
PRODUCT ADMINISTRATION
GUIDE
VERSION 7.5.3

JUNE 2003

12-FNVK9N

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Product Administration Guide 1

Introduction
How This Guide Is Organized . 16

Revision History . 17

Chapter 1. Overview
Overview of Types of Product Administration . 20

About Working with Product Administration . 22

Important Processes for Product Administration 23

Chapter 2. Mapping eConfigurator 6.x Features
to Release 7.x

Upgrading 6.x Models to 7.x . 28

Managing Models . 29

Designing the Catalog . 31

Working with Properties . 32

Working with Resources . 32

Working with Linked Items . 33

Designing Rules and Logical Expressions . 33

Designing Scripts . 35

Quote Integration and Configuration Assistant 37
Version 7.5.3 Product Administration Guide 3

Contents
Chapter 3. Select a Configuration Method
Choosing a Deployment Method for eConfigurator 42

Consider the Nature of Your Data . 43

Consider Your Runtime Deployment Requirements 45

When to Use Each Method . 46

Chapter 4. Basic Product Administration
About the Product Record . 49

About Verify . 55

Creating a Product Record . 56

Editing a Product Record . 57

Copying a Product Record . 58

Deleting a Product Record . 59

Exporting Product Records for Display . 60

Associating a Product with a Product Class . 62

Associating Products with Price Lists . 63

Setting Up User Access . 64

Setting Start and End Dates for Display of a Product 66

Creating Product Line Names . 67

Creating Product Features . 68

Assigning Key Features to a Product . 69

Viewing Product Attributes .70

Defining Related Products .71

Designating Equivalent Products . 73

Comparing Features of Equivalent Products . 74

Creating a Product Auction . 74

Creating Product Entitlements . 75

Associating Literature with Products . 76
4 Product Administration Guide Version 7.5.3

Contents
Adding Product News . 77

Associating Images with Products . 78

Creating Product Field Service Details . 78

Creating Product Measurements . 79

Exporting and Importing Products . 79

Obtaining a Product List Report . 84

Chapter 5. Product Classes
About Classes . 86

Defining a Class . 88

Creating a Class Hierarchy . 89

Editing a Class Definition . 90

Deleting a Class . 92

Exporting or Importing Classes . 93

Locating a Class . 96

Chapter 6. Product Attributes
About Product Attributes . 98

About Lists of Values (LOV) .103

About Hidden Attributes .104

Defining an Attribute with a List of Values Domain105

Defining an Attribute with a Range of Values Domain 106

Editing an Attribute Definition .106

Deleting an Attribute Definition .109

Customizing an Inherited Attribute Domain . 110

Associating Attributes with a Product .112

Viewing a Product’s Attributes .113

Changing the Hidden or Required Settings for a Product 113
Version 7.5.3 Product Administration Guide 5

Contents
Setting an Attribute Value for a Product . 114

Creating a List of Values (LOV) for a Product Attribute 116

Editing a List of Values Definition for a Product Attribute 118

Deleting a List of Values for a Product Attribute 119

Chapter 7. Attributes with Business Component Domains
About Attributes with a Business Component Domain 122

About the UI Properties . 124

Adding the Attribute to a Selection Page . 126

Associating the Attribute with a Business Component 127

Setting Up Multiple Fields for Display . 129

Creating a Business Component Field Constraint 132

Creating an Attribute Value Constraint . 136

Chapter 8. Smart Part Numbers
About Smart Part Numbers . 138

Creating Dynamically Generated Part Numbers 140

Editing a Dynamic Generation Method . 144

Creating Predefined Part Numbers . 144

Editing a Predefined Generation Method . 147

Assigning a Generation Method to a Product . 148

Viewing a Product’s Smart Part Number in a Quote 149

Updating a Generation Method with Attribute Changes 150

Querying for Products with the Same Generation Method 152

Chapter 9. Product Bundles
About Product Bundles . 154

Creating a Simple Product Bundle . 155
6 Product Administration Guide Version 7.5.3

Contents
Modifying Simple Product Bundles . 156

Deleting a Simple Product Bundle . 157

Controlling How Bundle Components are Forecast 157

Chapter 10. Build Customizable Products
About Customizable Products . 160

About Relationships . 164

About Cardinality . 168

Creating a Customizable Product Work Space .171

Refreshing the Work Space . 172

Selecting and Locking a Customizable Product 173

Adding a Single Product . 174

Adding Products by Using the Class Domain . 175

Adding Products Using the Dynamic Class Domain 178

Adding a Group of Products from Different Classes 180

Adding a Customizable Product . 182

Editing a Relationship Definition . 183

Updating Product Information in Relationships 184

Deleting Products . 185

Deleting a Customizable Product’s Structure . 186

Chapter 11. Release and Manage Customizable Products
About Bundles as Customizable Products . 188

About Customizable Assets and Delta Quotes 189

About Auto Match .191

About Finish It! . 192

Testing a Customizable Product (Validation Mode) 193

Releasing a Customizable Product for Use . 195
Version 7.5.3 Product Administration Guide 7

Contents
Reverting to an Earlier Version . 198

Deleting a Customizable Product Version . 198

Copying a Customizable Product . 199

Obtaining a Report on a Product’s Structure . 200

Creating Class-Product Templates . 201

Turning Off a Class-Product Template . 204

Converting a Bundle to a Regular Customizable Product 205

Converting a Regular Customizable Product to a Bundle 206

Defining a Customizable Asset . 208

Controlling How Products and Bundles Are Taxed 210

Controlling How Customizable Products are Forecast 211

Chapter 12. Customizable Product User Interface
About the Role of the Product UI Designer . 214

About Base Themes . 215

About Product Themes . 216

About the Default User Interface . 219

About the Menu-Based Interface . 220

About Groups . 222

About User Interface Controls . 223

About Pricing Integration . 227

Selecting the Base and Product Themes . 229

Grouping Items onto Pages . 230

Editing Item Groups . 232

Deleting Item Groups . 234

Adding a Summary Page . 235
8 Product Administration Guide Version 7.5.3

Contents
Chapter 13. Customizable Product UI Properties
About UI Properties . 238

About Predefined UI Properties . 239

Defining a UI Property . 241

Hiding Parts of a Customizable Product . 242

Chapter 14. Customizable Product Web Templates
About Customizable Product Web Templates . 244

About UI Properties in Web Templates . 247

About UI Property Values . 248

Creating a New Web Template .251

Modifying the Display Name of the Customizable Product 253

Modifying the Display Name of a Customizable Product, an Example . . 256

Modifying the Display Name of Groups . 257

Modifying the Display Name of Groups, an Example 260

Modifying the Display Name of Items . 262

Modifying the Display Name of Items, an Example 266

Chapter 15. Customizable Product Resources
About Resources . 270

Creating a Resource .271

Editing a Resource Definition . 272

Deleting a Resource . 272

Managing Resources Using Configuration Rules 273

Chapter 16. Customizable Product Links
About Links . 276

Creating a Business Component Link . 279
Version 7.5.3 Product Administration Guide 9

Contents
Creating a System Variable Link . 280

Editing a Link Definition . 282

Deleting a Link . 282

Chapter 17. Customizable Product Rule Designer
About the Rule Designer . 284

About Class-Product Rule Inheritance . 287

Creating a Configuration Rule . 289

Editing a Rule . 291

Copying a Rule . 292

Deleting a Rule . 293

Creating Groups of Related Rules . 294

Setting Effective Dates for Rules . 294

Deactivating a Rule . 296

Creating a Rule Template . 297

Editing or Deleting a Rule Template . 299

Obtaining a Rule Summary Report . 299

Chapter 18. Configuration Rule Template Reference
About Constraints . 303

About Configuration Rule Processing . 307

About Rule Conditions . 310

Attribute Value (Advanced) . 311

Conditional Value . 313

Constrain . 314

Constrain Attribute Conditions . 315

Constrain Attribute Value . 316

Constrain Conditionally . 317
10 Product Administration Guide Version 7.5.3

Contents
Constrain Product Quantity .318

Constrain Relationship Quantity .319

Constrain Resource Value . 320

Display Message .321

Display Recommendation . 322

Exclude . 323

Provide and Consume Templates . 330

Provide and Consume, Simple . 334

Relationship Item Constraint . 336

Require . 337

Require (Mutual) . 345

Set Initial Attribute Value . 346

Set Initial Resource Value . 347

Set Preference . 348

Compound Logic and Comparison Operators . 350

Arithmetic Operators . 352

Chapter 19. Configuration Rule Assembly Language
Why Use Rule Assembly Language? . 356

About Rule Assembly Language . 356

Creating Rules Using the Assisted Advanced Rule Template 357

Creating Rules Using the Advanced Rule Template 359

Managing Rules Written in Rule Assembly Language 362

Specifying Data . 363

About Operators . 364

Data Operators . 365

Boolean Operators . 366

Comparison and Pattern Matching Operators . 370
Version 7.5.3 Product Administration Guide 11

Contents
Arithmetic Operators . 372

Attribute Operators . 374

Conditional Operators . 377

Special Operators . 378

Customizable Product Access Operators . 383

Rule Examples . 383

Chapter 20. Customizable Product Scripts
About Scripts . 389

About Script Processing . 390

About Product Names . 393

About Product Path . 394

Cfg_InstInitialize Event . 396

Cfg_ChildItemChanged Event . 397

Cfg_AttributeChanged Event . 400

Cfg_InstPostSynchronize Event . 403

Cfg_ItemChanged Event . 404

Cfg_OnConflict Event . 406

GetInstanceId Method . 408

GetCPInstance Method . 409

GetObjQuantity Method . 412

AddItem Method . 413

RemoveItem Method . 414

SetAttribute Method . 415

Creating an Event Script . 416

Creating a Declarations Script . 418

Editing a Script . 420

Deleting a Script . 421
12 Product Administration Guide Version 7.5.3

Contents
Reviewing the Script Log . 422

Chapter 21. Multilingual Data
What Can Be Translated? . 424

How Multilingual Data Translation Works . 425

Translating the Product Description . 426

Translating a Class Display Name . 427

Translating an Attribute Display Name and Description 428

Translating Configuration Rule Explanations . 429

Translating Relationship Names . 430

Translating UI Group Names .431

Translating UI Property Values . 432

Translating an Attribute List of Values . 433

Chapter 22. Cache Management
About Snapshot Mode . 436

Setting Up Snapshot Mode on the Siebel Server 439

Setting Up Snapshot Mode on the Client . 440

Refreshing the Snapshot Mode Cache . 441

Refreshing the Cache with Product Changes . 442

Refreshing the Cache with Class Changes . 443

Chapter 23. Technical Reference
eConfigurator Architecture . 446

Siebel eConfigurator Server Deployment . 447

Enabling Snapshot Mode . 448

Enabling Auto Match . 449

Specifying Keep Alive Time for Configurator Sessions 450
Version 7.5.3 Product Administration Guide 13

Contents
Enforcing the Field Length for Entering Advanced Rules 451

Displaying RAL in the Rule Designer . 452

Turning Off Default Instance Creation . 454

Revising the System Default Cardinalities . 455

Displaying Fields from S_PROD_INT in Selection Pages 456

eConfigurator API . 458

About the Instance APIs . 459

APIs to Interact with Conflicts and Messages . 471

APIs to Set Product and Attribute Values . 474

Object Broker Methods . 478

Application Integration Network . 484

Index
14 Product Administration Guide Version 7.5.3

Introduction
This guide explains product administration procedures. This includes creating and
managing customizable products. Customizable products are those that have
components and are interactively configurable when creating a quote or when
purchasing the product from a Web site.

Although job titles and duties at your company may differ from those listed in the
following table, the audience for this guide consists primarily of employees in these
categories:

Product Modules and Options
This Siebel Bookshelf contains descriptions of modules that are optional and for
which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software
implementation may differ from descriptions in this Bookshelf. To find out more
about the modules your organization has purchased, see your corporate purchasing
agent or your Siebel sales representative.

Product
Administrators

Persons responsible for defining and managing products and
product lines.

Siebel Application
Administrators

Persons responsible for planning, setting up, and maintaining
Siebel applications.
Version 7.5.3 Product Administration Guide 15

Introduction

How This Guide Is Organized
How This Guide Is Organized
This guide describes how to create and manage products. The guide deals with two
types of products: simple products and customizable products.

Simple products are those that do not have components that can be interactively
configured. For example, you sell a model of telephone that has no components that
can be configured at the time of quote or purchase. The telephone may have
attributes that you can select, such as color. This is a simple product.

A customizable product is one that has configurable components. For example, you
sell desktop computers that have several types of monitor and hard drive. Users can
select which monitor and which hard drive they want at the time of purchase.
Customizable products and their components can also have configurable attributes.

This guide is organized as follows:

■ The early chapters provide background information.

■ The following chapters give information used to create both simple and
customizable products. The chapter on basic product administration describes
basic product administration tasks, such as creating a product record or
associating literature with a product. This is followed by chapters that describe
how to create and manage the product class system. Additional chapters
describe features such as product bundles and smart part numbers.

■ Following this are chapters that describe how to create customizable products.
These chapters make up the bulk of the information in the guide.

■ The last chapter is a technical reference and provides information on topics of
interest to integrators and developers.
16 Product Administration Guide Version 7.5.3

Introduction

Revision History
Revision History
Product Administration Guide, Version 7.5.3

Table 1. Changes Made in Version 7.5.3

Topic Revision

“Overview of Types of Product
Administration” on page 20

Added this section

“Designing Scripts” on page 35 Corrected description in table of what
GetInstanceId returns.

“About the Product Record” on page 49 Added information about when to use the
Type field of the Product record.

“Setting Up User Access” on page 64 Deleted Products > All Products view from
the list of places where a product does not
display until it is assigned to a Category.

“Associating Literature with Products” on
page 76

Added note about the type of literature that
can be associated.

“About Product Bundles” on page 154 Removed mention of dynamic product
bundles.

“About Generics” on page 170 Added this section.

“Reverting to an Earlier Version” on
page 198

Added this section, which replaces the
section “Reverting to the Most Recently
Released Version.” Changed for 7.5.3.

“GetInstanceId Method” on page 408 Corrected description of what
GetInstanceId returns.

“Siebel eConfigurator Server Deployment”
on page 447

Added this section.

“Enabling Snapshot Mode” on page 448 Changed description of parameter
eProdCfgNumbOfCachedCatalogs.
Eliminated two obsolete server parameters
from reference table. Changed for 7.5.3.

“Enabling Auto Match” on page 449 Added this section documenting the server
parameter eProdCfgKeepAliveTime.
Version 7.5.3 Product Administration Guide 17

Introduction

Revision History
“Displaying Fields from S_PROD_INT in
Selection Pages” on page 456

Changed “Cfg CX” Buscomp to “Cfg CX
Products” Buscomp whenever mentioned
in this section.

“SetFieldValue” on page 477 Added this section. New for 7.5.3

Table 1. Changes Made in Version 7.5.3

Topic Revision
18 Product Administration Guide Version 7.5.3

Overview 1
This chapter provides information on how to navigate to views and screens. It also
describes important product administration processes.

It covers the following topics:

■ “Overview of Types of Product Administration” on page 20

■ “About Working with Product Administration” on page 22

■ “Important Processes for Product Administration” on page 23
Version 7.5.3 Product Administration Guide 19

Overview

Overview of Types of Product Administration
Overview of Types of Product Administration
This guide explains how to administer a number of different types of products. You
only have to read the chapters that apply to the types of product your company sells.

Simple Products Without Attributes
This is a product that only comes in one form, such as a book. The customer does
not make any decisions about features of the product.

To create simple products without attributes, you only need to read Chapter 4,
“Basic Product Administration.”

Simple Products with Attributes
This is a product that has features that the customer can choose but that does not
have components the customer can choose.

For example, a customer buying a t-shirt might be able to choose the shirt’s color
and its size. The shirt has two attributes, color and size. Each of these attributes has
several possible values, such as white, gray, black, and S, M, L, XL.

When product lines have many products with similar attributes, you can create a
class system to make it easier to define the attributes.

To create simple products with attributes, you should read:

■ Chapter 4, “Basic Product Administration”

■ Chapter 5, “Product Classes”

■ Chapter 6, “Product Attributes”

You may also need to read Chapter 7, “Attributes with Business Component
Domains,” which covers a more advanced way of creating attributes.

In addition, you can automatically generate a different part number for each
combination of attributes that is available. To do this, read Chapter 8, “Smart Part
Numbers.”

Customizable Products
This is a product with different components that a customer can select.
20 Product Administration Guide Version 7.5.3

Overview

Overview of Types of Product Administration
For example, a customer buying a computer might have to select a mouse, a floppy
disk drive, a monitor, and other components.

These are the products that use Siebel eConfigurator, which makes sure that the
customer selects all of the components that are required for the product and selects
components that are compatible with each other.

To create this sort of product, first read Chapter 3, “Select a Configuration Method”
to decide whether you want to use server-based eConfigurator, which is covered in
this guide, or browser-based eConfigurator, which is covered in Siebel Interactive
Designer Administration Guide.

If you decide to use server-based eConfigurator, you should read

■ Chapter 4, “Basic Product Administration”

■ The chapters that cover server-based eConfigurator, which are Chapter 10,
“Build Customizable Products” through Chapter 20, “Customizable Product
Scripts.” Some of these chapters cover advanced features of eConfigurator,
which not all users need.

Product Bundles
A product bundle is a group of products sold together. It cannot be customized.

For example, you might offer customers vacation packages that include airfare,
hotel accommodations for a specific number of days, and specific special events, all
for one price.

To create this sort of product, you should read:

■ Chapter 4, “Basic Product Administration”

■ Chapter 9, “Product Bundles”
Version 7.5.3 Product Administration Guide 21

Overview

About Working with Product Administration
About Working with Product Administration
This section gives you background that you need for working with product
administration.

Screens Used for Product Administration
Product Administration and Application Administration are the two screens you will
use most frequently to perform the tasks in this guide:

■ The Product Administration screen is where you create and manage products.

■ The Application Administration screen is where you define the product
classification system and its attributes. You also define lists of values and other
things that support product definitions.

The path syntax used throughout this guide is based on an English language
installation in Windows 2000 environment. Modify the path syntax as needed for
other languages and operating systems.

Logging On as the Siebel Administrator
The Siebel database server installation script creates a Siebel administrator account
that can be used to perform the tasks described in this guide. For more information,
see Siebel Server Installation Guide and Siebel Server Administration Guide.

To log on as the Siebel administrator, start the application and log on using the user
name and password assigned by your database administrator. Generally, the Siebel
administrator connects to the server database.

CAUTION: Do not perform system administrative functions on your local database.
Although there is nothing to prevent you from doing this, it can have serious results.
Examples include: data conflicts, an overly large local database, a large number of
additional transactions to route.

License Key Requirements
This guide describes basic product management tasks. It also describes how to use
Siebel eConfigurator to create and manage customizable products. To use Siebel
eConfigurator, you must have the appropriate license keys installed.
22 Product Administration Guide Version 7.5.3

Overview

Important Processes for Product Administration
You access Siebel eConfigurator through the Customizable Product and
Configuration Designer tabs in the Product administration screen.

Important Processes for Product Administration
A procedure (also called a task) is a group of one or more numbered steps that you
perform to complete a defined task. For example, creating a product record is a
procedure. This procedure contains several steps.

Processes are groups of procedures that you perform to accomplish important goals.
For example, creating a hierarchy and defining attributes for classes are two
procedures in the process for creating a product class system.

The procedures in the processes below correspond to those listed in the guide’s
table of contents. Do the procedures in the order in which they are presented in each
process. These processes are guidelines for accomplishing important product
administration tasks. Adapt them as needed to fit local operations.

The key processes in product administration are the following:

■ Create a product class system

■ Create a simple product

■ Create a simple product that has attributes

■ Create a customizable product

A simple product is one that does not have components that users can interactively
configure when creating a quote or purchasing the product. For example, a bucket
is a simple product. It does not have configurable components.

A simple product can have attributes that the user can select. When creating a quote
or purchasing the product, the user can choose a value for each product attribute.
For example, the bucket could have a size attribute. At the time of purchase, the user
would select small, medium, or large.

A customizable product is a product that has configurable components. For
example, you sell desktop computers. At the time of purchase, the user can choose
among several types of monitor, several disk drives, and several keyboards. Both the
desktop computer and its components can have attributes.
Version 7.5.3 Product Administration Guide 23

Overview

Important Processes for Product Administration
The processes below are made up of tasks, which are listed in the description of
each process. The tasks in the processes correspond to tasks in the guide’s table of
contents. In a process, perform the tasks in the order in which they are presented.

These processes are guidelines for accomplishing important product administration
tasks. Adapt them as needed to fit local operations.

Create a Product Class System
If your product lines include products that have configurable attributes, you must
complete this process.

1 Create a class hierarchy

2 Define attributes for classes

3 Define lists of values (LOVs)

4 Edit attribute definitions to add LOVs

Create a Simple Product
This process creates a simple product.

1 Create a product record

2 Associate the product with a price list

3 Associate the product with a catalog

4 Add the product to a product line

Create a Simple Product that has Attributes
You create a product that has attributes by assigning it to a product class on which
attributes have been defined. All products assigned to a product class inherit the
attributes defined on the class. When you assign a customizable product to a class
that has attributes, the customizable product as a whole inherits the attributes.

When the user creates a quote or purchases the product on a Web site, the product
displays with its attributes, and the user can select the desired attribute values.

1 Complete the Create a Product Class System process.
24 Product Administration Guide Version 7.5.3

Overview

Important Processes for Product Administration
2 Assign the product to a product class.

3 Define attribute-based pricing adjustments using ePricer.

Create a Customizable Product
You create a customizable product by adding a work space to a simple product.
Then you add other products, configuration rules, a customized user interface, and
other features.

The components you add to a customizable product can themselves be
customizable products. The user interface the system provides for selecting
components, also provides for selecting attribute values.

Customizable products can have attributes. You do this by assigning the
customizable product root to a product class on which attributes are defined. The
components of the customizable product can also have attributes. You provide
attributes to the components by assigning them to classes on which attributes are
defined before adding the products to a customizable product.

1 Complete the Create a Product Class System process.

2 Assign the component products to product classes.

3 Complete the Create Product process for the root of the customizable product.
To provide attributes to the customizable product root, assign it to a product
class on which attributes are defined. For example, you want to create a
customizable product called Workstation Pro. This product will have
components such as a monitor and disk drives. Create a product record for
Workstation Pro. This product record is the product root. The Workstation Pro
comes with a choice of 12 or 24 month warranty. You have defined an attribute
called Warranty Type on the product class Workstations. This attribute lets users
select which warranty they want. You would assign the Workstation Pro to this
product class. The Workstation Pro then inherits this attribute.

4 Create and lock a work space for the customizable product root.

5 Add products (these are the components of the customizable product). These
products have the user-configurable attributes of the product classes to which
they are assigned.

6 Create resources as needed.
Version 7.5.3 Product Administration Guide 25

Overview

Important Processes for Product Administration
7 Create links as needed.

8 Create configuration rules as needed.

9 Validate the product and test all configuration rules

10 Create a customized user interface for configuring the product as needed.

11 Define specialized user interface properties as needed.

12 Validate the product and test the user interface.

13 Define pricing adjustments for attributes as needed using ePricer. See Pricing
Administration Guide to do this task.

14 Define pricing adjustments for components as needed using ePricer. See Pricing
Administration Guide to do this task.

15 Define a customizable product pricing model as needed using ePricer. See
Pricing Administration Guide to do this task.

16 Validate the product and test the pricing on all items.

17 Release the product.
26 Product Administration Guide Version 7.5.3

Mapping eConfigurator 6.x Features
to Release 7.x 2
This chapter provides a conceptual mapping of release 6.x eConfigurator to
release 7.x eConfigurator features. Users of 6.x eConfigurator should use this
chapter to help them understand the similarities and differences between 6.x and
release 7.x eConfigurator.

The mappings are intended to present features that are functionally similar. That
one feature maps into another does not mean that the release 7.x feature is exactly
equivalent or works in exactly the same way.

The topics in this chapter are presented in roughly the same order as the topics in
Version 6.2 of the Siebel eConfigurator Guide.

This chapter does not describe the features of the eConfigurator implemented using
Siebel Interactive Designer. This method of creating customizable products is new
in release 7.0.

This chapter covers the following topics:

■ “Upgrading 6.x Models to 7.x” on page 28

■ “Managing Models” on page 29

■ “Designing the Catalog” on page 31

■ “Working with Properties” on page 32

■ “Working with Resources” on page 32

■ “Working with Linked Items” on page 33

■ “Designing Rules and Logical Expressions” on page 33

■ “Designing Scripts” on page 35

■ “Quote Integration and Configuration Assistant” on page 37
Version 7.5.3 Product Administration Guide 27

Mapping eConfigurator 6.x Features to Release 7.x

Upgrading 6.x Models to 7.x
Upgrading 6.x Models to 7.x
Upgrading 6.x models to 7.x requires planning and a thorough understanding of the
upgrade process. see Siebel Interactive Selling Applications Upgrade Guide before
upgrading models. Also check Siebel SupportWeb for technical papers on
eConfigurator upgrades.
28 Product Administration Guide Version 7.5.3

Mapping eConfigurator 6.x Features to Release 7.x

Managing Models
Managing Models
The concept of a model in 6.x maps in release 7.x to a customizable product with
a work space. Table 2 maps 6.x features to 7.x for managing models.

Table 2. Managing Models

Release 6.x Release 7.x Comment

Create a new model Create a customizable product with a work
space.

Delete a model Delete customizable product structure. Reverts customizable product to a
simple non-configurable product.

Copy a model Copy a customizable product.

Share a model Add a customizable product to another
customizable product.

Lock a model Lock a customizable product work space.

Import a model Import a customizable product.

Export a model Export a customizable product. Only the latest released version
can be exported.

Export a model version Only the latest released version can be
exported.

Validate a model Validate a customizable product.

Release a model Release a customizable product.

Revert to released model Revert to a released customizable product.

Model versions Customizable product versions.

Model synchronization Customizable product synchronization.
Version 7.5.3 Product Administration Guide 29

Mapping eConfigurator 6.x Features to Release 7.x

Managing Models
Associating a model with
a product

Not applicable The structure of a customizable
product is stored with the product
definition. Associating a model
with a model-product is no longer
required.

Required start date Customizable product required start date The customizable product version
does not become available to
users until the specified date.

Table 2. Managing Models

Release 6.x Release 7.x Comment
30 Product Administration Guide Version 7.5.3

Mapping eConfigurator 6.x Features to Release 7.x

Designing the Catalog
Designing the Catalog
The tree structure of catalogs and items in 6.x maps in release 7.x to a hierarchy of
relationships within the customizable product. A relationship is roughly equivalent
to a category and functions as a named group that contains one or more items.
Table 3 maps 6.x features to 7.x for designing a catalog.

Table 3. Designing the Catalog

Release 6.x Release 7.x Comment

Design a tree structure Create a hierarchy of relationships
within a customizable product.

The hierarchy defines component
relationships rather than being a
grouping mechanism.

Relationship definition includes
cardinality (maximum quantity,
minimum quantity, default
quantity).

Create a category Create a relationship. A relationship is a named part of a
customizable product. Relationships
contain one or more items.

Add a product to a catalog Add a product to a relationship.

Set item sequence in a catalog Set sequence of items in Product
Designer and sequence of group in
Product UI Designer.

Hide items in the catalog Can hide an item by not adding it
to a UI group in the Product UI
Designer.

All products included in a
customizable product, plus all
attributes, resources, and links can
be made visible to users.

Show all excluded items Select UI control in Product UI
designer that displays all items.

Excluded items are unavailable.

Create virtual product Replaced with hidden attributes. Virtual product functionality can be
created by defining product
attributes and then marking them
hidden. Hidden attributes do not
appear in quotes, orders, or
agreements.
Version 7.5.3 Product Administration Guide 31

Mapping eConfigurator 6.x Features to Release 7.x

Working with Properties
Working with Properties
The properties feature has been replaced in release 7.x with attributes. Attributes
are product characteristics that are defined for product classes. All products
belonging to a class inherit the attributes of the class. Subclasses inherit the
attributes of the parent class. You put products into the class hierarchy by assigning
a class name in the product record. Attributes cannot be defined directly on a
product. They must be inherited from the class to which the product belongs.

When you define an attribute, you can define the allowed values for the attribute.
You can specify the allowed values, called an attribute domain, using a list of values
or a range of values. The administrator can then set this value for an individual
product so that it cannot be changed by the user.

Defining an attribute and setting its value so that it cannot be changed is
functionally equivalent to defining a property and assigning it a value in 6.x.

Working with Resources
Resources are implemented in the same fashion for customizable products in
release 7.x as they were for models in 6.x. You define resources in the Resource
Designer and then write provide and consume rules that adjust the value of the
resource. In release 7.x, you can also provide or consume amounts from a product
attribute.

In release 7.x, to enforce a resource or attribute so that its value does not drop below
zero, you write a configuration rule that constrains the range of allowed values.
32 Product Administration Guide Version 7.5.3

Mapping eConfigurator 6.x Features to Release 7.x

Working with Linked Items
Working with Linked Items
In release 7.x, you define links within the context of a specific customizable
product. You do not define links in a single location and then associate the
definition with a model, as in 6.x. Link definitions are added to a picklist so that
you can add the definition to other customizable products. If you delete a link
definition from the only customizable product in which it occurs, it is deleted from
the picklist.

The things for which you can define a link, have not changed in release 7.x. You
can define links on Siebel business components, the system date/time, and on the
login ID of the current users.

Designing Rules and Logical Expressions
The 6.x Basic Rule Designer, Logic Designer, and Advanced Rules Designer have
been replaced by the Rule Designer in release 7.x. The Rule Designer provides a
series of natural-language rule templates that you can use to create rules of any
complexity. You can also create and save your own rule templates.

The logical operators in the 6.x Logic Designer are provided in picklists associated
with the rule templates.

A special rule template is provided to enter rules in eConfigurator Rule Language
(renamed Rule Assembly Language in release 7.x). The operators and syntax in 6.x
eConfigurator Rule Language are supported in release 7.x. Table 4 maps 6.x features
to 7.x for designing rules.

Table 4. Designing Rules in the Rule Designer

Release 6.x Release 7.x Comment

Create rule in Basic Rule
Designer

Create rule using rule template in Rule
Designer.

Rules can be created with or
without conditions.

Create expressions in Logic
Designer

Use logical operators associated with
rule templates in Rule Designer.

Rules can be created with or
without conditions.

Create rule in Advanced
Rules Designer

Enter rule into special template in Rule
Designer.

6.x operators and syntax are
supported in release 7.x.
Version 7.5.3 Product Administration Guide 33

Mapping eConfigurator 6.x Features to Release 7.x

Designing Rules and Logical Expressions
Category-to-product rules Class-to-product rules. The product class must be part of
a relationship.

Category-to-category rules Class-to-class rules. The product classes must part of
relationships.

Product-to-product rules Product-to-product rules.

Copy and delete rules Copy and delete rules. Includes rules that are logical
expressions.

Activate and deactivate rules Activate and deactivate rules. Includes rules that are logical
expressions.

System generates rule
explanations

System generates rule explanations or
you can write explanations.

Includes rules that are logical
expressions.

Rule Summary report Rule Summary report.

Enforce resource total by
placing check mark in
resource record

Write rules to prevent resources from
having negative values.

Syntax checker for
eConfigurator Rule Language

Syntax checking is provided when
building rules using the Assisted
Advanced Rule template and all other
rule templates.

eConfigurator Rule Language is
called Rule Assembly Language in
release 7.x.

Table 4. Designing Rules in the Rule Designer

Release 6.x Release 7.x Comment
34 Product Administration Guide Version 7.5.3

Mapping eConfigurator 6.x Features to Release 7.x

Designing Scripts
Designing Scripts
In release 7.x, the full Siebel API is accessible from within a script. See Siebel API
documentation for more information on the Siebel API. Because the Siebel API is
available, the number of eConfigurator-specific events and functions has been
reduced in release 7.x.

In addition, the method for associating scripts with parts of a model has changed.
In release 7.x, you associate a script with an item by writing the script on an event
called for the product root. The event returns a matrix of records, one for each item
that has changed in the solution. An item can be any product added to the
customizable product from the product table. Events do not return changes to
relationship quantities or resources.

If a customizable product contains other customizable products, another event is
provided so you can write scripts on the child customizable product directly.

The Script Designer in release 7.x. does not provide a hierarchical tree display of the
customizable product. In release 7.x, the Cfg ID of an item can no longer be passed
as an argument. Instead, the name of the item as a string is passed. A name syntax
is provided to allow you to uniquely specify a product name. Table 5 maps 6.x
features to 7.x for designing scripts.

Table 5. Designing Scripts

Release 6.x Release 7.x Comment

Create scripts Create scripts in the Script Designer.

Script inheritance Scripts are not associated directly with
relationships and are not inherited.

Copy, edit, and delete
scripts

Copy, edit, and delete scripts.

Siebel Visual Basic and
Siebel eScript languages

Siebel Visual Basic and Siebel eScript
languages.

Syntax checking Syntax checking.

Declaration area Declaration area.

Scripts can be written on
product root

Scripts can be written on product root.
Version 7.5.3 Product Administration Guide 35

Mapping eConfigurator 6.x Features to Release 7.x

Designing Scripts
Events return changes to
categories

Events return changes only to items
added from product table. Events do not
return changes to relationship
quantities.

Relationships are a grouping
mechanism within a customizable
product and are similar to
categories.

Cfg_ItemInitialize Use Cfg_InstInitialize. Cfg_InstInitialize triggers once
when session is started.

Cfg_ItemPreRequestSubmit Not supported. Can be simulated in some cases
using the User Interface API.

Cfg_ItemChanged Use this event only for child-
customizable products. Use
Cfg_ChildItemChanged for other
components.

Cfg_CategoryChanged Not supported.

Cfg_SessionPostProcess Not supported.

Cfg_ItemPreSynchronize Use Cfg_InstPostSynchronize.

Cfg_ItemPostSynchronize Cfg_InstPostSynchronize.

Cfg_SessionClosed Implemented at Instance Broker level.
Use Siebel API.

GetSessionId GetInstanceId. Returns the row ID of the
customizable product in the source
object, (quote, order and so on).

GetCfgId Not supported. No longer meaningful.

GetItemId Not supported.

GetItemQuantity GetObjQuantity. Returns the quantity of a
component within the
customizable product. Cannot be
used for relationship quantities.

GetPropertyValue Getting attribute value is supported
through the Siebel API.

Table 5. Designing Scripts

Release 6.x Release 7.x Comment
36 Product Administration Guide Version 7.5.3

Mapping eConfigurator 6.x Features to Release 7.x

Quote Integration and Configuration Assistant
Quote Integration and Configuration Assistant
Creating a model product and associating a model with it is not required in release
7.x. Instead, you create a customizable product work space, which is similar to
creating a record in the Model Manager at 6.x. This work space associates the parts
of the customizable product, including its components, links, resources, and UI
definition with the product record. When you release a new version of the
customizable product, it becomes available immediately for configuration in quotes
and in eSales Web pages.

At 6.x, the Configuration Assistant view was used to display models, select items,
and transfer items to a quote. If you wanted to modify the way Configuration
Assistant looked, you had to use Siebel Tools to build a new view. In release 7.x, a
Product UI Designer is provided within eConfigurator to create the browser pages,
called selection pages, that will display during a configuration session. You can
select from several base themes and product themes that define basic page layout.
You can also select the controls, such as radio buttons or check boxes, to use for
displaying items.

GetItemState Supported through Siebel API

SubmitRequest AddItem, RemoveItem

Table 5. Designing Scripts

Release 6.x Release 7.x Comment
Version 7.5.3 Product Administration Guide 37

Mapping eConfigurator 6.x Features to Release 7.x

Quote Integration and Configuration Assistant
The base themes, product themes, and controls are stored in template files that you
can customize or use to create your own templates. In addition, you can use the
User Interface Property Designer to customize how individual items display. If you
do not want to create a user interface for a customizable product, the system
provides intelligent defaults for creating selection pages automatically. Table 6
maps 6.x features to 7.x for quote integration and Configuration Assistant.

Table 6. Quote Integration and Configuration Assistant

Release 6.x Release 7.x Comment

Verify a solution Verify a customizable product
configuration.

Verify a quote Verify a quote.

Update a quote Update a quote.

Solution name Customizable product name.

Solution quantity Customizable product quantity.

Line item quantity Component quantity in a
customizable product.

Reconfigure a solution with a new
version of a model

Reconfigure a stored session with
a newer version of a customizable
product

Create and manage Favorites Create and manage Favorites

Add an item in a configuration
session

Same. Define item display in
Product UI Designer

You can also accept system
defaults for item display

Remove an item Same. Define item display in
Product UI Designer

You can also accept system
defaults for item display

Add a category Add a relationship in Product
Designer

Unsatisfied category icon A flag displays when a
relationship is below its minimum
cardinality or is required.

Finish It! Finish It!

Item state explanation The user interface contains an
Explanation button.

Clicking the Explanation button
displays an explanation.
38 Product Administration Guide Version 7.5.3

Mapping eConfigurator 6.x Features to Release 7.x

Quote Integration and Configuration Assistant
Item properties displayed in applet Properties have been replaced by
configurable attributes. Attributes
display in configuration session or
in Quotes > Dynamic Attributes.

Messages and Recommendations Messages and Recommendations

Unsatisfied requirement message Unsatisfied requirement message

Quantity out of range message Quantity out of range message

Conflict-exists pop-up message Conflict-exists pop-up message Explanation and ability to proceed
or cancel user action is supported

Edit quantity of an item Edit quantity of an item Requires UI control that allows
editing of quantity.

Table 6. Quote Integration and Configuration Assistant

Release 6.x Release 7.x Comment
Version 7.5.3 Product Administration Guide 39

Mapping eConfigurator 6.x Features to Release 7.x

Quote Integration and Configuration Assistant
40 Product Administration Guide Version 7.5.3

Select a Configuration Method 3
There are two approaches you can use to create customizable products. The first
approach is a browser-based method and includes eAdvisor. The second approach
is a server-based method and uses the eConfigurator rule engine.

Read this chapter carefully and determine which method you should use to create
customizable products.

This chapter covers the following topics:

■ “Choosing a Deployment Method for eConfigurator” on page 42

■ “Consider the Nature of Your Data” on page 43

■ “Consider Your Runtime Deployment Requirements” on page 45

■ “When to Use Each Method” on page 46
Version 7.5.3 Product Administration Guide 41

Select a Configuration Method

Choosing a Deployment Method for eConfigurator
Choosing a Deployment Method for eConfigurator
Siebel offers two deployment options for creating eConfigurator applications:

■ Server-based administered through Customizable Product.

This method works by solving simultaneous constraints to ensure accuracy of
the solution, with all data and constraint processing occurring at the server.

How to use the server-based eConfigurator is covered in this guide.

■ Browser-based administered through Interactive Designer

This method uses Configuration tables to describe relationships, and delivers a
subset of configuration capabilities directly to the end-user’s browser, using only
JavaScript and HTML.

How to use Interactive Designer is covered in the Siebel Interactive Designer
Administration Guide.

While either method may work for your configuration needs, the following sections
provide guidelines for selecting one over another.
42 Product Administration Guide Version 7.5.3

Select a Configuration Method

Consider the Nature of Your Data
Consider the Nature of Your Data
To select between the two methods, consider whether your data is dense or sparse.

Dense Data
When your data set is “dense” and relatively small, consider deploying a browser-
based application. This model makes it easy to apply business rules that manage
the different combinations of data.

Table 7 is an example of dense data. In this example, a set of shirts is available in a
variety of colors and, except for yellow, in all sizes. Yellow is available only in small.
The combinations of data are easily entered in Configuration tables in Interactive
Designer.

At runtime, users can freely explore options for a given configuration, make
selections, and determine what features are most important to them, not necessarily
what is valid based on the first or top level selection. As exception messages are
presented for invalid selections, it is relatively easy for users to get back to a valid
state, because of the relatively small number of exceptions and relatively “dense”
data.

Alternatively, within this deployment model, users navigating a large and sparse
data set may spend more time than desired trying to identify a valid state. To avoid
this situation, modelers can build in constraints to minimize the number of “invalid
states.” However, you will need to weigh the trade-offs between the time spent
building in constraints versus modeling in a constraint-based environment,
particularly as product complexity increases. In this situation, consider using the
Server-Based model explained in the next section.

Table 7. Sample Browser-Based Data Set

Color Size

Red *

Green *

Blue *

Yellow Small
Version 7.5.3 Product Administration Guide 43

Select a Configuration Method

Consider the Nature of Your Data
Sparse Data
When your data set is large and “sparse,” consider deploying a server-based
application.

Table 8 shows a simple model where the data is more sparse and contains multiple,
complex exceptions. This type of model is more efficiently expressed as a set of
constraints.

Table 8. Sample Server-Based Data Set

Feature X Feature Y Feature Z

Product A Yes 1

1. Only if x>y and not combined with A

*

Product B Yes 2

2. Only if A and B are combined

*

Product C *
44 Product Administration Guide Version 7.5.3

Select a Configuration Method

Consider Your Runtime Deployment Requirements
Consider Your Runtime Deployment Requirements
To select between the two methods, consider your runtime deployment
requirements. In general, the more complex the configuration problem becomes,
the fewer the number of concurrent users that are likely to access it. For example,
if one were deploying a Web-based configuration application to end-consumers to
configure something simple like an automobile, or a computer laptop, one would
want to plan for peak concurrent user loads well into the thousands. At the other
extreme, if one were deploying an application to allow business customers and field
salespeople to configure specialized semiconductor manufacturing systems, one
would expect a much lower number of possible simultaneous users.

Siebel eConfigurator’s browser-based deployment mode uses JavaScript and HTML
to execute configuration directly in the client’s browser, enabling nearly limitless
scalability for simple to moderately complex configuration with minimal server
infrastructure.

Siebel eConfigurator’s server-based deployment mode can support simple to
extremely sophisticated configuration models. Scaling to larger user communities in
this mode is done through the addition of infrastructure, such as more processors
or additional servers as necessary.

Also consider the impact your product line will have on runtime deployment. A
broad product line with individual product categories is a good fit for browser-based
deployment. Other product categories would be more easily deployed using a
server-based, constraint model.
Version 7.5.3 Product Administration Guide 45

Select a Configuration Method

When to Use Each Method
When to Use Each Method
Table 9 provides a summary of the conditions to consider when choosing a method
for deploying your eConfigurator application.

Table 9. Best Conditions for Use of Each Method

Browser-Based Deployment Server-Based Deployment

Best for dense data Best for sparse data

Requires minimal server infrastructure Handles large number of exceptions well

Handles broad product line with individual
product categories well

Supports extremely sophisticated
configuration models
46 Product Administration Guide Version 7.5.3

Basic Product Administration 4
This chapter describes the basic product administration tasks common to both
simple and customizable products.

This chapter covers the following topics:

■ “About the Product Record” on page 49

■ “About Verify” on page 55

■ “Creating a Product Record” on page 56

■ “Editing a Product Record” on page 57

■ “Copying a Product Record” on page 58

■ “Deleting a Product Record” on page 59

■ “Exporting Product Records for Display” on page 60

■ “Associating a Product with a Product Class” on page 62

■ “Associating Products with Price Lists” on page 63

■ “Setting Up User Access” on page 64

■ “Setting Start and End Dates for Display of a Product” on page 66

■ “Creating Product Line Names” on page 67

■ “Creating Product Features” on page 68

■ “Assigning Key Features to a Product” on page 69

■ “Viewing Product Attributes” on page 70

■ “Defining Related Products” on page 71

■ “Designating Equivalent Products” on page 73
Version 7.5.3 Product Administration Guide 47

Basic Product Administration
■ “Comparing Features of Equivalent Products” on page 74

■ “Creating a Product Auction” on page 74

■ “Creating Product Entitlements” on page 75

■ “Associating Literature with Products” on page 76

■ “Adding Product News” on page 77

■ “Associating Images with Products” on page 78

■ “Creating Product Field Service Details” on page 78

■ “Creating Product Measurements” on page 79

■ “Exporting and Importing Products” on page 79

■ “Obtaining a Product List Report” on page 84
48 Product Administration Guide Version 7.5.3

Basic Product Administration

About the Product Record
About the Product Record
Nonconfigurable products are called simple products. Products with components
that are interactively configurable at the time of purchase are called customizable
products.

You enter a product into the Siebel database by creating a product record. This
record stores important information about the product. The only required field in
the product record is the product name. However, it is important to associate the
record with a price list and a product line. This allows users to create quotes and to
find important information about the product. In addition, when you associate a
product with a product class, the product inherits the attributes defined on the class.

Table 10 lists the fields in the product record. Some of the fields are toggles. You
activate or deactivate these fields by clicking on them. An X or check mark displays
when the field has been selected. Except where noted, the default for toggles is
blank, not selected.

Table 10. Fields in the Product Record

Field Description

Allocate Below Safety Click the box to allow allocation below the safe inventory
level of this product.

Auto Allocate Click the box if you are using automatic allocation by the
Order Fulfillment engine of a particular product during the
fulfillment process.

Auto Substitute Click the box to allow auto-substitution. Auto-substitution
is the automatic use by the Order Fulfillment Engine of a
substitute product when the product ordered cannot be
found in inventory.

The substitute products are set using the Create Substitute
form on the Product Field Service Details page.

Bundle A check mark or X displays if this is a bundle product. A
bundle is a group of products sold together as one product.
This field is read-only.

Class The product class to which you want to assign this
product. The product will inherit all the attributes defined
on the class or that are inherited by the class.
Version 7.5.3 Product Administration Guide 49

Basic Product Administration

About the Product Record
Class Product A check mark or X displays if this customizable product
has been designated a class product. For more information
on class products, see “Editing a Product Record” on
page 57. Do not click in this field.

Compensable Click the box if sales personnel can receive compensation
for selling the product.

Customizable A check mark or X displays if this is a customizable
product with a work space and at least one version of the
product has been released and is available to users. This
field is read-only.

Description Enter a brief description of the product.

Division Code (SAP) Can be used for setting up user access to products but is
not recommended. Instead, set up user access by assigning
products to categories.

Effective End The date after which the product is unavailable. After this
date the product does not display in price lists and cannot
be added to quotes.

Effective Start Enter the date on which the product becomes available.
The product does not display in price lists and cannot be
added to quotes until this date.

Global Product Identifier Enter a unique product identification string. Use this field
to map products from one Siebel installation to another or
to a third-party product master. This field is useful when
the string in the Part # field is required for local use or is
not compatible with third-party product masters. This field
is intended for use by integrators needing to move product
information between applications.

Equivalent Product Displays the primary equivalent product. Click in this field
to display all equivalent products or to add additional
equivalent products.

Field Replaceable Click the box if this is a field-replaceable unit.

Format The drop-down menu displays training formats such as
Instructor led and Web-based.

Table 10. Fields in the Product Record

Field Description
50 Product Administration Guide Version 7.5.3

Basic Product Administration

About the Product Record
Image File Name Select the image file associated with the product. You can
also select the image in Product Administration > Product
Images.

Integration Id Enter the back-office application product ID. This field can
be used by SAP and Oracle Product Connectors.

Item Size Enter the numeric product size.

Lead Time Enter the standard lead time for ordering the product.
Measured in weeks. For example, if you enter 2, this means
2 weeks.

Model Product This field is obsolete. It is provided as a reference to
upgrade users of eConfigurator.

MTBF Enter the mean time between failure for the product.

MTTR Enter the mean time to repair the product.

Orderable Click the box if the product can be ordered. Determines
whether a product can be listed as a quote line item on a
quote.

All components you add to a customizable product must
be orderable.

Organization Can be used for setting up user access to products but is
not recommended. Instead, set up user access by assigning
products to categories.

Pageset Enter the name of the Interactive Designer pageset to
which the product belongs. For more information on
Interactive Designer see Siebel Interactive Designer
Administration Guide.

Parent Product Select the parent product. This field is for record keeping
only. It is not used for creating or managing customizable
products.

Part # Enter the part number of the product.

Part Number Method The drop-down menu displays the part number generation
methods that can be assigned to a product. This menu is
part of the smart part number feature.

Table 10. Fields in the Product Record

Field Description
Version 7.5.3 Product Administration Guide 51

Basic Product Administration

About the Product Record
Primary Vendor Select the primary vendor for the product.

The primary vendor must be specified to associate the
product with an opportunity in the Opportunity Product
Analysis Chart view.

Product Enter the name of the product. This is the only required
field. Products that will be added to the same user access
category must not have the same name.

Product Level Enter the numeric product level in the product hierarchy.
This field is for record keeping only and is not used to
create or manage the product class system.

Product Line Select the desired product line for the product.

Project Resource Click the box if the product is a service for a project. This
determines if the product is going to be available in the rate
list.

Qty Enter the number of items in the unit of measure. For
example, if the unit of measure is a case, Qty would be the
number of items in the case, such as 24.

Return if Defective Default: The box contains a check mark or X. This means
defective products should be returned by the customer
when a replacement part is shipped. Remove the check
mark if customers should not return defective parts.

Revision Enter the version of the product as it goes through
revisions.

Sales Product Click the box if the product is a sales product. Specifies if
the product can be sold. If this box is not selected, the
product will not display in the product picklist.

Serialized Click the box if movement of the product (a transaction)
requires an asset number or its corresponding serial
number. The default is no check mark or X (not serialized).

Table 10. Fields in the Product Record

Field Description
52 Product Administration Guide Version 7.5.3

Basic Product Administration

About the Product Record
Service Product Click the box if the product is a service. Only products
designated as service products will display when you click
the Service button on a quote.

Special pricing rules apply to service products. For more
information, see Pricing Administration Guide.

Ship Carrier Select the name of the shipping carrier for this product.

Shipping Via Select the shipping mode: air ground, and so on.

Status Select the status of the product: prototype, alpha, beta, and
so on.

Targeted Country Select the country where you want to sell this product.

Targeted Industry Select the industry you want to target with this product.

Targeted M/F Select the gender (male, female) of the buyers you want to
target with this product.

Targeted Max Age Enter the maximum age of buyers for this product.

Targeted Min Age Enter the minimum age of buyers for this product.

Targeted Postal Code Enter the postal code where you want to target sales of this
product.

Tax Subcomponent flag Put a check mark in this field to compute the tax on a
bundle by adding up the tax on its components. Useful
when the tax rate or computation method is not the same
for all the components in a bundle.

Put a check mark in this field to compute the tax on a
customizable product by adding up the tax on its
components. Useful when the tax rate or computation
method is not the same for all the components in a
customizable product.

Thumbnail Image File Name Select the thumbnail image file associated with the
product. You can also select the thumbnail image in
Product Administration > Product Images.

Tool Click the box if this product is a tool, such as one used by
field service engineers.

Table 10. Fields in the Product Record

Field Description
Version 7.5.3 Product Administration Guide 53

Basic Product Administration

About the Product Record
Track as Asset Put a check mark in this field if, when the product is
purchased, you want to track it as a customer asset. This
allows you to create quotes and orders based on the asset.

Type The drop-down menu displays product types: product,
service, training. You should select a Type if users will be
using the Spread Discount feature in Quotes. If you create
custom values in this list, you must configure the product
using Siebel Tools to make the Spread Discount feature
work. For more information about Spread Discount, see
Siebel Order Management Guide.

Unit of Measure Select the unit of measure by which the product is sold, for
example, Each.

Vendor Part # Enter the vendor’s part number for this product.

Vendor Site Displays the primary vendor’s location. This field is filled
automatically when you select a vendor.

Table 10. Fields in the Product Record

Field Description
54 Product Administration Guide Version 7.5.3

Basic Product Administration

About Verify
About Verify
When a creating a quote, agreement, or order, the user can verify that the products
listed are valid and that pricing is available. When the user clicks the Verify button,
the following things are checked:

■ The price list specified in the quote exists in the price list picklist.

■ The price list effective date starts before the quote effective date or ends after
the quote expire date. This check is not performed if quote start and end dates
are not specified.

■ All the products exist in the product picklist.

■ The product effective date starts before the quote start date or ends after the
quote expire date. This check is not performed if quote start and end dates are
not specified.

■ The product’s attributes and attribute values are current.

■ The list price for each product is correct. (The list price of each product is
computed and compared to the quote price.)

■ The discount amount on the quote does not exceed the quote’s total price.

■ The customizable product configuration is complete. An incomplete
configuration means that the user has not made required selections.

If Verify finds an error, the user is prompted to correct the problem.

Verify does not check whether customizable products are configured correctly or
whether a new version has been released since a customizable product was last
configured.
Version 7.5.3 Product Administration Guide 55

Basic Product Administration

Creating a Product Record
Creating a Product Record
You enter products into the Siebel system by creating product records. The product
record contains the product name and important information about the product,
such as its product line name or part number.

Once a product record is created, it cannot be deleted. To prevent a product record
from being displayed in picklists and dialog boxes, edit the product record to
deselect the Orderable, Sales Product, and Service Product check boxes. You can
also control display of the product by setting Effective Start and Effective End dates.

After creating a product record be sure to do the following things:

■ Associate the product with a price list.

■ Set up user access to the product. You do this by adding the product to a
category. Categories are how product visibility is controlled. You must add a
product to a category to make it selectable in a quote and to make it visible in
eSales Web pages.

To create a product record

1 Navigate to Product Administration.

2 Add a new record.

3 In More Info form, click the show more button.

The long version of the Products form appears.

4 In the form, select the product type (product, service, training).

5 Fill in other desired fields in the product record and save the record.
56 Product Administration Guide Version 7.5.3

Basic Product Administration

Editing a Product Record
Editing a Product Record
You can change the content of any of the fields in a product record. Changing the
class to which a product is assigned can change the attributes the product inherits.
If the product’s attributes change, you must revise all customizable products in
which the product is component. Verify that no configuration rules or scripts refer
to attributes the product no longer has.

Observe the following guidelines for editing product records.

■ Product. If you change the name of the product, you must revise all customizable
products in which it is a component. Also revise configuration rules, UI design,
and scripts that refer to the product.

■ Class Product. This field designates a customizable product as a template. All
products in the same product class inherit the customizable product’s structure.
Putting a check mark in this field or removing the check mark can greatly affect
all the products in the product class. See Chapter 11, “Release and Manage
Customizable Products” for more information about working with class
products. Class products are not orderable.

To edit a product record

1 Navigate to Product Administration.

2 Select the desired Product.

3 Click in the desired field in Products to edit the record, or edit the desired field
in the More Info form.

To see all the fields in the product definition click the show more button in More
Info.

4 Save the record.
Version 7.5.3 Product Administration Guide 57

Basic Product Administration

Copying a Product Record
Copying a Product Record
When you copy a product record, all parts of the product definition are included in
the copy.

If you copy a customizable product record, the copy includes all the relationships,
links, resources, scripts, rules, and user interface.

Use the Copy feature to create product templates. For example, your product line
has a two-tiered structure. The first tier contains a half-dozen products that have a
similar basic structure. The second tier contains products based on the structure of
the products in the first tier.

You could create the first tier by copying a template customizable product 6 times.
You would then modify each of the copies to form the first tier. These then become
the templates you would use to create the second tier.

To copy a product record

1 Navigate to Product Administration.

2 Select the product you want to copy.

3 From the menu, choose Copy Record.

A new record appears.

4 Enter a name for the copy in the Product Field.

5 Revise other fields, such as Part # as desired.

6 Save the record.
58 Product Administration Guide Version 7.5.3

Basic Product Administration

Deleting a Product Record
Deleting a Product Record
Once you have created a product record, it cannot be deleted. However, you can edit
all the fields in the record, including the product name.

If you change the product name, you must revise all the customizable product rules
and scripts in which it appears.
Version 7.5.3 Product Administration Guide 59

Basic Product Administration

Exporting Product Records for Display
Exporting Product Records for Display
You can export product records in several formats for display.

For example, you can download files in comma-separated format for display in
Microsoft Excel. The supported formats are as follows:

■ Tab delimited file

■ Comma separated file (csv format for use with spreadsheets like Excel)

■ HTML file

■ A file with delimiters you specify

You can request all the rows in the current query or only the highlighted rows. You
can request all columns or only the currently visible columns. Currently visible
columns are those you have selected for display in the Columns Displayed form.

When you export a customizable product or bundle for display, only the root-level
product record is exported. The structure of the customizable product or bundle is
not exported.

NOTE: This procedure exports only product records for use in other display mediums
such as spreadsheets. This procedure does not export the structure of a product or
any other information contained in records related to the product record. To export
product structures and other information in XML format for use by other
applications, see “Exporting and Importing Products” on page 79.

To export product records for display

1 Navigate to Product Administration.

2 Highlight the products you want to export.

3 Verify that the columns displayed are those you want to export.

To add or subtract columns, from the Products menu, choose Columns
Displayed.
60 Product Administration Guide Version 7.5.3

Basic Product Administration

Exporting Product Records for Display
4 To export the product records for display, from the Products menu, choose
“Export...”

Do not click Export Product. This will export the product information in XML
format for use by other applications.

The File Download dialog box appears.

5 Follow the instructions in the File Download dialog box to save the file.
Version 7.5.3 Product Administration Guide 61

Basic Product Administration

Associating a Product with a Product Class
Associating a Product with a Product Class
You associate a product with a product class by adding a class name to the product
record.

To associate a product with a product class

1 Navigate to Product Administration.

2 Select the desired product.

3 Click in the Class field and open the dialog box.

4 Select the desired product class.

The product class appears in the Class field.

5 Save the record.
62 Product Administration Guide Version 7.5.3

Basic Product Administration

Associating Products with Price Lists
Associating Products with Price Lists
You associate products with price lists in Product Administration > Price Lists.
Associating a product with a price list adds a line item for that product to the
selected price list.

For more information on price lists, see Pricing Administration Guide or the
Applications Administration Guide.

To associate a product with a price list

1 Navigate to Product Administration.

2 Select the desired product.

3 From the More Info Show menu, choose Price Lists.

Price lists associated with the product appear.

4 Add a new record.

The Add Price Lists picklist appears.

5 Select the desired price list.

The price list appears under Price List.

6 Enter the list price for the item.

7 Complete the remaining fields as needed.

8 Save the record.
Version 7.5.3 Product Administration Guide 63

Basic Product Administration

Setting Up User Access
Setting Up User Access
User access means whether or not the user can select a product for a quote or
whether the user sees the catalog or category containing the product in an eSales
Web page.

The catalog administrator creates product catalogs, which contain product
categories. The catalog administrator sets up access controls by assigning access
groups to the catalog and to the categories.

The product administrator sets up user access to products, by assigning products to
catalogs and categories. You can assign a product to more than one category, and
thus more than one catalog. If the user belongs to a category’s access group, a
catalog’s access group, or both, then the user can see the category in eSales Web
pages. The user can also add the category’s products to quotes.

Until you assign a product to at least one category, the product does not display in
the following places:

■ Pick Product dialog box used to add products to a quote. This means the product
cannot be added to a quote.

■ eSales Web pages. This means users cannot purchase the product.

■ Products > All Products Across Catalogs

When creating customizable products, it is important that users have access
permission for the customizable product and all its components. You accomplish
this by first assigning the customizable product and its components to the same
product category or to categories that have the same access groups. Then you assign
users who will configure the product to these access groups. If the users in the
access groups differ across components, these users will not be able to configure
the customizable product correctly.

The recommended method for assigning users to access groups is to assign the users
to organizations and then assign the organizations to the access groups.
64 Product Administration Guide Version 7.5.3

Basic Product Administration

Setting Up User Access
To set up user access

1 Navigate to Product Administration.

2 Select the desired product.

3 From the More Info Show menu, choose Category.

4 Click New to add a new category record.

A dialog box appears that lists all the currently defined categories.

5 Select a category from the dialog box.

6 Add additional categories as needed by creating new records.
Version 7.5.3 Product Administration Guide 65

Basic Product Administration

Setting Start and End Dates for Display of a Product
Setting Start and End Dates for Display of a Product
You can set the start date and end date for display of a product. This controls the
display of the product in price lists and therefore whether the product can be added
to a quote or can be selected for purchase on a Web site.

To control display of a product, you set the Effective Start and/or Effective End
dates. They govern display of a product as follows:

■ If you specify an Effective Start date and no Effective End date, the product
displays on the Effective Start date and will continue to display indefinitely.

■ If you specify an Effective End date and no Effective Start date, the product
displays immediately after you create it, and it stops display on the Effective End
date.

■ If you specify both an Effective Start Date and an Effective End date, the product
display begins on the Effective Start date and stops on the Effective End date.

The Effective Start and Effective End date fields are fields in the product record. To
view these fields, query for the desired record in Product Administration >Products
and then select More Info. In the More Info display, click the show more button to
view all the fields in the product definition.
66 Product Administration Guide Version 7.5.3

Basic Product Administration

Creating Product Line Names
Creating Product Line Names
You create product line names in Application Administration > Product Lines.

You add products to a product line by selecting a product line name in the product
record. Navigate to Product Administration > Products to view product records.

To create a product line name

1 Navigate to Application Administration > Product Lines.

2 In Product Lines, add a new record.

3 Fill in the following fields.

Product Line. Required.

Product Line Manager. Allows you to associate product line managers and other
key personnel with the product line.

Products. Allows you to associate products with the product line. Products can
also be associated with product lines on the Products page.

Description. Optional.

4 Save the record.
Version 7.5.3 Product Administration Guide 67

Basic Product Administration

Creating Product Features
Creating Product Features
Products frequently share common features, such as size or data transfer rate. You
create a list of these product features in Application Administration > Product
Features. The features you create are added to a features picklist.

You assign features to products in the Application Administration > Product Key
Features by selecting a product and then choosing the desired features from the
features picklist.

Product features and product attributes are similar concepts. They both describe
characteristics of the product that are of interest to customers. A product feature
describes important characteristics of a product, particularly those that differentiate
the product. For example, you sell a type of office chair that has aluminum
construction. Your competitors sell the same office chair with steel construction.
Aluminum construction is an important feature of the office chair because it
differentiates the chair from your competitors. It is also a static feature and is not
configurable. All of your customers who purchase this office chair get aluminum
construction.

An attribute is a characteristic of a product that is configurable when creating a
quote or purchasing the product. For example, the office chair fabric comes in one
of three colors. Color is an attribute of the office chair because the user can choose
the color at the time of purchase.

To create product features

1 Navigate to Application Administration > Product Features.

2 In Product Features, add a new record.

3 Fill in the following fields.

Feature. The name of the product feature.

Product Line. Allows you to associate a product line with the product feature.

Description. A brief description of the feature.

4 Save the record.
68 Product Administration Guide Version 7.5.3

Basic Product Administration

Assigning Key Features to a Product
Assigning Key Features to a Product
Product key features are those features that you have defined in Applications
Administration > Product Features. The system automatically adds these features
to a features picklist so that you can assign them to individual products.

To assign a key feature to a product

1 Navigate to Product Administration.

2 Select the product to which you want to assign a key feature.

3 From the More Info Show menu, choose Product Key Features.

The Product Key features list appears.

4 In Product Key Features, add a new record.

5 Enter the feature description, and save the record.

The feature appears in Product Key Features.

6 Repeat this procedure to add additional key features.
Version 7.5.3 Product Administration Guide 69

Basic Product Administration

Viewing Product Attributes
Viewing Product Attributes
If a product has been assigned to a product class, it inherits all the attributes defined
on the class. Attributes are configurable characteristics of a product. When the user
purchases the product, they select the desired value for the attribute.

For example, you create a product class called Computer Chassis. For this class,
define an attribute called construction and give it two values, aluminum and steel.
All the products you assign to this class inherit this attribute. When the customer
purchases these products, they can choose either aluminum or steel construction.

You define product classes and attributes in Application Administration, Class
Administration. You assign products to classes by choosing a product class in the
product record.

To view a product’s attributes

1 Navigate to Product Administration.

2 Select the desired product.

3 From the More Info Show menu, choose Dynamic Attributes.

The Dynamic Attributes list appears and lists all the product’s attributes.
70 Product Administration Guide Version 7.5.3

Basic Product Administration

Defining Related Products
Defining Related Products
You can define several types of relationships between products. This causes the
related products to appear together in other parts of the Siebel application.

For example, if you define a substitute product in Related Products, the substitute
product displays in the Product Field Service Details view. If you define a substitute
product in the in the Product Field Service Details view, it displays automatically as
a substitute product in the Related Products view.

You can define the following types of relationships:

■ Bundled

■ Component

■ Cross-Promoted

■ Integrated

■ Recommended Service

■ Service

■ Substitute

To define related products

1 Navigate to Product Administration.

2 Select the product with which you want to associate related products.

3 From the More Info Show menu, choose Related Products.

The Related Products list appears.

4 In Related Products, add a new record.

The Add Internal Products dialog box appears.

5 Select the desired product.

The product appears in Related Products.
Version 7.5.3 Product Administration Guide 71

Basic Product Administration

Defining Related Products
6 To change the relationship of the related product, click in the Relation field and
choose the desired relationship from the drop-down menu.

7 Save the record.
72 Product Administration Guide Version 7.5.3

Basic Product Administration

Designating Equivalent Products
Designating Equivalent Products
For each product you define, you can designate one or more other products as
equivalent products. You can then display these products and compare their product
features. You can also assign a ranking to the equivalent products that reflects their
degree of equivalence.

Equivalent products differ from substitute products in that they do not
automatically display in the Field Service Details view.

You can designate one of the equivalent products as the primary equivalent product.
The equivalent primary product is the one displayed in the Equivalent Products field
in the product definition and other places where the display allows only one
equivalent product to be shown.

To designate equivalent products

1 Navigate to Product Administration.

2 Select the desired product.

3 In the product form, click the show more button to expand the form.

Expanding the form displays the Equivalent Product field.

4 Click the select button in the Equivalent Product field.

A dialog box appears. It lists all the equivalent products you have defined for
this product.

5 Click New to add an equivalent product.

The dialog box displays a query form.

6 Query for the desired product and click OK.

The product appears in the Equivalent Products list in the dialog box.

7 Click in the Primary field to select the desired primary equivalent product.

8 Click OK to exit the dialog box.

The primary equivalent product appears in the Equivalent Product field in the
product record.
Version 7.5.3 Product Administration Guide 73

Basic Product Administration

Comparing Features of Equivalent Products
Comparing Features of Equivalent Products
You compare equivalent products by displaying all the equivalent products for a
product and then selecting which features you want to use for the comparison. You
can then rank the equivalent products.

To compare features of equivalent products

1 Navigate to Product Administration.

2 Select the desired product.

3 From the More Info Show menu, choose Product Comparison.

The Product Comparison list appears. Equivalent products are displayed in the
columns.

4 In Product Comparison, add a new record.

A dialog appears that contains all the product feature definitions.

5 Select the desired product from the dialog box.

The feature is added to the Product Comparison list.

6 Repeat the steps above until all the desired features have been added.

7 Assign a ranking to the equivalent products, if desired.

A rank of 1 means a product has the highest degree of equivalence relative to
the other equivalent products.

Creating a Product Auction
If you have Siebel’s auction management product, you can create auctions for
products you have created. The Create Auction button is located in many of the
major tabs in Product Administration, for example the More Info form in the
Products list.

For information on creating and managing auctions see Siebel eAuction Guide.
74 Product Administration Guide Version 7.5.3

Basic Product Administration

Creating Product Entitlements
Creating Product Entitlements
Entitlements refer to the services that come with a product. They are created on the
Product Entitlements page under Product Administration.

When you create a product entitlement, you can designate the entitlement as
applicable to “Agree Line Item Products” and/or “Entitlement Template Products.”
These are for Field Service use. For more information, see Siebel Field Service Guide.

To create product entitlements

1 Navigate to Product Administration.

2 Select a product for which to create entitlements.

3 From the More Info Show menu, choose Product Entitlements.

The Product Entitlements list appears.

4 In Product Entitlements, add a new record.

5 Click the select button in the Name field and select an Entitlement template from
the Entitlement Templates dialog box.

The entitlement template record is added to the Product Entitlements list.

6 Click in the Agree Line Item or Entitlement Template Products field to set these
features.

A check mark appears to indicate these features are set.
Version 7.5.3 Product Administration Guide 75

Basic Product Administration

Associating Literature with Products
Associating Literature with Products
You associate literature with products in Product Administration > Product
Literature. Product literature can be such things as product bulletins, brochures,
competitive analyses, and image files.

NOTE: When you choose literature to associate with a product, only literature of the
type Sales Tool is displayed. When you create literature to be associated with
products in this way, be sure to choose Sales Tool in the Type field. For more
information about creating literature, see Applications Administration Guide.

To associate literature with a product

1 Navigate to Product Administration.

2 Select a product with which to associate literature.

3 From the More Info Show menu, choose Product Literature.

Literature items for the product appear.

4 In Product Literature, add a New Record.

The Add Literature dialog box appears.

5 Select the desired literature items.

The literature displays in the Product Literature list.
76 Product Administration Guide Version 7.5.3

Basic Product Administration

Adding Product News
Adding Product News
Product news is information about a product, typically FAQs and service bulletins.
You associate news with products in Product Administration > Product News.

Product news is not the same as product literature. Literature is associated with
products in the Product Literature view under Product Administration.

To add a news item to a product

1 Navigate to Product Administration.

2 Select a product to which you want to add a news item.

3 From the More Info Show menu, choose Product News.

News items for the product appear.

4 In Product News, add a new record.

The Pick Product News dialog box appears. To read the first few lines of a news
item in the dialog box, place your cursor over it.

5 Select the desired news item.

The news item appears under Product News with its title under the Solution field
and the solution type set to Product News.

6 Edit the record as needed by clicking in the desired field.
Version 7.5.3 Product Administration Guide 77

Basic Product Administration

Associating Images with Products
Associating Images with Products
You can associate both a thumbnail image and a regular image with a product. You
can select image files for a product in either Product Administration > Products or
in Product Administration > Product Images.

The following procedure describes how to associate images with a product in
Product Administration > Product Images.

To associate images with a product

1 Navigate to Product Administration.

2 From the More Info Show menu, choose Product Images.

The Product Images form appears.

3 In the form, click the Image File Name field and select an image from the dialog
box.

4 In the form, click the Thumbnail Image File Name field and select an image from
the dialog box.

Creating Product Field Service Details
You provide information about how to replace a defective part with substitute parts
in Product Administration > Product Field Service Details.

Most field service information is entered when creating products in the Products
view, but Inventory Options and Substitute Products are managed in the Product
Field Service Details view.

For more information on these, see Siebel Field Service Guide.
78 Product Administration Guide Version 7.5.3

Basic Product Administration

Creating Product Measurements
Creating Product Measurements
The Product Measurements page under Product Administration is used to define
which measurements field service personnel should make and what the parameters
of those measurements should be.

For more information, see Siebel Field Service Guide.

Exporting and Importing Products
You can export product definitions to other databases and import them from other
databases. When you export a file, its definition is stored in an XML file.

Exports
When you export a simple product the following information is exported:

■ Product name

■ Vendor name

■ Part number

■ Class name

■ Orderable (Yes or No)

No other fields in the product record are exported.

When you export a customizable product, the following parts are included in the
export besides those above:
Version 7.5.3 Product Administration Guide 79

Basic Product Administration

Exporting and Importing Products
■ For each component in the customizable product, the class system path to the
component. This includes the class system path to the customizable product
itself.

The class system path is the list of product classes, starting at the root level, that
are required to specify the exact location of a product in the class system. For
example, a customizable product relationship contains all the products from the
product class Hard Drives. The Hard Drives class has the following parent
classes: Media Drives, and Computers. When you export the customizable
product, all three product classes are exported.

Other classes in this part of the product class system that do not contain
components in the customizable product are not exported. For example,
Computers contains two subclasses, Media Drives and Game Devices. In the
example, there are no game devices in the customizable product. When you
export the customizable product, the Media Drives class is included in the
export, but the Game Devices class is not.

On import, the exported product classes are added to the import database
product class system, if they do not already exist.

■ Attribute definitions for all exported product classes.

■ Relationship definitions

■ Rules

■ Resources

■ Links

■ UI definition in the Product UI Designer

■ UI property definitions in the User Interface Property Designer

■ Scripts created using the Script Designer

The following things are not exported:

■ Pricing models for the customizable product and its components

■ Customized Web templates for UI property definitions

■ Image files or HTML files referred to in UI property definitions
80 Product Administration Guide Version 7.5.3

Basic Product Administration

Exporting and Importing Products
You can export a customizable product from either Product Administration >
Products or from Product Administration > Customizable Products > Versions. If
you export a customizable product from Versions, you can choose which released
version to export. You can also export the work space. If you export a customizable
product from Products, the most recently released version of the customizable
product is exported.

NOTE: The Products menu contains both an Export... and an Export Product entry.
To export a product, you must select Export Product. The Export... option is for
exporting the contents of the Products list in spreadsheet or HTML format.

Customizable Products
Complete the following process to export a customizable product from database A
and import it into database B:

1 Export the class structure for the customizable product and its component
products from database A.

2 Import the class structure into database B

3 Compare the updated class structure in database B with database A.

4 Export the customizable product from database A.

5 Import the customizable product into database B.

6 Verify that the customizable product’s attributes and structure are correct.

To export a product

1 Navigate to Product Administration.

2 Select the product you want to export.

3 From the Products menu, choose Export Product (not Export...).

The Product Export dialog box appears.
Version 7.5.3 Product Administration Guide 81

Basic Product Administration

Exporting and Importing Products
4 To export a simple product, click Export Single Product.

A File Download dialog box appears.

If you click Export Single Product for a customizable product, only the product
record is exported.

You can also use this option to export a customizable product record but not the
product’s structure.

5 To export a customizable product, click Export full Structure.

A File Download dialog box appears.

6 Select Save this file to disk.

7 Browse to the location where you want to store the XML file, specify the file
name, and then click Save.

The system creates an XML file containing the product definition and stores it at
the location you specified.

8 Close the File Download dialog box.

Imports
The system uses the product name and its vendor name (if any) to uniquely identify
it. An import will fail if the imported product specifies a vendor name that does not
exist in the import database.

On an import, a product that has a vendor specified will overwrite an existing
product in the import database under the following conditions:

■ The product vendor exists in the import database.

■ The product in the import database has the same name and same vendor.

■ The product in the import database has the same name and no vendor.

On an import, a product that has no vendor specified will overwrite an existing
product in the import database only if the existing product has the same name and
no vendor specified.
82 Product Administration Guide Version 7.5.3

Basic Product Administration

Exporting and Importing Products
You can import a customizable product into a database where the database does not
contain either the component products or the related product class hierarchy. When
you validate the customizable product, its component products and their attributes
do not display. Also the attributes for the customizable product itself do not display.

To import a product

1 Navigate to Product Administration.

2 From the Products menu, choose Import Product.

The Product Import dialog box appears.

3 Click Browse, locate the XML file containing the product you want to import,
and then click Open.

The XML file displays in the Product Import dialog box.

4 In the Product Import dialog box, click Import.

The product is imported into the database.

5 In Products, query for the imported product.

Review the product record and verify it is accurate. Change the class name or
other information as needed.

6 If you imported a customizable product, refresh its work space and then click
Validate.

Verify that the component products, resources, links, and attributes are correct.
Also verify that the user interface is correct.

7 Set up pricing for the product as needed.
Version 7.5.3 Product Administration Guide 83

Basic Product Administration

Obtaining a Product List Report
Obtaining a Product List Report
You can obtain a report that lists all the products in the product table. For each
product, the report shows the following information:

■ Product name

■ Part number

■ Description

■ Unit of measure

■ Vendor

■ Product line

■ Effective start date

■ Effective end date

The product list displays in the Siebel Report Viewer. You can print the report or
create an email attachment.

TIP: The on-screen display of the report typically lists more products on each page
than the Products list. Use the report to scan through the product table.

To obtain a product list report

1 Navigate to Product Administration.

2 In the application View menu, select Reports.

3 In the Reports dialog box, select Admin Product List.

4 Click Run.

The Siebel Report Viewer appears and displays the Admin Product List report.

5 Print the report or create an email attachment as desired.
84 Product Administration Guide Version 7.5.3

Product Classes 5
This chapter describes how to create product classes and class hierarchies. Classes
provide a central location for defining product attributes. Products inherit the
attributes of the classes to which they belong.

This chapter covers the following topics:

■ “About Classes” on page 86

■ “Defining a Class” on page 88

■ “Creating a Class Hierarchy” on page 89

■ “Editing a Class Definition” on page 90

■ “Deleting a Class” on page 92

■ “Exporting or Importing Classes” on page 93

■ “Locating a Class” on page 96
Version 7.5.3 Product Administration Guide 85

Product Classes

About Classes
About Classes
A product or service can be thought of as a collection of physical features and
characteristics. Color, size, manufacturer, capacity, voltage, license type, expiration
period, interest rate, and height are just a few of these. Those characteristics needed
to describe your product meaningfully for your customers are called product
attributes.

Classes provide a way to organize and administer product attributes. The key to
understanding classes is inheritance. Attributes defined at the class level are
automatically inherited by all the class members. When you assign a product to a
class, it automatically inherits all the attributes defined for that class. Classes let you
define what attributes are maintained for products, propagate those attributes to the
products, and maintain those attributes in a consistent fashion.

When you define an attribute for a class, you specify both the attribute name and
the range of values that the attribute can have. This range of values is called the
attribute domain. For example, for a class called blanket, you define an attribute
called color and define its domain to be green, red, and blue. Every blanket you
assign to this class inherits the attribute color and its possible values.

Subclasses are classes that have a parent class. Subclasses have the following
characteristics:

■ Subclasses can be nested as deeply as needed. This forms the class hierarchy.

■ Subclasses inherit the attributes of their parent class. As you nest downward,
each subclass inherits the entire set of attributes from the classes above it.

■ You can modify the definitions of inherited attributes. If you do so, this breaks
inheritance from the parent class. Changes to attribute definitions in the parent
class are not inherited by modified attributes in subclasses.

The class hierarchy is a mechanism for organizing and managing product attributes.
It is separate from the mechanisms you use to organize products themselves, such
as product lines and product categories.
86 Product Administration Guide Version 7.5.3

Product Classes

About Classes
For example, you have the class hierarchy in Figure 1. The product class called Class
has two attributes defined on it, Attribute 1 and Attribute 2. Class also has a
subclass called Subclass. Subclass has Attribute 3 defined on it and contains one
product, called Product C.

Subclass inherits Attribute 1 and Attribute 2. It also has an attribute definition of its
own, Attribute 3. Product C, assigned to Subclass, inherits all three attribute
definitions.

When you define a customizable product, you define named parts called
relationships. Then you add the contents of classes to them. Adding a small number
of products to a relationship from a large product class requires that the entire class
be searched each time the customizable product is instantiated. This can adversely
affect performance. Consider defining the class system to avoid this.

Figure 1. Class Hierarchy
Version 7.5.3 Product Administration Guide 87

Product Classes

Defining a Class
In Application Administration > Class Administration, you can create classes,
organize them into hierarchies, and define attributes for them.

A class record in Application Administration > Class Administration has the
following fields:

■ Name. This is the class name.

■ Display Name. This is the name that is seen by the customer. If left blank, the
name in the Name field is displayed to customers.

■ Parent Class Name. If the class is a subclass, this field lists the parent class name.

■ Searchable. Put a check mark in this field to make the class name available for
parametric search.

Defining a Class
When you define a class, it is added to the list of all available classes. The name
you choose must be unique. To create a subclass, specify a parent class in the
definition.

To define a class

1 Navigate to Application Administration > Class Administration.

2 In Classes, add a new record.

3 Fill out the fields in the record and save the record.

To create a subclass, select a parent class in the Parent Class field.

The new class definition appears in the Classes list. It also appears in the Class
Explorer view.
88 Product Administration Guide Version 7.5.3

Product Classes

Creating a Class Hierarchy
Creating a Class Hierarchy
A class hierarchy consists of classes and subclasses. A subclass is a class that has a
parent class. In other words, subclasses are classes within classes. There is no
limitation on how deeply you can nest subclasses.

You create and manage class hierarchies in Application Administration > Class
Administration. You do this by specifying a parent class when defining a class.

You can view the hierarchy in Application Administration > Class Explorer. This
view contains a tree display that shows the hierarchy in a manner very similar to
the Microsoft Windows file Explorer. You can expand or collapse classes and
subclasses as needed to view the hierarchy. The portion of the hierarchy in which
you are located displays in the Classes list.

When you run a query on the Classes list, it only searches the currently highlighted
level. For example, if you are at the class level, the query searches only the classes
at that level. If you are at the first subclass level, the query only searches the list of
first-level subclasses belonging to the parent class. Search results are displayed in
the Classes list.

To create a class hierarchy

1 Navigate to Application Administration > Class Administration.

2 In the Classes list, select the desired class.

3 Click in the Parent Class field, and select a class from the dialog box.

4 In the Show menu, choose Class Explorer.

The Class Explorer appears and shows a tree display of product classes.

5 Locate and expand the parent class.

Verify that the subclass displays correctly beneath the parent class.
Version 7.5.3 Product Administration Guide 89

Product Classes

Editing a Class Definition
Editing a Class Definition
Editing a class definition record does not change the attributes defined on the class.
However, if you change the parent class name of a subclass to another already-
existing class name, this changes the location of the subclass in the class hierarchy
and can change which attributes the products in the subclass inherit.

For example, a subclass SC1 has parent class PC1, which has three attributes
defined on it A1, A2, A3. This means SC1 inherits attributes A1, A2, A3. Class PC2
has attributes A4, A5, A6 defined on it. If you change the parent class of subclass
SC1 from PC1 to PC2, this changes the attributes inherited by SC1 to A4, A5, A6.
You have moved SC1 from being a subclass of PC1 to being a subclass of PC2.

If you are changing the parent-class name for class, do the following procedure first.

To prepare a product class for a parent-class name change

1 Run a query in the Products list to identify all the products assigned to the class.

2 Analyze how changing the parent class name of the class will affect the
attributes inherited by these products.

3 Identify all pricing rules defined for the attributes inherited by the class.

Note which rules must be changed to reflect the new parent class name and any
new attributes.

4 Identify all configuration rules that refer to inherited attributes of the class.

Note which rules must be changed to reflect the new parent class name and any
new attributes.

If you are changing the class name, do the following procedure first.

To prepare a product class for name change

1 Identify all pricing rules defined for the attributes inherited by the class.

Note which rules must be changed to reflect the new parent class name and any
new attributes.
90 Product Administration Guide Version 7.5.3

Product Classes

Editing a Class Definition
2 Identify all configuration rules that refer to inherited attributes of the class.

Note which rules must be changed to reflect the new parent class name and any
new attributes.

3 Identify all customizable product relationships of type Class and Dynamic Class
that have been defined using the class.

Note which relationships need to be redefined to reflect the new class name.

4 Identify any customizable product UI properties defined for the class.

Note any UI property definitions that must be revised to reflect the new class
name.

Before editing a class definition, make sure you have fully analyzed the impact on
attribute inheritance.

Also make sure you have analyzed the impact on pricing rules, configuration rules,
and UI design.

To edit a class definition

1 If you are changing the parent class name of a class, verify that all the steps in
preparing the class for a parent-class name change are complete.

2 If you are changing a class name, verify that all the steps in preparing a class for
name change are complete.

3 Navigate to Application Administration > Class Administration.

4 In Classes, select the desired record.

5 Click in the desired field to edit the record.

6 Save the record.

7 Modify pricing rules, configuration rules, relationship definitions, and UI
property definitions as needed.

8 If you changed the parent class name of a class, log out and log in again in order
to see the new class name in subclass records.
Version 7.5.3 Product Administration Guide 91

Product Classes

Deleting a Class
Deleting a Class
Deleting a class deletes attributes defined on the class. Deleting a class also deletes
all subclasses of the class. Deleting a class does not delete the products assigned to
the class or its subclasses.

For example, product A belongs to class B. There are six attributes defined on
class B. This means product A has six attributes defined for it. If class B is deleted,
product A no longer has attributes defined for it.

To prepare a product class for deletion

1 Run a query in the Products list to identify all the products assigned to the class.

2 Delete the class from these product records.

If there are attributes defined on the class, analyze the effect of removing these
attributes from the products.

3 Verify that no pricing rules are defined for the class or attributes defined on the
class.

4 Verify that no configuration rules refer to the class or to attributes defined on the
class.

5 Verify that no customizable product relationships of type Class or Dynamic Class
have been defined using the class.

6 Review the UI design for all customizable products containing the class.

7 Redefine groups as needed to remove the class from groups.

Before deleting a class definition, make sure you have fully analyzed the impact on
attribute inheritance.

Also make sure you have analyzed the impact on pricing rules, configuration rules,
and UI design.
92 Product Administration Guide Version 7.5.3

Product Classes

Exporting or Importing Classes
To delete a class definition

1 Verify that all steps in preparing a product class for deletion are complete.

2 Navigate to Application Administration > Class Administration.

The Class Administration view appears.

3 Select the desired the class.

4 From the Classes menu, choose Delete Record.

5 Click OK when asked to confirm you want to delete the record.

Exporting or Importing Classes
You can export a class or the whole class structure to another database. When you
export a class, the following parts are included in the export:

■ The parent class of the class you are exporting plus all the subclasses of the
parent class. When you export a class, the export contains not just the class you
selected, but the portion of the class structure to which it belongs.

■ Attribute definitions for the classes and all subclasses.

■ List of values definitions associated with attribute definitions. List of values are
exported in the current language only.

The products in the classes are not exported.

When you export the whole class structure, all classes and subclasses are exported,
along with the items listed above. Products are not exported.

When you export a class or the class structure, an XML file is created in a location
you specify. The XML file contains the exported class structure. When you import
this class structure, the system reads the XML file and synchronizes the class system
of the import database to the XML file. The XML file takes precedence, and the class
system is modified to reflect the portion of the class system in the XML file.

For example, in the XML file the subclass shoes, has the parent class footwear. In
the import database the subclass shoes has the parent class Wardrobe. After
importing the XML file, the subclass shoes will have the parent class footwear.
Version 7.5.3 Product Administration Guide 93

Product Classes

Exporting or Importing Classes
Use the following process to update the class structure in database B with changes
from database A.

1 Back up database B.

2 Export the desired classes from database A.

3 Import the classes to database B.

4 Compare the updated class structure and list of values definitions in database B
with database A.

5 Verify that components in affected customizable products in database B have the
correct attributes.

Use the following process to update both the products and class structure in
database B with changes from database A:

1 Use the process above to update the class structure in database B.

2 Export the products from database A, except customizable products.

3 Import the products into database B. Verify that the products are in the correct
classes and inherit the correct attributes.

4 Export customizable products from database A.

5 Import customizable products to database B. For each customizable product,
verify that the component products are present and have the correct attributes.

To export a class or the whole class structure

1 Review the processes above.

2 Navigate to Application Administration > Class Administration.

The Class Administration view appears.

3 Select the class you want to export.

4 From the Classes menu, choose Export Class.

The Class Export dialog box appears.
94 Product Administration Guide Version 7.5.3

Product Classes

Exporting or Importing Classes
5 To export the class click Export in the Class Export dialog box. To export the
whole class system, click Export All.

A Save As dialog box appears. If the database is remote, a download dialog box
also appears.

6 Browse to the location where you want to store the file, specify the file name,
and then click Save.

The system creates an XML file containing the exported class structure and
stores it at the location you specified.

7 Close the Class Export dialog box.

When you import a class structure, you must import the entire contents of the
export file. You cannot choose which classes in the file to import.

To import a class structure

1 Review the processes above.

2 Navigate to Application Administration > Class Administration.

3 From the Classes menu, choose Import Class.

The Class Import dialog box appears.

4 Click Browse, locate the XML file containing the class structure you want to
import, and then click Open.

5 In the Class Import dialog box, click Import.

The new class structure is imported into the database.

6 From the Show drop-down list, choose Class Explorer.

7 In the Class Explorer tree display, expand classes as needed to verify that the
imported classes are correctly placed.
Version 7.5.3 Product Administration Guide 95

Product Classes

Locating a Class
Locating a Class
The Class Explorer view includes a tree display that you can expand or collapse to
display the hierarchy of product classes. Use the Class Explorer to locate classes and
to verify the class hierarchy after you have edited it.

To locate a class

1 Navigate to Application Administration > Class Explorer.

The Class Explorer view appears. Classes display in a tree and in the Classes list.

2 Click a class name in the tree to display its subclasses.

3 To query for a class, click Query in the Classes list.

Results appear in both the tree and in the Classes list.
96 Product Administration Guide Version 7.5.3

Product Attributes 6
You can define attributes for a wide variety of items, such as products, literature,
and so on. This chapter focuses on doing so with products and explains how to
define attributes, provide attributes to products, and set attribute values for
products. Before defining attributes, you must create a hierarchy of product classes
and subclasses, as described in Chapter 5, “Product Classes.”

This chapter covers the following topics:

■ “About Product Attributes” on page 98

■ “About Lists of Values (LOV)” on page 103

■ “About Hidden Attributes” on page 104

■ “Defining an Attribute with a List of Values Domain” on page 105

■ “Defining an Attribute with a Range of Values Domain” on page 106

■ “Editing an Attribute Definition” on page 106

■ “Deleting an Attribute Definition” on page 109

■ “Customizing an Inherited Attribute Domain” on page 110

■ “Associating Attributes with a Product” on page 112

■ “Viewing a Product’s Attributes” on page 113

■ “Changing the Hidden or Required Settings for a Product” on page 113

■ “Setting an Attribute Value for a Product” on page 114

■ “Creating a List of Values (LOV) for a Product Attribute” on page 116

■ “Editing a List of Values Definition for a Product Attribute” on page 118

■ “Deleting a List of Values for a Product Attribute” on page 119
Version 7.5.3 Product Administration Guide 97

Product Attributes

About Product Attributes
About Product Attributes
Product attributes, also called dynamic attributes, are customer-facing, configurable
characteristics of a product. For example, you sell a product in three colors. As part
of creating this product, you would define an attribute called Color and assign it the
three colors. As part of purchasing the product, customers would choose one of the
colors.

Components of a product are not attributes. For example, you sell a desktop
computer. Customers can select one of several types of CD-ROMs when configuring
this product. Having a CD-ROM is a characteristic of this product, but the CD-ROMs
are components, not attributes.

Product attributes and product features are similar concepts. They both describe
characteristics of the product that are of interest to customers. However, feature
definitions do not create configurability. For example, you could define a feature:
“Comes in three colors, red, green, and blue.” This feature definition can be
displayed to the user as a message only. It does not create the mechanism for
choosing the color. To create that, you must define a product attribute and assign it
the values red, green, and blue.

A product attribute has two parts: the name of the attribute and the value of the
attribute. For example, you could define an attribute with the name Color and the
values red, green, or blue. The allowable values for an attribute are called the
attribute domain. In a configuration session, the user can select only one value for
an attribute.

You can define attributes directly in the administration interface. You do not need
to create database table extensions or new field definitions in Siebel Tools.

Attributes are implemented in a way that allows users to select the desired attribute
value when they configure the product. For example, when a user creates a quote,
the Color attribute displays in the interface, and the user can select the desired
value.
98 Product Administration Guide Version 7.5.3

Product Attributes

About Product Attributes
Classes are the way you organize and administer product attributes. The key to
understanding classes is inheritance. Attributes defined at the class level are
automatically inherited by all the class members. When you assign a product to a
class, it automatically inherits all the attributes defined for that class. Classes let you
define what attributes are maintained for products, propagate those attributes to the
products, and maintain those attributes in a consistent fashion.

You can define attributes at the class or subclass level. You cannot define an
attribute at the product level. At the product level, users can only select the
attribute’s value.

Attribute Domains
When you define an attribute, you must define the domain of allowable values for
the attribute. There are two methods for defining the domain:

■ List of values. A list of values domain is a list of the specific values the attribute
can have. When the user configures a product, they select one of the values from
a drop-down menu. For example, the attribute Color could have the list of values
red, green, or blue.

A special case of a list of values domain is a list of values that contains only one
value. This is useful for creating attributes that you use for managing resources.
For example, you could create an attribute called slots-consumed for a class of
computer expansion cards. Typically, each card requires one expansion slot. You
would create a list of values containing only the number 1, and would set 1 as
the default value. You could then write rules that subtract the value of this
attribute from a resource called slots-available each time the user picks an
expansion card.

Parametric search can be used to search for attribute values.

Attribute-based pricing can only use attribute values that have been defined as
elements in a list of values (LOV). Attribute-based pricing requires the discrete
values that appear in an LOV.
Version 7.5.3 Product Administration Guide 99

Product Attributes

About Product Attributes
■ Range of values. A range of values is defined by upper and lower limits. Rather
than selecting a value, the user enters a value within the range. For example, the
attribute Length could have the range 1 inch to 60 inches. When the user
configures the product, they would enter a value between 1 and 60 in the field
provided.

Parametric search cannot be used to search for attribute values.

Attributes that have a range of values domain cannot be used for attribute-based
pricing.

■ Business Component (Buscomp) field. This domain is defined by a field in a
business component. For example, you can define an attribute called Account
and associate it with the Name field in the Account business component. When
users configure a product, they see an attribute called Account. They can then
open a picklist and select the desired account. This domain type can be used
only for products that are configured in eConfigurator selection pages.

Parametric search cannot be used to search for attribute values.

Attributes that have a buscomp field domain cannot be used for attribute-based
pricing.

Domain Data Types
The data type you specify in the attribute definition determines how the system
interprets the values in the domain. For example, you define an attribute with a list
of values domain. You define the attribute values to be 1, 5, 10. To write
configuration rules that perform numeric computations using these values, you
must select the data type Integer or Number when defining the attribute.

The domain of an attribute can be one of the following data types:

■ Boolean. Use this data type when the user’s input is true or false, yes or no. If
you specify the Integer data type for these inputs, the system assigns 1 for True
or Yes inputs. False and No are assigned 0.

■ Number. The attribute value can be any positive or negative real number. In
Boolean expressions, numbers greater than 0 are interpreted as true. Omit
commas when specifying the domain. For example, enter 10,000 as 10000.
100 Product Administration Guide Version 7.5.3

Product Attributes

About Product Attributes
■ Integer. The attribute value can be any positive or negative whole number. If a
computation results in a fractional amount, the result is rounded to the nearest
whole number. In Boolean expressions, integers greater than 0 are interpreted as
true. Omit commas when specifying the domain. For example, enter 10,000 as
10000.

■ String. The attribute value can be letters, numbers, or any combination.
Attributes with this data type cannot be used as operands in a computation or
as the result of a computation. The only arithmetic operator that can be used
with this data type is = (equals). For example, you can write rules that test if
the user has picked a specific string from a list of values.

■ Date. The attribute value is interpreted as a date and must be in the correct date
format. The system administrator sets date format defaults. Arithmetic
computations using dates is not supported. For example, you cannot increase or
decrease a date using a computation. All comparison operations are supported
for dates. For example, you can compare two dates and determine whether one
is earlier than (<), later than (>), or the same as (=) another date. Data type
mismatches cause the user’s input to be rejected, or can cause indeterminate
results. For example, comparing a date data type to an integer data type.

■ Time. The attribute value is interpreted as a time and must be in the correct time
format. The system administrator sets the time format defaults. The time data
type has the same restrictions as the Date data type. Data type mismatches cause
the user’s input to be rejected, or can cause indeterminate results. For example,
comparing a time data type to an integer data type.

■ DateTime. The attribute value is interpreted as both a date and time and must be
in the correct format. The system administrator sets the format for this data type.
Arithmetic computations using this data type are not supported. For example,
you cannot increase or decrease a DateTime value by using a computation. The
only comparison operation that is supported is = (equals). Data type
mismatches cause the user’s input to be rejected, or can cause indeterminate
results. For example, comparing a DateTime data type to an integer data type.

Attribute Definition Fields
An attribute definition includes the following fields:

■ Name. The attribute’s name. Use the attribute name to search for the attribute.
Version 7.5.3 Product Administration Guide 101

Product Attributes

About Product Attributes
■ Data Type. The types are Boolean, Date, Integer, Number, and Text. The data type
refers to how the system will interpret the attribute value.

■ LOV Type. This field specifies the name of the list of values for attributes with a
list of values domain.

■ Default Value. This field specifies the default value that the customer sees. If you
write rules that manipulate the attribute value, the eConfigurator engine can
override the default value.

■ Validation. This field specifies the range of acceptable attribute values. Specify
the range using Siebel query-by-example syntax. For example, a component can
be purchased in sizes ranging from 1 to 20 inches inclusive. You would specify
this range by entering >=1 AND <=20.

One of the most important uses of the Validation field is to specify the range of
acceptable inputs for attributes that have a range of values domain. However,
you can also specify a validation expression for list of values domains. For
example, you define a list of values that are of type number. This list of numbers
may contain numbers that you do not want the user to select. You can create an
expression, that limits the choices to a subset of those specified in the list of
values.

■ Required. Enter a Y (yes) or N (no) in this field. When you enter a Y, the field
displays a check mark when the record is not highlighted. A Y means the user
must choose the attribute value.

■ Display Name. The attribute name that the user sees. If not specified, the user sees
the name specified in the Name field.

■ Unit of Measure. Select a unit of measure from the drop-down menu. This
selection is displayed to the user.

■ Description. Make an entry in this field to describe the attribute. Users do not see
this description.

■ Hidden. Prevents the attribute from displaying in Quote, Agreement, Order, or
Asset views. Attribute still displays in customizable product selection pages.

■ Searchable. A check mark in this field means this attribute and its values can be
used in parametric searches. For example, if the attribute is Color, you can search
for products that have Color = Red.
102 Product Administration Guide Version 7.5.3

Product Attributes

About Lists of Values (LOV)
■ Unit of Measure. Allows you to select the unit of measure, such as day, month,
dollar, dozen.

■ Analytics Sequence #. Assigning a number to this field makes the attribute visible
for use by Siebel Analytics. The sequence number does not control the order of
display of the attribute in selection pages. If this field is not displayed, open the
list menu and select Columns Displayed to add the field to the display. Assign a
positive whole number. Attributes defined on a class must have unique
sequence numbers. Assigning a sequence number is highly recommended.

About Lists of Values (LOV)
When you define an attribute with a list of values (LOV) domain, you must either
select an existing list of values or create a new one. A list of values has two parts:

■ List of values name, called an LOV type. The LOV type identifies the list of
values. The user does not see the LOV type.

■ The attribute values in the list. The user selects one of the these attribute values
or accepts the default value.

To create a list of values, you first create the LOV name. Then you define the
attribute values in the list. The LOV name and attribute value records have the
following fields:

■ Type. (LOV name only) The LOV name. This is the name you entered when you
created the LOV.

■ Display Value. (attribute values only) The attribute value. This value displays to
the user as one of the choices in the list of values.

■ Order. The order in which the values are displayed in the drop-down menu the
user sees. Assign 1 to the record you want to display first in the menu, 2 to the
second record, and so on. Leave blank for LOV name definitions.

■ Active. Removing the check mark from this field removes the record from the list
of values. Use this option to temporarily change the number of items in a list of
values.
Version 7.5.3 Product Administration Guide 103

Product Attributes

About Hidden Attributes
The following fields are provided to manage multilingual translation:

■ Multilingual. Put a check mark in this field to translate the attribute value to the
language specified in Language Name.

■ Language Independent Code. For LOV Name, enter the LOV name. For attribute
values, enter the attribute value. This name is used to match translations to the
item.

■ Language Name. The language in which the LOV name or attribute value displays.

■ Translate. Put a check mark in this field to translate the LOV name or attribute
value.

■ Replication level. Specify whether the translation is intended for use at all levels
in the translation hierarchy or only at the regional level.

About Hidden Attributes
When you place a check mark in the Hidden field in an attribute definition, the
attribute does not display in the Quote, Order, Agreement, or Asset views. For
example, if you assign a product to a class that has hidden attribute A1. When you
add this product to a quote and select Dynamic Attributes, A1 does not display.

The attribute continues to display in customizable product selection pages and you
can write configuration rules on it.

Use hidden attributes to create configuration parameters that customers do not need
to see. For example, you could define a hidden attribute whose value is the number
of bays required for a chassis. You could then write configuration rules that use the
value of this attribute to monitor the number of available bays during a
configuration session.

Upgrade users. Use hidden attributes as a replacement for virtual products.
104 Product Administration Guide Version 7.5.3

Product Attributes

Defining an Attribute with a List of Values Domain
Defining an Attribute with a List of Values Domain
When you define an attribute that has a list of values domain, you must define a
list of values. You do this by defining a list of values name, for example Color. Then
you create the list of attribute values for Color, for example red, green blue.

In the user interface, this type of attribute displays as an attribute name
accompanied by a drop-down menu. The user accepts the displayed default or
opens the menu to make a choice.

Attribute-based pricing requires the list of values domain type. You cannot do
attribute-based pricing with the range of values domain type.

The LOV Type and Validation fields determine the attribute domain:

■ LOV Type. Select the list of values definition that you want to use for this attribute.
You can also define a new list of values.

■ Validation. Leave this field blank or enter an expression that restricts the user’s
choices. Use Siebel query-by-example syntax.

■ Default Value. Enter the default you want to use from the list of values. This is
the item that displays in the attribute field when the list of values menu is
closed. If the attribute is required and the user does not change the default
attribute, this is the attribute value the user receives. If left blank, no value
displays in the attribute field when the menu is closed. The user must open the
menu to make a selection. A default value is required if you are using attribute-
based pricing.

To define an attribute with a list of values domain

1 Navigate to Application Administration > Class Administration.

2 Select the desired class.

3 In the Dynamic Attributes list, create a new record.

The Dynamic Attributes form appears.

4 Fill out the Dynamic Attributes form and save it.
Version 7.5.3 Product Administration Guide 105

Product Attributes

Defining an Attribute with a Range of Values Domain
Defining an Attribute with a Range of Values Domain
You define a range of values domain attribute by entering an expression in the
Validation field. This expression is used to validate the user’s input. If the input is
within the range (the expression returns a true), the input is accepted. If the input
is outside the range (the expression returns a false), the input is rejected and the
user receives an error message.

You cannot do attribute-based pricing with the range of values domain type.
Attribute-based pricing requires the list of values domain type.

The LOV Type and Validation fields determine the attribute domain:

■ LOV Type. Leave this field blank.

■ Validation. Enter an expression that defines the range in Siebel query-by-example
syntax. For example, to specify the real numbers between 1 and 100 inclusive,
you would enter >=1 AND <= 100.

■ Default Value. Enter a value from the range in this field if you want to display a
default. This attribute value is assigned to every product that inherits the
attribute.

To define an attribute with a range of values domain

1 Navigate to Application Administration > Class Administration.

2 Select the desired class.

3 In the Dynamic Attributes list, create a new record.

The Dynamic Attributes form appears.

4 Fill out the Dynamic Attributes form and save it.

Editing an Attribute Definition
You can edit attribute definitions for both classes and subclasses. When you edit an
attribute defined on a class, the attribute definition is changed for all members of
the class. This means the attribute definition is changed for all subclasses and all
products of the class.
106 Product Administration Guide Version 7.5.3

Product Attributes

Editing an Attribute Definition
For a subclass, if you edit an inherited attribute, this permanently breaks the chain
of inheritance for the fields you edit. Changes to these fields in the parent class
attribute definition no longer propagate to the edited attribute. By editing inherited
attribute definitions, you can customize the way attribute definitions propagate
through the product hierarchy.

For example, you have the class hierarchy in Figure 2. Product Class A has one
subclass called Subclass B. Subclass B has one subclass called Subclass C. Class A
has Attribute A defined on it. Subclass B has attribute B defined on it. Subclass C
has Attribute C defined on it. Subclass B inherits Attribute A from Class A. Subclass
C inherits Attribute A from Class A and Attribute B from Subclass B.

In Subclass B, you edit the definition of Attribute A by entering a new Default Value.
The Default Value field for Attribute A in Subclass B no longer inherits changes from
Attribute A in Class A, its parent attribute.

Figure 2. Product Class Hierarchy
Version 7.5.3 Product Administration Guide 107

Product Attributes

Editing an Attribute Definition
When you edit a local or inherited attribute, the changes propagate to all members
of the class or subclass. In the example, the new Default Value propagates to
Attribute A in Subclass C.

There are restrictions on which fields you can edit in an inherited attribute
definition. These restrictions are shown in Table 11.

To edit an attribute definition

1 Navigate to Application Administration > Class Administration.

2 Select the desired class.

3 In the Dynamic Attributes list, highlight the desired attribute.

4 Click in the desired field to change its value.

5 Save the record.

Table 11. Editable Fields in a Subclass Inherited Attribute Definition

Field Editable?

Attribute Name Yes. Breaks inheritance for all fields. Same as defining new attribute.

Data Type Yes. Breaks inheritance for all fields. Same as defining new attribute.

List of Values Yes. Breaks inheritance for this field.

Default Value Yes. Breaks inheritance for this field.

Validation Yes. Breaks inheritance for this field.

Required Yes. Breaks inheritance for this field.

Display Name Yes. Breaks inheritance for this field.

Parametric Search Yes. Breaks inheritance for this field.

Unit of Measure Yes. Breaks inheritance for this field.

Description Yes. Breaks inheritance for this field.
108 Product Administration Guide Version 7.5.3

Product Attributes

Deleting an Attribute Definition
Deleting an Attribute Definition
You can only delete an attribute definition from the class on which it is defined.
When you delete an attribute defined on a class or subclass, the attribute is deleted
from its members as follows:

■ The attribute is deleted from all products in the class or subclass.

■ The attribute is deleted from all subclasses where the attribute definition has not
been edited.

■ The attribute is not deleted from subclasses where the attribute definition has
been edited.

Before deleting an attribute definition, verify that the attribute is not used in any
configuration rules, or for attribute-based pricing.

To delete an attribute definition

1 Navigate to Application Administration > Class Administration.

2 Select the desired class.

3 In the Dynamic Attributes list, click the menu button and choose Delete Record.

The attribute definition is removed from the Dynamic Attributes list.
Version 7.5.3 Product Administration Guide 109

Product Attributes

Customizing an Inherited Attribute Domain
Customizing an Inherited Attribute Domain
When you define an attribute on a class or subclass, it is inherited by all member
subclasses. If you edit an attribute on the class where it was originally defined, the
changes propagate to all member subclasses. The attribute definition is uniform for
all subclasses that inherit it.

Subclasses can have two kinds of attributes: local and inherited. A local attribute is
one that is defined on the subclass. An inherited attribute is one that is inherited
from a parent class.

You customize an inherited attribute domain by editing its definition at the subclass
level. When you edit an inherited attribute definition, the changes propagate to all
members of the subclass, including other subclasses.

Editing an inherited attribute permanently breaks attribute inheritance for the fields
you edit. Editing the domain of an inherited attribute permanently prevents an
attribute from inheriting domain changes from its parent attribute.

If you delete the parent class attribute, it is not deleted from subclasses where
inheritance is broken. (The attribute definition is deleted from all subclasses where
inheritance has not been broken.)
110 Product Administration Guide Version 7.5.3

Product Attributes

Customizing an Inherited Attribute Domain
For example, you have the class hierarchy in Figure 3. Product Class A has one
subclass called Subclass B. Subclass B has one subclass called Subclass C. Class A
has Attribute A defined on it. Subclass B has attribute B defined on it. Subclass C
has Attribute C defined on it. Subclass B inherits Attribute A from Class A. Subclass
C inherits Attribute A from Class A and Attribute B from Subclass B.

In Subclass B, you edit the domain of Attribute A by entering a new LOV Type and
Default Value. The LOV Type and Default Value for Attribute A in Subclass B no
longer inherits changes to these fields from Attribute A in Class A, its parent
attribute.

When you edit a local or inherited attribute, the changes propagate to all members
of the class or subclass. In the example, the new LOV Type and Default Value
propagate to Attribute A in Subclass C.

Figure 3. Attribute Inheritance
Version 7.5.3 Product Administration Guide 111

Product Attributes

Associating Attributes with a Product
You can edit the domain of an inherited attribute as follows:

■ List of values domain. Select a different list of values. You can also edit the list of
values definition and reapply it. If you want to add or remove items from the list
of values, the recommended method is to define a new list of values and apply it.

■ Range of values domain. Change the expression in the Validation field. Also
change the instructions in the Description field.

You can also edit the other fields in the attribute definition, including the Default
Value, Validation, Required, Display Name, Parametric Search, and Unit of Measure
fields.

Associating Attributes with a Product
To associate attributes with a product, you assign the product to a class or subclass.
A product inherits all the attributes of the class or subclass to which it is assigned.
You cannot assign attributes directly to a product.

For example, a subclass has six attributes. Three of these are defined on the
subclass, and three are inherited from a parent class. When you assign a product to
this subclass, the product inherits all six attributes.

To associate attributes with a product

1 Navigate to Product Administration.

2 Select the desired Product.

3 Click in the Class field to display the select button. Then click the select button
to open the Pick Class dialog box.

4 In the Pick Class dialog box, select the desired class.

The class name is added to the product record.

5 Save the product record.

6 In the More Info Show menu, choose Dynamic Attributes.

The Dynamic Attributes list appears. This list displays all the product’s
attributes.
112 Product Administration Guide Version 7.5.3

Product Attributes

Viewing a Product’s Attributes
Viewing a Product’s Attributes
A product’s attributes are inherited from the class to which it belongs.

When viewing attributes, be careful not to save the attribute records in the Dynamic
Attributes list. This sets the attribute value so that it cannot be changed by the user
or by configuration rules.

To view a product’s attributes

1 Navigate to Product Administration.

2 Select the desired product.

3 From the More Info Show menu, choose Dynamic Attributes.

The Dynamic Attributes list appears. This list displays all the product’s attributes
inherited from its class or subclass.

Changing the Hidden or Required Settings for a Product
When you define an attribute at the class level, you can set the attribute to be
hidden or required. Hidden attributes do not display in the Quote, Order,
Agreement, or Asset views. Required attributes are those where the user must select
a value for the attribute. The value of the attribute cannot be blank.

Attribute definitions propagate automatically to all the products that belong to the
product class. However, you can change the Hidden flag and the Required flag
settings for an attribute at the product level. This lets you manage the hidden or
required settings for attributes product by product.

You can use the hidden setting to simplify your product class system. For example,
if a product class has 8 attributes and a product has 7 of these attributes, you can
put the product in this class and hide the eighth attribute. You do not have to create
a special subclass with 7 attributes for the product.

To change the hidden or required settings for a product

1 Navigate to Product Administration.

2 Select the desired product.
Version 7.5.3 Product Administration Guide 113

Product Attributes

Setting an Attribute Value for a Product
3 From the More Info Show menu, choose Dynamic Attributes.

The Dynamic Attributes list appears. This list displays all the product’s attributes
inherited from its class or subclass.

4 Select the desired attribute and click in either the Required or Hidden field.

This adds a check mark to the field, or removes the check mark if one is present.

Setting an Attribute Value for a Product
When you set the value of an attribute for a product, it cannot be changed by either
the user, a configuration rule, or the eConfigurator engine. One example, is when
you want to set an attribute value so that provide and consume rules can use it to
add or subtract from a defined resource.

For example, you create an attribute called Slots Required for a product class
containing expansion cards. Some cards take up one expansion slot; some take up
two. You could define a list of values containing the integers 1 and 2 and make it
the domain for Slots Required. For each expansion card you would then set the
value of this attribute at 1 or 2. Users cannot change this value when configuring
the product, and configuration rules cannot change this value.

You would then write a provide rule that increases a Slots Available resource when
the user picks a chassis. For the expansion card class, you would write a consume
rule that reduces Slots Available by the value of Slots Required, each time the user
picks an expansion card. In this fashion, you use attribute values as constants that
interact with a defined resource to manage a consumable configuration variable.

To set an attribute value for a product

1 Navigate to Product Administration.

2 Select the desired product.

3 From the More Info Show menu, choose Dynamic Attributes.

The Dynamic Attributes list appears. This list displays all the product’s attributes
inherited from its class or subclass.
114 Product Administration Guide Version 7.5.3

Product Attributes

Setting an Attribute Value for a Product
4 Select the desired attribute and enter the desired attribute value in the Value field
or select the desired value from the drop-down menu (list of values domain).

5 Verify that the value you have set is within the defined domain of the attribute
and is the correct data type.

If you enter a value that is outside the domain the eConfigurator engine will
accept it unless the attribute definition includes a validation expression. If you
enter a value that is the wrong data type (for example, a date when the data type
is integer) the resulting engine behavior is indeterminate.

6 Click in the Read Only column.

A check mark appears, indicating the attribute value is set and cannot be
changed.

7 Save the record.

This sets the value of the attribute. A check mark appears in the Read Only field.
The value cannot be changed by the user during a configuration session or by
the eConfigurator engine.
Version 7.5.3 Product Administration Guide 115

Product Attributes

Creating a List of Values (LOV) for a Product Attribute
Creating a List of Values (LOV) for a Product Attribute
When you define an attribute that has a list of values domain, you must specify a
list of values name. This LOV contains the attribute values.

Creating a list of values has two steps:

1 Creating a list of values name.

2 Defining the attribute values in the list of values.

NOTE: The steps for creating a list of values for a dynamic attribute are different from
creating LOVs for other uses. Do not define LOVs for dynamic attributes in the
Application Administration > List of Values view. This view does not display LOVs
defined for use with dynamic attributes. When you define an LOV for a dynamic
attribute, you do not have to stop and restart the server for the LOV to take effect.

Creating a List of Values Name
You create an LOV name by creating a new record in the dialog box where you select
an LOV when defining an attribute.

After creating a list of values name, you define the attribute values that make up the
list.

To create a list of values name

1 Navigate to Application Administration > Class Administration.

2 In the Classes list, query for the desired class.

3 In the Dynamic Attributes list, select the attribute for which you want to define
an LOV.

4 Click in the LOV Type field to display the select button. Click the select button
to display the dialog box for selecting LOVs.

5 In the dialog box, click New and fill out the form for defining an LOV type. Close
the dialog box.
116 Product Administration Guide Version 7.5.3

Product Attributes

Creating a List of Values (LOV) for a Product Attribute
6 Click Save in the Dynamic Attributes form.

This transfers the new LOV name to the attribute record.

Defining the Attribute Values in a List of Values
After you define the LOV name, you create the values in the list, by creating a record
for each attribute value.

To define the attribute values in the list

1 Navigate to Application Administration > Class Administration.

2 In the Classes list, query for the desired class.

3 In the Dynamic Attributes list, select the attribute for which you want to define
LOV values.

4 Click the LOV name hyperlink in the LOV Type field.

A view appears that displays the LOV name and provides a list in which to add
one record for each attribute value in the LOV.

5 For each attribute value in the LOV, create a new record in LOV list.
Version 7.5.3 Product Administration Guide 117

Product Attributes

Editing a List of Values Definition for a Product Attribute
Editing a List of Values Definition for a Product Attribute
You can edit all the fields in a list of values definition. These changes propagate to
all the locations where the list of values is assigned. When editing a list of values
record, keep in mind the following effects:

■ If you edit the Type (name), this changes the list of values to which the record
belongs. In the user interface, this means the item moves from one list of values
menu to another.

■ If you edit any fields besides Type, the changes affect only the list of values to
which the record belongs. For example, the list of values Color has three records.
The display names are Red, Green, Blue. You change the display value for the
first record from Red to Purple. For each attribute to which the list of values is
assigned, the list of values is now Purple, Green, Blue.

When modifying a list of values record, observe the following guidelines:

■ Display Value. Edit this field to change the name of a menu item in the list of
values.

■ Language Name. Edit this field to change the language in which the item displays.
The language name for all records in a list of values should be the same.

■ Order. Edit this field to change the order in which the values are displayed in the
drop-down menu the user sees. Assign 1 to the record you want to display first
in the menu, 2 to the second record, and so on.

■ Active. Removing the check mark from this field, removes the record from the
list of values. Use this option to temporarily change the number of items in a list
of values.

■ Translate. Put a check mark in this field in order to translate the menu item to
the language specified in Language Name.
118 Product Administration Guide Version 7.5.3

Product Attributes

Deleting a List of Values for a Product Attribute
Several other fields are also included in the record used to define a list of values
record. These fields are not meaningful for product management or pricing
management.

NOTE: Do not edit LOVs of type CFG_RULE_TYPE. This will disrupt the function of
the Rule Designer.

To edit a list of values definition

1 Navigate to Application Administration > Class Administration.

2 In the Classes list, query for the desired class.

3 In the Dynamic Attributes list, select the attribute for which you want to edit
LOV values.

4 Click the LOV name hyperlink in the LOV Type field.

A view appears that contains the product class LOV types that were defined in
this view. This view does not display LOV types that were defined in
Application Administration > List of Values view.

5 In List of Values-Type, query for the desired list of values name.

The values defined for the list of values name display in the area below List of
Values.

6 Edit the list of values records as desired and click OK.

You must log out and log back in to see the changes you have made in attributes
to which the LOV is assigned.

Deleting a List of Values for a Product Attribute
You cannot delete a list of values name (Type) or its records. However, you can edit
all the fields in a list of values record, including changing its name. This has the
same effect as deleting the record.
Version 7.5.3 Product Administration Guide 119

Product Attributes

Deleting a List of Values for a Product Attribute
120 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains 7
This chapter describes how to define attributes that have a business component
domain. These attributes allow users to select a record from a pick applet, also
called a dialog box. A field in this record then displays in the selection page as the
value of the attribute.

This chapter requires that you be familiar with creating pick applets in Siebel Tools.

This chapter covers the following topics:

■ “About Attributes with a Business Component Domain” on page 122

■ “About the UI Properties” on page 124

■ “Adding the Attribute to a Selection Page” on page 126

■ “Associating the Attribute with a Business Component” on page 127

■ “Setting Up Multiple Fields for Display” on page 129

■ “Creating a Business Component Field Constraint” on page 132

■ “Creating an Attribute Value Constraint” on page 136
Version 7.5.3 Product Administration Guide 121

Attributes with Business Component Domains

About Attributes with a Business Component Domain
About Attributes with a Business Component Domain
The Product Administrator has created a customizable product called Premier
Service Package. The Product Administrator wants users to be able to select an
account name when configuring the product.

This product has been assigned to a product class that has the attribute Account
defined on it. Account has been added to a group in the Product UI Designer and
will display in a selection page.

In the selection page, the Account attribute displays with a blank text field and a
select icon. When the user clicks on the select icon, a dialog box displays containing
available accounts. When the user selects an account, the account name is
transferred to the Account text box.

In this scenario, the user was able to access a Siebel business component to display
account records. When the user selected an account record, the account name field
in the record was transferred to the selection page and became the value of the
Account attribute. The domain of the Account attribute is the records retrieved by
the business component and displayed in the dialog box, also called a pick applet.

Attributes with a business component domain differ from attributes with other
domain types in several ways:

■ Attributes with a business component domain should only be used with
customizable products that are configured using selection pages. This means
that only customizable products or products that will always be components of
customizable products should be assigned to a class where this type of attribute
is defined. If you assign a simple product to the class, attributes with a business
component domain display in quotes, orders and so on with a text box but no
select icon.

■ The attribute values are not defined by a range or a list of values. The user
selects the attribute’s value directly from a pick applet, which displays
information from a business component.
122 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains

About Attributes with a Business Component Domain
■ Attributes can be defined so that when the user selects the value for one
attribute (the primary attribute), the values for other attributes are automatically
selected. For example, if the user selects a value for Account Name (the primary
attribute), the value of the Address attribute is filled in automatically.
Configuration rules can be written only on the primary attribute. You cannot
write configuration rules on attributes whose values are automatically selected
based on the value of the primary attribute.

You associate a business component with an attribute using the same process as
creating a pick applet in Siebel Tools, with the following modifications:

■ Configuring the originating applet. The selection page takes the place of the
originating applet. You replace this procedure with steps that define the attribute
and insert it in the selection page. To do this step, see “Adding the Attribute to a
Selection Page” on page 126.

■ Configuring the pick applet. You can use an existing pick applet or define a new
applet. If you define a new pick applet, there is no change to the procedures
described in Siebel Tools Reference.

■ Configuring the originating business component. These procedures are replaced by
defining a series of UI properties on the attribute. These UI properties specify the
pick applet name, pick business component name, and pick map definitions.
You can define multiple pick maps that display the content of several fields from
the same record. You can also define UI properties to constrain the pick list.

■ Configuring the pick business component. You can use an existing pick business
component or define a new one. If you define a new one, there is no change to
the procedures described in Siebel Tools Reference.

Assuming that the pick business component and pick applet are already defined in
Siebel Tools, associating an attribute with a business component has the following
steps:

1 Add the attribute to a selection page. See “Adding the Attribute to a Selection
Page” on page 126.

2 Associate the attribute with a business component by defining UI properties on
it. For information on these UI properties see “About the UI Properties” on
page 124. For information on associating an attribute with a business
component, see “Associating the Attribute with a Business Component” on
page 127.
Version 7.5.3 Product Administration Guide 123

Attributes with Business Component Domains

About the UI Properties
You can set up attributes so that selecting a value for one automatically selects the
values for others. To do this see “Setting Up Multiple Fields for Display” on
page 129.

You can constrain a pick applet so that it displays only the records having a specified
field value.“Creating a Business Component Field Constraint” on page 132.

About the UI Properties
You can define an attribute that has values the user can select from a pick applet.
The pick applet displays records from a specified business component. When the
user selects a record, a specified field in the record displays in the selection page as
the value of the attribute.

Several predefined UI properties are provided to associate the attribute with a pick
applet and pick business component. Defining these UI properties on the attribute
replaces the Siebel Tools procedures for configuring the originating business
component when defining a pick applet.

You define these UI properties on the attribute that you have set up to display a
select button in the selection pages. These UI properties associate the attribute with
a pick applet and a pick business component and are shown in Table 12.

Table 12. Predefined UI Properties

Name Value

PickApplet The name of the pick applet.

PickList The name of the pick business component.

PickMap01 This is an XML tag that associates the attribute name with the pick
business component field that you want to display.

PickMapnn PickMap02 and so on, display multiple fields from the same pick
business component. You can also use this PickMap definition to define
a constraint on the records the user sees in the pick applet.
124 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains

About the UI Properties
The PickMap value is an XML tag that has the following format:

<PickMap Field=“AttributeName” PickField=“BusCompFieldname”
Constrain=“Y/N” BusObj=“BusObjName” />

■ Field. For UI properties with name PickMap01, this specifies the name of the
attribute in the selection page. Use the attribute name, not its display name.

For UI properties with Constrain=“Y”, specifies the business component field
name or attribute name to be used as a filter for the records displayed in the pick
applet. The format for specifying a business component is
buscompname.fieldname. The format for specifying an attribute name is
attributename.

For example, to constrain the records displayed in the pick applet to those having
the current record’s Opportunity name in the Quotes view, (Quote business
component), you would enter Quote.Opportunity. To constrain records to the
value of the Account Name attribute, you would enter Account Name.

■ PickField. Specifies the pick business component field name. When the user
selects a record from the pick applet, the contents of this field becomes the
attribute value shown in the selection page. Use the business component field
name, not the field’s display name.

■ Constrain. When set to “Y” (Yes), PickMap specifies a business component field
that filters the records the user sees in the pick applet. If not specified, the
default is “N” (No).

■ BusObj. Specifies the business object in which the PickMap definition is active.
If omitted, the PickMap definition is active in all business objects. For example,
if you set BusObj=“Order Entry”, the PickMap applies to orders but not quotes.
Use this argument to constrain the pick applet differently for orders than for
quotes. If you insert a BusObj argument in PickMap01, this limits the display of
the select icon and pick applet to the specified business object, for example
Quote.
Version 7.5.3 Product Administration Guide 125

Attributes with Business Component Domains

Adding the Attribute to a Selection Page
Adding the Attribute to a Selection Page
This step creates the attribute in the class system and defines where it displays in
the selection pages. It replaces configuring the originating applet step in the Siebel
Tools process for creating a pick applet.

The attribute data type should be the same as the data type of the business
component field from which the attribute value will come. For example, if the data
type of the business component field is Boolean, the attribute data type should be
Boolean. The system does not verify that the attribute data type and the business
component field data type are the same.

In the Product UI Designer, you do not need to pick a UI control for the attribute.
When you define the PickMap01 UI property on the attribute, the system
automatically assigns a text field with select button to the attribute. When you
select a record from the pick applet, the specified field in the record displays in the
attribute text box.

If you select a UI control for the attribute, it will be overridden by the text box with
select button.

To add the attribute to a selection page

1 Define an attribute on a class. Leave the LOV, Validation, and Default Value fields
blank.

2 Verify that only products that are themselves customizable products or will
always be components of customizable products are assigned to the class.
Products that will be part of bundles should not be assigned to the class since
they are not configured using selection pages.

3 Navigate to Product Administration. Then select and lock the desired
customizable product. This product must belong to the class on which the
attribute is defined.

4 In the Product UI Designer, select a group and add the attribute to the Group
Item List.

Do not select a UI control for the attribute.
126 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains

Associating the Attribute with a Business Component
Associating the Attribute with a Business Component
This step defines the UI properties needed to associate the attribute to a pick
business component. It replaces configuring the originating business component
step in the Siebel Tools process for creating a pick applet.

The Product Administrator has created a customizable product called Premier
Service Package. This product has been assigned to a product class that has the
attributes Account, Location, and Opportunity defined on it. These attributes have
been added to a group in the Product UI Designer and will display in selection
pages.

The Product Administrator wants users to be able to select an account name when
configuring the product. To do this, the Product Administrator must define the
following three UI properties on the Account attribute:

■ PickList. Its value is PickList Account.

■ PickApplet. Its value is Account Pick Applet.

■ PickMap01. This UI property provides the name of the attribute and the business
component field. Its value is an XML tag that has the following elements:

■ Field = “Account”. This is the attribute name.

■ PickField = “Name”. This is the business component field.

The Account attribute displays with a text box in the configuration selection pages.
When the user clicks the select button, the Account Pick Applet displays. When the
user selects an account and clicks OK, the Account name is transferred to the
Account field in the selection page.

Table 13 shows how to use the predefined UI properties to associate an attribute
with a business component.

Table 13. UI Properties

Name Value

PickApplet The name of the pick applet.
Version 7.5.3 Product Administration Guide 127

Attributes with Business Component Domains

Associating the Attribute with a Business Component
Associating the attribute with a business component

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 Navigate to Customizable Product > User Interface Property Designer.

4 Select the desired attribute.

5 Define the UI properties as shown in Table 13.

PickList The name of the pick business component.

PickMap01 This is an XML tag that associates the attribute name with the pick
business component field that you want to display.

Only the Field and PickField variables are required. Enclose their values
in quotes.

Field: The attribute name in the selection page.

PickField: The pick business component field to be used as the attribute
value.

The PickMap that provides this information must be named PickMap01

Table 13. UI Properties

Name Value
128 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains

Setting Up Multiple Fields for Display
Setting Up Multiple Fields for Display
You can group attributes together so that selecting a record from a pick applet for
one attribute populates several attributes. You do this by defining additional
PickMap UI properties on an attribute. These additional UI properties define how to
populate the other attributes.

The attribute on which you define PickMap01 is called the primary attribute. The
user selects a value for this attribute and this causes the values for the other
attributes to be selected automatically. This means the other attributes are read-
only. The only way the user can change the value of these attributes is to open the
pick applet for the primary attribute and choose another record.

The Product Administrator has created a customizable product called Premier
Service Package. This product has been assigned to a product class that has the
attributes Account, Location, and Opportunity defined on it. These attributes have
been added to a group in the Product UI Designer and will display in selection
pages.

The Product Administrator wants users to be able to select an account name when
configuring the product. When they do, the Account Administrator wants to
automatically populate the Location attribute with the state in which the account is
located.

To do this, the Product Administrator must define the following UI properties on the
Account attribute:

■ PickList. Its value is PickList Account.

■ PickApplet. Its value is Account Pick Applet.

■ PickMap01. This UI property provides the name of the attribute and the business
component field. Its value is an XML tag that has the following elements:

■ Field = “Account”. This is the attribute name.

■ PickField = “Name”. This is the business component field.
Version 7.5.3 Product Administration Guide 129

Attributes with Business Component Domains

Setting Up Multiple Fields for Display
■ PickMap02. This UI property defines an attribute that will receive its value
automatically when the user selects a value for the primary attribute. In this
case, the attribute is Location. The value of the UI property is an XML tag that
has the following elements:

■ Field = “Location”. This is the attribute name.

■ PickField = “State”. This is the business component field.

The Account and Location attributes display with a text box next to them in the
configuration selection pages. When the user clicks the select button and chooses
an Account name, it is transferred to the Account field and the state name is
transferred to the Location field.

Table 14 shows how to use the predefined UI properties to set up multiple fields for
display.

Table 14. UI Properties

Name Value

PickApplet The name of the pick applet.

PickList The name of the pick business component.
130 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains

Setting Up Multiple Fields for Display
To set up multiple fields for display

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 Navigate to Customizable Product > User Interface Property Designer.

4 Select the desired attribute.

5 Define the UI properties as shown in Table 14.

PickMap01 This is an XML tag that associates the attribute name with the pick business
component field that you want to display.

PickMap01 must be defined on the primary attribute

Only the Field and PickField variables are required. Enclose their values in
quotes.

Field: The name of primary attribute.

PickField: The name of the business component field.

PickMap02 Only the Field and PickField variables are required.

These variables are for attributes other than the primary attribute. These
attributes will be populated automatically when the user selects a pick
applet record for the primary attribute. Attribute values for these attributes
are read-only. Enclose the attribute values in quotes.

Field: The name of the attribute, other than the primary attribute.

PickField: The name of the business component field.

You can define PickMaps to populate as many fields as desired. Number the
PickMaps in sequential order, for example Pickmap03, PickMap04, etc.

Table 14. UI Properties

Name Value
Version 7.5.3 Product Administration Guide 131

Attributes with Business Component Domains

Creating a Business Component Field Constraint
Creating a Business Component Field Constraint
You can constrain the records that display in the pick applet based on a field that
they have in common with the business component that starts the configuration
session. This is similar to using Siebel Tools to constrain the display of records in a
pick applet based on a field in the originating business component.

You do this by defining an additional PickMap UI property on an attribute. This
additional UI property defines how to constrain the records in the pick applet
specified in PickMap01. The constraint PickMap specifies the business component
name and field to use to filter the records in the pick applet.

The Product Administrator has created a customizable product called Premier
Service Package. This product has been assigned to a product class that has the
attributes Account, Location, and Opportunity defined on it. These attributes have
been added to a group in the Product UI Designer and will display in selection
pages.

The Product Administrator wants users to be able to select an account name when
configuring the product in a quote. When they do, the Account Administrator wants
to automatically populate the Location attribute with the state in which the account
is located.

In addition, the Product Administrator wants to constrain the pick applet to display
only the accounts associated with the opportunity name displayed in the Quote
Opportunity field. For example, if the opportunity name is Boeing, the pick applet
would display all the Boeing accounts only.

To do this, the Product Administrator must define the following UI properties on the
Account attribute:

■ PickList. Its value is PickList Account.

■ PickApplet. Its value is Account Pick Applet.

■ PickMap01. This UI property provides the name of the attribute and the business
component field. Its value is an XML tag that has the following elements:

■ Field = “Account”. This is the attribute name.

■ PickField = “Name”. This is the business component field.
132 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains

Creating a Business Component Field Constraint
■ PickMap02. This UI property defines an attribute that will receive its value
automatically when the user selects a value for the primary attribute. In this
case, the attribute is Location. The value of the UI property is an XML tag that
has the following elements:

■ Field = “Location”. This is the attribute name.

■ PickField = “State”. This is the business component field.

■ PickMap 03. This UI property filters the display of records in the pick applet to
those having the same value as a field in the business component that starts the
configuration session. The value of the UI property is an XML tag that has the
following elements:

■ Constrain = “Y”. This notifies the system that the UI property defines a
constraint.

■ Field = “Quote.Opportunity”. This is the business component name and field
name that will be used as a filter.

■ PickField = “Name”. This is the pick business component field name that
will be filtered.

The Account and Location attributes display with a text box next to them in the
configuration selection pages. When the user clicks the select button for Account,
a pick applet displays. It contains only the accounts that have the name specified in
the Opportunity field of the quote that started the configuration session (Quote
business component). When the user selects an account and clicks OK, the Account
name is transferred to the Account field and the state name is transferred to the
Location field.

Table 15 shows how to use the predefined UI properties to constrain the user’s
choices.

Table 15. UI Properties

Name Value

PickApplet The name of the pick applet.

PickList The name of the pick business component.
Version 7.5.3 Product Administration Guide 133

Attributes with Business Component Domains

Creating a Business Component Field Constraint
PickMap01 This is an XML tag that associates the attribute name with the pick
business component field that you want to display.

PickMap01 must be defined on the primary attribute

Only the Field and PickField variables are required. Enclose their values
in quotes.

Field: The name of primary attribute.

PickField: The name of the business component field.

Table 15. UI Properties

Name Value
134 Product Administration Guide Version 7.5.3

Attributes with Business Component Domains

Creating a Business Component Field Constraint
To use a field to constrain the user’s choices

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

PickMap02 Only the Field and PickField variables are required.

These variables are for attributes other than the primary attribute. These
attributes will be populated automatically when the user selects a pick
applet record for the primary attribute. Attribute values for these
attributes are read-only. Enclose their values in quotes.

Field: The name of the attribute, other than the primary attribute.

PickField: The name of the business component field.

You can define PickMaps to populate as many fields as desired. Number
the PickMaps in sequential order, for example Pickmap03, PickMap04,
and so on. Define one PickMap for each field.

PickMap03 This PickMap defines the business component field used to filter the
records displayed in the pick applet

Field, PickField, and Constrain variables are required. Enclose their
values in quotes.

Field: Specifies the business component name and field that filters the
pick applet. The format for specifying the field name is
buscompname.fieldname.

The business component specified in Field must be in the same Tools
business object (BusObj) as eConfigurator. The field cannot be the field
specified in PickMap01.

For example, to constrain the records displayed in the pick applet to
those having the current record’s Opportunity name in the Quotes view,
(Quote business component), you would enter Quote.Opportunity.

PickField: Specifies the name of field in the pick business component
that is filtered by the Field variable.

Constrain: Must be set to “Y”.

All PickMaps must be have a unique number. For example if there are 4
PickMaps, PickMap01...PickMap04, name the constraint PickMap,
PickMap05.

Table 15. UI Properties

Name Value
Version 7.5.3 Product Administration Guide 135

Attributes with Business Component Domains

Creating an Attribute Value Constraint
3 Navigate to Customizable Product > User Interface Property Designer.

4 Select the desired attribute.

5 Define the UI properties as shown in Table 15 on page 133.

Creating an Attribute Value Constraint
You can constrain the records that display in the pick applet based on the value of
an attribute in the selection pages. The attribute value is used to create a search
specification that matches the attribute value to the value in a field in the business
component that populates the pick applet.

For example, you define an attribute called Account Name. In a configuration
session, the user selects Hewlett Packard from the pick applet you have defined for
this attribute. You have also created an attribute called Address. You have defined a
pickmap for this attribute that constrains the display of addresses to those
belonging to the value of the Account Name attribute, which is Hewlett Packard.
The pick applet for Address would display only those addresses for Hewlett
Packard.

You create an attribute value constraint in the same way as creating a business
component constraint. The only difference is that for Field you specify the attribute
name rather than a buscomp.fieldname in the pickmap definition. Using the
example above, you would enter Field=“Account Name”.

NOTE: If the attribute you specify to constrain the pick applet does not have an
attribute value, the pick applet will contain no records.
136 Product Administration Guide Version 7.5.3

Smart Part Numbers 8
This chapter explains how to set up part numbers so that they are dynamically
generated based on the product attributes that the user selects. Smart part numbers
can be used to generate part numbers when creating quotes, orders, and
agreements. They can also be used when adding items to a shopping cart.

This chapter covers the following topics:

■ “About Smart Part Numbers” on page 138

■ “Creating Dynamically Generated Part Numbers” on page 140

■ “Editing a Dynamic Generation Method” on page 144

■ “Creating Predefined Part Numbers” on page 144

■ “Editing a Predefined Generation Method” on page 147

■ “Assigning a Generation Method to a Product” on page 148

■ “Viewing a Product’s Smart Part Number in a Quote” on page 149

■ “Updating a Generation Method with Attribute Changes” on page 150

■ “Querying for Products with the Same Generation Method” on page 152
Version 7.5.3 Product Administration Guide 137

Smart Part Numbers

About Smart Part Numbers
About Smart Part Numbers
Smart part numbers can be used to generate part numbers for the following types
products in quotes, orders, agreements, and for products added to shopping carts:

■ Simple products

■ Bundles

■ Customizable products

Smart part numbers allow you to automatically generate part numbers for different
combinations of product attributes. You do not have to make an entry in the product
table and provide a part number for each combination of product attributes that a
customer can purchase.

For example, you sell shirts in three sizes: small, medium, and large. You also sell
them in three colors: red, green, and blue. There are nine possible combinations of
size and color that customers can purchase. Each combination needs a part number
that can be passed to a back-end system at the time of purchase.

One way to set this up is to make an entry in the product table for each
combination. In other words, you create nine separate products. This is time
consuming and does not take advantage of the attribute features in the class system.
It also does not take advantage of the attribute-based pricing features in Siebel
ePricer.

Another way to set this up is to make one entry in the product table for the shirt.
You then define color and size attributes on the class to which the shirt belongs.
Finally, you use smart part number to define which part number to assign to each
combination of attributes. For example, when the customer selects the shirt in size
small and color blue, smart part number generates a part number for this
combination and displays it in the quote. You can also use attribute-based pricing
in ePricer to determine the price of the shirt.

There are several advantages to this method:

■ It makes managing the product table easier. You make one entry for a product
and then use the class system to define and manage its attributes. If you enter a
product’s attribute combinations as products in the product table, you must
manually edit the table when attributes change.
138 Product Administration Guide Version 7.5.3

Smart Part Numbers

About Smart Part Numbers
■ It makes managing part numbers easier and more accurate. You can make one
entry for a part number definition and it will be applied to all the forms of the
product consistently and accurately.

■ It allows you to take advantage of important features in related products such as
attribute-based pricing in Siebel ePricer.

Smart part number provides the following methods for defining how part numbers
are generated:

Dynamic. You specify what product attributes participate in creating a part number
and the string that each attribute value will have. You then define a part number
template with placeholders for the attribute values. Smart part number inserts the
value of the attribute into the part number template to create the final part number.
Use this method when your part numbers include important information, besides
attribute values, that is needed to uniquely identify the product.

Predefined. You specify what product attributes participate in creating a part
number. You can then do one of two things:

■ You can auto-generate a matrix of all the combinations of these attributes.
Random part numbers are provided for each combination. You can accept the
random values or replace them with your own values.

■ You can manually create the matrix, inserting your own part numbers.

When the user selects product attributes, smart part number searches the list for
the correct attribute combination and uses its part number. Use this method when
your part numbers cannot be easily created using string substitution.

You define named smart part number methods on product classes. These methods
use the attributes defined on the class to generate a part number. Only attributes
with a list of values (LOV) domain can be used to generate part numbers. When you
assign a product to a class, you can select for it any of the smart part number
methods that have been defined on the class.

If you add or remove attributes on a class, or change the values for an attribute,
these changes are not automatically propagated to the smart part number methods
defined on the class. You must manually update each smart part number method
with the changes.
Version 7.5.3 Product Administration Guide 139

Smart Part Numbers

Creating Dynamically Generated Part Numbers
Creating Dynamically Generated Part Numbers
When you create dynamic part numbers, you first create a template that contains a
placeholder for each attribute you want to include in the part number. You then
define mappings that specify how attribute values replace the placeholders. When
the user chooses attribute values, the system inserts the mappings into the part
number template to generate the part number.

The following definitions are important to understanding dynamically generated
part numbers.

■ Part number template. A sequence of sections in a specified order.

■ Section. A portion of a part number template. Each section contains one attribute
name that acts as a placeholder. Sections can also contain a prefix and a postfix.

For example, you want to create part numbers that begin with ENU- and end
with -MC. You want to include values for two attributes, Attrib1 and Attrib2, and
separate them with a dash (-). Here is an example: ENU-S-GRN-MC. In this part
number, S is the value substituted for Attrib1 and GRN is the value for Attrib2.

To create a part number template, you would define two sections. In Table 16,
the first row is the first section of the part number. The second row is the second
section.

■ Mapping. A mapping is a string of characters you define for an attribute value.
The mapping is what the abbreviation method uses to determine what
characters to insert in the part number. If you do not define a mapping, the
abbreviation method uses the attribute value itself.

Table 16. Part Number Template

Prefix Attribute Name (Placeholder) Postfix Sequence

ENU- Attrib1 - 1

Attrib2 -MC 2
140 Product Administration Guide Version 7.5.3

Smart Part Numbers

Creating Dynamically Generated Part Numbers
■ Abbreviation method. The abbreviation method determines how the characters are
derived from the mapping. These characters replace the attribute’s placeholder
in the part number template. The mapping methods are: Abbreviation,
Acronym, First Two Symbols, First and Last Symbols, First Symbol.

■ Abbreviation. Inserts the whole mapping.

■ Acronym. Inserts the first character in the mapping plus the first character
following each space in the mapping.

■ First Two Symbols. Inserts the first two characters in the mapping.

■ First and Last Symbols. Inserts the first and last characters in the mapping.

■ First Symbol. Inserts the first character in the mapping.

An example of how abbreviation methods determine which characters to insert in
part number templates is shown in Table 17. The first column shows the mapping.
The remaining columns show the characters that would be inserted in the template
for each abbreviation method.

Only attributes with a list of values (LOV) domain can be used to create dynamic
part numbers.

Before creating part numbers using this method, determine which attributes you
want to use in the part number. Then write down the sections of the part number,
including the prefix and postfix for each attribute.

Table 17. How Mapping Methods Work

Mapping Abbreviation Acronym First Symbol
First and Last
Symbols

Small Small S S Sl

X Large X Large XL X Xe

X-LARGE X-Large X X XE

A123 B456 C78 A123 B456 C78 ABC A A8
Version 7.5.3 Product Administration Guide 141

Smart Part Numbers

Creating Dynamically Generated Part Numbers
Creating dynamically generated part numbers is a process that has the following
tasks:

1 Creating a part number generation record. This record names the part number
generation method and specifies whether the method is dynamic or predefined.

2 Defining the template

3 Defining a mapping for each attribute value

4 Testing the part number template

These tasks are described below.

To create a part number generation record

1 Navigate to Application Administration > Class Administration and query for
the desired product class.

2 Click Part Number Definitions.

3 In Part Number Definitions, click New to create a new record.

4 In the Name field, enter a name for the part number generation method.

This name should be unique and should indicate whether the method is
dynamic or predefined.

5 In the Type field, from the menu, choose Dynamic. Then step off the record.

The next step in the process is to define the template.

To define the part number template

1 In the part number definition Name field, click the name you entered.

The name is a hyperlink. The Part Number Method view appears.

2 In Part Number Template, create a new record.

Each record is one section in the part number.
142 Product Administration Guide Version 7.5.3

Smart Part Numbers

Creating Dynamically Generated Part Numbers
3 In the Attribute Name field, from the drop-down menu, choose the attribute for
this section.

Only attributes with a list of values (LOV) domain display in this menu.

4 Enter the prefix and postfix for this section as needed.

5 In the Abbreviation Method field, from the drop-down menu, choose an
abbreviation method for the attribute mapping.

6 Enter a sequence in the sequence field.

The sequence determines the order of the section in the part number.

7 Repeat these steps for each section you want to include in the part number.

The last step is to define mappings for the attribute values.

To define a mapping for each attribute value

1 In Part Number Template, highlight the template section for which you want to
define attribute value mappings.

The values for the attribute display in Attribute Mapping.

2 For each attribute value in Attribute Mapping, enter a mapping in the Mapping
field.

The abbreviation method uses the string in the Mapping field to determine what
characters to insert in the part number for this attribute value. If you do not enter
a mapping, the abbreviation method uses the attribute value as the mapping.

3 Repeat these steps for each section in Part Number Template.

The last step is to test the part number template. You do this by creating a quote
and selecting the product for which you have created a smart part number method.
Add the product to the quote enough times so that you can select all the
combinations of attributes needed to verify that the smart part number template is
working correctly. The smart part number displays in the Line Item Detail view. For
more information on locating the smart part number in a quote, see “Viewing a
Product’s Smart Part Number in a Quote” on page 149.
Version 7.5.3 Product Administration Guide 143

Smart Part Numbers

Editing a Dynamic Generation Method
Editing a Dynamic Generation Method
You can edit a dynamic generation method in several ways:

■ Edit the name of the generation method

■ Delete the generation method

■ Edit the part number template

■ Edit the attribute value mappings

If you edit the name of a generation method or delete the method, the change is
reflected in all product records to which the method is assigned. For example, you
delete the generation method Dynamic1. All product records that have Dynamic1
as the Part Number Method, no longer have an assigned generation method.

If you edit the product template or attribute mappings, the changes become
effective immediately. The next time the product is added to quote, order, and so
on, the revised part number scheme will be used. The part numbers assigned to
products are not changed. You can update the part number by reselecting the
product attributes.

If you add or remove attributes defined on a class or change attribute values, these
changes are not propagated to the generation method. You must manually update
the method. For information on this, see “Updating a Generation Method with
Attribute Changes” on page 150.

Creating Predefined Part Numbers
To create predefined part numbers, you create a matrix that contains one row for
each possible combination of attribute values. The last entry in the row is the part
number you want to assign to this combination. You can create the matrix
manually, or the system can generate it automatically.

When the system generates the matrix, it assigns a random part number to each
combination. You can accept this part number or replace it with one of your own.
144 Product Administration Guide Version 7.5.3

Smart Part Numbers

Creating Predefined Part Numbers
When the user configures the product, the system searches the matrix for the
combination of attribute values the user has chosen and assigns the corresponding
part number to the product.

Only attributes with a list of values (LOV) domain can be used to create predefined
part numbers. Before creating part numbers using this method, determine which
combinations of attribute values are allowable. Assign part numbers only to these
combinations.

Creating predefined part numbers is a process that is made up of the following
tasks:

■ Creating a part number generation record. This record names the part number
generation method and specifies whether the method is dynamic or predefined.

■ Selecting the desired attributes.

■ Creating the part number matrix.

■ Testing the part number matrix.

These tasks are described below.

To create a part number generation record

1 Navigate to Application Administration > Class Administration and query for
the desired product class.

2 Click Part Number Definitions.

3 Click New to create a new record.

4 In the Name field, enter a name for the part number generation method.

This name should be unique and should indicate whether the method is
dynamic or predefined.

5 In the Type field, from the menu, choose Predefined. Then step off the record.

The next step is to select the desired attributes.
Version 7.5.3 Product Administration Guide 145

Smart Part Numbers

Creating Predefined Part Numbers
To select the desired attributes

1 In the part number definition Name field, click the name you entered.

The name is a hyperlink. The Part Number Method view appears.

2 In the Attributes list, click New.

3 Open the drop-down menu in the new record and choose the desired attribute.

4 Repeat these steps until you have added all the attributes that you want to use
for defining part numbers.

The last step is to generate a part number matrix.

To create the part number matrix

1 Click Attribute Matrix.

Attribute Matrix displays the part number matrix. There is one column for each
attribute you selected. There is also a Part Number column and a Description
column.

2 To generate the matrix automatically, click the menu button and choose
Generate Part Numbers.

The system creates one record for each possible combination of attribute values.
The system also generates a random part number for each combination.

You can also create the matrix manually by clicking New and creating a record
for each desired attribute combination.

3 Review the matrix and verify that it is structured correctly.

If you have not specified the correct attributes, click Attributes. Then add or
subtract attributes as needed before regenerating the matrix.

4 Edit the part number for each attribute combination as desired.

You can either accept the randomly generated part numbers or enter the desired
part numbers. You can also enter a description for each combination. Users do
not see the description.
146 Product Administration Guide Version 7.5.3

Smart Part Numbers

Editing a Predefined Generation Method
5 To add records, click New.

Enter an attribute value for each attribute, and enter a part number.

6 Delete records for unneeded attribute combinations as desired.

The last step is to test the part number matrix. You do this by creating a quote and
selecting the product for which you have created a smart part number method. See
“Viewing a Product’s Smart Part Number in a Quote” on page 149.

Editing a Predefined Generation Method
You can edit a predefined generation method in several ways:

■ Edit the name of the generation method

■ Delete the generation method

■ Edit the part numbers in a generation method’s part number matrix

■ Add or delete records in a generation method’s part number matrix

■ Regenerate the part number matrix, using different attributes

If you edit the name of a generation method or delete the method, the change is
reflected in all product records to which the method is assigned. For example, you
delete the generation method Predefined1. All product records that have
Predefined1 as the Part Number Method, no longer have an assigned generation
method.

If you edit the part number matrix for a generation method, the changes become
effective immediately. The next time the product is added to quote, order, and so
on, the revised part number scheme will be used. The part numbers assigned to
products are not changed. You can update the part number by reselecting the
product attributes.

If you add or remove attributes defined on a class or change attribute values, these
changes are not propagated to the generation method. You must manually update
the method. To do this, see “Updating a Generation Method with Attribute
Changes” on page 150.
Version 7.5.3 Product Administration Guide 147

Smart Part Numbers

Assigning a Generation Method to a Product
To edit a predefined generation method

1 Navigate to Application Administration > Class Administration and query for
the desired product class.

2 Click Part Number Definitions.

A list of the part number generation methods defined on the product class
appears.

3 To delete a generation method, from the Part Number Definitions menu, choose
Delete Record.

4 To edit a generation method name, click the method name in the Name field.

The Part Number Method view appears.

5 To edit the part number matrix, click the Attribute Matrix tab.

The part number matrix appears.

6 Edit existing records as desired.

7 To add records, click New.

Enter an attribute value for each attribute, and enter a part number.

8 Delete records for attribute combinations as desired.

Assigning a Generation Method to a Product
Part number generation methods defined on a product class are not inherited by the
products in the class. You must manually assign the part number generation method
to a product.

When you assign a generation method to a product, this method is used for
generating part numbers in all new quotes, orders and so on.
148 Product Administration Guide Version 7.5.3

Smart Part Numbers

Viewing a Product’s Smart Part Number in a Quote
To assign a generation method to a product

1 Navigate to Product Administration.

2 Query for the desired product.

Alternatively, query for the desired product class to display all the products in
the class.

3 Click in the product record’s Part Number Method field, open the drop-down
menu, and choose the desired generation method.

Viewing a Product’s Smart Part Number in a Quote
The part number displayed in the Part # field throughout the application and in
quotes, orders, and so on is the internally assigned part number. This part number
is different than the smart part number, which displays in a separate field.

Before viewing a product’s smart part number in a quote, you must assign a part
number generation method to the product. See “Assigning a Generation Method to
a Product” on page 148.

Assigning a generation method to a product does not cause a smart number to be
generated in existing quotes containing the product.

To view a product’s smart part number in a quote

1 Create a quote containing the product.

2 Navigate to Quotes > Line Items.

3 Highlight the desired product and click Line Item Detail.

4 Locate the Smart Part Number field.

You may need to expand the Line Item Detail form to make the Smart Part
Number field visible.
Version 7.5.3 Product Administration Guide 149

Smart Part Numbers

Updating a Generation Method with Attribute Changes
Updating a Generation Method with Attribute Changes
When you add or remove attribute definitions for a class, these changes are not
propagated to smart part number methods defined on the class. If you modify the
list of values domain for an attribute, these changes also are not propagated. You
must manually update each smart part number method with changes to attributes.

You do this by validating the smart part number generation method. When you
validate a generation method, the system does two things:

■ If you have added or removed attributes, a pop-up message displays and
recommends you edit the attribute list you are using for the generation method.
For dynamic generation methods, you must modify section definitions and
mappings. For predefined methods, you must edit the rows of the matrix.

■ If you have changed attribute values for an attribute, the changes are added to
the attribute values available for selection. For dynamic generation methods,
you must edit the mappings to reflect the new values. For predefined methods,
you must edit the rows of the matrix.

Choose one of the following procedures to validate a smart part number generation
method.

To update a dynamic generation method with attribute changes

1 Navigate to Application Administration > Class Administration and query for
the desired product class.

2 Click Part Number Definitions.

A list of the part number generation methods defined on the product class
appears.

3 To edit a generation method name, click the method name in the Name field.

The Part Number Method view appears.
150 Product Administration Guide Version 7.5.3

Smart Part Numbers

Updating a Generation Method with Attribute Changes
4 In Part Number Template, click the menu button and choose Validate Definition.

If an attribute has been added, removed, or its name has been changed, a pop-
up message appears recommending you revise the sections in Part Number
Template.

If an attribute’s values have changed, the values available in Attribute Mapping
are updated and no pop-up message appears.

5 Revise the sections defined in Part Number Template as needed.

6 Add or revise mappings in Attribute Mapping as needed.

The following procedure shows how to update a predefined generation method.

To update a predefined generation method with attribute changes

1 Navigate to Application Administration > Class Administration and query for
the desired product class.

2 Click Part Number Definitions.

A list of the part number generation methods defined on the product class
appears.

3 To edit a generation method name, click the word Predefined in the Type field.

The Part Number Method view appears.

4 In Attributes, click the menu button and choose Validate Definition.

If an attribute has been added, removed, or its name has been changed, a pop-
message up appears recommending you revise the Attributes list.

If an attribute’s values have changed, the values available for automatically
generating a matrix are updated and no pop-up message appears.

5 Revise the Attributes list as needed.

6 Add, remove, or revise rows in the matrix as needed.
Version 7.5.3 Product Administration Guide 151

Smart Part Numbers

Querying for Products with the Same Generation Method
Querying for Products with the Same Generation Method
You can query for all the products that have the same part number generation
method. This allows you to check whether you have duplicate generation method
names and whether you have assigned generation methods correctly.

To query for products with the same generation method

1 Navigate to Product Administration.

2 Open the drop-down menu in the Part Number Method field.

This menu lists all the part number generation methods that have been defined
for all classes.

3 Verify that the menu does not contain duplicate names.

If it does, this means you have defined a generation method with the same name
on more than one product class. Consider editing the generation method names
so that each name is unique.

4 In query mode, enter an asterisk (*) in the Part Number Method field and start
the query.

This displays all the product records for which a generation method has been
selected.

5 Verify that each group of records with the same generation method name has the
correct class name.
152 Product Administration Guide Version 7.5.3

Product Bundles 9
This chapter explains how to create product bundles. A product bundle is a group
of products that are sold together for a specified price.

This chapter covers the following topics:

■ “About Product Bundles” on page 154

■ “Creating a Simple Product Bundle” on page 155

■ “Modifying Simple Product Bundles” on page 156

■ “Deleting a Simple Product Bundle” on page 157

■ “Controlling How Bundle Components are Forecast” on page 157
Version 7.5.3 Product Administration Guide 153

Product Bundles

About Product Bundles
About Product Bundles
A product bundle is a group of products sold as a package. If you create a product
bundle, the user cannot change the items in the bundle or their quantity. If you want
the user to be able to select the items, you must use a customizable product instead
of a product bundle.

A product bundle is itself a product and has a product record. It can also have a part
number. You price bundles by assigning them a list price. You cannot use ePricer to
create roll-up pricing based on components or on attributes of components in a
bundle. You also cannot use attribute-based pricing to set the price of a bundle
based on the attributes of the bundle as a whole.

When you create a bundle, it is added to the product master. This means you can
add the bundle to any quote or order. Product packages that you create in a quote
or order are bundles that are specific to that quote or order. They are not added to
the product master.

You must create a bundle record for each product you add to a bundle. A bundle
record has the following fields:

■ Product. The product name.

■ Part #. The product part number.

■ Description. A brief description of the bundle. This does not display to users.

■ Quantity. The quantity of the product you want to include in the bundle.

■ Sequence. The order in which products in the bundle display in quotes and
orders.

■ Forecastable. A check mark in this field means that the product will be added to
product forecasts when the bundle is included in a quote and the user updates
the related opportunity.
154 Product Administration Guide Version 7.5.3

Product Bundles

Creating a Simple Product Bundle
Creating a Simple Product Bundle
A simple product bundle is a group of products offered as package. The user cannot
change the items in the bundle or their quantity.

To create a simple product bundle, you first create a product record for the bundle.
Then you add products to the bundle. After creating the bundle, see Pricing
Administration Guide to set up pricing.

Observe the following guidelines and restrictions when creating a simple product
bundle:

■ The quantity of a product in a bundle can be greater than one. When creating a
quote or purchasing the bundle, users cannot change the quantity of a product
in the bundle. The user cannot change which items are in the bundle.

■ When users add bundles to quotes and orders, the products in the bundle
display as line items beneath the bundle’s product name.

■ You can add a product bundle to another product bundle.

■ You can add a customizable product to a bundle.

■ When you add a bundle to a customizable product, the user can change the
quantity of components in the bundle during a configuration session.

■ You can convert a bundle to a customizable product and you can convert a
customizable product to a bundle.

To create a product bundle

1 Navigate to Product Administration and create a product record.

Enter the name of the bundle in the Product field.

2 Click Bundle Administration.

The Bundle Administration list appears.

3 In Bundle Administration, click Modify then click New and create a new record.

4 In the new record, click in the Product field to display the select button. Click
the select button to display the Pick Product dialog box.
Version 7.5.3 Product Administration Guide 155

Product Bundles

Modifying Simple Product Bundles
5 In the dialog box, select a product.

The product record displays in the Bundle Administration list.

6 In the product record, edit the Description, Quantity, Sequence, and Forecastable
fields as desired.

7 Repeat these steps for each product you want to add to the bundle.

8 Click Done.

This releases the bundle for use by customers. A check mark displays in the
Bundle check box in the product record form.

Modifying Simple Product Bundles
You can modify a simple product bundle by changing the items in the bundle or by
changing the quantity of items. Modifying a product bundle releases a new version
of the bundle.

Modifying a bundle affects in-process and existing quotes and orders. When users
save a quote or order containing a bundle for which there is a new version, they
receive a message indicating that.

To modify a product bundle

1 Navigate to Product Administration and query for the desired bundle.

2 Click Bundle Administration.

The products in the bundle appear.

3 To edit a product’s record, select the record and click Modify.

4 To add a product, from the Bundle Administration menu, choose New Record.

5 To delete a product, select its record, open the Bundle Administration menu, and
choose Delete Record.

6 When finished, click Done.

This releases a new version of the bundle for use by customers.
156 Product Administration Guide Version 7.5.3

Product Bundles

Deleting a Simple Product Bundle
Deleting a Simple Product Bundle
You cannot delete the product record for a product bundle. However, you can make
the product bundle unavailable for use.

To make a product bundle unavailable

1 Modify the bundle to remove all its products.

2 In the bundle’s product record, click Sales Product to remove the check mark.

This removes the product bundle from the product picklist.

3 Remove the product bundle from all price lists.

4 Delete any pricing rules that refer to the product bundle.

5 Remove the product bundle from all customizable product relationships, and
configuration rules. Validate the customizable products and release a new
version.

Controlling How Bundle Components are Forecast
When you add a product to a bundle, you can put a check mark in the Forecastable
field. This adds the product to forecasts when the bundle is included in a quote and
the user updates the related opportunity.

To prevent bundle products from being added to product forecasts, do not put a
check mark in the Forecastable field in Bundle Administration.

A Forecastable check box is also available in Quotes >Line Items. This allows you
to add or remove a bundle and its products from product forecasts within individual
quotes.
Version 7.5.3 Product Administration Guide 157

Product Bundles

Controlling How Bundle Components are Forecast
158 Product Administration Guide Version 7.5.3

Build Customizable Products 10
This chapter describes how to build a customizable structure using the Product
Designer.

This chapter covers the following topics:

■ “About Customizable Products” on page 160

■ “About Relationships” on page 164

■ “About Cardinality” on page 168

■ “Creating a Customizable Product Work Space” on page 171

■ “Refreshing the Work Space” on page 172

■ “Selecting and Locking a Customizable Product” on page 173

■ “Adding a Single Product” on page 174

■ “Adding Products by Using the Class Domain” on page 175

■ “Adding Products Using the Dynamic Class Domain” on page 178

■ “Adding a Group of Products from Different Classes” on page 180

■ “Adding a Customizable Product” on page 182

■ “Editing a Relationship Definition” on page 183

■ “Updating Product Information in Relationships” on page 184

■ “Deleting Products” on page 185

■ “Deleting a Customizable Product’s Structure” on page 186
Version 7.5.3 Product Administration Guide 159

Build Customizable Products

About Customizable Products
About Customizable Products
A customizable product is one that has configurable components. For example, you
sell desktop workstations. At the time of purchase, the user can select from several
types of disk drive, monitor, keyboard, and mouse to configure the workstation.

Another type of customizable product is one that has other customizable products
as components. For example, you sell a telephone PBX system that includes 6 rack-
mounted PC-based modules. Each module is configurable in a fashion similar to a
desktop computer. The components of the PBX system form a product hierarchy. To
configure the PBX, the user begins at the top with the PBX as a whole and works
down through the hierarchy, configuring its components.

Customizable Product Versions and Work Space
Besides components, customizable products can also have a specially designed user
interface for configuring the product, configuration rules, and special variables
called resources and links.

These parts that make up a customizable product are stored together to form a
product version. When you modify any of the parts of the product, you can release
a new version. Customers see only the latest released version of a customizable
product.

The product administrator has access to a special form of the customizable product,
called the work space. The work space is an unreleased version of the product and
is not available to users. The work space is like a workbench where the product
administrator builds and revises the product before releasing it to customers.

You must create a work space for a customizable product to do the following things:

■ Add components. You do this in the Product Designer.

■ Create a user interface for the product. You can create special selection pages to
display the configurable product options. You do this in the Product Designer
and the Product UI Designer.

■ Create configuration rules. These rules constrain attribute selection or selection of
components. You do this in the Rule Designer.

■ Define resources. Resources are special variables you use to track configuration
quantities. You do this in the Resource Designer.
160 Product Administration Guide Version 7.5.3

Build Customizable Products

About Customizable Products
■ Define links. Links are special variables contain information from Siebel business
components or system values. You do this in the Link Designer.

■ Create Scripts. Scripts are programs that execute at specific points in a
configuration session. You create scripts in the Scripts Designer.

Products that are customizable solely because they have attributes, do not require
a work space. However, if you want to write configuration rules regarding the
attribute values, you must create a work space and use the Rule Designer. If you
want to create special Web pages for selecting the attribute values, you must create
a work space and use the Product UI Designer.

Product Designer
The Product Designer is where you add components to a customizable hierarchy
and arrange them into a hierarchy. You can add single products, products from
multiple classes, parts of product classes, or all of product classes. Products you add
come from the product table.

The Product Designer is located in the Product Administration screen, Customizable
Product tab.

Product UI Designer
The Product UI Designer is where you design the pages a user sees when they start
a configuration session or when you enter validation mode. Several types of user
interface themes are provided that govern the basic look and feel of the Web pages
as well as the layout and types of controls.

When the user configures a customizable product, an instance of the product is
created and presented in the user interface. For example, a user is creating a quote.
The user selects a customizable product and clicks the Customize button. The
system creates an instance of the customizable product and generates the browser
pages that display it. The user then configures the product. When the user is
finished, the user adds the configured product to the quote.

The Product UI Designer is located in the Product Administration screen,
Customizable Product tab.
Version 7.5.3 Product Administration Guide 161

Build Customizable Products

About Customizable Products
User Interface Property Designer
The themes and UI controls that you use to design pages in the Product UI Designer
are controlled by Web template files. You can modify these templates by inserting
variables in them and then associating these variables with items in a customizable
product. For example, instead of displaying the attribute values Red, Green, Blue,
you could define variables that call gif files to display the colors themselves. The
User Interface Property Designer is where you define these associations, called user
interface properties.

The User Interface Property Designer is located in the Product Administration
screen, Customizable Product tab.

Resource Designer
Resources keep track of important configuration-related amounts in a customizable
product. For example, you are designing a customizable product called Computer
Model. This product has several choices of chassis, each with a different number of
card slots. Several of the components in this product are expansion cards that
consume these slots. To keep track of the number of slots available you could define
a resource called Slots Available. When the user selects a chassis, a rule associated
with the customizable product would add the number of slots in the chassis to a
Slots Available resource. Similarly, when the user selects any type of expansion
card, rules would decrease Slots Available by 1. In this fashion, you can monitor
slot usage and write rules to prevent misconfiguration of the product.

The Resource Designer is located in Product Administration screen > Configuration
Designer.

Link Designer
Linked items provide access to other types of information besides products. You can
define links to fields in a business component, to the login name of the user, or to
the current system date. This lets you write rules that affect only certain login
names, are conditioned on dates, or are conditioned on business component
information.

The Link Designer is located in the Product Administration screen, Configuration
Designer tab.
162 Product Administration Guide Version 7.5.3

Build Customizable Products

About Customizable Products
Rule Manager
When you define components and attributes for a customizable product, you need
a mechanism to restrict the combinations of these to the configurations you sell. For
example, you sell shirts in three sizes and three colors. However, not all sizes come
in all colors. You need a way to restrict the colors for each size to the ones you sell.
You do this by writing configuration rules that define the allowable configurations
of your products.

Configuration rules can prevent the user from picking an item if another item has
already been picked. They can also automatically add an item when another item
has been picked. Configuration rules can also be used to give up-sell messages or
recommendations to the user when they pick an item.

The Rule Designer is located in the Product Administration screen, Configuration
Designer tab.

Script Designer
The Siebel system provides a set of configuration-related events and methods. These
allow you to write scripts that add procedural logic to the configuration process.
When the user selects certain items or does things like updating the shopping cart,
you can use scripts to check the configuration, verify and adjust pricing, or forward
information to other applications. Scripts can be associated with items and can be
set to trigger when certain defined events occur.

The Script Designer is located in the Product Administration screen, Configuration
Designer tab.
Version 7.5.3 Product Administration Guide 163

Build Customizable Products

About Relationships
About Relationships
You add items to a customizable product by defining relationships. A relationship
can be defined for a single product, a group of products, or the products in a class.

The relationships you define for a customizable product are component type
relationships. This means the items in the relationship are components of the
customizable product. For example, you define a relationship called Hard Drives for
the customizable product Desktop Computer. You specify that it contains all the
products assigned to the Disk Drive class. This makes the disk drives in this class
components of the customizable product Desktop Computer.

Relationships are analogous to the branches of a tree. The main trunk is the root of
the customizable product. Each branch is a relationship. The leaves at the end of
each branch are the components you add to the relationship.

Relationships form the framework of a customizable product. They are also the
framework underlying the user interface you design for the product. For example,
you sell configurable computers. The buyer can choose among several monitors,
several keyboards, and several CD-ROMs when configuring a computer. You could
create a relationship called Monitors, another called Keyboards, and one called CD-
ROMS. You would then specify the products to include in each relationship. You
could then design the user interface to present monitors, keyboards, and CD-ROMs
each on a separate selection page.

When you design a customizable product, begin by defining a framework of
relationships. Keep in mind that each relationship represents a distinct, configurable
part of the product.

Figure 4 on page 165 shows a relationship framework in a customizable product.

■ Relationship 1 contains a single product, Product 1

■ Relationship 2 contains all the products in product class, Class 1
164 Product Administration Guide Version 7.5.3

Build Customizable Products

About Relationships
■ Relationship 3 contains Product 2, Product 3, and Product 4, each from a
different product class

Customizable products and the product class system both include hierarchies.
However, these hierarchies differ in important ways. In the product class system,
inheritance is used to propagate attribute definitions downward through the class
system. By contrast, inheritance plays no role in the hierarchy of components in a
customizable product. Attributes inherited by a customizable product because of its
membership in a product class do not propagate to the component products in the
customizable product.

For example, a customizable product belongs to a product class that has the
attribute Color (red, green, blue). The customizable product as a whole inherits this
attribute but its components do not. For example, if the customizable product is a
laptop computer, this means the laptop comes in three colors, red, green, or blue.

However, these colors are not inherited by any of the components of the laptop. For
example, if the laptop has a CD-ROM, it does not inherit these colors. The color
attribute of the CD-ROM (if it has one) is defined in the product class from which it
comes, not in the customizable product in which it resides.

Figure 4. Customizable Product Relationships
Version 7.5.3 Product Administration Guide 165

Build Customizable Products

About Relationships
When you create a relationship for a customizable product, you create a record in
the Product Designer that contains the following fields:

■ Relationship Name. The name of the relationship. This name displays in the
selection pages in a configuration session. In the Product Designer, the
Relationship name displays as a file folder. When you expand this folder, the
products in the relationship display beneath it.

■ Class Name. Click in this field to display a dialog box that lists all product classes.
Select the desired product class. If no class name is specified, you can add
products from anywhere in the class system.

■ Define Domain. Click in this field to display a dialog box that lists the products in
the class you selected. Select the products you want to add from this class.

■ Default Product. Specifies the default product presented to the user in selection
pages during a configuration session. You select a default product from the
dialog box that displays when click in the Define Domain field.

■ Min Cardinality. Enter the minimum quantity of items that must be selected from
this relationship. The quantity can be zero.

■ Max Cardinality. Enter the maximum quantity of items that the user can select
from this relationship. The quantity can be zero.

■ Default Cardinality. Enter the quantity of the default product you want display in
selection pages at the beginning of a configuration session. The quantity can be
zero.

■ Domain Type. The domain type specifies the domain of the items you add to the
relationship:

■ Product. The relationship contains a single product. The product can be a
customizable product.

■ Class. You can define the relationship domain to be all or part of a product
class and its subclasses. You must manually select which products to include
in the relationship. If you add or remove products from the product class or
its subclasses, these changes are not propagated to the relationship. You must
manually edit the relationship domain to update it with changes to the
product class.
166 Product Administration Guide Version 7.5.3

Build Customizable Products

About Relationships
■ Dynamic Class. The relationship contains all of the products in a product class
and its subclasses. If you add or remove products from the product class or
its subclasses, the changes are propagated to the relationship when you
refresh the customizable product work space. This domain type provides the
best performance and is the recommended one to use.

When you expand the Relationship Name folder, each product in the relationship
displays as a separate record with the following fields.

■ Relationship Name. Products in a relationship display beneath the relationship to
which they belong. The name you enter for the product in this field is displayed
in selection pages during a configuration session.

■ Product. The name of the product in the product table. This field is a hyperlink.
When you click it, the product table entry for the product appears.

■ Sequence Number. Enter a number to set the order of display of relationship items
within the relationship in selection pages. The item with a sequence number of
1 displays first, and so on. If you do not enter sequence numbers, the items
display in selection pages in the order shown in the Product Designer.

For relationships with domain type dynamic class, entering a sequence number
is not useful. The sequence number information is lost when you refresh the
customizable product work space. This is because the current contents of the
product class are copied into the customizable product.
Version 7.5.3 Product Administration Guide 167

Build Customizable Products

About Cardinality
About Cardinality
When you define a relationship, you can specify a minimum, maximum, and
default cardinality. Cardinality refers to the quantity of the products the user can
select from a relationship. For example, you define a relationship called Hard
Drives. It contains a 20 GB drive and a 30 GB drive. If you set the minimum
cardinality to 2, the user must pick 2 items from this relationship. The user can do
this in any of the following ways:

■ Pick one 20 GB drive and one 30 GB drive

■ Pick two 20 GB drives

■ Pick two 30 GB drives

The three types of cardinality you can define for a relationship are as follows:

■ Minimum Cardinality. Governs whether or not selecting items from this
relationship is optional or is required. If you set the minimum cardinality to 0,
selecting items is optional. If you set the minimum cardinality to greater than 0,
the user must select that number of items from the relationship.

■ Maximum Cardinality. Sets the maximum number of items that the user can select
from a relationship. If you set the minimum cardinality to greater than 0, you
must set the maximum cardinality to a number at least as large If you do not
enter a maximum cardinality, the default is 999. To revise this default, see
“Revising the System Default Cardinalities” on page 455.

■ Default Cardinality. Specifies what quantity of the default product is automatically
added to the initial solution that the user sees. Default cardinality must be equal
to or greater than the minimum cardinality and must be less than or equal to the
maximum cardinality.

If you specify a default cardinality and do not specify a default product, the
system uses the first product that displays when you expand the relationship
folder in the Product Designer.
168 Product Administration Guide Version 7.5.3

Build Customizable Products

About Cardinality
Combinations for Setting Cardinality
Table 18 describes several combinations for setting cardinality. The table shows
what the user will see in the initial solution and what actions that the user can take.
In the table, N is the quantity of the default product in the initial solution. In all the
cases where the Min Card is greater than 0, the user can substitute other products
for the default product.

Table 18. Combinations of Cardinality

Min Card Default Card Max Card

System
Adds
Default
Product?

User
Pick
Reqd? Initial Solution User Actions Allowed

=0 = Min Card >Default Card No No No items Increase item quantities
to Max Card.

=0 > Min Card =Default Card No No N=Max Card Decrease Item quantities
to 0 but cannot increase
them.

=0 > Min Card >Default Card No No N=Default
Card

Increase item quantities
to Max Card or decrease
them to 0.

>0 = Min Card =Default Card Yes Yes N=Min,
Default, Max

Cannot increase or
decrease item quantities.

>0 = Min Card > Default Card Yes Yes N=Min Can increase item
quantities to Max Card
but cannot decrease
them.

>0 > Min Card = Default Card Yes Yes N=Default Can decrease item
quantities to Min Card
but cannot increase
them.

>0 > Min Card >Default Card Yes Yes N=Default Can decrease item
quantities to Min Card or
increase them to Max
Card.
Version 7.5.3 Product Administration Guide 169

Build Customizable Products

About Cardinality
About Generics
Generics are notifications to the user from the engine that one or more items within
a relationship needs to be selected for the customizable product to be correct. An
example of generics is a red star displayed next to the relationship name and
product title during a configuration session because some minimum cardinality
requirements were not satisfied. The configurator gives users a warning when they
try to save a configuration that has generics in it, but it allows users to save the
configuration and also saves the fact that the configuration is incomplete to the
quote or order.

When the user verifies a quote, the application checks for incomplete
configurations as well as for other information. If the configuration saved was
incomplete because of unsatisfied cardinalities on relationships, the application
displays a message when the user verifies saying that the configuration of the item
is not complete and the user should reconfigure the item.
170 Product Administration Guide Version 7.5.3

Build Customizable Products

Creating a Customizable Product Work Space
Creating a Customizable Product Work Space
A work space is what distinguishes a customizable product from a simple product.
The work space is a context or container to which you add the component products,
rules, resources, links, scripts, and user interface definition for a customizable
product.

When you have tested the customizable product and are ready to publish it, you
release a new version of the product. Releasing a version copies the current work
space, assigns a version number to it, and makes the new version available to users.

The most recently released version is what users see when they configure the
customizable product. When you release the first version of a customizable
product, the system places a check-mark in the Customizable Product check box in
the product record.

Once you have created a work space you must lock it before you can make changes
to a customizable product.

To create a customizable product work space

1 Navigate to Product Administration.

2 In Products create a new product or select the desired product.

3 Click the Customizable Product tab.

The Customizable Product > Product Versions view appears. The Versions tab
contains no records.

4 In Lock/Unlock Product, from the menu, choose Create Work Space.

A new record appears in Lock/Unlock Product. A work space record appears in
the Versions tab.

5 Click in the Locked Flag field.

A check mark appears in the Locked Flag field. Your login ID appears in the
Locked By field. The system date and time appear in the Locked Date field.

You can now begin building the new customizable product.
Version 7.5.3 Product Administration Guide 171

Build Customizable Products

Refreshing the Work Space
Refreshing the Work Space
If a customizable product contains relationships of type Dynamic Class, refreshing
the work space copies a new instance of these product classes into the relationships.
This means a fresh copy of all the products in the class become part of the
customizable product instance.

For example, the number of products in a class has changed. You have defined a
relationship of type Dynamic Class that specifies this product class. When you
refresh the work space, the revised product class is copied to the relationship from
the product table. When you view the relationship in the Product UI Designer or in
Validate mode, the new products display.

Relationships of domain type Class and Product are not updated from the product
table when you refresh the work space.

Refreshing the work space updates the products or attributes in a customizable
product. The configuration rules, resource definitions, link definitions, and scripts
that are part of the customizable product are not updated to reflect changes. You
must manually make these updates.

To refresh the work space

1 From the Customizable Product Show menu, choose Product Versions.

The Product Versions view appears. You can also refresh the work space by
opening the Product Designer menu.

2 From the Lock/Unlock Product menu, choose Refresh Work Space.
172 Product Administration Guide Version 7.5.3

Build Customizable Products

Selecting and Locking a Customizable Product
Selecting and Locking a Customizable Product
Before you can build or edit a customizable product, you must lock its work space.
This prevents others from modifying the work space. You cannot lock versions that
have already been released.

To select and lock a customizable product

1 Navigate to Product Administration.

2 In Products, select the desired customizable product.

3 Click the Customizable Product tab.

The Customizable Product > Product Versions view appears.

4 In Lock/Unlock Product, click in the Locked Flag field.

A check mark appears in the Locked Flag field. Your login ID appears in the
Locked By field. The system date and time appear in the Locked Date field.

To unlock the product, click in the Locked Flag field.
Version 7.5.3 Product Administration Guide 173

Build Customizable Products

Adding a Single Product
Adding a Single Product
Use this procedure to create a relationship that contains a single product.

The product you select must be orderable. To make a product orderable, place a
check mark in the Orderable check box in the product record.

When you are finished adding products, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Products Designer menu, choose Validate.

To add a single-product relationship

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product Designer.

The Product Designer view appears.

4 Add a new record.

5 Enter a relationship name.

6 Click in the Product field to expose the select button. Click the select button.

A dialog box appears that displays all the available products.

7 In the dialog box, select the desired product.

The record appears in the Product Designer.

8 Set the Min, Max and Default Cardinalities.
174 Product Administration Guide Version 7.5.3

Build Customizable Products

Adding Products by Using the Class Domain
Adding Products by Using the Class Domain
This method of adding products does not maintain a connection to the class system.
When you refresh the customizable product work space, relationships are not
updated. For example, if you assign a new product to a class, this product is not
added to the relationship containing this class when you refresh the work space or
release a new version of the customizable product. Use this method when you want
to keep the relationship contents static or when you want to add only some of the
products in a product class.

The products you select must be orderable. To make a product orderable, place a
check mark in the Orderable check box in the product record.

When you are finished adding products, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Products Designer menu, choose Validate.

NOTE: Adding a small number of products to a relationship from a large product class
requires that the entire class be searched each time the customizable product is
instantiated. This can adversely affect performance. Consider defining customizable
products to avoid this.

To add products by using the Class domain

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product Designer.

The Product Designer view appears.

4 Add a new record.

5 Enter a Relationship name in the Relationship Name field.

6 Open the drop-down menu in the Domain Type field and choose Class.
Version 7.5.3 Product Administration Guide 175

Build Customizable Products

Adding Products by Using the Class Domain
7 Click in the Class Name field and then click the select button.

A dialog box appears that contains one record for each class and for each
subclass in the class system. Selecting a class selects all of its subclasses.

8 In the dialog box, click the select button to select a class.

9 Click in the Define Domain field and then click the select button.

The Define Relationship Domain dialog box appears and displays all the
products in the class.

10 Use the buttons and fields in the dialog box to select the products you want to
add to the relationship:

■ Add column. Click the word Add in the record to add the product to the
relationship. A check mark displays in the “Is in domain” field.

■ Query button. Queries for the desired products in the class.

■ Close button. Closes the dialog box.

■ Add All button. Adds all the products in the class to the relationship.

■ Set as Default button. Adds the product to the relationship and makes it the
default product. In the Product Designer, the product name displays in the
Default Product field at the relationship level.

■ Clear Default button. Removes the product from the relationship’s Default
Product field. Does not remove the product from the relationship.

■ Delete button. Removes the product from those you have selected to be in the
relationship. Removes the check mark from the “Is in domain” field. Does
not remove the product from the product class.

■ Delete All button. Removes all the products from the relationship. No products
display a check mark in the “Is in domain” field. Does not remove the
products from the product class.

11 When you have finished adding products, click Close in the dialog box.

In the Product Designer, the relationship icon displays as a folder.

12 Enter the Min, Default, and Max Cardinalities for the relationship as needed.
176 Product Administration Guide Version 7.5.3

Build Customizable Products

Adding Products by Using the Class Domain
13 Click the folder to display the products you added.

Verify that the relationship is defined properly, that the default product is
correct, and that all the products you want to add are present.

14 Enter the Min, Default, and Max Cardinalities for each item in the relationship
as needed.

15 Remove the check mark from the Forecastable field for items as needed.

Removing the check mark means the item will not be included in product
forecasts when the opportunity is updated for quotes, orders, and so on
contained the customizable product.

16 For each product in the relationship, enter a sequence number in the Sequence
Number Field.

The item with sequence number 1 displays first within the relationship in
selection pages. If your display is not wide enough to show the Sequence
Number field, manually adjust column widths to bring the Sequence Number
field into view.
Version 7.5.3 Product Administration Guide 177

Build Customizable Products

Adding Products Using the Dynamic Class Domain
Adding Products Using the Dynamic Class Domain
This method of adding products maintains a connection to the class system. When
the work space is refreshed, Dynamic Class relationships are updated from the class
system. For example, if you add a new product to a class in the class system, this
product is added to the relationship containing this class when you refresh the work
space or release a new version of the customizable product.

When you refresh the work space to update the contents of the relationship, you
must reenter the sequence numbers in the relationship definition.

The products you select must be orderable. To make a product orderable, place a
check mark in the Orderable check box in the product record.

When you are finished adding products, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Products Designer menu, choose Validate.

To add products using the Dynamic Class domain

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product Designer.

The Product Designer view appears.

4 Add a new record.

5 Enter a Relationship name in the Relationship Name field.

6 Open the drop-down menu in the Domain Type field and choose Dynamic Class.

7 In the Class Name field:

a Click the select button.

A dialog box appears that contains one record for each class and for each
subclass in the class system. Selecting a class selects all of its subclasses.
178 Product Administration Guide Version 7.5.3

Build Customizable Products

Adding Products Using the Dynamic Class Domain
b In the dialog box, select a class.

The class displays in the Class Name field.

8 In the Define Domain field:

a Click the select button.

A dialog box appears that displays all the products in the class.

b In the dialog box, click Add All.

A check mark displays in the “Is in domain” field for all the products in the
class.

c Use the following buttons to select a default product:

❏ Set as Default button. Adds the product to the relationship and makes it the
default product. In the Product Designer, the product name displays in the
Default Product field at the relationship level.

❏ Clear Default button. Removes the product from the relationship’s Default
Product field. Does not remove the product from the relationship.

d When you have finished adding products, click Close in the dialog box.

In the Product Designer, the relationship icon displays as a folder.

9 Enter cardinalities, as needed:

a Enter the Min, Default, and Max Cardinalities for the relationship as needed.

b Click the folder to display the products you added.

c Enter the Min, Default, and Max Cardinalities for each item in the
relationship as needed.

10 Remove the check mark from the Forecastable field for items as needed.

Removing the check mark means the item will not be included in product
forecasts when the opportunity is updated for quotes, orders, and so on
contained the customizable product.
Version 7.5.3 Product Administration Guide 179

Build Customizable Products

Adding a Group of Products from Different Classes
11 For each product in the relationship, enter a sequence number in the Sequence
Number Field.

The item with sequence number 1 displays first within the relationship in
selection pages. If your display is not wide enough to show the Sequence
Number field, manually adjust column widths to bring the Sequence Number
field into view.

Adding a Group of Products from Different Classes
The products you add to a relationship do not have to be from the same class. You
can group products from several classes or products not assigned to a class into one
relationship.

You do this by creating a relationship of domain type Class but without specifying
a class. This allows you to select products from anywhere in the class system.

You can do anything with this relationship that you can do with other class-type
relationships such as creating resources, configuration rules, and links.

The products you select must be orderable. To make a product orderable, place a
check mark in the Orderable check box in the product record.

When you are finished adding products, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Products Designer menu, choose Validate.

This method of defining a relationship domain requires a search throughout the
class system each time the customizable product is instantiated. This can have an
adverse impact on performance. Avoid using this method, if possible.

To add groups of products from different classes

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product Designer.

The Product Designer view appears.
180 Product Administration Guide Version 7.5.3

Build Customizable Products

Adding a Group of Products from Different Classes
4 Add a New Record.

5 Enter a Relationship name in the Relationship Name field.

6 Open the drop-down menu in the Domain Type field and choose Class.

7 Click in the Define Domain field and open the dialog box.

The Define Relationship Domain dialog box appears. Because you have not
specified a class, the dialog box displays all products from all classes and
subclasses.

8 Use the buttons and fields in the dialog box to select the products you want to
add to the relationship:

a Add column. Click the word Add in the record to add the product to the
relationship. A check mark displays in the “Is in domain” field.

b Query button. Queries for the desired products in the class.

c Close button. Closes the dialog box.

d Add All button. Adds all the products in the class to the relationship.

e Set as Default button. Adds the product to the relationship and makes it the
default product. In the Product Designer, the product name displays in the
Default Product field at the relationship level.

f Clear Default button. Removes the product from the relationship’s Default
Product field. Does not remove the product from the relationship.

g Delete button. Removes the product from those you have selected to be in the
relationship. Removes the check mark from the “Is in domain” field. Does
not remove the product from the product class.

h Delete All button. Removes all the products from the relationship. No products
display a check mark in the “Is in domain” field. Does not remove the
products from the product class.

9 When you have finished adding products, click Close in the dialog box.

In the Product Designer, the relationship icon displays as a folder.

10 Enter the Min, Default, and Max Cardinalities for the relationship as needed.
Version 7.5.3 Product Administration Guide 181

Build Customizable Products

Adding a Customizable Product
11 Click the folder to display the products you added.

12 Enter the Min, Default, and Max Cardinalities for each item in the relationship
as needed.

13 Remove the check mark from the Forecastable field for items as needed.

Removing the check mark means the item will not be included in product
forecasts when the opportunity is updated for quotes, orders, and so on
contained the customizable product.

14 For each product in the relationship, enter a sequence number in the Sequence
Number Field.

The item with sequence number 1 displays first within the relationship in
selection pages. If your display is not wide enough to show the Sequence
Number field, manually adjust column widths to bring the Sequence Number
field into view.

Adding a Customizable Product
You can add customizable products as components of other customizable products.
This means you can create customizable products that are sub-assemblies and then
include them as components in the final product. For example, you sell a
configurable power supply and a configurable gearbox as part of an industrial lathe.
You can create one customizable product for configuring the power supply and one
for configuring the gearbox. You can then add both of these component
customizable products to the industrial lathe customizable product.

In the Product Designer, when you add a customizable product to a relationship, its
configurable parts do not display. Instead, the customizable product displays as a
single product.

When you edit a customizable product and release it, the changes propagate to all
customizable products containing it.

Use the following procedures to add a customizable product:

■ To add a customizable product that is not assigned to a class, use the procedure
for adding a single product.
182 Product Administration Guide Version 7.5.3

Build Customizable Products

Editing a Relationship Definition
■ To add a customizable product that is a member of a class, use the procedure for
adding a class.

Editing a Relationship Definition
You can only edit the current work space of a customizable product. You cannot edit
a version that has already been released. All the fields in a relationship definition
can be edited except the relationship name. Changes are not propagated to other
parts of the customizable product.

When you are finished editing, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Products Designer menu, choose Validate.

To edit a relationship definition

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product Designer.

The Product Designer view appears.

4 Select the desired relationship.

5 Edit the fields in the relationship record as desired.

6 Save the relationship record.

7 Revise configuration rules, resource definitions, link definitions, and scripts as
needed to reflect the changes.
Version 7.5.3 Product Administration Guide 183

Build Customizable Products

Updating Product Information in Relationships
Updating Product Information in Relationships
You add items to a customizable product by defining relationships and then adding
products to the relationships. Relationships have several domain types, which are
updated with product class changes as follows when you refresh the work space.

■ Product. New and revised attribute definitions are added.

■ Class. New and revised attribute definitions are added. New products are not
added. Products that have been removed from the class are not removed from
the relationship.

■ Dynamic Class. New and revised attribute definitions are added. New products
are added. Products that have been removed from the product class are removed
from the relationship.

The updates appear in the current work space. To make them available to users, you
must release the customizable product.

To update product information by refreshing the work space

1 Modify class attributes as needed.

2 Add or remove products in the class system as needed.

3 Navigate to Product Administration.

4 Select and lock the desired customizable product.

5 From the Lock/Unlock menu, choose Refresh Workspace.
184 Product Administration Guide Version 7.5.3

Build Customizable Products

Deleting Products
Deleting Products
You can only delete products from the current work space of a customizable
product. You cannot delete products from a released version. You can delete
relationships or products included within a relationship.

Changes are not propagated to other parts of the customizable product. For
example, if you delete a product from a relationship, configuration rules for that
product are not deleted.

If you delete a product from a relationship that has domain type Dynamic Class, the
product will be added back to the relationship when you refresh the work space or
release the product. This is because the product still exists in the product class.
When you refresh the work space or release the product, the relationship is updated
so that it contains all the products in the product class and the current attribute
definitions.

To avoid this, you can change the relationship domain type to Class. This breaks the
connection to the product class system and prevents any further updates of the
relationship. You can also leave the domain type unchanged and remove the
product from the product class.

When you are finished deleting products, you can verify your work by validating
the customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, From the Products Designer menu, choose Validate.

To delete products

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product Designer.

The Product Designer view appears.

4 To delete a relationship, select the desired relationship record. To delete a
product within relationship, expand the relationship and select the product
record.

5 From the Product Designer menu, choose Delete Record.
Version 7.5.3 Product Administration Guide 185

Build Customizable Products

Deleting a Customizable Product’s Structure
6 Revise configuration rules, link definitions, and resource definitions as needed.

Deleting a Customizable Product’s Structure
When you delete a customizable product’s structure, all previously released
versions of the customizable product are deleted. Its rules, user interface definition,
resources, links, and scripts are also deleted.

Deleting a customizable product’s structure affects all existing quotes containing
the product. Remove the customizable product from all such quotes first.

To delete a customizable product’s structure

1 Remove the customizable product from all existing quotes.

2 Navigate to Product Administration.

3 Select and lock the desired customizable product.

4 From the Lock/Unlock Product menu, choose Delete Record.

The current work space and all released versions are deleted. All other aspects
of the customizable product, including the UI design, links, resources, and
scripts are also deleted.

In the product record, the check mark in the Customizable check box is
removed.
186 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products 11
This chapter describes how to manage customizable products. This includes setting
up a work space.

This chapter covers the following topics:

■ “About Bundles as Customizable Products” on page 188

■ “About Customizable Assets and Delta Quotes” on page 189

■ “About Auto Match” on page 191

■ “About Finish It!” on page 192

■ “Testing a Customizable Product (Validation Mode)” on page 193

■ “Releasing a Customizable Product for Use” on page 195

■ “Reverting to an Earlier Version” on page 198

■ “Deleting a Customizable Product Version” on page 198

■ “Copying a Customizable Product” on page 199

■ “Obtaining a Report on a Product’s Structure” on page 200

■ “Creating Class-Product Templates” on page 201

■ “Turning Off a Class-Product Template” on page 204

■ “Converting a Bundle to a Regular Customizable Product” on page 205

■ “Converting a Regular Customizable Product to a Bundle” on page 206

■ “Defining a Customizable Asset” on page 208

■ “Controlling How Products and Bundles Are Taxed” on page 210

■ “Controlling How Customizable Products are Forecast” on page 211
Version 7.5.3 Product Administration Guide 187

Release and Manage Customizable Products

About Bundles as Customizable Products
About Bundles as Customizable Products
A bundle is a group of items sold as one product and is a special form of
customizable product that has the following characteristics:

■ Bundles created in Bundle Administration also display in Customizable Products
>Versions and in Product Designer.

■ A bundle is made up of one or more relationships that have a Product domain.
Each relationship adds only one product to a bundle.

■ Bundles do not include a UI definition, configuration rules, links, resources, or
scripts. Bundles do not include selection pages. Users do not configure a bundle
by starting a configuration session.

■ The quantity of a product in a bundle is determined by the Default Cardinality
of the product.

■ Bundles cannot be designated as class-products.

If you add items to a bundle that are not allowed, they are ignored. For example, if
you define configuration rules for a bundle, they are ignored. When you convert
bundles to regular customizable products, ignored items then become effective.

If you convert a customizable product to a bundle, only the items within the scope
of a bundle are used. All other items, such as configuration rules, are ignored.

For more information on converting bundles, see “Converting a Bundle to a Regular
Customizable Product” on page 205 and “Converting a Regular Customizable
Product to a Bundle” on page 206.

Regular customizable products are added to quotes using Siebel eAI. Bundles are
added to quotes using internal code.
188 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

About Customizable Assets and Delta Quotes
About Customizable Assets and Delta Quotes
When creating a quote, users can choose to add to or modify customizable products
the customer has already purchased. The customer’s already-purchased
customizable products are called customizable assets. The Quotes user creates a
quote and selects a customer’s customizable asset. The user then starts a
configuration session and modifies the asset by adding or removing items. The user
then saves the changes to the quote. The customizable asset, with revisions,
displays in Quotes >Line Items.

In Quotes > Line Items > Line Item Detail, each item in the customizable asset
displays a status in the Delta Status field:

■ Existing. All items that were not changed. These items display no price.

■ New. All items that have been added or for which the quantity increased. If the
quantity of an item increased, the original quantity is shown with status
Existing. A second entry in the quote shows the increase, has status New, and
displays a price.

■ Removed. All items that were removed or decreased in quantity. If the quantity
of an item is reduced, the new quantity is displayed with the status Existing. A
second entry in the quote shows the reduction, and has status Removed. These
items display no price.

■ Modified. All items for which attribute settings have changed. These items
display a price.

Delta Quotes differ from Favorites in that only new or changed items from the
configuration session have a price. Unchanged items are listed at zero price. When
you add a Favorite to a quote, all the items in the customizable product have a price.
Favorites are new products being sold for the first time. Delta Quote products are
items being sold as add-ons or replacement components for products you have
already sold.
Version 7.5.3 Product Administration Guide 189

Release and Manage Customizable Products

About Customizable Assets and Delta Quotes
The eConfigurator engine uses the name of the customizable asset’s product root to
determine what customizable product to load for the quote configuration session.
If a new version of the customizable product has been released, the new version is
used to modify the customizable asset. Any configuration conflicts that result are
displayed during the configuration session and must be resolved. Item pricing is not
maintained during the configuration session and should be ignored. Pricing is
computed when the user saves the configuration to the quote.

The user adds a customizable asset to a quote by creating a quote and then clicking
Delta Quote in Quotes >Line Items. This displays the Customizable Asset dialog
box containing all the customizable product assets that have been configured for
the account.
190 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

About Auto Match
About Auto Match
If a quote, asset, or order contains a customizable product configuration based on
an out-of-date version of the product, Auto Match can compare the old version with
the current version of the product and make limited changes to bring the quote,
asset, or order up to date automatically. The user does not have to configure the
product again.

Auto Match works as follows:

■ Auto Match is triggered when the system determines that the version in the
quote, order, or asset is not the current version.

■ Auto Match compares the relationships and their contents in the quote, asset or
order to the current version of the product.

■ Auto Match identifies items in the old version that are not in the same
relationship as items in the new version. An item can be a product or product
class. These items in the old version are misclassified items. The relationship
containing them is the old relationship. The relationship in the current product
that contains the items is the new relationship.

■ If the old relationship and the new relationship have a common parent, typically
the product root, Auto Match will automatically move the items to the new
relationship in the quote, order or asset. Auto Match does this by either changing
the relationship name or by adding a new relationship.

■ If the old relationship and new relationship do not have the same parent, the
user receives and error message and must configure the product again.

■ If the current version has a lower max cardinality for a relationship, this
cardinality is enforced in the version in the quote, order, or asset. For example,
the cardinality of Relationship A has been reduced from 10 to 8 in the current
version. In a quote, Relationship A contains 10 items. Auto Match will remove
two items from the quote.
Version 7.5.3 Product Administration Guide 191

Release and Manage Customizable Products

About Finish It!
■ If a relationship has been removed from the current version but is included in a
quote, order, or asset, Auto Match will attempt to move its items to a relationship
at the same level. For example, Relationship A, containing 10 items, has been
removed from the current version. A quote has the previous version of the
customizable product, including Relationship A with 10 items. Auto Match will
try to move all 10 items to other relationships at the same level, while observing
maximum cardinality restrictions. Any excess items are removed.

■ Auto Match only compares the physical structure of the product’s current
version to that in the quote, asset, or order. It does not consider configuration
rules. For example, if the old version contains Product A, and Product A would
be excluded in the new version, Auto Match does not detect this.

Auto Match is implemented as a business service and is not enabled by default. To
turn Auto Match on, see “Enabling Auto Match” on page 449.

About Finish It!
“Finish It!” is a button that appears in configuration session selection pages. This
button is active under the following conditions:

■ The configuration session contains a relationship that has a minimum
cardinality greater than zero.

■ No default product has been defined for this relationship.

■ The user has not selected the number of products from this relationship required
by the minimum cardinality.

These relationships are called unsatisfied quantity relationships. In selection pages,
a red asterisk displays next to the relationship name and next to the item in the
relationship, indicating that the user must make a selection.

When the user clicks Finish It!, the eConfigurator engine adds items to the solution
from all unsatisfied quantity relationships so that minimum cardinalities are met or
exceeded. The eConfigurator engine makes arbitrary selections from these
relationships. You cannot specify which products will be selected by setting the
sequence of the product in the relationship.
192 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Testing a Customizable Product (Validation Mode)
For example, you have defined a relationship called Keyboard. This relationship has
a minimum cardinality of 1 and no default product. This causes the Finish It! button
to become active in configuration sessions. When the user clicks Finish It!, the
eConfigurator engine adds a keyboard to the solution.

If you do not want the Finish It! button to be active during configuration sessions,
specify default products for all relationships with a minimum cardinality greater
than zero.

Testing a Customizable Product (Validation Mode)
You test a customizable product by selecting validation mode. This creates an
instance of the customizable product and presents its selection pages. You can test
configuration rules, the user interface, and pricing exactly as if you were a user.

Validation mode creates an instance of the customizable product from its current
work space, not from a released version of the product. If you want to troubleshoot
a problem in the most recently released version, you can do this by reverting the
work space to the most recently released version. This overwrites any changes you
have made in the current work space.

To test a specific group of configuration rules, set all the rules you do not want to
test to inactive and then go to validation mode to test the desired rules. Then
activate configuration rules one at a time as needed and return to validation mode
to test the result.

If you have purchased ePricer, be sure to fully validate all component-based pricing
adjustments and pricing factors. If you are using automatic pricing updates, verify
that selection pages redisplay fast enough after each user action. If redisplay is too
slow, consider switching to a base theme for the user interface that uses manual
price updates. When in validation mode, the system uses the price list assigned to
a special quote called ModelValidation.
Version 7.5.3 Product Administration Guide 193

Release and Manage Customizable Products

Testing a Customizable Product (Validation Mode)
Verify that user access is set up correctly for all the components of the customizable
product. Do this by checking the categories to which the customizable product and
all its components are assigned. Then check the access control groups assigned to
these categories and associated catalogs. Users who will configure the product must
have access permission to the product and all its components. You can check
category assignments in Product Administration > Category or in Catalog
Administration.

Validate a customizable product at regular intervals while you are developing it. For
example, after you enter a block of related configuration rules or after customizing
the selection pages, go to validation mode and check your work.

If your customizable products are complex, consider developing written test plans
that exercise all the configuration rules and all expected user behaviors. In
particular, be sure to test for unexpected or incorrect user behaviors in order to rule
out unexpected responses from the eConfigurator engine.

You enter validation mode by clicking the Validate button, which located in the
views where you work with customizable products, such as the Product Versions
view, and the Rule Designer.

To test a customizable product

1 Make changes to the customizable product.

For example, add configuration rules in the Rule Designer.

2 From the list menu, choose Validate.

For example, open the Rules List menu in the Rule Designer and choose Validate.

If you want to test pricing, you must associate a price list with the ModelValidation
quote. This is a special quote provided for validating customizable products.

To test customizable product pricing

1 Navigate to Quotes.

2 Query for the ModelValidation quote.

3 Assign the desired price list to the ModelValidation quote.

4 Navigate to Product Administration > Product Versions.
194 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Releasing a Customizable Product for Use
5 Select and lock the desired customizable product.

6 Click Validate.

The system creates an instance of the product and displays its selection pages.

Releasing a Customizable Product for Use
To make a customizable product available to users, you must release it. Releasing a
customizable product creates a new version of it and makes this version available
for use. Releasing a version also refreshes the work space.

When you release a product, the system refreshes it in the current work space first,
and then releases the refreshed instance. This means that all released versions
contain the most recent information, such as class structure, available at the time
of release. You cannot modify or delete a released version of a customizable
product.

Before you release a customizable product, you can set an effective date. When you
release the product, it becomes available to users on the effective date. This lets you
release several versions of a customizable product and have them become available
based on dates.

To identify which version of a customizable product to use, the system begins with
the most recently released version. If it cannot be used because the effective date
has not arrived, the system looks at the previous version. This process continues
until the system finds a version it can use (one with no effective date, or an effective
date that has passed).
Version 7.5.3 Product Administration Guide 195

Release and Manage Customizable Products

Releasing a Customizable Product for Use
Table 19 shows how effective dates and versions work together. In the examples,
the effective dates are in the future unless specified:

These behaviors apply to in-process quotes, existing quotes, and new quotes. When
users open an in-process or existing quote, they receive a message if there is a
conflict because of a new version of the product.

When remote users synchronize databases, they receive all released versions of a
customizable product not already on the local machine, including those versions
with effective dates. Effective dates work on the local machine as described above.

Table 19. How Effective Dates and Versions Work Together

Action Result

Customizable product A has no released
versions. You release version 1 without an
effective date.

Version 1 is available to users immediately.

Product A has version 1, which does not
have an effective date. You release
version 2 with an effective date.

Prior to the effective date, users receive
version 1. On the effective date, users receive
version 2.

Product A has version 1, which has an
effective date. You release version 2, which
has no effective date.

Version 2 is available to users immediately.
Version 1 is superseded and will never be
available to users.

Product A has two released versions.
Version 1 has an effective date of June 1.
Version 2 has an effective date of July 1.
The current date is May 1.

On June 1, the user receives version 1. On
July 1, the user receives version 2.

Product A has two released versions. Both
version 1 and version 2 have the same
effective date.

On the effective date, the user receives
version 2.

Product A contains customizable product
B. Product A has no effective date and no
released versions. Product B has version 1,
which does not have an effective date and
version 2, which does have an effective
date. You release product A.

Before the product B effective date, the user
receives version 1 of product A, and version
1 of product B. On the product B effective
date, the user receives version 1 of product A
and version 2 of product B.
196 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Releasing a Customizable Product for Use
Observe the following guidelines when using effective dates for customizable
products:

■ Carefully coordinate configuration rules that have effective dates with the
effective date of the customizable product. If you know that you must release a
new version of the product because of time-sensitive configuration rules,
consider using a version effective date rather than effective dates on
configuration rules.

■ If you want to release two versions such that the second version supersedes the
first version on an effective date, be sure to fully analyze the possible business
impacts of the new version on in-process, and existing quotes.

■ The effective date cannot be modified after a version is released. Instead, you
can release a new version with a different effective date.

To release a customizable product

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 To specify an effective-date, enter a date in the Required Start Date field of the
Work Space record.

4 Save the record.

5 In Lock/Unlock Product, click Release New Version to release a new version of
the product.

A new record appears in the Versions list. Its version number displays in the
Version field. The Required State Date field becomes read-only.
Version 7.5.3 Product Administration Guide 197

Release and Manage Customizable Products

Reverting to an Earlier Version
Reverting to an Earlier Version
If you release a customizable product and then make changes to its current work
space, you can discard all the changes and revert to a version of the product that
you released earlier.

When you revert, the entire contents of the current work space is discarded. This
includes the customizable product’s design, user interface, rules, links, resources,
and scripts. You choose an earlier version, and an instance of it is then loaded into
the current work space.

To revert to an earlier version

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Show drop-down list, choose Product Versions.

4 In the list of product versions, select the version you want to revert to.

5 From the application level menu, select Revert to Released.

6 Save the current work space.

Deleting a Customizable Product Version
You cannot delete a customizable product version. If you no longer want to use the
current version, you can release a new version.
198 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Copying a Customizable Product
Copying a Customizable Product
When you copy a customizable product, all parts of the product are included in the
copy. This includes its relationships, links, resources, scripts, rules, and its user
interface.

All the parts of the copied product are visible and can be edited in the designers in
the Customizable Product and Configuration Designer pages.

To copy a customizable product

1 Navigate to Product Administration.

2 Select the customizable product you want to copy.

3 From the Products menu, choose Copy Record.

The Products form appears.

4 Enter a name for the copy in the Product Field.

5 Revise other fields, such as Part # as desired.

The copied product displays in the Products list.

6 Save the record.
Version 7.5.3 Product Administration Guide 199

Release and Manage Customizable Products

Obtaining a Report on a Product’s Structure
Obtaining a Report on a Product’s Structure
You can request a report that lists all the relationships in a customizable product as
well as the contents of each relationship. You can request the report once, or
schedule the report to run at scheduled times.

The report title is Product Relationship Report. This report must be enabled on the
report server before performing the following procedure.

To obtain a report on a product’s structure

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 Open the Customizable Products drop-down menu and select Product Designer.

The Product Designer view appears.

4 Open the application View menu and click Reports.

A form appears for selecting and running reports.

5 Verify the selected report is the Product Relationship Report.

6 Select the desired language and locale.

7 To run the report now, click Run Now.

The report window appears, and you can view the report and print the report as
desired.

8 To schedule the report to run at a scheduled time, click Schedule.

A form appears for scheduling the report.
200 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Creating Class-Product Templates
Creating Class-Product Templates
You can create a customizable product and use it as a template for building other
customizable products. These templates are called class-products. Use this feature
when you have customizable products that include the same group of items. For
example, you sell desktop computers. You have seven configurable models that
share the same chassis types, keyboards, and mouse. You can create a class-product
consisting of these three relationships. You would then use the class-product as the
basis for constructing each model.

When you create a customizable product and designate it as a class-product, all
products belonging to the same product class and all subclasses inherit its structure.
In effect, the class-product becomes an extension of the class definition, and the
class-product’s structure is inherited in the same fashion as class attributes.
Version 7.5.3 Product Administration Guide 201

Release and Manage Customizable Products

Creating Class-Product Templates
In Figure 5, Template Customizable Product A has been designated as a class-
product in Product Class 1. Customizable Product B is in the same product class, so
it inherits the structure of Template Customizable Product A. Customizable Product
C is in Subclass 2, a subclass of Product Class 1. It also inherits the structure of
Template Customizable Product A.

TIP: Assign a customizable product to a class containing a class-product template
right after you create its work space. You can then view what parts the class-product
contributes. This will help you avoid creating duplicate relationships in the other
customizable products assigned to the class.

The following parts of a customizable product are inherited by all class members
when you designate it as a class-product:

■ Relationships and their contents.

■ Configuration rules.

■ Resources

■ Links

■ User interface groups.

Figure 5. Customizable Product Template
202 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Creating Class-Product Templates
■ The base theme and product theme are not inherited

■ User interface property definitions and scripts are not inherited by class
members

When you edit a class-product, the changes propagate to other products in the class
when you commit the changes.

When you edit a customizable product that has inherited the structure of a class-
product, the class-product portion is viewable in the Product UI Designer, the User
Interface Property Designer, and in validation mode. The class-product portion is
not visible in the Product Designer, Resource Designer, Link Designer, or Script
Designer.

Observe the following guidelines when creating class-products:

■ Customizable products that you designate as class-products must not be
orderable.

■ Assign only customizable products to a class containing a class-product.
Assigning simple products to a class containing a class-product can cause
unexpected results in the user interface.

■ A customizable product must have at least one released version before it can be
designated a class-product.

To create a class-product template

1 Navigate to Product Administration.

2 In Products, select the customizable product you want to use as a template.

3 If the customizable product has a check mark in the Orderable field, click in this
field to remove the check mark.

4 In Customizable Product, lock the customizable product.

5 Review the structure, user interface groups, resource definitions, link definitions,
and scripts defined for the product. Remove any features that you do not want
to propagate to other customizable products.

6 Refresh the customizable product’s work space.
Version 7.5.3 Product Administration Guide 203

Release and Manage Customizable Products

Turning Off a Class-Product Template
7 Create a product class for the class-product template as needed and assign the
class-product to the class.

8 In the Products tab, select the customizable product then click Set as Class
Product/Reset.

Be careful to click this button only once. Clicking it a second time turns the class
product template off.

A check mark appears in the Class Product field.

9 Add the desired customizable products to the product class.

Adding a product to the class causes it to inherit the structure of the class-
product.

10 For the customizable products you add, assign the desired base and product
theme in Customizable Product > Versions.

11 Open the Product UI Designer and verify the class-product structure has been
inherited correctly.

Turning Off a Class-Product Template
When you turn off a class-product template, all its inherited features are removed
from the members of its product class. The class-product’s structure no longer
appears in the Product UI Designer or in validation mode for members of the class.
Turning off a class-product template is very similar in its effect to deleting an
attribute at the class level.

UI groups are not affected when you turn off a class-product template. For members
of the class, if you have added items to a UI group from a class-product template,
you must manually remove them.

To turn off a class-product template

1 Navigate to Product Administration.

2 Select the desire class-product template.

Verify that a check mark displays in the Class Product field.
204 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Converting a Bundle to a Regular Customizable Product
3 Click the Set as Class Product/Reset button.

Verify that no check mark displays in the Class Product field.

4 For every product in the same product class, open the Product UI designer and
remove all the class-product template items from the UI groups.

Converting a Bundle to a Regular Customizable Product
A bundle is a group of items sold as one product and is a special form of
customizable product. A bundle has one or more relationships that have a Product
domain. Bundles do not include a UI definition, configuration rules, links,
resources, or scripts.

When you convert a bundle to a regular customizable product, you can work with
the newly converted customizable product in the same way as a regular
customizable product.

To convert a bundle to a regular customizable product

1 Navigate to Product Administration and query for the desired bundle.

2 Navigate to Customizable Product > Product Versions.

3 In Lock/Unlock, click in the Locked Flag field.

A check mark appears in the field.

4 Click Release New Version.

This converts the bundle to a regular customizable product. A check mark
displays in the Customizable Product check box in the Product record. A check
mark no longer displays in the Bundle check box.

5 Revise existing quotes and orders as needed to reflect the change.
Version 7.5.3 Product Administration Guide 205

Release and Manage Customizable Products

Converting a Regular Customizable Product to a Bundle
Converting a Regular Customizable Product to a Bundle
When you convert a regular customizable product to a bundle, any items outside
the scope of a bundle, such as configuration rules, stop being effective and are
ignored. They are not erased from the definition and become effective again if you
convert the bundle back to a customizable product.

Converting has the following effects:

■ All previous versions still display in Customizable Products > Versions.

■ The current work space is retained, but its contents are altered as described in
the following items.

■ For relationships that have a Product domain, the product is added to the
bundle.

■ For relationships that have a Class or Dynamic Class domain, only the product
specified in the Default Product field is added to the bundle. If no product is
specified, no product is added, even if the Default Cardinality is greater than one.

■ The quantity in the Default Cardinality field is used to determine the quantity of
the product in the bundle. Other cardinality fields are ignored. If the default
cardinality is blank or zero, the quantity of the product in the bundle is blank.
When creating a quote, only those products with a quantity greater than or equal
to one are displayed in the quote.

■ All selection page definitions, UI Property definitions, configuration rules, link
definitions, resource definitions, and scripts are ignored and do not become part
of the bundle. If you convert the bundle back to a regular customizable product,
these again become effective.

■ When you convert a customizable product that inherits part of its structure from
a class-product, none of the inherited structure becomes part of the bundle.

■ You cannot designate a bundle as a class-product.

■ If the Forecastable flag is set for a product in the Product Designer and the
product becomes part of a bundle, the Forecastable flag remains set for the
product in the bundle.
206 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Converting a Regular Customizable Product to a Bundle
When a user adds a bundle to a quote or order, the bundle and its components
display as separate line items. Users cannot start a configuration session.

The customizable product must have at least one released version before you can
convert it to a bundle.

To convert a regular customizable product to a bundle

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 Make any desired changes and release a new version.

4 Navigate to Bundle Administration and review the displayed contents.

Bundle Administration displays the products in the customizable product that
will be included in the bundle. If the contents are not correct, revise the
customizable product and release a new version.

5 In Bundle Administration, click Modify, then click Done.

This converts the customizable product to a bundle and releases a new version.
A check mark displays in the Bundle field in the product form. The check mark
in the Customizable Product field is removed.

6 Revise existing quotes and orders as needed to reflect the change.
Version 7.5.3 Product Administration Guide 207

Release and Manage Customizable Products

Defining a Customizable Asset
Defining a Customizable Asset
You define a customizable asset in Assets >Customizable Assets. This adds the
customizable asset to the Customizable Asset dialog box in Quotes. Defining a
customizable asset requires two steps:

1 Create a customizable asset record.

2 Configure the customizable asset.

Once you have defined a customizable asset, you can select it when creating delta
quotes.

To create a customizable asset record

1 Navigate to Assets.

2 Add a new record.

The system assigns an asset number and displays it in the Asset # field.

3 Click in the Product field and display the Pick Product Form.

4 In the Pick Product Form, put an X in the Customizable box and click Go.

The Pick Product dialog box displays all the customizable products in the
product table.

5 Query for the customizable product on which the customer’s customizable asset
is based and click OK.

The customizable product name displays in the Product field.

6 In the Assets form Account field click the select button to display the Pick
Account dialog box. Query for the desired account and click OK.

This field filters the records displayed in the Customizable Asset dialog box in
Quotes. The dialog box displays only the customizable assets that have the same
account name as the account name in the Quotes record. If you do not assign an
account name, the customizable asset displays every time the Customizable
Asset dialog box is opened, regardless of the account.
208 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Defining a Customizable Asset
7 In the Asset Description field, enter a descriptive phrase or name that is
meaningful to users creating quotes.

This field displays in the Customizable Asset dialog box in quotes.

8 Fill out the remaining fields in the Asset record as needed.

For example, enter a product installed date and status.

The next step is to configure the root customizable product so that it has the same
configuration as the product the customer has purchased.

To configure a customizable asset

1 Review the customizable product configuration that the customer has
purchased.

Determine if a new version of the customizable product has been released and
what effect this will have on configuring a customizable asset.

2 Highlight the customizable asset record for which you want to create a
configuration.

3 Click the More Info tab to display the asset form and then click Customize.

This starts a configuration session, similar to those users see when configuring
customizable products in Quotes. The session displays the selection pages for
the customizable product that the user purchased.

4 Configure the customizable product to reflect what the customer purchased and
exit the session. This includes configuring component attributes.

This creates the configured customizable asset.

5 In the Assets list, verify that the desired customizable asset is highlighted.

6 Click the Attribute tab and set the value of attributes defined for the
customizable asset as a whole and then click Save.
Version 7.5.3 Product Administration Guide 209

Release and Manage Customizable Products

Controlling How Products and Bundles Are Taxed
Controlling How Products and Bundles Are Taxed
The components of customizable products and bundles can have different tax rates.

For example, a company may sell a customizable product called Concrete Services.
As its components, this product may have the cost of concrete, the cost of using a
truck to pour concrete, the cost of labor, and the cost of engineering services. In
some jurisdictions, these components may be taxed at different rates.

You can control how tax is computed by setting the Tax Subcomponent flag. To tax
the components individually, set the Tax Subcomponent flag on the root of the
customizable product or bundle. If you do not set the Tax Subcomponent flag, the
tax is computed on the total price of the customizable product or bundle.

If one of the components is itself a customizable product, you can set the Tax
Subcomponent flag on the component. This causes the tax for that component to
be the sum of the tax computations on the components of that component.

Note the following points about taxing components:

■ You cannot use a base price for the parent product if the components are taxed
individually. The parent product price must be the sum of the prices of all the
component products. You will get inaccurate results if you give the parent
product a price, and then do delta pricing on components and compute tax at
the subcomponent level.

■ When you set the Tax Subcomponent flag for the parent product, you can either
set this flag or not set it for each component product that has subcomponents.
If you don't set this flag on a component, the tax will be calculated for the
component product. If you do set the flag on a component, the tax for the
component will be based on the tax of its components.

■ When you set the Tax Subcomponent flag for a component of a product, you
must set this flag for the parent product as well. If you do not, you will tax the
entire product at the parent level, and you will also tax the component product.
This double counting will cause an inaccurate tax calculation.
210 Product Administration Guide Version 7.5.3

Release and Manage Customizable Products

Controlling How Customizable Products are Forecast
The tax will be calculated accurately if you apply volume discounts or bundling
discounts to the product. These discounts are applied at the component level, so the
tax on each subcomponent will be adjusted to reflect the discount.

CAUTION: The tax will not be calculated accurately if you use a single-factor pricing
model, which applies the discount to the total value of a customizable product, not
to each component. You also cannot use simple bundles for pricing when tax rates
of components are different.

To tax the components of a customizable product or bundle

1 Navigate to the Product Administration screen.

2 In the Products list, select the desired customizable product or bundle.

3 Expand the product form and put a check mark in the Tax Subcomponent Flag
check box.

Controlling How Customizable Products are Forecast
When you add a component to a customizable product in the Product Designer, a
check mark displays in the Forecastable field. This means the component is added
to product forecasts when the customizable product is included in a quote and the
user updates the related opportunity.

To prevent components from being added to product forecasts, remove the check
mark from the component’s Forecastable field in the Product Designer.

A Forecastable check box is also available in Quotes >Line Items. This allows you
to add or remove a product or component from product forecasts within individual
quotes.
Version 7.5.3 Product Administration Guide 211

Release and Manage Customizable Products

Controlling How Customizable Products are Forecast
212 Product Administration Guide Version 7.5.3

Customizable Product User Interface 12
This chapter describes how to use the Product UI Designer to create a user interface
for configuring a customizable product. You must create a work space for a product
before you can use the Product UI Designer.

This chapter covers the following topics:

■ “About the Role of the Product UI Designer” on page 214

■ “About Base Themes” on page 215

■ “About Product Themes” on page 216

■ “About the Default User Interface” on page 219

■ “About the Menu-Based Interface” on page 220

■ “About Groups” on page 222

■ “About User Interface Controls” on page 223

■ “About Pricing Integration” on page 227

■ “Selecting the Base and Product Themes” on page 229

■ “Grouping Items onto Pages” on page 230

■ “Editing Item Groups” on page 232

■ “Deleting Item Groups” on page 234

■ “Adding a Summary Page” on page 235
Version 7.5.3 Product Administration Guide 213

Customizable Product User Interface

About the Role of the Product UI Designer
About the Role of the Product UI Designer
Using the Product UI Designer, you can define the page or series of pages that
display during a configuration session. These pages display when the user
configures a customizable product as part of creating a quote in the Quotes screen.
They also display when a user selects a customizable product in an eSales Web
page. The same pages display when an administrator validates a customizable
product.

The pages that display during the configuration process are called selection pages.
The user makes selections from these pages to configure the customizable product.

The interface you design is stored with the customizable product. Use the following
process to design the selection pages for a customizable product:

a Choosing a basic page layout. You set the basic look and feel of the
customizable product’s selection pages by choosing a base theme in the
Versions tab. Several base themes are provided. You can also build your own
base themes.

b Choosing a method of presenting products. There are several ways to present
your products. You can present them all on one page, you can set up several
tabbed pages, or you can set up a wizard to guide the user through pages
sequentially. You select a product theme in the Versions tab. You can also
build your own product themes.

c Choosing what items a page will contain. You can choose which items to display
on a page using a grouping mechanism provided in the Product UI Designer.
You can add to a group the items in a relationship, the attributes of the
customizable product, its links, or its resources. Depending on the product
theme, each group displays on a separate page.

d Choosing how items will be selected. When you add an item to a group in the
Product UI Designer, you can choose among several user interface control
types for it such as combo box, check box, radio button, quantity box, and
text box. These UI control types determine how the user goes about selecting
an item.

The user interface you design is part of the customizable product’s current work
space. When you release a customizable product, the user interface is stored as part
of the released version.
214 Product Administration Guide Version 7.5.3

Customizable Product User Interface

About Base Themes
About Base Themes
When you create a work space for a customizable product, you can select a base
theme and product theme. These control the basic look and feel of the pages a user
sees when they configure the product.

A base theme defines the home page for the customizable product. It is the
container within which the product theme pages display. The base theme has a
thread bar you can use to navigate between product theme pages. Two types of base
theme are provided:

■ Base Theme with Auto Pricing. When the user selects an item, its price is updated
immediately.

■ Base Theme with Manual Pricing. The pricing of items is not updated until the user
clicks Update Price.

Upgrade users: If you do not select a base or product theme, default themes are used.
If you do not specify groups or controls, intelligent defaults are used. These defaults
replace Configuration Assistant in release 6.x and lower.
Version 7.5.3 Product Administration Guide 215

Customizable Product User Interface

About Product Themes
About Product Themes
Product themes specify the style used to group items together on selection pages.
You define which items appear on a page by defining groups in the Product UI
Designer and adding products to the groups. Each group is displayed on a separate
selection page.

Three basic product theme types are provided.

■ Tab Product Theme

The items in each group are displayed on a separate page, as shown in Figure 6.
The Stereos group and the Options group each have a tab, and the user can move
between pages by clicking the tab. A standard group of buttons, Save, Cancel,
Done, and Finish It display above the tabs. A Red Star displays next to the title
of the Stereos page to indicate that the user is required to choose an item and
has not done so.

Figure 6. Tab Product Theme
216 Product Administration Guide Version 7.5.3

Customizable Product User Interface

About Product Themes
■ Wizard Product Theme

The items in each group are presented on separate pages, as shown in Figure 7.
The Stereos group is displayed by itself as the first page in the sequence. A
standard group of buttons, Save, Cancel, Done, and Finish It display above the
page. A Red Star displays next to the title of the Stereos page to indicate that the
user is required to choose an item and has not done so. Previous and Next
buttons, located within the page, allow the user to move between pages.

Figure 7. Wizard Product Theme
Version 7.5.3 Product Administration Guide 217

Customizable Product User Interface

About Product Themes
■ Single Page Product Theme

All the groups in the customizable product are presented on a single selection
page, as shown in Figure 8 on page 218. The tab pages used in the Tab theme
and Wizard theme are stacked vertically one beneath the other to form the
selection page. A standard group of buttons, Save, Cancel, Done, and Finish It
display at the top of the selection page. A Red Star displays next to the title of
the Stereos group to indicate that the user is required to choose an item and has
not done so.

The top portion of the page, containing the product name and standard buttons,
is not shown in the figure.

Figure 8. Single Page Product Theme
218 Product Administration Guide Version 7.5.3

Customizable Product User Interface

About the Default User Interface
About the Default User Interface
If you do not select a base theme or product theme, the system displays all the
configurable items in the customizable product on a single selection page.

If you do not select controls, the system makes intelligent choices for UI controls
based on attribute domain type and upon relationship cardinality.

For example, if an attribute has an LOV type domain, the system will display a
combo box for setting the attribute. If the attribute has a range type domain, the
system will display a text box for entering the range value.

If a relationship has a min and max cardinality of 1, the system will display a combo
box without multiple instances. If the max cardinality is greater than 1, a combo
box with multiple instances displays.
Version 7.5.3 Product Administration Guide 219

Customizable Product User Interface

About the Menu-Based Interface
About the Menu-Based Interface
A special set of themes and UI controls is provided to build a menu-based interface:

■ Base Theme with Menu. This theme must be selected as the base theme. This
theme provides auto-repricing. No base theme is provided to select manual
repricing.

■ Menu Product Theme. This theme must be selected as the product theme. It
displays relationships and their contents. It does not displays attributes,
resources, or linked items.

■ Standard Menu Group Theme. This theme must be selected for all groups except a
summary page group.

■ Summary Menu Group Theme. Assign this theme to a group when you want to
display a summary page. For more information on summary pages, see “Adding
a Summary Page” on page 235.

■ Check Box For Menu Theme. Select this UI control to display a check box with
price.

The menu-based interface displays each group as a menu item. When the user
clicks on the group name, a pane opens and displays the items that can be selected
in that group. When the user makes a selection, the selection is displayed below the
group name. Figure 9 shows a menu-based selection page. Two groups have been
defined, Stereos and Options. The user’s selection is shown below each group.

Figure 9. Example of Menu-Based Selection Page
220 Product Administration Guide Version 7.5.3

Customizable Product User Interface

About the Menu-Based Interface
Both group names are hyperlinks. If the user clicks on the Options group, a pane
displaying the contents of that group opens as shown in Figure 10. The user can
then select items from that group. When the user is finished, they click Menu to
close the pane.

Observe the following guidelines when using these themes and controls:

■ The menu-based themes and controls can be used in conjunction with employee
and partner applications. They cannot be used with customer applications, such
as Siebel eSales.

■ You cannot mix menu-based themes and controls with other types of themes and
controls in a product. For example, if you select a menu-based base theme, you
must also select a menu-based product theme as well as menu-based UI
controls.

■ A Customizable product that will be a component of another customizable
product cannot use menu-based themes and controls. For example CP2 is a
customizable product and a component of product CP1. CP2 cannot use menu-
based themes and controls. Note that CP1 is not restricted from using menu-
based themes and controls.

■ Only one summary group can be defined for products that use menu-based
themes and controls. The summary group must be named: .

Figure 10. Option Package Group
Version 7.5.3 Product Administration Guide 221

Customizable Product User Interface

About Groups
■ Menu-based UI controls for links, resources, and attributes are not supported.
Do not add links, resources, or attributes to groups.

About Groups
Groups are the way you define what items appear on a selection page. Depending
on the product theme, each group you define causes a separate selection page to be
created. For example, you want all the hard disks in a customizable product to
appear on the same page. You do this by defining a group in the Product UI Designer
and then adding the Hard Disks relationship to this group. If you selected a tab type
product theme, the hard disks display as a selectable page tab. When the user clicks
on the tab, a selection page displays containing only the hard disks.

The Product UI Designer lets you create groups that contain relationships,
attributes, resources, or links.

When you create a group, you can choose a group style. The group style defines the
details of how a group will display.

A group definition contains the following fields:

■ Group Name. Required. The name you give a group displays on the selection page.
Use the product theme to guide how you choose group names. For example, if
you use a tab theme, name the group according to what you want to appear on
the page tabs.

■ Group Theme. Required. The group theme lets you specify the layout of the group
within the base theme. In most cases, you will select the Standard Group Theme.

■ Sequence. The Sequence field governs the order in which pages display. The
group with sequence = 1 displays first in the page series.

■ Description. Use the description field to keep notes about the group definition.
The contents of this field do not display on the selection page.
222 Product Administration Guide Version 7.5.3

Customizable Product User Interface

About User Interface Controls
After defining a group, you select items from the customizable product to add to it.
An item record for a group contains the following fields:

■ Name. For Relationship items, this field contains the product display name. For
Attribute, Resource and Linked Items, this field contains the item name. This
field displays in the selection page.

■ Type. This field displays whether the item is from a relationship, is a resource, a
linked item, or is one of the customizable product’s attributes.

■ Sequence. The sequence controls the order of display of relationships within a
group. The item with Sequence =1 is displayed first in the group.

■ UI Control. Click in this field to select a UI control, such as radio button or check
box for the item or for the items in a relationship.

About User Interface Controls
A user interface control determines how an object is displayed for selection. For
example, a radio button control, displays a list of items with a button for each one.
You choose a control as part of adding an item to a group in the Product UI Designer.

The Product UI Designer provides several types of UI controls:

■ Combo Box. A combo box is a drop-down menu. Items are hidden from view until
you click the down-arrow to open the menu and make selections. There are two
types of combo box:

■ Single selection. The user can select only one value from the drop-down
menu.

■ Multiple selection. The user can select multiple values from the drop-down
menu using an Add Item button.

■ Check Box. Items display as a list. Each item has a check box next to it. When
you select an item, a check mark appears in the check box. You can select more
than one item.
Version 7.5.3 Product Administration Guide 223

Customizable Product User Interface

About User Interface Controls
■ Radio Button. Items display as a list. Each item has a button next to it. When you
select an item, a dot appears in the button. You can select only one item. If you
select another item, the previous item’s button clears, and the current item
displays a dot in the button.

■ Quantity Box. A box displays next to the item in which the user enters or edits
the quantity. The user then clicks elsewhere in the page to update the quantity.

■ Text Box. A read-only box displays next to the item. The box contains the value
of the displayed item. Use this UI control to display the current value of
resources or linked items.

■ Edit Box. A text box displays next to the item. The text box contains the value of
the displayed item. You can edit the value. Use this control when you want users
to be able to manually enter or edit attribute values.

Keep in mind the following factors when choosing a user interface control:

■ For items added from a relationship, what are the cardinalities? If the minimum
and maximum cardinality for the relationship is 1, this means only one item can
be selected. The radio button or single-selection combo box can be used because
it allows only one selection. If the relationship cardinality allows more than one
selection, you must choose a UI control that allows multiple selections such as
a check box or multiple-selection combo box.

■ For attribute items, select a UI control that matches the attribute type. For LOV
attributes use a combo box. For a range of values attribute or a single-value
attribute, use a quantity box or text box.

■ For resource items and for linked items, use a text box.

Table 20 on page 225 describes the specific UI controls available in the Product UI
Designer. In the Multiple Items column, Yes means that the UI control allows
selection of more than one item from a list. No means you can select only one item.

For all controls, excluded items display unavailable. For example, if you assign a
radio button control to a relationship, excluded items display with the radio button
grayed out so that it cannot be selected.
224 Product Administration Guide Version 7.5.3

Customizable Product User Interface

About User Interface Controls
You can revise this so that excluded items do not display at all. You do this by
assigning the predefined Excluded UI property to an item. You assign the Excluded
UI property in the User Interface Property Designer.

Table 20. Product UI Designer UI Controls

UI Control Type
Select Multiple
Items? Description

Combo Box No Selected item highlighted.

Combo Box with Add Button Yes Selected item highlighted. Unselected
items have Add button.

Combo Box with Price No Selected item highlighted. Displays
price.

Combo Box with Price and
Quantity

No Selected item highlighted. Displays
price. Allows user to enter quantity.

Combo Box with Add Button
and Price

Yes Selected item highlighted. Unselected
items have Add button. Displays price.

Combo Box with Update
Quantity button

No Selected item highlighted. User can
specify a quantity for the selected item.

Check Box with Price Yes Displays item price.

Check Box without Price Yes Price not displayed.

Radio Buttons with Price No Displays item price.

Radio Buttons without Price No Price not displayed.

Quantity Box User enters
quantity

Update Quantity button displays next to
item name.

Quantity Box with Price User enters
quantity

Displays item price. Update Quantity
button displays next to item name.

Text Box with Price No Read-only. Displays item price.

Text Box No Read-only.

Combo Box for Attribute No Selected item highlighted.

Edit Box for Attribute No Displays value of attribute. Can be
edited.
Version 7.5.3 Product Administration Guide 225

Customizable Product User Interface

About User Interface Controls
Radio Button for Attribute No User can select one attribute value.

Text Box for Attribute No Read-only. Displays value of attribute.

Linked Item No Read-only. Displays value of linked item.

Resource No Read-only. Displays value of resource.

Table 20. Product UI Designer UI Controls

UI Control Type
Select Multiple
Items? Description
226 Product Administration Guide Version 7.5.3

Customizable Product User Interface

About Pricing Integration
About Pricing Integration
Siebel ePricer works in conjunction with Siebel eConfigurator to provide updated
pricing information during a configuration session. There are two methods for
obtaining updated pricing information: automatic and manual. You select which
method to use when you select a base theme.

Automatic price updates is the default method and is the method used by the
default base theme. Base themes that provide manual price updates are labeled as
such when displayed in the dialog box where you select the base theme. Unless
labeled otherwise, base themes use the automatic price update method.

With automatic price updates, the pricing of the entire customizable product is
updated when the session starts, each time a new solution is created during the
session, and when the session ends. When the user picks a product, the price of the
product displays automatically.

With manual price updates, the pricing of the entire customizable product is
updated when the session starts, when the user clicks the Check Price button, and
when the session ends. During the session, prices are not updated automatically
when the user picks a product. The user must click the Check Price button to obtain
the prices of the products they select.

When a price update occurs during a configuration session ePricer pricing elements
trigger in the following order:

1 Component-based pricing adjustments

2 Attribute-based pricing adjustments

3 Customizable product pricing factors (single, bundle, matrix, and script-based
only). Aggregate and volume discount pricing factors do not trigger.

4 Price List pricing factors (single, bundle, matrix, and script-based only).
Aggregate and volume discount pricing factors do not trigger.

When the session ends, ePricer pricing elements trigger in the same order. Volume
discount and aggregate pricing factors also trigger for Quotes, Orders, and
agreements.
Version 7.5.3 Product Administration Guide 227

Customizable Product User Interface

About Pricing Integration
If a customizable product contains other customizable products, only the pricing
model for the parent customizable product is triggered during a price update. For
example, customizable product CP1 contains customizable product CP2. During a
configuration session for CP1, the pricing factor models for CP2 are not triggered
during a price update.

When building a customizable product, use automatic price updates. Switch to
manual price updates only if performance becomes too slow. The sequence of
events after the user selects a product is as follows:

■ eConfigurator engine computes a new solution

■ eConfigurator engine forwards the solution to ePricer

■ ePricer returns pricing for all items in the solution

■ eConfigurator redisplays the selection page

If you do not need interactive pricing, consider switching to manual price updates.
228 Product Administration Guide Version 7.5.3

Customizable Product User Interface

Selecting the Base and Product Themes
Selecting the Base and Product Themes
User interface themes are templates that control the basic look and feel of the
selection pages that users see when configuring a customizable product. Base
themes control basic page design and product themes control the method used to
present product choices.

To select the base and product themes

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 In Versions, click in the Base Theme field. Then click the select button to open
the dialog box.

4 Select the desired base theme.

The base theme appears in the Base Theme field.

5 Click in the Product Theme field. Then click the select button to open the dialog
box.

6 Select the desired product theme.

The Product theme appears in the Product Theme field

7 Save the record.
Version 7.5.3 Product Administration Guide 229

Customizable Product User Interface

Grouping Items onto Pages
Grouping Items onto Pages
Groups are the way you define what items go on which selection pages. Depending
on the product theme, all the items in a group display on one page. These pages
display when the user selects the item for configuration.

For example, you design a customizable product that includes a computer monitor
and a service plan. The user can select from among 4 monitors and 3 service plans.
To display monitors and service plans on separate selection pages, you would create
one group for monitors and one for service plans.

Setting up groups requires two steps:

a Create a group for each selection page.

b Add items to the groups.

All the relationships, resource definitions, and linked items in a customizable
product are listed in the Product UI Designer. Each item has an Add Item to Group
button.

The attributes of the customizable product are also listed. These are not the
attributes defined for items in relationships. These are the attributes that the whole
customizable product inherits from the class to which it belongs in the product
table.

After you create a group and add items, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Group Lists menu, choose Validate.

To create a group

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product UI Designer.

The Product UI Designer view appears.
230 Product Administration Guide Version 7.5.3

Customizable Product User Interface

Grouping Items onto Pages
4 Click New in the Group List tab to create a new group, fill out the group
definition form, and click Save.

The new group definition appears in the Product UI Designer.

5 Repeat these steps until you have created all the desired groups.

Each group definition corresponds to one selection page. After you define a group,
add the items you want to display on its corresponding page.

To add items to a group

1 Select the desired group.

2 In the display of the customizable product, click the desired item.

3 Click Add Item.

The item appears in the Group Item list, which lists the members of the group.

4 Enter a positive whole number in the Sequence field.

This controls the order of display on the page. Item 1 displays first and so on.

5 Click the select button in the UI Control field.

The Pick UI Control dialog box appears.

6 Select the desired UI control type.

The UI control type appears in the UI Control field in the Group Item List.

7 Click Save to save the record.

Records are not saved automatically when you step off the record.

8 Repeat the steps above for each item you want to add to the group.
Version 7.5.3 Product Administration Guide 231

Customizable Product User Interface

Editing Item Groups
Editing Item Groups
You edit item groups by selecting a group and then editing the group record or by
editing items in the group’s Group Item List.

In the group record, you can change the group theme or the order in which the
group displays.

In the Group Item List for a group, you can edit records by changing their sequence
of display or by changing the type of UI control used to display the item.

If you change the UI control for a relationship, make sure that the new control
allows the user to exercise the full range of the cardinalities you have defined for
the relationship.

After you edit a group, you can verify your work by validating the customizable
product. Validating a customizable product displays the selection pages a user sees
during a configuration session. To validate the customizable product, from the
Group Lists menu, choose Validate.

To edit an item group

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product UI Designer.

The Product UI Designer view appears.

4 In the Group List, select the group you want to edit.

5 To change the group theme, click the group’s Group Theme select button and
choose a new group theme.

6 To change the group’s sequence of display, edit the Sequence field.

The group with Sequence=1 displays first. Changing the group sequence
changes the order in which the selection pages display.
232 Product Administration Guide Version 7.5.3

Customizable Product User Interface

Editing Item Groups
7 To change the sequence of display of relationships in the group, select an item
in Group Item List and edit the Sequence field.

The item with Sequence=1 displays first. Changing the sequence changes the
order in which the items display on the page.

8 To change the display control associated with an item, select an item, click the
UI control select button, and select a new control.

9 Click Save to save the record.

Records are not saved automatically when you step off them.
Version 7.5.3 Product Administration Guide 233

Customizable Product User Interface

Deleting Item Groups
Deleting Item Groups
Item groups are the mechanism you use to group items onto selection pages.
Depending on the product theme, each item group displays on a separate selection
page. Deleting a group removes the page and all its items from the collection of
pages used to configure a customizable product.

After you delete a group, you can verify your work by validating the customizable
product. Validating a customizable product displays the selection pages a user sees
during a configuration session. To validate the customizable product, from the
Group Lists menu, choose Validate.

To delete an item group

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product UI Designer.

The Product UI Designer view appears.

4 In the Group List, select the desired group.

5 From the Group List menu, choose Delete Record.

6 Click OK when asked to confirm you want to delete the record.
234 Product Administration Guide Version 7.5.3

Customizable Product User Interface

Adding a Summary Page
Adding a Summary Page
You can add a summary page that shows the user how they have configured a
product. This page displays the relationships from which the user has made
selections along with attribute values. It also displays all the items the user has
chosen.

Each relationship is a hyperlink. When the user clicks on the relationship name, the
selection page containing that relationship displays, and the user can revise their
selections.

Figure 11 shows an example of a summary page. The top portion of the page lists
the relationships and the attribute values that have been selected. The bottom
portion of the page shows the items that the user has selected from each
relationship.

After you create a summary page, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Group Lists menu, choose Validate.

Figure 11. Example of a Summary Page
Version 7.5.3 Product Administration Guide 235

Customizable Product User Interface

Adding a Summary Page
To add a summary page

1 In the product UI designer, create a group.

2 In the Group Name field, enter the name that will be the tab or page title name.

For example, enter Summary.

3 In the Group Theme field, click the select button and choose the Summary
Group Theme.

If you are using the Menu templates, choose the Summary Menu Group Theme.

4 In the Sequence field, enter a number to set the sequence of the summary page.

To make the summary page the last page in the series, enter a sequence number
that is higher than the other groups.

5 Click Save to save the record.

Records are not saved automatically when you step off the record. The system
generates the summary page automatically. Do not add records to the group.
236 Product Administration Guide Version 7.5.3

Customizable Product UI Properties 13
This chapter explains how to use the User Interface Property Designer to modify the
display of selection pages for customizable products. You must define a work space
and have used the Product UI Designer to define selection-page layout before using
the User Interface Property Designer.

This chapter covers the following topics:

■ “About UI Properties” on page 238

■ “About Predefined UI Properties” on page 239

■ “Defining a UI Property” on page 241

■ “Hiding Parts of a Customizable Product” on page 242
Version 7.5.3 Product Administration Guide 237

Customizable Product UI Properties

About UI Properties
About UI Properties
A UI property is a named variable and its value. UI properties modify the display of
an item in a customizable product. You define a UI property by selecting the desired
item in a customizable product and then defining one or more UI properties for it.

There are two types of UI properties: predefined and user-defined. Predefined UI
properties, such as Hide, are Siebel-provided UI properties that perform special
functions. User-defined UI properties are those that you define and then insert into
a Web template to control the display characteristics of an item.

The User Interface Property Designer displays all the items in the customizable
product:

■ Customizable Product Name. Define a UI property for the product name to change
the product name header on every selection page.

■ Attribute. The Attribute section displays the attributes that the customizable
product as a whole inherits from the class to which it belongs. For LOV type
attributes, each menu choice is listed. For range of values attributes, the default
value is listed.

■ Relationship. This sections displays both the relationship name and the contents
of each relationship in the customizable product.

■ Group. The Group section lists the group names you defined in the Product UI
Designer.

■ Linked Item and Resource. These sections display the linked items and resources
you have defined for the customizable product.

To use the User Interface Property Designer, you select an item in the customizable
product and then define a UI property for the item in Item Display Properties. Each
record in Display Properties has two fields. The first contains the name of the UI
Property variable. The second field contains the value you want to assign to the
variable. This value is what displays in the configuration session.

Observe the following guidelines when defining UI properties:

■ The relationship between an item and a UI variable name is one-to-one. You
cannot define multiple UI properties for an item, each with the same variable
name.
238 Product Administration Guide Version 7.5.3

Customizable Product UI Properties

About Predefined UI Properties
■ An item can have multiple UI property definitions, each for a different UI
variable. An example of this would be an item that appears in multiple locations
within a customizable product.

About Predefined UI Properties
Table 21 shows the predefined UI properties that you can use. These UI properties
provide commonly desired ways to modify the display of items. You do not need to
insert a variable name for these properties into a customizable product Web
template. You only need to assign them to the desired item in the User Interface
Property Designer.

For external images, the image must be stored in the Siebel installation directory in
\Public\enu\Images\<filename>, where <filename> is the name of the file.

Table 21. Predefined UI Properties

Property Name Value Description

Excluded Y Can only be defined on a relationship or on the
product root. Cannot be defined on products within a
relationship

When defined on a relationship, prevents all excluded
items in the relationship from displaying.

If an item in a relationship is a customizable product,
does not prevent display of excluded products within
that customizable product.

When defined on the product root, prevents excluded
items from displaying throughout the product.

Hide Y or N When set to Y, causes item to be omitted from
selection pages. Can be defined on any part of a
customizable product that displays in the UI
Properties Designer.

Description Enter a text
string.

Define on relationships only.

Enter the text exactly as it will display to the user.
Version 7.5.3 Product Administration Guide 239

Customizable Product UI Properties

About Predefined UI Properties
Image Images/
<filename>

Define on relationships only.

The image displays on the right side of relationship
header. The image is displayed full size.

LearnMore Enter the full
URL to the
desired
location

Use with relationships only. Do not use with
component products, resources, attributes, or links.

The words “Learn More” are displayed adjacent to the
item and are a hyperlink to the URL you enter.

ProductHeader
Image

Images/
<filename>

Define on product root only.

Displays an image of the root product on every
selection page. Image displays beneath item header, to
the left of item labels. The default image area is
120x120 pixels square. Can only be defined on
product root.

FullComputation Y When set to Y (Yes) and user makes an attribute
selection, eConfigurator engine updates the selection
state of all the attribute values so that only selectable
values are displayed. For example, if one of the values
is excluded, it displays uavailable. Can cause
performance reduction. This is the default.

When set to N (No), the eConfigurator engine does
not update the selection state of the other attribute
values and displays all the values as selectable. For
example, if one of the values is excluded, it does not
display unavailable. If user selects an excluded value,
they receive a conflict message.

Use this UI property when display of the selection
state of attribute values is required.

Define on attributes with LOV domains only.

Table 21. Predefined UI Properties

Property Name Value Description
240 Product Administration Guide Version 7.5.3

Customizable Product UI Properties

Defining a UI Property
Defining a UI Property
A UI property is a named variable and its value. UI properties modify the display of
an item in a customizable product. You define a UI property by selecting the desired
item in a customizable product and then defining one or more UI properties for it.

There are two types of UI properties: predefined and user-defined. Predefined UI
properties, such as Hide, are Siebel-provided UI properties that perform special
functions. User-defined UI properties are those that you define and then insert into
a Web template to control the display characteristics of an item.

After you define a UI property, you can verify your work by validating the
customizable product. Validating a customizable product displays the selection
pages a user sees during a configuration session. To validate the customizable
product, from the Item Display Properties menu, choose Validate.

To define a UI property for a customizable product

1 Select and lock the desired customizable product.

2 From the Customizable Product Show menu, choose User Interface Property
Designer.

The User Interface Property Designer view appears.

3 In the box displaying the contents of the customizable product, click the name
of the item for which you want to define a UI property.

4 In Item Display Properties, click New.

A new record appears.

5 Fill out the record.

■ Name. Enter the name of the UI property variable. The variable can be
predefined or user-defined.

■ Value. Enter a value for the variable. The value can be predefined or user-
defined

6 Click Save to save the new record.

Records are not saved automatically when you step off the record.
Version 7.5.3 Product Administration Guide 241

Customizable Product UI Properties

Hiding Parts of a Customizable Product
Hiding Parts of a Customizable Product
The predefined UI property Hide lets you omit items from display in selection pages.
This UI property is very useful with class-products. For child products in the class,
you can hide portions of the product structure inherited from the class-product. This
allows you to define the class-product structure and then tailor its display for each
of the child products that inherit the structure. You can hide any of the items that
display in User Interface Property Designer:

■ An attribute

■ An attribute value

■ A relationship

■ An item in a relationship

■ A group

■ A linked item

■ A resource

You define the Hide property on an item in the same fashion as other UI properties.
242 Product Administration Guide Version 7.5.3

Customizable Product Web Templates 14
This chapter explains how to customize the Web templates that are used to create
customizable product selection pages.

This chapter covers the following topics:

■ “About Customizable Product Web Templates” on page 244

■ “About UI Properties in Web Templates” on page 247

■ “About UI Property Values” on page 248

■ “Creating a New Web Template” on page 251

■ “Modifying the Display Name of the Customizable Product” on page 253

■ “Modifying the Display Name of a Customizable Product, an Example” on
page 256

■ “Modifying the Display Name of Groups” on page 257

■ “Modifying the Display Name of Groups, an Example” on page 260

■ “Modifying the Display Name of Items” on page 262

■ “Modifying the Display Name of Items, an Example” on page 266
Version 7.5.3 Product Administration Guide 243

Customizable Product Web Templates

About Customizable Product Web Templates
About Customizable Product Web Templates
Customizable Product Web templates are files that control all aspects of how
selection pages display. You customize the look and feel of selection pages by
modifying these templates.

Customizable Product Web templates are stored in the installation subdirectory
\webtempl. The templates that control display of selection pages begin with eCfg.
There four types of Web templates used by eConfigurator.

■ Base Theme. The base theme defines an HTML table-based page layout. This
layout is used for all selection pages and provides the basic look and feel. The
base theme calls the required product theme, which displays in one or more
table cells created by the base theme.

■ Product Theme. The product theme template defines how selection items and
options are displayed. The one-page theme displays all the configurable items
on one selection page. The tab themes display items on a series of tabbed pages.
The wizard theme leads the user from one selection page to the next. Product
themes also create table layouts that define how items display within the cells
of the base theme. Product themes contain for-each loops that iterate through
the customizable product and identify relationships, items, attributes, and so on.
Product themes call group themes and control themes.

■ Group Theme. If you use a tab or wizard theme, you determine what items appear
on a page by defining groups. All the items in one group display on one page. A
group theme template specifies how a group displays on a page.

■ UI control template. UI control templates define what type of UI control is used
for selecting items. You can choose from several types of check box, radio
button, and text box controls. The control template iterates through each group,
identifies all the items, and then creates a form that displays the items for
selection. The forms display in the table cells created by the product theme.

You select a base theme and product theme template in the Versions tab. You select
group themes and UI control templates in the Product UI Designer.

Web templates are not themselves HTML files, but they do contain a combination
of HTML table commands, JavaScript, and Siebel Web Engine (swe) commands.
The swe commands are in XML format. These commands are used in Web
templates as follows:
244 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

About Customizable Product Web Templates
■ HTML table commands. These commands are used to define page layout. Control
templates create tables and then create forms that display in these tables.
Control template tables display in the cells created by product theme templates.
Product theme templates displays in cells created by the base theme template.

■ JavaScript. JavaScript commands are used to create arrays for storing data about
the customizable product obtained from the UI service. They are also used in
control templates to create forms.

■ swe:include. This command specifies the name of a template to include. This
command links the Web templates together. During iterative processing this
command causes the Web Engine to dynamically retrieve, insert, and parse the
included Web template.

■ swe:for-each. This command provides iterative processing. It traverses the
customizable product beginning at the product root and identifies specified parts
for display. The CfgLoop Type specifies the type of items to be identified, such
as group, relationship, or attribute.

■ swe:control. This XML element defines what control type to display with an item.
To define a UI property, you substitute a variable name for the value of the
CfgFieldName attribute in this element. Inserting UI property variables in Web
templates is how you customize the way an item displays.
Version 7.5.3 Product Administration Guide 245

Customizable Product Web Templates

About Customizable Product Web Templates
Web templates are used by the Frame Code Engine to create HTML selection pages,
as shown in Figure 12.

When a customizable product is called for display, an instance is created and stored
in memory. The Frame Code Engine requests information about the product from
the UI service and uses it to provide the values required in the Web templates. The
Frame Code Engine then builds selection pages and forwards them to the Web
Engine Frame Manager. The pages are then provided to the Web Server.

Figure 12. Web Template Processing
246 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

About UI Properties in Web Templates
About UI Properties in Web Templates
The User Interface Property Designer lets you customize the way items display in a
configuration session. You do this by defining a UI property for the desired items.
The UI property definition is a name-value pair where the variable name is one you
have entered in the Web template that controls the display of the item. The value
can be a string, HTML commands, XML commands, or JavaScript that defines what
you want to display instead of the default item name.

The User Interface Property Designer displays all the items in the customizable
product. Define UI properties on these items as follows to change how Web
templates display:

■ Customizable Product Name. Define a UI property for the product name to change
the product name header on every selection page.

■ Attribute. Define a UI property for the attribute name to revise the title of the
attribute. To revise the display of the attribute values, define a UI property for
the LOV items or default value of the attribute.

■ Relationship. Like attributes, you can change either how the relationship name
displays, or you can change how the items in the relationship display.

■ Group. Define a UI property for these items when you want to change the name
that appears on the product tabs or in the wizard pages of the product theme.

■ Linked Item and Resource. If you display these items during a configuration
session, you can customize them by defining a UI property for them. For
example, consider adding a brief explanation along with a linked item name to
explain what it does.

The Web Engine uses for-each loops to iterate through each level of a customizable
product. At each level, it determines what items occupy that level and what Web
template to use for displaying the items. When you modify a Web template and
assign it to group member, the template is used to control the display of all the
group member’s items. For example, if you assign a radio button control template
to a relationship containing five items. The control template is used to define how
each of the five items displays. Thus, if you have inserted a UI property variable in
the radio button control template, then you must define a UI property for all five
items.
Version 7.5.3 Product Administration Guide 247

Customizable Product Web Templates

About UI Property Values
For example, you have assigned a radio button control to Relationship A in the
Product UI Designer. You have inserted the UI property variable “.DisplayChange”
into the radio button template. Relationship A contains five items. You want to
change the display of Item A to bold. You must define a UI property for all five
items:

■ The Name in all five UI property definitions is the same: DisplayChange. Do not
put a period (.) before the name.

■ For Item A the Value of the UI property is Item A

■ For the remaining four items, the Value of the UI property is the item name,
without any HTML formatting; for example, Item B.

About UI Property Values
The value you assign to a UI property name for an item can be text, HTML
commands, or JavaScript commands. If the value includes HTML or JavaScript
commands, it is important to test them for correctness before entering them in the
User Interface Property Designer.

If you do not test the commands and they have errors, this can prevent display of
the selection pages. If the value is a text string that does not include commands, you
do not need to test it.

You test the commands included in the value of the UI property name by inserting
them in an HTML file and checking that they display correctly in a Web browser.
Observe the following guidelines for including HTML commands or JavaScript in a
UI property name value:

■ Avoid using tags or tag attributes common only to Internet Explorer or to
Netscape.

■ Use DHTML commands with caution. Thoroughly test them before using them
as the value of a UI property name.

■ HTML statements should be self-contained and complete. Use opening and
closing tags.
248 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

About UI Property Values
■ Use table tags very carefully. Make sure the table you define is sized correctly
for the space it will occupy.

■ If you insert JavaScript using the <Script> tag, avoid statements that
manipulate the document. Also avoid routines that rely on specific page content.
If the content is not present, the script may fail and the page may not display.

■ Do not use animated images or animated text.

HTML Text Formatting Commands
You can use HTML text formatting commands to enhance the way an item name
displays. Here are several examples:

■ You can define a UI property value that adds formatting to the item name. For
example, you want the item name Lamp to display in boldface. You would assign
the following UI property value to the item Lamp: Lamp.

■ You can add a message next to an item. If the message is lengthy consider
creating a small, two-cell table. Put the item name in the first cell, and put the
explanation in the adjacent cell. The value of the UI property name for the item
would then be the HTML table commands, including the item name and
message. The base theme and product theme Web templates use tables to layout
the Web pages. This means the table you create for the item will be located
within a cell of the table that contains the whole Web page. Carefully review the
table structure of the base theme and product theme Web templates before
creating tables for UI properties.

The following HTML tag types can be used as values for UI property names:

■ Text markup tags (, , and so on)

■ Table tags

■ Content presentation and flow tags (<address>, <nobr>, <plaintext>, and
so on)

■ Formatted list tags

■ Rule, image, and multimedia tags (, <map>, <marquee>)
Version 7.5.3 Product Administration Guide 249

Customizable Product Web Templates

About UI Property Values
■ Forms tags (<button>, <input type> and so on.). You can use these tags to
pass user input to JavaScript routines that are part of the UI property name
value.

■ Hyperlinks. You must include Target = ““in the link tag (<a>) definition. This
causes the link to load in a new browser window. If the link loads in the session
browser window, the user will have to click the Back button to return to the
session. This can cause the session to lose its context and can cause Web Engine
problems.

Do not use the following tag types in UI property name values:

■ Header tags (<base>, <basefont>, and so on)

■ Skeletal/Layout tags (<frameset>, <body>, and so on)

Images
Use the HTML tag as the UI property value when you want to retrieve and
display images. You can shorten the path specification for the src attribute by
storing the images in the same directory as other images used by the Web Engine.

The Web Engine stores its images in the following installation subdirectory
(Windows path syntax):

PUBLIC\<language>\IMAGES

The <language> variable is the three-letter language identifier for the language
selected during installation. For example, if you selected English during the install,
the Web Engine image files are located in the PUBLIC\enu\IMAGES subdirectory.

When you specify the src path in the tag, you only need to specify the
IMAGES directory and the file name. For example, you want to retrieve red.gif from
the IMAGES directory and use it to replace the attribute name Red. In the User
Interface Property Designer, you would assign a UI property name to the Red
attribute and specify the following value (Windows path syntax):

250 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Creating a New Web Template
Before validating the UI design, you should test this value to make sure it behaves
as expected in the browser. Here is an example of an HTML file for testing image
retrieval (English language installation, Windows path syntax):

<html>
<head>
<base href="C:\installdir\PUBLIC\enu\">
</head>
<body>

</body>
</html>

Add HEIGHT and WIDTH attributes to the tag to make the image the
correct size. Consider making the image somewhat smaller than needed and then
increasing its size when you validate the UI design. This prevents the image from
causing page layout problems when you first validate it.

Creating a New Web Template
The most common reason for creating a new Web Template is to insert UI property
variables in the template to change how an item in a customizable product displays.
The best way to create a new Web template is to modify an existing template and
save it to a new file name.

The process for setting up a new template has two steps:

a Create a new Web template.

b Add the new template to the appropriate dialog box

To create a new Web template

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 Open the desired dialog box and locate the desired template.

For example, if you wanted to create a new base theme template, navigate to
Customizable Products > Product Versions and, click the select button in the
Base Theme field to open the dialog box.
Version 7.5.3 Product Administration Guide 251

Customizable Product Web Templates

Creating a New Web Template
4 In the dialog box, write down the filename of the template you want to modify.

The filename is shown in the Template field. The filename ends in .swt.

5 Open the Web template in a text editor, modify it as desired, and save it to a new
filename.

The Web templates are located in <install-dir>\webtempl (Windows path
syntax), where <install-dir> is the path to the Siebel installation directory. The
new filename must end in .swt. By convention, the filename should begin with
“eCfg.”

In most cases, you will insert a UI property variable name into the template.

The next step is to add the new template to the dialog box.

To add a Web template to the dialog box

1 Open the dialog box again.

This is the dialog box you used to determine the filename of the template.

2 In the dialog box, click New and fill out the form for adding a new template and
click OK.

■ Name: Enter a descriptive name. For example: Modified Base Theme.

■ Template: Enter the filename of the template you created.

■ Description (Optional): Enter a brief description of the template.

This adds the new template to the dialog box. You can now assign the new
template to an item in the customizable product. For example, if you created a
new base theme template, you can assign this template to the customizable
product.
252 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of the Customizable Product
Modifying the Display Name of the Customizable Product
This section explains how to modify the customizable product name in the base
theme. The base theme defines the basic page container within which the product
theme displays. The base theme includes a header that contains the customizable
product name that is stored in the Siebel database. You can define a UI property that
changes the name of the customizable product or adds artwork or other formatting.

To change the name of the customizable product in a base theme, you insert a
variable in the base theme Web template. This variable tells the Web Engine to get
the item name from a defined UI property rather than using the customizable
product name.

Here is the process for changing the display name of the customizable product:

1 Create a new base theme template. You do this by saving a copy of the base
theme template. Then you insert a variable name in the new template.

2 Assign the new base theme template to the customizable product.

3 Define a UI property for the customizable product. This value is what displays
in the selection pages.

Create a New Base Theme Template
You must create a new Web template to customize the display name of the
customizable product. You do this by copying an existing base theme template.
Then you insert a UI property variable into the copy. Finally, you assign the new
Web template as the base theme for the customizable product

To insert a UI property variable into a base theme Web template, you must locate
the swe:control element that governs the display of the customizable product name.
The base themes have the same basic layout:

■ The first <Table> tag creates the page container. Additional <Table> tags
stack one on top of another to partition the page vertically.

■ There are no swe:for-each loops in the template.

■ Near the top of the file, refer to the first <table> tag. Within the table
definition, locate the “Product Title” comment. Below the comment locate the
first swe:control element.
Version 7.5.3 Product Administration Guide 253

Customizable Product Web Templates

Modifying the Display Name of the Customizable Product
■ One of the attributes of this element is CfgFieldName = “CxObjName”.

■ Replace CxObjName with the name of the UI Property variable. The name must
be preceded with a period (.). For example: “.NewProductName”.

To create a new base theme template

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 In the Work Space record, click the select button in the Base Theme field and
open the dialog box.

4 In the Pick UI Style dialog box, write down the filename of the base theme.

The filename is shown in the Template field. The filename ends in .swt.

5 Open the Web template in a text editor and save it to a new filename.

The Web templates are located in <install-dir>\webtempl (NT path syntax),
where <install-dir> is the path to the Siebel installation directory. The new
filename must end in .swt.

6 In the new template, locate the swe.control element containing the
CfgFieldName= “CxObjName” attribute.

7 Replace “CxObjName” with a UI property variable name and save the file.

The variable name must begin with a period (.). For example:
“.NewProductName”. Verify that the variable name is enclosed in quotes.

Assign the New Base Theme Template
To assign the new base theme template to the customizable product, you first add
the template to the Pick UI Style dialog box. Then you select it as the base theme.

To assign the new base theme template to the customizable product

1 In the customizable product Work Space record, click the select button in the
Base Theme field and open the dialog box.

The Pick UI Style dialog box appears.
254 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of the Customizable Product
2 In the dialog box, click New and fill out the form for adding a new template and
click OK.

■ Name: Enter a descriptive name. For example: Modified Base Theme.

■ Template: Enter the filename of the template you created.

■ Description (Optional): Enter a brief description of the template.

3 In the Pick UI Style dialog box, click the template you added and click OK.

This assigns the new base theme template to the customizable product.

Define a UI Property for the Customizable Product
The last step is to define a UI property for all the customizable product.

To define a UI property for the customizable product

1 From the Customizable Product Show menu, choose User Interface Property
Designer.

2 The User Interface Property Designer view appears.

3 In the box displaying the contents of the customizable product, click the name
of the customizable product. It is the first item listed.

4 In Item Display Properties, click New.

A new record appears.

5 Fill out the record.

■ Name. Enter the name of the UI property variable you entered in the base
theme template. Do not include the period (.) that begins the name.

■ Value. Enter the customizable product name you want to display. Include any
HTML formatting needed.

6 Save the new record.

7 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the customizable product display
name is correct.
Version 7.5.3 Product Administration Guide 255

Customizable Product Web Templates

Modifying the Display Name of a Customizable Product, an Example
Modifying the Display Name of a Customizable Product,
an Example

You have a customizable product called Premier Workstation. You want to display
your company logo to the left of the product name in the base theme. The logo
filename is logo1.gif. You have placed the file in the Siebel installation subdirectory
\PUBIC\enu\IMAGES (NT path syntax, English language installation).

Use the Product UI Designer to create the Web pages for configuring the
customizable product. Validate the customizable product, and verify that the pages
display correctly.

To create a new base theme Web template and assign it to the customizable
product

1 In the customizable product Work Space record, click the select button in the
Base Theme field and open the dialog box.

2 In the Pick UI Style dialog box and write down the filename of the base theme.

3 Open the base theme Web template and save it to a new file name:
eCfgNewProductTheme.swt

4 Open the new template and locate the swe.control element. Set
CfgFieldName=“.NewProductName”. The first character in the variable name
must be a period (.). The variable name must be surrounded by quotes. Save the
file.

5 In the customizable product Work Space record, click the select button in the
Base Theme field and open the dialog box.

6 Click Add and add the new template. Then, select it as the base theme template.

To define a UI property for the customizable product

1 Open the User Interface Property Designer and select the customizable product.

2 Define a UI property for it as follows:

■ Name: NewProductName. Do not put a period before the name. This is the
variable name you inserted in the template file.

■ Value: Premier Workstation.
256 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of Groups
3 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the customizable product display
name is correct.

Modifying the Display Name of Groups
This section explains how to modify group names that display in the product
themes. For example, you can use UI property definitions to define what displays
on each tab in a tabbed product theme.

To change the name of a group in a product theme, you insert a variable in the
product theme Web template. This variable tells the Web Engine to get the item
name from a defined UI property rather than using the group name you defined in
the Product UI Designer.

Here is the process for changing the display name of a group:

a Create a new product theme template. You do this by saving a copy of the
product theme template. Then you insert a variable name in the new
template.

b Assign the new product theme template to the customizable product.

c Define a UI property for all the groups you set up in the Product UI Designer.
For each group name, you give the variable the desired value. This value is
what displays in the configuration Web pages.

You must define a UI property for all the group names, not just the ones you want
to change. This is because the product theme template determines the display name
of the all the groups. When you insert a UI property variable in the template, the
Web Engine gets all the group names from UI property definitions.

Create a New Product Theme Template
You must create a new Web template to customize the display of group names. You
do this by copying an existing product theme template. Then you insert a UI
property variable into the copy. Finally, you assign the new Web template as the
product theme for the customizable product.
Version 7.5.3 Product Administration Guide 257

Customizable Product Web Templates

Modifying the Display Name of Groups
To insert a UI property variable into a product theme Web template, you must locate
the swe:control element that governs the display of the group name:

■ Tab Theme. Locate the first swe:case tag. It is located near the top of the file.

■ Single Page Theme. Locate the third <table> tag. It is within the for-each loop
near the top of the file.

■ Wizard Theme. Locate the first for-each loop. It is near the top of the file.

■ Beneath the location specified above, locate the first swe:control element. It
defines the group data record. One of the attributes of this element is
CfgFieldName = “CxGroupName”.

■ Replace CxGroupName with the name of the UI Property variable. The name
must be preceded with a period (.). For example: “.NewGroupName”.

To create a new product theme template

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 In the Work Space record, click the select button in the Product Theme field and
open the dialog box.

4 In the Pick UI Style dialog box, write down the filename of the product theme.

The filename is shown in the Template field. The filename ends in .swt.

5 Open the Web template and save it to a new filename.

The Web templates are located in <install-dir>\webtempl (NT path syntax),
where <install-dir> is the path to the Siebel installation directory. The new
filename must end in .swt.

6 In the new template, locate the swe.control element containing the
CfgFieldName= “CxGroupName” attribute.

7 Replace “CxGroupName” with a UI property variable name and save the file.

The variable name must begin with a period (.). For example:
“.NewGroupName”. Verify that the variable name is enclosed in quotes.
258 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of Groups
Assign the New Product Theme Template
To assign the new product theme template to the customizable product, you first
add the template to the Pick UI Style dialog box. Then you select it as the product
theme.

To assign the new product theme template to the customizable product

1 In the customizable product Work Space record, click the select button in the
Product Theme field and open the dialog box.

The Pick UI Style dialog box appears.

2 In the dialog box, click New and fill out the form for adding a new template and
click OK.

■ Name: Enter a descriptive name. For example: Modified Tab Theme.

■ Template: Enter the filename of the template you created.

■ Description (Optional): Enter a brief description of the template.

3 In the Pick UI Style dialog box, click the template you added and click OK.

This assigns the new product theme template to the customizable product.

Define a UI Property for all the Groups
The last step is to define a UI property for all the groups.

To define a UI Property for all the groups

1 From the Customizable Product Show menu, choose User Interface Property
Designer.

The User Interface Property Designer view appears.

2 In the box displaying the contents of the customizable product, select the first
group in the Group section.

3 In Item Display Properties, click New.

A new record appears.

4 Fill out and save the record.
Version 7.5.3 Product Administration Guide 259

Customizable Product Web Templates

Modifying the Display Name of Groups, an Example
■ Name. Enter the name of the UI property variable you entered in the product
theme template. Do not include the period (.) that begins the name.

■ Value. Enter the group name you want to display. Include any HTML
formatting needed.

5 Save the new record.

6 Perform these steps for all the groups.

7 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the group names display correctly.

Modifying the Display Name of Groups, an Example
You have a customizable product that has three groups: Group A,
Group B, and Collection C. You want to change the name of Collection C to Group
C in the selection pages.

Use the Product UI Designer to create the Web pages for configuring the
customizable product. Validate the customizable product, and verify that the pages
display correctly.

To create a new product theme template and assign it to the customizable product

1 In the customizable product Work Space record, click the select button in the
Product Theme field and open the dialog box.

2 In the Pick UI Style dialog box and write down the filename of the product
theme.

3 Open the product theme Web template and save it to a new file name:
eCfgModifiedTabTheme.swt

4 Open the new template and locate the swe.control element. Set
CfgFieldName=“.NewGroupName”. The first character in the variable name
must be a period (.). The variable name must be surrounded by quotes. Save the
file.

5 In the customizable product Work Space record, click the select button in the
Product Theme field and open the dialog box.
260 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of Groups, an Example
6 Click Add and add the new template.

7 Select the template as the product theme template.

To define a UI property for each of the groups

1 Open the User Interface Property Designer and select Collection C in the Group
section.

2 Define a UI property for it as follows:

■ Name: NewGroupName. Do not put a period before the name. This is the
variable name you inserted in the template file.

■ Value: Group C.

3 Select Group A.

4 Define the UI property for it as follows:

■ Name: NewGroupName. Do not put a period before the name.

■ Value: Group A.

5 Select Group B.

6 Define the UI property for it as follows:

■ Name: NewGroupName. Do not put a period before the name.

■ Value: Group B.

7 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the group names display correctly.
Version 7.5.3 Product Administration Guide 261

Customizable Product Web Templates

Modifying the Display Name of Items
Modifying the Display Name of Items
This section explains how to modify the display name of an item, such as an
attribute, relationship, linked item, or resource. A common reason for doing this is
that you want the item name that the customer sees to be different than the name
you have in the product table for a specific version of the customizable product.

For example, a computer component is called 256 MB disk drive in the product
table. However, in an upcoming offering, you want to call this item the Standard
256 MB Disk. Rather than change the item name in the product table, you can
change it using the User Interface Property Designer. This change is specific to the
customizable product and is stored with it when you release the product. You can
use the User Interface Property Designer to change item names with each release of
a customizable product, without having to change the item name in the product
table.

To change the display name of an item, you insert a variable in the UI control Web
template that governs display of the item. This variable tells the Web Engine to get
the item name from a defined UI property.

Here is the process for changing the display name of a relationship item in the form:

1 Create a new UI control template. You do this by saving a copy of the UI control
template you selected in the Product UI Designer. Then you insert a variable
name in the new template.

2 Assign the new template to the item.

3 Define a UI Property for the item.

Create a New UI Control Template
You must create a new UI control template to customize the display of an item. You
do this by copying an existing template. Then you insert a UI property name
variable into the copy. Finally, you assign the new template as the UI control
template for the item.
262 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of Items
To insert a UI property variable into a Web template, you must locate the
swe.control element that governs the display of the item. The UI control Web
templates all have the same basic layout:

■ A swe.include statement reads in a header file. This file places the relationship
name at the top of the form that will contain the items.

■ A swe for-each loop iterates through the relationship in the customizable
product and loads its items into an array.

■ A second swe for-each loop reads the array and constructs the form.

■ A variable called DisplayValue near the beginning of the second swe for-each
loop defines what item name appears next to each instance of the control in the
form.

■ The DisplayValue variable is set equal to a swe.control element that contains an
attribute CfgFieldName= “CxObjName”. Replace CxObjName with the name of
the UI property variable. The name must be preceded with a period (.). For
example: “.NewName”.

To create a new UI control template

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 From the Customizable Product Show menu, choose Product UI Designer.

The Product UI Designer view appears.

4 In the Group List, click the group name containing the item whose display you
want to modify.

The items belonging to the group you select display in the Group Item List.

5 In the Group Item List, select the item you want to modify, for example a
relationship.

6 In the record you selected, click the select button in the UI control field.

The Pick UI Style dialog box displays. The control you have selected for the
group member is highlighted.
Version 7.5.3 Product Administration Guide 263

Customizable Product Web Templates

Modifying the Display Name of Items
7 Write down the filename of the Web template that governs the display of this
control.

The filename is shown in the Template field. The filename ends in .swt.

8 Open the Web template in a text editor and save it to a new filename.

The Web templates are located in <install-dir>\webtempl (NT path syntax)
where <install-dir> is the path to the Siebel installation directory. The filename
should begin with eCfg and end with .swt. For example:
eCfgport_modifiedcheckbox.swt

9 In the new template, locate the correct swe.control element containing the
CfgFieldName= “CxObjName” attribute.

10 Replace “CxObjName” with a UI property variable name and save the file.

The variable name must begin with a period (.). For example: “.NewName”.
Verify the variable name is enclosed in quotes.

Assign the New UI Control Template
To assign the new Web template to a group item, you first add the template to the
Pick UI Style dialog box. Then you select it as the template for an item in the group.

To assign the new UI control template

1 In the Product UI Designer Group List, click the group name containing the item
whose display you want to modify.

The items belonging to the group you select display in the Group Item List.

2 In the Group Item List, click the item you want to modify.

This selects the record.

3 In the record you selected, click the select button in the UI control field.

The Pick UI Style dialog box appears.

4 In the dialog box, click New and fill out the form for adding a new template and
click OK.

■ Name: Enter a descriptive name. For example: Modified Check Box.
264 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of Items
■ Template: Enter the filename of the template you created.

■ Description (Optional): Enter a brief description of the template.

5 In the Pick UI Style dialog box, click the template you added and click OK.

This assigns the new template to the item and closes the dialog box.

6 In Group Item List, save the revised record.

Define a UI Property for the Item
The last step is to assign the variable in the new Web template to the item. Then
you enter a value for the variable. The value you enter is what displays in a
configuration session.

For example, if you assigned the template to a relationship, you must define a UI
property for each item in the relationship.

To define a UI Property for the item

1 From the Customizable Product Show menu, choose User Interface Property
Designer.

The User Interface Property Designer view appears.

2 In the box displaying the contents of the customizable product, select the item
on which you want to define the UI property.

3 In Item Display Properties, click New.

A new record appears.

4 Fill out the record.

■ Name. Enter the name of the UI property variable. Do not include the period
(.) that begins the name.

■ Value. Enter the value you want to the variable to have for this item.

5 Save the new record.

6 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the item names display correctly.
Version 7.5.3 Product Administration Guide 265

Customizable Product Web Templates

Modifying the Display Name of Items, an Example
Modifying the Display Name of Items, an Example
You have a customizable product that includes a relationship called Hard Drives.
This relationship contains several disk drives. Along with the name of each drive,
you want to display a picture of the drive. You want to assign radio buttons as the
UI control for selecting the drives.

To prepare for defining the UI Property

1 Use the Product UI Designer to create the selection pages for configuring the
customizable product.

2 Validate the customizable product, and verify that the pages display correctly.

3 Create a .gif or .jpg for each hard drive.

4 Test each file by displaying it in a browser. Use the HTML tag to set the
exact size of each image. The tag will be the value you assign to the UI
Property variable.

To create a new UI control template and assign it to the Hard Drives relationship

1 In the Product UI Designer, select the group containing the Hard Drives
relationship.

2 In Group Item List, select the Hard Drives relationship.

3 Open the Pick UI Style dialog box and write down the name of the radio button
template assigned to the relationship.

4 Open the radio button template and save it to a new file name:
eCfgModifiedRadioButton.swt

5 Open the new template and locate the correct swe.control element.

6 Set CfgFieldName= “.NewName”.

The first character in the variable name must be a period (.). The variable name
must be surrounded by quotes.

7 Save the file.

8 In the Product UI Designer Group Item List, select the relationship containing
the hard drives.
266 Product Administration Guide Version 7.5.3

Customizable Product Web Templates

Modifying the Display Name of Items, an Example
9 Open the Pick UI Style dialog box and click Add to add the new template.

10 Select the new template as the control template for the Hard Drives relationship.

To define a UI property for each of the Hard Drives

1 Open the User Interface Property Designer and select the first drive in the Hard
Drives relationship.

2 Define a UI property for it as follows:

■ Name. NewName. Do not put a period before the name. This is the variable
name you inserted in the template file.

■ Value. Enter the HTML syntax for displaying the drive name and retrieving
the image.

3 Repeat these steps to define a UI property for each hard drive in the relationship.

4 Open the Item Display Properties menu and click Validate.

This starts a configuration session. Verify that the item names display correctly.
Version 7.5.3 Product Administration Guide 267

Customizable Product Web Templates

Modifying the Display Name of Items, an Example
268 Product Administration Guide Version 7.5.3

Customizable Product Resources 15
This chapter explains how to use the Resource Designer to create configuration
variables called resources to keep track of important configuration information
when the user configures a customizable product.

This chapter covers the following topics:

■ “About Resources” on page 270

■ “Creating a Resource” on page 271

■ “Editing a Resource Definition” on page 272

■ “Deleting a Resource” on page 272

■ “Managing Resources Using Configuration Rules” on page 273
Version 7.5.3 Product Administration Guide 269

Customizable Product Resources

About Resources
About Resources
Resources keep track of configuration variables that increase or decrease as the user
configures a customizable product. For example, suppose you are defining a
desktop computer customizable product. The product includes several types of
chassis. Each chassis has a different number of slots for expansion cards. Allowable
configurations also include several types of expansion cards, such as disk
controllers, and graphics cards.

You do not know in advance which chassis the customer will select or how many
expansion cards. However, you do know that you must keep track of the number of
slots during the configuration process to make sure that the customer configures the
computer correctly.

Resources are the way you do this:

1 First define a resource to keep track of slots, for example slots-resource.

2 For the class containing all the chassis, define an attribute, slots-provided, that
tells how many slots are in the chassis. Typically, this attribute will have a single-
value domain and the data type will be Number.

3 For each class containing expansion cards, define an attribute, slots-required,
that tells how many slots each card needs, usually 1. Typically, this attribute will
have a single-value domain, and the data type will be Number.

4 Finally, you write provide and consume rules in the Rules Editor to manage the
slots-resource.

When the user selects a chassis, a provide rule adds the amount of the chassis’
slots-provided attribute to the slots-resource. When the user selects an expansion
card, a consume rule subtracts the amount of the card’s slots-required attribute (1)
from the slots-resource. In this fashion, the slots-resource keeps track of available
slots in the computer chassis.

Once you define a resource, the definition is saved to a picklist and you can add the
resource definition to other customizable products. Resources definitions have the
data type Number. This means that they can only have numeric, integer, or floating
point values.
270 Product Administration Guide Version 7.5.3

Customizable Product Resources

Creating a Resource
Resource definitions include the following fields:

■ Name. This is the resource name. It is how you will refer to the resource in
configuration and pricing rules. The resource name does not display to the user.
Since a resource name can be used by more than one customizable product,
avoid making the name product-specific.

■ Type. Select Number.

■ Description. Enter a brief description of the resource. This description does not
display to the user.

Creating a Resource
When you create a resource, it is automatically added to a picklist. You can then
add the resource to other customizable products by selecting it from the picklist.

You must select and lock a customizable product before creating a resource.

When you create a resource, it is added to a dialog box. You can copy this resource
definition to other customizable products and edit the definition as needed. In turn,
the edited definition is added to the dialog box. When you remove a resource from
a customizable product, it is removed from the dialog box.

To create a resource

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 In the Configuration Designer drop-down menu, select Resource Designer.

The Resource Designer appears. This list contains all the resources defined for
the product.

4 In the Resource Designer, click New.

A new record appears.

5 To create a new resource, enter a name for the resource in the Name field.

This name is the one the user sees if you include the resource in selection pages.
Version 7.5.3 Product Administration Guide 271

Customizable Product Resources

Editing a Resource Definition
6 To use an existing definition, click the select button in the Name field and select
the desired resource definition from the Pick Resource dialog box.

7 In the Description field, enter a description of the resource. The description is
not displayed to users.

8 Save the record.

Editing a Resource Definition
You must select and lock a customizable product before editing a resource
definition. If you change the name of a resource, the name is not changed in
configuration rules where it appears.

Editing the name of a resource changes its name in the Pick Resource dialog box.

Deleting a Resource
You delete a resource by deleting the resource record from the Resource Designer.
Deleting a resource from a customizable product deletes it from the Pick Resource
dialog box.

You must select and lock a customizable product before deleting a resource.

To delete a resource

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 Remove the resource from any rules you have created.

4 In the Configuration Designer drop-down menu, select Resource Designer.

The Resource Designer appears.

5 Select the desired resource definition.

6 From the Resource Administration menu, choose Delete Record.
272 Product Administration Guide Version 7.5.3

Customizable Product Resources

Managing Resources Using Configuration Rules
7 Click OK when asked to confirm you want to delete this record.

The record is removed from the Resource Designer.

Managing Resources Using Configuration Rules
The most common way to manage a resource is to write provide and consume rules
that add or subtract the value of an attribute from the resource. For example, you
could write a configuration rule that contributes the number of slots in a chassis to
a resource called slots available. You could also write configuration rules that
consume slots from the resource when the user picks an expansion card.

By convention, the value of a resource must exactly equal the sum of all the
contributors to the resource. Rules that consume or reduce the amount of a resource
are negative contributors. The value of a resource is a computed value and cannot
be directly set by a configuration rule.

For example you define resource R. You then write a configuration rule that sets the
value of R to 5:

R ==5

When you validate the customizable product, this rule will be rejected by the
system because it sets the value of R at an arbitrary value rather than allowing the
value of R to be computed as the sum of all its contributors.
Version 7.5.3 Product Administration Guide 273

Customizable Product Resources

Managing Resources Using Configuration Rules
274 Product Administration Guide Version 7.5.3

Customizable Product Links 16
This chapter describes how to use the Link Designer to define and manage links.
Links allow you to extract information from Siebel business components and from
system variables and use it to write rules.

This chapter covers the following topics:

■ “About Links” on page 276

■ “Creating a Business Component Link” on page 279

■ “Creating a System Variable Link” on page 280

■ “Editing a Link Definition” on page 282

■ “Deleting a Link” on page 282
Version 7.5.3 Product Administration Guide 275

Customizable Product Links

About Links
About Links
Links provide a way to use Siebel data in rules that you write for a customizable
product. For example, if you have clients outside the U.S., you could create a link
that stores the account location. You could then write a rule that uses the account
location to determine what kind of power supply and plug types to include with a
computer configuration.

Links can store two types of information. Business component links store the value
of a field in a Siebel business component. System variable links store the value of a
specific system variable.

The value of a link is determined when the user starts a configuration session and
is not dynamically updated during the session.

Business Component Links
Business component links map a Siebel business component data field to a link
name. The link name can then be used when writing rules for a customizable
product.

To create a business component link, you must have a thorough understanding of
Siebel business components and be able to use Siebel Tools to identify business
objects, business components, and field names.

When you define a business component link, the goal is to retrieve only one record.
Several fields are provided in the link definition to help you do this. If more than
one record is retrieved by the query, the link data is extracted from the first record
in the group. If no records are retrieved by the query, the value entered in the default
value field in the link definition is used.

You have the option to extract information from the current instance of a business
component or from a new instance. For example, you select an account as part of
creating a quote. You have defined a link for a complex product that extracts
information from the business component that displays this record. When the user
begins configuring the product, the link information will be extracted from the
account record being used in the quote. The link uses the current instance of the
business component.
276 Product Administration Guide Version 7.5.3

Customizable Product Links

About Links
You can also define the link on a new instance of the business component. The
information will be extracted from the first record returned by the business
component. You can control which record is returned by specifying search and sort
parameters.

A business component link definition contains the following fields:

■ Name. This is the name of the link. Use it to refer to the link when you write
rules. This field is required.

■ BusObj Name. This field specifies the business object in which the business
component resides. This field is required for business component links.

■ BusComp Name. This field specifies the name of the business component from
which you want to extract information. This field is required.

■ BusComp Field Name. This field specifies the name of the field in the business
component that contains the data you want to extract. This field is required.

■ Expression. This field contains an XML expression that is automatically
generated by your entries in the other fields. No entry is required in this field.

■ Needs Execution. Put a check mark in this field if you want to retrieve the link
information from a new instance of the business component. Leaving this field
blank allows you to retrieve information about the current instance of the
business component.

■ Search Spec. Enter a Siebel query-by-example expression to narrow the search to
one record. This field is evaluated only if you put a check mark in Needs
Execution. An entry in this field is highly recommended.

■ Sort Spec. Enter a sort specification so that the desired record appears first if
more than one record is retrieved. This field is evaluated only if you put a check
mark in Needs Execution. An entry in this field is highly recommended.

■ Default Value. Enter the value that you want to assign to the link if the query
returns no records. This field is highly recommended if you put a check mark in
Needs Execution.

■ Keyword. Leave this field blank.

■ Description. Write a brief description of what the link does. This description is
not displayed to customers.
Version 7.5.3 Product Administration Guide 277

Customizable Product Links

About Links
System Variable Links
Links can be defined to extract information from two system variables, TODAY and
WHO. The TODAY system variable returns today’s date. The WHO system variable
returns the log-in name of the user who started the configuration session.

You can use the TODAY variable to write time-sensitive rules. For example, you
create a link named TodayDate that stores the value of the TODAY system variable.
You could then write a rule that says if today’s date is later than December 23, 2001,
then the product 64 MB RAM is required in computer configurations.

You can use the WHO variable to customize configuration rules based on the user
log-in name. For example, you create a link named UserName that stores the value
of the WHO system variable. You could write a rule that says if the user’s log-in
account name is jsmith, then 64 MB RAM is required in computer configurations.

A system variable link definition contains the following fields:

■ Name. This is the name of the link. Use it to refer to the link when you write
rules. This field is required.

■ Description. Write a brief description of what the link does. This description is
not displayed to customers.

■ Keyword. Click the down-arrow and select either TODAY or WHO. This field is
required.

Leave all the other fields blank.
278 Product Administration Guide Version 7.5.3

Customizable Product Links

Creating a Business Component Link
Creating a Business Component Link
A business component link lets you extract information from Siebel business
components and use it to write rules.

To create a business component link you must know the business component name
and field name containing the information you want to extract.

You must select and lock a customizable product before creating a link. When you
create a link, it is automatically added to a picklist. You can then add the link to
other customizable products by selecting it from the picklist.

When you create a link, it is added to a dialog box. You can copy this link definition
to other customizable products and edit the link as needed. In turn, the edited link
is added to the dialog box. When you remove a link from a customizable product,
it is removed from the dialog box.

The following fields are mandatory:

■ Name. You can enter a link name, or pick an already-defined link from a dialog
box by clicking in the field. This is the name the user sees in selection pages
during a configuration session.

■ BusObj Name. This field specifies the business object in which the business
component resides.

■ BusComp Name. You can enter a business component name, or pick a business
component from a dialog box by clicking in the field.

■ BusComp Field Name. You can enter a field name, or pick a field from a dialog box
by clicking in the field. The dialog box displays the fields of the business
component in BusComp Field Name.

■ Needs Execution. Place a check mark in this field if you do NOT want the
retrieved data to be session-related.

The following fields are highly recommended:

■ Search Spec

■ Sort Spec

■ Default Value
Version 7.5.3 Product Administration Guide 279

Customizable Product Links

Creating a System Variable Link
Leave the Keyword field blank.

To create a business component link

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 In the Configuration Designer drop-down menu, select Link Designer.

The Link Designer appears. This list contains all the links defined for the
product.

4 In the Link Designer, click New.

A new record appears.

5 Complete the fields in the record.

For those fields with a picklist dialog box, you can search a list of available
choices and make a selection. When you specify a business object, the BusComp
Name dialog box displays only the business object’s business components.

To use an already-existing definition, click in the Name field and select the
desired link definition from the dialog box.

6 If you do not want the information retrieved to be session-related, click the
Needs Execution check box in the form.

7 Save the record.

Creating a System Variable Link
A system variable link lets you obtain the value of the following system variables
and use it to write rules:

■ TODAY. Provides the system date. The data type is Date and can be used for date
computations.

■ WHO. Provides the user’s login name. The data type is Text.
280 Product Administration Guide Version 7.5.3

Customizable Product Links

Creating a System Variable Link
You must select and lock a customizable product before creating a link. When you
create a link, it is automatically added to a picklist. You can then add the link to
other customizable products by selecting it from the picklist.

When you create a link, it is added to a dialog box. You can copy this link definition
to other customizable products and edit the link as needed. In turn, the edited link
is added to the dialog box. When you remove a link from a customizable product,
it is removed from the dialog box.

The following fields are mandatory:

■ Name

■ Keyword

The Description field is recommended. Leave all other fields blank.

To create a system variable link

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 In the Configuration Designer drop-down menu, select Link Designer.

The Link Designer appears. This list contains all the links defined for the
product.

4 In the Link Designer, click New.

A new record appears.

5 In the Key Word drop-down menu, click TODAY or WHO.

6 Enter a name in the Name field and a brief description in the Description field.

To use an already-existing definition, click in the Name field and select the
desired link definition from the dialog box.

7 Save the record.
Version 7.5.3 Product Administration Guide 281

Customizable Product Links

Editing a Link Definition
Editing a Link Definition
You must select and lock a customizable product before editing a link definition. If
you change the name of a link, the name is not changed in configuration rules
where it appears.

Editing the name of a link changes its name in the Pick Linked Item dialog box.

Deleting a Link
You delete a link for a customizable product by deleting the record from the Link
Designer. Deleting a link from a customizable product deletes it from the Pick Link
dialog box.

You must select and lock a customizable product before deleting a link.

To delete a link

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

3 Remove the link from any rules you have created.

4 In the Configuration Designer drop-down menu, select Link Designer.

The Link Designer appears. The list contains all the links defined for the product.

5 In the Link Designer, select the desired link definition.

6 Open the Link Designer menu and click Delete Record.

7 Click Yes when asked to confirm you want to delete the record.

The record is removed from the Link Designer.
282 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer 17
This chapter explains how to use the Rule Designer to create rules. It also explains
how to create rule templates.

This chapter covers the following topics:

■ “About the Rule Designer” on page 284

■ “About Class-Product Rule Inheritance” on page 287

■ “Creating a Configuration Rule” on page 289

■ “Editing a Rule” on page 291

■ “Copying a Rule” on page 292

■ “Deleting a Rule” on page 293

■ “Creating Groups of Related Rules” on page 294

■ “Setting Effective Dates for Rules” on page 294

■ “Deactivating a Rule” on page 296

■ “Creating a Rule Template” on page 297

■ “Editing or Deleting a Rule Template” on page 299

■ “Obtaining a Rule Summary Report” on page 299
Version 7.5.3 Product Administration Guide 283

Customizable Product Rule Designer

About the Rule Designer
About the Rule Designer
The Rule Designer is where you create and manage configuration rules for a
customizable product. It is also where you create rule templates that can be used
for all customizable products.

A configuration rule defines how two items in a customizable product are related.
For example, Component A and Component B are mutually exclusive. If the user
picks one, then you want to prevent them from picking the other. One way you can
do this is by writing a configuration rule: Component A excludes Component B. The
Rule Designer provides a rule template to help you write this rule.

Rule templates are rule statements where you replace variables in the statement to
create a configuration rule. The Rule Designer provides rule templates for the most
common types of configuration rules. You can also create your own rule templates.

In the Rule Designer, you create a configuration rule by first selecting a rule
template. Then you pick items from the customizable product and operators or even
other rule templates to replace the variables in the rule. Both arithmetic and logical
operators are provided by the Rule Designer.

Configuration rules you create apply only to the current customizable product, and
are stored as part of it. In contrast, rule templates reside in the Rule Designer and
can be used with any customizable product.

To use the Rule Designer, you select a customizable product, then click
Configuration Designer and select Rule Designer in the drop-down menu.

The Rule Designer has three parts:

■ Rule listing. When you go to the Rule Designer, all the rules defined for a
customizable product are listed. You can edit, copy, and delete the rules in the
listing.

■ Rule template listing. When you click New Rule or New Template in the rule
listing, the rule template listing appears. This listing contains the pre-defined
rule templates in the Rule Designer. It also lists any templates you have created.
284 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

About the Rule Designer
■ Rule statement. When you select a rule template and click Continue, the rule
template appears in the Rule Statement tab. You then select items from the
customizable product, operators, or other rule templates to replace the variables
in the rule statement.

Rule Listing
The rule listing displays all the rules defined for the customizable product. You can
edit, copy, and delete the rules in the listing. The listing has the following fields:

■ Name. You specify the rule name when you save the rule. Organize your rule
names so you can locate them using the Find button. For example, consider
including the rule type (excludes, requires and so on) in the rule name. Searches
using only the Name field would then return groups of rules having the same
rule type; for example, all the exclude rules.

■ Rule. This field contains the rule statement and is not editable. To edit the rule,
click Edit.

■ Explanation. You specify the rule explanation when you save the rule. Organize
your explanations so that you can locate the rule using the Find button. For
example, consider including information that uniquely identifies the rule, such
as item names. Searches using Name and Explanation would then return the
specific rule.

■ Start Date. You can specify a start date on which the rule becomes effective. After
you release the customizable product, the system does not use the rule to
compute solutions until the specified start date. When you specify a start date,
you do not have to specify an end-date.

■ End Date. You can specify a date on which a rule becomes inactive. After you
release the customizable product, the system stops using the rule to compute
solutions on the specified date. When you specify an end date, you do not have
to specify a start date.

■ Inactive. When you put a check mark in this box, the rule is not used to compute
solutions. Use this feature in the current work space to simulate the behavior of
rules that will have a start date, end date, or both when you release the product.
You can also use this feature to deactivate a rule but retain it in a released
version of the product.
Version 7.5.3 Product Administration Guide 285

Customizable Product Rule Designer

About the Rule Designer
Rule Template Listing
The rule template listing displays all the rule templates that come with the Rule
Designer plus those you have created. It displays in the “Pick a rule” tab when you
click New rule or New template in the rule listing.

The rule templates provide the basic rule types you need for creating configuration
rules. For example, there are rule templates for exclude rules, others for require
rules, and so on.

The templates in the listing are part of the Rule Designer and can be used to create
rules in any customizable product. The templates are not specific to the
customizable product you are working on.

Each rule template contains variables that you replace to create a configuration rule.
You can replace the variables with items from the customizable product, links,
resources, expressions, or other templates.

Rule Statement
When you select a rule in the rule template listing and click Continue, the Rule
Statement tab displays. It contains the rule template you selected. You build a
configuration rule by replacing the variables in the statement with items from the
customizable product, with resources or links, with operators, or with other rules.
To move to another variable in the rule statement, click it. The currently selected
variable in the rule statement displays with square brackets around it. Variable that
are not current but can be selected, display an underline when the cursor is placed
on them. When you select an item for a variable, it displays in red.

The items you can replace a variable with are grouped in the “Insert a” tab, located
below the Rule Statement. When you move between variables in the rule, the
groupings change to reflect your allowable choices.

In some templates when you replace a variable with a value, typically an
expression, the Compound button becomes active. The Compound button lets you
nest expressions within expressions. For example, you could use the Compound
button to add two variables together where the second variable is itself an
expression that adds two variables.

Use the following process to build a configuration rule:

1 Select the desired rule template in the rule template listing.
286 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

About Class-Product Rule Inheritance
2 Select the first variable in the rule.

3 Click the desired item grouping.

4 Pick the product, operator, or rule template you want to insert.

5 Move to the next variable and insert the desired item.

6 When you are finished, save the rule.

About Class-Product Rule Inheritance
You can designate a customizable product as a class-product and then add it to a
product class. When you do this, all products belonging to the class and its
subclasses inherit the class-product’s structure and its configuration rules. For
example you define the following rule in a class-product and name the rule Rule 1:

Any item from Relationship A requires selection of any item of Relationship B

You can control how this rule is inherited by other customizable products you add
to the class containing the class-product. You do this by inserting a rule in these
products that has the same name as the one in the class-product.

For example, you have a product class containing a class-product. The class-product
contains Rule 1, as shown above. The class also contains three customizable
products, CP1, CP2, and CP3. Table 22 shows how inheritance of Rule 1 from the
class-product works.

Table 22. Rule Inheritance

Customizable
Product Native Rule Result

CP1 No rule named Rule 1 Inherits rule from the class-product.
Version 7.5.3 Product Administration Guide 287

Customizable Product Rule Designer

About Class-Product Rule Inheritance
You can use named rules to control how rules are inherited from class-products.

■ If you want a customizable product to inherit a named rule from a class-product,
the customizable product must not contain a rule of the same name.

■ If you want only some customizable products to inherit a named rule from a
class product, define a blank named rule with the same name in the
customizable products where you do not want inheritance to occur.

■ If a rule in a class-product has no name, it cannot be overridden by a rule in a
customizable product that inherits the structure of the class product.

CP2 Rule 1: X excludes Y Native Rule 1 (X excludes Y within
CP2) overrides inheritance of Rule 1
from the class-product. If CP2 is
selected, Rule 1 in the class product is
not enforced in CP2.

CP3 Rule 1: ” “ Blank native Rule 1 overrides
inheritance of Rule 1 from the class-
product. Rule 1 in the class product is
not enforced in CP3.

Table 22. Rule Inheritance

Customizable
Product Native Rule Result
288 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

Creating a Configuration Rule
Creating a Configuration Rule
Observe the following guidelines when creating rules:

■ Create at least one rule early in the process of building a customizable product.
The presence of a configuration rule, even if it is inactive, causes eConfigurator
to check the product for errors more rigorously when you go to validate mode.

■ Avoid writing rules that use large quantities until you have verified the logic of
the rule. For example, write a rule that refers 10 items and check it before
changing the rule to refer to 10,000 items. This prevents needless solution
searches if the basic logic of the rule is incorrect.

■ If the customizable product will be designated as a class-product, consider not
giving names to its rules. This prevents inadvertent override of rules by
customizable products that inherit the class-product’s rules and have native
rules of the same name.

■ Test each rule after you create it. Consider inactivating rules that are unrelated
to the new rule to facilitate troubleshooting. Test rules by starting a configuration
session and selecting the affected items. To start a configuration session, from
the Rules List menu, choose Validate.

To create a configuration rule

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create rules.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Click New Rule.

The “Pick a rule” tab appears and lists the rule templates available for creating
rules. The Rule Statement tab displays the syntax of the currently-selected rule.
Version 7.5.3 Product Administration Guide 289

Customizable Product Rule Designer

Creating a Configuration Rule
5 Select the desired rule template in “Pick a rule”, and click Continue.

The Rule Statement and “Insert a” tabs appear. The Rule Statement tab contains
the rule template you selected. The “Insert a” tab lists the item groups available
for the currently-selected variable in the rule.

To return to the display of all the Web templates, click Back. To exit and return
to the Rules List, click Cancel.

6 In Rule Statement, click the first variable you want to work on.

Variables are enclosed in square brackets. When you click a variable, it turns red
to indicate it is selected.

7 In the “Insert a” list, select the item grouping containing the item you want to
insert. In the dialog box, choose the desired item.

When selecting products, click the product’s select button. If you click the
product name, the dialog box displays product information.

The variable in the rule template is replaced by the item.

8 Repeat these steps for each variable until you have built the desired rule.

9 Click Save Rule to save the rule.

The Save button becomes active when you have selected values for all the
variables in the rule. Clicking the Save button causes the Save Rule form to
appear.

10 Fill out the fields in the Save Rule form. All fields are optional. Then click Save.

The rule displays in the Rules List.

11 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the rule works correctly.
290 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

Editing a Rule
Editing a Rule
In the Rules List, you cannot edit the definition of the rule in the Rule column. To
edit the definition, you must display the rule in the Rule Statement tab, make your
changes, and save the rule. When you save the rule, you can overwrite the rule with
the changes or save the changes as a new rule.

The following procedure explains how to edit a rule definition and overwrite the
rule with the changes.

To edit a rule

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create or edit rules.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Select the desired rule.

5 From the Rule List menu, choose Edit Record. The Rule Statement and “Insert
a” tabs display. Edit the rule and click Quick Save.

The edited rule displays in the Rules List.

6 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the edited rule works correctly.
Version 7.5.3 Product Administration Guide 291

Customizable Product Rule Designer

Copying a Rule
Copying a Rule
When you copy a rule, the system creates an exact duplicate of the rule and displays
it in the Rule Designer. You can then edit the rule definition as desired.

If you copy a rule and make no changes to the copy, two exactly equivalent
constraints are used to compute each solution. This does not cause a problem, and
solutions are computed as if there was only one constraint.

Use the copy feature to create groups of rules that are similar. Start by creating the
basic rule. Then copy it once for each rule in the group. Finally, edit the copies to
create the rules in the group.

To copy a rule

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create or edit rules.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Select the rule you want to copy.

5 From the Rules List menu, choose Copy Rule.

A copy of the rule appears in the Rules List. Its name begins with “Copy of.”

6 Click in the Name field and edit the rule name as desired.

7 Edit the rule statement, explanation, and start/end dates as desired.

8 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the new rule works correctly.
292 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

Deleting a Rule
Deleting a Rule
Deleting a rule removes it from the customizable product. The template on which
the rule was based is not removed and remains available.

To delete a rule

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create or edit rules.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Select the rule you want to delete.

5 From the Rules List menu, choose Delete Record.

Click OK when asked if you want to delete the record. The record is removed
from the Rules List.

6 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the customizable product rules
function correctly.
Version 7.5.3 Product Administration Guide 293

Customizable Product Rule Designer

Creating Groups of Related Rules
Creating Groups of Related Rules
Related rules are those that have the same basic construction but differ only in
content. For example, you need to create a dozen exclude rules of the form Product
A excludes Product B. For each rule the products will be different, but the basic
construction is the same.

There are several processes you can use to create groups of related rules. In the
following example, you are going to create twelve exclude rules. Here are the
processes you can use to create them:

■ Create each rule using the Exclude template in the “Pick a Rule” tab of the Rule
Designer.

■ Create the first rule and save it. Then edit the rule so that it becomes the second
rule and save the rule. In the Save Rule form, click “Save changes as new rule.”
This creates the second of the twelve rules. Repeat these steps to create the
remaining rules.

■ Create the first rule and save it. Then copy the rule 11 times. Edit each of the
copies. In the Save Rule form, click Save to overwrite the copy with the changes.

■ Create a rule and save it as a template. Then select this template to create the
remaining rules.

Setting Effective Dates for Rules
For each rule you create, you can set effective dates that control when the rule is
active. You can set both a start date and an end date. On the start date the rule is
used to compute all solutions presented to the user when they configure a product.
On the end date, the rule is no longer used to when computing solutions.

Specifying start and end dates in combination has the following effects. In the
following descriptions, active means the eConfigurator engine uses the rule to
compute solutions. Inactive means the rule is not used to compute solutions:

■ Both a start and end date specified. The rule becomes active on the start date and
becomes inactive on the end date.
294 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

Setting Effective Dates for Rules
■ Start date specified. The rule becomes active on the start date and remains active
thereafter.

■ End date specified. The rule is active when the version is released for use, and
becomes inactive on the end date.

The start date is determined using the Siebel server’s system clock. The start and
end dates work as follows in relation to the date the product is released (release
date):

■ If the release date is earlier than the start date, the rule becomes active on the
start date.

■ If the release date is later than the start date, the rule is active when the product
is released.

■ If the release date is earlier than the end date, the rule becomes inactive on the
end date.

■ If the release date is later than the end date, the rule is inactive when the product
is released, and the rule remains inactive.

When you are validating a product, you can temporarily activate or deactivate rules
in the current work space by clicking the rule’s Inactive box in the Rules List. This
lets you simulate how the rule will behave on the start and end date.

For example, you can test a rule with a start date in Validate mode using the
following process:

1 Click in the rule’s Inactive box to deactivate the rule. Then go to Validate mode
and test the product. This simulates what users will see before the start date
when the rule is not being used to compute solutions.

2 Click in the rule’s Inactive box again to activate the rule. Then go to Validate
mode and test the product. This simulates what users will see after the start date
when the rule is being used compute solutions.

You can specify start and end dates for rules when you create them or by editing
rules after they have been created.
Version 7.5.3 Product Administration Guide 295

Customizable Product Rule Designer

Deactivating a Rule
Deactivating a Rule
When you create a rule, it is active by default and is used to compute all solutions
(unless the rule is not active in advance of a start date).

When you deactivate a rule, it is not used to compute solutions. One reason for
deactivating a rule is to help you test rules in Validate mode. You can deactivate a
group of rules and then activate them one at a time to see how each affects the
product’s behavior when it is being configured.

Another reason to deactivate rules, is when you want to release a version of a
product that does not require a rule to be active. You can deactivate the rule and
then release the product. The rule is inactive in the released version and is not used
to compute solutions.

When you deactivate a rule, a check mark displays in the Inactive check box.

To deactivate a rule

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create or edit rules.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Select the rule you want to edit and click the Inactive box.

A check mark appears in the check box indicating that the rule is deactivated.

5 Save the rule.

When you activate a rule that is inactive, the check mark is removed from the
Inactive check box.
296 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

Creating a Rule Template
6 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the customizable product works
correctly.

To activate an inactive rule

1 Select the rule.

2 Click in the rule’s Inactive check box.

This removes the check mark and activates the rule.

3 Save the rule.

4 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the customizable product works
correctly.

Creating a Rule Template
When you create and save a rule, the rule becomes part of the customizable
product. The rule is not visible in other customizable products.

When you create and save a rule as a template, it is added to the list of templates.
The list of templates is visible in all customizable products. Create templates for
those rules that you will use with several customizable products.

Templates that refer to items in one customizable product cannot be used to refer
to items in another customizable product. Items include products, relationships,
links, links and resources. For example, you write the following rule for
customizable product CP1and save the rule as a template called A Requires B:

Product A requires Product B

You also have customizable product CP2, that includes Product A and Product B.
You want to write the same rule for CP2.
Version 7.5.3 Product Administration Guide 297

Customizable Product Rule Designer

Creating a Rule Template
If you use the template A Requires B in CP2, you will receive a validation error when
you validate CP2. This is because each item in a customizable product receives a
unique item ID. This item ID is what the system stores as the item name when you
create a rule or a rule template in a customizable product. This ID is not transferable
to other customizable products.

Since rule templates can be used across all customizable products, rule templates
cannot be edited or deleted.

To create a rule template

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 From the Rules List menu, choose New Template.

The Pick a rule list appears.

5 Create the desired rule that you want to use as a template.

6 Click Save Template and fill out the Custom Template Definition form.

■ Name. This is the template name that displays in the Pick a rule list.

■ Template Identifier. This text string uniquely identifies the template. It does not
display to users.

■ Spec. This field describes the template syntax. Tip: The rule syntax displays
in the form below this field. Highlight the syntax and copy it into the Spec
field.

■ Description. This field describes what the template does. The description
displays in the Pick a rule list.
298 Product Administration Guide Version 7.5.3

Customizable Product Rule Designer

Editing or Deleting a Rule Template
7 Click Save to save the template.

The new template name appears in the Pick a rule list.

Editing or Deleting a Rule Template
Rule Templates cannot be edited or deleted. This is to prevent unintended problems
across multiple customizable products where templates have been used.

Obtaining a Rule Summary Report
You can obtain a report that lists all the configuration rules in a customizable
product. For each customizable product, the report shows the following
information:

■ Rule name

■ Rule Statement

■ Explanation

■ Start date

■ End date

■ Inactive

■ Updated date

■ Updated by

The Rule Summary displays in the Siebel Report Viewer. You can print the report or
create an email attachment.

This report must be enabled on the report server before performing the following
procedure.

TIP: The on-screen display of the report typically lists more products on each page
than the Products list. Use the report to scan quickly through the product table.
Version 7.5.3 Product Administration Guide 299

Customizable Product Rule Designer

Obtaining a Rule Summary Report
To obtain a rule summary report

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 In the application View menu, select Reports.

5 In the Reports dialog box, select Rule Summary.

6 To run the report now, click Run Now.

The report window appears, and you can view the report and print the report as
desired.

7 To schedule the report to run at a scheduled time, click Schedule.

A form appears for scheduling the report.
300 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference 18
This chapter explains how the configuration rule templates in the Product Rule
Manager work.

This chapter covers the following topics:

■ “About Constraints” on page 303

■ “About Configuration Rule Processing” on page 307

■ “About Rule Conditions” on page 310

■ “Attribute Value (Advanced)” on page 311

■ “Conditional Value” on page 313

■ “Constrain” on page 314

■ “Constrain Attribute Conditions” on page 315

■ “Constrain Attribute Value” on page 316

■ “Constrain Conditionally” on page 317

■ “Constrain Product Quantity” on page 318

■ “Constrain Relationship Quantity” on page 319

■ “Constrain Resource Value” on page 320

■ “Display Message” on page 321

■ “Display Recommendation” on page 322

■ “Exclude” on page 323

■ “Provide and Consume Templates” on page 330

■ “Provide and Consume, Simple” on page 334
Version 7.5.3 Product Administration Guide 301

Configuration Rule Template Reference
■ “Relationship Item Constraint” on page 336

■ “Require” on page 337

■ “Require (Mutual)” on page 345

■ “Set Initial Attribute Value” on page 346

■ “Set Initial Resource Value” on page 347

■ “Set Preference” on page 348

■ “Compound Logic and Comparison Operators” on page 350

■ “Arithmetic Operators” on page 352
302 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

About Constraints
About Constraints
The restrictions that define allowable configurations are called constraints.
Constraints can take several forms:

■ Picking one item requires that another item also be included.

■ Picking one item excludes being able to pick another specific item.

■ Picking an item from a group is mandatory.

■ An item is available to be picked only after a certain date, or only if the user is
a certain account.

■ Picking an item consumes a configuration-related resource such as the total
available slots in a chassis. Picking an item could also provide something to a
resource.

■ An item is required or excluded based on a defined condition.

Attribute definitions, cardinality, interface design, and configuration rules are the
methods you use to create the configuration constraints that enforce business rules
and logic.

You test these constraints by going to validation mode. In validation mode, you
configure the product as if you were the end user. This lets you verify that the user
interface works correctly and that all constraints are functioning properly.

Attribute Definitions
Attributes define the options for an individual component. For example, a
component has the attribute Color. The Color attribute defines the set of colors that
a user can choose for the component.

Attributes are defined at the class level in the class system and are inherited by all
products assigned to the class. This means you can define and manage attributes
for large groups of products and components from a single location. You do not have
to define these options for each product or component individually.
Version 7.5.3 Product Administration Guide 303

Configuration Rule Template Reference

About Constraints
Cardinality
You add components to a customizable product by defining relationships. A
relationship can contain a single component, all or part of a product class, or a
group of products from several classes.

When you define a relationship, you can specify a minimum, maximum, and
default cardinality. The cardinality defines whether or not the user is required to
select items and also how many items they can select.

■ Minimum cardinality. Setting the minimum cardinality to greater than 0 means the
user is required to make a selection from this relationship. This creates a
“required selection.” Setting the minimum cardinality to 0 means the user is not
required to make a selection.

■ Maximum cardinality. Setting the maximum cardinality constrains the quantity the
user can select from the relationship. This creates a “maximum allowable
selection.” Setting the maximum cardinality to blank, means that the user can
select an unlimited number of items from the relationship.

■ Default cardinality. The default cardinality defines how many items from the
relationship will be added by default to the configuration when the user first
starts the configuration session. Depending on the settings for minimum and
maximum cardinality, the user can remove the items or add more.

Cardinality is defined at the relationship level and applies to the relationship as a
whole. It constrains the quantity of items you can select from a relationship. If the
relationship contains one item, cardinality constrains the selection of that item. If
the relationship contains a group of items, cardinality applies to selection of these
items in any combination.

Upgrade users. Defining the cardinality of a relationship in this release is roughly
equivalent to writing an enforced quantity rule on a category in previous releases.

User Interface Design
The way you define groups and choose controls for them in the Product UI Designer
can create implicit constraints that control item selection. For example, choosing a
radio button control for a group constrains the user to choosing only one item from
the group, even if maximum cardinality for the relationship is blank. In other words,
using a radio button control creates an implicit constraint: picking one item
excludes all the others in the group.
304 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

About Constraints
By creating groups in the Product UI designer that contain more than one
relationship, you can create more complex implicit constraints. For example, you
have two relationships, A and B, that each contains three components. All of the
items in the two relationships are optional (minimum cardinality = 0 for both
relationships). The final configuration has the following constraint: if the user picks
any item in either relationship, all the remaining items in both relationships are
excluded from the final configuration. You can enforce this constraint by assigning
a radio button control to this group that allows selection of only one item.

Upgrade users. In this release, you can define the configuration UI with the Product
UI Designer. In previous releases, you had to use Siebel Tools to change the layout
of Configuration Assistant, and this change applied to all products. If you do not
define a configuration UI for a customizable product, the system provides a default
configuration UI that displays all the items on one selection page.

Configuration Rules
The Rule Designer provides rule templates that allow you to create a wide variety
of configuration rules. These explicit constraints differ from the implicit constraints
you can create using attributes, cardinality, and the Product UI Designer in the
following ways:

■ Configuration rules can be based on conditions that occur during the
configuration session. For example, you can write a configuration rule: if
condition A is true, then Product B is required.

■ Configuration rules can keep track of important consumables in a configuration
session. For example, you can create a resource called slots available, and then
write rules that increase or decrease slots available depending the items the user
picks.

■ Configuration rules can be complex. For example you can write rules that
contain multiple levels of conditions or contain nested expressions.

■ Configuration rules can override implicit constraints created by the physical
construction of the user interface. For example, you have specified radio buttons
to display the items in a relationship. This allows the user to pick only one item
from the relationship. However, you could also write configuration rules that
require additional items from the relationship when the user picks items
elsewhere in the configuration.
Version 7.5.3 Product Administration Guide 305

Configuration Rule Template Reference

About Constraints
■ In the example regarding relationship A and B in the previous section, the user
is constrained from selecting more than one item from the two relationships by
the physical construction of the user interface. The radio button control allows
only one item to be selected from the group. However, you could write a
configuration rule that says that for each Component A that is picked, then
Component C from Relationship B must be in the configuration. Each time the
user picks Component A, the system will automatically add Component C to the
configuration.

■ Configuration rules can use Siebel data external to the customizable product.
You can write rules conditioned on the date, the account that is configuring the
product, or on other business component data. You access external data by
defining links.

The configuration rules you write in the Rule Designer apply only to the current
customizable product and are stored with it. You can also create rule templates.
These are stored with the Rule Designer and can be used with any customizable
product.

Upgrade users. The Rule Designer in this release replaces the Basic Rules Designer,
Logic Designer, and Advanced Rules Designer in previous releases. The Rule
Designer uses natural-language rule templates to let you write rules as simple or as
complex as needed. You can also write rules in Advanced Rule Language if desired.

Resource Values
The value of a resource must exactly equal the sum of all its contributors (provides
and consume rules). If you set a resource to an initial value, or constrain a resource
within a range, there must be items in the solution that contribute to the resource.
You do this by writing rules that contain contributors to the defined resources.

Be careful when using the equals operator [=] with these templates. It can cause
unexpected results. For example, you write the rule:

Resource R = 10

In addition, the only contributor to Resource R is Product P, which has the following
rule:

Product P provides 2 to Resource R
306 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

About Configuration Rule Processing
The eConfigurator engine will return a solution that contains 5 Product P. This is
because Resource R must equal 10, and the only way to achieve this is to add
enough contributors (Product P) to make this true.

If you had set Resource R to 11, instead of 10, you would receive a validation error.
This is because there is no way to add enough Product P to make Resource R exactly
equal to 10.

About Configuration Rule Processing
Unlike procedural languages like Siebel eScript or C++, the rules you create in the
Rule Designer are elements of constraint programming. Constraint programming
differs from procedural logic in several important ways.

In a procedural language, you write statements that are executed one after another.
Control can be transferred to other parts of a program, but the method of execution
remains serial. Procedural logic relies on groups of statements executed in order.

In constraint logic, you write rules, called constraints, that describe what must be
true about the solution. The eConfigurator engine organizes these rules into a
search plan and then searches systematically, trying different item values, until a
solution that satisfies all the constraints is found. Constraints are evaluated in
parallel rather than serial fashion. Their order of evaluation is unimportant.

For example, you write a series of configuration rules that define all the ways a
desktop computer can be configured. This is called the declarative portion of the
customizable product, and the rules are constraints on every solution. The
eConfigurator engine requires that all constraints are observed in every solution.
This is the key to understanding constraint programming: all constraints must be
observed in every solution.

You then release this customizable product to users. Users interact with it by
selecting components to configure a computer. Each item the user selects is treated
by the eConfigurator engine as another constraint on the solution. These user-
constraints are added to the constraints in the declarative portion of the product and
are used to further narrow down the solutions the engine can create. If a user-
constraint conflicts with a constraint in the declarative portion of the product, the
user receives a message that provides options for resolving the conflict.
Version 7.5.3 Product Administration Guide 307

Configuration Rule Template Reference

About Configuration Rule Processing
The eConfigurator engine must find a configuration that satisfies all the rules
(constraints) in the declarative portion of the product, plus all those created by the
user’s choices (user-constraints). After the user adds or removes an item, the
eConfigurator engine searches until it finds a solution that satisfies all the
constraints, including the constraint created by the user’s action. The eConfigurator
engine then presents the solution. In many cases, the only thing that changes is that
the item is added or removed.

However, other items may be added or removed depending on constraints in the
declarative portion of the product. If the user selects an item and the eConfigurator
engine cannot create a solution that satisfies all the constraints, the user is
presented with an option to undo the current selection or previous selections so that
all constraints can be satisfied.

Note that constraints are created both by the modeler and by the user. In the
declarative portion of the product, the product administrator writes configuration
rules that define the relationships between items. For example, if item A is picked,
item B is required. The user creates constraints by adding items. For example,
picking item A creates a constraint that item A must be in the solution. The
constraints that drive the solution are thus jointly provided by both the product
administrator and the user.

It is important to understand that to produce a solution, the eConfigurator engine
is free to do what is necessary to find a valid solution that satisfies all the constraints
(declarative portion constraints and user-constraints). For example, the following
are the only two constraints on items A and B in a customizable product:

The quantity of A < the quantity of B

The quantity of B != 4

If the user picks one A, the eConfigurator engine will require that there are at least
two Bs in the solution. If the user then increases the quantity of A to two, the
eConfigurator engine generates a solution in which there are at least three Bs.
However, when the user adds the third A, instead of a solution that increases B by
one, the new solution will have two more Bs, making the total number of Bs at least
five. This occurs because both rules must be satisfied, and because there is no
constraint preventing the eConfigurator engine from generating solutions that
increment B by more than one.
308 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

About Configuration Rule Processing
The following example illustrates that when there are several possible alternatives,
the eConfigurator engine may choose any one of them. You have a customizable
product with only the following two constraints on items A, B, and C:

Constrain A + B = C to be true
Constrain C = 1 to be true

In this example, either A or B can be zero, but not both. Neither can both be 1. The
eConfigurator engine will choose either A or B and will actively exclude the other
from the solution. For example, it could choose A and actively exclude B from the
solution. It could also choose B and actively exclude A.

It is important when creating rules in the Rule Designer, to consider the domain of
solutions the engine could produce. Otherwise, users may encounter unexpected
results when they make selections. In the example above, you could write a rule that
prints a message to the user that A + B must equal 1 and then let the user choose
which one they want.
Version 7.5.3 Product Administration Guide 309

Configuration Rule Template Reference

About Rule Conditions
About Rule Conditions
In the Rule Designer, many of the rule templates contain conditions or expressions.
For example:

■ Exclude template: [Item or condition] excludes [item or condition]

■ Require template: [Item or condition] requires [item or condition]

A condition is an explicit statement about the configuration. Conditions can play
several roles in a rule template. First, they can act as a test that determines whether
a rule is enforced. For example, you write the following rule:

Item A > 4 excludes Item B

This rule states that when the quantity of Item A is greater than 4 in the solution,
then Item B cannot be present (is excluded). In this rule, “Item A > 4” is a condition
that, when true, causes Item B to be excluded.

When a condition is used as a test, the eConfigurator engine evaluates the condition
and returns true or false. If the condition is true, the rule is enforced.

Secondly, conditions can define a constraint. For example, you write the following
rule:

Item B excludes Item A > 4

This rule states that when Item B is present in the solution, then the quantity of Item
A in the solution cannot be greater than 4. In this rule, “Item A > 4” is a condition
that defines a constraint.

Conditions can take several forms:

■ Quantity comparisons. The preceding examples are quantity comparisons.

■ Item values. The value of attributes, linked items, and resources can be used as
conditions.

■ Rule Templates. Rule templates can be used as conditions. When rule templates
are used as conditions, the eConfigurator engine does not enforce the rule as a
constraint but instead evaluates the template as true or false. This is discussed
further below.
310 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Attribute Value (Advanced)
Boolean operators (AND, OR, NOT) are provided in the Rule Designer to allow
combining conditions together or to negate an expression used in a condition.

A third way to use conditions is when writing require or exclude rules about
relationships. In the rule “item A requires Relationship B” the eConfigurator engine
has no way to determine which items in Relationship B to add to the solution if the
user picks item A. So when the user picks item A, the eConfigurator engine prints
a message in the user’s message area stating that a selection from Class B is
required.

Attribute Value (Advanced)
The Attribute Value (Advanced) template has the following form:

(for [any] items)

You can toggle between [any] and [all]. The Attribute Value (Advanced) template
can be used only within a require rule, and it changes the logic for conditions
involving attributes. This template does not display in the Pick a Rule list. Instead,
it displays in the list for inserting a condition.

The following require rule contains two attribute conditions:

Attribute C = M in Relationship A requires Attribute D=P in Relationship B

This rule works as follows: If any item from Relationship A has Attribute C=M in
the solution, then all the items from Relationship B must have Attribute D=P in the
solution. This is the default behavior of the require template when it contains
attribute conditions and is called the Any-All form.

By inserting the Attribute (Advanced) template into the rule, you can create all the
other combinations of Any-All logic:

■ Attribute C = M in Relationship A requires Attribute D=P (for any items) in
Relationship B

If any item from Relationship A has Attribute C=M in the solution, then there
must be at least one item from Relationship B that has Attribute D=P in the
solution (Any-Any form).
Version 7.5.3 Product Administration Guide 311

Configuration Rule Template Reference

Attribute Value (Advanced)
■ Attribute C = M (for all items) in Relationship A requires Attribute D=P in
Relationship B

If all the items from Relationship A have Attribute C = M in the solution, then
all the items from Relationship B must have Attribute D = P in the solution (All-
All form).

■ Attribute C = M (for all items) in Relationship A requires Attribute D=P (for
any items) in Relationship B

If all the items from Relationship A have Attribute C=M in the solution then
there must be at least one item from Relationship B that has Attribute D=P in
the solution (All-Any form).

To create this logic in other rule types, such as exclude rules, use one of the
Advanced Rule Templates to create the rule. Then insert a numAttr condition in the
rule.
312 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Conditional Value
Conditional Value
The Conditional Value Template has the following form:

([value] when [condition] is true, otherwise [value])

This template allows you constrain a value based on a condition. The [value] can
be any number or item in the customizable product.

This template does not display in the Pick a Rule list. Instead, it displays in the lists
for inserting arguments in a rule. You can insert the Conditional Value template
anywhere you can insert a number. The most common use for this template is with
provide and consume rules.

For example, you want product P1 to provide 2 to the resource R when the quantity
of product P2 is greater than 10. If the quantity of P2 is not greater than 10, you want
product P1 to provide 1 to resource R. You would write this constraint as follows:

P1 provides (2 when P2 >10, otherwise 1) to R

If you wanted product P1 to provide 2 to resource R only when product P2 is greater
than 10, you would write this constraint as follows:

P1 provides (2 when P2 >10, otherwise 0) to R
Version 7.5.3 Product Administration Guide 313

Configuration Rule Template Reference

Constrain
Constrain
The Constrain template has the form:

Constrain [an expression] to be true

The constraint template is useful for making simple comparison or quantity
expressions into top-level constraints. For example, you want make sure that there
are exactly 4 of Item B in every solution:

Constrain [Item B = 4] to be true

You can also use the Constraint template to create exclude and require rules that
have only one operand. For example the following rule excludes Item B from the
solution:

Constrain [Item B =0] to be true

To require at least 1 Item B in the solution:

Constrain [Item B >= 1] to be true

By using Compound Logic operators, you can yoke conditions together and then
allow or disallow the combination. For example, you want to make sure that if the
quantity of Item A > 4 in the solution, then Item B must be less than 5, and vice
versa:

Constrain [Item A > 4 AND Item B < 5] to be true
314 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Constrain Attribute Conditions
Constrain Attribute Conditions
The Constrain Attribute Conditions template has the following form:

An attribute] [=] [a value] [requires or excludes] [an attribute] [=] [a value]

This template allows you to constrain the selectable values for one attribute based
on the value the user selects for another attribute. The requires and excludes
operators in this template work the same way as those in the Require and the
Exclude templates.

Use this template when attribute choices for one item affect allowable attribute
choices for another item. For example, you sell shirts in small, medium and large
sizes. The user picks the size by selecting a value for the Size attribute. These shirts
come in red, green, and blue for small and medium sizes. Large size shirts come in
red only. The user picks the color by selecting a value for the Color attribute.

Use this template to write rules that restrict the choices available to the user when
they pick a Size or Color. For example, you would write a rule that both blue and
green colors exclude the large size. If the user selects Size large, the blue and green
attributes cannot be selected for Color. If the user selects Color blue, then large
cannot be selected for Size.
Version 7.5.3 Product Administration Guide 315

Configuration Rule Template Reference

Constrain Attribute Value
Constrain Attribute Value
The Constrain Attribute Value template has the form:

[An attribute] [=] [a value]

The Constrain Attribute Value template sets the value of an attribute so that it
cannot be overridden by the user during a configuration session. If you write a rule
that sets the attribute equal to a value, this has the same effect as setting the
attribute value and saving the record in Product Administration > More Info >
Dynamic Attributes. By setting the comparison operator to other than equals (=),
you can constrain the allowable ranges for numeric attribute values. For example
you could write a rule that constrains an attribute value to > 100. In this fashion
you can use the Constrain Attribute Value template to validate user input for range-
of-values attribute domains.

Depending on the data type of the attribute domain, the attribute value can be set
to one of the LOV choices, to the value of a linked item, the value of another item’s
attribute, to a string, or to a number.

You can use this template to restrict attribute values based on conditions that occur
during a configuration session. For example, you could write a rule that restricts one
attribute’s value if the user chooses a specified value for another attribute.

This template cannot be used to constrain the attributes of customizable products
that are components in a customizable product. For example, customizable product
CP1 has as one of its components customizable product CP2. You cannot use this
template to constrain the values of attributes in CP2.

If the product administrator has set the value of an attribute in the Dynamic
Attributes list, this value cannot be overridden by a configuration rule, or by the
eConfigurator engine.
316 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Constrain Conditionally
Constrain Conditionally
The Constrain Conditionally template has the form:

When [condition A is true] [enforce constraint B], otherwise
[enforce constraint C]

This template provides if-then-else logic. When the condition is true the first
expression is enforced as a constraint. If the condition is false, the second
expression is enforced as a constraint.

Another way to view the logic is as a relationship between a condition and two
constraints:

■ If condition A is true, then B is enforced as a constraint, and C can be either true
or false.

■ If condition A is false, then C is enforced as a constraint, and C can be either true
or false.

The condition can be defined as a quantity comparison of a product, relationship,
or resource. It can also be the value of a linked item. Compound logic operators
(AND, OR, and so on) are provided to link conditions together.

The constraints can also be quantity comparisons of products, relationships, or
resources. The value of a linked item can also be used.
Version 7.5.3 Product Administration Guide 317

Configuration Rule Template Reference

Constrain Product Quantity
Constrain Product Quantity
The Constrain Product Quantity template has the form:

[The quantity of a product] [=] [a value]

The template has three parts. The first operand names the product.

The operator, [=], defines how the product quantity is related to the third operand,
[a value]. The operator is limited to numeric comparisons (=, <, >, and so on).

The [a value] operand can be any of the following:

■ The quantity of a product in the solution

■ The quantity of items from another relationship in the solution

■ The quantity of items in the solution from a class within a relationship

■ The value of an attribute (the data type for the attribute must be number or
integer)

■ A number

The “Insert a” tab provides two sets of arithmetic functions that allow you to
combine these items. For example, you could write the following rule:

The quantity of Item A from Items Class <= the quantity of Products-Class items

In this rule, “the quantity of item A from Items Class” is the first operand. It names
Item A in the Items class. The second operand is “<=”.

The third operand is “the quantity of Products-Class items” and refers to items in
the Products class. This class is contained within a relationship in the customizable
product.

The rule states that the quantity of Item A in the solution must be less than or equal
to the number of items from the Products-Class in the solution.

Use Constrain Product Quantity rules to set limits on the quantity of products that
can be in the solution. The limits can be defined as a number or as the quantity of
other items, or the value of an attribute.
318 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Constrain Relationship Quantity
Constrain Relationship Quantity
The Constrain Relationship Quantity template has the form:

[The quantity of a relationship] [=] [a value]

The quantity of a relationship is the total number of items that have been added to
the solution from the relationship. For example, a relationship contains Item A and
Item B. If there is one Item A and one Item B in the solution, then the relationship
quantity is two. If there are two of Item A in the solution and no Item Bs, the
relationship quantity is also two.

The operator, [=], defines how the relationship quantity is related to the third
operand, [a value]. The operator is limited to numeric comparisons (=, <, >, and
so on).

The [a value] operand can be any of the following:

■ The quantity of a product in the solution

■ The quantity of items from another relationship in the solution

■ The quantity of items in the solution from a class within a relationship

■ The value of an attribute (the data type for the attribute must be number or
integer)

■ A number

The “Insert a” tab provides two sets of arithmetic functions that allow you to
combine these items into expressions. For example, you could write the following
rule:

The quantity of Items from Items relationship <= (2 * [Training Classes “Intro
Course” Items-limit-attribute])

The first operand is the relationship: “The quantity of Items from Items
relationship.” The operator is “<=”. The second operand is the “Items-limit-
attribute.”

This rule states that the quantity of items from the Items relationship must be less
than or equal to twice the value of the “Items-limit-attribute” of the Intro Course.
The Intro Course is located in the Training Classes relationship.
Version 7.5.3 Product Administration Guide 319

Configuration Rule Template Reference

Constrain Resource Value
Use Constrain Relationship Quantity rules to set limits on the quantity of products
from a relationship that can be in the solution. The limits can be defined as a
number or as the quantity of other items, or the value of an attribute.

Constrain Resource Value
The Constrain Resource Value template has the form:

[A resource] [>] [a value]

The template has three parts. The first operand names the resource.

The operator, [>], defines how the resource is related to the second operand, [a
value]. The operator is limited to numeric comparisons (=, <, >, and so on).

The [a value] operand can be any of the following:

■ The quantity of a product in the solution

■ The quantity of items from another relationship in the solution

■ The quantity of items in the solution from a class within a relationship

■ The value of an attribute (the data type for the attribute must be number or
integer)

■ A number

The “Insert a” tab provides two sets of arithmetic functions that allow you to
combine these items into expressions.

Use the Constrain Resource Value template to define limits on the value of a
resource. For example, you can constrain a resource to be greater than 0 and less
than 5.
320 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Display Message
Display Message
The Display Message template has the following form:

[Item or condition] displays this rule’s explanation

The Display Message template is one of two ways to communicate messages to the
user. The other is the Display Recommendation template.

In the Display Message template, when the condition is true, the explanation you
entered for the rule is displayed to the user in the Message area. The explanation
must describe the condition in the rule and can add additional information.

Use the Display Message template to display messages when a defined condition is
true.

For example, you write the following Display Message rule:

When [Product A is selected], display this rule’s explanation.

You then save the rule and enter the following in the Explanation field:

Product A has been selected. You can purchase only two of these items.

During a configuration session, when the user selects Product A, the rule
explanation appears in the message area.
Version 7.5.3 Product Administration Guide 321

Configuration Rule Template Reference

Display Recommendation
Display Recommendation
The Display Recommendation template has the following form:

[Item or condition] recommends [item or condition] by displaying this rule’s
explanation.

The Display Recommendation template displays the rule’s explanation based on the
truth state of its two item/condition operands, as shown in Table 23.

The table shows that the rule explanation displays only when the first item/
condition is true and the second is false. The recommendation displays in the user’s
message area.

The Boolean equivalent of how the Display Recommendation template works is
shown below. The expression is true only when A is true and B is false. When the
expression is true, the message displays.

NOT ((NOT A) OR B)

Use Display Recommendation rules to up-sell or cross-sell other configuration
options, to inform the user of configuration restrictions, or to offer configuration
suggestions.

For example, when the user picks Product A, you want to display a message
recommending Product B. If the user then picks Product B, you want to stop
displaying the message.

You would write this rule as follows:

Table 23. Truth Table for Display Recommendation Template

First Item/Condition Second Item/Condition Message Displays?

True True No

False True No

True False Yes

False False No
322 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Exclude
Product A recommends Product B by displaying this rule’s explanation.

In the rule’s Explanation field: When you select Product A, we recommend you also
purchase Product B.

Exclude
The Exclude template has the form:

[item or condition] excludes [item or condition]

The exclude rule is mutual. For example, if Item A is present in the solution, Item
B cannot be present. Conversely, if Item B is present, Item A cannot be present.

The excludes operator is functionally equivalent to a Boolean NAND (NOT of A
AND B). In Table 24, a T (true) means the item is present in the solution. An F
(false) means it is not present or is excluded.

The truth table shows that an exclude rule is always true except when both
operands are present in the solution.

Use an exclude rule to:

■ Prevent technical configuration errors. For example, a computer operating system
or software application may be incompatible with certain microprocessors.

■ Prevent configurations that are undesirable or ineffective. For example, in a financial
model, an exclude rule could prevent adding a junk bond fund to a retirement
portfolio.

Table 24. Truth Table for Exclude

A B A AND B A NAND B

T F False True

F T False True

F F False True

T T True False
Version 7.5.3 Product Administration Guide 323

Configuration Rule Template Reference

Exclude
Items
An item in an exclude rule can be any of the following:

■ A relationship or class within a relationship

■ A product within a relationship or class

Here is how the exclude rule works with items:

■ Product A excludes Product B

If Product A is present in the solution, then Product B cannot be present. If
Product B is present in the solution, then Product A cannot be present.

■ Relationship A excludes Product B

If any product in Relationship A is present in the solution, then Product B is
excluded. If Product B is present, then no product from Relationship A can be
present.

■ Relationship A excludes Relationship B

If any Product in Relationship A is present in the solution, then no product in
Relationship B can be present. If any product in Relationship B is present in the
solution, then no product from Relationship A can be present.

Conditions
Conditions in an exclude rule can take many forms. For example, an attribute
condition specifies an attribute value. Here is a summary of how the exclude rule
works with conditions in general. How exclude rules work with specific types of
conditions is covered in the sections following this one.

■ Product A excludes Condition B

If Product A is present in the solution, then Condition B cannot be true. If
Condition B is true in the solution, then product A cannot be present.

■ Relationship A excludes Condition B

If any product in Relationship A is present, Condition B cannot be true. If
Condition B is true in the solution, then no product from Relationship A can be
present.
324 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Exclude
■ Condition A excludes Product B

If Condition A is true in the solution, then Product B is excluded. If Product B is
present in the solution, then Condition A cannot be true in the solution.

■ Condition A excludes Relationship B

If Condition A is true in the solution, then all products in relationship B are
excluded. If any product from Relationship B is present in the solution, then
Condition A cannot be true in the solution.

■ Condition A excludes Condition B

If Condition A is true in the solution, then Condition B cannot be true in the
solution. If Condition B is true in the solution, then Condition A cannot be true
in the solution.

Attribute Conditions
Attribute conditions are used to exclude specific attribute values for an item or
group of items. For example, if the user picks item A, then the “Large” attribute
value for item B is excluded.

In the rule examples below, the attributes are defined on items in relationships
within the customizable product. You can also define exclude rules on the attributes
of the customizable product itself.

In the following rule examples, excluded means the user can no longer select the
item. If the excluded item is a relationship, the user can no longer select any of the
products in the relationship. Excluded also means the eConfigurator engine will not
create solutions that contain the excluded item.

■ Product A excludes Attribute C = M in Relationship B

If Product A is present in the solution, then the value M will not be selectable
for Attribute C in Relationship B.

If any product with Attribute C = M in Relationship B is present in the solution,
then Product A is excluded from the solution.
Version 7.5.3 Product Administration Guide 325

Configuration Rule Template Reference

Exclude
■ Relationship A excludes Attribute C = M in Relationship B

If any product in Relationship A is present in the solution, then the value M will
not be selectable for Attribute C in Relationship B.

If any product with Attribute C = M in Relationship B is present in the solution,
then all the products in Relationship A are excluded from the solution.

■ Attribute C = M in Relationship A excludes Product B

If any product with Attribute C = M in Relationship A is present in the solution,
then Product B is excluded from the solution.

If Product B is present in the solution, then the value M will not be selectable
for Attribute C in Relationship B.

■ Attribute C = M in Relationship A excludes Relationship B

If any product with Attribute C = M in Relationship A is present in the solution,
then all the products in Relationship B are excluded from the solution.

If any products from Relationship B are present in the solution, then the value
M will not be selectable for Attribute C in Relationship B.

■ Attribute C = M in Relationship A excludes Attribute D = P in Relationship B

If any of the products with Attribute C = M in Relationship A are present in the
solution, then the value P for Attribute D will not be selectable in Relationship B.

If any products with Attribute D=P in Relationship B are present in the solution,
then the value M will not be selectable for Attribute C in Relationship A.

Quantity Conditions
Quantity conditions compare the quantities of two items. Depending on the session
context in which a quantity condition is evaluated, it either returns true/false or is
enforced as a constraint.

For example you write the following configuration rule,

(Product A > Product B) excludes Product C
326 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Exclude
Context A. If the user picks Product A so that its quantity is greater than Product B,
then Product C is excluded. In this case, the quantity condition is evaluated as true/
false, and Product C is excluded when it is true.

Context B. If the quantity of Product A in the solution is not greater than Product B
and the user picks Product C, then the quantity condition is enforced as a
constraint. In all further solutions, the eConfigurator engine will require that the
quantity of Product A is < = Product B if Product C is present.

Other Item Constraints
Several other types of conditions can also be used in exclude rules. In some cases
these conditions do not make sense when used as the second operand in an exclude
rule. Table 25 summarizes how to use item constraints.

Table 25. Item Constraint Usage in Exclude Rules

Item Constraint First Operand Second Operand

Attribute Value Yes Yes

Consumes No No

Provides No No

Excludes Yes Yes

Excludes List Yes Yes

Requires Yes Yes

Requires List Yes Yes

Linked Item Value condition Yes Yes

Message, Recommends No No

Product Quantity Yes Yes

Relationship Quantity Yes Yes

Class Quantity Yes Yes
Version 7.5.3 Product Administration Guide 327

Configuration Rule Template Reference

Exclude
Nested Expressions as Conditions
The Exclude Template can itself be used as a condition in other rules. The most
common templates used for writing nested rules are the Exclude and Require
templates. For example you could write the configuration rule:

Product A excludes (Product B excludes Product C)

The Boolean form of this rule is as follows:

A NAND (B NAND C)

In Table 26, a T (true) means the item is present in the solution. An F (false) means
the item is not present or is excluded.

The truth table lets you analyze what happens when the user picks items. For
example, there are no Product A, Product B, or Product C in the solution. The user
picks Product B. You evaluate how the eConfigurator engine will respond as follows:

1 Picking B means that B is true, so eliminate all rows from the table where B is
False. This leaves rows 3, 4, 7, and 8.

2 The engine returns solutions in which all constraints are true, so you can
eliminate any of the remaining rows where the whole rule is false. This means
you can eliminate row 7. This leaves rows 3, 4, and 8.

Table 26. A NAND (B NAND C)

Row A B C (B NAND C) A NAND (B NAND C)

1 F F F T T

2 F F T T T

3 F T F T T

4 F T T F T

5 T F F T F

6 T F T T F

7 T T F T F

8 T T T F T
328 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Exclude
3 Now examine the truth conditions for Product A and Product C in the rows 3. 4,
and 8. The table shows that A is false in row 3 and 4 but true in row 8. This
means that if the user picks B, then A can be either present or absent. It is not
constrained. The table shows that C is false in row 3 but true in rows 4, and 8.
This also means that C is not constrained. Thus, the user can pick B without A
or C being excluded or required.

If A or C had been true in all three remaining rows, this means A or C is required.
If A or C had been false in all three rows, this means A or C is excluded.

Multiple Operands
You can add multiple operands to an exclude rule by clicking the Compound Field
button when you create the rule.

For example, you could create the rule:

Item A excludes Item B > 2, Item C < 5

This rule means the following:

■ If Item A is present in the solution, Item B cannot be greater than 2

■ If item A is present in the solution, Item C cannot be less than 5

■ If Item B is greater than 2 in the solution, Item A cannot be present

■ If item C is less than 5 in the solution, Item A cannot be present

Using commas to separate expressions is the same as writing two rules:

Item A excludes Item B > 2

Item A excludes Item C < 5

If you want to write a rule where you exclude the combination of two conditions
you would do it as follows:

Item A excludes (Item B > 2 AND Item C < 5)
Version 7.5.3 Product Administration Guide 329

Configuration Rule Template Reference

Provide and Consume Templates
This rule means that if Item A is present in the solution, the two conditions cannot
be simultaneously true in the same solution. If Item A is present, the quantity of
Item B can be greater than 2 as long as the quantity of Item C is not less than 5 and
vice versa.

Provide and Consume Templates
The Provide template has the form:

[An item] provides [a value] to [a target]

The Consume template has the form:

[An item] consumes [a value] from [a target]

Provide and consume rules positively or negatively increment the amount of the
target operand each time the specified item is added to the solution. Provide rules
contribute a positive amount, that is they increase the amount of the target.
Consume rules contribute a negative amount, that is they reduce the amount of the
target.

Contrast this with the behavior of require rules. For example, Item A requires Item
B. The first time the user picks Item A, if no item B is in the solution, the
eConfigurator engine will add at least one Item B. The second time the user picks
Item A, the engine does not increment Item B because the require rule does not
consider the quantity of Item A in the solution, only that Item A is present.

Now consider the rule Item A provides 1 to Item B. Each time the user picks Item
A, the eConfigurator engine increments the number of Item B in the solution by 1.
This rule ties the quantities of Item A and Item B together so that each Item A
requires an Item B. Provide and consume rules work directly with quantities
expressed as resource or attribute values, while require rules consider only the
presence or absence of an item.
330 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Provide and Consume Templates
Item
The Item operand can be a product, a relationship, a product class within a
relationship, a resource or an attribute. If the item is a relationship or class, the rule
applies to all the items in the relationship or class. For example, Relationship A
provides 1 to Item B. Each time an item from Relationship A is added to the solution,
Item B is added to the solution.

Value
The value operand defines the quantity to be contributed to the target. The Rule
Designer provides several methods for determining this quantity:

■ You can explicitly state the quantity, for example Item A consumes 1 from Item
B. This rule means that each Item A added to the solution decreases the amount
of Item B in the solution by 1.

■ You can define the value as the quantity of another item, or the value of an
attribute, linked item or resource. For example, Item A provides three times the
quantity of Item B to Item C. This rule means that for each Item A added to the
solution, the quantity of Item C is incremented by three times the quantity of
Item B.

■ You can define an expression that determines which products in the relationship
or class specified in Item will increment the target. For example: Any item of
Relationship A provides Relationship A, Attribute Color = Red to Item B. This
rule means that for each item in Relationship A for which the attribute Color =
Red that is added to the solution, the quantity of Item B is incremented by one.

Target
The target operand is incremented by the amount specified in the value operand.
The target can be a product, resource, or product attribute. It cannot be a
relationship, a class, or an expression.

Product Target
When the target operand is a product, the quantity of the product is incremented.
For example, Product A provides 2 to Product B. This rule means that each Product
A added to the solution increases the quantity of Product B (the target) by 2.
Version 7.5.3 Product Administration Guide 331

Configuration Rule Template Reference

Provide and Consume Templates
The consume rule works the same way. For example, Product A consumes 2 from
Product B. This rule means that each Product A added to the solution decreases the
quantity of Product B (the target) by 2.

Resource Target
When the target is a resource, the value of the resource is incremented. One of the
most common uses of provides and consume rules is to manage resources.

Resources keep track of configuration variables that increase or decrease as the user
makes selections. For example, suppose you are creating a customizable product for
configuring desktop computers. Your product includes several types of chassis. Each
chassis has a different number of slots for expansion cards. The product also
includes several types of expansion cards, such as disk controllers, and graphics
cards.

You do not know in advance which chassis the customer will select or how many
expansion cards. However, you do know you must keep track of the number of slots
available in a chassis during the configuration process to verify that the computer
is configured correctly.

Using provide and consume rules to increment a resource is the way to handle this:

■ First define a resource to keep track of slots, for example Slots Available.

■ Then define an attribute called Slots on the chassis class. Create a list of values
of data type integer. Create one record for each chassis type. The value for each
record is an integer equal to the number of slots in the chassis type. This creates
a menu of choices for setting the number of slots in a chassis. Assign the list of
values to the Slots attribute definition.

■ Display the attributes for each chassis and set the value of the Slots attribute and
save the record. This sets the number of slots in the chassis and prevents it from
being changed by the user or the eConfigurator engine.

■ Add the chassis class to a relationship, Chassis.

■ Define an attribute called Slots Required on the expansion card class. Use a
range of values domain and set the data type to Integer. Enter: ==1 as the
validation expression. Enter 1 as the default value.
332 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Provide and Consume Templates
■ Display the attributes for each expansion card and save the Slots Required
record. This sets the number of slots required at 1 and prevents it from being
changed by the user or the eConfigurator engine.

■ Add the expansion card class to a relationship, Expansion Card.

■ Write the following rule: Chassis provides Chassis Slots to Slots Available.

■ Write the following rule: Expansion Card consumes Expansion Card Attribute =
Slots Required from Slots Available.

■ Write rules as needed to determine what happens if Slots Available is 0 or if it
becomes negative.

When the user selects a chassis, the provide rule increases the Slots Available
resource by the number of slots in the chassis. Each time the user selects an
expansion card, the consume rule decreases the Slots Available resource by one.
Thus, the Slots Available resource maintains a record of how many slots are
available in the chassis during the configuration session.

If a resource has the same name in two different customizable products, the
eConfigurator engines treats them as the same resource. You can take advantage of
this in cases where one customizable product is contained within another. For
example, customizable product CP2 is contained within customizable product CP1.
You define resource R1 in both products. Rules in either customizable product that
contribute to R1, affect the value of R1 in both products. Use this behavior to allow
a parent customizable product to contribute to a resource in a child customizable
product.

Attribute Target
When the target is an attribute, the value of the attribute is incremented. Attribute
targets are very similar in behavior and use as resource targets. There are several
restrictions on using provide and consume rules to manipulate attribute values:

■ The data type of the attribute must be numeric (Integer or Number).

■ The attribute must be available for manipulation. You must not have set the
value of the attribute. You do this by selecting an attribute value and saving it in
Product administration > Dynamic Attributes.
Version 7.5.3 Product Administration Guide 333

Configuration Rule Template Reference

Provide and Consume, Simple
■ A child customizable product can contribute to attributes defined on the parent.
The parent cannot contribute to attributes defined on the child product. For
example, customizable product CP2 is contained within customizable product
CP1. CP2 can contribute to attributes defined within CP1. CP1 cannot contribute
to attributes defined within CP2.

Use attributes as targets instead of defining multiple resources that keep track of
similar variables. This ties the variables directly to a class and makes it easier to
keep track of the variables’ roles.

Provide and Consume, Simple
The Simple Provide template has the form:

Provides [a value] to [a target]

The Simple Consume template has the form:

Consume [a value] from [a target]

The Simple Provide and Simple Consume templates positively or negatively
increment the amount of the target operand. These templates are intended for use
as the action portion of a conditional rule. If the condition is true, then a value is
provided or consumed from the specified target.

The Simple Provide template contributes a positive amount, that is it increases the
amount of the target. The Simple Consume template contributes a negative amount,
that is it reduces the amount of the target.

Value
The value operand defines the quantity to be contributed to the target. The Rule
Designer provides several methods for determining this quantity:

■ You can explicitly state a number as the value.

■ You can define the value as the quantity of another item, or the value of an
attribute, linked item or resource. For example, you can provide three times the
quantity of Item B to Item C.
334 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Provide and Consume, Simple
■ The value can be an expression that resolves to an amount. This amount is then
contributed to the target. For example: When a condition is true, it provides
Relationship A, Attribute Color = Red to Item B. This rule means that when the
condition is true, then each item in Relationship A for which the attribute
Color = Red that is added to the solution, increments the quantity of Item B by
one.

Target
The target operand is incremented by the amount specified in the value operand.
The target can be a product, resource, or product attribute. It cannot be a
relationship, a class, or an expression.

Product Target
When the target operand is a product, the quantity of the product is incremented in
the solution.

Resource Target
When the target is a resource, the value of the resource is incremented.

Attribute Target
When the target is an attribute, the value of the attribute is incremented. Attribute
targets are similar in behavior and use as resource targets. There are several
restrictions on using provide and consume rules to manipulate attribute values:

■ The data type of the attribute must be numeric (Integer or Number).

■ The attribute must be available for manipulation. You must not have set the
value of the attribute. You set the value of an attribute by selecting an attribute
value and saving it in Product administration > Dynamic Attributes.

■ A child customizable product can contribute to attributes defined on the parent.
The parent cannot contribute to attributes defined on the child product. For
example, customizable product CP2 is contained within customizable product
CP1. CP2 can contribute to attributes defined within CP1. CP1 cannot contribute
to attributes defined within CP2.
Version 7.5.3 Product Administration Guide 335

Configuration Rule Template Reference

Relationship Item Constraint
Relationship Item Constraint
The Relationship Item Constraint template has the form:

For each item [in a relationship], constrain [an expression] to be true

The “in a relationship” operand can be a whole relationship, a subclass of items in
a relationship, or a product in a relationship. The “an expression” operand can be
any rule template or any rule you construct from templates.

The purpose of the Relationship Item Constraint template is to allow you to write a
rule for items in a relationship as if you had written the rule separately for each
instance of the items. For example, you define Relationship A that contains the
customizable product desktop PC. The desktop PC is a customizable product that
includes two relationships: CPU and Hard Drive. You then write the following rule:

For each item in Relationship A, constrain CPU requires Hard Drive to be true

This rule enforces “CPU requires Hard Drive” separately on each instance of
desktop PC in Relationship A. All the desktop PCs from Relationship A must have
a hard drive if they have a CPU.

A require rule does not do this. Suppose you had written the following rule:

CPU requires Hard Drive

This rule means if any desktop PC has a CPU from the CPU relationship then at least
one desktop PC must have a hard drive from the Hard Drive relationship.

This means, for example, that if the user configures three desktop PCs, all with
CPUs, then only one of them must have a hard drive. If the user removes the hard
drive, the eConfigurator engine would add a hard drive to another desktop PC in
the solution or add a new desktop PC that contains only a hard drive. The require
rule defines a constraint that is true about the group of desktop PCs in the solution
rather than about individual desktop PCs.

Another problem with the require rule is that it does not limit enforcement of the
constraint to the items in Relationship A. If, in the require rule example, desktop
PCs were also contained in Relationship B, then desktop PCs configured from
Relationship B would also be considered when enforcing the require rule for
desktop PCs configured from Relationship A.
336 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Require
An important use of this template is to write rules that apply to customizable
products only when these products are contained in a relationship within another
customizable product.

Require
The Require template has the form:

[item or condition] requires [item or condition]

A require rule is a logical implies. If the first operand is true then the second
operand is implied (must be true). For example, Item A requires Item B. This rule
means that if Item A is present in the solution, then Item B must be present. Another
example: Condition A requires Item B. This rule means that if Condition A is true,
then Item B must be present in the solution.

A require rule is not mutual. The rule Item A requires Item B does not imply Item
B requires Item A. However, if Item B is excluded then Item A is also excluded. This
is because when Item B is excluded, the rule can never be true.

The require operator is functionally equivalent to the following Boolean expression:

(NOT A) OR B

In the first two columns of Table 27, a 1 means the item is present in the solution.
A 0 means it is absent or excluded.

Table 27. Truth Table for Require Expressions

A B NOT A (NOT A) OR B

1 0 0 False

0 1 1 True

0 0 1 True

1 1 0 True
Version 7.5.3 Product Administration Guide 337

Configuration Rule Template Reference

Require
The table shows that a require rule behaves as follows:

■ False when Item A is present and Item B is not. (If Item B cannot be present,
Item A cannot be present).

■ True when Item B is present and Item A is not.

■ True when neither is present.

■ True when both are present.

Use require rules to:

■ To create a requires relationship for items in different relationships. For example,
you can write a rule that if Item A in relationship 1 is picked, then Item B in
relationship 2 is required.

■ To add items to the configuration if a condition is true.

■ To create relationships between other items (conditions) when a product is
added to the solution.

Items
An item can be any of the following:

■ A relationship or class within a relationship. For example, Relationship A
requires Item B. This rule means that when any product in relationship A is
present in the solution, then Item B must be present.

■ A product within a relationship

When items are the operands, require rules are concerned only with presence or
absence, not quantity. For example, Item A requires Item B. When the first Item A
is added to the solution, the eConfigurator engine will add at least one Item B if
none are present. When the second Item A is added, the engine does not add any
more Item B, since at least one is already present.

Here is how the require rule works with items:

■ Product A requires Product B

If Product A is present in the solution, then Product B is required. If Product B
is excluded, then Product A is excluded.
338 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Require
■ Relationship A requires Product B

If any product in Relationship A is present in the solution, then Product B is
required. If Product B is excluded, then all the products in Relationship A are
excluded.

■ Relationship A requires Relationship B

If any Product in Relationship A is present in the solution, then at least one
product in Relationship B must be present. If all the products in Relationship B
are excluded, then all the products in Relationship A are excluded.

Conditions
Conditions can take many forms. Here is a summary of how the require rule works
with conditions in general. How require rules work with specific types of conditions
is covered in the sections following this one.

■ Product A requires Condition B

If Product A is present in the solution, then Condition B is required to be true. If
Condition B is false, then Product A is excluded.

■ Relationship A requires Condition B

If any product in Relationship A is present in the solution, Condition B is
required to be true. If Condition B is false, then all the products in Relationship
A are excluded.

■ Condition A requires Product B

If Condition A is true in the solution, then Product B is required. If Product B is
excluded, then Condition A is required to be false.

■ Condition A requires Relationship B

If Condition A is true in the solution, then at least one product in relationship B
must be present in the solution. If all the products in Relationship B are
excluded, then Condition A is required to be false.

■ Condition A requires Condition B

If Condition A is true in the solution, then Condition B must also be true. If
Condition B is false, then Condition A is required to be false.
Version 7.5.3 Product Administration Guide 339

Configuration Rule Template Reference

Require
Attribute Conditions
An attribute condition specifies an attribute value and uses it to identify the items
in a relationship to which the rule applies. In the rule examples below, the attributes
are defined on items in relationships within the customizable product. You can also
define require rules on the attributes of the customizable product itself.

In the rules examples below, the equals operator is used in the attribute expressions.
You can use all the math operators (<, >, and so on) when writing this type of
rule.

■ Product A requires Attribute C = M in Relationship B

If Product A is present in the solution, then M is the only value selectable for
Attribute C for all items in Relationship B.

■ Relationship A requires Attribute C = M in Relationship B

If any product in Relationship A is present in the solution, then M is the only
value selectable for Attribute C for all items in Relationship B.

■ Attribute C = M in Relationship A requires Product B

If any product with Attribute C = M in Relationship A is present in the solution,
then Product B must be present.

■ Attribute C = M in Relationship A requires Relationship B

If any product with Attribute C = M in Relationship A is present in the solution,
then at least one of the products in Relationship B must be present.

■ Attribute C = M in Relationship A requires Attribute D = P in Relationship B

If any of the products with Attribute C = M in Relationship A are present in the
solution, then P is the only value selectable for Attribute D in Relationship B.
340 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Require
Quantity Conditions
Quantity conditions compare the quantities of two items. Depending on the session
context in which the quantity condition is evaluated, it either returns true/false or
is enforced as a constraint.

For example you write the following rule:

(Product A > Product B) requires Product C

If the user picks Product A so that its quantity is greater than Product B, then
Product C is required. In this case, the quantity condition is evaluated as true/false,
and Product C is required when it is true.

Contrast this with the following rule:

Product C requires (Product A > Product B)

When the user picks Product C, the condition (Product A > Product B) is enforced
as a constraint. In all further solutions, the quantity of Product A must be greater
than the Product B. Also, if the quantity of Product B is greater than Product A in
the solution, Product C is excluded.

Other Item Constraints
Several other types of conditions can also be used in require rules. In some cases
these conditions do not make sense when used as the second operand in a require
rule. This is because some conditions are always true (message conditions), or the
condition cannot be enforced to be true (linked item conditions).

Table 28 summarizes how to use item constraints.

Table 28. Item Constraint Usage in Require Rules

Item Constraint First Operand Second Operand

Attribute Value Yes Yes

Consume No Yes

Provide No Yes

Exclude Yes Yes
Version 7.5.3 Product Administration Guide 341

Configuration Rule Template Reference

Require
Nested Expressions as Conditions
The Require template can itself be used as a condition in other rules. The most
common templates used for writing nested rules are the Require and Exclude
templates. For example, you could write the following configuration rule:

Product A requires (Product B requires Product C)

The Boolean form of this rule is as follows:

(NOT A) OR ((NOT B) OR C)

Table 29 shows the truth table for this rule.

Exclude List Yes Yes

Require Yes Yes

Require List Yes Yes

Linked Item Value Yes No

Message, Recommends No Yes

Product Quantity Yes Yes

Relationship Quantity Yes Yes

Class Quantity Yes Yes

Table 29. (NOT A) OR ((NOT B) OR C)

Row A B C NOT A (NOT B) OR C (NOT A) OR ((NOT B OR C)

1 F F F T T T

2 F F T T T T

3 F T F T F T

4 F T T T T T

5 T F F F T T

Table 28. Item Constraint Usage in Require Rules

Item Constraint First Operand Second Operand
342 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Require
The table lets you analyze what happens when the user picks items. Use the
following steps to do this:

1 The engine must return solutions in which all constraints are true. Eliminate any
rows where the top-level expression is False. In the table above, eliminate row 7.

2 To determine what happens when the user picks and item, look at all rows that
list true for that item. For example, to analyze what happens when the user picks
Product A, you would look at rows 5, 6, and 8 in the table above.

3 To determine what happens when a combination of items are picked, look at all
the rows that list true for both items at once. For example, to analyze what
happens when the user picks both Product A and Product B, you would look at
only row 8 in the table above. (Row 7 is not considered since the top-level
expression is false.)

4 If only one row has the correct truth conditions, this means the eConfigurator
engine will return the result shown in that row. For example, look at row 8. This
is the only remaining row that lists item A and B as both true. Since this row lists
C as true, this means that when both A and B are present, C must be present.

5 If several rows have the condition you are analyzing, look at the truth conditions
for each unpicked item in the rows. If they are all true, the unpicked item is
required. If they are all false, the unpicked item is excluded. If an unpicked item
lists true in some rows and false in others, this means the unpicked item is
neither excluded nor required and is available.

The table reveals that the rule has the following behavior:

■ When none of the products are present, the user can pick any of the three, and
the other two will not be required.

■ If the user picks Product A and B, then Product C is required.

6 T F T F T T

7 T T F F F F

8 T T T F T T

Table 29. (NOT A) OR ((NOT B) OR C)

Row A B C NOT A (NOT B) OR C (NOT A) OR ((NOT B OR C)
Version 7.5.3 Product Administration Guide 343

Configuration Rule Template Reference

Require
Thus, the rule’s behavior can be summarized this way: when the user picks Product
A, the condition “Product B requires Product C” is enforced as a constraint.

Multiple Operands
You can add multiple operands to a require rule by clicking the Compound Field
button when you create the rule.

For example, you could create the rule:

Item A requires Item B > 2, Item C < 5

This rule means the following:

■ If Item A is present in the solution, the quantity of Item B must be greater than 2

■ If item A is present in the solution, the quantity of Item C must be less than 5

■ If Item B cannot be greater than 2 in the solution, Item A is excluded

■ If item C cannot be less than 5 in the solution, Item A is excluded

This is the same as writing two rules:

Item A requires Item B > 2

Item A requires Item C < 5
344 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Require (Mutual)
Require (Mutual)
The Require (Mutual) template has the following form:

[Item or Condition] mutually requires [Item or Condition]

Use this template when the requires relationship between items or conditions is
mutual. For example, Product A requires Product B, AND Product B requires
Product A.

When using components as the operands, you can specify global paths for either or
both components.

The Boolean equivalent of the Require (Mutual) template is NOT(A XOR B).
Table 30 shows the truth table for this template.

The behavior of the Require (Mutual) template is the same as the Exclude template,
except that operands are required instead of excluded.

Table 30. Truth Table for Require (Mutual)

A B A XOR B NOT(A XOR B)

T F True False

F T True False

F F False True

T T False True
Version 7.5.3 Product Administration Guide 345

Configuration Rule Template Reference

Set Initial Attribute Value
Set Initial Attribute Value
The Set Initial Attribute Value template has the form:

[An attribute] has an initial value of [a number]

The Set Initial Attribute Value template sets the numeric value of an item’s attribute
at the beginning of a configuration session. The attribute must be of data type
Number or Integer. The attribute can have either an LOV or range of values type
domain.

Setting an attribute value in this fashion brings the attribute value under the control
of all its contributors. This means that the attribute value must exactly equal the
sum of all its contributors. For example, if during the configuration session, the
amount contributed by provide and consume rules exactly equals the attribute
value, users will not be able to change the attribute value. If not, the user can adjust
the value, but only if this also adjusts the amount contributed by the provide and
consume rules.

To set the initial value of an attribute that has a non-numeric data type, use the Set
Preference template.

This template cannot be used to set the attributes of customizable products that are
components in a customizable product. For example, customizable product CP1 has
as one of its components customizable product CP2. You cannot use this template
to set the values of attributes in CP2.

If the product administrator has set the value of an attribute in the Dynamic
Attributes list, this value cannot be overridden by a configuration rule or by the
eConfigurator engine.
346 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Set Initial Resource Value
Set Initial Resource Value
The Set Initial Resource Value template has the form:

[A resource] has an initial value of [a number]

The Set Initial resource Value template functions as a provide rule and sets the
numeric value of a resource at the beginning of a configuration session. The
resource must be of data type Number or Integer. The resource can have either an
LOV or range of values type domain.

Before specifying a resource using this template, items must be present in the
solution that contribute (provide or consume) to the resource. During a
configuration session, other rules can increase or decrease the value.

Resource values are under the exclusive control of provide and consume rules.
Users cannot set the value of a resource by entering a value in a selection page.
Version 7.5.3 Product Administration Guide 347

Configuration Rule Template Reference

Set Preference
Set Preference
The Set Preference template has the form:

When possible, constrain [an expression] to be true with a [specified priority]

The expression in a preference rule is enforced as a constraint only if it does not
conflict with any other rule type or with any user selections. The purpose of the Set
Preference template is to allow you to create soft constraints that guide the
eConfigurator engine in producing solutions but which the engine can ignore if
needed to avoid conflicts or performance problems.

A key use for preference rules is to cause a default selection of Item B based on the
selection of Item A. This is called a dynamic default. You can set a default
dynamically based on a previous user selection. The user can then override the
default if desired by making choosing a different item than the dynamic default.

For example, you could write the following rule:

When possible, constrain [Item A requires Item B] to be true with a priority
of [0].

When the user picks Item A, the engine will attempt to create a solution containing
Item B. However, the engine is free not to include Item B in order to avoid conflicts
and performance problems.

If the user does not want Item B, they can remove it without creating a conflict. If
you had written the rule as “Item A requires Item B”, Item B would be added when
the user picks Item A. If the user tries to remove Item B, they would receive a
conflict message.

Another use for the Set Preference Template is to set or modify the default value for
an attribute. To do this, you would write a preference rule where the expression, is
Attribute A = value. The attribute would then be displayed with this value unless
overridden by another rule.

The priority operand in preference rules determines the order in which multiple
preference rules for an item are evaluated. Preference rules with priority 0 that
apply to a specific item are evaluated first. Those with priority 1 that apply to that
item are evaluated next, and so on.
348 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Set Preference
For example, you have written two preference rules that apply to a specific
relationship. PrefRule A has a priority of 0. PrefRule B has a priority of 1. The
eConfigurator engine will attempt to add PrefRule A to the solution before
attempting to add PrefRule B.

Here is how the eConfigurator engine creates solutions containing preference rules:

■ The engine generates a solution that enforces all constraints and user choices
but does not include preference rules.

■ The engine then adds the preference rules one at a time for each item. It begins
by adding the highest priority preference rules for an item first. Preference rules
with the same priority are added in arbitrary order.

■ If the solution remains valid when a preference rule is added, then the
expression in the preference rule is enforced as a constraint and becomes part of
the solution.

■ If adding a preference rule creates a conflict so that the solution fails, the
preference rule is skipped, and its expression is not enforced. The engine then
goes on to the next preference rule.

■ Preference rules are evaluated after all other rule types and before the engine
searches for and sets default attribute values.
Version 7.5.3 Product Administration Guide 349

Configuration Rule Template Reference

Compound Logic and Comparison Operators
Compound Logic and Comparison Operators
Both Compound Logic and Comparison operators test for the truth of their
operands. They return a true or false rather than a quantity.

Compound Logic operators, such as AND, NOT, OR, are used to link expressions
together when creating a rule. For example: (Condition A AND Condition B)
requires Item C. Compound Logic operators are also called Boolean operators.

Table 31 presents the Compound Logic operators you can use with rule templates.

Comparison operators compare their operands and return a true or false. In the
following rule, when the quantity of item A is less than item B (when the
comparison is true), then item C is required.

(Item A < Item B) requires C

Table 31. Compound Logic Operators

Operator Example Description

Not NOT A Logical negation. True when A is false and false when
A is true. A can be an item or sub-expression.

And A AND B Both A and B. True only when both A and B are true.
When used as a top-level constraint, means that only
solutions where both A and B are true are allowed. A
and B can be items or sub-expressions.

 Or A OR B Either A or B or both. False only when both A and B
are false. A and B can be items or sub-expressions.

Exclusive Or A XOR B A or B but not both. A and B must have opposite truth
states. False when A and B are either both true or both
false. A and B can be items or sub-expressions.

NAND NOT (A AND B) Converse of A AND B. False only when both A and B
are true. When used as a top-level constraint, means
that A and B cannot both be present. A and B can be
items or sub-expressions.
350 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Compound Logic and Comparison Operators
If you specify an item as an operand in a comparison, the quantity of the item in
the solution is used to make the comparison. If you specify an expression as an
operand, the expression must resolve to a number.

If you specify an expression that resolves to true or false, then true is assigned the
value 1 and false is assigned the value 0.

Table 32 presents the Comparison operators you can use with rule templates.

When you are building a rule, you can compound the comparison operators. For
example, you could build the following expression:

(A>B>C>D)

This expression is equivalent to the following expression:

A>B AND A>C AND A>D

Table 32. Comparison Operators

Operator Example Description

Greater than A > B A is greater than B

Not less than A >= B A is greater than or equal to B

Equals A == B A equals B

Equals (compound) A==B==C==D True if A=B AND A=C And A=D

Not equal to A <> B A does not equal B

Not greater than A <= B A is less than or equal to B

Less than A < B A is less than B
Version 7.5.3 Product Administration Guide 351

Configuration Rule Template Reference

Arithmetic Operators
Arithmetic Operators
An arithmetic operator allows you to perform an arithmetic operation on two items.
If an operand is a product, the value refers to the quantity of the product in the
solution.

The operands in the expression can be two items or can be one item and a constant.
For example, you can increase the quantity of an item by a constant amount.

If you specify an expression as one of the items, it must resolve to a quantity. If the
expression resolves to true or false, then 1 is assigned to true, and 0 to false.

Results of calculations are handled differently for resources values than for product
quantities. Calculation results for resources are expressed exactly, including a
decimal point if necessary. Because product quantities represent discrete units,
results involving them are rounded to the nearest integer.

Table 33 shows the arithmetic operators.

Table 33. Arithmetic Operators

Operator Example Description

Addition A + B Sum of A and B. A and B can be items or expressions.
Result is floating point if A or B is floating point.

Subtraction A - B Subtracts B from A. A and B can be items or expressions.
Result is floating point if A or B is floating point.

Negation -(A) Additive inverse of A. Uses only one operand. A can be
an item or expression.

Multiplication A * B Product of A and B. Result is floating point if A or B is
floating point. A and B can be items or expressions.

Division A / B Quotient of A divided by B. Truncates ratio to integer if
both A and B are integers. Result is floating point if A or
B is floating point. A and B can be items or expressions.

Modulo %(A, B) Remainder of A divided by B. For example, %(1900, 72)
results in 28. If A or B is floating point, the value is first
rounded to the nearest integer; then the remainder is
computed as for integers. A and B can be items or
expressions.
352 Product Administration Guide Version 7.5.3

Configuration Rule Template Reference

Arithmetic Operators
Table 34 shows additional arithmetic operators that also take numeric operands and
produce numeric results. Use them to control numeric accuracy or change numeric
characteristics.

Minimum min(A, B) Result is the smaller of A and B and is floating point if A
or B is floating point. A and B can be items or
expressions.

Maximum max(A, B) Result is the larger of A and B and is floating point if A
or B is floating point. A and B can be items or
expressions.

Table 34. Additional Arithmetic Operators

Operator Example How Used

Integer int(A) Truncates A down to an integer. For example, if operand is
6.7, returns 6. A can be an item or expression. Useful only
with properties.

Float flo(A) Converts A to floating point. Same as multiplying operand
by 1.0. A can be an expression.

Absolute value abs(A) Returns the absolute value of A. A can be an item or
expression.

Sign test sgn(A) Returns -1 if the quantity of A <0, 0 if A=0, 1 if A>0. A
can be an expression.

Table 33. Arithmetic Operators

Operator Example Description
Version 7.5.3 Product Administration Guide 353

Configuration Rule Template Reference

Arithmetic Operators
354 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language 19
This chapter explains how to create rules using Rule Assembly Language in the Rule
Designer. You can use Rule Assembly Language to enter rules instead of using rule
templates.

This chapter covers the following topics:

■ “Why Use Rule Assembly Language?” on page 356

■ “About Rule Assembly Language” on page 356

■ “Creating Rules Using the Assisted Advanced Rule Template” on page 357

■ “Creating Rules Using the Advanced Rule Template” on page 359

■ “Managing Rules Written in Rule Assembly Language” on page 362

■ “Specifying Data” on page 363

■ “About Operators” on page 364

■ “Data Operators” on page 365

■ “Boolean Operators” on page 366

■ “Comparison and Pattern Matching Operators” on page 370

■ “Arithmetic Operators” on page 372

■ “Attribute Operators” on page 374

■ “Conditional Operators” on page 377

■ “Special Operators” on page 378

■ “Customizable Product Access Operators” on page 383

■ “Rule Examples” on page 383
Version 7.5.3 Product Administration Guide 355

Configuration Rule Assembly Language

Why Use Rule Assembly Language?
Why Use Rule Assembly Language?
Rule Assembly Language (RAL) is intended for those users who are more
comfortable working in a programming environment rather than using templates.
Those with experience using this language in previous releases can continue to use
it in this release.

In many cases, a combination of RAL and rule templates can be effectively
employed as follows.

1 Use the existing templates to create basic configuration rules.

2 Create specialized templates and use them to create rules to handle
configuration areas that are similar.

3 Use RAL to create highly complex or unusual rules not easily handled by
templates.

About Rule Assembly Language
All rules in the Rule Assembly Language (RAL) consist of expressions. Expressions
consist of an operator and its operands. The number and type of operands depend
on the operator. All expressions have the following form:

operator(A,B...)

For example, the following expression evaluates to the sum of A plus B.

+(A,B)

Most operators allow their operands to be expressions. In the expression above,
both A and B can themselves be expressions.

Spaces, tabs, and new-lines are ignored in expressions.

In Rule Assembly Language, a rule is a list of one or more top-level expressions. A
top-level expression is the top-level operator and its associated operands in RAL
statements. Rules are constraints.
356 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Creating Rules Using the Assisted Advanced Rule Template
For example, in the following statement, +(A,B) is a sub-expression and is not a
top-level expression. The top-level expression is “==” and its operands. So the rule
or constraint on all solutions is that the sum of the quantities of A and B must equal
the quantity of C in all solutions.

==(+(A,B),C)

A sub-expression is an expression that functions as an operand. Depending on the
operator, a sub-expression returns a quantity or a logical true or false. The sub-
expression itself is not a rule or constraint.

Creating Rules Using the Assisted Advanced Rule
Template

A special rule template is provided for creating rules using Rule Assembly
Language. This template provides a dialog box for picking components, resources,
and links. It also provides a list of RAL operators.

When you create a rule and save it using this template, the Rule Designer displays
the rule syntax in the Rule field. The Rule Designer capitalizes the first letter of
operator names in the rule for display purposes only. Operator names are case-
sensitive, and the Rule Designer stores them in the correct format.

To create a rule using the Assisted Advanced Rule template

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create rules.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Click New Rule.

The “Pick a rule” tab appears and lists the rule templates available for creating
rules.
Version 7.5.3 Product Administration Guide 357

Configuration Rule Assembly Language

Creating Rules Using the Assisted Advanced Rule Template
5 Select the Assisted Advanced Rule template in “Pick a rule”, and click Continue.

The Rule Statement and “Insert a” tabs appear.

6 Select operators and arguments from the displayed lists to build a rule.

The operators list contains all the operators in the Rule Assembly Language. The
arguments list changes depending on the operator you select and contains all the
items in the customizable product. Use the Compound Field button to create
sub-expressions.

7 Click Save Rule to save the rule.

The Save Rule form appears.

8 Fill out the fields in the Save Rule form. Then click Save. All fields are optional.

■ Name. Enter a name for the rule. Consider using a naming convention that
helps you easily identify and sort rules. Rule names must be unique. If you
do not enter a name, this field remains blank in the Rule Designer list.

■ Explanation. Enter a description of the rule. The description must contain the
operator names used in the rule. If you leave this field blank, the Rule
Statement in the form is displayed in this field in the Rule Designer list.

■ Start Date/End Date. Click the Calendar select button and choose the date
when you want the rule to become effective (Start Date), the date you want
the rule to stop being effective (End Date), or both. Review the section on
setting effective dates for rules for more information. Use a consistent
approach to setting start and end dates. This makes troubleshooting product
behavior problems easier.

■ Inactive. Click the Inactive check box if you want the rule to be inactive. The
rule remains part of the product but will not be used to compute solutions.
To activate a rule for a product that has been released, you must change the
rule’s status to active, save the rule, and release the product again. To activate
the rule in the current work space, you must change the rule’s status to active
and save the rule.

After you click Save, the Rules List appears. The list contains the new rule.
358 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Creating Rules Using the Advanced Rule Template
9 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the new rule works correctly.

Creating Rules Using the Advanced Rule Template
The Advanced Rule template is similar to the Assisted Advanced Rule Template. You
can create rules using Rule Assembly Language with either template. The Advanced
Rule template does not provide a dialog box for picking products, resources, or
links. It also does not provide a list of operators.

The Advanced Rule Template is intended primarily for upgrade users who want to
edit the rules in models created in release 6.x.

You must manually enter the path to items when using this template. Table 35
provides examples of paths.

When you create a rule and save it using this template, the Rule Designer displays
the rule syntax in the Rule field. The Rule Designer capitalizes the first letter of
operator names in the rule for display purposes only. Operator names are case-
sensitive, and the Rule Designer stores them in the correct, format.

Table 35. Examples of Paths

Path Explanation

@.[Relationship A]([Product SubClass]) All the products in SubClass in Relationship
A.

@.[Relationship A]([Product 1]).[Color] The color attribute of all the instances of
Product 1 in Relationship A.

@.[Relationship A].[Color] The Color attribute of all the products in
Relationship 1.

$.[Resource 1] Resource 1.

$.[Link 1] Link 1.
Version 7.5.3 Product Administration Guide 359

Configuration Rule Assembly Language

Creating Rules Using the Advanced Rule Template
Observe the following guidelines when writing paths:

■ The @ sign specifies the instance of the product or group of products on which
the rule is defined. Use the @ sign at the beginning of paths that refer to items
inside the structure of a customizable product.

■ The $ refers to a special object called the basket that is associated with each
customizable product. This object maintains a non-hierarchical, flat view of the
whole customizable product. Use the $ at the beginning of a path to specify links
and resources. Since links and resources are defined for the whole customizable
product, they are stored in the basket.

Upgrade Users. Users upgrading from release 6.x will have rules containing paths
that include syntax such as $.[product]. These paths should function normally.
However, you should avoid using this syntax to create new rules. This syntax
can cause solutions that contain unintended instances of products.

■ Use periods (.) to specify the next property in the path. A property can be a
relationship name or attribute name. Do not put spaces before or after the
period.

■ Use parentheses immediately after a relationship name to specify a subset of the
items in a relationship. Parentheses act as a filter. The most common use for
parentheses is to specify a subclass within the relationship. Do not put a period
before the parentheses. For example @.[P]([X]).[Color] refers to the Color
attribute of all the products in subclass X within relationship P.

■ Enter names exactly as they are displayed in the lists where they were defined.
Do not use display names. You can use subclass names to filter products within
a relationship even though the subclass names do not display in the Product
Designer.

■ The path syntax always refers to the actual set of items specified in the path,
however many instances are present. For example, @.[X]. [Color] refers to the
color attribute of all the instances of products actually present in relationship X
in a given configuration. A path only refers to actual instances, not the possible
instances as defined by cardinality settings.

■ If you create a rule containing a path to location that contains no items, the rule
is ignored until items are present.
360 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Creating Rules Using the Advanced Rule Template
■ All paths you specify in rules must be unique and unambiguous. For example,
if you have multiple relationships with the same name, paths to them may be
ambiguous. If this occurs, use the Assisted Advanced Rule template to write
rules. This template uses underlying, unique identifiers to identify items.

■ The maximum length of a rule is 900 characters. The UI allows rules that are
longer, but they cannot be stored in the database. Using Siebel Tools, you can
revise the UI to enforce the 900 character limit. See “Enforcing the Field Length
for Entering Advanced Rules” on page 451.

When you create a rule, a record describing the rule displays in the Rule Manager
Rules List. This record has the following fields:

■ Name. Enter a name for the rule. Consider using a naming convention that helps
you easily identify and sort rules. Rule names must be unique. If you do not
enter a name, this field remains blank in the Rule Designer list.

■ Explanation. Enter a description of the rule. The description must contain the
operator names used in the rule. If you leave this field blank, the Rule Statement
in the form is displayed in this field in the Rule Designer list.

■ Start Date/End Date. Click the Calendar select button and choose the date when
you want the rule to become effective (Start Date), the date you want the rule to
stop being effective (End Date), or both. Review the section on setting effective
dates for rules for more information. Use a consistent approach to setting start
and end dates. This makes troubleshooting product behavior problems easier.

■ Inactive. Click the Inactive check box if you want the rule to be inactive. The rule
remains part of the product but will not be used to compute solutions. To
activate a rule for a product that has been released, you must change the rule’s
status to active, save the rule, and release the product again. To activate the rule
in the current work space, you must change the rule’s status to active and save
the rule.

To create a rule using the Advanced Rule template

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create rules.
Version 7.5.3 Product Administration Guide 361

Configuration Rule Assembly Language

Managing Rules Written in Rule Assembly Language
3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Click New Rule.

The “Pick a rule” tab appears and lists the rule templates available for creating
rules.

5 Select the Advanced Rule template in “Pick a rule”, and click Continue.

The Rule Statement and “Insert a” tabs appear. The Rule Statement tab contains
the rule template you selected.

To exit and return to the Rules List, click Cancel.

6 Enter the configuration rule into the template using Rule Assembly Language.

7 Click Save Rule to save the rule.

The Save Rule form appears.

8 Fill out the fields in the Save Rule form. Then click Save. All fields are optional.

After you click Save, the Rules List appears. The list contains a record for the
new rule.

9 Open the Rules List menu and click Validate.

This starts a configuration session. Verify that the new rule works correctly.

Managing Rules Written in Rule Assembly Language
Use the same procedures for copying, editing, and deleting rules written in Rule
Assembly Language that you use for rules written using rule templates.

You can modify the Rule Designer list to display the RAL version of each rule you
create using rule templates. This is a useful way to learn RAL and to understand
more fully how rule templates work. To modify the Rules Designer list, see
“Displaying RAL in the Rule Designer” on page 452.
362 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Specifying Data
Specifying Data
This section describes how to specify numbers, strings, names, data types, and
property types in Rule Assembly Language.

Numbers
You can use both integers and floating point numbers. Floating point numbers
contain a decimal point.

■ Example of integers: 1, 100, -239

■ Example of floating point: 3.14, 1.0, 10.567

Strings
Enclose strings in double quotes. For example:

"Parker Data Systems recommends a DSL modem"

White space in a string is treated as a character. Use a back-slash (\) as an escape
character to include double quotes or a back-slash in a string. For example:

"Install these fonts in C:\\psfonts on your system"

If you put quotes around a number or anything else, it is treated as a string.

Links
Links store data extracted from Siebel databases. Links can also store the value of
specific system variables. Links can be used only to define conditions. Enclose link
names in square brackets.
Version 7.5.3 Product Administration Guide 363

Configuration Rule Assembly Language

About Operators
About Operators
In expressions, operators define operations or relationships between operands.
Operator names are case sensitive. For example, Req(A, B) is not the same as
req(A, B) and will result in a syntax error.

Most operator names are entirely lowercase. However, a few contain capital letters
and are noted in later sections. The Rule Assembly Language has several types of
operators.

■ Siebel data. These operators support expressions involving data that originates
elsewhere in the Siebel system.

■ Boolean. These operators take logical operands and return logical results. For
example: and(A, B).

■ Comparison. These operators take numeric operands and return logical results.
For example: >(A, B).

■ Arithmetic. These operators take numeric operands and return numeric results.
They provide math operations such as addition and subtraction.

■ Conditional. These operators provide conditional logical and numerical
relationships, such as if-then-else.

■ Special. These operators interpret their operators in a special way. Some provide
access to the configuration session: for example, to signal messages or retrieve
property values. They also provide binding and iteration services.

Some operators expect logical operands. Others expect numeric operands. When an
operand is of a type different than the operator expects, the eConfigurator engine
forces the operand to the correct type.

■ When integers are used where floating point is expected, integers are converted
to their double-precision floating point equivalent.

■ When floating point numbers are used where integers are expected, floating
point numbers are rounded to their nearest integer value.

■ Numbers greater than zero are interpreted by logical operators as true.

■ Numbers less than or equal to zero are interpreted by logical operators as false.
364 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Data Operators
■ When used as numeric operands, true is 1 and false is 0.

Data Operators
Use the following operators, shown in Table 36, when working with Siebel data
types.

Table 36. Siebel Data Operators

Operator Syntax Properties

Number Number(A) Converts the operand to a number. Operand can
be an expression.

String String(A) Converts the operand to a string. Operand can be
an expression.

Date Date(A) Converts string to a date. Operand can be an
expression.

Time Time(A) Converts the operand to a time. Operand can be an
expression.

UtcDateTime UtcDateTime(A) Converts the operand to the UTC date and time.
Operand can be an expression.

DateTime DateTime(A) Converts the operand to a date and time. Operand
can be an expression. Not recommended for use.
Use UtcDateTime instead.

Currency Currency(A) Converts the operand to currency. Operand can be
an expression.

Phone Phone(A) Converts the operand to a phone number. Operand
cannot be an expression. Can be used only with
Equals (==) and Not Equal To (!=) operators to
compare two phone numbers.
Version 7.5.3 Product Administration Guide 365

Configuration Rule Assembly Language

Boolean Operators
Boolean Operators
When you specify this type of operator, the eConfigurator engine interprets it as true
when the item is in the solution, and as false if the item is not in the solution. If you
specify a resource or an arithmetic sub-expression as an operand, the eConfigurator
engine interprets it as true if the expression is greater than zero, and false if the
expression is less than or equal to zero.

The requires operator (req()) is an example of this type of operator. The
eConfigurator engine interprets the following rule to mean item A requires item B.
In other words, if A is in the solution, B must be in the solution.

req([A], [B])

The eConfigurator engine does not interpret this rule to mean the current quantity
of item A requires the same quantity of item B. That rule would be written as
follows:

==([A], [B])

The Boolean operators are shown in Table 37.

Table 37. Boolean Operators

Operator Syntax Properties

Not !(A) Logical negation. True when A is false and false when
A is true. A can be an item or sub-expression.

Requires req(A, B) A implies B. False only when A is true and B is false. B
does not require A. However, excluding B, excludes A.
A and B can be items or sub-expressions.

Excludes excl(A, B) A excludes B and B excludes A. Same as “not both A
and B.” False only when A and B are both true. A and B
can be items or sub-expressions.

And and(A, B) Both A and B. True only when both A and B are true.
When used as a top-level constraint, means that only
solutions where both A and B are true are allowed. A
and B can be items or sub-expressions.

Inclusive Or or(A, B) Either A or B or both. False only when both A and B are
false. A and B can be items or sub-expressions.
366 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Boolean Operators
Table 38 provides the truth-state definition of how the Boolean operators work. The
first two columns contain the operands A and B. These could be items or arithmetic
expressions, in which case A>0 means that A is in the solution.

More on the Requires Operator
The requires operator is not an incremental add. For example, you write the rule
req(A, B). If the user picks A and there are no B’s in the solution, the eConfigurator
engine will add at least one B. The next time the user picks A, the engine does not
add another B.

If you want to add a B each time an A is added, use the inc() operator.

Exclusive Or xor(A, B) A or B but not both. A and B must have opposite truth
states. False when A and B are either both true or both
false. A and B can be items or sub-expressions.

Logically
Equivalent

eqv(A, B) A requires B and B requires A. True only when A and B
are either both true or both false. A and B can be items
or sub-expressions.

Table 38. Truth Table for Boolean Operators

A >0? B>0? req(A, B) excl(A, B) and(A, B) or(A, B) xor(A, B) eqv(A, B)

T T T F T T F T

T F F T F T T F

F T T T F T T F

F F T T F F F T

Table 37. Boolean Operators

Operator Syntax Properties
Version 7.5.3 Product Administration Guide 367

Configuration Rule Assembly Language

Boolean Operators
More on the Logical Equivalence Operator
As a top level rule, the logical-equivalence operator (eqv()) creates a mutually-
requires relationship between its operands. The operands can be either items or
sub-expressions. For example eqv([A], [B]) means than if item A is in the solution,
then at least one item B must be in the solution. Also, if item B is in the solution,
then at least one item A must be in the solution. Note that the relationship between
[A] and [B] is noncumulative. (Use the inc() operator to create cumulative-requires
relationships.)

For example, the following rule states that if the quantity of [A]>2, then [B] is
required.

eqv(>([A],2),[B])

This expression constrains the solution as follows:

■ If there are more than two A’s in the solution, there must be at least one B.

■ If there cannot be any B’s in the solution, there cannot be any more than two A’s.

■ If B is in the solution, there must be more than two A’s.

■ If A is limited to two or less, B is excluded.

More on the Excludes Operator
As a top-level rule, the excludes operator (excl(A, B)) creates a mutually exclusive
relationship. The expression excl([A], [B]) means that if item A is in the solution,
item B cannot be in the solution. It also means that if item B is in the solution, item
A cannot be in the solution.

The exclude rule can also be used with sub-expressions. For example, the following
rule excludes item B when item A’s quantity is greater than 2. It also prevents item
A from being greater than 2 when item B is in the solution.

excl(>([A],2),[B])
368 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Boolean Operators
Multiple Operands for Require and Exclude Operators
You can use multiple operands in requires and exclude rules. For example, you
could write the following rule:

excl([A],[B],[C])

This syntax is interpreted by the eConfigurator engine as if you had written two
rules:

excl([A],[B])

excl([A],[C])

In other words, [A] excludes both [B] and [C]. Note that [A] is the first operand in
both the rules. The eConfigurator takes the first operand and creates expressions
between it and each remaining operands.

This works the same way for require rules:

req([A],[B],[C])

This syntax is interpreted by the eConfigurator engine as if you had written two
rules:

req([A],[B])

req([A],[C])

In other words, [A] requires both [B] and [C]. There is no limitation on the number
of operands you can use in this type of expression.
Version 7.5.3 Product Administration Guide 369

Configuration Rule Assembly Language

Comparison and Pattern Matching Operators
Comparison and Pattern Matching Operators
Comparison operators expect numeric operands. This means when you specify an
item or arithmetic expression, the eConfigurator engine uses the quantity of the
item or the value of the expression. These operators produce a logical result. This
means the operator evaluates and compares the quantities of the operands and
returns a true or false result.

The greater-than operator (>) is an example. The eConfigurator engine interprets
the following top-level rule to mean the quantity of item A must be larger than the
quantity of item B in the solution. The eConfigurator engine enforces this constraint
by adjusting the quantity of A or B as needed to make sure that the constraint is
always true.

>([A],[B])

When used as sub-expressions, comparison operators return true or false. For
example, if the quantity of item A in the solution is not greater than the quantity of
item B, the example above returns false. This is then acted on by the associated top-
level expression.

Pattern matching operators compare two strings. You can test whether the strings
are a match or a mismatch. Pattern matching operators return true or false.

Comparison operators are shown in Table 39.

Table 39. Comparison and Pattern Matching Operators

Operator Syntax Properties

Greater than >(A, B) A and B can be items or sub-expressions.

Not less than >=(A, B) A and B can be items or sub-expressions.

Equals ==(A, B) A and B can be items or sub-expressions.

Not equal to !=(A, B) A and B can be items or sub-expressions.

Not greater than <=(A, B) A and B can be items or sub-expressions.

Less than <(A, B) A and B can be items or sub-expressions.
370 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Comparison and Pattern Matching Operators
Multiple Operands for Comparison Operators
You can use multiple operands in rules containing comparison operators. For
example, you could write the following rule:

>([A],[B],[C])

This syntax is interpreted by the eConfigurator engine as if you had written two
rules:

>([A],[B])

>([A],[C])

Note that [A] is the first operand in both the rules. The eConfigurator takes the first
operand and creates expressions between it and each remaining operands. There
are no limitations on the number of operands you can use in this type of expression.

Selected sel(A) Returns true if A is positive, false if A is not.
Same as >(A, 0). If used as top-level
expression, means that A must be in the
solution in any quantity. A can be an item or
sub-expression.

Pattern match Like(A, B) Result is true when string A pattern-matches
string B. Similar to Siebel search specification.
For example B could be “Pentium*”. Note
capitalization of operator. A and B must be
constants. For example, A and B cannot be
attribute names.

Pattern mismatch NotLike(A, B) Result is true when string A does not pattern-
match string B. Similar to Siebel search
specification. For example B could be
“Pentium*”. Note capitalization of operator. A
and B must be constants. For example, A and
B cannot be attribute names.

Table 39. Comparison and Pattern Matching Operators

Operator Syntax Properties
Version 7.5.3 Product Administration Guide 371

Configuration Rule Assembly Language

Arithmetic Operators
Note that the expression are interpreted by the eConfigurator engine as pairs that
always include the first operand. This type of expression does not create implied
constraints between other operands. For example, you write the following rule:

!=([A],[B],[C])

This rule expression is interpreted as A !=B and A!=C. It does not imply that
B !=C.

Arithmetic Operators
Arithmetic operators expect numeric operands and produce a numeric result. They
are most frequently used in sub-expressions. The following top-level expression
means that the quantity of item C in the solution must be the same as the sum of
the quantities of items A and B.

==(+([A],[B]),[C])

Assuming no other constraints on item A, B, or C; if you add A or B to the solution,
then C will be added as well to match the sum. If you add a large number of C’s,
the eConfigurator engine will add A and B in arbitrary quantities so that their sum
equals the amount of C.

When used in sub-expressions, these operators should return a numeric result. If a
sub-expression returns a logical result, true is interpreted as a 1, and false is
interpreted as a 0. In the example above, if B is an expression that returns the logical
result true, then the expression is equivalent to the following:

==(+([A],1),[C])
372 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Arithmetic Operators
Arithmetic operators are shown in Table 40.

Table 40. Arithmetic Operators

Operator Syntax Properties

Addition +(A, B) Sum of A and B. A and B can be items or sub-
expressions. Result is floating point if A or B is floating
point.

Subtraction -(A, B) Subtracts B from A. A and B can be items or sub-
expressions. Result is floating point if A or B is floating
point.

Negation -(A) Additive inverse of A. Uses only one operand. A can be
an item or expression.

Multiplication *(A, B) Product of A and B. Result is floating point if A or B is
floating point. A and B can be items or sub-expressions.

Division /(A, B) Quotient of A divided by B. Truncates ratio to integer if
both A and B are integers. Result is floating point if A
or B is floating point. A and B can be items or sub-
expressions.

Modulo %(A, B) Remainder of A divided by B. For example, %(1900,
72) results in 28. If A or B is floating point, the value is
first rounded to the nearest integer; then the remainder
is computed as for integers. A and B can be items or
sub-expressions.

Minimum min(A, B) Result is the smaller of A and B and is floating point if
A or B is floating point. A and B can be items or sub-
expressions.

Maximum max(A, B) Result is the larger of A and B and is floating point if A
or B is floating point. A and B can be items or sub-
expressions.
Version 7.5.3 Product Administration Guide 373

Configuration Rule Assembly Language

Attribute Operators
The following operators, shown in Table 41, also take numeric arguments and
produce numeric results. Use them to control numeric accuracy or change numeric
characteristics.

Attribute Operators
Rule Assembly Language includes special operators for doing comparisons and
particular math operations on attribute values. These operators extract information
about the attributes of all the products that have been selected in a relationship. For
example, you can determine the number of relationship items that have been
selected that have an attribute value greater than a specified amount.

Attribute Comparison Operators
These operators return the number of relationship items that have been selected for
which the comparison is true. For example, you can use numAttr> to find out how
many items with Length greater than 5 feet in a relationship have been selected.

Table 41. Additional Arithmetic Operators

Operator Syntax Properties

Quantity qty(A) Result is the quantity of A rounded to nearest integer.
For example, if A is 6.7, returns 7. If A is 6.3, returns 6.
A can be an item or sub-expression. Useful only with
resources.

Integer int(A) Truncates A down to an integer. For example, if operand
is 6.7, returns 6. A can be an item or sub-expression.
Useful only with resources.

Float flo(A) Converts A to floating point. Same as multiplying
operand by 1.0. A can be a sub-expression. Not useful
with resources.

Absolute value abs(A) Returns the absolute value of A. A can be an item or
sub-expression.

Sign test sgn(A) Returns -1 if the quantity of A <0, 0 if A=0, 1 if A>0.
A can be a sub-expression.
374 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Attribute Operators
The operators count all the items selected from the relationship, not the number of
different items. In the preceding example, if the user selects two of the same item
and enters a length greater than 5 feet, the numAttr> operator will return 2.

The operators take two arguments, A and B. Argument A is the full path from the
root of the product to the attribute. Argument B is the comparison value. This value
can be of type Integer, Number, Date, or Time. Type DateTime is not supported.
Argument B can also be a sub-expression that resolves to one of these data types.

In addition, for the numAttr== and numAttr!= operators, argument B can be a text
string.

Use attribute comparison operators to create subexpressions that form conditions.
Attribute comparison operators are shown in Table 42.

Table 42. Attribute Comparison Operators

Operator Syntax Properties

Greater than numAttr>(A, B) Returns the number of items in the
relationship for which the value of attribute A
is greater than B.

Not less than numAttr>=(A, B) Returns the number of items in the
relationship for which the value of attribute A
is greater than or equal to B.

Equals numAttr==(A, B) Returns the number of items in the
relationship for which the value of attribute A
is equal to B.

Not equal to numAttr!=(A, B) Returns the number of items in the
relationship for which the value of attribute A
is not equal to B.

Not greater than numAttr<=(A, B) Returns the number of items in the
relationship for which the value of attribute A
is less than or equal to B.

Less than numAttr<(A, B) Returns the number of items in the
relationship for which the value of attribute A
is less than or equal to B.
Version 7.5.3 Product Administration Guide 375

Configuration Rule Assembly Language

Attribute Operators
You can use the numAttr operators to create “any/all” conditions in rules involving
attributes:

■ You create the condition “any instance of products in R has attribute A=X” as
follows:

>=(numAttr==(@.[R].[A], X), 1)

■ You create the condition “all instances of products in R have attribute A=X” as
follows:

==(numAttr==(@.[R].[A], X), @.[R])

For example, you want to write the rule, when all the instances of products in P have
attribute A=X then exclude any instance of products in Q that have attribute B =Y.
You would write this rule as follows:

excl(==(numAttr==(@.[P].[A], X), @[P]),

>=(numAttr(==(@.[Q].[B], Y), 1)))

Attribute Arithmetic Operators
The arithmetic operators allow you to determine the maximum and minimum value
of an attribute for items that have been selected in a relationship. You can also sum
the values of the attributes.

The operators take one argument, which is the path to the attribute. Attributes can
be of type Number, Integer, Date, or Time. DateTime and Text are not supported. If
the type is Date or Time, minAttr returns the time or date closest to the present.
The maxAttr operator, returns the time or date furthest from the present.
376 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Conditional Operators
Use attribute arithmetic operators to create subexpressions that form conditions.
Attribute arithmetic operators are shown in Table 43.

Conditional Operators
Conditional logic operators are shown in Table 44.

Table 43. Attribute Arithmetic Operators

Operator Syntax Properties

Minimum minAttr(A) For items selected from a relationship, returns the
smallest value for attribute A.

Maximum maxAttr(A) For items selected from a relationship, returns the
largest value for attribute A.

Sum sumAttr(A) Returns the sum of attribute A for all items selected
from a relationship.

Table 44. Conditional Operators

Operator Syntax Properties

Logical conditional if (A, B, C) If A then B, else C. If C is not specified, it
defaults to true (1).

Numeric conditional ?(A, B, C) If A then B, else C. If C is not specified, it
defaults to false (0). This means the
expression returns false if A is false and C is
not specified. Rarely used.
Version 7.5.3 Product Administration Guide 377

Configuration Rule Assembly Language

Special Operators
Special Operators
Special operators provide functions that manipulate the eConfigurator engine
directly, rather than the underlying customizable product. They also provide
defined types of access to the components of a customizable product.

The inc() operator is used to implement provide and consume rules. It has two
important characteristics:

■ It returns a null value.

■ When it is evaluated in a subexpression, this causes the eConfigurator engine to
contribute the value requested.

This means that writing rules with the inc() operator as a subexpression based on
a condition do not work. The contribution will always occur. For example, you write
the following rule.

req(X, inc(Y, Z))

The eConfigurator engine will contribute the value of Y to Z, regardless of whether
X is present in the solution. This is because the eConfigurator must evaluate the two
arguments to req() before determining what action to take. Evaluating the inc()
argument causes the engine to contribute the value of Y to Z.

In addition, regardless of the value of X, the inc() argument always evaluates to
null, which makes the rule meaningless.

To write rules that contribute conditionally, use the numeric conditional operator,
?().

Special operators are shown in Table 45 on page 379.
378 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Special Operators
Table 45. Special Operators

Operator Syntax Properties

Constraint con(A) Makes A a constraint. Returns no result. A can be an item or sub-
expression. Use to make sub-expressions into constraints.
Redundant for top-level expressions. Rarely used.

Increment inc(A, B,) Each A requires a B. A can be a number, item, or sub-expression
but must resolve to a number. B must be an item and cannot be
a sub-expression. inc(1, B) increments the quantity of B in the
solution by 1. Use inc(A,B), where A and B are items, to
implement cumulative require rules.

Message msg(A) “string” Causes message signal when A is true (selected). User-defined
message displays in user message area. Returns no result. A can
be an item or sub-expression.

Check chk(A) “string” Causes a message-signal when A is false (not selected). User-
defined message displays in user message area. Returns no
result. A can be an item or sub-expression.

Preference prefer(expression,
priority)

The expression is enforced as a constraint only if it does not
conflict with any other rule type or with any user selections. The
priority determines the order in which multiple preference rules
for an item are evaluated. Preference rules with priority 0 that
apply to a specific item are evaluated first. Those with priority 1
that apply to that item are evaluated next, and so on.
Version 7.5.3 Product Administration Guide 379

Configuration Rule Assembly Language

Special Operators
With
Members

withMembers(A,B) Enforce the constraint B only on instances in A.

This operator allows you to move the context for enforcement of
a constraint from the root of a customizable product to a location
within it. For example, A can be a path to a relationship within
the customizable product. This causes the constraint B to be
enforced only within that relationship.

A can be a relationship, a class within a relationship, or a single
product. B can be any expression or rule.

In B, the path must be specified relative to the path in A. For
example, if A specifies relationship R1, the paths to items in B,
must be specified relative to R1, not the product root. When
specifying items in B, do not include any part of the path
specified in A.

When adding items to B using the object picker in the Assisted
Advanced Rule template, you must manually edit the item paths
in B to make them relative to the path specified in A.

With Tuples withTuples (((A, B,
C), (D,E F), ...),
ruleA(%1, %2,
%3,...),...)

This operator allows you to specify multiple sets of operands for
one or more rules. The first operand in a group is assigned to the
variable %1, the second to %2, and so on. You can specify more
than one rule.

Table 45. Special Operators

Operator Syntax Properties
380 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Special Operators
More on withTuples
The withTuples operator lets you provide more than one set of operands to a rule.
It has the following syntax:

withTuples (((A, B, C),(D,E F),...), ruleA(%1,%2,%3,...),...)

For example, you have the following two rules:

req(and([A],[B]),excl([C],[G]))

When both A and B are present, C and G exclude each other

req(and([D],[E]),excl([F],[G]))

When both D and E are present, F and G exclude each other.

The above two rules can be thought of as one require rule that has two sets of
operands. The withTuples operator lets you write the rule in this fashion. This
makes rule maintenance easier. If the operands change, you can edit them in one
location, rather than having to locate all the rules in which they appear. Here is one
way to combine the two rules using withTuples:

withTuples((([A],[B],[C]),([D],[E],[F])),req(and(%1,%2),

excl(%3,[G]))

Notice that each group of operands is enclosed in parentheses. Also notice that the
whole section where the operands are specified is itself enclosed in parentheses.

You can also use the withTuples operator to specify the operands for multiple rules.
For example, you have the following two rules:

req(and([A],[B]),[C])

inc([C], [Resource1])

If both A and B are present, C is required, and contribute the value of C to
Resource1.
Version 7.5.3 Product Administration Guide 381

Configuration Rule Assembly Language

Special Operators
The above two rules are different but they make use of the same operands. You
could use the withTuples operator to show that these two rules use the same
operands as follows:

withTuples((([A],[B],[C])),req(and(%1,%2),%3),inc(%3,[Resource1]))

More on withMembers
The withMembers operator shifts the context for application of a rule from the root
of the customizable product to a specified location within the product. This means
the rule applies only to the items in the specified path, rather than wherever these
items appear in the product.

The withMembers operator adds no other functionality and does not alter the
function of other operators.

For example, you define Relationship A that contains only the customizable product
desktop PC. The desktop PC includes two relationships: CPU and Hard Drive. You
want to write the rule CPU requires Hard Drive and enforce the rule for each
instance of the desktop PC. If the user adds a CPU and hard drive to a desktop PC
but later removes the hard drive, you want the user to receive a configuration error
for that PC.

You would write this rule as follows:

withMembers(@.Relationship A, req(@.CPU, @.Hard Drive))

This rule enforces “CPU requires Hard Drive” separately on each instance of
desktop PC in Relationship A. All the desktop PCs from Relationship A must have
a hard drive if they have a CPU. The rule is not enforced for PCs that appear
elsewhere in the customizable product other than Relationship A.
382 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Customizable Product Access Operators
Customizable Product Access Operators
Customizable Product access operators, shown in Table 46, allow you to obtain
information about other areas of the customizable product. For example, you can
obtain the name of an item’s parent.

Rule Examples
This section contains examples of how to use the eConfigurator Rule Assembly
Language to create rules. Some of the rules show item names consisting of both the
product name and its configuration ID (Cfg ID).

Basic Rules
The following table shows how create basic rules using Rule Assembly Language.

Table 46. Customizable Product Access Operators

Operator Syntax Properties

Product root root() Result is root of the customizable product. Takes no
arguments.

Rule Type Advanced Rule Language

A requires B noncumulatively req(A, B)

A requires B cumulatively inc(A,B)

A excludes B excl(A,B)

A provides the amount B to C inc(*(A,B),C)

A consumes the amount B from C inc(*(A,-(B)),C)

A’s minimum quantity is B, enforced >=(A,B)

A’s maximum quantity is B, enforced <=(A,B)

A recommends B rec(req(A,B))
Version 7.5.3 Product Administration Guide 383

Configuration Rule Assembly Language

Rule Examples
Boolean and Comparison Operators
The following table shows how to create rules using Boolean and comparison
operators.

Rule Type Advanced Rule Language

A AND B =C ==(and(A,B),C)

A OR B = C ==(or(A,B),C)

NOT (A = B) xor(A,B)

(A < B) requires C req(<(A,B),C)

(A <= B) requires C req(<=(A,B),C)

(A = B) requires C req(==(A,B),C)

(A != B) requires C req(!=(A,B),C)

(A >=B) requires C req(>=(A,B),C)

(A >B) requires C req(>(A,B),C)

(A + B) contributes to C inc(+(A,B),C)

(A - B) contributes to C inc(-(A,B),C)

(A * B) contributes to C inc(*(A,B),C)

(A/B) contributes to C inc(/(A,B),C)

(A MIN B) contributes to C inc(min(A,B),C)

(A MAX B) contributes to C inc(max(A,B),C)
384 Product Administration Guide Version 7.5.3

Configuration Rule Assembly Language

Rule Examples
Rule Template Translations
Table 47 shows examples of the rule templates translated into Rule Assembly
Language.

Table 47. Rule Template Translations to Rule Assembly Language

Template RAL Equivalent Explanation

Constrain con(>(Item A),1)) Constrain (quantity of
Item A> 1) to be true.

Constrain Conditionally if(>(Item A), 1), >=
(Item B), 2), excl(Item C, Item D))

When (quantity of
Item A> 1)(quantity of Item B >=
2), otherwise Selection of Item C
excludes selection of
Item D.

Constrain Product Quantity ==(Item A, 2) The quantity of Item A = 2.

Consume inc(*(Item A), -(1)), Resource B) Each Item A consumes 1 from
Resource B.

Exclude excl(Item A, Item B) Selection of Item A excludes selection
of Item B.

Exclude List excl(Item A, Item B, Item C)) Item A excludes (selection of Item B,
selection of Item C).

Message msg(>(Item A, 1)) When (Item A > 1), display this rule's
description.

Preference prefer(Item A, 1) When possible, constrain Item A is
selected to be true with a priority of 1.

Provide inc(*(Item A), 1),
Resource B)

Each Item A provides 1 to Resource B.

Recommends chk(req(Item A, Item B), "Item B is
recommended")

Selection of Item A recommends
selection of at least one Item B by
displaying "Item B is recommended".

Requires req(Item A, Item B) Item A requires Item B.

Requires (Mutual) eqv(Item A, Item B) Item A requires Item B AND Item B
requires Item A.

Constrain Attribute Value ==(@.[Class A]
([Item B]).[Day], "Monday")

The attribute Class A
“Item B” Attribute C = Monday.
Version 7.5.3 Product Administration Guide 385

Configuration Rule Assembly Language

Rule Examples
386 Product Administration Guide Version 7.5.3

Customizable Product Scripts 20
This chapter explains how to use the Script Designer to enhance the behavior of
customizable products. To use scripting events and methods you must be familiar
with Siebel Visual Basic or Siebel eScript programming.

This chapter covers the following topics:

■ “About Scripts” on page 389

■ “About Script Processing” on page 390

■ “About Product Names” on page 393

■ “About Product Path” on page 394

■ “Cfg_InstInitialize Event” on page 396

■ “Cfg_ChildItemChanged Event” on page 397

■ “Cfg_AttributeChanged Event” on page 400

■ “Cfg_InstPostSynchronize Event” on page 403

■ “Cfg_ItemChanged Event” on page 404

■ “Cfg_OnConflict Event” on page 406

■ “GetInstanceId Method” on page 408

■ “GetCPInstance Method” on page 409

■ “GetObjQuantity Method” on page 412

■ “AddItem Method” on page 413

■ “RemoveItem Method” on page 414

■ “SetAttribute Method” on page 415
Version 7.5.3 Product Administration Guide 387

Customizable Product Scripts
■ “Creating an Event Script” on page 416

■ “Creating a Declarations Script” on page 418

■ “Editing a Script” on page 420

■ “Deleting a Script” on page 421

■ “Reviewing the Script Log” on page 422
388 Product Administration Guide Version 7.5.3

Customizable Product Scripts

About Scripts
About Scripts
A script is a Siebel Visual Basic or Siebel eScript program that runs when a
predefined event to which it is assigned occurs during a configuration session.
These events occur at specific points when opening or closing a session or
processing a user request. You can also place scripts in a declarations area for use
by other event-based scripts.

A script can refer to any product that has been added from the product table to a
customizable product. These are called component products. Scripts can also be
used to set attribute values of component products and of the customizable product.
Scripts cannot be used to refer to relationships or links.

Scripts have full access to the Siebel API. You can use scripts to call Siebel business
components and to provide information to back-end databases through Siebel
business services. For a description of basic API methods, see “eConfigurator API”
on page 458.

In addition, several special eConfigurator methods are described in this chapter.
These can be included in scripts and allow you to obtain information about the
current solution. You can also use them to submit requests to the eConfigurator
engine. For example, you can write a script and insert it into an event that is called
each time an item quantity changes in the current solution. When the user selects
or removes an item, this event is called and your script runs. The script can use
eConfigurator methods to determine the amount of the item or of other items in the
current solution and can submit a request to the eConfigurator engine to modify
item amounts. The script could also perform special computations or update an
external application based on information obtained from the eConfigurator
methods.

The items and rules that comprise the customizable product are called the
declarative portion. The declarative portion cannot be modified by scripts. For
example, you cannot add or delete rules from a customizable product using scripts.
Version 7.5.3 Product Administration Guide 389

Customizable Product Scripts

About Script Processing
Scripts are intended to add additional behaviors or features and can be used in
several ways:

■ Arithmetic functions. You can use scripting to perform more complex
mathematical operations that cannot feasibly be created using configuration
rules. For example, if you are configuring a solution for a chemical
manufacturing process, you can use calculations based on viscosity, average
ambient temperature, and desired throughput to arrive at the correct
configuration of pumps and other equipment.

■ External program calls. You can use scripts to make calls to external programs. For
example, you can pass information about the current session to external
programs.

■ Accessing Siebel objects. You can use all the standard features of Siebel VB and
and Siebel eScript, including reading and editing Siebel databases and calling
Buscomps, BusObjects, and other Siebel objects.

About Script Processing
Several events control script processing:

■ The Cfg_InstInitialize event occurs when the user begins a configuration session
and an instance of the customizable product is created. This occurs when the
user clicks Customize in the Quote interface or when the user selects a
customizable product for configuration in a Web page. This event is called once
at the beginning of the session. Scripts associated with this event are processed
after the declarative portion of the product is instantiated but before it is
displayed to the user.

■ The Cfg_ChildItemChanged event occurs each time the user selects or removes
an item during the configuration session. Scripts associated with this event are
processed after the new solution is created but before it is displayed to the user.
If you insert a method to add or remove items in this event, this causes another
solution to be generated.
390 Product Administration Guide Version 7.5.3

Customizable Product Scripts

About Script Processing
■ The Cfg_ItemChanged event occurs each time the user selects or removes an
item during the configuration session. Scripts associated with this event are
processed after the new solution is created but before it is displayed to the user.
If you insert a method to add or remove items in this event, this causes a second
solution to be generated. The script associated with this event must be
associated with a component customizable product.

■ The Cfig_AttributeChanged event occurs each time the user selects or changes
an attribute value during the configuration session. Scripts associated with this
event are processed after the new solution is created but before it is displayed to
the user. If you insert a method to add or remove items in this event, this causes
a second solution to be generated.

■ The Cfg_OnConflict event occurs when a conflict happens during the processing
of a user request. You can resolve the conflict by undoing the last request or by
keeping the last request and removing previous requests that conflict with it. Use
this event to resolve conflicts without prompting the user for action. This event
is called after the new solution is created but before calling
Cfg_ChildItemChanged or Cfig_AttributeChanged. If you insert a method to add
or remove items in this event, this causes a second solution to be generated.

■ The Cfg_InstPostSynchronize event occurs when you select Save or Done to end
the configuration section. This event is called once at the end of the
configuration session.

To write a script, you open the Script Designer and select a customizable product.
You then either choose whether to write an event script, or a declarations script.
Scripts in the declarations area contain methods that can be called by event-scripts
and other declarations-scripts.

A script instance is created at the beginning of the associated event and destroyed
at the end of the script execution. Variables defined in the declarations section of
the script are meaningful only during script execution and do not persist after the
script exits. For example, if a script is called because an item has changed, its
variable values do not persist. The next time an item changes and the script runs
again, the values of variables from the first script execution are not available.
Version 7.5.3 Product Administration Guide 391

Customizable Product Scripts

About Script Processing
Figure 13 shows when each event occurs during a configuration session. The
Cfg_Instinitialize event occurs at the beginning of the configuration session. When
the user picks an item, a new solution is generated and new baselines are set. Then
the Cfg_On_Conflict event is called if there is conflict. Otherwise the
Cfg_ChildItemChanged, Cfg_ItemChanged, and Cfg_AttributeChanged events are
called. When the user clicks Save, Done, or updates the quote, the
Cfg_InstPostSynchronize event is called.

Figure 13. Order of Event Processing
392 Product Administration Guide Version 7.5.3

Customizable Product Scripts

About Product Names
About Product Names
Several scripting methods have product name as an argument. Product name in this
context means the name of a component product you have added from the product
table to a customizable product. You must specify product names in a way that
makes them unique. You do this by specifying the product name, vendor name,
vendor location, and attribute values.

Specify product names using the following syntax:

{ProductName; VendorName; VendorLocation}; AttributeName1=Value1;
AttributeName2=Value2; ...

Observe the following guidelines when specifying product names:

■ ProductName is required. All other arguments are optional.

■ The order of items in the name is important. ProductName must be followed by
VendorName. VendorName must be followed by VendorLocation. You cannot
specify ProductName followed by VendorLocation.

■ If ProductName is unique, you do not have to include VendorName or
VendorLocation, and you do not need to enclose ProductName in braces.

The following are examples of product names:

■ {ProductName; VendorName}; AttributeName=Value

■ ProductName; AttributeName=Value

■ ProductName
Version 7.5.3 Product Administration Guide 393

Customizable Product Scripts

About Product Path
About Product Path
The product path is the path from the root of a customizable product to a
component product within it. The path is a string that specifies the customizable
product root and all relationship names leading to the component product. All or
part of the product path are arguments to several scripting methods.

The syntax for product paths is as follows:

$.[Root Product]#1.[Relationship]#[Component Product]

Observe the following guidelines for product paths:

■ The $ before .[Root Product] refers to a special configuration object called the
basket. The basket contains all the objects in the customizable product.

■ The #1 after [Root Product] refers to the first instance of the root product in the
basket.

■ Use a dot (.) to specify a relationship.

■ Use a # to specify a component product within a relationship.

■ Enclose relationship names and component product names in square brackets
([]). Use product name syntax to specify the name of a component product.

■ All paths must end with a product name.
394 Product Administration Guide Version 7.5.3

Customizable Product Scripts

About Product Path
Figure 14 shows the structure of customizable product CP1.

Customizable product CP1 has two relationships R1 and R2. Relationship R1
contains two component products P1 and P2. Relationship R2 contains the
customizable product CP2. CP2 contains one relationship R3, which has two
component products P3 and P4.

The product paths for this customizable product are as follows:

■ For P1. $.[CP1]#1.[R1]#[P1]

■ For P2. $.[CP1]#1.[R1]#[P2]

■ For CP2. $.[CP1]#1.[R2]#[CP2]

■ For P3. $.[CP1]#1.[R2]#[CP2].[R3]#[P3]

■ For P4. $.[CP1]#1.[R2]#[CP2].[R3]#[P4]

Here are examples of using product paths in script methods:

1 To add 1 P1:

AddItem(“$.[CP1]#1”, “R1”, “P1”, “1”)

2 To add 1 P3:

AddItem(“$.[CP1]#1.[R2]#[CP2]”, “R3”, “P3”, “1”)

Figure 14. Customizable Product Structure
Version 7.5.3 Product Administration Guide 395

Customizable Product Scripts

Cfg_InstInitialize Event
3 To reduce the quantity of P3 to 0:

RemoveItem(“$.[CP1]#1.[R2]#[CP2].[R3]#[P3]”)

4 To set the attribute Color to Red for P1:

SetAttribute(“$.[CP1]#1.[R1]#[P1]”, “Color”, “Red”)

Cfg_InstInitialize Event
This event is called once per session after the customizable product is instantiated
and before any user requests are accepted. The customizable product selection
pages do not display until all scripts associated with this event have finished.

Syntax Cfg_InstInitialize (RootProd as String)

Returns None.

Usage Use this event to store global variables that will be reused, such as BusObjects and
BusComps. This event is also useful for reading information from external sources
such as forms or SmartScript.

Argument Description

RootProd String. The name of the customizable product.
396 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Cfg_ChildItemChanged Event
Cfg_ChildItemChanged Event
After a user request is processed and the eConfigurator engine computes a new
solution, this event is called for the product root. The event returns a property set
containing all the products whose quantities have changed.

This event is also called if the user changes an item’s quantity and the Request
Conflict dialog box displays:

■ If the user selects OK in the dialog box, this submits a request that reverses the
last request. Since this revises the item’s baseline quantity, the event is called for
the item.

■ If the user selects Cancel, previous conflicting requests are removed from the
session. Since the current baseline values do not require revision, the event is
not called for the item.

This event does not return items for which only attribute values have changed. For
example, if the total number of 100 GB disk drives in a solution changes, this event
returns a property set containing the 100 GB disk drive because the item quantity
changed.

If the user enters or selects 10 feet as the desired value of the length attribute for
power supply wiring, the returned property set does not contain power supply
wiring since this is an attribute change.

In the selection pages for a customizable product, this event is called when the user
selects an item. It is also called when the user increases or decreases the quantity
of an item. This event is called before the Cfg_ItemChanged event.

Syntax Cfg_ChildItemChanged (ChangedItem as Property Set)

The ChangedItem argument is passed as type PropertySet. This is a named XML
element:

<ChangedItem ObjName= “objname” OldQty= “oldqty”
NewQty= “newqty”/>
Version 7.5.3 Product Administration Guide 397

Customizable Product Scripts

Cfg_ChildItemChanged Event
The properties of this XML element are defined in the following table:

Several Siebel API-related methods are needed to read data from the property set:

■ GetChildCount(). Returns the total number of changed items in the property set.
Use this method to set the counter for a while-loop that reads the property set.

■ GetChild(n). Returns the nth record in the property set. Use this method within
a while-loop to read records from the property set.

■ GetProperty(“argument”). Returns the value of argument. Allowed arguments are
ObjName, OldQty, and NewQty. Arguments must be in quotes. Use this method
to read the property values from each record in the property set.

Returns None

Usage Use this event to determine what changes have been made to products in the
solution and to submit additional requests as needed. For example, you could track
the memory requirements for software the user selects and submit requests to add
the correct amount of RAM to a computer configuration.

When you submit a request that changes item quantities, the submission causes the
event to be called and the script runs again. Be sure to insert logic in the script that
prevents an infinite loop of request submissions.

Property Description

ObjName String. The item name.

OldQty String. The item quantity prior to the request.

NewQty String. The new baseline item quantity.
398 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Cfg_ChildItemChanged Event
Example The following Siebel Visual Basic example writes to a file the item name, the old
quantity, and the new quantity of all the items whose quantities change in each
solution.

Sub Cfg_ChildItemChanged (ChangedItem As PropertySet)
dim psItem as PropertySet
dim n as Integer
dim nCnt as Integer
dim sObjName as String
dim sOldQty as String
dim sNewQty as String
dim sMsg as String
dim hndl as Long

hndl = Freefile
REM use a relative path to open cfgtest.log
Open "..\cfgtest.log" for append as #hndl
nCnt = ChangedItem.GetChildCount()
For n = 0 to (nCnt -1)

set psItem = ChangedItem.GetChild(n)
With psItem

sObjName = .GetProperty("ObjName")
sOldQty = .GetProperty("OldQty")
sNewQty = .GetProperty("NewQty")

End With
sMsg = "ObjName = " & sObjName
sMsg = sMsg & "; OldQty = " & sOldQty
sMsg = sMsg & "; NewQty = " & sNewQty
Write #hndl, sMsg
set psItem = Nothing

Next
Close #hndl

End Sub
Version 7.5.3 Product Administration Guide 399

Customizable Product Scripts

Cfg_AttributeChanged Event
Cfg_AttributeChanged Event
After a user request is processed and the eConfigurator engine computes a new
solution, this event is called for the product root. The event returns a property set
containing all the products whose attributes have changed.

This event is also called if the user changes an item’s attribute and the Request
Conflict dialog box displays:

■ If the user selects OK in the dialog box, this submits a request that reverses the
last request. Since this revises the item’s baseline attribute value, the event is
called for the item.

■ If the user selects Cancel, previous conflicting requests are removed from the
session. Since the current baseline values do not require revision, the event is
not called for the item.

In the selection pages for a customizable product, this event is called when the user
enters or changes an attribute value.

Syntax Cfg_AttributeChanged (ChangedAttribute as Property Set)

The ChangedAttribute argument is passed as type PropertySet. This is a named XML
element:

<Id ObjName =“objname”>

<AttName = “attribute name” OldVal= “old value”
NewVal= “newvalue”>

...

</Id>

The properties of this XML element are defined in the following table:

Property Description

ObjName String. The item name.

AttName String. The attribute name.

OldVal String. The attribute value prior to the request.
400 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Cfg_AttributeChanged Event
Several Siebel API-related methods are needed to read data from the property set:

■ GetChildCount(). Returns the total number of changed items in the property set.
Use this method to set the counter for a while-loop that reads the property set.

■ GetChild(n). Returns the nth record in the property set. Use this method within
a while-loop to read records from the property set.

■ GetProperty(“argument”). Returns the value of argument. Allowed arguments are
ObjName, OldQty, and NewQty. Arguments must be in quotes. Use this method
to read the property values from each record in the property set.

■ GetType(). Retrieves the object ID of the item for which the attribute was
changed.

Returns None

Usage Use this event to determine what changes have been made to product attributes in
the solution and to submit additional requests as needed. For example, you could
track the attributes selected for a product and submit requests based on them.

NewVal String. The new baseline attribute value.

Id String. The object ID of the item whose
attribute value has changed.

Property Description
Version 7.5.3 Product Administration Guide 401

Customizable Product Scripts

Cfg_AttributeChanged Event
Example The following example, writes to a file the item name, the old attribute value, and
the new attribute value of all the items whose attribute values change in each
solution.

{
var item;
var log = Clib.fopen("c:\\attchgd.log", "a");

 var id = ChangedAttribute.GetType();
Clib.fputs(id, log);

var nCnt = ChangedAttribute.GetChildCount();
Clib.fputs(nCnt, log);

for (var i = 0; i<ChangedAttribute.GetChildCount(); i++)

 {
item = ChangedAttribute.GetChild(i);
var attName = item.GetType();
var oldV = item.GetProperty("OldVal");
var newV = item.GetProperty("NewVal");
var s = "AttName = " + attName;
s = s + "; OldVal = ";
s = s + oldV;
s = s + "; NewVal = ";
s = s + newV;
Clib.fputs(s, log);

}
Clib.fclose(log);

}

402 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Cfg_InstPostSynchronize Event
Cfg_InstPostSynchronize Event
This event is called for the product root after the user clicks Done in the selection
pages to end a configuration session. No further processing by the eConfigurator
engine occurs in connection with this event. Using this event to adjust item
quantities or attribute values is not recommended.

Syntax Cfg_InstPostSynchronize (RootProd as String)

Returns None

Usage Use this event to add or modify line item information before it is stored. You can
also use this event to modify pricing or do other activities associated with quote line
items.

Argument Description

RootProd String. The name of the customizable product.
Version 7.5.3 Product Administration Guide 403

Customizable Product Scripts

Cfg_ItemChanged Event
Cfg_ItemChanged Event
After a user request is processed and the eConfigurator engine computes a new
solution, this event is called for each component customizable product whose
quantity has changed. The script associated with this event must be associated with
the component customizable product.

For example, CP1 is a customizable product. One of its component products is
customizable product CP2. A script inserted in the Cfg_ItemChanged event in CP2
runs when the quantity of CP2 changes while CP1 is being configured.

To set up a Cfg_ItemChanged script for the component customizable product CP2
you must do the following:

■ Select CP2 in the product table and lock its work space.

■ Open the script editor and select the Cfg_ItemChanged event.

■ Specify CP1 as the root product for the script.

■ Write the script, check its syntax, and save the script.

■ Release a new version of CP2.

This event provides a simple way to write scripts for a customizable product that
run only when that product is a component of another customizable product. This
event is called after the Cfg_ChildItemChanged event.

Upgrade users: Use the Cfg_ChildItemChanged event to obtain functionality similar
to the Cfg_ItemChanged event in release 6.x.

In the selection pages for a customizable product, this event is called when the user
selects the component customizable product. It is also called when the user
increases or decreases the quantity of that product.
404 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Cfg_ItemChanged Event
Syntax Cfg_ItemChanged (ProdName, OldQty, NewQty)

Items Use this event only to write scripts in customizable products that will be
components of other customizable products.

Returns Returns the component customizable product name, the quantity of it in the
solution prior to the user request, and the quantity after the user request. This event
does not return changes in the quantity of the products comprising a component
customizable product.

Argument Description

ProdName String. The name of the component customizable product. Use product name
syntax

OldQty Integer. The component customizable quantity prior to the request.

NewQty Integer. The new baseline quantity for the component customizable product.
Version 7.5.3 Product Administration Guide 405

Customizable Product Scripts

Cfg_OnConflict Event
Cfg_OnConflict Event
This event is called for the product root when the eConfigurator engine encounters
a conflict while computing a solution. A conflict is when a user action violates a
constraint. The constraint can be in the declarative portion of the product or can be
a user pick.

When this event is called, if no script is defined, the system’s normal conflict
resolution messages display. Typically, the user must add or remove items to resolve
the conflict. The user can retain the last user-pick and undo a previous user-pick,
or they can undo the last user pick.

If a script is defined, you can resolve the conflict in the script. The system does not
prompt the user with a conflict message. Submitting a request in a script on this
event is not recommended.

Syntax Cfg_OnConflict (Explanation, Resolution)

Returns Returns the system error message and accepts one of two values as output. The
outputs are forwarded to the eConfigurator engine and are used to resolve the
conflict.

Argument Description

Explanation String. Passes in the system message explaining
the conflict

Resolution String. Accepts as output one of the following
values:

■ UndoLastRequest. This argument causes
an undo of the last user request.

■ RemoveFailedRequests. This argument
causes an undo on all user requests that
cause the last request to fail. The last
request is retained.

If neither of the previous arguments is passed
as output, the system presents the user with
the normal conflict messages.
406 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Cfg_OnConflict Event
Usage Use this event to manage conflict resolution in the background. For example, you
can could create If-then statements that pass one of the outputs depending on a
configuration condition in the model. If the conditions for handling the output do
not exist, then passing no value causes the normal conflict resolution message.
Version 7.5.3 Product Administration Guide 407

Customizable Product Scripts

GetInstanceId Method
GetInstanceId Method
This method returns the row ID of the product root in the source object, such as the
quote or order. The row ID of the product root will be different for each quote or
order.

Syntax GetInstanceId() as String

Items Not applicable.

Returns Returns the row ID of the customizable product root.

Argument Description

None
408 Product Administration Guide Version 7.5.3

Customizable Product Scripts

GetCPInstance Method
GetCPInstance Method
This method returns the entire structure of a customizable product as a property set.

Syntax GetCPInstance() as property set

Items Not applicable.

Returns Returns the structure of the customizable product as a property set. Depending on
the structure of the customizable product, the property set can be complex. To learn
how to access the property set, use the following JavaScript code to dump the
property set to a file. You can then study the property set structure to determine how
to access it using a script.

/*

Use the PropertySetToFile(PropSet, fileName, title) API in your
script.

Note that fileName must be double slashed, as demonstrated in
the example below:

PropertySetToFile(InputsPS, "..\\temp\\testPSexport.txt",
Inputs into “ + MethodName);

This will write the property set to a text file in the Siebel
temp directory.

*/

function PropertySetToFile (PropSet, fileName, title)

{

var file = Clib.fopen(fileName, "at");

LogData(("\n---
--"), file);

Argument Description

None
Version 7.5.3 Product Administration Guide 409

Customizable Product Scripts

GetCPInstance Method
LogData(("Start Process " +
Clib.asctime(Clib.gmtime(Clib.time()))), file);

LogData(title, file);

LogData("PROVIDED PROPERTY SET", file);

WritePropertySet(PropSet, file, 0);

Clib.fclose(file);

return (CancelOperation);

}

function WritePropertySet(PropSet, file, Level)

{

if ((Level == "") || (typeof(Level) == "undefined")){

Level = 0;

}

var indent = "";

for (var x = 0; x < Level; x++){

indent += "\t";

}

var psType = PropSet.GetType();

var psValue = PropSet.GetValue();

LogData((indent + "Type: " + psType + " Value: " + psValue),
file);

var propName = PropSet.GetFirstProperty();

while (propName != ""){

var propValue = PropSet.GetProperty(propName);

LogData((indent + propName + " = " + propValue), file);
410 Product Administration Guide Version 7.5.3

Customizable Product Scripts

GetCPInstance Method
propName = PropSet.GetNextProperty();

}

var children = PropSet.GetChildCount();

for (var x = 0; x < children; x++){

LogData((indent + "CHILD PROPERTY SET " + x), file);

WritePropertySet(PropSet.GetChild(x), file, (Level +
1));

}

}

function LogData(DataString, file)

{

try {

Clib.fputs((DataString + "\n"), file);

Clib.fflush(file);

}

catch (e){

// no action

}

}

Version 7.5.3 Product Administration Guide 411

Customizable Product Scripts

GetObjQuantity Method
GetObjQuantity Method
This method returns the quantity of the specified component product in the current
solution.

Syntax GetObjQuantity (ProdName) as Integer

Items Can be used only for component products within the customizable product.

Returns Quantity of the component product in the current solution as an integer. If multiple
instances of the component exist, the quantity of all instances are added together
and the sum is returned. For example if there are two instances of an item one with
quantity five and the other with quantity three, the return is eight.

Example This script fragment obtains the quantity of 10 GB Drive (vendor = Sony) in the
current solution and assigns it to the variable iItemQty.

Dim iItemQty as Integer

iItemQty = GetObjQuantity(“{10 GB Drive; Sony}”)

Argument Description

ProdName String. The name of the component product. Use product name syntax to
identity the component product.
412 Product Administration Guide Version 7.5.3

Customizable Product Scripts

AddItem Method
AddItem Method
This method creates a new instance of an item and adds the specified quantity to
the solution. For example, Item A exists in the solution and has quantity three. You
use AddItem to add two more Item A to the solution. The new solution will contain
two instances of Item A, one with quantity three, and one with quantity two.

Syntax AddItem (ParentObjPath, RelName, ProdName, Quantity) as Integer

Items Can be used only for component products within the customizable product.

Returns Returns 1 if the add was successful. Returns 0 if the add fails.

Example For an example of using AddItem, see “About Product Path” on page 394.

Argument Description

ParentObjPath String. The product path to, but not including, the relationship in which
the component product resides. Use product path syntax to specify the
path. If the component product is located at the product root, then specify
the product root as the ParentObjPath.

RelName String. The name of the relationship containing the component product
you want to add. If the component product is located at the product root,
then specify the customizable product name as the RelName.

ProdName String. The name of the product you want to add. Use product name
syntax to specify the product name.

Quantity String. The amount of the product you want to add.
Version 7.5.3 Product Administration Guide 413

Customizable Product Scripts

RemoveItem Method
RemoveItem Method
This method reduces the quantity of the specified item to 0 in the current solution.
If multiple instances of an item have the same path, the eConfigurator engine
randomly picks one of the instances and removes it.

Syntax RemoveItem (ObjPath) as Integer

Items Can be used only for component products within the customizable product.

Returns Returns 1 if the item removal was successful. Returns 0 if the removal fails.

Example For an example of using RemoveItem, see “About Product Path” on page 394.

Argument Description

ObjPath String. The full path of the component product you want to remove. Use
product path syntax to specify the path.
414 Product Administration Guide Version 7.5.3

Customizable Product Scripts

SetAttribute Method
SetAttribute Method
This method sets the value of an attribute for an item in the customizable product.
This method can also be used to set attribute values for attributes of the
customizable product. If multiple instances of an item have the same path, the
eConfigurator engine randomly picks one instance and changes its attribute values.

Syntax SetAttribute (ObjPath, AttName, AttVal) as Integer

For LOV domains, the AttValue must be one of the values in the list of values.
Validation expressions defined for LOV domains are ignored.

For range of value domains, the AttValue must be within the domain defined by the
validation expression.

Items Can be used only for component products within the customizable product.

Returns Returns 1 if setting the attribute was successful. Returns 0 if setting the attribute
failed.

Example For an example of using SetAttribute, see “About Product Path” on page 394.

Argument Description

ObjPath String. The full path of the component product. For attributes of the
customizable product, specify the product root. Use product path syntax
to specify the path.

AttName String. The name of an attribute of the component product or
customizable product.

AttValue String. The value to which you want to set the attribute.
Version 7.5.3 Product Administration Guide 415

Customizable Product Scripts

Creating an Event Script
Creating an Event Script
Event scripts run when defined events are called during a configuration session. You
create an event script by selecting an event method and writing the script within it.

Event scripts can call methods and objects defined in the Siebel API. They can also
call methods assigned to the declarations area.

To create an event script

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Script Designer, and you cannot create or edit scripts.

3 Click the Configuration Designer tab.

4 From the Configuration Designer menu, choose Script Designer.

The Script Designer, Scripts list appears. It displays the scripts that have been
created for this customizable product.

5 Click New to create a new record.

A form appears.

6 In the Name field, click the down-arrow and select the desired event.

If this is not the first script for this event, overwrite the event name with a script
name. All scripts for a customizable product must have a unique script name.

7 If this is the first script you are creating for this product click the down-arrow in
the Program Language field and select Visual Basic or eScript.

If this is not the first script, click the down-arrow and select the programming
language used for previous scripts.

8 Click the Root Product select button and select the current customizable product
from the Pick Root Product dialog box.
416 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Creating an Event Script
9 In the Script Designer, click Save.

The form is replaced by a list of the scripts that have been created for this
customizable product. The record you just created is highlighted.

10 Enter the script in the area provided in the Script Definition form.

The Script Definition form is located below the list of scripts.

11 When you have finished entering the script, click Check Syntax.

If there are errors, they will display at the top of the Customizable Product
Scripts form. Correct any errors before saving the script.

12 In the Script Definition form, click Save.

13 Open the Script Designer menu and click Validate.

This starts a configuration session. Verify that the new script works correctly.
Version 7.5.3 Product Administration Guide 417

Customizable Product Scripts

Creating a Declarations Script
Creating a Declarations Script
Declaration scripts are methods that you want to make available to event scripts or
other declaration scripts. Declaration scripts are stored in a common area accessible
by event scripts. Declaration scripts can call methods and objects defined in the
Siebel API.

Use declaration scripts to write methods that are common to more than one event
script. Instead of repeating the method in each event script, you can write one
declaration script and call it from within the event scripts that use it.

To create a declarations script

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Script Designer, and you cannot create or edit scripts.

3 Click the Configuration Designer tab.

4 From the Configuration Designer menu, choose Script Designer.

The Script Designer, Scripts list appears. It displays the scripts that have been
created for this customizable product.

5 Click New to create a new record.

A form appears for defining a declaration script record.

6 In the Name field, click the down-arrow and choose “(declarations).”

If this is not the first declarations script, overwrite “(declarations)” with a script
name. All scripts for a customizable product must have a unique script name.

7 If this is the first script you are creating for this product, click the down-arrow
in the Program Language field and select Visual Basic or eScript.

If this is not the first script, click the down-arrow and select the programming
language used for previous scripts.
418 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Creating a Declarations Script
8 Click the Root Product select button and select the current customizable product
from the Pick Root Product dialog box.

9 In the Script Designer, click Save.

The form is replaced by a list of the scripts that have been created for this
customizable product. The record you just created is highlighted.

10 In the Script Definition form, enter the script.

The Script Definition form is located below the list of scripts. If you want to
delete your entries and start the script over, click Reset.

11 When you have finished entering the script, click Check Syntax.

If there are errors, they will display at the top of the Customizable Product
Scripts form. Correct any errors before saving the script.

12 In the Script Definition form, click Save.

The new script displays in the Customizable Product Scripts form when you
select the script name in the Script Designer.

13 Click Save in the Scripts list to save the new script.

14 Open the Script Designer menu and click Validate.

This starts a configuration session. Verify that the new script works correctly.
Version 7.5.3 Product Administration Guide 419

Customizable Product Scripts

Editing a Script
Editing a Script
You can edit scripts by selecting the script in the Script Designer. If you edit
declaration scripts, verify that the changes do not adversely effect event scripts.

To edit a script

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Script Designer, and you cannot create or edit scripts.

3 Click the Configuration Designer tab.

4 From the Configuration Designer menu, choose Script Designer.

The Script Designer, Scripts list appears. It displays the scripts that have been
created for this customizable product.

5 Highlight the script you want to edit and click Edit.

The script displays in Script Definition. The Script Definition form is located
below the list of scripts.

6 In Script Definition, edit the script.

7 When you have finished editing the script, click Check Syntax.

If there are errors, they will display at the top of the Customizable Product
Scripts form. Correct any errors before saving the script.

8 In the Script Definition form, click Save.

9 Click Save in the Scripts list to save the edited script.

10 Open the Script Designer menu and click Validate.

This starts a configuration session. Verify that the edited script works correctly.
420 Product Administration Guide Version 7.5.3

Customizable Product Scripts

Deleting a Script
Deleting a Script
After deleting a script, test the customizable product in validation mode to verify
that the product works correctly.

To delete a script

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Script Designer, and you cannot create or edit scripts.

3 Click the Configuration Designer tab.

4 From the Configuration Designer menu, choose Script Designer.

The Script Designer Scripts list appears. It displays the scripts that have been
created for this customizable product.

5 Select the script you want to delete

6 From the Scripts menu, choose Delete Record.

Click OK when asked to confirm you want to delete this record. The record no
longer displays in the Customizable Product Scripts list.

7 Open the Script Designer list menu and click Validate.

This starts a configuration session. Verify that the customizable product
functions correctly.
Version 7.5.3 Product Administration Guide 421

Customizable Product Scripts

Reviewing the Script Log
Reviewing the Script Log
If a method within a script fails or the script contains syntax errors, you can obtain
valuable diagnostic information by reviewing the script log.

To review the script log

1 Navigate to \log\cfgscript.log. It is located in the Siebel installation directory.

2 Open the file with a text editor.

3 Locate the entries for the date and time the script ran.
422 Product Administration Guide Version 7.5.3

Multilingual Data 21
You can specify language translations for product-related data the user sees when
creating a quote or purchasing a product from an eSales Web site. This chapter
describes what product data can be translated and how to specify the translations.

This chapter covers the following topics:

■ “What Can Be Translated?” on page 424

■ “How Multilingual Data Translation Works” on page 425

■ “Translating the Product Description” on page 426

■ “Translating a Class Display Name” on page 427

■ “Translating an Attribute Display Name and Description” on page 428

■ “Translating Configuration Rule Explanations” on page 429

■ “Translating Relationship Names” on page 430

■ “Translating UI Group Names” on page 431

■ “Translating UI Property Values” on page 432

■ “Translating an Attribute List of Values” on page 433
Version 7.5.3 Product Administration Guide 423

Multilingual Data

What Can Be Translated?
What Can Be Translated?
You can specify language translations for the following data:

■ Product description

■ Product class display name

■ Class display name

■ Attribute display name

■ Attribute description

■ Attribute list of values

In addition, for customizable products, you can translate the following data:

■ Configuration rule explanation

■ Relationship name

■ UI group name

■ UI property value
424 Product Administration Guide Version 7.5.3

Multilingual Data

How Multilingual Data Translation Works
How Multilingual Data Translation Works
The process for translating each of the types of product data is the same. The
Product Administrator selects the desired item, selects a language, and then enters
the translation for the item. This creates a record containing the translation. The
Product Administrator can create multiple translation records for an item.

When the user logs in to either Quotes or to an eSales Web page and specifies a
language, they see the item translations for that language entered by the Product
Administrator.

In some cases, the lists that display items that can be translated include a field
called Translate. This field is unrelated to setting up data for multilingual translation
and should be ignored.
Version 7.5.3 Product Administration Guide 425

Multilingual Data

Translating the Product Description
Translating the Product Description
Use this procedure to translate the product description.

To translate the product description

1 Navigate to Product Administration.

2 Select a product whose description you want to translate.

3 From the More Info Show menu, choose Translations.

The languages list appears. If you have not selected any languages, the list is
empty.

4 Add a new record.

5 Click in the new record’s Code field and select a language code from the
Language Name dialog box.

The record is updated with the language name and language code.

6 Enter the translation of the description in the Description field, and then click
Save.

A new record, containing the translation appears in the languages list.
426 Product Administration Guide Version 7.5.3

Multilingual Data

Translating a Class Display Name
Translating a Class Display Name
Use this procedure to translate the display name for the product class.

To translate a class display name

1 Navigate to Application Administration > Class Administration.

2 Select the product class display name you want to translate.

3 Click the Class Translations tab.

4 In the Class Translations tab, click New.

A new record appears.

5 Click in the new record’s Code field and select a language code from the
Language Name dialog box.

The record is updated with the language name and language code.

6 Enter the translation of the display name in the Display Name field, and then
click Save.

The record is updated and displays the translation of the class display name.

7 Repeat these steps to create additional language translations for the class display
name.
Version 7.5.3 Product Administration Guide 427

Multilingual Data

Translating an Attribute Display Name and Description
Translating an Attribute Display Name and Description
Use this procedure to translate both the display name for an attribute and its
description.

To translate an attribute display name and description

1 Navigate to Application Administration > Class Administration.

2 Select the product class where the attribute you want to translate is defined.

3 In Dynamic Attributes, select the attribute you want to translate.

4 Click the Attribute Translations tab.

5 In the Attribute Translations tab, click New.

A new record appears.

6 Click in the new record’s Code field and select a language code from the
Language Name dialog box.

The record is updated with the language name and language code.

7 Enter the translation of the display name in the Display Name field.

8 Enter the translation of the description in the Description field.

9 Click Save to save the record.

The record is updated and displays the translations.

10 Repeat these steps to create additional language translations for this attribute’s
Display Name and Description.
428 Product Administration Guide Version 7.5.3

Multilingual Data

Translating Configuration Rule Explanations
Translating Configuration Rule Explanations
Use this procedure to translate configuration rule explanations for a customizable
product.

To translate a configuration rule explanation

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create rules.

3 Click the Configuration Designer tab.

The Rule Designer Rules List appears. It lists all the configuration rules that have
been created for this customizable product.

4 Select the configuration rule containing the explanation you want to translate.

5 From the Rules List menu, choose Translate Rule Description.

A dialog box appears that displays the rule explanation translations you have
already created.

6 In the dialog box, click New.

The dialog box changes to display a language drop-down menu and a field for
entering the rule translation.

7 Select a country name abbreviation from the Lang drop-down menu.

8 Enter the rule translation in the Description field and click OK.

A new record appears in the dialog box showing the country abbreviation and
rule translation.

9 Repeat these steps to create additional translations for this rule explanation.
Version 7.5.3 Product Administration Guide 429

Multilingual Data

Translating Relationship Names
Translating Relationship Names
Use this procedure to translate relationship names in a customizable product.

To translate a relationship name

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create rules.

3 From the Customizable Product menu, choose Product Designer.

The Product Designer view appears.

4 Select the relationship whose name you want to translate.

5 From the Product Designer menu, choose Translate Relationship.

A dialog box appears that displays the relationship name translations you have
already created.

6 In the dialog box, click New.

The dialog box changes to display a language drop-down menu and a field for
entering the relationship name translation.

7 Select a country name abbreviation from the Lang drop-down menu.

8 Enter the relationship name translation in the Name field and click OK.

A new record appears in the dialog box showing the country abbreviation and
relationship name translation.

9 Repeat these steps to create additional translations for this relationship name.
430 Product Administration Guide Version 7.5.3

Multilingual Data

Translating UI Group Names
Translating UI Group Names
Use this procedure translate group names that display in customizable product
selection pages.

To translate a UI group name

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create rules.

3 From the Customizable Product menu, choose Product UI Designer.

The Product UI Designer view appears.

4 Select the UI group whose name you want to translate.

5 From the Group List menu, choose Translate Groups.

A dialog box appears that displays the UI group name translations you have
already created.

6 In the dialog box, click New.

The dialog box changes to display a language drop-down menu and a field for
entering the UI group name translation.

7 Select a country name abbreviation from the Lang drop-down menu.

8 Enter the UI group name translation in the Name field and click OK.

A new record appears in the dialog box showing the country abbreviation and
UI group name translation.

9 Repeat these steps to create additional translations for this UI group name.
Version 7.5.3 Product Administration Guide 431

Multilingual Data

Translating UI Property Values
Translating UI Property Values
Use this procedure to translate the value of a UI Property. The property type must
be type String.

To translate a UI property value

1 Navigate to Product Administration.

2 Select and lock the desired customizable product.

If you omit this step, the most recently released version of the customizable
product is loaded in the Rule Designer, and you cannot create rules.

3 From the Customizable Product menu, choose User Interface Property Designer.

The User Interface Property Designer view appears.

4 In Item Display Properties, select the UI property whose value you want to
translate.

5 From the Item Display Properties menu, choose Translate UI Property.

A dialog box appears that displays the UI property value translations you have
already created.

6 In the dialog box, click New.

The dialog box changes to display a language drop-down menu and a field for
entering the UI property value translation.

7 Select a country name abbreviation from the Lang drop-down menu.

8 Enter the UI property value translation in the Value Spec field and click OK.

A new record appears in the dialog box showing the country abbreviation and
UI property value translation.

9 Repeat these steps to create additional language translations for this UI property
value attribute’s Display Name and Description.
432 Product Administration Guide Version 7.5.3

Multilingual Data

Translating an Attribute List of Values
Translating an Attribute List of Values
For attributes with a list of values domain, you can translate the list of values name
and the attribute values. You do this by specifying language name and other
information when you define the list of values name and the associated attribute
value records.

For example, you define a list of values called Color. It has three values, Red, Green,
Blue. Your base language is English and you want to translate the list of values to
French.

When you define the list of values in the List of Values dialog box, you would place
a check mark in the Multilingual field. In the List of Values list, you would first
define three records, one for each color, and specify English-American as the
language. You would choose Color as the Type. In the Display Value and Language
independent Code fields, you would enter the color name in English: Red, Green,
and Blue respectively.

Then you would create three additional records, one for each color. You would
choose Color as the Type. In the Language Independent Code field, you would enter
Red, Green, Blue. In the Language Name field, you would choose French. In the
Display Value field, you would enter Rouge, Vert, and Bleu as the Display Value
respectively.

For additional information on creating and managing multilingual lists of value
(MLOVs), see Global Deployment Guide.
Version 7.5.3 Product Administration Guide 433

Multilingual Data

Translating an Attribute List of Values
434 Product Administration Guide Version 7.5.3

Cache Management 22
This chapter explains how to manage the Snapshot Mode cache. This cache
improves server performance by storing information about customizable products.

This chapter covers the following topics:

■ “About Snapshot Mode” on page 436

■ “Setting Up Snapshot Mode on the Siebel Server” on page 439

■ “Setting Up Snapshot Mode on the Client” on page 440

■ “Refreshing the Snapshot Mode Cache” on page 441

■ “Refreshing the Cache with Product Changes” on page 442

■ “Refreshing the Cache with Class Changes” on page 443
Version 7.5.3 Product Administration Guide 435

Cache Management

About Snapshot Mode
About Snapshot Mode
When you start a configuration session, eConfigurator looks to see if the
customizable product is cached in memory. If not, eConfigurator looks in a cache
directory (CFGCache) for the product. This directory, located in the Siebel file
system, maintains a history of the customizable products that have been loaded into
the memory cache. If the customizable product is not in CFGCache, then the
customizable product is loaded from the Siebel database. When the product is
loaded from the database, it is added to the memory cache and to CFGCache.

Thereafter, when a configuration session starts, the customizable product is loaded
from the memory cache or CFGCache. Before loading the customizable product
from CFGCache, the system checks the Siebel database to make sure each item in
the product is the current version. If it is not, the current version of the item is
loaded from the database. This ensures that the most recent version of a
customizable product and its contents are loaded.

When the Product Administrator releases a new version of a customizable product,
the changes are written to the Siebel database. They are not written to the memory
cache or to CFGCache. The CFGCache directory is updated with the changes when
the next configuration session is requested for the customizable product.

Snapshot Mode adds an additional memory cache. In Snapshot Mode, when you
start a configuration session, customizable product items are loaded from the
Snapshot Mode cache. No checking is done to see if the items are the current
version. This causes the configuration session to load more quickly and improves
performance. If an item is not in the Snapshot Mode cache, the item is retrieved
from CFGCache, which verifies the item is the current version. The item is then
added to the Snapshot Mode cache.

When Snapshot Mode is On, it works as follows:

■ When you go to validate mode, the work space version of the customizable
product is used rather than the version in the Snapshot Mode cache.

■ When you release a new version of a customizable product, the Snapshot Mode
cache is updated with the new version.
436 Product Administration Guide Version 7.5.3

Cache Management

About Snapshot Mode
■ When the Snapshot Mode mode size limit is reached, the oldest or least
frequently accessed items are deleted. This means the Snapshot Mode cache
contains the most recently requested or most frequently requested customizable
product items.

The term users refers to Siebel Web Client users, Siebel Dedicated Web Client users
and Siebel Mobile Web client users. Siebel Web Client users are those that access
the Siebel application through a URL in a Web browser. No application is installed
on the client machine. Siebel Dedicated Web Client users are those that have the
Siebel application installed on the local machine. This application simulates a Siebel
server and Siebel Web engine. These users access a remote Siebel database. Siebel
Mobile Web Clients have both the Siebel application and a Siebel database installed
on the local machine. These users obtain updates to the local database by
synchronizing it with a remote Siebel database.

You can manually refresh the Snapshot Mode cache is one of several ways:

■ Selecting the Refresh Cache menu option in Customizable Products > Versions.
Refresh Cache erases the entire Snapshot Mode cache on all the servers
connected to the database. Starting a configuration session refreshes the
Snapshot Mode cache by loading the most recent version of the product from
CFGCache. Since the customizable product loads from CFGCache as part of
updating the Snapshot Mode cache, performance is slower for this first
configuration session. All sessions thereafter load from the Snapshot Mode
cache. This applies to Siebel Web Clients, Siebel Dedicated Web Clients.

For Siebel Mobile Clients, selecting Refresh Cache erases the Snapshot Mode
cache on the local machine. If synchronizing has copied a new version of a
customizable product to the local database, this version will be loaded at the
next configuration session. The local CFGCache and Snapshot Mode cache will
also be updated.

■ Restarting the Siebel database server erases the Snapshot Mode cache on the
server. The next configuration session is loaded as if the user had selected the
Refresh Cache menu option. This applies to Siebel Web Clients and Siebel
Dedicated Web Clients.

■ For Siebel Dedicated Web Clients and Siebel Mobile Web Clients, the Snapshot
Mode cache and CFGCache reside on the local machine. Exiting the Siebel
application is functionally the same as stopping a Siebel server. This erases the
Snapshot Mode cache on the local machine.
Version 7.5.3 Product Administration Guide 437

Cache Management

About Snapshot Mode
■ Editing a product record and then selecting Refresh Product Cache. This erases
from the Snapshot Mode cache all the customizable products containing the
product. The next time a user requests an affected customizable product, the
Snapshot Mode cache is refreshed with a new instance of the product.

■ Editing a class record and then selecting Refresh Class In Configuration Cache.
This erases from the Snapshot Mode cache all the customizable products
containing products from the class. The next time the user requests an affected
customizable product, the Snapshot Mode cache is refreshed with a new
instance of the product.

Snapshot Mode is highly recommended if you have large numbers of Siebel Web
Client or Siebel Dedicated Web Client users, and you release new versions of
customizable products relatively infrequently.

Observe the following guidelines for using Snapshot Mode.

■ If a user selects the Refresh cache in Customizable Products > Versions, the
Snapshot Mode cache is erased on all servers connected to the same Siebel
database. This includes the Snapshot Mode cache on Siebel Dedicated Web
Clients. Turn on Snapshot Mode only on servers and Siebel Dedicated Web
Clients where it is needed. This limits the number of users that can refresh the
Snapshot Mode cache.

■ If the customizable product development environment and the production
environment are on the same machine, and Snapshot Mode is turned On, the
Product Administrator should refresh the Snapshot Mode cache frequently in
order to see changes during development. Doing so, also refreshes the Snapshot
Mode cache for production users.

■ Siebel Dedicated Web Client users should leave Snapshot Mode turned off on
their local machines if Snapshot Mode is turned on for the Siebel Server to which
they connect.

■ When a customizable product contains rules that have start or end dates, the
arrival of these dates does not cause the revised declarative portion of the
product to be loaded into the Snapshot Mode cache. You must refresh the cache
manually on the effective date to load the revised declarative portion of the
product.
438 Product Administration Guide Version 7.5.3

Cache Management

Setting Up Snapshot Mode on the Siebel Server
Setting Up Snapshot Mode on the Siebel Server
You should be familiar with server administration procedures before doing this
procedure.

This procedure shows you how to turn on Snapshot Mode on the Siebel Server. In
addition, there are several other Snapshot Mode server parameters for managing
cache performance. These are described in “There are two options for deploying
server-based Siebel eConfigurator:” on page 447.

To set up Snapshot Mode on the Siebel server

1 Navigate to Server Administration > Servers.

2 Highlight the desired server.

3 Click the Server Parameters tab.

4 In the Parameter field, query for eprodcfgsnapshotflg.

The parameter description is: Product Configurator-collect and use the
snapshots of the Cfg object.

5 Set the Current Value to True.

6 Set the Value on Restart to True.
Version 7.5.3 Product Administration Guide 439

Cache Management

Setting Up Snapshot Mode on the Client
Setting Up Snapshot Mode on the Client
The Snapshot Mode cache for the Siebel Dedicated Web Client and the Mobile Web
Client resides on the local machine. You enable Snapshot Mode on the local
machine by adding parameters to the application configuration file.

To set up Snapshot Mode on the local machine

1 Use a text editor to open the .cfg file for the application you are running, for
example siebel.cfg.

This file is located in the bin subdirectory of the Siebel installation.

2 Add the following entries to the end of the file. If your customizable products
are large, consider making the value of eProdCfgNumOfCachedObjects larger
than 1000:

[InfraObjMgr]

eProdCfgSnapshotFlg = TRUE

eProdCfgNumOfCachedObjects = 1000

3 Save the file.

4 Exit the application and restart.
440 Product Administration Guide Version 7.5.3

Cache Management

Refreshing the Snapshot Mode Cache
Refreshing the Snapshot Mode Cache
For Siebel Web Client users and Siebel Dedicated Web Client users, refreshing the
cache, erases the Snapshot Mode cache on all servers connected to the database.

For Siebel Dedicated Web Client users, refreshing the cache, erases the Snapshot
Mode cache the local machine. It also erases the Snapshot Mode cache on all servers
connected to the same database as the Siebel Dedicated Web Client.

For Mobile Web Client users, refreshing the cache erases the Snapshot Mode cache
on the local machine.

To refresh the Snapshot Mode cache, you must have access to
Products >Customizable Products on the Siebel server to which Siebel Web Clients
are connected.

To refresh the Snapshot Mode cache from a Siebel Web Client

1 Navigate to Product Administration.

2 Select and lock any customizable product.

3 In Customizable Products >Versions, open the menu and click Refresh Cache.
Version 7.5.3 Product Administration Guide 441

Cache Management

Refreshing the Cache with Product Changes
Refreshing the Cache with Product Changes
When you make changes to a product record, you can use the product record as a
filter to selectively update the Snapshot Mode cache. The update removes all
customizable products from the cache that contain the product.

The next time the users request the customizable product, they receive a freshly
instantiated version reflecting the product change and the cache is refreshed with
this version. For example, you could change the product description or part number
and then refresh the cache.

This removes from the Snapshot Mode cache all the customizable products
containing the product. The next time a user requests the customizable product, the
cache will be refreshed with a new instance of the product. The new instance will
reflect the product changes.

You cannot propagate changes to class assignment by doing this type of refresh.

To refresh the cache with product changes

1 Navigate to Product Administration.

2 Select and edit any field in the desired product record.

3 From the Products menu, choose Refresh Product Cache.
442 Product Administration Guide Version 7.5.3

Cache Management

Refreshing the Cache with Class Changes
Refreshing the Cache with Class Changes
If you have Snapshot Mode turned on and a customizable product that is affected
by the class change is in the Snapshot Mode cache, the changes are not propagated
to the cached version of the product. The next user that requests the customizable
product will receive the cached version, which does not reflect the class changes.

To make sure users receive the class changes immediately, you can use a product
class as a filter to selectively delete customizable products from the cache. When
you do this, all customizable products containing the specified class are erased from
the Snapshot Mode cache. The next time a users request the customizable product,
it is retrieved from the database and added to the cache. This new instance will
reflect the changes you made to the class.

To refresh the cache with class changes

1 Navigate to Application Administration > Class Administration.

2 Select a product class and modify it or its attribute definitions as needed.

3 From the Classes menu, choose Refresh Class In Configuration Cache.

This erases from the Snapshot Mode cache all customizable products containing
products from the class. The next time a user requests a customizable product
containing products from the class, the cache will be refreshed with a new
instance of the customizable product. This new instance will contain the class
changes.
Version 7.5.3 Product Administration Guide 443

Cache Management

Refreshing the Cache with Class Changes
444 Product Administration Guide Version 7.5.3

Technical Reference 23
This chapter provides technical information of use to server administrators and
integrators.

This chapter covers the following topics:

■ “eConfigurator Architecture” on page 446

■ “Siebel eConfigurator Server Deployment” on page 447

■ “Enabling Auto Match” on page 449

■ “Enabling Auto Match” on page 449

■ “Enforcing the Field Length for Entering Advanced Rules” on page 451

■ “Displaying RAL in the Rule Designer” on page 452

■ “Turning Off Default Instance Creation” on page 454

■ “Revising the System Default Cardinalities” on page 455

■ “Displaying Fields from S_PROD_INT in Selection Pages” on page 456

■ “eConfigurator API” on page 458

■ “Application Integration Network” on page 484
Version 7.5.3 Product Administration Guide 445

Technical Reference

eConfigurator Architecture
eConfigurator Architecture
The key components of the eConfigurator architecture are as follows:

■ Object Manager. All services that run within a Siebel application are bound by the
Object Manager they are running within. The same applies to all caches as well.
Therefore services cannot be shared across object managers and neither can
cached objects.

■ UI Business Service. The UI Business service is used by eConfigurator to render
the UI. The UI business service binds the structure of the customizable product
to the Web templates and submits them to the Siebel Web Engine for rendering
to the client browser. The UI service is the means by which the user interacts
with eConfigurator. A unique instance of the UI service is required for each user.

■ Instance Broker. The Instance Broker is a service that interacts with the UI
Business Service. The Instance Broker maintains all the information about the
current instance of the customizable product that the user is configuring. The
Instance Broker interacts with other services in response to user requests during
a configuration session.

■ Object Broker. The Object Broker is a service that extracts the customizable
product definition from the database for use by other eConfigurator services.

■ Config Services. Config Services consists of factories.

■ Factory. A factory is a service that translates the customizable product definition
retrieved by the Object broker into a format the worker can understand.

■ Constraint Engine. The Constraint engine is also called the worker. It is also
referred to as the eConfigurator engine.

■ Worker. The worker is a service that computes solutions and enforces all the
constraints associated with the configuration. This includes the declarative
portion of the customizable product plus constraints added by the user (user
picks).
446 Product Administration Guide Version 7.5.3

Technical Reference

Siebel eConfigurator Server Deployment
Siebel eConfigurator Server Deployment
There are two options for deploying server-based Siebel eConfigurator:

■ You can run eConfigurator in the Application Object Manager. If you do this,
caching-related parameters are set in the Application Object Manager.

■ You can run eConfigurator as a separate Siebel Server component named Siebel
Product Configurator Object Manager (eProdCfgObjMgr). The name of its
component group is Siebel ISS (ISS). This component is typically run on a
dedicated server. If you use this option, parameters are set on the Application
Object Manager to point to one or more remote server machines, and caching-
related parameters are set on eProdCfgObjMgr. This Object Manager receives
and processes requests from the Application Object Manager (for example,
Siebel Call Center) for each user configuration session.

For more information about Siebel eConfigurator server topology issues and
performance tuning, see Siebel Performance Tuning Guide.

For more information about setting server parameters, see Siebel Server
Administration Guide.
Version 7.5.3 Product Administration Guide 447

Technical Reference

Enabling Snapshot Mode
Enabling Snapshot Mode
To use SnapShot Mode, you must turn it on by setting a server parameter. When
Snapshot Mode is turned on, the eConfigurator server runs using cached objects,
factories, and workers as much as possible. This improves performance.

When turned off, the eConfigurator server creates these objects for each user
session. Table 48 lists the server parameters for managing Snapshot Mode.

Table 48. Server Parameters for Managing Snapshot Mode

Parameter Name Display Name Data Type Default Value Description

eProdCfgSnapshotFlg Product
Configurator-
Collect and use
snapshots of the
Cfg objects

Boolean FALSE Enables or disables
Snapshot Mode. Set
to TRUE to turn on
Snapshot Mode.

eProdCfgNumOfCachedObjects Product
Configurator-
Number of objects
cached in memory

Integer 1000 Sets maximum
number of objects a
user can have in
memory cache.

eProdCfgNumbofCachedWorkers Product
Configurator-
Number of
workers cached in
memory

Integer 50 Sets maximum
number of workers
that can be in
memory cache.

eProdCfgNumbOfCachedCatalogs Product
Configurator-
Number of cached
catalogs

Integer 10 Sets maximum
number of catalogs
that can be cached.
May be set to same
value as
eProdCfgNumbOfCa
chedFactories.
Catalogs contain the
default product
structure.
448 Product Administration Guide Version 7.5.3

Technical Reference

Enabling Auto Match
Enabling Auto Match
When a new version of a customizable product is released, Auto Match adjusts the
configuration of the product in a quote, asset, or order to reflect the changes. Auto
Match is disabled by default.

For Web Client users, you turn Auto Match on by setting its server parameter to
TRUE. Table 49 shows the Auto Match server parameter.

For Dedicated Web Client users (also called mobile client users), add the following
entries to the configuration file used to start the application, for example Siebel.cfg.

;; This section will be read for mobile clients only

[InfraObjMgr]

eProdCfgAutoMatchInstance=TRUE

Table 49. Server Parameter for Auto Match

Parameter Name Display Name Data Type Default Value Description

eProdCfgAutoMatchInstance Product Configurator
- auto match quote
on reconfigure.

Boolean FALSE When set to FALSE,
Auto Match is turned
off. When set to TRUE,
Auto Match is turned
on.
Version 7.5.3 Product Administration Guide 449

Technical Reference

Specifying Keep Alive Time for Configurator Sessions
Specifying Keep Alive Time for Configurator Sessions
By default, product configurator sessions remain active indefinitely. They do not
time out.

You can specify how long product configurator sessions remain active by setting the
server parameter for Keep Alive Time. This parameter specifies the time in seconds
that a session can remain idle before the session is timed out. The default value of
-1 means that the session can remain idle indefinitely and will not be timed out.
Table 50 shows this server parameter.

Table 50. Server Parameter for Auto Match

Parameter Name Display Name Data Type Default Value Description

eProdCfgKeepAliveTime Product Configurator
- Keep Alive Time of
Idle Session

Integer -1 The amount of time in
seconds that a
configuration session
can remain inactive
before the session is
killed.
450 Product Administration Guide Version 7.5.3

Technical Reference

Enforcing the Field Length for Entering Advanced Rules
Enforcing the Field Length for Entering Advanced Rules
The Advanced Rule template allows you to enter a rule containing several thousand
characters. However, the database can store rules that contain only up to 900
characters.

You can revise the business component associated with the Advanced Rule template
so that you cannot enter more than 900 characters. This business component is
used for populating several lists. Revising the business component enforces the 900
character limit on all these lists. Use Siebel Tools to determine the other lists that
are affected.

To enforce the field length

1 In Siebel Tools, locate the Rule Designer Dummy List VBC business component.

It is located in the Rule Designer project.

2 Locate the field called 0 (zero).

3 Set the Text Length value to 900.

4 Recompile the desired application and test.
Version 7.5.3 Product Administration Guide 451

Technical Reference

Displaying RAL in the Rule Designer
Displaying RAL in the Rule Designer
You can revise the Rule Designer (Rules List) to add a field that displays the Rule
Assembly Language (RAL) translation of your template rules. This is a useful way
to learn how to use RAL to write configuration rules.

You must use Siebel Tools to add the field to the Rule Designer and then recompile
the siebel.srf file. You should be familiar with creating and modifying applets in
Siebel Tools before performing this procedure.

The process for revising the Rule Designer has three tasks:

1 Locate the Rule Designer applet.

2 Modify the Rule Designer applet.

3 Recompile the application siebel.srf file.

Locate the Rule Designer Applet
This task selects a target browser and queries for the Cfg SWE Rule Manager Applet.

To locate the Rule Designer applet

1 Save a copy of the siebel.srf file. It is located in the objects subdirectory of your
installation directory.

2 Start Siebel Tools.

3 Select View, Toolbars, Configuration Context.

4 In the Target Browser Group drop-down menu, select Target Browser Config.

5 In Available browser groups, select ALL and click the right-arrow to transfer it
to “Selected browser groups for layout editing.”

6 Click OK.

7 Click Applet in the Object Explorer.

8 In the Applets list, query for the Cfg SWE Rule Manager Applet.
452 Product Administration Guide Version 7.5.3

Technical Reference

Displaying RAL in the Rule Designer
Modify the Rule Designer Applet
This task adds the Rule Spec field to the Cfg SWE Rule Manager Applet.

To modify the Rule Designer applet

1 With the SWE Rule Manager Applet highlighted, select Tools, Lock Project.

2 Right click the highlighted applet record and select Edit Web Layout.

3 In the window displaying the layout, right-click and select Preview from the pop-
up menu.

4 Click the Template icon and select the Applet List (Base/EditList) template. It is
the default.

5 In the Mode drop-down menu, select 3: Edit List.

6 In the Controls/Columns window, click Rule Spec, and drag it to the [field] just
to the right of End date in the applet display.

7 Click Save. Click OK on the pop-up message that asks if you want to save your
changes.

Recompile Siebel.srf
This task recompiles the application’s siebel.srf file.

To recompile siebel.srf

1 Click Tools, Compile.

2 Select Locked Projects.

3 Enter the path to the application siebel.srf file. It is located in the objects
subdirectory of the installation. Do not enter the path to the siebel.srf file in the
Tools installation directory.
Version 7.5.3 Product Administration Guide 453

Technical Reference

Turning Off Default Instance Creation
Turning Off Default Instance Creation
When you add a customizable product to a quote, order, or agreement, a default
product instance is created. This causes the default items in the customizable
product to display as line items. When the user clicks Customize, another instance
is created for the configuration session. The default instance is not used.

For large customizable products, creating the default instance can significantly
increase the time required to add the customizable product to Line Items to the
quote or order. To improve performance, you can turn off default instance creation.
When you add a customizable product, this causes it to display as a single line item.
The default components do not display as line items.

This will not affect performance when the user clicks Customize since this creates
a new product instance. Turning off default instance creation applies only to
customizable products. It does not apply to bundles.

To turn off default instance creation

1 In Siebel Tools, locate the Quote, Agreements, or Orders business component.

2 Display user properties.

3 Set the Skip Loading Default Cfg Instance user property to Y.

4 Recompile the desired application and test.
454 Product Administration Guide Version 7.5.3

Technical Reference

Revising the System Default Cardinalities
Revising the System Default Cardinalities
When a you create a relationship in a customizable product, you can specify a
minimum, maximum, and default cardinality. If you do not specify cardinalities, the
system uses the following defaults:

■ Minimum cardinality = 0

■ Default cardinality = 0

■ Maximum cardinality = 999

If you do not specify cardinalities this means that users are not required to select
any items from the relationship and are limited to selecting a maximum of 999
items.

You can change these defaults as needed. For example, you can set the maximum
system default cardinality to a number larger than 999.

To revise the system default cardinalities

1 In Siebel Tools, locate the Complex Product Structure BusComp.

2 Within the business component, locate the desired field: Default Cardinality,
Max Cardinality, or Min Cardinality.

3 Display the user properties for the field.

4 Set the Pre Default Value user property to the desired amount.

The amount should be an integer that is greater than or equal to 0.
Version 7.5.3 Product Administration Guide 455

Technical Reference

Displaying Fields from S_PROD_INT in Selection Pages
Displaying Fields from S_PROD_INT in Selection Pages
You can add the fields from the Product Master tables (S_PROD_INT) to selection
pages. The process has the following steps:

1 Add the fields to the CFG CX Products Buscomp and define user properties. This
buscomp is part of the Object Broker and extracts data from S_PROD_INT.

2 Add SWE code to the desired Web template. The SWE code retrieves the field
from the buscomp and displays it in selection pages. Fields display as text boxes.

3 Delete the contents of the CFGCache directory. This forces the system to create
a new instance of the customizable product containing the fields.

You can display text fields only for product items or for the product root. This means
you can insert the SWE code only in the following places:

■ For-each loops that iterate on relationship domains or the children of
relationship domains. You cannot insert the code in for-each loops that iterate
on attributes or on groups.

■ At the root level. The template in which you insert the SWE code must not be
called from inside a for-each in any other Web template.

The procedures in this section require you to have a thorough knowledge of Siebel
Tools. You must also have a thorough understanding of eConfigurator Web template
structure.

Add Fields to the CFG CX Products Buscomp
This procedure adds the fields you want to display to the Object Broker and
recompiles the application. This makes the fields available for display.

To add fields to the CFG CX Products Buscomp

1 Locate the CFG CX Products Buscomp in Siebel Tools.

2 Add the desired fields from S_PROD_INT to the buscomp.

3 For each field you add, define a user property called Cfg UI Field. Set the user
property value to TRUE.

4 Recompile the repository and copy it to the application installation directory.
456 Product Administration Guide Version 7.5.3

Technical Reference

Displaying Fields from S_PROD_INT in Selection Pages
Add SWE Code to the Web Template
The following example shows the SWE code you would insert in a Web template to
retrieve the Part Number field for display:

<swe:control id=“swe:101Id+4400” CfgUIControl=“CfgLabel”
CfgHtmlType=“CfgLabel” property=“FormattedHtml”
CfgFieldName=”Part Number”/>

The “id” must be that specified in the for-each loop iteratorName, and the
increment amount must be unique within the for-each loop.

If you want to display a field name next to the field value, insert an swe:control
statement that extracts the field name from the repository. This allows you to
support localization. You can insert the swe:control wherever needed in the
template. It does not have to be inside a for-each loop. Here is an example of an
swe:control tag that extracts the field name for Part Number from the repository.
The “id” in the tag must be present but is not used for anything. The lblPartNumber
value is the name of the label control in the repository.

<swe:control id=“partnum” CfgUIControl=“lblPartNumber”
property=“Displayname”/>

To add SWE code to a template

1 Copy the desired template and give it a new filename.

2 Insert the SWE code into the new template.

3 Add the new template to the Pick UI Style dialog box.

4 Select the new template as the UI control for a relationship or an item.

Delete Contents of CFGCache Directory
You must delete the contents of this directory. This makes sure that the system loads
your changes when generating a customizable product, rather than loading the
objects from the cache directory.

To delete the contents of the CFGCache directory

1 Locate the Siebel File System directory.

To see the directory path or system name for the directory, from the Siebel
application Help menu, choose Technical Support.
Version 7.5.3 Product Administration Guide 457

Technical Reference

eConfigurator API
2 In the Siebel File System directory, locate the CFGCache directory.

3 Delete all the files in the CFGCache directory.

eConfigurator API
This section summarizes the APIs available to the Siebel eConfigurator, version
7.5.x and focuses on a segment of those APIs.

This section introduces advanced users to APIs. It assumes that you know Siebel
eConfigurator and Siebel server architecture. Implementing the APIs described in
this section also requires proficiency in Siebel EAI and Siebel Object Interfaces.

To use these APIs, the user should be familiar with the following:

■ Siebel Business Process Designer

■ Runtime Events (personalization) if invoked from the UI

■ Siebel Object Interfaces

■ A Siebel scripting language (Siebel VB or Siebel eScript)

■ Recursive programming techniques

■ Constraint satisfaction theory

■ Underlying behavior of the Siebel eConfigurator

■ Siebel product definition data model

■ Siebel property set representation of data (creation and transformation)

■ EAI Transports and Interfaces

Available APIs
There are three main groups of APIs used for accessing Siebel eConfigurator. These
APIs are supported by the Complex Object Instance Service.

■ Group 1: UI

■ CPRUI Service API as Siebel Web Template items.
458 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ DOM API within the browser inherent in JavaScript and HTML.

■ Group 2: Model

■ Scripts that execute in the context of the current session and are implemented
as part of the configuration model in the Script Designer View.

■ Group 3: Instance

■ This API is for using Siebel eConfigurator or for manipulating the
configuration session from a place other than the Configurator runtime UI.

■ The Remote Complex Object Instance Service is a business service that is
available for accessing the Instance API.

About the Instance APIs
Instance APIs follow these general concepts:

■ The Remote Complex Object Instance Service is a business service. It can be
accessed by anything in the Siebel architecture that can use a business service.
As a business service, it is used by invoking methods, passing in property sets
with input arguments, and getting results from the Outputs property set.

■ A session is uniquely identified by two ID values, the Object Id and the Root Id.
In quotes, the Object Id is the Quote Id and the Root Id is the Quote Item Id for
the top-level parent (the root). In assets, the Object Id and the Root Id are both
the root Asset Id.

■ A session is unique only within its own user session on a given Object Manager.

■ A port is another name for a Relationship.

■ A complex product is another name for a customizable product.

■ The Port Id is the ID of the relationship as defined in the Complex Product
Structure BusComp.

■ The Prod Item Id is the ID of the relationship item as defined in the Complex
Product Structure BusComp.

■ The Path for an item is the Integration ID of the specific item.
Version 7.5.3 Product Administration Guide 459

Technical Reference

eConfigurator API
■ Version arguments are used only when testing a customizable product version
that is different from the currently released version.

NOTE: The parameters are property set and, unless indicated, all properties are on
the root level property set.

LoadInstance
This method loads the complex object into memory. This is the starting point for all
configurations.

Input Arguments:
■ ObjId—the unique identifier of the complex object header (for example, Quote

ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row id).

■ IntObjName—the name of the integration object specified in Siebel Tools.

■ TriggerEvent—the flag that determines if script events are triggered. Normally, it
should be set to Y. Set it to N for special uses of the API where script events are
not desired.

■ (Optional) Version—version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ (Optional) NewRecord—if set to Y, the instance will be populated with default
values. The default is N.

■ (Optional) AutoSync—if set to Y, the instance will be synchronized to the
database immediately after loading. The default is N.

■ (Optional) SearchSpec—set this parameter to filter out all other hierarchical
instances in the child buscomp. The default is an empty search specification.
This parameter must have the following format:

“[Header Buscomp.Id] = ’Id’ AND [Item Buscomp.Root Id] = ‘Root Id’”

ex. [Quote.Id] = ’10-4FR6D’ AND [Quote Item.Root Id] = ’10-81DUX’
460 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ (Optional) ExternalScript—set this parameter to Y when running headless
configurations (for example, through Siebel COM Data Server). Anything other
than the Cfg Web UI Service is considered headless configuration. The difference
is based on who resolves the linked items. The default is N.

Output Arguments:
The following properties will be returned from the output property set:

■ CreateSession—if this property is set to Y the method CreateSession must be
called after LoadInstance.

■ (Optional) IsConfig—if this property is present and set to Y the configuration
model has configuration rules defined.

■ (Optional) Links—if this property is set to Y the model has linked items.

■ (Optional) UnresolvedLinks—if this property is set to Y the model has
unresolved linked items that must be calculated by the caller.

■ If NewRecord is set to Y in the input property set and CreateSession is set to N
in the output property set, the output will have the instance property set
returned as a child of type CxObj (see the output example below). Here is an
example of a return property set:

< IsConfig='Y' UnresolvedLinks='Y' CreateSession='Y'
Links='Y'>

<Links 1-19D0X='10/19/2001' 1-1Z876='SADMIN' 1Z771='SADMIN'>

</Links>"

 <UnresolvedLinks>"

 <UnresolvedLink DispName='Quote Name'
Definition='<CfgVariableDef BUS_OBJ = ""Quote"" BUS_COMP =
""Quote"" FIELD_NAME = ""Name"" SEARCH_SPEC = """" SORT_SPEC =
"""" DEFAULT_VAL = """" EXECUTE = ""N""/>' Description=''
DefValue='' Name='Quote Name' BusObj='Quote' Field='Name'
ID='1-1Z875' BusComp='Quote'>

 </UnresolvedLink>

 </UnresolvedLinks>

 </>
Version 7.5.3 Product Administration Guide 461

Technical Reference

eConfigurator API
Extracting the instance property set from LoadInstance. The instance property set can
be extracted by first getting the child property set of type CxObj and then extracting
its only child.

Handling Links. A child property set of type Links is returned if the model has linked
items. The Links child property set must then be extracted and passed in to
CreateSession’s OUTPUT arguments as a child property set. In version 7.0.4 this
changed to the INPUT property set for CreateSession. Configuration rules may have
been defined for these linked items, so the configuration session must know the link
values. The linked items are represented as property–value pairs with link IDs as
properties and link values as property values, as in this example:

<Links 1-19D0X='10/19/2001' 1-1Z876='SADMIN' 1-1Z771='SADMIN'>

A child property set of type UnresolvedLinks is returned if the model has linked
items that the business service could not resolve. The children of this property
contain the information necessary to calculate the value of the linked item.

 <UnresolvedLinks>"

 <UnresolvedLink DispName='Quote Name'
Definition='<CfgVariableDef BUS_OBJ = ""Quote"" BUS_COMP = ""Quote""
FIELD_NAME = ""Name"" SEARCH_SPEC = """" SORT_SPEC = """" DEFAULT_VAL
= """" EXECUTE = ""N""/>' Description='' DefValue='' Name='Quote
Name' BusObj='Quote' Field='Name' ID='1-1Z875' BusComp='Quote'>

 </UnresolvedLink>

 </UnresolvedLinks>

Only links that have the execute flag set or pull system parameters such as TODAY
will be resolved by the configurator when used as headless configurations. The
programmer must resolve all other links.

NOTE: Make sure the unresolved links are calculated and their IDs and values are
added to the Links child property set as properties, with the link ID as the property
and the link value as the property value.
462 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
CreateSession
This method initializes a configuration session, which is necessary for customizable
products that have constraint rules. It is called immediately following LoadInstance
where required.

Input Arguments:
■ ObjId—the unique identifier of the complex object header (for example, Quote

Id).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row id).

■ IntObjName—the name of the integration object specified in Siebel Tools.

■ TriggerEvent—the flag that determines if script events are triggered. Normally, it
should be set to Y. Set to N for special uses of the API where script events are
not desired. LoadInstance and CreateSession should have the same setting.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ (Optional) NewRecord—if set to Y, the instance will be populated with default
values. The default is N.

■ (Optional) AutoSync—if set to Y, the instance will be synchronized to the
database immediately after loading. The default is N.

■ (Optional) ExternalScript—this parameter must be set to Y when running
headless configurations (for example, through Siebel COM Data Server). The
default is N.

Output Arguments:
If NewRecord is set to Y in the input property, the output will have the instance
property set returned as a child of type CxObj. This is essentially the same output
as the one that is returned from GetInstance.
Version 7.5.3 Product Administration Guide 463

Technical Reference

eConfigurator API
SetInstance
This method creates a configuration session with a supplied property set. This
permits configuration without directly writing to the database. The structure of the
input property set does not need to correspond to a Siebel object, such as a quote
that is indicated by the integration object specified.

Input Arguments:
Same arguments as LoadInstance but also requires the property set indicating the
state to load. This property set must have the SiebelMessage object as the only first
level child.

Output Arguments:
Same arguments as LoadInstance.

SyncInstance
This method saves the complex object instance where it originated.

Input Arguments:

■ ObjId—the unique identifier of the complex object header.

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ IntObjName—the name of the integration object specified in Siebel Tools.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

Output Arguments:
None

UnloadInstance
This method removes the existing configuration session from memory. It should be
called after synchronizing the instance at the end of the configuration session.

Input Arguments:
■ ObjId—the unique identifier of the complex object header.
464 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ RootId—the unique identifier of the complex object root.

■ IntObjName—the name of the integration object that was used to load the
instance.

Output Arguments:
None.

GetAllPorts
This method retrieves a list of all ports and (possibly) their contents for a product.
It gets all ports for a product but not for its child products. It retrieves the basic
definition of the product and does not consider any current configuration session
state, so every possible port is retrieved.

Input Arguments:
■ Product Id—the ID of the product in Internal Product.

■ (Optional) Version—version is used only in validate mode.

■ GetPortDomain—the flag that determines whether or not to also retrieve the
domain of each port. Use Y or N to get the domain or not.

Output Arguments:
All ports are returned as children of the output property set of type Port.

<Output>

<Port>

Port Information here

</Port>

</Output>

EnumObjects
This method returns either all immediate objects under an object or all immediate
objects under a specified port. This gets the items that are currently in the port, not
the items that could be there.
Version 7.5.3 Product Administration Guide 465

Technical Reference

eConfigurator API
Input Arguments:
■ ObjId—the unique identifier of the complex object header (for example, Quote

ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row id).

■ IntObjName—the name of the integration object specified in Siebel Tools.

■ Parent Path—the path to the parent object whose child objects you want to
enumerate. The path is the object’s Integration ID.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ (Optional) Port Item Id—the ID of a specific port (for example, ORIG_ID of the
port in S_PROD_ITEM table). If specified, only the items in this port are
enumerated; otherwise, all items in all immediate ports are returned.

Output Arguments:
Child item information is returned as child property sets, as follows:

<Output>

 < Name=”value” Product Id=”value” Path=”value” Sequence
Number=”value” />

 …

</Output>

GetAttribute
This method retrieves the value of an attribute.

Input Arguments:
■ ObjId—the unique identifier of the complex object root.

■ RootId—the unique identifier of the complex object root.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.
466 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ Path—the path of the item where you are retrieving an attribute.

■ Name—the attribute name.

Output Arguments:
The value is returned as a property of the output property set, as follows:

<Output Value=”value”>

</Output>

GetFieldValues
This method retrieves field values for a product that exists in the complex product.

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ Path – the path to the item.

Output Arguments:
The output property set returned will have the field names as properties, as follows:

< Field=”value” Field=”value” … Field=”value”/>

GetInstance
This method gets the loaded instance as a property set. It returns the full structure
of products and attributes.

Input Arguments:
■ ObjId—the unique identifier of the complex object root.

■ RootId—the unique identifier of the complex object root.
Version 7.5.3 Product Administration Guide 467

Technical Reference

eConfigurator API
■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

Output Arguments:
The entire property set output is the complex object instance.

GetParents
This method retrieves all the parents of an item.

Input Arguments:
■ ObjId—the unique identifier of the complex object root.

■ RootId—the unique identifier of the complex object root.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ Path—the path of the item.

Output Arguments:
The property set returned will have child property sets, each with the following
properties:

< >

 < Product Id=”value” Name=”value” Sequence Number=”value”
Path=”value”/>

 …

</ >

GetPossibleDomain
This method retrieves selectable items from the configuration engine for a port

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row id).
468 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ Parent Path—the item parent path.

■ Port Item Id—the item port id.

Output Arguments:
The property set returned will have the possible domain item product Ids as
properties, each with the value 0, as follows:

< ProdId1=”0” ProdId2=”0” … ProdIdn=”0” />

GetPossibleValues
This method retrieves selectable values from the configuration engine for an
attribute.

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row id).

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ IntObjName—the name of the integration object.

■ Path—the Integration ID of the port to which this attribute is attached.

■ XA Id—the ID of the attribute for which the values need to be determined.

Output Arguments:
The property set returned will have the possible values as the property names, as
follows:

< [PossibleValue1]=”Val1” [PossibleValue2]=”Val2”/>

GetProductId
This method gets the root Product ID of the complex object instance.
Version 7.5.3 Product Administration Guide 469

Technical Reference

eConfigurator API
Input Arguments:
■ ObjId—the unique identifier of the complex object header (for example, Quote

ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

Output Arguments:
The product Id is returned as a property of the output property set, as follows:

< Product Id=”value” />

GetRootPath
This method returns the path of the complex object instance root.

Input Arguments:
■ ObjId—the unique identifier of the complex object header (for example, Quote

ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

Output Arguments:
The root path is returned as a property of the output property set, as follows:

< Path=”value” />

HasGenerics
This method returns generics and children flags for an item. A port has generics if
the required cardinality is greater than the current cardinality and no default
product is specified.
470 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row id).

■ IntObjName—the name of the integration object.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ Port Item Id—the ID for the port item that will have either children or generics.

■ Path—the path to the parent item of interest.

Output Arguments:
■ HasGenerics—Y is present if it does, not present if it does not.

■ HasChildren—Y is present if it does, not present if it does not.

APIs to Interact with Conflicts and Messages

NOTE: The APIs in this section apply only to customizable products with constraint
rules.

GetDetailedReqExpl
This method retrieves conflict messages.

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ IntObjName—the name of the integration object.

Output Arguments:
Expl#—the explanations for the conflicts. Substitute a number for #, such as Expl0,
Expl1, and so on.
Version 7.5.3 Product Administration Guide 471

Technical Reference

eConfigurator API
GetExplanations
This method retrieves configuration explanations for an item.

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ Path—the path of the item.

Output Arguments:
The property set returned will have child property sets, each with the property Value
as the explanation, as follows:

<Output>

 <Expl Value=”Explanation”/>

 <Expl Value=”Explanation”/>

 …

 <Expl Value=”Explanation”/>

</Output>

GetSignals
This method retrieves configuration engine signals.

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ (Optional) Path—the integration ID where the item gets signals.
472 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

Output Arguments:
The property set returned will have child property sets, as follows:

< >

 <Signal Expl=”signal”/>

 <Signal Expl=”signal”/>

 …

 <Signal Expl=”signal”/>

</ >

RemoveFailedRequests
This method removes all failed requests sent to the configuration engine.

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).

■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

Output Arguments:
None.

UndoLastRequest
This method removes the last request sent to the configuration engine.

Input Arguments:
■ ObjId—the unique identifier of the complex object root (for example, Quote ID).
Version 7.5.3 Product Administration Guide 473

Technical Reference

eConfigurator API
■ RootId—the unique identifier of the complex object root (for example, Quote
Line Item row Id).

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

Output Arguments:
None.

APIs to Set Product and Attribute Values
This section describes APIs used for setting product and attribute values.

AddItem
This method adds an item to a specified port, creating a new instance of an item. If
you want to change the quantity of an existing instance of an item, use
SetItemQuantity.

Input Arguments:
■ ObjId—the unique identifier of the complex object header.

■ RootId—the unique identifier of the complex object root.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ (Optional) AutoResolve—automatically resolves port cardinality violations. The
default is N.

■ Prod Item Id—the ID of the item (for example, ORIG_ID in S_PROD_ITEM table).

■ Name—the name of the item.

■ Product Id—the product id in S_PROD_INT table.

■ Port Item Id—the ID of the item’s port (for example, ORIG_ID of the port in
S_PROD_ITEM table).

■ Quantity—the item quantity.
474 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ List Price—the item list price from Pricing Manager, which can be empty.

■ Current Price—the current price from Pricing Manager, which can be empty.

■ Parent Path—the path of the parent item the port belongs to.

Output Arguments:
None.

CopyInstance
This method copies an instance.

Input Arguments:
■ ObjId—the unique identifier of the complex object header of the source instance.

■ RootId—the unique identifier of the complex object root of the source instance.

■ DestObjId—the unique identifier of the complex object header of the destination
instance.

■ IntObjName—the name of the integration object specified in Siebel Tools.

Output Arguments:
None.

RemoveItem
This method removes an item from the instance.

Input Arguments:
■ ObjId—the unique identifier of the complex object header.

■ RootId—the unique identifier of the complex object root.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ Path—the path of the item.

Output Arguments:
None.
Version 7.5.3 Product Administration Guide 475

Technical Reference

eConfigurator API
RepriceInstance
This method updates the instance with values from the Pricing Manager service. A
call to the Pricing Manager service’s CalculatePriceCX method returns a property
set that is the input to this method.

Input Arguments:
■ ObjId—the unique identifier of the complex object header.

■ RootId—the unique identifier of the complex object root.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

The input property set has child property sets containing the repricing information.
The format of the input property set is as follows:

< ObjId=”value” RootId=”value” Version=”value” >

 < IntId=”integration id” FieldName=”value”… FieldName=”value” >

 < IntId=”integration id” FieldName=”value”… FieldName=”value” >

 …

< />

In this context, the Integration ID is used to retrieve the instance item.

Output Arguments:
None.

SetAttribute
This method sets the value of an item’s attribute.

Input Arguments:
■ ObjId—the unique identifier of the complex object root.

■ RootId—the unique identifier of the complex object root.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.
476 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
■ Path—the path of the item with attribute to set.

■ Value—the attribute value.

■ Name—the attribute name.

■ XA Id—the extended attribute ID. This is the row ID of the attribute in the XA
Attribute business component.

■ Property Type Code—the attribute type.

Output Arguments:
None.

SetItemQuantity
This method sets the quantity of an item.

Input Arguments:
■ ObjId—the unique identifier of the complex object root.

■ RootId—the unique identifier of the complex object root.

■ (Optional) Version—Version arguments are used only when testing a
customizable product version that is different from the currently released
version.

■ Path—the path of the item.

■ Quantity—the quantity to set.

Output Arguments:
None.

SetFieldValue
This method updates the value of a field in a line item.

Input Arguments:
■ Path—The Integration Id of the line item (or of the parent line item in the case

of an attribute).
Version 7.5.3 Product Administration Guide 477

Technical Reference

eConfigurator API
■ FieldName—The field name. This should not be a field that is used and
controlled by the Configurator (such as: Quantity, Port Item Id, Integration Id,
Attribute Value, and so on).

■ XA Id—(Optional) The attribute Id. Specify only if you are setting the value in
an attribute field.

■ Value—The value of the field.

Output Arguments:
None.

Object Broker Methods
The methods in this section call the Cfg Object Broker business service, which
functions as a wrapper for the Object Broker.

GetProdStruct
This method returns the full structure of the customizable product.

Input Arguments:
■ RootId—the unique identifier of the complex object root. If provided, RootName,

Vendor, and Org are ignored. If not provided, RootName, Vendor, and Org are
used to uniquely identify the product.

■ RootName—the root product name. Optionally, you can use Name together with
Vendor and Org to uniquely identify a product.

■ (Optional) Version—version arguments are used only when testing a
customizable product version that is different from the currently released
version. Specify 0 to return the work space.

■ (Optional) Vendor—use with RootName to uniquely identify the product. By
default, this is empty.

■ (Optional) Org—use with RootName to uniquely identify the product. By
default, this is empty.

■ Full—Yes returns the full product structure. Blank or No returns the first level of
the product.
478 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
Output Arguments:
 <ProdStruct> RootId

 <ProdId> Name ClassId

 <Port> Name ClassName ClassId OrigId Type MinCard MaxCard
DefltCard LocalType InternalType

 <Subobject Id/>

 ...

 </port>

 ...

 <Attribute> Name

 <Domain Value />

 ...

 </Attribute>

 ...

 </ProdId>

 ...

 </ProdStruct>

DeltaQuote
This method performs a recursive tree comparison of two property sets to determine
the difference between them based on supplied criteria. It returns a copy of the
destination product instance, marked up to indicate changes. This preconfigured
API is called from an external service only in SIS Order Management, which is the
only way to see this API function for the API Discovery.

In one example, you start with a computer that has one hard drive and a 900 MHz
processor. You upgrade it to add a second hard drive (quantity now = 2) and
replace the processor with a 1000 MHz model. The result would be one existing
hard drive, one new hard drive (the instance is split), one 900 MHz CPU removed,
and one new 1000 MHz CPU.
Version 7.5.3 Product Administration Guide 479

Technical Reference

eConfigurator API
If the output property set is empty and no error code is thrown, the most likely
cause is that the instances were not recognized. Check the RootId parameters and
the indenting of your source and destination SiebelMessages.

Input Arguments:
■ SrcRootId—the root ID for the product in the source of the comparison. This is

the “before” property set.

■ DestRootId—the root ID for the product in the destination of the comparison.
This is the “after” property set.

■ DeltaSrcField—the Path field in the source instance.

■ DeltaDestField—the Path field in the destination instance.

■ SrcItemIntComp—the name of the integration component for the items in the
source instance (for example, Quote Item).

■ DestItemIntComp—the name of the integration component for the items in the
destination instance (for example, Quote Item).

■ SrcXAIntComp—the name of the integration component for the XA in the source
instance (for example, Quote Item XA).

■ DestXAIntComp—the name of the integration component for the XA in the
destination instance (for example, Quote Item XA.)

■ ITEM_MAPPING—This is a property set with type= “ITEM_MAPPING.” It
contains a list of those fields that should be copied when creating a new instance
of an item in the destination property set. The property names are the fields in
the source instance, and the property values are the names in the destination
instance. Here is an example output from the API sniffers:

CHILD PROPERTY SET 3
Type: ITEM_MAPPING Value:
Unit Price = Unit Price
Action Code = Action Code
Root Id = Root Id
Port Item Id = Port Item Id
Integration Id = Integration Id
Discount Amount = Discount Amount
Parent Id = Parent Id
480 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
Product Id = Product Id
Prod Item Id = Prod Item Id
Quantity = Quantity

■ XA_MAPPING—This is a property set with type= “XA_MAPPING.” It contains
a list of those fields that should be copied for each of the attributes when
creating a new instance of an item in the destination property set. The property
names are the fields in the source instance, and the property values are the
names in the destination instance. Here is an example output from the API
sniffers:

CHILD PROPERTY SET 2
Type: XA_MAPPING Value:
Action Code = Action Code
Value = Value
Read Only = Read Only
Name = Name
Property Type Code = Property Type Code
XA Id = XA Id

■ ITEM_COMPARE—This is a property set with type= “ITEM_COMPARE.” It
defines what constitutes a unique instance of an item in the source and
destination instances. For the service, it answers the question “How do I know
if these two things are the same?” Here is an example output from the API
sniffers:

CHILD PROPERTY SET 1
Type: ITEM_COMPARE Value:
Port Item Id = Port Item Id
Product Id = Product Id

■ XA_COMPARE—This is a property set with type= “XA_COMPARE.” It defines
what constitutes a unique instance of an attribute in the source and destination
instances. For the service, it answers the question “How do I know if these two
things are the same?” Here is an example output from the API sniffers:

CHILD PROPERTY SET 0
Type: XA_COMPARE Value:
Value = Value
Name = Name
Property Type Code = Property Type Code
XA Id = XA Id
Version 7.5.3 Product Administration Guide 481

Technical Reference

eConfigurator API
■ SrcInst—This is the Source Instance (“before”) that will be used in the delta
comparison. It is a double-indented SiebelMessage with a type of SrcInst. The
top section of the output from the API sniffers is shown below for reference.
Note the indenting of the SiebelMessage.

CHILD PROPERTY SET 4
Type: SrcInst Value:
CHILD PROPERTY SET 0

Type: Value:
CHILD PROPERTY SET 0

Type: SiebelMessage Value:
MessageId = 1-12949
IntObjectFormat = Siebel Hierarchical
MessageType = Integration Object
IntObjectName = CX Product Validation
CHILD PROPERTY SET 0

Type: ListOfCX Product Validation Value:
CHILD PROPERTY SET 0

Type: Product Header Value:
Name = 1-12950
Price List Id = 1-ZEC
Id = 1-12951
CHILD PROPERTY SET 0
 Type: ListOfProduct Item Value:
CHILD PROPERTY SET 0

Type: Product Item Value:
Action Code = Existing
Port Item Id =
Integration Id = 1-12744
Cfg Type = eConfigurator
Name = System Chassis
Product Id = 1-1M9Y
Prod Item Id = null
Quantity = 1.0
Id = 1-12744

■ DestInst—This is the Destination Instance (“after”) that will be used in the delta
comparison. It is a double-indented SiebelMessage with a type of DestInst. The
top section of the output from the API sniffers is shown below for reference.
Note the indenting of the SiebelMessage.

CHILD PROPERTY SET 5
Type: DestInst Value:
CHILD PROPERTY SET 0

Type: Value:
CHILD PROPERTY SET 0
482 Product Administration Guide Version 7.5.3

Technical Reference

eConfigurator API
Type: SiebelMessage Value:
MessageId = 123
IntObjectFormat = Siebel Hierarchical
MessageType = Integration Object
IntObjectName = CX Product Validation
CHILD PROPERTY SET 0

Type: ListOfCX Product Validation Value:
CHILD PROPERTY SET 0

Type: Product Header Value:
Name = 1-12950
Price List Id = 1-ZEC
Id = 1-12951
CHILD PROPERTY SET 0

Type: ListOfProduct Item Value:
CHILD PROPERTY SET 0

Type: Product Item Value:
Has Generics Flag = Y
Action Code = Existing
Integration Id = 1-12744
Port Item Id =
Sequence Number =
Name = System Chassis
Cfg Type = eConfigurator
Product Id = 1-1M9Y
Quantity = 1.0
Prod Item Id = null
Id = 1-12744

Output Arguments:
The destination instance is returned as a SiebelMessage, modified and marked up
with status information. The status (new, modified, existing, removed) is indicated
in the Action Code field of each item and attribute.
Version 7.5.3 Product Administration Guide 483

Technical Reference

Application Integration Network
Application Integration Network
Siebel Systems provides a library of business services that allow Siebel applications
to share information with other applications through integration servers. This
library is called the Universal Application Network, and its business services are
called Application Service Interfaces (ASIs).

There are two ASIs for managing products: External Simple Product and Siebel
Simple Product. These are briefly described below. For a full technical description
of these ASIs, see Application Services Interface Reference.

External Simple Product
This ASI sends information about simple products created in the Siebel system to
an external, third-party system. It allows you to create, update, query, and delete a
product in the third-party system. This ASI is intended for inclusion in Siebel
workflows that automate exporting products. It does not support sending
information about customizable products or bundles.

The export feature included in the Siebel Product Administration interface exports
basic product information to an XML file and is intended for Siebel-to-Siebel
transfers of product records. The External Simple Product ASI exports a much larger
set of information about the product.

This information sent includes almost all of the fields in the product record.

This ASI receives the following information:

■ Confirmation

■ Error messages

■ Status

■ Product ID
484 Product Administration Guide Version 7.5.3

Technical Reference

Application Integration Network
Siebel Simple Product
This ASI receives information about simple products created in third-party systems.
It allows users to create, update, query, and delete products in the Siebel system. It
ASI is intended for use in automated business processes in third-party systems that
need to synchronize the Siebel system to external product masters. This ASI does
not support receiving information about customizable products or bundles. The
information accepted by this ASI includes the following:

■ Product name

■ Product description

■ Part number

■ Product attributes and attribute values

■ Product unit of measure

■ Product classification

■ Product type

■ Substitute product name

■ Literature

■ Product catalog

■ Product category

■ Price list

This ASI sends the following information:

■ Confirmation

■ Error messages

■ Status

■ Product ID
Version 7.5.3 Product Administration Guide 485

Technical Reference

Application Integration Network
486 Product Administration Guide Version 7.5.3

Index
A
access group, about assigning 64
activating configuration rules 297
AddItem 37, 413
AddItem method, about 474
Admin Product List report 84
Advanced Rule Template 360
Advanced Rules Designer

See also Rule Designer
compared to release 6.x 33

agreement, about using Verify button 55
Application Administration screen, about

using 22
arithmetic operators

configuration rule assembly language,
about and table of 372

configuration rule template
reference 352

Assisted Advanced Rule template 357
attribute conditions

in exclude rule 325
require rule 340

attribute domain
data types 100
defined 98
definition fields 101
inherited attributes, editing 112
types of 99

attribute name and description,
translating 428

Attribute Value (Advanced) template 311
attribute values

in LOV record 117
setting 114
setting with scripts 389

attribute-based pricing, list of value
elements 99

attributes
See also list of values (LOV) domain
about 98
analogous 6.x structures 32
attribute arithmetic operators 376
attribute comparison operators 374
attribute definition, deleting 109
attribute definitions, about editing and

example 106
attribute definitions, editing

(procedure) 108
business component domain, about 122
business component domain, about

associating with 123
business component, about associating

with 127
business component, associating with

(procedure) 128
class, deleting 92
classes and inheritance 99
in customizable product,

displaying 238, 247
data types 100
defined 32, 68
hidden attributes, about 104
hidden or required settings,

changing 113
parent class attributes, deleting 110
products and attributes, associating 112
provide template, target of provide and

consume rules 333
range of values domain, defining 106
Version 7.5.3 Product Administration Guide 487

simple provide template, target of provide
and consume rules 335

user interface control compatibility 224
viewing by product 113
viewing product attributes 70

attribute-type customizable product,
workflow 24

auctions, creating 74
audience for guide 15
Auto Match (quotes and orders) 191
Auto Match, enabling and parameters 449

B
base theme

about 215
menu-based theme 220
pricing integration 227
pricing, types of 215
selecting 229
system default 219

base theme template
about 244
creating 253
customizable product, adding to 254
customizable product, name change

process 253
layout 253
product name change example 256
UI property, defining 255

Basic Rules Designer
See Rule Designer

Boolean operators
comparison operators, using to create

rules 384
Rule Assembly Language 366
in rule conditions 311

bundles
See also product bundles; simple product

bundles
controlling how forecast 211
controlling how taxed 210
converting a customizable product

to 206

converting to customizable product 205
relationship to customizable

products 188
business component domain (attribute)

about 122
about associating with 123
attribute value constraint, about

creating 136
attribute, about associating the attribute

with a business component 127
attribute, adding to selection page 126
attribute, associating the attribute with a

business component
(procedure) 128

buscomp field constraint, about
creating 132

buscomp field constraint, creating
(procedure) 135

multiple fields, about setting up for
display 129

multiple fields, setting up for display
(procedure) 131

multiple fields, using predefined UI
properties for display (table) 130

UI properties 124
business component links

creating 279
field definitions 277
link definitions, deleting 282
operation of 276

C
cache management

See snapshot mode
cardinality

about 168
combinations, table 169
configuration constraint, as part of 304
default cardinality 304
maximum cardinality 304
minimum cardinality 304
system default cardinalities,

revising 455
488 Product Administration Guide Version 7.5.3

user interface control
considerations 224

catalogs, analogous 6.x structures
(table) 31

category, analogous release 6.x structure
(table) 31

Cfg_AttributeChanged event, about 400
Cfg_CategoryChanged, comparison 6.x to

release 7.x 36
Cfg_ChildItemChanged event

about 390, 397
ChangedItem argument 397, 400
selection pages 397, 400
syntax 397, 400
usage example 398, 401

Cfg_InstInitialize event
about 390
syntax and use 396

Cfg_InstInitialize, 6.x to 7.x mapping 36
Cfg_InstPostSynchronize event

about 391
syntax, returns, usage 403

Cfg_ItemChanged event
difference from release 6.x 404
syntax 405

Cfg_ItemChanged event, comparison 6.x to
release 7.x 36

Cfg_ItemChanged event, use of 404
Cfg_ItemInitialize, comparison 6.x to

release 7.x 36
Cfg_ItemPostSynchronize, comparison 6.x

to release 7.x 36
Cfg_ItemPreRequestSubmit, comparison 6.x

to release 7.x 36
Cfg_ItemPreSynchronize, comparison 6.x to

release 7.x 36
Cfg_OnConflict event, use of 406
Cfg_SessionClosed, comparison 6.x to

release 7.x 36
Cfg_SessionPostProcess, comparison 6.x to

release 7.x 36
ChangedItem argument 397, 400
class definitions

class records, fields 88
deleting (procedure) 93
editing 90, 91
locating in hierarchy (procedure) 96

class display name, translating 427
class domain relationship type,

defined 166
class hierarchies

about 86
creating 89
managing, about 89

class structure
export-import process 94
exporting 94
importing 95

class, relationship domain
product information changes, affects

of 184
work space, refreshing 172

classes
See also parent classes; product classes;

subclasses
attribute definitions, about editing and

example 106
attribute definitions, editing

(procedure) 108
attribute inheritance 86
class hierarchy vs. component

hierarchy 165
class-level configuration constraints 303
defining 88
deleting, about 92
designating 49
dynamic class, relationship domain

connection 178
editing guidelines 57
exporting class structure, about 93
product attributes 99
products, adding from multiple

classes 180
role in product-attribute association 112
uses of 86

class-product templates
Version 7.5.3 Product Administration Guide 489

creating 201
turning off 204
understanding rule inheritance 287

comparison operators
Boolean operators, using to create

rules 384
configuration rules template 350
multiple operands for 371
Rule Assembly Language 370

component products
add quantity function 413
AddItem function 413
GetObjQuantity 412
RemoveItem function 414
scripts, role of 389
SetAttribute function 415
structure example 395

components
component hierarchy vs. class

hierarchy 165
component-type customizable product,

workflow 25
customizable products, adding to 182

Compound Field button 329
compound logic operators 350
conditional operators, table 377
Conditional Value template 313
conditions

exclude rule 324
require rule 339

Configuration Assistant
See also Product UI Designer
analogous feature in release 7.x 37
analogous release 6.x processes 38

configuration methods
dense data, about and example 43
deploying conditions table 46
runtime deployment requirements 45
sparse data, about and example 44

configuration process
resource amounts, tracking 162
resource definition, creating 271
resource definition, deleting 272

resource definition, editing 272
user interface design, process

overview 214
configuration rules

about 163
activating and deactivating during

testing 294
compared to rules template 284
configuration rule explanation,

translating 429
copying 292
creating 289
deactivating 296
defined 284
deleting 293
duplicate rules 292
effective dates, about setting 294
effective dates, testing rules 295
Inactive checkbox, about using 285
inactive rules, activating 297
inactive rules, defined 294
links, role of 276
links, value of 276
process overview 284
related rules, process for creating 294
resource use 273
resource variables 270
rule definition, deleting 293
rule definition, editing 291, 292, 294
solutions 308
testing 193

configuration rules, constraints
attribute definitions 303
cardinality 304
declarative portion and user-constraints,

interaction 307
external data, using 306
implicit constraints, overriding 305
overview 305
types of constraints 303
user interface design as constraint 304

configuration rules, templates
Attribute Value (Advanced) 311
490 Product Administration Guide Version 7.5.3

Conditional Value 313
Constrain 314
Constrain Attribute Conditions 315
Constrain Attribute Value 316
Constrain Conditionally 317
Constrain Product Quantity 318
Constrain Relationship Quantity 319
Constrain Resource Value 307, 320
Consume 330
Consume (Simple) 334
creating 297
Display Message 321
Display Recommendation 322
editing and deleting 299
Exclude 323
Provide 330
Provide (Simple) 334
Relationship Item Constraint 336
Require 337
Require (Mutual) 345
Set Initial Attribute Value 346
Set Initial Resource Value 347
Set Preference 348

configuration sessions
customizing display 238, 247
solutions, creating 308
UI properties, changing 238, 247

Configurator
conflicts and messages, APIs to

interact 471
Object Broker methods 478
product and attribute values, APIs to

set 474
Constrain Attribute Conditions

template 315
Constrain Attribute Value template 316
Constrain Conditionally template 317
Constrain Product Quantity template 318
Constrain Relationship Quantity

template 319
Constrain Resource Value template 307,

320
Constrain template 314

constraints
about 303
attributes 303
cardinality 304
class-level constraints 303
configuration rules as 305
constraining methods 303
implicit, overriding 305
programming constraint rules,

about 307
relationship cardinality 304
rule conditions as 310
user interface design as constraint 304
user-constraints 307

consume rule
attribute target 335
item operand 331
product target operand 331, 335
provide template, attribute target 333
quantity 331, 334
resource target 332, 335
sample scenario 332
target operand 331, 335
value operand 331, 334

Consume template 330, 334
copying

configuration rules 292
customizable products 199

copying product records 58
CopyInstance method, about 475
CreateSession method 463
customizable asset, creating 208
customizable products

about and example 20
adding 182
attribute-based vs. component-based 98
attributes vs. features 68
attributes, displaying 238, 247
attributes, viewing 70
attribute-type processes 24
automatic pricing 228
base theme, name change process 253
Version 7.5.3 Product Administration Guide 491

class hierarchy vs. component
hierarchy 165

component-based vs. attribute-based 98
converting to bundle 206
converting to bundles 205
copying 199
creation, technical overview 246
database synchronization 196
defined 23
deleting products from work space 185
deleting structure of 186
effective dates, usage guidelines 197
exporting (procedure) 81
exporting/importing process 81
group name change example 260
groups, displaying 238, 247
items displayed 238, 247
linked items, displaying 238, 247
modifying customizable assets (delta

quotes) 189
name change example 256
previous version, reverting to 198
pricing update 228
process 25
product administration process 24
as product components 182
product designer, about 161
product name, importance of 393
product version, deleting 198
product versions and work space 160
records, copying 58
relationships, displaying 238, 247
resource amounts, tracking 162
resource definition, creating 271
resource definition, deleting 272
resource definition, editing 272
resources, adding 271
resources, displaying 238, 247
Siebel Web Engine display,

overview 247
testing 193
UI property, group names 259

user interface design, process
overview 214

web display groups 222
work space, locking 173
work space, role of 160, 171

customizable products, constraining
about 303
attributes 303
cardinality constraints 304
configuration rules, role of 305
declared rules and user-constraints,

interaction 307
user interface design as constraint 304

customizable products, exporting
overview 82

customizable products, importing
overview 82
procedure 83

customizable products, relationships
cardinality constraints 304
dynamic class, relationship domain,

creating 178
editing 183
example 164
importance of 164
product path, structure example 395
structure example 395

customizable products, releasing
about 195
effective dates 196
procedure 197

customizable products, scripting
about writing 391
Cfg_ItemChanged event 405
declarations scripts, creating 418
declarative portion, changes to 389
deleting scripts 421
editing scripts 420
event scripts, creating 416
script errors, checking 422
script instance, defined 391
script log 422
scripts, defined 389
492 Product Administration Guide Version 7.5.3

uses of 389
customizable products, templates

base theme template, adding 254
configuration rules vs. rule

templates 284
product theme template, adding 259
rule templates, about 286
UI property, adding to base theme

template 255

D
data

dense data, about and example 43
sparse data, about and example 44

data types, attributes 100
deactivating configuration rules 296
declarations script, creating 418
default cardinality 168
deleting

attribute definition 109
classes 92
configuration rules 293
customizable products 198
product records, about 59
resource 272
rule templates 299
scripts 421
simple product bundles 157
system variable links 282

Delta quotes 189
DeltaQuote method, about 479
dense data, about and example 43
Description, predefined UI property 239
DHTML commands 248
Display Message template 321
Display Recommendation template 322
dynamic attributes

See attributes
dynamic class, relationship domain

connection to class system 178
defined 167
product information changes, affects

of 184

refreshing the work space 172
relationship, creating 178
sequence numbers 167

E
eConfigurator

See also Siebel eConfigurator
APIs available, list of 458
architecture components 446
Auto Match, enabling and

parameters 449
instance APIs, concepts 459
keep alive time, specifying for

configurator sessions 450
server deployment, deployment

options 447
snapshot mode, enabling and parameters

(table) 448
editing scripts 420
effective dates

configuration rules 294
testing rules, process 295

end dates, setting for product display 66
enforced quantity rule

See constraints
entitlements, creating 75
EnumObjects method 465
equivalent products

designating 73
features, comparing 74

events
Cfg_AttributeChanged, use of 400
Cfg_ChildItemChanged event,

example 399, 402
Cfg_ChildItemChanged, syntax 397, 400
Cfg_ChildItemChanged, use of 397
Cfg_InstInitialize, syntax 396
Cfg_InstPostSynchronize, syntax 403
Cfg_ItemChanged, use of 404
Cfg_OnConflict, use of 406
comparison 6.x to release 7.x 36
event scripts, creating 416

exclude operator 323
Version 7.5.3 Product Administration Guide 493

exclude rule
attribute conditions, use of 325
conditions, use of 324
excludes operator, about using 368
item constraint usage chart 327
items, use of 324
multiple operands 329
multiple operands for exclude

operators 369
quantity conditions, use of 326

Exclude template
format 323
nested conditions, use of 328
truth table 323

Excluded, predefined UI property 239
exporting

class structure (procedure) 95
class structure, about 93
product records for display, formats and

procedure 60
XML files, product definitions 79

exporting customizable products
overview 82
procedure 81
process 81

expressions (RAL) 356
external data in configuration rules 306

F
features, new features 98
field length, enforcing for entering

advanced rules 451
filters

See rule conditions
Finish It (quotes and orders) 192
forecast

customizing products, controlling 211
product bundle components, controlling

how 157
Frame Code Engine 246
FullComputation, predefined UI

property 240
functions

AddItem function, syntax 413
GetInstanceId, syntax 408, 409
GetObjQuantity 412
RemoveItem, syntax 414
SetAttribute, syntax 415

G
GetAllPorts method 465
GetAttribute method 466
GetCfgId, comparison 6.x to release 7.x 36
GetDetailedReqExpl method, about 471
GetExplanations method, about 472
GetFieldValues 467
GetInstance method 467
GetInstanceId function, syntax 408, 409
GetInstanceId, comparison 6.x to release

7.x 36
GetItemId, comparison 6.x to release

7.x 36
GetItemQuantity, comparison 6.x to release

7.x 36
GetItemState, comparison 6.x to release

7.x 37
GetObjQuantity function, syntax 412
GetObjQuantity, comparison 6.x to release

7.x 36
GetParents method 468
GetPossibleDomain method 468
GetPossibleValues 469
GetProdStruct method, about 478
GetProductId method 469
GetPropertyValue, comparison 6.x to release

7.x 36
GetRootPath method 470
GetSessionId, comparison 6.x to release

7.x 36
GetSignals method, about 472
group name, translating 431
group theme template 244
groups

creating 230
in customizable product,

displaying 238, 247
494 Product Administration Guide Version 7.5.3

defined 222
display name changes, process 257
display sequence 222
editing item groups 232
group definition fields 222
group display sequence, changing 232
group styles, types of 222
group theme, changing 232
item groups, deleting 234
item record fields 223
names, modifying 257
process overview 230
product theme template, creating 257
products, adding 231

guide
audience for 15
history of revisions 17
organization of’ 16

H
HasGenerics method 470
hidden attributes

about 104
settings, changing 113

hierarchy of relationships, analogous 6.x
structures (table) 31

history of revisions 17
HTML, web template

commands for item name displays 249
commands, UI property names 248
image retrieval test file 251
image tag 250
table commands 245
tables, use of 249
UI property name tags 249

I
Image, predefined UI property 240
images

associating with products viewing 78
retrieval test file 251
subdirectory 250

importing
class structure 95

importing customizable products
overview 82
procedure 83
process 81

inc() operator, about and example 378
inheritance

about 32
class-product templates 201
scripts, comparison 6.x to release 7.x 35

inherited attributes
defined 110
edit propagation 111
editing 112
editing restrictions 108
editing subclass definitions,

consequences 107
instance creation, turning off default

instance creation 454
interface property definitions 202
inventory options, about managing 78
item groups

defined 234
deleting 234
display sequence 233
editing 232

items
See also products
constraint usage in exclude rule 327
constraint usage in require rule 341
consume rule 331
customizable product access

operators 383
in customizable product,

displaying 238, 247
defining UI properties 265
display customization 263
in exclude rule 324
Link Designer 162
name change process 262
provide rule 331
require rule 338
Version 7.5.3 Product Administration Guide 495

UI control template 262

J
JavaScript commands

about 245
UI property names 248

K
key features, assigning 69

L
LearnMore, predefined UI property 240
license key requirements, about using 22
linked items

in customizable product,
displaying 238, 247

user interface control selection 224
links

See also business component links;
system variable links

about 276
comparison 6.x to release 7.x 33
Link Designer 162
specifying in RAL 363

list of values (LOV)
attribute value records, creating 117
deleting records 119
element types 99
LOV name, defining 116
value definitions, editing 118

list of values (LOV) domain
attribute defined with 103
defined 99
defining 105
inherited attributes, editing 112
single-value list 99

literature, associating with products 76
LoadInstance method 460
local attributes

about 110
editing, about 111

local database, warning about 22

logging on (Siebel administrator) 22
Logic Designer

See Rule Designer
Logic Designer, compared to release 6.x 33
logical equivalence operator 368
LOV type, about and creating 103

M
maximum cardinality 168
measurements, about product

measurements 79
menu-based UI 220
minimum cardinality 168
Model Product 51
models

comparison 6.x to release 7.x (table) 29
creating, analogous process in release

7.x 37
multilingual data, translating 425

N
NAND operator

Exclude template 323, 328
Require template 342

navigation tips 22
nested conditions

Exclude template 328
Require template 342

NewProductName 254
news items, adding to products 77
nonconfigurable products

See simple products
numbers, specifying in RAL 363

O
one-page theme template 244
operands, multiple

exclude rule 329
require rule 344

operators
arithmetic operators, configuration rule

assembly language 372
496 Product Administration Guide Version 7.5.3

arithmetic, configuration rule template
reference 352

attribute arithmetic operators 376
attribute comparison operators 374
Boolean operators 366
comparison 350
comparison operators 370
comparison operators, multiple operands

for 371
compound logic 350
conditional operators, table 377
customizable product access

operators 383
data operators, types of 365
exclude operator 368, 369
logical equivalence operator 368
operators, types of 364
pattern-matching operators 370
require operator 367
special operators 378
special operators (table) 378
special operators, withMembers

operator 382
special operators, withTuples

operator 381
order, about using Verify button 55
organization of guide 16

P
page container 253
page design

See base theme
Parametric Search field 102
parent classes

See also classes; product classes;
subclasses

attributes, deleting 110
class definitions, editing 90, 91
product class name change

preparation 90
parts, defective and substituting 78
path syntax, RAL 359
pattern-matching operators 370

price lists
products, associating 63
products, availability 66

pricing
attribute-based pricing 99
automatic price updates 228
base theme, types of 215
customizable products 228
integration, about 227
pricing element sequence 227

processes
attribute-type customizable product 24
component-type customizable

product 25
configuration rules, building 286
configuration rules, creating 284
customizable product, base theme name

change 253
exporting and importing class

structures 94
exporting and importing products and

class structure 94
exporting/importing customizable

products 81
group display name, changing 257
item names, changing 262
modifying group names 257
product administration 24
related configuration rules 294
resource use 270
simple product, creating 24
testing configuration rules 295
user interface design 214
user interface design process 214

Product Administration screen, about
using 22

product attribute domain
See attribute domain

product attributes
See attributes

product bundles
See also bundles; simple product bundles
bundle record fields, list of 154
Version 7.5.3 Product Administration Guide 497

deleting simple product bundles 157
forecast, about controlling how 157
simple product bundle, creating 155
simple product bundles, modifying 156
understanding 154

product classes
See also classes; parent classes;

subclasses
designating 49
dynamic updating, about 178
name change preparation 91
partial additions, about 175
product, assigning to 62

product descriptions, translating 426
Product Designer 161
product features

about 68
compared to attributes 68
creating 68
equivalent products, comparing 74
feature comparisons 71
key features, assigning 69

product features, defined 98
product lines, creating 67
Product List report 84
Product Master tables, adding fields

from 456
product names

ProductName argument, syntax 393
scripting, role in 393

product path, structure example 395
product records

about 56
about and fields (table) 49
class name, assigning to 62
copying 58
creating 56
deleting, about 59
editing 57
editing guidelines 57
exporting for display, formats and

procedure 60
field description table 52

product records, displaying
controlling display 66
date fields, role of 50
as quote line items 51

Product Relationship Report,
obtaining 200

product root
about 394
Cfg_AttributeChanged event 400
Cfg_ChildItemChanged event 397
Cfg_InstPostSynchronize event 403
GetCPInstance function 409
GetInstanceId function 408

Product Rule Manager
effective dates, about 294
effective dates, testing rules 295
related configuration rules, process for

creating 294
rule listing, about 285
rule statements, about 286
rule templates, about 286

product theme
menu-based 220
selecting 229
system default 219

product theme template
about 244
creating 199, 257
customizable product, adding to 259
group display name, changing 257
group name change example 260
interaction with other themes 244
modifying group names, process 257
UI property, defining 259

Product UI Designer
about 161, 214
analogous feature in 6.x 37
group theme selection 244

product version, defined 160
product, relationship domain

defined 166
product information changes, affects

of 184
498 Product Administration Guide Version 7.5.3

work space, refreshing 172
ProductHeaderImage, predefined UI

property 240
ProductName argument 393
products

See also equivalent products
adding to groups 231
attribute inheritance 86
attributes, viewing 113
availability in price lists 66
bundle, about and example 21
cardinality, types of 168
class hierarchy 86
compensable, designating 50
controlling how forecast 211
controlling how taxed 210
customizable product access

operators 383
customizable, about and example 20
deleting classes, impact of 92
different classes, adding from 180
export-import process 94
grouping similar products 67
image file information, viewing 78
inherited definitions 107
Link Designer 162
literature, associating with 76
measurements, about 79
news items, adding 77
price lists, associating with 63
product attributes, associating 112
product characteristics, inheritance

of 32
product choices presentation. See product

theme
product information, updating 184
product lines, creating 67
product lines, organization of 86
product templates, creating 58
product templates, editing guidelines 57
relations, defining 71
sales products, identifying 52
service products, identifying 53

simple products with attributes, about
and example 20

simple products without attributes 20
as tools 53

programming, constraint vs.
procedural 307

properties, analogous release 7.x
structure 32

property operator 383
provide rule

attribute target 335
item operand 331
product target operand 331, 335
provide template, attribute target 333
quantity 331, 334
resource target 332, 335
sample scenario 332
target operand 331, 335
value operand 331, 334

Provide template 330, 334

Q
quantity conditions

exclude rule 326
require rule 341

quantity, provide and consume rule 331,
334

quote integration, analogous release 6.x
processes 38

quotes
line item products, displaying 51
product availability 66
releasing a product, affect of 196
selection page display 214
service products 53
smart part numbers, viewing in a

quote 149
Verify button, about using 55

R
RAL

See Rule Assembly Language (RAL)
Version 7.5.3 Product Administration Guide 499

range of values domain
about 106
defined 99
inherited attributes, editing 112
Validation field 102

rate list, product availability 52
refreshing the work space

customizable products, releasing 195
product information, updating 184

related products
See also individual relationship entries
defining 71

Relationship Item Constraint Template 336
relationship name, translating 430
relationships, customizable products

See also customizable products
about 164
analogous 6.x structure (table) 31
cardinality constraints 304
component type relationships,

defined 164
definitions 166, 167
display sequence 167
displaying 238, 247
domain types 166, 167
dynamic class, relationship domain,

creating 178
editing 183
example 164
product classes, adding 175
role of 164
single product, adding 174
structure example 395
types of 71

relationships, rule behavior
exclude rule 324
exclude rule conditions 324
exclude rule, attribute conditions 325
exclude rule, items 324
require rule attribute conditions 340
require rule conditions 339
require rule items 338
require rule quantity conditions 341

released customizable products
deleting 185
editing product information 183
previous version, reverting to 198
release procedure 197
troubleshooting 193
version and effective dates,

interaction 196
RemoveFailedRequests method, about 473
RemoveItem function 414
RemoveItem method, about 475
RemoveItem method, comparison 6.x to

release 7.x 37
reports

Admin Product List 84
Product Relationship report 200
Rule Summary, obtaining 299

RepriceInstance method, about 476
Require (Mutual) template 345
require rule

attribute conditions, use of 340
conditions, use of 339
item constraint usage chart 341
items, use of 338
multiple operands 344
quantity conditions, use of 341
require operator 367

require rules
logic table example 344
uses of 338

Require template
format 337
nested conditions, use of 342
truth tables 337

required attributes
changing 113

Resource Designer 162
resources

comparison 6.x to release 7.x 32
in customizable product,

displaying 238, 247
customizable products, adding to 271
defined 270
500 Product Administration Guide Version 7.5.3

process 270
provide and consume rule 332, 335
resource definition, creating 271
resource definition, deleting 272
resource definition, editing 272
resource definitions 270
Resource Designer 162
rules governing 273
sample scenario, provide and consume

rules 332
user interface control selection 224
value derivation 273

revisions, history of 17
Rule Assembly Language (RAL)

about 356
attribute arithmetic operators 376
attribute comparison operators 374
basic rules, examples 383
Boolean operators 366
data operators, types of 365
exclude operator 368, 369
link specifications 363
logical equivalence operator 368
number specifications 363
operators, types of 364
path syntax 359
require operator 367
rule, defined 356
rules, creating 357, 361
rules, managing 362
string specifications 363
sub-expression, defined 357
using effectively 356

rule conditions
about 310
as filters 310
Boolean operators 311
as constraints 310
as require or exclude rules 311
types of 310

Rule Designer
about 163, 284
compared to release 7.x 33

Rule Assembly Language,
displaying 452

Rule Manager, comparison to release
6.x 33

Rule Summary Report, obtaining 299
rule templates

about 286
compared to configuration rules 284
creating 297
defined 284
deleting 299
editing 299
rule listings 285
rule statements 286
translated into RAL, example 385

rules and logical expressions, version
comparison 33

S
S_PROD_INT tables, adding fields

from 456
sales products, identifying 52
sample database, about 15
Script Designer 163
scripts

about writing 391
comparison, 6.x to release 7.x (table) 35
customizable product templates 202
declarations scripts, creating 418
declarative portion 389
defined 389
deleting 421
editing 420
errors, checking 422
event scripts, creating 416
non-persistent variables, about 391
product name, importance of 393
script instance, defined 391
script log, reviewing 422
script processing, about 390
uses of 389

Search field 102
selection pages
Version 7.5.3 Product Administration Guide 501

basic layout 244
Cfg_ChildItemChanged event 397, 400
creation, example 246
defined 37, 214
display errors 248
display sequence 222
Finish It! 192
groups, role of 222
hiding parts of a product 242
item and option display, control 244
item selection specification 222
look and feel, control of 215
populating with products 231
relationship name, role of 166
themes, role of 215

service products
identifying 53
product parts, about 78

Set Initial Attribute Value template 346
Set Initial Resource Value template 347
Set Preference template 348
SetAttribute function 415
SetAttribute method, about 476
SetFieldValue method, about 477
SetInstance method 464
SetItemQuantity method, about 477
Siebel administrator, logging on as 22
Siebel API, availability 35
Siebel eConfigurator

See also eConfigurator
constraint rule processing 307
dense data, about and example 43
deployment options 42
runtime deployment, about 45
sparse data, about and example 44

Siebel ePricer integration 227
Siebel Sample Database

about 15
Siebel Web Engine

displaying customizable products 247
web template commands 244

simple product bundles
See also bundles; product bundles

creating 155
deleting 157
modifying 156

simple products
attributes, about with and example 20
attributes, about without 20
creation process 24
defined 23
export procedure 81
importing, procedure 83
product record, about and fields

(table) 49
XML files, product definitions 79

single product
class domain relationship type 166
product, relationship domain 166

single product relationship, adding 174
smart part numbers

about 138
assign generation method to

product 148
attribute value, defining a mapping for

each 143
attributes, selecting desired 146
dynamically generated 140
dynamically generated, editing 144
generation method, updating with

attribute changes 150
methods for generating 139
part number generation record,

creating 142, 145
part number matrix, creating 146
part number template, defining 142
predefined generation method,

editing 147
predefined generation method, updating

with attribute changes 151
predefined part numbers, creating 144
querying for products with same

generation method 152
quote, viewing 149

Snapshot mode
about 436
502 Product Administration Guide Version 7.5.3

cache, refreshing with class
changes 443

cache, refreshing with product
changes 442

enabling and parameters (table) 448
guidelines 438
local machine, setting up Snapshot mode

on 440
process of 436
refreshing manually, ways to 437
Siebel server, setting up Snapshot mode

on 439
Siebel Web Client, refreshing from 441

sparse data, about and example 44
special operators

about and the inc() operator 378
table 378
withMembers operator, about and

example 382
withTuples operator, about and

example 381
start dates, setting for product display 66
strings, specifying in RAL 363
subclasses

See also classes; parent classes; product
classes

attribute definitions, about editing and
example 106

attribute definitions, editing
(procedure) 108

characteristics of 86
defining 88
deleting classes, impact of 92
editing definitions, consequences of 107
role in product-attribute association 112
types of attributes 110

SubmitRequest, comparison 6.x to release
7.x 37

substitute products, about providing
information for 78

summary page 235
swe:control 245, 253
swe:for-each 245

swe:include 245, 263
SyncInstance method 464
system administration tasks, warning

about 22
system link definition

editing, about 282
system variable links

creating 280, 281
field definitions 278
link definitions, deleting 282
operation of 278

T
tab theme template 244
taxes, controlling how products and bundles

are taxed 210
templates

class-product template, turning off

204
class-product templates, creating 201

templates. See specific type of template
TODAY (system variable), about extracting

information from 278
translation

attribute list of values 433
attribute name and description 428
class display name 427
configuration rule explanations 429
multilingual data 425
product descriptions 426
relationship name 430
UI group name 431
UI property value 432

troubleshooting, released product 193

U
UI control template

about 244
assigning to group 264
creating 263
defining UI property for item 265
item name changes 262
Version 7.5.3 Product Administration Guide 503

layout 263
UI group name, translating 431
UI properties

about defining 238
changing 238, 247
customizable product, defining for 241
defining for items 265
defining, about 238, 247
displaying images 250
predefined 239
property change example 248

UI property names 248, 249
UI property value, translating 432
UndoLastRequest method, about 473
Univeral Application Network

about 484
external simple product 484
Siebel simple product 485

UnloadInstance method 464
user access

setting up (procedure) 65
setting up, about 64

user input validation 106
user interface

customizable product templates 202
design as configuration restraint 304
designing, process overview 214
display sequence 167
group definition fields 222
groups, role of 222
relationships, importance of 164

user interface controls
attribute compatibility 224
cardinality considerations 224
control type summary table 224
linked items 224
menu-based 220
resource items 224
system defaults 219
types of 223

user interface design
See also Web templates
animation, use of 249

base theme, selecting 229
groups, about 230
groups, creating 230
hiding parts of a product 242
menu based approach 220
product theme, selecting 229
products, adding to groups 231
selection pages, about 230
summary page 235

user interface themes. See Web templates
User InterfaceProperty Designer 247

V
Validate mode

configuration rules, deactivating 296
customizable product, testing 193

variables, non-persistent 391
Verify button, about using 55
version comparison

categories vs. relationships (table) 31
links 33
models (table) 29
resources, about working with 32
rules and logical expressions 33
scripts 35
tree vs. hierarchy of relationships

(table) 31
versions and effective dates,

interaction 196

W
Web templates

See also user interface design
base theme template, adding to

customizable product 254
configuration rule templates,

creating 297
configuration rule templates,

deleting 299
configuration rule templates,

editing 299
group theme templates 244
504 Product Administration Guide Version 7.5.3

groups, creating 230
groups, role of 230
location of 244
new Web template, creating 251
overview 244
selection page creation, example 246
Siebel web engine commands,

listed 244
UI control template, about 244
UI control template, assigning 264
UI control template, creating 263
UI property variable, inserting 263
UI property, defining 265
UI property, defining for customizable

product 255
Web templates, base theme

base theme template, creating 253
default 219
described 244
pricing 215
product name change example 256
selecting 229

Web templates, product theme
about 216
creating 257
customizable products, adding to 259
default 219

described 244
group display name, changing 257
modifying group names, overview 257
name change example 260
selecting 229
UI property, defining 259

webtempl subdirectory 244
WHO (system variable), about extracting

information from 278
withMembers operator, about and

example 382
withTuples operator, about and

example 381
wizard theme template 244
work spaces

creating 171
customizable products, releasing 195
defined 160
locking 173
product information, updating 184
products, deleting 185

X
XML files

class structure export and import 93
product definitions, export and

import 79
Version 7.5.3 Product Administration Guide 505

506 Product Administration Guide Version 7.5.3

	Homepage
	Contents
	Introduction
	Product Modules and Options
	How This Guide Is Organized
	Revision History

	Overview
	Overview of Types of Product Administration
	Simple Products Without Attributes
	Simple Products with Attributes
	Customizable Products
	Product Bundles

	About Working with Product Administration
	Screens Used for Product Administration
	Logging On as the Siebel Administrator
	License Key Requirements

	Important Processes for Product Administration
	Create a Product Class System
	Create a Simple Product
	Create a Simple Product that has Attributes
	Create a Customizable Product

	Mapping eConfigurator 6.x Features to Release 7.x
	Upgrading 6.x Models to 7.x
	Managing Models
	Designing the Catalog
	Working with Properties
	Working with Resources
	Working with Linked Items
	Designing Rules and Logical Expressions
	Designing Scripts
	Quote Integration and Configuration Assistant

	Select a Configuration Method
	Choosing a Deployment Method for eConfigurator
	Consider the Nature of Your Data
	Dense Data
	Sparse Data

	Consider Your Runtime Deployment Requirements
	When to Use Each Method

	Basic Product Administration
	About the Product Record
	About Verify
	Creating a Product Record
	Editing a Product Record
	Copying a Product Record
	Deleting a Product Record
	Exporting Product Records for Display
	Associating a Product with a Product Class
	Associating Products with Price Lists
	Setting Up User Access
	Setting Start and End Dates for Display of a Product
	Creating Product Line Names
	Creating Product Features
	Assigning Key Features to a Product
	Viewing Product Attributes
	Defining Related Products
	Designating Equivalent Products
	Comparing Features of Equivalent Products
	Creating a Product Auction
	Creating Product Entitlements
	Associating Literature with Products
	Adding Product News
	Associating Images with Products
	Creating Product Field Service Details
	Creating Product Measurements
	Exporting and Importing Products
	Exports
	Customizable Products
	Imports

	Obtaining a Product List Report

	Product Classes
	About Classes
	Defining a Class
	Creating a Class Hierarchy
	Editing a Class Definition
	Deleting a Class
	Exporting or Importing Classes
	Locating a Class

	Product Attributes
	About Product Attributes
	Attribute Domains
	Domain Data Types
	Attribute Definition Fields

	About Lists of Values (LOV)
	About Hidden Attributes
	Defining an Attribute with a List of Values Domain
	Defining an Attribute with a Range of Values Domain
	Editing an Attribute Definition
	Deleting an Attribute Definition
	Customizing an Inherited Attribute Domain
	Associating Attributes with a Product
	Viewing a Product’s Attributes
	Changing the Hidden or Required Settings for a Product
	Setting an Attribute Value for a Product
	Creating a List of Values (LOV) for a Product Attribute
	Creating a List of Values Name
	Defining the Attribute Values in a List of Values

	Editing a List of Values Definition for a Product Attribute
	Deleting a List of Values for a Product Attribute

	Attributes with Business Component Domains
	About Attributes with a Business Component Domain
	About the UI Properties
	Adding the Attribute to a Selection Page
	Associating the Attribute with a Business Component
	Setting Up Multiple Fields for Display
	Creating a Business Component Field Constraint
	Creating an Attribute Value Constraint

	Smart Part Numbers
	About Smart Part Numbers
	Creating Dynamically Generated Part Numbers
	Editing a Dynamic Generation Method
	Creating Predefined Part Numbers
	Editing a Predefined Generation Method
	Assigning a Generation Method to a Product
	Viewing a Product’s Smart Part Number in a Quote
	Updating a Generation Method with Attribute Changes
	Querying for Products with the Same Generation Method

	Product Bundles
	About Product Bundles
	Creating a Simple Product Bundle
	Modifying Simple Product Bundles
	Deleting a Simple Product Bundle
	Controlling How Bundle Components are Forecast

	Build Customizable Products
	About Customizable Products
	Customizable Product Versions and Work Space
	Product Designer
	Product UI Designer
	User Interface Property Designer
	Resource Designer
	Link Designer
	Rule Manager
	Script Designer

	About Relationships
	About Cardinality
	Combinations for Setting Cardinality
	About Generics

	Creating a Customizable Product Work Space
	Refreshing the Work Space
	Selecting and Locking a Customizable Product
	Adding a Single Product
	Adding Products by Using the Class Domain
	Adding Products Using the Dynamic Class Domain
	Adding a Group of Products from Different Classes
	Adding a Customizable Product
	Editing a Relationship Definition
	Updating Product Information in Relationships
	Deleting Products
	Deleting a Customizable Product’s Structure

	Release and Manage Customizable Products
	About Bundles as Customizable Products
	About Customizable Assets and Delta Quotes
	About Auto Match
	About Finish It!
	Testing a Customizable Product (Validation Mode)
	Releasing a Customizable Product for Use
	Reverting to an Earlier Version
	Deleting a Customizable Product Version
	Copying a Customizable Product
	Obtaining a Report on a Product’s Structure
	Creating Class-Product Templates
	Turning Off a Class-Product Template
	Converting a Bundle to a Regular Customizable Product
	Converting a Regular Customizable Product to a Bundle
	Defining a Customizable Asset
	Controlling How Products and Bundles Are Taxed
	Controlling How Customizable Products are Forecast

	Customizable Product User Interface
	About the Role of the Product UI Designer
	About Base Themes
	About Product Themes
	About the Default User Interface
	About the Menu-Based Interface
	About Groups
	About User Interface Controls
	About Pricing Integration
	Selecting the Base and Product Themes
	Grouping Items onto Pages
	Editing Item Groups
	Deleting Item Groups
	Adding a Summary Page

	Customizable Product UI Properties
	About UI Properties
	About Predefined UI Properties
	Defining a UI Property
	Hiding Parts of a Customizable Product

	Customizable Product Web Templates
	About Customizable Product Web Templates
	About UI Properties in Web Templates
	About UI Property Values
	HTML Text Formatting Commands
	Images

	Creating a New Web Template
	Modifying the Display Name of the Customizable Product
	Create a New Base Theme Template
	Assign the New Base Theme Template
	Define a UI Property for the Customizable Product

	Modifying the Display Name of a Customizable Product, an Example
	Modifying the Display Name of Groups
	Create a New Product Theme Template
	Assign the New Product Theme Template
	Define a UI Property for all the Groups

	Modifying the Display Name of Groups, an Example
	Modifying the Display Name of Items
	Create a New UI Control Template
	Assign the New UI Control Template
	Define a UI Property for the Item

	Modifying the Display Name of Items, an Example

	Customizable Product Resources
	About Resources
	Creating a Resource
	Editing a Resource Definition
	Deleting a Resource
	Managing Resources Using Configuration Rules

	Customizable Product Links
	About Links
	Business Component Links
	System Variable Links

	Creating a Business Component Link
	Creating a System Variable Link
	Editing a Link Definition
	Deleting a Link

	Customizable Product Rule Designer
	About the Rule Designer
	Rule Listing
	Rule Template Listing
	Rule Statement

	About Class-Product Rule Inheritance
	Creating a Configuration Rule
	Editing a Rule
	Copying a Rule
	Deleting a Rule
	Creating Groups of Related Rules
	Setting Effective Dates for Rules
	Deactivating a Rule
	Creating a Rule Template
	Editing or Deleting a Rule Template
	Obtaining a Rule Summary Report

	Configuration Rule Template Reference
	About Constraints
	Attribute Definitions
	Cardinality
	User Interface Design
	Configuration Rules
	Resource Values

	About Configuration Rule Processing
	About Rule Conditions
	Attribute Value (Advanced)
	Conditional Value
	Constrain
	Constrain Attribute Conditions
	Constrain Attribute Value
	Constrain Conditionally
	Constrain Product Quantity
	Constrain Relationship Quantity
	Constrain Resource Value
	Display Message
	Display Recommendation
	Exclude
	Items
	Conditions
	Attribute Conditions
	Quantity Conditions
	Other Item Constraints
	Nested Expressions as Conditions
	Multiple Operands

	Provide and Consume Templates
	Item
	Value
	Target
	Product Target
	Resource Target
	Attribute Target

	Provide and Consume, Simple
	Value
	Target
	Product Target
	Resource Target
	Attribute Target

	Relationship Item Constraint
	Require
	Items
	Conditions
	Attribute Conditions
	Quantity Conditions
	Other Item Constraints
	Nested Expressions as Conditions
	Multiple Operands

	Require (Mutual)
	Set Initial Attribute Value
	Set Initial Resource Value
	Set Preference
	Compound Logic and Comparison Operators
	Arithmetic Operators

	Configuration Rule Assembly Language
	Why Use Rule Assembly Language?
	About Rule Assembly Language
	Creating Rules Using the Assisted Advanced Rule Template
	Creating Rules Using the Advanced Rule Template
	Managing Rules Written in Rule Assembly Language
	Specifying Data
	Numbers
	Strings
	Links

	About Operators
	Data Operators
	Boolean Operators
	More on the Requires Operator
	More on the Logical Equivalence Operator
	More on the Excludes Operator
	Multiple Operands for Require and Exclude Operators

	Comparison and Pattern Matching Operators
	Multiple Operands for Comparison Operators

	Arithmetic Operators
	Attribute Operators
	Attribute Comparison Operators
	Attribute Arithmetic Operators

	Conditional Operators
	Special Operators
	More on withTuples
	More on withMembers

	Customizable Product Access Operators
	Rule Examples
	Basic Rules
	Boolean and Comparison Operators
	Rule Template Translations

	Customizable Product Scripts
	About Scripts
	About Script Processing
	About Product Names
	About Product Path
	Cfg_InstInitialize Event
	Cfg_ChildItemChanged Event
	Cfg_AttributeChanged Event
	Cfg_InstPostSynchronize Event
	Cfg_ItemChanged Event
	Cfg_OnConflict Event
	GetInstanceId Method
	GetCPInstance Method
	GetObjQuantity Method
	AddItem Method
	RemoveItem Method
	SetAttribute Method
	Creating an Event Script
	Creating a Declarations Script
	Editing a Script
	Deleting a Script
	Reviewing the Script Log

	Multilingual Data
	What Can Be Translated?
	How Multilingual Data Translation Works
	Translating the Product Description
	Translating a Class Display Name
	Translating an Attribute Display Name and Description
	Translating Configuration Rule Explanations
	Translating Relationship Names
	Translating UI Group Names
	Translating UI Property Values
	Translating an Attribute List of Values

	Cache Management
	About Snapshot Mode
	Setting Up Snapshot Mode on the Siebel Server
	Setting Up Snapshot Mode on the Client
	Refreshing the Snapshot Mode Cache
	Refreshing the Cache with Product Changes
	Refreshing the Cache with Class Changes

	Technical Reference
	eConfigurator Architecture
	Siebel eConfigurator Server Deployment
	Enabling Snapshot Mode
	Enabling Auto Match
	Specifying Keep Alive Time for Configurator Sessions
	Enforcing the Field Length for Entering Advanced Rules
	Displaying RAL in the Rule Designer
	Locate the Rule Designer Applet
	Modify the Rule Designer Applet
	Recompile Siebel.srf

	Turning Off Default Instance Creation
	Revising the System Default Cardinalities
	Displaying Fields from S_PROD_INT in Selection Pages
	Add Fields to the CFG CX Products Buscomp
	Add SWE Code to the Web Template
	Delete Contents of CFGCache Directory

	eConfigurator API
	Available APIs
	About the Instance APIs
	LoadInstance
	Input Arguments:
	Output Arguments:

	CreateSession
	Input Arguments:
	Output Arguments:

	SetInstance
	Input Arguments:
	Output Arguments:

	SyncInstance
	Output Arguments:

	UnloadInstance
	Input Arguments:
	Output Arguments:

	GetAllPorts
	Input Arguments:
	Output Arguments:

	EnumObjects
	Input Arguments:
	Output Arguments:

	GetAttribute
	Input Arguments:
	Output Arguments:

	GetFieldValues
	Input Arguments:
	Output Arguments:

	GetInstance
	Input Arguments:
	Output Arguments:

	GetParents
	Input Arguments:
	Output Arguments:

	GetPossibleDomain
	Input Arguments:
	Output Arguments:

	GetPossibleValues
	Input Arguments:
	Output Arguments:

	GetProductId
	Input Arguments:
	Output Arguments:

	GetRootPath
	Input Arguments:
	Output Arguments:

	HasGenerics
	Input Arguments:
	Output Arguments:

	APIs to Interact with Conflicts and Messages
	GetDetailedReqExpl
	Input Arguments:
	Output Arguments:

	GetExplanations
	Input Arguments:
	Output Arguments:

	GetSignals
	Input Arguments:
	Output Arguments:

	RemoveFailedRequests
	Input Arguments:
	Output Arguments:

	UndoLastRequest
	Input Arguments:
	Output Arguments:

	APIs to Set Product and Attribute Values
	AddItem
	Input Arguments:
	Output Arguments:

	CopyInstance
	Input Arguments:
	Output Arguments:

	RemoveItem
	Input Arguments:
	Output Arguments:

	RepriceInstance
	Input Arguments:
	Output Arguments:

	SetAttribute
	Input Arguments:
	Output Arguments:

	SetItemQuantity
	Input Arguments:
	Output Arguments:

	SetFieldValue
	Input Arguments:
	Output Arguments:

	Object Broker Methods
	GetProdStruct
	Input Arguments:
	Output Arguments:

	DeltaQuote
	Input Arguments:
	Output Arguments:

	Application Integration Network
	External Simple Product
	Siebel Simple Product

	Index

