
Oracle® Configurator
Extensions and Interface Object Developer's Guide 
Release 12.1 
Part No. E14321-01

April 2009



Oracle Configurator Extensions and Interface Object Developer's Guide , Release 12.1 

Part No. E14321-01

Copyright © 1999, 2009, Oracle and/or its affiliates. All rights reserved. 

Primary Author:      Mark Sawtelle

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks 
of their respective owners. 

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited. 

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing. 

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf 
of the U.S. Government, the following notice is applicable: 

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government 
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable 
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, 
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the 
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the 
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle 
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065. 

This software is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications which may 
create a risk of personal injury. If you use this software in dangerous applications, then you shall be 
responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of 
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications. 

This software and documentation may provide access to or information on content, products and services 
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all 
warranties of any kind with respect to third party content, products and services. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third 
party content, products or services. 



    iii

 
Contents

Send Us Your Comments

Preface

Part 1 Configurator Extensions

1 Configurator Extension Basics
Introduction to Configurator Extensions.................................................................................. 1-1
What are Configurator Extensions?.......................................................................................... 1-2
Prerequisite Skills for Developing Configurator Extensions.................................................. 1-2
Important Facts About Configurator Extensions......................................................................1-3
Requirements and Restrictions for Configurator Extensions.................................................. 1-4

Requirements for Configurator Extensions..........................................................................1-4
Restrictions for Configurator Extensions............................................................................. 1-5

Configurator Extensions and the CIO...................................................................................... 1-5
Installation Requirements for Configurator Extensions.......................................................... 1-5

Installation Requirements for Developing Configurator Extensions................................... 1-5
Installation Requirements for Compiling Configurator Extensions.....................................1-6
Installation Requirements for Testing Configurator Extensions.......................................... 1-7

Conventions .............................................................................................................................. 1-7
Product Support.........................................................................................................................1-8

Troubleshooting................................................................................................................... 1-9

2 Building Configurator Extensions
Overview of Building Configurator Extensions.......................................................................2-1

Implementing Behavior with Java Classes........................................................................... 2-3



iv

Incorporating Behavior into Configuration Models.............................................................2-3
Developing Java Classes and Archives.....................................................................................2-4
Example of Configurator Extension Development.................................................................. 2-6

Example of Configurator Extension Coding........................................................................ 2-6
Example of Configurator Extension Modeling.................................................................... 2-7

Suggested Development Practices............................................................................................ 2-9
Observing Project Requirements........................................................................................2-10
Avoiding Common Errors................................................................................................. 2-10
Observing Thread Safety................................................................................................... 2-10
Handling Exceptions Properly........................................................................................... 2-11
Avoiding Circularity and Recursion.................................................................................. 2-12
Taking Advantage of Argument Binding.......................................................................... 2-13
Sharing Class Instances...................................................................................................... 2-13
Disabling Configurator Extensions.................................................................................... 2-14
Testing for a Null User Interface........................................................................................ 2-14
Using Logging to Examine Problems.................................................................................2-15
Checking for Deleted or Discontinued Nodes................................................................... 2-15
Managing JDBC Connections.............................................................................................2-15
Accessing More Node and Text IDs................................................................................... 2-16

3 Uses for Configurator Extensions
Types of Configuration Events................................................................................................. 3-1
Generating Custom Output...................................................................................................... 3-2
Filtering for Connectivity.......................................................................................................... 3-5

Defining a Connection Filter Configurator Extension..........................................................3-5
Behavior of Connection Filter Configurator Extensions...................................................... 3-6
Example of a Connection Filter Configurator Extension......................................................3-7

Requiring Text Input Dynamically...........................................................................................3-7

Part 2 The Configuration Interface Object (CIO)

4  CIO Basics
Background to the CIO..............................................................................................................4-1

What is the CIO?.................................................................................................................. 4-1
The CIO and Configurator Extensions................................................................................. 4-2

The CIO's Runtime Node Interfaces.........................................................................................4-2
Initializing the CIO................................................................................................................... 4-4



    v

5 Working with Configurations
Overview of Configurations..................................................................................................... 5-1
Creating Configurations............................................................................................................5-2
Removing Runtime Configurations..........................................................................................5-6
Saving Configurations.............................................................................................................. 5-6
Monitoring Changes to Configurations....................................................................................5-7

How the CIO Monitors Changes to Configurations.............................................................5-7
How You Can Monitor Changes to Configurations.............................................................5-8

Restoring Configurations.......................................................................................................... 5-8
Restarting Configurations....................................................................................................... 5-11
Automatic Behavior for Configurations................................................................................. 5-11
Dispatching Command Events............................................................................................... 5-12
Access to Configuration Parameters....................................................................................... 5-13
Sharing a Configuration Session............................................................................................ 5-14

Redirecting to a Framework Page...................................................................................... 5-16

6 Working with Model Entities
Accessing Runtime Nodes........................................................................................................ 6-1
Opportunities for Modifying the Configuration..................................................................... 6-2
Accessing Components............................................................................................................. 6-2

Adding and Deleting Instantiable Components.................................................................. 6-3
Renaming Instances of Components.................................................................................... 6-4

Accessing Features.....................................................................................................................6-5
Getting and Setting Logic States............................................................................................... 6-6
Getting and Setting Numeric Values........................................................................................6-9

Working with Decimal Quantities..................................................................................... 6-11
Accessing Properties................................................................................................................6-12

User String Properties........................................................................................................ 6-12
Access to Options.................................................................................................................... 6-13
Introspection through IRuntimeNode.................................................................................... 6-15

7 Using Logic Transactions
Using Logic Transactions.......................................................................................................... 7-1

8 Validation, Contradictions, and Exceptions
Introduction to Validation, Contradictions, and Exceptions................................................... 8-1
Validating Configurations........................................................................................................ 8-1
Handling Logical Contradictions.............................................................................................. 8-5



vi

Generating Error Messages from Contradictions.................................................................8-5
Overriding Contradictions................................................................................................... 8-8

Handling Exceptions................................................................................................................. 8-9
Handling Types of Exceptions........................................................................................... 8-10
Raising Fatal Exceptions.................................................................................................... 8-10
Presenting Messages for Exceptions.................................................................................. 8-11
Compatibility of Certain Deprecated Exceptions...............................................................8-12

9 Using Requests
About Requests......................................................................................................................... 9-1
Getting Information about Requests........................................................................................ 9-2
User Requests............................................................................................................................ 9-3
Nonoverridable Requests..........................................................................................................9-3

Usage Notes on Nonoverridable Requests...........................................................................9-4
Limitations on Nonoverridable Requests............................................................................ 9-5

Failed Requests..........................................................................................................................9-5

10 Configuration Session Change Tracking
Introduction to Configuration Session Change Tracking......................................................10-1
How Change Tracking Works................................................................................................. 10-2

Relationship of the Classes.................................................................................................10-3
Role of the DeltaManager.................................................................................................. 10-5
Role of DeltaRegions.......................................................................................................... 10-5
Role of DeltaValidators...................................................................................................... 10-5
Role of the IValidatorChange Interface.............................................................................. 10-6

Starting a Session.................................................................................................................... 10-7
Creating a Configuration Object........................................................................................ 10-7
Associating a DeltaManager.............................................................................................. 10-8
Specifying DeltaValidators................................................................................................ 10-8
Registering DeltaRegions................................................................................................... 10-8

Tracking Session Changes...................................................................................................... 10-9
Updating a Region................................................................................................................. 10-10
Handling Screen Changes..................................................................................................... 10-11
Creating a Custom DeltaValidator........................................................................................10-12
Unified Code Example for Change Tracking ...................................................................... 10-14

11 Logging Through the CIO
Overview of Logging............................................................................................................... 11-1
Enabling Logging Scope......................................................................................................... 11-2
Creating Entries in the Log..................................................................................................... 11-4



    vii

Testing Whether Logging Is Enabled................................................................................. 11-4
Writing Log Entries............................................................................................................11-5

Recommended Practices for Logging......................................................................................11-6
Example of Logging................................................................................................................. 11-7
Logging for a Custom Application......................................................................................... 11-9

A Reference Documentation for the CIO
About This Appendix............................................................................................................... A-1

B Code Examples
About This Appendix............................................................................................................... B-1
Generating Output Related to Model Structure...................................................................... B-1
Using Requests..........................................................................................................................B-4

Setting Nonoverridable Requests........................................................................................ B-4
Getting a List of Failed Requests......................................................................................... B-8

Sharing a Configuration Session in a Child Window........................................................... B-10
Tracking Configuration Session Changes..............................................................................B-12

C Java Parameter Types for Configurator Extensions
About This Appendix............................................................................................................... C-1

Common Glossary for Oracle Configurator

Index





    ix

 
Send Us Your Comments

Oracle Configurator Extensions and Interface Object Developer's Guide , Release 12.1 
Part No. E14321-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document. 
Your feedback is important, and helps us to best meet your needs as a user of our products. For example: 

• Are the implementation steps correct and complete? 
• Did you understand the context of the procedures? 
• Did you find any errors in the information? 
• Does the structure of the information help you with your tasks? 
• Do you need different information or graphics? If so, where, and in what format? 
• Are the examples correct? Do you need more examples? 

If you find any errors or have any other suggestions for improvement, then please tell us your name, the 
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available). 

Note: Before sending us your comments, you might like to check that you have the latest version of the 
document and if any concerns are already addressed. To do this, access the new Applications Release 
Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the most 
current Documentation Library plus all documents revised or released recently. 

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional). 

If you need assistance with Oracle software, then please contact your support representative or Oracle 
Support Services. 

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at 
www.oracle.com. 





    xi

 
Preface

Intended Audience
Welcome to Release 12.1 of the Oracle Configurator Extensions and Interface Object 
Developer's Guide .

You can use Configurator Extensions to augment the functionality of your runtime 
Oracle Configurator beyond what is provided by Oracle Configurator Developer. You 
create Configurator Extension classes, which use the Configuration Interface Object 
(CIO) to perform various tasks, including accessing the Model, setting and getting logic 
states, and adding instantiable components. You can also use the CIO in your own 
applications, to interact with the Model.

This manual is intended primarily for software developers writing Configurator 
Extensions. The language required for developing Configurator Extensions is Java. 

This manual assumes that you are an experienced Java programmer. 

Note: Be sure to check Prerequisite Skills for Developing Configurator 
Extensions, page 1-2, which describes the Java development skills 
required for success with Configurator Extensions.

This manual also provides background on the CIO. This information is needed by 
developers of applications that have customized user interfaces that access the runtime 
Oracle Configurator.

See Related Information Sources on page xiii for more Oracle Applications product 
information. 

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call 
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle 
technical issues and provide customer support according to the Oracle service request 



xii

process. Information about TRS is available at 
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is 
available at http://www.fcc.gov/cgb/dro/trsphonebk.html. 

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible
to all users, including users that are disabled. To that end, our documentation includes 
features that make information available to users of assistive technology. This 
documentation is available in HTML format, and contains markup to facilitate access by
the disabled community. Accessibility standards will continue to evolve over time, and 
Oracle is actively engaged with other market-leading technology vendors to address 
technical obstacles so that our documentation can be accessible to all of our customers. 
For more information, visit the Oracle Accessibility Program Web site at 
http://www.oracle.com/accessibility/. 

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an otherwise 
empty line; however, some screen readers may not always read a line of text that 
consists solely of a bracket or brace. 

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any 
representations regarding the accessibility of these Web sites. 

Structure
1  Configurator Extension Basics
This chapter provides essential information about implementing Configurator 
Extensions, explains what Configurator Extensions are, and describes the different 
types available. It also explains the relationship of Configurator Extensions and the 
CIO. 

2  Building Configurator Extensions
This chapter describes how to code and build Configurator Extensions, including 
suggestions for effective development practices and avoiding common mistakes.

3  Uses for Configurator Extensions
This chapter collects instructions on how to use Configurator Extensions for specific 
tasks, such as generating custom output and filtering for connectivity

4  CIO Basics
This chapter explains the basics of the Oracle Configuration Interface Object (CIO) and 



    xiii

how to use it. For details about how to use the CIO for specific purposes, see other 
chapters in Part 2.

5  Working with Configurations
This chapter describes how to interact with runtime configuration objects.

6  Working with Model Entities
This chapter explains how to work with nodes of the runtime Model, such as 
Components and Features.

7  Using Logic Transactions
This chapter explains how to use logic transactions to safely structure a configuration 
session.

8  Validation, Contradictions, and Exceptions
This chapter explains how to validate configurations and handle contradictions.

9  Using Requests
This chapter describes requests, which are programmatic attempts to modify a 
configuration.

10  Configuration Session Change Tracking
This chapter describes the CIO's Configuration Delta API for tracking changes that have
been made to regions of your user interface during a configuration session.

11  Logging Through the CIO
This chapter describes how you can use the Oracle Applications Logging Framework 
with Oracle Configurator and the Oracle Configuration Interface Object to provide a 
convenient and uniform interface for logging their activity.

A  Reference Documentation for the CIO
This appendix explains how to access the reference documentation for the CIO, which is
generated in Javadoc format.

B  Code Examples
This appendix contains code examples illustrating the use of Configurator Extensions 
and the CIO.

C  Java Parameter Types for Configurator Extensions
This appendix lists the Java classes that you can use for Configurator Extension method 
parameters when creating event bindings.

Common Glossary for Oracle Configurator

Related Information Sources
Important: There is new functionality available for the Runtime Oracle 
Configurator when using the Fusion Configurator Engine (FCE). The 
FCE is an alternative to the configuration engine described in this 
document. For all information about the FCE, see the Oracle 
Configurator Fusion Configurator Engine Guide.



xiv

For more information, see the following resources:

• Be sure you are familiar with the latest release or patch information for Oracle 
Configurator on MetaLink, Oracle's technical support Web site.

• For a full list of documentation resources for Oracle Configurator, see Oracle 
Configurator Documentation Resources, Release 12, Oracle MetaLink Document 
394478.1.

• For a full list of documentation resources for Oracle Applications Release 12, see 
Oracle Applications Documentation Resources, Release 12, Oracle MetaLink 
Document 394692.1.

• For detailed reference information about the tables in the CZ schema, see the CZ e
TRM on MetaLink, Oracle's technical support Web site.

• For useful background on interfacing with databases, consult the Oracle database 
documentation resources for the current JDBC developer's guide and reference.

Integration Repository
The Oracle Integration Repository is a compilation of information about the service 
endpoints exposed by the Oracle E-Business Suite of applications. It provides a 
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets 
users easily discover and deploy the appropriate business service interface for 
integration with any system, application, or business partner. 

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your 
instance is patched, the repository is automatically updated with content appropriate 
for the precise revisions of interfaces in your environment. 

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data 
Browser, database triggers, or any other tool to modify Oracle Applications data unless 
otherwise instructed. 

Oracle provides powerful tools you can use to create, store, change, retrieve, and 
maintain information in an Oracle database. But if you use Oracle tools such as 
SQL*Plus to modify Oracle Applications data, you risk destroying the integrity of your 
data and you lose the ability to audit changes to your data. 

Because Oracle Applications tables are interrelated, any change you make using an 
Oracle Applications form can update many tables at once. But when you modify Oracle 
Applications data using anything other than Oracle Applications, you may change a 
row in one table without making corresponding changes in related tables. If your tables 
get out of synchronization with each other, you risk retrieving erroneous information 
and you risk unpredictable results throughout Oracle Applications. 



    xv

When you use Oracle Applications to modify your data, Oracle Applications 
automatically checks that your changes are valid. Oracle Applications also keeps track 
of who changes information. If you enter information into database tables using 
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes. 





Part 1
Configurator Extensions

This Part describes the essential steps in creating Java classes for Configurator 
Extensions. It also provides examples of some typical ways to use Configurator 
Extensions. 





Configurator Extension Basics    1-1

1
Configurator Extension Basics

This chapter provides essential information about implementing Configurator 
Extensions, explains what Configurator Extensions are, and describes the different 
types available. It also explains the relationship of Configurator Extensions and the 
CIO. 

This chapter covers the following topics:

• Introduction to Configurator Extensions

• What are Configurator Extensions?

• Prerequisite Skills for Developing Configurator Extensions

• Important Facts About Configurator Extensions

• Requirements and Restrictions for Configurator Extensions

• Configurator Extensions and the CIO

• Installation Requirements for Configurator Extensions

• Conventions 

• Product Support

Introduction to Configurator Extensions
Configurator Extensions extend the behavior of the runtime Oracle Configurator. A 
Configurator Extension is a custom-coded Java class that uses an established interface to
access a configuration at runtime. The interface is called the Oracle Configuration 
Interface Object (CIO); it is described in the chapters of Part 2.

This chapter contains an overview of how Configurator Extensions work and how to 
implement them. It also provides important facts about Configurator Extensions and 
prerequisites for developing them.

Note: Be sure to check Prerequisite Skills for Developing Configurator 



1-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Extensions, page 1-2, which describes the Java development skills 
required for success with Configurator Extensions.

Note:  Review the Oracle Configurator Performance Guide for information 
on the performance impacts of Configurator Extensions.

What are Configurator Extensions?
Configurator Extensions extend your runtime Oracle Configurator by attaching custom 
code through established interfaces.

The term Configurator Extension includes the following: 

• A Configurator Extension class is the Java class containing the methods that 
implement desired behavior

• A Configurator Extension instance is the event-driven execution (the Java object) of 
the Java class at runtime

• A Configurator Extension Rule is the set of arrangements that you make in Oracle 
Configurator Developer to associate the CX class to a Model

For additional information, see the chapter on Configurator Extensions in the Oracle 
Configurator Developer User's Guide, which explains the following essential topics related
to incorporating Configurator Extensions into your configuration model:

• Configurator Extension Rules

• Configurator Extension Archives and the Archive Path

• Events and Event Binding

• Arguments and Argument Binding

Prerequisite Skills for Developing Configurator Extensions
To effectively develop a Configurator Extension, an appropriate level of Java 
development proficiency is required. The specific level of Java proficiency required 
depends on the specific functionality required by the desired Configurator Extension. 

In general, the Configurator Extension developer should have the following knowledge:

• A basic understanding of these structures: 

• Oracle Applications Bills of Material (BOMs), which consist of Models, Option 



Configurator Extension Basics    1-3

Classes, and Standard Items 

• Oracle Configurator Models, which consist of Components, Features, and 
Options

• The relationship of these BOM and Model structures to the CIO

• Java programming experience that should include solid familiarity with:

• The Collections class and its subclasses 

• Concurrency issues

• CIO transaction handling (see Using Logic Transactions, page 7-1)

• Exception handling 

• Using Java Interfaces 

• HTML and the Java class HttpServletResponse (for writing Configurator 
Extensions that generate custom output)

• A working understanding of Oracle databases, including the principles of JDBC.

• A familiarity with the Oracle Configurator documentation, including the CIO 
reference documentation (see Reference Documentation for the CIO, page A-1).

The skills listed above are fundamental. Other specific expertise may be required for 
developing Configurator Extensions to the specific requirements for your project.

Important Facts About Configurator Extensions
Keep these facts in mind when working with Configurator Extensions and the CIO.

• Configurator Extension Rules have many of the same attributes as other Rules, and 
the procedure for defining them is similar. For example, Configurator Extensions 
have effectivity, can be disabled, and can participate in rule sequences. For more 
details about defining configuration rules, see the Oracle Configurator Developer 
User's Guide.

• When the runtime Oracle Configurator starts up, it creates an instance of the CIO. 
During the resulting configuration session, the CIO creates a Configuration 
object. Then Oracle Configurator creates runtime instances of all mandatory model 
structure, and, for each instance of each instantiated base node associated with a 
Configurator Extension, an instance of the class that you defined for your 
Configurator Extension. Oracle Configurator then attaches the Configurator 
Extension instance to the associated node. 



1-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

• You can associate more than one Configurator Extension with a particular node; the
CIO will create instances of all of the Configurator Extensions at runtime. 

• In order to communicate with your application's Model, a Configurator Extension 
uses Oracle's CIO API. The CIO can also be used to develop a custom user interface 
that allows the runtime Oracle Configurator to access the Model. See Configurator 
Extensions and the CIO, page 1-5, and all of Part 2.

Note: As a point of information, the user interfaces generated with 
Oracle Configurator Developer for the runtime Oracle Configurator
communicate in this way with the configuration model.

Requirements and Restrictions for Configurator Extensions
You must observe certain requirements and restrictions when working with 
Configurator Extensions and the CIO.

Requirements for Configurator Extensions
Keep these requirements in mind when working with Configurator Extensions and the 
CIO.

• To build a Configurator Extension, you implement an object class in Java. Oracle 
requires that Configurator Extensions be implemented only in Java. Configurator 
Extensions can run on any Oracle platform that supports Java.

• Web server sizing and tuning are necessary steps in the development of a 
Configurator project and must not be overlooked. The addition of your own custom
code, such as Configurator Extensions, may affect the memory usage of your 
application. For advice on planning configuration models that use memory 
efficiently, see the Oracle Configurator Modeling Guide. For strategies to cope with 
possible "out of memory" runtime errors, consult Note #239913.1 in MetaLink, 
Oracle's technical support Web site.

• The runtime Oracle Configurator automatically sets up a JDBC database connection
for use by the CIO. Custom applications that take the place of the runtime Oracle 
Configurator must perform this task. See Initializing the CIO, page 4-4 and 
Managing JDBC Connections, page 2-15 for details.

• If your host application uses a custom user interface in an MLS deployment, you 
may need to create ICX session tickets in order to correctly set the current language.

• If you have written Configurator Extensions that use custom messages, then those 
messages must be stored into and retrieved from the FND_NEW_MESSAGES table.
You are responsible for translating these messages. See the information on MLS in 



Configurator Extension Basics    1-5

the Oracle Configurator Implementation Guide.

Restrictions for Configurator Extensions
Keep these restrictions in mind when working with Configurator Extensions and the 
CIO.

• Configurator Extensions cannot be used to customize Oracle Configurator 
Developer.

• CIO interfaces are not thread-safe. See Observing Thread Safety, page 2-10 for 
more details.

• If any Configurator Extensions cannot be loaded when you create a new 
configuration (for instance, due to internal errors or an incorrect class path or 
Archive Path), the configuration will fail to open.

Configurator Extensions and the CIO
Your Configurator Extension is a client of the CIO. When you program against the CIO, 
the CIO creates instances of a set of public interface objects that you work with. These 
interfaces are defined in the package oracle.apps.cz.cio. Your code should refer 
only to these public interface objects. See The CIO's Runtime Node Interfaces, page 4-
2.

Configurator Extensions are invoked by the CIO through the runtime Oracle 
Configurator, and Configurator Extensions call the CIO to get information from the 
runtime configuration model. The CIO is like a broker for the runtime configuration 
model, in that it passes information both into and out of the model. Programmers 
writing Configurator Extensions need to know how to use the CIO. 

Installation Requirements for Configurator Extensions
This section describes the elements that need to be installed to develop, compile, and 
test Configurator Extensions. For details, see the Oracle Configurator Installation Guide 
and current release or patch information for Oracle Configurator on MetaLink, Oracle's 
technical support Web site.

Installation Requirements for Developing Configurator Extensions
In order to develop Java Configurator Extensions, you must install a Java development 
environment that enables you to compile Java classes, such as:

• The latest version of Oracle JDeveloper



1-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

• The latest certified patch release of the Java Development Kit (JDK) for your 
platform. For the JDK release number, see the current release or patch information 
for Oracle Configurator on MetaLink, Oracle's technical support Web site. 

If a Configurator Extension requires database access, you need JDBC drivers to compile 
a Configurator Extension. The required driver classes are contained in the Oracle 
Applications environment.

Note: If you use a class from the collections library, such as List, then 
for compatibility with the CIO's package structure you must import the
class using this syntax:

Example
import com.sun.java.util.collections.List;

Installation Requirements for Compiling Configurator Extensions
In order to compile Configurator Extensions:

• Your class path should be the same as the class path for Oracle Application Server.

• You should compile using the latest certified patch release of the Java Development 
Kit (JDK) for your platform. For the JDK release number, see the current release or 
patch information for Oracle Configurator on MetaLink, Oracle's technical support 
Web site. 

• The shared object files described in the table Required Software for Configurator 
Extensions, page 1-6 must be installed and recognized by your operating system 
environment in the appropriate locations. This table lists file names and platforms.

Required Software for Configurator Extensions

File For Platform Comment

czlce.dll Windows NT Must be in the PATH system environment 
variable on the host machine on which the 
Oracle Configurator Servlet is installed.

libczlce.so (or.sh) UNIX family Must be in the LD_LIBRARY_PATH 
environment variable for the Oracle 
Configurator Servlet.

See the Oracle Configurator Installation Guide and the Oracle Configurator Implementation 
Guide for complete details on installation and environment. For background on JDBC 
drivers, consult the Oracle database documentation resources for the current JDBC 



Configurator Extension Basics    1-7

developer's guide and reference.

Installation Requirements for Testing Configurator Extensions
If you have installed and set up Oracle Configurator Developer so that the Test Model 
button runs the Model Debugger successfully, then this setup should also be correct for 
testing Configurator Extensions.

The classes that implement your Configurator Extensions should be contained in 
Configurator Extension Archives, as described in the Oracle Configurator Developer 
User's Guide.

It is also possible to install your classes in the class path for Oracle Application Server, 
which takes precedence over the Configurator Extension Archive Path. However, if you
do so you will not obtain important advantages provided by using Archives. See the 
Oracle Configurator Developer User's Guide for details.

If you are running a custom application in standalone mode, then you may need to 
ensure that the Java system property JTFDBCFILE is set. For more information, see the 
note after Creating A Configuration Object, page 5-5.

Conventions 
In examples, an implied carriage return occurs at the end of each line, unless otherwise 
noted. You must press the Return key at the end of a line of input. 

The table below lists other conventions that are also used in this guide.

Convention Meaning

. . . Vertical ellipsis points in an example mean 
that information not directly related to the 
example has been omitted.

. . . Horizontal ellipsis points in statements or 
commands mean that parts of the statement or
command not directly related to the example 
have been omitted

boldface text Boldface type in text indicates a new term, a 
term defined in the glossary, specific keys, 
and labels of user interface objects. Boldface 
type also indicates a menu, command, or 
option, especially within procedures



1-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

Convention Meaning

italics Italic type in text, tables, or code examples 
indicates user-supplied text. Replace these 
placeholders with a specific value or string.

[ ] Brackets enclose optional clauses from which 
you can choose one or none.

> The left bracket alone represents the MS DOS 
prompt.

$ The dollar sign represents the DIGITAL 
Command Language prompt in Windows and
the Bourne shell prompt in Digital UNIX.

% The per cent sign alone represents the UNIX 
prompt.

name() In text other than code examples, the names of
programming language methods and 
functions are shown with trailing parentheses.
The parentheses are always shown as empty. 
For the actual argument or parameter list, see 
the reference documentation. This convention 
is not used in code examples.

& Indicates a character string (identifier) that can
display text dynamically in Configurator 
Developer or a runtime Oracle Configurator. 
For example, "&PROPERTY" can be used to 
dynamically construct and display a Property 
of a Model structure node.

Product Support
The mission of the Oracle Support Services organization is to help you resolve any 
issues or questions that you have regarding Oracle Configurator Developer and Oracle 
Configurator.

To report issues that are not mission-critical, submit a Technical Assistance Request 
(TAR) using MetaLink, Oracle's technical support Web site, at:

Example
http://www.oracle.com/support/metalink/



Configurator Extension Basics    1-9

Log into your MetaLink account and navigate to the Configurator TAR template: 

1. Choose the TARs link in the left menu.

2. Click on Create a TAR.

3. Fill in or choose a profile.

4. In the same form:

1. Choose Product: Oracle Configurator or Oracle Configurator Developer

2. Choose Type of Problem: Oracle Configurator Generic Issue template

5. Provide the information requested in the iTAR template.

You can also find product-specific documentation and other useful information using 
MetaLink. 

For a complete listing of available Oracle Support Services and phone numbers, see:

Example
http://www.oracle.com/support/metalink

Troubleshooting
Oracle Configurator Developer and Oracle Configurator use the standard Oracle 
Applications methods of logging to analyze and debug both development and runtime 
issues. These methods include setting various profile options and Java system 
properties to enable logging and specify the desired level of detail you want to record. 

For more information about logging, see:

• The Oracle Applications System Administrator's Guide for descriptions of the Oracle 
Applications Manager UI screens that allow System Administrators to set up 
logging profiles, review Java system properties, search for log messages, and so on. 

• The Oracle Applications Supportability Guide, which includes logging guidelines for 
both System Administrators and developers, and related topics. 

• The Oracle Application Framework Developer's Guide, which describes the logging 
options that are available via the Diagnostics global link. This document is available
on MetaLink.





Building Configurator Extensions    2-1

2
Building Configurator Extensions

This chapter describes how to code and build Configurator Extensions, including 
suggestions for effective development practices and avoiding common mistakes.

This chapter covers the following topics:

• Overview of Building Configurator Extensions

• Developing Java Classes and Archives

• Example of Configurator Extension Development

• Suggested Development Practices

Overview of Building Configurator Extensions
To understand the terms and concepts used in this section, see Configurator Extension 
Basics, page 1-1 and the chapter on Configurator Extensions in the Oracle Configurator 
Developer User's Guide.

The figure Overview of Configurator Extension Development, page 2-2 shows the 
relationship of a Java development environment to the Oracle Configurator Developer 
environment when creating Configurator Extensions. In the Java development 
environment, you compile Java classes and add them to Java archive files. In Oracle 
Configurator Developer, you upload Java archive files into Configurator Extension 
Archives. 

In your Model, you specify the Archives that form the Model's Archive Path, which is 
an ordered list of one or more Configurator Extension Archives. Then you create 
Configurator Extension Rules, which associate Java classes from Archives with Model 
nodes. In each Rule, you create bindings, which bind together a configuration event, the
parameters of a method in the Java class, and arguments related to the Model.



2-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Overview of Configurator Extension Development

Java Development Tasks
The following tasks are normally performed by the programmer who is developing the 
Java code for Configurator Extensions. See Implementing Behavior with Java Classes, 
page 2-3 for more details. 

1. Develop Java classes and archives. 

See Developing Java Classes and Archives, page 2-4.

2. Create Configurator Extension Archives and upload Java archives.

See the Oracle Configurator Developer User's Guide for details on this and the 
following tasks.

3. Inspect the classes in an Archive.

4. Add archives to a Model's Archive Path. 

5. Optionally, modify the Archive Path for a Model.

Configuration Modeling Tasks
The following tasks are normally performed by the model designer who is developing 
the configuration model and rules. See Incorporating Behavior into Configuration 
Models, page 2-3 for more details.

1. Create a Configurator Extension Rule.

See the Oracle Configurator Developer User's Guide for details on this and the 



Building Configurator Extensions    2-3

following tasks.

2. Choose the Java class for a Rule.

3. Create event bindings for a Rule.

4. Bind arguments from the Model to parameters of Java methods.

If you change the type or number of the parameters of a method used in a 
Configurator Extension Rule, then you must create a new binding that reflects those
changes.

5. Test Configurator Extensions.

Implementing Behavior with Java Classes
Implement the behavior of your Configurator Extension by creating one or more Java 
classes and methods that use the Oracle Configuration Interface Object (CIO) to access a
runtime configuration object. For details on using the CIO, see Part 2, .

You can create your Configurator Extension class in any Java development 
environment. Then you store the compiled Java class in an archive file, using either the 
JAR or Zip format for your archive. You complete the coding stage of Configurator 
Extension development by uploading your archive to the Configurator Developer 
Repository as a Configurator Extension Archive.

Developing Java Classes and Archives, page 2-4 provides the detailed procedure for 
the coding stage of Configurator Extension development.

For an example, see Example of Configurator Extension Coding, page 2-6.

Incorporating Behavior into Configuration Models
The detailed procedure for the modeling stage of Configurator Extension development 
is provided in the Oracle Configurator Developer User's Guide. This section provides a 
simple overview.

In Oracle Configurator Developer, you create a connection between your Java class and 
your configuration model. To create this connection, you create a Configurator 
Extension Rule that binds specific parameters of a Java method to specific nodes or 
Properties of a Model.

Configurator Extension Binding, page 2-4 illustrates the relationship of bindings to 
Configurator Extension Rules. In this relationship:

• Each Model can include an Archive Path.

• A Configurator Extension Rule for the Model specifies:

• A base node in the Model's structure



2-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

• A Java class from one of the Archives in the Archive Path

• One or more bindings

• A binding specifies:

• A method from the specified Java class

• An event

• A mapping between each parameter of the method and an argument related to 
the Model

The Java types of the parameters of your method must agree with the types of 
Model entities that are eligible for event binding. For a list of the Java classes 
that you can use in event bindings, see Java Parameter Types for Configurator 
Extensions, page C-1.

Configurator Extension Binding

For an example of the modeling stage of Configurator Extension development, see 
Example of Configurator Extension Modeling, page 2-7.

Developing Java Classes and Archives
This section describes the basic process for coding Configurator Extensions.



Building Configurator Extensions    2-5

Configurator Extensions depend on the CIO for access to your configuration model. For
more background, see Part 2, .

1. Use a Java development environment or text editor to create a .java file in which 
to define a Java class. See Sample Java Code for Configurator Extension 
(InstanceNameChange.java), page 2-7 for an example of a very basic Java class 
that can be used for a Configurator Extension.

2. Define your class path to include the package oracle.apps.cz.cio.

See Installation Requirements for Configurator Extensions, page 1-5.

3. Import the classes from the CIO that your Configurator Extension requires to do its 
work. See CIO Basics, page 4-1 for background. The following example is typical:

Example
import oracle.apps.cz.cio.Component;

If you use a class from the collections library, such as List, then for compatibility 
with the CIO's package structure you must import the class using this syntax: 

Example
import com.sun.java.util.collections.List;

4. Define a class in which to determine the behavior of your Configurator Extension. 

Example
public class InstanceNameChange {
  // implement methods here
}

5. Create methods that implement the desired behavior for your Configurator 
Extension. Any methods that you intend to use in a binding in a Configurator 
Extension Rule must be declared as public. 

Call methods from the CIO that perform required interaction with your 
configuration model (see The CIO's Runtime Node Interfaces, page 4-2).

Example
public void setDefaultName(Component comp, TextFeature tf) {
    // implement CX behavior here
  }

Names of methods used for Configurator Extensions cannot be longer than 30 
characters.

The Java types of the parameters of your method must agree with the types of 
Model entities that are eligible for event binding. For a list of the Java classes that 
you can use in event bindings, see Java Parameter Types for Configurator 
Extensions, page C-1.

6. Compile the .java file into a .class file.

Use the correct version of the Sun JDK for your platform. See Installation 
Requirements for Developing Configurator Extensions, page 1-5. 



2-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

7. Put the resulting .class file into a Java archive file.

You can use either the JAR or Zip format for the Java archive. The archive must be 
valid. This means that the directory structure of the archive must correspond to the 
package structure of the Java packages in the archive. For example, the following 
examples refer to the same class in consistent ways. The first line shows an import 
statement using a package reference to the class, and the second line shows the 
directory path to the class as stored in an archive file:

Example
import oracle.apps.cz.cio.Component; 

oracle/apps/cz/cio/Component.class

8. Now the Java archive file can be incorporated into a Configurator Extension 
Archive in Configurator Developer. See Incorporating Behavior into Configuration 
Models, page 2-3.

Example of Configurator Extension Development
This section provides a basic example of the development of a Configurator Extension, 
which consists of:

• Example of Configurator Extension Coding, page 2-6

• Example of Configurator Extension Modeling, page 2-7

Example of Configurator Extension Coding
Sample Java Code for Configurator Extension (InstanceNameChange.java), page 2-7 
shows the Java source code for a very simple Configurator Extension. 

See Developing Java Classes and Archives, page 2-4 for details on how to create this 
code and prepare it for use in a configuration model. See Example of Configurator 
Extension Modeling, page 2-7 for how this code is used in a Configurator Extension 
Rule.



Building Configurator Extensions    2-7

Sample Java Code for Configurator Extension (InstanceNameChange.java)
// When bound to the event for addition of a component instance, 
// takes input from the value of a bound Text Feature 
// and changes the instance name to that corresponding text.

import oracle.apps.cz.cio.Component;
import oracle.apps.cz.cio.TextFeature;

public class InstanceNameChange {

    public void setDefaultName(Component comp, TextFeature tf) {

        String name = tf.getCurrentValue();
        comp.setInstanceName(name);
    }
}

Example of Configurator Extension Modeling
See the Oracle Configurator Developer User's Guide for details on how to incorporate a 
Configurator Extension in a configuration model and test it. See Example of 
Configurator Extension Coding, page 2-6 for how the behavior of this example is coded 
in Java.

Incorporating Behavior into Configuration Models, page 2-3 provides a summary of the
tasks for the modeling stage of Configurator Extension development.

The following list summarizes the options specific to this example:

• Use the Java source code in Sample Java Code for Configurator Extension 
(InstanceNameChange.java), page 2-7 to create your Java archive file and 
Configurator Extension Archive.

• When you define model structure, include a Component that can be instantiated 
multiple times and a Text Feature with some Initial Value of your choice.

• When you define a Configurator Extension rule, use the options listed in the 
following table:

Option Choose ...

Model Node The node of your Model on which you want
Oracle Configurator Developer to place a 
button that adds additional instances of 
your Component.

Java Class InstanceNameChange, from your 
Configurator Extension Archive

Java Class Instantiation With Model Node Instance



2-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

• When you define an event binding, use the options listed in the following table:

Option Choose ...

Event postInstanceAdd

Command Name A string that you choose as a command. For
example: ShowStructure

Event Scope Your choice of scope. Try repeating the 
example with different scopes to see the 
effect when you test it.

Method Name showModelStructure

• When you define your argument bindings, use the options listed in the following 
tables:

Option Choose ...

Argument Type oracle.apps.cz.cio.Component

Argument Specification Event Parameter

Binding instance

Option Choose ...

Argument Type oracle.apps.cz.cio.TextFeature

Argument Specification Model Node or Property

Binding The Text Feature whose value is used to 
name new instances of the Component.

• When you test the Model, try this procedure:

1. Generate logic for the Model and refresh its User Interface.

2. Click Test Model and select a User Interface. When it appears, the UI contains a



Building Configurator Extensions    2-9

field for the value of the Text Feature and a button (whose default caption is 
Add Another) for adding new instances of the instantiable Component.

3. Click the button to add a new instance of the Component. This action is 
handled by the runtime Oracle Configurator as a postInstanceAdd event, 
which triggers the Configurator Extension, which is bound to that event.

4. The runtime Oracle Configurator changes the name of the new instance of the 
Component to the value of the Text Feature.

5. Change the value of the Text Feature, then add another instance of the 
Component. The new text value is used to name the new instance.

You can also test Configurator Extensions outside Configurator Developer, by creating 
an HTML test page that substitutes for your host application. (An example is provided 
in the Oracle Configurator Installation Guide.) 

Suggested Development Practices
This section contains an assortment of suggested practices for developing Configurator 
Extensions more efficiently and conveniently. These practices include:

• Observing Project Requirements, page 2-10

• Avoiding Common Errors, page 2-10

• Observing Thread Safety, page 2-10

• Handling Exceptions Properly, page 2-11

• Avoiding Circularity and Recursion, page 2-12

• Taking Advantage of Argument Binding, page 2-13

• Sharing Class Instances, page 2-13

• Disabling Configurator Extensions, page 2-14

• Testing for a Null User Interface, page 2-14

• Using Logging to Examine Problems, page 2-15

• Checking for Deleted or Discontinued Nodes, page 2-15

• Managing JDBC Connections, page 2-15

• Accessing More Node and Text IDs, page 2-16



2-10    Oracle Configurator Extensions and Interface Object Developer's Guide 

Observing Project Requirements
Using Configurator Extensions and the CIO allows you to build very powerful 
applications with Oracle Configurator. There are important requirements that you 
should fulfill if you want to maximize your success with Configurator Extensions. 

• The programmers developing the Java code must possess the requisite skills. See 
Prerequisite Skills for Developing Configurator Extensions, page 1-2 for a 
description.

• You must develop a test plan for your Configurator Extensions, including a way to 
isolate problems caused by them. You need to test your Configurator Extensions 
early and often. 

If you contact Oracle Support Services (as described in Product Support, page 1-8), 
you will be asked to reproduce the problem without the Configurator Extensions. If
it is impossible to reproduce the problem without Configurator Extensions, you will
need to explain why you believe your code is not the cause of the problem. See 
Disabling Configurator Extensions, page 2-14 for information on features that 
enable you to isolate the effects of your Configurator Extensions.

Avoiding Common Errors
Observe the following guidelines to avoid common coding errors:

• Ensure that any static variables and methods are thread-safe. Be aware that CIO 
interfaces are not thread-safe. See Observing Thread Safety, page 2-10 for details.

• Use one transaction per CIO operation. See Using Logic Transactions, page 7-1 for
details.

• Handle exceptions properly and avoid empty catch blocks. See Handling 
Exceptions Properly, page 2-11.

Observing Thread Safety
CIO interfaces are not thread-safe. A single configuration session should only be 
accessed by a single thread at a time. Whenever a custom application interacts directly 
with the CIO, you must ensure that it accesses a configuration session by only a single 
thread at a time. Multithreading problems can occur, for instance, when end users click 
multiple times in a child window spawned by a locked parent window. You can 
prevent multithreading problems by locking your User Interface or synchronizing on 
your servlet. See Sharing a Configuration Session, page 5-14 for an example of when 
this is a consideration.

Even if you follow this practice, multithreading problems can be caused if the end user 
closes the child window by clicking on the "X" button (in the upper-right-hand corner of



Building Configurator Extensions    2-11

the child window's frame). Doing so unlocks the parent window, but does not terminate
the thread that was processing the actions in the child window. When control is 
returned to the UI in the parent window, a new thread is spawned for further 
processing (such as computing availability, or performing user requests). Consequently,
multiple threads exist for the CIO, a situation that can lead to the JVM crashing.

To protect against the potential multithreading effects of end users prematurely closing 
child windows, developers should trap the "X" button action in their code. The details 
for this solution are browser-dependent. 

Handling Exceptions Properly
Caution: Improper handling of exceptions is the source of many 
problems that are difficult to diagnose. See Handling Exceptions, page 
8-9 for more information.

Do not ignore or swallow exceptions raised by your code. Ignoring exceptions makes it 
very difficult to determine the cause of some problems. Handling exceptions properly is
sound Java coding practice.

Never leave a catch block empty, as is shown in the example Empty Catch Block, page 
2-11. The empty catch block causes your code to silently ignore the exception. The 
program may then fail at some later point that is quite unrelated to the source of the 
problem, making it very hard to analyze. 

Empty Catch Block
...
    try {
        opt1.setState(IState.TRUE);
    }
    catch (LogicalException le) {
   // an empty catch block ignores exceptions
    }
...

This advice applies to both checked exceptions (such as predictable user errors) and 
unchecked exceptions (unpredictable program failures). Checked exceptions should 
always be handled, as shown in Catch Block That Handles an Exception, page 2-11. 
Leaving a catch block empty is worse than not catching an unchecked exception at all, 
since an unhandled unchecked exception (with no catch block at all) causes the program
to fail and preserves some failure information for debugging.

Catch Block That Handles an Exception
...
    try {
        opt1.setState(IState.TRUE);
    }
    catch (LogicalException le) {
    // the exception is handled
        throw new RuntimeException("Error");
    }
...



2-12    Oracle Configurator Extensions and Interface Object Developer's Guide 

Avoiding Circularity and Recursion
Avoid coding that results in circularity or recursion. Scenarios that might cause this are 
described in:

• Example of Circularity, page 2-12

• Example of Recursion, page 2-12

Example of Circularity
You might unintentionally define Configurator Extensions that call each other in a 
circular chain. 

For example, you might bind the postValueChange event to a method that 
increments the value of a node, and also to some other method that increments the 
value of the same node. At runtime, the change to the node made by one method 
triggers the other method, which changes the node again, and triggers the first method. 
The resulting endless loop of value changes results in a stack overflow. You can 
determine whether this occurred by checking the stack trace. When the stack overflow 
occurs in native code, as it often will, the JVM dies with a segmentation violation. On 
many platforms an hs_err file is not generated. A core dump file is generated (if you 
have not set coredumpsize to 0), but using gdb on that file to get a backtrace often 
will not show Java frames, making this problem very difficult to debug.

This kind of scenario can also occur with the onConfigValidate event, which is 
dispatched during the validation performed after every CIO transaction.

Example of Recursion
You might unintentionally invoke a method that calls itself recursively in an endless 
loop. 

For example, you might bind the method setIntegerValue() in Inadvertent 
Recursion (RecursionExample.java), page 2-13 to the postValueChange event. (You 
would also bind its node parameter to an Integer Feature, and its config parameter to 
the system parameter Configuration, with an event scope of Base Node.) 



Building Configurator Extensions    2-13

Inadvertent Recursion (RecursionExample.java)
import oracle.apps.cz.cio.IInteger;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.ConfigTransaction;
import oracle.apps.cz.cio.LogicalException;

public class RecursionExample {

    public void setIntegerValue(IInteger node, Configuration config) {
        ConfigTransaction tr = config.beginConfigTransaction();
        try {
            int val = node.getIntValue();
            node.setIntValue(val + 1 ); // no limit to setting values
            config.commitConfigTransaction(tr);
        } catch(LogicalException le) {
            le.getExceptionCause(); // handle the returned node
        }
    }
}

The setIntegerValue() method changes the value of the specified node inside a 
transaction (which is sound practice). However, every time a transaction is committed, 
the CIO traverses the list of changes to the configuration (as described in Validating 
Configurations, page 8-1) and detects the change to the node, and this change triggers 
the postValueChange event, which calls the setIntegerValue() method again, in 
a loop.

To avoid this recursion, you must place a limit on the setIntegerValue() method, 
such as the following: 

Example
if (val < 100) { node.setIntValue(val + 1 ); } // limit to setting 
values

At runtime, this method increments the value of the Integer Feature until it reaches 100, 
and then stop.

Taking Advantage of Argument Binding
Try to make your code simple and reusable by taking advantage of the power of 
argument binding. 

• When you want to get a node for processing, do not use node.getChildByName()
. Instead, you can simply bind the desired node to a method parameter in Oracle 
Configurator Developer.

• When you only need one Property of a node, do not bind the node. Instead, bind 
the Property. For example, if you need the name of the node node, then bind to the 
System Property node.Name() instead of binding node itself and calling node.
getName() in your code.

Sharing Class Instances
All the bindings on a single Configurator Extension Rule share an instance of a class. 



2-14    Oracle Configurator Extensions and Interface Object Developer's Guide 

This means that any member variable can be shared. 

You can group bindings based on their intended functionality or based on their class 
usage, and incur less overhead in the creation of objects.

If your Configurator Extension class uses static member variables to communicate 
between different instances of the class, the variables cannot be shared across 
configurations of different models. For example, a Configurator Extension Rule whose 
base node is in Model M1 will not be able to share static member variables with a 
Configurator Extension Rule whose base node is in the Model M2 even if both 
Configurator Extensions are bound to the same Configurator Extension class, MyClass.

Disabling Configurator Extensions
When debugging problems with Oracle Configurator, it is sometimes very helpful to 
disable some or all of your Configurator Extensions. Disabling Configurator Extensions 
shows whether the likely source of a problem is in your Configurator Extensions or in 
the Model that they are associated with. If the problem disappears when you disable 
Configurator Extensions, then the problem is likely to be in your code. If the problem 
persists, then the problem is likely to be in your model structure or configuration rules.

• To disable one or more individual Configurator Extensions, navigate to the Rules 
area of the Workbench in Oracle Configurator Developer. Then edit the 
Configurator Extension Rule and select its Disable check box, which disables only 
that Rule. See the Oracle Configurator Developer User's Guide for details.

• To disable many or all Configurator Extension Rules for a Model, navigate to the 
Rules area of the Workbench in Oracle Configurator Developer. Then select the 
rules, or a folder of rules, and select Disable from the Actions list. See the Oracle 
Configurator Developer User's Guide for details.

• To disable all Configurator Extensions in your runtime Oracle Configurator, set the 
profile option CZ: Disable Configurator Extensions to Yes. See the Oracle 
Configurator Installation Guide for details on setting this profile option.

This option overrides the settings in Oracle Configurator Developer. 

This option also disables Functional Companions for Models that have already been
published.

Testing for a Null User Interface
If a Configurator Extension might be used with both DHTML UIs (created with a 
previous release of Oracle Configurator Developer) and generated UIs (created with the
HTML-based version of Oracle Configurator Developer), then you should always test 
for the existence of a DHTML UI. This can also be a way to check which type of UI is in 
use. 

To test for the existence of a DHTML user interface, call 



Building Configurator Extensions    2-15

Configuration.getUserInterface(), as shown in Testing for a Null User 
Interface, page 2-15. If the test occurs when the runtime configuration is rendered in a 
generated UI, then it always returns null.

Testing for a Null User Interface
...
mUi = this.getRuntimeNode().getConfiguration().getUserInterface();
if (mUi != null) { // the UI is DHTML } 
else { // the UI is generated }
...

Using Logging to Examine Problems
When debugging problems with Oracle Configurator, it is very helpful to examine the 
log file entries created by the CIO during a runtime configuration session. You can 
insert statements in your code to specify how the entries are written. See Logging 
Through the CIO, page 11-1 for details. 

Checking for Deleted or Discontinued Nodes
When working with a runtime node that might have been deleted during a 
configuration session, always call IRuntimeNode.isDeleted() to test whether that 
node is actually deleted. Attempting to access or set some attribute of a deleted node 
generates a NodeDeletedException at runtime. Some methods commonly used to 
work with nodes are getState(), setState(), and so on. If a configured instance of 
your Model might contain discontinued nodes, then you should also call 
IRuntimeNode.isDiscontinued() as a condition of working with a node. A 
discontinued node is one that exists in an installed configuration of a component (as 
recorded in Oracle Install Base), but has been removed from the instance of the 
component being reconfigured, either by deletion or by deselection. If a node has been 
discontinued by deselection, but not by deletion, then calling a method on it will not 
raise a NodeDeletedException.

For examples of situations in which you might need to test for deleted or discontinued 
nodes, see the following sections:

• Getting and Setting Logic States, page 6-6

• Getting and Setting Numeric Values, page 6-9

• Access to Options, page 6-13, which includes a code example, Testing Whether an 
Option Is Selected, page 6-14

Managing JDBC Connections
Both Configurator Extensions and custom applications use JDBC connections to access 
the database. 

Custom applications must create a database context object before using the CIO, as 



2-16    Oracle Configurator Extensions and Interface Object Developer's Guide 

described in Initializing the CIO, page 4-4. If a custom application needs to access the 
database after the creation of the Configuration, then they can borrow the context 
associated with the session's Configuration object, by using 
Configuration.getContext(). When such applications are finished with the 
connection, they must release it with 
CZWebAppsContext.releaseJDBCConnection(). They should never call 
java.sql.Connection.close() to close the connection, because it does not 
properly return the connection back to the connection pool. When custom applications 
are finished with the context object, they must call Context.free(), to prevent 
connection leaks.

Configurator Extensions do not have to create their own context object and JDBC 
connection simply to access the configuration model and rules; those connections are 
created when the runtime Oracle Configurator starts a configuration session. But if 
Configurator Extensions need to access the database for special queries or invocations, 
they can borrow the context associated with the session's Configuration object, by using
Configuration.getContext(). If they borrow the session context, Configurator 
Extensions should not call context.releaseJDBCConnection() or 
java.sql.Connection.close(), because the Web Service already being used by 
the session will properly free the database resources; calling either of those methods 
causes a connection leak. However, if a Configurator Extension creates its own context 
and connection instead of borrowing the session's, then it must follow the practice for 
releasing connections and contexts that is described here for custom applications.

Accessing More Node and Text IDs
In the current release, the CZ schema has been enhanced to greatly increase the number 
of Model nodes and translatable text records that can be created over the life of a 
database instance. Previously, you could create approximately 2 billion total nodes in 
the structures of all your Models, and approximately 2 billion translatable text strings. 
Now, these totals have been increased to approximately 999 trillion.

If you have Configurator Extensions or other custom Java code that uses the CIO, then 
this schema change requires you to take certain actions. For details, see the sections on 
upgrade considerations and new public APIs, under "Support for More Node and Text 
IDs", in the Oracle Configurator Release Notes for this release, Document 729984.1 on 
Oracle MetaLink. A brief description follows:

• The Java representation of the database columns representing IDs for Model nodes 
and translatable text records has changed from int to long. The affected tables 
and columns are listed in the Release Notes.

• Where a CIO method refers to one of these IDs, an additional signature for the 
method has been added, to return a long value, or take a long parameter, instead 
of an int value or parameter. The added long-oriented methods are listed, with 
their int-oriented equivalents, in the Release Notes.

• The Release Notes describe the circumstances under which you need to make 



Building Configurator Extensions    2-17

modifications to your code in order to keep Oracle Configurator working correctly 
for your application.





Uses for Configurator Extensions    3-1

3
Uses for Configurator Extensions

This chapter collects instructions on how to use Configurator Extensions for specific 
tasks, such as generating custom output and filtering for connectivity

This chapter covers the following topics:

• Types of Configuration Events

• Generating Custom Output

• Filtering for Connectivity

• Requiring Text Input Dynamically

Types of Configuration Events
Every Configurator Extension must be bound to some configuration event. Therefore, 
you should review the available events to help determine the situations in which you 
can employ a Configurator Extension.

While there are no formal types for Configurator Extensions themselves, it is possible to
categorize the configuration events to which you can bind Configurator Extensions. The
table Types of Configuration Events, page 3-2 lists the available types of configuration
events and an example event for each type. For a list of events that you can use for 
processing configurations, see Events for Processing Configurations, page 5-11. For 
more details, and a full list of the available events, see the chapter on Configurator 
Extensions in the Oracle Configurator Developer User's Guide.



3-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Types of Configuration Events

Event Type Possible Use Example Event

Configurator 
Extension

Triggering actions that are 
required when the base node for a
Configurator Extension Rule is 
instantiated.

postCXInit

Connection Filtering valid targets for a 
Connector.

onValidateEligibleTarget

Custom Command Processing custom command 
strings that you define. Required 
when generating custom output.

onCommand

Session Triggering actions that are 
required at some specified point 
in a configuration session.

postConfigInit

Value-Related Validating selections or values. onConfigValidate

Generating Custom Output
You can generate custom output that is displayed when the end user clicks a button in 
the UI of the runtime Oracle Configurator. 

The Configurator Extension for this task must be bound to the onCommand event with a
custom command string that you define. This custom command is handled by the UI 
layer for the runtime Oracle Configurator. The other requirement is that your Java 
method must take an argument of type HttpServletResponse.

For the detailed procedure for creating a Configurator Extension Rule, see Building 
Configurator Extensions, page 2-1 and the related sections of the Oracle Configurator 
Developer User's Guide. A summary of the required tasks is provided here, with 
additional explanation where necessary.

1. The Java method for your Configurator Extension class must take an argument of 
the type javax.servlet.http.HttpServletResponse. You must use this 
data type because it is the location where your Configurator Extension generates 
custom output. 

An example of a very simple custom output class is shown in Generating Custom 
Output (HelloWorldCX.java), page 3-5. The example prints a simple message in 
an HTML page.



Uses for Configurator Extensions    3-3

2. Compile the Java class for your Configurator Extension and place it in a Java class 
archive file.

3. Create a Configurator Extension Archive for the class, and add it to the Archive 
Path for your Model.

4. Define a Configurator Extension Rule with the options listed in the following table:

Option Choose ...

Model Node The node of your Model on which you want
the button for the command event to be 
placed by Oracle Configurator. This node is 
independent of the node to which you 
might bind an argument whose Argument 
Specification is Model Node or Property.

Java Class HelloWorldCX, selected from your 
Configurator Extension Archive.

Java Class Instantiation With Model Node Instance

5. Create an event binding for the Configurator Extension Rule with the options listed 
in the following table:

Option Choose ...

Event onCommand

Command Name A string that you choose as a command. For
example: Say Hello. Do not enclose the 
string in quotation marks. The string can 
contain spaces.

Event Scope Your choice of scope. Try repeating the 
example with different scopes to observe 
the effect when you test it each time.

Method helloWorld

6. Create an argument binding for the event binding with the options listed in the 
following table:



3-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Option Choose ...

Argument Type javax.servlet.http.HttpServletRe
sponse

Argument Specification Event Parameter

Binding HttpServletResponse

7. Generate logic for your Model, to reflect the addition of the Configurator Extension 
Rule.

8. Create or refresh a User Interface for your Model. This creates a button in the User 
Interface that by default is captioned with the Command Name that you specified 
in the binding for the onCommand event. The button is placed on the page for the 
Model Node that you associated with the Configurator Extension (the base node).

To change the default caption of the button, edit the Text Expression field in the 
Caption Source for the button.

The Button Action for the button is automatically set by Oracle Configurator 
Developer to use an Action Type of Raise Command Event in which the Command
is the Command Name string in your event binding. The fact that these command 
strings are the same is what causes the button to invoke the Java class for your 
Configurator Extension. If you change the Command Name string in your event 
binding, you must also change it for the Raise Command Event.

9. Test the Configurator Extension from Configurator Developer by choosing the Test 
Model button, then choosing the Model Debugger, or the User Interface that you 
generated. When you click the button that triggers the Configurator Extension, it 
produces a secondary window and writes the specified message in it.

You can modify the characteristics of the secondary window in Configurator 
Developer. The Action Parameters for the Button element include an Output 
Window Options field, into which you can enter HTML attributes for the window. 
See the Oracle Configurator Developer User's Guide for information on editing User 
Interface elements.

10. For another example of generating output, see Generating Output with a 
Configurator Extension (ShowStructureCX.java), page B-4 in Generating Output 
Related to Model Structure, page B-1.

Keep the following in mind when working with custom output:

• If you bind multiple Configurator Extensions to the same command event, they 
share the same Button element in the User Interface. When you click that button in 



Uses for Configurator Extensions    3-5

the runtime Oracle Configurator, it triggers all those bound Configurator 
Extensions.

• If you use the limited edition of Oracle Configurator Developer to create a DHTML 
UI for a Model that already contains multiple Configurator Extension command 
bindings, then it generates a Button for each command binding. However, when 
you click a button in the runtime Oracle Configurator, only the first Configurator 
Extension runs.

Generating Custom Output (HelloWorldCX.java)
import java.io.IOException;

import javax.servlet.http.HttpServletResponse;
// This CX does not use the CIO, so no need to import CIO classes

public class HelloWorldCX {

    public HelloWorldCX() {
    }

    public void helloWorld(HttpServletResponse resp) {
        StringBuffer sb = new StringBuffer(511);

        sb.append("<html>");
        sb.append("<head>");
        sb.append("<title>Simple CX Test</title>");
        sb.append("</head>");
        sb.append("<body bgcolor='#FFFFFF' text='#000000'>");
        sb.append("HELLO WORLD. This is output from a Configurator 
Extension.");
        sb.append("</body>");
        sb.append("</html>");
        resp.setContentType("text/html");
        resp.setHeader ("Expires", "-1");  // required for MSIE
        try {
            resp.getWriter().println(sb.toString());
        }
        catch (IOException ioe) {

throw new RuntimeException();
        }
    }
}

Filtering for Connectivity
You can define a Connection Filter Configurator Extension that filters the instances of a 
target Model that are displayed when an end user of the runtime Oracle Configurator 
clicks a Choose Connection button. 

Defining a Connection Filter Configurator Extension
To define a Connection Filter Configurator Extension:

1. Define a Java class for your Configurator Extension. 



3-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

See Developing Java Classes and Archives, page 2-4 for the basic procedure. See 
Example of a Connection Filter Configurator Extension, page 3-7 for example 
code.

2. Define a method that determines the criteria for filtering a list of valid targets for a 
Connector.

Filtering for Connectivity (TargetFilter.java), page 3-7 defines such a test in the 
body of validateEligibleTarget().

3. In Oracle Configurator Developer, define a Configurator Extension Rule, and create
a binding for the onValidateEligibleTarget event. 

Bind the Event Parameter named target as the argument to the parameter of your 
validateEligibleTarget() method named target.

Bind the Event Parameter named connector to the Connector node whose target 
instances you want to filter.

See the Oracle Configurator Developer User's Guide for information about connectivity
and creating Connectors.

Behavior of Connection Filter Configurator Extensions
In the runtime Oracle Configurator, when the end user clicks a Choose Connection 
button, Oracle Configurator gets the list of all target instances of the Connector, then 
invokes any Configurator Extension bindings that are listening for the 
onValidateEligibleTarget event on this Connector. If any of these bindings 
return false, then that instance is removed from the list of potential targets, and is not 
displayed in the Connection Chooser. 

• If there are no target instances that satisfy the filter, then Oracle Configurator 
displays a notification of that fact to the end user.

• The same Connection Filter Configurator Extension can be associated with more 
than one Connector. The same filtering test is performed, but because the potential 
targets of the Connectors may be different, the resulting set of eligible instances 
may also be different.

• Different Connection Filter Configurator Extensions can be associated with the 
same Connector, for example:

• Model_A includes Connector_A

• In Model_A, Configurator Extension CX_1 is associated with Connector_A

• Model_A is referenced in Model_B (and so Connector_A is accessible through 
the reference)



Uses for Configurator Extensions    3-7

• In Model_B, Configurator Extension CX_2 is associated with Connector_A

In the runtime Oracle Configurator, when the end user clicks the Choose 
Connection button for Connector_A, Oracle Configurator displays a Connection 
Chooser containing all of the target instances that satisfy both CX_1 and CX_2.

Example of a Connection Filter Configurator Extension
For an example of a Connection Filter Configurator Extension, see Filtering for 
Connectivity (TargetFilter.java), page 3-7. This Configurator Extension searches the 
target Model for a Resource named Resource1, and returns False if the value of that 
Resource is less than 10; otherwise it returns True.

In the runtime Oracle Configurator, this Configurator Extension filters out any potential
target instances in which the value of the Resource named Resource1 is less than 10. 
(If the potential target instance does not even contain a Resource named Resource1, 
then a NoSuchChildException is raised.)

Filtering for Connectivity (TargetFilter.java)
import oracle.apps.cz.cio.Resource;
import oracle.apps.cz.cio.Component;
import oracle.apps.cz.cio.NoSuchChildException;

public class TargetFilter {

  public boolean validateEligibleTarget(Component target){
    Resource resource = null;
    try {
      resource = (Resource)target.getChildByName("Resource1");
    } catch (NoSuchChildException nsce) {
      nsce.printStackTrace();
      return true;
    }
    if (resource.getValue() < 10) {
      return false;
    } else {
      return true;
    }
  }
}

Requiring Text Input Dynamically
Although you can make input for a Text Feature required when you define it in Oracle 
Configurator Developer (as described in the Oracle Configurator Developer User's Guide), 
you cannot use a configuration rule to make the input be required based on some 
dynamic runtime condition, such as the state of some other model node.

To make input for a Text Feature dynamically required, use 
TextFeature.setRequired(boolean required).

Example



3-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

In a Configurator Extension, implement a custom method that takes two arguments:

• the Text Feature that you want to make dynamically required

• a node (such as a Boolean Feature or Option) that logically controls whether the 
Text Feature is required

You can define more complex logic than is shown in this basic example to make the 
Text Feature required.

In your custom method, if the controlling node (or other logic) is True, call 
setRequired(True) on the Text Feature; otherwise call setRequired(False). 
Examples of controlling nodes might be:

• a Boolean Feature named Required?

• an Option named Yes of an Option Feature named Required? that has Options 
Yes and No

In a Configuration Rule, create an event binding that associates your method with the 
controlling node and the postValueChange event. Duplicate this event binding, but 
for the postConfigRestore event.

At runtime, when the end user selects a true value for the controlling node (for 
example, the Option Yes for the Option Feature Required?), then your Configurator 
Extension forces the user to enter a non-null value for the Text Feature in order for the 
configuration to be satisfied.

When using the CIO in the Telecommunications Service Ordering (TSO) flow, do not 
call TextFeature.setRequired() on passive instances. Doing so will produce a 
runtime error when the current transaction is committed or rolled back. From the 
standpoint of the CIO, a passive instance is one that returns False when tested with 
RuntimeNode.isEditable(). For background on passive instances, see the Oracle 
Telecommunications Service Ordering Process Guide. You should only call 
TextFeature.setRequired() in a Configurator Extension that is bound to the 
event postInstanceEditable.



Part 2
The Configuration Interface Object (CIO)

This Part describes the API called the Configuration Interface Object (CIO) and how to 
use it to interact with the runtime Oracle Configurator. The CIO is used both by 
Configurator Extensions and by custom applications.





CIO Basics    4-1

4
CIO Basics

This chapter explains the basics of the Oracle Configuration Interface Object (CIO) and 
how to use it. For details about how to use the CIO for specific purposes, see other 
chapters in Part 2.

This chapter covers the following topics:

• Background to the CIO

• The CIO's Runtime Node Interfaces

• Initializing the CIO

Background to the CIO
This section describes the CIO and its relationship to Configurator Extensions.

What is the CIO?
The Configuration Interface Object (CIO) is an API (application programming interface)
that provides programs access to the Model used by a runtime Oracle Configurator, 
which you construct with Oracle Configurator Developer. The CIO is designed to 
enable you to programmatically perform any interaction with a configuration model 
that can be interactively performed by an end user during a configuration session.

The CIO is a top-level configuration server. The CIO is responsible for creating, saving 
and destroying objects representing configurations, which themselves contain objects 
representing Models, Components, Features, Options, Totals and Resources. The 
runtime configuration model can be completely controlled and manipulated through 
these interfaces, using methods for getting and setting logical, numeric and string 
values, and creating optional subcomponents.

Client Applications
The CIO is the only API supported by Oracle for programmatic interaction with the 
runtime Oracle Configurator. Consequently, any custom applications must use the CIO.



4-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Custom applications are those that integrate Oracle Configurator with a custom user 
interface (a UI not generated by Oracle Configurator Developer).

The CIO is also used by Configurator Extensions, as described in Configurator 
Extensions and the CIO, page 1-5. Be sure to review the Oracle Configurator Performance 
Guide for information on the performance impacts of Configurator Extensions.

Most of the techniques for using the CIO apply equally to custom applications and 
Configurator Extensions. This document points out selected cases where there is a 
distinction between these two applications.

Implementation Language
The Oracle Configuration Interface Object is written in Java, and implemented as the 
Java package oracle.apps.cz.cio. To use the functionality of the CIO you must 
import classes from this package.

Note: Unless stated otherwise, references in this document to classes, 
methods, and properties refer to the package oracle.apps.cz.cio, 
and all code examples are in Java. 

The CIO and Configurator Extensions
A Configurator Extension is Java code that calls the CIO.

Configurator Extensions are invoked by the CIO through the runtime Oracle 
Configurator, and Configurator Extensions call the CIO to get information from the 
running Model. The CIO is like a broker for the runtime Oracle Configurator, in that it 
passes information both ways. Programmers writing Configurator Extensions need to 
know how to use the CIO. 

Each Configurator Extension is an object class. For every component instance in your 
Model that is associated with a Configurator Extension, the CIO creates an instance of 
this class.

The CIO's Runtime Node Interfaces
When you program against the CIO, you create one instance of the class CIO (see 
Initializing the CIO, page 4-4) and one or more instance of the classes 
Configuration and ConfigParameters (see Working with Configurations, page 5-
1). You then use the public interfaces of the CIO, such as those listed in Important 
Runtime Node Interfaces for the CIO, page 4-3, to access fields in the runtime node 
objects created by your instances of CIO and Configuration. Apart from CIO and 
Configuration, your code should refer only to these public runtime node interface 
objects. You should not implement any of the runtime node interfaces, but only use 
them as references to runtime node objects.

In Java, an interface is a special type that allows programmers more flexibility in the 



CIO Basics    4-3

way that they implement the internal details of classes. In Java terms, an interface is a 
named collection of method definitions, without implementations of those methods. For
example, in the CIO, the interface IRuntimeNode specifies methods that are 
implemented in the class RuntimeNode.

Note: In normal circumstances, the only CIO classes that you should 
create (with the Java keyword new) are:

• CIO

• Configuration

• ConfigParameters

You only need to create these objects when working with a custom 
application. Configurator Extensions do not need to create them, 
because that task is performed by the runtime Oracle Configurator 
when it starts a configuration session.

The table Important Runtime Node Interfaces for the CIO, page 4-3 lists some of the 
interfaces defined in the Java package oracle.apps.cz.cio that you are most likely 
to use in working with the CIO. For more detail about these and the other CIO 
interfaces, see Reference Documentation for the CIO, page A-1.

Important Runtime Node Interfaces for the CIO

Interface Role of implementing classes

Component Interface for components.

IBomItem Implemented by all selectable BOM items.

ICount Implemented by objects that have an associated integer
count.

IDecimal Implemented by objects that can both get and set a 
decimal value.

IInteger Implemented by objects that have an integer value.

IOption Implemented by objects that act as options. The 
defining characteristic of an option is that it can be 
selected and deselected. 



4-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Interface Role of implementing classes

IOptionFeature Implemented by objects that contain selectable options.
This interface provides a mechanism for selecting and 
deselecting options, and for determining which options
are currently selected. 

IRuntimeNode Implemented by all objects in the runtime 
configuration tree. This interface implements behavior 
common to all nodes in the runtime configuration tree, 
including Components, Features, Options, Totals, and 
Resources.

IState Implemented by objects that have logic state. This 
interface contains a set of input states, used to specify a
new state for an object, a set of output states, returned 
when querying an object for its state, and a set of 
methods for getting and setting the object's state. 

IText Implemented by objects that have a textual value.

The functionality underlying the CIO interfaces is implemented by other classes in 
oracle.apps.cz.cio, which are subject to revision by Oracle. This 
interface/implementer architecture protects your code from the effects of such revisions,
since the interfaces remain constant.

Initializing the CIO
In order to use any of the features of the CIO, an application must initialize it, using a 
JDBC driver to make a connection to the Oracle Configurator schema. This connection 
enables the CIO to obtain and store data about Model structure, Configuration Rules, 
and User Interface. 

• This use of the CIO is intended for custom applications. If you are 
using the CIO in a custom application, you must initialize the CIO. 

• When you run Configurator Extensions through the runtime Oracle
Configurator or through the testing facilities of Oracle Configurator
Developer, this initialization and connection work is automatically 
handled for you; you do not have to write your own code to 
initialize the CIO. See Managing JDBC Connections, page 2-15 for 
details.

Use the following practice to initialize the CIO:



CIO Basics    4-5

1. Import the necessary classes.

Example
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;

It is good practice to import only the classes that you actually need. The example 
here shows oracle.apps.cz.cio.* for simplicity.

2. Load the database driver that you have installed. For instance:

Example
Class.forName("oracle.jdbc.driver.OracleDriver");

3. Create a context object and pass to it the information needed to make a database 
connection: the full path and name of the DBC file. The context object manages the 
database connection. You should not create a separate connection object (for 
instance, by using java.sql.DriverManager.getConnection).

Example
contextObject = new CZWebAppsContext ("/fullpath/dbcFileName.dbc");

In the current release, all DBC files should be installed in the directory identified by 
the system parameter FND_SECURE. This directory is distinct from FND_TOP. 
Your custom code must access DBC files through FND_SECURE.

When creating a context object, it is necessary to set the Responsibility ID for the 
session. 

Example
SessionManager  sm = contextObject.getSessionManager();
sm.setResp(appId,respId);

Consult the Java API reference documentation for 
oracle.apps.fnd.common.Context.getSessionManager() and 
oracle.apps.fnd.security.SessionManager.setResp(int, int) for 
background.

4. Create a single global CIO object. This object is shared by any Configuration 
objects that are created during the configuration session.

Example
CIO cioObject = new CIO();

Creating a Configuration Object (MyConfigCreator.java), page 5-5 shows how some 
of these steps are employed.





Working with Configurations    5-1

5
Working with Configurations

This chapter describes how to interact with runtime configuration objects.

This chapter covers the following topics:

• Overview of Configurations

• Creating Configurations

• Removing Runtime Configurations

• Saving Configurations

• Monitoring Changes to Configurations

• Restoring Configurations

• Restarting Configurations

• Automatic Behavior for Configurations

• Dispatching Command Events

• Access to Configuration Parameters

• Sharing a Configuration Session

Overview of Configurations
The Configuration object, oracle.apps.cz.cio.Configuration, represents a 
complete configuration. You can use the CIO to work with multiple configurations 
within the same configuration session.

For essential background information about Configuration objects, see the chapter on 
managing configurations in the Oracle Configurator Implementation Guide.

You communicate with a runtime configuration through the Configuration object, using
methods such as those listed in the table Typical Methods of the Configuration Object, 
page 5-2:



5-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Typical Methods of the Configuration Object

To do this ... Use this method of Configuration ...

Access the CIO object that contains the 
Configuration object

getCIO()

Access the component object for which the 
Configuration object represents a configuration

getRootComponent()

Obtain a collection of current validation failures getValidationFailures()

Obtain an indication of whether the complete 
configuration is satisfied

isUnsatisfied()

getUnsatisfiedItems()

Obtain a collection of the selected nodes in the 
configuration

getSelectedItems()

Save the current configuration saveNew()

saveNewRev()

Close the current configuration close()

The Configuration object also provides methods for starting, ending, and rolling back 
logic transactions performed on a configuration. Logic transactions maintain logic 
consistency; they are not database transactions. See Using Logic Transactions, page 7-
1.

Creating Configurations
Note: This use of the CIO is intended for custom applications. 
Configurator Extensions do not need to create a Configuration 
object, because that task is performed by the runtime Oracle 
Configurator when it starts a configuration session.

To create a Configuration object, which is the top-level entry point to a configuration, 
use CIO.startConfiguration(). 

Note: The use of CIO.startConfiguration() completely replaces 
the use of all versions of CIO.createConfiguration(), which is 
now deprecated. Existing code that uses the deprecated method is still 



Working with Configurations    5-3

compatible with the CIO, but cannot use any new functionality.

This method takes as arguments a ConfigParameters object and a context object. 

The context object provides the application context for the connection to the database. 
See Initializing the CIO, page 4-4 for information on creating a context object.

The ConfigParameters object encapsulates all the information needed to create a 
configuration. To create a ConfigParameters object, invoke one of the constructors 
for ConfigParameters, depending on the type of configuration you need to create:

• To create an entirely new configuration, provide a Model ID:

Example
public ConfigParameters(int modelId)

This is the constructor shown in Creating a Configuration Object 
(MyConfigCreator.java), page 5-5.

• To restore a saved configuration, provide its Configuration Header ID and 
Configuration Revision Number.

Example
public ConfigParameters(long headerId, long revisionNumber)

• To create a configuration for a BOM without a configuration model (sometimes 
known as a "native BOM" configuration), provide the Inventory Item ID, 
Organization ID, and effective date of the BOM to be exploded and configured:

Example
public ConfigParameters(int inventoryItemId, int organizationId, 
Date explosionDate)

To control the initialization of the new configuration, use the methods in the 
ConfigParameters class to set the configuration parameters. For details on these 
methods, see the reference for the CIO (described in Reference Documentation for the 
CIO, page A-1).

Use the methods in the following list to set the effective date for the configuration and 
the model's publication lookup date.

• setEffectiveDate(java.util.Calendar effectiveDate)

• setModelLookupDate(java.util.Calendar modelLookupDate)

If you do not set these dates, they default to the date when Oracle Configurator 
considers the configuration to have been created. 

All other parameters to the ConfigParameters object are optional, and are defaulted. 

Once a configuration has been created, changing a configuration parameter does not 
affect the configuration in any way.

To obtain access to the CIO object that created the configuration, use 



5-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Configuration.getCIO().

Most of the constructor and method arguments to ConfigParameters correspond to 
one of the initialization parameters for the runtime Oracle Configurator. The 
correspondences are shown in the table Correspondence of Configuration Parameters to
Initialization Parameters, page 5-4. See the Oracle Configurator Implementation Guide for
more information on the initialization parameters.

Correspondence of Configuration Parameters to Initialization Parameters

Configuration Parameter Argument Initialization Parameter

Model ID modelId model_id

Configuration Header ID headerId config_header_id

Configuration Revision Number revisionNumber config_rev_nbr

Inventory Item ID inventoryItemId inventory_item_id

Organization ID organizationId organization_id

Configuration Effective Date effectiveDate config_effective_date

Model Lookup Date modelLookupDate config_model_lookup_date

Creating a Configuration Object (MyConfigCreator.java), page 5-5 shows a technique 
for creating a Configuration object. For clarity, it omits some important tasks, such as 
using transactions and fully handling exceptions.



Working with Configurations    5-5

Creating a Configuration Object (MyConfigCreator.java)
import oracle.apps.cz.cio.CIO;
import oracle.apps.cz.cio.ConfigParameters;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.IRuntimeNode;
import oracle.apps.cz.cio.IState;
import oracle.apps.cz.cio.IOption;
import oracle.apps.cz.cio.LogicalException;
import oracle.apps.cz.cio.ModelLookupException;
import oracle.apps.cz.cio.BomExplosionException;
import oracle.apps.fnd.common.Context;
import oracle.apps.cz.utilities.EffectivityUsageException;
import oracle.apps.cz.common.CZWebAppsContext;
import java.util.Calendar;

public class MyConfigCreator {

// Create the context object for this instance 
    private static String dbcFileName = 
"/jdevhome/users/dbc_files/secure/server01_sid02.dbc";
    private static CIO cio; 
    private static Context context;

    public static void main(String [] args) { 
        context = new CZWebAppsContext( dbcFileName );
        CIO cio = new CIO(); // Create shared global CIO
        MyConfigCreator work = new MyConfigCreator();
        // Create a configuration object, using the shared CIO
        work.createConfig1(); 
        // Possibly use the same shared CIO to create more 
configurations
        // work.createConfig2(); 
        // work.createConfig3();
        // and so on ...
    }

    // Create a new Configuration object
    public Configuration createConfig1() {

 Configuration config1 = null;

        // Create the ConfigParameters object and set non-default 
parameters
        int modelId = 5005; // hypothetical model ID
        ConfigParameters cp = new ConfigParameters(modelId);
        java.util.Calendar modelLookupDate =  Calendar.getInstance(); //
current date and time
        cp.setModelLookupDate(modelLookupDate);

        try {

        // Create the Configuration object
        Configuration config = cio.startConfiguration(cp, context);

        } catch (LogicalException le) {
          // Perform exception handling here
        } catch (ModelLookupException mle) {
          // Perform exception handling here
        } catch (EffectivityUsageException eue) {
          // Perform exception handling here
        } catch (BomExplosionException bee) {



5-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

// Perform exception handling here
        }
 return config1;
    }
}

Note: If your custom application is running in standalone mode, then 
you may need to ensure that the Java system property JTFDBCFILE is 
set. This property is normally set correctly by Oracle Rapid Install, 
which is described in the Oracle Configurator Installation Guide.

This property is used by the Oracle Applications Framework to provide
the Java virtual machine (JVM)with the location of the DBC file that 
contains the database information needed to create a database context. 

If you connect to a different database while still in the same JVM, then 
you must reset JTFDBCFILE to specify the DBC file for that database. 

If JTFDBCFILE is not set, then you will be unable to create 
configurations when running in standalone mode.

Removing Runtime Configurations
Note: 

This use of the CIO is intended for custom applications. Configurator 
Extensions do not need to close theConfiguration object, because 
that task is performed by the runtime Oracle Configurator when it 
terminates a configuration session.

To remove all runtime structure and memory associated with a configuration, use 
CIO.closeConfiguration(). Oracle recommends that you invoke this method 
when ending a configuration session and before exiting the runtime Oracle 
Configurator. 

Saving Configurations
You save a runtime configuration so that you can operate on it later, after it has been 
closed at the end of a configuration session.

When you save a configuration, it is stored in the CZ schema of the Oracle Applications 
database. To later operate on a saved configuration, you must first restore it, as 
described in Restoring Configurations, page 5-8.

There are several methods for saving configurations. Choose the one that suits your 
requirements, as described in the following list.

• Use Configuration.saveNew()to save an entirely new Configuration object.



Working with Configurations    5-7

The saved Configuration object has a new Configuration Header ID and a 
Configuration Revision Number of 1.

• Use Configuration.saveNewRev() to save a new revision of a previously 
saved Configuration object.

The saved Configuration object has the same Configuration Header ID as the 
previously created Configuration object, but the Configuration Revision Number 
uses the next available Revision Number.

• Use Configuration.save() to save subsequent changes to a previously saved 
Configuration object, overwriting the existing configuration data.

The saved Configuration object has the same Configuration Header ID and the same
Configuration Revision Number as the previously created Configuration object.

• For more information on saving configurations, see the Oracle Configurator 
Implementation Guide.

Caution: Do not save a Configuration object during a logic transaction 
(see Using Logic Transactions, page 7-1). You may miss some 
validation messages that are not available until the transaction is 
committed.

Monitoring Changes to Configurations
When changes are made to a configuration, the CIO monitors whether the configuration
needs to be saved. You can access the flag that tracks this status.

How the CIO Monitors Changes to Configurations
During a runtime configuration session, the CIO monitors whether changes have been 
made to the current configuration, and whether those changes need to be saved. 
Changes can result either from end user actions in the user interface of the runtime 
Oracle Configurator, or from assertions made through the CIO by your Configurator 
Extensions or custom application code.

To keep track of whether a configuration needs to be saved, the CIO maintains a 
Boolean changed-state flag, whose values are interpreted as "clean" or "dirty". At the 
beginning of a configuration session, the flag is set according to the following rules:

• Any new configuration having no assertions against it is marked as clean.

• Any restored configuration having no assertions against it is marked as clean, 
regardless of whether it produces validation failures when restored. 

• Any new or restored configuration with assertions against it is marked as dirty.



5-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

During the configuration session, if there are unsaved changes, then the changed-state 
flag is set to dirty by the CIO. 

When the configuration is saved, the changed-state flag is set to clean. It does not matter
how the saving is performed: by a Configurator Extension or by a custom user interface.

When the Cancel button is clicked in the user interface of the runtime Oracle 
Configurator, the UI Server checks the changed-state flag; if it is dirty, the UI Server 
produces a dialog asking the user whether to continue exiting the session without 
saving the changes. If you write a custom user interface, it should do the same, using 
the technique described in How You Can Monitor Changes to Configurations, page 5-
8.

How You Can Monitor Changes to Configurations
You can get or set the value of the changed-state flag of a configuration.

• To get the value of the changed-state flag, use the method 
Configuration.areAllChangesSaved(). 

This method returns TRUE the configuration is clean (that is, if all the changes that 
have been made to this configuration during the configuration session have been 
saved). This method returns FALSE if the configuration is dirty (that is, if there are 
changes that have been made to this configuration that have not been saved).

You can use this method when you want to determine whether a configuration 
needs to be saved.

• To set the value of the changed-state flag, use the method 
Configuration.setAllChangesSaved(), which takes the boolean argument 
clean. 

If you pass TRUE as the value of clean, then the changed-state flag is set to "clean".
Any further changes to the configuration make it dirty again. If you pass FALSE as 
the value of clean, then the changed-state flag is set to "dirty".

You can use this method when you want to change the configuration through the 
CIO without interfering with the end user's sense of what has changed during a 
configuration session. For example, if you use a Configurator Extension to create 
and rename of an instance of an instantiable component when the configuration is 
created, the changed-state flag is set to dirty. You can then use 
setAllChangesSaved() to set the flag to clean, so that if the end user clicks the 
Cancel button before making any changes, the UI Server does not produce the 
dialog asking whether to continue exiting the session without saving changes.

Restoring Configurations
You restore a configuration in order to operate on it if it has been saved and closed (as 
described in Saving Configurations, page 5-6).



Working with Configurations    5-9

• To restore a Configuration object from the Oracle Configurator schema, use 
CIO.startConfiguration(). For details about that method, see Creating 
Configurations, page 5-2 and Creating a Configuration Object 
(MyConfigCreator.java), page 5-5.

Note: The use of CIO.startConfiguration() completely 
replaces the use of all versions of 
CIO.restoreConfiguration(), which is now deprecated. 
Existing code that uses the deprecated method is still compatible 
with the CIO, but cannot use any new functionality.

• When you restore a configuration, any user requests (see User Requests, page 9-3)
that cannot be applied are reported as validation failures. See Failed Requests, page 
9-5. 

• You may be able to improve performance by restarting the current configuration, 
instead of restoring it. See Restarting Configurations, page 5-11.

• You must be aware of the possible effects of changing the model structure or 
configuration rules in Oracle Configurator Developer between the time you save a 
configuration and the time you restore it. 

• If you change the Instantiability settings for a Model or Component to decrease or 
increase the Initial Minimum, this might change the number of previously saved 
instances that exist when restore a saved configuration. Unmodified initial instances
are restored in the order they were initially created, until they possibly exceed the 
Initial Minimum. However, no instances that you modify or add will be lost.

Here is an example of the preceding point:

1. Define the Initial Minimum of an instantiable component as 5.

2. Create a configuration. The Initial Minimum of 5 is enforced, instantiating that 
number of components.

3. Modify 2 of the initially instantiated components. For instance, make them 
targets of Connectors, or select options of their children.

4. Add 1 new component instance, and delete 1 initial instance. 

There are now 5 instances: 2 modified initial instances, 2 unmodified initial 
instances, and 1 added instance.

5. Save the configuration. All 5 instances are saved.

6. Change the Initial Minimum of the instantiable component to 3.



5-10    Oracle Configurator Extensions and Interface Object Developer's Guide 

7. Restore the saved configuration.

The following 4 instances are restored:

• The 1 added instance (because added instances are always restored). Added
instances are not counted against changes in the Initial Minimum.

• The 2 modified initial instances (because modified instances are always 
restored).

• Only the first 1 of the unmodified initial instances (because the other 1 
unmodified initial instance exceeds the new Initial Minimum of 3, and is 
not restored). 

Only unmodified instances can be lost when a configuration is restored. Any 
modified or added instances are restored, regardless of the Initial Minimum.

If the Initial Minimum is increased, then the configuration might be restored 
with more instances than were saved.

• Remember that it is only the User True configuration inputs to the model that are 
saved, not all the Logic True effects that those inputs may have when reapplied 
later. When you restore a configuration, any user requests that cannot be applied 
are reported as validation failures. Consequently, you should notify end users of 
changes to your configuration model or rules.

Here is an example of the preceding point:

1. Define a Logic Rule stating that Option1 Requires Option2.

2. In a configuration session, the end user selects Option1, which then has an 
input state of TRUE.

See Getting and Setting Logic States, page 6-6 for an explanation of input and 
output states.

3. Your configuration rule causes the selection of Option2, which then has an 
output state of LTRUE. The end user observes the effect of this change to 
Option2. This effect might include the calculation of a price, or the inclusion of 
a certain item in the order.

4. The configuration is saved. Only the input state of TRUE for Option1 is saved. 

5. The configuration rule "Option1 Requires Option2" is deleted or disabled.

6. The configuration is restored. Only the state of UTRUE for Option1 is restored. 
Because your configuration rule is no longer affecting Option2, its input state 
remains UNKNOWN. The end user observes, with confusion, that the previous 
selection of Option2 no longer occurs. The effect of this situation might be that a



Working with Configurations    5-11

previously observed price or item no longer appears in the order.

• For more information on restoring configurations, see the Oracle Configurator 
Implementation Guide.

Restarting Configurations
Use Configuration.restartConfiguration() to restart the current 
configuration. You restart a configuration when you want to remove the effects of a 
configuration session without removing the components that you are configuring from 
the session. When you restart a configuration, the CIO:

• Rolls back logic transactions

• Removes requests

• Reverses the assertions that had set logic states and values

• Removes component instances added during the session, and restores component 
instances deleted during the session

You must be using the CIO with a custom user interface to use 
restartConfiguration(); this method cannot be used with a user interface 
generated by Oracle Configurator Developer.

Automatic Behavior for Configurations
You can define behavior that is executed whenever a configuration is processed in 
certain ways, by defining Configurator Extensions bound to certain events. The 
tableEvents for Processing Configurations, page 5-11 describes some of these events, 
and the circumstances under which you should use them. For a list of types of events, 
see Types of Configuration Events, page 3-2. For more details, and a full list of the 
available events, see the chapter on Configurator Extensions in the Oracle Configurator 
Developer User's Guide.

Events for Processing Configurations

Event Triggered ... Comments

postConfigNew When a newly-created
configuration is 
activated

See Creating Configurations, page 5-2 for 
background on creating configurations.



5-12    Oracle Configurator Extensions and Interface Object Developer's Guide 

Event Triggered ... Comments

preConfigSave Before a configuration 
is saved

You can save a configuration using the Model 
Debugger in Oracle Configurator Developer.

postConfigSave After a configuration 
is saved

Clicking the Finish button in the runtime 
Oracle Configurator terminates the 
configuration session and saves the 
configuration, if it is valid.

postConfigRestore After a configuration 
is restored

You can restore a saved configuration using 
the Model Debugger in Oracle Configurator 
Developer.

preConfigSummary Immediately before 
the Summary screen is
displayed 

Clicking the Summary button in the runtime 
Oracle Configurator displays the Summary 
screen.

See the Oracle Configurator Developer User's Guide for details on how to create 
Configurator Extensions that are bound to events.

In the runtime Oracle Configurator, the Configurator Extension runs when one of the 
events listed in Events for Processing Configurations, page 5-11 is executed (such as 
after a configuration is saved). 

Dispatching Command Events
If you are using the CIO with a custom user interface, then you must substitute your 
own event-dispatching mechanism for the one provided in user interfaces generated by 
Oracle Configurator Developer. Generated user interfaces call 
Configuration.dispatchEvent() internally for all events except command 
events. Command events are the only events that your custom code can raise, and the 
only way that your code can explicitly cause a Configurator Extension to run.

The example Dispatching a Command Event, page 5-13 demonstrates how you can 
dispatch a command event, specifying the command string and the base node, to run 
any Configurator Extensions bound to that event.

Either a custom UI or a Configurator Extension can dispatch the onCommand event. 
Custom UI code can dispatch onCommand directly at any time (with the usual 
restrictions to avoid recursion or infinite loops).



Working with Configurations    5-13

Dispatching a Command Event
...
Configuration cfg = node.getConfiguration();
String command = "myOnCommand";
IRuntimeNode source = getSourceNode(); // custom method 
if (source == null) {
   CXEvent event = new CXCommandEvent(command);
} else {
   CXEvent event = new CXCommandEvent(command, source); 
}

Collection cxResults = cfg.dispatchEvent(event); 
...

In the example, cxResults is a collection of CXResult objects, which you can use to get
access to information about what rule was triggered, what value it returned, and what 
method was called. Use cxResults.getReturnedValue() to interpret the returned 
values.

Access to Configuration Parameters
If you are using Oracle Configurator in a Web deployment, you can use a Configurator 
Extension to obtain a list of the initialization parameters that are passed from the host 
application to your configuration Model.

To access initialization parameters, create a Configurator Extension that calls 
Configuration.getUserParameters(), which returns a NameValuePairSet 
object. This object contains all the parameter names and values stored by the runtime 
Oracle Configurator when it processes the initialization message sent by the host 
application to the Oracle Applications Framework.

The example Getting Initialization Parameters, page 5-13 demonstrates how to obtain 
the set of parameters for the current configuration. 

Getting Initialization Parameters
/**
    * Gets all the user init parameters for the current bound 
configuration.
    *  
    * @param config in a CX, bind to the System Parameter 
"Configuration"
    */
    public NameValuePairSet getParametersFromConfig(Configuration 
config) {

        // Get the user parameters for that current configuration
        NameValuePairSet userParams = config.getUserParameters();

        return userParams;
    }

After you obtain the set of user parameters, you can obtain the value of a particular 
parameter, as shown in the example Getting an Initialization Parameter Value, page 5-
14.



5-14    Oracle Configurator Extensions and Interface Object Developer's Guide 

Getting an Initialization Parameter Value
...
NameValuePairSet paramSet = getParametersFromConfig(config);
String appID = getHostApplicationID(paramSet);
...

    /**
     * Gets the value of a particular parameter.
     * In this case, the Application ID of the calling application.
     * Calls the custom utility method getParamValue().
     */
    public static String getHostApplicationID (NameValuePairSet params) 
{
        return (getParamValue (params, "calling_application_id"));
    }

    /**
     * Utility method: get the string value of a user parameter
     *
     * @param params the set of all current user parameters.
     * @param paramName the name of the parameter whose value you want
     */
    public static String getParamValue (NameValuePairSet params, String 
paramName) {
        Object value = params.getValueByName(paramName);
        return (value == null ? null : String.valueOf(value));
    }

As a security measure, the initialization parameter pwd, which contains a password, is 
not returned by getUserParameters().

To add your own user-defined configuration parameters to those contained in the 
initialization message, making them a part of the configuration, use 
ConfigParameters.addUserParam(), which takes the name of the parameter (a 
string) and the value (an object). To obtain the value of one of these configuration 
parameters, call ConfigParameters.getUserParam().

See the Oracle Configurator Implementation Guide for more information about the 
initialization message.

Sharing a Configuration Session
During a configuration session, your application may require the ability to launch a 
custom user interface in a child window of the runtime Oracle Configurator window. 
This child UI might interact with the user and perform updates to the state of the 
configuration model. When these interactions are finished, the child UI returns control 
to the parent window containing the runtime Oracle Configurator UI.

If your application opens such a child window, that window needs shared access to the 
configuration model, through the Configuration object.

You can get the Configuration object from the HTTP session by using the key 
configurationObject. You can obtain a URL for returning to the parent window by
requesting the session object czReturnToConfiguratorUrl. The example in Sharing
a Configuration Session in a Child Window, page B-10 illustrates the use of these 



Working with Configurations    5-15

objects. You can obtain these objects by using one of the following methods from the 
Java servlet or JSP API:

• javax.servlet.http.HttpSession.getValue 
("czReturnToConfiguratorUrl")

• javax.servlet.jsp.PageContext.getAttribute("czReturnToConfigu
ratorUrl", PageContext.SESSION_SCOPE)

During the period of user interaction with the child UI window, you should prevent 
any use of the parent window, since that might interfere with the changes to the state of
the application or configuration model being made in the child window. 

Caution: The custom UI in the child window must be running in the 
same HTTP session as the parent window containing the runtime 
Oracle Configurator. You must also ensure thread safety, as noted 
under Observing Thread Safety, page 2-10.

You can create the kind of child window that you need in the HTML-based version of 
Oracle Configurator Developer, by creating a UI element (such as a Custom Button) that
supports the Open URL action in a generated Configurator UI, using the specifications 
provided in the table UI Specifications for Invoking Child Window, page 5-15. For 
background, see the Oracle Configurator Developer User's Guide. 

UI Specifications for Invoking Child Window

Option Choice

Caption Source Text Expression, indicating to the end user the action that the UI 
element performs

Action Type Open URL

Target URL Source Text Expression, pointing to your custom child UI (such as a JSP), which
must be located in the OA_HTML directory. The specific expression for 
Sharing a Configuration Session in a Child Window (TestChildWin.jsp), 
page B-12 is:

Example
/OA_HTML/TestChildWin.jsp

Target Window Child Window

Select the option to Lock Main Window while Displaying Child

These specifications are used for Sharing a Configuration Session in a Child Window 
(TestChildWin.jsp), page B-12.



5-16    Oracle Configurator Extensions and Interface Object Developer's Guide 

Redirecting to a Framework Page
If your Configurator Extension opens a child window in the Oracle Applications 
Framework and later returns to its parent window (as shown in Sharing a 
Configuration Session, page 5-14) then you need to get the message authentication code 
(MAC) for the URL of the parent window and apply it to the URL before returning. 
Without a valid MAC, the Framework will reject the return request as originating from 
an invalid session.

The following code fragment shows how to get the MAC and apply it to a URL.

Example
CZWebAppsContext ctx = (CZWebAppsContext)contxt;
String redirectURL = URLMgr.processOutgoingURL(url, 
URLTools.getHMAC(ctx));

The example Applying a Message Authentication Code, page 5-16 shows the definition
of a utility method, urlRedirect(), for applying a MAC.

Applying a Message Authentication Code
import oracle.apps.fnd.framework.webui.URLMgr;
import oracle.apps.fnd.common.URLTools;
import oracle.apps.cz.common.CZWebAppsContext;

...
 /**
  * @param response  the HttpServletResponse from the calling CX method
  * @param url       the destination page that requires FWK validation
  * @param contxt    the context from the configuration
  */
public static void urlRedirect (HttpServletResponse response,
    String url,
    Context contxt) {
  try {
    // Add HMAC information to pass FWK validation checks
    CZWebAppsContext ctx = (CZWebAppsContext)contxt;
    String redirectURL = URLMgr.processOutgoingURL(url, 
URLTools.getHMAC(ctx));
    response.sendRedirect(redirectURL);
  }
  catch (java.io.IOException ioe){
    throw new CheckedToUncheckedException(ioe);
  }    
}
...

For an example of calling this method, see the redirectLocationSearch() method 
in the TSO Configurator Extension MaintainLocationCX.java, which is available 
on MetaLink, Oracle's technical support web site.

That example calls the urlRedirect() method, as shown in the following code 
fragment:

Example
Configuration conf = trackableRoot.getConfiguration();
...
CXUtilities.urlRedirect (response, url, conf.getContext());



Working with Configurations    5-17

Note that the database context parameter is obtained from a Configuration object.





Working with Model Entities    6-1

6
Working with Model Entities

This chapter explains how to work with nodes of the runtime Model, such as 
Components and Features.

This chapter covers the following topics:

• Accessing Runtime Nodes

• Opportunities for Modifying the Configuration

• Accessing Components

• Accessing Features

• Getting and Setting Logic States

• Getting and Setting Numeric Values

• Accessing Properties

• Access to Options

• Introspection through IRuntimeNode

Accessing Runtime Nodes

The root component, and every other node in the underlying runtime Model tree, 
implements the IRuntimeNode interface. This interface exposes several attributes of 
the configuration model, such as the type of the node (based on a set of node type 
constants), its name, the node ID, a runtime ID that is unique to this node across all 
nodes created by this particular Configuration, the parent node (which is null for the 
root component), a (possibly empty) collection of children, and information about 
whether this part of the runtime tree has been satisfied. See Introspection through 
IRuntimeNode, page 6-15.



6-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Opportunities for Modifying the Configuration
During a configuration session, there are certain optimal points for modifying the 
configuration.

Note: This use of the CIO is intended for Configurator Extensions.

To get the runtime configuration to which a node belongs, use 
IRuntimeNode.getConfiguration() .

The code fragment in Getting the Configuration from a Runtime Node, page 6-2 
shows how to get the Configuration object associated with the a node in the runtime
Oracle Configurator. You choose the node by binding the node parameter in a 
Configurator Extension rule.

Getting the Configuration from a Runtime Node
public Configuration getConfig (IRuntimeNode node) {
    // Get the the current configuration from the bound node
    Configuration config = node.getConfiguration();
    return config;
}

You can modify a configuration by using a Configurator Extension bound to one of the 
configuration events described in Events for Processing Configurations, page 5-11, 
Types of Configuration Events, page 3-2, and the chapter on Configurator Extensions in 
the Oracle Configurator Developer User's Guide.

For instance, if you want to modify the configuration immediately after a new 
configuration session has been initialized, then bind your Configurator Extension to the 
postConfigNew event.

Modifying the configuration through a Configurator Extension is sometimes referred to 
as side-effecting it.

Caution: Be careful of recursion when using the events 
postValueChange and onConfigValidate, which are triggered 
when a change to the configuration is detected by Oracle Configurator. 
It is possible to enter an infinite loop in which changes that you make in
your Configurator Extension trigger an event that makes the 
Configurator Extension run again. See Avoiding Circularity and 
Recursion, page 2-12 for more details.

Be careful when binding a Configurator Extension to the postCXInit event, since that 
event always occurs when a configuration session begins.

Accessing Components
The CIO represents instantiable components with two structures that are used together: 



Working with Model Entities    6-3

Component and ComponentSet. An individual instance of a component is 
represented by the interface Component. A set of these instances of a given component 
is represented by an instance of the class ComponentSet. Both structures inherit from 
the interface IRuntimeNode.

In Oracle Configurator Developer, there is no element that corresponds to a 
ComponentSet, but you can control the Instantiability settings for a node. The 
Instantiability settings for initial minimum and initial maximum determine the 
minimum and maximum number of instances that can be added at runtime. 
Components that have a minimum number of instances of 1 and a maximum number of
instances of 1 are called required components. Components that have a minimum 
number of instances of 0 and a maximum number of instances of 1 or more are called 
instantiable components. See the Oracle Configurator Developer User's Guide for details 
about required and instantiable components.

Adding and Deleting Instantiable Components
Note: This use of the CIO is intended for both custom applications and 
Configurator Extensions.

It is most likely that you would add or delete instantiable components in a Configurator
Extension.

Use ComponentSet.add() to add an instantiable component. The result is a new 
object that uses the Component interface. 

The add() method can throw a LogicalException if adding the component causes a
logical contradiction. 

Use ComponentSet.delete() to delete an instantiable component.

In the user interface for the runtime Oracle Configurator, a configurable component is 
normally represented by a single screen. The screen that represents the parent node of 
this component contains a button that adds instances of the component, producing a 
new component screen and a new Component object. This is equivalent to adding 
instances through ComponentSet.add(). The screen representing the configurable 
component itself contains a button that deletes that instance of the component. This is 
equivalent to deleting the instance through ComponentSet.delete().

In a user interface generated by Oracle Configurator Developer, when the end user 
adds an instance of an instantiable component that is a BOM Model (which is 
represented by a BomInstance object), that instance is automatically selected. If the 
addition causes any contradictions, the appropriate messages are displayed. However, 
if you use a Configurator Extension to add an instance of a BOM Model, that instance is 
not automatically selected. If you want your Configurator Extension to select the 
instance, you must do it explicitly, as shown in Adding and Selecting an Instance of a 
BOM Model, page 6-4. Instantiable components that do not represent BOM Models 
cannot be selected.



6-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Adding and Selecting an Instance of a BOM Model
...
ComponentSet compSet = (ComponentSet)comp1.getChildByName("My Model");
Component comp = compSet.add();
if (comp instanceof BomModel) {
   (BomInstance(comp)).select();
}
...

See Restoring Configurations, page 5-8 for information on the effects of changes to 
Instantiability settings in Oracle Configurator Developer when restoring configurations 
in which instances have been added, deleted, or modified.

Note: There are some performance problems that can arise when 
adding and deleting several instantiable components. See the Oracle 
Configurator Modeling Guide for details.

Renaming Instances of Components
During a configuration session, when the end user of the runtime Oracle Configurator 
creates a new instance of a configurable component, the user interface displays a 
distinctive name for the instance.

For more information on controlling the display of instance names in the runtime 
Oracle Configurator, see the Oracle Configurator Implementation Guide.

You can access the default name that is displayed in the runtime user interface, by using
the methods setInstanceName(), getInstanceName(), and 
hasInstanceName() in the interface Component. 

You can use setInstanceName() to set the name of an instance of an instantiable 
component. The component to be renamed cannot be a required component. The name 
that you set persists when you restore the configuration that contains the instance. 

You can use hasInstanceName(), and getInstanceName() to test whether the 
name of an instance has been set, and to return the name.

For a fragmentary example of how to change the name of an instance, see Renaming an 
Instance of a Component, page 6-4.

Renaming an Instance of a Component
...
String inputText = "My Instance Name";
ComponentSet compSet = (ComponentSet)comp1.getChildByName("My Model");
Component comp = compSet.add();
comp.setInstanceName(inputText);
...

For a full example of how to change the name of an instance, see Sample Java Code for 
Configurator Extension (InstanceNameChange.java), page 2-7. 



Working with Model Entities    6-5

Accessing Features
There are several specialized types of Features. Each Feature type implements the 
IRuntimeNode interface, enabling you to use its general methods for working with 
runtime nodes (see Introspection through IRuntimeNode, page 6-15). Each type also 
implements its own interface with appropriately specialized methods.

The table Interfaces for Features, page 6-5 lists the types of Features that you can work
with in the CIO, the types of their values, and the CIO interface for working with them.

Interfaces for Features

CIO Interface Feature 
Type

Description

IState Boolean boolean state (true/false/unknown)

IDecimal Decimal floating point numeric

IInteger Integer integer numeric

The value can be positive, negative, or zero.

IText Text string

ICount, IState Count boolean, with an associated integer-valued numeric count

IOptionFeatu
re

Option 
Feature

An OptionFeature itself can have a logic state, a count (if 
Option Quantities are enabled), or a Satisfaction state

The children of an Option Feature 'are Options, accessed with 
the interface IOption.

Some of these types require special comment:

• Option Features are represented by OptionFeature objects. An OptionFeature 
has a logic value. If the Option Feature is satisfied, the value is TRUE. The values of 
an OptionFeature object are Options.

You can use the methods getMinSelected() and getMaxSelected(), of 
IOptionFeature, to determine the minimum and maximum number of a 
Feature's child Options that can be selected. If you do, first use 
hasMinSelected() or hasMaxSelected() to determine whether there is a 
minimum or maximum number of Options. You can use areOptionsCounted() 
to determine whether the Feature has Counted Options.



6-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

Keep in mind that an end user of the runtime Oracle Configurator can select an 
Option of an Option Feature, but not the Option Feature itself. However, in a 
Configurator Extension, it is possible to use select() to select an 
OptionFeature object itself. You should avoid selecting OptionFeature objects.
If you do so, and save the configuration, then, when you later restore the 
configuration, this selection is not applied, and will produce a 
RestoreValidationFailure.

See Access to Options, page 6-13 for information about methods for working 
directly with Options.

• CountFeature objects have an associated integer-valued numeric count, and are a 
special case of IntegerFeature that has a count greater than or equal to zero. 
CountFeature objects behave like counted options in an OptionFeature.

Note: In Oracle Configurator Developer, if you set the minimum 
count of an Integer Feature greater than or equal to zero, then at 
runtime the CIO treats this Feature as a CountFeature object. If 
you set the minimum count to less than zero, then the CIO treats 
this Feature as an IntegerFeature object. When working with 
runtime nodes, you must consider this distinction to ensure that 
you are working with the expected set of objects. For example, if 
you use IRuntimeNode.getChildrenByType() to collect 
Integer Feature objects, then you must make two calls, one with an 
IRuntimeNode.COUNT_FEATURE argument, and another with 
an IRuntimeNode.INTEGER_FEATURE argument.

Getting and Setting Logic States
To interact with objects that have a logic state, you use methods of the IState 
interface. This interface contains:

• A set of constants that represent input states, used to specify a new state for an 
object, listed in the table Input Logic States, page 6-6:

Input Logic States

State Description

FALSE The input state used to set an object to false.

TRUE The input state used to set an object to true.



Working with Model Entities    6-7

State Description

TOGGLE The input state used to turn an object state to true if it is false or unknown,
and to make it unknown or false if it is true.

• A set of constants that represent output states, returned when querying an object 
for its state listed in the table Output Logic States, page 6-7:

Output Logic States

State Description

LFALSE The Logic False output state, indicating that the state is false as a 
consequence of a rule.

LTRUE The Logic True output state, indicating that the state is true as a 
consequence of a rule.

UFALSE The User False output state, indicating that a user has set this object to 
false.

UTRUE The User True output state, indicating that a user has set this object to 
true.

UNKNOWN The Unknown output state, indicating that there is no current state.

• A set of methods for getting and setting the object's state listed in the table Methods
for Getting and Setting State, page 6-7:

Methods for Getting and Setting State

Method Description

getState() Gets the current logic state of this object.

setState() Change the current logic state of this object.

unset() Retracts any user selection made on this node.



6-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

Method Description

isFalse() Tells whether this feature is in false state.

isTrue() Tells whether this feature is in true state.

isUser() Tells whether this feature is in a user- specified state.

isLogic() Tells whether this feature is in a logically specified state.

isUnknown() Tells whether this feature is in unknown or known state.

Observe the following practices when you use methods of the IState interface:

• The code fragment in Getting the State of a Node, page 6-8 uses getState() 
with UTRUE to test whether the state of an Option node is user true, meaning that 
the Option has been selected by the end user.

Getting the State of a Node
Example
// Get the necessary components from the configuration.
baseComponent = (Component)comp_node.getChildByName("Component-1");
of = (OptionFeature)baseComponent.getChildByName("Feature-1");
op = (Option)of.getChildByName("Option-1");
intFeat = (IntegerFeature)baseComponent.getChildByName("IF-1");
// Check if the option is set to UTRUE.  
// If so, set the Integer value to 5.
if( op.getState() == IState.UTRUE )
  intFeat.setIntValue(5);

• When using getState(), Always check for deleted or discontinued nodes. See 
Checking for Deleted or Discontinued Nodes, page 2-15.

• Using isUnknown(), which returns TRUE if the Feature is in an unknown state, is 
important when a node is cast to an integer or decimal class such as IntegerNode
or ReadOnlyDecimalNode. When the numeric value of the node is zero, a zero 
value can mean either UNKNOWN (if no value has been set by the user) or KNOWN (if 
the value has been set to zero by the user). 

• The code fragment in Setting the State of a Node, page 6-8, which uses 
setState() with TOGGLE, toggles the state of the selected item in the Model tree.

Setting the State of a Node
Example
private void toggleSelectedItem() {
    IState node = (IState)getSelectedNode();
    node.setState(IState.TOGGLE);
    }



Working with Model Entities    6-9

You should not use the TOGGLE state unless you are working with a user interface. 
If you do not need to render the result in the interface (for instance, if you are using 
batch validation) then it is much more efficient to set the state directly: 

Example
node.setState(IState.TRUE);
...
node.setState(IState.FALSE);

If you do need to use TOGGLE, do not turn off defaulting, because the CIO must 
turn defaulting on in order to determine the correct state to toggle to. This operation
impairs performance.

• If you try to set the state of a RuntimeNode to UNKNOWN and this causes a 
contradiction, then the CIO throws a nonoverridable LogicalException. For 
example, assume the following Model structure: 

Example
M 
│_A (Boolean, UNKNOWN) 
│_B (Boolean, UNKNOWN) 

And a logic rule: 

Example
A Requires B 

When you select A, it makes B LTRUE. If you try setting B to UNKNOWN, you get a 
nonoverridable logical contradiction: 

Example
A.setState(IState.UTRUE); 
...
try { 
  B.setState(IState.UNKNOWN); 
} catch (LogicalException le) { 
//le is not overridable 

• When you are not interested in the difference between UTRUE and LTRUE, the 
proper way to determine whether the state of a node is true is to call 
IState.isTrue().

By contrast, if you test the state of the node this way:

Example
(state == IState.TRUE)

then the test only returns TRUE if the logic state is UTRUE, but not if it is LTRUE.

Getting and Setting Numeric Values
You can use the following methods to get and set the values of objects that have 
numeric values. Consult the CIO reference (see Reference Documentation for the CIO, 
page A-1) for the hierarchy of the classes you wish to use.

For decimal values, use:



6-10    Oracle Configurator Extensions and Interface Object Developer's Guide 

• IDecimal.setDecimalValue()

• IReadOnlyDecimal.getDecimalValue()

For integer values, use:

• IInteger.setIntValue()

• IInteger.getIntValue()

The code fragment in Setting a Numeric Value, page 6-10 uses setIntValue() to 
change the value of an Integer Feature. Note that you can use the generalized 
IRuntimeNode interface for flexibility in getting a child node, and then cast the node 
object to a particular interface to perform the desired operation on it.

Setting a Numeric Value
// select a node by name
IRuntimeNode limit = baseComp.getChildByName("Current Limit");

// use an interface cast to set the node's value by the desired type
((IInteger)limit).setIntValue(5);

To determine whether a numeric value has violated its Minimum or Maximum range, 
you may need to iterate through the collection of validation failures returned by 
Configuration.getValidationFailures() after setting a value, for instance 
with IInteger.setIntValue(). See Validating Configurations, page 8-1 for more 
background.

There is a subtlety that you should take note of. IDecimal.setDecimalValue() 
does not throw a LogicalException when setting the value of a decimal feature that 
exceeds the feature's minimum/maximum limits. The collection of validation failures 
returned by Configuration.getValidationFailures() does not include any 
failures that result from setting a numeric value until the logic transaction has been 
closed. Thus, there is no way to roll back a transaction once it is committed. You can 
only undo the setting of the value. Here is a suggested method for dealing with this 
situation:

Caution: The classes Total and Resource both inherit the method
setDecimalValue() from DecimalNode. This method provides the 
ability to set the value of Totals and Resources programmatically 
(rather than in the runtime application as the result of user actions). 
However, the use of this method, while permitted, is deprecated, and 
may be removed in a future release. When working programmatically 
with Totals and Resources, use only the methods inherited from 
ReadOnlyDecimalNode.

1. Open a transaction.

2. Get the minimum or maximum for the Feature, with getMin() or getMax().



Working with Model Entities    6-11

3. Set the new value appropriately.

4. Close the transaction.

5. Get the collection of validation failures for the configuration, to find out about the 
status of other nodes.

6. If the last transaction caused a minimum/maximum violation, then call 
Configuration.undo(), which retracts the last action in the transaction.

This situation illustrates why it is a good practice to perform the setting of a single 
value inside a logic transaction. You can always undo the transaction if the result is 
unsatisfactory. Remember: inside a transaction, you can roll back an action; outside a 
transaction, you undo an action.

Working with Decimal Quantities
Quantities for imported BOM Standard Items can be either integers or decimals.

The table Methods for Integer and Decimal Nodes, page 6-11 lists certain methods of 
CIO classes and interfaces that are relevant to decimal quantities. The table indicates the
corresponding methods to be used for BOM nodes having Integer (indivisible) values or
Decimal (divisible) values. Using the wrong type of method raises an 
IncompatibleValueException. For details on these methods, see Reference 
Documentation for the CIO, page A-1.

In the classes IRuntimeNode and RuntimeNode, the methods hasIntegerValue()
and hasDecimalValue() should be used to find out if a runtime node belongs to a 
Decimal or an Integer BOM. 

StateCountNode.getDecimalCount() is a general method for getting the count 
and works for both Integer and Decimal BOMs.

Methods for Integer and Decimal Nodes

Class/Interface Integer Method Decimal Method

BomNode getDefaultQuantity() getDecimalDefaultQuantity()

BomNode getMaxQuantity() getDecimalMaxQuantity()

BomNode getMinQuantity() getDecimalMinQuantity()

IBomItem getMaxQuantity() getDecimalMaxQuantity()

IBomItem getMinQuantity() getDecimalMinQuantity()



6-12    Oracle Configurator Extensions and Interface Object Developer's Guide 

Class/Interface Integer Method Decimal Method

ICount getCount() getDecimalCount()

ICount setCount() setDecimalCount()

StateCountNode getCount() getDecimalCount()

StateCountNode setCount() setDecimalCount()

When using one of the methods listed in Methods for Integer and Decimal Nodes, page 
6-11, always check for deleted or discontinued nodes. See Checking for Deleted or 
Discontinued Nodes, page 2-15.

Accessing Properties
You can determine which Properties belong to a runtime node, then use methods of the 
class Property to obtain information about the Properties.

Use IRuntimeNode.getProperties() to get a collection of the properties 
associated with a node. 

Use IRuntimeNode.getPropertyByName() to get a particular property of a node, 
based on its name. 

When you have the Property, use methods of the class Property, such as 
getStringValue(), to obtain specific information.

User String Properties
If you need to dynamically associate text strings with runtime nodes, and save them 
with the configuration, then you can use the set of accessor methods in the 
IRuntimeNode interface that are listed in Methods for User Strings, page 6-12.

These methods set and get the values of the System Properties UserStr01, UserStr02, 
UserStr03, and UserStr04, which are available on runtime nodes.

Methods for User Strings

System Property Setter Method Getter Method

UserStr01 setUserStr01() getUserStr01()

UserStr02 setUserStr02() getUserStr02()



Working with Model Entities    6-13

System Property Setter Method Getter Method

UserStr03 setUserStr03() getUserStr03()

UserStr04 setUserStr04() getUserStr04()

You can only set the values of these properties by using these methods, in a 
Configurator Extension or custom user interface, by using the setter methods listed 
here. The values must be set at runtime, and are not saved with the configuration.

To display the values of one or more of these properties in a generated User Interface, 
you can add a UI element such as Styled Text, and derive its value from one of the 
System Properties listed here. For details about modifying generated User Interfaces, 
see the Oracle Configurator Developer User's Guide.

For an example of setting these System Properties in a Configurator Extension, see 
Setting User Strings, page 6-13.

Setting User Strings
package oracle.apps.cz.cx;
import oracle.apps.cz.cio.*;

public class UserString {
  public UserString()  {
  }

/**
 * Sets the user string value on the Node.
 * CX event: postConfigNew and postConfigRestore
 * BaseNode: Node on which you want to set the user string value.
 * Event Scope: Global
 */
  public void onSessionLoad(IRuntimeNode node1) {
    node1.setUserStr01("setUserStr01 for " +node1.getName() + 
"["+node1.getRuntimeID()+"]" );
    node1.setUserStr02("setUserStr02 for " +node1.getName() + 
"["+node1.getRuntimeID()+"]" );
    node1.setUserStr03("setUserStr03 for " +node1.getName() + 
"["+node1.getRuntimeID()+"]" );
    node1.setUserStr04("setUserStr04 for " +node1.getName() + 
"["+node1.getRuntimeID()+"]" );
  }
}

Access to Options
An Option is a child of an Option Feature which supports a boolean state (true, false, or 
unknown) and a count. Options implement the IRuntimeNode interface. 

OptionFeature objects have special methods for selecting options and querying for 
selected options. See Accessing Features, page 6-5 for information about methods for 
working directly with Features.



6-14    Oracle Configurator Extensions and Interface Object Developer's Guide 

In a custom application, you can use IOPtionFeature.select() to select a specified
Option. If a maximum number of selections has been defined for an OptionFeature, 
and that maximum has been reached, then this method implements mutual exclusion 
behavior by first deselecting the most recently selected Option that does not cause a 
contradiction when deselected, then selecting the newly specified option. The minimum
number of selections defined for the OptionFeature does not affect this behavior.

You can find out which Option has been deselected, after a selection is committed, by 
using IOPtionFeature.getSelectedOptions() and examining the list of selected 
nodes.

The getSelectedOption() method throws the 
SelectionNotMutexedException if this feature does not support  (mutexed) 
selections.

You can use the interface IOption to select, deselect, and determine the selection state 
of Options. The table Methods of the Interface IOption, page 6-14 lists these methods.

Methods of the Interface IOption

Method Action

deselect() Deselect this Option.

isSelected() Returns true if this Option is selected, and false otherwise. When 
using isSelected(), always check for deleted or discontinued 
nodes. See Checking for Deleted or Discontinued Nodes, page 2-
15.

select() Select this Option.

The code fragment in Testing Whether an Option Is Selected, page 6-14 displays a 
"check" icon if an Option of a runtime node is selected:

Testing Whether an Option Is Selected
IRuntimeNode rtNode = (IRuntimeNode)value;
if (value instanceof IOption) {
  IOption optionNode = (IOption)value;
  if !(optionNode.isDeleted() ││ optionNode.isDiscontinued()) {
    if (optionNode.isSelected()) {
      setIcon(checkIcon);
    }
  }
} 

In this example, assume that checkIcon points to an icon file, and that setIcon() is 
a custom method that displays it.



Working with Model Entities    6-15

Introspection through IRuntimeNode
You can get information about a node in a Model at runtime by using methods of the 
interface IRuntimeNode. This helps you to write "generic" Configurator Extensions, 
which can interact with a Model tree dynamically, without having prior knowledge of 
its structure. Important Methods of the Interface IRuntimeNode, page 6-15 lists some of
the more important of these methods.

The table Important Methods of the Interface IRuntimeNode, page 6-15 lists some of 
the methods defined in the interface IRuntimeNode that you are most likely to use in 
working with the CIO. For more detail about these and the other CIO interfaces, see 
Reference Documentation for the CIO, page A-1.

Important Methods of the Interface IRuntimeNode

Method Action

getCaption() Get the Caption of this node to be displayed in messages.

getChildByID() Gets a particular child identified by its ID.

ComponentSet.getChildByID() could have duplicate 
children with same ID, so it returns only the first child. 
Instead, call getChildByInstanceNumber() or change 
the instance name.

getChildByName() Gets a particular child identified by its name.

getChildren() Gets the children of this runtime configuration node.

getDescription() Returns the design-time description of the runtime node.

getName() Gets the name of the node.

getParent() Gets the parent of the node.

getProperties() Returns a collection of the properties associated with this 
node. The collection contains items of the type Property.

getRuntimeID() Gets the runtime ID of the node.

getType() Gets the type of this node.



6-16    Oracle Configurator Extensions and Interface Object Developer's Guide 

Method Action

isEffective() Returns true if this particular node is effective given the 
effectivity criteria of the model.

Returns true if the "Include in Generated UI" flag is selected
for this node in Oracle Configurator Developer. Note that 
the value of this flag may not reflect the true visibility of 
this node in the UI. See the note elsewhere in this section.

isUnsatisfied() Returns true if this particular node, or any one of its 
children, has not been completely configured.

Regarding the method getIncludeInGeneratedUIFlag(), which is described in 
the table Important Methods of the Interface IRuntimeNode, page 6-15, be aware that 
the "Include in Generated UI" flag can be misleading, as shown in the following 
examples:

• The flag is true but the node does not appear in the runtime UI because:

• The node has an ancestor whose flag is false

• The node is hidden by a display condition

• The flag is false but the node does appear in the runtime UI because:

• The "Show All Nodes" flag was set when the UI was generated

• The node was manually added to the UI

The code fragment in Getting a Child Node by Name, page 6-16 creates a 
Configuration object config, sets rootComp to the root component of the 
configuration, and sets userType to the child node with the user-visible name "User 
Type".

Getting a Child Node by Name
...
Configuration config = m_cio.startConfiguration(params, context);
IRuntimeNode rootComp = (IRuntimeNode) config.getRootComponent();

IRuntimeNode userType = rootComp.getChildByName("User Type");
...

The code fragment in Collecting All Child Nodes by Type, page 6-17 uses a test for the 
value of the TEXT_FEATURE field of an IRuntimeNode object named comp to gather a 
list of all the children of that node that are TextFeature objects. It is assumed that 
traverseTree() is a custom method.



Working with Model Entities    6-17

Collecting All Child Nodes by Type
//get all the text features
List textFeatList = IRuntimeNode comp.getChildrenByType
(IRuntimeNode.TEXT_FEATURE);
traverseTree(comp.getChildComponentNodes(),
             IRuntimeNode.TEXT_FEATURE,
             textFeatList);
Iterator iter = textFeatList.iterator();





Using Logic Transactions    7-1

7
Using Logic Transactions

This chapter explains how to use logic transactions to safely structure a configuration 
session.

This chapter covers the following topics:

• Using Logic Transactions

Using Logic Transactions
In order to help you maintain consistency in interactions with the Oracle Configurator 
logic engine, you must use configuration-level logic transactions. A logic transaction 
comprises all the logical assertions that constitute a user interaction. At the end of a 
transaction, you can obtain a list of all validation failures, by calling 
Configuration.getValidationFailures(). See Validating Configurations, page 
8-1. 

The Configuration object, oracle.apps.cz.cio.Configuration, provides a set of 
methods for starting, ending, and rolling back configuration-level logic transactions. 
Note that logic transactions are not database transactions.

Inside a transaction, the normal course of action is to set the logical states and numeric 
values of runtime nodes (as described in Getting and Setting Logic States, page 6-6 and 
Getting and Setting Numeric Values, page 6-9).

• Use Configuration.beginConfigTransaction() to create a new transaction,
returning a ConfigTransaction object. After performing the desired series of 
operations (for instance, setting states and values), you must end, commit, or roll 
back the transaction by passing the ConfigTransaction object to one of the 
mutually exclusive methods that finish the transaction: 

• endConfigTransaction

• commitConfigTransaction

• rollbackConfigTransaction



7-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

• Configuration.commitConfigTransaction() commits the given transaction
or series of nested transactions, propagates the effect of user selections throughout 
the configuration, and triggers validation checking (see Validating Configurations, 
page 8-1).

• Configuration.endConfigTransaction() ends the transaction that was 
started with beginConfigTransaction(), without committing it (thus 
skipping validation checking).

• Configuration.rollbackConfigTransaction() rolls back the unfinished 
transaction, undoing the operations performed inside it.

You can nest intermediate transactions with beginConfigTransaction() and 
endConfigTransaction, delaying validation checking until you call 
commitConfigTransaction(). You should not perform any actions (such as setting 
states or counts, or selecting Options) before opening a nested transaction. If there are 
actions performed in an uncommitted parent transaction, these may produce erroneous 
results for Configuration.getUnsatisfiedItems(). You must end or commit 
inner transactions before ending or committing the outer ones that contain them. When 
rolling back unfinished transactions, with rollbackConfigTransaction(), you 
can roll back outer transactions, which automatically rolls back the inner transactions.

Transactions should also be used when you employ nonoverridable requests. See 
Nonoverridable Requests, page 9-3. 

There are situations in which you must take care to commit a transaction at the 
appropriate time. The fragmentary code in Using a Logic Transaction with a Deletion, 
page 7-2 illustrates the need for wrapping a common operation inside a transaction to 
insure that the operation's effects are reflected in other parts of the program. Setting 
Nonoverridable Requests, page B-4 also illustrates the use of transactions.

Using a Logic Transaction with a Deletion
...
Component comp;
ComponentSet compSet;
ConfigTransaction tr;
Configuration config;
IOption opt;
// ----------------------------------------------------------
// This sequence produces unintended results:
...

...
// Select a child of compSet.

...
opt.select()



Using Logic Transactions    7-3

...
// User wants to see the list of all selected nodes:
collec = config.getSelectedItems();
// The returned collection includes children of the deleted component,
// because no transaction was commited.
// ----------------------------------------------------------
// This sequence produces the intended results:
...
// Add a component:
comp = compSet.add();
...

// User selects a child of compSet (interactively).

...
// Delete the component, inside a transaction:
tr = config.beginConfigTransaction();
compSet.delete(component);
config.commitConfigTransaction(tr);
...
// User wants to see the list of all selected nodes:
collec = config.getSelectedItems();
// The returned collection does NOT include children of the deleted 
component,
// because the deletion transaction was commited.





Validation, Contradictions, and Exceptions    8-1

8
Validation, Contradictions, and Exceptions

This chapter explains how to validate configurations and handle contradictions.

This chapter covers the following topics:

• Introduction to Validation, Contradictions, and Exceptions

• Validating Configurations

• Handling Logical Contradictions

• Handling Exceptions

Introduction to Validation, Contradictions, and Exceptions
This chapter describes how to handle:

• Validation, which is the act of checking that a configuration is valid and complete

• Logical exceptions, which are the representation in the CIO of contradictions, 
(violations of your configuration rules that are presented to the end user)

• Programming exceptions, which are raised by your code

Validating Configurations
Validating a configuration means checking whether it is valid (that is, the selections in it
do not violate any configuration rules) and whether it is complete (that is, all 
components in it are satisfied).

The CIO validates a configuration after a transaction is committed or rolled back. See 
Using Logic Transactions, page 7-1 for a description of what happens in a transaction.

Validation checking and reporting occur when a logical transaction is ended by using 
Configuration.commitConfigTransaction() or 
Configuration.rollbackConfigTransaction(). 



8-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

After a committal or rollback, the CIO traverses the nodes of the Model, checking for 
validation failures, selected items and unsatisfied items. These are kept in a set of 
collections maintained on the Configuration object. 

All validation failures are saved to the CZ_CONFIG_MESSAGES table, which provides 
information on both the configuration header and the trackable instance header that the
failure belongs to. For more information about the CZ_CONFIG_MESSAGES table, see 
the CZ eTRM on MetaLink, Oracle's technical support Web site.

After the transaction is committed, you can call the methods of 
oracle.apps.cz.cio.Configuration listed in the table Methods for Validating 
Configurations, page 8-2:

Methods for Validating Configurations

Method Description

getValidationFailures() Returns a collection of ValidationFailure 
objects. Call this after committing or rolling back a 
transaction, in order to inspect the list of validation 
failures.

getSelectedItems() Returns a collection of selected items as 
StatusInfo objects indicating the set of selected 
(true) items in the Configuration. 

isUnsatisfied() Returns TRUE if the configuration is incomplete.

getUnsatisfiedItems() Returns a collection of unsatisfied items as 
StatusInfo objects indicating the set of unsatisfied
items in the Configuration. 

getInformationalMessages() Gets a collection of StatusInfo objects describing 
all the informational messages in the configuration. 
These messages are created explicitly by external 
callers or Configurator Extensions or by the CIO in 
response to an exception thrown by a Configurator 
Extension.

getUnsatisfiedRuleMessages() Gets a list of messages for unsatisfied relations in the
configuration.

To determine whether a configuration has validation failures, call 
getValidationFailures() and check whether the collection it returns is empty.

Validation failures are instances of the class StatusInfo. A StatusInfo object has a 
reference to the runtime node, which you obtain with its getNode() method. Use 



Validation, Contradictions, and Exceptions    8-3

StatusInfo.getStatus() to return the current status of the node.

The status of a node has a life cycle. The stages in the life cycle are represented by the 
constants described in the table Life Cycle of StatusInfo Objects, page 8-3. As nodes 
become selected, or unsatisfied, or have validation failures, they have a status reflected 
by StatusInfo.STATUS_NEW. If they continue to be selected since the last transaction 
their status is StatusInfo.STATUS_EXISTING. If they become deselected, their 
status becomes StatusInfo.STATUS_DELETED until the next transaction at which 
time they are removed from the collection.

Life Cycle of StatusInfo Objects

StatusInfo 
Constant

Status Description

STATUS_NEW The node has newly attained this status since the last check.

STATUS_EXISTING The node already had this status during the last check, and it still does.

STATUS_DELETED The node has newly lost this status since the last check.

STATUS_REMOVED The node had the deleted status during the last check, so it is removed.

If you are writing a Configurator Extension that validates a configuration, the method 
that you bind to the onConfigValidate event should return a list of 
CustomValidationFailure objects in the event of a validation failure. This allows 
you to return more than one failure. Your validation method can include several tests. 
You can track which tests failed, and determine why the tests failed. If the validation 
fails, then information about the failure is gathered by the CIO in a List of 
CustomValidationFailure objects. The information in these objects is presented to 
the user in a message, and does not persist after the presentation.

In general, if a Configurator Extension needs to return a violation message about a 
particular runtime node, you have to create a CustomValidationFailure object and
pass it the runtime node, the message, and boolean parameter indicating whether to 
persist the failure. The code fragment in Returning a List of Validation Failures, page 8-
4 illustrates this point.



8-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Returning a List of Validation Failures
public List validateMin() {
...
IRuntimeNode node;
ArrayList failures = new ArrayList();
...
//check to see if the value in the config is not at least the min value 
if( !
(val >= min) )
    failures.add( new CustomValidationFailure("Value less than minimum",
node, true) );
    if(failures.isEmpty())
        return null;
    else 
        return failures;
...
}

If the violation persists after the next user action, the Configurator Extension should not
need to create a new CustomValidationFailure, but should instead return a 
StatusInfo object with the same status (STATUS_EXISTING). This value prevents the
CIO from returning the previously seen violation message as a new violation message (
STATUS_NEW), which might be annoying for the user. However, if the user explicitly 
makes the same invalid selection again, then the message is presented again.

You should use the form of the constructor for CustomValidationFailure that sets 
the boolean parameter willPersist to true. This keeps the failure from 
disappearing once the message is displayed to the user, which can lead to a situation in 
which invalid configurations are displayed as valid.

Invalidating a configuration with a Configurator Extension (by creating 
CustomValidationFailure objects) can sometimes lead to performance issues, since
the validation tests are run each time the enclosing transaction is committed. One way 
to avoid this is to place the validation tests outside the transaction, or bind the 
validating Configurator Extension to an event other than onConfigValidate. 

Another way to alleviates this performance issue is to persist the validation failure, as 
shown in Returning a List of Validation Failures, page 8-4, because if the boolean 
parameter willPersist is true, then the validation tests are not run each time the 
enclosing transaction is committed. However, if you are programmatically marking the 
configuration as invalid in this way, you must remove the persisted failure when 
configuration becomes valid again. To remove the persisted failure, you can remove the
CustomValidationFailure in the following way:

Example
CustomValidationFailure cvf = findPreviousCustomValidationFailure(node);
cvf.removeCustomValidationFailure();

Note that in this example findPreviousCustomValidationFailure() is a your 
custom method for finding the failure for a given node. One way of implementing this 
is by maintaining a Map object in your code in which the keys are nodes and the values 
are CustomValidationFailure objects. You should clear the map in when your 
terminates so that Java garbage collection will release the memory.



Validation, Contradictions, and Exceptions    8-5

Handling Logical Contradictions
When you make a logic request to modify the state of a configuration, for instance by 
using IState.setState(), the result may be a failure of the request because of a 
logical contradiction. Such a failure creates and throws a logical exception, accessed 
through either of these objects:

• LogicalException, which cannot be overridden

• LogicalOverridableException, which can be overridden

See Overriding Contradictions, page 8-8 for details on using 
LogicalOverridableException to override the contradiction.

• Use LogicalException.isOverridable() to determine whether the exception
is an instance of LogicalOverridableException, which can be overridden 
with its override() method.

• Use LogicalException.getExceptionCause() to get the runtime node that 
caused the failure.

• Use LogicalException.getReasons() to get a list of Reason objects for the 
failure. See Generating Error Messages from Contradictions, page 8-5.

• Use LogicalException.getMessage() to provide a message containing both 
the cause and the reasons. 

Use LogicalException.getMessageHeader() to provide a message 
containing only the causes. You can pass a caption argument to this method, 
which is the string to use as the node name. Use this caption as an alternative to the 
node caption provided by the CIO for the message.

Generating Error Messages from Contradictions
The CIO, especially the LogicalException object, uses the Reason object to wrap 
the information returned by contradictions, in order to include error message 
information from the table FND_NEW_ MESSAGES. You can use the following 
methods in your own code:

• Use Reason.translate() to get the message associated with this reason.

• Use Reason.getNode() to get the node associated with this reason.

• Use Reason.getType() to get the type of reason held in this object. 

• Use Reason.toString() to convert this object to a string.

Using Reasons to Generate Error Messages, page 8-7 illustrates one way to generate 



8-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

error messages from Reasons.



Validation, Contradictions, and Exceptions    8-7

Using Reasons to Generate Error Messages
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.ConfigTransaction;
import oracle.apps.cz.cio.IRuntimeNode;
import oracle.apps.cz.cio.Option;
import oracle.apps.cz.cio.IOption;
import oracle.apps.cz.cio.LogicalException;
import oracle.apps.cz.cio.NoSuchChildException;

import com.sun.java.util.collections.ArrayList;
import com.sun.java.util.collections.List;

/*
 * Prints reasons for a logical exception, using methods in Reason 
class.
 */

public class UsingReasonstoGenerateErrorMessages {

    /* 
     * @param config In a CX, bind this parameter to the System 
Parameter "Configuration"
     */
    public void testMyRule(Configuration config) {
        try {

            ConfigTransaction tr = null;
            IOption myOption = null;
            boolean isException = false;
            List listOfReasons = new ArrayList();

            try {
                tr = config.beginConfigTransaction();

                // Perform an action that might trigger an error
                myOption = 
(IOption)config.getRootComponent().getChildByName("MyFeature").getChildB
yName("MyOption");
                myOption.select();

            } catch(NoSuchChildException nsce){
                System.out.println("Child node not found.");
            } catch(LogicalException le){
                // Get information about exception
                isException = true;
                listOfReasons= le.getReasons(); 
                System.out.println("Expected exception " +  le.
getExceptionCause() + " : message  "  + le.getMessage());
            }

            if(!isException || listOfReasons.isEmpty()){
                System.out.println("Did not get expected contradiction 
and/or listReasons is empty.");
            }
            config.rollbackConfigTransaction(tr);

        } catch(LogicalException le){
            System.out.println("The transaction was rolled back.");
            le.printStackTrace();
            // Here, you should log the exception and stack trace to a 



8-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

file
        }
    }
}

Overriding Contradictions
Your runtime Oracle Configurator or Configurator Extension can provide a message to 
your user, and ask whether the contradiction should be overridden.

If a logical contraction can be overridden, then a LogicalOverridableException is 
signalled, instead of a LogicalException. LogicalOverridableException is a 
subclass of LogicalException that adds an override() method. Use 
LogicalOverridableException.override() to override the contradiction.

Both types of exceptions (LogicalException and 
LogicalOverridableException) may be thrown from any of the "set" methods 
(like setState()) or from Configuration.commitConfigTransaction(). 

If you want to override the overridable exception you have to call its override() 
method, which can also throw a LogicalException. This means that even when you 
try to override the exception you still trigger a contradiction and cannot continue. If the 
override succeeds, then you still need to call commitConfigTransaction() to close 
the transaction. If you don't want to override or if you get a LogicalException you 
need to call rollbackConfigTransaction() to purge it. The Handling and 
Overriding Logical Exceptions, page 8-9 is a fragment of pseudocode that illustrates 
this point. Note that the operations represented with [ASK "text"] and [SHOW "
text"] are not part of the CIO but suggest where your own custom application should
try to handle the situation.



Validation, Contradictions, and Exceptions    8-9

Handling and Overriding Logical Exceptions
Example
...
ConfigTransaction tr = null;

try {
    try {
        // begin a transaction
        tr = config.beginConfigTransaction();

        // call the "set" method
        opt1.setState(IState.TRUE);
        // commit the transaction
        config.commitConfigTransaction(tr);
    }
    catch(LogicalOverridableException loe) {
        proceed = [ASK "Do you want to override?"];
        if (! proceed) {
            config.rollbackConfigTransaction(tr);
        }
        else {
            try {
                // override the contradiction and ...
                loe.override(); // returns a list of failed requests
               // ... finish the transaction
               config.commitConfigTransaction(tr);
            }
            catch (LogicalException le) {
                // we cannot do anything
                [SHOW "Cannot be overriden"]
                     config.rollbackConfigTransaction(tr);
            }
        }
    }
    catch (LogicalException le) {
        // we cannot do anything
        [SHOW "Cannot be overriden"]
            config.rollbackConfigTransaction(tr);
    }
} catch (LogicalException le) {
    throw new CheckedToUncheckedException(le);
}
...

In Handling and Overriding Logical Exceptions, page 8-9, the statement 
loe.override(); returns a list of failed requests. See Failed Requests, page 9-5.

Handling Exceptions
This section describes how to handle exceptions raised by the CIO. 

Caution: Improper handling of exceptions is the source of many 
problems that are difficult to diagnose. See Handling Exceptions 
Properly, page 2-11 for more information.



8-10    Oracle Configurator Extensions and Interface Object Developer's Guide 

Handling Types of Exceptions
When a Configurator Extension is invoked, the runtime Oracle Configurator wraps a 
transaction around this invocation. This transaction enables the work of the 
Configurator Extension to be either committed or rolled back, as necessary. See Using 
Logic Transactions, page 7-1 for background.

If your Configurator Extension needs to handle an exception, you can choose the type of
exception to throw. The runtime Oracle Configurator handles the exception as follows:

• If your throwable exception is one that extends java.lang.Error or 
java.lang.RuntimeException, it is fatal. The runtime Oracle Configurator 
does the following:

• Drops any open transactions

• Kills the configuration session, but allows the end user to start a new session

Caution: Your code should not ignore or swallow such 
exceptions; doing so can lead to problems that are difficult to 
debug.

In the case of a fatal exception, your code should throw an unchecked exception, as 
shown in Raising Fatal Exceptions, page 8-10.

• If your throwable exception does not extend Error or RuntimeException, then it
is nonfatal. The runtime Oracle Configurator does the following:

• Rolls back the transaction, which undoes the work done by the Configurator 
Extension

• Uses the message for exception to create an InformationalMessage object 
(described in Presenting Messages for Exceptions, page 8-11)

• Allows the user's configuration session to continue

• Allows other Configurator Extensions bound to the same triggering event to 
run

Raising Fatal Exceptions
If your Configurator Extension code encounters an unexpected problem that you cannot
handle, you should convert the exception that you caught into an unchecked exception. 
For this purpose, use the exception 
oracle.apps.cz.utilities.CheckedToUncheckedException, which extends 
RuntimeException. 



Validation, Contradictions, and Exceptions    8-11

CheckedToUncheckedException allows you to change a checked exception into an 
unchecked one, as shown in Raising a Fatal Exception, page 8-11. The new unchecked 
exception contains the messages and stack traces from both the original checked 
exception and the new unchecked exception. However, extra properties of specialized 
checked exceptions that you throw as a CheckedToUncheckedException are not 
retained in the new unchecked exception.

Raising a Fatal Exception
public void setBoolean (BooleanFeature bf)
{
  try {
    bf.setState(IState.TRUE);
  }
  catch (LogicalException le) {
    throw new CheckedToUncheckedException(le);
  }
}

Presenting Messages for Exceptions
If you want to present messages to the end user without rolling back the transaction, 
your Configurator Extension should add a new InformationalMessage, by calling 
Configuration.addInformationalMessage() on the Configuration object for
the session, as shown in Presenting an Informational Message, page 8-11. In , the desc 
parameter could be bound to anything in the Model that returns the string that supplies
the text for the message (such as the value of a TextFeature node, a literal, or a certain 
System Parameters). The node parameter could be bound to the node on which the 
exception occurs.

Presenting an Informational Message
public void nodeMessage(String desc, IRuntimeNode node) throws 
LogicalException 
   { 
     try 
     { 
       Configuration config = node.getConfiguration(); 
       ConfigTransaction tr = config.beginConfigTransaction(); 
       InformationalMessage iMsg = new InformationalMessage("The node 
is: " + desc, node); 
       config.addInformationalMessage(iMsg); 
       config.commitConfigTransaction(tr); 
     }catch (LogicalException le){ 
       throw le; 
     } 
   } 

You can call Configuration.getInformationalMessages() to get a collection of 
StatusInfo objects that describe all the InformationalMessages in the 
configuration. For information on the StatusInfo object, see Validating 
Configurations, page 8-1.

Note: You can only use addInformationalMessage() to present a 
message from a Configurator Extension to the end user. After the 



8-12    Oracle Configurator Extensions and Interface Object Developer's Guide 

message is dismissed by the user it disappears, without passing any 
information back to the runtime Oracle Configurator. You cannot use 
an InformationalMessage object to get a response from the end 
user in reaction to a message. 

Compatibility of Certain Deprecated Exceptions
The exceptions FuncCompMessageException and FuncCompErrorException 
were introduced in a previous version of the CIO, but are now deprecated, and are 
retained only for backward compatibility with existing code. Even though these two 
exceptions extend RuntimeException, they are not fatal in the CIO. They are treated 
as non-fatal exceptions, as described in Handling Types of Exceptions, page 8-10.

Caution: The classes FuncCompMessageException and 
FuncCompErrorException are now deprecated, but are retained for 
backward compatibility with existing code.

A FuncCompErrorException rolls back the open transaction, and allows the end 
user''s configuration session to continue. In general, you should not throw a 
FuncCompErrorException unless you have very good reasons to believe that the 
exception is benign and that the user should also be notified of it. You should document
these reasons in your code.

A FuncCompMessageException allowed you to present a dialog box displaying a 
specified message, and the name of the Functional Companion that raised the 
exception. When the end user dismissed the dialog box, the runtime Oracle 
Configurator committed the open CIO transaction, and allowed the end user to proceed
with the configuration session. It was possible that the Model could be left in an 
uncertain state. In the current version of the CIO, the transaction is rolled back, instead 
of committed.



Using Requests    9-1

9
Using Requests

This chapter describes requests, which are programmatic attempts to modify a 
configuration.

This chapter covers the following topics:

• About Requests

• Getting Information about Requests

• User Requests

• Nonoverridable Requests

• Failed Requests

About Requests
A request is an attempt to modify a configuration by setting the logical state or numeric 
value of a node in the configuration Model (such as an Option or BOM Item). The table 
Methods Typically Used to Make Requests, page 9-1 lists some methods of this type:

Methods Typically Used to Make Requests

Method Described In ...

IState.setState() Getting and Setting Logic States, page 6-6

ICount.setCount() Getting and Setting Numeric Values, page 6-9

IOPtion.select() Access to Options, page 6-13

• Requests that set a state or value, such as those listed in Methods Typically Used to 
Make Requests, page 9-1, are called user requests. See User Requests, page 9-3.



9-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

• You can code a set of user requests that are applied to a configuration at any time. 
These are called nonoverridable requests. These requests can be applied only 
programmatically, and have a higher priority than user requests. See 
Nonoverridable Requests, page 9-3.

• When user requests fail, due to an override of a contradiction, the CIO generates a 
list of these failed requests. See Failed Requests, page 9-5.

• You can get information about a request by interrogating an instance of the Request
object. See Getting Information about Requests, page 9-2. 

Getting Information about Requests
The class oracle.apps.cz.cio.Request exposes logic requests. A Request object 
can be used to represent several kinds of requests.

The Request object provides a set of methods for determining the value of the request, 
and the runtime node on which the request has been made:

• getNumericValue()

• getValue()

• getRuntimeNode()

The Request object also provides a set of methods for determining the type of the 
request. These methods are listed in the table Type Methods of the Class Request, page 
9-2. (In the value column, the test for the value of the request is case-sensitive.)

Type Methods of the Class Request

This returns TRUE if ... ... the request made was 
for ...

The value of the request is ...

isNumericRequest() changing the numeric 
value of a runtime node 

a Number

isStateRequest() changing the state of a 
runtime node

True, False, Toggle, 
Tnknown

isTrueStateRequest() changing the state of a 
runtime node to True 

True

isFalseStateRequest() changing the state of a 
runtime node to False 

False



Using Requests    9-3

This returns TRUE if ... ... the request made was 
for ...

The value of the request is ...

isToggleStateRequest() toggling the state of a 
runtime node 

Toggle

isUnknownStateRequest(
)

unsetting the state of a 
runtime node 

Unknown

User Requests
You can obtain a list of the Request objects that represent all current user requests in the
system, by using the method Configuration.getUserRequests() in your 
Configurator Extension.

Example
...
IRuntimeNode node = getRuntimeNode();
Configuration config = node.getConfiguration();
List requests = config.getUserRequests();
Iterator it = requests.iterator();
while (it.hasNext()) {
  Request req = (Request)it.next();
  IRuntimeNode node = req.getRuntimeNode();
  String value = req.getValue();
}
...

Nonoverridable Requests
You can specify a set of logic requests to be applied to a configuration at any time that 
have a higher priority than user requests. Such requests are called nonoverridable 
requests.

You apply nonoverridable requests automatically on the creation of a configuration, 
following the practice illustrated in Using Nonoverridable Requests, page 9-4 and in 
the following steps:

1. Begin a configuration transaction, using 
Configuration.beginConfigTransaction(). 

Example
ConfigTransaction tr = config.beginConfigTransaction();

See Using Logic Transactions, page 7-1 for details about transactions.

2. Specify that the transaction contains nonoverridable requests, using 
ConfigTransaction.useNonOverridableRequests(). 



9-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Example
tr.useNonOverridableRequests();

3. Specify the desired user requests using the appropriate methods.

Example
BooleanFeature feat = 
(BooleanFeature)node.getChildByName("Feature_1234");
feat.setState(IState.TRUE);

See User Requests, page 9-3 for details about setting logic requests.

4. When you have set all the desired nonoverridable requests, commit the logic 
transaction.

Example
config.commitConfigTransaction(tr);

These steps are combined in Using Nonoverridable Requests, page 9-4. For a fuller 
example of using nonoverridable requests, see Setting Nonoverridable Requests, page 
B-4.

Using Nonoverridable Requests
...
      ConfigTransaction tr = config.beginConfigTransaction();
      tr.useNonOverridableRequests();
      BooleanFeature feat = 
(BooleanFeature)node.getChildByName("Feature_1234");
      feat.setState(IState.TRUE);
      config.commitConfigTransaction(tr);
...

Usage Notes on Nonoverridable Requests
• You can think of a transaction that includes 

ConfigTransaction.useNonOverridableRequests() (as illustrated in Step 
2, page 9-3) as putting the CIO in "nonoverridable request mode". You can nest any 
number of subtransactions within this transaction; the requests in these 
subtransactions all inherit this mode of being nonoverridable requests. You can 
perform overrides and rollbacks as you would with ordinary user requests. You 
must commit or roll back the nonoverridable-request transaction, as in Step 4, page 
9-4, to indicate the conclusion of the nonoverridable requests. You can then specify 
other user requests in your Configurator Extension. 

• When you save a configuration that includes nonoverridable requests, the 
nonoverridable requests are saved as part of the configuration. When you restore 
such a configuration, with CIO.restoreConfiguration(), the nonoverridable 
requests are reapplied to the configuration. 

• You can get a list of the list of nonoverridable requests present in a configuration by
using Configuration.getNonOverridableRequests(). 



Using Requests    9-5

• In a nonoverridable transaction, you can retract a nonoverridable request by calling 
unset() on the appropriate runtime node. 

Limitations on Nonoverridable Requests
• After you apply nonoverridable requests to a configuration, you cannot override 

any of the nonoverridable requests with user requests. But you can override 
nonoverridable requests with other nonoverridable requests. An attempt to 
override a nonoverridable request with a user request throws a 
NonOverridableRequestException, which cannot be overridden.

• You cannot use nonoverridable requests to add or delete components, or create a 
connection.

Failed Requests
When you use LogicalOverridableException.override() to override a logical 
contradiction (see Overriding Contradictions, page 8-8), the override() method 
returns a List of Request objects. These Request objects represent all the previously 
asserted user requests that failed due to the override that you are performing.

See Getting a List of Failed Requests, page B-8 for an example.





Configuration Session Change Tracking    10-1

10
Configuration Session Change Tracking

This chapter describes the CIO's Configuration Delta API for tracking changes that have
been made to regions of your user interface during a configuration session.

This chapter covers the following topics:

• Introduction to Configuration Session Change Tracking

• How Change Tracking Works

• Starting a Session

• Tracking Session Changes

• Updating a Region

• Handling Screen Changes

• Creating a Custom DeltaValidator

• Unified Code Example for Change Tracking 

Introduction to Configuration Session Change Tracking
This section is divided as follows:

• For a general overview of the Configuration Delta API, see How It Works, page 10-
2.

• For examples of how the Configuration Delta API is used, see:

• Starting a Session, page 10-7

• Tracking Session Changes, page 10-9

• Updating a Region, page 10-10

• Handling Screen Changes, page 10-11



10-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

• For information on a specialized customization topic, see Creating a Custom 
DeltaValidator, page 10-12.

• For detailed reference documentation that describes the classes of the Configuration
Delta API, see Reference Documentation for the CIO, page A-1.

You can use the CIO's Configuration Delta API to query a Configuration object about 
changes (deltas) that have been made to the configuration during the current 
configuration session. 

Note: Although the functionality described in this section uses the 
terms delta and tracking, this functionality is distinct from the tracking 
of deltas described in the Oracle Telecommunications Service Ordering 
Process Guide. In that document, the term delta refers to a change made 
to a configuration relative to an instance of that configuration residing 
in an installation repository.

The Configuration Delta API provides a unified interface that enables you to track 
deltas only on the specific nodes in which you register interest. Contrast this to the set 
of methods listed Change-Detection Methods for the Configuration Object, page 10-2, 
which provide change information only for the entire set of the nodes in a 
configuration.

Change-Detection Methods for the Configuration Object
Configuration.getSelectedItems()
Configuration.getUnsatisfiedItems()
Configuration.getUnsatisfiedItems()
Configuration.getUnsatisfiedRuleMessages()
Configuration.getValidationFailures()

How Change Tracking Works
Note: This use of the CIO is intended for both custom applications and 
Configurator Extensions.

Both custom applications and Configurator Extensions can be clients of the 
Configuration Delta API.

The Configuration Delta API consists of the classes and interfaces in the CIO listed in 
the table Classes and Interfaces for the Configuration Delta API, page 10-3. The 
Instances, page 10-3 column indicates how many instances of the class exist at 
runtime, during a configuration session.



Configuration Session Change Tracking    10-3

Classes and Interfaces for the Configuration Delta API

Class or Interface Role Instances

DeltaManager Manages all changes made by 
end user actions during a 
configuration session.

See Role of the DeltaManager, 
page 10-5.

One per client.

DeltaRegion Maintains list of watched 
runtime nodes and changes to be
tracked on those nodes.

See Role of DeltaRegions, page 
10-5.

One per each region of interest in 
the user interface.

Can register multiple 
DeltaValidators, one for each type 
of change to be tracked.

DeltaValidator Manages all defined types of 
changes. Base class for all 
DeltaValidators.

See Role of DeltaValidators, page
10-5.

One per each type of change to be 
tracked. 

Can be registered with multiple 
DeltaRegions.

IValidatorChang
e

Represents any change type. 

See Role of the IValidatorChange
Interface, page 10-6.

Not instantiated. Implemented by 
all DeltaValidators.

Relationship of the Classes
The diagram in Example Class Relationships in the Configuration Delta API, page 10-
4 shows the relationship of the classes in the Configuration Delta API, using a typical 
example of their use.



10-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Example Class Relationships in the Configuration Delta API

In Example Class Relationships in the Configuration Delta API, page 10-4, the 
DeltaManager is managing a UI containing three DeltaRegions (labeled 1, 2, and 3).

• Each DeltaRegion maintains a list of runtime nodes that are watched for changes 
(the watched-nodes list).

• Each DeltaRegion is registered with the DeltaManager and contains a list of 
DeltaValidators, which determine the types of changes that are watched in the 
region.

• In the example:

• DeltaRegion 1 has registered DeltaValidators 1 and 2

• DeltaRegion 2 has registered DeltaValidators 2, 3, and 4

• DeltaRegion 3 has registered DeltaValidators 4 and 5

• Each DeltaValidator can be registered with multiple DeltaRegions. Each 
DeltaValidator watches for a particular change type in a combined list of all the 
runtime nodes in all the DeltaRegions that it is registered with. 

• In the example:

• Since DeltaValidator 1 is registered only with DeltaRegion 1, its watched-nodes 
list is the same as the watched-nodes list in DeltaRegion 1.

• DeltaValidator 2 is registered with two DeltaRegions (1 and 2). Hence, its 
watched-nodes list is the union of the watched-nodes lists from both 



Configuration Session Change Tracking    10-5

DeltaRegions 1 and 2.

Role of the DeltaManager
The DeltaManager object is instantiated once, at the beginning of a configuration 
session, and is cached on the Configuration object for the session. The DeltaManager 
manages all the changes made by end user actions during that session. 

The DeltaManager is identified by an ID that is passed to the method that creates it, 
Configuration.createDeltaManager(). 

You can register multiple DeltaRegions with the DeltaManager, to manage the regions 
of your client's user interface.

Role of DeltaRegions
A DeltaRegion object represents a distinct portion of your client's user interface. For 
example, your UI might have a navigation region, an update region, and a summary 
region; your client would create a DeltaRegion object for each of them.

Each DeltaRegion maintains a list of watched runtime nodes in that region. You 
determine which nodes are to be watched for changes by registering a DeltaRegion 
object with the DeltaManager, using the method 
DeltaManager.registerRegion(), which takes as arguments the list of nodes to 
watch, the list of DeltaValidators to watch them with, and an ID. See Registering a 
DeltaRegion: All Nodes, page 10-9 for an example of registering a region.

Role of DeltaValidators
A DeltaValidator object manages defined types of changes. A DeltaValidator 
can be thought of as a reusable software component that reports on a particular type of 
change.

Each particular change type is handled through a specialized subclass of the class 
DeltaValidator. The CIO provides a set of default change types that correspond to 
the types of changes that can be made through the CIO. Each subclass defines a change 
object (in the form of an inner class) that implements methods that provide information 
about the specified type of change. 

The table Default Change Types and Their Change Objects, page 10-6 lists a sampling 
of the default change types, and the specialized DeltaValidators that represent them. 
For details on the methods of these change object classes, and the complete set of 
DeltaValidator subclasses, see the CIO reference documentation described in 
Reference Documentation for the CIO, page A-1.

You can write custom DeltaValidators for change types that are not already provided 
by the CIO. For details, see Creating a Custom DeltaValidator, page 10-12.



10-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

Default Change Types and Their Change Objects

Change Type Class for Change Object

ATP (Availability to 
Promise)

AtpDeltaValidator.AtpChange

Availability (for selection) AvailabilityDeltaValidator.AvailabilityChange

Connection ConnectionDeltaValidator.ConnectionChange

Count (of runtime nodes) CountDeltaValidator.CountChange

Deletion DeletionDeltaValidator.DeletionChange

Price PriceDeltaValidator.PriceChange

Selection status (change 
between selected and 
deselected)

SelectionDeltaValidator.SelectionChange

Logic state (of a node) StateDeltaValidator.StateChange

Satisfaction (change 
between satisfied and 
unsatisfied)

UnsatisfactionDeltaValidator.UnsatisfactionChange

ValidationFailure 
messages

ValidationDeltaValidator.ValidationChange

Each change object (inner class) implements the method getType() of the interface 
IValidatorChange. Each inner class must also implement any methods that are 
appropriate to their particular change type. See Custom Method to Update a Region, 
page 10-11 for examples of how you would use both the IValidatorChange 
methods and the type-specific methods.

Role of the IValidatorChange Interface
The IValidatorChange interface:

• Represents any kind of DeltaValidator change. It is implemented by all 
DeltaValidators to represent their specific change object.

• Is the interface for the class ValidatorChange, which is the base class for all the 



Configuration Session Change Tracking    10-7

change-object inner classes described in Role of DeltaValidators, page 10-5.

• Provides the method getType(), which returns one of the DeltaValidator type 
constants defined in the DeltaValidator object. See Custom Method to Update a 
Region, page 10-11 for an example of how you would use this method.

Starting a Session
Your client should perform the following steps once, at the beginning of a configuration
session.

1. Create a Configuration object.

See Creating a Configuration Object, page 10-7 in Creating a Configuration 
Object, page 10-7.

2. Create a DeltaManager object and associate it with the Configuration object.

See Associating a DeltaManager with a Configuration, page 10-8 in Associating a 
DeltaManager, page 10-8.

3. Specify the DeltaValidators corresponding to the change types you want to track 
during the configuration session.

See Specifying DeltaValidators, page 10-8 in Specifying DeltaValidators, page 10-
8.

4. Get a list of the nodes in the region whose changes you are interested in tracking 
and register that region.

See Registering a DeltaRegion: All Nodes, page 10-9 or Registering a DeltaRegion:
Subset of Nodes, page 10-9 in Registering DeltaRegions, page 10-8.

Creating a Configuration Object
If you are working with a custom application, create a Configuration object, as 
described in see Creating Configurations, page 5-2 for required background 
information. See especially Creating a Configuration Object (MyConfigCreator.java), 
page 5-5.

Creating a Configuration Object
...
// Create a new Configuration and DeltaManager
ConfigParameters params = new ConfigParameters(modelId);
Configuration config = cio.startConfiguration(params, context);
...

Note: The fragmentary code examples in this section are meant to be 
read together, as parts of a larger example. Identifiers are shared 



10-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

between examples; where the same identifier occurs in multiple 
examples, it refers to the same object. These fragmentary examples are 
assembled together in Tracking Session Changes (DeltaExample.java), 
page B-13.

Associating a DeltaManager
Associate a DeltaManager object with the Configuration object for the current 
configuration session.

Associating a DeltaManager with a Configuration
...
DeltaManager deltaMgr = config.createDeltaManager("MyDeltaMgr");
...

Specifying DeltaValidators
Create DeltaValidator objects for the change types that you want to track during the 
configuration session. Then add them to a list that can be used to register the 
DeltaValidators for a DeltaRegion (shown in Registering a DeltaRegion: All Nodes, 
page 10-9).

Specifying DeltaValidators
...
// Create a Navigation (Tree) region. This is interested in watching
// all runtime nodes for instance name, instantiation, and 
unsatisfaction
// changes.
List dvList = new ArrayList();
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANCE_NAME_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANTIATION_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV
));
...

Registering DeltaRegions
Register a DeltaRegion with the DeltaManager, passing it the list of nodes to watch and 
the list of DeltaValidators to watch them with (dvList, defined in Specifying 
DeltaValidators, page 10-8). 

You can also register an individual DeltaValidator, using 
DeltaManager.registerDeltaValidator().

Registering a DeltaRegion: All Nodes, page 10-9 shows the registration of a region 
using all of the runtime nodes in the Configuration (config.getRuntimeNodes()). 
If you want to use some subset of the runtime nodes (such as only the nodes visible in 
the user interface), then you must implement a custom method to do so. This alternative
is shown in Registering a DeltaRegion: Subset of Nodes, page 10-9, using the 
hypothetical custom method getRuntimeNodesInSelectedComponent().



Configuration Session Change Tracking    10-9

Registering a DeltaRegion: All Nodes
...
List watchedNodes = config.getRuntimeNodes();
DeltaRegion treeRegion = deltaMgr.registerRegion(watchedNodes, dvList, 
"MyTreeRegion");
...

Registering a DeltaRegion: Subset of Nodes
...
// Create a component region. This region displays a Component screen 
and is
// interested in watching all nodes in that component for availability, 
count,
// price, state and unsatisfaction changes
dvList.clear();
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.AVAILABILITY_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.COUNT_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.PRICE_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.STATE_DV));
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV))
;

watchedNodes = getRuntimeNodesInSelectedComponent(); // a custom method,
not defined here

DeltaRegion compRegion = deltaMgr.registerRegion(watchedNodes, dvList, 
"MyCompRegion");
...

Tracking Session Changes
Your client should perform the following steps each time it needs to track a session 
change to the current configuration. Most of the code examples shown in this section 
are shown in a more complete context in Tracking Session Changes 
(DeltaExample.java), page B-13.

1. Begin a configuration transaction. See Using Logic Transactions, page 7-1 for 
background.

Example
ConfigTransaction tran = config.beginConfigTransaction();

2. Perform the change, by making an assertion. For background details, see Getting 
and Setting Logic States, page 6-6 and Getting and Setting Numeric Values, page 6-
9. The following example fragment shows how to select the Option node named 
Option1.

Example
// Make an assertion to change the current configuration
try { 
Option option1 = 
(Option)config.getRootComponent().getChildByName("Feature").getChild
ByName("Option1");
option1.select();
 } catch (LogicalException loe) { } 



10-10    Oracle Configurator Extensions and Interface Object Developer's Guide 

3. Close the configuration transaction.

Example
config.commitConfigTransaction(tran); 

4. Query the configuration for the changes of interest. Update the list of changes that 
you can use to update a region that you registered. The following example updates 
the change map for the region registered in Registering a DeltaRegion: All Nodes, 
page 10-9.

Example
// Get the deltas due to this assertion and update the tree and 
component regions
Map treeChanges = deltaMgr.getUpdateMapForRegion("MyTreeRegion");

5. Update the region that you registered (as in Registering a DeltaRegion: All Nodes, 
page 10-9), using a custom method. The custom method updateTreeRegion() is 
described in Updating a Region, page 10-10.

Example
// Now update the tree region cache and UI with treeChanges
updateTreeRegion(treeChanges);

Updating a Region
When you need to update a region with the a list of the changes that your client has 
been tracking with the DeltaManager, you can invoke a custom method such as 
updateTreeRegion(), whose definition is shown in Custom Method to Update a 
Region, page 10-11. This method operates as follows:

1. Take as an argument the changes object that is a Map of the changed nodes in the 
registered region (MyTreeRegion). See Tracking Session Changes, page 10-9 for a 
description of when this updating takes place.

The map of changed nodes consists of a set of pairs, in which the key is a 
RuntimeNode object, and the value is a collection of IValidatorChange objects.

2. Iterate over the nodes in the Map of changed nodes. Use a custom method, such as 
getUiNode() in the example, to get access to the UI node corresponding to the 
changed node object.

3. Iterate over the List of changes for the node, using each change to set the value of 
the IValidatorChange object change.

4. For each change, call IValidatorChange.getType(), which returns the type of 
the change in a form that corresponds to one of the change types defined in the 
class DeltaValidator, such as INSTANCE_NAME_DV.

5. Using a switch control structure, switch on the change type. For each change type,
cast the change object to the actual implementing class of the change, such as 



Configuration Session Change Tracking    10-11

InstanceNameChange.

Example
InstanceNameDeltaValidator.InstanceNameChange nameChange = 
InstanceNameDeltaValidator.InstanceNameChange)change;

6. Using the particular change object for the change, use a custom method to update 
the UI node corresponding to the changed node object.

Example
String newName = nameChange.getInstanceName();
uiNode.setName(newName); // custom method on uiNode

Custom Method to Update a Region
public static void updateTreeRegion(Map changes) {
  for (Iterator iter = changes.keySet().iterator(); iter.hasNext();) {
    RuntimeNode changedNode = (RuntimeNode)iter.next();
    uiNode = getUiNode(changedNode); // custom method
    Collection nodeChanges = (Collection)changes.get(changedNode);
    for (Iterator iter2 = nodeChanges.iterator(); iter2.hasNext();) {
      IValidatorChange change = (IValidatorChange)iter2.next();
      switch (change.getType()) {
        case DeltaValidator.INSTANCE_NAME_DV:
          InstanceNameDeltaValidator.InstanceNameChange nameChange = 
InstanceNameDeltaValidator.InstanceNameChange)change;
          String newName = nameChange.getInstanceName();
          uiNode.setName(newName); // custom method on uiNode
          break;
        case DeltaValidator.INSTANTIATION_DV:
          InstantiationDeltaValidator.InstantiationChange iChange = 
(InstantiationDeltaValidator.InstantiationChange) change;
          Collection added = iChange.getNewlyAddedInstances();
          Collection deleted = iChange.getNewlyDeletedInstances();
          uiNode.updateInstances(added, deleted); // custom method on 
uiNode
          break;
        case DeltaValidator.UNSATISFACTION_DV:
          UnsatisfactionDeltaValidator.UnsatisfactionChange uChange = 
(UnsatisfactionDeltaValidator.UnsatisfactionChange) change;
          boolean unsatisfied = uChange.isUnsatisfied();
          uiNode.setUnsatisfied(unsatisfied); // custom method on uiNode
          break;
      }
    }
  }

Handling Screen Changes
When a screen change (such as a screen flip to another UI page) occurs in your client's 
user interface, you should update the list of watched nodes in each DeltaRegion, so that 
you can get a list of the changes made to the nodes whenever you need such a list.

The manner in which you update the watched nodes depends on how extensive are the 
changes to the region you are watching. 

• If the general layout of the region is unchanged, and only the set of nodes in the 
region may have changed, you can simply clear the list of watched nodes, get the 



10-12    Oracle Configurator Extensions and Interface Object Developer's Guide 

list of currently interesting nodes, then add that list to the region's list of nodes to 
watch. This approach is shown in Updating Watched Nodes: Screen Format 
Unchanged , page 10-12.

Updating Watched Nodes: Screen Format Unchanged 
...
rgn1.clearWatchedNodes(); 
List visibleNodes = getCurrentVisibleNodes(); // custom method
rgn1.addWatchedNodes(visibleNodes); 
...

You must define the custom method used to get the visible nodes, 
getCurrentVisibleNodes().

• If the general layout of the region has changed significantly, then you should 
unregister the region, rebuild the list of DeltaValidators, and register the region, 
specifying all the nodes and the list of DeltaValidators. This approach is shown in 
Updating Watched Nodes: Screen Format Changed Significantly, page 10-12.

Updating Watched Nodes: Screen Format Changed Significantly
...
mgr.unRegisterRegion(rgn1.getId()); 
List dvList = new ArrayList(); 
dvList.add(dm.getDeltaValidator(DeltaValidator.PRICE_DV)); 
dvList.add(dm.getDeltaValidator(DeltaValidator.AVAILABILITY_DV)); 
rgn1 = mgr.registerRegion(config.getRuntimeNodes(), dvList, null); 
...

Creating a Custom DeltaValidator
It is possible, but unlikely, that you may need to write custom DeltaValidators for 
change types that are not already defined in the CIO. See Role of DeltaValidators, page 
10-5 for an explanation of DeltaValidators and a description of the default 
DeltaValidators provided with the CIO.

In order to create a custom DeltaValidator, you must do the following:

• Define a subclass that extends DeltaValidator. This class is your custom 
DeltaValidator. For example:

Example
public class MyCustomDeltaValidator extends DeltaValidator {
  // constructor
  protected MyCustomDeltaValidator() {
    setType(MY_CUSTOM_DV);
  }

• Define a change object that represents the type of change that your custom 
DeltaValidator is designed to track. This change object class must implement the 
interface IValidatorChange. See Role of the IValidatorChange Interface, page 10-
6.



Configuration Session Change Tracking    10-13

Example
public class MyCustomChange extends ValidatorChange {
// Implement your change object here
}

In the DeltaValidators defined in the CIO, the change object is defined as an inner 
class, but this design decision is not mandatory.

• In the custom DeltaValidator, define a constant that designates your custom type of 
DeltaValidator and the change type that it tracks. The value of the constant must be 
greater than DeltaValidator.CUSTOM_DV (which is currently defined as 1000, 
though you should not directly reference that value). Example:

Example
public static final int MY_CUSTOM_DV = DeltaValidator.CUSTOM_DV + 1;

• In the custom DeltaValidator, implement the method isChanged(), which is 
defined as abstract in DeltaValidator:

Example
protected abstract boolean isChanged(IRuntimeNode node, DeltaRegion 
region)

Your implementation must determine if there are any changes to be reported for the
runtime node by this DeltaValidator, for the given region.

• In the custom DeltaValidator, implement the method getChange(), defined as 
abstract in DeltaValidator:

Example
protected abstract IValidatorChange getChange(IRuntimeNode node, 
DeltaRegion region)

Your implementation must get the change object for this node. For example:

Example
protected IValidatorChange getChange(IRuntimeNode node, DeltaRegion 
region) {
  MyCustomChange change = new MyCustomChange();  return change;
}

• In the change-object class, implement the method getType() from the interface 
IValidatorChange. Your implementation must return the change type, which 
corresponds to the custom DeltaValidator type that you defined. For example:

Example
public int getType() {
  return MyCustomDeltaValidator.MY_CUSTOM_DV;
}

• Include your custom DeltaValidator in list of DeltaValidators passed to 
DeltaManager.registerRegion(). See Registering DeltaRegions, page 10-8. 
You can also register a custom DeltaValidator independently, using 
DeltaManager.registerDeltaValidator(), which adds a DeltaValidator to 
the list of existing ones. This will enable different regions to use the same instance 



10-14    Oracle Configurator Extensions and Interface Object Developer's Guide 

of your custom DeltaValidator.

Unified Code Example for Change Tracking 
The code in Tracking Session Changes (DeltaExample.java), page B-13 assembles 
together the fragmentary examples shown elsewhere in this chapter.



Logging Through the CIO    11-1

11
Logging Through the CIO

This chapter describes how you can use the Oracle Applications Logging Framework 
with Oracle Configurator and the Oracle Configuration Interface Object to provide a 
convenient and uniform interface for logging their activity.

This chapter covers the following topics:

• Overview of Logging

• Enabling Logging Scope

• Creating Entries in the Log

• Recommended Practices for Logging

• Example of Logging

• Logging for a Custom Application

Overview of Logging
This chapter provides basic information about logging the operations you perform with 
the CIO, especially those inside Configurator Extensions.

Oracle Configurator and the Oracle Configuration Interface Object use the Oracle 
Applications Logging Framework to provide a convenient and uniform interface for 
logging their activity.

For references to Oracle documentation about the Oracle Applications Logging 
Framework, see Troubleshooting, page 1-9.

Logging through the CIO requires these essential actions:

• Enabling Logging Scope, page 11-2

• Creating Entries in the Log, page 11-4

• Recommended Practices for Logging, page 11-6



11-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

These actions are illustrated together by Example of Logging, page 11-7.

Note: Logging through the CIO is primarily intended for use within 
Configurator Extensions, but you can also use it in custom applications 
that use the CIO directly. See Logging for a Custom Application, page 
11-9.

Enabling Logging Scope
In order to enable the creation of log entries through the CIO you must set the following
parameters for the Oracle Applications Logging Framework:

• AFLOG_ENABLED, to turn on logging.

• AFLOG_MODULE, to specify the Java packages or classes that you wish to log, 
using the parameters described in Values for AFLOG_MODULE, page 11-3.

• AFLOG_LEVEL, to specify the level of entries that you wish to log, using the 
parameters described in Values for AFLOG_LEVEL, page 11-3.

• AFLOG_FILENAME, to specify the file where middle-tier log messages are written.

• AFLOG_ECHO, to optionally echo all filtered logging messages to STDERR.

These parameters can be set as middle-tier properties or as database profile options. The
parameter names listed here are for middle-tier properties. See the Oracle Applications 
Supportability Guide for information on how to set these parameters as database profile 
options.

The table Values for AFLOG_MODULE, page 11-3 lists the strings that you can 
include in the AFLOG_MODULE parameter to identify the Java packages or classes that
you wish to log. The AFLOG_MODULE parameter is a comma-delimited filter against 
which the module names of log messages are compared.



Logging Through the CIO    11-3

Values for AFLOG_MODULE

Value Description

cz% Logs with attribution to the log-writing method 
Configuration.writeCXLogEntry(). This setting logs all activity 
by Oracle Configurator during a configuration session, regardless of 
which class in your Configurator Extension or custom application 
caused the entry to be written. Allows you to examine the activity of 
your classes in the context of Oracle Configurator activity. 

The Oracle Applications Logging Framework ignores oracle.apps. at
the beginning of a package name, so to specify oracle.apps.cz.cio, 
you only specify cz.cio.

Examples:

Example
cz%
cz.cio%

packagepath% Logs with attribution to the methods in your own Configurator 
Extension or custom application classes that caused the entry to be 
written. This setting logs only activity by your Configurator Extension or
custom application during a configuration session and omits the 
surrounding activity by Oracle Configurator.

Examples:

Example
acme%
acme.rocket%

The table Values for AFLOG_LEVEL, page 11-3 lists the Oracle Applications Logging 
Framework logging levels in order of increasing severity. You must specify one of the 
supported levels when enabling logging through the CIO.

Values for AFLOG_LEVEL

Value Description

STATEMENT Used for low-level progress reporting.

PROCEDURE Used for API-level progress reporting.

EVENT Used for high-level progress reporting.



11-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Value Description

EXCEPTION Not supported. Indicates a handled internal software failure.

ERROR Not supported. Indicates an external end user error.

UNEXPECTED Not supported. Indicates unhandled internal software failure.

Caution: Logging through the CIO does not support use of the more 
severe logging levels provided by the Oracle Applications Logging 
Framework, namely: EXCEPTION, ERROR, and UNEXPECTED.

See Troubleshooting, page 1-9 for references to more information about 
AFLOG_MODULE.

Creating Entries in the Log
Creating entries in the log requires performing these essential actions in your 
Configurator Extension or custom application code:

• Testing Whether Logging Is Enabled, page 11-4

• Writing Log Entries, page 11-5

In the Oracle Applications Logging Framework, the term module refers to a Java class 
when it is applied to a Java framework, so that term is used for consistency in the 
descriptions in this section.

Testing Whether Logging Is Enabled
You test whether logging is enabled by calling the method 
Configuration.isCXLogEnabled(). The syntax for this method is as follows:

Example
public final boolean isCXLogEnabled(module, logLevel)

Parameters for isCXLogEnabled(), page 11-5 describes the parameters for this method.
Notice that the parameter module can be either an Object or a String. There are separate
signatures of isCXLogEnabled() for each data type.

The table Logging Through the CIO, page 11-8 provides an example of how to use 
this method. 



Logging Through the CIO    11-5

Parameters for isCXLogEnabled()

Data 
Type

Parameter Description

Object or 
String

module If you pass an Object, this parameter specifies the Java class to 
which the log entry will attributed. The typical value for this 
parameter is the Java keyword this.

If you pass a String, this parameter specifies the fully-qualified 
name of the Java class, including its package, to which the log 
entry will attributed. This form is provided for use with static 
methods, since Java technology does not allow the use of the 
keyword this in static methods.

A runtime exception is raised if this parameter is null.

This description also applies to the parameter of the same name in 
Parameters for writeCXLogEntry(), page 11-6.

int logLevel The level of detail at which logging is enabled. Must be one of the 
following constants:

• Configuration.CXLOG_STATEMENT

• Configuration.CXLOG_PROCEDURE

• Configuration.CXLOG_EVENT

The specified level must correspond to one of the supported levels 
specified for AFLOG_LEVEL, as listed in Values for 
AFLOG_LEVEL, page 11-3. For example, if you specify 
Configuration.CXLOG_STATEMENT for this parameter, then 
AFLOG_LEVEL must specify STATEMENT.

A runtime exception is raised if this parameter specifies an 
unsupported level.

This description also applies to the parameter of the same name in 
Parameters for writeCXLogEntry(), page 11-6.

Writing Log Entries
You write an entry by calling the method Configuration.writeCXLogEntry(). 
The syntax for this method is as follows:

Example
public final void writeCXLogEntry(module, methodName, label, message, 
logLevel)



11-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

The table Parameters for writeCXLogEntry(), page 11-6 describes the parameters for 
this method. Notice that the parameter module can be either an Object or a String. 
There are separate signatures of writeCXLogEntry() for each data type.

Logging Through the CIO, page 11-8 provides an example of how to use this method.

Parameters for writeCXLogEntry()

Data 
Type

Parameter Description

Object 
or 
String

module See the description of the parameter of the same name in Parameters
for isCXLogEnabled(), page 11-5.

String methodName The name of your Java method that is calling writeCXLogEntry()
. This name is written to the log.

A runtime exception is raised if this parameter is null or consists of 
white space.

String label An optional string. Use to provide additional context for the entry in
the log.

String message An optional string. Use to write the log message that describes the 
situation being logged.

int logLevel See the description of the parameter of the same name in Parameters
for isCXLogEnabled(), page 11-5.

Recommended Practices for Logging
When logging through the CIO, you should follow these practices:

• When writing a log entry with writeCXLogEntry(), always wrap that invocation
with a test that uses isCXLogEnabled(). This prevents the unnecessary 
invocation of writeCXLogEntry() when logging is not enabled, which can affect 
performance.

See Example of Logging, page 11-7 for an example of this practice.

• If you are handling an exception, you can add an explicit invocation of 
writeCXLogEntry() in the catch block of your exception handling routine, 
specifying any of the supported logging levels listed in Values for AFLOG_LEVEL, 
page 11-3. Note that the CIO logs exceptions even if you do not add this explicit 
invocation, but adding it may ease your debugging work.



Logging Through the CIO    11-7

• Set the logLevel parameter for writeCXLogEntry() to the level that provides 
you with the most useful information. See the table Values for the logLevel 
Parameter, page 11-7 for guidance.

Values for the logLevel Parameter

Value Description

CXLOG_STATEMENT Use for low-level progress reporting. Most of your log data will be
written at this level.

Note that using this level can affect performance, since it requires 
more logging activity.

CXLOG_PROCEDURE Use for API-level progress reporting. Log at this level to report the
entrance into or exit from a Java method of particular interest.

CXLOG_EVENT Use for high-level reporting of significant configuration session 
events, such as the restoring of a configuration or the selection of a
particular Model node.

This level is not necessarily equivalent to an event that triggers a 
Configurator Extension, though you can choose to log such events
at this level.

This level provides the best logging performance.

Example of Logging
The example Logging Through the CIO, page 11-8 illustrates how your code can use 
the logging methods described in Creating Entries in the Log, page 11-4. These methods
are highlighted typographically in . The example also highlights these requirements:

• The methodName, page 11-6 parameter must match the name of the enclosing 
method.

• The logLevel, page 11-5 parameter must agree with the setting of AFLOG_LEVEL, 
which is assumed to be STATEMENT, in this example.



11-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

Logging Through the CIO
package acme.code;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.IRuntimeNode;

public class MyClass {
    // ... other code here to interact with configuration ...
    public void selectIt(IRuntimeNode rtNode) {
        Configuration cfg = rtNode.getConfiguration();
        // ... other code here to select a node ...
        if (cfg.isCXLogEnabled(this, Configuration.CXLOG_STATEMENT)) {
            cfg.writeCXLogEntry(this, 
                                "selectIt", 
                                null,
                                "Selecting a node.",   
                                Configuration.CXLOG_STATEMENT); 
        }
    }
}

Log File Entry When AFLOG_MODULE Includes cz%, page 11-8 and Log File Entry 
When AFLOG_MODULE Includes acme%, page 11-9 show the log entries produced 
by the code fragment in Logging Through the CIO, page 11-8, with differing settings for
AFLOG_MODULE, as described in Enabling Logging Scope, page 11-2. 

• Log File Entry When AFLOG_MODULE Includes cz%, page 11-8 shows the effect 
of setting AFLOG_MODULE to cz%.

• Log File Entry When AFLOG_MODULE Includes acme%, page 11-9 shows the 
effect of setting AFLOG_MODULE to acme%.

Log File Entry When AFLOG_MODULE Includes cz%
[Oct 28, 2004 9:53:58 AM PDT] : 
1098982438703:Thread[HttpRequestHandler-94,5,main]: -1: -1: ap723jdv: 
139.185.20.44: -1:-1: STATEMENT:[cz.cio.Configuration.writeCXLogEntry]:
[null_4e9d2fd_2 1 2] CXLog> [acme.code.MyClass.selectIt] Selecting 
Option 1

In Log File Entry When AFLOG_MODULE Includes cz%, page 11-8:

• The entry begins with standard Oracle Applications Logging Framework 
information.

Example
[Oct 28, 2004 9:53:58 AM PDT] : 
1098982438703:Thread[HttpRequestHandler-94,5,main]: -1: -1: 
ap723jdv: 139.185.20.44: -1:-1: STATEMENT

• The next part of the entry shows the attributing class and method:

Example
:[cz.cio.Configuration.writeCXLogEntry]

Notice that the attributing class and method are Configuration and 
writeCXLogEntry(), which are the ones that actually wrote the entry.

• The final part of the entry shows the logging message (which begins with the 



Logging Through the CIO    11-9

standard logging footprint text for Oracle Configurator):

Example
:[null_4e9d2fd_2 1 2] CXLog> [acme.code.MyClass.selectIt] Selecting 
a node.

Notice that the message includes the prefix CXLog> and the full path to your 
method that called writeCXLogEntry().

Log File Entry When AFLOG_MODULE Includes acme%
[Oct 28, 2004 9:53:58 AM PDT] : 
1098982438703:Thread[HttpRequestHandler-94,5,main]:-1: -1: ap723jdv: 
139.185.20.44: -1:-1: STATEMENT:[acme.code.MyClass.selectIt]:
[null_4e9d2fd_2 1 3] Selecting Option 1

In Log File Entry When AFLOG_MODULE Includes acme%, page 11-9:

• The entry begins with standard Oracle Applications Logging Framework 
information.

Example
[Oct 28, 2004 9:53:58 AM PDT] : 
1098982438703:Thread[HttpRequestHandler-94,5,main]: -1: -1: 
ap723jdv: 139.185.20.44: -1:-1: STATEMENT

• The next part of the entry shows the attributing class and method:

Example
:[acme.code.MyClass.selectIt]

Notice that the message shows the full path to your method that called 
writeCXLogEntry().

• The final part of the entry shows the logging message (which begins with the 
standard logging footprint text for Oracle Configurator):

Example
:[null_4e9d2fd_2 1 3] Selecting a node.

Notice that the message shows only the text that you passed as an argument to the 
message parameter of writeCXLogEntry().

Logging for a Custom Application
Logging through the CIO is primarily intended for use within Configurator Extensions 
operating against a generated Oracle Configurator user interface, but you can also use 
logging in custom applications that use the CIO directly against a custom user interface.

Note: Custom applications that have previously used the CZLog object 
should instead use the logging framework described in this chapter. 
The CZLog object is now deprecated.

Logging through a custom application is similar to the logging described in this 
chapter, especially in Creating Entries in the Log, page 11-4 and Values for 



11-10    Oracle Configurator Extensions and Interface Object Developer's Guide 

AFLOG_LEVEL, page 11-3, but with the following differences:

• You create an instance of the class 
oracle.apps.cz.utilities.NonCtxLogWriter, to be a logging object that 
takes the place of the Configuration object 

• You write entries to the log by using the interface 
oracle.apps.cz.utilities.LogWriter

For an example of custom logging, see the code fragment under Logging Through the 
CIO for a Custom Application, page 11-10, and compare it to the example code shown 
under Logging Through the CIO, page 11-8.

Logging Through the CIO for a Custom Application
package acme.code;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.IRuntimeNode;
import oracle.apps.cz.utilities.NonCtxLogWriter;
import oracle.apps.cz.utilities.LogWriter;

public class MyClass {
    // ... other code here to interact with configuration ...
    public void selectIt(IRuntimeNode rtNode) {
        Configuration cfg = rtNode.getConfiguration();
        // ... other code here to select a node ...

        // Create a logging object
        NonCtxLogWriter nclw = new NonCtxLogWriter(); 
        if (nclw.isEnabled(LogWriter.STATEMENT, this)) {
            nclw.write(this, 
                       "selectIt",
                        null,
                        "Selecting a node.",
                        LogWriter.STATEMENT);
        }
    }
}



Reference Documentation for the CIO    A-1

A
Reference Documentation for the CIO

This appendix explains how to access the reference documentation for the CIO, which is
generated in Javadoc format.

This appendix covers the following topics:

• About This Appendix

About This Appendix
Reference documentation for the Oracle Configuration Interface Object is provided in 
the form of its API specification, delivered as pages generated by the Javadoc tool from 
the source code for the CIO.

For the location of the API specification for this release, see Oracle Configurator 
Documentation Resources, Release 12, Oracle MetaLink Document 394478.1.





Code Examples    B-1

B
Code Examples

This appendix contains code examples illustrating the use of Configurator Extensions 
and the CIO.

This appendix covers the following topics:

• About This Appendix

• Generating Output Related to Model Structure

• Using Requests

• Sharing a Configuration Session in a Child Window

• Tracking Configuration Session Changes

About This Appendix
This appendix contains code examples illustrating the use of Configurator Extensions 
and the CIO. These examples are fuller and longer than the examples provided in the 
rest of this document, which are often fragments. For each example, see the cited 
background sections for explanatory details.

Generating Output Related to Model Structure
This Configurator Extension produces an HTML representation of the runtime Model 
tree, beginning at a node specified in the Configurator Extension binding.

For the detailed procedure for creating a Configurator Extension Rule, see Building 
Configurator Extensions, page 2-1 and the Oracle Configurator Developer User's Guide. For
specific information on building a Configurator Extension for generating custom 
output, see Generating Custom Output, page 3-2.

Here is a summary of the tasks specific to this example:

• Use the Java source code in Generating Output with a Configurator Extension 
(ShowStructureCX.java), page B-4 for your Java archive file and Configurator 



B-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Extension Archive.

• When you define your Configurator Extension rule, use the options listed in the 
following table:

Option Choose ...

Model Node The node of your Model on which you want
the button for the command event to be 
placed by Oracle Configurator. This node is 
independent of the node in the Model tree 
from which the Configurator Extension 
begins showing structure.

Java Class ShowStructureCX, from your 
Configurator Extension Archive

Java Class Instantiation With Model Node Instance

• When you define your event binding, use the options listed in the following table:

Option Choose ...

Event onCommand

Command Name A string that you choose as a command. For
example: Show Structure. Do not 
enclose the string in quotation marks. The 
string can contain spaces.

Event Scope Your choice of scope. Try repeating the 
example with different scopes to see the 
effect when you test it.

Method Name showModelStructure

• When you define your argument bindings, use the options listed in the following 
tables:



Code Examples    B-3

Option Choose ...

Argument Type javax.servlet.http.HttpServletRe
sponse

Argument Specification Event Parameter

Binding HttpServletResponse

Option Choose ...

Argument Type oracle.apps.cz.cio.IRuntimeNode

Argument Specification Model Node or Property

Binding The node of your Model from which you 
want to begin showing hierarchical Model 
structure.

The example first calls the response.setContentType() method of the 
HttpServletResponse class, passing "text/html" as the output type.

The following line is required for compatibility with Microsoft Internet Explorer:

Example
response.setHeader ("Expires", "-1");

Then the example calls response.getWriter() to get an output stream to which the 
Configurator Extension can write HTML. 

You can also write non-HTML output by setting a different content type (a MIME type) 
and writing appropriate data to the output stream.

In the private method generateNode(), you can call either 
IRuntimeNode.getCaption(), as shown, or IRuntimeNode.getName(). 
However, getCaption() reflects changes to the name of a component instance made 
with Component.setInstanceName(), as described in Renaming Instances of 
Components, page 6-4, while getName() does not.



B-4    Oracle Configurator Extensions and Interface Object Developer's Guide 

Generating Output with a Configurator Extension (ShowStructureCX.java)
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServletResponse;
import com.sun.java.util.collections.Iterator;
import oracle.apps.cz.cio.IRuntimeNode;

/**
 * Displays a textual rendition of the model structure tree.
 *
 */

public class ShowStructureCX {

/**
 * Bind node parameter to the node from which to start rendering model 
structure.
 */

  public void showModelStructure(HttpServletResponse response, 
IRuntimeNode node) throws IOException {
    response.setContentType("text/html");
    PrintWriter out = response.getWriter();
    out.println("<html>");
    out.println("<head>");
    out.println("<title>Runtime Model Structure</title>");
    out.println("</head>");
    out.println("<body>");
    out.println("<h3>Runtime Model Structure</h3>");
    generateNode(out, node, 0);
    out.println("</body>");
    out.println("</html>");
  }

  private static void generateNode(PrintWriter out, IRuntimeNode node, 
int level) throws IOException {
    for (int i = 0; i < level; ++i) {
      out.print("--");
    }
    //    out.println(node.getName() + " <br> "); // doesn't get changed
instance names
    out.println(node.getCaption() + " <br> ");
    for (Iterator i = node.getChildren().iterator(); i.hasNext(); ) {
      IRuntimeNode childNode = (IRuntimeNode)i.next();
      generateNode(out, childNode, (level + 1));
    }
  }
}

Using Requests
For background, see Using Requests, page 9-1.

Setting Nonoverridable Requests
This example shows how to designate a group of requests as nonoverridable requests, 
by using ConfigTransaction.useNonOverridableRequests(). For background,



Code Examples    B-5

see Nonoverridable Requests, page 9-3. 



B-6    Oracle Configurator Extensions and Interface Object Developer's Guide 

Setting Nonoverridable Requests (NonOverridableTest.java)
import oracle.apps.cz.cio.BooleanFeature;
import oracle.apps.cz.cio.Component;
import oracle.apps.cz.cio.ComponentSet;
import oracle.apps.cz.cio.ConfigTransaction;
import oracle.apps.cz.cio.Configuration;
import oracle.apps.cz.cio.IInteger;
import oracle.apps.cz.cio.IOption;
import oracle.apps.cz.cio.IRuntimeNode;
import oracle.apps.cz.cio.IState;
import oracle.apps.cz.cio.IText;
import oracle.apps.cz.cio.LogicalException;
import oracle.apps.cz.cio.LogicalOverridableException;
import oracle.apps.cz.cio.NoSuchChildException;
import com.sun.java.util.collections.Iterator;

/**
 * Demonstrates the use of nonoverridable requests.
 */

public class NonOverridableTest {

    /**
     * Makes requests while in "nonoverridable request mode".
     * @param config in a CX, bind to the System Parameter 
"Configuration"
     * @param comp a Component whose structure reflects this example 
code
     */
   public void testOverride(Configuration config, IRuntimeNode comp) 
throws LogicalException {

       ConfigTransaction itr = null;

       try {
           // Begin a transaction that uses nonoverridable requests
           // ---------------------------------------------------
           itr = config.beginConfigTransaction();
           itr.useNonOverridableRequests();
           
           // Try setting an Option Feature with mutually exclusive 
Options.
           IRuntimeNode of1 = comp.getChildByName("option_feature_1");
           // Select option_1
           ConfigTransaction tr = config.beginConfigTransaction();
           ((IOption)of1.getChildByName("option_1")).select();
           config.commitConfigTransaction(tr);
           // Select option_2      
           tr = config.beginConfigTransaction();
           ((IOption)of1.getChildByName("option_2")).select();
           config.commitConfigTransaction(tr);

           // Try setting a value for an Integer Feature.
           tr = config.beginConfigTransaction();
           
((IInteger)comp.getChildByName("integer_feature_1")).setIntValue(33);
           config.commitConfigTransaction(tr);

           // Try overriding a Boolean value.
           // Assume that boolean_feature_1 NEGATES boolean_feature_2. 
This should produce a contradiction.



Code Examples    B-7

tr = config.beginConfigTransaction();
           try {
               
((BooleanFeature)comp.getChildByName("boolean_feature_1")).setState(ISta
te.TRUE);
               
((BooleanFeature)comp.getChildByName("boolean_feature_2")).setState(ISta
te.TRUE);
           } catch (LogicalOverridableException loe) {
               loe.override();
           }
           config.commitConfigTransaction(tr);

           // Get next Component in Component set.
           ComponentSet cset = 
(ComponentSet)comp.getParent().getChildByName("component_set_1");
           Component cset_comp_1 = null;
           Iterator iter = cset.getChildren().iterator();
           if (iter.hasNext()) {
               cset_comp_1 = ((Component)iter.next());
           }

           // Try deleting a Component from a Component set. 
           // This is not allowed, and should produce a contradiction.
           try {
               tr = config.beginConfigTransaction();
               cset.delete(cset_comp_1);
               config.commitConfigTransaction(tr);
           } catch (LogicalException le) { // for cset.delete()
               config.rollbackConfigTransaction(tr);
               System.out.println("Expected exception in deleting 
component " + le);
           }

           // Try adding a Component to a Component set.
           // This is not allowed, and should produce a contradiction.
           try {
               tr = config.beginConfigTransaction();
               cset.add();
               config.commitConfigTransaction(tr);
           } catch (LogicalException le) { // for cset.add()
               config.rollbackConfigTransaction(tr);
               System.out.println("Expected exception in adding 
component " + le);
           }

           try {

               // Try setting value of a Text Feature of Component in 
Component set
               tr = config.beginConfigTransaction();
               IRuntimeNode featText = 
cset_comp_1.getChildByName("text_feature_1");
               ((IText)featText).setTextValue("any_text");
               config.commitConfigTransaction(tr);

               // Try overriding default value of an Integer Feature of 
Component in Component set
               IRuntimeNode intFeatDef = 
comp.getParent().getChildByName("integer_feature_default");
               tr = config.beginConfigTransaction();



B-8    Oracle Configurator Extensions and Interface Object Developer's Guide 

((IInteger)intFeatDef).setIntValue(50);  // Default value was 25
               config.commitConfigTransaction(tr);

               // Commit the transaction that used nonoverridable 
requests,
               // thus canceling "nonoverridable request mode"
               config.commitConfigTransaction(itr);
               // 
------------------------------------------------------------------
           
               // Make an ordinary user request:
               tr = config.beginConfigTransaction();
               
((IState)comp.getChildByName("boolean_feature_3")).setState(IState.TRUE)
;
               config.commitConfigTransaction(tr);
               /*  */
           } catch (LogicalException le) {  // for setTextValue(), 
setIntValue(), setState()
               le.printStackTrace();
               // here, you should log the exception and stack trace to 
a file
           } catch (NoSuchChildException nsce) { // for getChildByName()
               nsce.printStackTrace();
               // here, you should log the exception and stack trace to 
a file
           }

       } catch (LogicalException le) { // for select(), setIntValue(), 
           le.printStackTrace();
           // here, you should log the exception and stack trace to a 
file
       } catch (NoSuchChildException nsce) { // for getChildByName()
           nsce.printStackTrace();
           // here, you should log the exception and stack trace to a 
file
       }
   }
}

Getting a List of Failed Requests
This example shows how to use LogicalOverridableException.override() to 
override a logical contradiction and return a List of Request objects that represent all the
previously asserted user requests that failed due to the override that you are 
performing. For background, see Failed Requests, page 9-5.



Code Examples    B-9

Getting a List of Failed Requests (OverrideTest.java)
import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.*;
import oracle.apps.fnd.common.*;
import oracle.apps.cz.utilities.*;
import java.util.*;
import com.sun.java.util.collections.List;
import com.sun.java.util.collections.Iterator;

public class OverrideTest
{
  public static void main(String[] args)
  {
      ConfigTransaction tr = null;
      Configuration config = null;
      try {
          Class.forName("oracle.jdbc.driver.OracleDriver");
          CZWebAppsContext ctx = new 
CZWebAppsContext("/jdevhome/users/dbc_files/secure/server01_sid02.dbc");
// Use DBC file for context
          CIO cio = new CIO();
          int modelId = 5005; // hypothetical model ID
          ConfigParameters cp = new ConfigParameters(modelId);
          java.util.Calendar modelLookupDate =  Calendar.getInstance(); 
// current date and time
          cp.setModelLookupDate(modelLookupDate);
          config = cio.startConfiguration(cp, ctx);
          try {
              OptionFeature of = 
(OptionFeature)config.getRootComponent().getChildByName("Feature1");
              Option o1 = (Option) of.getChildByName("Option1");
              Option o2 = (Option) of.getChildByName("Option2");
              try {
                  tr = config.beginConfigTransaction();
                  o1.select();
                  o2.deselect();
                  config.commitConfigTransaction(tr);
              } catch (LogicalOverridableException loe) {
                  try {
                      // Get list of failed requests, if anyList list = 
loe.override();
                      System.out.println("Option1: " + o1+ " State: " + 
o1.getState());
                      System.out.println("Option2: " + o2+ " State: " + 
o2.getState());
                      printList(list);
                      config.commitConfigTransaction(tr);
                  } catch (LogicalException le) {
                      le.printStackTrace();
                      // here, you should log the exception and stack 
trace to a file
                      config.rollbackConfigTransaction(tr);
                  }
              } catch (LogicalException le) {
                  le.printStackTrace();
                  // here, you should log the exception and stack trace 
to a file
                  config.rollbackConfigTransaction(tr);
              }

          } catch (LogicalException le) {



B-10    Oracle Configurator Extensions and Interface Object Developer's Guide 

le.printStackTrace();
              // here, you should log the exception and stack trace to a
file
          } catch (NoSuchChildException nsce) {
              // Perform exception handling here
          }
      } catch (LogicalException le) {
          le.printStackTrace();
          // here, you should log the exception and stack trace to a 
file
      } catch (ModelLookupException mle) {
          // Perform exception handling here
      } catch(CheckedToUncheckedException ctue) {
          // Perform exception handling here
      } catch (ClassNotFoundException cnfe) {
          // Perform exception handling here
      } catch (oracle.apps.cz.utilities.EffectivityUsageException eue) {
          // Perform exception handling here
      } catch (BomExplosionException bee) {
          // Perform exception handling here
      }
  }

    public static void printList(List list) {
        Iterator iter = list.iterator();
        while (iter.hasNext()) {
            System.out.println("Node: " + iter.next());
        }
        System.out.println("***************\n");
    }
}

Sharing a Configuration Session in a Child Window
This example must use a child window of the kind described in Sharing a Configuration
Session, page 5-14, which describes the background and purpose of the example. The 
child window must be created with the HTML-based version of Oracle Configurator 
Developer and run with a generated Configurator UI for the runtime Oracle 
Configurator.

This JSP generates the contents of a child window and performs the following tasks: 

• Imports the necessary user classes by importing the CIO. Session-related classes, 
such as PageContext, are supplied by your servlet/JSP container.

• Gets the session's Configuration object (cfg) through the session key 
configurationObject. This allows the child window to modify the same 
configuration as the parent window.

• Gets the URL of the runtime Configurator in the parent window (retUrl) through 
the session key czReturnToConfiguratorUrl, so that control can return to it 
when the child window is closed.



Code Examples    B-11

• Modifies the state of the current configuration.

Example code for modifying the runtime configuration from the child window is 
shown after the comment // Start configuration changes here, page B-12. For 
simplicity, this code illustrates only basic interaction with the configuration model. 
For true interaction with the configuration model, you must tailor the code to your 
own circumstances.

The example here locates a node named Boolean Feature-1, checks whether it 
exists and is a Boolean Feature, and, if so, toggles its state. This action is performed 
when the end user clicks a button like that described in UI Specifications for 
Invoking Child Window, page 5-15. 

For background on modifying the runtime configuration model, see Working with 
Model Entities, page 6-1. For details on toggling state, see Setting the State of a 
Node, page 6-8 in Getting and Setting Logic States, page 6-6.

• Provides a button (labeled Close), which refreshes the parent window with the 
results of the child window's actions then closes the child window. This button calls
a function, refreshMainWdw(), that uses the URL of the parent window (retUrl
) to return control to it.



B-12    Oracle Configurator Extensions and Interface Object Developer's Guide 

Sharing a Configuration Session in a Child Window (TestChildWin.jsp)
<%@ page contentType="text/html;charset=windows-1252"
    import="oracle.apps.cz.cio.*"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; 
charset=windows-1252">
<title>
Test Child Window
</title>
</head>
<body>
<%
  // Get the session's configuration object, through 
javax.servlet.jsp.PageContext
  Configuration cfg = (Configuration)pageContext.getAttribute("
configurationObject", PageContext.SESSION_SCOPE);
  // Get URL of the runtime Configurator, so we can return to it.
  String retUrl = (String)pageContext.getAttribute("
czReturnToConfiguratorUrl", PageContext.SESSION_SCOPE);
  if (cfg != null) {
    out.println("<p>Got Configuration object from HTTP session. Can now 
modify the configuration.</p>");

// Start configuration changes here.
    IRuntimeNode node = cfg.getRootComponent().getChildByName("Boolean 
Feature-1");
    if (node != null && node instanceof BooleanFeature) {
      ((BooleanFeature)node).setState(IState.TOGGLE);
    }
  // End configuration changes here.

  }
%>
<script>
  function refreshMainWdw() {
    opener.location="<%= retUrl %>";
    window.close();

  }
</script>
<form>
  <input type="button" name="b1" value="Close" onclick="javascript:
refreshMainWdw();">
</form>
</body>
</html>

Tracking Configuration Session Changes
The code in Tracking Session Changes (DeltaExample.java), page B-13 assembles 
together the fragmentary examples shown in Configuration Session Change Tracking, 
page 10-1.



Code Examples    B-13

Tracking Session Changes (DeltaExample.java)
import com.sun.java.util.collections.*;
import oracle.apps.cz.cio.*;
import oracle.apps.cz.common.CZWebAppsContext;
import oracle.apps.fnd.common.Context;

public class DeltaExample 
{

   public static void main(String [] args) {
    // Define some constants
    int modelId = 1234;
    String dbcFilename = 
"/jdevhome/users/dbc_files/secure/server01_sid02.dbc";
    String user = "scott";
    String pwd = "tiger";

    try {
      // Load the JDBC Driver and create Context, CIO
      Class.forName("oracle.jdbc.driver.OracleDriver");
      Context context = new CZWebAppsContext(dbcFilename);
      context.getSessionManager().validateLogin( user, pwd);
      CIO cio = new CIO();
      cio.initializeAppsSession(context);

      // Create a new Configuration and DeltaManager
      ConfigParameters params = new ConfigParameters(modelId);
      Configuration config = cio.startConfiguration(params, context);
      DeltaManager deltaMgr = config.createDeltaManager("MyDeltaMgr");

      // Create a Navigation (Tree) region. This is interested in 
watching
      // all runtime nodes for instance name, instantiation, and 
unsatisfaction
      // changes.
      List dvList = new ArrayList();

      
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANCE_NAME_DV));

      
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.INSTANTIATION_DV));

      
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV))
;

      List watchedNodes = config.getRuntimeNodes();

      DeltaRegion treeRegion = deltaMgr.registerRegion(watchedNodes, 
dvList, "MyTreeRegion");

      // Create a component region. This region displays a Component 
screen and is
      // interested in watching all nodes in that component for 
availability, count,
      // price, state and unsatisfaction changes
      dvList.clear();
      
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.AVAILABILITY_DV));
      dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.COUNT_DV));



B-14    Oracle Configurator Extensions and Interface Object Developer's Guide 

dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.PRICE_DV));
      dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.STATE_DV));
      
dvList.add(deltaMgr.getDeltaValidator(DeltaValidator.UNSATISFACTION_DV))
;

      watchedNodes = getRuntimeNodesInSelectedComponent(); // a custom 
method, not defined here

      DeltaRegion compRegion = deltaMgr.registerRegion(watchedNodes, 
dvList, "MyCompRegion");

      // Make an assertion to change the current configuration
      Option option1 = 
(Option)config.getRootComponent().getChildByName("Feature").getChildByNa
me("Option1");
      option1.select();

      // Get the deltas due to this assertion and update the tree and 
component regions
      Map treeChanges = deltaMgr.getUpdateMapForRegion("MyTreeRegion");

      // Now update the tree region cache and UI with treeChanges
      updateTreeRegion(treeChanges);

      Map compChanges = compRegion.getUpdateMap();
      updateCompRegion(compChanges); // a custom method, not defined 
here 
    } catch (MyCustomException mce) {

      mce.printStackTrace();
// here, you should log the exception and stack trace to a file
    }
  }

  public static void updateTreeRegion(Map changes) {
    for (Iterator iter = changes.keySet().iterator(); iter.hasNext();) {
      RuntimeNode changedNode = (RuntimeNode)iter.next();
      uiNode = getUiNode(changedNode); // custom method
      Collection nodeChanges = (Collection)changes.get(changedNode);
      for (Iterator iter2 = nodeChanges.iterator(); iter2.hasNext();) {
        IValidatorChange change = (IValidatorChange)iter2.next();
        switch (change.getType()) {
          case DeltaValidator.INSTANCE_NAME_DV:
            InstanceNameDeltaValidator.InstanceNameChange nameChange = 
(InstanceNameDeltaValidator.InstanceNameChange)change;
            String newName = nameChange.getInstanceName();
            uiNode.setName(newName); // custom method on uiNode
            break;
          case DeltaValidator.INSTANTIATION_DV:
            InstantiationDeltaValidator.InstantiationChange iChange = 
(InstantiationDeltaValidator.InstantiationChange) change;
            Collection added = iChange.getNewlyAddedInstances();
            Collection deleted = iChange.getNewlyDeletedInstances();
            uiNode.updateInstances(added, deleted); // custom method on 
uiNode
            break;
          case DeltaValidator.UNSATISFACTION_DV:
            UnsatisfactionDeltaValidator.UnsatisfactionChange uChange = 
(UnsatisfactionDeltaValidator.UnsatisfactionChange) change;
            boolean unsatisfied = uChange.isUnsatisfied();



Code Examples    B-15

uiNode.setUnsatisfied(unsatisfied); // custom method on uiNode
            break;
        }
      }
    }
  }
}





Java Parameter Types for Configurator Extensions    C-1

C
Java Parameter Types for Configurator 

Extensions

This appendix lists the Java classes that you can use for Configurator Extension method 
parameters when creating event bindings.

This appendix covers the following topics:

• About This Appendix

About This Appendix
When you are creating Configurator Extensions with Oracle Configurator Developer, 
you must be able to bind an entity in your Model as an argument to a parameter in the 
Java method that you have selected.

The Java types of the parameters of your method must agree with the types of Model 
entities that are eligible for event binding. For a list of the Java classes that you can use 
in event bindings, see Valid Java Types for Parameters, page C-2.

For information on developing Java methods for Configurator Extensions, see 
Developing Java Classes and Archives, page 2-4.



C-2    Oracle Configurator Extensions and Interface Object Developer's Guide 

Valid Java Types for Parameters
boolean
com.sun.java.util.collections.Collection
com.sun.java.util.collections.List
double
float
int
java.lang.Integer
java.lang.Long
java.lang.Object
java.lang.String
java.long.Double
java.long.Float
java.text.DecimalFormat
java.utils.Date
javax.servlet.http.HttpServletResponse
longoracle.apps.cz.cio.BomInstance
oracle.apps.cz.cio.BomModel
oracle.apps.cz.cio.BomNode
oracle.apps.cz.cio.BomOptionClass
oracle.apps.cz.cio.BomStdItem
oracle.apps.cz.cio.BooleanFeature
oracle.apps.cz.cio.CXEvent
oracle.apps.cz.cio.CXRule
oracle.apps.cz.cio.Component
oracle.apps.cz.cio.ComponentInstance
oracle.apps.cz.cio.ComponentSet
oracle.apps.cz.cio.Configuration
oracle.apps.cz.cio.Connector
oracle.apps.cz.cio.CountFeature
oracle.apps.cz.cio.DecimalFeature
oracle.apps.cz.cio.DecimalNode
oracle.apps.cz.cio.IAtp
oracle.apps.cz.cio.IBomItem
oracle.apps.cz.cio.ICount
oracle.apps.cz.cio.IDecimal
oracle.apps.cz.cio.IDecimalMinMax
oracle.apps.cz.cio.IInstance
oracle.apps.cz.cio.IInteger
oracle.apps.cz.cio.IIntegerMinMax
oracle.apps.cz.cio.IOption
oracle.apps.cz.cio.IOptionFeature
oracle.apps.cz.cio.IPrice
oracle.apps.cz.cio.IReadOnlyDecimal
oracle.apps.cz.cio.IRuntimeNode
oracle.apps.cz.cio.IState
oracle.apps.cz.cio.IText
oracle.apps.cz.cio.IntegerFeature
oracle.apps.cz.cio.IntegerNode
oracle.apps.cz.cio.Option
oracle.apps.cz.cio.OptionFeature
oracle.apps.cz.cio.OptionFeatureNode
oracle.apps.cz.cio.OptionNode
oracle.apps.cz.cio.PricedNode
oracle.apps.cz.cio.ReadOnlyDecimalNode
oracle.apps.cz.cio.Resource
oracle.apps.cz.cio.RuntimeNode
oracle.apps.cz.cio.TextFeature
oracle.apps.cz.cio.TextNode
oracle.apps.cz.cio.Total
void 



Glossary-1

Glossary

This glossary contains definitions relevant to working with Oracle Configurator.

A

Archive Path

The ordered sequence of Configurator Extension Archives for a Model that determines 
which Java classes are loaded for Configurator Extensions and in what order. 

B

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to 
determine the event scope for a Configurator Extension. 

batch validation

A background process for validating selections in a configuration.

binding

Part of a Configurator Extension Rule that associates a specified event with a chosen 
method of a Java class. See also event.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle 
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM Standard
Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator 
Developer. When you import a BOM Model, effective dates, ATO (Assemble To Order) 
rules, and other data are also imported into Configurator Developer. In Configurator 
Developer, you can extend the structure of the BOM Model, but you cannot modify the 
BOM Model itself or any of its attributes. 



Glossary-2

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM Model
created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM 
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM 
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false. 

C

CDL (Constraint Definition Language)

A language for entering configuration rules as text rather than assembling them 
interactively in Oracle Configurator Developer. CDL can express more complex 
constraining relationships than interactively defined configuration rules can.

The CIO is the API that supports creating and navigating the Model, querying and 
modifying selection states, and saving and restoring configurations.

CIO (Oracle Configuration Interface Object)

A server in the runtime application that creates and manages the interface between the 
client (usually a user interface) and the underlying representation of model structure 
and rules in the generated logic.

command event

An event that is defined by a character string and detected by a command listener.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to determine
the selection state of a logical Item (Option, Boolean Feature, or List-of-Options Feature)
based on a comparison of two numeric values (numeric Features, Totals, Resources, 
Option counts, or numeric constants). The numeric values being compared can be 
computed or they can be discrete intervals in a continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among 
Features in the Model to control the allowable combinations of Options. See also, 



Glossary-3

Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility relationship 
where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model, 
Model, or Component. 

Component

An element of the model structure, typically containing Features, that is configurable 
and instantiable. An Oracle Configurator Developer node type that represents a 
configurable element of a Model. 

Component Set

An element of the Model that contains a number of instantiated Components of the 
same type, where each Component of the set is independently configured.

configuration

A specific set of specifications for a product, resulting from selections made in a 
runtime configurator.

configuration attribute 

A characteristic of an item that is defined in the host application (outside of its 
inventory of items), in the Model, or captured during a configuration session. 
Configuration attributes are inputs from or outputs to the host application at 
initialization and termination of the configuration session, respectively.

configuration model 

Represents all possible configurations of the available options, and consists of model 
structure and rules. It also commonly includes User Interface definitions and 
Configurator Extensions. A configuration model is usually accessed in a runtime Oracle
Configurator window. See also model.

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart, 
Statement Rule, or Configurator Extension rule available in Oracle Configurator 
Developer for defining configurations. See also rules.

configuration session 

The time from launching or invoking to exiting Oracle Configurator, during which end 
users make selections to configure an orderable product. A configuration session is 



Glossary-4

limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly, 
a window that can be launched from a host application so end users can make 
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Developer

See OCD.

Configurator Extension

An extension to the configuration model beyond what can be implemented in 
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so that 
the rule operates when an event occurs during a configuration session. 

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that 
implement Configurator Extensions. 

connectivity

The connection across components of a model that allows modeling such products as 
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the 
Connector node's parent to a referenced Model.

Constraint Definition Language

See CDL

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle 
Configurator Developer to create configuration models that support connectivity and 
contain trackable components. Configurations created from Container Models can be 
tracked and updated in Oracle Install Base 

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total value. 
See also Total.



Glossary-5

Consumes from

A relation used to create a specific type of Numeric Rule that decrements a total value, 
such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

CZ

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator 
data-warehousing schema that manages data for the configuration model. The 
implementation schema includes all the data required for the runtime system, as well as
specific tables used during the construction of the configurator.

D

default

In a configuration, the automatic selection of an option based on the preselection rules 
or the selection of another option. 

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state of 
Features or Options in a default relation to other Features and Options. For example, if 
A Defaults B, and you select A, B becomes Logic True (selected) if it is available (not 
Logic False). 

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit 
Compatibilities interactively in a table view.

E

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and 
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by 
project but may include salespeople or distributors, administrative office staff, 
marketing personnel, order entry personnel, product engineers, or customers directly 



Glossary-6

accessing the application via a Web browser or kiosk. Compare user.

event

An action or condition that occurs in a configuration session and can be detected by a 
listener. Example events are a change in the value of a node, the creation of a 
component instance, or the saving of a configuration. The part of model structure inside
which a listener listens for an event is called the event binding scope. The part of model 
structure that is the source of an event is called the event execution scope. See also 
command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of 
Features or Options in an excluding relation to other Features and Options. For 
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not 
allowed when A is true (either User or Logic True). If you deselect A (set to User False), 
there is no effect on B, meaning it could be User or Logic True, User or Logic False, or 
Unknown. See Negates relation.

F

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or 
Boolean) or enumerated Options.

G

generated logic

The compiled structure and rules of a configuration model that is loaded into memory 
on the Web server at configuration session initialization and used by the Oracle 
Configurator engine to validate runtime selections. The logic must be generated either 
in Oracle Configurator Developer or programmatically in order to access the 
configuration model at runtime. 

guided buying or selling

Needs assessment questions in the runtime UI to guide and facilitate the configuration 
process. Also, the model structure that defines these questions. Typically, guided selling
questions trigger configuration rules that automatically select some product options 
and exclude others based on the end user's responses. 

H



Glossary-7

host application

An application within which Oracle Configurator is embedded as integrated 
functionality, such as Order Management or iStore.

I

implementer

The person who uses Oracle Configurator Developer to build the model structure, rules,
and UI customizations that make up a runtime Oracle Configurator. Commonly also 
responsible for enabling the integration of Oracle Configurator in a host application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of 
Features or Options in an implied relation to other Features and Options. For example, 
if A Implies B, and you select A, B becomes Logic True. If you deselect A (set to User 
False), there is no effect on B, meaning it could be User or Logic True, User or Logic 
False, or Unknown. See Requires relation.

import server

A database instance that serves as a source of data for Oracle Configurator's Populate, 
Refresh, Migrate, and Synchronization concurrent processes. The import server is 
sometimes referred to as the remote server.

initialization message

The XML (Extensible Markup Language) message sent from a host application to the 
Oracle Configurator Servlet, containing data needed to initialize the runtime Oracle 
Configurator. See also termination message.

instance

A runtime occurrence of a component in a configuration that is determined by the 
component node's Instance attribute specifying a minimum and maximum value. See 
also instantiate. Compare count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component in 
the runtime user interface of a configuration model. 

item

A product or part of a product that is in inventory and can be delivered to customers. 



Glossary-8

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in 
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either entered
manually in Oracle Configurator Developer or imported from Oracle Applications or a 
legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle 
Inventory are Item Types in Oracle Configurator Developer.

L

listener

A class in the CIO that detects the occurrence of specified events in a configuration 
session.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model 
elements in terms of logic relationships. Logic Rules directly or indirectly set the logical 
state (User or Logic True, User or Logic False, or Unknown) of Features and Options in 
the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates. 
Each of these rules takes a list of Features or Options as operands. See also Implies 
relation, Requires relation, Excludes relation, and Negates relation.

M

model

A generic term for data representing products. A model contains elements that 
correspond to items. Elements may be components of other objects used to define 
products. A configuration model is a specific kind of model whose elements can be 
configured by accessing an Oracle Configurator window.

Model

The entire hierarchical "tree" view of all the data required for configurations, including 
model structure, variables such as Resources and Totals, and elements in support of 
intermediary rules. Includes both imported BOM Models and Models created in 
Configurator Developer. May consist of BOM Option Classes and BOM Standard Items.



Glossary-9

model structure

Hierarchical "tree" view of data composed of elements (Models, Components, Features, 
Options, BOM Models, BOM Option Class nodes, BOM Standard Item nodes, 
Resources, and Totals). May include reusable components (References). 

N

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic state
of Features or Options in a negating relation to other Features and Options. For 
example, if one option in the relationship is selected, the other option must be Logic 
False (not selected). Similarly, if you deselect one option in the relationship, the other 
option must be Logic True (selected). Compare Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents a 
Component, Feature, Option or variable (Total or Resource), Connector, Reference, 
BOM Model, BOM Option Class node, or BOM Standard Item.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model 
elements in terms of numeric relationships. See also, Contributes to and Consumes from.

O

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties, 
Effectivity Sets, UI Templates, and so on. See also element.

OCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by 
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ 
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the 



Glossary-10

runtime Oracle Configurator variously packaged for use in networked or Web 
deployments.

Oracle Configurator Developer

The tool in the Oracle Configurator product used for constructing and maintaining 
configuration models.

Oracle Configurator engine

The part of the Oracle Configurator product that uses configuration rules to validate 
runtime selections. Compare generated logic. See also generated logic.

Oracle Configurator schema

See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering legacy user interfaces for Oracle 
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by end 
users to make the selections of a configuration.

P

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and 
Option nodes from information in the Item Master.

Property

A named value associated with a node in the Model or the Item Master. A set of 
Properties may be associated with an Item Type. After importing a BOM Model, Oracle 
Inventory Catalog Descriptive Elements are Properties in Oracle Configurator 
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of 
compatibility relationship where the allowable combinations of Options are specified 
implicitly by relationships among Property values of the Options.

publication

A unique deployment of a configuration model (and optionally a user interface) that 
enables a developer to control its availability from host applications such as Oracle 
Order Management or iStore. Multiple publications can exist for the same configuration



Glossary-11

model, but each publication corresponds to only one Model and User Interface. 

publishing

The process of creating a publication record in Oracle Configurator Developer, which 
includes specifying applicability parameters to control runtime availability and running
an Oracle Applications concurrent process to copy data to a specific database.

R

reference

The ability to reuse an existing Model or Component within the structure of another 
Model (for example, as a subassembly). 

Reference

An Oracle Configurator Developer node type that denotes a reference to another Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and 
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic 
state of Features or Options in a requirement relation to other Features and Options. For
example, if A Requires B, and if you select A, B is set to Logic True (selected). Similarly, 
if you deselect A, B is set to Logic False (deselected). See Implies relation.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount 
of memory in a computer. The value of a Resource can be positive or zero, and can have
an Initial Value setting. An error message appears at runtime when the value of a 
Resource becomes negative, which indicates it has been over-consumed. Use Numeric 
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

rules

Also called business rules or configuration rules. In the context of Oracle Configurator 
and CDL, a rule is not a business rule. Constraints applied among elements of the 
product to ensure that defined relationships are preserved during configuration. 
Elements of the product are Components, Features, and Options. Rules express logic, 
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide 
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and Numeric 
Rule.



Glossary-12

runtime

The environment in which an implementer (tester), end user, or customer configures a 
product whose model was developed in Oracle Configurator Developer. See also 
configuration session.

S

Statement Rule

An Oracle Configurator Developer rule type defined by using the Oracle Configurator 
Constraint Definition Language (text) rather than interactively assembling the rule's 
elements. 

T

termination message

The XML (Extensible Markup Language) message sent from the Oracle Configurator 
Servlet to a host application after a configuration session, containing configuration 
outputs. See also initialization message.

Total

A variable in the Model used to accumulate a numeric total, such as total price or total 
weight.

Also a specific node type in Oracle Configurator Developer. See also node.

U

UI

See User Interface.

UI Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration 
session begins or when a Logic Rule is executed. This logic state is also referred to as 
Available, especially when considered from the point of view of the runtime Oracle 
Configurator end user.

user

The person using a product or system. Used to describe the person using Oracle 
Configurator Developer tools and methods to build a runtime Oracle Configurator. 
Compare end user.



Glossary-13

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen 
elements. The part of a system where the user interacts with the software. Not 
necessarily generated in Oracle Configurator Developer. See also User Interface.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views 
necessary to create configurations interactively. A user interface is generated from the 
model structure. It interacts with the model definition and the generated logic to give 
end users access to customer requirements gathering, product selection, and any 
extensions that may have been implemented. See also UI Templates.

V

validation

Tests that ensure that configured components will meet specific criteria set by an 
enterprise, such as that the components can be ordered or manufactured.

W

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with 
Repository objects such as Models and UI Templates.





Index-1

 
Index

A
addInformationalMessage()

usage, 8-11
API (application programming interface), 4-1
areOptionsCounted()

usage, 6-5
argument bindings

advantages, 2-13
assertions

changes to configurations, 5-7
logic, 7-1

B
beginConfigTransaction()

usage, 7-1

C
change object, 10-5
CheckedToUncheckedException

(Java class), 8-11
CIO

logging, 11-1
CIO (Configuration Interface Object)

definition, 4-1
interfaces not thread-safe, 1-5, 2-10, 2-10
specialized usage

Configurator Extensions, 6-2, 6-3, 10-2
custom applications, 4-4, 5-2, 5-6, 6-3, 6-
14, 10-2

CIO (Java class), 4-2
circularity

avoiding, 2-12
classes

creating instances of, 4-3
defining, 2-5
importing, 2-5

class files
compiling Configurator Extensions, 2-5
installing, 2-6

class path
building Configurator Extensions, 2-5

closeConfiguration()
usage, 5-6

command events
using, 3-2

commitConfigTransaction()
usage, 8-1, 8-8
usage, 7-2

compiling
Configurator Extensions, 1-5, 2-5

Component (Java interface), 4-3, 6-2
Component (Java interface)

usage, 6-3
components

instantiable, 6-3
mandatory versus instantiable, 6-3
required, 1-3, 6-3

ComponentSet.add()
usage, 6-3

ComponentSet.delete()
usage, 6-3

ComponentSet (Java interface), 6-3
ConfigParameters (Java class), 4-2, 5-3, 5-3
Configuration (Java class), 1-3, 4-2



Index-2

Configuration Delta API
described, 10-1

configuration models
saved revisions, 5-3

configurations
assertions against, 5-7
background information, 5-1
creating, 1-3, 5-3
creating nonoverridable requests on, 9-3
dirty state, 5-8
logic transactions, 7-1
restarting, 5-11
restoring, 5-3, 5-8

Instantiability changes, 5-9
persistence of component names, 6-4

restoring saved configurations, 5-9
state, 5-9

saving
new, 5-6
revisions, 5-7

validating, 8-1
configuration session

saving a configuration, 5-6
Configurator Extension Archive Path

defining, 2-1
Configurator Extension Archives

created from Java archive files, 2-6
testing Configurator Extensions, 1-7
uploading, 2-1, 2-3

Configurator Extension Rules
bindings, 2-3

Configurator Extensions
association with Model structure, 1-3
avoiding recursion, 6-2
classes, 1-2
compiling, 1-5, 2-5
Connection Filter Configurator Extension, 3-5
definition, 1-2
deprecated exceptions, 8-12
development environment, 1-5
disabling, 2-14
filtering for connectivity, 3-5
implementing behavior, 2-5
instances, 1-2
instantiation, 1-3
loading errors, 1-5
performance impacts, 1-2

prerequisite skills, 1-2
relationship to CIO, 1-4, 1-5, 4-2
required development language, 1-4
Rules, 1-2
testing, 2-3, 2-7, 2-8

Connection Filter Configurator Extension
example, 3-7

connectivity
filtering with Configurator Extensions, 3-5

Connectors
Connection Filter Configurator Extension, 3-5

conventions
used in this guide, 1-7

Counted Options
testing, 6-5

CountFeature (Java class)
behavior, 6-6
relation to IntegerFeature, 6-6

custom application, 5-6
custom applications

definition, 4-1
specialized usage of CIO, 4-4, 5-2, 5-6, 6-3, 6-14
, 10-2

custom user interface
developed with CIO, 1-4

CustomValidationFailure (Java class), 8-3
CZ: Disable Configurator Extensions

profile option, 2-14
czlce.dll

required for compiling Configurator 
Extensions, 1-6

D
DBC file

initializing the CIO, 4-5
debugging

log files, 11-1
defaults

performance effects
setting state, 6-9
toggling state, 6-9

deleted nodes
checking, 2-15, 6-8, 6-12, 6-14

delta
alternate meanings, 10-2

DeltaManager (Java class), 10-3



Index-3

DeltaRegion (Java class), 10-3
deltas (changes during configuration session)

defined, 10-2
DeltaValidator (Java class), 10-3
deprecated exceptions, 8-12
deselect()

usage, 6-14
DHTML

User Interface
testing for existence, 2-14

dirty (configuration state), 5-8
discontinued nodes

checking, 6-8, 6-12, 6-14

E
endConfigTransaction()

usage, 7-2
Error (Java class), 8-10
errors

avoiding, 2-9
troubleshooting, 11-1

eTRM, xiv
events

list of available events, 5-11
logging compared to Configurator Extension, 
11-7
onCommand, 3-4
onConfigValidate, 2-12, 6-2, 8-3
onValidateEligibleTarget, 3-6, 3-6
postConfigNew, 6-2
postConfigRestore, 3-8
postCXInit, 6-2
postInstanceAdd, 2-8
postValueChange, 2-12, 2-13, 3-8, 6-2

examples
changing the name of an instance, 2-7
filtering connected target instances, 3-7
generating output related to model structure, 
B-1
getting a list of failed requests, B-8
getting the configuration from a runtime node,
6-2
setting nonoverridable requests, B-4
sharing a configuration session, B-10
tracking configuration session changes, B-12
using a child window, B-10

using requests, B-4
exceptions

checked, 2-11
CheckedToUncheckedException, 8-11
common errors, 2-10
fatal, 8-10
guidelines for proper handling, 2-11
logic, 8-5
nonfatal, 8-10
unchecked, 2-11, 8-10, 8-10

F
failed requests

definition, 9-2
FALSE

state, 6-6
usage, 6-6

FND_NEW_MESSAGES (database table), 1-4
FND_SECURE (system parameter)

location of DBC files, 4-5
FuncCompErrorException (Java class), 8-12
FuncCompMessageException (Java class), 8-12

G
getChildByName()

usage, 2-13
getCIO()

usage, 5-4
getConfiguration()

usage, 6-2
getDecimalValue()

usage, 6-10
getExceptionCause()

usage, 8-5
getIncludeInGeneratedUIFlag()

definition, 6-16
limitations, 6-16

getInformationalMessages()
usage, 8-2

getIntValue()
usage, 6-10

getMaxSelected()
usage, 6-5

getMessage()
usage, 8-5

getMessageHeader()



Index-4

usage, 8-5
getMinSelected()

usage, 6-5
getName()

usage, 2-13
getNode()

usage, 8-5
usage, 8-2

getNonOverridableRequests
usage, 9-4

getProperties()
usage, 6-12

getPropertyByName()
usage, 6-12

getReasons()
usage, 8-5

getSelectedItems()
usage, 8-2

getSelectedOption()
usage, 6-14

getState()
usage, 6-7
usage, 6-8, 6-8

getStatus()
usage, 8-3

getStringValue()
usage, 6-12

getType()
usage, 8-5

getUnsatisfiedItems()
usage, 8-2

getUnsatisfiedRuleMessages()
usage, 8-2

getUserInterface()
usage, 2-15

getUserParameters()
usage, 5-13

getUserStr01(), 6-12
getUserStr02(), 6-12
getUserStr03(), 6-13
getUserStr04(), 6-13
getValidationFailures()

usage, 6-10, 8-2
guidelines for development, 2-9

logging, 2-15

H
hasMaxSelected()

usage, 6-5
hasMinSelected()

usage, 6-5
HttpServletResponse (Java class), 1-3, 3-2

I
IBomItem (Java interface), 4-3
ICount (Java interface), 4-3
ICX session ticket, 1-4
IDecimal (Java interface), 4-3
InformationalMessage (Java class), 8-10, 8-11

restrictions, 8-12
initialization

parameters
obtaining list of, 5-13
pwd, 5-14

inputs
logic states, 5-10

input states, 6-6, 6-6, 6-7
InstanceNameChange (Java class), 2-7
instances

renaming, 6-4
restored configurations, 6-4

sharing, 2-13
instantiability

definition of an instantiable component, 6-3
interfaces, 4-2

objects, 1-5
IOption (Java interface), 4-3
IOptionFeature (Java interface), 4-4
IRuntimeNode (Java interface), 4-4, 6-3
IRuntimeNode (Java interface), 6-1
isDeleted()

usage, 2-15
isDiscontinued()

usage, 2-15
isFalse()

usage, 6-8
isLogic()

usage, 6-8
isOverridable()

usage, 8-5
isSelected()



Index-5

usage, 6-14
usage, 6-14

IState (Java interface), 4-4
isTrue()

usage, 6-8
isUnknown()

usage, 6-8, 6-8
isUnsatisfied()

usage, 8-2
isUser()

usage, 6-8
IText (Java interface), 4-4
IValidatorChange (Java interface), 10-3

J
Java

collections library
syntax for importing, 1-6

development environment, 2-5
packages

CIO, 4-2
required for development of Configurator 
Extensions, 1-4

Java archive files
for Configurator Extension classes, 2-3, 2-6

Java classes
CheckedToUncheckedException, 8-11
CIO, 4-2
ConfigParameters, 4-2, 5-3, 5-3
Configuration, 1-3, 4-2
CountFeature, 6-6, 6-6
CustomValidationFailure, 8-3
DeltaManager, 10-3
DeltaRegion, 10-3
DeltaValidator, 10-3
Error, 8-10
FuncCompErrorException

compatibility, 8-12
deprecated, 8-12

FuncCompMessageException
compatibility, 8-12
deprecated, 8-12

HttpServletResponse, 1-3, 3-2
InformationalMessage, 8-10, 8-11, 8-12
InstanceNameChange, 2-7
List, 1-6, 2-5

logging, 11-2
LogicalException, 8-5
LogicalOverridableException, 8-5, 8-8
Reason, 8-5
RuntimeException, 8-10
StatusInfo, 8-2

Java interfaces
Component, 4-3, 6-2
ComponentSet, 6-3
definition, 4-2
IBomItem, 4-3
ICount, 4-3
IDecimal, 4-3
IOption, 4-3
IOptionFeature, 4-4
IRuntimeNode, 4-4, 6-1, 6-3
IState, 4-4
IText, 4-4
IValidatorChange, 10-3
runtime objects, 4-2

Java methods
CIO.closeConfiguration(), 5-6
CIO.createConfiguration(), 5-2
CIO.restoreConfiguration(), 5-9
CIO.startConfiguration(), 5-2, 5-9
ConfigParameters.setEffectiveDate(), 5-3
ConfigParameters.setModelLookupDate(), 5-3
Configuration.addInformationalMessage(), 8-
11
Configuration.areAllChangesSaved(), 5-8
Configuration.close(), 5-2
Configuration.getCIO(), 5-2, 5-4
Configuration.getRootComponent(), 5-2
Configuration.getSelectedItems(), 5-2
Configuration.getUnsatisfiedItems(), 5-2
Configuration.getValidationFailures(), 5-2
Configuration.isUnsatisfied(), 5-2
Configuration.restartConfiguration(), 5-11
Configuration.save(), 5-7
Configuration.saveNew(), 5-2, 5-6
Configuration.saveNewRev(), 5-2, 5-7
Configuration.setAllChangesSaved(), 5-8
Configuration.setInformationalMessage(), 8-11
ICount.setCount(), 9-1
IOPtion.select(), 9-1
IState.setState(), 9-1
parameters



Index-6

effect of changes, 2-3
Java system properties, 1-7, 5-6

setting to log through CIO, 11-2
Java virtual machine (JVM), 5-6
JDBC

thin drivers, 1-6
JDeveloper

tool for developing Configurator Extensions, 
1-5

JDK (Java Development Kit)
tool for developing Configurator Extensions, 
1-6, 1-6
version for compiling, 1-6, 1-6, 2-5

JTFDBCFILE (Java system property), 1-7, 5-6
JVM

See Java virtual machine

L
LD_LIBRARY_PATH, 1-6
LFALSE

usage, 6-7
libczlce.so

required for compiling Configurator 
Extensions, 1-6

life cycle
node status during validation, 8-3

List (Java class)
syntax for importing, 1-6, 2-5

log files
troubleshooting errors, 11-1
written by CIO, 11-2

logging
controlling log entries, 2-15
Java classes, 11-2
through the CIO, 11-1

logic
contradictions, 8-5
exceptions, 8-5
requests

definition, 9-1
nonoverridable requests, 9-3

transactions, 7-1
transactions

definition, 5-2
LogicalException (Java class), 8-5
LogicalOverridableException (Java class), 8-5, 8-8

logic states
getting, 6-6
inside transactions, 7-1
Logic False, 6-7
Logic True, 6-7
setting, 6-6
Unknown, 6-7
User False, 6-7
User True, 6-7

LTRUE
usage, 6-7

M
MAC

See message authentication code
MaintainLocationCX.java, 5-16
message authentication code (MAC), 5-16
messages

CIO exceptions, 8-11
presented by Configurator Extensions, 8-11

middle-tier properties
See  Java system properties

MLS (Multiple Language Support)
custom messages for Configurator Extensions,
1-4
need for setting current language, 1-4

modules
logging

See  Java classes
multithreading

avoiding problems, 2-10
mutexed

See  mutually exclusive
mutually exclusive, 6-14

N
nested transactions, 7-2
nonoverridable requests, 9-2, 9-3

definition, 9-2, 9-3
effect of restoring, 9-4
effect of saving, 9-4
limitations, 9-4, 9-5
limitations

with components, 9-5
nonoverridable request mode, 9-4
prohibition on overriding, 9-5



Index-7

specifying, 9-3, 9-4
usage with transactions, 7-2

O
onCommand (event), 3-2, 3-3, 3-4
onConfigValidate (event), 2-12, 8-3

recursion, 6-2
onValidateEligibleTarget (event), 3-6, 3-6
OptionFeature

Counted Options, 6-5
oracle.apps.cz.cio, 4-3

package to import, 4-2
Oracle Applications Framework

redirection, 5-16
Oracle Configurator

log files, 11-1
Oracle Configurator Developer

customizing, 1-5
defining Configurator Extension Rules, 1-2
disabling Configurator Extensions, 2-14
relationship to Configurator Extensions, 2-1
setup for testing Configurator Extensions, 1-7

output
states, 5-10, 6-7, 6-7, 6-7, 6-7, 6-7

override()
usage, 8-8
usage, 8-5

overriding
exceptions, 8-5
nonoverridable requests, 9-5

P
parameters, 2-3

Java methods, 2-3
passwords

initialization parameter for, 5-14
performance

adding and deleting instantiable components, 
6-4
effect of

restoring configurations, 5-9
effect of defaults when setting state, 6-9

postConfigNew (event), 6-2
postConfigRestore (event), 3-8
postCXInit (event), 6-2
postInstanceAdd (event), 2-8, 2-9

postValueChange (event), 2-12, 2-12, 2-13, 3-8, 6-
2
profile options

CZ: Disable Configurator Extensions, 2-14
setting to log through CIO, 11-2

pwd (initialization parameter), 5-14

R
Raise Command Event

UI action for command events, 3-4
Reason (Java class), 8-5
recursion

avoiding, 2-12
dangers for Configurator Extensions, 6-2

renaming
instantiable components, 6-4

requests
contradictions, 8-5
definition, 9-1
failed requests, 9-2
logic, 8-5
nonoverridable requests, 9-2, 9-3
user requests, 9-1

required components
definition, 6-3
runtime instances, 1-3

required components
renaming prohibited, 6-4

restoreConfiguration()
usage, 9-4

restoring
configurations

definition, 5-8
effects of model changes, 5-9
Instantiability changes, 5-9
performance, 5-9
validation failures, 5-9, 5-10

nonoverridable requests, 9-4
rollbackConfigTransaction()

usage, 7-2, 8-1, 8-8
RuntimeException (Java class), 8-10
runtime Oracle Configurator

extending behavior, 1-2
role in handling exceptions, 8-10

S



Index-8

saveNew()
usage, 5-6

saving
nonoverridable requests, 9-4

select()
usage, 6-14
usage, 6-14, 9-1

setCount()
usage, 9-1

setDecimalValue()
usage, 6-10, 6-10

setInformationalMessage()
usage, 8-11

setIntValue()
usage, 6-10

setState()
usage, 6-7, 8-5
usage, 9-1

TOGGLE, 6-8
setUserStr01(), 6-12
setUserStr02(), 6-12
setUserStr03(), 6-13
setUserStr04(), 6-13
side-effecting

definition, 6-2
standalone mode, 5-6
state

logic, 6-7
states

logic, 5-10, 6-6, 6-7, 6-7, 6-7, 6-7
getting, 6-6
input, 5-10, 6-6
inside transactions, 7-1
output, 6-7
setting, 6-6

StatusInfo (Java class), 8-2
support

getting help with Oracle Configurator, 1-8
System Properties, 6-12

T
testing

Configurator Extensions, 2-3, 2-7, 2-8
existence of DHTML User Interface, 2-14

test page, 2-9
text strings

setting on runtime nodes, 6-12
threads

safety, 1-5, 2-10, 2-10, 5-15
TOGGLE

state, 6-7
usage, 6-7

toString()
usage, 8-5

tracking
alternate meanings, 10-2

transactions
beginning, 7-1
committing, 7-2
common errors, 2-10
ending, 7-2
logic

contrasted with database transactions, 7-
1

logic
defined, 7-1

nesting, 7-2
rolling back, 7-2
setting states and values inside, 7-1
usage with nonoverridable requests, 7-2

translate()
usage, 8-5

troubleshooting
analyzing errors, 11-1
Oracle Configurator issues, 1-9

TRUE
usage, 6-6

true state, 6-6

U
UFALSE

usage, 6-7
unchecked exceptions, 8-10

handling, 8-10
undo()

usage, 6-11
UNKNOWN

usage, 6-7
unset()

usage, 6-7
useNonOverridableRequests()

usage, 9-3, 9-4



Index-9

User Interface
testing for existence of DHTML, 2-14

user requests
definition, 9-1

UTRUE
usage, 6-7

V
validateEligibleTarget()

usage, 3-6
validation

configurations, 8-1
failures

checked by CIO, 8-2
getting collection, 5-2
inspecting, 8-2
numeric values, 6-10
restoring configurations, 5-9, 5-10
returned by transactions, 7-1
returning list of, 8-3

W
Web deployment

getting initialization parameters, 5-13




	Oracle  Configurator Extensions and Interface Object Developer's Guide   
	Preface
	Configurator Extensions
	Configurator Extension Basics
	Introduction to Configurator Extensions
	What are Configurator Extensions?
	Prerequisite Skills for Developing Configurator Extensions
	Important Facts About Configurator Extensions
	Requirements and Restrictions for Configurator Extensions
	Requirements for Configurator Extensions
	Restrictions for Configurator Extensions

	Configurator Extensions and the CIO
	Installation Requirements for Configurator Extensions
	Installation Requirements for Developing Configurator Extensions
	Installation Requirements for Compiling Configurator Extensions
	Installation Requirements for Testing Configurator Extensions

	Conventions 
	Product Support
	Troubleshooting


	Building Configurator Extensions
	Overview of Building Configurator Extensions
	Implementing Behavior with Java Classes
	Incorporating Behavior into Configuration Models

	Developing Java Classes and Archives
	Example of Configurator Extension Development
	Example of Configurator Extension Coding
	Example of Configurator Extension Modeling

	Suggested Development Practices
	Observing Project Requirements
	Avoiding Common Errors
	Observing Thread Safety
	Handling Exceptions Properly
	Avoiding Circularity and Recursion
	Taking Advantage of Argument Binding
	Sharing Class Instances
	Disabling Configurator Extensions
	Testing for a Null User Interface
	Using Logging to Examine Problems
	Checking for Deleted or Discontinued Nodes
	Managing JDBC Connections
	Accessing More Node and Text IDs


	Uses for Configurator Extensions
	Types of Configuration Events
	Generating Custom Output
	Filtering for Connectivity
	Defining a Connection Filter Configurator Extension
	Behavior of Connection Filter Configurator Extensions
	Example of a Connection Filter Configurator Extension

	Requiring Text Input Dynamically


	The Configuration Interface Object (CIO)
	 CIO Basics
	Background to the CIO
	What is the CIO?
	The CIO and Configurator Extensions

	The CIO's Runtime Node Interfaces
	Initializing the CIO

	Working with Configurations
	Overview of Configurations
	Creating Configurations
	Removing Runtime Configurations
	Saving Configurations
	Monitoring Changes to Configurations
	How the CIO Monitors Changes to Configurations
	How You Can Monitor Changes to Configurations

	Restoring Configurations
	Restarting Configurations
	Automatic Behavior for Configurations
	Dispatching Command Events
	Access to Configuration Parameters
	Sharing a Configuration Session
	Redirecting to a Framework Page


	Working with Model Entities
	Accessing Runtime Nodes
	Opportunities for Modifying the Configuration
	Accessing Components
	Adding and Deleting Instantiable Components
	Renaming Instances of Components

	Accessing Features
	Getting and Setting Logic States
	Getting and Setting Numeric Values
	Working with Decimal Quantities

	Accessing Properties
	User String Properties

	Access to Options
	Introspection through IRuntimeNode

	Using Logic Transactions
	Using Logic Transactions

	Validation, Contradictions, and Exceptions
	Introduction to Validation, Contradictions, and Exceptions
	Validating Configurations
	Handling Logical Contradictions
	Generating Error Messages from Contradictions
	Overriding Contradictions

	Handling Exceptions
	Handling Types of Exceptions
	Raising Fatal Exceptions
	Presenting Messages for Exceptions
	Compatibility of Certain Deprecated Exceptions


	Using Requests
	About Requests
	Getting Information about Requests
	User Requests
	Nonoverridable Requests
	Usage Notes on Nonoverridable Requests
	Limitations on Nonoverridable Requests

	Failed Requests

	Configuration Session Change Tracking
	Introduction to Configuration Session Change Tracking
	How Change Tracking Works
	Relationship of the Classes
	Role of the DeltaManager
	Role of DeltaRegions
	Role of DeltaValidators
	Role of the IValidatorChange Interface

	Starting a Session
	Creating a Configuration Object
	Associating a DeltaManager
	Specifying DeltaValidators
	Registering DeltaRegions

	Tracking Session Changes
	Updating a Region
	Handling Screen Changes
	Creating a Custom DeltaValidator
	Unified Code Example for Change Tracking 

	Logging Through the CIO
	Overview of Logging
	Enabling Logging Scope
	Creating Entries in the Log
	Testing Whether Logging Is Enabled
	Writing Log Entries

	Recommended Practices for Logging
	Example of Logging
	Logging for a Custom Application


	Reference Documentation for the CIO
	About This Appendix

	Code Examples
	About This Appendix
	Generating Output Related to Model Structure
	Using Requests
	Setting Nonoverridable Requests
	Getting a List of Failed Requests

	Sharing a Configuration Session in a Child Window
	Tracking Configuration Session Changes

	Java Parameter Types for Configurator Extensions
	About This Appendix

	Common Glossary for Oracle Configurator
	Index


