SIEBEL./

eBusiness

CONFIGURATION GUIDELINES

VERSION 7.5, REV. A

12-EDWZVX

JANUARY 2003

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2002 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or

FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents

Introduction
How This Guide Is Organized 10
Revision HiStoTy 11

Chapter 1. Managing Repositories

Establishing a Development Environment 14
Naming Repositories 15
Backing Up Repositories 16
Exporting and Importing Objects 17
Controlling SOUTCES o 18
Delivering Patches 19

Chapter 2. Managing Non-Repository Data

Overview of Migrating Non-Repository Components Between Environments

... 22
Migrating Web Templates and Related Files 23
Migrating Setup Data 24
Enterprise Integration Manager, 24
Content Center i 24
Other Migration Tasks 25
Migrating Workflow Triggers 25
Migrating Server Parameters 25

Version 7.5, Rev. A Configuration Guidelines 3

‘ Contents

Chapter 3. Setting Up Developers

Organizing Projects 28
Using Local Databases 29
Preparing Local Development Environments 29
Doing an Initial Checkout (Get) 31
Checking Out Projects for Modification 32
Checking Out Projects For Refresh 33
Checking In Projectso i it e e e e 33
Canceling Changes to a Checked Out Project 35

Chapter 4. Naming Conventions

Naming Conventions 38
Tables 39
Business Objects and Business Components 39
JOINS .o 40
LinKS . .o 40
VWS 41
ADDlets . . e 41
Controls and List Columns, 42

Chapter 5. Creating and Modifying Objects

Usage and Configuration of Nonlicensed Objects 48
Object Definitions Not To Be Reconfigured 49
Supporting Business Logic in Siebel Applications 50
Creating Objects e 51
Modifying Objects 52
Copying Versus Modifying Object Definitions 54
Creating Specialized Objects 56

Avoiding Redundant Objectst 56

Cloning Specialized Objects 57

4 Configuration Guidelines Version 7.5, Rev. A

Contents ‘

Creating Data Objects 58
Using the Docking Wizard 60
Creating and Modifying Business Objects 61
Specifying Links for Associated Business Components 63
Managing Unused Business Objects 64
Creating and Modifying Business Components 65
Managing Unused Business Components 66
Associating Business Component Fields With Tables 66
Defining System Fields 67
Constructing JOIns 68
Creating Explicit Joins i 68
Creating Implicit Joins 69
Creatinga New Join i 69
Constructing Links 71
Creating One-to-Many (1:M) Links 71
Creating Many-to-Many (M:M) Links 71
Setting Advanced Link Properties 71
Creating and Modifying User Interface Objects 73
Configuring Screens 74
Creating and Modifying Screens, 74
Managing Unused SCI€ENSttt 74
Configuring Views 75
Creating and Modifying Views 75
Modifying Server Administration Views 76
Calendar Views Not To Be Reconfigured 76
Setting Interactivity Modes for Calendar Views 77
Configuring Threads 78
Managing Unused Views 79
Displaying View Titles 79

Version 7.5, Rev. A Configuration Guidelines 5

‘ Contents

Configuring Applets 81
Creating and Modifying Applets i 81
Managing Unused Applets 82
Defining Online Help IDs 83
Displaying Applet Titles 83

Configuring Controls and List Columns 84
Exposing System Fields 84
Managing Unused Controls and List Columns 85
Creating Text Controls and List Columns 85
Creating Buttons 85
Defining Check Boxes 85
Referencing Controls and List Columns in Association Applets 86

Chapter 6. Specialized Classes

Specialized Classes 88
Business COMPONENtS v ittt e e et e e 90
ADDlets .. e 91

Chapter 7. Performance Guidelines

Multilingual LOVs Query and Cache Performance 94
Multivalue Link Underlying Multivalue Groups 95
Indirect Multivalue Links 95
Indirect Multivalue Links Through Joins 96
Nested Multivalue Links 98
AUto Primary e 99
CheckNoMatch e 100
Reusing Standard Columns 103
Table S_ORG_EXT: Reusing NAME and LOC 103
Table S_ CONTACT: Reusing LAST_NAME, FST_NAME, MID_NAME 108
Generating and Analyzing SQL 115
SQL Queries Against Database Data 116

6 Configuration Guidelines Version 7.5, Rev. A

Contents ‘

Chapter 8. Development Standards for Siebel Script
Languages and Object Interfaces

Siebel Script Languages and Object Interfaces 118
Preimplementation Considerations 119
Script Guidelines 122
Server Script and Object Interfaces 122
BrOWSer SCIiptot e 141

Chapter 9. Configuring the User Interface

User Interface Guidelines 144
User Interface Object Definition 145
Implementing the User Interface 146
Template Files 148
Before Modifying Templates Files 148
Cascading Style Sheets 152
Performance 153
Screen Design 155
Personalization 156
Deployment ISSUESt 157
Creating User Interface Objects 158
SCTEENS . . . 158
Creating and Modifying Screens 158
Unused SCTEENSottt e e 158
VIeWS . 159
Creating and Modifying Views it . 159
Guidelines for VIiews 161
Server VIEWSo 161
Threads 161
Unused VIeWSo 162
View Titles 162

Version 7.5, Rev. A Configuration Guidelines 7

‘ Contents

ADPlets . . e 164
Creating and Modifying Applets i 164
Unused Applets i 165
Online Help e e 166
Applet Titles o e 166

Chapter 10. Visibility

Visibility Overview 168
Access Control 169
View Access Visibility 171
Record Access Visibility 172
Object Ownership Models 172
Configuring Visibility at the View Level 173
Naming VIEWSot 174
Configuring Visibility Using Siebel Tools 175
Docking Visibility and Dock Objects 177
Dock Object Tables o e 178
Dock Object Visibility Rules 178
Visibility Strength 179

Chapter 11. Database Extensibility

Database Extensibility Overview 182
Static Database Extensions 184
Dynamic and Advanced Database Extensions 185
Advanced Database Extensibility 187
Advanced Database Extensibility Guidelines 188
Index

8 Configuration Guidelines Version 7.5, Rev. A

Introduction

This document gives a number of guidelines you can apply when configuring or
customizing the Siebel development repository. Although this document includes
many recommendations, they do not apply to all environments. You should
consider them a starting point for creating a well-designed overall application.

Version 7.5, Rev. A Configuration Guidelines 9

‘ Introduction

How This Guide Is Organized

How This Guide Is Organized

A successful architecture will help make the Siebel application implementation a
success, while a poor architecture will undermine an otherwise effective
configuration. Also, properly configuring your application gets the most out of the
architecture that you have in place. Poor configuration will likely cause, for
instance, poor performance from your staff or your servers.

The purpose of this document is to make sure that any configurations you perform:
= Are accurate.

m Provide an intuitive user interface.

m Are easy to maintain and upgrade.

= Maintain optimum performance of the Siebel eBusiness Application.

The document is not intended to give step-by-step instructions on how to perform
specific configurations.

Technical professionals and computer programmers can use this document to
configure Siebel eBusiness applications. It is recommended that your project team
members attend Siebel University's Siebel eBusiness Essentials course before
beginning configurations.

10 Configuration Guidelines Version 7.5, Rev. A

Introduction

Revision History

Revision History

Configuration Guidelines, Version 7.5, Rev. A

January 2003 Bookshelf
Table 1. January 2003 Bookshelf

Topic

“Managing Non-Repository Data” on
page 21

“Cloning Specialized Objects” on page 57
“Multilingual LOVs Query and Cache
Performance” on page 94

“Reusing Standard Columns” on page 103

Revision

Added this chapter.

Added Forecasting and Calendar to the list of
specialized objects.

Added this section.

Added a caution concerning the use of
denormalized columns.

Version 7.5, Rev. A

Configuration Guidelines 11

‘ Introduction

Revision History

12 Configuration Guidelines Version 7.5, Rev. A

Managing Repositories 1

This section describes the process of managing repositories.

Version 7.5, Rev. A Configuration Guidelines 13

‘ Managing Repositories

Establishing a Development Environment

Establishing a Development Environment
You need to establish a development environment that includes:
= A Siebel Web server
m A Siebel database server

m A Siebel application server

NOTE: The development environment must be completely separate from the
production environment. After migrating to a production environment, do not
perform any development work.

You must also have a separate testing environment. You can migrate your
configuration to your testing environment for system testing before installing in a
production environment. Like the development environment, your testing
environment will include:

= A Siebel Web server
= A Siebel database server
m A Siebel application server

The development database stores the working copy of all repositories being
configured by your developers. Configuration work should only take place on the
development database. After you have finished configuring a repository, use the
Siebel REPIMEXP utility (as part of the Database Server Configuration Utility) to
transfer that repository to the test environment and production environment.

14 Configuration Guidelines Version 7.5, Rev. A

Managing Repositories

Naming Repositories

Naming Repositories

You must establish and maintain a naming convention for all your repositories in
their respective environments. Several things depend on repository names—for
example, both the Siebel eBusiness Applications client and application server
programs point to a specific repository by name. Also, the procedures for upgrading
to new versions of Siebel eBusiness Applications depend on repository names.

A consistent naming convention promotes successful configuration and testing
while it minimizes the work required to migrate new repositories or perform
upgrades. Follow these guidelines when determining the naming conventions for
your repositories:

m Decide on a repository name for your production environment. By default, it is
Siebel Repository. Change this only if you have a compelling reason, because
much of the Siebel documentation and the default configuration of the Siebel
eBusiness Applications assume this name is being used.

m» Choose the same name for the active repository in your test environment and
for the current working repository in your production environment. The default
name is Siebel Repository. Using the same name simplifies the process of
migrating repositories from development to test and from test to production. It
also eliminates the need to change your client or application server
configurations when you do so.

m Use descriptive names for the other repositories in your development
environment. Typically, your development environment has a number of
repositories in addition to the current repository that is being configured. These
may include the initial repository loaded with your Siebel application, other
repository versions used in Siebel application upgrades, and repositories from
previous versions of your custom configuration. Give these repositories unique
and fully descriptive names — for example, Siebel v7.0 Original for the initial
repository shipped with Siebel eBusiness Applications version 7.0. For more
information, see Chapter 7, “Performance Guidelines.”

Version 7.5, Rev. A Configuration Guidelines 15

‘ Managing Repositories

Backing Up Repositories

Backing Up Repositories

Regularly create backups of the development repositories to safeguard your
configuration work. A daily backup takes only a few minutes and helps prevent lost
work. You can either back up the entire development database, using the utilities
provided by your RDBMS vendor, or use the Siebel utility REPIMEXP.EXE to export
the contents of a specific repository to a flat file. For more information, see Siebel
Tools Reference.

You can also use REPIMEXP.EXE to integrate Siebel repositories into your source
code control environment. After you finish configuring a specific version of your
application, export the repository to a flat file and keep this file in an archive or
source code control system. Include other application components in the archive,
such as client configuration files (CFG), Siebel repository files (SRF), batch scripts,
and Enterprise Integration Manager configuration files (IFB).

16 Configuration Guidelines Version 7.5, Rev. A

Managing Repositories

Exporting and Importing Objects

Exporting and Importing Objects

The object definition export and import features in Siebel Tools allow you to copy
object definitions from one repository to another repository. These features let
members of development teams share pieces of the configurations they develop.
Users can export object definitions from the source repository to an archive file,
which has the SIF filename extension. This archive file can then be imported into
another repository.

In addition, you can check the differences between objects being imported and
those already in existence by using the Import Wizard in Siebel Tools. You can also
override the importation of specific attributes with the Import Wizard. For more
information, see Siebel Tools Reference.

Version 7.5, Rev. A Configuration Guidelines 17

‘ Managing Repositories

Controlling Sources

Controlling Sources

You can use the repository check-in and checkout mechanism in Siebel Tools to
interact with a third-party source code control system, such as Microsoft SourceSafe
or PVCS. This allows you to create an archive file of the project, which is checked
into the source control system each time a project is checked into the server
repository.

18 Configuration Guidelines Version 7.5, Rev. A

Managing Repositories ‘

Delivering Patches

Delivering Patches

You can use the Patch feature to deliver patches to your organization for upgrading
your repositories to a new release. You can also use this feature to distribute internal

upgrades.

Version 7.5, Rev. A Configuration Guidelines 19

‘ Managing Repositories

Delivering Patches

20 Configuration Guidelines Version 7.5, Rev. A

Managing Non-Repository Data 2

This section describes the process of managing application data that exists external
to your repositories.

Version 7.5, Rev. A Configuration Guidelines 21

‘ Managing Non-Repository Data

Overview of Migrating Non-Repository Components Between Environments

Overview of Migrating Non-Repository Components
Between Environments

As discussed in “Establishing a Development Environment” on page 14, you need
to establish separate environments for development, testing, and production. Each
of these environments has its own set of repositories, as well as additional files that
support your Siebel applications.

While you can use the Database Server Configuration utility to transfer a repository
from the development environment to the test environment and production
environment, there are additional supporting files and data that must also be moved
to the new environment that are not transferred by this utility. In addition to
transferring the repository, you must perform the following tasks to update your
target environment:

= Migrating Web Templates and Related Files on page 23
= Migrating Setup Data on page 24
m Other Migration Tasks on page 25

The sections that follow explain how to migrate each of these supporting
components from one environment to another.

22 Configuration Guidelines Version 7.5, Rev. A

Managing Non-Repository Data

Migrating Web Templates and Related Files

Migrating Web Templates and Related Files

Every Siebel Server installation includes a set of files that define how the application
appears in a Web browser. These include:

» Web templates (.swt files)
m» Images (.gif and .jpg files)
m Cascading style sheets (.css files)

If you make changes to any of these files in your source environment, you must
copy the modified files to the target environment.
To move Web templates and related files

m» Copy any new or modified files of the following types from the source server to
the target server:

Files File Location
Web Templates si ebsrvr _root\ WEBTEMPL
Images si ebsrvr_root\webmast er\i mages\ | anguage_code

Cascading Style Sheets si ebsrvr_root\webnaster\fil es\|anguage_code

Version 7.5, Rev. A Configuration Guidelines 23

‘ Managing Non-Repository Data

Migrating Setup Data

Migrating Setup Data

The setup data for your Siebel applications includes information about employees,
positions, responsibilities, and so on. When migrating to a test environment, you
can use the data from either the development environment or the production
environment. When you migrate to the production environment, you should get the
most current data from the existing production environment.

Enterprise Integration Manager

You can use EIM to move setup data between environments. For example, use the
EIM_EMPLOYEE interface table to import employee data from your legacy system
into the production server. Similarly, you can use the EIM_LST_OF_VAL interface
table to migrate List Of Values entries from environment to another.

For information about using EIM to migrate employee, LOV, and other data, see
Siebel Enterprise Integration Manager Administration Guide. To determine which
interface tables to use, see Interface Tables Reference.

Content Center

You can also use the content management framework to deploy many types of
administrative data (for example, product catalogs). For more information about
content management using Content Center, see Applications Administration Guide.

24 Configuration Guidelines Version 7.5, Rev. A

Managing Non-Repository Data

Other Migration Tasks

Other Migration Tasks

This section describes some additional non-repository migration tasks that you
need to perform in conjunction with repository migration.

Migrating Workflow Triggers

After you have moved your workflow processes from the source server to the target
server, you must generate workflow triggers on the target server.

For more information about generating workflow triggers, see Siebel Business
Process Designer Administration Guide.

Migrating Server Parameters

When migrating from one environment to another, the Siebel Administrator must
add any parameter changes to the target server.

The process involves outlining the parameters that were added or modified,
exporting them to a text file, and then importing them into the new environment.
You can use the Server Manager command line utility (srvr ngr) to extract the
parameters. Parameters can be recorded in a batch file and imported as a batch
submission.

To export server parameters from the source server

1 Open a command prompt on the source server and change to your siebsrv\bin
directory.

2 Execute the following command:

srvrngr /g <gateway-server> /e <enterprise-server>/u SADM N /
p <SADM N- password> /o0 "<output-file>" /c "list parameters”

This command exports a list of parameters to a text file.

3 Edit the file to remove the lines describing default parameters and machine-
specific parameters.

Version 7.5, Rev. A Configuration Guidelines 25

‘ Managing Non-Repository Data

Other Migration Tasks

The output/input file is an ASCII text file that contains lines describing server
parameters, such as:

change param MaxTasks=40 for conp SCCObj Myr
change param MaxMrServer=2 for conp SCCObj Myr

To import server parameters to the target server

1 Open a command prompt on the target server and change to your siebsrv\bin
directory.

2 Execute the following command:

srvrngr /g <gateway-server> /e <enterprise-server>/u SADMN /
p <SADM N-password> /b /i "<input-file>"

where <input-file > is the file you generated and edited in the export procedure.
This command imports the list of parameters from the specified text file.

For more information about server parameters, see Siebel Server Administration
Guide. The "list parameters” command is listed with several additional parameters
to retrieve parameters for the Siebel Enterprise, Server, Component, and Subsystem.

26 Configuration Guidelines Version 7.5, Rev. A

Setting Up Developers 3

This section gives details about setting up developers.

Version 7.5, Rev. A Configuration Guidelines 27

‘ Setting Up Developers

Organizing Projects

Organizing Projects

A project is a named set of objects used to group related object definitions. Projects
can be checked in, checked out, locked for modification, and compiled.

Follow these guidelines when working with projects:

= Projects should contain related object definitions. Because projects are typically
organized by functional area or object type, keeping related object definitions
together helps make sure dependent code is checked in and out at the same time.

= When working in a multiuser environment, try to organize tasks around
projects.

m Create new projects for any major new areas of configuration, such as business
objects or business components.

= Try to minimize the size of new projects. This decreases both the time to compile
and the check-in and checkout processes. Minimizing the size of a project also
results in fewer conflicts between developers working on different objects within
the same project.

28 Configuration Guidelines Version 7.5, Rev. A

Setting Up Developers ‘

Using Local Databases

Using Local Databases

Although Siebel Tools lets developers operate in a client/server mode with the
development database server, developers should never make configuration changes
directly in the server database, for the following reasons:

s When working directly in the server database, you cannot undo or back out
undesired changes to a specific project. The only option is to recover the entire
repository.

m Your changes are immediately available to other developers when they check out
projects or compile an SRF in the database server. If you have not completed
work on the project, these incomplete changes can cause problems for other
developers.

To prevent these problems and promote efficient team-based development, each
developer should be configured as a mobile user, with a local SQL Anywhere or MS
SQL database. Initially, each developer should populate the local database with a
read-only copy of all projects on the server. When developers need to modify a
specific project, they can check out that project from the server database. This locks
the project on the server database to prevent other developers from making changes
to it, and transfers a modifiable copy of the project to the local database. The
developer can then modify and unit-test the project against the local database. After
the work is complete, the developer can check the project back into the server
database. If a developer wants to discard the local configuration work, the
developer can revert the local database copy of the project to the server version,
which is kept as an archive file each time a project is checked out.

Preparing Local Development Environments

When setting up developers to work in a local environment, complete these steps,
in this order:

1 Install Siebel Tools in the desired folder on developer machines. By default, this
is the C:\siebdev directory.

2 Install the Siebel eBusiness application in the appropriate folder on developer
machines. By default, this is the C:\Siebel directory.

Version 7.5, Rev. A Configuration Guidelines 29

‘ Setting Up Developers

Using Local Databases

Set up each developer as an employee and mobile client. Using a Siebel
eBusiness Applications client connected to the development server database,
create an Employee and a Mobile User record for each developer. Use the
developer's first and last names for the employee first and last names and a
standardized short name, such as first initial plus last name, for the login name.
This makes it easy to identify who has locked a project.

Grant each developer a position and responsibility. You can grant the Siebel
Administrator responsibility to all developers; alternatively, you may want to
create a responsibility with access to all views except System, Service, and
Marketing Administration to prevent unintended changes to important system
preferences and data. You can use a common position for all developers, but for
testing purposes you should also set up an organization structure that models
the business.

Schedule a Generate New Database Component Request to create an extract for
the user. This process creates a template for the developer's local database that
is populated with business data only, not with repository data. All enterprise
visible data is extracted into this template, together with any limited visibility
data (such as Contacts, Accounts, or Opportunities) to which this user has
access.

Connect to Siebel Tools locally to initialize the developer's mobile client
database. Specify the Siebel developer login created in Step 3 with an
appropriate password. The initialization program creates the local database
(sse_data.dbf) in the C:\SIEBDEV\LOCAL directory.

Do an initial checkout (get) of all projects, which retrieves all projects but does
not lock them. Developers can then individually check in or check out their
projects.

Use the Check In and Check Out commands to copy projects between the local
database and the server. When you check out a project, a copy remains on the
server but the project is now locked on the server. Other developers cannot make
changes to projects that are locked on the server.

30 Configuration Guidelines Version 7.5, Rev. A

Setting Up Developers

Using Local Databases

When you check in a project, it is copied from your local database to the server
database, and it replaces the existing definition of the project on the server. To check
in a project, you must have it locked on the server database (that is, you must have
first checked it out).

NOTE: When you check in or check out, the project on the target database is
overwritten with the new project.

Doing an Initial Checkout (Get)

After creating each developer's local database, you must do an initial checkout to
populate the local database with a read-only copy of all projects from the repository.
The developer can then compile an SRF file against the local database; this is
required to fully test changes locally. As previously mentioned, the newly initialized
local database contains only a skeletal repository without any projects. The
following procedure describes how to check out (get) all projects to a developer’s
local database.

To check out (get) all projects to a local database
1 In Siebel Tools, choose Tools > Check Out.
2 Select your development repository.

The name of your development repository should follow your repository naming
conventions. For more information on repository naming conventions, see
Chapter 1, “Managing Repositories.”

3 Make sure the Server and Client Data Sources point to the correct databases.

If the Server and Client Data Sources are not pointing to the correct databases,
click Options and navigate to the correct databases.

NOTE: Make sure All Projects is checked.

Version 7.5, Rev. A Configuration Guidelines 31

‘ Setting Up Developers

Using Local Databases

4 Click Get.

After you check out all projects, your local database now contains the initialized
repository data. By default, the new repository opens with the name Siebel
Repository. After an upgrade, however, there may be multiple repositories in the
database; if so, you must manually open the Siebel Repository, as described in
the following procedure.

To manually open the Siebel Repository
1 In Siebel Tools, choose File > Open Repository.

2 From the Open Repository dialog box, select the repository you want to open,
and click Open.

You are now ready to begin your development using Siebel Tools.

Checking Out Projects for Modification

Before developers can modify a project on the local database, they must first check
out and lock a copy of the project on the server database.

To check out and lock a project

1 In Siebel Tools, choose Tools > Check Out.

2 Make sure the correct repository is selected.

NOTE: This should be the same repository that you opened in the previous
section.

3 Make sure the Server and Client Data Sources point to the correct databases.

If the Server and Client Data Sources are not pointing to the correct databases,
click Options and navigate to the correct databases.

4 Select the projects that you want to modify.
5 Click Check Out.

The project is now locked on both the local and server databases.

32 Configuration Guidelines Version 7.5, Rev. A

Setting Up Developers

Using Local Databases

Checking Out Projects For Refresh

In a multiuser development environment, such as Siebel Tools, developers
frequently need to check out projects modified by other developers to update, or
refresh, their local development environment. If you are only checking out a project
to refresh your local development environment, do an initial checkout (get) and not
a standard checkout, as described in the following procedure.

To check out projects for refresh

1 In Siebel Tools, choose Tools > Check Out.

2 In the Check Out dialog box, select the specific projects you want to refresh.

NOTE: You can also select Updated Projects to retrieve all updated projects.

3 Click Get.

NOTE: To be sure that you have a valid local configuration, make sure that all the
projects modified by other developers are checked in before doing the get. You
should do this usually once a day to make sure your repository is as current as
possible.

Checking In Projects

You can only check in projects that you have locked through a checkout process.
Before checking in a project, be sure that the project is stable and has been
thoroughly tested against your local database. Check in a project only after
completing all dependent code.

Version 7.5, Rev. A Configuration Guidelines 33

‘ Setting Up Developers

Using Local Databases

You should check in all dependent projects at the same time to be sure that the
server configuration remains consistent. Also, consider how you time your check-
in and how that impacts the work of other developers. In some instances, you may
need to check in a project before you have fully completed the configurations
required in that project. For example, if another developer's configurations depend
on a particular feature you have added to your project, you may need to check in
your project before configuring other features. This lets other developers test their
configurations with your new feature. Plan carefully to be sure that you complete
the dependent configuration before starting other independent configurations.
Alternatively, if the particular feature is simple to implement, then other developers
can lock that project locally and manually apply the required changes (or use an SIF
archive file). In this case, the developer cannot check in the locally locked project
because another developer has the project locked on the server.

To check in your projects
1 In Siebel Tools, choose Tools > Check In.
The dialog box displays a list of all your locked projects.

2 Select the individual projects you want to check in or select Locked Projects to
select all locked projects.

NOTE: Select Locked Projects/New Projects only when working with complete
and stable configuration work.

3 Check Maintain Lock to check in projects but keep them locked on the server.
(Optional)

4 Make sure the Server and Client Data Sources point to the correct databases.

If the Server and Client Data Sources are not pointing to the correct databases,
click Options and navigate to the correct databases.

5 Click Check In.

34 Configuration Guidelines Version 7.5, Rev. A

Setting Up Developers ‘

Using Local Databases

Canceling Changes to a Checked Out Project

Occasionally, you may want to discard the changes you made to a checked out
project. For example, you might decide that it is easier to start over instead of
undoing previous changes. There is no Undo Check Out command. Instead, you
must check out the project from the server database again, as described in
“Checking Out Projects for Modification” on page 32. This lets you overwrite your
existing copy of the project with the copy of the project that is on the server.
However, repeating the checkout procedure will not remove the server lock. If you
want to unlock a project on the server you must check in the project and then check
it out again.

If you need to revert back to the project’s original state but cannot connect to the
server to check out the project, you can use an archive file (SIF) of the project,
which Siebel Tools automatically creates each time you check out a project. This
archive file is stored in the Siebel Tools temp/projects directory and can be imported
the same way as other SIF files.

Version 7.5, Rev. A Configuration Guidelines 35

‘ Setting Up Developers

Using Local Databases

36 Configuration Guidelines Version 7.5, Rev. A

Naming Conventions 4

This section provides naming conventions for Siebel eBusiness Applications.

Version 7.5, Rev. A Configuration Guidelines 37

‘ Naming Conventions

Naming Conventions

Naming Conventions

Table 2 lists the naming conventions you should use when configuring your Siebel

application.

Table 2. Naming Conventions for Siebel Configurations

Object

Any

General

Links

Join

38 Configuration Guidelines

Convention

For any new object you create (top-level or child), prefix the name
with the company name (or its acronym). For example, if you are
creating a new Hobby business component for ABC Corporation,
name it ABC Hobby. Similarly, if you are creating a new Description
field in the standard Account business component, name it ABC
Description. Also consider putting the three-letter acronym at the end
of the name instead of the beginning. This convention allows you to
search for custom objects by acronym but still see related objects
sorted together, such as Approval Authority and Approval Authority
Code - XYZ.

The only exception to this standard is that when you add a new child
object to a parent object that already has a prefix, there is no need to
add it again at the child level. For example, if you are adding a
Description field to the ABC Hobby business component, name it
Description instead of ABC Description.

Most object names (except applets) should be singular and not
plural.

= Avoid special characters like slashes, parentheses, periods, and
so on in object names (except for slashes in link names). The “#”
(number sign) character is a valid character.

= Avoid prepositions in object names—for example, use # Weeks or
just Weeks instead of Number of Weeks.

= Avoid the word Amount in the names of currency fields—for
example, use Revenue instead of Revenue Amount.

Use the convention < parentBusComp >/ < childBusComp > . By
default, the name for new links is set to this format but you can
override the default name.

When adding a new join to an existing standard business
component, always give it an alias and make sure the alias is prefixed
with the company name or acronym.

Version 7.5, Rev. A

Naming Conventions

Naming Conventions

Table 2. Naming Conventions for Siebel Configurations

Object

Foreign Key Fields

New LOV_TYPEin
List of Values

Form applets and
Profile applets

List applets and
MVG applets

Associate applets

Pick applets

Convention

These fields should have a name like < Entity > Id. If the foreign key
is serving as a primary pointer, it should have a name like Primary
< Entity > Id. For a primary pointer to an entity that is already
prefixed, prefix the foreign key field with the company name or
acronym (as usual), but do not include the prefix in the < Entity >
name. For example, a primary pointer to the ABC Subsegment
business component would be named ABC Primary Subsegment Id,
instead of Primary ABC Subsegment Id or ABC Primary ABC
Subsegment Id.

Prefix with the company name or acronym.

Titles should be singular.

Titles should be plural.

Titles should be in the format Add < entities >, where < entities > is

plural.

The titles should be in the format Pick <entity >, where < entity >
is singular.

Tables

There are over 2,000 database tables in the Siebel Data Model. Each of these tables
follows a standard naming convention to help users identify individual tables. For
information on naming conventions for tables, see Siebel Data Model Reference.

Business Objects and Business Components

The following general naming conventions apply to business objects and business

components:

Version 7.5, Rev. A

Configuration Guidelines 39

‘ Naming Conventions

Naming Conventions

Joins

Links

Business component and business object names must be unique and
meaningful. Avoid naming new business components or business objects by
adding a number suffix to an existing name (for example, Account 2). This type
of name does not clearly communicate how the new object definition differs
from the original one. For example, if you create a new business object to
support a unique account screen for your Telesales group, you might call the
business object Telesales Account to clearly indicate its intended use.

Name all new business components and business objects with a prefix that
identifies your company. For example, ABC Incorporated could name a new
object definition ABC Telesales Account. This approach makes it easy to identify
the object definitions in the repository that are not object definitions defined by
Siebel Systems. This approach also makes it easy to query for your newly
defined object definitions and simplifies upgrading your repository.

Initial-capitalize business component and business object names, for example,
Account rather than account. This prevents unexpected sorting behavior in the
Object List Editor.

Table 3 shows the naming convention for joins.

Table 3. Naming Convention for Joins

Object Type Name Format Example
Join name of the joined table S_ORG_EXT
S_CONTACTS

There are two types of links: one-to-many (1:M) and many-to-many (M:M). Table 4
shows the naming convention for links.

Table 4. Naming Convention for Links

Object Type Name Format Example

Link buscompl/buscomp2 Account/Account Service Agreement

40 Configuration Guidelines Version 7.5, Rev. A

Naming Conventions

Views

Naming Conventions

The following are general recommendations for view naming:

Name a new view using a prefix that identifies your company. For example, a
new view created for ABC Incorporated could be named ABC Opportunity
Detail - Tasks View.

View names should be meaningful. Avoid naming new views by adding a
number suffix to an existing name (for example, Opportunity List View 2). If the
view differs because it is read only, then indicate this in your view name (for
example, ABC Opportunity List View - Read Only).

Initial-capitalize view names, for example, Opportunity List View rather than
opportunity list view.

In addition, note the conventions in Table 5 for specific view types.

Table 5. Naming Conventions for Views

Type of View Name Format Example

List-form view buscomp List View Account List View

Master-detail view buscompl Detail - buscomp2 View = Opportunity Detail -

Contacts View

Explorer view buscomp Explorer View Account Explorer View

Chart view buscomp Chart View - Xxx Analysis = Account Chart View - State

Analysis

Applets

The following are general naming recommendations for applets:

Version 7.5, Rev. A

Name all new applets with a prefix that identifies your company. For example,
ABC Incorporated could name a new applet ABC Opportunity List Applet.

Avoid using special characters in applet names. Use only alphanumeric
characters.

Configuration Guidelines 41

‘ Naming Conventions

Naming Conventions

Applet names should be meaningful. Avoid adding a number suffix (for
example, ABC Opportunity List Applet 2) to an applet name. For example, if the
applet differs because it does not allow drill down, then indicate this in your
applet name (ABC Opportunity List Applet - Without Drill Down).

Initial-capitalize applet names, for example, Account List Applet rather than

account list applet.

The type of applet should be included in the name just before the word applet, as
shown in Table 6.

Table 6. Naming Conventions for Applets

Type of Applet

Association applets
Multi-value group applets
Pick applets

List applets

Form applets

Chart applets

Tree applets

Name Format

Xxx Assoc Applet
Xxx Mvg Applet
Xxx Pick Applet
Xxx List Applet

Xxx Form Applet (if the
applet does not contain
buttons)

xxx Entry Applet (if the
applet contains buttons)

Xxx Chart Applet - yyy
Analysis [By zzz]

Xxx Tree Applet

Example

Opportunity Assoc Applet
Fulfillment Position Mvg Applet
Order Status Pick Applet
Account List Applet

Account Form Applet

Account Entry Applet

Bug Chart Applet - Severity
Analysis

List of Values Tree Applet

Controls and

List Columns

A control (except for a button, prompt, or system control) must correspond to a field
on the business component on which the applet is based. The control’s Name
property should have the same value as the field’s Name property.

Follow these guidelines when creating display names:

Use the same display name for an underlying field in every applet in which it

appears.

42 Configuration Guidelines

Version 7.5, Rev. A

Naming Conventions

Naming Conventions

Avoid using abbreviations when enough room is available for you to spell out
the word. For example, when there is sufficient space, use Opportunity instead

of Oppty.

If you must abbreviate, use the same abbreviation throughout the application.
For example, always use Account Num and do not switch between Account Num,
Account No., and Account #.

Initial-capitalize control and list column names, for example, Account Num
rather than account num. This prevents unexpected sorting behavior in the
Object List Editor.

Here are other naming considerations:

Version 7.5, Rev. A

When naming currency code and exchange date fields, call them Currency Code
and Exchange Date if they are the only such fields in the business component.
If there are multiple instances of similar fields, prefix each with the name of the
corresponding Amount column—for example, Revenue Currency Code and

Budget Currency Code. The reason for this is that they are referenced by other
fields when you specify the Properties Currency Code field and Exchange Date
field. Defining the fields this way makes the reference easier to understand.

The field URL must be named URL and the class of the Business Component
must be set to CSSBCBase for the hyperlinking functionality to work correctly.

Never include a question mark at the end of a field name or user interface label.

Use meaningful, descriptive object names (for example, Account Detail Applet
With Agreement, instead of Account Detail Applet 2).

Be careful about spelling, spacing, and capitalization when naming objects.
Typically, logical names of objects in the repository use complete words, mixed
casing, and spaces between words. However, physical database objects use
abbreviations, uppercase, and underscores. For example, the Service Request
business component is based on the S_SRV_REQ database table. Also, note the
unusual capitalization of the word PickList as it is used throughout the standard
repository.

It is time-consuming to change an object’s name after it has been referenced
throughout the repository. If you need to change the name of an object that may
have many references throughout the repository, use the Find in Repository
feature (from the Tools menu in Siebel Tools) to find all of the references.

Configuration Guidelines 43

‘ Naming Conventions

Naming Conventions

Make sure read-only applets always have the string Read-Only immediately
before the word Applet in their name—for example, ABC Account List Read-Only
Applet instead of ABC Account List Applet - Read-Only.

Make sure read-only views always have the string Read-Only immediately before
the word View in their name—for example, ABC Account Common Profile Read-
Only View instead of ABC Account Common Profile View - Read-Only.

Give duplicate applets without drilldowns the same name as the original applet
but with the words Without Navigation immediately preceding the word Applet
(or Read-Only Applet)—for example, ABC Selective Account List Without
Navigation Applet.

Applets that are used specifically for Administration purposes (which are almost
always list applets) should be named < entity > Administration Applet—for
example, Master Forecast Administration Applet.

Business components used to represent child entities should not have their
parent entity in their name—for example, ABC Subsegment instead of ABC
Account Subsegment. Similarly, the applets that are based on these child
business components should only reflect the name of the business component
itself—for example, ABC Subsegment List Applet instead of ABC Account
Subsegment List Applet.

NOTE: The exception is when you need multiple variations of the same business
component or applet. Typically, multiple variations are necessary if a particular
entity is displayed as both a top-level applet and a child applet on other views,
and the two applets are not the same. In such cases, put the name of the parent
entity at the beginning of the child applet name. For example, the ABC Account
Contact List Applet is a Contact List that is displayed as the child of an Account.
It needs the word Account to distinguish itself from the standard ABC Contact
List Applet, which is a different applet.

Always name multi-value group applets <BusComp > Mvg Applet. (Note the
case sensitivity of Mvg.)

Always name Pick applets <BusComp > Pick Applet. Always name association
applets <BusComp > Assoc Applet.

44 Configuration Guidelines Version 7.5, Rev. A

Naming Conventions

Naming Conventions

= Always name a profile applet <Entity > Profile Applet, instead of < Entity >
Profile Form Applet.

= Always name a new PickList object ABC PickList < entity >. Note that if the
entity name itself has a prefix, it does not need to be repeated. For example, a
PickList based on the MS Subsegment business component would be ABC
PickList Subsegment instead of MS PickList MS Subsegment.

= When creating a physical extension column:

Use an _ID suffix for foreign key columns (varchar 15) and a _CD suffix for
List of Values domain fields (varchar 30).

NOTE: Do not use these suffixes for fields that do not meet this criteria.

Use a physical type of varchar 40 for phone number fields.

Remember that an extension column on a base table is automatically given
an X_ prefix, so it is not necessary to add an additional prefix (for example,
X_ABC_) to distinguish the columns from a standard column.

Limit column names to 18 characters, which is the Siebel standard. Using this
standard allows the application to use the column names as the basis for
related column names without ever approaching the database limit for
column names.

On MS SQL Server 7 or Oracle, always extend a base table in favor of using
an _X extension table. Note that this was not feasible on MS SQL Server 6.5
(and previous versions) or Sybase SQL Server because page size and the
number of columns per table were limited.

TIP: If you are in doubt about object names, use the existing objects in the standard
Siebel repository as your guide. For example, when creating a new Association
applet, you would notice the <BusComp > Assoc Applet naming convention.
Examine the standard objects and conform to their established naming conventions.

Version 7.5, Rev. A

Configuration Guidelines 45

‘ Naming Conventions

Naming Conventions

46 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects 5

This section provides guidelines for the creation and modification of data object
layer, business object layer, and user interface layer objects.

Version 7.5, Rev. A Configuration Guidelines 47

‘ Creating and Modifying Objects

Usage and Configuration of Nonlicensed Objects

Usage and Configuration of Nonlicensed Objects

The licensing agreement between Siebel Systems and its customers is such that
customers are only entitled to use and configure Siebel objects (for example,
business components and tables) that belong to modules they have purchased.

If a Siebel object is not exposed to the licensed user interface—through views that
are exposed under the customer’s license key—the customer is not entitled to use
that object in custom configurations.

Customers are, however, entitled to create new tables using Siebel Database
Extensibility features and to create new business components and UI objects to
expose these tables.

48 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Object Definitions Not To Be Reconfigured

Object Definitions Not To Be Reconfigured

Though Siebel Tools is implemented as applets, views, and so on in the Siebel
repository, Siebel Tools as an application should not be reconfigured in the manner
of other applications such as Siebel Sales and Siebel Service. Making modifications
may cause application errors, and make your configurations difficult for Siebel
Technical Support personnel to understand and support.

In particular, object definitions whose names start with the word Repository, such
as the applet called Repository Business Component List Applet and the view called
Repository Chart Element List View, should not be customized.

NOTE: Repository Business Components are for Siebel Systems internal use only and
their customization is not supported. These business components are primarily in
the Repdetd Project and the CSSBCReposODbj Class.

A number of object types such as Class, String Map, Type, DLL, and Attribute are
reserved. These are nonconfigurable object types, and are listed in Siebel Object
Types Reference. Do not delete, modify, or add object definitions of these types.

Inactive object definitions in the repository are not supported for customer use. The
repository contains some inactive object definitions, some of which are obsolete
and some of which are under construction, and may be removed or implemented
in a future release. Do not activate object definitions unless you are reactivating
those that you have previously deactivated.

NOTE: Tables in the data model and utility SQL scripts also may not be available for
customer use, even though they are present in standard Siebel applications.

Version 7.5, Rev. A Configuration Guidelines 49

‘ Creating and Modifying Objects

Supporting Business Logic in Siebel Applications

Supporting Business Logic in Siebel Applications

Siebel Tools Reference describes many ways to configure a Siebel application using
Siebel Tools. However, Siebel eBusiness Applications include several types of
functionality that may work just as well as a custom configuration, to support the
mechanisms of business logic.

Whenever possible, you should use existing Siebel application functionality. Instead
of writing many scripts or making other configuration changes, you should use the
varied functionality built into Siebel products such as Business Process Designer,
Personalization, SmartScript, Assignment Manager, and State Model. Because these
areas of functionality are set up in the client administrative views rather than in
Siebel Tools, they are more likely to be overlooked by application developers.

This section provides cross-references to more information.

For Development Theme... Refer to...

Integration Business Processes and Rules: Siebel eBusiness Application
Integration Volume IV

Siebel Enterprise Integration Manager Administration Guide

Overview: Siebel eBusiness Application Integration Volume I
Application Development Siebel Object Types Reference

Siebel Reports Administration Guide

Developing and Deploying Siebel eBusiness Applications
System Administration Siebel Assignment Manager Administration Guide

Siebel Business Process Designer Administration Guide

Application Administration — Applications Administration Guide
Employee Applications

Personalization Administration Guide
Siebel SmartScript Administration Guide

Customer and Partner Pricing Administration Guide
Applications

Product Administration Guide

50 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Creating Objects

Creating Objects

At times, you are required to create a new object — for example, when copying a
view to make a read-only version of it for a specific responsibility, or when copying
an applet that is used by one group of users and removing list columns to meet a
requirement for a different group of users. In these cases, copy an existing object
and make the necessary additions. If you want to upgrade the object, you need to
specify the Upgrade Ancestry property for all of the relevant business components
and applets. This strategy saves development time and makes it easier to set the
relevant properties for that object type.

When creating objects, you must proceed in a particular order. This helps you make
sure the correct values for all required properties are available as options. For
example, you should create business components and related links before creating
a business object as shown in Figure 1. You should create all your data
manipulation objects before your presentation objects.

N
List Colurmn/ .
contral Applet Wiew Screen
* Fy F9
¥ b J b d
Field Business Business
Component Object
F 3 F Y
¥ b d
Caolurmn Table
Bottom Up
Approach

Figure 1. Creating Objects Using a Bottom Up Approach

Version 7.5, Rev. A Configuration Guidelines 51

‘ Creating and Modifying Objects

Modifying Objects

Modifying Objects

There are many reasons to modify an existing object. For example:

Many existing objects have been configured for best performance; cloned objects
may not automatically inherit this same ability.

Because you have an archived copy of the original object to revert back to (in
the sample database), troubleshooting will be much easier. You can also use the
comparison feature in Siebel Tools to determine what changes were made to the
object that might be causing the problem.

Repository and application maintenance requires less time and fewer resources.
The SRF is smaller and compiles faster.

Eliminating unnecessary copies of objects reduces the amount of redundancy in
the repository.

Because standard objects have already been thoroughly tested, less effort is
required to test the application or resolve application errors.

By reducing the number of repository objects being evaluated or upgraded, there
is less effort required when upgrading your application.

New functionality is often added to core business components during a major
release. Typically, this new functionality depends on the existence of new fields or
joins that have been added to existing business components. During the upgrade
process, these new fields or joins will only be added to the standard business
components (identified by name) or to copies that are directly related to a standard
object. This is why you must specify the Upgrade Ancestry property for any cloned
business components, applets, integration objects or reports.

52 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Modifying Objects

By specifying the Upgrade Ancestry property, you can be sure that, during the
upgrade process, all of your cloned business components will match the standard
business components that were used as the basis for the cloned object. This helps
reduce any difficulties after the upgrade, which are inherently hard to resolve. Many
of these errors occur because some C+ + code from the specialized class for the
business component or applet is set to a field that does not exist in your custom
copy of the specialized business component or applet. The only way to resolve the
error is to compare your custom business component with the standard business
component and manually add any necessary new fields.

NOTE: Clone an object only when you are customizing the application. Do not clone
objects to maintain a pristine copy of the object definition. The Archive feature in
Siebel Tools lets you archive one, multiple, or all objects within a project into an SIF
file. You can reimport these archive files at any time, and by using a third-party
source control program, you can use these archives to control the versions of your
configuration changes.

Also, be aware of the following:

= Creating a new object without specifying an Upgrade Ancestor property could
add to your upgrade efforts, as custom objects will not be upgraded. Instead,
they are copied to the new repository, but without changes.

m Creating new copies of business components and applets may also create a
significant amount of redundant configuration.

Version 7.5, Rev. A Configuration Guidelines 53

‘ Creating and Modifying Objects

Copying Versus Modifying Object Definitions

Copying Versus Modifying Object Definitions

The supported practice for creating new business components and applets is to
reuse and modify standard object definitions. If, instead of using this supported
method, you use the Copy Record option to copy standard business components
and applets, you run the risk of causing problems during subsequent upgrades of
Siebel applications. Some of the reasons why copying can cause problems include:

Copying can create upgrade problems that are difficult to debug.

Functionality is often added to most of the standard business components
during major releases. Very often this new functionality depends on the
existence of new fields, joins, and so on, that are added to the standard business
components. During the upgrade these new fields are added only to the standard
business components in your merged repository.

Copying results in problems following the upgrade, and these are difficult to
locate and debug. The errors often occur because some C+ + code for the
business component or applet class is trying to find a field that does not exist in
your custom copy of that business component or applet. The only way to debug
the problem is to compare your custom business component with the standard
business component and add any new fields and other child object definitions
that may have been added in the new release. This may be a complex process,
requiring detailed knowledge of what has changed in the new release.

Copying creates redundancy.

Creating new copies of business components and applets results in considerable
redundancy in your configuration. For example, if you were to create a copy of
the Account business component called My Account, and use this on all of the
account-based views, you would also have to create copies of every account-

based applet and point each to the new My Account business component. You
probably would also have to create a new business object, screen, and so on. It
would result in considerable additional configuration with little or no benefit.

54 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects ‘

Copying Versus Modifying Object Definitions

= Copying increases, not reduces, difficulties.

Developers sometimes make copies of object definitions in the belief that doing
so will reduce problems during an upgrade. The assumption is that if the
business component is called My Account, the Application Upgrader will leave
it alone during the upgrade, resulting in no problems after the upgrade.

However, this assumption is misleading. The problems you will have with an
upgraded configuration containing copied object definitions will be more
complex to solve than the problems possibly caused by reusing standard object
definitions. It is far easier to go through your application after an upgrade and
remove various new controls and list columns from a standard applet than it is
to go through each custom business component and applet and work out what
fields, joins, multi-value links, and so on to add.

In short, modify existing object definitions wherever possible, and avoid using the
Copy Record option except when it is truly needed.

However, there are a few special situations in which you should legitimately make
a copy of an existing object definition. Some of these situations are described in
detail in the subsections below. As a general rule, unless you are certain that you
need to make a copy of an object definition, modify rather than copy an existing
object definition.

Version 7.5, Rev. A Configuration Guidelines 55

‘ Creating and Modifying Objects

Creating Specialized Objects

Creating Specialized Objects

This section gives several important reasons why you should not create redundant
objects in your configuration through copying objects or cloning specialized classes
of objects.

Avoiding Redundant Objects

There are two reasons not to copy objects:

Copying creates redundancy.

New copies create redundancy in the repository. If you rename a business
component and use it in several views, then new applets must be based on the
new business component. This process adds considerable redundancy and effort
to the configuration.

Copying increases difficulties.

Copying an object will not make it easier to upgrade because the object does not
change during the upgrade. However, it is easier to remove any controls or list
columns that were added during the upgrade than it is to try and manually
upgrade the objects by adding all the new functionality from the upgrade.

For example, if you need a business component to appear in a business object
more than once, or if a business component requires a different search
specification or predefault property values, you may have to create new business
components. You would also need to create a new business component if you
create a completely new logical entity that serves a role that is not handled by
any existing objects.

56 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects ‘

Creating Specialized Objects

Cloning Specialized Objects

Business components and applets all have a class property. This class property is
the C+ + class, which implements the functionality of the business component or
applet. There are generic classes and specialized classes. The generic class for a
business component is CSSBusComp; the generic classes for applets are CSSFrame
and CSSFramelList. Specialized classes exist for business components or applets that
have specialized behavior or features. Examples of specialized modules include
Quotes, Forecasting, and Correspondence. For newly created objects, use the
generic classes only. New objects take a specialized class only if the new object will
be a clone of the original object. In other words, if the specialized behavior
associated with using the specialized class is desired in the new object, then it may
be appropriate to clone a specialized class.

Be careful when modifying specialized modules and objects, including Promotions,
Quotes, Forecasting, and Calendar. Often, buttons on these modules rely on being
attached to specialized applet classes. (For example, changing a form applet to a list
applet may break specialized code.) Make only minor changes to specialized
objects, such as changing the caption on an applet control or list column. Never
rename or delete fields in specialized business components.

Whenever you clone an applet or a business component, populate the Upgrade
Ancestor property with the original object's name. For more information, see Siebel
Tools Reference.

CAUTION: Significantly modifying a specialized object may have severe implications
for your application. You must conduct a thorough testing of these objects.

Version 7.5, Rev. A Configuration Guidelines 57

‘ Creating and Modifying Objects

Creating Data Objects

Creating Data Objects

The Siebel Data Model consists of over 2,000 database tables. Each of these tables
follows a standard naming convention to help users identify individual tables. For
information on naming conventions for tables, see Siebel Data Model Reference.

The standard user interface does not use all the relationships available in the
underlying data model; however, most entity relationships are available for
developers to use. During the discovery phase of an implementation, you should
carefully analyze the business requirements and thoroughly research how to meet
these requirements using the existing data model and standard objects.

There is a misconception that if a relationship is not defined in the data model and
has not been created in the Business Objects layer, a custom relationship must be
created with a custom foreign key. This is not always necessary and is discouraged
for these reasons:

= When planning or implementing Mobile Web Client users, be aware that
downloading data to the local database is governed by Dock Object Visibility
rules. (For more information, see Chapter 10, “Visibility.”) These rules use the
standard relationships to determine which tables’ data are routed to the mobile
user’s local database.

Thus, when new relationships are created, there are no Dock Object Visibility
rules that allow relevant data to be downloaded to the local database. This may
cause users to not be able to see their data.

To resolve this, you can use a Docking Wizard feature to create custom docking
rules for custom foreign keys. However, you may encounter some performance
concerns if you do not analyze the results of the functionality implemented by
the Docking Wizard before you implement a new Dock Object Visibility rule or
object. Primarily, the performance of your remote processes (such as the
Transaction Processor and Router) may be affected.

In addition, by adding a rule you may be inadvertently adding a significant
number of database records to remote users, which could affect initialization
and synchronization times. An increased number of records in the remote
database may also impact the mobile user application’s performance.

58 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Creating Data Objects

» If you are using Enterprise Integration Manager (EIM) to populate data in Siebel
base tables, you can follow this process:

= Add the custom FK extension column.

= Add a corresponding column to the EIM table that populates the table with
the custom foreign key.

= Map them together.

Note, however, that EIM treats the foreign key extension column as a
Varchar(15) column instead of a true foreign key. EIM does not maintain
referential integrity so resolving the foreign key is a manual process.

Changing the user key is not supported because it involves extensive changes to
EIM mappings and continuous maintenance through upgrades. It also breaks the
EIM process.

You can add custom indexes to include extension columns for increasing
performance; however, contact Siebel Expert Services to make sure these
indexes do not inadvertently degrade performance.

NOTE: Wherever possible, use the standard relationships available within the
Siebel data model. This helps minimize any remote visibility and EIM issues.

Version 7.5, Rev. A Configuration Guidelines 59

‘ Creating and Modifying Objects

Creating Data Objects

Using the Docking Wizard

Before using the Docking Wizard, do the following:

» Analyze configuration workarounds that allow the desired functionality or
docking to take place without creating any new docking rules. Siebel Expert
Services will analyze any future concerns about new designs and requirements
for custom foreign keys.

m If you decide that no additional configuration is required, then analyze whether
the docking needs to be bidirectional. If not, contact Siebel Expert Services to
have one of the new rules inactivated.

m Be aware that any new Dock Object Visibility rules will have the Check Dock
Object Visibility strength of 100 and a resulting visibility strength of 50. If you
need to alter these strengths to cause additional or fewer records to dock, submit
a Non-Standard Change Request (NSCR) to Siebel Expert Services. For more
information on dock objects and the Docking Wizard, see Siebel Tools Reference.

In some cases, you can change the relationships between entities. For example,
there are objects within the repository that can change the relationship between
Contacts and Activities from 1:M to M:M. Although only one relationship at a time
is used to maintain data integrity, the data model does provide flexibility to meet
your business requirements. You should verify that entity relationships can be
changed with existing objects to prevent extensive database schema changes and
configuration.

60 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Creating and Modifying Business Objects

Creating and Modifying Business Objects

A business object groups one or more business components into a logical unit of
information. For example, the Opportunity business object may group the
Opportunity, Contact, and Product business components as Business Object
Components. This exposes the relationships between the data residing in the child
business components (such as Contact and Product) with the parent business
component, Opportunity. In other words, by grouping these business components
within the business object, you can now use the foreign key relationships within
the underlying data model to manipulate the products related to an opportunity or
the contacts associated with the opportunity.

Business objects are the basis for views, which are then grouped into screens.
Typically, all the views within a screen have the same driving data for the view
based upon the same business component. For example, in the Opportunity screen,
the views that make up the screen definition include the All Opportunity List view,
Opportunity Detail - Contacts view, and Opportunity Detail - Products view. The key
to all of these views is that the driving data is based on the Opportunity business
component. Therefore, all the views with Opportunity-driven data are grouped into
the Opportunity screen. Because all views in a screen are usually based on the same
business object, a screen is indirectly related to the business object.

NOTE: In the Siebel eBusiness Application, under the Contacts screen, in any of the
Contact views, users can create identical contact records — that is, records with the
same values for first name and last name even when connected to the server
database. This is the application’s intended functionality. The user keys were
altered to allow users to create identical contact records because there may be
contacts with the same first name and last name in a large company database. To
prevent the same contact from being entered twice, run real-time data matching
using the data quality module.

You rarely need to create a new business object. The only times to do so are when
your design requires a new screen that groups several new business components
together or groups existing business components in a way that is not supported by
an existing business object. The business components that must be included in each
business object are:

Version 7.5, Rev. A Configuration Guidelines 61

‘ Creating and Modifying Objects

Creating and Modifying Business Objects

= Any business component whose data is displayed in an applet, on a view based
on the business object.

= Any business component whose data is exported in a report, from a view based
on the business object.

A business component can be included only once in each business object, and can
be linked to only one other business component in the business object. In terms of
the user interface, this means that applets can be linked to only one other applet in
a view. Except for the Home Page view, each view has a driving applet based on the
driving business component in the business object. This driving applet can have
related applets based on other business components; however, these applets are
always child applets of the driving applet. Therefore, all business components
within the business object are either the driving business component for the
business object or include data related to the driving business component. For
example, to show the Contacts related to the Opportunity, the Contact business
component should be part of the Opportunity business object. To show the Contacts
related to an Account, the Contact business component should be part of the
Account business object.

When you create a new business component to support administration or system
activities, you do not need to create a new business object; make sure the new
business component is part of the existing business object used to support
administration views, and then assign the view to the Marketing Administration or
System Administration screen.

62 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Creating and Modifying Business Objects

Specifying Links for Associated Business Components

To include a new business component on a business object definition, add a
business object component record as a child of the business object. You also need
to identify the link property on the business object component.

Although it is optional, you should enter a value for the Link property on the
business object component. If you do not specify the link, by default a link named
Parent Business Component/Child Business Component is used, where the parent
business component property’s value equals the name of the source business
object, and the child business component property’s value equals the value of the
destination business component property. If a suitable link cannot be found, the
business component is displayed without a link to any other business component
in the parent business object. In this case, all records that satisfy the business
component search specification independent of the parent business component are
displayed. This could create issues because users would not understand that the
values in the child business component are not directly related to the parent
business component, but represent all data for the child business component.
Therefore, you should enter a value for all links wherever you want to show master-
detail records.

You must define a link for a business object component under the following
circumstances:

s When the business component can be linked to more than one business
component in that business object—for example, the Action business
component could be linked to the Opportunity, Account, or Contact business
component in the Opportunity business object.

s When the link between the parent and child business component is many-to-
many and either component can be the parent—for example, in the Opportunity
business object, there is a relationship between the Opportunity and Contact
business components. Because either business component could be the parent,
you must specify that the Opportunity/Contact link should be used to be sure
that the Opportunity business object is the parent.

Version 7.5, Rev. A Configuration Guidelines 63

‘ Creating and Modifying Objects

Creating and Modifying Business Objects

Managing Unused Business Objects

In general, any supplied unused objects must remain intact and must not be
deleted, inactivated, or renamed. For business objects, this is also true. Do not
delete these definitions because other objects may reference them. Delete any
custom business objects that are not being used and do not reference any other
object definition, such as a view.

64 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Creating and Modifying Business Components

Creating and Modifying Business Components

A business component is a logical representation of one or more tables. The
information stored in a business component is usually specific to a particular
subject, such as a product, a contact, or an account. This information may or may
not depend on any other business component. A business component can be
included in one or more business object definitions.

Most of the data for a business component comes from one main base table. For
example, the Opportunity business component is based on the S_OPTY table. Most
data retrieved for the Opportunity business component comes from this table.
However, data from other tables are also available through joins to those tables.

Many business components are based on the S_PARTY table, where most
information does not come from the main base table but from joined tables. For
example, the Account business component is based on the S_PARTY table but most
of the data for the Account business component is stored on the joined table
S_ORG_EXT.

Often, during configuration, there is a need for a business component that is similar,
but not identical, to an existing business component. In this case, you must choose
between creating an entirely new business component based on the existing one or
modifying the existing one for reuse. Modifying an existing business component is
usually the better solution, because it minimizes the number of business
components. This leads to a configuration that is smaller, requires less memory, is
easier to maintain, and is easier to upgrade (because it is closer to standard
applications).

Always configure your application in a way that lets you reuse business components
instead of creating new ones. For example, you can have an implementation where
one group of users may create opportunities, but another group can only edit
existing opportunities. Instead of creating a new business component and setting
the No Insert property to TRUE, you can define a new applet and set the No Insert
property to TRUE for the applet.

Version 7.5, Rev. A Configuration Guidelines 65

‘ Creating and Modifying Objects

Creating and Modifying Business Components

If you must create a new business component, avoid copying business components
based on a specialized class, unless you intend to create a true clone of the original
business component (with the same functionality), and then apply minimal
changes. For example, you may want to create a Locked Service Requests business
component that displays only those Service Request records that have been locked
using a business component User Property. In this example, you would copy the
Service Request business component (defined by the specialized class
CSSBCServiceRequest), set up the Lock Field business component User Property,
and specify the conditions in which a Service Request should be locked. Next, you
would identify a search specification for the business component that will retrieve
only those Service Request records with the preceding conditions. The underlying
behavior of the new business component remains the same as the original business
component. You should avoid copying a specialized business component to
reproduce an isolated feature associated with that business component.

Managing Unused Business Components

Generally, any supplied unused objects must remain intact and must not be deleted,
inactivated, or renamed. Do not delete these definitions because other objects may
reference them. Delete any custom business components that are not being used
and do not reference any other object definition, such as an applet.

Associating Business Component Fields With Tables

A business component field directly relates to a column from a table in the database
or a calculated value. All fields making up a business component record contain
entries from both single-value and multivalue field types. Each multivalue field
references a multivalue link. You can also associate a join with a field to retrieve
data from a joined table. The join must be implicit for the business component or
explicitly defined in the business component.

66 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects ‘

Creating and Modifying Business Components

Defining System Fields

System fields should not be explicitly defined for a business component. The
ROW_ID, UPDATE, UPDATED_BY, CREATED, and CREATED_BY columns are
automatically populated during the insert process.

You can refer to a system field on another business component, without the system
field being explicitly defined on that business component. The system field becomes
an option to choose from in the picklist of fields. They are listed as Id, Updated,
Updated By, Created and Created By.

Version 7.5, Rev. A Configuration Guidelines 67

‘ Creating and Modifying Objects

Constructing Joins

Constructing Joins

A join defines a logical relationship between the base table of a business component
and another table. The join is a child object of a business component. Fields in a
business component reference joins. A join should only be used when the resulting
database join will retrieve none or only one record. For example, a join is used to
retrieve the primary Account for an Opportunity.

A business component may have more than one join with the same destination
table if you specify an alias for each join using the Alias property. For example, the
Action business component may have two joins to the S_CONTACT table, one to
retrieve the owner of the person who created the activity, and another to retrieve
the contact associated to the activity. In this example, the joins aliases are Owner
and Primary Contact respectively.

It is important that the Alias property of the join be distinct even though the
destination table is the same. It is usually not a good practice to use the table name
as the Alias name, even though this is common in the standard repository. This is
because implicit joins will use the table name as the Alias in order to make sure that
the explicit join does not get used instead. To make sure that no conflict exists, you
should always give the join a distinct and custom alias name.

There are two types of joins, explicit and implicit.

Creating Explicit Joins

Explicit joins consist of the following:
= Joins to non-party related tables.

In an explicit join, the only column you can update is the field (in the parent
business component) with the foreign key value. You must specify the table to
join to and whether it is an outer join. You must also specify the join
specification definition with the source field in the parent business component
that stores the foreign key value and the destination column in the child table,
which is usually ROW_ID.

68 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Constructing Joins

Joins to party related tables.

Joins to tables that are extensions of the S_PARTY table (such as S_CONTACT,
S_ORG_EXT, or S_USER, S_POSTN) require that the foreign key value be
exposed as the source field, as stated previously. However, the destination
Column must reference the PAR_ROW_ID column in the joined table.

Creating Implicit Joins

Implicit joins have the following properties:

You do not have to define an implicit join through Siebel Tools. These joins exist
for all 1:1 (_X) extension tables and relevant intersection tables.

Implicit joins exist for party related entities. There is an implicit join available
for each extension table belonging to a base table. S_PARTY has many extension
tables, including S_ORG_EXT, S_CONTACT, S_POSTN, and S_USER. These
implicit joins are used in other party business components to map their main
data. For example, if you added a field to the Account business component and
then selected the Join property, you would see several joins that do not appear
in the Join list displayed in the Tools Object List Editor, including joins with an
alias of S_ORG_EXT and S_USER. These are implicit joins. The Join aliases are
displayed as options in the Join property pick list on the Field object.

You can update the columns from this type of join.

Creating a New Join

You can create a new join in these circumstances:

Version 7.5, Rev. A

When a join to a particular table does not already exist within the business
component definition and there is a foreign key value between the table the
business component is based on and the joined table.

When the foreign key value is stored in a field that is not already defined as a
source on an existing join.

When mapping fields in party business components, use the implicit join for the
extension table.

Configuration Guidelines 69

‘ Creating and Modifying Objects

Constructing Joins

= When bringing in party data into a non-party business component, create a new
join with the join specification based on PAR_ROW_ID.

= When bringing in party data into a party business component, use the
appropriate explicit join.

For more information, see Siebel Tools Reference.

70 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects ‘

Constructing Links

Constructing Links

Links specify the relationship between two business components. Like business
objects, a link is a top-level object with no parent object. Both business objects and
multi-value links in business components reference links.

Creating One-to-Many (1:M) Links

In a one-to-many link, you define the child business component and the
destination field (the foreign key to the parent) of that business component. You
also define the parent business component and the source field of that business
component. If the source field is not defined, it defaults to the parent business
component’s ID. An example of this type of link is the Account/Account Note link.
One Account has can have many note records. The ID (source field) of the parent
Account record is stored in the Account Id (destination field) field of the Note
record.

Creating Many-to-Many (M:M) Links

In a many-to-many link, you define the child and parent business components. You
also define the Inter Table. From the Inter Table, you define the Inter Child Column
and the Inter Parent Column (the foreign keys to the child and parent, respectively).
An example of this type of link is the Opportunity/Account. The intersection table
is S_OPTY_ORG. The Inter Child Column is OU_ID, which is the ID in the Account
business component. The Inter Parent Column is OPTY_ID, which is the ID in the
Opportunity business component.

Setting Advanced Link Properties

When you create a link, you can set the following properties:
m Cascade Delete

= Search Specification

m Sort Specification

= Visibility Rule

Version 7.5, Rev. A Configuration Guidelines 71

‘ Creating and Modifying Objects

Constructing Links

Setting the Cascade Delete Property

The Cascade Delete property determines whether a child record is deleted when the
parent record is deleted. If the property is set to Delete, then the child record is
deleted. This is most appropriate for values stored on _XM tables where the only
related record is the parent record. If the property is set to Clear, then the child
record is not deleted. However, the value in the foreign key column is cleared. This
is most appropriate for child values that might be shared with other parent records.
The default value for Cascade Delete is None. With this setting, no records are
deleted and the foreign key column is not cleared.

CAUTION: Take special precautions when determining this property. If set incorrectly,
it may cause data integrity issues or orphaned records.

Setting the Search Specification Property

The Search Specification is applied to the child business component. Be aware that
a Search Specification can also be applied at the applet level, and any Search
Specifications that exist at the applet level will be added to this Search Specification
by using the query operator AND.

Setting the Sort Specification Property

This applies only to association lists.

Applying the Visibility Rule Property
This property determines whether visibility will be applied in the Link. The
properties are Never, Always Child, and Drill Down.

For more information on these properties, see Siebel Object Types Reference.

This section provides guidelines for configuring user interface objects.

72 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Creating and Modifying User Interface Objects

Creating and Modifying User Interface Objects

User interface objects determine what a user sees and how a user interacts with the
Siebel eBusiness Application. This section provides guidelines for configuring the
following user interface objects:

= Screen
s View

= Applet
= Control

s List Column

Version 7.5, Rev. A Configuration Guidelines 73

‘ Creating and Modifying Objects

Configuring Screens

Configuring Screens

A screen object is used to group or modify a collection of views.

Creating and Modifying Screens

Typically, you create a new screen when you create a new business object. You
modify an existing screen object when you remove or add a screen tab, change
menu text (for the Site Map), or define new views for that screen. Screens appear
as first-level choices on the Site Map.

Views associated with screens appear in one of two places. Views with visibility
properties (specifically the Visibility applet) appear in the Site Map as views
accessible under the screen. They also appear in the Show drop-down list in the
screen’s default view. Screens are also accessed through screen tabs. Each screen
tab represents a screen. The views that are part of that screen are available in the
Show drop-down list (those with visibility properties) or are represented as view
tabs under the screen’s default view.

The order of the tabs and their listing on the Site Map is controlled by the sequence
property of the records in the page tab and screen menu item child object of the
application object.

Managing Unused Screens

If you will not use a standard screen in your implementation, use the Responsibility
Administration Screen to disassociate all views on the redundant screen from those
responsibilities your organization uses. This approach reduces the amount of
configuration necessary for you to maintain and upgrade. It also offers an easy
upgrade path if you decide to show the screen or views later. At that time, no
configuration or software upgrade is required; you need only to reassign the views
to the relevant responsibility. You can also inactivate the screen using Siebel Tools—
it will not be compiled in the SRF.

74 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Configuring Views

Configuring Views

Typically, a view defines a visual representation of a business object's data and is
composed of a collection of applets. There can be many views of information for a
business object. The following sections give guidelines for which views not to
configure, naming views, handling unused views, and choosing a view layout.

Creating and Modifying Views

During the initial stages of an implementation, you define the required views. These
views are usually in one of these categories:

Version 7.5, Rev. A

Views that are standard and do not need to be modified.

Views that closely align with an existing view and require the same applet
layout, but require other configurations such changing a title, inactivating or
adding controls or list columns, and changing display labels. For this category,
it is also recommended that you configure the existing view object. Most
configurations in this category are actually done on the applets instead of the
views.

Views that closely align with an existing view but require a moderately different
applet layout, possibly displaying applets based on new business components or
adding toggles. For this category, it is also recommended that you configure the
existing view object. The design may also require configuration of the existing
view applets.

Views that consolidate two already existing views. For this category, it is
recommended that you configure one of the existing views by modifying the
view object, and remove visibility to the redundant view using the
Responsibility Administration screen.

Views that do not have an obvious preexisting equivalent view. These are views
that expose new functionality specifically configured for your implementation,
exposing new business objects or business components. For this category, it is
recommended that you create a new view object and avoid extensively
modifying an existing definition that will not be used in your implementation.
The resulting configurations will be much cleaner and easier to maintain and
upgrade (both manually and automatically).

Configuration Guidelines 75

‘ Creating and Mo

difying Objects

Configuring Views

A view can be associated with more than one screen, but this configuration will
cause the Thread Manager to behave incorrectly. When a thread is saved in the
session file, the name of the view is stored without the name of the associated
screen. When a user chooses a thread that navigates to a duplicated view, the user
always navigates to one screen only, even if the thread was created in the other
screen. Additionally, if the duplicate view is defined as the default view on both
screen tabs, the user sees an anomaly in the user interface. One screen tab is
selected as the active tab when either of the screen tabs are selected. The duplicate
screen tab never appears to be active.

Modifying Server Administration Views

CAUTION: Do not modify Server Administration views. Information in these views is
read from the siebens.dat file and displayed in the user interface by the Server
Manager. Configurations made to these views would also have to be made to the
siebens.dat file. However, it is not possible to configure the product to store such
information in siebens.dat. Therefore, configuration of server views is not
recommended or supported.

Calendar Views Not To Be Reconfigured

Due to the specialized nature of the code upon which the Siebel calendar is based,
configuration of the following views is not supported:

= High Interactivity Client Calendar View
m eCalendar Daily View

m eCalendar Weekly View

s eCalendar Monthly View

However, configuration of the eCalendar Detail View is fully supported through
Siebel Tools.

76 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Configuring Views

Setting Interactivity Modes for Calendar Views

Most views in the Siebel applications can display in both the Standard Interactivity
mode and the High Interactivity mode. Some calendar views are different: they run
in either High Interactivity mode or Standard Interactivity mode, but not both.

For Siebel applications that typically run in High Interactivity mode, the seed
responsibilities have been set with the High Interactivity views and with those
views that can be shared by both High Interactivity and Standard Interactivity
modes. For Siebel applications that typically run in Standard Interactivity mode, the
seed responsibilities have been set with the Standard Interactivity views and with
those views that can be shared by both High Interactivity and Standard Interactivity
modes, as shown in Table 7.

Table 7. Application Modes for Calendar Views

Standard
High Interactivity Interactivity Mode Both
View Name Mode Only Modes

High Interactivity Activity Calendar X
View

eCalendar Daily View X

eCalendar Monthly View

eCalendar Weekly View

eGanttChart View X
eCalendar Detail View

eCalendar Detail View With X
Participants

Calendar Access List View X

If you plan to deploy an application that typically runs in High Interactivity mode
in Standard Interactivity mode, you need to do the following:

= Remove any High Interactivity-mode calendar views from all user
responsibilities. (For information about modifying responsibilities, see Security
Guide for Siebel eBusiness Applications.)

Version 7.5, Rev. A Configuration Guidelines 77

‘ Creating and Modifying Objects

Configuring Views

Configuring

= Add all Standard Interactivity-mode calendar views to all user responsibilities.

m Retarget any links to calendar views so that they point to the appropriate
Standard Interactivity-mode calendar views.

NOTE: On occasions when your site decides to run applications in High Interactivity
mode for some users and Standard Interactivity mode simultaneously for other
users, you should create two sets of responsibilities: one set for High Interactivity
mode users and another set for Standard Interactivity mode users. Then, assign
users to the responsibility appropriate for the mode in which they run the
application. Under these circumstances, it is recommended that you deactivate links
to the calendar views, because the same link cannot point to both a High
Interactivity view and a Standard Interactivity view.

Threads

Views associated with more than one screen in a given application will cause
incorrect behavior in Siebel applications. When the thread is saved in the session
file, the name of the view is saved without the name of the associated screen. When
the end user chooses a thread that navigates to a duplicated view, Siebel
applications will always navigate to one screen only—even if the thread was created
in the other screen. Furthermore, if the duplicate view is defined as the default view
on both tabs, the end user will see an anomaly in the user interface. Siebel
applications will select one tab as the active tab when either of the tabs is selected.
The duplicate tab will never appear to be active.

NOTE: The Thread Applet property must be correct, especially if a custom applet is
placed in Sector 0. If this property is not set with the correct applet name, planned
CTI screen pops for transfer calls will not work.

78 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects ‘

Configuring Views

Managing Unused Views

If you are not using a standard view object, use the Responsibility List
Administration screen to disassociate the redundant view from any responsibilities
your organization uses. This offers an easy upgrade path if you decide to expose the
view later. At that time, no configuration or software upgrade is required; you need
only to reassign the view to the relevant responsibility. You can also inactivate the
view within Siebel Tools.

Displaying View Titles
There are three different titles displayed for a view, as follows:

= Title bar of the Siebel application window. The title appears in the title bar, prefixed
by the application name and a hyphen, as in Siebel Sales - Account List View.
This is specified in the Title property of the view.

= View bar tab. In the View bar in the appropriate screen, the tab that navigates to
this view. This is specified in the Viewbar Text property of the corresponding
screen view object definition.

= Screens menu sub-option. In the Screens menu, as a sub-option of the appropriate
screen, the menu option that navigates to this view. This is specified in the Menu
Text property of the corresponding screen view object definition.

Keep these three title definitions consistent for one view. If at all possible, the text
should be identical in all three.

If a view specifies a visibility mode, as indicated by a non-blank Visibility Applet
Type property, the title (in all three locations) needs to identify the visibility mode,
as indicated in Table 8.

Table 8. View Titles by Visibility Mode

Visibility Mode Title Format Example
Sales team visibility My buscomp(s) My Contacts
Personal visibility My Personal buscomp(s) My Personal Contacts

Version 7.5, Rev. A Configuration Guidelines 79

‘ Creating and Modifying Objects

Configuring Views

Table 8. View Titles by Visibility Mode

Visibility Mode Title Format Example
Manager visibility My Team’s buscomp(s) My Team’s Opportunities
All visibility All buscomp(s) All Accounts

For more information on visibility modes, refer to Chapter 10, “Visibility,” and
Siebel Tools Reference

80 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Configuring Applets

Configuring Applets

An applet is composed of controls and occupies part of a view. You can configure
an applet to allow data entry, provide a table of data rows, and display business
graphics or a navigation tree. It provides viewing, entry, modification, and
navigation capabilities for data in one business component. An applet is always
associated with one and only one business component.

Creating and Modifying Applets

During the initial stages of an implementation, you define the required views. The
applets displayed on these views usually fall into one of these categories:

Applets that are standard and do require any modification.

Applets that closely align with an existing list applet, but require minor
configuration such as a title change, inactivating or adding controls or list
columns, and changing display labels. For this category, it is recommended that
you configure the existing applet object and its child objects.

Applets that represent an already existing relationship (for example, opportunity
contacts), but require extensive modification of the existing applet to produce a
new applet layout. Modifications are considered extensive if the new applet
requires a large combination of different configurations, such as resequencing of
existing controls or list columns, inactivating and adding new controls and list
columns. For this category, it is recommended that you create a new applet
object (by copying an applet that closely resembles the applet you want to
create), and then modify the copied applet. The resulting configuration will be
much cleaner and easier to maintain and upgrade (both manually and
automatically).

You may need an applet with different drilldowns in different views.

Applets that do not have an equivalent existing applet. These tend to be applets
that expose a new business component. Always create a new applet for this
category of list applet.

NOTE: Remember to set the Upgrade Ancestry property on all custom applets that
are cloned from another applet.

Version 7.5, Rev. A

Configuration Guidelines 81

‘ Creating and Modifying Objects

Configuring Applets

Modify, rather than copy, an applet, unless you are making extensive modifications
to the applet. This avoids having to change all references of that applet to the new

copy.
The following are examples of situations in which you might need to copy an applet:
= When you must extensively modify an existing applet.

= When you need a Read Only copy of an existing applet.

NOTE: Do not change the Class property of preconfigured applets.

The objective of your design and configuration projects should be to produce a
consistent and intuitive user interface. Wherever possible, applets displaying the
same business component should be consistent across different screens and views.
For example, the contact list displayed for an opportunity should be consistent with
the contact list displayed for an account. Whenever possible, reuse applet
definitions between different views and screens. Obvious exceptions include
redundant controls or list columns and controls, or list columns that are relevant
only to the current parent business component. For example, you would display the
contact's account information when displaying opportunity contacts, but not when
displaying account contacts. This recommendation does not necessarily apply when
comparing list with form or entry applets. When the screen space for a view is
limited, it may be practical to include fields at the end of a list applet that are not
displayed on the associated entry applet.

Another approach to increasing the number of fields available in a form applet is to
use applet toggling. You can define two applets based on the same business
component to show information from the same record (but the field controls are
distributed over multiple applets) and the user can toggle between the two.

Managing Unused Applets

It is recommended that you do not modify any applet you are not using in your
implementation, or that you mark the applet as inactive.

82 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects ‘

Configuring Applets

Defining Online Help IDs

If you want to provide context-sensitive help in your application, you need to define
Help IDs for screens and views. If you do not want context-sensitive help and you
do not define a Help ID, the default start page for help will appear. For more
information, see Siebel Developer’s Reference.

Displaying Applet Titles

The applet title is the value in the Title property. It determines what displays in the
tab at the upper left of an applet in a view, or in the title bar of a pop-up applet.
Follow these general guidelines when creating applet titles:

m Always specify an applet title. Do not leave this property blank.

= No two applets in the same view should have the same title. If a view contains
multiple applets displaying data from the same business component, distinguish
the titles by type. For example, in a list-form view displaying accounts, use
distinct titles such as Account List and Account Form.

Table 9 offers standard conventions for the titles of certain applet types.

Table 9. Title Conventions for Applets

Type of Applet Title Format Example

Association applets Add buscomp_name(s) Add Opportunities

Multi-value group buscomp_name(s) Contacts

applets

Pick applets Pick buscomp_name(s) Pick Product

List applets buscomp_name List Account List

Form applets buscomp_name Form Account Form
buscomp_name Entry Account Entry

Chart applets Xxx Analysis Open Defect Analysis
or
Xxx by Yyy Lead Quality By Campaign

Tree applets buscomp_name(s) Opportunities

Version 7.5, Rev. A Configuration Guidelines 83

‘ Creating and Modifying Objects

Configuring Controls and List Columns

Configuring Controls and List Columns

The following sections list general guidelines for creating and modifying controls
and list columns.

Exposing System Fields

To expose system fields in the user interface, you create either a list column (within
a list applet) or a control (within an entry applet).

To define a list column object

1 Create a new list column object.

2 Enter a list column field property of xxxx where xxxx represents the system field
that maps to the system columns. Table 10 lists the system fields.

Table 10. System Fields

Field Description

Updated System date and time the record was last updated.
Updated by Login ID of the person who last updated the record.
Created System date and time the record was initially created.
Created by Login ID of the person who initially created the record.
Id Row ID of the record.

3 Enter a display name property for the list column (for example, Last Updated).
To define a control object
1 Create a new control object.

2 Enter a Control Name property of Last Updated where the text describes what
you are attempting to expose.

3 Enter the Control Field property of xxxx where xxxx represents the system field
you are attempting to expose.

84 Configuration Guidelines Version 7.5, Rev. A

Creating and Modifying Objects

Configuring Controls and List Columns

Managing Unused Controls and List Columns

Set the Visible property to FALSE if the control or list column is Siebel-created, and
delete if user-created.

Creating Text Controls and List Columns

Follow these guidelines when creating text controls or list columns:

s Use the appropriate pop-up device wherever possible to ease data entry. For
instance, you should associate a calendar widget with a date field, and a multi-
line edit box with a multi-line text field.

= Left-align data unless you have a specific reason to center or right-align it.

Creating Buttons

To create a new button, click the button icon in the Control toolbar and draw the
button on the applet layout. You can alter the size of a button to accommodate a
longer or shorter button label.

Defining Check Boxes

Follow these guidelines when defining check boxes:

= In form applets, position the label to the left of the check box. Right-align and
vertically center the label.

m Consider whether a check box is the appropriate way to display the data. In
situations where the data does not map well to a yes or no response, or where
the meaning of the unchecked value is not obvious, it is better to use a list of
values. For example, instead of a check box labeled Standard, use a text box
labeled Shipping Method, with a list of values containing Standard and Next
Day.

= Avoid negatives. For example, instead of Not Required, use Optional.

Version 7.5, Rev. A Configuration Guidelines 85

‘ Creating and Modifying Objects

Configuring Controls and List Columns

Referencing Controls and List Columns in Association Applets

All controls and list columns in an association applet must reference a
corresponding field in the business component that is being associated. Examine
the details of the Source Association Applet that is called from the Source MVG
Applet on the Opportunity Entry Applet. All controls and list columns on the
association applet reference a corresponding field on the Source business
component.

86 Configuration Guidelines Version 7.5, Rev. A

Specialized Classes 6

This section contains information on specialized classes.

Version 7.5, Rev. A Configuration Guidelines 87

‘ Specialized Classes

Specialized Classes

Specialized Classes

A class property gives an object access to specific functionality. The class refers to
a dynamic-link library (DLL) that is installed on the client or server machine and
holds the required functionality. You can use Siebel Tools to view Class and DLL
objects. If you need to make these objects visible in Siebel Tools, see Siebel Tools
Reference.

NOTE: When referring to a DLL on a UNIX system, its equivalent is a SO file.

Because the functionality for specialized classes is not published, you must
understand what specialized classes represent and how to use them most
effectively. Using the class property incorrectly can cause issues whose cause is
difficult to determine. For example, records may be added randomly to the database,
records may be deleted, or run time errors may occur. In general, the class property
should be used with extreme care.

The following objects have a class property and can be configured using Siebel
Tools:

s Applets

» Business Components
m Business Services

= Controls

= Reports

= Search Engines

m Toolbars

NOTE: You need to use only the class property of an object when copying existing
business components or applets.

88 Configuration Guidelines Version 7.5, Rev. A

Specialized Classes ‘

Specialized Classes

Most of the standard business components have a class property of either
CSSBusComp or CSSBCBase. The most fundamental class is CSSBusComp, from
which CSSBCBase is derived. All other classes used for business components are
derived from one of these two classes. This base class provides common
functionality across all business components, including record navigation, business
component events, undo, merge, search, and sort. CSSBCBase adds functionality to
CSSBusComp that is associated with using the Siebel State Model, and allows the
use of user properties such as Deep Copy and Deep Delete. It is recommended that
you use CSSBusComp for all new business components and CSSBCBase if expected
functionality is not available. CSSBusComp and CSSBCBase are not classified as
specialized classes.

The rest of the supplied business components are based on classes that are derived
from either CSSBusComp or CSSBCBase. For example, the Person Forecast business
component has the class property set as CSSBCRevenueForecast, which is derived
from CSSBCMstrFcstChild, which in turn is derived from CSSBusComp. You can
view these relationships in Siebel Tools. This class dictates that each time users
submit their current forecast, a new forecast record is created. The class controls
this behavior and it cannot be altered through configuration. These remaining
classes are considered specialized classes.

When you copy a business component, understand that you are not only copying
fields, MVLs, or Pickmaps, but also specialized functionality, of which you cannot
be certain.

The following guidelines can help you determine if and when you need to adjust a
class property.

Version 7.5, Rev. A Configuration Guidelines 89

‘ Specialized Classes

Specialized Classes

Business Components

Follow these guidelines when copying or creating business components:

Avoid copying business components based on specialized classes unless you are
trying to get exactly the same functionality with minimal changes.

If you copy a business component and alter the class to CSSBusComp or
CSSBCBase, be aware that this business component can now access the data
without the special rules active. Be sure that this is what you want because
specialized rules may not be followed.

By default, when you create a business component, it has a class property of
CSSBusComp. You can change this to CSSBCBase if required functionality, such
as Deep Copy, is not available. Do not change the class property to any other
value.

If a business component is based on a specialized class, do not delete, inactivate,
or remap any of the standard child objects. If the object is not required for your
configuration, configure the user interface to not show, in the case of a field, any
controls which map to that field.

Only copy a business component based on a specialized class if you require a
minor change to the existing business component and also need to use the
original business component for something else.

NOTE: If you require a read-only version of the business component, create
duplicate applets and use a No Delete setting, instead of duplicating the business
component.

When copying a business component based on a nonspecialized class, remove
all redundant objects. Be aware that some of these objects may be referred to by
properties of the business component or other child objects.

If you need to copy a business component and keep the specialized class, do not
delete or inactivate any of the fields that are present in the copy. Do not display
the fields on applets if you do not need them. Because the specialized class may
reference these fields, you must keep the original settings. Also, be sure to set
the Upgrade Ancestor property, so the copy will upgrade correctly during the
upgrade process.

90 Configuration Guidelines Version 7.5, Rev. A

Specialized Classes

Applets

Specialized Classes

Follow these guidelines when copying or creating applets:

Version 7.5, Rev. A

When you create a new applet, make sure you set the class property correctly.
The type of applet you require determines the appropriate value for the class
property. To simplify the creation of the many records and settings necessary to
make an applet function correctly, Siebel Tools has a number of wizards that
help simplify the process. For information on accessing these wizards, see Siebel
Tools Reference. Table 11 lists the default class for each type of applet.

Table 11. Default Classes for Applets

Applet Type Class

Chart CSSFrameChart
Form CSSFrame

List CSSFramelList
MVG CSSFramelList
Pick CSSFramelList
Tree CSSFrameTree

You should never need to alter the class property for an applet. The default
settings have been preconfigured to allow the applet to function correctly.

To create functionality on an applet that is identical to another applet, copy the
applet whose functionality you want to mimic and adjust the copied applet to
fulfill your requirements. However, be aware that in some cases the class for the
applet and the class for the business component work together to provide the
functionality. For example, the Campaign Contact/Prospect applet has a class
property of CSSFrameCampaignContactList. The associated business
component is Campaign List Contact, which maps to a specialized class of
CSSBCCampaignContact. In this case, the class for the business component and
the class for the applet work together to provide certain functionality, such as
the functionality for the Create Opportunity button.

Configuration Guidelines 91

‘ Specialized Classes

Specialized Classes

92 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines 7

This section discusses the performance impact of multilingual LOVs, multivalue
links, and reusing standard columns. In addition to this section, see also the
appropriate sections in Siebel Tools Reference for information on improving the
performance of your configured Siebel application.

Version 7.5, Rev. A Configuration Guidelines 93

‘ Performance Guidelines

Multilingual LOVs Query and Cache Performance

Multilingual LOVs Query and Cache Performance

Multilingual List of Values fields are implemented below the business component
level. Fields that point to MLOVs with enabled target columns return display values
that match the client language setting.

For display, the underlying language-independent code is converted to its
corresponding display value using a Siebel eBusiness Applications lookup. For
searching and sorting, however, a database join is performed by your Siebel
application to the list of values table. Therefore, when configuring the application,
make sure that any configuration directly involving the list of values table is
compatible with your Siebel application MLOV functionality.

When a view with MLOVs is displayed for the first time, a separate query on the
S_LST_OF_VAL table is made for each field that has an MLOV. The query obtains
all of the display values for that MLOV and writes the values to the in-memory
cache. When the view is subsequently displayed during the same session, the
values are obtained from the cache rather than issuing another query.

For more information on configuring MLOVSs, see Siebel Tools Reference.

94 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines

Multivalue Link Underlying Multivalue Groups

Multivalue Link Underlying Multivalue Groups

The way a multivalue link (MVL) underlying a multivalue group (MVG) is
configured has a major impact on an application’s performance. Whenever
possible, configure an MVL underlying an MVG displayed in a list applet to use a
primary join. To use a primary join, set the following attributes:

Attribute Value
PrimarylIdField < fieldname from parent business component >
UsePrimaryJoin True

The field specified in the PrimaryldField property stores the ROW_ID of the primary
child record. If there is no child record, or the primary child record has not been
defined, then the primary ID field stores the value as No Match Row Id.

The parent business component of a multi-value link is usually the same as the
business component in which the MVL is defined. However, by using the SrcField
property of the multi-value link object, you can create an MVL whose parent
business component is related to the current business component indirectly through
a join or through another MVL.

Indirect Multivalue Links

Every multivalue link in Siebel eBusiness applications is based on an underlying
link object, whose name is specified by the MVL's DestLink property. Every link, in
turn, defines a one-to-many or many-to-many relationship between two business
components. Typically, the business component in which an MVL is defined is the
same as the parent business component of the underlying link on which the MVL
is based.

For example, consider the business address multivalue link in the Account business
component:

[Mul tival ue Iink]
Dest BusConp = Busi ness Address

Dest Li nk = Account/ Busi ness Addr ess

Version 7.5, Rev. A Configuration Guidelines 95

‘ Performance Guidelines

Multivalue Link Underlying Multivalue Groups

PrimaryldField = Primary Address Id

CheckNolat ch TRUE

PopupUpdOnl y TRUE

NoCopy = TRUE

The DestLink property indicates that this MVL is based on the Account/Business
Adress link, which is itself defined (in Link.odf) as:

[Li nk]
Nane = Account/Busi ness Address
Par ent BusConp = Account
Chi | dBusConp = Busi ness Address
DestField = Account Id
CascadeDel ete = Del ete

Note that the ParentBusComp of this link is the Account business component,
which is also the business component in which the MVL has been defined. So, in
this typical MVL configuration, the multi-value group is populated with all of the
children Business Address records for whichever account is currently selected in the
Account business component.

Indirect Multivalue Links Through Joins

Although the parent business component of a multi-value group (MVG) is usually
the same as the business component in which the MVL is defined, this is not always
the case. For example, the Opportunity business component, like the Account
business component, contains a multi-value group of business addresses. In this
case, the business addresses are not directly related to the opportunities themselves;
instead, they are children records of whichever account is associated with the
current opportunity (if there is such an account). In order to correctly populate this
MVG, Siebel eBusiness Applications need to know how to find the appropriate
parent account record for this link, given the current record in the Opportunity
business component. The SrcField property of the multivalue link object exists for
this purpose.

96 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines

Multivalue Link Underlying Multivalue Groups

Using the preceding example, the Business Address MVL is defined as follows
within the Opportunity business component:

[Mul tival ue Iink]
SrcField = Joined Account Id
Dest BusConp = Busi ness Address
Dest Li nk = Account/Busi ness Address
PrimaryldField = Primary Address Id
CheckNoMat ch = TRUE

PopupUpdOnl y TRUE

Note that the DestLink of this MVL is still the Account/Business Address link, which
defines the one-to-many relationship between accounts and business addresses. So,
in this case, the parent business component of the link (that is, Account) is not the
same as the business component in which the MVL is defined (that is,
Opportunity). To determine the appropriate Account records for which to get the
children Business addresses, Siebel eBusiness Applications look at the SrcField
property of the MVL. For this particular multi-value link, the SrcField property refers
to the Joined Account Id field in the Opportunity business component, which maps
to the ROW_ID database column from the joined S_ORG_EXT table. So, for each
Opportunity record, Siebel eBusiness Applications will populate the MVG with all
Business Address records that are children of whichever account is indicated by the
ROW_ID value stored in the Joined Account Id field.

Version 7.5, Rev. A Configuration Guidelines 97

‘ Performance Guidelines

Multivalue Link Underlying Multivalue Groups

Nested Multivalue Links

As previously described, a multivalue group can be populated through a joined
table by using the SrcField property to refer to a business component field that is a
foreign key to the joined table. Although less common, it is also possible to populate
a multivalue group through another multivalue link from the same business
component by using the SrcField property to refer to a multivalue field instead of a
simple (single value) field. For example, consider the relationship between
employees, positions, and territories. In Siebel eBusiness applications, one
employee can hold multiple positions, while each position can be assigned to
multiple territories. This means there is an Employee/Position link that defines the
many-to-many relationship between employees and positions and there is a
Position/Territory link that defines the many-to-many relationship between
positions and territories.

The Employee business component (in Employee.odf) includes multivalue links for
both positions and territories. The Position MVL is a standard one (that is, without
a SrcField property):

[Mul tival ue Iink]
Dest BusConp = Position
Dest Li nk = Enpl oyee/ Position
PrimaryldField = Primary Position Id
Nol nsert = TRUE
UsePrimaryJoin = FALSE

However, because territories and employees are related only indirectly through
positions, the Territory MVL is actually based on the Position/Territory link and
must reference Position Id as its SrcField to find the appropriate position to use as
the parent record for this link:

[Mul tival ue Iink]
SrcField = Position Id
Dest BusConmp = Territory

DestLink = Position/Territory

98 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines

Multivalue Link Underlying Multivalue Groups

Nol nsert = TRUE

Each employee can hold multiple positions, so the Position Id field is itself defined
as a multivalue field (from the Position MVG) in the Employee business component:

[Mul tival ue Iink]
Name = Position Id
Field = Id
Mul ti Val ueLi nk = Position
ReadOnly = TRUE

In other words, the Position MVG in the Employee business component shows all
of the child Position records for the current employee, while the Territory MVG in
this same business component shows all of the child Territory records for whichever
Position record is currently selected in the Position MVG.

This type of nested multivalue group may have significant performance
implications because of the extra subqueries that must be executed. Furthermore, it
is often unclear to the user that changing the currently selected value in one MVG
causes another MVG to display an entirely new set of records. Because of these
performance and usability concerns, such nested MVGs appear very rarely in the
standard configurations of Siebel eBusiness Applications. You should generally
avoid them in custom configurations.

Auto Primary

The AutoPrimary property determines the setting of a primary child record for a
given parent record. If necessary, the Auto Primary property also determines the
default value of the primary selection. The possible values for Auto Primary are as
follows:

= DEFAULT. The first record automatically becomes the primary.
= NONE. You must manually specify the primary using the MVG applet.

= SELECTED. Selecting a primary on one MVL causes the selection of a primary on
the others. For example, as soon as a primary Shipping Address is indicated, it
also becomes the primary Billing Address.

Version 7.5, Rev. A Configuration Guidelines 99

‘ Performance Guidelines

Multivalue Link Underlying Multivalue Groups

SELECTED applies only when there are several multivalue links from one business
component that all point to the same detail business component. This is the case
for the Bill To Business Address and Ship To Business Address multivalue links in a
standard Siebel Sales application. These multivalue links exist under both the Quote
and Account business components. In this case, an example of the desired behavior
is as follows:

m If you do not set a primary for the Bill To address, then do a separate query to
bring back all addresses associated with the account (or order), and check to see
whether one of the addresses was selected as primary for the Ship To address. If
an address is already selected as primary, the SELECT (that is, set) is used and
that address is also used as the primary Bill To address.

CheckNoMatch

The property CheckNoMatch may be set to TRUE or FALSE. This property controls
the application’s behavior when an MVL uses a primary join, but the primary ID
field has the value No Match Row Id.

Typically, when a multivalue link has been configured with a primary join, the
foreign key used by this join to identify the primary record may not match the
primary record. For example, this can happen when the primary record has been
deleted from the multivalue group or the multivalue group is new and has no
records. In these cases, you can configure the multivalue link to update the primary
foreign key to a value of NULL, or to a special value of NoMatchRowId, depending
on your requirements. You configure this behavior through the Check No Match
property of the Multi Value Link object type; however, there are consequences for
the application’s performance. The special NoMatchRowId value is designed to
prevent secondary queries on foreign key values that are known to have failed,
which improves performance the same way using a primary join improves
performance.

You activate the NoMatchRowId generating and subsequent testing of behavior by
setting Check No Match to FALSE for the MVL. This setting has the following
results:

» When you have a master record where the primary foreign key is NULL or
invalid, do a secondary query to determine if there are detail records in the
multi-value group. If there are no detail records, set the primary ID field to the
special value NoMatchRowlId.

100 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines

Multivalue Link Underlying Multivalue Groups

= When you have a master record where the primary foreign key has the value
NoMatchRowlId, this tells the system that there are no detail records in the multi-
value group and the secondary query is not performed. This is not a permanent
setting—you can update the primary after it is set to NoMatchRowId.

When this property is set to TRUE, check to see that there really are no child
records. Do this check by executing a query against the child business component.
If, in this case, the Auto Primary property is set to Default, the first record returned
is set as the primary. If the Auto Primary property is set to SELECTED, check to
determine whether any other multi-value link to this business component has
indicated a primary, and set that record as the primary of this multi-value link.

AutoPrimary, CheckNoMatch and Performance

The combined settings of either of the following attributes and values will cause
reduced performance in an environment with a high number of parent records
without primary child records, as the application is forced to check the existence of
child records by executing secondary queries. Both settings of the AutoPrimary
property allow the user to set only the primary child records, so the reduced
performance could have a long duration.

Attribute Value
AutoPrimary Selected
CheckNoMatch True
Attribute Value
AutoPrimary None
CheckNoMatch True

Version 7.5, Rev. A Configuration Guidelines 101

‘ Performance Guidelines

Multivalue Link Underlying Multivalue Groups

Consider using the same environment with a high number of parent records without
primary child records and the following settings:

Attribute Value
AutoPrimary Default
CheckNoMatch True

This configuration could also cause poor performance when displaying the parent
records for the first time. Setting CheckNoMatch forces the application to execute a
second query to check the existence of the child records. Because of the
AutoPrimary property setting, the application sets the first read child record as the
primary. This way, the parent records get a primary child record, and the
performance significantly improves the next time these parent records are
displayed.

Set Check No Match to FALSE for most multi-value links because of the
performance consequences. Set it to TRUE only if the multi-value group could
possibly have records added to it without going through the multi-value group itself.
For example, account addresses might actually be inserted through the Business
Address multi-value group on the Contact business component instead of the
Business Address multi-value group on the Account business component. Also, if
records can be added to the detail business component through Enterprise
Integration Manager, the TRUE setting is the appropriate one.

102 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines ‘

Reusing Standard Columns

Reusing Standard Columns

The architecture and data model of your application has been tuned for best
performance. This optimization is achieved by using proper indexes, data caching,
efficient SQL generation and also by denormalizing columns on certain tables.
These denormalized columns are indexed so that the application can improve the
performance of complex SQL statements by using these columns for search or sort
operations instead of the columns of the original table.

This is why you should not change the use of some columns, such as NAME, LOC
of the S_ORG_EXT table and LAST_NAME, FST_NAME, MID_NAME of the
S_CONTACT table.

CAUTION: Do not use custom denormalized columns without the assistance of Siebel
Expert Services. Denormalized columns can improve performance by allowing
indexes to be placed directly on an intersection table, rather than on its parent or
child table. However, if configured improperly, the data in the denormalized column
can become out of sync with its source. This can result in a number of problems
ranging from inconsistent sorting to corrupt data.

Table S_ORG_EXT: Reusing NAME and LOC

The columns NAME and LOC of the S_ORG_EXT table are denormalized into
ACCNT_NAME and ACCNT_LOC in the S_ACCNT_POSTN table. When sorting the
Accounts by name and location in views with the property

VisibilityAppletType = Sales Rep, the application uses the denormalized columns
ACCNT_NAME and ACCNT_LOC of the S_ACCNT_POSTN table. This choice allows
the use of an index.

If the account name and location were stored in extension columns (for example,
X_NAME and X_LOC), these columns would have to be used for sorting instead of
NAME and LOC. Even if these extension columns were indexed, the application
could not use an existing index to create the necessary joins and sort the data,
because the index is on S_ORG_EXT and not on S_ACCNT_POSTN. Therefore, the
result would be a significant decrease in performance, as shown in the following
example.

Version 7.5, Rev. A Configuration Guidelines 103

‘ Performance Guidelines

Reusing Standard Columns

The first SQL statement is generated by the standard My Accounts view. The query
plan shows that the database uses numerous indexes to execute the statement.

SELECT
T1. LAST_UPD_BY,
T1. ROW I D,
T1. CONFLI CT_I D,

T10. PR_EMP_I D,
T2. DUNS_NUM
T2. HI ST_SLS EXCH DT,
T2. ASGN_USR EXCLD FLG,
T2. PTNTL_SLS_CURCY_CD,
T2. PAR OU_ I D
FROM
SI EBEL. S_PARTY T1
I NNER JO N SI EBEL. S ORG EXT T2 ON T1. ROWID = T2. PAR ROWID

INNER JO N SI EBEL. S_ACCNT_POSTN T3 ON (T3.POSITIONID = ?,
0. 05)

AND T2. ROWID = T3. QU EXT_ID

I NNER JOI N SI EBEL. S_PARTY T4 ON (T4. ROV D = T3. POSI TI ON_I D,
0. 05)

LEFT OQUTER JO N SIEBEL. S PRI _LST TS ON T2. CURR PRI _LST_I D =
T5. ROW.I D

LEFT OQUTER JO N SIEBEL. S_I NVLOC T6 ON T2. PR_FULFL_I NVLOC_I D

104 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines ‘

T6. ROW.I D

LEFT QUTER JO N SIEBEL. S ORG EXT T7 ON T2. PAR QU_I D

T7. PAR_ ROW | D

LEFT QUTER JO N SIEBEL. S ORG EXT_SS T8 ON T1. ROW.I D

T8. PAR_ ROW | D

Reusing Standard Columns

LEFT OUTER JO N SI EBEL. S_I NT_I NSTANCE T9 ON T8. OAWN_I NST_I D =

T9. ROWI D

LEFT QUTER JO N SI EBEL. S POSTN T10 ON T2. PR_POSTN_I D =

T10. PAR_ROW | D

LEFT QUTER JO N S| EBEL
T11. PAR ROW | D

LEFT OQUTER JO N SI EBEL
T12. ROWI D

LEFT OUTER JO N SI EBEL
T13. ROWID

LEFT OQUTER JO N SI EBEL
T14. ROW I D

LEFT OUTER JO N S| EBEL
T15. PAR_ ROW | D

LEFT OUTER JO N S| EBEL
T16. PAR_ROW | D

LEFT QUTER JO N SI EBEL
T17. ROWI D

LEFT QUTER JO N SI EBEL. S ORG BU T18 ON T2.BU_|I D

AND

T2.ROWID = T18. ORG_I D

Version 7.5, Rev. A

. S_ADDR _ORG T12 ON T2.PR_ADDR | D

.S _INDUST T13 ON T2. PR_INDUST_I D

.S ASGN GRP T14 ON T2.PR TERR ID

.S_ORG SYN T17 ON T2.PR SYN ID

.S_USER T11 ON T10.PR EMP_ID =

.S POSTN T15 ON T3. PCSITION_ID =

.S_USER T16 ON T15.PR EMP_ID =

T18.BU_ID

LEFT QUTER JO N SI EBEL. S_PARTY T19 ON T18.BU_I D = T19. ROW.I D

LEFT QUTER JO N SIEBEL. S ORG EXT T20 ON T18.BU ID =

T20. PAR_ ROW | D

VWHERE

Configuration Guidelines 105

‘ Performance Guidelines

Reusing Standard Columns

((T2.INT_ORGFLG !='Y OR T2.PRTNR FLG!= 'N) AND
(T3. ACCNT_NAME >= ?))

ORDER BY
T3. PCSI TION_I D, T3. ACCNT_NAME

Query plan :

T3(S_ACCNT_POSTN_ML), T2(S_ORG EXT_P1), T1(S_PARTY_P1), T15(S_POSTN_U
2), T10(S_POSTN_U2), T4(S_PARTY_P1), T12(S_ADDR ORD P1), T13(S_I NDUST_
P1), T7(S_ORG EXT_U3), T16(S _USER U2), T11(S USER U2), T17(S_ORG SYN_P
1), T6(S_I NVLOC_P1), T5(S_PRI _LST_P1), T14(S_ASGN _GRP_P1), T18(S _ORG B
U Ul), T19(S_PARTY_P1), T20(S_ORG EXT_U3), T8(S_ORG EXT_SS_U1), T9(se)

The second of the following SQL statements has a different ORDER BY clause. Even
though the columns NAME and LOC of S_ORG_EXT are indexed, the database
cannot use this index. Performance decreases from the use of a temporary table.
The same behavior occurs if the ORDER BY clause uses the columns X_NAME and
X_LOC instead of NAME and LOC.

SELECT
T1. LAST_UPD BY,
T1. ROW I D,
T1. CONFLI CT_I D,

T10. PR EMP_I D,
T2. DUNS_NUM

T2. HI ST_SLS_EXCH DT,
T2. ASGN_USR EXCLD FLG,
T2. PTNTL_SLS_CURCY_CD,
T2. PAR QU I D

FROM

106 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines ‘

Reusing Standard Columns

SIEBEL. S PARTY T1
INNER JO N SIEBEL. S ORG EXT T2 ON T1. ROWID = T2. PAR_ RONID

I NNER JO N SI EBEL. S_ACCNT_POSTN T3 ON (T3.PCSITION ID = 2,
0.05) AND

T2.RONID = T3. 00U EXT_I D

I NNER JOI N SI EBEL. S_PARTY T4 ON (T4. ROW 1D = T3. POSI TI ON_I D,
0. 05)

LEFT OUTER JOI N SIEBEL. S PRI _LST T5 ON T2. CURR PRI _LST ID =
T5. ROW.I D

LEFT QUTER JO N SI EBEL. S_| NVLOC T6 ON T2. PR_FULFL_I NVLOC_ | D

T6. ROW.I D

LEFT QUTER JO N SIEBEL. S ORG EXT T7 ON T2. PAR QU I D
T7. PAR_ ROW | D

LEFT OUTER JO N SI EBEL. S ORG EXT_SS T8 ON T1.ROWID
T8. PAR_ROW | D

LEFT OUTER JO N SI EBEL. S_I NT_| NSTANCE T9 ON T8. OAN_I NST_I D =
T9. ROW.I D

LEFT OQUTER JO N S| EBEL. S POSTN T10 ON T2. PR POSTN I D =
T10. PAR_ ROW | D

LEFT QUTER JO N SIEBEL. S USER T11 ON T10. PR EMP_ID =
T11. PAR ROW D

LEFT OUTER JO N SI EBEL. S_ADDR _CRG T12 ON T2. PR_ADDR | D
T12. ROW I D

LEFT OUTER JO N SI EBEL. S_I NDUST T13 ON T2. PR_| NDUST_I D
T13. ROWI D

LEFT OQUTER JO N SI EBEL. S ASGN GRP T14 ON T2. PR TERR ID
T14. ROW I D

LEFT OUTER JO N SI EBEL. S POSTN T15 ON T3.PCSI TION I D =
T15. PAR_ROW | D

Version 7.5, Rev. A Configuration Guidelines 107

‘ Performance Guidelines

Reusing Standard Columns

LEFT OQUTER JO N SIEBEL. S USER T16 ON T15. PR EMP_ID =
T16. PAR_ ROW | D

LEFT OQUTER JO N SIEBEL. S_ORG SYN T17 ON T2. PR_.SYN_ID =
T17. RONW.I D

LEFT QUTER JO N SIEBEL. S ORG BU T18 ON T2.BU_ID = T18. BU_I D
AND

T2.ROWID = T18. ORG_I D

LEFT QUTER JO N SI EBEL. S_PARTY T19 ON T18.BU_I D = T19. RON.I D

LEFT QUTER JO N S| EBEL. S ORG EXT T20 ON T18.BU ID =
T20. PAR_ ROW | D

V\HERE
((T2.INT_ORGFLG!="Y OR T2.PRTNR FLG!="N) AND
(T3. ACCNT_NAME >= ?))
ORDER BY
T3. ACCNT_NAME, T3.PCSI TION_ID
Query plan : TEMPORARY TABLE
T3(S_ACCNT_POSTN_ML), T2(S_ORG EXT_P1), T1(S_PARTY_P1), T15(S_POSTN_U
2), T10(S_PCOSTN_U2), T4(S_PARTY_P1), T12(S_ADDR ORG P1), T13(S_I NDUST_
P1), T7(S_ORG EXT_U3), T16(S_USER U2), T11(S_USER _W2), T17(S_ORG _SYN_P

1), T6(S_INVLOC_P1), T5(S_PRI _LST_P1), T14(S_ASGN_GRP_P1), T18(S_ORG B
U_UL), T19(S_PARTY P1), T20('S_ORG EXT_U3), T8(S_ORG EXT_SS Ul), T9(se)

Table S_ CONTACT: Reusing LAST_NAME, FST_NAME, MID_NAME

The columns LAST NAME, FST_NAME, MID_NAME of the S_CONTACT table are
denormalized into three other columns in the S_ POSTN_CON table:
CON_LAST_NAME, CON_FST _NAME, CON_MID_NAME.

The visibility setting of the view often governs the sorting of data in the view. A
good example of this is when VisibilityAppletType = Sales Rep, which is the case on
the My Contacts view.

Here, the application uses the denormalized columns CON_LAST_NAME and
CON_FST_NAME of the S_POSTN_CON table. This forces the database to use a
particular index.

108 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines

Reusing Standard Columns

If the contact name was stored in extension columns in the S_CONTACT table (for
example, X_LAST_NAME and X_FST_NAME), these columns would be used for
sorting (as a result of existing sort specifications, user interaction, and querying)
instead of the standard LAST NAME and FST_NAME columns.

Even if these extension columns were indexed, the application could not use the
index for creating the needed joins and for sorting the data, because the index is on
S_CONTACT and not on S_POSTN_CON. This would result in a significant
reduction in performance, especially with larger sets of results, as shown in this
example.

The first SQL statement below is generated by the standard view My Contacts. The
query plan shows that the database uses indexes to execute the statement.

SELECT
T1. LAST_UPD_BY,
T1. ROW I D,

T1. CONFLI CT_I D,

T15. LAST_UPD BY,
T2. CON_MANAGER PER | D,
T16. CI TY,
T2. ASGN_USR EXCLD FLG
FROM
SI EBEL. S_PARTY T1
I NNER JO N SI EBEL. S_CONTACT T2 ON T1. ROWID = T2. PAR ROW D

I NNER JO N SI EBEL. S_POSTN_CON T3 ON (T3. POSTN I D = ' 1- CIRC ,
0. 05)

AND T2. ROWID = T3.CON_I D

Version 7.5, Rev. A Configuration Guidelines 109

‘ Performance Guidelines

Reusing Standard Columns

INNER JO N SIEBEL. S_PARTY T4 ON (T4. RONID = T3. POSTN I D,
0. 05)

LEFT OQUTER JO N SIEBEL. S BU T5 ON T2.BU_I D

T5. PAR_ROW | D

LEFT OUTER JO N SIEBEL. S USER T6 ON T2.EMP_ID =
T6. PAR_ ROW | D

LEFT QUTER JO N S| EBEL. S CONTACT T7 ON
T2. CON_MANAGER PER | D=

T7. PAR_ROW | D
LEFT OUTER JO N SI EBEL. S ORG EXT T8 ON T2. PR DEPT QU ID =
T8. PAR_ROW | D

LEFT OUTER JO N SI EBEL. S_TI MEZONE T9 ON T2. TI MEZONE_I D =
T9. ROW.I D

LEFT OQUTER JO N S| EBEL. S CONTACT_SS T10 ON T1.ROWID =
T10. PAR_ ROW | D

LEFT OQUTER JO N SI EBEL. S_| NT_I NSTANCE T11 ON T10. OAN_I NST_I D

T11. ROWID
LEFT OQUTER JO N SI EBEL. S_TI MEZONE_LANG T12 ON T9. ROWI D

T12. PAR_ ROWID AND T12. LANG I D = ' ENU

LEFT OUTER JO N SIEBEL. S EMP_PER T13 ON T1.ROWID =
T13. PAR_ROW | D

LEFT QUTER JO N S| EBEL. S CONTACT X T14 ON T1.RONID =
T14. PAR_ ROW | D

LEFT QUTER JO N S| EBEL. S PER PRTNRAPPL T15 ON T1. ROWID
T15. PAR_ ROW | D

LEFT OUTER JOI N SI EBEL. S_ADDR ORG T16 ON T2. PR OU ADDR I D =
T16. RON I D

LEFT OQUTER JO N SI EBEL. S_PARTY T17 ON T2. PR DEPT_QU_ID =
T17. ROWI D

110 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines

Reusing Standard Columns

LEFT OUTER JO N SI EBEL. S ORG EXT T18 ON T2. PR DEPT QU ID =
T18. PAR_ROW | D

LEFT OUTER JO N SI EBEL. S_POSTN T19 ON T3.POSTN ID =
T19. PAR_ ROW | D

LEFT OUTER JO N SI EBEL. S USER T20 ON T19.PR EMP_ID =
T20. PAR_ROW | D

LEFT QUTER JO N SI EBEL. S PARTY T21 ON T2. PR GRP_QU ID =
T21. ROWI D

LEFT OUTER JOI N SI EBEL. S_ORG GROUP T22 ON T2. PR GRP_ QU ID =
T22. PAR_ ROW | D
WHERE
((T2.PRIV.FLG = 'N) AND
(T3. CON_LAST_NAME >= ?))
ORDER BY
T3. POSTN_I D, T3. CON_LAST_NAME, T3.CON FST_NAME

Query plan :

T3(S_POSTN_CON_ML), T2(S_CONTACT_P1), T1(S_PARTY_P1), T1(S_PARTY_P1),

T19(S _POSTN _U2), T9(S_TI MEZONE_P1), T21(S_PARTY_P1), T17(S_PARTY_P1),

T4(S_PARTY_P1), T7(S_CONTACT_U2), T16(S_ADDR ORG P1), T18(S _ORG EXT_U
3), T8(S_ORG EXT_U3), T13(S_EMP_PER_Ul), T20(S_USER_U2), T6(S_USER U2)

, T22(S_ORG_GROUP_W2), T5(S_BU_U2), T10(S_CONTACT_SS Ul), T11(seq), T14
(S_CONTACT_X_U1), T12(S_TI MEZONE_LANG U1), T15(S_PER_PRTNRAPPL_U1)

In the second SQL statement, the ORDER BY clause has been changed. Even though
the columns LAST NAME, FST NAME of S CONTACT are indexed, the database
cannot use this index. Performance decreases from the use of a temporary table.
The same behavior happens if the ORDER BY clause uses the columns
X_LAST_NAME and X_FST_NAME instead of LAST_NAME and FST_NAME.

SELECT
T1. LAST_UPD BY,
T1. ROV D,

T1. CONFLI CT_I D,

Version 7.5, Rev. A Configuration Guidelines 111

‘ Performance Guidelines

Reusing Standard Columns

T15. LAST_UPD BY,

T2. CON_MANAGER PER | D,

T16. CI TY,

T2. ASGN_USR EXCLD FLG
FROM

SI EBEL. S_PARTY T1

INNER JO N SI EBEL. S_CONTACT T2 ON T1. ROV I D = T2. PAR_ ROV I D

I NNER JO N SI EBEL. S POSTN_CON T3 ON (T3. POSTN_I D = ' 1- C1RC ,

0. 05)
AND T2. ROWID = T3.CON | D

I NNER JO N S| EBEL. S_PARTY T4 ON (T4. ROWID
0. 05)

LEFT OUTER JO N SIEBEL. S _ BU T5 ON T2.BU_I D

T3. POSTN_I D,

T5. PAR_ ROW | D

LEFT OQUTER JO N SIEBEL. S_USER T6 ON T2. EMP_ID =

T6. PAR ROW | D

LEFT OQUTER JO N SI EBEL. S_CONTACT T7 ON T2. CON_VANAGER_PER | D

T7. PAR_ ROW | D

LEFT OUTER JO N SI EBEL. S_ORG EXT T8 ON T2. PR DEPT_QU_ID =

T8. PAR_ ROW | D

LEFT OQUTER JO N SIEBEL. S_TI MEZONE T9 ON T2. TI MEZONE_ID =

T9. ROW.I D

LEFT OUTER JO N SI EBEL. S_CONTACT_SS T10 ON T1. ROWID =

T10. PAR_ ROW | D

112 Configuration Guidelines

Version 7.5, Rev. A

Performance Guidelines

T11

T12

T15

T16

T18

T22

Version 7.5, Rev. A

Reusing Standard Columns

LEFT OQUTER JO N SI EBEL. S_| NT_I NSTANCE T11 ON T10. OAN_I NST_I D

.ROWID
LEFT OUTER JO N SI EBEL.
.PAR_ROW D AND T12.LANG | D

LEFT OUTER JO N
T13. PAR_ROW | D

LEFT OUTER JO N
T14. PAR_ROW | D

LEFT QUTER JO N
. PAR_ ROW | D

LEFT QUTER JOI N
.ROWID

LEFT QUTER JO N
T17. ROWI D

LEFT OUTER JO N
. PAR_ ROW | D

LEFT QUTER JO N
T19. PAR ROW | D

LEFT OUTER JO N
T20. PAR_ ROW | D

LEFT QUTER JO N
T21. ROWI D

LEFT QUTER JOI N
. PAR_ ROW | D
WHERE

((T2. PRIV_FLG =

S| EBEL.

S| EBEL.

S| EBEL.

S| EBEL.

S| EBEL.

S| EBEL.

S| EBEL.

S| EBEL.

S| EBEL.

S| EBEL.

S TI MEZONE_LANG T12 ON T9. ROV D
= "ENU

S EMP_PER T13 ON T1.RONID =

S_CONTACT X T14 ON T1.ROWID =

S PER PRTNRAPPL T15 ON T1. ROVNID

S_ADDR ORG T16 ON T2.PR OU ADDR ID =

S_PARTY T17 ON T2. PR DEPT QU ID =

S _ORG EXT T18 ON T2. PR DEPT QU ID =

S _POSTN T19 ON T3.POSTN ID =

S USER T20 ON T19. PR EMP_ID =

S PARTY T21 ON T2. PR GRP_QU ID =

S ORG GROUP T22 ON T2. PR GRP_ QU ID =

"N) AND

(T3. CON_LAST_NAME >= ?))

Configuration Guidelines 113

‘ Performance Guidelines

Reusing Standard Columns

ORDER BY
T3. CON_LAST_NAME, T3.CON_FST_NAME, T3.POSTN ID

Query plan: TEMPORARY TABLE

T3(S_POSTN_CON_ML), T2(S_CONTACT_P1), T1(S_PARTY_P1), T19(S_POSTN_U2)

, TO(S_TI MEZONE_P1), T21(S_PARTY_P1), T17(S_PARTY_P1), T4(S_PARTY_P1),

T7(S_CONTACT_U2), T16(S_ADDR ORG P1), T18(S_ORG EXT_U3), T8(S_ORG EXT
_U3), T13(S_EMP_PER U1), T20(S _USER U2), T6(S _USER U2), T22(S_ORG GRQU
P_U2), T5(S_BU_U2), T10(S_CONTACT_SS Ul1), T11(seq), T13(S_CONTACT_X Ul
), T12(S_TI MEZONE_LANG U1), T15(S_PER _PRTNRAPPL_U1)

NOTE: Do not remap existing fields, especially those based on User Key columns, to
other columns in the same table.

114 Configuration Guidelines Version 7.5, Rev. A

Performance Guidelines ‘

Generating and Analyzing SQL

Generating and Analyzing SQL

After configuring a view, you should always check the SQL that is generated during
runtime. Use the /s fil enane parameter on the command line, as shown in the
following example, to start the Siebel eBusiness application. This spools the
generated SQL to a file. If you do not specify a path, the file is created in the Siebel
root bin directory c: \ si ebel \ bi n. This file has all of the unique SQL statements
generated during the current session and is overwritten during every new session.

The following example shows a command line using the /s fi | enane parameter:

D: \ si ebel \ core6\ Bl N\ si ebel . exe /c
"D:\si ebel\core6\bi nNuagent.cfg" /s "c:\siebel.doc"

NOTE: The spool file is simply a text file holding spooled SQL. Spooling it into a DOC
file correctly formats it for viewing.

Once generated, analyze the contents of the file to identify any possible
performance issues. Key indicators are:

s Complexity of SQL statements
= Order By Clause

= Where Clause

= Joins

Next, execute potentially problematic queries directly against the database and then
generate a Query Plan. Use this plan to determine whether:

= Indexes are being used
= Tables Scans are occurring
m Temporary Tables are being generated

Finally, comparing with a standard application lets you identify any potentially slow
queries.

Version 7.5, Rev. A Configuration Guidelines 115

‘ Performance Guidelines

Generating and Analyzing SQL

You can resolve many performance issues either by modifying the business
component or an applet's search specification and the business component's sort
specification, or by creating new indexes on the base table. Only specially trained
Siebel Systems personnel can modify existing Siebel indexes. This restriction is
enforced so that performance in other modules (such as the Enterprise Integration
Manager) is not adversely affected by any index modifications you make to improve
query performance through the user interface.

Consider any potential performance implications before modifying the search
specification and sort specification properties for a business component. By
spooling out the SQL, as previously described, you can analyze which indexes are
likely to be used when your application queries the business component, through
each applet.

Also, use your Relational Database Management System (RDBMS) vendor's tools to
analyze the SQL your implementation generated.

SQL Queries Against Database Data

The database that underlies Siebel applications can be queried to obtain
information on a read-only basis. However, update queries should never be
performed on the database. All data manipulation and restructuring should be
performed through Siebel Tools or an end-user Siebel application such as Siebel
Sales.

116 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script 8
Languages and Object Interfaces

This section gives development standards for Siebel script languages and object
interfaces.

Version 7.5, Rev. A Configuration Guidelines 117

‘ Development Standards for Siebel Script Languages and Object Interfaces

Siebel Script Languages and Object Interfaces

Siebel Script Languages and Object Interfaces

Siebel eBusiness Applications allows functionality that cannot be implemented with
declarative configuration to be developed with server script in eScript or Siebel
Visual Basic (VB), or browser script in JavaScript. Generally, these script languages
are used to complement existing configurable capabilities by allowing developers to
fill in functionality gaps with concise, simple scripts.

In Siebel 7, script languages are divided into two types: server script and browser
script. Server script is written in either eScript or Siebel VB and runs within the
object manager on the Siebel Server or the Dedicated Web Client. Browser script is
written only in JavaScript and executes within the browser on the client machine.
Browser script supports a subset of the object interfaces available to server script.
In most cases, browser script is used to augment server script to improve
performance (by running logic on the client instead of the server), or to interact
directly with the client machine.

In addition to the scripting languages there are several object interfaces available to
external programs and programming languages in Siebel 7:

s COM Data Control

s COM Data Server

= Mobile or Dedicated Web Client Automation Server
= Siebel Smart Web Client Automation Server

= Java Data Bean

s XML Web Interface

= CORBA Interface

A detailed discussion of these object interfaces is beyond the scope of this guide.
For more information, see Siebel Object Interfaces Reference. This guide applies to
object interfaces that expose a programmatic interface (for example, access to Siebel
objects) from within another programming language, such as Java, C+ +, or Visual
Basic. The following object interfaces refer to all of the preceding interfaces except
the XML Web Interface.

118 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Preimplementation Considerations

Preimplementation Considerations

Siebel scripting languages can add extensions to the existing declarative
configuration capabilities. Along with this additional capability, there are also
disadvantages, such as degraded maintainability, compromised upgrade options,
and increased debugging time. Generally, you should try all other possibilities
before using script to accomplish a functional requirement.

m During the initial high-level design, determine if the desired functionality is
already part of the Siebel application or is available as a separate Siebel
application module. The Siebel product suite is broad, and already includes a
variety of business requirements as business components, business services, or
separate products. Sometimes, the solution may be only a small piece of
functionality (for example, visibility settings, user properties, search
specifications on links, or specialized behavior of the base class) or it may be
entire application modules (such as Forecasting, ePricer, or eConfigurator). In
either case, you should always use standard Siebel features instead of building
a custom solution.

The future benefits from using existing product functionality outweigh the
additional licensing costs you may incur for using additional Siebel modules.
Development costs for maintaining, upgrading, and debugging code can be
considerable. Using or augmenting existing product behavior leaves the majority
of these issues to Siebel engineering.

= Use existing business services for modular, generic behavior.

There are over 300 prebuilt business services available, most of which can be
used by scripts, workflows, or external programs. These business services
provide data transformation, communication, server requests, and many other
common functions. Using these business services either individually or in
conjunction with each other can help avoid duplicating your development
efforts.

Version 7.5, Rev. A Configuration Guidelines 119

‘ Development Standards for Siebel Script Languages and Object Interfaces

Preimplementation Considerations

m Use declarative configuration mechanisms whenever possible.

There are many ways to configure different types of functionality in Siebel
eBusiness Applications. Though they are not immediately obvious, most types
of functional behavior are possible through declarative configuration.

Table 12 lists the different ways to achieve application behavior that is often
implemented in script.

Table 12. Available Declarative Configuration Options

Technology Documentation

User Properties Siebel Tools Reference

Runtime Events = Siebel Business Process Designer Administration Guide

Workflow Siebel Business Process Designer Administration Guide
State Model Siebel Business Process Designer Administration Guide
Visibility Siebel Tools Reference

The technologies in Table 12 perform a wide variety of tasks, such as simple data
validation, event-driven processing, data-driven read-only behavior, interaction
with external systems, security, or state transitions.

The preceding guidelines describe the two factors that have the most significant
impact on application quality, maintenance and upgrades. Using standard Siebel
components and declarative configuration tools decreases the amount of time and
effort required to maintain the application. They also make it easier to get a high-
level view of the type of functionality implemented, because all the functionality is
stored in one place. Scripts require more research because you must examine each
object individually and read script code to determine how it works.

120 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Preimplementation Considerations

In addition, declarative functionality is upgraded automatically when the
application is upgraded, while scripts are not. After an upgrade is complete, you
must test all objects that have scripts to make sure functionality has not been lost.
You must also review all nontrivial scripts to make sure they are compatible with
any changes in the application. Configuration mechanisms are rarely removed from
the application, so most standard functionality will upgrade without incident. For
information on whether an upgrade will affect declarative functionality, see the
release notes documentation for your Siebel application.

Version 7.5, Rev. A Configuration Guidelines 121

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

Script Guidelines

The following sections give guidelines for the Siebel script languages. Because all
of these guidelines will not apply to both server and browser script, they have been
divided into sections. The first section applies to the two types of server script,
eScript and Siebel Visual Basic (VB). The second section applies to browser script.
Each guideline follows a similar format:

= Recommendations
= Explanations and examples
= Implications of not using the recommendations

As some issues apply only to eScript, Siebel VB, or the object interfaces, the
applicable technologies will appear in parentheses.

Server Script and Object Interfaces

m Destroy object variables when they are no longer needed (eScript or Siebel VB).

Set variables that represent Siebel objects explicitly to null (eScript) or nothing
(Siebel VB) when they are no longer needed. This tells Siebel Object Manager
that the object is no longer needed and that its reference counter can be
decremented. If the object is no longer referenced anywhere else you can safely
destroy it to free up memory and processor resources.

m Destroy variables that refer to the following object types:
= Business components
= Business objects
= Business services
= Property sets
= Applets

m Destroy business objects and business components in the opposite order in
which they are created. For example:

var boQuote = TheApplication().GetBusObject("Quote");

122 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces ‘

Script Guidelines

var bcQuote = boQuote. Get BusConp("Quote");

var bcQuoteltem = boQuote. Get BusConp("Quote Item);
/...

bcQuoteltem = nul | ;

bcQuote = nul|;

boQuot e nul | ;

Unless you explicitly destroy object variables, memory and processor resources
will not be made available. This negatively impacts the application’s
performance, especially if multiple clients are connected to an object manager,
such as in the Siebel Smart Web Client. It can also affect the application’s overall
stability.

m Use the ForwardOnly cursor mode for ExecuteQuery() unless ForwardBackward
is required (eScript, Siebel VB, or Object Interfaces).

When using the ExecuteQuery() method to query a business component,
explicitly specify the ForwardOnly cursor mode unless bidirectional iteration is
required in the result set or the target business component is the basis for any
user interface objects. When no argument to ExecuteQuery() is specified, the
cursor mode defaults to ForwardBackward. For example:

bcBusAddr . d ear ToQuery();

bcBusAddr. ActivateFiel d("Street Address");
bcBusAddr. ActivateField("City");
bcBusAddr. ActivateField("State");

bcBusAddr . Execut eQuery(ForwardOnly);

if (bcBusAddr.FirstRecord()) {

Version 7.5, Rev. A Configuration Guidelines 123

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

11

In this example, the code can safely iterate from the first record to the last using
the FirstRecord() and NextRecord() methods.

When ForwardBackward mode is used, all records retrieved in the result set
must be cached on the host machine until the object is destroyed or requeried.
In other words, if the above code used ForwardBackward mode instead and
iterate to the last record returned, all records would remain locally cached the
entire time the record set is being used. Because of this, code that moves
backward with PreviousRecord() or FirstRecord() (this is only moving backward
when the current record is not the first record in the result set) does not have to
refresh data from the database server, so response time is optimal.

However, if backward iteration is not necessary, then the entire result set is
retained for no reason. Memory occupied by records that are no longer needed
is periodically released in ForwardOnly mode. In applications where multiple
clients are active on an Object Manager, this technique uses a significant amount
of memory, which can degrade the application’s overall performance.

Know when to explicitly activate fields (eScript, Siebel VB, or Object Interfaces).

The ActivateField() business component method adds a field's column to the
subsequent SELECT statement that will be generated the next time a business
component is queried using ExecuteQuery(). In general, this method should be
used as follows:

bcAccount . d ear ToQuery();

bcAccount . Acti vat eFi el d("Name");
bcAccount . Acti vateFi el d("Location");
bcAccount . Acti vateFi el d("CSN');

bcAccount . Execut eQuery(ForwardOnly);

Il

bcAccount. Set Fi el dval ue("CSN', "123");

124 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

bcAccount. WiteRecord();

A common error is to activate fields after invoking ExecuteQuery() but before
calling SetFieldValue(). This can cause mobile client synchronization to fail.
Another common error is to explicitly activate system fields, which is
unnecessary because they are always active. The following system fields are
always active:

« Id

= Created

= Created By

= Updated

= Updated By

The following field attributes may force a field to always be active:

= If a currently displayed applet is based on the instance of a business
component and the field is displayed in the applet, then it is active in that
business component instance.

= If the field's Link Specification property is set to TRUE.
= If the field's Force Active property is set to TRUE.
» If the business component's Force Active property is set to TRUE.

Because the ActivateField() method increases the number of columns retrieved
from the database when a query is performed, use it only when absolutely
necessary. As more columns are retrieved, the number of joins and subqueries
also increases, which can negatively impact performance.

Version 7.5, Rev. A Configuration Guidelines 125

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

Use language exception handling features to write resilient code (eScript or
Siebel VB).

Both server script languages provide structured exception handling facilities.
eScript has a try/catch/finally facility similar to C+ +; Java and Siebel VB have
the On Error statement. Use these exception handling facilities for most
nontrivial scripts to facilitate debugging and error logging or messaging.

Nontrivial scripts are ones that could reasonably be expected to experience some
type of error. Most often this includes—but is not limited to—scripts that query
or write to the database, communicate with external systems, or interact with
the host machine or the file system.

What you should do when an error occurs depends on the design of the
application, but generally you want to:

= Clean up any object variables
= Log off of any external systems or close any open sessions
= Log the error to a file (or somewhere persistent) and notify the user

Doing these operations will maximize the performance and stability of your
application performance while minimizing debugging efforts.

In eScript:

try {

/1 Put code here that may throw an exception

}

catch (objExc) {
/1 If an exception is thrown above, code will continue
/1 in this block. The exception object (objExc above)
/1 will contain additional information about the error
/1 that occurred:

TheAppl i cati on() . Rai seError Text ("Exception thrown: " + obj Exc

126 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

}
finally {
/1 This block will always be called whether an exception is
/1 thrown or not. Put cleanup code here, e.g.:
bcContact = null;
bcAccount = null;
boAccount = null;
}

In Siebel VB:
On Error Goto C eanup
Pl ace code here that may experience an error
Cl eanup:
If an error occurs, we end up here. W can use the
Err and Error functions to get the error code or error
text. This is also where object variables should be
cl eaned up.
Set bcContact = Nothing
Set bcAccount = Not hi ng
Set boAccount = Not hi ng

For more information on eScript error handling, see Siebel eScript Language
Reference. For more information on Siebel Visual Basic error handling, see Siebel VB
Language Reference.

Version 7.5, Rev. A Configuration Guidelines 127

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

Avoid nested query loops (eScript, Siebel VB, or Object Interfaces).

Nested query loops are ones in which a parent business component is queried,
iterated through, and then at each record a child business component is queried.
Depending on the number of records returned by each query, the performance
degradation from this technique can range from minimal to substantial.

Use the nested approach only as a last resort. Never use it in a user-driven
activity when the user must wait for the operation to complete. If this type of
work must be done, it is most often because of some required aggregate function
or bulk update. If such database-intensive processing is necessary, you should
research the possibility of using a business service that is invoked from a
Workflow process. If it is driven by user events, it can be triggered by a Runtime
event or a Workflow Policy. This can allow the processing to take place
asynchronously from the user operations.

Also, be aware that nested query loops can also occur implicitly. When two or
more business components are instantiated within the same business object and
they are constrained by a link, advancing through the records on the parent
business component forces requeries of the child business components. For
example, in the following code, the Order Entry - Line Items business component
(child) is refreshed every time NextRecord() is invoked on the Order Entry -
Orders business component (parent):

var boOrder TheAppl i cation(). Get BusObhject("Order Entry");
var bcOrder = boOrder. GetBusConp("Order Entry - Orders”);

var bcltem = boOrder. CGetBusConp("Order Entry - Line ltems");

bcOrder. O ear ToQuery();
bcOrder. ActivateField("Order Number");
bcOrder. Set SearchSpec("Status", "Pending");

bcOr der. Execut eQuery(ForwardOnly);

if (bcOrder.FirstRecord()) {

128 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Version 7.5, Rev. A

Script Guidelines

do {
/1
/1 When the next lineis invoked, the Order Entry - Line Itens
I/l BCis re-queried to enforce the link

/Il "Order Entry - Orders/Order Entry - Line Itens" in the
current BO

} while (bcOrder. NextRecord());
}

This will not cause a problem if the parent record only returns one row.
However, when searching by any attributes that do not uniquely identify the
parent record, the performance degrades proportionally to the number of parent
rows returned. If the child business component is also the parent of another
business component, another query is issued for each advance of the parent
business component record. The simplest alternative to the problems caused by
the above is to move the instantiation of the Order Entry - Line Items beneath
the loop.

Use standard Siebel tracing functions (eScript or Siebel VB).

When logging informational or debugging messages to a file, use standard Siebel
tracing methods instead of the I/0 facilities of the current script language. Your
application comes with the Trace() application method, which can be placed
throughout code to log messages and other useful information to a file. You can
also use it to trace SQL or object allocation as well as developer-defined
messages.

The following example shows how to use it to trace small segments of code:

TheApplication(). TraceOn("d:\SEA7\ Log.txt", "Allocation", "Al"
)

/1 do sonething...

TheApplication(). Trace("My debug nessage");

Configuration Guidelines 129

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

TheApplication(). TraceOf();

For more information about the parameters for the TraceOn() method, see Siebel
Object Interfaces Reference.

When there are different trace statements throughout application modules, put
the TraceOn() method in the Application_Start() event and TraceOff() in

Application_Close(). This causes all trace statements in between to be logged to
the trace file. You can also use macros with TraceOn() to uniquely identify the
output files based on the process and task identifiers used by the Siebel Server.

Using the standard file I/O features of the host language is often an appropriate
solution, but you may have to manually write the logging functions. In addition,
because multiple clients can run on one Object Manager, any custom functions
for persistent logging must also include a strategy to manage concurrency.

= Always use Option Explicit (Siebel VB).

Put the Option Explicit statement in the declarations section of every module
that contains Siebel VB. When Option Explicit is used, the compiler in Siebel
Tools enforces strict type checking, which requires explicit variable declaration.
Therefore, if variables are not declared, the compiler generates an error message.
Without the Option Explicit statement, misspelled variable names are
instantiated on first use, which can require debugging.

You can use the Option Explicit statement by adding it to the declarations section
of any given module, as follows:

Option Explicit

130 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Version 7.5, Rev. A

Script Guidelines

Follow a standard naming convention for all variable names (eScript or Siebel
VB).

To simplify maintenance, variable names must follow a standard and consistent
naming convention. Nonexistent, inconsistent, or inadequate naming
conventions may lead to confusion when enhancing, maintaining or
troubleshooting code. Siebel scripting languages are loosely typed (eScript more
so than Siebel VB), but you should indicate the types of variables represented in
the variable name. Also, include the scope of the variable, because it is not
readily apparent when reading code that it has been declared outside the scope
of the current function. Here are some recommended naming conventions for
eScript and Siebel VB variables.

To indicate the scope and type of variables in their naming, use the following
convention:

[scope] [type] [var nane]
If the scope and type are one-letter abbreviations, use these conventions:
g = gl obal scope

m = nodul e scope (accessible only within the current nodul e, e.g.
Account busi ness conponent)

Variables with local scope do not require a prefix. The global scope applies only
to Siebel VB, as eScript has no equivalent notion of application-global variables.

Variable types should be descriptive without becoming overly granular. Here are
some suggested conventions for type prefixes:

i i nt eger

S string

bc = busi ness conponent

bo = busi ness obj ect
bs = busi ness service
ps = property set

Configuration Guidelines 131

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

0, obj = a non-Siebel object such as those returned by
COMCr eat eObj ect () or Get Object()

Here is an example when using eScript:

var sld;

var boOrder TheAppl i cation(). GetBusObhject("Order Entry");
var bcOrder = boOrder. Get BusConp("Order Entry - Orders");

var bcOrderLineltem = boOrder. GetBusConp(" Order Entry - Line
Items");

var sOrder Num
var i Count = 0;

Failure to consistently use a standard naming convention could lead to
confusion when reading code. This could lessen the application’s quality and
increase the work required during the configuration process.

m Declare variables at the beginning of functions (eScript or Siebel VB).

Declare variables at the beginning of functions to make it easier to read the code.
It also becomes much easier to destroy variables if they are all declared in one
place.

132 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Version 7.5, Rev. A

Script Guidelines

Use the this and Me objects instead of TheApplication().ActiveXXX() methods
(eScript or Siebel VB).

Use the application methods ActiveBusObject() and ActiveBusComp() (browser
script only) only for script written for user interface objects, such as applets, and
not for business components or business services. Both methods will return
references to the business object or business component that is the basis for the
currently active user interface constructs, which causes errors or failure in
nonuser interface contexts. In other words, the ActiveBusObject() method
returns the business object on which the current view is based and the
ActiveBusComp () methods returns the business component on which the
currently active applet is based. Both methods require the presence of the user
interface to return a value; otherwise, they will return a null reference.

In most cases, use the this and Me objects instead of the active methods. Scripts
written in any module should refer to these objects instead of obtaining
references with the Active...() methods. Table 13 lists the available alternatives
to using self-referencing objects.

Table 13. Alternative Syntax Using Self-Referencing Objects

Module Target Object ARlternative Syntax (eScript or Siebel VB)
Applet Current applet this
Me

Current business object | thi s. BusObj ect ()

Me. BusQbj ect ()

Current business t hi s. BusConp()
component
Me. BusConp()
Business Current business this
Component component
Me

As of Siebel 7, the ActiveBusComp() method can only be used from browser
script and is not available in server script. In previous versions of Siebel
eBusiness Applications, the ActiveBusComp() method could be invoked from
any script, because there was no distinction between server and browser script.

Configuration Guidelines 133

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

When using the ActiveBusObject() method, it obtains a reference to the current
view's business object instance. Business components retrieved from this
instance with GetBusComp() similarly return references to the business
components in the same context. These are the business components that are
the basis for the currently active user interface objects.

In a nonuser interface context, like any of the object interfaces (for example,
JDB, XML Web Interface, or COM interfaces) or within workflow processes,
there is no active user interface, and these methods return null references. As a
result, scripts written on business components or within business services will
fail or generate error messages. This can confuse users and increase
troubleshooting times.

= Be aware of the context in which objects are created (eScript, Siebel VB, or
Object Interfaces).

Use the correct context for business components and business objects based on
the operations being done. The current context is the context in which a script
is executing. For example, in a script on the Account business component's
PreWriteRecord event, the following line of code will set the variable boAccount
to the current instance of the Account business object:

var boAccount = this.BusObject();
var bcAction = boAccount. Get BusConp("Action");

If this script executes because of a user event done in the user interface, then the
business object returned is the one that the current view is based on. If the script
is invoked from a nonuser interface context, it returns the business object
instance that was created to do this operation. Therefore, operations on the
current instance of an object (when dealing with user interface-based events)
are reflected in the user interface. This includes SetFieldValue(),
ExecuteQuery(), and NextRecord(). These are some of the methods that could
cause undesirable activity in the user interface.

To avoid this user interface activity, you can create a new business object
instance separate from the one that the user interface is currently using. This
allows more flexibility in the types of operation you can do without the
possibility of updating the user interface. Do this as follows:

var boAccount = TheApplication().CGetBusObject("Account"”);

134 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Version 7.5, Rev. A

Script Guidelines

var bcAction = boAccount. Get BusConp("Action");

This avoids modifying the user interface if changes are made, but this can cause
problems because the timestamp of the last update on a record is used to
manage concurrency. As a result, if a separate instance of a business component
has a particular record updated and that record currently displays in the user
interface, the user interface must be refreshed or the user will get an error
message when manually updating this record.

It is recommended that you update the current instance of a business component
when simple field updates are required for the current record, and that you use
a separate instance when updating or iterating through multiple records. When
using a separate instance, refresh the user interface if it is possible that the
displayed records may have been updated.

If the user interface is not updated when the displayed records were modified
through another instance of the business component, the user receives an error
message when trying to update it. If a new context is used unnecessarily, it
results in additional database activity.

Put code in the most appropriate modules (eScript or Siebel VB).

Write scripts on the most appropriate objects. You can write scripts for applets,
business components, and business services.

= Use applet scripts for specific functionality that is only invoked directly by

users, such as pressing a button or responding to a similar user event. The
benefit of using applet scripts is that they can be invoked from one place, so
they provide a single place to put functionality that is not used elsewhere. In
Siebel 7, applet browser scripts provide a powerful way to interact with the
desktop machine, use browser capabilities directly (such as opening a new
browser window), and do any other specific client-side logic. However,
applet scripts cannot be reused or made generic.

To centralize the script code, limit your use of applet script as much as
possible. Before deciding to implement functionality using a script, first
consider whether the script can be made generic. If it can be made generic,
put it on a business component or a business service.

Configuration Guidelines 135

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

Business component scripts are more general than applet scripts and should
include any code that contains business logic related to the underlying
business component. Scripts written as business component modules are
executed without regard for the current user context, and can be used to
reliably enforce typical business rules. Examples of these business rules are
field validation, change propagation, or custom processing logic such as
calculations or administrative functions.

Business component scripts include code written in the predefined events
(such as PreWriteRecord, PreDeleteRecord, or SetFieldValue) and custom
methods you can invoke indirectly using the PrelnvokeMethod event. For
example, you could create a custom function called CloseAllChildSRs() for
the Service Request business component that finds all child Service Requests
for the current record and closes them. To do this, create the custom method
in the Tools Script Editor, then update the BusComp_PrelnvokeMethod()
function for the Service Request business component as follows:

function BusConp_Prel nvokeMet hod (Met hodNane)

{
switch (MethodNane) {

case "CloseAl |l Chil dSRs":

d oseAl | Chi | dSRs();

/1 Return Cancel Qperation, otherw se Siebel wll
/] attenpt to invoke the nethod against the BC s
/'l C++ class, which will cause an error.

return (Cancel Operation);

}

return (ContinueQperation);

136 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

}

You can then invoke the custom function in one of two ways. First, it can be
directly invoked by another script with the Invoke Method() business
component method:

var boSR = TheApplication(). GetBusObject("Service Request");

var bcSR = boSR. Get BusConp("Service Request");

bcSR | nvokeMet hod ("d oseAl | Chi | dSRs")

It can also be invoked directly from a button on the user interface as shown in
Figure 2. To do this, the applet must be based on the target business component,
which in this example is the Service Request business component, and the

Method Invoked property of the control must be set to the custom method name.

Close All Child SRs Save Save - shows only in HI

Properties x|
 [Control [CloseAlChildSRs]

Fiel

ol Alphabetic | Categorized |
Method Invoked ClosealChildSRs :]ﬂ
MName CloseAlChildSRs
Parent Name SR Solution List Applet
Pick Applet
Prompt FALSE

Figure 2. Invoking a Custom Function from a Button on the User Interface

Version 7.5, Rev. A Configuration Guidelines 137

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

Table 14 lists the standard uses and warnings for all available business
component events.

Table 14. Business Component Events Standard Uses and Warnings

Event Recommended Usage

PreSetFieldValue, Typically, use the Pre... events to validate changes the user

SetFieldValue, makes and cancel the operation if there is a problem. Only write

PreNewRecord, code for these events that will determine if the event can

NewRecord, proceed or not. Use data-driven read-only user properties to

PreAssociate, enforce validation whenever possible. (For more information,

Associate, see Siebel Tools Reference.) Use the post-processing events for

PreWriteRecord, logic that does not determine whether the event should

WriteRecord, complete. In the post-processing events (those that are not

PreDeleteRecord, prefixed with Pre), limit code to processing that cannot be done

DeleteRecord through configuration. Investigate the use of Runtime events,
Workflow, user properties, and calculated fields before writing
script.

PreGetFieldValue Modify field values before the value is retrieved by the
GetFieldValue business component method. Do not overuse
this event because it can cause severe performance
degradation.

ChangeRecord Use only for updating module variables or other short and

PreQuery, Query

PrelnvokeMethod,
InvokeMethod

simple scripts. Do not put code in this event that queries or
writes to the database, contacts external systems, or interacts
with the file system. This will result in severe performance
degradation.

Use the PreQuery event only for logic that cannot be achieved
through search specifications.

Use the PrelnvokeMethod to deal with custom methods. In
some situations, you can use this method to capture standard
Siebel methods and cancel them if necessary. Be aware that this
is what the above events (such as PreSetFieldValue or
PreWriteRecord) are for and code that depends on nonstandard
methods, such as those used by specialized business
components, may not properly upgrade.

Use the InvokeMethod event to do any processing that does not
determine whether the method invocation should continue.
Avoid using InvokeMethod to handle methods for which there
is a predefined event.

138 Configuration Guidelines

Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

= Use business service scripts to group related functionality in generic
modules. Use business service scripts to centralize functionality that will be
used in multiple locations. For example, you can invoke business service
scripts from applets, business components, Workflow processes, and other
business services.

The recommended way to add methods to a custom business service is to
create the methods as you would any other script, and use the
PrelnvokeMethod event to act as a dispatcher that handles method
invocations by calling the correct internal method. The following is a sample
PreIlnvokeMethod script:

function Service_Prel nvokeMet hod (Met hodName, | nputs, CQutputs)

{
switch (MethodNane) {
case "MyCust onvet hod":
MyCust onVet hod(| nputs, Qutputs);
/1 Return Cancel Operation, otherw se Siebel wll
/] attenpt to invoke the nethod against the BS s
/'l C++ class, which will cause an error.
return (Cancel Operation);
}
return (ContinueQCperation)
}

Version 7.5, Rev. A Configuration Guidelines 139

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

As with business component methods, PrelnvokeMethod should return
CancelOperation to prevent the method from being invoked against the

C+ + class of the business service. The two Inputs and Outputs property sets
contain all input and output arguments. This is the only way arguments may
be passed to business services.

Avoid placing all logic in the PrelnvokeMethod event, as this makes the code
less modular and more difficult to maintain and troubleshoot.

If users need to inactivate a button when no records display, as a workaround,
you can use the WebApplet_PreCanlnvokeMethod event script to make the
button visible. For example:

= Add a button to an applet, and set the property Method = My Method
= Modify WebApplet_PreCanInvokeMethod.

Parameter CanInvoke must return TRUE for the button to be enabled. Otherwise,
it will be disabled.

The following sample code is used to enable the button if there are records in
the applet. If no records are displayed, the button will be disabled.

function WebAppl et _PreCanl nvokeMet hod (Met hodNane, &Canl nvoke)

i f (MethodName == “My Method”)
{
/1 Set Id field to string
var oBC = this.BusComp();
var sld = oBC CGetFieldValue(“ld”);
/] Check value of field Id for current bus conp
if (sld=="")
{

140 Configuration Guidelines Version 7.5, Rev. A

Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

/1 if this is true there are no records in applet. Do not
i nvoke the button return (Cancel Operation);

oBC = null;
}

el se

{

Canl nvoke = “TRUE";
return(Cancel Operation);
}

}

el se

return (ContinueCperation);

}

For more information about the WebApplet_PreCanlnvokeMethod event, see
Siebel Object Interfaces Reference.

Browser Script

The following section only applies to browser script. JavaScript is the only
supported language for browser script.

= Avoid direct Document Object Model (DOM) manipulation of Siebel objects.

The Siebel High Interactivity Client makes extensive use of the Document Object
Model. Because browser script runs within this framework, it can access the
DOM and all of the objects that constitute the Siebel High Interactivity Client.
This access is not supported and could cause problems because the structure of
these objects is not guaranteed to be static. Whenever you require access to
Siebel user interface constructs, use the Siebel Object Interface methods.

Version 7.5, Rev. A Configuration Guidelines 141

‘ Development Standards for Siebel Script Languages and Object Interfaces

Script Guidelines

Do not return large result sets from server business services to browser script.

Browser script can invoke methods on business services that are either browser
scripts or server scripts. Because browser script supports a subset of Object
Interface methods available to server script, it is often convenient to write
business services with server scripts that are invoked by browser scripts. Using
this technique, browser scripts can effectively invoke server-side scripts. While
this is a good solution, these types of server scripts should return simple values
or a single record to the calling browser script, not sets of records returned from
a query.

For example, the business component method ExecuteQuery() cannot be
directly invoked using browser script. To get around this restriction, instead of
writing a server business service that takes query criteria and a business
component name as arguments and then returns the results, return success or
failure or the number of rows found.

Returning entire result sets to browser script can significantly decrease
performance. Server script must first convert data to a property set, where it is
encoded as a string by the Siebel Web Engine (SWE). Then, it is sent to the SWSE
using SISNAPI, and returned to the client through HTTP, decoded back to a
property set by JavaScript, and used by the browser script. For large result sets,
this negatively impacts performance.

The user interface can efficiently display large result sets (for example, the All
Accounts view, where there may be thousands of accounts in the view) because
it retrieves only the number of rows from the server that can be displayed on the
current applet.

Often, if browser scripts need to invoke server-side functionality, you can simply
write the script in server script on the corresponding event instead of browser
script.

142 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface 9

This section gives guidelines for configuring the user interface.

Version 7.5, Rev. A Configuration Guidelines 143

‘ Configuring the User Interface

User Interface Guidelines

User Interface Guidelines

These guidelines apply to the Siebel eBusiness Application user interface for both
Standard Interactivity and High Interactivity. However, be aware that there are a few
differences between these two clients. For example, because the High Interactivity
client is considered the standard application, it provides almost all the functionality
that was available in previous versions of Siebel eBusiness Applications. However,
the Standard Interactivity client, with its reduced level of interactivity, is considered
to be more of a customer application. For more information on the differences
between the two types of clients, see Siebel Tools Reference.

Configuring the user interface represents a significant part of any Siebel eBusiness
Application implementation. Because the user interface is made up of many
different parts, this section provides guidelines for the following:

= User Interface
= Template Files
m Performance

= Screen Design
m Personalization
s Deployment

Standard Siebel eBusiness applications are deployed using Siebel Smart Web Clients
that have their own separate set of user interface definitions. These definitions
include applets, views, screens and application object definitions.

144 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

User Interface Object Definition

User Interface Object Definition

A standard Siebel application has a set of user interface definitions that are unique
to each application within the repository. These user interface definitions are
controls, applet Web template, view Web template and Web page. The applet Web
template object definition is a child of the applet and the view Web template object
definition is a child of the view definition. After you have defined the standard
applets and views, you can create or modify the corresponding Web template
definitions.

Some reasons to create a complete set of user interface object definitions include
the following:

Version 7.5, Rev. A

Performance is more of an issue because the number of fields in an applet has
been reduced. To improve the database engine and the Siebel Web Engine (SWE)
performance, retrieve required fields only.

The Siebel Smart Web Client uses the properties defined in the underlying view
and applet definitions. For example, the visibility settings in the view are used
by their corresponding view in the Siebel Smart Web Client. In addition, any
search specification or control-specific properties apply to an applet used by the
Siebel Smart Web Client.

Because the user interface has changed significantly, the economies of reuse do
not always apply.

The corresponding Web template components are specific to the application. For
example, the Account applets used in the eChannel application are different
from the Web Phone Account applets.

Siebel Industry Applications (SIA) introduced the concept of conditional control
mappings. This means that you can use the same applet template in different
applications (for example, eClinical and eLifeSciences), and display different
controls on the same Web template. An eClinical application user sees different
fields on the Account List applet than someone using the eLifeSciences
application, even though both applications are using the same SRF. This is
accomplished through the Expression property of the Applet Web Template
Item, and it allows more than one control to be mapped to the same template ID.

Configuration Guidelines 145

‘ Configuring the User Interface

Implementing the User Interface

Implementing the User Interface

After defining the screen flow and required set of user interface components,
complete these steps in this order:

1 Configure the applets, views, screen, and application objects.

2 Create and modify the required controls, applet Web templates, view Web

templates, and Web pages object definitions.

3 Compile and test the application.

Follow these guidelines to implement the user interface:

Follow the object naming conventions.

For minor changes to applets or views, reuse the existing applet or view
definitions.

For major changes to applets or views, copy the existing applet or view
definition, rename the applet or view, and make the appropriate modifications.

When cloning an applet, be sure to set the applet’s Upgrade Ancestor property.
Setting this property will make sure that any future functionality enhancements
to the base applet (such as new Web templates, new Web template items, or new
specialized applet class functionality) are incorporated into the cloned applet
after you upgrade your application.

You can create custom HTML controls. These controls are defined in the SWF
file that is contained in the application CFG file. Be aware that creating custom
HTML controls requires changes in the list of values used by the Siebel
repository. For more information, see Siebel Tools Reference.

Set a specific sequence for each View Web Template Item in a view. This
sequence defines the order that the view applets will appear in the user
interface. Also, set the view Applet Mode property on a View Web Template
Item, in case the associated applet contains more than one Applet Web Template
and simultaneously supports multiple modes. For example, a High Interactivity
View Web Template Item could be set to the Edit List applet mode for the
Account List applet, while a Standard Interactivity view using the same applet
could specify the Base mode as the default mode for the same applet.

146 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface ‘

Implementing the User Interface

= Controls that have a MethodInvoke property to go to a view or execute a
SmartScript often contain user properties (for the List Column or Control
definition). For examples, check in the repository.

m In the Siebel Smart Web Client, SmartScript pages can be broken into several
pages. This is because any question containing script must be treated as the end
of a page so that the Object Manager can do any processing associated with the
script before the next question is answered. For example, if a page contains three
questions (ql, g2, and g3) and two of these questions have question scripts (q2
and g3), then two pages are created—one with q1 and g2 and the other with just
g3. To avoid this, consider consolidating the script into the last question on the
page using the Question_PreBranch or Question_Leave events. In the preceding
example, question g3 would contain all of the necessary script.

Version 7.5, Rev. A Configuration Guidelines 147

‘ Configuring the User Interface

Template Files

Template Files

Template files are files that have both Siebel tags and HTML tags. A standard set of
template files comes with every Siebel eBusiness application. They are installed
during the Siebel Tools and Siebel Server installation in the WEBTEMPL directory.

Follow these guidelines when using template files:

Create a new template file if you are making changes that will result in
destroying or altering the standard functionality of your application.

Always try to reuse any new or modified template files. Too many unique
template files often indicates inadequate screen design.

Do not use a new template if a standard template will satisfy your requirements.

Create a new container page only if changing a container page template file will
break or alter the functionality of your application. Otherwise, modify the file.

If changing a view template file affects all views, then modify the existing
template. Otherwise, create a new view template file to meet your requirements.

If changing an applet template files affects all applets, then modify the existing
template. Otherwise, create a new applet template file to meet your
requirements.

Do not use frames on the templates. If you use frames, you will break the
browser functionality for bookmarking and paging backwards and forwards
because of the difficulty in maintaining sessions.

Before Modifying Templates Files

Although modifying templates for employee applications such as Siebel Sales and
Siebel Call Center is typically not necessary, it is common to need to modify Web
templates for customer and partner applications. For example, you may want to add
a corporate logo to every page seen by your customers or partners.

When modifying Web templates, consider the following:

For Siebel employee applications the standard templates are tightly integrated
with the High Interactivity Framework. Modifying or creating new templates
may cause unexpected behavior which is difficult to troubleshoot.

148 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Template Files

= Siebel Web templates files, like cascading style sheets, are not automatically
upgraded. Consequently, if you make modifications to Web templates, the
modifications will need to be reapplied manually after upgrading to a new
release.

Before you modify Siebel Web templates, consider how you might configure objects
definitions in Siebel Tools or use other means to meet your user interface
requirements. For example:

= Reposition fields and other controls, such as buttons, by dragging and dropping
them to different locations in a template using the Web Template Layout Editor.

See Siebel Tools Reference for more information.

m Use the functionality provided by the More/Less feature to add additional fields
to an applet but only display them when a user clicks the More button in the
upper right corner of an applet.

See Siebel Tools Reference for more information.

= Use Siebel Conditional tags to target different layouts for different browsers.
Conditional tags are Siebel tags that process if or switch/case logic. They allow
you to target different layouts depending on which browser type (for example,
Internet Explorer 5.5 or Navigator 6) is making the request. A single template
can handle layouts for multiple browser types.

See Siebel Tools Reference for more information.

m Use Siebel Web Format file (.swf file) to define a new HTML Type. For example,
you could create a new HTML Type called LargeButton by copying the standard
MiniButton and then changing the size and image used for the button. After you
add LargeButton to the List of Values, it will be available to select as the HTML
Type property of a control.

See Siebel Tools Reference for more information.

If you must modify or create Web templates, try to keep the number to a minimum;
the fewer, the better. Here are some general guidelines to help achieve this goal. The
following list is ordered by the amount of effort that will be required to upgrade to
a future release—the first item will require the least effort and the last item will
require the most effort.

Version 7.5, Rev. A Configuration Guidelines 149

‘ Configuring the User Interface

Template Files

Modify the container page. There is only one container page in an application, so
it is acceptable to make changes in this template. This is a relatively easy way to
make changes that apply throughout the application. For example, you might
add a new logo or other navigational links to the template.

Modify view templates. There are only a few view templates in an application. It
is generally acceptable to add navigational links in view templates. Changes in
a view template affect all View objects that reference the template.

Modify applet templates. There are a number of applet templates in an
application. It is best to minimize changes to applet templates. In most cases,
the layout placeholders in the standard applet template are flexible enough to
meet your needs.

Hardcode applet templates. This is writing your own HTML directly into a
template, such as hardcoding the width attribute of a <table > tag. Doing this
may cause unexpected behavior. For example, it might change the template so
that it is no longer reusable, which would lead to a proliferation of applet
templates that would have a severe impact during upgrades.

Create new templates. New templates can be useful when they are used for very
specific purposes. However, you should be careful to avoid creating numerous
instance-specific templates because of the consequent effort required to
manually upgrade each one. If a new template is necessary, it should be a copy
of a standard template, and the copied template should have the same set of
Siebel tag IDs as the original. This will allow easy replacement because existing
association information between tag IDs and UI objects in the Repository will
continue to work.

Embedding JavaScript in templates. This should be avoided. See Siebel Tools
Reference.

For a complete description of each standard template, see Siebel Tools Reference.

150 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Template Files

About Embedding JavaScript in Web Templates

It is not necessary to embed client-side JavaScript in Web templates. Instead, you
can write client-side JavaScript in Siebel Tools using Browser Script. Browser Script
allows you to interact with browser objects, such as form fields, and interact with
Siebel objects, such as business components and business services. The advantage
of using Browser Script is that, because it is developed in Siebel Tools, changes are
stored in the Siebel Repository. And since Browser Script is not hardcoded into a
template, applets with Browser Scripts can share the same template.

For more information about Browser Scripting, see Siebel Tools Reference and Siebel
eScript Language Reference.

The general recommendation is to avoid embedding any client-side JavaScript in
Web templates. Doing so not only limits the reusability of Web templates, but may
also adversely affect Siebel employee applications that run in the High Interactivity
Framework, which uses client-side JavaScript extensively.

Version 7.5, Rev. A Configuration Guidelines 151

‘ Configuring the User Interface

Cascading Style Sheets

Cascading Style Sheets

Modifying standard .css files and classes allows you to change the look and feel of
the user interface. This is more efficient than creating new ones because it allows
you to apply changes to all Web templates that reference a particular .css class.
Creating new .css files and classes would require you to also modify each Web
template that needed to reference the new class. Keep in mind that changes to
standard .css files are not automatically upgraded. For this reason it is good practice
to keep the number of modified templates and .css files to as few as possible. This
will help minimize the effort required to upgrade to future releases.

For more information on cascading style sheets, see Siebel Tools Reference.

152 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Performance

Performance

Consider the following suggestions to reduce the size of the generated HTML page.
To make template files smaller:

Remove comments.

Remove references to spacer.gif.

Remove double quotes on HTML tags attributes.
Remove empty lines.

Remove default values (border=0, alt=""...).
Remove tabs and blanks at the beginning of the lines.
Shorten folder and file names for the images (*.gif).
Remove other default values (valign = middle).

Optimize HTML (for example, move some attributes of the cell to the table tag,
remove some properties declared on the table and on the cell).

Remove comments and double quotes on CCHtmIType.swf.
Remove double quotes on Siebel Tags attributes.

Remove bgcolor attribute on mini-buttons.

Remove logos at the top of the page.

Remove vertical separator in the list applets.

Simplify the style sheet used (main.css) wherever possible by adding or
modifying the classes.

Avoid using animated GIFs.

Do the following to simplify HTML configuration:

Version 7.5, Rev. A

Reevaluate responsibilities to limit items in the screen tab bar.

Include required fields only in a list applet and limit the number of columns as
much as possible.

Configuration Guidelines 153

‘ Configuring the User Interface

Performance

» Reduce the number of rows in a list applet using the HTML Number of Rows
property on the applet object.

= Eliminate or limit the use of custom JavaScript within the templates.

= Because they use the HTML option tag, limit forms using multiple static
picklists—they increase the size of the page significantly.

» Evaluate complex conditions in the personalization module that could degrade
performance for affected applets, and consider using new conditional tags if
necessary. For more information, see Siebel Tools Reference.

Follow these guidelines when using non-Siebel technologies:

m Because they can add to the download time, do not overuse Shockwave or Flash-
type technology. Focus on the site’s usability, not its appearance. If using these
technologies sacrifices performance, resulting in poor user acceptance,
reconsider using it.

= Some clients use compression techniques between the Web server and the client
Web browser. This requires you to install third-party software on the Web server
and Client machines. Clients should thoroughly test these compression
technologies before deploying them with their Siebel eBusiness application.

154 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface ‘

Screen Design

Screen Design

Screen design impacts the development or configuration stage of an
implementation. By keeping designs simple and consistent, you can configure your
application effectively and efficiently.

Consider these performance recommendations:

m Limit the number of applets in a view and the number of fields that appear on
List applets. Your overall objective is to let customers see as much relevant data
in a view as possible without scrolling.

= As users of the Standard Interactivity client may not receive any training, make
the interface as intuitive and simple as possible. Include as much Help text in
the HTML page as you can to make user interaction easy.

m Limit the number of columns and return only the information that is absolutely
necessary.

= Consider using drilldowns more extensively to access detailed information. This
helps limit the amount of information.

» For forms using SmartScript, try to limit the number of questions asked to
between five and seven questions per page. Limit the number of pages as much
as possible.

= Avoid nonstandard link colors.

m» Keep information consistent across the applet templates that are used in the
base, edit, and editlist modes.

» Limit the use of Personalization or Content management rules to the user’s
home page.

m Avoid using animated GIFs as much as possible.

Version 7.5, Rev. A Configuration Guidelines 155

‘ Configuring the User Interface

Personalization

Personalization

You can use personalization to increase user satisfaction. However, excessive
personalization can have a negative impact on performance. The following
guidelines apply to personalization when configuring your application:

Test personalization rules thoroughly to make sure that they do not override
your application’s desired behavior.

Do not use personalization to replace standard visibility and the use of search
specifications on business components or applets.

Avoid using personalization to trigger general validation scripts or to invoke
custom methods that implement application logic. This functionality should be
confined to the Business Objects layer through standard configuration
techniques or scripting.

Carefully manage the profile attributes set in a given session. Maintain
personalization rules using the Personalization Administration and Runtime
Events Administration screens. Setting attribute values through scripting in the
repository could result in conflicts and unexpected behavior.

Using SetProfileAttr and GetProfileAttr can be effective for reasons other than
storing user profile information. For example, calculated fields can use
expressions containing GetProfileAttr. Search specifications can also use
expressions with GetProfileAttr. Profile attributes in this case are global variables
stored in the application, so they need to be documented and appropriately
managed in order to avoid conflicts and errors.

156 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Deployment Issues

Deployment Issues

Review the following issues and considerations when deploying your Siebel
eBusiness application.

The ratio of MaxTasks and MaxMTServers should be less than 1:10. Generally,
do not have more than five tasks for each Object Manager.

Some of the security issues you will need to consider are:

Version 7.5, Rev. A

Is single sign-on required on the customer Web site? This is now a supported
technology.

How is security being implemented? Is secure-socket layer (SSL) being
implemented?

How are you managing new user registration in the Standard Interactivity client?
This will impact the Login template and user administration.

Are you using a Lightweight Directory Access Protocol (LDAP)? Is a custom
security adapter required?

Are there requirements to integrate with a communication server?
What are the content management requirements?

What are the architectural concerns, such as firewall implementation or
protocol?

Are there any legacy integration issues—for example, is eBusiness Application
Integration (eAl) necessary?

Configuration Guidelines 157

‘ Configuring the User Interface

Screens

Creating User Interface Objects

Creating User Interface Objects

This section provides guidelines for creating screens, views, and applets.

A screen object is used to group or modify a collection of views.

Creating and Modifying Screens

Typically, you create a new screen when you create a new business object. You
modify an existing screen object when you remove or add a screen tab, change
menu text (for the Site Map), or define new views for that screen. Screens appear
as first-level choices on the Site Map.

Views associated with screens appear in one of two places. Views with visibility
properties (specifically the Visibility applet) appear in the Site Map as views
accessible under the screen. They also appear in the Show drop-down list in the
screen’s default view. Screens are also accessed through screen tabs. Each screen
tab represents a screen. The views that are part of that screen are available in the
Show drop-down list (those with visibility properties) or are represented as view
tabs under the screen’s default view.

The order of the tabs and their listing on the Site Map are controlled by the sequence
property of the records in the page tab and screen menu item child object of the
application object.

Unused Screens

If you will not use a standard screen in your implementation, use the Responsibility
Administration Screen to disassociate all views on the redundant screen from those
responsibilities your organization uses. This approach reduces the amount of
configuration necessary for you to maintain and upgrade. It also offers an easy
upgrade path if you decide to show the screen or views later. At that time, no
configuration or software upgrade is required; you need only to reassign the views
to the relevant responsibility. You can also inactivate the screen using Siebel Tools—
it will not be compiled in the SRF.

158 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Views

Views

Typically, a view defines a visual representation of a business object's data and is
composed of a collection of applets. There can be many views of information for a
business object.

Creating and Modifying Views

During the initial stages of an implementation, you define the required views. These
views are usually in one of these categories:

Version 7.5, Rev. A

Views that are standard and do not need to be modified.

Views that closely align with an existing view and require the same applet
layout, but require other configurations such changing a title, inactivating or
adding controls or list columns, and changing display labels. For this category,
it is recommended that you configure the existing view object. Most
configurations in this category are actually done on the applets instead of the
views.

Views that closely align with an existing view but require a moderately different
applet layout, possibly displaying applets based on new business components or
adding toggles. For this category, it is also recommended that you configure the
existing view object. The design may also require configuration of the existing
view applets.

Views that consolidate two already existing views. For this category, it is
recommended that you configure one of the existing views by modifying the
view object, and remove visibility to the redundant view using the
Responsibility Administration screen.

Views that do not have an obvious preexisting equivalent view. These are views
that expose new functionality specifically configured for your implementation,
exposing new business objects, or business components. For this category, it is
recommended that you create a new view object and avoid extensively
modifying an existing definition that will not be used in your implementation.
The resulting configurations will be much cleaner and easier to maintain and
upgrade (both manually and automatically).

Configuration Guidelines 159

‘ Configuring the User Interface

Views

A view can be associated with more than one screen, but this configuration will
cause the Thread Manager to behave incorrectly. When a thread is saved in the
session file, the name of the view is stored without the name of the associated
screen. When a user chooses a thread that navigates to a duplicated view, the user
always navigates to one screen only, even if the thread was created in the other
screen. Additionally, if the duplicate view is defined as the default view on both
screen tabs, the user sees an anomaly in the user interface. One screen tab is
selected as the active tab when either of the screen tabs are selected. The duplicate
screen tab never appears to be active.

160 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Guidelines for Views

Guidelines for Views

The following sections give guidelines for which views not to configure, naming
views, handling unused views, and choosing a view layout.

Server Views

Threads

CAUTION: Do not modify Server Administration views. Information in these views is
read from the siebens.dat file and displayed in the user interface by the Server
Manager. Configurations made to these views would also have to be made to the
siebens.dat file. However, it is not possible to configure the product to store such
information in siebens.dat. Therefore, configuration of server views is not
recommended or supported.

Views associated with more than one screen in a given application will cause
incorrect behavior in Siebel applications. When the thread is saved in the session
file, the name of the view is saved without the name of the associated screen. When
the end user chooses a thread that navigates to a duplicated view, the Siebel
applications will always navigate to one screen only—even if the thread was created
in the other screen. Furthermore, if the duplicate view is defined as the default view
on both tabs, the end user will see an anomaly in the user interface. Siebel
applications will select one tab as the active tab when either of the tabs is selected.
The duplicate tab will never appear to be active.

NOTE: The Thread Applet property must be correct, especially if a custom applet is
placed in Sector 0. If this property is not set with the correct applet name, planned
CTI screen pops for transfer calls will not work.

Version 7.5, Rev. A Configuration Guidelines 161

‘ Configuring the User Interface

Guidelines for Views

Unused Views

If you are not using a standard view object, use the Responsibility List
Administration screen to disassociate the redundant view from any responsibilities
your organization uses. This offers an easy upgrade path if you decide to expose the
view later. At that time, no configuration or software upgrade is required; you need
only to reassign the view to the relevant responsibility. You can also inactivate the
view within Siebel Tools.

View Titles

There are three different titles displayed for a view, as follows:

= Title bar of the Siebel application window. The title appears in the title bar, prefixed
by the application name and a hyphen, as in Siebel Sales - Account List View.
This is specified in the Title property of the view.

= View bar tab. In the View bar in the appropriate screen, the tab that navigates to
this view. This is specified in the Viewbar Text property of the corresponding
screen view object definition.

= Screens menu sub-option. In the Screens menu, as a sub-option of the appropriate
screen, the menu option that navigates to this view. This is specified in the Menu
Text property of the corresponding screen view object definition.

Keep these three title definitions consistent for one view. If at all possible, the text
should be identical in all three.

If a view specifies a visibility mode, as indicated by a non-blank Visibility Applet
Type property, the title (in all three locations) needs to identify the visibility mode,
as indicated in Table 15.

Table 15. View Titles by Visibility Mode

Visibility Mode Title Format Example
Sales team visibility My buscomp(s) My Contacts
Personal visibility My Personal buscomp(s) My Personal Contacts

162 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Guidelines for Views

Table 15. View Titles by Visibility Mode

Visibility Mode Title Format Example
Manager visibility My Team’s buscomp(s) My Team’s Opportunities
All visibility All buscomp(s) All Accounts

For more information on visibility modes, refer to Chapter 10, “Visibility,” and
Siebel Tools Reference

Version 7.5, Rev. A Configuration Guidelines 163

‘ Configuring the User Interface

Applets

Applets

An applet is composed of controls and occupies part of a view. You can configure
an applet to allow data entry, provide a table of data rows, and display business
graphics or a navigation tree. It provides viewing, entry, modification, and
navigation capabilities for data in one business component. An applet is always
associated with one and only one business component.

Creating and Modifying Applets

During the initial stages of an implementation, you define the required views. The
applets displayed on these views usually fall into one of these categories:

Applets that are standard and do not require any modification.

Applets that closely align with an existing list applet, but require minor
configuration such as a title change, inactivating or adding controls or list
columns, and changing display labels. For this category, it is recommended that
you configure the existing applet object and its child objects.

Applets that represent an already existing relationship (for example, opportunity
contacts), but require extensive modification of the existing applet to produce a
new applet layout. Modifications are considered extensive if the new applet
requires a large combination of different configurations, such as resequencing of
existing controls or list columns, inactivating and adding new controls and list
columns. For this category, it is recommended that you create a new applet
object (by copying an applet that closely resembles the applet you want to
create), and then modifying the copied applet. The resulting configuration will
be much cleaner and easier to maintain and upgrade (both manually and
automatically).

You may need an applet with different drilldowns in different views.

Applets that do not have an equivalent existing applet. These tend to be applets
that expose a new business component. Always create a new applet for this
category of list applet.

NOTE: Remember to set the Upgrade Ancestry property on all custom applets that
are cloned from another applet.

164 Configuration Guidelines Version 7.5, Rev. A

Configuring the User Interface

Applets

Modify, rather than copy, an applet, unless you are making extensive modifications
to the applet. This avoids having to change all references of that applet to the new

copy.
The following are examples of situations in which you might need to copy an applet:
= When you must extensively modify an existing applet.

= When you need a Read Only copy of an existing applet.

NOTE: Do not change the Class property of preconfigured applets.

The objective of your design and configuration projects should be to produce a
consistent and intuitive user interface. Wherever possible, applets displaying the
same business component should be consistent across different screens and views.
For example, the contact list displayed for an opportunity should be consistent with
the contact list displayed for an account. Whenever possible, reuse applet
definitions between different views and screens. Obvious exceptions include
redundant controls or list columns and controls, or list columns that are relevant
only to the current parent business component. For example, you would display the
contact's account information when displaying opportunity contacts, but not when
displaying account contacts. This recommendation does not necessarily apply when
comparing list with form or entry applets. When the screen space for a view is
limited, it may be practical to include fields at the end of a list applet that are not
displayed on the associated entry applet.

Another approach to increasing the number of fields available in a form applet is to
use applet toggling. You can define two applets based on the same business
component to show information from the same record (but the field controls are
distributed over multiple applets) and the user can toggle between the two.

Unused Applets

It is recommended that you do not modify any applet you are not using in your
implementation. You could also mark the applet as inactive.

Version 7.5, Rev. A Configuration Guidelines 165

‘ Configuring the User Interface

Applets

Online Help

If you want to provide context-sensitive help in your application, you need to define
Help IDs for screens and views. If you do not want context-sensitive help and you
do not define a Help ID, the default start page for help will appear. For more
information on Help IDs, see Siebel Developer’s Reference.

Applet Titles

The applet title is the value in the Title property. It determines what displays in the
tab at the upper left of an applet in a view, or in the title bar of a pop-up applet.
Follow these general guidelines when creating applet titles:

m Always specify an applet title. Do not leave this property blank.

= No two applets in the same view should have the same title. If a view contains
multiple applets displaying data from the same business component, distinguish
the titles by type. For example, in a list-form view displaying accounts, use
distinct titles such as Account List and Account Form.

Table 16 offers standard conventions for the titles of certain applet types.

Table 16. Title Conventions for Applets

Type of Applet Title Format Example

Association applets Add buscomp_name(s) Add Opportunities

Multi-value group buscomp_name(s) Contacts

applets

Pick applets Pick buscomp_name(s) Pick Product

List applets buscomp_name List Account List

Form applets buscomp_name Form Account Form
buscomp_name Entry Account Entry

Chart applets Xxx Analysis Open Defect Analysis
or
Xxx by Yyy Lead Quality By Campaign

Tree applets buscomp_name(s) Opportunities

166 Configuration Guidelines Version 7.5, Rev. A

visibitity] ()

This section defines visibility and details its various aspects.

Version 7.5, Rev. A Configuration Guidelines 167

‘ Visibility

Visibility Overview

Visibility Overview

Visibility is a very important concept in delivering applications that meet the needs
of an enterprise. Generally, visibility is the terminology used for access control in
Siebel eBusiness applications. This section discusses the benefits of using visibility,
what visibility is, and how to configure visibility for different types of users, such
as remote users. Additional information on visibility can be found in Siebel Tools
Reference.

Correctly implementing visibility in your application provides the following
benefits:

m Users see only necessary views.
m Users see only necessary data.

» Visibility provides different types of ownership (for example, organizational,
team-based, access group or personal).

= You have more flexibility in segregating and partitioning data.
m There are smaller mobile client database extracts.

= Mobile users get shortened extraction and synchronization time.

168 Configuration Guidelines Version 7.5, Rev. A

Visibility

Access Control

Access Control

Visibility is controlled through three major mechanisms:

Login, which determines the user’s identity
Responsibility, which determines the views available to the user

Position, which controls the data available to the user

You can use access control to provide additional control. It is implemented through
five different mechanisms:

Version 7.5, Rev. A

Personal Access Control

This mechanism allows you to associate individual data with the user’s database
record. Examples are My Service Requests or My Activities.

Position-Based Access Control

This mechanism allows you to associate individual data to a position that is
assigned to the user. A single position or multiple positions (such as a Sales
Team) can be associated to the record. Other positions can access the data if
their position is tied to the position through a hierarchy, such as a manager. It is
usually better to work with positions instead of individuals, because reassigning
a position is easier than reassigning an individual. Examples are My Accounts
or My Team's Accounts.

Organization-Based Access Control

This mechanism lets you further restrict access to a record by associating the
record to an organization and then allowing access to only those active positions
who belong to that organization. Examples are All Accounts or All Contacts.
These views retrieve all the data for the organization of a user.

All Access Control

This mechanism provides access to all records with a valid owner. The owner
can be a person, a position, a valid primary sales team position, or an
organization. All users with a view in their responsibilities that applies All
access control see the same data in the view. An example is All Accounts Across
Organizations.

Configuration Guidelines 169

‘ Visibility

Access Control

= Access Group Access Control

This mechanism provides access to records where the user is associated with an
access group if, during the current session, the user is associated with a position,
organization, division, account, household, or user list that is a member of the
access group. Access groups control master data only.

170 Configuration Guidelines Version 7.5, Rev. A

Visibility

View Access Visibility

View Access Visibility

Responsibilities control view access, which determines the views available to a user.
You use these responsibilities, which are accessed in an administration view, to
assign one or more responsibility records to a user in a user’s employee record.
Views are also assigned to each responsibility in this view. The result of these two
administration activities is that when a user logs on, that user's responsibilities and
list of available views is determined. Only the views to which a user has access are
made available to the user; all others remain hidden.

You define a responsibility for a class of users who require access to the same set of
application features—for example, users who need to see the same data.

For more information on administering views and responsibilities, see Applications
Administration Guide.

NOTE: A user can have multiple responsibilities. When accessing an application, the
user's responsibility is a combination of all defined responsibilities. Therefore, if
View A is defined in Responsibility 1 and View B in responsibility 2, the user has
access to both Views A and B.

Version 7.5, Rev. A Configuration Guidelines 171

‘ Visibility

Record Access Visibility

Record Access Visibility

Record access visibility, or client-side visibility, is a mechanism that restricts the
data records that appear when a user navigates to a particular view. You use Siebel
Tools to implement this type of visibility by setting properties on the following
object types:

Business Components
Views
Links

Drilldowns

From a technical standpoint, the interpretation of these object visibility properties
determines part of the WHERE clause of the database query that is used to select
the data.

Object Ownership Models

Record ownership of Siebel entities can exist according to four different models:

Personal. The record has a foreign key to the table that stores user information
(for example, S_CONTACT) identifying the user as the owner of the record or the
individual assigned to the record.

Single Position. The record has a foreign key to the Position Table (for example,
S_POSTN) identifying the owner's position.

Team Access. The record is associated to a team of positions through an
intersection table (for example, S_POSTN_CON). One position is considered the
primary.

Organization. The record belongs to an organization that is associated to your
position.

Therefore, the records a user can see is determined by answering the following
questions:

What is the organizational visibility of the underlying business component?

172 Configuration Guidelines Version 7.5, Rev. A

Visibility

Record Access Visibility

Is it a team-based business component?
Can the business component be owned?

How is view, which displays the data, configured?

Configuring Visibility at the View Level

There are eight visibility types you can configure at the view level:

Version 7.5, Rev. A

Personal. Provides access to records owned by the user. Position or Owner Id is
that of the current user.

Sales Rep. Provides access to records for which the user is part of the team. This
may be a sales team, contact access list, account team, or other type of team.
The term Sales Rep may be deceiving because it may not be a sales-related team.

Manager. Provides access to records for which the user or a subordinate is the
primary. Primary position or Owner Id is that of the manager or subordinate.

Organization. Provides access to records within the user's organization—for
example, the organization of the record matches that of the position of the user.
Records must have a valid primary position or they are not displayed.

Sub-Organization. Provides access to data in two situations. In the first situation,
if the business component on which the view is based uses single organization
access control, the user sees data associated directly with the user's active
organization or with a descendent organization. In the second situation, if the
business component on which the view is based uses multiple organization
access control, then the user sees data for which the user's active organization
or a descendent organization is the primary organization.

All. Provides access to all data except for records that do not have a valid owner.

Group. Provides access to categories of master data that are associated with any
of the access groups with which the user is associated, such as household, user
list, or organization. In a view where you navigate using a tree applet, the user
sees accessible first-level subcategories (child categories) in the current
category. In a view that provides a list of master data records, the user sees all
the records in the current, already accessed, category. To use this visibility applet
type, the business component must have a view mode with an Owner Type of
Group.

Configuration Guidelines 173

‘ Visibility

Record Access Visibility

m Catalog. Provides access to a flat (uncategorized) list of all the data in all the
categories across catalogs to which all of the user's access groups have access.
Typically, this visibility type is used in product picklists and other lists of
products. To use this visibility applet type, the business component must have a
view mode with an Owner Type of Catalog category.

= Admin Mode. This is a separate visibility mode to provide a way to see all records,
including ones without a valid owner or primary sales team member. This allows
the administrator to fix records that would not otherwise be visible to anyone.

NOTE: Because you use the Admin Mode Flag property to set the Admin Mode
for a view, it is not really a view visibility setting.

Naming Views

Typically, you should conform to a standard naming convention when naming
views. Table 17 provides examples for each view visibility type. The italicized text
identifies examples of the conventions you should use for each type of view
visibility when naming views.

Table 17. Naming Conventions for View Visibility Types

View Visibility Type Naming Convention

Personal My Personal Contacts

Sales Rep My Contacts

Manager My Team’s Contacts

Organization All Contacts

Sub Organizations All Accounts across My Organizations
All All Contacts Across Organizations
Group User Catalog List View

Catalog Products across Catalogs

Admin Mode Contacts Administration

174 Configuration Guidelines Version 7.5, Rev. A

Visibility

Record Access Visibility

Configuring Visibility Using Siebel Tools

The following sections give more details on configuring team-based visibility
settings.

This setting restricts access to members of a team for team-based business
components. Examples of this setting include Opportunity, Contact and Account.
You configure team-based visibility by setting the Owner Type, Visibility Field,
Visibility Emp MVField, and the Visibility MVLink properties on the Business
Component View Mode, which is a child object type of the business component. If
you do not set the Owner Type, Visibility Emp MVField and the Visibility MVLink
properties, these records will be visible to everyone.

The view visibility properties should be set to work with these Business Component
View Mode properties as follows:

Version 7.5, Rev. A

My View, which displays all records for which a user is on the team, should have
the following properties:

= Set the Visibility Applet property to identify the first applet defined in the
Base definition of the View Web Template Item for the view.

= Set the Visibility Applet Type property to Sal es Rep (this is the default value
if none is set).

My Teams View, which displays all records for which the manager or
subordinates are the primary or owner, should have the following properties:

= Set the Visibility Applet property to identify the primary applet in the view.
= Set the Visibility Applet Type property to Manager.

All View, which displays all of the records within the organization (with a valid
primary set), should have the following properties:

= Set the Visibility Applet property to identify the Sector 0 applet in the view.
= Set the Visibility Applet Type property to Or gani zati on.

All View Across Organizations, which displays all records across all
organizations (with a valid primary set), should have the following properties:

= Set the Visibility Applet property to identify the Sector 0 applet in the view.

= Set the Visibility Applet Type property to Al | .

Configuration Guidelines 175

‘ Visibility

Record Access Visibility

You must also consider the following:

If no visibility applet type is set, the application uses the most restrictive default
type, which is team-based (for example, Sales Rep).

Do not make All, All...Across Organizations, and Admin Mode views available
to mobile users. Using these views will confuse users and can lead to data
integrity issues. Mobile users only have a small subset of records in their local
database. A user with access to an All view could mistakenly assume that this
is a complete list of all records, which it is not; it is limited to records that exist
in the user's local extract. One of the potential consequences from this is data
corruption. For example, a Primary Id can be reset from a valid value to No Row
Match Id if a view exposes a record and its related records do not exist in the
local extract.

In a production environment, use the Administration views to make sure the
Local Access flag is set to Fal se. When you are in a testing environment, you
can set it to Tr ue.

An Administration view displays all the records in the database by disregarding
any visibility properties. You configure this in Siebel Tools by setting the Admin
Mode Flag to Tr ue and leaving the Visibility Applet and Visibility Applet Type
properties blank.

Some data in your application will be visible with no constraints. This includes
enterprise-visible data, such as tables that have a Docking Visibility Type of
Enterprise.

176 Configuration Guidelines Version 7.5, Rev. A

Visibility

Docking Visibility and Dock Objects

Docking Visibility and Dock Objects

To access server data, you must be either a connected or a mobile user. A connected
user views data from the server database through a local or wide area network. A
mobile user downloads database records to a laptop through the synchronization
process. The previously described visibility rules apply to both connected and
mobile users. However, for mobile users, an additional category of restrictions,
called Docking or Routing Visibility, is placed on user access to records.

NOTE: Routing restrictions on data access apply in addition to visibility restrictions.

The docking visibility rules determine which records from the server database are
delivered to each mobile user. Docking visibility rules can be viewed but not edited
in Siebel Tools (except by Siebel Expert Services and even then, only in specific
situations). Although you cannot change these hard-coded visibility rules, in some
situations you can add docking rules. Sometimes you may have to identify and
interpret docking rules, as in the following situations:

» When investigating the relationships and rules to determine which records will
be routed to the mobile user either during design or troubleshooting problems.

= When deciding whether to use a particular table in the Siebel data model for a
nonstandard purpose. In this case, it is critical that the table's intended use is
consistent with its docking visibility rules.

NOTE: Docking rules are often known as synchronization or routing rules.

For detailed information on routing, you can use Siebel Tools to examine the
properties of the Dock Object object type and its child object types. Each Dock
Object has many Dock Object Tables and Dock Object Visibility Rule object
definitions.

The Visibility Level property in a Dock object specifies at a high level whether all

records will be transferred for the corresponding set of tables, or only a limited set
that corresponds to combinations of Personal, Sales Team and Manager visibility.

Three Visibility Level property settings are possible:

Version 7.5, Rev. A Configuration Guidelines 177

‘ Visibility

Docking Visibility and Dock Objects

m Enterprise. No restriction on the transfer of records. An example of this Visibility
Level property setting is External Product.

= Private. Used exclusively for routing of nonconfigurable data. This setting makes
sure that the rows in these dock objects are never routed to any mobile clients
and remain Private on the server.

= Limited. Specifies a distribution of records that, depending on the dock object
and user logon ID, correspond to some combination of Personal, Sales Team,
and Manager visibility. Party, which merged Account, Organization, Contact,
and Employee dock objects from the previous release, is an example of this type
of setting.

Dock Object Tables

Dock Object Tables are a logical collection of physically related database tables. For
example, in addition to routing Opportunity records contained in S_OPTY, there are
many related records which may also need routing. Examples of these related
records could be Opportunity Attachments, Opportunity Notes, and configuration-
specific data stored in S_OPTY_XM.

Dock Object Visibility Rules

Dock Obiject Visibility rules are used only for limited visibility objects. They
determine which records are routed to the mobile user. As an example, consider the
Opportunity dock object. Rules exist to route records for which the user is on the
sales team for the opportunity, or for which you are the manager of an employee on
the sales team, or for opportunities that are available through drilldown. However,
there are many more records available. To determine the sequence in which rules
are evaluated, sort the list on descending Visibility Strength and then on ascending
Sequence. Once a rule evaluates to true, no further rules are evaluated.

There are seven types of Dock Object visibility rules:

= Etype rule, Employee. An Employee is associated to the logical record. For
example, the user is an owner of a service request record.

= F-type rule, Manager Of Employee. The subordinate of the user (a manager) is
associated to the logical record. For example, the user is the manager of another
user who owns a service request record.

178 Configuration Guidelines Version 7.5, Rev. A

Visibility

Docking Visibility and Dock Objects

P-type rule, Position. A position is associated to the logical record. For example, if
you are on the sales team for an account, you will receive the account record.

Q-type rule, Manager Of Position. The subordinate of the user (a manager) is
associated to the logical record. For example, the user is the manager of another
user who is the primary on an account team.

N-type rule, Node (Selective Account Retrieval). Used for selective account retrieval.
This visibility rule is used to restrict the list of accounts routed to individual
users by transferring only the accounts each salesperson needs, instead of all
accounts to which the salesperson has visibility when connected to the server
database. Selective retrieval is implemented through a combination of disabling
a dock object visibility rule and adding account names to mobile clients in an
administrative view. Disabling a visibility rule affects all mobile users accessing
the server, so when considering this type of change, consult with Siebel Expert
Services first.

S-type rule, SQL Statement. Routes data based on a specific SQL select statement
that is defined as part of the rule. For example, the rule to route an account that
has been deemed as enterprise-visible uses a SQL statement to route based on
the value of the ENTERPRISE_FLG column.

C-type, Check Dock Object. Evaluates a secondary object. If the object being
checked is retrieved with a Visibility Strength that is greater than or equal to the
Check Dock Object Strength of the rule, then the rule evaluates to true. For
example, for the Organization (Account) Dock Object, the Contact object is
checked to be sure that if you have visibility to a contact, you also receive the
records containing the contact's account.

Visibility Strength

The final part of determining the docking of records is understanding the visibility
strength property of objects. Visibility strength is a value with a range of 0-100 and
it is used in two places:

Version 7.5, Rev. A

Comparison Against Dock Object Tables. If a docking rule evaluates to true, then
the strength is compared with that of the related Dock Object Tables. If the
strength of the rule is greater or equal to that of the related tables, then the user
gets the associated records in those tables. To clarify this, consider a scenario
where you are a mobile user and have received two opportunity records but you
have only received the related notes for the first.

Configuration Guidelines 179

‘ Visibility

Docking Visibility and Dock Objects

In the first scenario, you received the opportunity because you are on the
sales team. This would give you a strength of 100 (also referred to as full
visibility). Checking the Dock Object Tables reveals that you need a strength
of 100 to receive the related notes, which in this case is true.

In the second scenario, you are not on the sales team. You received the
opportunity because you have visibility to the related account. This time, you
receive the opportunity record, but with a lower strength of 50 (also referred
to as partial visibility). However, because you need a strength of 100 to
receive the notes, for this record, they are not routed to you.

Comparison For Type C Rules. If the object being checked is retrieved with a
Visibility Strength that is greater than or equal to the Check Dock Object
Strength, the rule evaluates to true. Consider a scenario where you are a mobile
user and have received two opportunity records but you only received the
related activities for the first opportunity.

In the first scenario, you received the opportunity because you are on the
sales team. This would give you a visibility strength of 100 for the
opportunity. Checking the Activity Dock Object reveals that you need a
visibility strength of 100 to receive any related activities. In this case, the
Check Dock Object rule evaluates to true and you receive the activities.

In the second scenario, you are not on the sales team. You received the
opportunity because you have visibility to an asset that is related to the
opportunity. This time, you receive the opportunity records but with a lower
visibility strength of 75. The Check Dock Object on Activity evaluates to false
and, based on the opportunity record you received, you do not get the
activities.

180 Configuration Guidelines Version 7.5, Rev. A

Database Extensibility 1 1

This section describes database extensibility.

Version 7.5, Rev. A Configuration Guidelines 181

‘ Database Extensibility

Database Extensibility Overview

Database Extensibility Overview

Database extensibility refers to extending your database’s schema. There are three
types of database extensibility: static database extensibility, dynamic database
extensibility, and advanced database extensibility. When you are developing a
strategy to extend your database, consider using the different types of extensibility
in the following order:

Static database extensibility

This is the first type of extensibility to consider when planning changes to your
schema. The advantage of using this type of extensibility is that it allows you to
adapt the database to suit a specific need without altering the schema in any
way. This leads to the automatic use of optimizations that are built into the
standard system.

This type of extensibility involves the use of predefined columns that have no
other business purpose. These columns would either be in tables that have a
one-to-one relationship with an existing base table (for example, a predefined
table with an S_ prefix and an _X suffix), or in tables that have a many-to-one
relationship with an existing table (for example, a table that has an S_ prefix and
an _XM suffix).

Dynamic database extensibility

This is the second type of database extensibility to consider using to modify the
schema. Dynamic database extensions modify the schema in a defined way. You
can use Siebel Tools to add columns through the Object List Editor or create an
extension table by navigating to a Table object and clicking the Extend button.
They allow you to create new columns on base tables and new extension tables,
with records that have a one-to-one relationship with records in a base table.

182 Configuration Guidelines Version 7.5, Rev. A

Database Extensibility ‘

Database Extensibility Overview

m Advanced database extensibility

Consider using only advanced database extensibility when the preceding types
of extensibility, static and dynamic extensibility, are not available. This type of
extensibility involves creating new tables whose records have a one-to-many or
a many-to-one relationship with records in a standard base table. You can use
advanced database extensibility to create stand-alone tables that may be related
to base tables or intersection tables. This facilitates any new many-to-many
relationships, either between new stand-alone tables or within the supplied
schema.

Version 7.5, Rev. A Configuration Guidelines 183

\ Database Extensibility

Static Database Extensions

Static Database Extensions

= _Xextension tables (1:1). This type of extension table is basically an extension of
the base table record. You do not need to create a new business component
object when you use these tables. The _X tables are implicitly defined as joins.

= _XM extension tables (1:M). This type of extension table lets you create a one-to-
many relationship with the record in the parent base table. The following list
provides the guidelines to follow when using _XM tables:

= Create a new business component based on the relevant _XM table.

= Create a Type field based on the TYPE column and use this to filter the
records by specifying it in the search specification for the business
component.

= Add the correct Predefault Value to the Type field.
= Use the NAME column to track the main data field.

= The unique index is on PAR_ROW_ID, TYPE, NAME, and CONFLICT_ID. Be
aware of this index when planning your design.

= If you are using MVGs to display data, extend the base table to track primary
values.

184 Configuration Guidelines Version 7.5, Rev. A

Database Extensibility

Dynamic and Advanced Database Extensions

Dynamic and Advanced Database Extensions

As with all configuration work, first perform any database extensibility in a local
database. This provides the ability to recover if there are any unexpected issues and
allows the thorough testing of changes before they are made available to other
developers. The following steps illustrate this process:

1

Version 7.5, Rev. A

Check out the project.

With Siebel Tools running in a local database, check out the project containing
the table that you want to modify. Typically, this is the Newtable project.

Update the logical schema definition in the local environment.

Make your changes to the requisite tables, columns, indexes, and mappings in
the project. For more information, see Siebel Tools Reference.

Apply the physical schema extensions to the local database.

When you are finished making changes, complete the following tasks to update
your local environment:

a In the Table List window, click Apply.

This applies your changes to the local database. You may get a warning
message that database extensibility is not supported from the client.

b Specify Current Query, All or Current Row. Enter your local database
password (which must be in uppercase), and then click Apply.

¢ In the Table List window, click Activate.

Thoroughly test any changes. Typically, you expose data model changes in
screens or views, so you must test any of them that may have been affected
by your changes. You must also check out any updated copies that have been
modified by other developers, and test them in your local database.

Configuration Guidelines 185

‘ Database Extensibility

Dynamic and Advanced Database Extensions

4 Apply the changes to the server database.

Check in the Newtable project in order to update the repository schema
definition on the server. At this point, the logical database schema of the server
database has been updated, but the changes have not been applied to the
physical server database.

Repeat Step 3 on page 185 while connected to the server using Siebel Tools.

To minimize the impact of your changes on other developers, make any bulk
changes to the schema at the beginning of each project phase. If you make
changes during a project phase, then these need to be distributed to all mobile
users. You can use Siebel Anywhere to distribute a schema change; otherwise,
you generate new database extracts for all of your mobile users before you can
progress to the next phase. For more information, see Siebel Tools Reference.

186 Configuration Guidelines Version 7.5, Rev. A

Database Extensibility

Advanced Database Extensibility

Advanced Database Extensibility

In the past, the difficulty with advanced database extensibility was that the changes
you made may not have been supported. In some instances, as when customers
required advanced database extensions, it became too complex to use Enterprise
Integration Manager (EIM) to populate tables and became very likely that any
records that were created would be difficult or impossible to route to mobile users.

Because this was especially true with custom foreign keys where you create new
relationships between existing and new tables, the recommendation was always to
find an alternative solution. Sometimes, customers accepted the difficulties with
EIM and gave up any docking capabilities. However, this decision imposed a limit
on the future use of the application. For example, if a company used advanced
database extensibility and then decided to include mobile users, this became very
difficult to implement.

The issues associated with making complex extensions to the supplied database
schema have been addressed, including both the support for mobile users and
simplifying the use of EIM. There is now a Docking Wizard and an EIM Wizard that
you can use to automate the creation of the relevant records. For more information
on these wizards, see Siebel Tools Reference.

NOTE: Advanced database extensibility can represent a significant risk to your
projects, so always consult with Siebel Expert Services when you plan to use this
type of database extension.

Version 7.5, Rev. A Configuration Guidelines 187

‘ Database Extensibility

Advanced Database Extensibility Guidelines

Advanced Database Extensibility Guidelines

Many of the issues that you may encounter when using advanced database
extensibility are specific to a given situation, business need, or architecture.
Therefore, it is not possible to offer advice for every possible situations. However,
here is a list of some of the known issues that you should consider when planning
to use advanced database extensibility:

For stand-alone tables, EIM support is not possible without assistance from
Siebel Expert Services.

Because of fundamental changes to the schema, there are extensions that are no
longer appropriate. For example, in the past, you could create additional one-to-
one extension tables for S_CONTACT. However, this is no longer possible
because S_CONTACT is now an extension of S_PARTY and you cannot create
extension tables for existing extension tables.

Typically, new tables require new indexes. A database administrator and Siebel
Expert Services do index planning. Even when correctly implemented, custom
indexes can cause the standard indexes to not be used. This can adversely
impact the application’s performance.

Avoid using an _XM table as an extension to an existing _XM table, because it
will cause issues with EIM because of the design of the EIM processes.

Custom one-to-one extension tables automatically support docking and mobile
users. However, you still need to create any EIM mappings.

To specify the appropriate visibility strengths, there are certain assumptions that
are made when using the Docking Wizard to create dock objects. If these
assumptions are not appropriate for your business needs, contact Siebel Expert
Services to modify the Dock Object settings.

Modifying standard base tables and their columns is not supported.
Always use uppercase for any new tables or columns.

You cannot add EIM mappings for foreign key relationships to tables that do not
have user key attributes.

You must follow all of the required steps for EIM and Docking to create a
supported system.

188 Configuration Guidelines Version 7.5, Rev. A

Index

A

abbreviations, in naming conventions 43
applets
association 86
modification guidelines 82, 165
multi-value group, about controls and list
columns 86
titles of 83, 166
association applets
in control and list columns 86

business components

naming conventions 39
business objects

naming conventions 39
buttons

guidelines for creating new 85

C

check boxes

guidelines for defining 85
configuration guidelines

list columns 85

text controls 85

threads 78, 161

views 161
G
guide, organization of 10
L

list columns
guidelines for creating 85

Version 7.5, Rev. A

multi-value group applets 86

naming conventions
business components 39
business objects 39

0

online help, configuration guidelines
for 83, 166

organization, of guide 10

S

server views, note, about not
modifying 76, 161

T

test environment
Web templates and related files,
moving 23
text controls
guidelines for creating 85
threads
configuration guidelines for 78, 161
Title property
Applet object type 83, 166
View object type 79, 162

U

unused controls and list columns 85
unused views 79, 162

Configuration Guidelines 189

‘ Index

v w
views Web templates
configuration guidelines for 161 test environment, moving to 23

titles of 79, 162
unused 79, 162

190 Configuration Guidelines Version 7.5, Rev. A

	Contents
	Introduction
	How This Guide Is Organized
	Revision History
	January 2003 Bookshelf

	Managing Repositories
	Establishing a Development Environment
	Naming Repositories
	Backing Up Repositories
	Exporting and Importing Objects
	Controlling Sources
	Delivering Patches

	Managing Non-Repository Data
	Overview of Migrating Non-Repository Components Between Environments
	Migrating Web Templates and Related Files
	Migrating Setup Data
	Enterprise Integration Manager
	Content Center

	Other Migration Tasks
	Migrating Workflow Triggers
	Migrating Server Parameters

	Setting Up Developers
	Organizing Projects
	Using Local Databases
	Preparing Local Development Environments
	Doing an Initial Checkout (Get)
	Checking Out Projects for Modification
	Checking Out Projects For Refresh
	Checking In Projects
	Canceling Changes to a Checked Out Project

	Naming Conventions
	Naming Conventions
	Tables
	Business Objects and Business Components
	Joins
	Links
	Views
	Applets
	Controls and List Columns

	Creating and Modifying Objects
	Usage and Configuration of Nonlicensed Objects
	Object Definitions Not To Be Reconfigured
	Supporting Business Logic in Siebel Applications
	Creating Objects
	Modifying Objects
	Copying Versus Modifying Object Definitions
	Creating Specialized Objects
	Avoiding Redundant Objects
	Cloning Specialized Objects

	Creating Data Objects
	Using the Docking Wizard

	Creating and Modifying Business Objects
	Specifying Links for Associated Business Components
	Managing Unused Business Objects

	Creating and Modifying Business Components
	Managing Unused Business Components
	Associating Business Component Fields With Tables
	Defining System Fields

	Constructing Joins
	Creating Explicit Joins
	Creating Implicit Joins
	Creating a New Join

	Constructing Links
	Creating One-to-Many (1:M) Links
	Creating Many-to-Many (M:M) Links
	Setting Advanced Link Properties
	Setting the Cascade Delete Property
	Setting the Search Specification Property
	Setting the Sort Specification Property
	Applying the Visibility Rule Property

	Creating and Modifying User Interface Objects
	Configuring Screens
	Creating and Modifying Screens
	Managing Unused Screens

	Configuring Views
	Creating and Modifying Views
	Modifying Server Administration Views
	Calendar Views Not To Be Reconfigured
	Setting Interactivity Modes for Calendar Views
	Configuring Threads
	Managing Unused Views
	Displaying View Titles

	Configuring Applets
	Creating and Modifying Applets
	Managing Unused Applets
	Defining Online Help IDs
	Displaying Applet Titles

	Configuring Controls and List Columns
	Exposing System Fields
	Managing Unused Controls and List Columns
	Creating Text Controls and List Columns
	Creating Buttons
	Defining Check Boxes
	Referencing Controls and List Columns in Association Applets

	Specialized Classes
	Specialized Classes
	Business Components
	Applets

	Performance Guidelines
	Multilingual LOVs Query and Cache Performance
	Multivalue Link Underlying Multivalue Groups
	Indirect Multivalue Links
	Indirect Multivalue Links Through Joins
	Nested Multivalue Links
	Auto Primary
	CheckNoMatch
	AutoPrimary, CheckNoMatch and Performance

	Reusing Standard Columns
	Table S_ORG_EXT: Reusing NAME and LOC
	Table S_ CONTACT: Reusing LAST_NAME, FST_NAME, MID_NAME

	Generating and Analyzing SQL
	SQL Queries Against Database Data

	Development Standards for Siebel Script Languages and Object Interfaces
	Siebel Script Languages and Object Interfaces
	Preimplementation Considerations
	Script Guidelines
	Server Script and Object Interfaces
	Browser Script

	Configuring the User Interface
	User Interface Guidelines
	User Interface Object Definition
	Implementing the User Interface
	Template Files
	Before Modifying Templates Files
	About Embedding JavaScript in Web Templates

	Cascading Style Sheets
	Performance
	Screen Design
	Personalization
	Deployment Issues
	Creating User Interface Objects
	Screens
	Creating and Modifying Screens
	Unused Screens

	Views
	Creating and Modifying Views

	Guidelines for Views
	Server Views
	Threads
	Unused Views
	View Titles

	Applets
	Creating and Modifying Applets
	Unused Applets
	Online Help
	Applet Titles

	Visibility
	Visibility Overview
	Access Control
	View Access Visibility
	Record Access Visibility
	Object Ownership Models
	Configuring Visibility at the View Level
	Naming Views
	Configuring Visibility Using Siebel Tools

	Docking Visibility and Dock Objects
	Dock Object Tables
	Dock Object Visibility Rules
	Visibility Strength

	Database Extensibility
	Database Extensibility Overview
	Static Database Extensions
	Dynamic and Advanced Database Extensions
	Advanced Database Extensibility
	Advanced Database Extensibility Guidelines

	Index

