session Change Tracking................ccccovviiiiiiiiicinien, 10-1
How Change Tracking Works..............ccccoiiiiiiiiiiii e, 10-2
Relationship of the Classes.............c.oiiiiiiiiiiiiiic e 10-3
Role of the DeltaManager............cooiiiiiiieiii i 10-5
Role Of DeltaREZIONS........ccueiiiieiiiiii e 10-5
Role of DeltaValidators...........cccooiiiiiiiiiiii i 10-5
Role of the IValidatorChange Interface.............cooeveriiiiiiciiiii e 10-6
Starting @ SeSSION..........cocooiiiiii s 10-7
Creating a Configuration Object..........ccccciiiiiiiiiiiiii e, 10-7
Associating a DeltaManager.............cooui i 10-8
Specifying DeltaValidators..........cc.ccoiuiiiiiiiiii 10-8
Registering DeltaRegions...........cccoiiiiiiiiriiiic i 10-8
Tracking Session Changes.................cccoceiiiiiiiiii 10-9
Updating a Region............cccooiiiiiiiiic e 10-10
Handling Screen Changes...............cccciiiiiiiiiiiiiiii s 10-11
Creating a Custom DeltaValidator.................coooiiiiiiiii e 10-12
Unified Code Example for Change Trackingccccccoooiiiiiiiiiiiiiiice e 10-14

Logging Through the CIO

Overview of LOGZINg.........ccccoooiiiiiiiiiiii s 11-1
Enabling Logging SCOPe..........c.ocoiiiiiiiiiiiiiicic s 11-2
Creating Entries in the Log.............ccoccoiiiiiiiiiii 11-4

Testing Whether Logging Is Enabled..............cccooiiiiiiiii e 11-4

Writing Log ENtries...........coooiiiiii 11-5
Recommended Practices for LOGINg............ccocoiiiiiiiiiiiiicii e 11-6
Example 0f LOGZING.........coooiiiiiiiiii 11-7
Logging for a Custom Application..............ccooiiiiiiiii 11-9

A Reference Documentation for the CIO

About This APPendiX.........occoiiiiiiiiii e A-1
B Code Examples
About This APpendiX..........cccooiiiiiiiiiiii i B-1
Generating Output Related to Model Structure....................ccoooiiiiii e B-1
USING REQUESTS.........oiiiiiiiiiii e B-4
Setting Nonoverridable Requests.............ccccuiiiiiiiiiiiiiiiici B-4
Getting a List of Failed Requests............ccociiiiiiiiiiii e B-8
Sharing a Configuration Session in a Child Window..............cccccoviiiiiiiii B-10
Tracking Configuration Session Changes................c..ccoiiiiiiiiiiii i B-12
C Java Parameter Types for Configurator Extensions
About This APpPendiX...........ccociiiiiiiiiii i C-1

Common Glossary for Oracle Configurator

Index

vii

Send Us Your Comments

Oracle Configurator Extensions and Interface Object Developer's Guide , Release 12.1
Part No. E14321-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

¢ Are the implementation steps correct and complete?

¢ Did you understand the context of the procedures?

¢ Did you find any errors in the information?

¢ Does the structure of the information help you with your tasks?

* Do you need different information or graphics? If so, where, and in what format?
* Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

Preface

Intended Audience

Welcome to Release 12.1 of the Oracle Configurator Extensions and Interface Object
Developer’s Guide .

You can use Configurator Extensions to augment the functionality of your runtime
Oracle Configurator beyond what is provided by Oracle Configurator Developer. You
create Configurator Extension classes, which use the Configuration Interface Object
(CIO) to perform various tasks, including accessing the Model, setting and getting logic
states, and adding instantiable components. You can also use the CIO in your own
applications, to interact with the Model.

This manual is intended primarily for software developers writing Configurator
Extensions. The language required for developing Configurator Extensions is Java.

This manual assumes that you are an experienced Java programmer.

Note: Be sure to check Prerequisite Skills for Developing Configurator
Extensions, page 1-2, which describes the Java development skills
required for success with Configurator Extensions.

This manual also provides background on the CIO. This information is needed by
developers of applications that have customized user interfaces that access the runtime
Oracle Configurator.

See Related Information Sources on page xiii for more Oracle Applications product
information.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request

Xi

process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is
available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible
to all users, including users that are disabled. To that end, our documentation includes
features that make information available to users of assistive technology. This
documentation is available in HTML format, and contains markup to facilitate access by
the disabled community. Accessibility standards will continue to evolve over time, and
Oracle is actively engaged with other market-leading technology vendors to address
technical obstacles so that our documentation can be accessible to all of our customers.
For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

Structure

xii

This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

1 Configurator Extension Basics

This chapter provides essential information about implementing Configurator
Extensions, explains what Configurator Extensions are, and describes the different
types available. It also explains the relationship of Configurator Extensions and the
CIO.

2 Building Configurator Extensions

This chapter describes how to code and build Configurator Extensions, including
suggestions for effective development practices and avoiding common mistakes.

3 Uses for Configurator Extensions

This chapter collects instructions on how to use Configurator Extensions for specific
tasks, such as generating custom output and filtering for connectivity

4 CIO Basics

This chapter explains the basics of the Oracle Configuration Interface Object (CIO) and

how to use it. For details about how to use the CIO for specific purposes, see other
chapters in Part 2.

5 Working with Configurations

This chapter describes how to interact with runtime configuration objects.

6 Working with Model Entities

This chapter explains how to work with nodes of the runtime Model, such as
Components and Features.

7 Using Logic Transactions

This chapter explains how to use logic transactions to safely structure a configuration
session.

8 Validation, Contradictions, and Exceptions

This chapter explains how to validate configurations and handle contradictions.

9 Using Requests

This chapter describes requests, which are programmatic attempts to modify a
configuration.

10 Configuration Session Change Tracking

This chapter describes the CIO's Configuration Delta API for tracking changes that have
been made to regions of your user interface during a configuration session.

11 Logging Through the CIO

This chapter describes how you can use the Oracle Applications Logging Framework
with Oracle Configurator and the Oracle Configuration Interface Object to provide a
convenient and uniform interface for logging their activity.

A Reference Documentation for the CIO

This appendix explains how to access the reference documentation for the CIO, which is
generated in Javadoc format.

B Code Examples

This appendix contains code examples illustrating the use of Configurator Extensions
and the CIO.

C Java Parameter Types for Configurator Extensions

This appendix lists the Java classes that you can use for Configurator Extension method
parameters when creating event bindings.

Common Glossary for Oracle Configurator

Related Information Sources

Important: There is new functionality available for the Runtime Oracle
Configurator when using the Fusion Configurator Engine (FCE). The
FCE is an alternative to the configuration engine described in this
document. For all information about the FCE, see the Oracle
Configurator Fusion Configurator Engine Guide.

xiii

For more information, see the following resources:

® Be sure you are familiar with the latest release or patch information for Oracle
Configurator on MetaLink, Oracle's technical support Web site.

e For a full list of documentation resources for Oracle Configurator, see Oracle
Configurator Documentation Resources, Release 12, Oracle MetaLink Document
394478.1.

e For a full list of documentation resources for Oracle Applications Release 12, see
Oracle Applications Documentation Resources, Release 12, Oracle MetaLink
Document 394692.1.

e For detailed reference information about the tables in the CZ schema, see the CZ e
TRM on MetaLink, Oracle's technical support Web site.

e For useful background on interfacing with databases, consult the Oracle database
documentation resources for the current JDBC developer's guide and reference.

Integration Repository

The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

Do Not Use Database Tools to Modify Oracle Applications Data

xiv

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle Applications data unless
otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle Applications data, you risk destroying the integrity of your
data and you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a
row in one table without making corresponding changes in related tables. If your tables
get out of synchronization with each other, you risk retrieving erroneous information
and you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track
of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

XV

Part 1

Configurator Extensions

This Part describes the essential steps in creating Java classes for Configurator
Extensions. It also provides examples of some typical ways to use Configurator
Extensions.

1

Configurator Extension Basics

This chapter provides essential information about implementing Configurator
Extensions, explains what Configurator Extensions are, and describes the different

types available. It also explains the relationship of Configurator Extensions and the
CIO.

This chapter covers the following topics:

¢ Introduction to Configurator Extensions

¢ What are Configurator Extensions?

¢ Prerequisite Skills for Developing Configurator Extensions
e Important Facts About Configurator Extensions

® Requirements and Restrictions for Configurator Extensions
¢ Configurator Extensions and the CIO

¢ Installation Requirements for Configurator Extensions

¢ Conventions

e Product Support

Introduction to Configurator Extensions

Configurator Extensions extend the behavior of the runtime Oracle Configurator. A
Configurator Extension is a custom-coded Java class that uses an established interface to
access a configuration at runtime. The interface is called the Oracle Configuration
Interface Object (CIO); it is described in the chapters of Part 2.

This chapter contains an overview of how Configurator Extensions work and how to
implement them. It also provides important facts about Configurator Extensions and
prerequisites for developing them.

Note: Be sure to check Prerequisite Skills for Developing Configurator

Configurator Extension Basics 1-1

Extensions, page 1-2, which describes the Java development skills
required for success with Configurator Extensions.

Note: Review the Oracle Configurator Performance Guide for information
on the performance impacts of Configurator Extensions.

What are Configurator Extensions?

Configurator Extensions extend your runtime Oracle Configurator by attaching custom
code through established interfaces.

The term Configurator Extension includes the following:
* A Configurator Extension class is the Java class containing the methods that

implement desired behavior

* A Configurator Extension instance is the event-driven execution (the Java object) of
the Java class at runtime

¢ A Configurator Extension Rule is the set of arrangements that you make in Oracle
Configurator Developer to associate the CX class to a Model

For additional information, see the chapter on Configurator Extensions in the Oracle
Configurator Developer User’s Guide, which explains the following essential topics related
to incorporating Configurator Extensions into your configuration model:

¢ Configurator Extension Rules
* Configurator Extension Archives and the Archive Path
¢ Events and Event Binding

e Arguments and Argument Binding

Prerequisite Skills for Developing Configurator Extensions

To effectively develop a Configurator Extension, an appropriate level of Java
development proficiency is required. The specific level of Java proficiency required
depends on the specific functionality required by the desired Configurator Extension.

In general, the Configurator Extension developer should have the following knowledge:
¢ A basic understanding of these structures:

® Oracle Applications Bills of Material (BOMs), which consist of Models, Option

1-2 Oracle Configurator Extensions and Interface Object Developer's Guide

Classes, and Standard Items

Oracle Configurator Models, which consist of Components, Features, and
Options

The relationship of these BOM and Model structures to the CIO

Java programming experience that should include solid familiarity with:

The Collections class and its subclasses

Concurrency issues

CIO transaction handling (see Using Logic Transactions, page 7-1)
Exception handling

Using Java Interfaces

HTML and the Java class HttpServletResponse (for writing Configurator
Extensions that generate custom output)

A working understanding of Oracle databases, including the principles of JDBC.

A familiarity with the Oracle Configurator documentation, including the CIO
reference documentation (see Reference Documentation for the CIO, page A-1).

The skills listed above are fundamental. Other specific expertise may be required for
developing Configurator Extensions to the specific requirements for your project.

Important Facts About Configurator Extensions

Keep these facts in mind when working with Configurator Extensions and the CIO.

Configurator Extension Rules have many of the same attributes as other Rules, and

the procedure for defining them is similar. For example, Configurator Extensions
have effectivity, can be disabled, and can participate in rule sequences. For more
details about defining configuration rules, see the Oracle Configurator Developer
User’s Guide.

When the runtime Oracle Configurator starts up, it creates an instance of the CIO.
During the resulting configuration session, the CIO creates a Configuration

object. Then Oracle Configurator creates runtime instances of all mandatory model
structure, and, for each instance of each instantiated base node associated with a

Configurator Extension, an instance of the class that you defined for your

Configurator Extension. Oracle Configurator then attaches the Configurator

Extension instance to the associated node.

Configurator Extension Basics

1-3

You can associate more than one Configurator Extension with a particular node; the
CIO will create instances of all of the Configurator Extensions at runtime.

In order to communicate with your application's Model, a Configurator Extension
uses Oracle's CIO API. The CIO can also be used to develop a custom user interface
that allows the runtime Oracle Configurator to access the Model. See Configurator
Extensions and the CIO, page 1-5, and all of Part 2.

Note: As a point of information, the user interfaces generated with
Oracle Configurator Developer for the runtime Oracle Configurator
communicate in this way with the configuration model.

Requirements and Restrictions for Configurator Extensions

You must observe certain requirements and restrictions when working with

Configurator Extensions and the CIO.

Requirements for Configurator Extensions

Keep these requirements in mind when working with Configurator Extensions and the
CIO.

To build a Configurator Extension, you implement an object class in Java. Oracle
requires that Configurator Extensions be implemented only in Java. Configurator
Extensions can run on any Oracle platform that supports Java.

Web server sizing and tuning are necessary steps in the development of a
Configurator project and must not be overlooked. The addition of your own custom
code, such as Configurator Extensions, may affect the memory usage of your
application. For advice on planning configuration models that use memory
efficiently, see the Oracle Configurator Modeling Guide. For strategies to cope with
possible "out of memory" runtime errors, consult Note #239913.1 in MetaLink,
Oracle's technical support Web site.

The runtime Oracle Configurator automatically sets up a JDBC database connection
for use by the CIO. Custom applications that take the place of the runtime Oracle
Configurator must perform this task. See Initializing the CIO, page 4-4 and
Managing JDBC Connections, page 2-15 for details.

If your host application uses a custom user interface in an MLS deployment, you
may need to create ICX session tickets in order to correctly set the current language.

If you have written Configurator Extensions that use custom messages, then those
messages must be stored into and retrieved from the FND_NEW_MESSAGES table.
You are responsible for translating these messages. See the information on MLS in

1-4 Oracle Configurator Extensions and Interface Object Developer's Guide

the Oracle Configurator Implementation Guide.

Restrictions for Configurator Extensions

Keep these restrictions in mind when working with Configurator Extensions and the
CIO.

¢ Configurator Extensions cannot be used to customize Oracle Configurator
Developer.

® (IO interfaces are not thread-safe. See Observing Thread Safety, page 2-10 for
more details.

¢ If any Configurator Extensions cannot be loaded when you create a new
configuration (for instance, due to internal errors or an incorrect class path or
Archive Path), the configuration will fail to open.

Configurator Extensions and the CIO

Your Configurator Extension is a client of the CIO. When you program against the CIO,
the CIO creates instances of a set of public interface objects that you work with. These
interfaces are defined in the package oracle.apps.cz.cio. Your code should refer
only to these public interface objects. See The CIO's Runtime Node Interfaces, page 4-
2.

Configurator Extensions are invoked by the CIO through the runtime Oracle
Configurator, and Configurator Extensions call the CIO to get information from the
runtime configuration model. The CIO is like a broker for the runtime configuration
model, in that it passes information both into and out of the model. Programmers
writing Configurator Extensions need to know how to use the CIO.

Installation Requirements for Configurator Extensions

This section describes the elements that need to be installed to develop, compile, and
test Configurator Extensions. For details, see the Oracle Configurator Installation Guide
and current release or patch information for Oracle Configurator on MetaLink, Oracle's
technical support Web site.

Installation Requirements for Developing Configurator Extensions

In order to develop Java Configurator Extensions, you must install a Java development
environment that enables you to compile Java classes, such as:

® The latest version of Oracle JDeveloper

Configurator Extension Basics 1-5

® The latest certified patch release of the Java Development Kit (JDK) for your
platform. For the JDK release number, see the current release or patch information
for Oracle Configurator on MetaLink, Oracle's technical support Web site.

If a Configurator Extension requires database access, you need JDBC drivers to compile
a Configurator Extension. The required driver classes are contained in the Oracle
Applications environment.

Note: If you use a class from the collections library, such as List, then
for compatibility with the CIO's package structure you must import the
class using this syntax:

Example
import com.sun.java.util.collections.List;

Installation Requirements for Compiling Configurator Extensions

In order to compile Configurator Extensions:

* Your class path should be the same as the class path for Oracle Application Server.

* You should compile using the latest certified patch release of the Java Development
Kit (JDK) for your platform. For the JDK release number, see the current release or
patch information for Oracle Configurator on MetaLink, Oracle's technical support
Web site.

® The shared object files described in the table Required Software for Configurator

Extensions, page 1-6 must be installed and recognized by your operating system
environment in the appropriate locations. This table lists file names and platforms.

Required Software for Configurator Extensions

File For Platform Comment

czlce.dll Windows NT ~ Must be in the PATH system environment
variable on the host machine on which the
Oracle Configurator Servlet is installed.

libczlce.so (or.sh) UNIXfamily = Must be in the LD_LIBRARY_PATH
environment variable for the Oracle
Configurator Servlet.

See the Oracle Configurator Installation Guide and the Oracle Configurator Implementation
Guide for complete details on installation and environment. For background on JDBC
drivers, consult the Oracle database documentation resources for the current JDBC

1-6 Oracle Configurator Extensions and Interface Object Developer's Guide

developer's guide and reference.

Installation Requirements for Testing Configurator Extensions

If you have installed and set up Oracle Configurator Developer so that the Test Model
button runs the Model Debugger successfully, then this setup should also be correct for
testing Configurator Extensions.

The classes that implement your Configurator Extensions should be contained in
Configurator Extension Archives, as described in the Oracle Configurator Developer
User’s Guide.

It is also possible to install your classes in the class path for Oracle Application Server,
which takes precedence over the Configurator Extension Archive Path. However, if you
do so you will not obtain important advantages provided by using Archives. See the
Oracle Configurator Developer User’s Guide for details.

If you are running a custom application in standalone mode, then you may need to
ensure that the Java system property JTFDBCFILE is set. For more information, see the
note after Creating A Configuration Object, page 5-5.

Conventions

In examples, an implied carriage return occurs at the end of each line, unless otherwise
noted. You must press the Return key at the end of a line of input.

The table below lists other conventions that are also used in this guide.

Convention Meaning

Vertical ellipsis points in an example mean
that information not directly related to the
example has been omitted.

Horizontal ellipsis points in statements or
commands mean that parts of the statement or
command not directly related to the example
have been omitted

boldface text Boldface type in text indicates a new term, a
term defined in the glossary, specific keys,
and labels of user interface objects. Boldface
type also indicates a menu, command, or
option, especially within procedures

Configurator Extension Basics 1-7

Convention

Meaning

italics

%

name ()

Italic type in text, tables, or code examples
indicates user-supplied text. Replace these
placeholders with a specific value or string.

Brackets enclose optional clauses from which
you can choose one or none.

The left bracket alone represents the MS DOS
prompt.

The dollar sign represents the DIGITAL
Command Language prompt in Windows and
the Bourne shell prompt in Digital UNIX.

The per cent sign alone represents the UNIX
prompt.

In text other than code examples, the names of
programming language methods and
functions are shown with trailing parentheses.
The parentheses are always shown as empty.
For the actual argument or parameter list, see
the reference documentation. This convention
is not used in code examples.

Indicates a character string (identifier) that can
display text dynamically in Configurator
Developer or a runtime Oracle Configurator.
For example, "&PROPERTY" can be used to
dynamically construct and display a Property
of a Model structure node.

Product Support

The mission of the Oracle Support Services organization is to help you resolve any

issues or questions that you have regarding Oracle Configurator Developer and Oracle

Configurator.

To report issues that are not mission-critical, submit a Technical Assistance Request
(TAR) using MetaLink, Oracle's technical support Web site, at:

Example

http://www.oracle.com/support/metalink/

1-8 Oracle Configurator Extensions and Interface Object Developer's Guide

Log into your MetaLink account and navigate to the Configurator TAR template:

1. Choose the TARs link in the left menu.
2. Click on Create a TAR.
3. Fillin or choose a profile.

4. In the same form:

1. Choose Product: Oracle Configurator or Oracle Configurator Developer

2. Choose Type of Problem: Oracle Configurator Generic Issue template

5. Provide the information requested in the iTAR template.

You can also find product-specific documentation and other useful information using
MetaLink.

For a complete listing of available Oracle Support Services and phone numbers, see:

Example
http://www.oracle.com/support/metalink

Troubleshooting

Oracle Configurator Developer and Oracle Configurator use the standard Oracle
Applications methods of logging to analyze and debug both development and runtime
issues. These methods include setting various profile options and Java system
properties to enable logging and specify the desired level of detail you want to record.

For more information about logging, see:

e The Oracle Applications System Administrator’s Guide for descriptions of the Oracle
Applications Manager Ul screens that allow System Administrators to set up
logging profiles, review Java system properties, search for log messages, and so on.

* The Oracle Applications Supportability Guide, which includes logging guidelines for
both System Administrators and developers, and related topics.

® The Oracle Application Framework Developer’s Guide, which describes the logging

options that are available via the Diagnostics global link. This document is available
on MetaLink.

Configurator Extension Basics 1-9

2

Building Configurator Extensions

This chapter describes how to code and build Configurator Extensions, including
suggestions for effective development practices and avoiding common mistakes.

This chapter covers the following topics:

* Overview of Building Configurator Extensions

* Developing Java Classes and Archives

¢ Example of Configurator Extension Development

¢ Suggested Development Practices

Overview of Building Configurator Extensions

To understand the terms and concepts used in this section, see Configurator Extension
Basics, page 1-1 and the chapter on Configurator Extensions in the Oracle Configurator
Developer User’s Guide.

The figure Overview of Configurator Extension Development, page 2-2 shows the
relationship of a Java development environment to the Oracle Configurator Developer
environment when creating Configurator Extensions. In the Java development
environment, you compile Java classes and add them to Java archive files. In Oracle
Configurator Developer, you upload Java archive files into Configurator Extension
Archives.

In your Model, you specify the Archives that form the Model's Archive Path, which is
an ordered list of one or more Configurator Extension Archives. Then you create
Configurator Extension Rules, which associate Java classes from Archives with Model
nodes. In each Rule, you create bindings, which bind together a configuration event, the
parameters of a method in the Java class, and arguments related to the Model.

Building Configurator Extensions 2-1

Overview of Configurator Extension Development

r-—-——— — — — — 7 '| ____________________

. r
Java development enviranment Oracle Configuratar Develaper

|

3 |

Java archive 2 —'—H
& :
=

|
|
|
|
|
|
|
| Java class
|
|
|
|
|
|

CX Archive todel

L uied ayony

|

Java cl
ava class CX Rule |4 Base Node

Java class —

Java class .

:
m
= l
o
o

i i
Binding
— .

Java Development Tasks

The following tasks are normally performed by the programmer who is developing the
Java code for Configurator Extensions. See Implementing Behavior with Java Classes,
page 2-3 for more details.

1. Develop Java classes and archives.

See Developing Java Classes and Archives, page 2-4.

2. Create Configurator Extension Archives and upload Java archives.
See the Oracle Confiqurator Developer User’s Guide for details on this and the
following tasks.

3. Inspect the classes in an Archive.

4. Add archives to a Model's Archive Path.

5. Optionally, modify the Archive Path for a Model.

Configuration Modeling Tasks

The following tasks are normally performed by the model designer who is developing
the configuration model and rules. See Incorporating Behavior into Configuration
Models, page 2-3 for more details.

1. Create a Configurator Extension Rule.

See the Oracle Configurator Developer User’s Guide for details on this and the

2-2 Oracle Configurator Extensions and Interface Object Developer's Guide

following tasks.
2. Choose the Java class for a Rule.
3. Create event bindings for a Rule.

4. Bind arguments from the Model to parameters of Java methods.

If you change the type or number of the parameters of a method used in a
Configurator Extension Rule, then you must create a new binding that reflects those
changes.

5. Test Configurator Extensions.

Implementing Behavior with Java Classes

Implement the behavior of your Configurator Extension by creating one or more Java
classes and methods that use the Oracle Configuration Interface Object (CIO) to access a
runtime configuration object. For details on using the CIO, see Part 2, .

You can create your Configurator Extension class in any Java development
environment. Then you store the compiled Java class in an archive file, using either the
JAR or Zip format for your archive. You complete the coding stage of Configurator
Extension development by uploading your archive to the Configurator Developer
Repository as a Configurator Extension Archive.

Developing Java Classes and Archives, page 2-4 provides the detailed procedure for
the coding stage of Configurator Extension development.

For an example, see Example of Configurator Extension Coding, page 2-6.

Incorporating Behavior into Configuration Models

The detailed procedure for the modeling stage of Configurator Extension development
is provided in the Oracle Confiqurator Developer User’s Guide. This section provides a
simple overview.

In Oracle Configurator Developer, you create a connection between your Java class and
your configuration model. To create this connection, you create a Configurator
Extension Rule that binds specific parameters of a Java method to specific nodes or
Properties of a Model.

Configurator Extension Binding, page 2-4 illustrates the relationship of bindings to
Configurator Extension Rules. In this relationship:

e FEach Model can include an Archive Path.

¢ A Configurator Extension Rule for the Model specifies:

e A base node in the Model's structure

Building Configurator Extensions 2-3

e A Java class from one of the Archives in the Archive Path

® One or more bindings

¢ A binding specifies:

* A method from the specified Java class

e Anevent

* A mapping between each parameter of the method and an argument related to
the Model

The Java types of the parameters of your method must agree with the types of
Model entities that are eligible for event binding. For a list of the Java classes
that you can use in event bindings, see Java Parameter Types for Configurator

Extensions, page C-1.

Configurator Extension Binding

C Archive

Archive Path

C Archive

i Archive

T Archive

Model
Structure

Base Mode

L Parameter

Argument

|

|

|

|

| :

| p Parameter
|

|

|

|

Argument

For an example of the modeling stage of Configurator Extension development, see
Example of Configurator Extension Modeling, page 2-7.

Developing Java Classes and Archives

This section describes the basic process for coding Configurator Extensions.

2-4 Oracle Configurator Extensions and Interface Object Developer's Guide

Configurator Extensions depend on the CIO for access to your configuration model. For
more background, see Part 2, .

1.

Use a Java development environment or text editor to create a . java file in which
to define a Java class. See Sample Java Code for Configurator Extension
(InstanceNameChange.java), page 2-7 for an example of a very basic Java class
that can be used for a Configurator Extension.

Define your class path to include the package oracle.apps.cz.cio.

See Installation Requirements for Configurator Extensions, page 1-5.

Import the classes from the CIO that your Configurator Extension requires to do its
work. See CIO Basics, page 4-1 for background. The following example is typical:

Example
import oracle.apps.cz.cio.Component;

If you use a class from the collections library, such as List, then for compatibility
with the CIO's package structure you must import the class using this syntax:

Example
import com.sun.java.util.collections.List;

Define a class in which to determine the behavior of your Configurator Extension.

Example
public class InstanceNameChange {
// implement methods here

}

Create methods that implement the desired behavior for your Configurator
Extension. Any methods that you intend to use in a binding in a Configurator
Extension Rule must be declared as public.

Call methods from the CIO that perform required interaction with your
configuration model (see The CIO's Runtime Node Interfaces, page 4-2).
Example

public void setDefaultName (Component comp, TextFeature tf) {

// implement CX behavior here

}

Names of methods used for Configurator Extensions cannot be longer than 30
characters.

The Java types of the parameters of your method must agree with the types of
Model entities that are eligible for event binding. For a list of the Java classes that
you can use in event bindings, see Java Parameter Types for Configurator
Extensions, page C-1.

Compile the . java file into a . class file.

Use the correct version of the Sun JDK for your platform. See Installation
Requirements for Developing Configurator Extensions, page 1-5.

Building Configurator Extensions 2-5

7. Put the resulting . class file into a Java archive file.

You can use either the JAR or Zip format for the Java archive. The archive must be
valid. This means that the directory structure of the archive must correspond to the
package structure of the Java packages in the archive. For example, the following
examples refer to the same class in consistent ways. The first line shows an import
statement using a package reference to the class, and the second line shows the
directory path to the class as stored in an archive file:

Example
import oracle.apps.cz.cio.Component;

oracle/apps/cz/cio/Component.class
8. Now the Java archive file can be incorporated into a Configurator Extension

Archive in Configurator Developer. See Incorporating Behavior into Configuration
Models, page 2-3.

Example of Configurator Extension Development

This section provides a basic example of the development of a Configurator Extension,
which consists of:

e Example of Configurator Extension Coding, page 2-6

¢ Example of Configurator Extension Modeling, page 2-7

Example of Configurator Extension Coding

Sample Java Code for Configurator Extension (InstanceNameChange.java), page 2-7
shows the Java source code for a very simple Configurator Extension.

See Developing Java Classes and Archives, page 2-4 for details on how to create this
code and prepare it for use in a configuration model. See Example of Configurator
Extension Modeling, page 2-7 for how this code is used in a Configurator Extension
Rule.

2-6 Oracle Configurator Extensions and Interface Object Developer's Guide

Sample Java Code for Configurator Extension (InstanceNameChange.java)
// When bound to the event for addition of a component instance,
// takes input from the value of a bound Text Feature

// and changes the instance name to that corresponding text.

import oracle.apps.cz.cio.Component;
import oracle.apps.cz.cio.TextFeature;

public class InstanceNameChange ({
public void setDefaultName (Component comp, TextFeature tf) {

String name = tf.getCurrentValue();
comp.setInstanceName (name) ;

Example of Configurator Extension Modeling

See the Oracle Confiqurator Developer User’s Guide for details on how to incorporate a
Configurator Extension in a configuration model and test it. See Example of
Configurator Extension Coding, page 2-6 for how the behavior of this example is coded
in Java.

Incorporating Behavior into Configuration Models, page 2-3 provides a summary of the
tasks for the modeling stage of Configurator Extension development.

The following list summarizes the options specific to this example:

¢ Use the Java source code in Sample Java Code for Configurator Extension
(InstanceNameChange .java), page 2-7 to create your Java archive file and
Configurator Extension Archive.

e When you define model structure, include a Component that can be instantiated
multiple times and a Text Feature with some Initial Value of your choice.

¢ When you define a Configurator Extension rule, use the options listed in the

following table:

Option Choose ...

Model Node The node of your Model on which you want
Oracle Configurator Developer to place a
button that adds additional instances of
your Component.

Java Class InstanceNameChange, from your
Configurator Extension Archive

Java Class Instantiation With Model Node Instance

Building Configurator Extensions 2-7

* When you define an event binding, use the options listed in the following table:

Option Choose ...
Event postInstanceAdd
Command Name A string that you choose as a command. For

example: ShowStructure

Event Scope Your choice of scope. Try repeating the
example with different scopes to see the
effect when you test it.

Method Name showModelStructure

* When you define your argument bindings, use the options listed in the following

tables:

Option Choose ...

Argument Type oracle.apps.cz.cio.Component
Argument Specification Event Parameter

Binding instance

Option Choose ...

Argument Type oracle.apps.cz.cio.TextFeature
Argument Specification Model Node or Property

Binding The Text Feature whose value is used to

name new instances of the Component.

* When you test the Model, try this procedure:

1. Generate logic for the Model and refresh its User Interface.

2. Click Test Model and select a User Interface. When it appears, the Ul contains a

2-8 Oracle Configurator Extensions and Interface Object Developer's Guide

field for the value of the Text Feature and a button (whose default caption is
Add Another) for adding new instances of the instantiable Component.

3. Click the button to add a new instance of the Component. This action is
handled by the runtime Oracle Configurator as a postInstanceAdd event,
which triggers the Configurator Extension, which is bound to that event.

4. The runtime Oracle Configurator changes the name of the new instance of the
Component to the value of the Text Feature.

5. Change the value of the Text Feature, then add another instance of the
Component. The new text value is used to name the new instance.

You can also test Configurator Extensions outside Configurator Developer, by creating
an HTML test page that substitutes for your host application. (An example is provided
in the Oracle Configurator Installation Guide.)

Suggested Development Practices

This section contains an assortment of suggested practices for developing Configurator
Extensions more efficiently and conveniently. These practices include:

® Observing Project Requirements, page 2-10

¢ Avoiding Common Errors, page 2-10

® Observing Thread Safety, page 2-10

¢ Handling Exceptions Properly, page 2-11

* Avoiding Circularity and Recursion, page 2-12

e Taking Advantage of Argument Binding, page 2-13
¢ Sharing Class Instances, page 2-13

* Disabling Configurator Extensions, page 2-14

e Testing for a Null User Interface, page 2-14

e Using Logging to Examine Problems, page 2-15

® Checking for Deleted or Discontinued Nodes, page 2-15
¢ Managing JDBC Connections, page 2-15

* Accessing More Node and Text IDs, page 2-16

Building Configurator Extensions 2-9

Observing Project Requirements

Using Configurator Extensions and the CIO allows you to build very powerful
applications with Oracle Configurator. There are important requirements that you
should fulfill if you want to maximize your success with Configurator Extensions.

¢ The programmers developing the Java code must possess the requisite skills. See
Prerequisite Skills for Developing Configurator Extensions, page 1-2 for a
description.

* You must develop a test plan for your Configurator Extensions, including a way to
isolate problems caused by them. You need to test your Configurator Extensions
early and often.

If you contact Oracle Support Services (as described in Product Support, page 1-8),
you will be asked to reproduce the problem without the Configurator Extensions. If
it is impossible to reproduce the problem without Configurator Extensions, you will
need to explain why you believe your code is not the cause of the problem. See
Disabling Configurator Extensions, page 2-14 for information on features that
enable you to isolate the effects of your Configurator Extensions.

Avoiding Common Errors

Observe the following guidelines to avoid common coding errors:

* Ensure that any static variables and methods are thread-safe. Be aware that CIO
interfaces are not thread-safe. See Observing Thread Safety, page 2-10 for details.

¢ Use one transaction per CIO operation. See Using Logic Transactions, page 7-1 for
details.

* Handle exceptions properly and avoid empty catch blocks. See Handling
Exceptions Properly, page 2-11.

Observing Thread Safety

CIO interfaces are not thread-safe. A single configuration session should only be
accessed by a single thread at a time. Whenever a custom application interacts directly
with the CIO, you must ensure that it accesses a configuration session by only a single
thread at a time. Multithreading problems can occur, for instance, when end users click
multiple times in a child window spawned by a locked parent window. You can
prevent multithreading problems by locking your User Interface or synchronizing on
your servlet. See Sharing a Configuration Session, page 5-14 for an example of when
this is a consideration.

Even if you follow this practice, multithreading problems can be caused if the end user
closes the child window by clicking on the "X" button (in the upper-right-hand corner of

2-10 Oracle Configurator Extensions and Interface Object Developer's Guide

the child window's frame). Doing so unlocks the parent window, but does not terminate
the thread that was processing the actions in the child window. When control is
returned to the Ul in the parent window, a new thread is spawned for further
processing (such as computing availability, or performing user requests). Consequently,
multiple threads exist for the CIO, a situation that can lead to the JVM crashing.

To protect against the potential multithreading effects of end users prematurely closing
child windows, developers should trap the "X" button action in their code. The details
for this solution are browser-dependent.

Handling Exceptions Properly

Caution: Improper handling of exceptions is the source of many
problems that are difficult to diagnose. See Handling Exceptions, page
8-9 for more information.

Do not ignore or swallow exceptions raised by your code. Ignoring exceptions makes it
very difficult to determine the cause of some problems. Handling exceptions properly is
sound Java coding practice.

Never leave a catch block empty, as is shown in the example Empty Catch Block, page
2-11. The empty catch block causes your code to silently ignore the exception. The
program may then fail at some later point that is quite unrelated to the source of the
problem, making it very hard to analyze.

Empty Catch Block

try |
optl.setState (IState.TRUE) ;
}
catch (LogicalException le) {
// an empty catch block ignores exceptions

}

This advice applies to both checked exceptions (such as predictable user errors) and
unchecked exceptions (unpredictable program failures). Checked exceptions should
always be handled, as shown in Catch Block That Handles an Exception, page 2-11.
Leaving a catch block empty is worse than not catching an unchecked exception at all,
since an unhandled unchecked exception (with no catch block at all) causes the program
to fail and preserves some failure information for debugging.

Catch Block That Handles an Exception

try |
optl.setState (IState.TRUE) ;
}
catch (LogicalException le) {
// the exception is handled
throw new RuntimeException ("Error") ;

}

Building Configurator Extensions 2-11

Avoiding Circularity and Recursion

Avoid coding that results in circularity or recursion. Scenarios that might cause this are
described in:

e Example of Circularity, page 2-12

¢ Example of Recursion, page 2-12

Example of Circularity

You might unintentionally define Configurator Extensions that call each other in a
circular chain.

For example, you might bind the postValueChange event to a method that
increments the value of a node, and also to some other method that increments the
value of the same node. At runtime, the change to the node made by one method
triggers the other method, which changes the node again, and triggers the first method.
The resulting endless loop of value changes results in a stack overflow. You can
determine whether this occurred by checking the stack trace. When the stack overflow
occurs in native code, as it often will, the JVM dies with a segmentation violation. On
many platforms an hs_err file is not generated. A core dump file is generated (if you
have not set coredumpsize to 0), but using gdb on that file to get a backtrace often
will not show Java frames, making this problem very difficult to debug.

This kind of scenario can also occur with the onConfigvValidate event, which is
dispatched during the validation performed after every CIO transaction.

Example of Recursion

You might unintentionally invoke a method that calls itself recursively in an endless
loop.

For example, you might bind the method setIntegervalue () in Inadvertent
Recursion (RecursionExample.java), page 2-13 to the postValueChange event. (You
would also bind its node parameter to an Integer Feature, and its config parameter to
the system parameter Configuration, with an event scope of Base Node.)

2-12 Oracle Configurator Extensions and Interface Object Developer's Guide

Inadvertent Recursion (RecursionExample.java)
import oracle.apps.cz.cio.IInteger;

import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.ConfigTransaction;
import oracle.apps.cz.cio.LogicalException;

public class RecursionExample {

public void setIntegerValue (IInteger node, Configuration config) {

ConfigTransaction tr = config.beginConfigTransaction();
try {
int val = node.getIntValue();

node.setIntValue(val + 1); // no limit to setting values
config.commitConfigTransaction (tr);

} catch(LogicalException le) {
le.getExceptionCause(); // handle the returned node

}
}

The setIntegervValue () method changes the value of the specified node inside a
transaction (which is sound practice). However, every time a transaction is committed,
the CIO traverses the list of changes to the configuration (as described in Validating
Configurations, page 8-1) and detects the change to the node, and this change triggers
the postValueChange event, which calls the setIntegerValue () method again, in
a loop.

To avoid this recursion, you must place a limit on the setIntegerValue () method,
such as the following:

Example
if (val < 100) { node.setIntValue(val + 1); } // limit to setting
values

At runtime, this method increments the value of the Integer Feature until it reaches 100,
and then stop.

Taking Advantage of Argument Binding

Try to make your code simple and reusable by taking advantage of the power of
argument binding.

* When you want to get a node for processing, do not use node.getChildByName ()
. Instead, you can simply bind the desired node to a method parameter in Oracle
Configurator Developer.

¢ When you only need one Property of a node, do not bind the node. Instead, bind
the Property. For example, if you need the name of the node node, then bind to the
System Property node.Name () instead of binding node itself and calling node.
getName () in your code.

Sharing Class Instances

All the bindings on a single Configurator Extension Rule share an instance of a class.

Building Configurator Extensions 2-13

This means that any member variable can be shared.

You can group bindings based on their intended functionality or based on their class
usage, and incur less overhead in the creation of objects.

If your Configurator Extension class uses static member variables to communicate
between different instances of the class, the variables cannot be shared across
configurations of different models. For example, a Configurator Extension Rule whose
base node is in Model M1 will not be able to share static member variables with a
Configurator Extension Rule whose base node is in the Model M2 even if both
Configurator Extensions are bound to the same Configurator Extension class, MyClass.

Disabling Configurator Extensions

When debugging problems with Oracle Configurator, it is sometimes very helpful to
disable some or all of your Configurator Extensions. Disabling Configurator Extensions
shows whether the likely source of a problem is in your Configurator Extensions or in
the Model that they are associated with. If the problem disappears when you disable
Configurator Extensions, then the problem is likely to be in your code. If the problem
persists, then the problem is likely to be in your model structure or configuration rules.

e To disable one or more individual Configurator Extensions, navigate to the Rules
area of the Workbench in Oracle Configurator Developer. Then edit the
Configurator Extension Rule and select its Disable check box, which disables only
that Rule. See the Oracle Configurator Developer User’s Guide for details.

¢ To disable many or all Configurator Extension Rules for a Model, navigate to the
Rules area of the Workbench in Oracle Configurator Developer. Then select the
rules, or a folder of rules, and select Disable from the Actions list. See the Oracle
Configurator Developer User's Guide for details.

* To disable all Configurator Extensions in your runtime Oracle Configurator, set the
profile option CZ: Disable Configurator Extensions to Yes. See the Oracle
Configurator Installation Guide for details on setting this profile option.

This option overrides the settings in Oracle Configurator Developer.

This option also disables Functional Companions for Models that have already been
published.

Testing for a Null User Interface

If a Configurator Extension might be used with both DHTML Uls (created with a
previous release of Oracle Configurator Developer) and generated Uls (created with the
HTML-based version of Oracle Configurator Developer), then you should always test
for the existence of a DHTML UL This can also be a way to check which type of Ul is in
use.

To test for the existence of a DHTML user interface, call

2-14 Oracle Configurator Extensions and Interface Object Developer's Guide

Configuration.getUserInterface (), as shown in Testing for a Null User
Interface, page 2-15. If the test occurs when the runtime configuration is rendered in a
generated Ul, then it always returns null.

Testing for a Null User Interface

mUi = this.getRuntimeNode () .getConfiguration () .getUserInterface()
if (mUi != null) { // the UI is DHTML }
else { // the UI is generated }

Using Logging to Examine Problems

When debugging problems with Oracle Configurator, it is very helpful to examine the
log file entries created by the CIO during a runtime configuration session. You can
insert statements in your code to specify how the entries are written. See Logging
Through the CIO, page 11-1 for details.

Checking for Deleted or Discontinued Nodes

When working with a runtime node that might have been deleted during a
configuration session, always call IRuntimeNode.isDeleted () to test whether that
node is actually deleted. Attempting to access or set some attribute of a deleted node
generates a NodeDeletedException at runtime. Some methods commonly used to
work with nodes are getState (), setState (), and so on. If a configured instance of
your Model might contain discontinued nodes, then you should also call
IRuntimeNode.isDiscontinued () as a condition of working with a node. A
discontinued node is one that exists in an installed configuration of a component (as
recorded in Oracle Install Base), but has been removed from the instance of the
component being reconfigured, either by deletion or by deselection. If a node has been
discontinued by deselection, but not by deletion, then calling a method on it will not
raise a NodeDeletedException.

For examples of situations in which you might need to test for deleted or discontinued
nodes, see the following sections:

¢ Getting and Setting Logic States, page 6-6
* Getting and Setting Numeric Values, page 6-9

® Access to Options, page 6-13, which includes a code example, Testing Whether an
Option Is Selected, page 6-14

Managing JDBC Connections

Both Configurator Extensions and custom applications use JDBC connections to access
the database.

Custom applications must create a database context object before using the CIO, as

Building Configurator Extensions 2-15

described in Initializing the CIO, page 4-4. If a custom application needs to access the
database after the creation of the Configuration, then they can borrow the context
associated with the session's Configuration object, by using
Configuration.getContext (). When such applications are finished with the
connection, they must release it with
CZWebAppsContext.releaseJDBCConnection (). They should never call
java.sqgl.Connection.close () to close the connection, because it does not
properly return the connection back to the connection pool. When custom applications
are finished with the context object, they must call Context. free (), to prevent
connection leaks.

Configurator Extensions do not have to create their own context object and JDBC
connection simply to access the configuration model and rules; those connections are
created when the runtime Oracle Configurator starts a configuration session. But if
Configurator Extensions need to access the database for special queries or invocations,
they can borrow the context associated with the session's Configuration object, by using
Configuration.getContext ().If they borrow the session context, Configurator
Extensions should not call context.releaseJDBCConnection () or
java.sqgl.Connection.close (), because the Web Service already being used by
the session will properly free the database resources; calling either of those methods
causes a connection leak. However, if a Configurator Extension creates its own context
and connection instead of borrowing the session's, then it must follow the practice for
releasing connections and contexts that is described here for custom applications.

Accessing More Node and Text IDs

In the current release, the CZ schema has been enhanced to greatly increase the number
of Model nodes and translatable text records that can be created over the life of a
database instance. Previously, you could create approximately 2 billion total nodes in
the structures of all your Models, and approximately 2 billion translatable text strings.
Now, these totals have been increased to approximately 999 trillion.

If you have Configurator Extensions or other custom Java code that uses the CIO, then
this schema change requires you to take certain actions. For details, see the sections on
upgrade considerations and new public APIs, under "Support for More Node and Text
IDs", in the Oracle Configurator Release Notes for this release, Document 729984.1 on
Oracle MetaLink. A brief description follows:

* The Java representation of the database columns representing IDs for Model nodes
and translatable text records has changed from int to long. The affected tables
and columns are listed in the Release Notes.

¢ Where a CIO method refers to one of these IDs, an additional signature for the
method has been added, to return a 1ong value, or take a 1ong parameter, instead
of an int value or parameter. The added 1ong-oriented methods are listed, with
their int-oriented equivalents, in the Release Notes.

¢ The Release Notes describe the circumstances under which you need to make

2-16 Oracle Configurator Extensions and Interface Object Developer's Guide

modifications to your code in order to keep Oracle Configurator working correctly
for your application.

Building Configurator Extensions 2-17

3

Uses for Configurator Extensions

This chapter collects instructions on how to use Configurator Extensions for specific
tasks, such as generating custom output and filtering for connectivity

This chapter covers the following topics:
e Types of Configuration Events

* Generating Custom Output

¢ Filtering for Connectivity

¢ Requiring Text Input Dynamically

Types of Configuration Events

Every Configurator Extension must be bound to some configuration event. Therefore,
you should review the available events to help determine the situations in which you
can employ a Configurator Extension.

While there are no formal types for Configurator Extensions themselves, it is possible to
categorize the configuration events to which you can bind Configurator Extensions. The
table Types of Configuration Events, page 3-2 lists the available types of configuration
events and an example event for each type. For a list of events that you can use for
processing configurations, see Events for Processing Configurations, page 5-11. For
more details, and a full list of the available events, see the chapter on Configurator
Extensions in the Oracle Configurator Developer User’s Guide.

Uses for Configurator Extensions 3-1

Types of Configuration Events

Event Type Possible Use Example Event
Configurator Triggering actions that are postCxInit
Extension required when the base node for a
Configurator Extension Rule is
instantiated.
Connection Filtering valid targets for a onvValidateEligibleTarget

Custom Command

Session

Value-Related

Connector.

Processing custom command
strings that you define. Required
when generating custom output.

Triggering actions that are
required at some specified point
in a configuration session.

Validating selections or values.

onCommand

postConfigInit

onConfigValidate

Generating Custom Output

You can generate custom output that is displayed when the end user clicks a button in
the Ul of the runtime Oracle Configurator.

The Configurator Extension for this task must be bound to the onCommand event with a
custom command string that you define. This custom command is handled by the Ul
layer for the runtime Oracle Configurator. The other requirement is that your Java
method must take an argument of type HttpServletResponse.

For the detailed procedure for creating a Configurator Extension Rule, see Building
Configurator Extensions, page 2-1 and the related sections of the Oracle Configurator
Developer User’s Guide. A summary of the required tasks is provided here, with

additional explanation where necessary.

1. The Java method for your Configurator Extension class must take an argument of
the type javax.servlet.http.HttpServletResponse. You must use this
data type because it is the location where your Configurator Extension generates

custom output.

An example of a very simple custom output class is shown in Generating Custom
Output (HelloWorldCX java), page 3-5. The example prints a simple message in

an HTML page.

3-2 Oracle Configurator Extensions and Interface Object Developer's Guide

2. Compile the Java class for your Configurator Extension and place it in a Java class

archive file.

3. Create a Configurator Extension Archive for the class, and add it to the Archive

Path for your Model.

4. Define a Configurator Extension Rule with the options listed in the following table:

Option

Choose ...

Model Node

Java Class

Java Class Instantiation

The node of your Model on which you want
the button for the command event to be
placed by Oracle Configurator. This node is
independent of the node to which you
might bind an argument whose Argument
Specification is Model Node or Property.

HelloWorldCX, selected from your
Configurator Extension Archive.

With Model Node Instance

5. Create an event binding for the Configurator Extension Rule with the options listed

in the following table:

Option

Choose ...

Event

Command Name

Event Scope

Method

onCommand

A string that you choose as a command. For
example: Say Hello. Do not enclose the
string in quotation marks. The string can
contain spaces.

Your choice of scope. Try repeating the
example with different scopes to observe
the effect when you test it each time.

helloWorld

6. Create an argument binding for the event binding with the options listed in the

following table:

Uses for Configurator Extensions 3-3

Option Choose ...

Argument Type javax.servlet.http.HttpServletRe
sponse

Argument Specification Event Parameter

Binding HttpServletResponse

7. Generate logic for your Model, to reflect the addition of the Configurator Extension
Rule.

8. Create or refresh a User Interface for your Model. This creates a button in the User
Interface that by default is captioned with the Command Name that you specified
in the binding for the onCommand event. The button is placed on the page for the
Model Node that you associated with the Configurator Extension (the base node).

To change the default caption of the button, edit the Text Expression field in the
Caption Source for the button.

The Button Action for the button is automatically set by Oracle Configurator
Developer to use an Action Type of Raise Command Event in which the Command
is the Command Name string in your event binding. The fact that these command
strings are the same is what causes the button to invoke the Java class for your
Configurator Extension. If you change the Command Name string in your event
binding, you must also change it for the Raise Command Event.

9. Test the Configurator Extension from Configurator Developer by choosing the Test
Model button, then choosing the Model Debugger, or the User Interface that you
generated. When you click the button that triggers the Configurator Extension, it
produces a secondary window and writes the specified message in it.

You can modify the characteristics of the secondary window in Configurator
Developer. The Action Parameters for the Button element include an Output
Window Options field, into which you can enter HTML attributes for the window.
See the Oracle Confiqurator Developer User’s Guide for information on editing User
Interface elements.

10. For another example of generating output, see Generating Output with a
Configurator Extension (ShowStructureCX.java), page B-4 in Generating Output
Related to Model Structure, page B-1.

Keep the following in mind when working with custom output:

e If you bind multiple Configurator Extensions to the same command event, they
share the same Button element in the User Interface. When you click that button in

3-4 Oracle Configurator Extensions and Interface Object Developer's Guide

the runtime Oracle Configurator, it triggers all those bound Configurator
Extensions.

¢ If you use the limited edition of Oracle Configurator Developer to create a DHTML
UI for a Model that already contains multiple Configurator Extension command
bindings, then it generates a Button for each command binding. However, when
you click a button in the runtime Oracle Configurator, only the first Configurator
Extension runs.

Generating Custom Output (HelloWorldCX.java)
import java.io.IOException;

import javax.servlet.http.HttpServletResponse;
// This CX does not use the CIO, so no need to import CIO classes

public class HelloWorldCX ({

public HelloWorldCX () {
t

public void helloWorld (HttpServletResponse resp) {
StringBuffer sb = new StringBuffer (511);

sb.append ("<html>") ;

sb.append ("<head>") ;

sb.append ("<title>Simple CX Test</title>");

sb.append ("</head>") ;

sb.append ("<body bgcolor='#FFFFFF' text='#000000'>");

sb.append ("HELLO WORLD. This is output from a Configurator
Extension.");

sb.append ("</body>") ;
sb.append ("</html>") ;
resp.setContentType ("text/html") ;
resp.setHeader ("Expires", "-1"); // required for MSIE
try {
resp.getWriter () .println(sb.toString());
}

catch (IOException ioce) {

throw new RuntimeException();
t
}

Filtering for Connectivity

You can define a Connection Filter Configurator Extension that filters the instances of a
target Model that are displayed when an end user of the runtime Oracle Configurator
clicks a Choose Connection button.

Defining a Connection Filter Configurator Extension

To define a Connection Filter Configurator Extension:

1. Define a Java class for your Configurator Extension.

Uses for Configurator Extensions 3-5

See Developing Java Classes and Archives, page 2-4 for the basic procedure. See
Example of a Connection Filter Configurator Extension, page 3-7 for example
code.

2. Define a method that determines the criteria for filtering a list of valid targets for a
Connector.

Filtering for Connectivity (TargetFilter.java), page 3-7 defines such a test in the
body of validateEligibleTarget ().

3. In Oracle Configurator Developer, define a Configurator Extension Rule, and create
a binding for the onvValidateEligibleTarget event.

Bind the Event Parameter named target as the argument to the parameter of your
validateEligibleTarget () method named target.

Bind the Event Parameter named connector to the Connector node whose target
instances you want to filter.

See the Oracle Configurator Developer User’s Guide for information about connectivity
and creating Connectors.

Behavior of Connection Filter Configurator Extensions

In the runtime Oracle Configurator, when the end user clicks a Choose Connection
button, Oracle Configurator gets the list of all target instances of the Connector, then
invokes any Configurator Extension bindings that are listening for the
onValidateEligibleTarget event on this Connector. If any of these bindings
return false, then that instance is removed from the list of potential targets, and is not
displayed in the Connection Chooser.

e If there are no target instances that satisfy the filter, then Oracle Configurator

displays a notification of that fact to the end user.

® The same Connection Filter Configurator Extension can be associated with more
than one Connector. The same filtering test is performed, but because the potential
targets of the Connectors may be different, the resulting set of eligible instances
may also be different.

¢ Different Connection Filter Configurator Extensions can be associated with the
same Connector, for example:

e Model_ A includes Connector_A
e InModel_A, Configurator Extension CX_1 is associated with Connector_A

* Model_A is referenced in Model_B (and so Connector_A is accessible through
the reference)

3-6 Oracle Configurator Extensions and Interface Object Developer's Guide

* In Model_B, Configurator Extension CX_2 is associated with Connector_A

In the runtime Oracle Configurator, when the end user clicks the Choose
Connection button for Connector_A, Oracle Configurator displays a Connection
Chooser containing all of the target instances that satisfy both CX_1 and CX_2.

Example of a Connection Filter Configurator Extension

For an example of a Connection Filter Configurator Extension, see Filtering for
Connectivity (TargetFilter.java), page 3-7. This Configurator Extension searches the
target Model for a Resource named Resourcel, and returns False if the value of that
Resource is less than 10; otherwise it returns True.

In the runtime Oracle Configurator, this Configurator Extension filters out any potential
target instances in which the value of the Resource named Resourcel is less than 10.
(If the potential target instance does not even contain a Resource named Resourcel,
then a NoSuchChildException is raised.)

Filtering for Connectivity (TargetFilter.java)

import oracle.apps.cz.cio.Resource;

import oracle.apps.cz.cio.Component;
import oracle.apps.cz.cio.NoSuchChildException;

public class TargetFilter {

public boolean validateEligibleTarget (Component target) {
Resource resource = null;
try {
resource = (Resource)target.getChildByName ("Resourcel") ;
} catch (NoSuchChildException nsce) {
nsce.printStackTrace () ;
return true;
}
if (resource.getValue() < 10) {
return false;
} else {
return true;

}

Requiring Text Input Dynamically

Although you can make input for a Text Feature required when you define it in Oracle
Configurator Developer (as described in the Oracle Configurator Developer User's Guide),
you cannot use a configuration rule to make the input be required based on some
dynamic runtime condition, such as the state of some other model node.

To make input for a Text Feature dynamically required, use
TextFeature.setRequired (boolean required).

Example

Uses for Configurator Extensions 3-7

In a Configurator Extension, implement a custom method that takes two arguments:

e the Text Feature that you want to make dynamically required

* anode (such as a Boolean Feature or Option) that logically controls whether the
Text Feature is required

You can define more complex logic than is shown in this basic example to make the
Text Feature required.

In your custom method, if the controlling node (or other logic) is True, call
setRequired (True) on the Text Feature; otherwise call setRequired (False).
Examples of controlling nodes might be:

e aBoolean Feature named Required?

e an Option named Yes of an Option Feature named Required? that has Options
Yes and No

In a Configuration Rule, create an event binding that associates your method with the
controlling node and the postValueChange event. Duplicate this event binding, but
for the postConfigRestore event.

At runtime, when the end user selects a true value for the controlling node (for
example, the Option Yes for the Option Feature Required?), then your Configurator
Extension forces the user to enter a non-null value for the Text Feature in order for the
configuration to be satisfied.

When using the CIO in the Telecommunications Service Ordering (TSO) flow, do not
call TextFeature.setRequired () on passive instances. Doing so will produce a
runtime error when the current transaction is committed or rolled back. From the
standpoint of the CIO, a passive instance is one that returns False when tested with
RuntimeNode.isEditable (). For background on passive instances, see the Oracle
Telecommunications Service Ordering Process Guide. You should only call
TextFeature.setRequired () in a Configurator Extension that is bound to the
event postInstanceEditable.

3-8 Oracle Configurator Extensions and Interface Object Developer's Guide

Part 2

The Configuration Interface Object (ClIO)

This Part describes the API called the Configuration Interface Object (CIO) and how to
use it to interact with the runtime Oracle Configurator. The CIO is used both by
Configurator Extensions and by custom applications.

4

CIO Basics

This chapter explains the basics of the Oracle Configuration Interface Object (CIO) and
how to use it. For details about how to use the CIO for specific purposes, see other
chapters in Part 2.

This chapter covers the following topics:
* Background to the CIO
¢ The CIO's Runtime Node Interfaces

¢ Initializing the CIO

Background to the CIO

This section describes the CIO and its relationship to Configurator Extensions.

What is the CIO?

The Configuration Interface Object (CIO) is an API (application programming interface)
that provides programs access to the Model used by a runtime Oracle Configurator,
which you construct with Oracle Configurator Developer. The CIO is designed to
enable you to programmatically perform any interaction with a configuration model
that can be interactively performed by an end user during a configuration session.

The CIO is a top-level configuration server. The CIO is responsible for creating, saving
and destroying objects representing configurations, which themselves contain objects
representing Models, Components, Features, Options, Totals and Resources. The
runtime configuration model can be completely controlled and manipulated through
these interfaces, using methods for getting and setting logical, numeric and string
values, and creating optional subcomponents.

Client Applications

The CIO is the only API supported by Oracle for programmatic interaction with the
runtime Oracle Configurator. Consequently, any custom applications must use the CIO.

ClO Basics 4-1

Custom applications are those that integrate Oracle Configurator with a custom user
interface (a UI not generated by Oracle Configurator Developer).

The CIO is also used by Configurator Extensions, as described in Configurator
Extensions and the CIO, page 1-5. Be sure to review the Oracle Configurator Performance
Guide for information on the performance impacts of Configurator Extensions.

Most of the techniques for using the CIO apply equally to custom applications and
Configurator Extensions. This document points out selected cases where there is a
distinction between these two applications.

Implementation Language

The Oracle Configuration Interface Object is written in Java, and implemented as the
Java package oracle.apps.cz.cio. To use the functionality of the CIO you must
import classes from this package.

Note: Unless stated otherwise, references in this document to classes,
methods, and properties refer to the package oracle.apps.cz.cio,
and all code examples are in Java.

The CIO and Configurator Extensions
A Configurator Extension is Java code that calls the CIO.

Configurator Extensions are invoked by the CIO through the runtime Oracle
Configurator, and Configurator Extensions call the CIO to get information from the
running Model. The CIO is like a broker for the runtime Oracle Configurator, in that it
passes information both ways. Programmers writing Configurator Extensions need to
know how to use the CIO.

Each Configurator Extension is an object class. For every component instance in your
Model that is associated with a Configurator Extension, the CIO creates an instance of
this class.

The CIO's Runtime Node Interfaces

When you program against the CIO, you create one instance of the class CIO (see
Initializing the CIO, page 4-4) and one or more instance of the classes

Configuration and ConfigParameters (see Working with Configurations, page 5-
1). You then use the public interfaces of the CIO, such as those listed in Important
Runtime Node Interfaces for the CIO, page 4-3, to access fields in the runtime node
objects created by your instances of CIO and Configuration. Apart from CIO and
Configuration, your code should refer only to these public runtime node interface
objects. You should not implement any of the runtime node interfaces, but only use
them as references to runtime node objects.

In Java, an interface is a special type that allows programmers more flexibility in the

4-2 Oracle Configurator Extensions and Interface Object Developer's Guide

way that they implement the internal details of classes. In Java terms, an interface is a
named collection of method definitions, without implementations of those methods. For
example, in the CIO, the interface TRuntimeNode specifies methods that are
implemented in the class Runt imeNode.

Note: In normal circumstances, the only CIO classes that you should
create (with the Java keyword new) are:

e CIO
® Configuration
® ConfigParameters

You only need to create these objects when working with a custom
application. Configurator Extensions do not need to create them,
because that task is performed by the runtime Oracle Configurator
when it starts a configuration session.

The table Important Runtime Node Interfaces for the CIO, page 4-3 lists some of the
interfaces defined in the Java package oracle.apps.cz.cio that you are most likely
to use in working with the CIO. For more detail about these and the other CIO
interfaces, see Reference Documentation for the CIO, page A-1.

Important Runtime Node Interfaces for the CIO

Interface Role of implementing classes

Component Interface for components.

IBomItem Implemented by all selectable BOM items.

ICount Implemented by objects that have an associated integer
count.

IDecimal Implemented by objects that can both get and set a

decimal value.
IInteger Implemented by objects that have an integer value.

IOption Implemented by objects that act as options. The
defining characteristic of an option is that it can be
selected and deselected.

ClO Basics 4-3

Interface Role of implementing classes

IOptionFeature Implemented by objects that contain selectable options.
This interface provides a mechanism for selecting and
deselecting options, and for determining which options
are currently selected.

IRuntimeNode Implemented by all objects in the runtime
configuration tree. This interface implements behavior
common to all nodes in the runtime configuration tree,
including Components, Features, Options, Totals, and
Resources.

IState Implemented by objects that have logic state. This
interface contains a set of input states, used to specify a
new state for an object, a set of output states, returned
when querying an object for its state, and a set of
methods for getting and setting the object's state.

IText Implemented by objects that have a textual value.

The functionality underlying the CIO interfaces is implemented by other classes in
oracle.apps.cz.cio, which are subject to revision by Oracle. This
interface/implementer architecture protects your code from the effects of such revisions,
since the interfaces remain constant.

Initializing the CIO

In order to use any of the features of the CIO, an application must initialize it, using a
JDBC driver to make a connection to the Oracle Configurator schema. This connection
enables the CIO to obtain and store data about Model structure, Configuration Rules,

and User Interface.

e This use of the CIO is intended for custom applications. If you are
using the CIO in a custom application, you must initialize the CIO.

¢ When you run Configurator Extensions through the runtime Oracle
Configurator or through the testing facilities of Oracle Configurator
Developer, this initialization and connection work is automatically
handled for you; you do not have to write your own code to
initialize the CIO. See Managing JDBC Connections, page 2-15 for
details.

Use the following practice to initialize the CIO:

4-4 Oracle Configurator Extensions and Interface Object Developer's Guide

1. Import the necessary classes.

Example

import java.sgl.Connection;
import java.sqgl.DriverManager;
import java.sqgl.SQLException;
import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;

It is good practice to import only the classes that you actually need. The example
here shows oracle.apps.cz.cio.* for simplicity.

2. Load the database driver that you have installed. For instance:

Example
Class.forName ("oracle.jdbc.driver.OracleDriver");

3. Create a context object and pass to it the information needed to make a database
connection: the full path and name of the DBC file. The context object manages the
database connection. You should not create a separate connection object (for
instance, by using java.sqgl.DriverManager.getConnection).

Example
contextObject = new CZWebAppsContext ("/fullpath/dbcFileName.dbc") ;

In the current release, all DBC files should be installed in the directory identified by
the system parameter FND_SECURE. This directory is distinct from FND_TOP.
Your custom code must access DBC files through FND_SECURE.

When creating a context object, it is necessary to set the Responsibility ID for the
session.

Example

SessionManager sm = contextObject.getSessionManager () ;

sm.setResp (appld, respld);

Consult the Java API reference documentation for
oracle.apps.fnd.common.Context.getSessionManager () and
oracle.apps.fnd.security.SessionManager.setResp(int, int) for
background.

4. Create a single global CIO object. This object is shared by any Configuration
objects that are created during the configuration session.

Example
CIO cioObject = new CIO();

Creating a Configuration Object (MyConfigCreator.java), page 5-5 shows how some
of these steps are employed.

ClO Basics 4-5

5

This chapter describes how to interact with runtime configuration objects.

Working with Configurations

This chapter covers the following topics:

Overview of Configurations

Creating Configurations

Removing Runtime Configurations
Saving Configurations

Monitoring Changes to Configurations
Restoring Configurations

Restarting Configurations

Automatic Behavior for Configurations
Dispatching Command Events

Access to Configuration Parameters

Sharing a Configuration Session

Overview of Configurations

The Configuration object, oracle.apps.cz.cio.Configuration, represents a
complete configuration. You can use the CIO to work with multiple configurations

within the same configuration session.

For essential background information about Configuration objects, see the chapter on

managing configurations in the Oracle Configurator Implementation Guide.

You communicate with a runtime configuration through the Configuration object, using
methods such as those listed in the table Typical Methods of the Configuration Object,
page 5-2:

Working with Configurations

5-1

Typical Methods of the Configuration Object

To do this ... Use this method of Configuration ...

Access the CIO object that contains the getCIO()
Configuration object

Access the component object for which the getRootComponent ()
Configuration object represents a configuration

Obtain a collection of current validation failures getValidationFailures()

Obtain an indication of whether the complete isUnsatisfied()

configuration is satisfied getUnsatisfiedItems ()

Obtain a collection of the selected nodes in the getSelectedItemns ()

configuration

Save the current configuration saveNew ()
saveNewRevVv ()

Close the current configuration close ()

The Configuration object also provides methods for starting, ending, and rolling back
logic transactions performed on a configuration. Logic transactions maintain logic
consistency; they are not database transactions. See Using Logic Transactions, page 7-
1.

Creating Configurations

5-2

Note: This use of the CIO is intended for custom applications.
Configurator Extensions do not need to create a Configuration
object, because that task is performed by the runtime Oracle
Configurator when it starts a configuration session.

To create a Configuration object, which is the top-level entry point to a configuration,
use CIO.startConfiguration().

Note: The use of CIO.startConfiguration () completely replaces
the use of all versions of CIO.createConfiguration (), which is
now deprecated. Existing code that uses the deprecated method is still

Oracle Configurator Extensions and Interface Object Developer's Guide

compatible with the CIO, but cannot use any new functionality.

This method takes as arguments a ConfigParameters object and a context object.

The context object provides the application context for the connection to the database.
See Initializing the CIO, page 4-4 for information on creating a context object.

The ConfigParameters object encapsulates all the information needed to create a
configuration. To create a ConfigParameters object, invoke one of the constructors
for ConfigParameters, depending on the type of configuration you need to create:

* To create an entirely new configuration, provide a Model ID:

Example
public ConfigParameters (int modelId)

This is the constructor shown in Creating a Configuration Object
(MyConfigCreator.java), page 5-5.

* To restore a saved configuration, provide its Configuration Header ID and
Configuration Revision Number.
Example

public ConfigParameters (long headerId, long revisionNumber)

¢ To create a configuration for a BOM without a configuration model (sometimes
known as a "native BOM" configuration), provide the Inventory Item ID,
Organization ID, and effective date of the BOM to be exploded and configured:

Example
public ConfigParameters (int inventoryItemId, int organizationId,
Date explosionDate)

To control the initialization of the new configuration, use the methods in the
ConfigParameters class to set the configuration parameters. For details on these
methods, see the reference for the CIO (described in Reference Documentation for the
CIO, page A-1).

Use the methods in the following list to set the effective date for the configuration and
the model's publication lookup date.

® setEffectiveDate(java.util.Calendar effectiveDate)
® setModellLookupDate (java.util.Calendar modelLookupDate)

If you do not set these dates, they default to the date when Oracle Configurator
considers the configuration to have been created.

All other parameters to the ConfigParameters object are optional, and are defaulted.

Once a configuration has been created, changing a configuration parameter does not
affect the configuration in any way.

To obtain access to the CIO object that created the configuration, use

Working with Configurations 5-3

Configuration.getCIO().

Most of the constructor and method arguments to ConfigParameters correspond to
one of the initialization parameters for the runtime Oracle Configurator. The
correspondences are shown in the table Correspondence of Configuration Parameters to
Initialization Parameters, page 5-4. See the Oracle Configurator Implementation Guide for
more information on the initialization parameters.

Correspondence of Configuration Parameters to Initialization Parameters

Configuration Parameter Argument Initialization Parameter

Model ID modelId model id

Configuration Header ID headerld config_header_id
Configuration Revision Number revisionNumber config rev_nbr

Inventory TItem ID inventoryItemId inventory item id
Organization ID organizationId organization id
Configuration Effective Date effectiveDate config effective date
Model Lookup Date modelLookupDate configimode 1 lookup date

Creating a Configuration Object (MyConfigCreator.java), page 5-5 shows a technique
for creating a Configuration object. For clarity, it omits some important tasks, such as
using transactions and fully handling exceptions.

5-4 Oracle Configurator Extensions and Interface Object Developer's Guide

Creating a Configuration Object (MyConfigCreator.java)
import oracle.apps.cz.cio.CIO;

import oracle.apps.cz.cio.ConfigParameters;
import oracle.apps.cz.cio.Configuration;

import oracle.apps.cz.cio.IRuntimeNode;

import oracle.apps.cz.cio.IState;

import oracle.apps.cz.cio.IOption;

import oracle.apps.cz.cio.LogicalException;
import oracle.apps.cz.cio.ModellLookupException;
import oracle.apps.cz.cio.BomExplosionException;
import oracle.apps.fnd.common.Context;

import oracle.apps.cz.utilities.EffectivityUsageException;
import oracle.apps.cz.common.CZWebAppsContext;
import java.util.Calendar;

public class MyConfigCreator ({

// Create the context object for this instance
private static String dbcFileName =
"/jdevhome/users/dbc files/secure/server0l sid02.dbc";
private static CIO cio;
private static Context context;

public static void main(String [] args) {
context = new CZWebAppsContext (dbcFileName) ;
CIO cio = new CIO(); // Create shared global CIO

MyConfigCreator work = new MyConfigCreator();

// Create a configuration object, using the shared CIO

work.createConfigl () ;

// Possibly use the same shared CIO to create more
configurations

// work.createConfig2();

// work.createConfig3();

// and so on

}

// Create a new Configuration object
public Configuration createConfigl () {

Configuration configl = null;

// Create the ConfigParameters object and set non-default

parameters
int modelId = 5005; // hypothetical model ID
ConfigParameters cp = new ConfigParameters (modelId);

java.util.Calendar modelLookupDate = Calendar.getInstance();

current date and time
cp.setModelLookupDate (modelLookupDate) ;

try {

// Create the Configuration object

Configuration config = cio.startConfiguration (cp, context);

} catch (LogicalException le) {
// Perform exception handling here

} catch (ModelLookupException mle) {
// Perform exception handling here

} catch (EffectivityUsageException eue) {
// Perform exception handling here

} catch (BomExplosionException bee) {

Working with Configurations

!/

5-5

// Perform exception handling here

}

return configl;

}

Note: If your custom application is running in standalone mode, then
you may need to ensure that the Java system property JTFDBCFILE is
set. This property is normally set correctly by Oracle Rapid Install,
which is described in the Oracle Configurator Installation Guide.

This property is used by the Oracle Applications Framework to provide
the Java virtual machine (JVM)with the location of the DBC file that
contains the database information needed to create a database context.

If you connect to a different database while still in the same JVM, then
you must reset JTFDBCFILE to specify the DBC file for that database.

If JTFDBCFILE is not set, then you will be unable to create
configurations when running in standalone mode.

Removing Runtime Configurations
Note:

This use of the CIO is intended for custom applications. Configurator
Extensions do not need to close theConfiguration object, because
that task is performed by the runtime Oracle Configurator when it
terminates a configuration session.

To remove all runtime structure and memory associated with a configuration, use
CIO.closeConfiguration (). Oracle recommends that you invoke this method
when ending a configuration session and before exiting the runtime Oracle
Configurator.

Saving Configurations

You save a runtime configuration so that you can operate on it later, after it has been
closed at the end of a configuration session.

When you save a configuration, it is stored in the CZ schema of the Oracle Applications
database. To later operate on a saved configuration, you must first restore it, as
described in Restoring Configurations, page 5-8.

There are several methods for saving configurations. Choose the one that suits your
requirements, as described in the following list.

¢ Use Configuration.saveNew () to save an entirely new Configuration object.

5-6 Oracle Configurator Extensions and Interface Object Developer's Guide

The saved Configuration object has a new Configuration Header ID and a
Configuration Revision Number of 1.

Use Configuration.saveNewRev () tosave a new revision of a previously
saved Configuration object.

The saved Configuration object has the same Configuration Header ID as the
previously created Configuration object, but the Configuration Revision Number
uses the next available Revision Number.

Use Configuration.save () to save subsequent changes to a previously saved
Configuration object, overwriting the existing configuration data.

The saved Configuration object has the same Configuration Header ID and the same
Configuration Revision Number as the previously created Configuration object.

For more information on saving configurations, see the Oracle Configurator
Implementation Guide.

Caution: Do not save a Configuration object during a logic transaction
(see Using Logic Transactions, page 7-1). You may miss some
validation messages that are not available until the transaction is
committed.

Monitoring Changes to Configurations

When changes are made to a configuration, the CIO monitors whether the configuration
needs to be saved. You can access the flag that tracks this status.

How the CIO Monitors Changes to Configurations

During a runtime configuration session, the CIO monitors whether changes have been
made to the current configuration, and whether those changes need to be saved.

Changes can result either from end user actions in the user interface of the runtime

Oracle Configurator, or from assertions made through the CIO by your Configurator
Extensions or custom application code.

To keep track of whether a configuration needs to be saved, the CIO maintains a
Boolean changed-state flag, whose values are interpreted as "clean" or "dirty". At the
beginning of a configuration session, the flag is set according to the following rules:

Any new configuration having no assertions against it is marked as clean.

Any restored configuration having no assertions against it is marked as clean,
regardless of whether it produces validation failures when restored.

Any new or restored configuration with assertions against it is marked as dirty.

Working with Configurations 5-7

During the configuration session, if there are unsaved changes, then the changed-state
flag is set to dirty by the CIO.

When the configuration is saved, the changed-state flag is set to clean. It does not matter
how the saving is performed: by a Configurator Extension or by a custom user interface.

When the Cancel button is clicked in the user interface of the runtime Oracle
Configurator, the UI Server checks the changed-state flag; if it is dirty, the UI Server
produces a dialog asking the user whether to continue exiting the session without
saving the changes. If you write a custom user interface, it should do the same, using
the technique described in How You Can Monitor Changes to Configurations, page 5-
8.

How You Can Monitor Changes to Configurations

You can get or set the value of the changed-state flag of a configuration.

e To get the value of the changed-state flag, use the method
Configuration.areAllChangesSaved().

This method returns TRUE the configuration is clean (that is, if all the changes that
have been made to this configuration during the configuration session have been
saved). This method returns FALSE if the configuration is dirty (that is, if there are
changes that have been made to this configuration that have not been saved).

You can use this method when you want to determine whether a configuration
needs to be saved.

* To set the value of the changed-state flag, use the method
Configuration.setAllChangesSaved (), which takes the boolean argument
clean.

If you pass TRUE as the value of clean, then the changed-state flag is set to "clean".
Any further changes to the configuration make it dirty again. If you pass FALSE as
the value of clean, then the changed-state flag is set to "dirty".

You can use this method when you want to change the configuration through the
CIO without interfering with the end user's sense of what has changed during a
configuration session. For example, if you use a Configurator Extension to create
and rename of an instance of an instantiable component when the configuration is
created, the changed-state flag is set to dirty. You can then use
setAllChangesSaved () to set the flag to clean, so that if the end user clicks the
Cancel button before making any changes, the Ul Server does not produce the
dialog asking whether to continue exiting the session without saving changes.

Restoring Configurations

You restore a configuration in order to operate on it if it has been saved and closed (as
described in Saving Configurations, page 5-6).

5-8 Oracle Configurator Extensions and Interface Object Developer's Guide

To restore a Configuration object from the Oracle Configurator schema, use
CIO.startConfiguration (). For details about that method, see Creating
Configurations, page 5-2 and Creating a Configuration Object
(MyConfigCreator.java), page 5-5.

Note: The use of CIO.startConfiguration () completely
replaces the use of all versions of
CIO.restoreConfiguration (), which is now deprecated.
Existing code that uses the deprecated method is still compatible
with the CIO, but cannot use any new functionality.

When you restore a configuration, any user requests (see User Requests, page 9-3)
that cannot be applied are reported as validation failures. See Failed Requests, page
9-5.

You may be able to improve performance by restarting the current configuration,
instead of restoring it. See Restarting Configurations, page 5-11.

You must be aware of the possible effects of changing the model structure or
configuration rules in Oracle Configurator Developer between the time you save a
configuration and the time you restore it.

If you change the Instantiability settings for a Model or Component to decrease or
increase the Initial Minimum, this might change the number of previously saved
instances that exist when restore a saved configuration. Unmodified initial instances
are restored in the order they were initially created, until they possibly exceed the
Initial Minimum. However, no instances that you modify or add will be lost.

Here is an example of the preceding point:

1. Define the Initial Minimum of an instantiable component as 5.

2. Create a configuration. The Initial Minimum of 5 is enforced, instantiating that
number of components.

3. Modify 2 of the initially instantiated components. For instance, make them
targets of Connectors, or select options of their children.

4. Add 1new component instance, and delete 1 initial instance.

There are now 5 instances: 2 modified initial instances, 2 unmodified initial
instances, and 1 added instance.

5. Save the configuration. All 5 instances are saved.

6. Change the Initial Minimum of the instantiable component to 3.

Working with Configurations 5-9

7. Restore the saved configuration.

The following 4 instances are restored:

* The 1 added instance (because added instances are always restored). Added

instances are not counted against changes in the Initial Minimum.

* The 2 modified initial instances (because modified instances are always
restored).

¢ Only the first 1 of the unmodified initial instances (because the other 1
unmodified initial instance exceeds the new Initial Minimum of 3, and is
not restored).

Only unmodified instances can be lost when a configuration is restored. Any
modified or added instances are restored, regardless of the Initial Minimum.

If the Initial Minimum is increased, then the configuration might be restored
with more instances than were saved.

Remember that it is only the User True configuration inputs to the model that are
saved, not all the Logic True effects that those inputs may have when reapplied

later. When you restore a configuration, any user requests that cannot be applied
are reported as validation failures. Consequently, you should notify end users of

changes to your configuration model or rules.

Here is an example of the preceding point:

1.

Define a Logic Rule stating that Option1 Requires Option2.

In a configuration session, the end user selects Optionl, which then has an
input state of TRUE.

See Getting and Setting Logic States, page 6-6 for an explanation of input and
output states.

Your configuration rule causes the selection of Option2, which then has an
output state of LTRUE. The end user observes the effect of this change to
Option2. This effect might include the calculation of a price, or the inclusion of
a certain item in the order.

The configuration is saved. Only the input state of TRUE for Option1 is saved.
The configuration rule "Optionl Requires Option2" is deleted or disabled.

The configuration is restored. Only the state of UTRUE for Option1 is restored.
Because your configuration rule is no longer affecting Option2, its input state

remains UNKNOWN. The end user observes, with confusion, that the previous
selection of Option2 no longer occurs. The effect of this situation might be that a

5-10 Oracle Configurator Extensions and Interface Object Developer's Guide

previously observed price or item no longer appears in the order.

e For more information on restoring configurations, see the Oracle Configurator
Implementation Guide.

Restarting Configurations

Use Configuration.restartConfiguration () to restart the current
configuration. You restart a configuration when you want to remove the effects of a
configuration session without removing the components that you are configuring from
the session. When you restart a configuration, the CIO:

* Rolls back logic transactions
* Removes requests
* Reverses the assertions that had set logic states and values

¢ Removes component instances added during the session, and restores component
instances deleted during the session

You must be using the CIO with a custom user interface to use
restartConfiguration (); this method cannot be used with a user interface
generated by Oracle Configurator Developer.

Automatic Behavior for Configurations

You can define behavior that is executed whenever a configuration is processed in
certain ways, by defining Configurator Extensions bound to certain events. The
tableEvents for Processing Configurations, page 5-11 describes some of these events,
and the circumstances under which you should use them. For a list of types of events,
see Types of Configuration Events, page 3-2. For more details, and a full list of the
available events, see the chapter on Configurator Extensions in the Oracle Configurator
Developer User’s Guide.

Events for Processing Configurations

Event Triggered ... Comments

postConfigNew When a newly-created = See Creating Configurations, page 5-2 for
configuration is background on creating configurations.
activated

Working with Configurations 5-11

Event Triggered ... Comments

preConfigSave Before a configuration =~ You can save a configuration using the Model
is saved Debugger in Oracle Configurator Developer.
postConfigSave After a configuration Clicking the Finish button in the runtime
is saved Oracle Configurator terminates the

configuration session and saves the
configuration, if it is valid.

postConfigRestore After a configuration ~ You can restore a saved configuration using
is restored the Model Debugger in Oracle Configurator
Developer.
preConfigSummary Immediately before Clicking the Summary button in the runtime
the Summary screenis Oracle Configurator displays the Summary
displayed screen.

See the Oracle Configurator Developer User’s Guide for details on how to create
Configurator Extensions that are bound to events.

In the runtime Oracle Configurator, the Configurator Extension runs when one of the
events listed in Events for Processing Configurations, page 5-11 is executed (such as
after a configuration is saved).

Dispatching Command Events

If you are using the CIO with a custom user interface, then you must substitute your
own event-dispatching mechanism for the one provided in user interfaces generated by
Oracle Configurator Developer. Generated user interfaces call
Configuration.dispatchEvent () internally for all events except command
events. Command events are the only events that your custom code can raise, and the
only way that your code can explicitly cause a Configurator Extension to run.

The example Dispatching a Command Event, page 5-13 demonstrates how you can
dispatch a command event, specifying the command string and the base node, to run
any Configurator Extensions bound to that event.

Either a custom Ul or a Configurator Extension can dispatch the onCommand event.
Custom Ul code can dispatch onCommand directly at any time (with the usual
restrictions to avoid recursion or infinite loops).

5-12 Oracle Configurator Extensions and Interface Object Developer's Guide

Dispatching a Command Event

Configuration cfg = node.getConfiguration();

String command = "myOnCommand";
IRuntimeNode source = getSourceNode(); // custom method
if (source == null) {

CXEvent event = new CXCommandEvent (command) ;
} else {

CXEvent event = new CXCommandEvent (command, source);
t
Collection cxResults = cfg.dispatchEvent (event) ;

In the example, cxResults is a collection of CXResult objects, which you can use to get
access to information about what rule was triggered, what value it returned, and what
method was called. Use cxResults.getReturnedvValue () to interpret the returned
values.

Access to Configuration Parameters

If you are using Oracle Configurator in a Web deployment, you can use a Configurator
Extension to obtain a list of the initialization parameters that are passed from the host
application to your configuration Model.

To access initialization parameters, create a Configurator Extension that calls
Configuration.getUserParameters (), which returns a NameValuePairSet
object. This object contains all the parameter names and values stored by the runtime
Oracle Configurator when it processes the initialization message sent by the host
application to the Oracle Applications Framework.

The example Getting Initialization Parameters, page 5-13 demonstrates how to obtain
the set of parameters for the current configuration.

Getting Initialization Parameters
/ * *
* Gets all the user init parameters for the current bound

configuration.
*

* @param config in a CX, bind to the System Parameter
"Configuration"

*/

public NameValuePairSet getParametersFromConfig(Configuration
config) {

// Get the user parameters for that current configuration
NameValuePairSet userParams = config.getUserParameters();

return userParams;

}

After you obtain the set of user parameters, you can obtain the value of a particular
parameter, as shown in the example Getting an Initialization Parameter Value, page 5-
14.

Working with Configurations 5-13

Getting an Initialization Parameter Value

NameValuePairSet paramSet = getParametersFromConfig (config);
String appID = getHostApplicationID (paramSet) ;

/**
* Gets the value of a particular parameter.
* In this case, the Application ID of the calling application.
* Calls the custom utility method getParamValue ().
*/
public static String getHostApplicationID (NameValuePairSet params)

return (getParamValue (params, "calling application_id"));

}

/**

* Utility method: get the string value of a user parameter
*

* @param params the set of all current user parameters.
* (@param paramName the name of the parameter whose value you want
*/
public static String getParamValue (NameValuePairSet params, String
paramName) {
Object value = params.getValueByName (paramName) ;
return (value == null ? null : String.valueOf (value));

}

As a security measure, the initialization parameter pwd, which contains a password, is
not returned by getUserParameters ().

To add your own user-defined configuration parameters to those contained in the
initialization message, making them a part of the configuration, use
ConfigParameters.addUserParam (), which takes the name of the parameter (a
string) and the value (an object). To obtain the value of one of these configuration
parameters, call ConfigParameters.getUserParam().

See the Oracle Confiqurator Implementation Guide for more information about the
initialization message.

Sharing a Configuration Session

During a configuration session, your application may require the ability to launch a
custom user interface in a child window of the runtime Oracle Configurator window.
This child UI might interact with the user and perform updates to the state of the
configuration model. When these interactions are finished, the child UI returns control
to the parent window containing the runtime Oracle Configurator UL

If your application opens such a child window, that window needs shared access to the
configuration model, through the Configuration object.

You can get the Configuration object from the HTTP session by using the key
configurationObject. You can obtain a URL for returning to the parent window by
requesting the session object czReturnToConfiguratorUrl. The example in Sharing
a Configuration Session in a Child Window, page B-10 illustrates the use of these

5-14 Oracle Configurator Extensions and Interface Object Developer's Guide

objects. You can obtain these objects by using one of the following methods from the
Java servlet or JSP API:

® Jjavax.servlet.http.HttpSession.getValue
("czReturnToConfiguratorUrl")

® Jjavax.servlet.jsp.PageContext.getAttribute ("czReturnToConfigu
ratorUrl", PageContext.SESSION_ SCOPE)

During the period of user interaction with the child UI window, you should prevent
any use of the parent window, since that might interfere with the changes to the state of
the application or configuration model being made in the child window.

Caution: The custom Ul in the child window must be running in the
same HTTP session as the parent window containing the runtime
Oracle Configurator. You must also ensure thread safety, as noted
under Observing Thread Safety, page 2-10.

You can create the kind of child window that you need in the HTML-based version of
Oracle Configurator Developer, by creating a UI element (such as a Custom Button) that
supports the Open URL action in a generated Configurator Ul, using the specifications
provided in the table UI Specifications for Invoking Child Window, page 5-15. For
background, see the Oracle Configurator Developer User’s Guide.

Ul Specifications for Invoking Child Window

Option Choice

Caption Source Text Expression, indicating to the end user the action that the Ul
element performs

Action Type Open URL

Target URL Source Text Expression, pointing to your custom child UI (such as a JSP), which
must be located in the OA_HTML directory. The specific expression for
Sharing a Configuration Session in a Child Window (TestChildWin.jsp),
page B-12 is:

Example
/OA HTML/TestChildWin.jsp
Target Window Child Window

Select the option to Lock Main Window while Displaying Child

These specifications are used for Sharing a Configuration Session in a Child Window
(TestChildWin.jsp), page B-12.

Working with Configurations 5-15

Redirecting to a Framework Page

If your Configurator Extension opens a child window in the Oracle Applications
Framework and later returns to its parent window (as shown in Sharing a
Configuration Session, page 5-14) then you need to get the message authentication code
(MAC) for the URL of the parent window and apply it to the URL before returning.
Without a valid MAC, the Framework will reject the return request as originating from
an invalid session.

The following code fragment shows how to get the MAC and apply it to a URL.

Example

CZWebAppsContext ctx = (CZWebAppsContext)contxt;
String redirectURL = URLMgr.processOutgoingURL (url,
URLTools.getHMAC (ctx)) ;

The example Applying a Message Authentication Code, page 5-16 shows the definition
of a utility method, urlRedirect (), for applying a MAC.

Applying a Message Authentication Code

import oracle.apps.fnd.framework.webui.URLMgr;

import oracle.apps.fnd.common.URLTools;
import oracle.apps.cz.common.CZWebAppsContext;

/**

* @param response the HttpServletResponse from the calling CX method
* @param url the destination page that requires FWK validation
* @param contxt the context from the configuration
*/
public static void urlRedirect (HttpServletResponse response,
String url,
Context contxt) {
try {
// Add HMAC information to pass FWK validation checks
CZWebAppsContext ctx = (CZWebAppsContext)contxt;

String redirectURL = URLMgr.processOutgoingURL (url,
URLTools.getHMAC (ctx)) ;
response.sendRedirect (redirectURL) ;
}
catch (java.io.IOException ioe) {
throw new CheckedToUncheckedException (ioe) ;

}

For an example of calling this method, see the redirectLocationSearch () method
in the TSO Configurator Extension MaintainLocationCX.java, which is available
on MetaLink, Oracle's technical support web site.

That example calls the urlRedirect () method, as shown in the following code
fragment:

Example
Configuration conf = trackableRoot.getConfiguration();

CXUtilities.urlRedirect (response, url, conf.getContext());

5-16 Oracle Configurator Extensions and Interface Object Developer's Guide

Note that the database context parameter is obtained from a Configuration object.

Working with Configurations 5-17

6

Working with Model Entities

This chapter explains how to work with nodes of the runtime Model, such as
Components and Features.

This chapter covers the following topics:

Accessing Runtime Nodes

Opportunities for Modifying the Configuration
Accessing Components

Accessing Features

Getting and Setting Logic States

Getting and Setting Numeric Values

Accessing Properties

Access to Options

Introspection through IRuntimeNode

Accessing Runtime Nodes

The root component, and every other node in the underlying runtime Model tree,
implements the TRunt imeNode interface. This interface exposes several attributes of
the configuration model, such as the type of the node (based on a set of node type
constants), its name, the node ID, a runtime ID that is unique to this node across all
nodes created by this particular Configuration, the parent node (which is null for the
root component), a (possibly empty) collection of children, and information about
whether this part of the runtime tree has been satisfied. See Introspection through
IRuntimeNode, page 6-15.

Working with Model Entities 6-1

Opportunities for Modifying the Configuration

During a configuration session, there are certain optimal points for modifying the
configuration.

Note: This use of the CIO is intended for Configurator Extensions.

To get the runtime configuration to which a node belongs, use
IRuntimeNode.getConfiguration() .

The code fragment in Getting the Configuration from a Runtime Node, page 6-2
shows how to get the Configuration object associated with the a node in the runtime
Oracle Configurator. You choose the node by binding the node parameter in a
Configurator Extension rule.
Getting the Configuration from a Runtime Node
public Configuration getConfig (IRuntimeNode node) {
// Get the the current configuration from the bound node
Configuration config = node.getConfiguration () ;

return config;

}

You can modify a configuration by using a Configurator Extension bound to one of the
configuration events described in Events for Processing Configurations, page 5-11,
Types of Configuration Events, page 3-2, and the chapter on Configurator Extensions in
the Oracle Configurator Developer User’s Guide.

For instance, if you want to modify the configuration immediately after a new
configuration session has been initialized, then bind your Configurator Extension to the
postConfigNew event.

Modifying the configuration through a Configurator Extension is sometimes referred to
as side-effecting it.

Caution: Be careful of recursion when using the events
postValueChange and onConfigValidate, which are triggered
when a change to the configuration is detected by Oracle Configurator.
It is possible to enter an infinite loop in which changes that you make in
your Configurator Extension trigger an event that makes the
Configurator Extension run again. See Avoiding Circularity and
Recursion, page 2-12 for more details.

Be careful when binding a Configurator Extension to the postCXInit event, since that
event always occurs when a configuration session begins.

Accessing Components

The CIO represents instantiable components with two structures that are used together:

6-2 Oracle Configurator Extensions and Interface Object Developer's Guide

Component and ComponentSet. An individual instance of a component is
represented by the interface Component. A set of these instances of a given component
is represented by an instance of the class ComponentSet. Both structures inherit from
the interface IRuntimeNode.

In Oracle Configurator Developer, there is no element that corresponds to a
ComponentSet, but you can control the Instantiability settings for a node. The
Instantiability settings for initial minimum and initial maximum determine the
minimum and maximum number of instances that can be added at runtime.
Components that have a minimum number of instances of 1 and a maximum number of
instances of 1 are called required components. Components that have a minimum
number of instances of 0 and a maximum number of instances of 1 or more are called
instantiable components. See the Oracle Configurator Developer User's Guide for details
about required and instantiable components.

Adding and Deleting Instantiable Components

Note: This use of the CIO is intended for both custom applications and
Configurator Extensions.

It is most likely that you would add or delete instantiable components in a Configurator
Extension.

Use ComponentSet.add () to add an instantiable component. The result is a new
object that uses the Component interface.

The add () method can throw a LogicalException if adding the component causes a
logical contradiction.

Use ComponentSet.delete () to delete an instantiable component.

In the user interface for the runtime Oracle Configurator, a configurable component is
normally represented by a single screen. The screen that represents the parent node of
this component contains a button that adds instances of the component, producing a
new component screen and a new Component object. This is equivalent to adding
instances through ComponentSet.add (). The screen representing the configurable
component itself contains a button that deletes that instance of the component. This is
equivalent to deleting the instance through ComponentSet.delete ().

In a user interface generated by Oracle Configurator Developer, when the end user
adds an instance of an instantiable component that is a BOM Model (which is
represented by a BomInstance object), that instance is automatically selected. If the
addition causes any contradictions, the appropriate messages are displayed. However,
if you use a Configurator Extension to add an instance of a BOM Model, that instance is
not automatically selected. If you want your Configurator Extension to select the
instance, you must do it explicitly, as shown in Adding and Selecting an Instance of a
BOM Model, page 6-4. Instantiable components that do not represent BOM Models
cannot be selected.

Working with Model Entities 6-3

Adding and Selecting an Instance of a BOM Model

ComponentSet compSet = (ComponentSet)compl.getChildByName ("My Model") ;
Component comp = compSet.add();
if (comp instanceof BomModel) {

(BomInstance (comp)) .select ()

’

}

See Restoring Configurations, page 5-8 for information on the effects of changes to
Instantiability settings in Oracle Configurator Developer when restoring configurations
in which instances have been added, deleted, or modified.

Note: There are some performance problems that can arise when
adding and deleting several instantiable components. See the Oracle
Configurator Modeling Guide for details.

Renaming Instances of Components

During a configuration session, when the end user of the runtime Oracle Configurator
creates a new instance of a configurable component, the user interface displays a
distinctive name for the instance.

For more information on controlling the display of instance names in the runtime
Oracle Configurator, see the Oracle Configurator Implementation Guide.

You can access the default name that is displayed in the runtime user interface, by using
the methods setInstanceName (), getInstanceName (), and
hasInstanceName () in the interface Component.

You can use setInstanceName () to set the name of an instance of an instantiable
component. The component to be renamed cannot be a required component. The name
that you set persists when you restore the configuration that contains the instance.

You can use hasInstanceName (), and getInstanceName () to test whether the
name of an instance has been set, and to return the name.

For a fragmentary example of how to change the name of an instance, see Renaming an
Instance of a Component, page 6-4.

Renaming an Instance of a Component

String inputText = "My Instance Name";

ComponentSet compSet = (ComponentSet)compl.getChildByName ("My Model") ;
Component comp = compSet.add();

comp .setInstanceName (inputText) ;

For a full example of how to change the name of an instance, see Sample Java Code for
Configurator Extension (InstanceNameChange java), page 2-7.

6-4 Oracle Configurator Extensions and Interface Object Developer's Guide

Accessing Features

There are several specialized types of Features. Each Feature type implements the
IRuntimeNode interface, enabling you to use its general methods for working with
runtime nodes (see Introspection through IRuntimeNode, page 6-15). Each type also
implements its own interface with appropriately specialized methods.

The table Interfaces for Features, page 6-5 lists the types of Features that you can work
with in the CIO, the types of their values, and the CIO interface for working with them.

Interfaces for Features

CIO Interface Feature Description
Type
IState Boolean boolean state (true/false/unknown)
IDecimal Decimal floating point numeric
IInteger Integer integer numeric
The value can be positive, negative, or zero.
IText Text string

ICount, IState Count

I0ptionFeatu Option

re Feature

boolean, with an associated integer-valued numeric count
An OptionFeature itself can have a logic state, a count (if
Option Quantities are enabled), or a Satisfaction state

The children of an Option Feature 'are Options, accessed with
the interface TOption.

Some of these types require special comment:

® Option Features are represented by OptionFeature objects. An OptionFeature

has a logic value. If the Option Feature is satisfied, the value is TRUE. The values of
an OptionFeature object are Options.

You can use the methods getMinSelected () and getMaxSelected (), of
IOptionFeature, to determine the minimum and maximum number of a

Feature's child Options that can be selected. If you do, first use

hasMinSelected () or hasMaxSelected () to determine whether there is a
minimum or maximum number of Options. You can use areOptionsCounted ()
to determine whether the Feature has Counted Options.

Working with Model Entities 6-5

Keep in mind that an end user of the runtime Oracle Configurator can select an
Option of an Option Feature, but not the Option Feature itself. However, in a
Configurator Extension, it is possible to use select () to select an
OptionFeature object itself. You should avoid selecting OptionFeature objects.
If you do so, and save the configuration, then, when you later restore the
configuration, this selection is not applied, and will produce a
RestoreValidationFailure.

See Access to Options, page 6-13 for information about methods for working
directly with Options.

® CountFeature objects have an associated integer-valued numeric count, and are a
special case of IntegerFeature that has a count greater than or equal to zero.
CountFeature objects behave like counted options in an OptionFeature.

Note: In Oracle Configurator Developer, if you set the minimum
count of an Integer Feature greater than or equal to zero, then at
runtime the CIO treats this Feature as a CountFeature object. If
you set the minimum count to less than zero, then the CIO treats
this Feature as an IntegerFeature object. When working with
runtime nodes, you must consider this distinction to ensure that
you are working with the expected set of objects. For example, if
you use IRuntimeNode.getChildrenByType () to collect
Integer Feature objects, then you must make two calls, one with an
IRuntimeNode.COUNT FEATURE argument, and another with
an IRuntimeNode.INTEGER FEATURE argument.

Getting and Setting Logic States

To interact with objects that have a logic state, you use methods of the IState
interface. This interface contains:

* A set of constants that represent input states, used to specify a new state for an
object, listed in the table Input Logic States, page 6-6:

Input Logic States
State Description
FALSE The input state used to set an object to false.
TRUE The input state used to set an object to true.

6-6 Oracle Configurator Extensions and Interface Object Developer's Guide

State Description

TOGGLE The input state used to turn an object state to true if it is false or unknown,
and to make it unknown or false if it is true.

e A set of constants that represent output states, returned when querying an object
for its state listed in the table Output Logic States, page 6-7:

Output Logic States
State Description
LFALSE The Logic False output state, indicating that the state is false as a

consequence of a rule.

LTRUE The Logic True output state, indicating that the state is true as a
consequence of a rule.

UFALSE The User False output state, indicating that a user has set this object to
false.

UTRUE The User True output state, indicating that a user has set this object to
true.

UNKNOWN The Unknown output state, indicating that there is no current state.

* A set of methods for getting and setting the object's state listed in the table Methods
for Getting and Setting State, page 6-7:

Methods for Getting and Setting State

Method Description

getState () Gets the current logic state of this object.
setState () Change the current logic state of this object.
unset () Retracts any user selection made on this node.

Working with Model Entities 6-7

Method Description

isFalse () Tells whether this feature is in false state.

isTrue () Tells whether this feature is in true state.

isUser () Tells whether this feature is in a user- specified state.
isLogic () Tells whether this feature is in a logically specified state.
isUnknown () Tells whether this feature is in unknown or known state.

Observe the following practices when you use methods of the IState interface:

* The code fragment in Getting the State of a Node, page 6-8 uses getState ()
with UTRUE to test whether the state of an Option node is user true, meaning that
the Option has been selected by the end user.

Getting the State of a Node

Example

// Get the necessary components from the configuration.
baseComponent = (Component)comp node.getChildByName ("Component-1");
of = (OptionFeature)baseComponent.getChildByName ("Feature-1");

op = (Option)of.getChildByName ("Option-1");

intFeat = (IntegerFeature)baseComponent.getChildByName ("IF-1");

// Check if the option is set to UTRUE.

// If so, set the Integer value to 5.

if(op.getState() == IState.UTRUE)
intFeat.setIntValue (5);

¢ When using getState (), Always check for deleted or discontinued nodes. See
Checking for Deleted or Discontinued Nodes, page 2-15.

® Using isUnknown (), which returns TRUE if the Feature is in an unknown state, is
important when a node is cast to an integer or decimal class such as IntegerNode
or ReadOnlyDecimalNode. When the numeric value of the node is zero, a zero
value can mean either UNKNOWN (if no value has been set by the user) or KNOWN (if
the value has been set to zero by the user).

e The code fragment in Setting the State of a Node, page 6-8, which uses
setState () with TOGGLE, toggles the state of the selected item in the Model tree.

Setting the State of a Node

Example
private void toggleSelectedItem() {
IState node = (IState)getSelectedNode();

node.setState (IState.TOGGLE) ;
t

6-8 Oracle Configurator Extensions and Interface Object Developer's Guide

You should not use the TOGGLE state unless you are working with a user interface.
If you do not need to render the result in the interface (for instance, if you are using
batch validation) then it is much more efficient to set the state directly:

Example
node.setState (IState.TRUE) ;

node.setState (IState.FALSE) ;

If you do need to use TOGGLE, do not turn off defaulting, because the CIO must
turn defaulting on in order to determine the correct state to toggle to. This operation
impairs performance.

¢ Ifyou try to set the state of a RuntimeNode to UNKNOWN and this causes a
contradiction, then the CIO throws a nonoverridable LogicalException. For
example, assume the following Model structure:

Example
M

_A (Boolean, UNKNOWN)
B (Boolean, UNKNOWN)

And a logic rule:

Example
A Requires B

When you select A, it makes B LTRUE. If you try setting B to UNKNOWN, you get a
nonoverridable logical contradiction:

Example
A.setState (IState.UTRUE) ;

try {
B.setState (IState.UNKNOWN) ;

} catch (LogicalException le) {
//le is not overridable

* When you are not interested in the difference between UTRUE and LTRUE, the
proper way to determine whether the state of a node is true is to call
IState.isTrue().

By contrast, if you test the state of the node this way:

Example
(state == IState.TRUE)

then the test only returns TRUE if the logic state is UTRUE, but not if it is LTRUE.

Getting and Setting Numeric Values

You can use the following methods to get and set the values of objects that have
numeric values. Consult the CIO reference (see Reference Documentation for the CIO,
page A-1) for the hierarchy of the classes you wish to use.

For decimal values, use:

Working with Model Entities 6-9

® TDecimal.setDecimalValue ()
® TReadOnlyDecimal.getDecimalValue ()

For integer values, use:

e TIInteger.setIntValue()
e TIInteger.getIntValue()

The code fragment in Setting a Numeric Value, page 6-10 uses setIntValue () to
change the value of an Integer Feature. Note that you can use the generalized
IRuntimeNode interface for flexibility in getting a child node, and then cast the node
object to a particular interface to perform the desired operation on it.

Setting a Numeric Value

// select a node by name
IRuntimeNode limit = baseComp.getChildByName ("Current Limit");

// use an interface cast to set the node's value by the desired type
((IInteger)limit) .setIntValue (5);

To determine whether a numeric value has violated its Minimum or Maximum range,
you may need to iterate through the collection of validation failures returned by
Configuration.getValidationFailures () after setting a value, for instance
with IInteger.setIntValue (). See Validating Configurations, page 8-1 for more
background.

There is a subtlety that you should take note of. IDecimal.setDecimalValue ()
does not throw a LogicalException when setting the value of a decimal feature that
exceeds the feature's minimum/maximum limits. The collection of validation failures
returned by Configuration.getValidationFailures () does notinclude any
failures that result from setting a numeric value until the logic transaction has been
closed. Thus, there is no way to roll back a transaction once it is committed. You can
only undo the setting of the value. Here is a suggested method for dealing with this
situation:

Caution: The classes Total and Resource both inherit the method
setDecimalValue () from DecimalNode. This method provides the
ability to set the value of Totals and Resources programmatically
(rather than in the runtime application as the result of user actions).
However, the use of this method, while permitted, is deprecated, and
may be removed in a future release. When working programmatically
with Totals and Resources, use only the methods inherited from
ReadOnlyDecimalNode.

1. Open a transaction.

2. Get the minimum or maximum for the Feature, with getMin () or getMax ().

6-10 Oracle Configurator Extensions and Interface Object Developer's Guide

3. Set the new value appropriately.
4. Close the transaction.

5. Get the collection of validation failures for the configuration, to find out about the
status of other nodes.

6. If the last transaction caused a minimum/maximum violation, then call
Configuration.undo (), which retracts the last action in the transaction.

This situation illustrates why it is a good practice to perform the setting of a single
value inside a logic transaction. You can always undo the transaction if the result is
unsatisfactory. Remember: inside a transaction, you can roll back an action; outside a
transaction, you undo an action.

Working with Decimal Quantities

Quantities for imported BOM Standard Items can be either integers or decimals.

The table Methods for Integer and Decimal Nodes, page 6-11 lists certain methods of
CIO classes and interfaces that are relevant to decimal quantities. The table indicates the
corresponding methods to be used for BOM nodes having Integer (indivisible) values or
Decimal (divisible) values. Using the wrong type of method raises an
IncompatibleValueException. For details on these methods, see Reference
Documentation for the CIO, page A-1.

In the classes ITRuntimeNode and RuntimeNode, the methods hasIntegerValue ()
and hasDecimalValue () should be used to find out if a runtime node belongs to a
Decimal or an Integer BOM.

StateCountNode.getDecimalCount () is a general method for getting the count
and works for both Integer and Decimal BOMs.

Methods for Integer and Decimal Nodes

Class/Interface Integer Method Decimal Method

BomNode getDefaultQuantity () getDecimalDefaultQuantity ()
BomNode getMaxQuantity () getDecimalMaxQuantity ()
BomNode getMinQuantity () getDecimalMinQuantity ()
IBomItem getMaxQuantity () getDecimalMaxQuantity ()
IBomItem getMinQuantity () getDecimalMinQuantity ()

Working with Model Entities 6-11

Class/Interface Integer Method Decimal Method

ICount getCount () getDecimalCount ()
ICount setCount () setDecimalCount ()
StateCountNode getCount () getDecimalCount ()
StateCountNode setCount () setDecimalCount ()

When using one of the methods listed in Methods for Integer and Decimal Nodes, page
6-11, always check for deleted or discontinued nodes. See Checking for Deleted or
Discontinued Nodes, page 2-15.

Accessing Properties

You can determine which Properties belong to a runtime node, then use methods of the
class Property to obtain information about the Properties.

Use TRuntimeNode.getProperties () to get a collection of the properties
associated with a node.

Use IRuntimeNode.getPropertyByName () to get a particular property of a node,
based on its name.

When you have the Property, use methods of the class Property, such as
getStringValue (), to obtain specific information.

User String Properties

If you need to dynamically associate text strings with runtime nodes, and save them
with the configuration, then you can use the set of accessor methods in the
IRuntimeNode interface that are listed in Methods for User Strings, page 6-12.

These methods set and get the values of the System Properties UserStr01, UserStr02,
UserStr03, and UserStr04, which are available on runtime nodes.

Methods for User Strings

System Property Setter Method Getter Method
UserStr01 setUserStr01 () getUserStr0l ()
UserStr02 setUserStr02 () getUserStr02 ()

6-12 Oracle Configurator Extensions and Interface Object Developer's Guide

System Property Setter Method Getter Method

UserStr03 setUserStr03 () getUserStr03 ()

UserStr04 setUsersStr04 () getUserStr04 ()

You can only set the values of these properties by using these methods, in a
Configurator Extension or custom user interface, by using the setter methods listed
here. The values must be set at runtime, and are not saved with the configuration.

To display the values of one or more of these properties in a generated User Interface,
you can add a Ul element such as Styled Text, and derive its value from one of the
System Properties listed here. For details about modifying generated User Interfaces,
see the Oracle Configurator Developer User’s Guide.

For an example of setting these System Properties in a Configurator Extension, see
Setting User Strings, page 6-13.

Setting User Strings
package oracle.apps.cz.cx;
import oracle.apps.cz.cio.*;

public class UserString {
public UserString () {
}

/**
* Sets the user string value on the Node.
* CX event: postConfigNew and postConfigRestore
* BaseNode: Node on which you want to set the user string value.
* Event Scope: Global
*/
public void onSessionLoad (IRuntimeNode nodel) ({
nodel.setUserStr01l ("setUserStr0l for " +nodel.getName () +
"["+nodel.getRuntimeID ()+"]1");
nodel .setUserStr02 ("setUserStr02 for " +nodel.getName () +

"["+nodel.getRuntimeID()+"]1");
"setUserStr03 for " +nodel.getName () +
"["+nodel.getRuntimeID

Y+) g
nodel.setUserStr04 ("setUserStr04 for " +nodel.getName () +
"["+nodel.getRuntimeID()+"]1");

}

(
(
(
nodel.setUserStr03 (
(
(
(

}

Access to Options

An Option is a child of an Option Feature which supports a boolean state (true, false, or
unknown) and a count. Options implement the IRuntimeNode interface.

OptionFeature objects have special methods for selecting options and querying for
selected options. See Accessing Features, page 6-5 for information about methods for
working directly with Features.

Working with Model Entities 6-13

In a custom application, you can use IOPtionFeature.select () to select a specified
Option. If a maximum number of selections has been defined for an OptionFeature,
and that maximum has been reached, then this method implements mutual exclusion
behavior by first deselecting the most recently selected Option that does not cause a
contradiction when deselected, then selecting the newly specified option. The minimum
number of selections defined for the OptionFeature does not affect this behavior.

You can find out which Option has been deselected, after a selection is committed, by
using IOPtionFeature.getSelectedOptions () and examining the list of selected
nodes.

The getSelectedOption () method throws the
SelectionNotMutexedException if this feature does not support (mutexed)
selections.

You can use the interface IOption to select, deselect, and determine the selection state
of Options. The table Methods of the Interface IOption, page 6-14 lists these methods.

Methods of the Interface IOption

Method Action
deselect () Deselect this Option.
isSelected() Returns true if this Option is selected, and false otherwise. When

using isSelected (), always check for deleted or discontinued
nodes. See Checking for Deleted or Discontinued Nodes, page 2-
15.

select () Select this Option.

The code fragment in Testing Whether an Option Is Selected, page 6-14 displays a
"check" icon if an Option of a runtime node is selected:

Testing Whether an Option Is Selected

TRuntimeNode rtNode = (IRuntimeNode)value;
if (value instanceof IOption) {
IOption optionNode = (IOption)value;

if ! (optionNode.isDeleted() |
if (optionNode.isSelected()
setIcon (checkIcon);
}
}

)
| optionNode.isDiscontinued()) {
)

{

}

In this example, assume that checkIcon points to an icon file, and that setIcon () is
a custom method that displays it.

6-14 Oracle Configurator Extensions and Interface Object Developer's Guide

Introspection through IRuntimeNode

You can get information about a node in a Model at runtime by using methods of the
interface IRunt imeNode. This helps you to write "generic" Configurator Extensions,
which can interact with a Model tree dynamically, without having prior knowledge of
its structure. Important Methods of the Interface IRuntimeNode, page 6-15 lists some of
the more important of these methods.

The table Important Methods of the Interface IRuntimeNode, page 6-15 lists some of
the methods defined in the interface IRunt imeNode that you are most likely to use in
working with the CIO. For more detail about these and the other CIO interfaces, see
Reference Documentation for the CIO, page A-1.

Important Methods of the Interface IRuntimeNode

Method Action

getCaption () Get the Caption of this node to be displayed in messages.

getChildByID () Gets a particular child identified by its ID.
ComponentSet.getChildByID () could have duplicate
children with same ID, so it returns only the first child.
Instead, call getChildByInstanceNumber () or change
the instance name.

getChildByName () Gets a particular child identified by its name.

getChildren() Gets the children of this runtime configuration node.

getDescription () Returns the design-time description of the runtime node.

getName () Gets the name of the node.

getParent () Gets the parent of the node.

getProperties() Returns a collection of the properties associated with this
node. The collection contains items of the type Property.

getRuntimelID () Gets the runtime ID of the node.

getType () Gets the type of this node.

Working with Model Entities 6-15

Method Action

isEffective () Returns true if this particular node is effective given the
effectivity criteria of the model.

Returns true if the "Include in Generated UlI" flag is selected
for this node in Oracle Configurator Developer. Note that
the value of this flag may not reflect the true visibility of
this node in the Ul See the note elsewhere in this section.

isUnsatisfied() Returns true if this particular node, or any one of its
children, has not been completely configured.

Regarding the method getIncludeInGeneratedUIFlag (), which is described in
the table Important Methods of the Interface IRuntimeNode, page 6-15, be aware that
the "Include in Generated UI" flag can be misleading, as shown in the following
examples:

* The flag is true but the node does not appear in the runtime Ul because:

® The node has an ancestor whose flag is false

¢ The node is hidden by a display condition

¢ The flag is false but the node does appear in the runtime Ul because:

® The "Show All Nodes" flag was set when the Ul was generated

¢ The node was manually added to the Ul

The code fragment in Getting a Child Node by Name, page 6-16 creates a
Configuration object config, sets rootComp to the root component of the
configuration, and sets userType to the child node with the user-visible name "User
Type".

Getting a Child Node by Name

Configuration config = m cio.startConfiguration (params, context);
TRuntimeNode rootComp = (IRuntimeNode) config.getRootComponent () ;

IRuntimeNode userType = rootComp.getChildByName ("User Type");
The code fragment in Collecting All Child Nodes by Type, page 6-17 uses a test for the
value of the TEXT FEATURE field of an IRuntimeNode object named comp to gather a

list of all the children of that node that are TextFeature objects. It is assumed that
traverseTree () is a custom method.

6-16 Oracle Configurator Extensions and Interface Object Developer's Guide

Collecting All Child Nodes by Type

//get all the text features

List textFeatList = IRuntimeNode comp.getChildrenByType

(IRuntimeNode.TEXT FEATURE) ;

traverseTree (comp.getChildComponentNodes (),
IRuntimeNode.TEXTiFEATURE,
textFeatlList);

Iterator iter = textFeatlList.iterator();

Working with Model Entities 6-17

7

Using Logic Transactions

This chapter explains how to use logic transactions to safely structure a configuration
session.

This chapter covers the following topics:

¢ Using Logic Transactions

Using Logic Transactions

In order to help you maintain consistency in interactions with the Oracle Configurator
logic engine, you must use configuration-level logic transactions. A logic transaction
comprises all the logical assertions that constitute a user interaction. At the end of a
transaction, you can obtain a list of all validation failures, by calling

Configuration.getValidationFailures (). See Validating Configurations, page
8-1.

The Configuration object, oracle.apps.cz.cio.Configuration, provides a set of
methods for starting, ending, and rolling back configuration-level logic transactions.
Note that logic transactions are not database transactions.

Inside a transaction, the normal course of action is to set the logical states and numeric
values of runtime nodes (as described in Getting and Setting Logic States, page 6-6 and
Getting and Setting Numeric Values, page 6-9).

e UseConfiguration.beginConfigTransaction () to create a new transaction,
returning a ConfigTransaction object. After performing the desired series of
operations (for instance, setting states and values), you must end, commit, or roll
back the transaction by passing the ConfigTransaction object to one of the
mutually exclusive methods that finish the transaction:

® endConfigTransaction
e commitConfigTransaction

e rollbackConfigTransaction

Using Logic Transactions 7-1

e Configuration.commitConfigTransaction () commits the given transaction
or series of nested transactions, propagates the effect of user selections throughout
the configuration, and triggers validation checking (see Validating Configurations,
page 8-1).

e Configuration.endConfigTransaction () ends the transaction that was
started with beginConfigTransaction (), without committing it (thus
skipping validation checking).

e Configuration.rollbackConfigTransaction () rolls back the unfinished
transaction, undoing the operations performed inside it.

You can nest intermediate transactions with beginConfigTransaction () and
endConfigTransaction, delaying validation checking until you call
commitConfigTransaction (). You should not perform any actions (such as setting
states or counts, or selecting Options) before opening a nested transaction. If there are
actions performed in an uncommitted parent transaction, these may produce erroneous
results for Configuration.getUnsatisfiedItems (). You must end or commit
inner transactions before ending or committing the outer ones that contain them. When
rolling back unfinished transactions, with rollbackConfigTransaction (), you
can roll back outer transactions, which automatically rolls back the inner transactions.

Transactions should also be used when you employ nonoverridable requests. See
Nonoverridable Requests, page 9-3.

There are situations in which you must take care to commit a transaction at the
appropriate time. The fragmentary code in Using a Logic Transaction with a Deletion,
page 7-2 illustrates the need for wrapping a common operation inside a transaction to
insure that the operation's effects are reflected in other parts of the program. Setting
Nonoverridable Requests, page B-4 also illustrates the use of transactions.

Using a Logic Transaction with a Deletion

Component comp;

ComponentSet compSet;

ConfigTransaction tr;

Configuration config;

IOption opt;

A R R N

// This sequence produces unintended results:

// Select a child of compSet.

opt.select ()

7-2 Oracle Configurator Extensions and Interface Object Developer's Guide

// User wants to see the list of all selected nodes:

collec = config.getSelectedItems();

// The returned collection includes children of the deleted component,
// because no transaction was commited.

f]

// This sequence produces the intended results:

// Add a component:
comp = compSet.add();

// User selects a child of compSet (interactively).

// Delete the component, inside a transaction:
tr = config.beginConfigTransaction();
compSet.delete (component) ;
config.commitConfigTransaction (tr);

// User wants to see the list of all selected nodes:

collec = config.getSelectedItems();

// The returned collection does NOT include children of the deleted
component,

// because the deletion transaction was commited.

Using Logic Transactions 7-3

8

Validation, Contradictions, and Exceptions

This chapter explains how to validate configurations and handle contradictions.
This chapter covers the following topics:

* Introduction to Validation, Contradictions, and Exceptions

e Validating Configurations

¢ Handling Logical Contradictions

¢ Handling Exceptions

Introduction to Validation, Contradictions, and Exceptions

This chapter describes how to handle:
e Validation, which is the act of checking that a configuration is valid and complete

¢ Logical exceptions, which are the representation in the CIO of contradictions,
(violations of your configuration rules that are presented to the end user)

* Programming exceptions, which are raised by your code

Validating Configurations

Validating a configuration means checking whether it is valid (that is, the selections in it
do not violate any configuration rules) and whether it is complete (that is, all
components in it are satisfied).

The CIO validates a configuration after a transaction is committed or rolled back. See
Using Logic Transactions, page 7-1 for a description of what happens in a transaction.

Validation checking and reporting occur when a logical transaction is ended by using
Configuration.commitConfigTransaction() or
Configuration.rollbackConfigTransaction().

Validation, Contradictions, and Exceptions 8-1

After a committal or rollback, the CIO traverses the nodes of the Model, checking for
validation failures, selected items and unsatisfied items. These are kept in a set of
collections maintained on the Configuration object.

All validation failures are saved to the CZ_CONFIG_MESSAGES table, which provides
information on both the configuration header and the trackable instance header that the
failure belongs to. For more information about the CZ_CONFIG_MESSAGES table, see

the CZ ¢eTRM on MetaLink, Oracle's technical support Web site.

After the transaction is committed, you can call the methods of
oracle.apps.cz.cio.Configuration listed in the table Methods for Validating
Configurations, page 8-2:

Methods for Validating Configurations

Method Description

getValidationFailures () Returns a collection of ValidationFailure
objects. Call this after committing or rolling back a
transaction, in order to inspect the list of validation
failures.

getSelectedItems () Returns a collection of selected items as
StatusInfo objects indicating the set of selected
(true) items in the Configuration.

isUnsatisfied() Returns TRUE if the configuration is incomplete.

getUnsatisfiedItenms () Returns a collection of unsatisfied items as
StatusInfo objects indicating the set of unsatisfied
items in the Configuration.

getInformationalMessages () Gets a collection of StatusInfo objects describing
all the informational messages in the configuration.
These messages are created explicitly by external
callers or Configurator Extensions or by the CIO in
response to an exception thrown by a Configurator
Extension.

getUnsatisfiedRuleMessages () Gets a list of messages for unsatisfied relations in the
configuration.

To determine whether a configuration has validation failures, call
getValidationFailures () and check whether the collection it returns is empty.

Validation failures are instances of the class StatusInfo. A StatusInfo object hasa
reference to the runtime node, which you obtain with its getNode () method. Use

8-2 Oracle Configurator Extensions and Interface Object Developer's Guide

StatusInfo.getStatus () to return the current status of the node.

The status of a node has a life cycle. The stages in the life cycle are represented by the
constants described in the table Life Cycle of StatusInfo Objects, page 8-3. As nodes
become selected, or unsatisfied, or have validation failures, they have a status reflected
by StatusInfo.STATUS NEW. If they continue to be selected since the last transaction
their status is StatusInfo.STATUS EXISTING. If they become deselected, their
status becomes StatusInfo.STATUS DELETED until the next transaction at which
time they are removed from the collection.

Life Cycle of Statusinfo Objects

Statusinfo Status Description
Constant
STATUS_NEW The node has newly attained this status since the last check.

STATUS_EXISTING The node already had this status during the last check, and it still does.
STATUS_DELETED The node has newly lost this status since the last check.

STATUS_REMOVED The node had the deleted status during the last check, so it is removed.

If you are writing a Configurator Extension that validates a configuration, the method
that you bind to the onConfigVvalidate event should return a list of
CustomValidationFailure objects in the event of a validation failure. This allows
you to return more than one failure. Your validation method can include several tests.
You can track which tests failed, and determine why the tests failed. If the validation
fails, then information about the failure is gathered by the CIO in a List of
CustomValidationFailure objects. The information in these objects is presented to
the user in a message, and does not persist after the presentation.

In general, if a Configurator Extension needs to return a violation message about a
particular runtime node, you have to create a CustomvValidationFailure object and
pass it the runtime node, the message, and boolean parameter indicating whether to
persist the failure. The code fragment in Returning a List of Validation Failures, page 8-
4 illustrates this point.

Validation, Contradictions, and Exceptions 8-3

Returning a List of Validation Failures
public List validateMin () {

IRuntimeNode node;
ArrayList failures = new ArrayList();

//check to see if the value in the config is not at least the min value
if(!
(val >= min))
failures.add(new CustomValidationFailure ("Value less than minimum",
node, true));
if (failures.isEmpty())
return null;
else
return failures;

}

If the violation persists after the next user action, the Configurator Extension should not
need to create a new CustomValidationFailure, but should instead return a
StatusInfo object with the same status (STATUS EXISTING). This value prevents the
CIO from returning the previously seen violation message as a new violation message (
STATUS_NEW), which might be annoying for the user. However, if the user explicitly
makes the same invalid selection again, then the message is presented again.

You should use the form of the constructor for CustomvValidationFailure that sets
the boolean parameter willPersist to true. This keeps the failure from
disappearing once the message is displayed to the user, which can lead to a situation in
which invalid configurations are displayed as valid.

Invalidating a configuration with a Configurator Extension (by creating
CustomValidationFailure objects) can sometimes lead to performance issues, since
the validation tests are run each time the enclosing transaction is committed. One way
to avoid this is to place the validation tests outside the transaction, or bind the
validating Configurator Extension to an event other than onConfigvalidate.

Another way to alleviates this performance issue is to persist the validation failure, as
shown in Returning a List of Validation Failures, page 8-4, because if the boolean
parameter willPersist is true, then the validation tests are not run each time the
enclosing transaction is committed. However, if you are programmatically marking the
configuration as invalid in this way, you must remove the persisted failure when
configuration becomes valid again. To remove the persisted failure, you can remove the
CustomValidationFailure in the following way:

Example

CustomValidationFailure cvf = findPreviousCustomValidationFailure (node);
cvf.removeCustomValidationFailure () ;

Note that in this example findPreviousCustomValidationFailure () isayour
custom method for finding the failure for a given node. One way of implementing this
is by maintaining a Map object in your code in which the keys are nodes and the values
are CustomValidationFailure objects. You should clear the map in when your
terminates so that Java garbage collection will release the memory.

8-4 Oracle Configurator Extensions and Interface Object Developer's Guide

Handling Logical Contradictions

When you make a logic request to modify the state of a configuration, for instance by
using IState.setState (), the result may be a failure of the request because of a
logical contradiction. Such a failure creates and throws a logical exception, accessed
through either of these objects:

LogicalException, which cannot be overridden

LogicalOverridableException, which can be overridden

See Overriding Contradictions, page 8-8 for details on using
LogicalOverridableException to override the contradiction.

Use LogicalException.isOverridable () to determine whether the exception
is an instance of LogicalOverridableException, which can be overridden
with its override () method.

Use LogicalException.getExceptionCause () to get the runtime node that
caused the failure.

Use LogicalException.getReasons () to get a list of Reason objects for the
failure. See Generating Error Messages from Contradictions, page 8-5.

Use LogicalException.getMessage () to provide a message containing both
the cause and the reasons.

Use LogicalException.getMessageHeader () to provide a message
containing only the causes. You can pass a caption argument to this method,
which is the string to use as the node name. Use this caption as an alternative to the
node caption provided by the CIO for the message.

Generating Error Messages from Contradictions

The CIO, especially the LogicalException object, uses the Reason object to wrap
the information returned by contradictions, in order to include error message
information from the table FND_NEW_ MESSAGES. You can use the following
methods in your own code:

Use Reason.translate () to get the message associated with this reason.
Use Reason.getNode () to get the node associated with this reason.
Use Reason.getType () to get the type of reason held in this object.

Use Reason.toString () to convert this object to a string.

Using Reasons to Generate Error Messages, page 8-7 illustrates one way to generate

Validation, Contradictions, and Exceptions 8-5

€ITOr messages from Reasons.

8-6 Oracle Configurator Extensions and Interface Object Developer's Guide

Using Reasons to Generate Error Messages

import oracle.apps.cz.cio.Configuration;

import oracle.apps.cz.cio.ConfigTransaction;
import oracle.apps.cz.cio.IRuntimeNode;

import oracle.apps.cz.cio.Option;

import oracle.apps.cz.cio.IOption;

import oracle.apps.cz.cio.LogicalException;
import oracle.apps.cz.cio.NoSuchChildException;

import com.sun.java.util.collections.ArrayList;
import com.sun.java.util.collections.List;

/*

* Prints reasons for a logical exception, using methods
class.

*/

public class UsingReasonstoGenerateErrorMessages {

/*
* @param config In a CX, bind this parameter to the
Parameter "Configuration"
*/
public void testMyRule (Configuration config) {
try {

ConfigTransaction tr = null;
IOption myOption = null;

boolean isException = false;
List listOfReasons = new ArrayList();
try |
tr = config.beginConfigTransaction() ;

in Reason

System

// Perform an action that might trigger an error

myOption =

(IOption)config.getRootComponent () .getChildByName ("MyFeature") .getChildB

yName ("MyOption") ;
myOption.select () ;

} catch(NoSuchChildException nsce) {

System.out.println ("Child node not found.");

} catch(LogicalException le) {
// Get information about exception
isException = true;
listOfReasons= le.getReasons () ;
System.out.println ("Expected exception "

getExceptionCause() + " : message " + le.getMessage());

}

if (!isException || listOfReasons.isEmpty()) {

+ le.

System.out.println ("Did not get expected contradiction

and/or listReasons is empty.");

}

config.rollbackConfigTransaction (tr);

} catch(LogicalException le) {

System.out.println ("The transaction was rolled back.");

le.printStackTrace () ;

// Here, you should log the exception and stack trace to a

Validation, Contradictions, and Exceptions

8-7

file

Overriding Contradictions

Your runtime Oracle Configurator or Configurator Extension can provide a message to
your user, and ask whether the contradiction should be overridden.

If a logical contraction can be overridden, then a LogicalOverridableException is
signalled, instead of a LogicalException. LogicalOverridableExceptionisa
subclass of LogicalException that adds an override () method. Use
LogicalOverridableException.override () to override the contradiction.

Both types of exceptions (LogicalException and
LogicalOverridableException) may be thrown from any of the "set" methods
(like setState ()) or from Configuration.commitConfigTransaction ().

If you want to override the overridable exception you have to call its override ()
method, which can also throw a LogicalException. This means that even when you
try to override the exception you still trigger a contradiction and cannot continue. If the
override succeeds, then you still need to call commitConfigTransaction () to close
the transaction. If you don't want to override or if you get a LogicalException you
need to call rollbackConfigTransaction () to purge it. The Handling and
Overriding Logical Exceptions, page 8-9 is a fragment of pseudocode that illustrates
this point. Note that the operations represented with [ASK "text"] and [SHOW "
text"] are not part of the CIO but suggest where your own custom application should
try to handle the situation.

8-8 Oracle Configurator Extensions and Interface Object Developer's Guide

Handling and Overriding Logical Exceptions
Example

ConfigTransaction tr = null;

try {
try {
// begin a transaction
tr = config.beginConfigTransaction();

// call the "set" method
optl.setState (IState.TRUE) ;
// commit the transaction
config.commitConfigTransaction (tr);
}
catch (LogicalOverridableException loe) {
proceed = [ASK "Do you want to override?"];
if (! proceed) {
config.rollbackConfigTransaction (tr);
}
else {
try {
// override the contradiction and
loe.override(); // returns a list of failed requests
// ... finish the transaction
config.commitConfigTransaction (tr);
}
catch (LogicalException le) {
// we cannot do anything
[SHOW "Cannot be overriden"]
config.rollbackConfigTransaction(tr);

}

}
catch (LogicalException le) {
// we cannot do anything
[SHOW "Cannot be overriden"]
config.rollbackConfigTransaction (tr);

}
} catch (LogicalException le) {
throw new CheckedToUncheckedException (le);

}

In Handling and Overriding Logical Exceptions, page 8-9, the statement
loe.override () ; returns a list of failed requests. See Failed Requests, page 9-5.

Handling Exceptions

This section describes how to handle exceptions raised by the CIO.

Caution: Improper handling of exceptions is the source of many
problems that are difficult to diagnose. See Handling Exceptions
Properly, page 2-11 for more information.

Validation, Contradictions, and Exceptions

Handling Types of Exceptions

When a Configurator Extension is invoked, the runtime Oracle Configurator wraps a
transaction around this invocation. This transaction enables the work of the
Configurator Extension to be either committed or rolled back, as necessary. See Using
Logic Transactions, page 7-1 for background.

If your Configurator Extension needs to handle an exception, you can choose the type of
exception to throw. The runtime Oracle Configurator handles the exception as follows:

e If your throwable exception is one that extends java.lang.Error or
java.lang.RuntimeException, itis fatal. The runtime Oracle Configurator
does the following:

* Drops any open transactions

¢ Kills the configuration session, but allows the end user to start a new session

Caution: Your code should not ignore or swallow such
exceptions; doing so can lead to problems that are difficult to
debug.

In the case of a fatal exception, your code should throw an unchecked exception, as
shown in Raising Fatal Exceptions, page 8-10.

¢ If your throwable exception does not extend Error or RuntimeException, then it
is nonfatal. The runtime Oracle Configurator does the following:

® Rolls back the transaction, which undoes the work done by the Configurator
Extension

* Uses the message for exception to create an InformationalMessage object
(described in Presenting Messages for Exceptions, page 8-11)

* Allows the user's configuration session to continue

e Allows other Configurator Extensions bound to the same triggering event to
run

Raising Fatal Exceptions

If your Configurator Extension code encounters an unexpected problem that you cannot
handle, you should convert the exception that you caught into an unchecked exception.
For this purpose, use the exception
oracle.apps.cz.utilities.CheckedToUncheckedException, which extends
RuntimeException.

8-10 Oracle Configurator Extensions and Interface Object Developer's Guide

CheckedToUncheckedException allows you to change a checked exception into an
unchecked one, as shown in Raising a Fatal Exception, page 8-11. The new unchecked
exception contains the messages and stack traces from both the original checked
exception and the new unchecked exception. However, extra properties of specialized
checked exceptions that you throw as a CheckedToUncheckedException are not
retained in the new unchecked exception.

Raising a Fatal Exception

public void setBoolean (BooleanFeature Dbf)
{
try {
bf.setState (IState.TRUE) ;
}
catch (LogicalException le) {
throw new CheckedToUncheckedException(le) ;
}

Presenting Messages for Exceptions

If you want to present messages to the end user without rolling back the transaction,
your Configurator Extension should add a new InformationalMessage, by calling
Configuration.addInformationalMessage () onthe Configuration object for
the session, as shown in Presenting an Informational Message, page 8-11. In, the desc
parameter could be bound to anything in the Model that returns the string that supplies
the text for the message (such as the value of a TextFeature node, a literal, or a certain
System Parameters). The node parameter could be bound to the node on which the
exception occurs.

Presenting an Informational Message

public void nodeMessage (String desc, IRuntimeNode node) throws

LogicalException
{
try
{

Configuration config = node.getConfiguration();

ConfigTransaction tr = config.beginConfigTransaction() ;
InformationalMessage iMsg = new InformationalMessage ("The node
is: " + desc, node);

config.addInformationalMessage (iMsg) ;
config.commitConfigTransaction (tr);
}catch (LogicalException le) {
throw le;
}
}
You can call Configuration.getInformationalMessages () to get a collection of
StatusInfo objects that describe all the InformationalMessages in the
configuration. For information on the StatusInfo object, see Validating
Configurations, page 8-1.

Note: You can only use addInformationalMessage () to present a
message from a Configurator Extension to the end user. After the

Validation, Contradictions, and Exceptions 8-11

message is dismissed by the user it disappears, without passing any
information back to the runtime Oracle Configurator. You cannot use
an InformationalMessage object to get a response from the end
user in reaction to a message.

Compatibility of Certain Deprecated Exceptions

The exceptions FuncCompMessageException and FuncCompErrorException
were introduced in a previous version of the CIO, but are now deprecated, and are
retained only for backward compatibility with existing code. Even though these two
exceptions extend RuntimeException, they are not fatal in the CIO. They are treated
as non-fatal exceptions, as described in Handling Types of Exceptions, page 8-10.

Caution: The classes FuncCompMessageException and
FuncCompErrorException are now deprecated, but are retained for
backward compatibility with existing code.

A FuncCompErrorException rolls back the open transaction, and allows the end
user''s configuration session to continue. In general, you should not throw a
FuncCompErrorException unless you have very good reasons to believe that the
exception is benign and that the user should also be notified of it. You should document
these reasons in your code.

A FuncCompMessageException allowed you to present a dialog box displaying a
specified message, and the name of the Functional Companion that raised the
exception. When the end user dismissed the dialog box, the runtime Oracle
Configurator committed the open CIO transaction, and allowed the end user to proceed
with the configuration session. It was possible that the Model could be left in an
uncertain state. In the current version of the CIO, the transaction is rolled back, instead
of committed.

8-12 Oracle Configurator Extensions and Interface Object Developer's Guide

9

Using Requests

This chapter describes requests, which are programmatic attempts to modify a
configuration.

This chapter covers the following topics:
* About Requests

® Getting Information about Requests
¢ User Requests

¢ Nonoverridable Requests

* Failed Requests

About Requests

A request is an attempt to modify a configuration by setting the logical state or numeric
value of a node in the configuration Model (such as an Option or BOM Item). The table
Methods Typically Used to Make Requests, page 9-1 lists some methods of this type:

Methods Typically Used to Make Requests

Method Described In ...

IState.setState() Getting and Setting Logic States, page 6-6
ICount.setCount () Getting and Setting Numeric Values, page 6-9
IOPtion.select () Access to Options, page 6-13

* Requests that set a state or value, such as those listed in Methods Typically Used to
Make Requests, page 9-1, are called user requests. See User Requests, page 9-3.

Using Requests 9-1

* You can code a set of user requests that are applied to a configuration at any time.
These are called nonoverridable requests. These requests can be applied only
programmatically, and have a higher priority than user requests. See
Nonoverridable Requests, page 9-3.

* When user requests fail, due to an override of a contradiction, the CIO generates a
list of these failed requests. See Failed Requests, page 9-5.

* You can get information about a request by interrogating an instance of the Request
object. See Getting Information about Requests, page 9-2.

Getting Information about Requests

The class oracle.apps.cz.cio.Request exposes logic requests. A Request object
can be used to represent several kinds of requests.

The Request object provides a set of methods for determining the value of the request,
and the runtime node on which the request has been made:

® getNumericValue ()
® getValue()
® getRuntimeNode ()

The Request object also provides a set of methods for determining the type of the
request. These methods are listed in the table Type Methods of the Class Request, page
9-2. (In the value column, the test for the value of the request is case-sensitive.)

Type Methods of the Class Request

This returns TRUE if the request made was The value of the request is ...
for ...
isNumericRequest () changing the numeric a Number

value of a runtime node

isStateRequest () changing the state of a True, False, Toggle,
runtime node Tnknown
isTrueStateRequest () changing the state of a True

runtime node to True

isFalseStateRequest () Changing the state of a False
runtime node to False

9-2 Oracle Configurator Extensions and Interface Object Developer's Guide

This returns TRUE if the request made was The value of the request is ...
for ...

isToggleStateRequest () toggling the state of a Toggle

runtime node

iSUnknOWnStateRequeSt (unsettlng the state Of a Unknown

)

runtime node

User Requests

You can obtain a list of the Request objects that represent all current user requests in the
system, by using the method Configuration.getUserRequests () in your
Configurator Extension.

Example

IRuntimeNode node = getRuntimeNode () ;
Configuration config = node.getConfiguration();
List requests = config.getUserRequests();
Iterator it = requests.iterator();
while (it.hasNext()) {
Request reqg = (Request)it.next();
IRuntimeNode node = reqg.getRuntimeNode () ;
String value = reg.getValue();

}

Nonoverridable Requests

You can specify a set of logic requests to be applied to a configuration at any time that
have a higher priority than user requests. Such requests are called nonoverridable
requests.

You apply nonoverridable requests automatically on the creation of a configuration,
following the practice illustrated in Using Nonoverridable Requests, page 9-4 and in
the following steps:

1. Begin a configuration transaction, using
Configuration.beginConfigTransaction().

Example
ConfigTransaction tr = config.beginConfigTransaction();

See Using Logic Transactions, page 7-1 for details about transactions.

2. Specify that the transaction contains nonoverridable requests, using
ConfigTransaction.useNonOverridableRequests ().

Using Requests 9-3

Example
tr.useNonOverridableRequests () ;

3. Specify the desired user requests using the appropriate methods.

Example

BooleanFeature feat =
(BooleanFeature)node.getChildByName ("Feature 1234");
feat.setState (IState.TRUE) ;

See User Requests, page 9-3 for details about setting logic requests.

4. When you have set all the desired nonoverridable requests, commit the logic
transaction.

Example
config.commitConfigTransaction (tr);

These steps are combined in Using Nonoverridable Requests, page 9-4. For a fuller
example of using nonoverridable requests, see Setting Nonoverridable Requests, page
B-4.

Using Nonoverridable Requests

ConfigTransaction tr = config.beginConfigTransaction();

tr.useNonOverridableRequests () ;

BooleanFeature feat =
(BooleanFeature)node.getChildByName ("Feature 1234");

feat.setState (IState.TRUE) ;

config.commitConfigTransaction (tr);

Usage Notes on Nonoverridable Requests

* You can think of a transaction that includes
ConfigTransaction.useNonOverridableRequests () (asillustrated in Step
2, page 9-3) as putting the CIO in "nonoverridable request mode". You can nest any
number of subtransactions within this transaction; the requests in these
subtransactions all inherit this mode of being nonoverridable requests. You can
perform overrides and rollbacks as you would with ordinary user requests. You
must commit or roll back the nonoverridable-request transaction, as in Step 4, page
9-4, to indicate the conclusion of the nonoverridable requests. You can then specify
other user requests in your Configurator Extension.

e When you save a configuration that includes nonoverridable requests, the
nonoverridable requests are saved as part of the configuration. When you restore
such a configuration, with CIO.restoreConfiguration (), the nonoverridable
requests are reapplied to the configuration.

® You can get a list of the list of nonoverridable requests present in a configuration by
using Configuration.getNonOverridableRequests ().

9-4 Oracle Configurator Extensions and Interface Object Developer's Guide

* In anonoverridable transaction, you can retract a nonoverridable request by calling
unset () on the appropriate runtime node.

Limitations on Nonoverridable Requests

* After you apply nonoverridable requests to a configuration, you cannot override
any of the nonoverridable requests with user requests. But you can override
nonoverridable requests with other nonoverridable requests. An attempt to
override a nonoverridable request with a user request throws a
NonOverridableRequestException, which cannot be overridden.

* You cannot use nonoverridable requests to add or delete components, or create a
connection.

Failed Requests

When you use LogicalOverridableException.override () to override a logical
contradiction (see Overriding Contradictions, page 8-8), the override () method
returns a List of Request objects. These Request objects represent all the previously
asserted user requests that failed due to the override that you are performing.

See Getting a List of Failed Requests, page B-8 for an example.

Using Requests 9-5

10

Configuration Session Change Tracking

This chapter describes the CIO's Configuration Delta API for tracking changes that have
been made to regions of your user interface during a configuration session.

This chapter covers the following topics:

Introduction to Configuration Session Change Tracking
How Change Tracking Works

Starting a Session

Tracking Session Changes

Updating a Region

Handling Screen Changes

Creating a Custom DeltaValidator

Unified Code Example for Change Tracking

Introduction to Configuration Session Change Tracking

This section is divided as follows:

For a general overview of the Configuration Delta API, see How It Works, page 10-
2.

For examples of how the Configuration Delta AP is used, see:

e Starting a Session, page 10-7

Tracking Session Changes, page 10-9

Updating a Region, page 10-10

Handling Screen Changes, page 10-11

Configuration Session Change Tracking 10-1

e For information on a specialized customization topic, see Creating a Custom
DeltaValidator, page 10-12.

* For detailed reference documentation that describes the classes of the Configuration
Delta API, see Reference Documentation for the CIO, page A-1.

You can use the CIO's Configuration Delta API to query a Configuration object about
changes (deltas) that have been made to the configuration during the current
configuration session.

Note: Although the functionality described in this section uses the
terms delta and tracking, this functionality is distinct from the tracking
of deltas described in the Oracle Telecommunications Service Ordering
Process Guide. In that document, the term delta refers to a change made
to a configuration relative to an instance of that configuration residing
in an installation repository.

The Configuration Delta API provides a unified interface that enables you to track
deltas only on the specific nodes in which you register interest. Contrast this to the set
of methods listed Change-Detection Methods for the Configuration Object, page 10-2,
which provide change information only for the entire set of the nodes in a
configuration.

Change-Detection Methods for the Configuration Object
Configuration.getSelectedItems ()

Configuration.getUnsatisfiedItems ()

Configuration.getUnsatisfiedItems ()

Configuration.getUnsatisfiedRuleMessages ()
Configuration.getValidationFailures ()

How Change Tracking Works

Note: This use of the CIO is intended for both custom applications and
Configurator Extensions.

Both custom applications and Configurator Extensions can be clients of the
Configuration Delta API.

The Configuration Delta API consists of the classes and interfaces in the CIO listed in
the table Classes and Interfaces for the Configuration Delta API, page 10-3. The
Instances, page 10-3 column indicates how many instances of the class exist at
runtime, during a configuration session.

10-2 Oracle Configurator Extensions and Interface Object Developer's Guide

Classes and Interfaces for the Configuration Delta API

Class or Interface Role Instances

DeltaManager Manages all changes made by One per client.
end user actions during a
configuration session.

See Role of the DeltaManager,
page 10-5.

DeltaRegion Maintains list of watched One per each region of interest in
runtime nodes and changes to be the user interface.

tracked on those nodes.
Can register multiple

See Role of DeltaRegions, page DeltaValidators, one for each type

10-5. of change to be tracked.
DeltaValidator Manages all defined types of One per each type of change to be

changes. Base class for all tracked.

DeltaValidators.

Can be registered with multiple
See Role of DeltaValidators, page DeltaRegions.
10-5.

IvalidatorChang Represents any change type. Not instantiated. Implemented by

€ all DeltaValidators.
See Role of the IValidatorChange

Interface, page 10-6.

Relationship of the Classes

The diagram in Example Class Relationships in the Configuration Delta AP, page 10-
4 shows the relationship of the classes in the Configuration Delta AP, using a typical
example of their use.

Configuration Session Change Tracking 10-3

Example Class Relationships in the Configuration Delta API

DeltaManager
h
DeltaRegion 1 DeltaRegion 2 DeltaRegion 3
Deltavalidator Delta'alidator Deltavalidatar Delta'alidator Deltavalidatar
1 2 3 4 5

In Example Class Relationships in the Configuration Delta AP, page 10-4, the
DeltaManager is managing a Ul containing three DeltaRegions (labeled 1, 2, and 3).

¢ Each DeltaRegion maintains a list of runtime nodes that are watched for changes
(the watched-nodes list).

e Each DeltaRegion is registered with the DeltaManager and contains a list of
DeltaValidators, which determine the types of changes that are watched in the
region.

* In the example:

* DeltaRegion 1 has registered DeltaValidators 1 and 2
® DeltaRegion 2 has registered DeltaValidators 2, 3, and 4

* DeltaRegion 3 has registered DeltaValidators 4 and 5

* Each DeltaValidator can be registered with multiple DeltaRegions. Each
DeltaValidator watches for a particular change type in a combined list of all the
runtime nodes in all the DeltaRegions that it is registered with.

* In the example:
¢ Since DeltaValidator 1 is registered only with DeltaRegion 1, its watched-nodes

list is the same as the watched-nodes list in DeltaRegion 1.

* DeltaValidator 2 is registered with two DeltaRegions (1 and 2). Hence, its
watched-nodes list is the union of the watched-nodes lists from both

10-4 Oracle Configurator Extensions and Interface Object Developer's Guide

DeltaRegions 1 and 2.

Role of the DeltaManager

The DeltaManager object is instantiated once, at the beginning of a configuration
session, and is cached on the Configuration object for the session. The DeltaManager
manages all the changes made by end user actions during that session.

The DeltaManager is identified by an ID that is passed to the method that creates it,
Configuration.createDeltaManager ().

You can register multiple DeltaRegions with the DeltaManager, to manage the regions
of your client's user interface.

Role of DeltaRegions

A DeltaRegion object represents a distinct portion of your client's user interface. For
example, your Ul might have a navigation region, an update region, and a summary
region; your client would create a DeltaRegion object for each of them.

Each DeltaRegion maintains a list of watched runtime nodes in that region. You
determine which nodes are to be watched for changes by registering a DeltaRegion
object with the DeltaManager, using the method
DeltaManager.registerRegion (), which takes as arguments the list of nodes to
watch, the list of DeltaValidators to watch them with, and an ID. See Registering a
DeltaRegion: All Nodes, page 10-9 for an example of registering a region.

Role of DeltaValidators

A DeltaValidator object manages defined types of changes. A Deltavalidator
can be thought of as a reusable software component that reports on a particular type of
change.

Each particular change type is handled through a specialized subclass of the class
DeltaValidator. The CIO provides a set of default change types that correspond to
the types of changes that can be made through the CIO. Each subclass defines a change
object (in the form of an inner class) that implements methods that provide information
about the specified type of change.

The table Default Change Types and Their Change Objects, page 10-6 lists a sampling
of the default change types, and the specialized DeltaValidators that represent them.
For details on the methods of these change object classes, and the complete set of
DeltaValidator subclasses, see the CIO reference documentation described in
Reference Documentation for the CIO, page A-1.

You can write custom DeltaValidators for change types that are not already provided
by the CIO. For details, see Creating a Custom DeltaValidator, page 10-12.

Configuration Session Change Tracking 10-5

Default Change Types and Their Change Objects

Change Type Class for Change Object
ATP (Availability to AtpDeltaValidator.AtpChange
Promise)

Availability (for selection) AvailabilityDeltaValidator.AvailabilityChange
Connection ConnectionDeltaValidator.ConnectionChange

Count (of runtime nodes) ~ CountDeltaValidator.CountChange

Deletion DeletionDeltaValidator.DeletionChange
Price PriceDeltaValidator.PriceChange

Selection status (change SelectionDeltaValidator.SelectionChange
between selected and

deselected)

LogiC state (Of a node) StateDeltaValidator.StateChange

Satisfaction (change UnsatisfactionDeltaValidator.UnsatisfactionChange
between satisfied and

unsatisfied)

ValidationFailure ValidationDeltaValidator.ValidationChange
messages

Each change object (inner class) implements the method getType () of the interface
IValidatorChange. Each inner class must also implement any methods that are
appropriate to their particular change type. See Custom Method to Update a Region,
page 10-11 for examples of how you would use both the IValidatorChange
methods and the type-specific methods.

Role of the IValidatorChange Interface

The IValidatorChange interface:

¢ Represents any kind of DeltaValidator change. It is implemented by all
DeltaValidators to represent their specific change object.

e Is the interface for the class ValidatorChange, which is the base class for all the

10-6 Oracle Configurator Extensions and Interface Object Developer's Guide

change-object inner classes described in Role of DeltaValidators, page 10-5.

e Provides the method getType (), which returns one of the DeltaValidator type
constants defined in the DeltaValidator object. See Custom Method to Update a
Region, page 10-11 for an example of how you would use this method.

Starting a Session

Your client should perform the following steps once, at the beginning of a configuration
session.

1. Create a Configuration object.
See Creating a Configuration Object, page 10-7 in Creating a Configuration
Object, page 10-7.

2. Create a DeltaManager object and associate it with the Configuration object.

See Associating a DeltaManager with a Configuration, page 10-8 in Associating a
DeltaManager, page 10-8.

3. Specify the DeltaValidators corresponding to the change types you want to track
during the configuration session.

See Specifying DeltaValidators, page 10-8 in Specifying DeltaValidators, page 10-
8.

4. Get alist of the nodes in the region whose changes you are interested in tracking
and register that region.

See Registering a DeltaRegion: All Nodes, page 10-9 or Registering a DeltaRegion:
Subset of Nodes, page 10-9 in Registering DeltaRegions, page 10-8.

Creating a Configuration Object

If you are working with a custom application, create a Configuration object, as
described in see Creating Configurations, page 5-2 for required background
information. See especially Creating a Configuration Object (MyConfigCreator.java),
page 5-5.

Creating a Configuration Object

// Create a new Configuration and DeltaManager
ConfigParameters params = new ConfigParameters (modelld);
Configuration config = cio.startConfiguration (params, context);

Note: The fragmentary code examples in this section are meant to be
read together, as parts of a larger example. Identifiers are shared

Configuration Session Change Tracking 10-7

between examples; where the same identifier occurs in multiple
examples, it refers to the same object. These fragmentary examples are
assembled together in Tracking Session Changes (DeltaExample.java),
page B-13.

Associating a DeltaManager

Associate a DeltaManager object with the Configuration object for the current
configuration session.

Associating a DeltaManager with a Configuration

DeltaManager deltaMgr = config.createDeltaManager ("MyDeltaMgr") ;

Specifying DeltaValidators

Create DeltaValidator objects for the change types that you want to track during the
configuration session. Then add them to a list that can be used to register the
DeltaValidators for a DeltaRegion (shown in Registering a DeltaRegion: All Nodes,
page 10-9).

Specifying DeltaValidators

// Create a Navigation (Tree) region. This is interested in watching

// all runtime nodes for instance name, instantiation, and
unsatisfaction

// changes.

List dvList = new ArrayList();

dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.INSTANCE NAME DV)) ;
dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.INSTANTIATION DV)) ;
dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.UNSATISFACTION DV
)) i

Registering DeltaRegions

Register a DeltaRegion with the DeltaManager, passing it the list of nodes to watch and
the list of DeltaValidators to watch them with (dvList, defined in Specifying
DeltaValidators, page 10-8).

You can also register an individual DeltaValidator, using
DeltaManager.registerDeltavValidator ().

Registering a DeltaRegion: All Nodes, page 10-9 shows the registration of a region
using all of the runtime nodes in the Configuration (config.getRuntimeNodes ()).
If you want to use some subset of the runtime nodes (such as only the nodes visible in
the user interface), then you must implement a custom method to do so. This alternative
is shown in Registering a DeltaRegion: Subset of Nodes, page 10-9, using the
hypothetical custom method getRuntimeNodesInSelectedComponent ().

10-8 Oracle Configurator Extensions and Interface Object Developer's Guide

Registering a DeltaRegion: All Nodes

List watchedNodes = config.getRuntimeNodes () ;

DeltaRegion treeRegion = deltaMgr.registerRegion (watchedNodes, dvlList,
"MyTreeRegion") ;

Registering a DeltaRegion: Subset of Nodes

// Create a component region. This region displays a Component screen
and is

// interested in watching all nodes in that component for availability,
count,

// price, state and unsatisfaction changes

dvList.clear () ;
dvList.add(deltaMgr.getDeltaValidator (DeltaValidator .AVAILABILITY DV)) ;
dvList.add(deltaMgr.getDeltaValidator (DeltavValidator.COUNT DV)) ;
dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.PRICE DV));
dvlList.add(deltaMgr.getDeltaValidator (DeltaValidator.STATE DV));
dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.UNSATISFACTION DV))

’

watchedNodes = getRuntimeNodesInSelectedComponent(); // a custom method,
not defined here

DeltaRegion compRegion = deltaMgr.registerRegion (watchedNodes, dvlList,
"MyCompRegion") ;

Tracking Session Changes

Your client should perform the following steps each time it needs to track a session
change to the current configuration. Most of the code examples shown in this section
are shown in a more complete context in Tracking Session Changes
(DeltaExample.java), page B-13.

1. Begin a configuration transaction. See Using Logic Transactions, page 7-1 for
background.

Example
ConfigTransaction tran = config.beginConfigTransaction () ;

2. Perform the change, by making an assertion. For background details, see Getting
and Setting Logic States, page 6-6 and Getting and Setting Numeric Values, page 6-
9. The following example fragment shows how to select the Option node named
Optionl.

Example
// Make an assertion to change the current configuration
try {
Option optionl =
(Option)config.getRootComponent () .getChildByName ("Feature") .getChild
ByName ("Optionl") ;
optionl.select();
} catch (LogicalException loe) { }

Configuration Session Change Tracking 10-9

Close the configuration transaction.

Example
config.commitConfigTransaction (tran);

Query the configuration for the changes of interest. Update the list of changes that
you can use to update a region that you registered. The following example updates
the change map for the region registered in Registering a DeltaRegion: All Nodes,
page 10-9.

Example

// Get the deltas due to this assertion and update the tree and

component regions
Map treeChanges = deltaMgr.getUpdateMapForRegion ("MyTreeRegion");

Update the region that you registered (as in Registering a DeltaRegion: All Nodes,
page 10-9), using a custom method. The custom method updateTreeRegion () is
described in Updating a Region, page 10-10.

Example

// Now update the tree region cache and UI with treeChanges
updateTreeRegion (treeChanges) ;

Updating a Region

When you need to update a region with the a list of the changes that your client has
been tracking with the DeltaManager, you can invoke a custom method such as

updateTreeRegion (), whose definition is shown in Custom Method to Update a

Region, page 10-11. This method operates as follows:

1.

Take as an argument the changes object that is a Map of the changed nodes in the
registered region (MyTreeRegion). See Tracking Session Changes, page 10-9 for a
description of when this updating takes place.

The map of changed nodes consists of a set of pairs, in which the key is a
RuntimeNode object, and the value is a collection of IValidatorChange objects.

Iterate over the nodes in the Map of changed nodes. Use a custom method, such as
getUiNode () in the example, to get access to the Ul node corresponding to the
changed node object.

Iterate over the List of changes for the node, using each change to set the value of
the IValidatorChange object change.

For each change, call IValidatorChange.getType (), which returns the type of
the change in a form that corresponds to one of the change types defined in the
class DeltaValidator, such as INSTANCE NAME DV.

Using a switch control structure, switch on the change type. For each change type,
cast the change object to the actual implementing class of the change, such as

10-10 Oracle Configurator Extensions and Interface Object Developer's Guide

InstanceNameChange.

Example
InstanceNameDeltaValidator.InstanceNameChange nameChange =
InstanceNameDeltaValidator.InstanceNameChange) change;

6. Using the particular change object for the change, use a custom method to update
the Ul node corresponding to the changed node object.

Example
String newName = nameChange.getInstanceName () ;
uiNode.setName (newName); // custom method on uiNode

Custom Method to Update a Region
public static void updateTreeRegion (Map changes) {
for (Iterator iter = changes.keySet () .iterator(); iter.hasNext();) {
RuntimeNode changedNode = (RuntimeNode)iter.next();
uiNode = getUiNode (changedNode); // custom method
Collection nodeChanges = (Collection)changes.get (changedNode) ;
for (Iterator iter2 = nodeChanges.iterator(); iter2.hasNext();) {
IValidatorChange change = (IValidatorChange)iter2.next();
switch (change.getType()) {
case DeltaValidator.INSTANCE NAME DV:
InstanceNameDeltaValidator.InstanceNameChange nameChange =
InstanceNameDeltaValidator.InstanceNameChange) change;
String newName = nameChange.getInstanceName () ;
uiNode.setName (newName); // custom method on uiNode
break;
case DeltaValidator.INSTANTIATION DV:
InstantiationDeltaValidator.InstantiationChange iChange =
(InstantiationDeltaValidator.InstantiationChange) change;
Collection added = iChange.getNewlyAddedInstances () ;
Collection deleted = iChange.getNewlyDeletedInstances() ;
uiNode.updatelInstances (added, deleted); // custom method on
uiNode
break;
case DeltaValidator.UNSATISFACTION DV:
UnsatisfactionDeltaValidator.UnsatisfactionChange uChange =
(UnsatisfactionDeltaValidator.UnsatisfactionChange) change;
boolean unsatisfied = uChange.isUnsatisfied();
uiNode.setUnsatisfied (unsatisfied); // custom method on uiNode
break;

Handling Screen Changes

When a screen change (such as a screen flip to another Ul page) occurs in your client's
user interface, you should update the list of watched nodes in each DeltaRegion, so that
you can get a list of the changes made to the nodes whenever you need such a list.

The manner in which you update the watched nodes depends on how extensive are the
changes to the region you are watching.

¢ If the general layout of the region is unchanged, and only the set of nodes in the
region may have changed, you can simply clear the list of watched nodes, get the

Configuration Session Change Tracking 10-11

list of currently interesting nodes, then add that list to the region’'s list of nodes to
watch. This approach is shown in Updating Watched Nodes: Screen Format
Unchanged , page 10-12.

Updating Watched Nodes: Screen Format Unchanged

rgnl.clearWatchedNodes () ;
List visibleNodes = getCurrentVisibleNodes (); // custom method
rgnl .addWatchedNodes (visibleNodes) ;

You must define the custom method used to get the visible nodes,
getCurrentVisibleNodes ().

e If the general layout of the region has changed significantly, then you should
unregister the region, rebuild the list of DeltaValidators, and register the region,
specifying all the nodes and the list of DeltaValidators. This approach is shown in
Updating Watched Nodes: Screen Format Changed Significantly, page 10-12.

Updating Watched Nodes: Screen Format Changed Significantly

mgr.unRegisterRegion (rgnl.getId());

List dvList = new ArrayList();

dvList.add(dm.getDeltaValidator (DeltaValidator.PRICE DV)) ;
dvlList.add(dm.getDeltaValidator (DeltavValidator.AVAILABILITY DV));
rgnl = mgr.registerRegion (config.getRuntimeNodes (), dvList, null);

Creating a Custom DeltaValidator

It is possible, but unlikely, that you may need to write custom DeltaValidators for
change types that are not already defined in the CIO. See Role of DeltaValidators, page
10-5 for an explanation of DeltaValidators and a description of the default
DeltaValidators provided with the CIO.

In order to create a custom DeltaValidator, you must do the following:

® Define a subclass that extends DeltavValidator. This class is your custom
DeltaValidator. For example:

Example
public class MyCustomDeltaValidator extends DeltaValidator {
// constructor
protected MyCustomDeltaValidator () {
setType (MY CUSTOM DV) ;
}

* Define a change object that represents the type of change that your custom
DeltaValidator is designed to track. This change object class must implement the
interface IValidatorChange. See Role of the [ValidatorChange Interface, page 10-
6.

10-12 Oracle Configurator Extensions and Interface Object Developer's Guide

Example
public class MyCustomChange extends ValidatorChange {
// Implement your change object here

}

In the DeltaValidators defined in the CIO, the change object is defined as an inner
class, but this design decision is not mandatory.

In the custom DeltaValidator, define a constant that designates your custom type of
DeltaValidator and the change type that it tracks. The value of the constant must be
greater than DeltaValidator.CUSTOM DV (which is currently defined as 1000,
though you should not directly reference that value). Example:

Example
public static final int MY _CUSTOM DV = DeltaValidator.CUSTOM DV + 1;

In the custom DeltaValidator, implement the method isChanged (), which is
defined as abstract in DeltavValidator:

Example

protected abstract boolean isChanged (IRuntimeNode node, DeltaRegion
region)

Your implementation must determine if there are any changes to be reported for the
runtime node by this DeltaValidator, for the given region.

In the custom DeltaValidator, implement the method getChange (), defined as
abstract in DeltaValidator:
Example

protected abstract IValidatorChange getChange (IRuntimeNode node,
DeltaRegion region)

Your implementation must get the change object for this node. For example:

Example
protected IValidatorChange getChange (IRuntimeNode node, DeltaRegion
region) {

MyCustomChange change = new MyCustomChange (); return change;

}

In the change-object class, implement the method getType () from the interface
IValidatorChange. Your implementation must return the change type, which
corresponds to the custom DeltaValidator type that you defined. For example:
Example
public int getType() {

return MyCustomDeltaValidator.MY CUSTOM DV;
}

Include your custom DeltaValidator in list of DeltaValidators passed to
DeltaManager.registerRegion (). See Registering DeltaRegions, page 10-8.
You can also register a custom DeltaValidator independently, using
DeltaManager.registerDeltaValidator (), which adds a DeltaValidator to
the list of existing ones. This will enable different regions to use the same instance

Configuration Session Change Tracking 10-13

of your custom DeltaValidator.

Unified Code Example for Change Tracking

The code in Tracking Session Changes (DeltaExample java), page B-13 assembles
together the fragmentary examples shown elsewhere in this chapter.

10-14 Oracle Configurator Extensions and Interface Object Developer's Guide

11

Logging Through the CIO

This chapter describes how you can use the Oracle Applications Logging Framework
with Oracle Configurator and the Oracle Configuration Interface Object to provide a
convenient and uniform interface for logging their activity.

This chapter covers the following topics:

Overview of Logging

Enabling Logging Scope

Creating Entries in the Log
Recommended Practices for Logging
Example of Logging

Logging for a Custom Application

Overview of Logging

This chapter provides basic information about logging the operations you perform with
the CIO, especially those inside Configurator Extensions.

Oracle Configurator and the Oracle Configuration Interface Object use the Oracle
Applications Logging Framework to provide a convenient and uniform interface for
logging their activity.

For references to Oracle documentation about the Oracle Applications Logging
Framework, see Troubleshooting, page 1-9.

Logging through the CIO requires these essential actions:

Enabling Logging Scope, page 11-2
Creating Entries in the Log, page 11-4

Recommended Practices for Logging, page 11-6

Logging Through the CIO 11-1

These actions are illustrated together by Example of Logging, page 11-7.

Note: Logging through the CIO is primarily intended for use within
Configurator Extensions, but you can also use it in custom applications
that use the CIO directly. See Logging for a Custom Application, page
11-9.

Enabling Logging Scope

In order to enable the creation of log entries through the CIO you must set the following
parameters for the Oracle Applications Logging Framework:

e AFLOG_ENABLED, to turn on logging.

e AFLOG_MODULE, to specify the Java packages or classes that you wish to log,
using the parameters described in Values for AFLOG_MODULE, page 11-3.

e AFLOG_LEVEL, to specify the level of entries that you wish to log, using the
parameters described in Values for AFLOG_LEVEL, page 11-3.

e AFLOG_FILENAME, to specify the file where middle-tier log messages are written.
¢ AFLOG_ECHO, to optionally echo all filtered logging messages to STDERR.

These parameters can be set as middle-tier properties or as database profile options. The
parameter names listed here are for middle-tier properties. See the Oracle Applications
Supportability Guide for information on how to set these parameters as database profile
options.

The table Values for AFLOG_MODULE, page 11-3 lists the strings that you can

include in the AFLOG_MODULE parameter to identify the Java packages or classes that
you wish to log. The AFLOG_MODULE parameter is a comma-delimited filter against
which the module names of log messages are compared.

11-2 Oracle Configurator Extensions and Interface Object Developer's Guide

Values for AFLOG_MODULE

Value

Description

cz%

packagepath%

Logs with attribution to the log-writing method
Configuration.writeCXLogEntry (). This setting logs all activity
by Oracle Configurator during a configuration session, regardless of
which class in your Configurator Extension or custom application
caused the entry to be written. Allows you to examine the activity of
your classes in the context of Oracle Configurator activity.

The Oracle Applications Logging Framework ignores oracle.apps. at
the beginning of a package name, so to specify oracle.apps.cz.cio,
you only specify cz.cio.

Examples:

Example

cz%
cz.cio%

Logs with attribution to the methods in your own Configurator
Extension or custom application classes that caused the entry to be
written. This setting logs only activity by your Configurator Extension or
custom application during a configuration session and omits the
surrounding activity by Oracle Configurator.

Examples:

Example

acmes
acme.rocket$%

The table Values for AFLOG_LEVEL, page 11-3 lists the Oracle Applications Logging
Framework logging levels in order of increasing severity. You must specify one of the
supported levels when enabling logging through the CIO.

Values for AFLOG_LEVEL

Value Description

STATEMENT Used for low-level progress reporting.
PROCEDURE Used for API-level progress reporting.
EVENT

Used for high-level progress reporting.

Logging Through the CIO 11-3

Value Description

EXCEPTION Not supported. Indicates a handled internal software failure.
ERROR Not supported. Indicates an external end user error.
UNEXPECTED Not supported. Indicates unhandled internal software failure.

Caution: Logging through the CIO does not support use of the more
severe logging levels provided by the Oracle Applications Logging
Framework, namely: EXCEPTION, ERROR, and UNEXPECTED.

See Troubleshooting, page 1-9 for references to more information about
AFLOG_MODULE.

Creating Entries in the Log

Creating entries in the log requires performing these essential actions in your
Configurator Extension or custom application code:

e Testing Whether Logging Is Enabled, page 11-4
* Writing Log Entries, page 11-5

In the Oracle Applications Logging Framework, the term module refers to a Java class
when it is applied to a Java framework, so that term is used for consistency in the
descriptions in this section.

Testing Whether Logging Is Enabled

You test whether logging is enabled by calling the method
Configuration.isCXLogEnabled (). The syntax for this method is as follows:

Example
public final boolean isCXLogEnabled (module, logLevel)

Parameters for isCXLogEnabled(), page 11-5 describes the parameters for this method.
Notice that the parameter module can be either an Object or a String. There are separate
signatures of isCXLogEnabled () for each data type.

The table Logging Through the CIO, page 11-8 provides an example of how to use
this method.

11-4 Oracle Configurator Extensions and Interface Object Developer's Guide

Parameters for isCXLogEnabled()

Data Parameter Description

Type

Objector ~ module If you pass an Object, this parameter specifies the Java class to
String which the log entry will attributed. The typical value for this

parameter is the Java keyword this.

If you pass a String, this parameter specifies the fully-qualified
name of the Java class, including its package, to which the log
entry will attributed. This form is provided for use with static
methods, since Java technology does not allow the use of the
keyword this in static methods.

A runtime exception is raised if this parameter is null.
This description also applies to the parameter of the same name in
Parameters for writeCXLogEntry(), page 11-6.

int logLevel The level of detail at which logging is enabled. Must be one of the

following constants:

Configuration.CXLOG STATEMENT
Configuration.CXLOG PROCEDURE
Configuration.CXLOG EVENT

The specified level must correspond to one of the supported levels
specified for AFLOG_LEVEL, as listed in Values for
AFLOG_LEVEL, page 11-3. For example, if you specify
Configuration.CXLOG_STATEMENT for this parameter, then
AFLOG_LEVEL must specify STATEMENT.

A runtime exception is raised if this parameter specifies an
unsupported level.

This description also applies to the parameter of the same name in
Parameters for writeCXLogEntry(), page 11-6.

Writing Log Entries

You write an entry by calling the method Configuration.writeCXLogEntry ().
The syntax for this method is as follows:

Example
public final void writeCXLogEntry(module, methodName, label, message,
logLevel)

Logging Through the CIO 11-5

The table Parameters for writeCXLogEntry(), page 11-6 describes the parameters for
this method. Notice that the parameter module can be either an Object or a String.
There are separate signatures of writeCxLogEntry () for each data type.

Logging Through the CIO, page 11-8 provides an example of how to use this method.

Parameters for writeCXLogEntry()

Data Parameter Description

Type

Object module See the description of the parameter of the same name in Parameters
or for isCXLogEnabled(), page 11-5.

String

String ~methodName The name of your Java method that is calling writeCXLogEntry ()
. This name is written to the log.

A runtime exception is raised if this parameter is null or consists of
white space.

String label An optional string. Use to provide additional context for the entry in
the log.
String ~message An optional string. Use to write the log message that describes the

situation being logged.

int logLevel See the description of the parameter of the same name in Parameters
for isCXLogEnabled(), page 11-5.

Recommended Practices for Logging
When logging through the CIO, you should follow these practices:

* When writing a log entry with writeCXLogEntry (), always wrap that invocation
with a test that uses 1sCXLogEnabled (). This prevents the unnecessary
invocation of writeCXLogEntry () when logging is not enabled, which can affect
performance.

See Example of Logging, page 11-7 for an example of this practice.

¢ If you are handling an exception, you can add an explicit invocation of
writeCXLogEntry () in the catch block of your exception handling routine,
specifying any of the supported logging levels listed in Values for AFLOG_LEVEL,
page 11-3. Note that the CIO logs exceptions even if you do not add this explicit
invocation, but adding it may ease your debugging work.

11-6 Oracle Configurator Extensions and Interface Object Developer's Guide

® Set the logLevel parameter for writeCXLogEntry () to the level that provides
you with the most useful information. See the table Values for the logLevel
Parameter, page 11-7 for guidance.

Values for the logLevel Parameter

Value

Description

CXLOG_STATEMENT

CXLOG_PROCEDURE

CXLOG_EVENT

Use for low-level progress reporting. Most of your log data will be
written at this level.

Note that using this level can affect performance, since it requires
more logging activity.

Use for API-level progress reporting. Log at this level to report the
entrance into or exit from a Java method of particular interest.

Use for high-level reporting of significant configuration session
events, such as the restoring of a configuration or the selection of a
particular Model node.

This level is not necessarily equivalent to an event that triggers a
Configurator Extension, though you can choose to log such events
at this level.

This level provides the best logging performance.

Example of Logging

The example Logging Through the CIO, page 11-8 illustrates how your code can use
the logging methods described in Creating Entries in the Log, page 11-4. These methods
are highlighted typographically in . The example also highlights these requirements:

® The methodName, page 11-6 parameter must match the name of the enclosing

method.

e The logLevel, page 11-5 parameter must agree with the setting of AFLOG_LEVEL,
which is assumed to be STATEMENT, in this example.

Logging Through the CIO 11-7

Logging Through the CIO

package acme.code;

import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.IRuntimeNode;

public class MyClass {

// ... other code here to interact with configuration ...
public void selectIt(IRuntimeNode rtNode) {

Configuration cfg = rtNode.getConfiguration();

// ... other code here to select a node ...

if (cfg.isCXLogEnabled(this, Configuration.CXLOG_STATEMENT)) {
cfg.writeCXLogEntry (this,
"selectIt",
null,
"Selecting a node.",
Configuration.CXLOG_STATEMENT) ;

}

Log File Entry When AFLOG_MODULE Includes cz%, page 11-8 and Log File Entry
When AFLOG_MODULE Includes acme%, page 11-9 show the log entries produced

by the code fragment in Logging Through the CIO, page 11-8, with differing settings for
AFLOG_MODULE, as described in Enabling Logging Scope, page 11-2.

* Log File Entry When AFLOG_MODULE Includes cz%, page 11-8 shows the effect
of setting AFLOG_MODULE to cz%.

¢ Log File Entry When AFLOG_MODULE Includes acme%, page 11-9 shows the
effect of setting AFLOG_MODULE to acme%.

Log File Entry When AFLOG_MODULE Includes cz%

[Oct 28, 2004 9:53:58 AM PDT]

1098982438703 :Thread[HttpRequestHandler-94,5,main]: -1: -1: ap723jdv:
139.185.20.44: -1:-1: STATEMENT: [cz.cio.Configuration.writeCXLogEntry]:
[null 4e9d2fd 2 1 2] CXLog> [acme.code.MyClass.selectIt] Selecting
Option 1

In Log File Entry When AFLOG_MODULE Includes cz%, page 11-8:

* The entry begins with standard Oracle Applications Logging Framework

information.

Example

[Oct 28, 2004 9:53:58 AM PDT]

1098982438703 :Thread[HttpRequestHandler-94,5,main]: -1: -1:

ap7233dv: 139.185.20.44: -1:-1: STATEMENT

¢ The next part of the entry shows the attributing class and method:

Example
:[cz.cio.Configuration.writeCXLogEntry]

Notice that the attributing class and method are Configuration and
writeCXLogEntry (), which are the ones that actually wrote the entry.

¢ The final part of the entry shows the logging message (which begins with the

11-8 Oracle Configurator Extensions and Interface Object Developer's Guide

standard logging footprint text for Oracle Configurator):

Example
:[null 4e9d2fd 2 1 2] CXLog> [acme.code.MyClass.selectIt] Selecting
a node.

Notice that the message includes the prefix CXLog> and the full path to your
method that called writeCXLogEntry ().

Log File Entry When AFLOG_MODULE Includes acme%

[Oct 28, 2004 9:53:58 AM PDT]

1098982438703 :Thread[HttpRequestHandler-94,5,main] :-1: -1: ap723jdv:
139.185.20.44: -1:-1: STATEMENT: [acme.code.MyClass.selectIt]:

[null 4e9d2fd 2 1 3] Selecting Option 1

In Log File Entry When AFLOG_MODULE Includes acme%, page 11-9:

¢ The entry begins with standard Oracle Applications Logging Framework

information.

Example

[Oct 28, 2004 9:53:58 AM PDT]

1098982438703 :Thread[HttpRequestHandler-94,5,main]: -1: -1:

ap723jdv: 139.185.20.44: -1:-1: STATEMENT

* The next part of the entry shows the attributing class and method:

Example
: [acme.code.MyClass.selectIt]

Notice that the message shows the full path to your method that called
writeCXLogEntry ().

¢ The final part of the entry shows the logging message (which begins with the
standard logging footprint text for Oracle Configurator):

Example
:[null 4e9d2fd 2 1 3] Selecting a node.

Notice that the message shows only the text that you passed as an argument to the
message parameter of writeCXLogEntry ().

Logging for a Custom Application

Logging through the CIO is primarily intended for use within Configurator Extensions
operating against a generated Oracle Configurator user interface, but you can also use
logging in custom applications that use the CIO directly against a custom user interface.

Note: Custom applications that have previously used the CZLog object
should instead use the logging framework described in this chapter.
The CZLog object is now deprecated.

Logging through a custom application is similar to the logging described in this
chapter, especially in Creating Entries in the Log, page 11-4 and Values for

Logging Through the CIO 11-9

AFLOG_LEVEL, page 11-3, but with the following differences:

* You create an instance of the class
oracle.apps.cz.utilities.NonCtxLogWriter, to be alogging object that
takes the place of the Configuration object

* You write entries to the log by using the interface
oracle.apps.cz.utilities.LogWriter

For an example of custom logging, see the code fragment under Logging Through the
CIO for a Custom Application, page 11-10, and compare it to the example code shown
under Logging Through the CIO, page 11-8.

Logging Through the CIO for a Custom Application
package acme.code;

import oracle.apps.cz.cio.Configuration;

import oracle.apps.cz.cio.IRuntimeNode;

import oracle.apps.cz.utilities.NonCtxLogWriter;
import oracle.apps.cz.utilities.LogWriter;

public class MyClass {
// ... other code here to interact with configuration
public void selectIt (IRuntimeNode rtNode) {
Configuration cfg = rtNode.getConfiguration();
// ... other code here to select a node

// Create a logging object
NonCtxLogWriter nclw = new NonCtxLogWriter() ;
if (nclw.isEnabled (LogWriter.STATEMENT, this)) {
nclw.write (this,
"selectIt",
null,
"Selecting a node.",
LogWriter.STATEMENT) ;

11-10 Oracle Configurator Extensions and Interface Object Developer's Guide

A

Reference Documentation for the CIO

This appendix explains how to access the reference documentation for the CIO, which is
generated in Javadoc format.

This appendix covers the following topics:

* About This Appendix

About This Appendix

Reference documentation for the Oracle Configuration Interface Object is provided in
the form of its API specification, delivered as pages generated by the Javadoc tool from
the source code for the CIO.

For the location of the API specification for this release, see Oracle Configurator
Documentation Resources, Release 12, Oracle MetaLink Document 394478.1.

Reference Documentation for the CIO A-1

B

Code Examples

This appendix contains code examples illustrating the use of Configurator Extensions
and the CIO.

This appendix covers the following topics:

* About This Appendix

® Generating Output Related to Model Structure

¢ Using Requests

¢ Sharing a Configuration Session in a Child Window

¢ Tracking Configuration Session Changes

About This Appendix

This appendix contains code examples illustrating the use of Configurator Extensions
and the CIO. These examples are fuller and longer than the examples provided in the
rest of this document, which are often fragments. For each example, see the cited
background sections for explanatory details.

Generating Output Related to Model Structure

This Configurator Extension produces an HTML representation of the runtime Model
tree, beginning at a node specified in the Configurator Extension binding.

For the detailed procedure for creating a Configurator Extension Rule, see Building
Configurator Extensions, page 2-1 and the Oracle Configurator Developer User’s Guide. For
specific information on building a Configurator Extension for generating custom
output, see Generating Custom Output, page 3-2.

Here is a summary of the tasks specific to this example:

® Use the Java source code in Generating Output with a Configurator Extension
(ShowStructureCX.java), page B-4 for your Java archive file and Configurator

Code Examples B-1

Extension Archive.

e When you define your Configurator Extension rule, use the options listed in the

following table:

Option Choose ...

Model Node The node of your Model on which you want
the button for the command event to be
placed by Oracle Configurator. This node is
independent of the node in the Model tree
from which the Configurator Extension
begins showing structure.

Java Class ShowStructureCX, from your
Configurator Extension Archive

Java Class Instantiation With Model Node Instance

* When you define your event binding, use the options listed in the following table:

Option Choose ...
Event onCommand
Command Name A string that you choose as a command. For

example: Show Structure. Do not
enclose the string in quotation marks. The
string can contain spaces.

Event Scope Your choice of scope. Try repeating the
example with different scopes to see the
effect when you test it.

Method Name showModelStructure

* When you define your argument bindings, use the options listed in the following
tables:

B-2 Oracle Configurator Extensions and Interface Object Developer's Guide

Option

Choose ...

Argument Type

Argument Specification

javax.servlet.http.HttpServletRe

sponse

Event Parameter

Binding HttpServletResponse
Option Choose ...
Argument Type oracle.apps.cz.cio.IRuntimeNode

Argument Specification

Binding

Model Node or Property

The node of your Model from which you
want to begin showing hierarchical Model
structure.

The example first calls the response.setContentType () method of the

HttpServletResponse class, passing "text/html" as the output type.

The following line is required for compatibility with Microsoft Internet Explorer:

Example
response.setHeader ("Expires", "-1");

Then the example calls response.getWriter () to get an output stream to which the

Configurator Extension can write HTML.

You can also write non-HTML output by setting a different content type (a MIME type)
and writing appropriate data to the output stream.

In the private method generateNode (), you can call either
IRuntimeNode.getCaption (), as shown, or IRuntimeNode.getName ().
However, getCaption () reflects changes to the name of a component instance made
with Component.setInstanceName (), as described in Renaming Instances of
Components, page 6-4, while getName () does not.

Code Examples

B-3

Generating Output with a Configurator Extension (ShowStructureCX.java)
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.http.HttpServletResponse;

import com.sun.java.util.collections.Iterator;

import oracle.apps.cz.cio.IRuntimeNode;

/**

* Displays a textual rendition of the model structure tree.
*

*/
public class ShowStructureCX ({

/**
* Bind node parameter to the node from which to start rendering model
structure.

*/

public void showModelStructure (HttpServletResponse response,
IRuntimeNode node) throws IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
out.println ("<html>");
out.println ("<head>");
out.println("<title>Runtime Model Structure</title>");
out.println("</head>");
out.println ("<body>");
out.println ("<h3>Runtime Model Structure</h3>");
generateNode (out, node, 0);
out.println ("</body>");
out.println("</html>");
}

private static void generateNode (PrintWriter out, IRuntimeNode node,
int level) throws IOException {
for (int 1 = 0; 1 < level; ++1i) {
out.print ("--");
}
// out.println(node.getName() + "
 "); // doesn't get changed
instance names
out.println(node.getCaption() + "
 ");
for (Iterator i = node.getChildren().iterator(); i.hasNext();) {
IRuntimeNode childNode = (IRuntimeNode)i.next ()
generateNode (out, childNode, (level + 1));
}

Using Requests
For background, see Using Requests, page 9-1.

Setting Nonoverridable Requests

This example shows how to designate a group of requests as nonoverridable requests,
by using ConfigTransaction.useNonOverridableRequests (). For background,

B-4 Oracle Configurator Extensions and Interface Object Developer's Guide

see Nonoverridable Requests, page 9-3.

Code Examples B-5

Setting Nonoverridable Requests (NonOverridableTest.java)
import oracle.apps.cz.cio.BooleanFeature;

import oracle.apps.cz.cio.Component;

import oracle.apps.cz.cio.ComponentSet;

import oracle.apps.cz.cio.ConfigTransaction;

import oracle.apps.cz.cio.Configuration;

import oracle.apps.cz.cio.IInteger;

import oracle.apps.cz.cio.IOption;

import oracle.apps.cz.cio.IRuntimeNode;

import oracle.apps.cz.cio.IState;

import oracle.apps.cz.cio.IText;

import oracle.apps.cz.cio.LogicalException;

import oracle.apps.cz.cio.LogicalOverridableException;
import oracle.apps.cz.cio.NoSuchChildException;
import com.sun.java.util.collections.Iterator;

/**
* Demonstrates the use of nonoverridable requests.
*/

public class NonOverridableTest {

/**
* Makes requests while in "nonoverridable request mode".
* @param config in a CX, bind to the System Parameter
"Configuration"
* @param comp a Component whose structure reflects this example
code
*/
public void testOverride (Configuration config, IRuntimeNode comp)
throws LogicalException {

ConfigTransaction itr = null;

try {
// Begin a transaction that uses nonoverridable requests
/] mmmm e e
itr = config.beginConfigTransaction() ;
itr.useNonOverridableRequests () ;

// Try setting an Option Feature with mutually exclusive

Options.
IRuntimeNode ofl = comp.getChildByName ("option feature 1");
// Select option 1
ConfigTransaction tr = config.beginConfigTransaction() ;
((IOption)ofl.getChildByName ("option 1")) .select();
config.commitConfigTransaction (tr);
// Select option 2
tr = config.beginConfigTransaction();
((IOption)ofl.getChildByName ("option 2")) .select();
config.commitConfigTransaction (tr);
// Try setting a value for an Integer Feature.
tr = config.beginConfigTransaction();
((IInteger)comp.getChildByName ("integer feature 1")).setIntValue(33);

config.commitConfigTransaction (tr);
// Try overriding a Boolean value.

// Assume that boolean feature 1 NEGATES boolean feature 2.
This should produce a contradiction.

B-6 Oracle Configurator Extensions and Interface Object Developer's Guide

tr = config.beginConfigTransaction();

try {
((BooleanFeature)comp.getChildByName("boolean_feature_l")).setState(ISta
te.TRUE) ;
((BooleanFeature) comp.getChildByName ("boolean feature 2")).setState(ISta
te.TRUE) ;

} catch (LogicalOverridableException loe) ({
loe.override () ;

}

config.commitConfigTransaction (tr);

// Get next Component in Component set.
ComponentSet cset =
(ComponentSet) comp.getParent () .getChildByName ("component set 1");

Component cset comp 1 = null;
Iterator iter = cset.getChildren() .iterator();
if (iter.hasNext()) {

cset comp 1 = ((Component)iter.next()):;

}

// Try deleting a Component from a Component set.

// This is not allowed, and should produce a contradiction.

try {
tr = config.beginConfigTransaction();
cset.delete(cset comp 1);
config.commitConfigTransaction (tr);

} catch (LogicalException le) { // for cset.delete()
config.rollbackConfigTransaction (tr);
System.out.println ("Expected exception in deleting

component " + le);

}

// Try adding a Component to a Component set.
// This is not allowed, and should produce a contradiction.

try {
tr = config.beginConfigTransaction();
cset.add();

config.commitConfigTransaction (tr);

} catch (LogicalException le) { // for cset.add()
config.rollbackConfigTransaction (tr);
System.out.println ("Expected exception in adding

component " + le);

}
try {

// Try setting value of a Text Feature of Component in
Component set
tr = config.beginConfigTransaction();
IRuntimeNode featText =
cset comp l.getChildByName ("text feature 1");
((IText) featText) .setTextValue ("any text");
config.commitConfigTransaction (tr);

// Try overriding default value of an Integer Feature of
Component in Component set

IRuntimeNode intFeatDef =
comp.getParent().getChildByName("integer_feature_default");

tr = config.beginConfigTransaction();

Code Examples B-7

((IInteger)intFeatDef) .setIntValue (50); // Default value was 25
config.commitConfigTransaction (tr);

// Commit the transaction that used nonoverridable
requests,

// thus canceling "nonoverridable request mode"

config.commitConfigTransaction (itr) ;

//

// Make an ordinary user request:
tr = config.beginConfigTransaction();

((IState)comp.getChildByName("boolean_feature_3")).setState(IState.TRUE)
config.commitConfigTransaction (tr);
/x o x/
} catch (LogicalException le) { // for setTextValue(),
setIntValue (), setState()
le.printStackTrace () ;
// here, you should log the exception and stack trace to
a file
} catch (NoSuchChildException nsce) { // for getChildByName ()
nsce.printStackTrace();
// here, you should log the exception and stack trace to
a file

}

} catch (LogicalException le) { // for select(), setIntValue(),
le.printStackTrace () ;
// here, you should log the exception and stack trace to a
file
} catch (NoSuchChildException nsce) { // for getChildByName ()
nsce.printStackTrace () ;
// here, you should log the exception and stack trace to a
file

Getting a List of Failed Requests

This example shows how to use LogicalOverridableException.override () to
override a logical contradiction and return a List of Request objects that represent all the
previously asserted user requests that failed due to the override that you are
performing. For background, see Failed Requests, page 9-5.

B-8 Oracle Configurator Extensions and Interface Object Developer's Guide

Getting a List of Failed Requests (OverrideTest.java)
import oracle.apps.cz.cio.*;

import oracle.apps.cz.common.*;

import oracle.apps.fnd.common.*;

import oracle.apps.cz.utilities.*;

import java.util.*;

import com.sun.java.util.collections.List;
import com.sun.java.util.collections.Iterator;

public class OverrideTest
{
public static void main(String[] args)
{
ConfigTransaction tr = null;
Configuration config = null;
try {
Class.forName ("oracle.jdbc.driver.OracleDriver");
CZWebAppsContext ctx = new
CzWebAppsContext ("/jdevhome/users/dbc files/secure/server0l sid02.dbc");
// Use DBC file for context
CIO cio = new CIO();
int modelId = 5005; // hypothetical model ID
ConfigParameters cp = new ConfigParameters (modelld);
java.util.Calendar modellLookupDate = Calendar.getInstance();
// current date and time
cp.setModelLookupDate (modelLookupDate) ;
config = cio.startConfiguration(cp, ctx);
try {
OptionFeature of =
(OptionFeature)config.getRootComponent () .getChildByName ("Featurel");

Option ol = (Option) of.getChildByName ("Optionl");
Option 02 = (Option) of.getChildByName ("Option2");
try {

tr = config.beginConfigTransaction() ;

ol.select();
02 .deselect ();
config.commitConfigTransaction (tr);
} catch (LogicalOverridableException loe) {
try {
// Get list of failed requests, if anyList list =
loe.override() ;
System.out.println ("Optionl: " + ol+ " State: " +
ol.getState());
System.out.println ("Option2: " + 02+ " State: " +
o2.getState());
printList(list);
config.commitConfigTransaction (tr);
} catch (LogicalException le) {
le.printStackTrace();
// here, you should log the exception and stack
trace to a file
config.rollbackConfigTransaction (tr);
}
} catch (LogicalException le) {
le.printStackTrace();
// here, you should log the exception and stack trace
to a file
config.rollbackConfigTransaction (tr);

}

} catch (LogicalException le) {

Code Examples B-9

le.printStackTrace() ;
// here, you should log the exception and stack trace to a

file

} catch (NoSuchChildException nsce) {

// Perform exception handling here
}
} catch (LogicalException le) {

le.printStackTrace();

// here, you should log the exception and stack trace to a
file

} catch (ModellLookupException mle) {
// Perform exception handling here
} catch (CheckedToUncheckedException ctue) {
// Perform exception handling here
} catch (ClassNotFoundException cnfe) {
// Perform exception handling here
} catch (oracle.apps.cz.utilities.EffectivityUsageException eue) {
// Perform exception handling here
} catch (BomExplosionException bee) {
// Perform exception handling here

public static void printList(List list) {
Iterator iter = list.iterator();
while (iter.hasNext()) {
System.out.println ("Node: " + iter.next());

}

System.out.println ("***xkkkkkkxkkkkk\n") ;

Sharing a Configuration Session in a Child Window

This example must use a child window of the kind described in Sharing a Configuration
Session, page 5-14, which describes the background and purpose of the example. The
child window must be created with the HTML-based version of Oracle Configurator
Developer and run with a generated Configurator Ul for the runtime Oracle
Configurator.

This JSP generates the contents of a child window and performs the following tasks:
¢ Imports the necessary user classes by importing the CIO. Session-related classes,

such as PageContext, are supplied by your servlet/]SP container.

* Gets the session's Configuration object (cf£g) through the session key
configurationObject. This allows the child window to modify the same
configuration as the parent window.

* Gets the URL of the runtime Configurator in the parent window (retUr1l) through

the session key czReturnToConfiguratorUrl, so that control can return to it
when the child window is closed.

B-10 Oracle Configurator Extensions and Interface Object Developer's Guide

Modifies the state of the current configuration.

Example code for modifying the runtime configuration from the child window is
shown after the comment // Start configuration changes here, page B-12. For
simplicity, this code illustrates only basic interaction with the configuration model.
For true interaction with the configuration model, you must tailor the code to your
own circumstances.

The example here locates a node named Boolean Feature-1, checks whether it
exists and is a Boolean Feature, and, if so, toggles its state. This action is performed
when the end user clicks a button like that described in UI Specifications for
Invoking Child Window, page 5-15.

For background on modifying the runtime configuration model, see Working with
Model Entities, page 6-1. For details on toggling state, see Setting the State of a
Node, page 6-8 in Getting and Setting Logic States, page 6-6.

Provides a button (labeled C1lose), which refreshes the parent window with the
results of the child window's actions then closes the child window. This button calls
a function, refreshMainWdw (), that uses the URL of the parent window (retUrl
) to return control to it.

Code Examples B-11

Sharing a Configuration Session in a Child Window (TestChildWin.jsp)
<%@ page contentType="text/html;charset=windows-1252"
import="oracle.apps.cz.cio.*"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<title>
Test Child Window
</title>
</head>
<body>
<%
// Get the session's configuration object, through
javax.servlet.jsp.PageContext
Configuration cfg = (Configuration)pageContext.getAttribute ("
configurationObject", PageContext.SESSION SCOPE) ;
// Get URL of the runtime Configurator, so we can return to it.

String retUrl = (String)pageContext.getAttribute ("
czReturnToConfiguratorUrl", PageContext.SESSION_ SCOPE) ;
if (cfg != null) {

out.println ("<p>Got Configuration object from HTTP session. Can now
modify the configuration.</p>");

// Start configuration changes here.
IRuntimeNode node = cfg.getRootComponent () .getChildByName ("Boolean
Feature-1");
if (node != null && node instanceof BooleanFeature) {
((BooleanFeature)node) .setState (IState.TOGGLE) ;
}

// End configuration changes here.

}
%>
<script>
function refreshMainWdw () {
opener.location="<%= retUrl %>";
window.close () ;

}
</script>
<form>
<input type="button" name="bl" value="Close" onclick="javascript:
refreshMainWdw () ; ">
</form>
</body>
</html>

Tracking Configuration Session Changes

The code in Tracking Session Changes (DeltaExample.java), page B-13 assembles
together the fragmentary examples shown in Configuration Session Change Tracking,
page 10-1.

B-12 Oracle Configurator Extensions and Interface Object Developer's Guide

Tracking Session Changes (DeltaExample.java)
import com.sun.java.util.collections.*;

import oracle.apps.
import oracle.apps.
import oracle.apps.

cz.clo.*;
cz.common.CZWebAppsContext;
fnd.common.Context;

public class DeltaExample

{

public static void main(String [] args) {

// Define some

constants

int modelId = 1234;
String dbcFilename =
"/jdevhome/users/dbc files/secure/server0l sid02.dbc";

String user = "

scott";

String pwd = "tiger";

try |

// Load the JDBC Driver and create Context, CIO
Class.forName ("oracle.jdbc.driver.OracleDriver");
Context context = new CZWebAppsContext (dbcFilename) ;
context.getSessionManager () .validateLogin(user, pwd);
CIO cio = new CIO();

cio.initializeAppsSession (context);

// Create a new Configuration and DeltaManager
ConfigParameters params = new ConfigParameters (modelId);

Configuration

config = cio.startConfiguration (params, context);

DeltaManager deltaMgr = config.createDeltaManager ("MyDeltaMgr") ;

// Create a Navigation (Tree) region. This is interested in

watching

// all runtime nodes for instance name, instantiation, and

unsatisfaction
// changes.
List dvList =

dvlist.add (deltaMgr
dvlist.add (deltaMgr

dvlist.add (deltaMgr

’

new ArrayList();

.getDeltaValidator (DeltaValidator.INSTANCE NAME DV));

.getDeltaValidator (DeltaValidator.INSTANTIATION DV));

.getDeltaValidator (DeltaValidator.UNSATISFACTION DV))

List watchedNodes = config.getRuntimeNodes () ;

DeltaRegion treeRegion = deltaMgr.registerRegion (watchedNodes,
dvlList, "MyTreeRegion");

// Create a component region. This region displays a Component

screen and is
// interested
availability, count

in watching all nodes in that component for

’

// price, state and unsatisfaction changes
dvList.clear();

dvlList.add (deltaMgr

.getDeltaValidator (DeltaValidator .AVAILABILITY DV));
dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.COUNT DV)) ;

’

Code Examples B-13

dvlList.add(deltaMgr.getDeltaValidator (DeltaValidator.PRICE DV));
dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.STATE DV));

dvList.add(deltaMgr.getDeltaValidator (DeltaValidator.UNSATISFACTION DV))

’

watchedNodes = getRuntimeNodesInSelectedComponent(); // a custom
method, not defined here

DeltaRegion compRegion = deltaMgr.registerRegion (watchedNodes,
dvList, "MyCompRegion");

// Make an assertion to change the current configuration

Option optionl =
(Option) config.getRootComponent () .getChildByName ("Feature") .getChildByNa
me ("Optionl");

optionl.select();

// Get the deltas due to this assertion and update the tree and
component regions
Map treeChanges = deltaMgr.getUpdateMapForRegion ("MyTreeRegion") ;

// Now update the tree region cache and UI with treeChanges
updateTreeRegion (treeChanges) ;

Map compChanges = compRegion.getUpdateMap () ;
updateCompRegion (compChanges); // a custom method, not defined
here
} catch (MyCustomException mce) {

mce.printStackTrace () ;
// here, you should log the exception and stack trace to a file
}
}

public static void updateTreeRegion (Map changes) {

for (Iterator iter = changes.keySet () .iterator(); iter.hasNext();) {
RuntimeNode changedNode = (RuntimeNode)iter.next();
uiNode = getUiNode (changedNode); // custom method
Collection nodeChanges = (Collection)changes.get (changedNode) ;
for (Iterator iter2 = nodeChanges.iterator(); iter2.hasNext();) {
IValidatorChange change = (IValidatorChange)iter2.next();
switch (change.getType()) {

case DeltaValidator.INSTANCE NAME DV:
InstanceNameDeltaValidator.InstanceNameChange nameChange =
(InstanceNameDeltaValidator.InstanceNameChange) change;
String newName = nameChange.getInstanceName () ;
uiNode.setName (newName); // custom method on uiNode
break;
case DeltaValidator.INSTANTIATION DV:
InstantiationDeltaValidator.InstantiationChange iChange =
(InstantiationDeltaValidator.InstantiationChange) change;
Collection added = iChange.getNewlyAddedInstances () ;
Collection deleted = iChange.getNewlyDeletedInstances() ;
uiNode.updateInstances (added, deleted); // custom method on
uiNode
break;
case DeltaValidator.UNSATISFACTION DV:
UnsatisfactionDeltaValidator.UnsatisfactionChange uChange =
(UnsatisfactionDeltaValidator.UnsatisfactionChange) change;
boolean unsatisfied = uChange.isUnsatisfied();

B-14 Oracle Configurator Extensions and Interface Object Developer's Guide

uiNode.setUnsatisfied (unsatisfied); // custom method on uiNode
break;

Code Examples B-15

C

Java Parameter Types for Configurator
Extensions

This appendix lists the Java classes that you can use for Configurator Extension method
parameters when creating event bindings.

This appendix covers the following topics:

* About This Appendix

About This Appendix

When you are creating Configurator Extensions with Oracle Configurator Developer,
you must be able to bind an entity in your Model as an argument to a parameter in the
Java method that you have selected.

The Java types of the parameters of your method must agree with the types of Model
entities that are eligible for event binding. For a list of the Java classes that you can use
in event bindings, see Valid Java Types for Parameters, page C-2.

For information on developing Java methods for Configurator Extensions, see
Developing Java Classes and Archives, page 2-4.

Java Parameter Types for Configurator Extensions C-1

Valid Java Types for Parameters
boolean
com.sun.java.util.collections.Collection
com.sun.java.util.collections.List
double

float

int

java.lang.Integer

java.lang.Long

java.lang.Object

java.lang.String

java.long.Double

java.long.Float
java.text.DecimalFormat
java.utils.Date
javax.servlet.http.HttpServletResponse
longoracle.apps.cz.cio.BomInstance
oracle.apps.cz.cio.BomModel
oracle.apps.cz.cio.BomNode
oracle.apps.cz.cio.BomOptionClass
oracle.apps.cz.cio.BomStdItem
oracle.apps.cz.cio.BooleanFeature
oracle.apps.cz.cio.CXEvent
oracle.apps.cz.cio.CXRule
oracle.apps.cz.cio.Component
oracle.apps.cz.cio.ComponentInstance
oracle.apps.cz.cio.ComponentSet
oracle.apps.cz.cio.Configuration
oracle.apps.cz.cio.Connector
oracle.apps.cz.cio.CountFeature
oracle.apps.cz.cio.DecimalFeature
oracle.apps.cz.cio.DecimalNode
oracle.apps.cz.cio.IAtp
oracle.apps.cz.cio.IBomItem
oracle.apps.cz.cio.ICount
oracle.apps.cz.cio.IDecimal
oracle.apps.cz.cio.IDecimalMinMax
oracle.apps.cz.cio.IInstance
oracle.apps.cz.cio.IInteger
oracle.apps.cz.cio.IIntegerMinMax
oracle.apps.cz.cio.IOption
oracle.apps.cz.cio.IOptionFeature
oracle.apps.cz.cio.IPrice
oracle.apps.cz.cio.IReadOnlyDecimal
oracle.apps.cz.cio.IRuntimeNode
oracle.apps.cz.cio.IState
oracle.apps.cz.cio.IText
oracle.apps.cz.cio.IntegerFeature
oracle.apps.cz.cio.IntegerNode
oracle.apps.cz.cio.Option
oracle.apps.cz.cio.OptionFeature
oracle.apps.cz.cio.OptionFeatureNode
oracle.apps.cz.cio.OptionNode
oracle.apps.cz.cio.PricedNode
oracle.apps.cz.cio.ReadOnlyDecimalNode
oracle.apps.cz.cio.Resource
oracle.apps.cz.cio.RuntimeNode
oracle.apps.cz.cio.TextFeature
oracle.apps.cz.cio.TextNode
oracle.apps.cz.cio.Total

void

C-2 Oracle Configurator Extensions and Interface Object Developer's Guide

Glossary

This glossary contains definitions relevant to working with Oracle Configurator.

A
Archive Path
The ordered sequence of Configurator Extension Archives for a Model that determines
which Java classes are loaded for Configurator Extensions and in what order.

B

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

batch validation

A background process for validating selections in a configuration.

binding
Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM Standard
Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO (Assemble To Order)
rules, and other data are also imported into Configurator Developer. In Configurator
Developer, you can extend the structure of the BOM Model, but you cannot modify the
BOM Model itself or any of its attributes.

Glossary-1

Glossary-2

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM Model
created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

CDL (Constraint Definition Language)

A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

CIO (Oracle Configuration Interface Object)

A server in the runtime application that creates and manages the interface between the
client (usually a user interface) and the underlying representation of model structure
and rules in the generated logic.

command event

An event that is defined by a character string and detected by a command listener.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to determine
the selection state of a logical Item (Option, Boolean Feature, or List-of-Options Feature)
based on a comparison of two numeric values (numeric Features, Totals, Resources,
Option counts, or numeric constants). The numeric values being compared can be
computed or they can be discrete intervals in a continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,

Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility relationship
where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration model

Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime Oracle
Configurator window. See also model.

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which end
users make selections to configure an orderable product. A configuration session is

Glossary-3

Glossary-4

limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Developer
See OCD.

Configurator Extension

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so that
the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node's parent to a referenced Model.

Constraint Definition Language
See CDL

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models that support connectivity and
contain trackable components. Configurations created from Container Models can be
tracked and updated in Oracle Install Base

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total value.
See also Total.

Consumes from

A relation used to create a specific type of Numeric Rule that decrements a total value,
such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

cz

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well as
specific tables used during the construction of the configurator.

default

In a configuration, the automatic selection of an option based on the preselection rules
or the selection of another option.

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state of
Features or Options in a default relation to other Features and Options. For example, if
A Defaults B, and you select A, B becomes Logic True (selected) if it is available (not
Logic False).

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compeatibilities interactively in a table view.

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly

Glossary-5

Glossary-6

accessing the application via a Web browser or kiosk. Compare user.

event

An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure inside
which a listener listens for an event is called the event binding scope. The part of model
structure that is the source of an event is called the event execution scope. See also
command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User False),
there is no effect on B, meaning it could be User or Logic True, User or Logic False, or
Unknown. See Negates relation.

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

generated logic

The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling

Needs assessment questions in the runtime Ul to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided selling
questions trigger configuration rules that automatically select some product options
and exclude others based on the end user's responses.

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

implementer

The person who uses Oracle Configurator Developer to build the model structure, rules,
and Ul customizations that make up a runtime Oracle Configurator. Commonly also
responsible for enabling the integration of Oracle Configurator in a host application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For example,
if A Implies B, and you select A, B becomes Logic True. If you deselect A (set to User
False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Requires relation.

import server

A database instance that serves as a source of data for Oracle Configurator's Populate,
Refresh, Migrate, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

initialization message

The XML (Extensible Markup Language) message sent from a host application to the
Oracle Configurator Servlet, containing data needed to initialize the runtime Oracle
Configurator. See also termination message.

instance

A runtime occurrence of a component in a configuration that is determined by the
component node's Instance attribute specifying a minimum and maximum value. See
also instantiate. Compare count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component in
the runtime user interface of a configuration model.

item

A product or part of a product that is in inventory and can be delivered to customers.

Glossary-7

Glossary-8

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either entered
manually in Oracle Configurator Developer or imported from Oracle Applications or a
legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.

listener

A class in the CIO that detects the occurrence of specified events in a configuration
session.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the logical
state (User or Logic True, User or Logic False, or Unknown) of Features and Options in
the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

Model

The entire hierarchical "tree" view of all the data required for configurations, including
model structure, variables such as Resources and Totals, and elements in support of
intermediary rules. Includes both imported BOM Models and Models created in
Configurator Developer. May consist of BOM Option Classes and BOM Standard Items.

model structure

Hierarchical "tree" view of data composed of elements (Models, Components, Features,
Options, BOM Models, BOM Option Class nodes, BOM Standard Item nodes,
Resources, and Totals). May include reusable components (References).

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic state
of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). Compare Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents a
Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes from.

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.

oCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the

Glossary-9

Glossary-10

runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator Developer

The tool in the Oracle Configurator product used for constructing and maintaining
configuration models.

Oracle Configurator engine

The part of the Oracle Configurator product that uses configuration rules to validate
runtime selections. Compare generated logic. See also generated logic.

Oracle Configurator schema
See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering legacy user interfaces for Oracle
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by end
users to make the selections of a configuration.

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model, Oracle
Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

publication

A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same configuration

model, but each publication corresponds to only one Model and User Interface.

publishing

The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and running
an Oracle Applications concurrent process to copy data to a specific database.

reference

The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options. For
example, if A Requires B, and if you select A, B is set to Logic True (selected). Similarly,
if you deselect A, B is set to Logic False (deselected). See Implies relation.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can have
an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

rules

Also called business rules or configuration rules. In the context of Oracle Configurator
and CDL, a rule is not a business rule. Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and Numeric
Rule.

Glossary-11

runtime

The environment in which an implementer (tester), end user, or customer configures a
product whose model was developed in Oracle Configurator Developer. See also
configuration session.

S
Statement Rule
An Oracle Configurator Developer rule type defined by using the Oracle Configurator
Constraint Definition Language (text) rather than interactively assembling the rule's
elements.

T
termination message
The XML (Extensible Markup Language) message sent from the Oracle Configurator
Servlet to a host application after a configuration session, containing configuration
outputs. See also initialization message.
Total
A variable in the Model used to accumulate a numeric total, such as total price or total
weight.
Also a specific node type in Oracle Configurator Developer. See also node.

U

Ul

See User Interface.

Ul Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

Glossary-12

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and Ul Templates.

Glossary-13

A

addInformationalMessage()
usage, 8-11
API (application programming interface), 4-1
areOptionsCounted()
usage, 6-5
argument bindings
advantages, 2-13
assertions
changes to configurations, 5-7
logic, 7-1

B

beginConfigTransaction()
usage, 7-1

Cc

change object, 10-5
CheckedToUncheckedException
(Java class), 8-11
CIO
logging, 11-1
CIO (Configuration Interface Object)
definition, 4-1
interfaces not thread-safe, 1-5, 2-10, 2-10
specialized usage
Configurator Extensions, 6-2, 6-3, 10-2
custom applications, 4-4, 5-2, 5-6, 6-3, 6-
14, 10-2
CIO (Java class), 4-2
circularity

Index

avoiding, 2-12
classes

creating instances of, 4-3

defining, 2-5

importing, 2-5
class files

compiling Configurator Extensions, 2-5

installing, 2-6
class path

building Configurator Extensions, 2-5
closeConfiguration()

usage, 5-6
command events

using, 3-2
commitConfigTransaction()

usage, 8-1, 8-8

usage, 7-2
compiling

Configurator Extensions, 1-5, 2-5
Component (Java interface), 4-3, 6-2
Component (Java interface)

usage, 6-3
components

instantiable, 6-3

mandatory versus instantiable, 6-3

required, 1-3, 6-3
ComponentSet.add()

usage, 6-3
ComponentSet.delete()

usage, 6-3
ComponentSet (Java interface), 6-3
ConfigParameters (Java class), 4-2, 5-3, 5-3
Configuration (Java class), 1-3, 4-2

Index-1

Configuration Delta API
described, 10-1
configuration models
saved revisions, 5-3
configurations
assertions against, 5-7
background information, 5-1
creating, 1-3, 5-3
creating nonoverridable requests on, 9-3
dirty state, 5-8
logic transactions, 7-1
restarting, 5-11
restoring, 5-3, 5-8
Instantiability changes, 5-9
persistence of component names, 6-4
restoring saved configurations, 5-9
state, 5-9
saving
new, 5-6
revisions, 5-7
validating, 8-1
configuration session
saving a configuration, 5-6
Configurator Extension Archive Path
defining, 2-1
Configurator Extension Archives
created from Java archive files, 2-6
testing Configurator Extensions, 1-7
uploading, 2-1, 2-3
Configurator Extension Rules
bindings, 2-3
Configurator Extensions
association with Model structure, 1-3
avoiding recursion, 6-2
classes, 1-2
compiling, 1-5, 2-5
Connection Filter Configurator Extension, 3-5
definition, 1-2
deprecated exceptions, 8-12
development environment, 1-5
disabling, 2-14
filtering for connectivity, 3-5
implementing behavior, 2-5
instances, 1-2
instantiation, 1-3
loading errors, 1-5
performance impacts, 1-2

Index-2

prerequisite skills, 1-2
relationship to CIO, 1-4, 1-5, 4-2
required development language, 1-4
Rules, 1-2
testing, 2-3, 2-7, 2-8
Connection Filter Configurator Extension
example, 3-7
connectivity
filtering with Configurator Extensions, 3-5
Connectors
Connection Filter Configurator Extension, 3-5
conventions
used in this guide, 1-7
Counted Options
testing, 6-5
CountFeature (Java class)
behavior, 6-6
relation to IntegerFeature, 6-6
custom application, 5-6
custom applications
definition, 4-1
specialized usage of CIO, 4-4, 5-2, 5-6, 6-3, 6-14
,10-2
custom user interface
developed with CIO, 1-4
CustomValidationFailure (Java class), 8-3
CZ: Disable Configurator Extensions
profile option, 2-14
czlce.dll
required for compiling Configurator
Extensions, 1-6

D

DBC file
initializing the CIO, 4-5
debugging
log files, 11-1
defaults
performance effects
setting state, 6-9
toggling state, 6-9
deleted nodes
checking, 2-15, 6-8, 6-12, 6-14
delta
alternate meanings, 10-2
DeltaManager (Java class), 10-3

DeltaRegion (Java class), 10-3
deltas (changes during configuration session)

defined, 10-2
DeltaValidator (Java class), 10-3
deprecated exceptions, 8-12
deselect()

usage, 6-14
DHTML

User Interface

testing for existence, 2-14

dirty (configuration state), 5-8
discontinued nodes

checking, 6-8, 6-12, 6-14

E

endConfigTransaction()
usage, 7-2
Error (Java class), 8-10
errors
avoiding, 2-9
troubleshooting, 11-1
eTRM, xiv
events
list of available events, 5-11

logging compared to Configurator Extension,

11-7

onCommand, 3-4

onConfigValidate, 2-12, 6-2, 8-3

onValidateEligibleTarget, 3-6, 3-6

postConfigNew, 6-2

postConfigRestore, 3-8

postCXInit, 6-2

postInstanceAdd, 2-8

postValueChange, 2-12, 2-13, 3-8, 6-2
examples

changing the name of an instance, 2-7

filtering connected target instances, 3-7

generating output related to model structure,

B-1
getting a list of failed requests, B-8

getting the configuration from a runtime node,

6-2
setting nonoverridable requests, B-4
sharing a configuration session, B-10

tracking configuration session changes, B-12

using a child window, B-10

using requests, B-4

exceptions
checked, 2-11
CheckedToUncheckedException, 8-11
common errors, 2-10
fatal, 8-10
guidelines for proper handling, 2-11
logic, 8-5
nonfatal, 8-10
unchecked, 2-11, 8-10, 8-10

F

failed requests

definition, 9-2
FALSE

state, 6-6

usage, 6-6
FND_NEW_MESSAGES (database table), 1-4
FND_SECURE (system parameter)

location of DBC files, 4-5
FuncCompErrorException (Java class), 8-12
FuncCompMessageException (Java class), 8-12

G

getChildByName()
usage, 2-13
getCIO()
usage, 5-4
getConfiguration()
usage, 6-2
getDecimalValue()
usage, 6-10
getExceptionCause()
usage, 8-5
getIncludeInGenerated UIFlag()
definition, 6-16
limitations, 6-16
getInformationalMessages|()
usage, 8-2
getIntValue()
usage, 6-10
getMaxSelected()
usage, 6-5
getMessage()
usage, 8-5
getMessageHeader()

Index-3

usage, 8-5
getMinSelected()

usage, 6-5
getName()

usage, 2-13
getNode()

usage, 8-5

usage, 8-2
getNonOverridableRequests

usage, 9-4
getProperties()

usage, 6-12
getPropertyByName()

usage, 6-12
getReasons()

usage, 8-5
getSelectedItems()

usage, 8-2
getSelectedOption()

usage, 6-14
getState()

usage, 6-7

usage, 6-8, 6-8
getStatus()

usage, 8-3
getStringValue()

usage, 6-12
getType()

usage, 8-5
getUnsatisfiedItems()

usage, 8-2
getUnsatisfiedRuleMessages()

usage, 8-2
getUserInterface()

usage, 2-15
getUserParameters()

usage, 5-13
getUserS5tr01(), 6-12
getUserStr02(), 6-12
getUserS5tr03(), 6-13
getUserStr04(), 6-13
getValidationFailures()

usage, 6-10, 8-2
guidelines for development, 2-9

logging, 2-15

Index-4

H

hasMaxSelected()
usage, 6-5
hasMinSelected()
usage, 6-5
HttpServletResponse (Java class), 1-3, 3-2

IBomltem (Java interface), 4-3
ICount (Java interface), 4-3
ICX session ticket, 1-4
IDecimal (Java interface), 4-3
InformationalMessage (Java class), 8-10, 8-11
restrictions, 8-12
initialization
parameters
obtaining list of, 5-13
pwd, 5-14
inputs
logic states, 5-10
input states, 6-6, 6-6, 6-7
InstanceNameChange (Java class), 2-7
instances
renaming, 6-4
restored configurations, 6-4
sharing, 2-13
instantiability
definition of an instantiable component, 6-3
interfaces, 4-2
objects, 1-5
IOption (Java interface), 4-3
IOptionFeature (Java interface), 4-4
IRuntimeNode (Java interface), 4-4, 6-3
IRuntimeNode (Java interface), 6-1
isDeleted()
usage, 2-15
isDiscontinued()
usage, 2-15
isFalse()
usage, 6-8
isLogic()
usage, 6-8
isOverridable()
usage, 8-5
isSelected()

usage, 6-14

usage, 6-14
IState (Java interface), 4-4
isTrue()

usage, 6-8
isUnknown()

usage, 6-8, 6-8
isUnsatisfied()

usage, 8-2
isUser()

usage, 6-8
[Text (Java interface), 4-4
IValidatorChange (Java interface), 10-3

J

Java
collections library
syntax for importing, 1-6
development environment, 2-5
packages
CIO, 4-2
required for development of Configurator
Extensions, 1-4
Java archive files
for Configurator Extension classes, 2-3, 2-6
Java classes
CheckedToUncheckedException, 8-11
CIO, 4-2
ConfigParameters, 4-2, 5-3, 5-3
Configuration, 1-3, 4-2
CountFeature, 6-6, 6-6
CustomValidationFailure, 8-3
DeltaManager, 10-3
DeltaRegion, 10-3
DeltaValidator, 10-3
Error, 8-10
FuncCompErrorException
compatibility, 8-12
deprecated, 8-12
FuncCompMessageException
compatibility, 8-12
deprecated, 8-12
HttpServletResponse, 1-3, 3-2
InformationalMessage, 8-10, 8-11, 8-12
InstanceNameChange, 2-7
List, 1-6, 2-5

logging, 11-2

LogicalException, 8-5
LogicalOverridableException, 8-5, 8-8
Reason, 8-5

RuntimeException, 8-10

StatusInfo, 8-2

Java interfaces

Component, 4-3, 6-2
ComponentSet, 6-3
definition, 4-2
IBomlItem, 4-3

ICount, 4-3

IDecimal, 4-3

IOption, 4-3
IOptionFeature, 4-4
IRuntimeNode, 4-4, 6-1, 6-3
IState, 4-4

IText, 4-4
IValidatorChange, 10-3
runtime objects, 4-2

Java methods

CIO.closeConfiguration(), 5-6
CIO.createConfiguration(), 5-2
CIO.restoreConfiguration(), 5-9
CIO.startConfiguration(), 5-2, 5-9
ConfigParameters.setEffectiveDate(), 5-3
ConfigParameters.setModelLookupDate(), 5-3
Configuration.addInformationalMessage(), 8-
11

Configuration.areAllChangesSaved(), 5-8
Configuration.close(), 5-2
Configuration.getCIO(), 5-2, 5-4
Configuration.getRootComponent(), 5-2
Configuration.getSelectedItems(), 5-2
Configuration.getUnsatisfiedItems(), 5-2
Configuration.getValidationFailures(), 5-2
Configuration.isUnsatisfied(), 5-2
Configuration.restartConfiguration(), 5-11
Configuration.save(), 5-7
Configuration.saveNew(), 5-2, 5-6
Configuration.saveNewRev(), 5-2, 5-7
Configuration.setAllChangesSaved(), 5-8
Configuration.setInformationalMessage(), 8-11
ICount.setCount(), 9-1

IOPtion.select(), 9-1

IState.setState(), 9-1

parameters

Index-5

effect of changes, 2-3
Java system properties, 1-7, 5-6
setting to log through CIO, 11-2
Java virtual machine (JVM), 5-6
JDBC
thin drivers, 1-6
JDeveloper
tool for developing Configurator Extensions,
1-5
JDK (Java Development Kit)
tool for developing Configurator Extensions,
1-6, 1-6
version for compiling, 1-6, 1-6, 2-5
JTFDBCFILE (Java system property), 1-7, 5-6
JVM
See Java virtual machine

L

LD_LIBRARY_PATH, 1-6
LFALSE
usage, 6-7
libczlce.so
required for compiling Configurator
Extensions, 1-6
life cycle
node status during validation, 8-3
List (Java class)
syntax for importing, 1-6, 2-5
log files
troubleshooting errors, 11-1
written by CIO, 11-2
logging
controlling log entries, 2-15
Java classes, 11-2
through the CIO, 11-1
logic
contradictions, 8-5
exceptions, 8-5
requests
definition, 9-1
nonoverridable requests, 9-3
transactions, 7-1
transactions
definition, 5-2
LogicalException (Java class), 8-5
LogicalOverridableException (Java class), 8-5, 8-8

Index-6

logic states
getting, 6-6
inside transactions, 7-1
Logic False, 6-7
Logic True, 6-7
setting, 6-6
Unknown, 6-7
User False, 6-7
User True, 6-7

LTRUE
usage, 6-7

MAC
See message authentication code
MaintainLocationCX java, 5-16
message authentication code (MAC), 5-16
messages
CIO exceptions, 8-11
presented by Configurator Extensions, 8-11
middle-tier properties
See Java system properties
MLS (Multiple Language Support)
custom messages for Configurator Extensions,
1-4
need for setting current language, 1-4
modules
logging
See Java classes
multithreading
avoiding problems, 2-10
mutexed
See mutually exclusive
mutually exclusive, 6-14

N

nested transactions, 7-2
nonoverridable requests, 9-2, 9-3
definition, 9-2, 9-3
effect of restoring, 9-4
effect of saving, 9-4
limitations, 9-4, 9-5
limitations
with components, 9-5
nonoverridable request mode, 9-4
prohibition on overriding, 9-5

specifying, 9-3, 9-4
usage with transactions, 7-2

(o)

onCommand (event), 3-2, 3-3, 3-4
onConfigValidate (event), 2-12, 8-3
recursion, 6-2
onValidateEligibleTarget (event), 3-6, 3-6
OptionFeature
Counted Options, 6-5
oracle.apps.cz.cio, 4-3
package to import, 4-2
Oracle Applications Framework
redirection, 5-16
Oracle Configurator
log files, 11-1
Oracle Configurator Developer
customizing, 1-5
defining Configurator Extension Rules, 1-2
disabling Configurator Extensions, 2-14
relationship to Configurator Extensions, 2-1
setup for testing Configurator Extensions, 1-7
output
states, 5-10, 6-7, 6-7, 6-7, 6-7, 6-7
override()
usage, 8-8
usage, 8-5
overriding
exceptions, 8-5
nonoverridable requests, 9-5

P

parameters, 2-3
Java methods, 2-3
passwords
initialization parameter for, 5-14
performance
adding and deleting instantiable components,
6-4
effect of
restoring configurations, 5-9
effect of defaults when setting state, 6-9
postConfigNew (event), 6-2
postConfigRestore (event), 3-8
postCXInit (event), 6-2
postlnstanceAdd (event), 2-8, 2-9

postValueChange (event), 2-12, 2-12, 2-13, 3-8, 6-
2
profile options
CZ: Disable Configurator Extensions, 2-14
setting to log through CIO, 11-2
pwd (initialization parameter), 5-14

R

Raise Command Event

Ul action for command events, 3-4
Reason (Java class), 8-5
recursion

avoiding, 2-12

dangers for Configurator Extensions, 6-2
renaming

instantiable components, 6-4
requests

contradictions, 8-5

definition, 9-1

failed requests, 9-2

logic, 8-5

nonoverridable requests, 9-2, 9-3

user requests, 9-1
required components

definition, 6-3

runtime instances, 1-3
required components

renaming prohibited, 6-4
restoreConfiguration()
usage, 9-4
restoring
configurations
definition, 5-8
effects of model changes, 5-9
Instantiability changes, 5-9
performance, 5-9
validation failures, 5-9, 5-10
nonoverridable requests, 9-4
rollbackConfigTransaction()
usage, 7-2, 8-1, 8-8
RuntimeException (Java class), 8-10
runtime Oracle Configurator
extending behavior, 1-2
role in handling exceptions, 8-10

S

Index-7

saveNew()
usage, 5-6
saving
nonoverridable requests, 9-4
select()
usage, 6-14
usage, 6-14, 9-1
setCount()
usage, 9-1
setDecimalValue()
usage, 6-10, 6-10
setInformationalMessage()
usage, 8-11
setIntValue()
usage, 6-10
setState()
usage, 6-7, 8-5
usage, 9-1
TOGGLE, 6-8
setUserStr01(), 6-12
setUserStr02(), 6-12
setUserStr03(), 6-13
setUserStr04(), 6-13
side-effecting
definition, 6-2
standalone mode, 5-6
state
logic, 6-7
states
logic, 5-10, 6-6, 6-7, 6-7, 6-7, 6-7
getting, 6-6
input, 5-10, 6-6
inside transactions, 7-1
output, 6-7
setting, 6-6
StatusInfo (Java class), 8-2
support
getting help with Oracle Configurator, 1-8
System Properties, 6-12

T

testing
Configurator Extensions, 2-3, 2-7, 2-8
existence of DHTML User Interface, 2-14
test page, 2-9
text strings

Index-8

setting on runtime nodes, 6-12

threads

safety, 1-5, 2-10, 2-10, 5-15

TOGGLE

state, 6-7
usage, 6-7

toString()

usage, 8-5

tracking

alternate meanings, 10-2

transactions

beginning, 7-1
committing, 7-2
common errors, 2-10
ending, 7-2
logic
contrasted with database transactions, 7-
1
logic
defined, 7-1
nesting, 7-2
rolling back, 7-2
setting states and values inside, 7-1
usage with nonoverridable requests, 7-2

translate()

usage, 8-5

troubleshooting

analyzing errors, 11-1
Oracle Configurator issues, 1-9

TRUE

usage, 6-6

true state, 6-6

U

UFALSE

usage, 6-7

unchecked exceptions, 8-10

handling, 8-10

undo()

usage, 6-11

UNKNOWN

usage, 6-7

unset()

usage, 6-7

useNonOverridableRequests()

usage, 9-3, 9-4

User Interface

testing for existence of DHTML, 2-14
user requests

definition, 9-1
UTRUE

usage, 6-7

\'

validateEligibleTarget()
usage, 3-6
validation
configurations, 8-1
failures
checked by CIO, 8-2
getting collection, 5-2
inspecting, 8-2
numeric values, 6-10
restoring configurations, 5-9, 5-10

returned by transactions, 7-1
returning list of, 8-3

w

Web deployment
getting initialization parameters, 5-13

Index-9

	Oracle Configurator Extensions and Interface Object Developer's Guide
	Preface
	Configurator Extensions
	Configurator Extension Basics
	Introduction to Configurator Extensions
	What are Configurator Extensions?
	Prerequisite Skills for Developing Configurator Extensions
	Important Facts About Configurator Extensions
	Requirements and Restrictions for Configurator Extensions
	Requirements for Configurator Extensions
	Restrictions for Configurator Extensions

	Configurator Extensions and the CIO
	Installation Requirements for Configurator Extensions
	Installation Requirements for Developing Configurator Extensions
	Installation Requirements for Compiling Configurator Extensions
	Installation Requirements for Testing Configurator Extensions

	Conventions
	Product Support
	Troubleshooting

	Building Configurator Extensions
	Overview of Building Configurator Extensions
	Implementing Behavior with Java Classes
	Incorporating Behavior into Configuration Models

	Developing Java Classes and Archives
	Example of Configurator Extension Development
	Example of Configurator Extension Coding
	Example of Configurator Extension Modeling

	Suggested Development Practices
	Observing Project Requirements
	Avoiding Common Errors
	Observing Thread Safety
	Handling Exceptions Properly
	Avoiding Circularity and Recursion
	Taking Advantage of Argument Binding
	Sharing Class Instances
	Disabling Configurator Extensions
	Testing for a Null User Interface
	Using Logging to Examine Problems
	Checking for Deleted or Discontinued Nodes
	Managing JDBC Connections
	Accessing More Node and Text IDs

	Uses for Configurator Extensions
	Types of Configuration Events
	Generating Custom Output
	Filtering for Connectivity
	Defining a Connection Filter Configurator Extension
	Behavior of Connection Filter Configurator Extensions
	Example of a Connection Filter Configurator Extension

	Requiring Text Input Dynamically

	The Configuration Interface Object (CIO)
	 CIO Basics
	Background to the CIO
	What is the CIO?
	The CIO and Configurator Extensions

	The CIO's Runtime Node Interfaces
	Initializing the CIO

	Working with Configurations
	Overview of Configurations
	Creating Configurations
	Removing Runtime Configurations
	Saving Configurations
	Monitoring Changes to Configurations
	How the CIO Monitors Changes to Configurations
	How You Can Monitor Changes to Configurations

	Restoring Configurations
	Restarting Configurations
	Automatic Behavior for Configurations
	Dispatching Command Events
	Access to Configuration Parameters
	Sharing a Configuration Session
	Redirecting to a Framework Page

	Working with Model Entities
	Accessing Runtime Nodes
	Opportunities for Modifying the Configuration
	Accessing Components
	Adding and Deleting Instantiable Components
	Renaming Instances of Components

	Accessing Features
	Getting and Setting Logic States
	Getting and Setting Numeric Values
	Working with Decimal Quantities

	Accessing Properties
	User String Properties

	Access to Options
	Introspection through IRuntimeNode

	Using Logic Transactions
	Using Logic Transactions

	Validation, Contradictions, and Exceptions
	Introduction to Validation, Contradictions, and Exceptions
	Validating Configurations
	Handling Logical Contradictions
	Generating Error Messages from Contradictions
	Overriding Contradictions

	Handling Exceptions
	Handling Types of Exceptions
	Raising Fatal Exceptions
	Presenting Messages for Exceptions
	Compatibility of Certain Deprecated Exceptions

	Using Requests
	About Requests
	Getting Information about Requests
	User Requests
	Nonoverridable Requests
	Usage Notes on Nonoverridable Requests
	Limitations on Nonoverridable Requests

	Failed Requests

	Configuration Session Change Tracking
	Introduction to Configuration Session Change Tracking
	How Change Tracking Works
	Relationship of the Classes
	Role of the DeltaManager
	Role of DeltaRegions
	Role of DeltaValidators
	Role of the IValidatorChange Interface

	Starting a Session
	Creating a Configuration Object
	Associating a DeltaManager
	Specifying DeltaValidators
	Registering DeltaRegions

	Tracking Session Changes
	Updating a Region
	Handling Screen Changes
	Creating a Custom DeltaValidator
	Unified Code Example for Change Tracking

	Logging Through the CIO
	Overview of Logging
	Enabling Logging Scope
	Creating Entries in the Log
	Testing Whether Logging Is Enabled
	Writing Log Entries

	Recommended Practices for Logging
	Example of Logging
	Logging for a Custom Application

	Reference Documentation for the CIO
	About This Appendix

	Code Examples
	About This Appendix
	Generating Output Related to Model Structure
	Using Requests
	Setting Nonoverridable Requests
	Getting a List of Failed Requests

	Sharing a Configuration Session in a Child Window
	Tracking Configuration Session Changes

	Java Parameter Types for Configurator Extensions
	About This Appendix

	Common Glossary for Oracle Configurator
	Index

