
Integration Platform Technologies:
Siebel eBusiness Application

Integration Volume ll
Version 7.7, Rev. A
September 2004

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2004 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photographic, magnetic, or other record, without the prior
agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, Universal Agent, and other Siebel names referenced herein are
trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of
their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are optional and
for which you may not have purchased a license. Siebel�s Sample Database also includes data related to
these optional modules. As a result, your software implementation may differ from descriptions in this
guide. To find out more about the modules your organization has purchased, see your corporate
purchasing agent or your Siebel sales representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are �commercial
computer software� as set forth in DFARS 227.7202, Commercial Computer Software and Commercial
Computer Software Documentation, and as such, any use, duplication and disclosure of the Programs,
Ancillary Programs and Documentation shall be subject to the restrictions contained in the applicable
Siebel license agreement. All other use, duplication and disclosure of the Programs, Ancillary Programs
and Documentation by the U.S. Government shall be subject to the applicable Siebel license agreement
and the restrictions contained in subsection (c) of FAR 52.227-19, Commercial Computer Software -
Restricted Rights (June 1987), or FAR 52.227-14, Rights in Data�General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San
Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel eBusiness Applications Online Help to
be Confidential Information. Your access to and use of this
Confidential Information are subject to the terms and conditions of:
(1) the applicable Siebel Systems software license agreement, which
has been executed and with which you agree to comply; and (2) the
proprietary and restricted rights notices included in this
documentation.

Contents
Integration Platform Technologies: Siebel eBusiness Application Integration Volume ll 1

Chapter 1: What�s New in This Release

Chapter 2: Integration Objects
Integration Objects Terminology 11

About Integration Objects 12

Integration Object Base Object Type 13

Difference Between Integration Objects and Integration Object Instances 14

About Integration Object Wizards 15

About the Structure of Integration Objects 16
About Integration Components and Associations 19
About Multi-Value Groups Within Business Components 19
About Validation of Integration Components Fields and Picklists 24
About Calculated Fields and Integration Objects 25
About Inner Joins and Integration Components 25
About Operation Controls for Integration Components 26
About Defining Field Dependencies 26
About Setting Primaries Through Multi-Value Links 27
About Repository Objects 27
About Integration Component Keys 27

Permission Flags for Integration Components 35

About the EAI Siebel Adapter Access Control 35

Chapter 3: Creating and Maintaining Integration Objects
About the Integration Object Builder 37

Creating Integration Objects Using the EAI Siebel Wizard 38

Siebel Integration Object Fine-Tuning 40

Integration Object Validation 40

Integration Objects Synchronization 41
Synchronizing Integration Objects 41
Synchronization Rules 44

About the EAI Siebel Wizard 49
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 3

Contents
Siebel Integration Objects Maintenance and Upgrade 50

Resolving Synchronization Conflicts for Integration Objects and User Properties 51

Example of an Integration Object With Many-To-Many Relationships 55

Generating Integration Object Schemas 56

About Optimizing Performance for Using Integration Objects 57

Business Component Restrictions for Integration Components 58

Best Practices for Using Integration Components 59

Chapter 4: Business Services
About Business Services 61

Creating Business Services 61
Business Service Structure 62
About Property Sets 63

Creating Business Services in Siebel Tools 64
Defining a Business Service in Siebel Tools 64
Defining Business Service Methods 65
Defining Business Service Method Arguments 65
Defining and Writing Business Service Scripts 66
Specifying Business Service Subsystems 67
Defining Business Service User Properties 67

Creating a Business Service in the Siebel Client 68

Business Service Export and Import 69

Testing Your Business Service 69

About Accessing a Business Service Using Siebel eScript or Siebel VB 70

Business Scenario for the Use of Business Services 71

Chapter 5: Web Services
About Web Services 73

About RPC-Literal and DOC-Literal Bindings 74
About RPC-Literal Support 74
About DOC-Literal Support 75

About One-Way Operations and Web Services 76

Invoking Siebel Web Services Using an External System 76
Publishing Inbound Web Services 77
Generating a WSDL File 78
About Defining Web Services Inbound Dispatcher 79
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

4 ■

Contents
Consuming External Web Services Using Siebel Web Services 80
Creating an Outbound Web Service Based on a WSDL File 80
Outbound Web Services Administration 81
Integration Objects as Input Arguments to Outbound Web Services 84
Web Services Support for Transport Headers 84

About Local Business Service 85

About XML Schema Support for <xsd:any> Tag 87
About Mapping the <xsd:any> Tag in the WSDL Import Wizard 87
About Mapping the <xsd:any> Tag in the XML Schema Wizard 87

Examples of Invoking Web Services 88

About Web Services Security Support 93

About the WS-Security UserName Token Profile Support 93
About Support for the UserName Token Mechanism 93
About Using the UserName Token for Inbound Web Services 94
About Using the UserName Token for Outbound Web Services 95

About Custom SOAP Filters 95
About Handling Custom Headers Using Filters 95
Enabling SOAP Header Processing Through Filters 96
About Inputting a SOAP Envelope to a Filter Service 97

About Web Services Cache Refresh 98

Enabling Web Services Tracing 98

Chapter 6: EAI Siebel Adapter
About the EAI Siebel Adapter 101

EAI Siebel Adapter Methods 101
About the Query Method 105
About the QueryPage Method 106
About the Synchronize Method 106
About the Upsert Method 107
About the Insert Method 107
About the Update Method 107
About the Delete Method 107
About the Execute Method 108

XML Examples Using the Upsert and Delete Operation 110

About MVGs in EAI Siebel Adapter 111

About the SearchSpec Input Method Argument 112

About Using Language-Independent Code with the Siebel Adapter 115
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 5

Contents
Configuring the EAI Siebel Adapter for Concurrency Control 116
About the Modification Key 116
About Modification IDs 116

Siebel eAI and Run-Time Events 120

Chapter 7: Siebel eAI and File Attachments
About File Attachments 121

Exchange of Attachments with External Applications 121

Using MIME Messages to Exchange Attachments 122
Creating an Integration Object 122
Creating Workflow Processes Examples 123

About the EAI MIME Hierarchy Converter 128
Outbound Integration 128
Inbound Integration 129

About the EAI MIME Doc Converter 129

Chapter 8: Siebel Virtual Business Components
About Virtual Business Components 133

About Using VBCs for Your Business Requirements 134
Usage and Restrictions of VBCs 135

Using Virtual Business Components 135
Creating a New Virtual Business Component 136
Setting User Properties for the Virtual Business Component 136

XML Gateway Service 138
XML Gateway Methods 140
XML Gateway Method Arguments 140

Examples of Outgoing XML Format 141

Search-Spec Node-Type Types 146

Examples of Incoming XML Format 147

External Application Setup 150

Custom Business Service Methods 150
Common Method Parameters 151
Business Services Methods and Their Property Sets 151

Custom Business Service Example 165
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

6 ■

Contents
Chapter 9: External Business Components
Configuring External Business Components 173

Creating the External Table Definition 174
Specify Additional Table Properties 178
Mapping External Columns to Siebel System Fields 179
Specifying the Data Source Object 180
Configuring the Business Component 180
Specifying Run-Time Parameters 180
About Using Specialized Business Component Methods for EBCs 182

Usage and Restrictions for External Business Components 183

About Using External Business Components with the Siebel Web Clients 184

About Overriding Connection Pooling Parameters for the DataSource 184

About Joins to Tables in External Data Sources 184

About Distributed Joins 186

Usage and Restrictions for Using Distributed Joins 186

Loading a Siebel Analytics Presentation Folder for Use as an External Table 187

Appendix A: Predefined EAI Business Services

Appendix B: Property Set Representation of Integration Ob-
jects
Property Sets and Integration Objects 193

Property Set Node Types 194
Example of a Sample Account 196

Appendix C: DTDs for XML Gateway Business Service
Outbound DTDs 199

Inbound DTDs 201

Index
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 7

Contents
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

8 ■

1 What�s New in This Release
What�s New in Integration Platform Technologies: Siebel eBusiness
Application Integration Volume ll, Version 7.7, Rev. A
Table 1 lists changes described in this version of the documentation to support Release 7.7 of the
software.

What�s New in Integration Platform Technologies: Siebel eBusiness
Application Integration Volume ll, Version 7.7
Table 2 lists changes described in this version of the documentation to support Release 7.7 of the
software.

Table 1. New Product Features in Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll, Version 7.7, Rev. A

Topic Description

�Picklist Validation� on page 58 Information is added between using the Object Manager or
the Siebel EAI Adapter to validate picklists.

�Supported Connector DLL Names
and SQL Styles� on page 181

Table added listing the supported connector DLL names and
the corresponding SQL styles to use when configuring
external business components.

Table 2. New Product Features in Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll, Version 7.7

Topic Description

�Permission Flags for Integration
Components� on page 35

�About the EAI Siebel Adapter
Access Control� on page 35

Sections moved from Chapter 3, �Creating and Maintaining
Integration Objects� to Chapter 2, �Integration Objects.�

�About RPC-Literal and DOC-Literal
Bindings� on page 74

The Web Services infrastructure has been enhanced in
release 7.7 to provide one-way operations, RPC-literal
support and DOC-literal support, and custom SOAP filters.

�About Local Business Service� on
page 85

Web Services utilize specialized SOAP headers for common
tasks such as authentication, authorization, and logging. A
Local Business Service, as a transport option for outbound
Web Services, is supported in the Siebel application.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 9

What�s New in This Release ■
�About Web Services Security
Support� on page 93

Release 7.7 introduces support for the UserName Token
mechanism of the WS-Security specification, which allows
Siebel applications to send and receive user credentials in a
standards-compliant manner.

�About Web Services Cache
Refresh� on page 98

Administrators are able to update the definitions of both
Siebel Inbound and Outbound Web Services to provide more
current or correct functionality by using the Web Services
Cache Refresh.

�Enabling Web Services Tracing� on
page 98

Enhanced section to include all of the event types that can be
used for Web Services tracing.

Chapter 9, �External Business
Components�

The external business component feature provides a way to
access data that resides in a non-Siebel table or view using a
Siebel business component.

Table 2. New Product Features in Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll, Version 7.7

Topic Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

10 ■

2 Integration Objects
This chapter describes the structure of Siebel integration objects. It describes the Integration Object
Builder wizard, which assists you in building your own integration objects based on Siebel objects.

The chapter consists of the following topics:

■ �Integration Objects Terminology� on page 11

■ �About Integration Objects� on page 12

■ �Integration Object Base Object Type� on page 13

■ �Difference Between Integration Objects and Integration Object Instances� on page 14

■ �About Integration Object Wizards� on page 15

■ �About the Structure of Integration Objects� on page 16

■ �Permission Flags for Integration Components� on page 35

■ �About the EAI Siebel Adapter Access Control� on page 35

Integration Objects Terminology
This chapter describes the concepts that are often referred to using different terminology from one
system to another. Table 3 has been included to clarify the information in this chapter by providing
a standard terminology for these concepts.

Table 3. Integration Objects Terminology

Term Description

Metadata Data that describes data. For example, the term datatype describes data
elements such as char, int, Boolean, time, date, and float.

Siebel business object A Siebel object type that creates a logical business model using links to tie
together a set of interrelated business components. The links provide the
one-to-many relationships that govern how the business components
interrelate in this business object.

Component A constituent part of any generic object.

Siebel business
component

A Siebel object type that defines a logical representation of columns in one
or more database tables. A business component collects columns from the
business component�s base table, its extension tables, and its joined tables
into a single structure. Business components provide a layer of abstraction
over tables. Applets in Siebel applications reference business components;
they do not directly reference the underlying tables.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 11

Integration Objects ■ About Integration Objects
About Integration Objects
Siebel integration objects allow you to represent integration metadata for Siebel business objects,
XML, SAP IDOCs, and SAP BAPIs as common structures that the EAI infrastructure can understand.
Because these integration objects adhere to a set of structural conventions, they can be traversed
and transformed programmatically, using Siebel eScript objects, methods, and functions, or
transformed declaratively using Siebel Data Mapper.

NOTE: For more information, see Business Processes and Rules: Siebel eBusiness Application
Integration Volume IV.

The typical integration project involves transporting data from one application to another. For
example, you may want to synchronize data from a back-office system with the data in your Siebel
application. You may want to generate a quote in the Siebel application and perform a query against
your Enterprise Resource Planning (ERP) system transparently. In the context of Siebel eAI, data is
transported in the form of an integration message. A message, in this context, typically consists of
header data that identifies the message type and structure, and a body that contains one or more
instances of data�for example, orders, accounts, or employee records.

When planning your integration project, you should consider several issues:

■ How much data transformation does your message require?

■ At what point in the process do you perform the data transformation?

■ Is a confirmation message response to the sender required?

Field A generic reference to a data structure that can contain one data element.

Siebel integration
component field

A data structure that can contain one data element in a Siebel integration
component.

Siebel integration
component

A constituent part of a Siebel integration object.

Integration object An integration object of any type, including the Siebel integration object,
the SAP BAPI integration object, and the SAP IDOC integration objects.

Integration object
instance

Actual data, usually the result of a query or other operation, which is
passed from one business service to another, that is structurally modeled
on a Siebel integration object.

Siebel integration
object

An object stored in the Siebel repository that represents some Siebel
business object.

Integration message A bundle of data consisting of two major parts: header information that
describes what should be done with or to the message itself, and instances
of integration objects, that is, data in the structure of the integration
object.

Table 3. Integration Objects Terminology

Term Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

12 ■

Integration Objects ■ Integration Object Base Object Type
■ Are there data items in the originating data source that should not be replicated in the receiving
data source, or that should replace existing data in the receiving data source?

This guide can help you understand how Siebel eAI represents the Siebel business object structure.
It also provides descriptions of how Siebel eAI represents external SAP R/3 structures.

Integration Object Base Object Type
Each integration object created in Siebel Tools has to be based on one of the base object types
presented in Table 4. This property is used by adapters to determine whether the object is a valid
object for them to process.

NOTE: XML converters can work with any of the base object types.

Table 4. Integration Object Base Object Types

Base Object Type Description

None For internal use only.

OLE DB Used to expose Siebel business component as OLEDB rowset that can be
used by OLEDB consumers such as Excel, Word, and so on. The OLE DB
Provider only accepts integration objects of this type.

SAP BAPI Input Used to represent the input structure of an SAP RFC or BAPI function call.
For details, see Siebel Connector for SAP R/3 Guide.

SAP BAPI Output Used to represent the output structure of an SAP RFC or BAPI function call.
For details, see Siebel Connector for SAP R/3 Guide.

SAP IDOC Used with the IDOC Adapter and Receiver in version 6.x and 7.0. For
details, see Siebel Connector for SAP R/3 Guide.

SAP IDOC Adapter Used to represent an SAP IDOC structure. For details, see Siebel Connector
for SAP R/3 Guide.

SQL Used for manually creating integration objects. Only the EAI SQL Adapter
accepts integration objects of this type.

SQL Database Wizard Used by the Database Wizard for the integration object it creates. Only the
EAI SQL Adapter accepts integration objects of this type.

SQL Oracle Wizard Used by the Oracle Wizard for the integration object it creates. Only the
EAI SQL Adapter accepts integration objects of this type.

Siebel Business
Object

Used by the Integration Object Builder wizard for the integration object it
creates. EAI Siebel Adapter only accepts integration object of this type.

Table Obsolete.

XML Used to represent external XML Schema such as DTD or XSD. For details
on DTD and XSD, see XML Reference: Siebel eBusiness Application
Integration Volume V.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 13

Integration Objects ■ Difference Between Integration Objects and Integration Object
Instances
Difference Between Integration Objects
and Integration Object Instances
Understanding the difference between integration objects and integration object instances is
important, especially in regard to the way they are discussed in this chapter.

An integration object, in the context of Siebel eAI, is metadata; that is, it is a generalized
representation or model of a particular set of data. It is a schema of a particular thing.

An integration object instance is also referred to as a Siebel Message object.

An integration object instance is actual data organized in the format or structure of the integration
object. Figure 1 illustrates a simple example of an integration object and an integration object
instance, using partial data.

Any discussion of integration objects in this book will include clarifying terms to help make the
distinction�for example, metadata or Siebel instance.

Figure 1. Integration Object and Integration Object Instance
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

14 ■

Integration Objects ■ About Integration Object Wizards
About Integration Object Wizards
Within Siebel Tools, there are multiple wizards associated with integration objects: one that creates
integration objects for internal use by the Siebel application, and others that create integration
objects for external systems based on Siebel objects. Figure 2 shows the logic of Integration object
Wizard and Generate Schema Wizard. The Generate Code wizard (not shown) works in the same
manner as the Generate Schema wizard, but it generates Java classes.

■ Integration Object Builder wizard. This wizard lets you create a new object. It supplies the
functionality for creating integration objects from Siebel business objects or integration objects
based on representations of external business objects using XML Schema Definition (XSD) or
Document Type Definition (DTD). To access this wizard, navigate to the New Object Wizards
dialog box in Siebel Tools and after selecting the EAI tab, double-click Integration Object to start
the Integration Object Builder wizard.

■ Generate XML Schema wizard. This wizard lets you choose an integration object and output
XML schema in XML Schema Definition (XSD) standard, Document Type Definition (DTD), or
Microsoft�s XDR (XML Data Reduced) format. To access this wizard, navigate to the Integration
Objects list in Siebel Tools and select an integration object. Then click Generate Schema to start
the Generate XML Schema wizard.

Figure 2. Integration Object Wizards
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 15

Integration Objects ■ About the Structure of Integration Objects
■ Code Generator wizard. The third wizard lets you create a set of Java class files based on any
available integration object or Siebel business service. To access this wizard, navigate to the
Integration Objects list in Siebel Tools object explorer and select an integration object. Then click
Generate Code to start the Code Generator wizard.

NOTE: Specific instructions on how to use these wizards appear throughout the Siebel eBusiness
Application Integration documentation set where appropriate.

About the Structure of Integration
Objects
The Siebel integration object provides a hierarchical structure that represents a complex data type.
Most specifically, prebuilt eAI integration objects describe the structure of Siebel business objects,
SAP IDOCs, SAP BAPIs, XML, and external data. Most integration projects require the use of an
integration object that describes Siebel business objects, either in an outbound direction such as a
query operation against a Siebel integration object or in an inbound direction such as a synchronize
operation against a Siebel integration object.

Chapter 3, �Creating and Maintaining Integration Objects� continues with descriptions of how to create
integration objects. The initial process of using the Integration Object Builder wizard is essentially
the same for every integration object type currently supported.

CAUTION: You should avoid using or modifying integration objects in the EAI Design project. Using
or modifying any objects in the EAI Design project can cause unpredictable results.

Siebel business objects conform to a particular structure in memory. Although it is generally not
necessary to consider this structure when working with Siebel applications, when you are planning
and designing an integration project it is helpful to understand how a Siebel eAI integration object
represents that internal structure.

An integration object consists of one Parent Integration Component, sometimes referred to as the
root component or the primary integration component. The Parent Integration Component
corresponds to the primary business component of the business object you chose as the model for
your integration object. Figure 3 shows the Account business object in Siebel Tools.

Figure 3. Account Parent Business Component
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

16 ■

Integration Objects ■ About the Structure of Integration Objects
For example, assume you chose the Account business object (on the first panel of the Integration
Object Builder wizard) to base your integration object myAccount_01 on. The Account business
object in Siebel Tools has an Account business component as its primary business component. In the
myAccount_01 integration object, every child component will be represented as either a direct or
indirect child of the primary business component named Account.

Each child component can have one or more child components. In Siebel Tools, if you look at the
integration components for an integration object you have created, you will see that each component
can have one or more fields. Figure 4 on page 18 illustrates a partial view of a Siebel integration
object based on the Account business object, with the Business Address component and the Contact
component activated.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 17

Integration Objects ■ About the Structure of Integration Objects
Figure 4 represents part of the structure of the Account integration object. The Account parent
integration component can have both fields and child integration components. Each integration
component can also have child integration components and fields. A structure of this sort represents
the metadata of an Account integration object. You may choose to inactivate components and fields.
By inactivating components and fields, you can define the structure of the integration object
instances entering or leaving the system.

Figure 4. Representation of Partial Account Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

18 ■

Integration Objects ■ About the Structure of Integration Objects
About Integration Components and Associations
Siebel business objects are made up of business components that are connected by a link. An
association is a business component that represents the intersection table that contains these links.
The integration component definition of associations is similar to that of multi-value groups (MVGs).
User properties Association and MVGAssociation on the integration component denote that the
corresponding business component is an associated business component or an associated MVG,
respectively. For fields that are defined on MVG associations, External Name denotes the name of
the business component field as it appears on the parent business component, and the user property
AssocFieldName denotes the name of the business component field as it appears on the MVG
business component.

For example, the Contact business object is partly made up of the Contact and Opportunity business
components. The association between these two business components is represented by the
Contact/Opportunity link with a value or a table name in the Inter Table column. The Integration
Object Builder wizard creates a new integration component for the integration object based on the
Contact business object that represents the association. As shown in Figure 5, the Opportunity
integration component has one user property defined: the Association user property, set to a value
of Y.

NOTE: When building an integration object, if an integration component is an association based on
an intersection table, the user key for this integration component cannot contain fields based directly
or indirectly on the same association intersection table.

About Multi-Value Groups Within Business Components
Multi-value groups (MVGs) are used within Siebel business components to represent database
multivalued attributes. MVGs can be one of two types: regular MVGs or MVG Associations.

Figure 5. Integration Component Representation of Association
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 19

Integration Objects ■ About the Structure of Integration Objects
An integration object instance most often has multiple integration component instances. For
example, an Account can have multiple Business Addresses but only one of these addresses is
marked as the primary address. A business requirement may require that only the integration
component instance that corresponds to the primary MVG be part of the integration object instance.
In relation to Account and Business Addresses this means that only the primary address should be
part of the Account integration object instance. The primary address can be obtained by one of the
following steps:

■ Creating a new MVG on the Account business component that uses a link with a search
specification only returning the primary address record.

■ Exposing the primary address information on the Account business component level using a join
that has the primary ID as source field. Note that in this case the primary address information
corresponds to fields on the Account integration component instance and not the fields on a
separate Address component instance.

In Siebel Tools, if a Siebel business component contains an MVG, the MVG is represented in several
screens as illustrated in the following sections.

Screen 1: Fields View for an MVG Field in a Business Component
For example, as illustrated in Figure 6, the Account business component contains a multi-value group
field, the Address Id.

-

Figure 6. Address Id MVG Field in the Account Business Component
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

20 ■

Integration Objects ■ About the Structure of Integration Objects
Screen 2: Multi-Value Links in a Business Component
As shown in Figure 7, the multi-value link property has the value Business Address. If you navigate
to the Multi Value Link screen, you see that the Business Address multi-value link has the value
Business Address as its Destination Business Component.

Screen 3: Fields View After Adding Multi-Value Link
As shown in Figure 8, the Business Address multi-value link has Business Address as its Destination
Business Component. This means that there is another business component named Business Address
that contains the fields that are collectively represented by Address Id in the Account business
component.

Figure 7. Destination Business Component

Figure 8. Business Address Business Component
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 21

Integration Objects ■ About the Structure of Integration Objects
Graphical Representation of a Business Component and a Multi-Value
Link
Figure 9 shows a graphical way to represent the relationship between Account business component
and the Business Address multi-value link.

The more table-like representation above shows how the Business Address multi-value link connects
the two business components. The child points to the Business Address business component, which
contains the multiple fields that make up the MVG.

NOTE: Two business components are used to represent an MVG.

Creating a Siebel Integration Component to Represent an MVG
To create a Siebel integration component to represent an MVG, it is necessary also to create two
integration components:

Figure 9. Address Id Field and Business Address MVG
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

22 ■

Integration Objects ■ About the Structure of Integration Objects
■ The first integration component represents the parent business component. In the example, this
is the Account business component. This integration component contains only the fields that are
defined in the parent business component, but which are not based on MVGs. The Multi-value
Link property and the Multi-value property are empty for these fields.

■ The second integration component represents the MVG business component. In the example, this
is the Business Address business component. The second integration component has one
integration field for each field based on the given MVG in the parent business component. An
integration component user property will be set on this integration component to tell the EAI
Siebel Adapter that it is based on an MVG business component. If the MVG is a regular MVG, the
user property is named MVG. If the MVG is an Association MVG, then the user property is named
MVGAssociation. In both cases, the value of the user property is Y.

Figure 10 shows an integration component based on an MVG and its user property value in Siebel
Tools.

Figure 10. Integration Component Based on MVG Business Component
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 23

Integration Objects ■ About the Structure of Integration Objects
The EAI Siebel Adapter needs to know the names of the MVG fields as they are defined in the parent
business component�in this example, Account�and also the names of the MVG fields as they are
known in the business component that represents the MVG�in this example, Account Business
Address. As shown in Figure 11, the integration component fields represent the MVG.

To represent both names, each field is assigned an integration component field user property that
contains the entry MVGFieldName or AssocFieldName if the user property is MVGAssoc. Its value is
the name of the field shown in the parent business component�in this example, Business Address.

About Validation of Integration Components Fields and
Picklists
If an integration component field is created for a Siebel business component field and the business
component field is based on a picklist, validation of the field can be done in EAI Siebel Adapter or
Object Manager. To have the validation done in EAI Siebel Adapter, the integration component field
should have a user property with the name PICKLIST and a value of Y; otherwise, validation is done
by Object Manager.

If validation is done by EAI Siebel Adapter, and the pickmap for the picklist contains more than one
field, when designing the integration object, you need to decide which of the fields to use as a search
criterion and which to simply update if input values are different than those in the picklist (provided
that picklist allows updates).

Figure 11. Integration Component Fields Representing MVG
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

24 ■

Integration Objects ■ About the Structure of Integration Objects
An example would be an integration object based on Order Entry business object. The root
component of the Order Entry business object is Order Entry - Orders with a field Account, whose
pickmap contains a large number of fields such as Account, Account Location, Account Integration
Id, Currency Code, Price List and so on. One of the tasks the integration object designer needs to
perform is to determine which of these fields should be used to identify the account for an order.

If the PicklistUserKeys user property on the integration component field that is mapped to the field
with the picklist (in the example above: Account) is not defined, then any integration component
fields that are mapped to columns in the U1 index of business component's base table, and are
present in the pickmap will be used by EAI Siebel Adapter to find the matching record in the picklist.
(In the example above, this would be Account and Account Location.)

In cases where the default user key for the picklist does not satisfy your business requirements (for
example, Account Integration Id should be solely used instead of the default user key to pick an
Account), or you want to make the user key explicit for performance reasons, then the
PicklistUserKeys user property should be used.

The value of the PicklistUserKeys user property is a comma separated list of integration component
fields that are used to find the matching record in the picklist (for example, 'Account, Account
Location' or 'Account Integration Id').

In order for EAI Siebel Adapter to use the fields referenced in PicklistUserKeys user property, the
fields must be included in the pickmap of the underlying business component field. Please note that
if the business component field names and integration component field names, listed in the
PicklistUserKeys property, are not the same, then the picklist should contain external names of the
fields listed in the PicklistUserKeys user property.

If there is a field present in the business component and in the pickmap, and it is stored in the base
table, then EAI Siebel Adapter can use the picklist to populate this field, only if this field is present
and active in the integration component. This field should also be present and empty in the input
property set.

About Calculated Fields and Integration Objects
Calculated fields are inactive in the integration object when they are created. If your business needs
require it, you need to activate the calculated fields in the integration object.

NOTE: Calculated fields are those integration component fields that have the Calculated flag checked
on the corresponding business component field.

About Inner Joins and Integration Components
When inner joins are used, records for which the inner joined field is not set are not returned in any
query. By default the wizard inactivates such fields. If your business needs require these fields, you
need to activate them.

NOTE: If the inner join has a join specification that is based on a required field, then the wizard will
not inactivate the fields that are using that particular join.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 25

Integration Objects ■ About the Structure of Integration Objects
For example, assume that Account business component has an inner join to S_PROJ table, with
Project Id field being the source field in the join specification, and the Project Name field being based
on that join.

If an integration component, with an active Project Name field is mapped to the Account business
component, then when this integration component is queried only accounts with Project Id field
populated will be considered.

Because Project Id is not a required field in Account business component, not every account in Siebel
Database is associated with a project. So, having Project Name active in the integration component
would limit the scope of the integration component to only accounts associated with a project. This
typically is not desirable, so the wizard inactivates the Project Name field in this example.

If the business requirement is to include the Project Name field, but not to limit the integration
component�s scope to only accounts with project, then you can change the join to S_PROJ in the
Account business component to an outer join. For details on joins, see Using Siebel Tools.

NOTE: Activating an inner join may cause a query on that integration component to not find existing
rows.

About Operation Controls for Integration Components
Each integration component has user properties that indicate if an Insert, Update, or Delete can be
performed on the corresponding business component, indicated by a NoInsert, NoUpdate, or
NoDelete. A similar user property NoUpdate may be set on an integration component field. If any of
these user properties are set to Y, the corresponding business component method is used to validate
the operation.

The user properties NoQuery and NoSynchronize are defined on integration components to specify
to the Siebel Adapter if a corresponding operation is to be performed on an instance of that type.
These properties take values Y or N.

The user property AdminMode set to Y indicates that the update of the corresponding business
component is to be performed in admin mode. This can be defined on either integration object or
integration component definitions.

The user properties IgnorePermissionErrorsOnUpdate, IgnorePermissionErrorsOnInsert, and
IgnorePermissionErrorsOnDelete can be used to suppress the errors that arise from having the
NoUpdate, NoInsert, and NoDelete user properties set to Y. The error is ignored and processing will
continue when properties IgnorePermissionErrorsOnUpdate, IgnorePermissionErrorsOnInsert and
IgnorePermissionErrorsOnDelete are set to Y.

About Defining Field Dependencies
Dependency between fields can be defined by user properties of the integration component field. The
names of these user properties must start with FieldDependency, and the value of each property
should contain the name of the field that the associated field is dependent on. The Siebel Adapter
processes fields in the order defined by these dependencies and errors out if cyclic dependencies
exist.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

26 ■

Integration Objects ■ About the Structure of Integration Objects
Siebel Adapter automatically takes into account dependencies of fields set by a PickList on the fields
used as constraints in that PickList. For example, if a PickList on field A also sets field B, and is
constrained by the field C, then this implies dependencies of both A and B on C. As a consequence,
Siebel Adapter will set field C before fields A and B.

About Setting Primaries Through Multi-Value Links
Primaries are set through multi-value links. However, you should not use multi-value links for
modifying the linked component. To modify the linked component you should use links. If you need
to set primaries in addition to modifying the linked component, use both links and multi-value links
in your integration object. EAI Siebel Adapter should use the multi-value link only after it processes
the component through the link; therefore, the link or the Association component should have a
smaller external sequence number than the related MVG or MVGAssociation component. See �About
the Structure of Integration Objects� on page 16 for an example.

About Repository Objects
For the Siebel Adapter to deal with repository objects, a user property REPOBJ needs to be defined
on the root integration component. If this is set to Y, the Siebel Adapter sets a context on the
repository so that the rest of the operations are performed in that context.

About Integration Component Keys
There are multiple types of integration component keys.

■ User Key. See �About User Keys� on page 28.

■ Status Key. See �About Status Keys� on page 33.

■ Hierarchy Parent Key. See �About Using the Hierarchy Parent Key� on page 34.

■ Hierarchy Root Key. See �About Using the Hierarchy Root Key� on page 34.

■ Modification Key. See �Configuring the EAI Siebel Adapter for Concurrency Control� on page 116.

■ Foreign Key. See Siebel Connector for Oracle Applications .

■ Target Key. See Siebel Connector for Oracle Applications .

NOTE: There should be just one integration component key for every type of key except the user
key. For example, if there are two Hierarchy Parent Keys defined for an integration component, EAI
Siebel Adapter picks the first one and ignores the second one.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 27

Integration Objects ■ About the Structure of Integration Objects
About User Keys
User key is a group of fields whose values must uniquely identify a Siebel business component
record. During inbound integration, user keys are used to determine whether the incoming data
updates an existing record or inserts a new one. The Integration Object Builder wizard automatically
creates some user keys based on characteristics discussed in �About User Key Generation Algorithm�
on page 28. You should make sure that the generated user keys match your business requirements;
otherwise, inactivate them or add new user keys as appropriate.

Integration component keys are built by the Integration Object Builder wizard based on values in the
underlying table of the business component that the integration component is based on. Integration
objects that represent Siebel business objects, and that are used in insert, update, synchronize, or
execute operations, must have at least one user key defined for each integration component.

In Siebel Tools, user keys are defined as integration component key objects, with Key Type property
set to User Key.

A sequence of integration component user keys is defined on each integration component definition,
each of which contains a set of fields. During processing of integration component instance, EAI
Siebel Adapter chooses to use the first user key in the sequence that satisfies the condition that all
the fields of that user key are present in an integration component instance. The first instance of
each integration component type determines the user key used by all instances of that type.

For example, consider the Account integration object instance with only Account Name and Account
Integration Id field present. When EAI Siebel Adapter performs validation, it first checks the Account
and Account Location field (the first user key for the Account integration component). In this
example, because the Account Location field is missing, EAI Siebel Adapter moves to the second user
key�Account Integration Id. The Account Integration Id field is present in the integration component
instance and has a value, so EAI Siebel Adapter uses that as the user key to match the record. Now
if the same instance also had Account Location field present, but set to null, then EAI Siebel Adapter
would have picked the Account Name and Account Location combination as the user key. This is
because Account Location is not a required field.

A new user key is picked for each integration object instance (root component instance). However,
for the child component instances, the user key is picked based on the first child instance, and then
used for matching of all instances of that integration component within the parent integration
component instance.

For example, if a Siebel Message contains two orders, then the user key for order items is picked
twice, once for each order. Each time, the user key is selected based on the first order item record
and then used for all the siblings.

NOTE: EAI Siebel Adapter uses user keys to match integration component instances with business
component records. Since the match is case sensitive there is a chance that records are not matched
if the case of the user key fields do not match. To avoid this, use the Force Case property on the
business component field to make sure that user key fields are always stored in one case.

About User Key Generation Algorithm
The Integration Object Builder wizard computes the user keys by traversing several Siebel objects,
including the business object, business component, table, and link. This is because not every table
user key meets the requirements to be used as the basis for integration object user keys.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

28 ■

Integration Objects ■ About the Structure of Integration Objects
To understand how the Integration Object Builder wizard determines valid integration component
keys, you can simulate the process of validating the user keys.

For example, determine the table on which your business component is based. In Siebel Tools, you
can look up this information yourself. Navigate to the Business Components screen and select a
business component and check the Table column.

You can then navigate to the Tables screen, locate the table you want (in this example use
S_CONTACT), and open the User Keys applet to see the user keys defined for that table.

For example, as shown in Figure 12, the table S_CONTACT has several user keys.

Not every user key will necessarily be valid for a given business component. Multiple business
components can map to the same underlying table; therefore, it is possible that a table�s user key
is not valid for a particular business component but is specific to another business component.

Figure 12. User Keys for Table S_CONTACT
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 29

Integration Objects ■ About the Structure of Integration Objects
Each User Key Column defined for a given user key must be exposed to the business component in
which you are interested. For example, Figure 13 shows three user key columns for the user key
S_CONTACT_U1.

Figure 13. User Key Columns for the S_CONTACT_U1 User Key
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

30 ■

Integration Objects ■ About the Structure of Integration Objects
If the columns of the user key are exposed in the business component and those columns are not
foreign keys, the Integration Object Builder wizard creates an integration component key based on
the table�s user key. The Integration Object Builder wizard also defines one integration component
key field corresponding to each of the table�s user key columns. For example, in Figure 14, the user
key columns are exposed in the Integration Component Fields applet for the Contact integration
component.

Figure 14. Integration Component Field List
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 31

Integration Objects ■ About the Structure of Integration Objects
The Integration Object Builder wizard, for the preceding example, builds the integration component
keys based on these table user keys. As illustrated in Figure 15, the wizard defines one integration
component key field for each table user key column.

Figure 15. Integration Component Keys for Each Table User Key Column
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

32 ■

Integration Objects ■ About the Structure of Integration Objects
Each valid integration component key contains fields. For example, as shown in Figure 16, for the
Contact integration component, User Key 3 is made up of five fields: CSN, First Name, Last Name,
Middle Name, and Personal Contact.

NOTE: You should only modify user keys if you have a good understanding of the business
component and integration logic.

When the Integration Object Builder wizard creates these integration component keys, it attempts
to use the appropriate table user keys, that is, the user keys that will help uniquely identify a given
record. In some cases, you may find that certain integration component keys created by the
Integration Object Builder wizard are not useful for your particular needs. In that case, you can
manually inactivate the keys you do not want to use by checking the Inactive flag on that particular
user key in Siebel Tools. You can also inactivate user key fields within a given user key.

NOTE: For ease of maintenance and upgrade, inactivate unnecessary generated user keys and user
key fields instead of deleting them.

About Status Keys
In the context of Siebel business objects, user keys are a group of fields whose values must uniquely
identify only one Siebel business component record. Integration components within a corresponding
integration object also contain user keys.

For many integrations, you want to know the status. For example, if you are sending an order request
you want to know the ID of the Order created so that you can query on the order in the future. You
can set the Status Object of EAI Siebel Adapter to True to return an integration object instance as a
status object.

Figure 16. Contact Integration Component Key Fields
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 33

Integration Objects ■ About the Structure of Integration Objects
The status returned is defined in the Integration Component using Status Keys. A Status Key is an
Integration Component key of the type Status Key. Fields defined as part of the Status Key are
included in the returned Status Object. If a Status Key is not defined for the Integration Component
then neither the component nor any of its children are included in the returned object.

■ To include descendants of an Integration Component without including any of its fields in the
returned status object, specify an empty Status Key.

■ To include information about which one of the update, insert, or delete operations was performed
during an upsert or synchronize request, include a field named Operation in the Status Key.

About Using the Hierarchy Parent Key
The Hierarchy Parent Key is used for integration objects that have a homogeneous hierarchy. This
key should only have the Parent Id. The Hierarchy Parent Key is used for maintaining the hierarchy
and keeping the data normalized.

For example, when you insert quotes, each quote item in turn can have more quote items. In this
case, the very first quote item inserted by EAI Siebel Adapter has the Parent Id set to blank, but for
each child quote item, EAI Siebel Adapter checks the keys to figure out which fields are to be set. If
Hierarchy Parent Key is not defined, then the child quote item is inserted as a new quote item without
a link to its parent (denormalized).

About Using the Hierarchy Root Key
The Hierarchy Root Key is an optional key that is useful only when integration objects have a
homogeneous hierarchy. You can use this key to improve performance. The Hierarchy Root Key
should have only one field, Root Id, which EAI Siebel Adapter populates with the value of the ID field
in the component instance that is in the root of the homogenous hierarchy. For example, assume
quote Q1 has quote items A, B, and C where each of the quote items has child quote items (A1, A2,
B1, B2,...). If you want to update the quantity requested for all quote items starting with the root
quote item B, then it is faster if the data is denormalized. Using the Hierarchy Root Key, you can
search for all records with Root Id equal to the Row Id of B and set the QuantityRequested field for
each item.

NOTE: When the business component is hierarchy enabled, then the wizard automatically sets the
Hierarchy Parent Key for the complex integration component. To have a business component
hierarchy enabled you need to set the property Hierarchy Parent Field.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

34 ■

Integration Objects ■ Permission Flags for Integration Components
Permission Flags for Integration
Components
Each business component, link, MVG, and integration object user property has settings such as No
Update, No Delete, and No Insert. These settings indicate the type of operations that cannot be
performed on that object. In order for EAI Siebel Adapter to successfully perform an operation, that
operation needs to be allowed at all levels. If the operation is allowed at every level but the field
level, a warning message is logged in the log file and processing continues. Otherwise, an error
message is returned and the transaction is rolled back. The permission settings are done by using
user properties on the integration object, component, or field.

Table 5 illustrates which permissions influence which operation type on an integration component.

NOTE: The transaction is rolled back if any of the permissions (excluding field-level permissions) are
denied.

About the EAI Siebel Adapter Access
Control
You can use the following mechanisms to control EAI Siebel Adapter access to the database:

Table 5. Permission Flags for an Integration Component

Integration Component Type

Permission Layer Checked by... Standard MVG
Associati
on

Integration Object Component EAI Siebel
Adapter

✔ ✔ ✔

Integration Component ✔ ✔ ✔

Integration Field (Update Only) ✔ ✔ ✔

Link Object Manager ✔ ✔ ✔

Multi-Value Link (MVL) ✔

Business Component
(Overridden by AdminMode)

✔ ✔ ✔

Business Component Field ✔ ✔ ✔
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 35

Integration Objects ■ About the EAI Siebel Adapter Access Control
■ Restricted access to a static set of integration objects. You can configure the EAI Siebel
Adapter business service, or any business service that is based on the
CSEEAISiebelAdapterService, to restrict access to a static set of integration objects. To do this,
set a business service user property called AllowedIntObjects, which contains a comma-
separated list of integration object names that this configuration of EAI Siebel Adapter can use.
This allows you to minimize the number of integration objects your users need to expose outside
of Siebel applications through HTTP inbound or MQSeries Receiver server components. If this
user property is not specified, EAI Siebel Adapter uses any integration objects defined in the
current Siebel Repository.

■ ViewMode. You can specify the visibility mode of business components that EAI Siebel Adapter
uses. This mode is specified as the integration object user property ViewMode. This user property
can take different values, as defined by LOV type REPOSITORY_BC_VIEWMODE_TYPE.

NOTE: For details on ViewMode, see Siebel Tools Online Help.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

36 ■

3 Creating and Maintaining
Integration Objects
This chapter describes how to use the Integration Object Builder wizard in Siebel Tools to create new
Siebel integration objects. This wizard guides you through the process of selecting objects (either
from the Siebel repository or from an external system) on which you can base your new Siebel
integration object. This chapter also describes how to fine-tune and refine the integration object you
have created.

The chapter consists of the following topics:

■ �About the Integration Object Builder� on page 37

■ �Creating Integration Objects Using the EAI Siebel Wizard� on page 38

■ �Siebel Integration Object Fine-Tuning� on page 40

■ �Integration Object Validation� on page 40

■ �Integration Objects Synchronization� on page 41

■ �About the EAI Siebel Wizard� on page 49

■ �Siebel Integration Objects Maintenance and Upgrade� on page 50

■ �Resolving Synchronization Conflicts for Integration Objects and User Properties� on page 51

■ �Example of an Integration Object With Many-To-Many Relationships� on page 55

■ �Generating Integration Object Schemas� on page 56

■ �About Optimizing Performance for Using Integration Objects� on page 57

■ �Business Component Restrictions for Integration Components� on page 58

■ �Best Practices for Using Integration Components� on page 59

About the Integration Object Builder
The Integration Object Builder builds a list of valid components from which you can choose the
components to include in your Siebel integration object.

NOTE: The Integration Object Builder provides a partial rendering of your data in the integration
object format. You must review the integration object definition and complete the definition of your
requirements. In particular, you should confirm that user key definitions are defined properly. You
may need to enter keys and user properties manually or inactivate unused keys and fields in Siebel
Tools. You should not expect to use the integration object without modification.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 37

Creating and Maintaining Integration Objects ■ Creating Integration Objects Using the
EAI Siebel Wizard
The following checklist gives the high-level procedure for creating an integration object.

Creating Integration Objects Using the
EAI Siebel Wizard
Siebel Tools provides a wizard to walk you through creating an integration object. You should use
this wizard to create your integration object.

To create a new Siebel integration object

1 Start Siebel Tools.

2 Create a new project and lock it, or lock an existing project in which you want to create your
integration object.

3 Choose File > New Object... to display the New Object Wizards dialog box.

4 Select the EAI tab and double-click the Integration Object icon.

5 In the Integration Object Builder wizard:

a Select the project you locked in Step 2.

b Select the EAI Siebel Wizard.

6 Click Next and in the second page of the Integration Object Builder wizard:

a Select the source object. This is the object model for the new Siebel integration object. Only
business objects with Primary Business Components appear on this picklist.

b Type a unique name in the field for the new Siebel integration object and click Next.

NOTE: The name of an integration object must be unique among other integration objects.
There will be an error if the name already exists.

The next page of the wizard, the Integration Object Builder - Choose Integration Components
page, displays the available components of the object you chose.

Checklist

❑ Create integration objects using the EAI Siebel Wizard.

For details, see �Creating Integration Objects Using the EAI Siebel Wizard� on page 38.

❑ Fine-tune your integration object.

For details, see �Siebel Integration Object Fine-Tuning� on page 40.

❑ Validate your integration object.

For details, see �Integration Object Validation� on page 40.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

38 ■

Creating and Maintaining Integration Objects ■ Creating Integration Objects Using the
EAI Siebel Wizard
7 Deselect the components you would like the wizard to ignore. This means you will not be able to
integrate data for that component between the Siebel application and another system.

NOTE: Any component that has a plus sign (+) next to it is a parent in a parent-child relationship
with one or more child components. If you deselect the parent component, the children below
that component are deselected as well. You cannot include a child component without also
including the parent. The Integration Object Builder enforces this rule by automatically selecting
the parent of any child you choose to include.

For example, assume you have chosen to build your Siebel integration object on the Siebel
Account business object and you want to create an integration component based on the Account
and Contact business components.

a Deselect the Account integration component at the top of the scrolling list. This action deselects
the entire tree below Account.

b Select the Contact component. When selecting a child component, its parent component is also
selected, but none of the components below the child component are selected. You must
individually select the ones you want.

8 Click Next. The next page displays error or warning messages generated during the process.
Review the messages and take the appropriate actions to address them.

9 Click Finish to complete the process of creating a new Siebel integration object.

NOTE: After creating integration objects in Siebel Tools, you must compile them into a new SRF
file and copy the SRF file to the SIEBSRVR_ROOT/OBJECTS directory.

Your new Siebel integration object appears in the list of integration objects in Siebel Tools.

On the Integration Components screen, the Account integration component is the only
component that has a blank field in the Parent Integration Component column. The blank field
identifies Account as the root component. The Siebel integration object also contains the other
components selected, such as Contact and its child components.

NOTE: Once you create your integration object based on a Siebel business object, you should
not change its integration component�s External Name Context; otherwise, the synchronization
process will not recognize the integration component and will remove it from the integration
object.

10 To view the fields that make up each integration component, select a component from the
integration component list in Siebel Tools.

The Integration Component Fields applet displays the list of fields for that component. Note the
system fields Conflict Id, Created, Id, Mod Id, Updated, operation, and searchspec in the list.
This setting prevents EAI Siebel Adapter Query and QueryPage method from outputting these
fields. For more details, see �About the SearchSpec Input Method Argument� on page 112.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 39

Creating and Maintaining Integration Objects ■ Siebel Integration Object Fine-Tuning
Creating an Integration Object Based on Another Root Business
Component
The Integration Object Builder wizard, using the EAI Siebel Wizard, allows you to choose which
business object to use. However, the Integration Object Builder wizard will generate the Primary
Business Component as the root Integration Component. If it happens that the business object
contains multiple root business components (note the difference between root and primary business
component), and that the user requires the Integration Object to be created based on another root
business component, then you will perform the following procedure.

To create an integration object based on another root business component

1 Modify the business object definition in Siebel Tools to have that particular root business
component as the Primary Business Component.

2 Run the Integration Object Builder wizard and choose the business object you want to use.

3 Undo the changes to the business object definition.

Step 3 is necessary because unless you are very certain about what you are doing in terms of
changing the Primary Business Component of the business object, it is recommended that you roll
back the changes such that it will not affect any business logic.

Siebel Integration Object Fine-Tuning
After you create your integration object you need to fine-tune and customize your integration object
based on your business requirements. Following is a list of the most common practices in fine-tuning
an integration object.

■ Deactivate the fields that do not apply to your business requirements.

■ If necessary, activate the fields that have been deactivated by the Siebel wizard. For details, see
Chapter 2, �Integration Objects.�

■ Add the fields that have not been included by the Siebel wizard. For details on the implications
of activating such fields, see �About Calculated Fields and Integration Objects� on page 25 and
�About Inner Joins and Integration Components� on page 25.

■ Validate the user keys. For details, see Chapter 2, �Integration Objects.�

■ Update the user properties for your integration object to reflect your business requirements. For
details, see �Resolving Synchronization Conflicts for Integration Objects and User Properties� on
page 51.

Integration Object Validation
Once you have created your integration object and made the necessary modifications to meet your
business requirements, you need to validate your integration object.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

40 ■

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
To validate your integration object

1 Start Siebel Tools.

2 Select your integration object.

3 Click Validate.

4 Review the report and modify your integration object as needed.

NOTE: Integration objects you create in Siebel Tools must be compiled into the Siebel.srf file. Once
you test the integration object, you must copy the compiled SRF to your SIEBSRVR_ROOT\OBJECTS
directory.

Integration Objects Synchronization
Business objects often require updates to their definitions to account for changes in data type,
length, edit format, or other properties. It is common to want to alter database metadata, but if you
do so you have to also update your integration objects to account for these updates. Otherwise, you
can cause undesirable effects on your integration projects.

Some examples of these changes are:

■ A field removed

■ A new required field

■ A new picklist for a field

■ A change of relationship from one-to-many to many-to-many

■ An upgrade to a new version of Siebel applications

Synchronizing Integration Objects
To help simplify the synchronization task, Siebel eAI provides an integration object synchronization
utility. Although the process of synchronizing your integration object with its underlying business
object is straightforward, you should review the integration objects you have modified to make sure
that you have not inadvertently altered them by performing a synchronization. After synchronization,
you should validate your integration object.

The following checklist gives the high-level steps for updating an integration object.

Checklist

❑ Run the Synchronization wizard.

For details, see �Updating the Entire Integration Object� on page 44.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 41

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
To update an integration object with new and current business object definitions

1 Access the integration object you want to update in Siebel Tools.

2 Run the Synchronization wizard by clicking Synchronize in the Integration Objects list applet.

NOTE: The update process overrides the integration object and deletes user keys, user
properties, and so on. You can use the copy of the integration object made by the
Synchronization wizard to see how you modified the object.

a On the Integration Objects Builder, click on the plus sign to list all the related integration
components, as shown in the following figure.

The process of retrieving Siebel integration objects and Siebel business object definitions can
take varying amounts of time depending on the size of the selected objects.

b Uncheck the boxes beside the objects and components you do not want to include in the
synchronization of your Siebel integration object. Note that only the objects that are included in
the new integration object are marked.

❑ Modify the newly updated integration object as needed, using the DIFF tool and a copy of
the original integration object as reference.

For details, see Using Siebel Tools.

❑ Run Validation.

For details, see �Integration Object Validation� on page 40.

Checklist
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

42 ■

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
c Choose to add new fields as active or inactive and click Next. Inactive is the default.

The process of performing the synchronization can take some time, depending on the
complexity of the selected objects.

d The Integration Object Synchronize Summary screen appears, providing feedback from the
synchronization.

Each added field is checked as to whether or not it is required for use with the integration
object.

Review the summary. If changes are needed, click Back and make the needed changes.

e If no changes are needed, click Finish to synchronize the Siebel integration object and the Siebel
business object. The Compare Objects dialog box appears.

This tool allows you to move properties and objects between versions using arrow buttons.

When you synchronize the Siebel integration object and the Siebel business object, the
Synchronization wizard performs update, insert, and delete operations on the existing
integration object definition. The Synchronization wizard selects or deselects components to
make the Siebel integration object look like the definition of the Siebel business object you
chose.

The wizard generally updates the Siebel integration object either by updating the object and
its components or by updating some components and deleting others. For details, see
�Updating the Entire Integration Object� on page 44 and �About Deleting a Component from the
Integration Object� on page 46.

3 Copy custom properties and custom user keys as needed. The wizard includes any new fields
added to the business object in your integration object for the new version of your Siebel
application. All these fields are set to active.

4 Deactivate any new fields that you do not need in a component of your updated integration
object.

5 Right-click on your integration object, and select the Validate option to validate your integration
object.

NOTE: If you need to synchronize any of the external integration objects, you should also follow this
general procedure to perform a synchronization operation.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 43

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
Synchronization Rules
During the synchronization process, the Synchronization wizard follows particular update rules.
Consider a simple example involving the Siebel Account integration object with only Contact and its
child components marked as active in the object. Figure 17 helps you to visualize this example.

Since the Account component is the parent of Contact, it is also selected, even though you cannot
see it in Figure 17.

Updating the Entire Integration Object
Either the business object or the integration object might have changed since the integration object
was first created. The Synchronization wizard will create a new object that takes into account any
business object and integration object changes.

Figure 17. Example of Selected Integration Components
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

44 ■

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
Figure 18 illustrates this concept.

Figure 18. Synchronizing the Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 45

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
Figure 19 shows how the resulting integration object is structured after the synchronization.

The integration object now contains two new components, Business Address and Opportunity. Other
components have been updated with the definitions of the corresponding components in the business
object.

About Deleting a Component from the Integration Object
If you choose to deselect a component in the Synchronization wizard, you specify to the wizard that
it should delete the component in the integration object with the matching External Name Context
property. The integration object that exists in the database has a component with the same External
Name, External Name Sequence, and External Name Context as the unchecked component in the
component selection tree.

In Figure 20 on page 47, the Contact_Personal Address in the existing Account integration object is
unchecked in the Synchronization wizard tree. This is represented by an X in this figure.

Figure 19. Completely Updated Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

46 ■

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
Figure 20 illustrates this concept.

Figure 20. Deleting a Component from the Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 47

Creating and Maintaining Integration Objects ■ Integration Objects Synchronization
Figure 21 shows the integration object after synchronization.

The component Contact_Personal Address has been deleted. When you use the updated integration
object, you will not be able to pass data for that component between a Siebel application and an
external application.

This example is intended to show how you might cause unexpected results by deselecting
components. However, if you do want to delete a particular component from the integration object,
deleting a component from the integration object method accomplishes that goal.

As the examples illustrate, you need to be aware of the possible changes that can occur when you
are synchronizing business objects and integration objects. The Synchronization wizard can provide
assistance in managing your integration objects, but you need to have a clear understanding of your
requirements, your data model, and the Siebel business object structure before undertaking a task
as important as synchronization.

Figure 21. Synchronization Resulting in a Deleted Component
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

48 ■

Creating and Maintaining Integration Objects ■ About the EAI Siebel Wizard
About the EAI Siebel Wizard
You can use the EAI Siebel Wizard to create integration objects that represent Siebel business
objects. During the process of creating a new integration object, described in �About the Integration
Object Builder� on page 37, you can choose the EAI Siebel Wizard as the business service to help
create the object. This wizard understands the structure of Siebel business objects. As shown in
Figure 22, the wizard returns a list of the available business objects from which you can choose one
to base your integration object on.

The wizard also returns a list of the available components contained within the object you have
chosen. When you select certain components in the wizard, you are activating those components in
your integration object. Your integration object actually contains the entire structural definition of
the business object you selected in the first wizard dialog box. Only the components you checked,
or left selected, are active within your integration object. That means any instances you retrieve of
that integration object contains only data represented by the selected components.

Figure 22. Activated Components in the Contact Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 49

Creating and Maintaining Integration Objects ■ Siebel Integration Objects Maintenance
and Upgrade
After the wizard creates your integration object, you can edit the object in Siebel Tools, as shown in
Figure 23. You might choose to drill down into the integration components and activate or inactivate
particular components or even particular fields within one or more components.

NOTE: You should always deactivate the fields rather than delete them, even though the net effect
will be the same. When you execute the synchronization task, using the Siebel eAI sync utility in
Siebel Tools, inactivated fields remain inactive, while the deleted fields are created as active fields
in the integration object.

Siebel Integration Objects Maintenance
and Upgrade
Sometimes you may change the underlying business objects, which necessitates maintenance of the
integration object. Synchronize the integration object by clicking the synchronize button.

To make maintenance of integration objects easier, adhere to the following guidelines when creating
or editing your integration objects:

■ Name any user key that you add differently from the generated user keys. Using meaningful
names helps with debugging.

■ Inactivate user keys instead of deleting them.

■ Inactivate fields instead of deleting them.

Figure 23. Activated Components in the Contact Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

50 ■

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties
Resolving Synchronization Conflicts for
Integration Objects and User Properties
This section serves as a guide to resolving synchronization conflicts should any arise.

Table 6 illustrates behavior of the merging logic for each of the integration object parts that have to
be synchronized.

Table 6. Merging Logic Used for Synchronizing Integration Objects

Integration Object Metadata Merging Rules

Objects Validate that Business Object still exists.

Components Present the tree of components based on current
business object definition. The components
present in current integration object are checked
in the UI tree, other components presented as
Inactive. User decides which components to add/
delete. This is done by the Synchronization wizard
UI.

Fields Keep current integration component fields if still
present in the business component, otherwise
delete. Add new fields in a way that does not
conflict with existing ones (see Sequence for more
info).

System fields are created when appropriate (for
example searchspec, IsPrimaryMVG, and
operation). If system field is inconsistent with
integration component definition, delete it.

Active/Inactive - Preserve current integration
component field value unless Business Component
Field is Required (field must be present during
Insert). Otherwise, new fields are created
Inactive.

XML Properties Preserve current integration object values to keep
XML compatible. Add new components/fields
properties avoiding conflict with existing XML.

XML Properties are processed according to the XML
sequence. New components/fields XML sequence
within the parent component element will be
higher than current.

Existing processing code should be reused (and
checked for correct behavior).
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 51

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties
External Sequence on components/fields Preserve component/field sequence within the
parent component. Set sequence on new
components/fields higher than existing ones.

Name Preserve Names in the current integration object.

User key, Hierarchy key, Other keys (for
example, Status Key)

Existing Keys:

■ Keep existing keys as Active if all the key fields
are Active.

■ Make Inactive if Inactive already or if any of
the fields are Inactive.

■ If a field is Inactive in an integration
component, make it Inactive in the key. Make
the key Inactive.

■ If a field is not present in an integration
component, delete it from the key. Make the
key Inactive.

New Keys:

■ Create new keys as Inactive.

■ If any of the key fields are Inactive, either:

■ Do not create the key.

■ Make fields Active in the integration
component.

User Properties Preserve valid cases, remove invalid ones and
generate warnings.

Table 6. Merging Logic Used for Synchronizing Integration Objects

Integration Object Metadata Merging Rules
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

52 ■

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties
Table 7 shows the logic that will be used when synchronizing user properties.

Table 7. Logic Used for Synchronizing User Properties

User Property Name

Values
(Default is
in italics)

Level
(Object,
Component,
or Field) Merging Rules

Association Y,N C Siebel Wizard generates the
value based on current
business component
definition. Wizard overwrites
user change since in order for
integration component to be
functional, the User Property
has to be consistent with the
business component.

MVG Y,N C Siebel Wizard generates the
value based on current
business component
definition. Wizard overwrites
user change since in order for
integration component to be
functional, the User Property
has to be consistent with the
business component.

IsPrimaryMVG system field is
created in merged integration
object.

Picklist Y,N F Siebel Wizard generated, user
change is kept if valid (if
Picklist component).

Review the input object for a
user property of PICKLIST.
Copy from the current field.

PicklistUserKeys Any active
fields.

F Entered by user, keep only
Active fields. User Property is
valid only if PICKLIST = Y on
integration component.

If no Active fields left, remove
the user property.

IgnoreBoundedPicklist Y,N O, C, F Entered by user, keep if valid
(if component Picklist = Y).
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 53

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties
MVGAssociation Y,N C Siebel Wizard generates the
value based on current
business component
definition. Wizard overwrites
user change since in order for
integration component to be
functional, the User Property
has to be consistent with the
business component.

IsPrimaryMVG system field is
created in merged integration
object.

MVGFieldName Any valid
field name in
the MVG
business
component.

F Siebel Wizard generates the
value based on current
business component
definition. Wizard overwrites
user change since in order for
integration component to be
functional, the User Property
has to be consistent with the
business component.
(component MVG = Y)

AssocFieldName Any valid
field name in
the
Association
business
component.

F Siebel Wizard generates the
value based on current
business component
definition. Wizard overwrites
user change since in order for
integration component to be
functional, the User Property
has to be consistent with the
business component.
(component MVGAssociation
= Y)

NoInsert, NoDelete, NoUpdate,
NoQuery, NoSynchronize

Y,N C, F
(NoUpdate)

Entered by the user. Keep the
current value.

Table 7. Logic Used for Synchronizing User Properties

User Property Name

Values
(Default is
in italics)

Level
(Object,
Component,
or Field) Merging Rules
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

54 ■

Creating and Maintaining Integration Objects ■ Example of an Integration Object With
Many-To-Many Relationships
Example of an Integration Object With
Many-To-Many Relationships
Following is an example of how to create an integration object with two components that have a
many-to-many (M:M) relationship. For illustration purposes, we are using an integration object that
uses a Contact business object with Contact and Opportunity business components.

To create an integration object with a many-to-many business component

1 Start Siebel Tools.

2 Create a new project and lock it, or lock an existing project in which you want to create your
integration object.

FieldDependencyFieldName Any active
integration
component
name within
the same
integration
component.

F Entered by the user. Keep the
current value if valid (if
FieldName field is Active).

AdminMode Y, N C, O Entered by the user. Keep the
current value.

ViewMode All, Manager,
Sales
Represent,
and any
others

O Entered by the user. Keep the
current value.

AllLangIndependentVals Y,N O Entered by the user; if the
value exists, keep it.
Otherwise, the wizard sets
the value to N.

IgnorePermissionErrorsOnUpdate,
IgnorePermissionErrorsOnInsert,
IgnorePermissionErrorsOnDelete

Y,N C Entered by the user. Keep the
current value.

ForceUpdate Y,N O Entered by the user. Keep
current the value.

SupressQueryOnInsert Y,N C Entered by the user. Keep the
current value.

Table 7. Logic Used for Synchronizing User Properties

User Property Name

Values
(Default is
in italics)

Level
(Object,
Component,
or Field) Merging Rules
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 55

Creating and Maintaining Integration Objects ■ Generating Integration Object Schemas
3 Choose File > New Object... to display the New Object Wizards dialog box.

4 Select the EAI tab and double-click the Integration Object icon.

5 In the Integration Object Builder wizard:

a Select the project you locked in Step 2.

b Select the EAI Siebel Wizard.

6 Click Next and in the second page of the Integration Object Builder wizard:

a Select the source object Contact to be the base for the new Siebel integration object.

b Type a unique name in the field for the new Siebel integration object and click Next�for example,
Sample Contact M:M.

7 From the list of components, select Contact and Opportunity. There is also a component named
Contact_Opportunity in the list. This component is an MVGAssociation component, and should be
picked only if you need this integration object to set the primary opportunity for contact. For
details on MVG, see �About MVGs in EAI Siebel Adapter� on page 111.

8 Deactivate all integration component fields in the Contact integration component except First
Name, Last Name, Login Name, and Comment. (In this example, these are the only fields we
need for Contact.)

9 Deactivate all integration component fields in the Opportunity integration component except
Account, Account Location, Budget Amt, Name, and Description. (In this example, these are the
only fields we need for Opportunity.)

10 Compile a new SRF file and copy the SRF file to the SIEBSRVR_ROOT/OBJECTS directory.

To test the newly created integration object

1 Start the Siebel client connected to Sample database.

2 Copy and modify the Import Account (File) and the Export Account (File) sample workflow
processes to work with the Contact business object, instead of the Account business object.

3 Modify the Export Account (File) workflow process to invoke the EAI Siebel Adapter against the
Sample Contact M:M integration object that you created in �To create an integration object with a
many-to-many business component� on page 55.

4 Run the workflow processes using the Workflow Process Simulator.

Generating Integration Object Schemas
At certain points in your integration project, you may want to generate schemas from an integration
object. If you export Siebel integration objects as XML to other applications, you may need to publish
the schemas of such objects so that other applications can learn about the structure of the XML to
expect.

To generate an integration object schema

1 In Siebel Tools, click on an integration object to make it the active object.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

56 ■

Creating and Maintaining Integration Objects ■ About Optimizing Performance for Using
Integration Objects
2 Click Generate Schema to access the Generate XML Schema wizard shown in the following figure.

3 Choose the EAI XML DTD Generator business service to use as an example.

The other choices are the EAI XML XDR and the EAI XML XSD Generators.

4 Choose an envelope type to use in generated DTD.

5 Choose a location where you want to save the resulting DTD file and click Finish. The wizard
generates a DTD of the integration object you selected. Use this DTD to help you map external
data directly to the integration object. The DTD serves as the definition for the XML elements you
can create using an external application or XML editing tool.

About Optimizing Performance for Using
Integration Objects
To optimize your integration object performance, you may want to consider the following.

Size of Integration Object
The size of an integration object and its underlying business components can have an impact on the
latency of EAI Siebel Adapter operations. You should inactivate unnecessary fields and components
in your integration objects.

Force-Active Fields
You should reexamine any fields in the underlying business component that are force-active. Such
fields are processed during integration even if they are not included in the integration component.
You might want to consider removing the force-active specification from such fields, unless you
absolutely need them.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 57

Creating and Maintaining Integration Objects ■ Business Component Restrictions for
Integration Components
Picklist Validation
Siebel applications have two classes of picklists�static picklists based on lists of values and dynamic
picklists based on joins.

Setting the property PICKLIST to Y in the integration object field directs the EAI Siebel Adapter to
validate that all operations conform to the picklist specified in the field. For dynamic picklists, this
setting is essential to make sure the joins are resolved properly. However, for unbounded static
picklists, this validation may be unnecessary and can be turned off by setting the PICKLIST property
to N. Even for bounded static picklists, validation in the adapter can be turned off because the Object
Manager can perform the validation. Turning off the validation at the EAI Siebel Adapter level means
that picklist-related warnings and debugging messages will not show up along with other EAI Siebel
Adapter messages. This also means that bounded picklist errors will not be ignored, even if Ignore
Bounded Picklist is set to Y.

As well as certain warnings and messages not appearing, setting the integration component field user
property PICKLIST to N, also causes fields be auto-filled. In this instance, providing a single value
to a particular field causes the value of the field to be auto-filled. This especially occurs when the
picklist is based on an MLOV. If the EAI Siebel Adapter is performing the validation (PICKLIST = Y),
auto filling of the field does not occur. In this case, the EAI Siebel Adapter supports only an exact
match for the particular field.

NOTE: Performing the validation of a bounded picklist in EAI Siebel Adapter is about 10% faster than
performing the validation in the Object Manager.

Business Component Restrictions for
Integration Components
The business components underlying the Integration Components may have certain restrictions. For
example, Internal Product can only be modified by an administrator. The same restrictions apply
during integration. In many cases, the Siebel Integration Object Builder wizard detects the
restrictions and sets properties such as No Insert or No Update on the integration components.

System Fields
Integration object fields marked as System are not exported during a query operation. This setting
prevents the EAI Siebel Adapter from treating the field as a data field, which means for Query and
QueryPage method the EAI Siebel Adapter will not output the field. For the Synchronize and Update
method, the field will not be directly set in the business component unless the ISPrimaryMVG is set
to Y.

NOTE: If you want to include System fields in the exported message, change the Integration
Component field type to Data. System fields are read-only. If you attempt to send in a message with
the value set for a System field, the setting will be ignored and a warning message will be logged.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

58 ■

Creating and Maintaining Integration Objects ■ Best Practices for Using Integration
Components
Best Practices for Using Integration
Components
■ Familiarize yourself with the business logic in the business components. Integration designers

should use the presentation layer or the user interface to get a good sense of how the business
component behaves and what operations are allowed and not allowed.

■ Design with performance in mind. See �About Optimizing Performance for Using Integration
Objects� on page 57.

■ Design with maintenance in mind. See �Siebel Integration Objects Maintenance and Upgrade� on
page 50.

■ Resolve configuration conflicts. During the development of your integration points, you might
encounter issues with the configuration of business components that are configured to support
interactive GUI usage, but do not satisfy your integration requirements. The following scenarios
demonstrate three different situations in which you might encounter such conflicts and a possible
solution for each case.

Scenario 1. Your integration requires explicitly setting a primary child, but the business
component configuration does not allow that because the related MVLink has Auto Primary
property set to Default.

Solution. Change the Auto Primary property from Default to Selected. This enables EAI Siebel
Adapter to change the Auto Primary property according to the input request, while making sure
that there is always a primary child selected.

Scenario 2. A business component such as Internal Product is made read-only for regular GUI
usage, but you want your integration process to be able to update the Internal Product business
component.

Solution. Set the AdminMode user property on the integration object to Y. This allows the EAI
Siebel Adapter to use the business component in an administrator mode.

Scenario 3. Similar to scenario 2, a business component such as Internal Product is made read-
only for regular GUI usage, but you want your integration process to be able to update the
Internal Product business component. The only difference in this scenario is that the business
component is used through a link that has NoUpdate property set to Y.

Solution. Since there is a link with NoUpdate property set to Y, setting the AdminMode user
property on the integration object to Y is not going to help. You need the create the following
exclusively for integration purposes:

■ A new link based on the original link with NoUpdate property Set to N.

■ A copy of the original business object referencing the new link instead of the original. Note
that the same business component should be used by both links.

NOTE: Customized configurations are not automatically upgraded during the Siebel Repository
upgrade, so this option should be used as a last resort.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 59

Creating and Maintaining Integration Objects ■ Best Practices for Using Integration
Components
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

60 ■

4 Business Services
This chapter outlines the basic concepts of a business service, its structure and purpose, and how
you can customize and create your own business service. This chapter also describes how to test
your business service before it is implemented. The following topics are included:

■ �About Business Services� on page 61

■ �Creating Business Services in Siebel Tools� on page 64

■ �Creating a Business Service in the Siebel Client� on page 68

■ �Business Service Export and Import� on page 69

■ �Testing Your Business Service� on page 69

■ �Business Scenario for the Use of Business Services� on page 71

About Business Services
A business service is an object that encapsulates and simplifies the use of some set of functionality.
Business components and business objects are objects that are typically tied to specific data and
tables in the Siebel data model. Business services, on the other hand, are not tied to specific objects,
but rather operate or act upon objects to achieve a particular goal.

Business services can simplify the task of moving data and converting data formats between the
Siebel application and external applications. Business services can also be used outside the context
of Siebel eAI to accomplish other types of tasks, such as performing a standard tax calculation, a
shipping rate calculation, or other specialized functions.

These services can then be accessed by Siebel VB or Siebel eScript code that you write and call from
workflow processes. For the purposes of your integration projects using Siebel eAI, you can use
Siebel eScript to write your scripts to use the DTE scripts.

Creating Business Services
A Siebel application provides a number of prebuilt business services to assist you with your
integration tasks. These are based on specialized classes and are called Specialized Business
Services. Many of these are used internally to manage a variety of tables.

CAUTION: As with other specialized code such as Business Components, you should use only the
specialized services that are documented in Siebel documentation. The use of undocumented
services is not supported and can lead to undesired and unpredictable results.

In addition to the prebuilt business services, you can build your own business service and its
functionality in two different ways to suit your business requirements:
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 61

Business Services ■ About Business Services
■ In Siebel Tools. Created at design time in Siebel Tools using Siebel VB or Siebel eScript. Design-
time business services are stored in the Siebel repository (*.srf), so you have to compile the
repository before testing them. Once your test is completed, you need to compile and
disseminate the SRF to your clients. The business services stored in the repository will
automatically come over to the new repository during the upgrade process. General business
services are based on the class CSSService; however, for the purposes of Siebel eAI, you base
your data transformation business services on the CSSEAIDTEScriptService class. For details, see
�Creating Business Services in Siebel Tools� on page 64.

■ In Siebel Client. Created at run time in the Siebel Client using the Business Service
Administration screens. Run-time business services are stored in the Siebel Database, so they
can be tested right away. The run-time business services have to be manually moved over after
an upgrade process. For details, see �Creating a Business Service in the Siebel Client� on page 68.

NOTE: To use the DTE scripts, you need to write your business service in Siebel eScript; otherwise,
you can write them in Siebel VB.

Business Service Structure
Business services allow developers to encapsulate business logic in a central location, abstracting
the logic from the data it may act upon. A business service is much like an object in an object-
oriented programming language.

A service has properties and methods and maintains a state. Methods take arguments that can be
passed into the object programmatically or, in the case of Siebel eAI, declaratively by way of
workflows.

NOTE: For more details on business service methods and method arguments, see Using Siebel Tools.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

62 ■

Business Services ■ About Business Services
About Property Sets
Property sets are used internally to represent Siebel eAI data. A property set is a logical memory
structure that is used to pass the data between business services. Figure 24 illustrates the concept
of a property set.

The property set consists of four parts:

■ Type. Used to describe what type of object is being represented.

■ Value. Used to hold serialized data, such as a string of XML data.

NOTE: In Siebel Tools, a Value argument to a method is shown with the name of <Value>,
including the brackets. You can also define a Display Name for the Value argument in Siebel
Tools. This Display Name appears in the Workflow Process Designer when you are building
integration workflows. In this guide, the Display Name Message Text is shown when referring to
the Value argument and the Name <Value> is shown when referring to the Value of the value
argument.

■ Properties. A table containing name-value pairs. The properties can be used to represent
column names and data, field names and data, or other types of name-value pairs.

■ Children. An array of child-level property sets. The array can be used to represent instances of
integration objects; for example, a result set may contain an Account with some set of contact
records from the database. Each contact record is represented as a child property set.

NOTE: For details on property sets and their methods, see Using Siebel Tools.

Figure 24. Property Set Structure
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 63

Business Services ■ Creating Business Services in Siebel Tools
Creating Business Services in Siebel
Tools
The following sections explain how to create business services and business service scripts in Siebel
Tools.

NOTE: Business services you create in Siebel Tools must be compiled into the Siebel .srf file. If you
intend to run the business services on your Siebel Server, then copy the compiled .srf file to your
SIEBSRVR_ROOT\Object\lang directory.

Defining a Business Service in Siebel Tools
You declaratively define the business service in Siebel Tools and then add your scripts to the business
service in the Script Editor.

To define a business service in Siebel Tools

1 Start Siebel Tools.

2 Select and lock the project you want to associate your business service with.

NOTE: Each business service must belong to a project and the project must be locked. For
details, see Using Siebel Tools.

3 Select the Business Services object in the Tools Object Explorer.

The list of predefined business services appears in the right panel.

Checklist

❑ Define the Business Service

For details, see �To define a business service in Siebel Tools� on page 64.

❑ Define the Business Service Methods

For details, see �To define a business service method� on page 65.

❑ Define the Business Service Methods Arguments

For details, see �To define the business service method arguments� on page 65.

❑ Define Business Service Scripts

For details, see �To define and write the business service script� on page 66.

❑ Define Business Service Subsystem

For details, see �To specify a business service subsystem� on page 67.

❑ Define Business Service User Properties

For details, see �To define business service user properties� on page 67.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

64 ■

Business Services ■ Creating Business Services in Siebel Tools
4 Choose Edit > New Record to create a new business service.

5 Type a name for your business service in the Name field.

6 Type the name of the project you locked in Step 2, in the Project field.

7 Choose the appropriate class for your business service, from the Class picklist.

■ Data transformation business services should use the CSSEAIDTEScriptService class.

■ Other business services will typically use the CSSService class.

8 Step off the current record to save your changes.

Defining Business Service Methods
Business services contain related methods that provide the ability to perform a particular task or set
of tasks.

NOTE: For details on business service methods, see Using Siebel Tools.

To define a business service method

1 With your business service selected, double-click the Business Services Methods folder in the
Siebel Tools Object Explorer.

The Business Services Methods list appears below the list of business services. If you have
already defined methods for the selected business service, the method names appear in the
Business Services Methods list.

2 Choose Edit > New Record to create a new method.

3 Type the name of the method in the Name field.

Defining Business Service Method Arguments
Each method can take one or more arguments. The argument is passed to the method and consists
of some data or object that the method processes to complete its task.

To define the business service method arguments

1 With your business service selected, double-click the Business Service Method Arg folder, in the
Tools Object Explorer, to display the Business Service Method Args list.

2 Choose Edit > New Record to create a blank method argument record.

3 Type the name of the argument in the Name field.

NOTE: If you plan to use this business service in a Siebel Client, you need to specify the Display
Name as well.

4 Enter the data type in the Data Type field.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 65

Business Services ■ Creating Business Services in Siebel Tools
5 Check the Optional check box if you do not want the argument to be required for the method.

6 Choose a Type for the argument. Refer to the following table for a list of different types and their
descriptions.

Defining and Writing Business Service Scripts
Business service scripts supply the actual functionality of the business service in either Siebel VB or
Siebel eScript. As with any object, the script you provide is attached to the business service.

To define and write the business service script

1 Start Siebel Tools.

2 Select the business service for which you want to write a script.

3 Right-click to display a pop-up menu.

4 Choose Edit Server Scripts.

5 Select either Siebel eScript or Visual Basic for your scripting language.

Service_PreInvokedMethod is selected as the event handler.

NOTE: To write any Siebel VB script in the Business Services, your deployment platform must
support Siebel VB.

6 Type your script into the Script Editor.

NOTE: You need to write your business service in Siebel eScript if you want to use the DTE
scripts. For details on scripting, see Using Siebel Tools.

Argument Description

Input This type of argument serves as input to the method.

Input/
Output

This type of argument serves as both input to the method
and output from the method.

Output This type of argument serves as output from the method.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

66 ■

Business Services ■ Creating Business Services in Siebel Tools
Specifying Business Service Subsystems
You can optionally specify a business service subsystem. A business service subsystem is a server
component that encapsulates a large amount of functionality and that is already included in the
Siebel repository. Business service subsystems define particular events upon which the subsystem
will be called. The subsystems can also trigger other events, depending on how they are defined.
Examples of business service subsystems are presented in Table 8.

To specify a business service subsystem

1 With your business service selected, double-click the Business Service Subsystem folder in the
Tools Object Explorer to display a list of subsystems.

2 Choose Edit > New Record to create a blank business service subsystem record.

3 Choose an existing business service subsystem name from the Subsystem picklist.

Defining Business Service User Properties
User properties, also known as User Props, are optional variables that you can use to define default
values for your business services. When a script or control invokes your business service, one of the
first tasks the service performs is to check the user properties to gather any default values that will
become input arguments to the service�s methods.

To define business service user properties

1 With your business service selected, double-click the Business Service User Prop folder in the
Tools Object Explorer to display the list of Business Service User Props.

2 Choose Edit > New Record to create a blank user property record.

3 Type the name of the user property in the Name field.

Table 8. Business Service Subsystems

Subsystem Description

EAISubsys Defines events for a variety of eAI operations, including the initiation of eAI
wizards, calls to eAI adapters, and calls to eAI validation routines.

SAPSubsys Defines a variety of parameters to help determine the type of SAP object being
integrated, the transport mechanism, user name and password combinations, and
SAP program ID.

Workflow Defines both events and parameters to signal and determine behaviors based on
the initiation of workflow processes, search specifications, and Row Id.

XMLCnv Defines events regarding debugging information and responses from the XML
parser.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 67

Business Services ■ Creating a Business Service in the Siebel Client
4 Type a value in the Value field.

The value can be an integer, a string, or a Boolean.

Creating a Business Service in the Siebel
Client
You can define business services in the Siebel client using the Business Service Administration
screens. The business services you create in the client are stored in the Siebel Database. This section
illustrates the creation of business services using the Business Service Methods screen, which
includes applets to create and display the business service.

To define a business service in the Siebel Client

1 From the application-level menu, choose Navigate > Site Map > Administration - Business
Service > Methods.

2 Click New to create a new record in the Methods form applet.

Name. Name of the business service.

Cache. If checked then the business service instance remains in existence until the user�s
session is finished; otherwise, the business service instance will be deleted after it finishes
executing.

Inactive. Check if you do not want to use the business service.

3 Define methods for the business service in the Methods list applet.

Name. Name of the method.

Inactive. Check if you do not want to use the method.

4 Define method arguments for the methods in the Method Arguments list applet.

Name. Name of the method argument.

Type. The type of the business service method argument. Valid values are Output, Input, and
Input/Output.

Optional. Check if you do not want this argument be optional.

Inactive. Check if you do not want to use the argument.

5 From the link bar, select Scripts.

6 Write your Siebel eScript or VB code in the Business Service Scripts list applet.

NOTE: To write any Siebel VB script in the Business Services, your deployment platform must
support Siebel VB.

7 Click Check Syntax to check the syntax of the business service script.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

68 ■

Business Services ■ Business Service Export and Import
Business Service Export and Import
Business services can be exported into an XML file by clicking Export in the Business Service list
applet. This writes the definition of the business service including every method, method argument,
and script into the XML file.

You can also import a business service from an external XML file by clicking the Import Service button
in the Business Service list applet.

Testing Your Business Service

You can use the Business Service Simulator to test your business services in an interactive mode.

To run the Business Service Simulator

1 From the application-level menu, choose Navigate > Site Map > Administration - Business
Service > Simulator.

NOTE: The contents of the Simulator screen are not persistent. To save the data entered in the
applets, click the Save To File button. This will save the data for the active applet in an XML file.
The data can then be loaded into the next session from an XML file by clicking on the Load From
File button.

2 In the Simulator list applet, click New to add the business service you want to test.

3 Specify the Service Name and the Method Name.

4 Enter the number of iterations you want to run the business service.

■ Specify the input parameters for the Business Service Method in the Input Property Set
applet. Multiple Input Property Sets can be defined and are identified by specifying a Test
Case #.

■ If the Input Property Set has multiple properties, these can be specified by clicking on the
glyph in the Property Name field. Hierarchical Property Sets can also be defined by clicking
on the glyph in the Child Type field.

5 Click Run to run the business service.

The Simulator runs the specified number of iterations and loops through the test cases in order.
If you have defined multiple input arguments, you can choose to run only one argument at a time
by clicking Run On One Input.

The result appears in the Output Property Set applet.

NOTE: Once the Output arguments are created, you can click Move To Input to test the outputs
as inputs to another method.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 69

Business Services ■ About Accessing a Business Service Using Siebel eScript or Siebel VB
About Accessing a Business Service
Using Siebel eScript or Siebel VB
In addition to accessing a business service through a workflow process, you can use Siebel VB or
eScript to call a business service. The following Siebel eScript code calls the business service EAI
XML Read from File to read an XML file and produce a property set as an output. The output property
set is used by EAI Siebel Adapter to insert a new account into the Siebel application:

var svcReadFile = TheApplication().GetService("EAI XML Read from File") ;

var svcSaveData = TheApplication().GetService("EAI Siebel Adapter");

var child = TheApplication().NewPropertySet();

var psInputs = TheApplication().NewPropertySet();

var psOutputs = TheApplication().NewPropertySet();

var psOutputs2 = TheApplication().NewPropertySet();

var svcSaveData = TheApplication().GetService("EAI Siebel Adapter");

psInputs.SetProperty("FileName", "c:\\NewAccount.xml");

psOutputs.SetType "SiebelMessage";

psOutputs.SetProperty "IntObjectName","Sample Account";

psOutputs.SetProperty "MessageId", "";

psOutputs.SetProperty "MessageType", "Integration Object";

svcReadFile.InvokeMethod("ReadEAIMsg",psInputs, psOutputs);

svcSaveData.InvokeMethod("Upsert",psOutputs,psOutputs2);

The following Siebel VB sample code shows how to call the EAI File Transport business service to read
an XML file. It also shows how to use the XML Converter business service to produce a property set.

Set Inp = TheApplication.NewPropertySet

Inp.SetProperty "FileName", "c:\test.xml"

Inp.SetProperty "DispatchService", "XML Converter"

Inp.SetProperty "DispatchMethod" , "XMLToPropSet"

Set svc = theApplication.GetService("EAI File Transport")

Set XMLOutputs = theApplication.NewPropertySet

svc.InvokeMethod "ReceiveDispatch", Inp, XMLOutputs

TheApplication.RaiseErrorText Cstr(XMLOutputs.GetChildCount)
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

70 ■

Business Services ■ Business Scenario for the Use of Business Services
Business Scenario for the Use of
Business Services
Consider an example of a form on a corporate Web site. Many visitors during the day enter their
personal data into the fields on the Web form. The field names represent arguments, whereas the
personal data represent data. When the visitor clicks Submit on the form, the form�s CGI script
formats and sends the data by way of the HTTP transport protocol to the corporate Web server. The
CGI script can be written in JavaScript, Perl, or another scripting language.

The CGI script may have extracted the field names and created XML elements from them to resemble
the following XML tags.

First Name = <FirstName></FirstName>

Last Name = <LastName></LastName>

The CGI script may then have wrapped each data item inside the XML tags:

<FirstName>Hector</FirstName>

<LastName>Alacon</LastName>

To insert the preceding data into the Siebel Database as a Contact, your script calls a business
service that formats the XML input into a property set structure that the Siebel application
recognizes.

Code Sample Example for Creating a Property
An example of the code you need to write to create the property set may look something like this:

x = TheApplication.InvokeMethod("WebForm", inputs, outputs);

var svc; // variable to contain the handle to the Service

var inputs; // variable to contain the XML input

var outputs; // variable to contain the output property set

svc = TheApplication().GetService("EAI XML Read from File");

inputs = TheApplication().ReadEAIMsg("webform.xml");

outputs = TheApplication().NewPropertySet();

svc.InvokeMethod("Read XML Hierarchy", inputs, outputs);

The following functions could be called from the preceding code. You attach the function to a business
service in Siebel Tools:

NOTE: You cannot pass a business object as an argument to a business service method.

Function Service_PreInvokeMethod(MethodName, inputs, outputs)

{

Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 71

Business Services ■ Business Scenario for the Use of Business Services
if (MethodName=="GetWebContact")

{

fname = inputs.GetProperty("<First Name>");

lname = inputs.GetProperty("<Last Name>");

outputs.SetProperty("First Name",fname);

outputs.SetProperty("Last Name", lname);

return(CancelOperation);

}

return(ContinueOperation);

}

Function Service_PreCanInvokeMethod(MethodName, CanInvoke)

{

if (MethodName="GetWebContact")

{

CanInvoke ="TRUE";

return (CancelOperation);

}

else

{

return (ContinueOperation);

}

}

Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

72 ■

5 Web Services
This chapter describes Web Services, their uses, and how to create, implement, and publish Siebel
Web Services. This chapter also provides examples of how to invoke an external Web Service and a
Siebel Web Service. The following topics are included:

■ �About Web Services� on page 73

■ �About RPC-Literal and DOC-Literal Bindings� on page 74

■ �About One-Way Operations and Web Services� on page 76

■ �Invoking Siebel Web Services Using an External System� on page 76

■ �Consuming External Web Services Using Siebel Web Services� on page 80

■ �About Local Business Service� on page 85

■ �About XML Schema Support for <xsd:any> Tag� on page 87

■ �Examples of Invoking Web Services� on page 88

■ �About Web Services Security Support� on page 93

■ �About Custom SOAP Filters� on page 95

■ �About Web Services Cache Refresh� on page 98

■ �Enabling Web Services Tracing� on page 98

About Web Services
Web Services combine component-based development and Internet standards and protocols that
include HTTP, XML, Simple Object Application Protocol (SOAP), and Web Services Description
Language (WSDL). Web Services can be reused regardless of how they are implemented. Web
Services can be developed on any computer platform and in any development environment as long
as they can communicate with other Web Services using these common protocols.

Web Services can be implemented in Siebel eBusiness Applications as business services or workflow
processes. The Siebel Web Services Framework can consume a WSDL document and create a proxy
business service through the WSDL Import Wizard provided in Siebel Tools.

To specify the structure of XML used in the body of SOAP messages, Web Services use an XML
Schema Definition (XSD) standard. The XSD standard describes an XML document structure in terms
of XML elements and attributes. It also specifies abstract data types, and defines and extends the
value domains.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 73

Web Services ■ About RPC-Literal and DOC-Literal Bindings
Users or programs interact with Web Services by exchanging XML messages that conform to Simple
Object Access Protocol (SOAP). For Web Services support, SOAP provides a standard SOAP envelope,
standard encoding rules that specify mapping of data based on an abstract data type into an XML
instance and back, and conventions for how to make remote procedure calls (RPC) using SOAP
messages.

Supported Web Services Standards
The following are the Web Services standards supported by Siebel applications:

■ Web Services Description Language (WSDL) 1.1. For details, see http://www.w3.org/TR/2001/
NOTE-wsdl-20010315.

■ Simple Object Access Protocol (SOAP) 1.1. For details, see http://www.w3.org/TR/2000/NOTE-
SOAP-20000508.

■ Hypertext Transfer Protocol -- HTTP/1.0. For details, see http://www.w3.org/Protocols/rfc1945/
rfc1945.

■ Extensible Markup Language (XML) 1.0. For details, see http://www.w3.org/TR/1998/REC-xml-
19980210.

■ XML Schema. For details, see http://www.w3.org/TR/2001/REC-xmlschema-1-20010502, and
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502.

NOTE: For more details on supported elements and attributes, see XML Reference: Siebel eBusiness
Application Integration Volume V.

About RPC-Literal and DOC-Literal
Bindings
By providing the ability to publish a Siebel Web Service as a Document-Literal or RPC-Literal bound
Web Service, the Siebel application is conforming to the assertion as defined by the Web Services
Interoperability Organization's (WS-I) Basic Profile specification. Adherence to this specification will
make sure that the Siebel application can interoperate with external Web Service providers.

NOTE: WS-I is a trademark of the Web Services Interoperability Organization in the United States
and other countries.

About RPC-Literal Support
RPC allows the use of transports other than HTTP (for example, MQ and MSMQ) since we do not have
to use SOAPAction header to specify the operation.

The following assertions are required for using RPC-literal:

Specification R2717. An RPC-literal binding in a description must have the namespace attribute
specified, the value of which must be an absolute URI, on contained soapbind:body elements.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

74 ■

Web Services ■ About RPC-Literal and DOC-Literal Bindings
Specification R2729. A message described with an RPC-literal binding that is a response message
must have a wrapper element whose name is the corresponding wsdl:operation name suffixed with
the string Response.

Specification R2735. A message described with an RPC-literal binding must place the part
accessory elements for parameters and return value in no namespace.

Specification R2207. A wsdl:message in a description may contain wsdl:parts that use the
elements attribute provided those wsdl:parts are not referred to by a soapbind:body in an rpc-literal
binding.

Making a Web Service an RPC-Literal Web Service
RPC Literal processing is enabled by rendering a Web Service as an RPC-literal Web Service and
choosing the correct binding on the Inbound Web Services screen.

To make a Web Service an RPC-literal Web Service

1 From the application-level menu, choose Navigate > Site Map > Administration - Web Services
> Inbound Web Services.

2 Select or add a new namespace from the Inbound Web Services list applet following the
instructions in �Invoking Siebel Web Services Using an External System� on page 76.

3 Create a new inbound service port record in the Service Ports list applet as indicated in �Invoking
Siebel Web Services Using an External System� on page 76 and in the Binding column select
SOAP_RPC_LITERAL from the drop-down list.

About DOC-Literal Support
In a document-literal SOAP binding, the serialized element child of the soap:Body gets its namespace
from the targetNamespace of the schema that defines the element. Use of the namespace attribute
of the soapbind:body element would override the element's namespace.

NOTE: SOAP:Body is in the instance SOAP message, but soapbind:body is the attribute in the WSDL
document.

The following is a restriction for using DOC-literal:

Specification R2716. A document-literal binding in a description must not have the namespace
attribute specified on contained soapbind:body, soapbind:header, soapbind:headerfault, and
soapbind:fault elements.

Making a Web Service a DOC-literal one is the same as described in �Making a Web Service an RPC-
Literal Web Service� on page 75. When creating the new inbound service port record in the Service
Ports list applet, select SOAP_DOC_LITERAL from the drop-down list in the Binding column.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 75

Web Services ■ About One-Way Operations and Web Services
About One-Way Operations and Web
Services
One-Way operations provide a means of sending a request to a Web Service with the expectation
that a SOAP response will not be returned. Release 7.7 provides the ability to publish and consume
Web Services that implement one-way operations.

One-way operations come into play in both inbound and outbound scenarios:

■ Inbound. If the Business Service Workflow method does not have any output arguments, it is a
one-way operation.

■ Outbound. If the service proxy method has no output arguments, it is a one-way operation.

One-way operations should be considered for usage when data loss is tolerable. In cases involving
one-way operations, you send a SOAP request and do not receive a SOAP response. The provider
receives the SOAP request and processes it.

NOTE: It is important to note that SOAP faults, if any, are not returned as well.

About Defining Support for One-Way Operations
In defining support for one-way operations, the following WS-I Basic Profile assertions are taken into
account:

■ Specification R2714. For an one-way operation, an instance must not return a HTTP response
that contains a SOAP envelope. Specifically, the HTTP response entity-body must be empty.

■ Specification R2715. An instance must not consider transmission of one-way operations
complete until a HTTP response status code of either 200 OK or 202 Accepted is received by the
HTTP client.

■ Specification R2727. For one-way operations, an instance must not interpret the HTTP
response status code of 200 OK or 202 Accepted to mean the message is valid or that the receiver
would process it.

Invoking Siebel Web Services Using an
External System
The Siebel application allows enterprises to publish any business service or business process as a
Web Service. This process is also known as creating an inbound Web Service. Once the business
service or business process is defined, a Siebel administrator navigates to the Administration - Web
Services > Inbound Web Services view in the Siebel Web Client and publishes it as a Web Service.
Once the business service or business process is published as a Web Service, the administrator
generates the Web Service Definition Language (WSDL) document for the newly created Web
Service. The resulting WSDL document is consumed by an external application in order to invoke this
Web Service.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

76 ■

Web Services ■ Invoking Siebel Web Services Using an External System
Publishing Inbound Web Services
You can create and publish an inbound Web Service using the Inbound Web Services view, as
illustrated in the following procedure. You can then use the new Inbound Web Service when
generating a WSDL document.

To create an Inbound Web Service record
NOTE: If publishing an ASI as an inbound Web Service, make sure that ASI is enabled for external
use in Siebel Tools.

1 From the application-level menu, choose Navigate > Site Map > Administration - Web Services
> Inbound Web Services.

2 In the Inbound Web Services list applet, create an Inbound Web Services record.

a Enter the namespace for your organization�s Web Services in the Namespace column.

NOTE: This step is required for generating various XML documents.

b Enter the name of the inbound Web Service in the Name column.

c Select Active in the Status field to enable external applications to call the Web Service.

NOTE: If the Web Service is inactive, then the external applications cannot invoke the Web
Service without clearing the cache.

d (Optional) Enter a description of the Web Service in the Comment column.

3 Create an inbound service port record in the Service Ports list applet.

a Click New and enter the name of the port in the Name column.

b Pick the type of object published.

If the required type is not available, add a new type following Step c on page 77 through
Step f on page 77; otherwise, move to Step g on page 77.

c Click New and select the implementation type (Business Service or Workflow).

d Select the implementation name (the business service or business process that implements the
port type).

e Enter a name for the new type in the Name field and click Save.

f Click Pick in the Inbound Web Services Pick Applet to complete the process of adding a new Type.

g Select the protocol or transport that will publish the Web Service.

h Enter the address appropriate for the transport chosen:

❏ For the HTTP Transport, enter an HTTP address of the Web Service to be called. For
example, http://mycompany.com/webservice/orderservice.

❏ For the JMS Transport, enter the following:

jms://YourQueueName@YourConnectionFactory

❏ For the Local Web Service transport, enter the name of the inbound port.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 77

Web Services ■ Invoking Siebel Web Services Using an External System
❏ For the EAI MQSeries AMI or EAI MSMQ Server transports, enter one of the following:

mq://YourQueueName@YourQueueManagerName

msmq://YourQueueName@YourQueueMachineName

NOTE: When publishing over EAI MQSeries or EAI MSMQ, you cannot generate WSDL files.

i Select the binding that will publish the Web Service.

NOTE: Release 7.7 supports RPC_Encoded, RPC_Literal, and DOC_Literal styles of binding.

j Enter a description of the Port in the Comment column.

4 In the Operations list applet, create a new operation record for the new service port you created
in Step 3 on page 75 and want to publish.

NOTE: Only the operations created in this step will be published and usable by applications
calling the Web Service. Other business service methods will not be available to external
applications and can only be used for internal business service calls.

a Enter the name of the Web Service operation.

b Select the name of the business service method in the Method Display Name column.

NOTE: The Method Display Name column defaults to RunProcess if you have chosen
Workflow Process in Step 3 on page 77 as the Type for your Service Port. However, you can
change this to another name.

c Select the authentication type from the drop-down list.

For more information on using the Username/Password Authentication Type, see �About RPC-
Literal and DOC-Literal Bindings� on page 74.

Generating a WSDL File
The WSDL file specifies the interface to the inbound Web Service. This file is used by Web Service
clients to support creation of code to invoke the Siebel Web Service.

Once you have created a new Inbound Web Service record you can generate a WSDL document, as
described in the following procedure.

To generate a WSDL file

1 In the Inbound Web Services view, choose the inbound Web Services you want to publish and
click Generate WSDL.

A WSDL file is generated that describes the Web Service.

2 Save the generated file.

3 Import the WSDL to the external system using one of the following utilities.

■ In VisualStudio.Net, use the wsdl.exe utility�for example, wsdl.exe /l:CS mywsdlfile.wsdl.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

78 ■

Web Services ■ Invoking Siebel Web Services Using an External System
■ In Apache�s AXIS, use the wsdl2java utility�for example, java
org.apache.axis.wsdl.WSDL2Java mywsdlfile.wsdl.

■ In IBM�s WSADIE, depending on the version, add the WSDL file to the Services perspective
and run the Create Service Proxy wizard.

NOTE: These utilities only generate proxy classes. Developers are responsible for writing code
that uses the proxy classes.

About Defining Web Services Inbound Dispatcher
The Web Service Inbound Dispatcher is a business service that is called by an inbound transport
server component (or an outbound Web Service dispatcher locally). It analyzes input SOAP
containing XML data, converts the XML data to business service method arguments, and invokes the
appropriate method for the appropriate service (business service or process). After the called
method finishes its execution, the Web Service Inbound Dispatcher converts the output arguments
to XML data and returns the XML embedded in the SOAP envelope. During this process, any errors
are returned as SOAP fault messages.

SOAP Fault Message Example
When the code within a Web Service raises an exception anywhere in the Web Services stack, the
exception is caught and transformed into a SOAP fault message.

For instance, the following example illustrates a particular case where mustUnderstand has been set
to 1; and therefore, the header is interpreted as being mandatory. However, the corresponding filter
and handler to process the header was not defined. This causes a SOAP fault message to be returned.

The format of the Siebel SOAP fault message for this example follows:

<?xml version="1.0" encoding="UTF-8" ?>
- <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

- <SOAP-ENV:Body>
- <SOAP-ENV:Fault>

<faultcode>SOAP-ENV:MustUnderstand</faultcode>
<faultstring>Unable to process SOAP Header child element
'newns:AnotherUselessHeader' with 'mustUnderstand="1"'(SBL-EAI-08000)
</faultstring>

- <detail>
- <siebelf:errorstack xmlns:siebelf="http://www.siebel.com/ws/fault">
- <siebelf:error>

<siebelf:errorsymbol />
<siebelf:errormsg>Unable to process SOAP Header child element
'newns:AnotherUselessHeader' with 'mustUnderstand="1"'(SBL-EAI-08000)</

siebelf:errormsg>
</siebelf:error>
</siebelf:errorstack>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 79

Web Services ■ Consuming External Web Services Using Siebel Web Services
Consuming External Web Services Using
Siebel Web Services
An outbound Web Service acts as a proxy to a Web Service published by an external application. This
process creates services that can then be used in a business process, virtual business component
(VBC), run-time event, or any other mechanism within the Siebel application that can invoke a
business service.

Consumption of external Web Services is a two-step process:

■ A WSDL file is imported using Siebel Tools.

■ The consumed Web Service is published for run-time clients to utilize.

Additional steps may involve defining VBCs based on the Web Service.

Creating an Outbound Web Service Based on a WSDL
File
Consumption of external Web Services is accomplished using the WSDL Import Wizard. The following
procedure describes how to use this wizard to read an external WSDL document.

Data and methods for an outbound Web Service can be defined by either:

1 A WDSL file for the external Web Service.

or

2 An outbound ASI.

To create an outbound Web Service based on a WSDL file

1 Start Siebel Tools to create the proxy business service.

2 Create a new project and lock the project, or lock an existing project.

3 Choose File > New Object... to display the New Object Wizards.

4 Select the EAI tab and double-click Web Service.

The WSDL Import Wizard appears.

a Select the Project where you want the objects to be held after they are created from the WSDL
document.

b Specify the WSDL document that contains the Web Service or Web Services definition that you
want to import.

c Specify the file where you want to store the run-time data extracted from the WSDL document
or accept the default.

d Specify the log file where you want errors, warnings, and other information related to the import
process to be logged or accept the default.

e Click Next to view and verify a summary of your import information.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

80 ■

Web Services ■ Consuming External Web Services Using Siebel Web Services
f Click Finish to complete the process of importing the business service into the Siebel repository.

This procedure generates three objects in the Siebel repository:

■ An outbound proxy business service of CSSWSOutboundDisptacher class. This service acts as a
client-side implementation of the Web Service and includes the operations and the arguments to
the operations defined in the WSDL document.

NOTE: For RPC services, the order of input arguments is important. You can set the order
through the Preferred Sequence property of the business service method argument in Siebel
Tools. By specifying this parameter, the outbound dispatcher makes sure that the sequence
parameters for an operation are in the correct order. The Preferred Sequence property is only
supported with outbound services.

■ Integration Objects, representing input and output parameters of the service methods, are
created if any of the operations require a complex argument (XML Schema) to be passed. If
complex arguments are not used by the service, then no integration object definitions will be
created.

■ A Web Service administration document (an XML file) containing the run-time Web Service
administration data that should be imported into the Siebel Web Client using the Outbound Web
Services view of the Administration - Web Services screen.

The purpose of the document is to allow administrators to modify run-time parameters such as
the URL and encoding rules. The data contained within the document is used by the Web Services
Dispatcher to assemble the SOAP document, to set any HTTP headers required (for example,
soapAction), and to route the request to the correct URL. For details, see �To import run-time data
about external Web Services� on page 81.

Outbound Web Services Administration
The WSDL Import Wizard exports the data to a file that you must import to the run-time database
(the Web Services address) using the Outbound Web Services screen.

To import run-time data about external Web Services

1 Restart the Siebel Server (or Siebel Mobile Web Client) with a recompiled version of the SRF file
that includes the new objects created by the Web Services Import Wizard.

NOTE: You do not need to update your SRF file at design time. However, the service definition
must exist in the SRF file during run time.

2 From the application-level menu, choose Navigate > Site Map > Administration - Web Services
> Outbound Web Services view.

3 In the Outbound Web Services list applet, click Import to bring up the EAI Web Service Import
dialog box.

4 Specify the export file created by the Web Services Import Wizard.

5 Click Import to import the Web Service definition into the database.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 81

Web Services ■ Consuming External Web Services Using Siebel Web Services
WSDL does not provide native bindings for EAI MQSeries and EAI MSMQ transports. If your business
requires you to pick up messages using these transports, you can manually create an outbound Web
Service definition and update a corresponding business service in Siebel Tools to point to that Web
Service. The following procedure describes this process.

To manually create a new outbound Web Service

1 From the application-level menu, choose Navigate > Site Map > Administration - Web Services
> Outbound Web Services view.

2 In the Outbound Web Services list applet, create a new record.

a Enter the namespace of the Web Service in the Namespace column.

b Enter the name of the Web Service in the Name column.

c Select Active or Inactive in the Status field.

d Enter a description of the Web Service in the Comment column.

NOTE: When importing an external Web Service, you do not need to specify the proxy
business service, integration objects, or the run-time parameters.

3 In the Service Ports list applet, create a new outbound service ports record.

a Enter the name of the Web Service port in the Name column.

b Select a transport name for the protocol or queuing system for the Transport.

c Enter the address appropriate for the transport chosen.

❏ Enter the URL or queue that will publish the Web Service. The URL format to publish over
HTTP is:

http://webserver/eai_anon_lang/
start.swe?SWEExtSource=SecureWebService&SWEExtCmd=Execute

Where:

webserver = the machine name of the Siebel Web Server.

lang = the default language of the Object Manager to handle the request.

❏ The format to publish over JMS transport is:

jms://queue name@connection factory

Where:

queue name = The JNDI name of the queue.

connection factory = The JNDI name of the JMS connection factory.

NOTE: The JNDI name will vary depending upon the JMS provider and your implementation.

❏ For the Local Web Service transport, enter the name of the inbound port.

❏ The format to publish over EAI MQSeries or EAI MSMQ transports is:

mq://queue name@queue manager name
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

82 ■

Web Services ■ Consuming External Web Services Using Siebel Web Services
msmq://queue name@queue machine name

Where:

queue name = The name of the queue that is specified by either the EAI MQ Series or the
EAI MSMQ transports at the time of their design.

queue manager name = The name of the EAI MQSeries Transport queue manager.

queue machine name = The name of the machine that owns the queue specified by the
physical queue name for the EAI MSMQ Transport.

NOTE: When publishing over EAI MQSeries or EAI MSMQ, you cannot generate WSDL files.

❏ For the Local Workflow or the Local Business Service transports, enter the name of a
Business Process or Business Service that should be called.

d Select the binding that will publish the Web Service.

NOTE: Release 7.7 supports RPC_Encoded, RPC_Literal, DOC_Literal, and Property Set
styles of binding.

Property Set Binding should be used when the input Property Set to the proxy service is
forwarded without changes to the destination address. This is intended primarily for use in
combination with Local Workflow or Local Business Service transport to avoid overhead of
processing XML.

e Enter a description of the Port in the Comment column.

4 In the Operations list applet, create a new operation record for the new service port you created
in Step 3 on page 82.

a Select the name of the business service method in the Method Display Name column to complete
the process.

b Select the authentication type from the drop-down list.

NOTE: For more information on using the Username/Password Authentication Type, see
�About Web Services Security Support� on page 93.

5 Generate the WSDL file. For details, see �To generate a WSDL file� on page 78.

Once you have created your outbound Web Service, you need to update a corresponding outbound
proxy business service in Siebel Tools to point to that Web Service. This associates the outbound
proxy business service and the outbound Web Service. The following procedure outlines the steps
you need to take to accomplish this task.

To update an outbound Web Service proxy business service to point to an outbound
Web Service

1 Start Siebel Tools.

2 Select the outbound Web Service proxy business service you want to use to call your outbound
Web Service.

3 Add the following user properties for this business service and set their values based on the
outbound service port of your Web Service:
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 83

Web Services ■ Consuming External Web Services Using Siebel Web Services
■ siebel_port_name

■ siebel_web_service_name

■ siebel_web_service_namespace

Integration Objects as Input Arguments to Outbound
Web Services
The property set that is used as an input argument to the outbound Web Service should have the
same name as the input argument's outbound Web Service proxy.

You can do this using one of the following options:

■ Change the output from all your business services that provide the input to the outbound Web
Service from SiebelMessage to the actual outbound Web Service argument name specified in
Siebel Tools.

You need to change the output from your business services in Siebel Tools, as well as the name
of the property set child that contains the integration object instance.

■ Change the property set name from SiebelMessage to the actual outbound Web Service argument
name by using a Siebel eScript service before calling the outbound Web Service.

Web Services Support for Transport Headers
The outbound Web Service dispatcher supports input arguments for user-defined (or standard)
transport headers.

The following is the format for the outbound Web Service dispatcher input arguments:

Name: siebel_transport_header:headerName

Value: Header value

The following are examples of input arguments.

Name: siebel_transport_header:UserDefinedHeader

Value: myData

Name: siebel_transport_header:Authorization

Value: 0135DFDJKLJ
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

84 ■

Web Services ■ About Local Business Service
About Local Business Service
In many instances, Web Services utilize specialized SOAP headers for common tasks such as
authentication, authorization, and logging. In order to support this common Web Service
extensibility mechanism, a Local Business Service, as a transport option for outbound Web Services,
is supported in the Siebel application. When specified as a transport, the Web Services infrastructure
will route the message to the specified business service for additional processing and delivery to the
Web Service endpoint as shown in the top half of Figure 25.

If the Web Service to be invoked is within the sample application, then no need exists to go through
HTTP (or anything else) to invoke such a Web Service.

The input to the local business service is a property set representation of the SOAP request. Once
within the local business service, additional SOAP headers may be added to address infrastructure
requirements by direct modification of the input property set by using Siebel eScript or Siebel VB.
The following code sample shows an example where a local business service was used to add a
custom SOAP header to an outbound Web Service request.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{
1 // local variables & error handling omitted for clarity
2 soapHdr.SetType("SOAP-ENV:header");
3
4 // populate SOAP header elements
5 appId.SetType("ns1:ApplicationID");
6 appId.SetValue("Siebel");
7 pwd.SetType("ns1:PWS");
8 pwd.SetValue("123456789");
9 langCd.SetType("ns1:Lang");
10 langCd.SetValue("ENU");
11 uName.SetType("ns1:userID");
12 uName.SetValue("first.last@siebel.com");
13
14 // populate the eProfileHeader element
15 profileHeader.SetType("authHeader");
16 profileHeader.SetProperty("xmlns:ns1", "http://siebel.com/authHeaders");
17 profileHeader.AddChild(appId);

Figure 25. Local Business Service Used as a Transport
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 85

Web Services ■ About Local Business Service
18 profileHeader.AddChild(pwd);
19 profileHeader.AddChild(langCd);
20 profileHeader.AddChild(uName);
21
22 // SOAP header property set. Once this is complete, add the SOAP header
23 // as a child of the Input property set (which contains the SOAP:body
24 soapHdr.InsertChildAt(profileHeader, 0)
25 Inputs.InsertChildAt(soapHdr, 0);
26
27 // convert property set to well defined SOAP/XML document
28 // due to XML Hierarchy Converter, need to create add a child element of type XMLHierarchy
29 childPS.SetType("XMLHierarchy");
30 childPS.AddChild(Inputs);
31 inPs.AddChild(childPS);
32 inPs.SetProperty("EscapeNames", "FALSE");
33 inPs.SetProperty("GenerateProcessingInstructions", "FALSE");
34 xmlSvc.InvokeMethod("XMLHierToXMLDoc", inPs, outPs);
35
36 // proxy the request through trace utility to view SOAP document
37 // set custom HTTP header - SOAPAction
38 outPs.SetProperty("HTTPRequestURLTemplate", "http://localhost:9000/search/beta2");
39 outPs.SetProperty("HTTPRequestMethod", "POST");
40 outPs.SetProperty("HTTPContentType", "text/xml; charset=UTF-8");
41 outPs.SetProperty("HDR.SOAPAction","customSOAPActionValue");
42
43 // invoke Web Service using standard HTTP protocol
44 httpSvc.InvokeMethod("SendReceive", outPs, hpOut);
45
46 // Converting the SOAP document to a XMLHierarchy propset
47 xmlSvc.InvokeMethod("XMLDocToXMLHier", hpOut, tmp);
48
49 // removing XMLHierarchy, returning the SOAP header and SOAP body
50 soapDoc = tmp.GetChild(0).GetChild(0);
51 Outputs.AddChild(soapDoc);
52
53 return (CancelOperation);

The following XML code sample displays the resulting SOAP document generated by the local
business service. Note the addition of the <authHeader> element in the SOAP header which
corresponds to the structure defined between lines 4 - 20 in the preceding code sample.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:header>

<authHeader xmlns:ns1="http://siebel.com/authHeaders">
<ns1:ApplicationID>Siebel</ns1:ApplicationID>
<ns1:PWS>123456789</ns1:PWS>
<ns1:Lang>ENU</ns1:Lang>
<ns1:userID>first.last@siebel.com</ns1:userID>

</authHeader>
</SOAP-ENV:header>
<SOAP-ENV:Body>

...

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

86 ■

Web Services ■ About XML Schema Support for <xsd:any> Tag
About XML Schema Support for
<xsd:any> Tag
In the current framework, WSDL Import Wizard makes use of XML Schema Import Wizard to create
integration objects to represent hierarchical data. Integration objects are meant to be strongly typed
in the Siebel application. You are now able to import a schema that uses the <xsd:any> tag, which
indicates a weakly typed data representation, and to possibly create an integration object from it.

About Mapping the <xsd:any> Tag in the WSDL Import
Wizard
In the WSDL Import Wizard, two possible mappings exist for the <xsd:any> tag. The tag can be
mapped as an integration component or as an XMLHierarchy on the business service method
argument.

The <xsd:any> tag can contain an attribute called namespace. If the value for that attribute is
known, then one or more integration components or even an integration object can be created. If
not known, then the business service method argument for that particular <wsdl:part> tag will be
changed to data type Hierarchy, consequently losing any type information.

Being known refers to the following situations:

■ A schema of targetNamespace value, being the same as that of the namespace attribute value,
is imported by way of the <xsd:import> tag.

■ A schema of targetNamespace value, being the same as that of the namespace attribute value,
is a child of the <wsdl:types> tag.

For the case of being known, all the global elements belonging to the particular schema of that
targetNamespace will be added in place of the tag. One or more integration components can
potentially be created.

Another tag similar to <xsd:any> tag is <xsd:anyAttribute>. The mapping is similar to that of
<xsd:any> tag. In this case, one or more integration component fields can be created.

The <xsd:anyAttribute> tag has an attribute called namespace. If the namespace value is known
(the conditions for being known were noted in this section), then all the global attributes for that
particular schema will be added in place of this tag. Therefore, one or more integration component
fields can potentially be created.

In the case where the namespace value is not known, then the <wsdl:part> tag that is referring to
the schema element and type will be created as data type Hierarchy.

About Mapping the <xsd:any> Tag in the XML Schema
Wizard
For the case of the XML Schema Wizard, there is only one possible mapping for the <xsd:any> tag,
namely as an integration component.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 87

Web Services ■ Examples of Invoking Web Services
The <xsd:any> tag can contain an attribute called namespace. If the value for that attribute is
known, then one or more integration components or even an integration object can be created. If
not, an error will be returned to the user saying that the integration object cannot be created for a
weakly typed schema.

Being known refers to this situation for XML Schema Wizard where a schema of targetNamespace
value, being the same as that of the namespace value, has been imported by way of the
<xsd:import> tag.

For the case of being known, all the global elements belonging to the particular schema of that
targetNamespace will be added in place of the tag. So, one or more integration components can
potentially be created.

The mapping of the <xsd:anyAttribute> is similar to that of the <xsd:any> tag. In this case, one or
more integration component fields can be created.

The <xsd:anyAttribute> tag has an attribute called namespace. If the namespace value is known
(the condition for being known was noted in this section), then all the global attributes for that
particular schema will be added in place of this tag. Therefore, one or more integration component
fields can potentially be created.

In the case where the namespace value is not known, then an error is returned to the user stating
that an integration object cannot be created for a weakly typed schema.

Examples of Invoking Web Services
The following two examples show sample flows of how to invoke an external Web Service from a
Siebel application or how to invoke a Siebel Web Service from an external application.

Invoking an External Web Service Using Workflow or Scripting
As illustrated on Figure 26 on page 89, the following steps are executed to invoke an external Web
Service.

1 The developer obtains Web Service description as a WSDL file.

2 The WSDL Import Wizard is invoked.

3 The WSDL Import Wizard generates definitions for outbound proxy, integration objects for
complex parts, and administration entries.

4 The Outbound Web Service proxy is called with request property set.

5 The request is converted to an outbound SOAP request and sent to the external application.

6 The external application returns a SOAP response.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

88 ■

Web Services ■ Examples of Invoking Web Services
7 The SOAP response is converted to a property set that can be processed by the caller�for
example, Calling Function.

The following example shows how to invoke Web Services using Siebel eScript.

function Service_PreCanInvokeMethod (MethodName, &CanInvoke)
{

if (MethodName == "invoke") {
CanInvoke = "TRUE";
return (CancelOperation);

}
else

return (ContinueOperation);
}

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)

Figure 26. Invoking an External Web Service
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 89

Web Services ■ Examples of Invoking Web Services
{
if (MethodName == "invoke") {

var svc = TheApplication().GetService("CustomerDBClientSimpleSoap");
var wsInput = TheApplication().NewPropertySet();
var wsOutput = TheApplication().NewPropertySet();
var getCustInput = TheApplication().NewPropertySet();
var listOfGetCustomerName = TheApplication().NewPropertySet();
var getCustomerName = TheApplication().NewPropertySet();

try {
// obtain the customer ID to query on. This value will be provided in the input property set
var custId = Inputs.GetProperty("custId");

// set property to query for a customer ID with a value of '1'
getCustomerName.SetType("getCustomerName");
getCustomerName.SetProperty("custid", custId);

// set Type for listOfGetCustomerName
listOfGetCustomerName.SetType("ListOfgetCustomerName");

// set Type for getCustInput
getCustInput.SetType("getCustomerNameSoapIn:parameters");

// assemble input property set for the service.
listOfGetCustomerName.AddChild(getCustomerName);
getCustInput.AddChild(listOfGetCustomerName);
wsInput.AddChild(getCustInput);

// invoke the getCustomerName operation
svc.InvokeMethod("getCustomerName", wsInput, wsOutput);

// parse the output to obtain the customer full name check the type element on each PropertySet
(parent/child) to make sure we are at the element to obtain the customer name

if (wsOutput.GetChildCount() > 0) {
var getCustOutput = wsOutput.GetChild(0);
if (getCustOutput.GetType() == "getCustomerNameSoapOut:parameters") {

if (getCustOutput.GetChildCount() > 0) {
var outputListOfNames = getCustOutput.GetChild(0);
if (outputListOfNames.GetType() == "ListOfgetCustomerNameResponse") {

if (outputListOfNames.GetChildCount() > 0) {
var outputCustName = outputListOfNames.GetChild(0);
if (outputCustName.GetType() == "getCustomerNameResponse") {

var custName = outputCustName.GetProperty("getCustomerNameResult");
Outputs.SetProperty("customerName", custName);

}
}

}
}

}
}

return (CancelOperation);

}
catch (e) {

TheApplication().RaiseErrorText(e);
return (CancelOperation);

}
}
else

return (ContinueOperation);
}

About Invoking a Siebel Web Service From an External Application
As illustrated in Figure 27 on page 91, the following steps are executed to invoke a Siebel Web Service
from an external application.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

90 ■

Web Services ■ Examples of Invoking Web Services
1 The WSDL document for an active Web Service is published in Siebel Inbound Web Services
screen. To allow processing of the Web Service requests, the developer has to make sure:

a The Web Server and the Siebel Server are up and running.

b The appropriate setup is done in the Siebel Server.

2 In the external application, the WSDL document is imported in order to create a proxy that can
be used to call the Siebel Web Service from Step 1.

3 The external application sends the SOAP request into the Siebel application.

4 The Web Service Inbound Dispatcher converts the SOAP request to a property set. Depending on
the inbound Web Service configuration, the property set is passed to a business service or a
business process.

5 The property set gets returned from the business service or business process to the Web Service
Inbound Dispatcher.

6 Response is converted to a SOAP message and sent back to the calling external application.

The following is an example of invoking Siebel published Web Service using .NET.

Figure 27. Invoking a Siebel Web Service
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 91

Web Services ■ Examples of Invoking Web Services
// removed using declaration

namespace sieOppClnt
{

public class sieOppClnt : System.Web.Services.WebService
{

public siebOptyClnt()
{

InitializeComponent();
}

// WEB SERVICE CLIENT EXAMPLE

// The optyQBE returns a list of opty based upon the required input params. Since
the input to the Siebelopty.QueryByExample method uses an Input/Output param,
ListOfInterOptyIntfaceTopElmt will be passed by ref to Siebel. To add the Siebel
Opportunity Web Service definition to the project, I chose to run the wsdl.exe
utility to generate the necessary helper C# class for the service definition.
[WebMethod]
public ListOfInterOptyIntfaceTopElmt optyQBE(string acctName, string acctLoc,
string salesStage)
{

Siebelopty svc = new Siebelopty();
ListOfInterOptyIntfaceTopElmt siebelMessage = new
ListOfInterOptyIntfaceTopElmt();
ListOfInteroptyInterface optyList = new ListOfInteroptyInterface();
opty[] opty = new opty[1];
opty[0] = new opty();
opty[0].Account = acctName;
opty[0].AccountLocation = acctLoc;
opty[0].SalesStage = salesStage;

//assemble input to be provided to the Siebel Web Service. For the sake of
simplicity the client will query on the Account Name, Location, and Sales
Stage. Ideally additional checking to make sure that correct data is entered.
optyList.opty = opty;
siebelMessage.ListOfInteroptyInterface = optyList;

// invoke the QBE method of the Siebel Opportunity business service
svc.SiebeloptyQBE(ref siebelMessage);

// return the raw XML of the result set returned by Siebel. Additional
processing could be done to parse the response.
return siebelMessage;

}
}

}

Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

92 ■

Web Services ■ About Web Services Security Support
About Web Services Security Support
Siebel Systems endorses the industry standard known as the WS-Security specification. The WS-
Security specification is a Web Services standard that supports, integrates, and unifies multiple
security models and technologies, allowing a variety of systems to interoperate in a platform- and
language-independent environment. Release 7.7 introduces support for the UserName Token
mechanism of the WS-Security specification, which allows Siebel applications to send and receive
user credentials in a standards-compliant manner.

By conforming to industry standard Web Service and security specifications, secure cross-enterprise
business processes is supported. You can deploy standards-based technology solutions to solve
specific business integration problems.

Configuring the Siebel Application to Use the WS-Security
Specification
To use the WS-Security specification in the Siebel application, two parameters, UseAnonPool and
Impersonate, must be set in the eapps.cfg file.

To configure the Siebel application to use the WS-Security specification
■ In the eapps.cfg file, make sure that these entries in the Secure Web Services named subsystem

read as follows:

UseAnonPool = TRUE

Impersonate = TRUE

About the WS-Security UserName Token
Profile Support
Release 7.7 introduces support for WS-Security's UserName Token mechanism, allowing Siebel
applications to send and receive user credentials in a standards-compliant manner. The UserName
token is a mechanism for providing credentials to a Web Service where the credentials consist of the
UserName and Password. The password must be passed in clear text. The UserName token
mechanism provides a Web Service with the ability to operate without having the username and
password in its URL or having to pass a session cookie with the HTTP request.

Following is a sample of the UserName token showing the username and password.

<wsse:UsernameToken xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
<wsse:Username>WKANDINSKY</wsse:Username>
<wsse:Password Type="wsse:PasswordText">AbstractArt123</wsse:Password>

</wsse:UsernameToken>

About Support for the UserName Token Mechanism
The support for the UserName Token mechanism includes the following:
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 93

Web Services ■ About the WS-Security UserName Token Profile Support
■ Allows an inbound SOAP request to contain user credentials that can be provided to the inbound
SOAP dispatcher to perform the necessary authentication.

■ Allows an inbound SOAP dispatcher to perform the necessary authentication on an inbound SOAP
request that contains user credentials.

■ Allows an outbound SOAP request to contain user credentials that can be utilized by the external
application.

Following is an example of passing the user name and password by way of a URL:

http://webserver/eai_enu/start.swe?SWEExtSource=WebService&SWEExtCmd=Execute&
Username=SADMIN&Password=SADMIN

With UserName tokens, the URL does not reveal user credentials:

http://webserver/eai_anon_enu/
start.swe?SWEExtSource=SecureWebService&SWEExtCmd=Execute

NOTE: Using WS-Security is optional. If security is of utmost importance and if it is critical that the
password not be provided in clear text, HTTPS should be used.

About Using the UserName Token for Inbound Web
Services
The Inbound Web Services Administration screen provides an interface for associating operations
with authentication types. The names of the operations need to be globally unique. The applet shown
in Figure 28 can be defined as requiring no authentication or requiring a UserName Token with
username and password provided in clear text.

NOTE: No authentication type implies that the user credentials are in the URL.

Figure 28. Inbound Web Services Administration Screen and the UserName Token
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

94 ■

Web Services ■ About Custom SOAP Filters
About Using the UserName Token for Outbound Web
Services
Each Web Service operation in the Outbound Web Services list applet may be tied to an
authentication type by selecting from the Authentication Type picklist (see Figure 29) in the
Operations picklist, in the applet shown below.

About Custom SOAP Filters
Headers represent SOAP's extensibility mechanism and provide a flexible and standards-based
mechanism of adding additional context to a request or response. Custom SOAP header support
provides a flexible extensibility mechanism when integrating with external Web Services, and a
means of providing additional context as required by the Web Service implementation.

About Handling Custom Headers Using Filters
SOAP headers provide the option of providing optional or mandatory processing information. To
process optional custom headers that are provided by external applications, a special business
service known as a filter may be defined. Filters can process both request and response headers. A
special attribute, mustUnderstand, is used to indicate whether or not the custom header is to be
processed:

■ If 'mustUnderstand' = 1, the custom header is interpreted as being mandatory and the custom
header is processed by the filter defined for this purpose.

Figure 29. Outbound Web Services Administration Screen and the Operations PickList
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 95

Web Services ■ About Custom SOAP Filters
■ If 'mustUnderstand' = 1 and a filter is not specified, the custom header is not read and a
SOAP:MustUnderstand fault is generated.

■ If 'mustUnderstand' = 0, no processing of the custom header is attempted.

You want to keep SOAP body and header processing isolated. The inbound dispatcher and outbound
proxy know how to process the SOAP body but have no idea on how to set or consume headers.
Headers are application-specific. Some customization is needed to set and consume custom headers.
To process optional custom headers that are provided by external applications, a special business
service, a filter, is defined. The Web Service outbound proxy and the Web Service inbound dispatcher
can be configured to call specific filters for the processing of individual (custom) headers.

NOTE: Headers that are consumed by the filter service have to be removed from the SOAP message.

Enabling SOAP Header Processing Through Filters
For each operation, you can set the inbound and outbound filters to be run. The methods to be
invoked on the filter can also be defined.

The following code sample illustrates a filter that has been written for the handling of custom SOAP
headers. The interface provided by this code sample lets you define the method on the filter that you
would like to invoke and also the corresponding input and output parameters.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{

if(MethodName == "StripHeader")
{

 if(Inputs.GetChildCount() > 0)
 {

Outputs.InsertChildAt(Inputs.GetChild(0), 0);
var soapEnv = Outputs.GetChild(0);
if(soapEnv.GetChildCount() == 2) // headers and body
{

var callBackHeader = soapHeader.GetChild(0);
if(callBackHeader.GetChildCount() == 2)
{

var headerContext = TheApplication().NewPropertySet();
headerContext.SetType("HeaderContext");
// get the header child property set
var callBackLocnHeader = callBackHeader.GetChild(0);
var correlationIdHeader = callBackHeader.GetChild(1);
headerContext.AddChild(callBackLocnHeader);
headerContext.AddChild(correlationIdHeader);
soapHeader.RemoveChild(0);
Outputs.AddChild(headerContext);

}
}

}
}
else if(MethodName == "AddHeader")
{

if(Inputs.GetChildCount() > 0)
{

Outputs.InsertChildAt(Inputs.GetChild(0), 0);
var soapEnv = Outputs.GetChild(0);

var soapHeader = TheApplication().NewPropertySet();
soapHeader.SetType("soapEnv:Header");
soapHeader.SetProperty("xmlns:soapEnv", "http://schemas.xmlsoap.org/soap/envelope/");
var correlationIdHeader = TheApplication().NewPropertySet();
correlationIdHeader.SetType("CorrelationId");

if(Inputs.GetChildCount() == 2)
{

Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

96 ■

Web Services ■ About Custom SOAP Filters
// get the correlation id from soap header context
var soapHeaderCntxt = Inputs.GetChild(1);
var corIdHeader = soapHeaderCntxt.GetChild(0);
correlationIdHeader.SetValue(corIdHeader.GetValue());
}
else
{

// set default correlation id header
correlationIdHeader.SetValue("30");

}
soapHeader.AddChild(correlationIdHeader);
soapEnv.InsertChildAt(soapHeader, 0);|

}
}
else if(MethodName == "AddPSHeader")
{

if(Inputs.GetChildCount() > 0)
{

Outputs.InsertChildAt(Inputs.GetChild(0), 0);
var soapEnv = Outputs.GetChild(0);

var soapHeader = TheApplication().NewPropertySet();
soapHeader.SetType("PropertySetHeader");
soapHeader.SetProperty("xmlns:PropertySet", "http://www.siebel.com/propertyset");

var correlationIdHeader = TheApplication().NewPropertySet();
correlationIdHeader.SetType("CorrelationId");

if(Inputs.GetChildCount() == 2)
{

// get the correlation id from soap header context
var corIdHeader = soapHeaderCntxt.GetChild(0);
correlationIdHeader.SetValue(corIdHeader.GetValue());

}
else
{

// set default correlation id header
correlationIdHeader.SetValue("30");

}
soapHeader.AddChild(correlationIdHeader);
soapEnv.InsertChildAt(soapHeader, 0);

}
}

return (CancelOperation);
}

About Inputting a SOAP Envelope to a Filter Service
Using a SOAP envelope as the input to a filter service is the property set representation of an XML
document. For example, each tag in the XML document is a property set. Each attribute on the tag
is a property in the property set.

To pass the information in the headers further down the stack to the actual business service method
or workflow being invoked the HeaderContext property set is passed to the business service or
workflow that is invoked. For example, on a call to an inbound Web Service, if there are a couple of
headers in the SOAP message, the filter service extracts these headers information out. In order to
use it in the business service or workflow execution call, this information has to be contained in the
HeaderContext. Internally, the Siebel Web Services infrastructure will pass HeaderContext to the
eventual business service or workflow that is invoked.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 97

Web Services ■ About Web Services Cache Refresh
About Web Services Cache Refresh
Both Siebel Inbound and Outbound Web Services are typically cached into memory on the Siebel
Server. At times, administrators need to update the definitions of these services to provide more
current or correct functionality. Administrators have the ability to directly refresh the memory cache
in real time, without the need to stop and restart Siebel services.

Web Services cache is used to store all the global administration information that can be manipulated
in the Inbound and Outbound Web Service administration screens.

The Clear Cache feature requires user interaction. The administrator decides when Web Service
configuration needs to be refreshed. When used, Web Service configuration changes can be made
without restarting the Siebel Server or the Server Component that uses the configuration.

The Clear Cache feature is a button in the Administration - Web Services screen. This feature is
available for inbound and outbound Web Services. Figure 30 reflects this feature for inbound Web
Services.

Enabling Web Services Tracing
You can enable Web Services Tracing on the Siebel Server to write all inbound and outbound SOAP
documents to a log file.

To enable Web Services Tracing

1 From the application-level menu, choose Navigate > Site Map > Administration - Server
Configuration > Servers.

The screen that appears displays three different list applets. The top applet lists the Siebel
Servers for the enterprise. The middle applet has three tabs�Components, Parameters and
Events. The bottom applet has two tabs�Events and Parameters.

2 In the top list applet, select the Siebel Server that you want to configure.

3 In the middle applet, click the Components tab.

This list applet contains the components for the Siebel Server selected in the top applet.

Choose the relevant application object manager.

Figure 30. Clear Cache Button
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

98 ■

Web Services ■ Enabling Web Services Tracing
4 In the bottom applet, click the Parameters tab.

This list applet contains the parameters for the Component selected in the middle applet.

5 Set the Log Level to 4 for any or all of the following Event Types:

6 Navigate to the Components view.

7 Select the EAI Object Manager component, and select the Component Parameters tab.

8 Set the Enable Business Service Argument Tracing parameter to True.

9 Restart or reconfigure the server component. For details, see the Siebel System Administration
Guide.

About Integration Components Cardinality
The cardinality of the root integration component used by inbound Web Services has to be set to
Zero or More. Cardinality of other integration components is not restricted.

Event Type Alias Description Comment

Web Service
Performance

WebSvcPerf Web Service
Performance Event
Type

Used for performance
logging.

Web Service
Outbound Argument
Tracing

WebSvcOutboundArgTrc Web Service
Outbound Run-time
Argument Tracing

Used for logging
arguments to the
outbound dispatcher.

Web Service
Outbound

WebSvcOutbound Web Service
Outbound Run-time
Event Type

Used for runtime
logging of outbound
Web Services.

Web Service Loading WebSvcLoad Web Service
Configuration Loading
Event Type

Used for logging of
the loading of Web
Services.

Web Service Inbound
Argument Tracing

WebSvcInboundArgTrc Web Service Inbound
Run-time Argument
Tracing

Used for logging
arguments to the
inbound dispatcher.

Web Service Inbound WebSvcInbound Web Service Inbound
Run-time Event Type

Used for logging at
Web Service inbound
runtime. Information
is logged to the
inbound dispatcher.

Web Service Design WebSvcDesign Web Service Design-
time Event Type

Used for logging at
Web Service design
time. For example, at
the time of WSDL
import and
generation.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 99

Web Services ■ Enabling Web Services Tracing
The reason for the constraint on root component cardinality is that Siebel Web Services infrastructure
generally returns multiple instances of root integration component for any given request. Thus,
having cardinality set to anything other than Zero or More would prevent external clients to correctly
interoperate with Siebel Web Services.

NOTE: When modifying run-time parameters, the server component needs to be restarted. For
details, see the Siebel System Administration Guide.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

100 ■

6 EAI Siebel Adapter
This chapter describes the functionality of the EAI Siebel Adapter and the different methods and
arguments you can use with the EAI Siebel Adapter to manipulate the data in the Siebel Database.

This chapter includes the following topics:

■ �About the EAI Siebel Adapter� on page 101

■ �EAI Siebel Adapter Methods� on page 101

■ �XML Examples Using the Upsert and Delete Operation� on page 110

■ �About MVGs in EAI Siebel Adapter� on page 111

■ �About the SearchSpec Input Method Argument� on page 112

■ �About Using Language-Independent Code with the Siebel Adapter� on page 115

■ �Configuring the EAI Siebel Adapter for Concurrency Control� on page 116

■ �Siebel eAI and Run-Time Events� on page 120

About the EAI Siebel Adapter
The EAI Siebel Adapter is a general purpose integration business service that allows you to:

■ Read Siebel business objects from the Siebel Database into integration objects.

■ Write an integration object whose data originates externally into a Siebel business object.

■ Update multiple corresponding top-level parent business component records with data from one
XML file�for examples, see �XML Examples Using the Upsert and Delete Operation� on page 110.

NOTE: EAI Message is considered to be one transaction. The transaction is committed when
there is no error. If there is an error, the transaction is aborted and rolled back.

The EAI Siebel Adapter business service is implemented by the class CSSEAISiebelAdapter that
inherits from the CSSService class.

EAI Siebel Adapter Methods
The EAI Siebel Adapter uses DoInvokeMethod in order to provide an interface that performs the
following methods:

■ Query

■ QueryPage

■ Synchronize
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 101

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
■ Upsert

■ Insert

■ Update

■ Delete

■ Execute

NOTE: Siebel Systems does not support the use of eAI to update data that is based on
administration-type business components such as Client - Mobile or Position. Only the System
Administrator should update these types of data.

The implementation of DoInvokeMethod creates CSSEAIMessageIn and CSSEAIMessageOut objects
by parsing the input property sets and invokes Execute, which does the right thing depending on the
method. If an output is generated, it is stored into the CSSEAIMessageOut object.

class CSSEAISiebelAdapter : public CSSService
{
 public:
 BOOLCanInvokeMethod(LPCSTR methodName);
 ErrCodeDoInvokeMethod(LPCSTR methodName,
 const CSSPropertySetEx& inArgs,
 CSSPropertySetEx& outArgs);
 protected:
 ErrCodeExecute(CSSEAIMessageIn* pObjInst,
 CSSEAIMessageOut*& pOutObjInst);
};

EAI Siebel Adapter Method Arguments
Each of the EAI Siebel Adapter methods takes arguments that allow you to specify required and
optional information to the adapter. You can locate the arguments for each method in Table 9.

Table 9. EAI Siebel Adapter Method Arguments

Argument Query QueryPage Sync Upsert Update Insert Delete Execute

IntObjectName - - - - - � �� Input

NumOutputObjects Output Output Output Output Output Output Output Output

OutputIntObjectName Input Input - - - - - Input

PrimaryRowId Input - Output Output Output Output Input Input/

Output

QueryByUserKey Input - - - - - - Input

DeleteByUserKey - - - - - - Input Input

ErrorOnNonExistingDelete - - - - - - Input Input
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

102 ■

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
Table 10 presents each argument of EAI Siebel Adapter methods.

SiebelMessage Input/

Output

Input/

Output

Input/

Output

Input/

Output

Input/

Output

Input/

Output

Input/

Output

Input/

Output

SearchSpec Input Input - - - - Input Input

StatusObject - - Input Input Input Input Input Input

MessageId Input Input Input Input Input Input Input Input

BusObjCacheSize Input Input Input Input Input Input Input Input

LastPage - Output - - - - - Output

NewQuery - Input - - - - - Input

PageSize - Input - - - - - Input

StartRowNum - Input - - - - - Input

ViewMode Input Input Input Input Input Input Input Input

SortSpec - Input - - - - - Input

Table 10. EAI Siebel Adapter Method Arguments

Argument Display Name Description

IntObjectName Integration Object
Name

The name of the integration object that is to be
deleted.

NumOutputObjects Number of Output
Integration
Objects

Number of output integration objects.

OutputIntObjectName Output
Integration Object
Name

The name of the integration object that is to be
output.

PrimaryRowId Object Id The PrimaryRowId refers to the Id field in the
Business Component, Row_Id at the table level.

PrimaryRowId is only returned as an output
argument if you are passing in one integration object
instance. If you are passing multiple integration
object instances, then this argument is not returned
as an output argument. To obtain the ID field when
multiple integration objects are processed, use the
StatusObject argument.

Table 9. EAI Siebel Adapter Method Arguments

Argument Query QueryPage Sync Upsert Update Insert Delete Execute
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 103

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
QueryByUserKey Query By Key A Boolean argument. Forces the EAI Siebel Adapter
to only use the user keys to perform query.

DeleteByUserKey Delete By User
Key

A Boolean argument. Forces the EAI Siebel Adapter
to only use the user keys to identify a record.

ErrorOnNonExistingD
elete

Error On Non
Existing Delete

A Boolean argument. Determines whether or not the
EAI Siebel Adapter should abort the operation if no
match is found.

SiebelMessage Siebel Message The input or the output integration object instance.

SearchSpec Search
Specification

This argument allows you to specify complex search
specifications as free text in a single method
argument. See �About the SearchSpec Input Method
Argument� on page 112 for details.

StatusObject Status Object This argument tells EAI Siebel Adapter whether or
not to return a status message.

MessageId Message Id The MessageId can be used to specify the ID for the
generated message. By default, the EAI Siebel
Adapter generates a unique ID for each message.
However, if you want to use the workflow process
instance ID, then you can use this argument to
specify the ID.

BusObjCacheSize Business Object
Cache Size

Default is 5. Maximum number of Business Objects
instances cached by the current instance of the EAI
Siebel Adapter. If set to zero, then the EAI Siebel
Adapter does not use the cache.

LastPage Last Page Boolean indicating whether or not the last record in
the query result set has been returned.

NewQuery New Query Default is False. Boolean indicating whether a new
query should be executed. If set to True, a new query
is executed flushing the cache for that particular
integration object.

PageSize Page Size Default is 10. Indicates the maximum number of
integration object instances to be returned.

StartRowNum Starting Row
Number

Default is 0 (first page). Indicates the row in the
result set for the QueryPage method to start
retrieving a page of records.

Table 10. EAI Siebel Adapter Method Arguments

Argument Display Name Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

104 ■

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
About the Query Method
You pass the Query method using only one of the following method arguments:

■ A Query By Example (QBE) integration object instance.

■ A Primary Row Id.

■ A Search Specification.

The adapter uses this input as criteria to query the base business object and to return a
corresponding integration object instance. For example, to query Contact records with first name
David you need to pass the following required input arguments to the Query method of EAI Siebel
Adapter:

■ SiebelMessage.IntObjName with value set to Test Contact

■ SiebelMessage.ListOfTest Contact.Contact.First Name with value set to David

Now, if you need to further limit the output based on a value in the child component of the Test
Contact (for example, to only query the Contact records with first name David and Action Type of
Call), then you need the following required input arguments:

■ SiebelMessage.ListOfTest Contact.Contact.First Name with Value set to David

■ SiebelMessage.IntObjName with value set to Test Contact

■ SiebelMessage.ListOfTest Contact.Contact.ListOfAction.Action.Type, with Value set to Call

ViewMode View Mode Default is All. Visibility mode to be applied to the
Business Object. Valid values are: Manager, Sales
Rep, Personal, Organization, Sub-Organization,
Group, Catalog, and All. Note that the ViewMode user
property on the integration object has priority over
the ViewMode method argument.

SortSpec\ Sort Specification Default is the SortSpec of the underlying business
component. This argument allows you to specify
complex sort criteria as a free text in a single method
argument, using any business component fields and
standard Siebel sort syntax�for examples, see
Using Siebel Tools.

Table 10. EAI Siebel Adapter Method Arguments

Argument Display Name Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 105

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
Note that this still returns the contacts with the first name David, even if they do not have an activity
of type Call, but it does not list their activities. For an example of using the search specification
method argument to limit the scope of your query see �About the SearchSpec Input Method Argument�
on page 112.

NOTE: When using the EAI Siebel Adapter, to query all the business component records, you do not
need to specify any value in the Object Id process property of the workflow process. In this case not
specifying an ID works as a wildcard. If you want to query Siebel data using the EAI Siebel Adapter
with the Query method and a property set containing a query by example search criteria, then all
the fields that make up the user key for the underlying integration object component must exist in
the property set. You can use an asterisk (*) as a wildcard for each one of the fields, but all of the
user key fields must exist; otherwise, no record is returned.

About the QueryPage Method
This method is useful when the search specification retrieves a large number of records at the root
component. To avoid returning one huge Siebel Message, you can specify the number of records to
be returned using the PageSize argument, as presented in Table 10 on page 103. You can also use
method arguments such as OutputIntObjectName, SearchSpec, SortSpec, ViewMode, and
StartRowNum to dictate which records to be returned.

Even though the QueryPage returns a limited number of records, it keeps the data in the cache, which
you can then retrieve by calling the EAI Siebel Adapter with a new value for the StartRowNum
method argument. Please note that this is only possible if the method arguments
OutputIntObjectName, PageSize, SearchSpec, SortSpec, and ViewMode are not changed and the
NewQuery method argument is set to False.

About the Synchronize Method
You can use the Synchronize method to make the values in a business object instance match those
of an integration object instance. This operation can result in updates, inserts, or deletes on business
components. Some rules apply to the results of this method:

■ If a child component is not present in the integration object instance, the corresponding business
component rows are left untouched.

■ If a child component is present in the integration object instance, but contains no instances so
that there is only an empty container, then records in the corresponding business component are
deleted.

■ If a child component is present in the integration object instance, and contains some instances,
the business component rows corresponding to the instances are updated or created and any
business component row that does not have a corresponding integration component instance is
deleted.

NOTE: The Synchronize method only updates the fields specified in the integration component
instance.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

106 ■

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
About the Upsert Method
The Upsert method is similar to the Synchronize method with one exception; the Upsert method does
not delete any records.

About the Insert Method
This method is also similar to the Synchronize method with the exception that the EAI Siebel Adapter
errors out if a match is found; otherwise, it inserts the root component and synchronizes all the
children. It is important to note that when you insert a record, there is a possibility that the business
component would create default children for the record, which need to be removed by the Insert
method. The Insert method synchronizes the children, which deletes all the default children. For
example, if you insert an account associated with a specific organization, it will also be automatically
associated with a default organization. As part of the Insert method, the EAI Siebel Adapter deletes
the default association and associates the new account with only the organization that was originally
defined in the input integration object instance. The EAI Siebel Adapter achieves this by
synchronizing the children.

About the Update Method
This method is similar to the Synchronize method, except that the EAI Siebel Adapter returns an
error if no match is found for the root component; otherwise, it updates the matching record and
synchronizes all the children. For example, if you send an order with one order item to the EAI Siebel
Adapter, it will take the following actions:

1 Queries for the order and if it finds a match, it updates the record.

2 Updates or inserts the new order item depending on if a match was found for the new order item.

3 Deletes any other order items associated with that order.

About the Delete Method
You can delete one or more records in a business component that is mapped to the root integration
component, given an integration object. A business component is deleted as specified by an
integration object. If you specify any child integration component instances, then the fields of an
integration component instance are used to query a business component.

NOTE: To have the EAI Siebel Adapter perform a delete operation, define an integration object that
contains the minimum fields on the primary business component for the business object. EAI Siebel
Adapter attempts to delete matching records in the business component before deleting the parent
record.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 107

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
About the Execute Method
The Execute method can be specified on EAI Siebel Adapter to perform combinations of various
operations on components in an integration object instance. This method uses the following
operations:

■ query

■ querypage (same as query when used as children operation)

■ sync (default operation)

■ upsert

■ update

■ updatesync

■ insert

■ insertsync

■ delete

■ none

NOTE: A none operation is equivalent to operation sync.

These operations perform the same tasks as the related methods. For example, the delete operation
makes the EAI Siebel Adapter delete the business component record matched to the particular
integration component instance. However, what will be done to the children depends on the
combination of the parent operation and the child operation. For details, see Table 12 on page 109.

Operations that include the word sync in the name cause deletion of unmatched child records,
whereas update, insert, and upsert do not delete any children. Table 11 presents the overview of the
six related operations.

NOTE: You should use the Execute method when you need to mix different operations on different
components within a single integration object; otherwise, you should use the other methods.

Table 11. EAI Siebel Adapter Execute Method Operations

EAI Siebel Adapter
Action upsert sync update updatesync insert insertsync

Error on Match
Found

No No No No Yes Yes

Error on Match Not
Found

No No Yes Yes No No

Delete Unmatched
Children

No Yes No Yes No Yes
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

108 ■

EAI Siebel Adapter ■ EAI Siebel Adapter Methods
An XML document sent to a Siebel application can include operations that describe whether a
particular data element needs to be inserted, updated, deleted, synchronized, and so on. These
operations can be specified as an attribute at the component level. They cannot be specified for any
other element.

About Execute Method Operations
Specify an attribute named operation, in lowercase, to the component�s XML element. The legal
values for this attribute are upsert, sync, delete, query, update, insert, updatesync, insertsync, and
none. If the operation is not specified on the root component, the sync operation is used as the
default.

NOTE: Specifying operation within <ListOf> tag is not supported. For details on the <ListOf> tag,
see XML Reference: Siebel eBusiness Application Integration Volume V.

Supported Operations for the Parent and Its Child Components
Table 12 presents the operation performed for a child component based on its parent component�s
operation and its own operation.

Table 12. Supported Operations

Parent Operation

query
query
page sync upsert update

update
sync insert

insert
sync delete

C
h

il
d

 O
p

e
ra

ti
o

n

query query query upsert upsert update update insert insert delete

query
page

query query upsert upsert update update insert insert delete

sync query query sync sync sync sync sync sync delete

upsert query query upsert upsert upsert upsert upsert upsert delete

update query query update update update update upsert upsert delete

update
sync

query query update
sync

update
sync

update
sync

update
sync

sync sync delete

insert query query insert insert insert insert insert insert delete

insert
sync

query query insert
sync

insert
sync

insert
sync

insert
sync

insert
sync

insert
sync

delete

delete query query delete delete delete delete delete delete delete
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 109

EAI Siebel Adapter ■ XML Examples Using the Upsert and Delete Operation
XML Examples Using the Upsert and
Delete Operation
The following XML example demonstrates using the upsert and delete operation to delete a particular
child without updating the parent.

<SiebelMessage MessageId="" MessageType="Integration Object" IntObjectName="Sample
Account">

<ListofSampleAccount>
<Account operation="upsert">

<Name>A. K. Parker Distribution</Name>
<Location>HQ-Distribution</Location>
<Organization>North American Organization</ Organization>
<Division/>
<CurrencyCode>USD</CurrencyCode>
<Description>This is the key account in the AK Parker Family</

Description>
<HomePage>www.parker.com</HomePage>
<LineofBusiness>Manufacturing</LineofBusiness>
<ListOfContact>
<Contact operation="delete">

<FirstName>Stan</FirstName>
<JobTitle>Senior Mgr of MIS</JobTitle>
<LastName>Graner</LastName>
<MiddleName>A</MiddleName>
<PersonalContact>N</PersonalContact>

<Account>A. K. Parker Distribution</Account>
<AccountLocation>HQ-Distribution</AccountLocation>
</Contact>
</ListOfContact>

</Account>
</ListofSampleAccount>

</SiebelMessage>

The following example illustrates updating multiple corresponding top level parent business
component records with one XML file.

<SiebelMessage MessageId="" MessageType="Integration Object"
IntObjectName="Transaction">
<ListofTransaction>

<Transaction>
<Field1>xxxx</Field1>
<Field2>yyyy</Field2>
.....

</Transaction>
<Transaction>

<Field1>aaaa</Field1>
<Field2>bbbb</Field2>
.....

</Transaction>
..............

</ListofTransaction>
</SiebelMessage>
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

110 ■

EAI Siebel Adapter ■ About MVGs in EAI Siebel Adapter
About MVGs in EAI Siebel Adapter
Multi-value groups (MVGs) in the business components are mapped to separate integration
components. Such integration components are denoted by setting a user property MVG on the
integration component to Y. For details on MVGs, see Chapter 2, �Integration Objects.�

An integration component instance that corresponds to a primary MVG is denoted by the attribute
IsPrimaryMVG set to Y. This attribute is a hidden integration component field and does not have a
corresponding business component field.

Each MVG that appears on the client UI is mapped to a separate integration component. For example,
in the Orders Entry - Orders screen, there is an Account Address, a Bill-to Address, and a Ship-to
Address. Each of these MVGs needs a separate integration component definition. Each field defined
for an integration component (represented by the class CSSEAIIntCompFieldDef) maps to a field in
the MVG. For such fields, External Name denotes the name of the business component field as it
appears on the master business component, and the user property MVGFieldName denotes the name
of the business component field as it appears on the MVG business component.

NOTE: Setting a primary record in an MVG is supported only when the Auto Primary property of the
underlying MVLink is specified as Selected or None. If Auto Primary is defined as Default, then the
Object Manager does not allow the EAI Siebel Adapter to set the primary. The exception to this rule
are all the visibility MVG components (components whose records are used by Object Manager to
determine who is going to see their parent records). For details on Auto Primary property, see Siebel
Tools Online Help.

Setting a Primary Address for an Account
You have an account with multiple shipping addresses in a Siebel application. None of these
addresses are marked as the primary address for the account and you want to select one of them as
the primary shipping address.

To specify an address as a primary

1 Create your XML file and insert <IsPrimaryMVG= 'Y'> before the address you want to identify as
the primary address for the account as shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="false"?>

- <SiebelMessage MessageId="1-69A" IntObjectFormat="Siebel Hierarchical"
MessageType="Integration Object" IntObjectName="Sample Contact">
- <ListOfSampleContact>
- <Contact>

<FirstName>Pal888</FirstName>
<IntegrationId>65454398</IntegrationId>
<JobTitle>Manager</JobTitle>
<LastName>John888</LastName>
<MiddleName />
<PersonUId>1-Y88H</PersonUId>
<PersonalContact>N</PersonalContact>

- <ListOfContact_Position>
- <Contact_Position IsPrimaryMVG="Y">
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 111

EAI Siebel Adapter ■ About the SearchSpec Input Method Argument
<EmployeeFirstName>Siebel</EmployeeFirstName>
<EmployeeLastName>Administrator</EmployeeLastName>
<Position>Siebel Administrator</Position>
<RowStatus>N</RowStatus>
<SalesRep>SADMIN</SalesRep>
</Contact_Position>
</ListOfContact_Position>
</Contact>
</ListOfSampleContact>
</SiebelMessage>.

2 Use the Upsert or Sync method to update the account.

About the SearchSpec Input Method
Argument
The SearchSpec input method argument is applicable to QueryPage, Query, Delete, and Execute
methods. This method argument allows you to specify complex search specifications as free text in
a single method argument. Expressions within a single integration component are restricted only by
the Siebel Query Language supported by the Object Manager. Integration components and fields are
referenced using the following notation:

[IntCompName.IntCompFieldName]

For example, given an integration object definition with two integration components, Account as the
root component and Contact as the child component, the following search specification is allowed:

([Account.Site] LIKE "A*" OR [Account.Site] IS NULL) AND [Contact.PhoneNumber] IS NOT
NULL

This search specification queries accounts that either have a site that starts with the character A, or
do not have a site specified. In addition, for the queried accounts, it queries only those associated
contacts that have a phone number.

NOTE: The AND operator is the only allowed operator among different integration components. You
use DOT notation to refer to integration components and their fields.

You can include the child integration component in a search specification only if its parent
components are also included. For example, using the same integration object definition as in
previous examples, the [Contact.PhoneNumber] IS NOT NULL queries every account. Then for each
account, it queries only contacts that have a phone number. If you want to query only accounts that
are associated with contacts that have a phone number specified, then you need to create another
business object, and an integration object based on that business object, which has contact as a root
component, and account as its child component.

The following procedure illustrates how to use the SearchSpec to query specific accounts.

To query accounts and addresses based on integration object�s SearchSpec field

1 From the application-level menu, choose Navigate > Site Map > Administration - Business
Process > Workflow Processes.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

112 ■

EAI Siebel Adapter ■ About the SearchSpec Input Method Argument
2 Create a new workflow process based on the Sample Account business object.

NOTE: Make sure all the fields you need are activated in the object.

3 Define the process properties.

Workflow process properties are global to the entire workflow. The Account Message is defined
to identify the outbound Account as a hierarchical structure. The Error Message, Error Code,
Object Id, and Siebel Operation Object Id properties are included in each workflow by default.

4 Click on the Process Designer tab in the bottom applet and design your workflow process as
follows.

5 Double-click on the first step, after Start, and set it up to invoke the EAI Siebel Adapter to query
the accounts and addresses for all records that match the desired search specification�for
example, accounts created today with State equal to �IL.� To achieve this you need the following
input and output arguments.

Name Data Type In/Out

Account Message Hierarchy In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Process Instance Id String In/Out

Siebel Operation Object Id String In/Out

Input Arguments Type Value

Account Message Literal Sample Account

Search Specification Expressi
on

'[Account.Created] =' +Today()
+'[Account_BusinessAddress.State] = �IL�'
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 113

EAI Siebel Adapter ■ About the SearchSpec Input Method Argument
6 Double-click on the second step and set it up to write the record set to a text file using the EAI
XML Write to File business service. Use the following arguments with the Write Siebel Message
method.

The EAI XML Write to File business service converts the hierarchical message to XML and writes
the result to the text file named in the File Name argument as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="false"?>

- <SiebelMessage MessageId="1IS-7LT" IntObjectFormat="Siebel Hierarchical"
MessageType="Integration Object" IntObjectName="Sample Account">
- <ListOfSampleAccount>
- <Account>

<Created>04/05/2002 07:41:10</Created>
<CSN>1IS-1DBRT</CSN>
<Location>Princeton</Location>
<Name>1st Account created today</Name>

- <ListOfAccount_BusinessAddress>
- <Account_BusinessAddress IsPrimaryMVG="N">

<City>Abbott Park</City>
<Country>USA</Country>
<State>IL</State>
<StreetAddress>1 Abbott Rd. D3m, B 3</StreetAddress>
<AddressName>1 Abbott Rd. D3m, B 3, Abbott Park, IL</AddressName>
</Account_BusinessAddress>
</ListOfAccount_BusinessAddress>
</Account>

- <Account>
<Created>04/05/2002 07:42:27</Created>
<CSN>1IS-1DBRY</CSN>
<Location>Orange</Location>
<Name>2nd Account created today</Name>

- <ListOfAccount_BusinessAddress>
- <Account_BusinessAddress IsPrimaryMVG="Y">

<City>Chicago</City>
<Country>USA</Country>
<State>IL</State>
<StreetAddress>1 BOP, 7th Floor</StreetAddress>
<AddressName>1 BOP, 7th Floor, Chicago, IL</AddressName>
</Account_BusinessAddress>
</ListOfAccount_BusinessAddress>
</Account>
</ListOfSampleAccount>
</SiebelMessage>

Input
Arguments Type Value Property Name

Property Data
Type

File Name Literal c:\accnt&add.x
ml

- -

Siebel Message Process Property - Account Message Hierarchy
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

114 ■

EAI Siebel Adapter ■ About Using Language-Independent Code with the Siebel Adapter
About Using Language-Independent
Code with the Siebel Adapter
If the user Property AllLangIndependentVals is set to Y at the integration object level, then EAI Siebel
Adapter uses the language-independent code for its LOVs.

In the outbound direction, for example the Query method, if the AllLangIndependentVals is set to Y,
then the EAI Siebel Adapter translates the language-dependent values in the Siebel Database to their
language-independent counterpart based on the List Of Values entries in the database.

In the inbound direction, for example the Synchronize method, if the AllLangIndependentVals is set
to Y, then the EAI Siebel Adapter expects language-independent values in the input message, and
translates them to language-dependent values based on the current language setting and the entries
in the List Of Values in the database.

NOTE: The LOV-based fields are always validated using language-dependent values. Using language
independent values for (M)LOVs increases the EAI Siebel Adapter CPU usage by about 5%, but allows
easier communication between systems that operate on different languages.

About LOV Translation and the EAI Siebel Adapter
The Siebel application distinguishes two types of lists of values (LOV): multilingual LOV (MLOV) and
single-language LOV.

Multilingual LOV (MLOV) stores a language-independent code (LIC) in the Siebel Database that gets
translated to a language-dependent value (LDV) for active language by Object Manager. MLOVs are
distinguished by having Translation Table specified on the Column definition.

Single-language LOV stores the LDV for the current language in the Siebel Database. The Boolean
integration object user property AllLangIndependentVals determines whether the EAI Siebel Adapter
should use LDV (N = no translation necessary) or LIC (Y = translation needed) for such LOVs.

Translating to LIC impacts performance but allows easier cooperation between systems that operate
on different languages. This option should be especially used by various import and export utilities.
Default value is undefined for backward compatibility with 6.x release behavior.

Table 13 explains the behavior of the EAI Siebel Adapter according to the integration object user
property AllLangIndependentVals values.

Table 13. EAI Siebel Adapter�s Behavior for the User Property AllLangIndependentVals

AllLangIndependentVals Y N Undefined

LOV LIC LDV LDV

MLOV LIC LDV LIC
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 115

EAI Siebel Adapter ■ Configuring the EAI Siebel Adapter for Concurrency Control
Configuring the EAI Siebel Adapter for
Concurrency Control
The EAI Siebel Adapter supports concurrency control to guarantee data integrity and avoid overriding
data by simultaneous users or integration processes. To do so, the EAI Siebel Adapter uses the
Integration Component Key called Modification Key.

About the Modification Key
A Modification Key is an Integration Component Key of the type Modification Key. A Modification Key
is a collection of fields that together should be used to verify the version of an integration component
instance. Typically, Modification Key fields are Mod Id fields for the tables used. Multiple Modification
Key fields may be needed because a business component may be updating multiple tables, either as
extension tables or through implicit or explicit joins.

EAI Siebel Adapter methods (Insert, Update, Synchronize, Upsert) check for the existence of a
Modification Key. If no Modification Key is specified in the integration component definition, or if
Modification Key fields are not included in the XML request, the EAI Siebel Adapter does not check
for the record version and proceeds with the requested operation. If a valid Modification Key is found,
but the corresponding record can not be found, the EAI Siebel Adapter assumes that the record has
been deleted by other users and returns the error SSASqlErrWriteConflict.

If a valid Modification Key as well as the corresponding record can be found, the EAI Siebel Adapter
checks if the Modification Key fields in the XML request and the matched record are consistent. If
any of the fields are inconsistent, the EAI Siebel Adapter assumes that the record has been modified
by other users and returns the error SSASqlErrWriteConflict. If all the fields are consistent, the EAI
Siebel Adapter proceeds with the requested operation.

About Modification IDs
To determine which Mod Id fields need to be used as part of a Modification Key, you expose Mod Id
fields for tables whose columns may be updated by that integration object. In some situations you
might need to add corresponding integration component fields as well as business component fields.

NOTE: EAI Siebel Adapter can update base and extension tables. It may even update joined table
columns through picklists that allow updates.

About the Modification ID for a Base Table
The integration component field Mod Id for a base table is created by the Integration Object Builder
Wizard, but you need to make sure it is active if it is needed for your business processes.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

116 ■

EAI Siebel Adapter ■ Configuring the EAI Siebel Adapter for Concurrency Control
About the Modification ID for an Extension Table
An extension table�s Mod Id field is accessible as extension table name.Mod Id in the business
component�for example, S_ORG_EXT_X.Mod Id. However, if your business processes require this
field, you need to manually add it to the integration object definition by copying the Mod Id field and
changing the properties.

About the Modification ID for a Joined Table
A joined table�s Mod Id field needs to be manually added in both business component and integration
object definitions. Business component Mod Id fields for joined tables should:

■ Be prefixed with CX string and preferably followed by the name of the join

■ Be Joined over the correct join

■ Have MODIFICATION_NUM specified as underlying column of type DTYPE_INTEGER

About MVG and MVGAssociation Integration Components
For integration components that are of type MVG or MVGAssociation, in addition to the above steps,
you need to create user properties MVGFieldName and AssocFieldName for each Modification ID
integration component field, respectively, and set the name of the field shown in the parent business
component as the value.

To configure EAI Siebel Adapter for concurrency control

1 For each integration component, identify all needed Modification IDs.

NOTE: In addition to the Modification ID for the base table, Modification IDs for tables that are
used through one-to-one extension as well as through implicit joins are relevant. For example,
on modifying an account record MODIFICATION_NUM column on S_ORG_EXT is updated, not the
MODIFICATION_NUM column on S_PARTY.

a Identify all active fields in an integration component that will be updated and have to be
concurrency safe.

b Select the corresponding business component, the value in the External Name property of the
integration component.

c For each field identified in Step a, check the value of the Join property of the field. If the join is
not specified, then the field belongs to the base table; otherwise, note the name of the join.

d In the Object explorer, select Business Component > Join and query for the business component
from Step b. Search whether there is an entry whose Alias property matches the name of the
join from Step c.

❏ If a matching Alias is found, then this field belongs to a Joined Table. The name of the
join in Step c is the join name and the value of the Table property is the joined table.

❏ If no Alias matches, then this is an implicit join to an Extension Table. The name of the
join in Step c is the name of the extension table.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 117

EAI Siebel Adapter ■ Configuring the EAI Siebel Adapter for Concurrency Control
2 Create business component fields for Mod Ids of Joined Tables. For the above example, create a
new field in business component Account with the following settings:

Name. CX_Primary Organization-S_BU.Mod Id

Join. Primary Organization-S_BU

Column. MODIFICATION_NUM

Type. DTYPE_INTEGER

3 Expose all Modification IDs identified in Step 1 as integration component fields.

4 For MVG and MVG Association integration components, add user property MVGFieldName and
AssocFieldName respectively, on all Modification ID fields as follows:

a Check the Integration Component User Prop sub type for user properties of the integration
component.

b If there is a user property called MVGAssociation then the integration component is a MVG
Association, but if there is a user property called Association then the integration component is
a MVG.

NOTE: If the integration component is neither an MVG nor an MVG Association, then nothing
needs to be done.

5 Repeat the following steps for each Modification ID field on the integration component.

a Add user property MVGFieldName if MVG, or AssocFieldName if MVG Association.

b Set the value of the user property to the same as the field name�for example, Mod Id,
extension table name.Mod Id, or CX_join.Mod Id.

6 Create Modification Key.

Define a new integration component key of type Modification Key, and include all the integration
component fields exposed in Step 3 to this key.

7 Validate integration objects and compile a new SRF.

8 Modify client program to use the Modification Key mechanism.

a The client program should store the value of the Modification IDs when it queries data from
Siebel Database.

b The client program should send exactly the same values of the Modification IDs that it retrieved
from Siebel Database when sending an update.

c The client program should not send in any Modification IDs when sending a new record to the
Siebel application. If this is violated, the client program generates an error indicating that the
record has been deleted by another user.

Integration Component Account Example

Consider an integration component Account of the business component Account:

■ Field Home Page has property Join set to S_ORG_EXT. This is an implicit join because it is not
listed in the joins; therefore, this field belongs to Extension Table S_ORG_EXT.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

118 ■

EAI Siebel Adapter ■ Configuring the EAI Siebel Adapter for Concurrency Control
■ Field Primary Organization has property Join set to Primary Organization-S_BU. This is an explicit
join as it is listed in the joins. The value of Table property is S_BU; therefore, this field belongs
to Joined Table S_BU joined over Primary Organization-S_BU.

1 Activate integration component field Mod Id.

a Set Name, External Name, XML Tag properties to Mod Id

b Set External Data Type property to DTYPE_NUMBER

c Set External Length property to 30

d Set Type property to System

2 Add integration component field S_ORG_EXT.Mod Id.

a Set Name, External Name, XML Tag properties to S_ORG_EXT.Mod Id

b Set External Data Type property to DTYPE_NUMBER

c Set External Length property to 30

d Set Type property to System

3 Add integration component field CX_Primary Organization-S_BU.Mod Id.

a Set Name, External Name, XML Tag properties to CX_Primary Organization-S_BU.Mod Id

b Set External Data Type property to DTYPE_NUMBER

c Set External Length property to 30

d Set Type property to System

Integration Component Account_Organization Example

Consider the integration component Account_Organization of the Sample Account integration object.
Account_Organization is an MVG Association as denoted by the presence of the user property
MVGAssociation. Assume two Modification IDs, Mod Id and S_ORG_EXT.Mod Id, were exposed on this
integration component.

1 For field Mod Id create a new user property with the name of AssocFieldName with a value of
Mod Id.

2 For field S_ORG_EXT.Mod Id create a new user property with the name of AssocFieldName with
a value of S_ORG_EXT.Mod Id.

In the integration component example, Account (created in �Integration Component
Account_Organization Example� on page 119) of Sample Account integration object, takes the
following action:

3 Create a new Integration Component key called Modification Key.

4 Set the type of the key as Modification Key.

5 Add integration component fields Mod Id, S_ORG_EXT.Mod Id, and S_BU.Mod Id to the
Modification Key.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 119

EAI Siebel Adapter ■ Siebel eAI and Run-Time Events
Siebel eAI and Run-Time Events
The Siebel application allows triggering workflows based on run-time events or workflow policies.

Run-Time Events. Siebel eAI supports triggering workflows based on run-time events such as Write
Record, which gets triggered whenever a record is written. If you use both EAI Siebel Adapter to
import data into Siebel application and run-time events, you should pay attention to the following:

For EAI Siebel Adapter, one call to EAI Siebel Adapter with an input message is a transaction. Within
a transaction, EAI Siebel Adapter makes multiple Write Record calls. At any point in the transaction,
if EAI Siebel Adapter encounters a problem the transaction is rolled back entirely. However, if you
have specified events to trigger at Write Record, such events are invoked as soon as EAI Siebel
Adapter makes Write Record calls even though EAI Siebel Adapter may be in the middle of a
transaction. If you have export data workflows triggered on such events, this may lead to exporting
data from Siebel applications that is not committed in Siebel applications and may get rolled back.
It is also possible that your events get triggered when the record is not completely populated, which
leads to situations that are not handled by your specified event processing workflow.

To avoid the effects of this interaction between EAI Siebel Adapter and run-time events use the
business service EAI Transaction Service to figure out if a transaction (typically, EAI Siebel Adapter)
is in progress. You may then want to skip processing that is not desirable when EAI Siebel Adapter
is in progress.

For example, suppose you have a workflow to export Orders from Siebel applications that is triggered
whenever the Order record is written. You also import Orders into Siebel applications using EAI. In
such a situation, you do not want to export Orders while they are being imported because the import
may get aborted and rolled back. You achieve this using the business service EAI Transaction Service
as the first step of the export workflow. If you find that a transaction is in process you can branch
directly to the end step.

Workflow Policies. In addition to Run-Time Events, Siebel applications also support Workflow
Policies as a triggering mechanism for workflows. You can use workflow policies instead of run-time
events to avoid the situation discussed above. You should use Workflow Policies instead of Run-Time
Events when possible.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

120 ■

7 Siebel eAI and File Attachments
Siebel eAI supports file attachments for exchanging business documents such as sales literature,
activity attachments, and product defect attachments with another Siebel instance or an external
system such as Oracle Applications.

The chapter includes the following topics:

■ �About File Attachments� on page 121

■ �Exchange of Attachments with External Applications� on page 121

■ �Using MIME Messages to Exchange Attachments� on page 122

■ �About the EAI MIME Hierarchy Converter� on page 128

■ �About the EAI MIME Doc Converter� on page 129

About File Attachments
For example, if you are exchanging service requests with another application or partner, you can
include attachments such as screen captures, email, log files, and contract agreements that are
associated with the service request in the information being exchanged. Siebel eAI support for file
attachments allows comprehensive integration.

In order to use file attachments you first need to create Integration Objects. For details, see
Chapter 2, �Integration Objects,� and Chapter 3, �Creating and Maintaining Integration Objects.�

Siebel eAI offers the choice of integrating file attachments using MIME (the industry standard for
exchanging multi-part messages), or including the attachment within the body of the XML document,
referred to as an inline XML attachment. You should consider using inline XML attachments when
integrating two instances of Siebel applications using file attachments.

Exchange of Attachments with External
Applications
Siebel eAI supports bidirectional attachments exchange with external applications using the
following two message types:

■ MIME (Multipurpose Internet Mail Extensions). MIME is the industry standard for
exchanging multipart messages. The first part of the MIME message is an XML document
representing the business object being exchanged and attachments to the object are included as
separate parts of the multipart message. MIME is the recommended choice for integrating Siebel
applications with other applications.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 121

Siebel eAI and File Attachments ■ Using MIME Messages to Exchange Attachments
■ Inline XML attachments (Inline Extensible Markup Language). With inline XML
attachments, the entire business object you are exchanging, including any attachments, is sent
as a single XML file. In this case, attachments are included within the body of the inline XML
attachment. Inline XML attachments should be considered when integrating two instances of
Siebel applications using file attachments. For details, see XML Reference: Siebel eBusiness
Application Integration Volume V.

Using MIME Messages to Exchange
Attachments
To send or receive file attachments using MIME messages, Siebel eAI uses the MIME Hierarchy
Converter and MIME Doc Converter.

The following checklist shows the high-level procedures you need to perform to use MIME to
exchange attachments between Siebel applications and another external system.

Creating an Integration Object
The following procedure guides you through the steps of creating an integration object.

To create a new Siebel integration object

1 Start Siebel Tools.

2 Create a new project and lock the project, or lock an existing project in which you want to create
your integration object.

3 Choose File > New Object... to display the New Object Wizards dialog box.

Checklist

❑ Create an integration object using the EAI Siebel Wizard.

For details, see �Creating an Integration Object� on page 122.

❑ Create an inbound or outbound Workflow process.

For details, see �Creating Workflow Processes Examples� on page 123.

❑ Test your workflow process using Workflow Process Simulator.

For details, see �About the EAI MIME Hierarchy Converter� on page 128.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

122 ■

Siebel eAI and File Attachments ■ Using MIME Messages to Exchange Attachments
4 Select the EAI tab, double-click Integration Object, and click OK.

NOTE: When creating your integration object you need to select the Attachment integration
object. The following figure illustrates this when the source object is Account.

5 Click Next to see a list of the warnings and errors generated by the Integration Object Builder.

6 Review and take necessary actions to address the issue.

7 Click Finish to complete the process of building the integration object.

8 In the Object Explorer, select Integration Object > Integration Component > Integration
Component Field object.

The Integration Component and Integration Component Field applets appear.

9 Select the XXX_Attachment Component and the Attachment Id Component fields, and verify that
the Data Type object for the Attachment Id field is set to DTYPE_ATTACHMENT.

10 Compile the SRF file and copy it to the object directory under your Siebel Server directory as well
as under your Tools directory.

NOTE: You need to stop the services before copying the SRF file. For details on the SRF file, see
Using Siebel Tools.

Creating Workflow Processes Examples
Depending on whether you are preparing for an outbound or an inbound attachment exchange, you
need to design different workflow process as described in the following two procedures.

[

Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 123

Siebel eAI and File Attachments ■ Using MIME Messages to Exchange Attachments
Outbound Workflow Process
To process the attachment for an outbound request you need to create a workflow process to query
the database, convert the Integration Object and its attachments into a MIME hierarchy, and then
create a MIME document to send to the File Transport business service.

To create an outbound workflow process

1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End, and four Business Services. Set up each
Business Service according to the task it needs to accomplish.

3 Define your process properties.

Set workflow process properties when you need a global property for the entire workflow.

Name
Data
Type Default String

SiebelMessage Hierarchy

Error Message String

Error Code String

Object Id String

Process Instance Id String

Siebel Operation Object Id String

MIMEHierarchy Hierarchy

SearchSpec String [Account.Name] = 'Sample
Account'

<Value> String Default output is binary.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

124 ■

Siebel eAI and File Attachments ■ Using MIME Messages to Exchange Attachments
4 The first business service queries the Account information from the database using the EAI Siebel
Adapter business service with the Query method. This step requires the following input and
output arguments.

NOTE: For more information on using EAI Siebel Adapter, see Chapter 6, �EAI Siebel Adapter.�

5 The second business service in the workflow converts the Account integration object and its
attachments to a MIME hierarchy using the EAI MIME Hierarchy Converter business service with
the SiebelMessage to MIME Hierarchy method. This step requires the following input and output
arguments.

NOTE: For more information on the EAI MIME Hierarchy Converter, see �About the EAI MIME
Hierarchy Converter� on page 128.

Input
Argument Type Value Property Name

Property Data
Type

Output
Integration
Object Name

Literal Sample Account - -

SearchSpec Process Property - SearchSpec String

Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message

Input
Argument Type Property Name

Property Data
Type

Siebel Message Process Property SiebelMessage Hierarchy

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 125

Siebel eAI and File Attachments ■ Using MIME Messages to Exchange Attachments
6 The third business service of the workflow converts the MIME hierarchy to a document to be sent
to File Transport business service. This step uses the EAI MIME Doc Converter business service
with the MIME Hierarchy To MIME Doc method. This step requires the following input and output
arguments.

NOTE: For more information on the EAI MIME Doc Converter, see �About the EAI MIME Doc
Converter� on page 129.

7 For the final step, you need to set up the last business service of the workflow to write the
information into a file using the EAI File Transport business service with the Send method. This
step requires the following input arguments.

NOTE: For details on File Transport, see Transports and Interfaces: Siebel eBusiness Application
Integration Volume III.

Inbound Workflow Process Example
To process the attachment for an inbound request, you need to create a workflow process to read
the content from a file, convert the information into a Siebel Message, and send to EAI Siebel Adapter
to update the database accordingly.

To create an inbound workflow process

1 Navigate to Workflow Process Designer.

2 Create a workflow process consisting of Start, End and four Business Services. Set up each
Business Service according to the task it needs to accomplish.

3 Define your process properties.

Set workflow process properties when you need a global property for the entire workflow.

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

<Value> Output Argument MIME Message

Input
Argument Type Value

Property
Name

Property
Data Type

Message Text Process Property - <Value> String

File Name Literal c:\temp\account.txt - -
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

126 ■

Siebel eAI and File Attachments ■ Using MIME Messages to Exchange Attachments
4 The first business service in the workflow reads the Account information from a file using the EAI
File Transport business service with Receive method. This step requires the following input and
output arguments.

NOTE: For details on File Transport, see Transports and Interfaces: Siebel eBusiness Application
Integration Volume III.

5 The second business service of the workflow converts the Account information to a MIME
hierarchy using the EAI MIME Doc Converter business service with the MIME Doc to MIME
Hierarchy method. This step requires the following input and output arguments.

6 The third business service of the workflow converts the MIME hierarchy to a document and sends
it to the EAI Siebel Adapter business service. This step uses the EAI MIME Hierarchy Converter
business service with the MIME Hierarchy to Siebel Message method. This step requires the
following input and output arguments.

Input Argument Type Value

File Name Literal c:\temp\account.txt

Property Name Type Output Argument

<Value> Output Argument Message Text

Input Argument Type Property Name Property Data Type

MIME Message Process Property <Value> String

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 127

Siebel eAI and File Attachments ■ About the EAI MIME Hierarchy Converter
7 The last step of the workflow writes the information into the database using the EAI Siebel
Adapter business service with the Insert or Update method. This step requires the following input
argument.

About the EAI MIME Hierarchy Converter
The EAI MIME Hierarchy Converter transforms the Siebel Message into a MIME (Multipurpose Internet
Mail Extensions) hierarchy for outbound integration. For inbound integration, it transforms the MIME
Hierarchy into a Siebel Message.

Outbound Integration
The EAI MIME Hierarchy Converter transforms the input Siebel Message into a MIME Hierarchy.
Figure 31 illustrates the Siebel Message of a sample Account with attachments. This figure represents
both input and output to the MIME Hierarchy Converter.

The output of this process is illustrated in Figure 32.

Input Argument Type Property Name Property Data Type

Siebel Message Process Property SiebelMessage Hierarchy

Figure 31. Sample Account with Attachments as Input to the MIME Hierarchy Converter

Figure 32. Output of a MIME Hierarchy Converter
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

128 ■

Siebel eAI and File Attachments ■ About the EAI MIME Doc Converter
The first child of a MIME Hierarchy is the XML format of the Sample Account Integration Object
instance found in the Siebel Message. The remaining two children are the corresponding children
found under Attachments. In the event that there is no child of type Attachments in the Siebel
Message, the output is just a MIME Hierarchy with a child of type Document. This document will
contain the XML format of the Sample Account integration object instance.

Inbound Integration
The MIME Hierarchy Converter transforms a MIME Hierarchy input into a Siebel Message. For the
inbound process, the first child of the MIME Hierarchy has to be the XML format of the Integration
Object instance; otherwise, an error is generated. Figure 33 illustrates the incoming hierarchy.

The output of this process is illustrated in Figure 31 on page 128. The output for this process is the
same as the input.

About the EAI MIME Doc Converter
The MIME Doc Converter converts a MIME Hierarchy into a MIME Message and a MIME Message into
a MIME Hierarchy. A MIME Hierarchy consists of two different types of property sets.

Table 14 illustrates some examples of how a MIME Message maps to a MIME Hierarchy.

Figure 33. Output of a MIME Hierarchy Converter

Property Description

MIME Hierarchy Mapping to a MIME multi-part

Document Mapping to MIME basic-part
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 129

Siebel eAI and File Attachments ■ About the EAI MIME Doc Converter
EAI MIME Doc Converter Properties

The business service needs the following properties on the child property set as shown in Table 15.
These properties reflect the most accurate information on the data contained in the child property
set.

Table 14. Examples of MIME Message and MIME Hierarchy

MIME Message MIME Hierarchy

MIME-Version: 1.0

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is a test.

MIME-Version: 1.0

Content-Type: multipart/related; type="application/
xml"; boundary=--abc

----abc

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is test2.

----abc--
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

130 ■

Siebel eAI and File Attachments ■ About the EAI MIME Doc Converter
Table 15. Properties for EAI MIME Doc Converter

Property Possible Values Type Description

ContentId Any value Document No Default. The ContentId is the value
used to identify the file attachment when
the receiver parses the MIME message.
When importing attachments, you should
use a unique value for this property and
not repeat it for the rest of the file
attachments. This is required in the actual
document. This property is automatically
populated when you are exporting an
attachment from a Siebel application.

Extension txt, java, c, C, cc,
CC, h, hxx, bat, rc,
ini, cmd, awk, html,
sh, ksh, pl, DIC,
EXC, LOG, SCP, WT,
mk, htm, xml, pdf,
AIF, AIFC, AIFF, AU,
SND, WAV. gif, jpg,
jpeg, tif, XBM, avi,
mpeg, ps, EPS, tar,
zip, js, doc, nsc,
ARC, ARJ, B64, BHX,
GZ, HQX

Document No Default. If ContentType and
ContentSubType are not defined, the
Extension is used to retrieve the
appropriate values from this property. If
all three values are specified, the
ContentType and ContentSubType values
override the values retrieved from the
Extension. If either the Extension or both
ContentType and ContentSubType are not
specified, the ContentType will be set to
application and ContentSubType will have
the value of octet-stream.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 131

Siebel eAI and File Attachments ■ About the EAI MIME Doc Converter
NOTE: On the inbound direction, the business service is independent of the transport. It assumes
that the input property set contains the MIME message and outputs a property set representation of
the MIME message. A property set is used to represent each part of the MIME message. When
decoding the MIME message, the business service automatically sets the properties based on the
values in the MIME message.

ContentType application, audio,
image, text, video

Document Default is application. The ContentType
value has to be specified if you want to set
the content type of the document instead
of using the extension to get a value from
the MIME utility function. If the value is
not provided, the default value is used.
The ContentType of multipart is used to
represent file attachments in a MIME
message. Other forms of values to
describe a multipart is not supported.

ContentSubType plain, richtext, html,
xml (used with
ContentType of Text)

octet-stream, pdf,
postscript, x-tar, zip,
x-javascript,
msword, x-
conference, x-gzip
(used with
ContentType of
application)

aiff, basic, wav (used
with ContentType of
audio)

gif, jpeg, tiff, x-
xbitmap (used with
ContentType of
image)

avi, mpeg (used with
ContentType of
video)

Document Default is octet-stream. The
ContentSubType value has to be specified
if you want to set the content subtype of
the document instead of using the
extension to get a value from the MIME
utility function. If the value is not
provided the default value is used.

Table 15. Properties for EAI MIME Doc Converter

Property Possible Values Type Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

132 ■

8 Siebel Virtual Business
Components
This chapter describes the virtual business component (VBC), and its uses and restrictions. This
chapter also describes how you can create a new VBC in Siebel Tools. The following topics are
included:

■ �About Virtual Business Components� on page 133

■ �Using Virtual Business Components� on page 135

■ �XML Gateway Service� on page 138

■ �Examples of Outgoing XML Format� on page 141

■ �Search-Spec Node-Type Types� on page 146

■ �Examples of Incoming XML Format� on page 147

■ �External Application Setup� on page 150

■ �Custom Business Service Methods� on page 150

■ �Custom Business Service Example� on page 165

About Virtual Business Components
A virtual business component (VBC) provides a way to access data that resides in an external data
source using a Siebel business component. The VBC does not map to an underlying table in the Siebel
Database. You create a new VBC in Siebel Tools and compile it into the siebel.srf file. The VBC calls
a Siebel business service to provide a transport mechanism.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 133

Siebel Virtual Business Components ■ About Virtual Business Components
You can take two approaches to use virtual business components, as illustrated in Figure 34.

■ Use the XML Gateway business service to pass data between the virtual business component and
one of the Siebel transports, such as the EAI HTTP Transport, the EAI MQSeries AMI Transport,
or the EAI MSMQ Transport.

■ Write your own business service in Siebel eScript or in Siebel VB to implement the methods
described in this chapter.

About Using VBCs for Your Business Requirements
The following features enhance the functionality of VBCs to better assist you in meeting your
business requirements:

■ Virtual business components (VBCs) support drill down from a VBC. You can drill down to a VBC
from a standard BC, another VBC, or the same VBC.

■ A parent applet can be based on a VBC.

■ You can define virtual business components that can participate as a parent in a business object.
The VBC you define can be a parent to a standard BC or a VBC.

■ You still can use an older version of XML format or property set by setting the VBC Compatibility
Mode parameter to the appropriate version. For details, see Table 16 on page 136.

■ You can pass search and sort specifications to the business service used by a VBC.

Figure 34. Two Approaches to Building Virtual Business Components
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

134 ■

Siebel Virtual Business Components ■ Using Virtual Business Components
■ You can use Validation, Pre Default Value, Post Default Value, Link Specification, and No Copy
attributes of VBC fields.

■ You can use predefined queries with VBC.

■ You can have picklists based on VBC and use the picklist properties such as No Insert, No Delete,
No Update, No Merge, Search Specification, and Sort Specification.

■ You can use the Cascade Delete, Search Spec, Sort Spec, No Insert, No Update, and No Delete
link properties when a VBC is the child business component on the link.

■ You can use No Insert, No Update, No Delete, Search Spec, Sort Spec, and Maximum Cursor Size
business component properties.

Usage and Restrictions of VBCs
■ You can define a business object as containing both standard business components and virtual

business components.

■ When configuring applets based on VBCs, use CSSFrame (Form) and CSSFrameList (List) instead
of specialized applet classes.

■ Using the same name for the VBC field names and the remote data source field names may
reduce the amount of required programming. (Optional)

■ Virtual business components cannot be docked, so they do not apply to remote users.

■ Virtual business components cannot contain a multi-value group (MVG).

■ Virtual business components do not support many-to-many relationships.

■ Virtual business components cannot be loaded using Enterprise Integration Manager.

■ Standard business components can not contain multi-value group based on virtual business
components.

■ Virtual business components cannot be implemented using any business component class other
than CSSBCVExtern. This means specialized business components such as Quotes and Forecasts
cannot be implemented as virtual business components.

■ You cannot use Workflow Monitor to monitor virtual business components.

Using Virtual Business Components
To use VBCs to share data with an external applications you need to perform the following high-level
tasks:

Checklist

❑ Create a new Virtual Business Component.

For details, see �Creating a New Virtual Business Component.�
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 135

Siebel Virtual Business Components ■ Using Virtual Business Components
Creating a New Virtual Business Component
You create a new virtual business component in Siebel Tools.

To create a new virtual business component

1 Start Siebel Tools.

2 Lock the appropriate project.

3 Create a new record in the Business Component list applet in Siebel Tools.

4 Name the business component.

5 Select the project you locked in Step 2.

6 Set the Class to the CSSBCVExtern class. This class provides the virtual business component
functionality.

Setting User Properties for the Virtual Business
Component
When defining the virtual business component, you must provide the user properties shown in
Table 16.

❑ Set the User Properties on Virtual Business Components (VBCs).

For details, see �Setting User Properties for the Virtual Business Component� on page 136.

❑ Configure your VBC Business Service:

■ Configure your XML Gateway Service or write your own Business Service.

For details, see �XML Gateway Service� on page 138 and �Custom Business Service
Methods� on page 150.

■ Configure your external application.

For details, see �External Application Setup� on page 150.

Table 16. Setting Virtual Business Component User Properties

User Property Description

Service Name The name of the business service.

Service Parameters (Optional) Any parameters required by the business service. The
Siebel application passes this user property, as an input argument, to
the business service.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

136 ■

Siebel Virtual Business Components ■ Using Virtual Business Components
To define user properties

1 Start Siebel Tools.

2 Lock the appropriate project.

3 Click the Business Component folder in the Object Explorer to expand the hierarchical tree.

4 Select the business component you want to define user properties for.

5 Click the Business Component User Prop folder in the Object Explorer.

6 Choose Edit New Record to create a new blank user property record.

7 Type the name of the user property, such as Service Name, in the Name field.

8 Type the value of the user property, such as a business service name, in the Value field.

9 Repeat the process for every user property you want to define for this virtual business
component.

NOTE: For list of different property sets and their format, see �Examples of Outgoing XML Format� on
page 141 and �Examples of Incoming XML Format� on page 147.

Remote Source (Optional) External data source that the business service is to use.
This property allows the VBC to pass a root property argument to the
underlying business service, but it does not allow a connection directly
to the external datasource. The Siebel application only passes this
user property as an input argument.

VBC Compatibility Mode (Optional) Determining the format of the property set passed from a
VBC to a business service, or the format in which the outgoing XML
from the XML Gateway will be. A valid value is Siebel xxx, where xxx
can be any Siebel release number. Some examples would be Siebel 6
or Siebel 7.0.4. If xxx is less than 7.5, the format will be in pre-7.5.
Otherwise, a new property set and XML format will be passed.

If you are creating a VBC in 7.5, there is no need to define this new
user property since the default would be to use the new PropertySet
from VBC and the new outgoing XML from the XML Gateway.

For your existing VBC implementation you need to update your VBC
definition by adding this new user property and setting it to Siebel
xxx, where xxx is your desired version number.

Table 16. Setting Virtual Business Component User Properties

User Property Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 137

Siebel Virtual Business Components ■ XML Gateway Service
XML Gateway Service
The XML Gateway business service communicates between Siebel applications and external data
sources using XML as the data format. For details on XML format, see �Examples of Outgoing XML
Format� on page 141 and �Examples of Incoming XML Format� on page 147. The XML Gateway business
service can be configured to use one of the following transports:

■ EAI MQSeries AMI Server Transport

■ EAI MQSeries Server Transport

■ EAI HTTP Transport

■ EAI MSMQ Transport

You can configure the XML Gateway by specifying the transport protocol and the transport
parameters you use in the Service Parameters User Property of the virtual business component as
shown in Table 17. When using the XML Gateway, you need to specify the following user properties
for your virtual business component.

NOTE: You can concatenate multiple name-value pairs using a semicolon (;), but should not use
any spaces between the name, the equal sign, the value, and the semicolon.

For example, if you want to specify the EAI HTTP Transport, you may use something like the following
which is also illustrated in Figure 35:

Table 17. User Properties

Name Value

Service Name XML Gateway

Service Parameters variable1 name=variable1 value;
variable2 name=variable2 value>;...

Remote Source External Data Source

VBC Compatibility Mode Siebel xxx, where xxx can be any Siebel release number.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

138 ■

Siebel Virtual Business Components ■ XML Gateway Service
"Transport=EAI HTTP Transport;HTTPRequestURLTemplate=<your
URL>;HTTPRequestMethod=POST"

or if you want to specify the EAI MQSeries AMI Transport, you may use something like:

"Transport=EAI MQSeries AMI Transport;MqPolicyName=<policy
name>;MqSenderServiceName=<sender service name>; MqModelQueueName=<queue
name>;MqPhysicalQueueName=<p queue name>;..."

You can also implement VBC with MQSeries. The following procedure lists the steps you need to take
to implement this.

To implement VBC with MQSeries

1 Call the EAI Business Integration Manager (Server Request) business service.

2 Define another service parameter for the name of a workflow process to run, with the following
user properties on the VBC.

■ Service Name. XML Gateway

■ Service Parameters. Transport=EAI Business Integration Manager (Server
Request);ProcessName=EAITEST

3 Define a workflow process, EAITEST, to call the EAI MQSeries Server Transport with the
SendReceive method.

4 Define a new process property, <Value>, on the workflow process and use it as an output
argument on the EAI MQSeries Server Transport step in the workflow process.

Figure 35. Setting Virtual Business Component User Properties
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 139

Siebel Virtual Business Components ■ XML Gateway Service
XML Gateway Methods
The XML Gateway provides the methods presented in Table 18.

XML Gateway Method Arguments
The XML Gateway init, delete, insert, preInsert, query, and update methods take the arguments
presented in Table 19.

Table 18. XML Gateway Methods

Method Description

Init Initializes the XML Gateway business service for every business component.

Delete Deletes a given record in the remote data source.

Insert Inserts a record into a remote data source.

PreInsert Performs an operation that tests for the existence of the given business component.
Only default values are returned from the external application.

Query Queries the given business component from the given data source.

Update Updates a record in the remote data source.

Table 19. XML Gateway Arguments

Argument Description

Remote Source The VBC Remote Source user property. The remote source from
which the service is to retrieve data for the business component.
This must be a valid connect string. When configuring the
repository business component on top of the specialized business
component class CSSBCVExten, a user property Remote Source
can be defined to allow the Transport Services to determine the
remote destination and any connect information. If this user
property is defined, it is passed to every request as the <remote-
source> tag.

Business Component Id Unique key for the given business component.

Business Component Name Name of the business component or its equivalent, such as a table
name.

Parameters The VBC Service Parameters user property. A set of string
parameters required for initializing the XML Gateway.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

140 ■

Siebel Virtual Business Components ■ Examples of Outgoing XML Format
Examples of Outgoing XML Format
Examples of the XML documents generated and sent by the XML Gateway to the external system are
presented in Table 20. These examples are based on the example in �Custom Business Service
Example� on page 165. See Appendix C, �DTDs for XML Gateway Business Service,� for examples of the
DTDs that correspond to each of these methods.

NOTE: The XML examples provided in this chapter have extraneous carriage returns and line feeds
for ease of reading. Please delete all the carriage returns and line feeds before using any of the
examples.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 141

Siebel Virtual Business Components ■ Examples of Outgoing XML Format
Table 20. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description

Delete Request <siebel-xmlext-delete-req>

 <buscomp id="1">Contact</
buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>

 <row>

 <value
field="AccountId">146</value>

 <value field="Name">Max
Adams</value>

 <value
field="Phone">(408)234-1029</
value>

 <value field="Location">San
Jose</value>

 <value
field="AccessId">146</value>

 </row>

</siebel-xmlext-delete-req>

siebel-xmlext-delete-req. This tag
requests removal of a single record in
the remote system.

Init Request <siebel-xmlext-fields-req>

<buscomp id="1">Contact</buscomp>

<remote-source>http://throth/
servlet/VBCContacts</remote-
source>

</siebel-xmlext-fields-req>

siebel-xmlext-fields-req. This tag
fetches the list of fields supported by
this instance.

buscomp Id. The business
component ID.

remote-source. The remote source
from which the service is to retrieve
data for the business component.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

142 ■

Siebel Virtual Business Components ■ Examples of Outgoing XML Format
Insert Request <siebel-xmlext-insert-req>

 <buscomp id="1">Contact</
buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>

 <row>

 <value field="AccountId">1-
6</value>

 <value field="Name">Max
Adams</value>

 <value
field="Phone">(398)765-1290</
value>

 <value
field="Location">Troy</value>

 <value field="AccessId"></
value>

 </row>

</siebel-xmlext-insert-req>

siebel-xmlext-Insert-req. This tag
requests the commit of a new record
in the remote system.

The insert-req XML stream contains
values for fields entered through the
business component.

PreInsert Request <siebel-xmlext-preinsert-req>

 <buscomp id="1">Contact</
buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>

</siebel-xmlext-preinsert-req>

siebel-xmlext-preinsert-req. This
tag allows the connector to provide
default values. This operation is
called when a new row is created, but
before any values are entered
through the business component
interface.

Table 20. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 143

Siebel Virtual Business Components ■ Examples of Outgoing XML Format
Query Request <siebel-xmlext-query-req>

 <buscomp id="1">Contact</
buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>

 <max-rows>6</max-rows>

 <search-string>=([Phone] IS NOT
NULL) AND ([AccountId] = "1-6")</
search-string>

 <search-spec>

 <node node-type="Binary
Operator">AND

 <node node-type="Unary
Operator">IS NOT NULL

 <node node-
type="Identifier">Phone</node>

 </node>

 <node node-type="Binary
Operator">=

 <node node-
type="Identifier">AccountId</
node>

 <node value-type="TEXT"
node-type="Constant">1-6</node>

 </node>

 </node>

 </search-spec>

 <sort-spec>

 <sort
field="Location">ASCENDING</
sort>

 <sort field="Name">DESCENDING</
sort>

 </sort-spec>

siebel-xmlext-query-req. This tag
queries by example. The query-req
XML stream contains parameters
necessary to set up the query. In this
example, the query requests that
record information be returned from
the remote system.

max-rows. Maximum number of
rows to be returned. The value is the
Maximum Cursor Size defined at the
VBC plus one. If the Maximum Cursor
Size property is not defined at the
VBC, then the max-rows property is
not passed.

search-string. The search
specification used to query and filter
the information.

search-spec. Hierarchical
representation of the search-string.
For details, see �Search-Spec Node-
Type Types� on page 146.

sort-spec. List of sort fields and sort
order.

Table 20. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

144 ■

</Siebel-xmlext-query-req>

Siebel Virtual Business Components ■ Examples of Outgoing XML Format
Update Request <siebel-xmlext-update-req>

 <buscomp id="2">Contact</
buscomp>

 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>

 <row>

 <value changed="false"
field="AccountId">1-6</value>

 <value changed="false"
field="Name">Max Adams</value>

 <value changed="true"
field="Phone">(408)234-1029</
value>

 <value changed="true"
field="Location">San Jose</value>

 <value changed="false"
field="AccessId">146</value>

 </row>

</siebel-xmlext-update-req>

siebel-xmlext-Update-req. This
tag requests changes to the field
values for an existing row.

All values for the record are passed in
with <value> tags, with the changed
attribute identifying the ones that
have been changed through the
Siebel application.

Table 20. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 145

Siebel Virtual Business Components ■ Search-Spec Node-Type Types
Search-Spec Node-Type Types
The search-string is in the Siebel query language format. The search-string is parsed by the Siebel
query object and then turned into the hierarchical search-spec. Table 21 shows the different search-
spec node-types and their values.

Table 21. Search-Spec Node-Types

node-type PropertySet/XML Representation

Constant Example: <node node-type = "Constant"

 value-type="NUMBER">1000</node>

The valid value-types are TEXT, NUMBER, DATETIME, UTCDATETIME, DATE, and
TIME.

Identifier Example: <node node-type="Identifier">Name</node>

The value Name is a valid business component field name.

Unary Operator Example: <node node-type="Unary Operator">NOT</node>

The valid values are NOT, EXISTS, IS NULL, IS NOT NULL.

Binary Operator Example: <node node-type= "Binary Operator" >AND</node>

The valid values are LIKE, NOT LIKE, SOUNDSLIKE, =, <>, <=, <, >=, >, AND,
OR, +, -, *, /, ^.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

146 ■

Siebel Virtual Business Components ■ Examples of Incoming XML Format
Examples of Incoming XML Format
Table 22 contains examples of XML documents that are sent from an external system to the XML
Gateway in response to a request. These examples are based on the example in �Custom Business
Service Example� on page 165. See Appendix C, �DTDs for XML Gateway Business Service,� for
examples of the DTDs that correspond to each of these methods.

Table 22. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description

Delete Return <siebel-xmlext-delete-ret /> siebel-xmlext-delete-ret. Only the
XML stream tag is returned.

Error <siebel-xmlext-status>

<status-code>4</code>

<error-field>Name</error-field>

<error-text>Name must not be
empty</error-text>

</siebel-xmlext-status>

Format of the XML stream expected by
the Siebel application in case of an error
in the external application. The tags for
this XML stream, including the entire
XML stream, are optional. If the error is
specific to a field, the field name should
be specified.

siebel-xmlext-status. This tag is used
to check the status returned by the
external system.

status-code. This tag overrides the
return value.

error-text. This tag specifies textual
representation of the error, if it is
available. This tag appears in addition to
the standard error message. For
example, if Siebel application attempts
to update a record in the external
system with a NULL Name, and this is
not allowed in the external system, then
the error text is set to �Name must not
be empty.�
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 147

Siebel Virtual Business Components ■ Examples of Incoming XML Format
Init Return <siebel-xmlext-fields-ret>

 <support field="AccountId"/>

 <support field="Name"/>

 <support field="Phone"/>

 <support field="Location"/>

 <support field="AccessId"/>

</siebel-xmlext-fields-ret>

siebel-xmlext-fields-ret. The fields-
ret XML stream return contains the list
of VBC fields supported by the external
application for this instance.

The following field names are reserved
by the Siebel application and should not
appear in this list:

Id, Created, Created By, Updated,
Updated By.

Insert Return <siebel-xmlext-insert-ret>

 <row>

 <value field="AccountId">1-6</
value>

 <value field="Name">Max
Adams</value>

 <value field="Phone">(398)765-
1290</value>

 <value field="Location">Troy</
value>

 <value field="AccessId">146</
value>

 </row>

</siebel-xmlext-insert-ret>

siebel-xmlext-insert-ret. If the
remote system has inserted records,
they can be returned to be reflected in
the business component in an insert-ret
XML stream in the <row> tag format as
the insert-ret stream.

PreInsert
Return

<siebel-xmlext-preinsert-ret>

 <row>

 <value field="Location">San
Jose</value>

 </row>

</siebel-xmlext-preinsert-ret>

siebel-xmlext-preinsert-ret. Returns
default values for each field, if there is
any default value.

Table 22. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

148 ■

Siebel Virtual Business Components ■ Examples of Incoming XML Format
Query Return <siebel-xmlext-query-ret>

 <row>

 <value field="AccountId">1-6</
value>

 <value field="Name">Sara
Chen</value>

 <value field="Phone">(415)298-
7890</value>

 <value field="Location">San
Francisco</value>

 <value field="AccessId">128</
value>

 </row>

 <row>

 <value field="AccountId">1-6</
value>

 <value field="Name">Eric
Brown</value>

 <value field="Phone">(650)123-
1000</value>

 <value field="Location">Palo
Alto</value>

 <value field="AccessId">129</
value>

 </row>

</siebel-xmlext-query-ret>

siebel-xmlext-query-ret. The query-
ret XML stream contains the result set
that matches the criteria of the query.

row. This tag indicates the number of
rows returned by query. Each row
should contain one or more <values>.
The attributes which appear in <row>
tags must be able to uniquely identify
rows. If there is a unique key in the
remote data source, it should appear in
the result set. If not, a unique key
should be generated. It is necessary to
identify specific rows for DML
operations.

value. This tag specifies the field and
value pairs and should be the same for
each row in the set.

Table 22. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 149

Siebel Virtual Business Components ■ External Application Setup
External Application Setup
Once you have your XML Gateway Service configured, you need to set up your external application
accordingly to be able to receive and respond to the requests. At a minimum, the external application
needs to support the Init() and Query() methods, and depending upon the functionality provided by
the VBC, the remaining methods may or may not be necessary.

Custom Business Service Methods
Your business service must implement the Init and Query methods as described in this section. The
Delete, PreInsert, Insert, and Update methods are optional, and dependent upon the functionality
required by the Virtual Business Component.

NOTE: Custom business services can be only based on the CSSService class, as specified in Siebel
Tools.

These methods pass property sets between the virtual business component and the business service.
Virtual business component methods take property sets as arguments. Each method takes two
property sets: an Inputs property set and an Outputs property set. The methods are called by the
CSSBCVExtern class in response to requests from other objects that refer to or are based on the
virtual business component.

When you are building a custom business service to allow virtual business component functionality
with Siebel VB or Siebel eScript you can use one of the following methods to connect to an external
database in the Service code:

■ Siebel VB Only. Use the SQL functions using ODBC.

■ Siebel eScript Only. Call out to a CORBA interface using the CORBACreateObject function.

■ Siebel VB or Siebel eScript. Use a COM connection through the CreateObject or
COMCreateObject functions to call an API supported by your RDBMS vendor or to call a COM
object such as ActiveX DLL.

Update
Return

<siebel-xmlext-update-ret>

 <row>

 <value field="Location">San
Jose</value>

 <value field="Phone">(408)234-
1029</value>

 </row>

</siebel-xmlext-update-ret>

siebel-xmlext-update-ret. If the
remote system updated fields, they can
be returned to be reflected in the
business component in an update-ret
XML stream in the <row> tag format as
the update-ret stream.

Table 22. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

150 ■

Siebel Virtual Business Components ■ Custom Business Service Methods
You may also choose to use the XML Gateway service to allow the connection for your VBC. For
details, see �XML Gateway Service� on page 138.

NOTE: For more information about property sets, programming in Siebel eScript, and programming
in Siebel VB, see Siebel Tools Reference and Siebel Tools Online Help.

Common Method Parameters
Table 23 shows the input parameters common to every method. Please note that all these parameters
are at the root property set.

Once a response has been received, the method packages the response from the external data
source into the outputs property set.

Business Services Methods and Their Property Sets
The following examples display each method's input and output property sets for a virtual business
component Contact that displays simple contact information for a given account. These examples are
based on the example in the �Custom Business Service Example� on page 165.

NOTE: All the optional parameters have been omitted from these example to simplify them.

Table 23. Common Input Parameters

Parameter Description

Remote Source Optional. Specifies the name of an external data source. This is
the VBC�s Remote Source user property, if defined. For details,
see Table 16 on page 136.

Business Component Name Name of the active virtual business component.

Business Component Id Internally generated unique value that represents the virtual
business component.

Parameters Optional. The VBC�s Service Parameters user property, if
defined. For details, see Table 16 on page 136. A set of
parameters required by the business service.

VBC Compatibility Mode Optional. This is the VBC�s Compatibility Mode user property, if
defined. For details, see Table 16 on page 136.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 151

Siebel Virtual Business Components ■ Custom Business Service Methods
Delete
The Delete method is called when a record is deleted. Figure 36 illustrates the property set for the
Delete input and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

AccountId="1-6"

Name="Max Adams"

Phone="(408)234-1029"

Location="San Jose"

AccessId="146" />

Figure 36. Delete Input Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

152 ■

Siebel Virtual Business Components ■ Custom Business Service Methods
</PropertySet>

Figure 37 illustrates the property set for Delete output and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet />

Error Return

Figure 36 illustrates the property set for the Error Return, when an error is detected. The illustration
is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

Figure 37. Delete Output Property Set

Figure 38. Error Return Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 153

Siebel Virtual Business Components ■ Custom Business Service Methods
<PropertySet>

<Status Status="4"

Error_spcField="Name"

Error_spcText="Name must not be empty"/>

</PropertySet>

Init

The Init method is called when the virtual business component is first instantiated. It initializes the
virtual business component. It expects to receive the list of fields supported by the external system.
Figure 39 illustrates the property set for Init input and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8"?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact"/>

Figure 39. Init Input Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

154 ■

Siebel Virtual Business Components ■ Custom Business Service Methods
Figure 40 illustrates the property set for Init output and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

AccountId=""

Name=""

Phone=""

Location=""

AccessId="" />

Figure 40. Init Output Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 155

Siebel Virtual Business Components ■ Custom Business Service Methods
Insert
The Insert method is called when a New Record is committed. Figure 41 illustrates the property set
for Insert input and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

AccountId="1-6"

Name="Max Adams"

Phone="(398)765-1290"

Location="Troy"

AccessId="" />

Figure 41. Insert Input Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

156 ■

Siebel Virtual Business Components ■ Custom Business Service Methods
</PropertySet>

Figure 42 illustrates the property set for Insert output and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

<PropertySet

AccountId="1-6"

Name="Max Adams"

Phone="(398)765-1290"

Location="Troy"

AccessId="146" />

</PropertySet>

Figure 42. Insert Output Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 157

Siebel Virtual Business Components ■ Custom Business Service Methods
PreInsert
The PreInsert method is called when a New Record operation is performed. It supplies default values.
Figure 43 illustrates the property set for PreInsert input and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8"?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact"/>

Figure 43. PreInsert Input Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

158 ■

Siebel Virtual Business Components ■ Custom Business Service Methods
Figure 44 illustrates the property set for PreInsert output and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<PropertySet Location="San Jose" />

</PropertySet>

Figure 44. PreInsert Output Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 159

Siebel Virtual Business Components ■ Custom Business Service Methods
Query

The Query method is called when a search is performed. The Query method must be supported by
every virtual business component. Each record that matches the query is represented as a property
set. For example, if 5 records match the query, there will be 5 child property sets. Each property set
will contain a list of field names�field value pairs representing the values of each field for that
particular record. Figure 46 illustrates the property set for Query input and is followed by its XML
representation.

Figure 45. Query Input Property Set (Part 1)
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

160 ■

Siebel Virtual Business Components ■ Custom Business Service Methods
<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

max-rows="6"

search-string="([Phone] IS NOT NULL) AND ([AccountId] = "1-6")"

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet AccountId="1-6" />

<search-spec>

<node node-type="Binary Operator">AND

<node node-type="Unary Operator">IS NOT NULL

<node node-type="Identifier">Phone</node>

</node>

<node node-type="Binary Operator">=

<node node-ype="Identifier">AccountId</node>

<node value-type="TEXT" node-type="Constant">1-6</node>

Figure 46. Query Input Property Set (Part 2)
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 161

Siebel Virtual Business Components ■ Custom Business Service Methods
</node>

</node>

</search-spec>

<sort-spec>

<sort field="Location">ASCENDING</sort>

<sort field="Name">DESCENDING</sort>

</sort-spec>

</PropertySet>

Figure 47 illustrates the property set for Query output and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<PropertySet

AccountId="1-6"

Figure 47. Query Output Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

162 ■

Siebel Virtual Business Components ■ Custom Business Service Methods
Name="Sara Chen"

Phone="(415)298-7890"

Location="San Francisco"

AccessId="128" />

<PropertySet

AccountId="1-6"

Name="Eric Brown"

Phone="(650)123-1000"

Location="Palo Alto"

AccessId="129" />

</PropertySet>

Update

The Update method is called when a record is modified. Figure 48 illustrates the property set for
Update input and is followed by its XML representation.

Figure 48. Update Input Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 163

Siebel Virtual Business Components ■ Custom Business Service Methods
<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

Field_spcName="AccountId"

Changed="false"

Field_spcValue="1-6" />

<PropertySet

Field_spcName="Name"

Changed="false"

Field_spcValue="Max Adams" />

<PropertySet

Field_spcName="Phone"

Changed="true"

Field_spcValue="(408)234-1029" />

<PropertySet

Field_spcName="Location"

Changed="true"

Field_spcValue="San Jose" />

<PropertySet

Field_spcName="AccessId"

Changed="false"

Field_spcValue="146" />

</PropertySet>
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

164 ■

Siebel Virtual Business Components ■ Custom Business Service Example
Figure 49 illustrates the property set for the Update output and is followed by its XML representation.

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

<PropertySet

Phone=="(408)234-1029"

Location="San Jose" />

</PropertySet>

Custom Business Service Example
The following is an example of Siebel eScript implementation of a business service for a virtual
business component. The fields configured for this simple virtual business component are AccountId,
Name, Phone, Location, and AccessId. AccessId is the primary key in the external data source.
AccessId is included in the virtual business component fields to make update and delete simple and
is configured as a hidden field.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)

{

if (MethodName == "Init") {

return(Init(Inputs, Outputs));

Figure 49. Update Output Property Set
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 165

Siebel Virtual Business Components ■ Custom Business Service Example
}

else if (MethodName == "Query") {

return(Query(Inputs, Outputs));

}

else if (MethodName == "PreInsert") {

return(PreInsert(Inputs, Outputs));

}

else if (MethodName == "Insert") {

return(Insert(Inputs, Outputs));

}

else if (MethodName == "Update") {

return(Update(Inputs, Outputs));

}

else if (MethodName == "Delete") {

return(Delete(Inputs, Outputs));

}

else {

return (ContinueOperation);

}

}
function Init (Inputs, Outputs)
{

// For debugging purpose...

logPropSet(Inputs, "InitInputs.xml");

Outputs.SetProperty("AccountId", "");

Outputs.SetProperty("Name", "");

Outputs.SetProperty("Phone", "");

Outputs.SetProperty("AccessId", "");

Outputs.SetProperty("Location", "");

// For debugging purpose...

logPropSet(Outputs, "InitOutputs.xml");

return (CancelOperation);

}
function Query(Inputs, Outputs)
{

// For debugging purpose...

logPropSet(Inputs, "QueryInputs.xml");

var selectStmt = "select * from Contacts ";

var whereClause = " where ";

var orderbyClause = " order by ";

// You have the following properties if you want to use them

// Inputs.GetProperty("Business Component Name")

// Inputs.GetProperty("Business Component Id")

// Inputs.GetProperty("Remote Source")

// If you configured Maximum Cursor Size at the buscomp,

// get max-rows property

var maxRows = Inputs.GetProperty("max-rows");

// get search-string

var searchString = Inputs.GetProperty("search-string");

// convert the search-string into a where clause

searchString = stringReplace(searchString, '*', '%');

searchString = stringReplace(searchString, '[', ' ');

searchString = stringReplace(searchString, ']', ' ');

searchString = stringReplace(searchString, '~', ' ');

searchString = stringReplace(searchString, '"', "'");
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

166 ■

Siebel Virtual Business Components ■ Custom Business Service Example
whereClause = whereClause + searchString;

// match, search-spec, sort-spec

var childCount = Inputs.GetChildCount();

var child, sortProp;

for (var i = 0; i < childCount; i++)

{

child = Inputs.GetChild(i);

if (child.GetType() == "")

{

// Use this child property set if you want to use the old match field list.

// We are not using this in this example. We'll use search-string instead.

}

else if (child.GetType() == "search-spec")

{

// Use this child property set if you want to use the hierarchical

// representation of the search-string.

// We are not using this in this example. We'll use search-string instead.

}

else if (child.GetType() == "sort-spec")

{

// This child property set has the sort spec. We'll use this in this example

var sortFieldCount = child.GetChildCount();

for (var j = 0; j < sortFieldCount; j++)

{

// compose the order by clause

sortProp = child.GetChild(j);

orderbyClause += sortProp.GetProperty("field");

var sortOrder = sortProp.GetValue();

if (sortOrder == "DESCENDING")

orderbyClause += " desc";

if (j < sortFieldCount-1)

orderbyClause += ", ";

}

}

}

// Now, our complete select statement is...

selectStmt += whereClause + orderbyClause;

// Now, query the data source

var conn = getConnection();

var rs = getRecordset();

rs.Open(selectStmt, conn);

// We're only going to return no more than maxRows of records.

var count = rs.RecordCount();

if (maxRows != "")

if (count > maxRows)

count = maxRows

// We'll go through the recordset and add them to the Outputs PropertySet.

var fcount, fields, row;

for (i = 0; i < count; i++)

{

row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (j = 0; j < fcount; j++)
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 167

Siebel Virtual Business Components ■ Custom Business Service Example
{

var fieldValue = fields.Item(j).Value();

if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");

else

row.SetProperty(fields.Item(j).Name(), fieldValue);

}

Outputs.AddChild(row);

rs.MoveNext();

}

// For debugging purpose...

logPropSet(Outputs, "QueryOutputs.xml");

// clean up

child = null;

sortProp = null;

row = null;

rs.Close();

rs = null;

conn.Close();

conn = null;

return (CancelOperation);

}
function PreInsert (Inputs, Outputs)
{

// For debugging purpose...

logPropSet(Inputs, "PreInsertInputs.xml");

var defaults = TheApplication().NewPropertySet();

defaults.SetProperty("Location", "KO");

Outputs.AddChild(defaults);

// For debugging purpose...

logPropSet(Outputs, "PreInsertOutputs.xml");

// clean up

defaults = null;

return (CancelOperation);

}

function Insert (Inputs, Outputs)
{

// For debugging purpose...

logPropSet(Inputs, "InsertInputs.xml");

var fieldList = "";

var valueList = "";

// Inputs should have only 1 child property set.

var child = Inputs.GetChild(0);

var fieldName = child.GetFirstProperty();

var fieldValue;

while (fieldName != "")

{

fieldValue = child.GetProperty(fieldName);

if (fieldValue != "")

{

if (fieldList != "")

{

fieldList += ", ";

valueList += ", ";
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

168 ■

Siebel Virtual Business Components ■ Custom Business Service Example
}

fieldList += fieldName;

valueList += "'" + fieldValue + "'";

}

fieldName = child.GetNextProperty();

}

// The insert statement is...

var insertStmt = "insert into Contacts (" + fieldList + ") values (" + valueList + ")";

// Now, inserting into the data source...

var conn = getConnection();

conn.Execute (insertStmt);

// In this example, we need to query back the record just inserted to get

// the value of its primary key. We made this primary key part of the buscomp

// to make update and delete easy. The primary key is "AccessId".

var selectStmt = "select * from Contacts where ";

var whereClause = "";

child = Inputs.GetChild(0)

fieldName = child.GetFirstProperty();

while (fieldName != "")

{

fieldValue = child.GetProperty(fieldName);

if (fieldName != "AccessId")

{

if (whereClause != "")

whereClause += " and ";

if (fieldValue == "")

whereClause += fieldName + " is null";

else

whereClause += fieldName + "='" + fieldValue + "'";

}

fieldName = child.GetNextProperty();

}

// The select statement is...

selectStmt += whereClause;

// Now, let's select the new record back

var rs = getRecordset();

rs.Open(selectStmt, conn);

// We're expecting only one row back in this example.

var fcount, fields, row, fieldValue;

row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (var j = 0; j < fcount; j++)

{

fieldValue = fields.Item(j).Value();

if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");

else

row.SetProperty(fields.Item(j).Name(), fieldValue);

}

Outputs.AddChild(row);

// For debugging purpose...

logPropSet(Outputs, "InsertOutputs.xml");

// clean up
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 169

Siebel Virtual Business Components ■ Custom Business Service Example
child = null;

row = null;

rs.Close();

rs = null;

conn.Close();

conn = null;

return (CancelOperation);

}
function Update (Inputs, Outputs)
{

// For debugging purpose...

logPropSet(Inputs, "UpdateInputs.xml");

var child;

var childCount = Inputs.GetChildCount();

var fieldName, fieldValue;

var updateStmt = "update Contacts set ";

var setClause = "";

var whereClause;

// Go through each child in Inputs and construct

// necessary sql statements for update and query

for (var i = 0; i < childCount; i++)

{

child = Inputs.GetChild(i);

fieldName = child.GetProperty("Field Name");

fieldValue = child.GetProperty("Field Value");

// We only need to update changed fields.

if (child.GetProperty("Changed") == "true")

{

if (setClause != "")

setClause += ", ";

if (fieldValue == "")

setClause += fieldName + "=null";

else

setClause += fieldName + "='" + fieldValue + "'";

}

if (fieldName == "AccessId")

whereClause = " where AccessId = " + fieldValue;

}

// The update statement is...

updateStmt += setClause + whereClause;

// Now, updating the data source...

var conn = getConnection();

conn.Execute (updateStmt);

// How to construct the Outputs PropertySet can vary, but in this example

// We'll query back the updated record from the data source.

var selectStmt = "select * from Contacts" + whereClause;

// Now, let's select the updated record back

var rs = getRecordset();

rs.Open(selectStmt, conn);

// We're expecting only one row back in this example.

// In this example, we're returning all the fields and not just

// the updated fields. You can only return those updated

// fields with the new value in the Outputs property set.

var fcount, fields, row, fieldValue;
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

170 ■

Siebel Virtual Business Components ■ Custom Business Service Example
row = TheApplication().NewPropertySet();

fields = rs.Fields();

fcount = fields.Count();

for (var j = 0; j < fcount; j++)

{

fieldValue = fields.Item(j).Value();

if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");

else

row.SetProperty(fields.Item(j).Name(), fieldValue);

}

Outputs.AddChild(row);

// For debugging purpose...

logPropSet(Outputs, "UpdateOutputs.xml");

// clean up

child = null;

row = null;

rs.Close();

rs = null;

conn.Close();

conn = null;

return (CancelOperation);

}

function Delete (Inputs, Outputs)
{

// For debugging purpose...

logPropSet(Inputs, "DeleteInputs.xml");

// Inputs should have only 1 child property set.

var child = Inputs.GetChild(0);

// In this example, we're only using the AccessId

// (it's the primary key in the Contacts db)

// for delete statement for simplicity.

var deleteStmt = "delete from Contacts where AccessId = " + child.GetProperty("AccessId");

// Now, let's delete the record from the data source.

var conn = getConnection();

conn.Execute(deleteStmt);

// For debugging purpose...

logPropSet(Outputs, "DeleteOutputs.xml");

// Returning empty Outputs property set.

// clean up

conn.Close();

conn = null;

return (CancelOperation);

}

The following functions are helper functions.
function getConnection ()
{

// VBCContact is the ODBC data source name

var connectionString = "DSN=VBCContact";

var uid = "";

var passwd = "";

var conn = COMCreateObject("ADODB.Connection");

conn.Mode = 3;
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 171

Siebel Virtual Business Components ■ Custom Business Service Example
conn.CursorLocation = 3;

conn.Open(connectionString , uid, passwd);

return conn;

}
function getRecordset()
{

var rs = COMCreateObject("ADODB.Recordset");

return rs;

}

function logPropSet(inputPS, fileName)
{

// Use EAI XML Write to File business service to write

// inputPS property set to fileName file in c:\temp directory.

var fileSvc = TheApplication().GetService("EAI XML Write to File");

var outPS = TheApplication().NewPropertySet();

var fileLoc = "c:\\temp\\" + fileName;

var tmpProp = inputPS.Copy();

tmpProp.SetProperty("FileName", fileLoc);

fileSvc.InvokeMethod("WritePropSet", tmpProp, outPS);

// clean up

outPS = null;

fileSvc = null;

tmpProp = null;

}

function stringReplace (string, from, to)
{

// Replaces from with to in string

var stringLength = string.length;

var fromLength = from.length;

if ((stringLength == 0) || (fromLength == 0))

return string;

var fromIndex = string.indexOf(from);

if (fromIndex < 0)

return string;

var newString = string.substring(0, fromIndex) + to;

if ((fromIndex + fromLength) < stringLength)

newString += stringReplace(string.substring(fromIndex+fromLength, stringLength), from, to);

return newString;

}

NOTE: For more examples of VBCs, see Developing and Deploying Siebel eBusiness Applications.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

172 ■

9 External Business Components
The external business component feature provides a way to access data that resides in a non-Siebel
table or view using a Siebel business component.

This chapter consists of the following topics:

■ �Configuring External Business Components� on page 173

■ �Usage and Restrictions for External Business Components� on page 183

■ �About Using External Business Components with the Siebel Web Clients� on page 184

■ �About Overriding Connection Pooling Parameters for the DataSource� on page 184

■ �About Joins to Tables in External Data Sources� on page 184

■ �About Distributed Joins� on page 186

■ �Usage and Restrictions for Using Distributed Joins� on page 186

■ �Loading a Siebel Analytics Presentation Folder for Use as an External Table� on page 187

Configuring External Business
Components
To configure external business components, you perform the high-level tasks described below.
Before proceeding, review �Configuring the Business Component� on page 180.

■ Create a table definition.

Import the external table definition into Siebel Tools using the External Table Schema Import
Wizard.

This wizard creates a new Table object definition in the Siebel Repository, based upon the
contents of a DDL (data definition language) file you provide.

As may be appropriate, you can import an external view definition rather than a table definition.
References to an external table also implies an external view, according to your implementation.

■ Map columns in the external table to Siebel system fields.

■ Configure the external business component and specify the data source object.

■ Create or update a business component to utilize the new Table object definition.

■ Specify run-time parameters.

■ Configure the new data source in the Server Administration view.

■ Add the data source to the OM - Named Data Source name component parameter.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 173

External Business Components ■ Configuring External Business Components
Creating the External Table Definition
You use Siebel Tools and the External Table Schema Import Wizard to import your external table
definition into the Siebel Repository.

For more information about using Siebel Tools, see Using Siebel Tools on the Siebel Bookshelf.

To import the external table definition

1 Start Siebel Tools.

2 In Siebel Tools, check out and lock the appropriate project.

3 Select File > New Object....

4 In the New Object Wizards applet, double-click External Table Schema Import.

The External Table Schema Import Wizard appears, as shown in the following figure.

5 In the External Table Schema Import Wizard, specify values as described below:

■ The project the new Table object definition will be associated with.

■ The database where the external table resides. The value specified should correspond to the
database platform used by the Siebel database.

■ The full path for the location of the SQL/DDL file that contains the external table definition.

■ Specify the three-digit batch code that will allow grouping.

6 Click Next to confirm the entries, and then click Finish to import the DDL file.

A Table object definition is added to the Siebel Repository, corresponding to the external table.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

174 ■

External Business Components ■ Configuring External Business Components
7 Repeat Step 3 through Step 6 for every external table definition you need to import.

About Data Type Mappings for Importing Table Definitions
When importing table definitions, certain data type mappings are supported for use with the Siebel
application. Table 24 contains the data type mappings you can use when importing table definitions.

Table 24. Supported Data Type Mappings by Product

Supported Data Types Siebel Data Type

MS SQL Server Data Types

int Numeric with scale of 0

bigint Numeric with scale of 0

smallint Numeric with scale of 0

tinyint Numeric with scale of 0

float Numeric

real Numeric

decimal Numeric

money Numeric

smallmoney Numeric

bit Character with a length of 1

char Character

nchar Character

varchar Varchar

nvarchar Varchar

text Long

ntext Long

datetime Date Time

smalldatetime Date Time

DB2 Universal Database Data Types

UINT Numeric with scale of 0

BIGUINT Numeric with scale of 0

SMALLUINT Numeric with scale of 0

FLOAT Numeric

REAL Numeric
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 175

External Business Components ■ Configuring External Business Components
DECIMAL Numeric

NUMERIC Numeric

CHAR Character

VARGRAPHIC Varchar

LONG VARGRAPHIC Long

DATE Datetime

TIME Datetime

TIMESTAMP Datetime

Oracle Data Types

Number Numeric

TIMESTAMP WITH TIME
ZONE

Numeric

TIMESTAMP WITH LOCAL
TIME ZONE

Numeric

Char Character

Nchar Character

varchar2 Varchar

nvarchar2 Varchar

Long Long

date Datetime

Siebel Analytics Data Types

Integer Numeric with scale of 0

Smallint Numeric with scale of 0

Tinyint Numeric with scale of 0

Float Numeric

Double Numeric

Bit Character (1)

Boolean Character (1)

Char Character

Varchar Varchar

Longvarchar Long

Table 24. Supported Data Type Mappings by Product

Supported Data Types Siebel Data Type
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

176 ■

External Business Components ■ Configuring External Business Components
Table 25 contains the data types that are not supported for importing table definitions.

Datetime Datetime

Date Datetime

Time Datetime

Table 25. Unsupported Data Type Mappings by Product

Unsupported Data Types

MS SQL Server Data Types

timestamp

varbinary

binary

image

cursor

uniqueidentifier

DB2 Universal Database Data Types

CLOB

DBCLOB

BLOB

Oracle Data Types

TIMESTAMP

CLOB

NCLOB

BLOB

BFILE

ROWID

UROWID

RAW

LONG RAW

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

Table 24. Supported Data Type Mappings by Product

Supported Data Types Siebel Data Type
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 177

External Business Components ■ Configuring External Business Components
About the New Imported Table Definition
After the table definition is imported using the External Table Schema Import Wizard, the external
table and the external column names are generated.

The external table name is stored in the Table object�s Alias property. This external table name
consists of the following:

■ An EX prefix (for external table).

■ A three-digit batch code specified in the External Table Schema Import Wizard.

■ An automatically generated seven-digit number.

An example of the Table name is EX_ABC_0000001.

The external column name is stored in the Column child object�s Alias property. An X is added as the
prefix and a four-digit number is added as the suffix for the external column name. For example,
X_ABC_0000001_0001.

The Table object�s Type property is set to External or External View (if a view was imported). This
column denotes that the table resides outside of the Siebel database.

Specify Additional Table Properties
Once the table is imported, you may specify additional table properties for the corresponding
external table.

■ External API Write. Allows you to perform reads directly from the database and have write
operations processed by way of a script.

A Boolean property is used to indicate whether or not inserts, updates, or deletes to external
tables should be handled by an external API. If this property is set to TRUE, the
BusComp_PreWriteRecord and BusComp_PreDeleteRecord events should be scripted to publish
the insert, update, or delete operation to an external API.

Siebel Analytics Data Types

Timestamp

Varbinary

Longvarbinary

Binary

Object

Unknown

Table 25. Unsupported Data Type Mappings by Product

Unsupported Data Types
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

178 ■

External Business Components ■ Configuring External Business Components
■ Key Generation Business Service. Allows a business service to generate a primary key (Id
field) for a business component. If this is not specified, the Siebel application will generate a
row_id value for the column that corresponds to the Id system field.

■ Key Generation Service Method. Allows a business service method to be invoked when
generating a primary key for a business component.

For more information about these table properties, see Siebel Tools Online Help.

Mapping External Columns to Siebel System Fields
Once the external business component has been defined, you must map the Siebel system fields to
the corresponding external table column. Starting with Siebel 7.7, System Field mapping is
accomplished at the column definition rather than using business component user properties. You
need to specify the System Field Mapping column attribute if you wish to map a Siebel system field
to a column.

NOTE: At a minimum, the Id field must be mapped to a unique column defined in the external table
and in the Table object definition, which is specified in the business component�s Table property.

By default, Siebel system fields will be not be included in the generated SQL for external tables.

System Field Mapping is used to specify the mapping between table columns and Siebel internal
fields.

Following is a list of the Siebel internal fields that may be mapped to external table columns:

■ Conflict Id. Optional.

■ Created. Optional. Datetime corresponding to when the record was created.

■ Created By. Optional. String containing the user name of the person and the system that
created the records.

■ Extension Parent Id. Optional.

■ Mod Id. Optional.

■ Non-system. Optional.

■ Updated. Optional. Datetime corresponding to when the record was last updated.

■ Updated By. Optional. String containing the user name of the person and system that last
updated the record.

■ Id. Mandatory. The single column unique identifier of the record. A column in the external table
must be mapped to the Id field.

NOTE: The System Field Mapping property should be used in conjunction with external tables only.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 179

External Business Components ■ Configuring External Business Components
Specifying the Data Source Object
Once the external table has been defined, you will need to specify the data source for the
corresponding external table. A new child object, the Data Source, is added to the Table object in
Siebel 7.7.

■ The data source object corresponds to a data source defined in the application configuration file
(.cfg) or in the Application - Server Configuration > Profile Configuration view.

■ The data source object instructs the Application Object Manager to use the data source for a
specific table. If a Data Source is not specified, the default data source for the application will be
used.

NOTE: The Data Source object should be specified for external tables only.

For more information about the data source child object, see Siebel Tools Online Help.

Configuring the Business Component
Once a Table object definition corresponding to the external table exists in the repository, you can
configure a business component to utilize the new Table object definition.

In general, configuring an external business component is similar to configuring a standard business
component with the following exceptions:

■ The Data Source business component property should be specified when configuring an EBC. The
value specified for this property should correspond with the name of the corresponding Table
Data Source.

■ The Log Changes property should be set to false (unchecked, the default is true). This will
prevent Siebel Remote or Replication transactions from being created.

■ When configuring a many-to-many relationship, the intersection table must reside in the same
database instance as the child table.

■ It is recommended that all external business components use the CSSBusComp class.

NOTE: Substituting a Siebel-provided table with an external table may result in significant
downstream configuration work, and in some cases may restrict or prevent the use of standard
functionality provided for the Siebel eBusiness Applications.

Specifying Run-Time Parameters
After the data source definition is named in Siebel Tools, you will specify the run-time parameters
by creating a Data Source definition in the Administration - Server Configuration screen and updating
the Server Component definition.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

180 ■

External Business Components ■ Configuring External Business Components
To create the Data Source definition in the Administration - Server Configuration
screen

1 Navigate to the Administration - Server Configuration screen and select the Enterprises amazon
link.

2 From the Enterprise Server, view select the Profile Configuration tab.

3 Copy an existing record that has a Subsystem Type of InfraDatasources.

4 Change the Profile and Alias properties to the Data Source name configured in Siebel Tools.

5 Update the profile parameters to correspond to the external RDBMS:

DSConnectString = the data source connect string.

DSSSQLStyle = database SQL type.

DSTableOwner = data source table owner.

DSUsername = default user name used for connections.

DSPassword = default password used for connections.

NOTE: The DSUsername and the DSPassword parameters are optional. If specified, this will
override the default user name and password.

Supported Connector DLL Names and SQL Styles
When defining the DLL and SQL files for importing the external schema, the external database being
used might not be the same as the Siebel database. Table 26 contains the supported connector DLL
names and the corresponding SQL styles.

To update the Server Component to use the new data source

1 Navigate to the Administration - Server Configuration screen and select Enterprises from the link
bar.

2 From the Enterprise Servers view, select the Component Definitions tab.

3 In the Component Definitions list applet, select your Application Object Manager Component. For
example, select the Call Center Object Manager (ENU).

Table 26. Supported Connector DLL Names and SQL Styles

DLL Names SQL Styles

sscdo90.dll Oracle

sscdo90.dll OracleCBO

sscdm80.dll MSSqlServer

sscddcli.dll DB2

sscdw8.dll Watcom (an SQL Anywhere database)

sscdsacon.dll Siebel Analytics Server
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 181

External Business Components ■ Configuring External Business Components
4 Select Start Reconfiguration from the Menu drop-down list on the Component Definitions list
applet.

The Definition State of the component will be set to Reconfiguring. You will need to reselect your
application component after selecting the Start Reconfiguring menu item.

5 In the Component Parameters list applet, query for OM - Named Data Source name, and update
the Value by adding the alias name of the datasource specified in the �To create the Data Source
definition in the Administration - Server Configuration screen� section.

The format of the OM - Named Data Source name parameter is a comma-delimited list of data
source aliases. It is recommended that the default values not be modified and that you append
their new data sources to the preexisting list.

6 After the parameter values are reconfigured, commit the new configuration by selecting Commit
Reconfiguration from the Menu drop-down list on the Component Definitions list applet.

The new parameter values will be merged at the enterprise level.

To cancel the reconfiguration before it has been committed, select Cancel Reconfiguration from
the Menu drop-down list on the Component Definitions list applet.

About Using Specialized Business Component Methods
for EBCs
Following are specialized business component methods that are supported for use with EBCs:

■ IsNewRecordPending

■ GetOldFieldValue

■ SetRequeryOnWriteFlag (PreWriteRecord event)

■ SetRequeryOnWriteFlag (WriteRecord event)

About the IsNewRecordPending Business Component Method
This method can be invoked by using a script in the PreWriteRecord event to determine if the current
record is newly created. If the record is a new record, this method will return the value TRUE.

An example script for the use of this method follows:

var isNewRecord = this.InvokeMethod("IsNewRecordPending");

About the GetOldFieldValue Business Component Method
This method can be invoked by using a script in the PreWriteRecord event to retrieve an old field
value if needed. This invoke method takes an input parameter, that should be a valid field name, and
returns a string containing the old field value.

An example script for the use of this method follows:

var oldLoc = this.InvokeMethod("GetOldFieldValue", "Location");
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

182 ■

External Business Components ■ Usage and Restrictions for External Business
Components
About the SetRequeryOnWriteFlag (PreWriteRecord event) Business
Component Method
In the PreWriteRecord event, this method can be used to put the business component into a mode
where the current record refreshes from the data source after write. This is typically used by EBCs
to refresh database sequencing column values on new record operations. This invoke method takes
an input parameter of TRUE or FALSE.

An example script for the use of this method follows:

var requery = this.InvokeMethod("SetRequeryOnWriteFlag", "TRUE");

About the SetRequeryOnWriteFlag (WriteRecord event) Business
Component Method
In the WriteRecord event, this method informs the object manager that the write operation into the
data source is processed by using a script rather than a database connector. At the end of the
operation, the business component invoke method, SetRequeryOnWriteFlag, can be invoked again
with the FALSE parameter to reset the requery on write mode if needed.

An example script for the use of this method follows:

var extWrite = this.InvokeMethod("SetRequeryOnWriteFlag", "TRUE");
// insert script here to commit the record via an mechanism channel
var resetWrite = this.InvokeMethod("SetRequeryOnWriteFlag", "FALSE");

Usage and Restrictions for External
Business Components
The following usage guidelines and restrictions apply to external business components:

■ Creating and populating the external table is the responsibility of the customer. Consult your
database administrator for the appropriate method to use.

■ External business components cannot be docked, so they do not apply to mobile users on the
Siebel Mobile Web Client. Siebel Remote is not supported.

■ External business components support many-to-many relationships with the limitation that for
such relationships the intersection table needs to be from the same data source as the child
business component.

■ External business components cannot be loaded using Enterprise Integration Manager.

■ Siebel Server components other than an Object Manager (for example Assignment Manager,
Workflow Policies, Incentive Compensation, and so on) cannot utilize external business
components.

■ The Id field must be mapped to an underlying column in the external table in order to support
insert, update, delete, and query operations.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 183

External Business Components ■ About Using External Business Components with the
Siebel Web Clients
■ For external business components that contain multi-value groups, if a primary join is enabled,
then both the parent and the child business components need to be from the same data source.
Multi-value groups are also supported as long as such configuration does not require that a
distributed join or a subquery be performed.

■ Siebel visibility control (for example ViewMode) is not supported for external business
components.

■ An external join alias must have the same name as the name used for the external table.

NOTE: Significant configuration effort and changes may be required if you choose to reconfigure a
standard Siebel business component on an external table. For example, existing join and link
definitions are unlikely to function, because the source fields and underlying columns may not exist
in the external table.

About Using External Business
Components with the Siebel Web Clients
If EBCs are used with the Siebel Web or Mobile Web Clients, new data sources corresponding to the
data sources specified for the external tables need to be added to the specific Siebel application
configuration file. If the user name and password for the external data source are different from the
current data source, a log-in window will appear to initiate logging into the external data source.

About Overriding Connection Pooling
Parameters for the DataSource
Overriding the connection pooling parameters for the DataSource is supported. If connection pooling
is enabled for the component but should be turned off for the data source, set to zero (0) the DB
Multiplex - Max Number of Shared DB Connections (DSMaxSharedDbConns), the DB Multiplex - Min
Number of Shared DB Connections (DSMinSharedDbConns), and the DB Multiplex - Min Number of
Dedicated DB Connections (DSMinTrxDbConns) parameters for the datasource.

About Joins to Tables in External Data
Sources
Joins from business components based on the default data source to a table in an external data
source are supported in the Siebel application.

Like other joined fields, the fields based on the join to the external business component are read-
only.

The limitations for joining business components to tables in an external data source follow:

■ The source field for the join must be based on a table in the default data source.

■ The destination column of the join must be the column mapped to System Field Id.

■ Multiple single join specifications are not supported for the join to the external table.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

184 ■

External Business Components ■ About Joins to Tables in External Data Sources
■ Reverse navigation (for example, a call to go to the last record) is not supported when fields from
multiple data sources are active.

Join Constraints are supported. Joins to more than one external table may be specified. However,
increasing the number of external joined data sources can cause degradation in performance.

About Searching and Sorting on Fields Joined to External Tables
Fields based on a join to an external table can be searched and sorted. However, limitations do exist.
The limitations for searching and sorting on fields joined to an external table follow:

■ All fields in the sort specification must either be based on columns in the same external table or
be based on columns in the default data source.

■ Named search specifications cannot be set on fields from an external data source.

Performance tests are recommended if searching and sorting are permitted on the fields based on
joins to the external tables. The Siebel application does not have information of the data shape in
the external tables. The Siebel application follows a rule-based approach to decide the order in which
to query the external tables.

For example, consider the case where there are search and sort specifications on the fields in the
Siebel Data Source but none on the fields from the external data source. The Siebel application will
decide to query the Siebel tables first. Only the rows matching the query specification in the current
workset are retrieved from the external data source. As more rows are retrieved from the tables in
the Siebel Data Source, the rows from the external data source are also retrieved.

The rules become complex when Search and Sort Specifications are applied to multiple data sources.
The rules followed are motivated by the desire to:

1 Retrieve the first few rows quickly.

2 Ship the least amount of data between the Siebel and external data sources.

3 Eliminate a sort step.

Step 2 and Step 3 may develop into competing results. In that case, Step 2 takes precedence.

If, as result of the search and sort specifications in effect, the external table on which the Sort is
based is not the driving table, the Siebel application will raise an error if more than 1000 rows are
retrieved. The query specification should be refined in the event of this error.

Directives specified using the Business Component User property External DataSource Field Priority
On Search to allow hinting of the order in which the tables in the data sources should be queried are
supported. These directives may be applied based on a knowledge of the data shape in the Siebel
and external tables.

For example, using the following property values:

A query on Field A is likely to be very selective. If there is a search specification on Field A, the table
that field A is based on should be strongly considered as the driving table.

Property Value

External DataSource Field Priority On Search: FieldA 1

External DataSource Field Priority On Search: FieldB 2
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 185

External Business Components ■ About Distributed Joins
A query on Field B is likely to be selective. If there is a search specification on Field B and none on
Field A, the table that field B is based on should be strongly considered as the driving table.

About Distributed Joins
Just as join objects can be configured in Siebel Tools and represent a 1:1 relationship between tables
resident within the Siebel data model, join objects can be configured to represent a 1:1 relationship
with tables external to the Siebel database. A distributed join is a 1:1 relationship between tables
that spans two relational data sources. This allows a single, logical record to span multiple data
sources. In using distributed joins, the join fields are read-only and the join specification can consist
only of a single field. This federated field support provides the ability for the Object Manager to
perform the cross-database join.

Distributed joins are configured the same as standard joins. The query is distributed when the Data
Source child object of the table provides a hint to the OM to federate the query.

Configuring Distributed Joins and Federated Fields
To configure distributed joins, you perform the following high-level tasks.

■ Implement the external data source (similar to what was done for the external business
components).

The Datasource child object of the Table provides a hint to the object manager to federate the
query.

■ Create the Join.

■ Add the fields to the business component.

To configure distributed joins and federated fields

1 Create the Join point to your external table.

2 Create the Join Specification.

This is similar to what you would do when creating a standard Siebel join.

3 Add Field to Business Component.

Add the fields from the external table to the business component using the join specified.

Usage and Restrictions for Using
Distributed Joins
The following usage guidelines and restrictions apply to distributed joins:

■ The source field for the distributed join must be based on a table in the default data source.

■ The destination column of the distributed join must be a column mapped to the Id System Field.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

186 ■

External Business Components ■ Loading a Siebel Analytics Presentation Folder for Use
as an External Table
■ Multiple join specifications are not supported for distributed join.

■ Inner join is not supported for distributed join.

■ Reverse navigation (for example, call to go to the last record) is not supported when fields from
multiple data sources are active.

■ All fields in the sort specification must be from the same data source.

■ All fields in the named search specifications must be from the default data source.

Loading a Siebel Analytics Presentation
Folder for Use as an External Table
An external business component is a tool that derives its data from an external relational data
source. In Siebel Tools, the structure of the external table is imported using the External Table
Schema Import wizard.

External business components, in conjunction with the Analytics database connector, allow the ability
to construct business components that derive their data from Siebel Analytics. External business
components support Siebel Analytics as a source for having Siebel Tools import the structure of a
Siebel Analytics Presentation Folder by reading sources such as an XML file.

NOTE: Analytics integration is read-only, and any business components that utilize Analytics as a
data source must be configured to support read-only access.

The following instructions generate the Siebel Analytics Presentation folder as an XML file from Siebel
Analytics.

To load a Siebel Analytics presentation folder for use as an external table

1 Start the Siebel Analytics Administration Tool.

2 Select File > New and create a new repository file.

3 Select File > Import from Repository.

a Choose the appropriate repository and click Next.

b When requested, type the log in and password.

c Select the object Catalog from the drop-down list.

d Choose the catalog you wish to import into Siebel Tools and click Add With Children.

e Click Next.

f Click Finish.

4 Select Tools > Utilities, choose Repository Documentation and click Execute�.

5 In the Save as Type field, select XML as the file extension.

6 Give a new name to the file and click Save.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 187

External Business Components ■ Loading a Siebel Analytics Presentation Folder for Use
as an External Table
Follow these instructions to avoid the Repository Documentation wizard exporting the full repository
definition into an XML file, and not only the selected object.

If you import an XML file that contains several presentation folders, Siebel Tools creates one external
table per presentation folder.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

188 ■

A Predefined EAI Business
Services
Siebel eBusiness Applications provide a number of business services. These services do not require
any modification, but they do require that you choose and configure them to suit your requirements.

NOTE: For general information on using business services, refer to Chapter 4, �Business Services.�

Table 27 presents the predefined Siebel eAI business services.

Table 27. Predefined EAI Business Services

Business Service Class Description

EAI XSD Wizard Used to create integration objects
based on XSD files.

EAI XML XSD Generator Used to generate an XSD file from an
integration object.

EAI Transaction Service CSSBeginEndTransactionService EAI Transaction service for working
with Siebel transactions such as
begin, end, or find out whether in
transaction.

EAI MSMQ Transport CSSMsmqTransService EAI MSMQ Transport.

EAI MQSeries Server
Transport

CSSMqSrvTransService EAI MQSeries Server Transport.

EAI MQSeries AMI
Transport

CSSMqAmiTransService EAI MQSeries AMI Transport. For
details, see Transports and
Interfaces: Siebel eBusiness
Application Integration Volume III.

EAI HTTP Transport CSSHTTPTransService EAI HTTP Outbound Transport. For
details, see Transports and
Interfaces: Siebel eBusiness
Application Integration Volume III.

EAI Siebel Adapter CSSEAISiebelAdapterService EAI Siebel Adapter. For details, see
Chapter 6, �EAI Siebel Adapter.�

EAI Query Spec Service CSSEAIQuerySpecService Used internally by EAI Siebel Adapter
to convert SearchSpec method
argument as string to an Integration
Object Instance that EAI Siebel
Adapter can use as a Query By
Example object.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 189

Predefined EAI Business Services ■
EAI Import Export CSSEAIImportExportService EAI Import Export Service (import
and export integration object from or
to XML).

EAI BTS COM Transport CSSEAIBtsComService EAI Siebel to BTS COM Transport.

EAI DLL Transport CSSDllTransService EAI DLL Transport. For details, see
Transports and Interfaces: Siebel
eBusiness Application Integration
Volume III.

EAI Data Mapping
Engine

CSSDataTransformationEngine EAI Data Transformation Engine. For
details, see Business Processes and
Rules: Siebel eBusiness Application
Integration Volume IV.

No Envelope CSSEAINullEnvelopeService EAI Null Envelope Service. For details,
see XML Reference: Siebel eBusiness
Application Integration Volume V.

Siebel Message
Envelope

CSSEAISMEnvelopeService EAI Siebel Message Envelope Service.
For details, see XML Reference: Siebel
eBusiness Application Integration
Volume V.

EAI Dispatch Service CSSEAIDispatchService Dispatch Service. For details, see
Business Processes and Rules: Siebel
eBusiness Application Integration
Volume IV.

EAI Integration Object
to XML Hierarchy
Converter

CSSEAIIntObjHierCnvService EAI Integration Object Hierarchy (also
known as SiebelMessage) to XML
hierarchy converter service. For
details, see XML Reference: Siebel
eBusiness Application Integration
Volume V.

EAI MIME Hierarchy
Converter

CSSEAIMimePropSetService EAI MIME Hierarchy Conversion
Service. For details, see Chapter 7,
�Siebel eAI and File Attachments.�

EAI MIME Doc
Converter

CSSEAIMimeService MIME Document Conversion Service.
For details, see Chapter 7, �Siebel eAI
and File Attachments.�

EAI XML Converter CSSEAIXMLCnvService Converts between XML and EAI
Messages. For details, see XML
Reference: Siebel eBusiness
Application Integration Volume V.

Table 27. Predefined EAI Business Services

Business Service Class Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

190 ■

Predefined EAI Business Services ■
EAI XML Write to File CSSEAIXMLPrtService Print a property set to a file as XML.
For details, see XML Reference: Siebel
eBusiness Application Integration
Volume V.

EAI XML Read from File CSSEAIXMLPrtService Read an XML file and parse to a
property set. For details, see XML
Reference: Siebel eBusiness
Application Integration Volume V.

XML Converter CSSXMLCnvService Converts between XML documents
and arbitrary Property Sets. For
details, see XML Reference: Siebel
eBusiness Application Integration
Volume V.

XML Hierarchy
Converter

CSSXMLCnvService Converts between XML documents
and XML Property Set or Arbitrary
Property Set. For details, see XML
Reference: Siebel eBusiness
Application Integration Volume V.

Table 27. Predefined EAI Business Services

Business Service Class Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 191

Predefined EAI Business Services ■
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

192 ■

B Property Set Representation of
Integration Objects
Property sets are in-memory representations of integration objects. This appendix describes the
relationship between the property set and the integration object. For an overview of property sets,
see Using Siebel Tools.

Property Sets and Integration Objects
Many eAI business services operate on integration object instances. Since business services take
property sets as inputs and outputs, it is necessary to represent integration objects as property sets.
The mapping of integration objects, components, and fields to property sets is known as the
Integration Object Hierarchy.

Using this representation, you can pass a set of integration object instances of a specified type to an
eAI business service. You pass the integration object instances as a child property set of the business
service method arguments. This property set always has a type of SiebelMessage. You can pass the
SiebelMessage property set from one business service to another in a workflow without knowing the
internal representation of the integration objects.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 193

Property Set Representation of Integration Objects ■ Property Sets and Integration
Objects
Property Set Node Types
When passing integration object instances as the input or output of a business service, you can use
property sets to represent different node types, as presented in Table 28.

Table 28. Property Set Node Types

Name Parent
Value of Type
Attribute Properties Description

Service Method
Arguments

N/A Ignored The properties of
this property set
contain any
service specific
parameters, such
as PrimaryRowId
for EAI Siebel
Adapter.

This is the top-
level property set
of a business
service�s input or
output. The
properties of this
property set
contain any
service-specific
parameters (for
example,
PrimaryRowId for
EAI Siebel
Adapter).

SiebelMessage Service Method
Arguments

SiebelMessage The properties of
this property set
contain header
attributes
associated with
the integration
object, for
example,
IntObjectName.

This property set is
a wrapper around
a set of integration
object instances of
a specified type. To
pass integration
objects between
two business
services in a
workflow, this
property set is
copied to and from
a workflow process
property of type
Hierarchy.

Object List SiebelMessage ListOfObjectType Not used. This property set
identifies the
object type that is
being represented.
The root
components of the
object instances
are children of this
property set.
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

194 ■

Property Set Representation of Integration Objects ■ Property Sets and Integration
Objects
Root
Component

Object List Root Component
Name

The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

This property set
represents the
root component of
an integration
object instance.

Child
Component
Type

Root
Component or
Component

ListOfComponent
Name

Not used. An integration
component can
have a number of
child component
types, each of
which can have
zero or more
instances. The
Integration Object
Hierarchy format
groups the child
components of a
given type under a
single property
set. This means
that child
components are
actually
grandchildren of
their parent
component�s
property set.

Child
Components

Child
Component
Type

Component Name The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

This property set
represents a
component
instance. It is a
grandchild of the
parent
component�s
property set.

Table 28. Property Set Node Types

Name Parent
Value of Type
Attribute Properties Description
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 195

Property Set Representation of Integration Objects ■ Property Sets and Integration
Objects
Example of a Sample Account
This example shows an Account integration object in which the object has two component types:
Account and Business Address (which is a child of Account). The hierarchy of component types from
a Siebel Tools perspective, looks like that shown in Figure 50.

Figure 51 on page 197 shows an example instance of this object type, using the Integration Object
Hierarchy representation. There are two Sample Account instances. The first object instance has an
Account component and two Business Address child components. The second object instance has
only an Account component with no child components.

Figure 50. Sample Account Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

196 ■

Property Set Representation of Integration Objects ■ Property Sets and Integration
Objects
Figure 51. Partial Instance of Sample Account Integration Object
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 197

Property Set Representation of Integration Objects ■ Property Sets and Integration
Objects
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

198 ■

C DTDs for XML Gateway Business
Service
This appendix lists the various inbound and outbound DTDs for the XML Gateway business service.

Outbound DTDs
The following sections contain examples of DTDs representing thtmethodName% request sent from
the XML Gateway to the external application.

Delete
<!ELEMENT siebel-xmlext-delete-req (buscomp, remote-source, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED>

Init
<!ELEMENT siebel-xmlext-fields-req (buscomp, remote-source?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED >

<!ELEMENT remote-source (#PCDATA)*>

Insert
<!ELEMENT siebel-xmlext-insert-req (buscomp, remote-source?, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 199

DTDs for XML Gateway Business Service ■ Outbound DTDs
<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED>

PreInsert
<!ELEMENT siebel-xmlext-preinsert-req (buscomp, remote-source?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED >

<!ELEMENT remote-source (#PCDATA)*>

Query
<!ELEMENT siebel-xmlext-query-req (buscomp , remote-source?, max-rows?, search-string?,
match?, search-spec?, sort-spec?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT max-rows (#PCDATA)>

<!ELEMENT search-string (#PCDATA)>

<!ELEMENT match (#PCDATA)>

<!ATTLIST match field CDATA #REQUIRED>

<!ELEMENT search-spec (node)>

<!ELEMENT node (#PCDATA | node)*>

<!ATTLIST node node-type (Constant | Identifier | Unary Operator | Binary Operator)
#REQUIRED>

<!ATTLIST node value-type (TEXT | NUMBER | DATETIME | UTCDATETIME | DATE | TIME)
#IMPLIED>

<!ELEMENT sort-spec (sort+)>

<!ELEMENT sort (#PCDATA)>

<!ATTLIST sort field CDATA #REQUIRED>

Update
<!ELEMENT siebel-xmlext-update-req (buscomp, remote-source?, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

200 ■

DTDs for XML Gateway Business Service ■ Inbound DTDs
<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value changed (true | false) #REQUIRED>

<!ATTLIST value field CDATA #REQUIRED>

Inbound DTDs
The following sections contain examples of DTDs representing the %methodName% response sent
from the external application to the XML Gateway.

Delete Response
<!ELEMENT siebel-xmlext-dekete-ret EMPTY >

Init Response
<!ELEMENT siebel-xmlext-fields-ret (support+)>

<!ELEMENT support EMPTY >

<!ATTLIST support field CDATA #REQUIRED>

Insert Response
<!ELEMENT siebel-xmlext-preinsert-ret (row)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

PreInsert Response
<!ELEMENT siebel-xmlext-preinsert-ret (row)>

<!ELEMENT row (value)*>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

Query Response
<!ELEMENT siebel-xmlext-query-ret (row*)>

<!ELEMENT row (value+)>
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 201

DTDs for XML Gateway Business Service ■ Inbound DTDs
<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

Update Response
<!ELEMENT siebel-xmlext-update-ret (row)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)>

<!ATTLIST value field CDATA #REQUIRED >
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

202 ■

Index
Symbols
%methodName% request, sample inbound

DTDs 201
* (asterisk), using as querying

wildcard 106

A
activating fields, about 50
AllowedIntObjects business service user

property 36
application

external application, about setting up 150
arguments

Init method, XML Gateway business
service 140

IsPrimaryMVG 111
AssocFieldName user property

associations with 19
Association user property

associations with 19
association, defined 19

B
base object types (table) 13
base table, using Mod Id 116
body data, contents of 12
buscomp Id tag 142
Business Component Id argument 140
Business Component Name argument, XML

Gateway argument 140
business components

association, role of 19
integration restrictions 58
linking 22
multi-value field example 20
multi-value group example 23
relation to business services 61
specialized 135
update permission rules 35

business objects
business service methods, as arguments

to 71
EAI Siebel Adapter, role of 101
external data, creating from 101
integration object maintenance, about 50
relation to business services 61

structure of 16
user key requirement 28

business service methods
arguments, defining 65
business objects as arguments 71
defining 65
described 62

Business Service Methods screen, using 68
business service methods, custom

See also virtual business components
about 150
common input parameters (table) 151
connecting methods, list of 150
Delete method, example 152
Error Return property set, example 153
Init method, example 154
Insert method, example 156
output parameters (table) 151
PreInsert method, example 158
Query method, example 160
Update method, example 163

Business Service Simulator, running 69
business services

accessing using Siebel eScript or Siebel
VB 70

customized business services, type of 62
defined 61
EAI MIME Hierarchy Converter, creating

inbound workflow process
(example) 127

EAI MIME Hierarchy Converter, creating
outbound workflow process
(example) 125

general uses 61
importing and exporting 69
predefined business services, table of 189
property set code example 71
property sets, about and role of 63
scripts, defining 66
Siebel Client, creating in 68
Siebel Tools, creating process overview 64
Siebel Tools, defining in 64
Specialized Business Services, about 61
subsystem, specifying 67
subsystems (table) 67
testing 69
user properties, defining 67
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 203

Index ■ C
XML Gateway 138
BusObjCacheSize argument, about 103, 104

C
calculated fields 25
child integration components

about 17
structure example 18
supported operations (table) 109

child property sets, about 63
classes

classes and predefined business
services 189

CSSBCVExtern 136
CSSBCVXMLExten 140
CSSEAIDTEScriptService 62
CSSEAISiebelAdapterService 101

COM connection, external database and
custom business service 150

components, defined 11
concurrency control

about support of 116
Account_Organization integration component

example 119
configuring 117
configuring example 118
Modification IDs, using 116
Modification Key, about 116

ContentId property, value and
description 131

ContentSubType property 132
ContentType property 132
CORBA connection, external database and

custom business service 150
CSEEAISiebelAdapterService 36
CSSBCVExtern class 136
CSSBCVXMLExten class 140
CSSBeginEndTransactionService 189
CSSDataTransformationEngine 190
CSSDllTransService 190
CSSEAIBtsComService 190
CSSEAIDispatchService 190
CSSEAIDTEScriptService class 62
CSSEAIImportExportService 190
CSSEAIIntObjHierCnvService 190
CSSEAIMimePropSetService 190
CSSEAIMimeService 190
CSSEAINullEnvelopeService 190
CSSEAIQuerySpecService 189
CSSEAISiebelAdapterService 189
CSSEAISiebelAdapterService class 101
CSSEAISMEnvelopeService 190
CSSEAIXMLCnvService 190

CSSEAIXMLPrtService 191
CSSHTTPTransService 189
CSSMqAmiTransService 189
CSSMqSrvTransService 189
CSSMsmqTransService 189
CSSXMLCnvService

XML Converter business service 191
XML Hierarchy Converted business

service 191
custom business service

Delete method, example 152
sample code 165

D
data and arguments, contrasted 71
Data Type Definitions

See DTDs
databases

access, controlling 35
multi-valued attributes 19

deactivating fields, about 50
Delete method

custom business service example 152
DTD example 199
overview 107
XML code example 110

Delete Response method, DTD example 201
DeleteByUserKey argument, about 102
Display Name field 63
docking, restrictions on 135
DoInvokeMethod, about using 101
DTDs

Integration Object Builder wizard, about 15
sample inbound DTDs 201

E
EAI BTS COM Transport business

service 190
EAI Data Mapping Engine business

service 190
EAI Design project, editing integration

objects, warning 16
EAI Dispatch Service business service 190
EAI DLL Transport business service 190
EAI HTTP Transport

business service, description 189
XML Gateway business service, configuring for

use by 138
EAI Import Export business service 190
EAI Integration Object to XML Hierarchy

Converter business service 190
EAI MIME Doc Converter business

service 190
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

204 ■

Index ■ F
EAI MIME Hierarchy Converter business
service 190

EAI MQSeries AMI Server Transport,
configuring for use by XML Gateway
business service 138

EAI MQSeries AMI Transport business
service 189

EAI MQSeries Server Transport business
service 189

EAI MQSeries Transport, configuring for use
by XML Gateway business
service 138

EAI MSMQ Transport business service 189
EAI MSMQ Transport, configuring for use by

XML Gateway business service 138
EAI Query Spec Service business

service 189
EAI Siebel Adapter

concurrency control, about support of 116
database access, controlling 35
Delete method 107
described 101
Execute method, overview 108
Insert method, overview 107
IsPrimaryMVG argument 111
language-independent code, using, 115
method arguments, described (table) 102
method arguments, locating arguments for

(table) 102
methods, list of 101
Modification IDs, using 116
Modification Key, about 116
multi-value groups 111
Query method, overview 105
QueryPage method, overview 106
run-time events, about using 120
Synchronize method, overview 106
Upsert method, overview 107
XML example 110

EAI Siebel Adapter business service 189
EAI Siebel Wizard

about 49
integration objects, creating 38

EAI Transaction Service business
service 189

EAI XML Converter business service 190
EAI XML Read from File business

service 191
EAI XML Write to File adapter, export

example 114
EAI XML Write to File business service 191
EAISubsys, business service subsystem 67
Error Return property set example 153
ErrorOnNonExistingDelete

EAI Siebel Adapter Method argument 104
ErrorOnNonExistingDelete argument,

about 102
error-text tag 147
eScripts

See scripts
Execute method

operations (table) 108
overview 108
specifying and supported parent and child

components (table) 109
export example 114
Extension property, value and

description 131
extension table, using Mod Id 117
external application

data sharing, process overview 135
sample inbound DTDs 201
setting up, about 150

external data source, specifying 137
External Name user property 19

F
field, defined 12
fields

activating and deactivating 50
calculated 25
multi-value groups, working with 22
picklist, validating and example 24
property set fields 63
user keys, about 28

file attachments
See also MIME
message types 121
using, about 121

force active fields, performance
considerations 57

foreign keys 31
function code sample 72

H
header data, contents of 12
Hierarchy Parent key, about and

example 34
Hierarchy Root key, about and example 34

I
incoming XML format, tags and descriptions

(table) 147
Init method, DTD example 199
Init property set example 154
Init Response method, DTD example 201
Inline XML attachments 122
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 205

Index ■ J
input parameters, common (table) 151
Input/Output type 66
Insert method, DTD example 199
Insert method, overview 107
Insert property set example 156
instance, defined 12
integration component fields

defined 12
field names, assigning 24
multi-value groups, working with 22

Integration Component Key
See user keys

integration components
activating 49
child components, supported operations

(table) 109
defined 12
deleting during synchronization 46
multi-value groups, working with 22
selecting 39
update permission rules 35

integration messages
body data 12
defined 12
header data 12

Integration Object Builder wizard
about 15
Code Generator wizard 16
EAI Siebel Wizard 49
Generate XML Schema wizard 15
integration components, selecting 39
integration objects, creating 38
user keys, about building 28
user keys, validating 29

integration object instance
actual data, about and diagram 14
defined 12

integration objects
See also child integration components
about 12
base object types (table) 13
best practices and scenarios 59
calculated fields 25
creating 38
defined 12
EAI Design project, editing warning 16
external data, creating from 101
fine tuning practices, list of 40
in-memory updating 44
integration components, deleting during

synchronization 46
maintaining, about 50
many-to-many business component, creating

with 55

metadata, about synchronizing 41
metadata, relation to 14
MIME message objects, creating 122
performance considerations 57
picklist, validating and example 24
primaries, about setting 27
schema, generating 56
SearchSpec field, querying accounts and

addresses based on 112
simple hierarchy example 196
structure example 18
System fields, about treatment of 58
terminology 11
testing newly created integration object 56
update permission rules 35
updating 42
validating 41
wizards process diagram 15

integration projects
integration objects, use described 16
planning 12

IntObjectName argument
described 103
locating arguments for 102

IsPrimaryMVG argument 111

J
Java class files, generating 16
joined table, using Mod Id 117

L
language-independent code

list of values, types of 115
outbound and inbound direction, about

using 115
LastPage argument, about 103, 104
links

associations, and 19
between business components 22
update permission rules 35

LOVs, language-independent code
translation 115

M
many-to-many relationships, virtual

business components 135
MessageId argument

described 104
locating arguments for 103

metadata
defined 11
integration objects, updating 42
processing example 71
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

206 ■

Index ■ N
relation to integration objects 14
synchronizing, integration objects, about 41

methods
business objects as arguments 71
business service method arguments,

defining 65
business services methods, about 62
business services methods, defining 65
EAI Siebel Adapter method arguments,

described (table) 102
EAI Siebel Adapter method arguments,

locating arguments for (table) 102
EAI Siebel Adapter, supported methods 101
incoming XML tags by method 147
outgoing XML tags by method 142
XML Gateway business service method

arguments (table) 140
XML Gateway business service methods,

listed 140
MIME

about 121
EAI MIME Doc Converter properties

(table) 130
inbound workflow process, creating

(example) 126
integration objects, creating 122
messages and hierarchies 129
MIME hierarchy, converting to 127
outbound workflow process, creating

(example) 124
workflow process properties, create an

outbound workflow process 124
MIME Doc Converter

about 129
converting hierarchy to document 126
converting to a hierarchy 127
EAI MIME Doc Converter properties

(table) 130
properties 132

MIME hierarchy
converting hierarchy to document 126
converting to a hierarchy 127
EAI MIME Doc Converter properties

(table) 130
inbound transformation 129
integration object, converting to MIME

hierarchy 125
MIME Doc Converter 129
outbound transformation 128
property sets 129

MIME Hierarchy Converter
business service, creating inbound workflow

process (example) 127
business service, creating outbound workflow

process (example) 125
inbound transformation 129
outbound transformation 128

mobile users and virtual business
components 135

Modification Key
about 116
Account_Organization integration component

example 119
Mod Id field, using for tables 116
MVG and MVGAssociation integration

components, configuring 117
MVG and MVGAssociation integration

components, configuring
example 118

Multi Value Link field 21
Multipurpose Internet Mail Extensions

See MIME
multi-value groups

See also integration objects
EAI Siebel Adapter, overview 111
example 20
field names, assigning 24
integration components, creating 22
multiple fields 22
primary record, setting 111
types of 19
update permission rules 35
virtual business components,

restriction 135
multi-value links, setting primaries 27
multi-valued attributes 19
MVG

See multi-value groups
MVG integration components

Account_Organization integration component
example 119

configuring for concurrency control 117
example 118

MVGAssociation integration components
Account_Organization integration component

example 119
configuring for concurrency control 117
example 118

MVGAssociation user property
about 19
MVG, creating a Siebel integration component

to represent 23

N
name-value pairs

concatenating 138
role in property sets 63
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 207

Index ■ O
NewQuery argument 104
No envelope business service 190
NumOutputObjects argument

described 103
locating arguments for 102

O
ODBC connection, external database and

custom business service 150
outgoing XML format, tags and descriptions

(table) 141
Output Integration Object Name argument,

about 103
output parameters, (table) 151
Output type 66
OutputIntObjectName argument,

about 102

P
PageSize

EAI Siebel Adapter Method argument 104
locating arguments for 103

parameters
common input parameters (table) 151
output parameters (table) 151

Parameters argument, XML Gateway
argument 140

parent business component
multi-value group example 23
multi-value group field names, assigning 24

parent integration component
about 16
child integration component, supported

operations (table) 109
identifying 39
structure example 18

performance
force-active fields, considerations 57
integration object considerations 57
picklist considerations 58

picklists
performance considerations 58
validating, about and example 24

PreInsert method, DTD example 200
PreInsert property set example 158
PreInsert Response method, DTD

example 201
primaries, about setting 27
primary business component 16
primary integration component

See parent integration component
PrimaryRowId argument

described 103

locating arguments for 102
process properties

importing account information,
example 113

property sets
about 193
about and role of 63
child 63
code sample 71
Delete method example 152
Display Name field 63
EAI MIME Doc Converter properties

(table) 130
Error Return example 153
fields 63
hierarchy example 196
Init example 154
Insert example 156
integration objects, and 193
MIME hierarchy 129
nodes types (table) 194
PreInsert example 158
Query example 160
Update example 163

Q
Query method

business component records, about querying
all 106

DTD example 200
overview 105
wildcard querying, about using asterisk

(*) 106
query operation

integration component keys, role of 28
role in integration projects 16

Query property set example 160
Query Response method, DTD example 201
QueryByUserKey argument, about 102
QueryPage method

overview 106

R
Remote Source argument 140
Remote Source user property

virtual business component 137
XML Gateway business service 138

REPOSITORY_BC_VIEWMODE_TYPE 36
root component

See parent integration component
row tag 149
run-time events, about using 120
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

208 ■

Index ■ S
S
SAPSubsys, business service subsystem 67
schema

Generate XML wizard 15
generating 56

scripts
business service, attaching to 66
business service, using to access 70

SearchSpec argument
described 104
locating arguments for 103

SearchSpec input method
querying accounts and addresses 112

Search-Spec Node-Type Types, about and
table 146

Service Name user property
virtual business component 136
XML Gateway business service 138

Service Parameters user properties, table
of 138

Service Parameters user property
virtual business component 136
XML Gateway business service 138

Siebel business component, defined 11
Siebel business objects

defined 11
structure of 16

Siebel Client, defining business services 68
Siebel eScript, using to access a business

service 70
Siebel integration component

See integration components
Siebel integration component field,

defined 12
Siebel integration objects

See integration objects
Siebel Message envelope business

service 190
Siebel Message object

See integration object instance
Siebel Tools

business services, creating process
overview 64

business services, defining 64
integration objects, creating 38
user key, identifying 28
virtual business component, creating 136

Siebel VB, using to access a business
service 70

SiebelMessage argument
EAI Siebel Adapter Method argument 104
locating arguments for 103

siebel-xmlext-delete-req tag 142

siebel-xmlext-fields-req tag 142
siebel-xmlext-fields-ret tag 148
siebel-xmlext-Insert-req tag 143
siebel-xmlext-insert-ret tag 148
siebel-xmlext-preinsert-req tag 143
siebel-xmlext-preinsert-ret tag 148
siebel-xmlext-query-req tag 144
siebel-xmlext-query-ret tag 149
siebel-xmlext-status tag 147
siebel-xmlext-Update-req tag 145
siebel-xmlext-Update-ret tag 150
simulation, business service 69
SortSpec argument

EAI Siebel Adapter Method argument 105
locating arguments for 103

Specialized Business Services, about 61
StartRowNum argument

EAI Siebel Adapter Method argument 104
locating arguments for 103

Status keys, about 33
status-code tag 147
StatusObject argument

described 104
locating arguments for 103

synchronization process
about 41
in-memory updating 44
integration object components, deleting 46
integration objects, updating 42
role in integration projects 16
update rules, about 44

Synchronize method, overview 106
System fields, about treatment of 58

T
tables, using Mod Id 116
testing business services 69
transports, used with XML Gateway 138

U
Update method

DTD example 200
Update property set example 163
Update Response method, DTD

example 202
Upsert method

overview 107
XML code example 110

user keys
building and validating, example 29
deactivating, warning 33
defined 28
definitions, confirming after build 37
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

■ 209

Index ■ V
field in Siebel Tools 28
foreign keys 31
Hierarchy Parent key, about and

example 34
Hierarchy Root key, about and example 34
Integration Component key 28
locating in Tables screen 29
Object Builder wizard, about building

with 28
Status keys, about 33
validity, checking 29

user properties
AssocFieldName 19
Association 19
business service user properties,

defining 67
External Name 19
MVGAssociation 19
virtual business components (table) 136
virtual business components, defining

for 137

V
value tag 149
VBC Compatibility Mode user property 138
VBCs. See virtual business components
ViewMode argument

EAI Siebel Adapter Method argument 105
locating arguments for 103

ViewMode integration object user
property 36

virtual business components
See also virtual business components,

methods
about 133
custom code example 165
docking restrictions 135
external application setup, about 150
incoming XML format, tags and descriptions

(table) 147
mobile users, restriction 135
MQSeries, implementing with 139
multi-value groups 135
new virtual business component,

creating 136
outgoing XML format, tags and descriptions

(table) 141
process overview 135
Search-Spec Node-Type Types, about and

table 146
specialized business components,

restriction 135
usage and restrictions 135

user properties (table) 136
user properties, defining 137
XML Gateway business service,

configuring 138
virtual business components, methods

See also virtual business components
Delete method example 152
Error Return property set, example 153
Init method, example 154
Insert method, example 156
PreInsert property set, example 158
Query property set, example 160
Update property set, example 163

virtual business services
See business service methods

W
Workflow business service subsystem,

described 67
workflows

inbound MIME request 126
outbound MIME request 124
policies, about using 120

X
XML

attribute-named operation, specifying 109
business services, importing 69
Generate XML Schema wizard 15
Inline XML attachments 122
metadata example 71
upsert and delete code example 110

XML Converter business service 191
XML format

incoming tags and descriptions (table) 147
outgoing tags and descriptions (table) 141

XML Gateway business service
See also XML format
about 138
configuring 138
incoming XML tags and descriptions 147
init method arguments 140
methods (table) 140
methods arguments (table) 140
name-value pairs, concatenating 138
outgoing XML tags and descriptions 142
sample inbound DTDs 201
Virtual Business Component, implementing

with MQSeries 139
XML Hierarchy Converter business

service 191
XMLCnv business service subsystem 67
Integration Platform Technologies: Siebel eBusiness Application
Integration Volume ll Version 7.7, Rev. A

210 ■

	Homepage
	Contents
	1 What’s New in This Release
	What’s New in Integration Platform Technologies: Siebel eBusiness Application Integration Volume ...
	What’s New in Integration Platform Technologies: Siebel eBusiness Application Integration Volume ...

	2 Integration Objects
	Integration Objects Terminology
	About Integration Objects
	Integration Object Base Object Type
	Difference Between Integration Objects and Integration Object Instances
	About Integration Object Wizards
	About the Structure of Integration Objects
	About Integration Components and Associations
	About Multi-Value Groups Within Business Components
	Screen 1: Fields View for an MVG Field in a Business Component
	Screen 2: Multi-Value Links in a Business Component
	Screen 3: Fields View After Adding Multi-Value Link
	Graphical Representation of a Business Component and a Multi-Value Link
	Creating a Siebel Integration Component to Represent an MVG

	About Validation of Integration Components Fields and Picklists
	About Calculated Fields and Integration Objects
	About Inner Joins and Integration Components
	About Operation Controls for Integration Components
	About Defining Field Dependencies
	About Setting Primaries Through Multi-Value Links
	About Repository Objects
	About Integration Component Keys
	About User Keys
	About User Key Generation Algorithm

	About Status Keys
	About Using the Hierarchy Parent Key
	About Using the Hierarchy Root Key

	Permission Flags for Integration Components
	About the EAI Siebel Adapter Access Control

	3 Creating and Maintaining Integration Objects
	About the Integration Object Builder
	Creating Integration Objects Using the EAI Siebel Wizard
	Creating an Integration Object Based on Another Root Business Component

	Siebel Integration Object Fine-Tuning
	Integration Object Validation
	Integration Objects Synchronization
	Synchronizing Integration Objects
	Synchronization Rules
	Updating the Entire Integration Object
	About Deleting a Component from the Integration Object

	About the EAI Siebel Wizard
	Siebel Integration Objects Maintenance and Upgrade
	Resolving Synchronization Conflicts for Integration Objects and User Properties
	Example of an Integration Object With Many-To-Many Relationships
	Generating Integration Object Schemas
	About Optimizing Performance for Using Integration Objects
	Size of Integration Object
	Force-Active Fields
	Picklist Validation

	Business Component Restrictions for Integration Components
	System Fields

	Best Practices for Using Integration Components

	4 Business Services
	About Business Services
	Creating Business Services
	Business Service Structure
	About Property Sets

	Creating Business Services in Siebel Tools
	Defining a Business Service in Siebel Tools
	Defining Business Service Methods
	Defining Business Service Method Arguments
	Defining and Writing Business Service Scripts
	Specifying Business Service Subsystems
	Defining Business Service User Properties

	Creating a Business Service in the Siebel Client
	Business Service Export and Import
	Testing Your Business Service
	You can use the Business Service Simulator to test your business services in an interactive mode.

	About Accessing a Business Service Using Siebel eScript or Siebel VB
	Business Scenario for the Use of Business Services
	Code Sample Example for Creating a Property

	5 Web Services
	About Web Services
	Supported Web Services Standards

	About RPC-Literal and DOC-Literal Bindings
	About RPC-Literal Support
	Making a Web Service an RPC-Literal Web Service

	About DOC-Literal Support

	About One-Way Operations and Web Services
	About Defining Support for One-Way Operations

	Invoking Siebel Web Services Using an External System
	Publishing Inbound Web Services
	Generating a WSDL File
	About Defining Web Services Inbound Dispatcher
	SOAP Fault Message Example

	Consuming External Web Services Using Siebel Web Services
	Creating an Outbound Web Service Based on a WSDL File
	Outbound Web Services Administration
	Integration Objects as Input Arguments to Outbound Web Services
	Web Services Support for Transport Headers

	About Local Business Service
	About XML Schema Support for <xsd:any> Tag
	About Mapping the <xsd:any> Tag in the WSDL Import Wizard
	About Mapping the <xsd:any> Tag in the XML Schema Wizard

	Examples of Invoking Web Services
	Invoking an External Web Service Using Workflow or Scripting
	About Invoking a Siebel Web Service From an External Application

	About Web Services Security Support
	Configuring the Siebel Application to Use the WS-Security Specification

	About the WS-Security UserName Token Profile Support
	About Support for the UserName Token Mechanism
	About Using the UserName Token for Inbound Web Services
	About Using the UserName Token for Outbound Web Services

	About Custom SOAP Filters
	About Handling Custom Headers Using Filters
	Enabling SOAP Header Processing Through Filters
	About Inputting a SOAP Envelope to a Filter Service

	About Web Services Cache Refresh
	Enabling Web Services Tracing
	About Integration Components Cardinality

	6 EAI Siebel Adapter
	About the EAI Siebel Adapter
	EAI Siebel Adapter Methods
	EAI Siebel Adapter Method Arguments
	About the Query Method
	About the QueryPage Method
	About the Synchronize Method
	About the Upsert Method
	About the Insert Method
	About the Update Method
	About the Delete Method
	About the Execute Method
	About Execute Method Operations
	Supported Operations for the Parent and Its Child Components

	XML Examples Using the Upsert and Delete Operation
	About MVGs in EAI Siebel Adapter
	Setting a Primary Address for an Account

	About the SearchSpec Input Method Argument
	About Using Language-Independent Code with the Siebel Adapter
	About LOV Translation and the EAI Siebel Adapter

	Configuring the EAI Siebel Adapter for Concurrency Control
	About the Modification Key
	About Modification IDs
	About the Modification ID for a Base Table
	About the Modification ID for an Extension Table
	About the Modification ID for a Joined Table
	About MVG and MVGAssociation Integration Components
	Integration Component Account Example
	Integration Component Account_Organization Example

	Siebel eAI and Run-Time Events

	7 Siebel eAI and File Attachments
	About File Attachments
	Exchange of Attachments with External Applications
	Using MIME Messages to Exchange Attachments
	Creating an Integration Object
	Creating Workflow Processes Examples
	Outbound Workflow Process
	Inbound Workflow Process Example

	About the EAI MIME Hierarchy Converter
	Outbound Integration
	Inbound Integration

	About the EAI MIME Doc Converter
	EAI MIME Doc Converter Properties

	8 Siebel Virtual Business Components
	About Virtual Business Components
	About Using VBCs for Your Business Requirements
	Usage and Restrictions of VBCs

	Using Virtual Business Components
	Creating a New Virtual Business Component
	Setting User Properties for the Virtual Business Component

	XML Gateway Service
	XML Gateway Methods
	XML Gateway Method Arguments

	Examples of Outgoing XML Format
	Search-Spec Node-Type Types
	Examples of Incoming XML Format
	External Application Setup
	Custom Business Service Methods
	Common Method Parameters
	Business Services Methods and Their Property Sets
	Delete
	Error Return
	Init
	Insert
	PreInsert
	Query
	Update

	Custom Business Service Example

	9 External Business Components
	Configuring External Business Components
	Creating the External Table Definition
	About Data Type Mappings for Importing Table Definitions
	About the New Imported Table Definition

	Specify Additional Table Properties
	Mapping External Columns to Siebel System Fields
	Specifying the Data Source Object
	Configuring the Business Component
	Specifying Run-Time Parameters
	Supported Connector DLL Names and SQL Styles

	About Using Specialized Business Component Methods for EBCs
	About the IsNewRecordPending Business Component Method
	About the GetOldFieldValue Business Component Method
	About the SetRequeryOnWriteFlag (PreWriteRecord event) Business Component Method
	About the SetRequeryOnWriteFlag (WriteRecord event) Business Component Method

	Usage and Restrictions for External Business Components
	About Using External Business Components with the Siebel Web Clients
	About Overriding Connection Pooling Parameters for the DataSource
	About Joins to Tables in External Data Sources
	About Searching and Sorting on Fields Joined to External Tables

	About Distributed Joins
	Configuring Distributed Joins and Federated Fields

	Usage and Restrictions for Using Distributed Joins
	Loading a Siebel Analytics Presentation Folder for Use as an External Table

	A Predefined EAI Business Services
	B Property Set Representation of Integration Objects
	Property Sets and Integration Objects
	Property Set Node Types
	Example of a Sample Account

	C DTDs for XML Gateway Business Service
	Outbound DTDs
	Delete
	Init
	Insert
	PreInsert
	Query
	Update

	Inbound DTDs
	Delete Response
	Init Response
	Insert Response
	PreInsert Response
	Query Response
	Update Response

	Index

