
SIEBEL INTERACTIVE SELLING
TRANSACT SERVER

INTERFACE REFERENCE
VERSION 7.0, REV. I

JANUARY 2003

12-BD4FKR

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Introduction
How This Guide Is Organized . 12

Revision History . 13

Chapter 1. Overview
Architecture . 16

The Data Flow . 17
The Client . 18
The Application Server . 19
The Remote Systems . 20

Implementation . 21

Implementation Tasks and Team . 21
Implementation Steps . 25

Chapter 2. Installing Transact Server
Prepare for the Installation . 28

Dependencies . 28
Installation Steps . 29

Terminology . 29

Install Transact on An Application Server . 30

Install Transact Server on Windows . 30

Install Transact Server on Solaris . 32

Configure the Application Server Environment 34

The WebLogic Environment . 34

The WebSphere Environment . 40
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 3

Contents
Prepare the Application to Connect with Transact Server 51

Setting the app_config.js Properties . 51
Setting the Transact Properties . 53
Redirecting a Page Set to a New OMS . 57

Configuring the HTTP Server . 57

Troubleshoot Transact Server . 58

Identify the Problem . 58

Concurrency Control . 59

Chapter 3. Working with Configurations
Working with the Configuration List . 62

Maintaining the Configuration List . 62

Modifying the Configuration List UI . 63

About the JSP Page . 64
Default ConfigList JSP Page . 66
Emailing a Configuration . 68
Sample Email Bean JSP Page . 69

Modifying the Save Configuration UI . 73

Chapter 4. Integrating the Order Management System
Connecting Your Siebel Application UI to Transact 76

Add To Cart Button . 77

View Cart Button . 78
Save Configuration Button . 79

Configuration List Link . 79

Posting a Form from Add to Cart . 80

Sample Form Post JSP Page . 80

Form Post Result . 82

Working With the DTD . 84

The LineItem DTD Elements . 84
The Generic LineItem DTD . 89
4 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Contents
Using Style Sheets . 91

About XSLT . 91

About cXML . 92
About the Siebel DTD . 93

The Sample XSLT Style Sheet . 94

Linking Back to Configurations .102

From the Shopping Cart . 102
From the Configuration List . 103

Version Checking . 103

Chapter 5. Authentication and Login Support
About LDAP .106

LDAP Models .107

Default LDAP Directory .109

Permissions . 109

ACL (Resources) . 109

Quote Users . 109

Business Accounts . 109

Login Pages . 110

Login Page . 110

After Login . 110

Setting LDAP Properties . 111

LDAP Passwords . 111
Setting Properties . 112
Command-Line API . 114
Sample Script Templates . 117

Chapter 6. The Shopping Cart
Setting Transact Shopping Cart Properties . 122

App_config.js variables . 122
Properties Editor Properties . 123
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 5

Contents
Data Modeling For Transact Server . 124

Parts of the Cart . 125

How It Works . 126

Writing the JSP Template . 127

Using the Shopping Cart Bean . 129

Accessing Header Data . 131

Quote Header Access Functions . 131

Customer-Created Quote Header Fields . 131
Example of Defaulting Address Info from LDAP . 133

Accessing Line Item Data . 134

Accessing Part (Subitem) Data . 135

Totals and Discounts . 137

Shopping Cart Buttons . 138

Update Action . 139

Clear Action . 139
Save Action . 140

Submit Action . 140

Error Handling . 141

onLoad Error Handling . 141
finishUp Error Handling . 144

Shopping Cart Template Requirements . 145

useBean Inclusion of ShoppingCartBean . 145

setRequest, setSession . 145

getQuote . 145

getCartOnLoad . 145

SetQuoteID (JavaScript function) . 145
cart_form (HTML form) . 146

getQuoteFormAction . 146

QUOTE_NAME (form variable) . 146

finishUp . 146
6 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Contents
Submitting the Cart to an Order Management System 147

Default XML Format . 147

Specifying an XSLT Stylesheet . 147

HTML Form-Based Cart Submission . 147

Printable Order (the View-Only Cart) . 148

The Quote List . 149

QuoteList Functionality . 149

QuoteListBean Initialization . 149
Iterating Through the User’s Quote List . 151
Error Handling . 152
What You Can Display in the Quote List . 153
EmailQuote.jsp template . 154

Appendix A. Transact API for Siebel eAdvisor
AddToCart . 156

ConfigList . 157

RestoreConfig . 157

SaveConfig . 158

ShowCart . 158

 Error Messages . 159

COP.InvalidI temAdded . 159

ServerError . 159

Transact NotAccessible . 159

Appendix B. Transact Server Callout/Override Points
COP_AppDataVersionCheck . 162

COP_Before AddToCart . 163

COP_Before RestoreConfig . 164

COP_Before SaveConfig . 165

COP_PagesetVersionCheck . 166

OR_ConfigSavedSuccess . 167
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 7

Contents
OR_GetSaveConfigName . 168

GotSaveConfig Name . 169

OR_Transact NotActive . 170

Appendix C. ConfigList API
anyConfig . 172

createList . 173

getAccountId . 174

getDateCreated . 175

getDeleteURL . 176

getDescription . 177

getEmailURL . 178

getIndex . 179

getName . 180

getRestoreURL . 181

getSortField . 182

getSortOrder . 183

getUniqueId . 184

getUserId . 185

nextConfig . 186

setSortField . 187

setSortOrder . 188

Appendix D. Email Bean API
getAction . 190

getErrorMessage . 191

getMailSent . 192

getRestoreConfigURL . 193

sendMail . 194
8 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Contents
setRequest . 195

setSession . 196

Appendix E. ConfigAccess Bean API
Functions . 198

Appendix F. ShoppingCartBean API
General Functions . 204

Quote Header Functions . 206

Line Item Functions . 209

Part Functions . 211

Footer Functions .216

Appendix G. Additional Code
XML Default Data Definition .218

XSLT Style Sheet Example . 223

HTML Form Post of Shopping Cart Contents . 234

Appendix H. Transact Server Localization
Transact Server . 237

Transact Server JSP Files . 238

Appendix I. Additional Tasks
Set Up JDBC and Data Source for WebSphere 240

Change the DB2 Connection . 242

Un_Install Transact LDAP . 243

Block Display of Shopping Cart . 244

Index
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 9

Contents
10 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Introduction
This guide provides information, instructions, and guidelines for installing Siebel
Transact™ and its related components on a Microsoft Windows or Solaris host. The
guide is useful primarily to individuals whose title or job description matches one
of the following:

Web Server
Administrators

Individuals responsible for converting Transact XML order
format to Order Management System order format.

Database
Administrators

Individuals who administer the database system, including data
loading, system monitoring, backup, and recovery, space
allocation and sizing, and user account management.

Integration Engineers Individuals responsible for converting Transact XML order
format to Order Management System order format.

Siebel Application
Administrators

Individuals responsible for planning, setting up, and
maintaining Siebel applications.

Siebel Application
Developers

Individuals who plan, implement, and configure Siebel
applications, possibly adding new functionality.

Siebel System
Administrators

Individuals responsible for the whole system, including
installing, maintaining, and upgrading Siebel applications.

Application Server
Administrators

Individuals responsible for setting up and maintaining Transact,
and enabling integration between Transact and the Order
Management System.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 11

Introduction

How This Guide Is Organized
How This Guide Is Organized
The opening chapter of the guide describes the Transact architecture and
summarizes the five steps required to install and implement Transact. The second
chapter describes how to install Transact and the subsequent chapters show how to
implement Transact.

The guide contains six chapters and several appendices:

■ Chapter 1, “Overview,” describes how the Transact Server provides the
integration points that enable the exchange of data between a Siebel application
and a third-party Order Management System. This chapter also describes the
major components in the operating environment. Finally, this chapter describes
how to implement Siebel Transact in five steps.

■ Chapter 2, “Installing Transact Server,” describes the steps required to install
and set up the Transact Server, and then how to set up the supporting databases
and application servers.

■ Chapter 3, “Working with Configurations,” describes how to manage
configurations and how to create the Add to Cart, View Order, Save
Configuration, and View Configuration List buttons for a Siebel application.

■ Chapter 4, “Integrating the Order Management System,” describes the steps
required to integrate a Siebel application with an Order Management System so
that when you add a configuration to your shopping cart, Transact connects with
the Order Management System.

■ Chapter 5, “Authentication and Login Support,” describes how to set up your
authentication and login system using an LDAP directory server.

■ Chapter 6, “The Shopping Cart,” describes how to set the Shopping Cart
properties and then insert Transact API calls into the browser-based application
so items can be added to the shopping cart and the cart UI can be brought up
on demand.

■ The Appendices describe various specifics of the Transact Server and its
operating environment.
12 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Introduction

Revision History
Revision History
Siebel Interactive Selling Transact Server Interface Reference, Version 7.0, Rev. I
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 13

Introduction

Revision History
14 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Overview 1
Siebel Transact provides integration points that enable the exchange of data
between a Siebel application and a third-party Order Management System (OMS).

These integration points allow you to:

■ Use a third-party system’s shopping cart.

■ Simplify order submission to an OMS.

■ Save and restore configurations.

■ Share configurations.

The integration points are implemented with client-side and server-side
components as well as tables in a relational database management system.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 15

Overview

Architecture
Architecture
Siebel Transact’s client-side components reside in a Siebel application and are
referred to as the “Siebel Transact Module,” and Transact’s server-side components
reside on an application server and together are referred to as the “Transact Java
Engine.” The server-side components store information, such as configurations and
configuration lists, in the Transact database (RDBMS).

As an example, the Siebel Transact Module could reside within Siebel eAdvisor, the
Transact Java Engine could reside on a WebSphere application server hosted by a
Solaris UNIX platform, and the RDBMS could be an Oracle instance.

The following sections describe the Transact architecture:

■ The Data Flow

■ The Client

■ The Application Server

■ The Remote Systems

The basic unit of data transferred is a configuration.
16 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Overview

Architecture
The Data Flow
The data flow to Transact begins when someone has determined a specific
configuration of products using a Siebel application and clicks a button or link that
calls the Siebel Transact Module. The Siebel Transact Module then passes the
configuration data to the Transact Java Engine. The Java Engine stores the
configuration in the Transact database, and then generates an XML or HTTP stream
which it can then pass on to an Order Management System.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 17

Overview

Architecture
The Client
The Siebel Transact Module is embedded within the Siebel client and communicates
with the Transact Java Engine using Transact API function calls. These calls are
included in the onClick event of buttons or links which are specific to the Siebel
Transact shopping cart. Part of integrating the Siebel application with the Order
Management System is adding these buttons or links to the Siebel application UI.

You can add the following functions as buttons or links to the Siebel application UI:

■ Save Configuration saves a record of the items selected from a page set, a
“configuration.” Configurations are saved in a configuration list that resides in
the Transact database and they can be viewed at a later time.

■ Add to Cart adds the configuration to your shopping cart.

■ View Configuration List displays a saved configuration. If you select a
configuration from a configuration list, the Siebel application displays the page
set and selections as they appeared at the time you saved the configuration.

■ View Cart displays the contents of the shopping cart.

■ Submit Cart transfers an order to the Order Management System.

When a user selects one of these buttons or links, the onClick event handler
transmits the configuration data to the Transact Java Engine. Data is transmitted to
the Transact Java Engine using HTTP and returns data to the application as an
HTML/Javascript response.

The saved configurations reside in the Transact database.
18 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Overview

Architecture
The Application Server
The Transact Java Engine runs on an application server, and this server manages
communications to the Transact database (RDBMS) and the Order Management
System. The Transact Java Engine uses Enterprise Java Beans (EJBs) to store,
retrieve, and pass configurations from the Siebel application to the Order
Management System. EJBs are session and entity beans, distributed objects that
encapsulate logic and data within the application server.

Depending on your system configuration, more than one Web server can be
positioned between the application server and the Siebel application. If the
application server supports clustering, the application server may span more than
one machine.

The Transact Java Engine
The Transact Java engine consists of three layers: the Communication, Business
Logic, and Data Object layers.

Communication Layer
This layer is a lightweight Java servlet that communicates with Enterprise Java
Beans (EJBs). This servlet accepts requests from the browser, directs them to the
correct EJB for processing, and then returns the resulting output to the browser or
to a targeted Order Management System.

Business Logic Layer
This layer is a set of session EJBs that use the Data Object layer to create, modify,
remove, and manipulate data objects. Most processing, including XML creation,
occurs on this level because EJBs establish a distributed environment that improves
processing. The XML produced on this level is sent to the Order Management
System by the Communication layer as HTTP. At this point, the Order Management
System controls the request and the subsequent response to the browser.

Data Object Layer
This layer is a set of entity EJBs based on a relational table design. The entity beans
include data access and modification methods.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 19

Overview

Architecture
The Remote Systems
Siebel Transact accesses two remote systems: the Transact database (a RDBMS) and
the Order Management System.

The RDBMS
The RDBMS contains relational tables that store the data mapped to the entity beans
by the Data Object layer.

The Order Management System
The Order Management System manages the shopping cart UI—it receives XML
from the Transact Java Engine and responds to browser requests from the Siebel
application with HTML.

You must customize the Order Management System so that it is fully integrated with
Transact. The Order Management System must accept and process the XML
generated by the Transact Java Engine, and then respond by returning the
appropriate HTML.

More than one Order Management System may be accepting submissions from a
single Siebel application.
20 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Overview

Implementation
Implementation
Siebel Transact operates on several layers. The layers include the browser and
application layer, the Web server layer, the database layer, and the Order
Management System layer. Transact should thus be implemented by individuals
who are responsible for and understand each of these levels. Because of the
requisite job skills and responsibilities, more than one person may be required to
complete the installation and implementation of Transact. This section summarizes
the implementation tasks and organizes these tasks according to the individuals
who, according to their job role, would be expected to complete each task.

This section also describes the major steps required to implement and take full
advantage of Siebel Transact.

Implementation Tasks and Team
Most likely, several individuals with specific responsibilities and skills will be
required to implement Siebel Transact. These tasks are summarized below and
assigned to individuals according to their respective job roles:

■ Application Server Administrators

■ Database Administrators

■ Integration Engineers

■ Siebel Browser-Based Application Developers

■ Siebel System Administrators

The discussion below summarizes each of these roles in terms of their
responsibilities and technical skills. Each summary includes a list of specific tasks
the individual performing the role would need to complete as well as a list of those
sections in this guide most important to completing these tasks.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 21

Overview

Implementation
Application Server Administrator
The Application Server administrator is responsible for setting up and maintaining
Siebel Transact. This individual should be familiar with their database and
application server setup, and with the directory structure and configurable options
of Siebel Transact. This individual works with the integration engineer to enable
integration of the Siebel application with the Order Management System. The
integration tasks include developing the XML style sheet and the JSP page.

The Application Server Administrator completes the following tasks:

Database Administrator
The Database Administrator is responsible for setting up and maintaining the
Transact database. This database can be an Oracle, MSSQL, or DB2 database.

The Database Administrator completes the following tasks:

Task Topics to Read

Install and set up Siebel Transact Chapter 2, “Installing Transact Server”

Set server-side options using the
property editor.

“Setting the Transact Properties” on page 53

Work with the integration engineer to
enable integration with the Order
Management System.

“Integration Engineer” on page 23

Task Topics to Read

Set up the Oracle database. Refer to the Oracle documentation.

Set up the MS SQL database. Refer to the MS SQL documentation.

Set up the IBM DB2 database. Refer to the IBM DB2 documentation.
22 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Overview

Implementation
Integration Engineer
The Integration engineer must be familiar with XML, XSLT, and the Order
Management System requirements. This individual develops and writes customized
code to reconcile the Siebel Transact and Order Management System XML formats
and is constrained by the data elements available through the Siebel Transact XML
format.

If the Order Management System does not accept XML, this individual must develop
a JSP page for posting a form. Or, as another option, the engineer can develop a
custom program that converts the XML output to text using one of the publicly
available XML parsers to convert the Siebel XML into the desired text format.

The Integration Engineer completes the following tasks.

Task Topics to Read

Define the XML/XSLT format accepted
by the Order Management System.

“About XSLT” on page 91

If required, post a form from an Add to
Cart link.

“Posting a Form from Add to Cart” on page 80

Set up linkback from your Order
Management System to the Siebel
browser-based application.

“Linking Back to Configurations” on page 102
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 23

Overview

Implementation
Siebel Browser-Based Application Developer
The Siebel Application Developer is responsible for setting the Siebel Transact
Server variables in app_config.js in order to connect the Siebel application to the
Order Management System. This individual also adds buttons and links to the
Siebel application UI.

The Siebel Application Developer completes the following tasks.

Siebel System Administrator
The Siebel system administrator is responsible for setting up and maintaining the
Siebel Application Server. This individual completes the following task:

Task Topics to Read

Set the Siebel Transact Server variables
within the Siebel application.

“Setting the Transact Properties” on page 53

Add the Transact UI buttons to the
Siebel application.

“Connecting Your Siebel Application UI to
Transact” on page 76

Customize the Configuration List
template.

“Working with the Configuration List” on
page 62

Task Topics to Read

Set up the Siebel System. See your Siebel System Administration Guide documentation.
24 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Overview

Implementation
Implementation Steps
You can implement Siebel Transact in five major steps. Each chapter in this guide
describes how to complete these steps.

To implement Siebel Transact

1 Install and set up Transact.

See Chapter 2, “Installing Transact Server.”

2 Set up the authentication and login system (optional).

See Chapter 5, “Authentication and Login Support.”

3 Create the Add to Cart, View Order, Save Configuration, and View Configuration
List buttons in the Siebel application.

See “Working with the Configuration List” on page 62.

4 Edit the ConfigList JSP page to call the appropriate Config List functions
(modifies the Configuration list UI).

See “Modifying the Configuration List UI” on page 63.

5 Create a style sheet for the DTD that determines how the configuration
information is be passed to the Order Management System shopping cart.

For more information, see “Using Style Sheets” on page 91.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 25

Overview

Implementation
26 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server 2
This chapter describes how to install and set up the application server environment
for Transact server. The chapter describes how to prepare for the installation of
Transact Server and how to install the server on an application server. The chapter
continues with a discussion of how to configure the application server environment,
the Transact database, and the Transact server so that it can connect with the Siebel
application. The chapter closes with a discussion of how to troubleshoot problems
that may occur during the installation process.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 27

Installing Transact Server

Prepare for the Installation
Prepare for the Installation
The installation process must conform to a few dependencies and be conducted by
individuals who are responsible for and understand the various operational levels
over which Siebel Transact operates. This section describes the dependencies and
defines a set of terminological conventions that simplify the discussion of the
implementation process. You should familiarize yourself with these conventions.

Dependencies
Before you can install the Transact Server, you must install:

■ Application server

■ Database

■ Java Development Kit (JDK)

■ LDAP Directory Server (optional)

You can install the Transact Server with or without an LDAP directory server. If
you do not plan to use LDAP login and authentication features, leave the LDAP
properties blank when you install the Transact Server.

■ Web server

For additional information on supported components, refer to System Requirements
and Supported Platforms.

NOTE: If you do not plan to use LDAP login and authentication features, leave the
LDAP properties blank when you install the Transact Server.
28 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Prepare for the Installation
Installation Steps
You can install, set up, and implement the Siebel Transact Server in four steps.

To install Siebel Transact

1 Install and set up Transact on an application server.

2 Configure the environment on the application server.

3 Prepare the Application to Connect to Transact.

4 Troubleshoot Installation Problems.

Terminology
This guide uses a few conventions when referencing host platforms and installation
directories. Familiarize yourself with these conventions before you install and set
up Transact Server.

Generic Directories
This guide uses the following variables to generically name directories referenced
during the installation and configuration process. You should familiarize yourself
with this notation before you install and set up Transact Server.

Directory Description

<Transact root> Where you install Transact Server.

Examples:

■ If you install Transact Server on BEA WebLogic, then the
Transact root directory is c:/sea700/transact_wl.

■ If you install Transact Server on IBM WebSphere, then the
Transact root directory is c:/sea700/transact_ws.

<WebSphere root> Where WebSphere server is installed.

<IBM HTTP Server root> Where the IBM HTTP server is installed.

<SQLLIB root> Where the IBM DB2 client is installed.

<Windows root> Where Windows NT/2000 is installed.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 29

Installing Transact Server

Install Transact on An Application Server
Install Transact on An Application Server
You can install Siebel Transact on a Windows or a Solaris platform if an application
server, WebSphere or WebLogic, has already been installed.

NOTE: This guide references as “Windows” all Microsoft Windows operating
systems listed as supported for this release in System Requirements and Supported
Platforms. Similarly, “MS SQL Server” refers to the version of that database
referenced in System Requirements and Supported Platforms.

Install Transact Server on Windows
You can install Transact Server on Windows in a few steps.

To install Transact Server on Windows

1 Execute install.exe.

■ Open install.exe from the isstransact_wl directory if you are using a
WebLogic Application Server.

■ Open install.exe from the isstransact_ws directory if you are using a
WebSphere Application Server.

2 Select which languages to install, and then click OK.

The Welcome window appears.

NOTE: Transact supports only English, so if you select another language the
install program still copies the English (American) files.
30 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Install Transact on An Application Server
3 Click Next and the Select Directory Destination window appears.

4 Rename the default folder if you want to change it, and then click Next.

After the Siebel Installer creates directories and copies files to the specified
folder, it returns the Select Program Folder window.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 31

Installing Transact Server

Install Transact on An Application Server
5 Select or enter a program folder, and then click Next.

The Siebel Installer installs Transact Server.

6 After Transact Server is installed, enter environment variables in the Siebel
Software Configuration Utility.

The utility does not validate your input but only places it in the corresponding
files.

7 If you enter an incorrect value for a variable or you want to edit the environment
settings later, then execute:

“<Transact root>/bin/ssincfgw.exe <Transact root>/admin/
transact_wl.scm” (BEA WebLogic Application Server)

“<Transact root>/bin/ssincfgw.exe <Transact root>/admin/
transact_ws.scm” (IBM WebSphere Application Server)

Install Transact Server on Solaris
When you install Siebel Transact on Solaris, the installation directors vary according
to whether WebLogic or WebSphere is the application server.

To install Transact Server on Solaris

1 Run install_transactWL (WebLogic Application Server) or install_transactWS
(WebSphere Application Server) from the install directory.

NOTE: Make sure you have not set SIEBEL_ROOT environment.

2 Enter the location where you want to install Transact Server.

3 Type Y to create a new installation directory (if it does not already exist).

4 Type Y to accept the setting for Transact Server.

5 Start the configuration setup.
32 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Install Transact on An Application Server
To start the configuration setup

1 Enter the WebLogic or WebSphere Root directory.

If the installer cannot locate the WebLogic directory, the setup will exit. Once
you exit, you have to restart from step 1.

2 Type in the WebLogic or WebSphere Host name.

3 Type in the LDAP host name.

4 Type in the LDAP domain name.

5 Type in the eAdvisor URL.

6 Type in the SMTP host name.

7 Type in the Java Path.

You can at a later time modify the items in Steps 3, 4, 5, and 6 using the property
editor.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 33

Installing Transact Server

Configure the Application Server Environment
Configure the Application Server Environment
Before you can deploy Transact Server EJB, you must configure the environment,
register Java beans, and create servlets. Follow the guidelines for your application
server to complete these tasks.

For additional information on the respective application servers, refer to:

■ BEA WebLogic Information:

http://www.WebLogic.com/docs51

■ IBM WebSphere Information:

http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/
index.html

NOTE: For a WebSphere installation that uses Oracle rather than DB2, refer also
to http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/
infocenter/wasstd/022421.html.

The WebLogic Environment
To set up the WebLogic environment for Transact Server, you must complete these
major tasks:

1 Set up the class and directory paths.

2 Modify WebLogic.Properties file.

3 Set up the Transact Database.

4 Set up the LDAP directory server (optional).

The discussion below shows you how to complete each of these tasks.
34 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
Setting Up the Class Path and Directory Path
The class and directory paths for the WebLogic environment can be completed in
four steps.

To set up the class path and directory path

1 Copy three folders to <WebLogic root>/myserver/public_html:

■ login

■ propertieseditor

■ transactserver under <transact root>/jsp

2 Set up the environment class path.

You can use the setenv script file provided by WebLogic. For additional
information, refer to the WebLogic5.1 documentation:

http://www.WebLogic.com/docs51/install/startserver.html
http://www.WebLogic.com/docs51/admindocs/classpath.html

Use the following file names in the environment classpath:

■ Append <transact root>/Javalib/rincon41.jar into classpath for setting up
Rincon.

Example:

CLASSPATH=%JDK_CLASSES%……;<Transact root>/JavaLib/
rincon41.jar

■ Append ODBC driver.

If you use SQL Server, add <SQL server root>/classes.
If you use Oracle 8.0.5, add <WebLogic root>/bin/oci805_8.

3 Add Transact Server jar files to the WebLogic classpath.

You can do this using startWebLogic.cmd. For more information, refer to the
WebLogic5.1 documentation at the following links:

http://www.WebLogic.com/docs51/install/startserver.html
http://www.WebLogic.com/docs51/admindocs/classpath.html
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 35

Installing Transact Server

Configure the Application Server Environment
4 Append the following files to the WEBLOGIC_CLASSPATH parameter:

<Transact root>/Javalib/rincon41.jar

<Transact root>/Javalib/transact41.jar

<Transact root>/Javalib/xalan.jar

<Transact root>/Javalib/xerces.jar.

<Transact root>/Javalib/xml.jar.

<WebLogic root>/persistence/WebLogic_RDBMS.jar.

Modifying <WebLogic root>/WebLogic.Properties
According to the WebLogic administration guidelines, you must modify the
following variables located in your weblog.properties file.

NOTE: If you have a clean WebLogic file, in which variables are commented out by
the prefix “#,” remove the “#” sign before modifying the values.

Add these variables to the bottom of the WebLogic.properties file.

Variable Action Value

WebLogic.ejb.deploy Append Add <Transact root>/Javalib/rincon41.jar

<Transact root>/Javalib/transact41.jar

WebLogic.jdbc.connectionPool
.OraclePool

Modify Replicate all values related to
WebLogic.jdbc.connectionPool.OraclePool.

Change OraclePool to SiebelPool.
The new variable name is
WebLogic.jdbc.connectionPool.SiebelPool.

WebLogic.httpd.register.*.jsp Make sure the “#” sign is removed.

WebLogic.httpd.initArgs.*.jsp Make sure the “#” sign is removed.
36 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
To set up the WebLogic the application server

1 Create servlets, SiebelTransact, LoginProcess, and Logout.

■ WebLogic.httpd.register.SiebelTransact=com.siebel.isscda.wl.servlet.mars.Re
questHandler

■ WebLogic.httpd.register.LoginProcess=com.siebel.isscda.wl.rincon.LoginProc
ess

■ WebLogic.httpd.register.Logout=com.siebel.isscda.wl.rincon.Logout

2 Set up a security reference for your WebLogic Application Server.

■ WebLogic.allow.reserve.WebLogic.jdbc.connectionPool.SiebelPool=everyone

■ WebLogic.allow.lookup.WebLogic.jndi.WebLogic=system

■ WebLogic.allow.lookup.WebLogic.jndi.WebLogic.ejb=system

■ WebLogic.allow.modify.WebLogic.jndi.WebLogic=system

■ WebLogic.allow.modify.WebLogic.jndi.WebLogic.ejb=system

■ WebLogic.allow.list.WebLogic.jndi.WebLogic=system

■ WebLogic.allow.list.WebLogic.jndi.WebLogic.ejb=system

3 Set up a data source for list quote and list configuration.

Example:

WebLogic.jdbc.DataSource.SiebelDataSource=SiebelPool where
SiebelPool is the database pool you setup for Transact Server.

Setting Up the Database
Transact Server operates with Oracle and SQL 2000 JDBC drivers. You must set up
the JDBC driver on your system with a user name, password, and service name.

Oracle
To create tables, execute <Transact root>/db/oracle/auth_orcl.sql and <Transact
root>/db/oracle/transact_orcl.sql.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 37

Installing Transact Server

Configure the Application Server Environment
Microsoft SQL Server (Windows only)
Assume you already installed jdriver for MSSQL and modify the path in setenv.cmd
and startWebLogic.cmd. Then you can set up Microsoft SQL Server.

1 To create tables, replace $(username) in <transact root>/db/msql/
auth_msql.sql and <transact root>/db/msql/transact_msql.sql with your user
name. Execute these two files by typing:

<MSSQL root>/bin/isql -U<username> -P<password> -S<servername>

 -i<transact root>/../../<transact_msql and auth_msql>.sql

Where

-U is username

-P is password

-S is servername

-i is the sql input file

2 Add the MSSQL connection pool.

You can add the connection pool through the WebLogic property file or other
WebLogic recommended methods. For more information, refer to the
WebLogic5.1 documentation at the following link:

http://www.WebLogic.com/docs51/classdocs/conn_pools.html#635447

An example of the Connection Pooling Property for MSSQL:

url=jdbc:WebLogic:mssqlserver4:<table name>@<db host>:1433,\
driver=WebLogic.jdbc.mssqlserver4.Driver,\
props=user=<user>;password=<password>;server=<db host>
38 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
Setting Up the LDAP Server
You can set up an LDAP server to authenticate users, although this is optional.

To set up the LDAP Server (optional)

1 From your <WebLogic root> command prompt, type setenv.

2 Type startWebLogic.

The WebLogic Server starts.

3 Open the property editor from the Web browser using the following URL:

http://host:7001/propertieseditor/index.htm.

4 Click the Authentication tab to get to the authentication.jsp page.

5 Enter a value for the LDAP credential variable.

The value will be encrypted and not displayed to the user.

6 Click Submit, and then shut down the WebLogic server.

7 Copy siebel.prp and siebel_default.prp to <transact root>\scripts directory.

8 From your <transact root>\scripts, type setRinconPath.

9 Run rincon_setup.

10 Run transact_setup.

This sets up the LDAP server.

11 If you want to uninstall your setup, run transact_uninstall first, and then
rincon_uninstall.

An error appears if you try to run rincon_uninstall before you run
transact_uninstall.

12 Each time you change your LDAP credential using the property editor, you must
copy siebel.prp from <WebLogic root> to <transact root>/script.

This step allows the LDAP setup script files to pick up the new variable for
running the setup.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 39

Installing Transact Server

Configure the Application Server Environment
13 Open the WebLogic property file and append this line to the end of the file.

WebLogic.security.realmClass=com.siebel.isscda.wl.rincon.WLRealm.

14 Restart WebLogic server to make security take effect.

The WebSphere Environment
Complete these tasks to set up the WebSphere environment for Transact Server:

1 Create the Siebel directory.

2 Copy the Siebel property file.

3 Set up the WebSphere class path.

4 Create a Web application and Servlet.

5 Set up the LDAP password (optional).

6 Register Enterprise Java Beans (EJBs).

7 Create an Enterprise Application.

8 Enable Security Permission.

9 Set up the Transact database.

10 Set up the LDAP user group.

11 Set up eMail service in WebSphere.

12 Set up the Transact Server login.

The following discussion shows you how to complete each of these tasks.
40 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
Creating the Siebel Directory
With WebSphere 3.5, you must create a directory for the new application server
when you create the application server.

To create a directory for the new application server

1 Create a new folder name called Siebel under <WebSphere root>/appserver/
hosts/default_host/.

The Siebel folder name is the same as your application server name.

2 Use the same case across the entire installation because the .jsp page reference
is case-sensitive.

3 Copy the following folders to <WebSphere root>/appserver/hosts/
default_host/Siebel:

■ Login

■ Propertieseditor

■ transactserver (under the <transact root>/jsp directory)

Administration for Siebel Property Files
Copy Siebel.prp and Siebel_default.prp from <transact-root>/properties to
<Windows root>/system32. For the UNIX platform, copy Siebel.prp and
Siebel_default.prp from <transact-root>/properties to <WebSphere Root>/
AppServer/bin directory.

NOTE: Siebel does not recommend that you start WebSphere by running
adminserver.bat on the Windows platform. However, if you choose to do that, you
must first copy Siebel.prp and Siebel_default.prp to the directory where
adminserver.bat resides.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 41

Installing Transact Server

Configure the Application Server Environment
Setting Up the WebSphere Class Path
You can set up the class path for WebSphere in two steps.

To set up the WebSphere class path

1 Open admin.config from <WebSphere root>/appserver/bin.

2 For com.ibm.ejs.sm.adminiserver.class path, add all Transact jar files as follows:
com.ibm.ejs.sm.adminserver.classpath=…

<Transact root>/javalib/xalan.jar;

<Transact root>/javalib/tsIBM.jar;

<Transact root>/javalib/xerces.jar;

<Transact root>/javalib/xml.jar;

<Transact root>/javalib

Alternatively, you can add the classpath through the WAS admin console. Please
refer to the IBM info center link.

The following steps are based on using the default application server. To set up a
different application server, change the parameters or settings accordingly. Refer to
the IBM InfoCenter for more information.

Restart the WAS Admin Server and WAS Console.

Creating a Web Application
Use the IBM WAS AdminServer to create a Web application.

To create a Web application using IBM WAS AdminServer

1 From the Tasks menu, select Create Web Application.

2 Enter Siebel in the Web Application Name field.

3 Click Serve Servlets by classname and then click Next.

4 Click Next.
42 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
5 Select your server node name and select Default Server/Default Servlet Engine,
and then click Next.

6 Replace Web Application Web Path field from /webapp/Siebel to /Siebel, and
then click Next.

7 Remove “\web” at the end of Document Root field.

8 Click Finish.

Creating a Servlet
Use the IBM WAS AdminServer to create a Servlet.

To create a servlet using IBM WAS AdminServer

1 In the left view panel, click Default Servlet Engine under Default Server, right-
click on Siebel (the Web Server created in the step above), and then select Create
and Servlet.

a Enter SiebelTransact in the Servlet Name.

b Enter com.siebel.isscda.ws.servlet.mars.RequestHandler in the Servlet
name.

c Click Add for Servlet Web Path List.

d Append SiebelTransact after “Siebel/” in the Servlet Web Path.

e Click OK.

2 In the left view panel, click Default Servlet Engine under Default Server, right-
click on Siebel (the Web Server created in the step above), select Create and
Servlet.

a For LoginProcess, enter Servlet Name.

b Enter com.siebel.isscda.ws.servlet.rincon.LoginProcess in the Servlet Class
Name.

c Click Add for Servlet Web Path List.

d Append “LoginProcess” after “/Siebel/” in the Servlet Web Path.

e Click OK.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 43

Installing Transact Server

Configure the Application Server Environment
3 In the left view panel, click Default Servlet Engine under Default Server, right-
click on Siebel (the Web Server created in the step above), select Create and
Servlet.

a Enter Logout in the Servlet Name.

b Enter com.siebel.isscda.ws.servlet.rincon.Logout in the Servlet Class Name.

c Click Add for Servlet Web Path List.

d Append “Logout” after “/Siebel/” in the Servlet Web Path.

e Click OK.

Setting Up the LDAP Password
At this point, if you are going to use an LDAP server, you need to set up an LDAP
password.

To set up the LDAP password

1 Copy the propertieseditor folder from <transact root>/jsp to <Web Server>/
<docs root>.

2 Open index.htm file. Change from “src=/common.jsp” to “src =

 /Siebel/propertieseditor/common.jsp.”

3 Make sure the HTTP server is up and running.

4 Start the default application server from the console.

5 Open a browser and enter http://<hostname>/propertieseditor/index.htm to
modify the LDAP Credential from the Authentication page.

6 Enter your LDAP password and click Submit.
44 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
Register EJBS
Before users can continue to create an application server for Transact, they must
check whether or not the JDBC driver and data source are installed and set up
correctly. For information on installing and setting up JDBC and data source, refer
to Appendix I, “Additional Tasks.”

To create EJBs

1 Link DataSource to the application server.

■ In the left view panel, click Default Server.

■ Select Default Container.

■ In the right view panel, select Data Source.

■ Click Change.

■ Select the correct DataSource.

■ Click Apply.

2 Create EJBs.

■ In the left view panel, select Default Server, right-click on Default Container,
and then select Create and EnterpriseBean.

3 Enter the Java bean name (Siebel prefix is recommended).

4 Click Browse and select tsIBM.jar from <transact root>/javalib.

5 Click Deploy and Enable WLM.

A significant amount of time is required to create all the Java beans.

6 After the bean has been deployed, you can set up the database to enable table
creation for the CMP bean from the console; or, you can perform this setup at a
later time. Refer to the IBM information center document for more information.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 45

Installing Transact Server

Configure the Application Server Environment
7 Two types of Java beans are created: CMP beans and Session beans.

CMP beans are OLKeySequencer, OLSession, OLAppData, OLItem, OLQuote,
OLPackage, and OLGenericElem. Usually, “create table” is checked from the
default setup for all the CMP beans. However, Siebel Systems recommends that
you check if “Create Table” is marked for all the CMP beans. To see the database
setup, click EJB and in the right panel click “DataSource.”

8 Select OLKeySequencerHome and click the General tab from the right panel.

9 Change the Database Access from “Shared” to “Exclusive,” and then apply this
change.

Creating an Enterprise Application
Use the IBM WAS AdminServer to create an Enterprise application.

To create an enterprise application using IBM WAS AdminServer

1 Select Create Enterprise Application from the Tasks menu.

2 Enter ISSCDA in the Enterprise Application.

3 Select the EJBs created in the previous section.

4 Highlight the beans, and then click Add.

5 Select Siebel, which is the Web Server created in the previous procedure.

6 Click Finish.

Enabling Security Permission
Use the IBM WAS AdminServer to enable security permission.

To enable security permission using IBM WAS AdminServer

1 Enable Global Security.

a Use the IBM WS AdminServer to Enable Global Security.

b Select Configure Global Security from the Tasks menu.

c Select Enable Security, and then click Next.
46 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
d Select Basic (User ID and Password), and then click Next.

e Select Lightweight Third Party Authentication, and then click Next.

f Under User Register, provide the required information, and then click Finish.

Examples of input values:

Security ServerID: <valid user in LDAP>/Security Server

Password: <user password>/Directory

Type: Netscape/Host: <ldap host name>/Port:389/Base
Distinguished

Name: ou=People, o=<domain name>.

g Click Finish.

h Enter an LTPA password.

i Click Finish.

2 Enable Resource Security.

Select Configure Resource Security from the Tasks menu.

a Enterprise Beans

❏ Click Enterprise Beans.

❏ Select a Transact EJB, and then click Next.

❏ Use the Default method.

❏ Highlight all the methods from the EJB, and then click Finish.

❏ Repeat to configure all the EJBs.

b Virtual Hosts

❏ Click Virtual Hosts.

❏ Select default_host, and then click Next.

❏ Select a Transact servlet.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 47

Installing Transact Server

Configure the Application Server Environment
❏ Use the Default method.

❏ Select all methods, and then click Finish.

❏ Repeat to configure for all the Transact servlets.

3 Enable Security Permission.

Select Configure Security Permission from the Tasks menu.

a Select ISSCDA, the Enterprise Application created in the previous procedure,
and then click Next.

b Highlight all the methods, and then click Next.

c Select EveryOne to enable the security for everyone.

d Click Finish.

In order for these security changes to take effect, you must restart the IBM WAS
AdminServer.

Set Up the Transact Database
The Transact database tables can reside in a DB2 or Oracle database instance.

DB2 Database Instance
You must alter the DB2 tables to set up the Transact database.

1 Once the application server starts, you must run the two scripts provided that
alter the Transact tables in the DB2 database.

2 Run tsDB2.sql to update the Transact tables.

Oracle Database Instance
You must alter the Oracle tables to set up the Transact database.

1 Once the application server starts, you must run the two scripts provided that
alter the Transact tables in the Oracle database.

2 Run tsORACLE. sql to update the Transact tables.
48 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Configure the Application Server Environment
Setting Up the LDAP User Group
If you choose to use an LDAP server, then you must set up the LDAP user group.

To set up the LDAP user group (optional)

1 Run setRinconPath.bat from <Transact root>/scripts for Windows platform.

2 Copy Siebel.prp and Siebel_default.prp from <Windows root>/system32 to
<Transact root>/Scripts for Windows platform.

3 Copy Siebel.prp and Siebel_default.prp from <WebSphere Root>/AppServer/
bin to <Transact root>/Scripts for UNIX platform.

4 Default Rincon script only provides system/guest as default users. You must use
Rincon_add_user.sci script to add more users.

5 Run Rincon_setup.bat for the first time setup for the Windows platform, or run
Rincon_setup.sh for UNIX platform.

6 Before you can add LDAP users, you have to modify rincon_add_user.sci. (If you
do not want to add new users, you can skip this step.)

■ Run rincon_run.bat to add new users for Windows platform, or run
Rincon_run.sh for UNIX platform.

7 Run transact_setup.bat to set address and group information for users from the
Windows platform, or run transact_setup.sh for UNIX platform.

Setting Up eMail Service
To set up an eMail service, you must install a package that supports Java mail.

To set up eMail Service

1 Install any package that supports Java Mail 1.1 API.

2 Set up the class path to reference the Java Mail Package.

3 Open the property editor to change the email_enable_flag to “on.”

4 Restart the WebSphere server.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 49

Installing Transact Server

Configure the Application Server Environment
Setting Up the Transact Server Login
You can set up the Transact Server login in two steps.

To set up the Transact Server login

1 Open the LoginPage.jsp from

<WebSphere root>/appserver/hosts/default_host/Siebel/login. Change
“action=/LoginProcess” to “action=/Siebel/LoginProcess.”

2 Modify “ShoppingCart.jsp” to update the line “<script src=”http://<web host
name>/<your application folder>/jd/header.js”></script>” with the
correct URL.
50 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Prepare the Application to Connect with Transact Server
Prepare the Application to Connect with Transact Server
To prepare the Siebel application so that it can connect with the Transact server, you
must complete the following tasks:

1 Initialize Transact configuration values and the Order_Subvar variable.

2 Initialize properties in the Transact property file.

3 Redirect pagesets to the correct Order Management System.

4 Configure the HTTP server.

These tasks complete the installation and implementation process.

Setting the app_config.js Properties
After you install Transact, you must set the several properties in the app_config.js
file. This file is located in the Custom directory where you installed your Siebel
browser-based application:

■ Transact Active

■ Transact URL

Table 1 describes all the Transact properties which you can modify in the
app_config.js file.

Table 1. Transact Properties to Set in app_config.js

Property What It Does Example

Transact Active Turns on/off Transact var
TRANSACT_ACTIVE = true;

Transact Not Active Msg Sets the message that will appear
if a user tries to access Transact
functionality when
TRANSACT_ACTIVE is set to
false.

var
TRANSACT_NOT_ACTIVE_MSSG = “Sorry,
the action you have requested is currently
unavailable. \n Please contact your system
administrator.\n”;
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 51

Installing Transact Server

Prepare the Application to Connect with Transact Server
Setting the Order_Subvar Configuration Variable
You must initialize the ORDER_SUBVAR variable that defines subitems in
app_config.js file.

Siebel browser-based applications use the ORDER_SUBVAR variable to identify
“items” in your feature table. Feature tables can store various kinds of data that
applies to a product.

For example, a car may be represented by the features SKU, MODEL, COLOR, and
CAR_ALARM. Now, if you want to use subitems on a bill of materials, you must
first identify the column that represents the product as an “item.” Before you make
this distinction, every feature (SKU, MODEL, COLOR, and CAR_ALARM) is the
same to Siebel eAdvisor. Once you define the ORDER_SUBVAR variable, you can
identify which features are descriptive and should not be considered line items
(such as COLOR), and which are actual items and should appear on a bill of
materials (such as CAR_ALARM).

Transact URL Sets the URL of Siebel Transact. var
TRANSACT_URL = “http://application
server/siebel/SiebelTransact”;

Transact Third Party Cart Determines whether or not a
third party cart will be used.

var
TRANSACT_THIRD_PARTY_CART=
true;

Transact Show Cart URL Sets the URL that will be used
when the third party cart is
opened.

var
TRANSACT_SHOW_CART_URL= “http://
www.company.com/shoppingcart.jsp”;

Transact Cart Winargs Sets the window properties for
the shopping cart. This is also
used to open a window for the
third party cart.

var
TRANSACT_CART_WINARGS
=”height=500,width=500,scrollbars=1,
resizable=1,menubar=0”;

Transact Cart Target Determines whether the
Transact cart will appear in a
window (“_new”) or in a frame
(“frameName”).

var
TRANSACT_CART_TARGET =”_new”;

Table 1. Transact Properties to Set in app_config.js

Property What It Does Example
52 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Prepare the Application to Connect with Transact Server
ORDER_SUBVAR should be set to the column name of a feature table which
contains a part number or other information which identifies that item distinctly
from other items in the feature table. If you set the ORDER_SUBVAR variable to
“SKU,” when a feature table contains a column named SKU, each row that has an
entry in the SKU column becomes an item. In this scenario, a bill of materials would
include parts for every row that includes SKU.

Note that subitems are needed only when a main level product is made up of other
products.

Example:

var ORDER_SUBVAR = "SKU";

See Siebel Interactive Designer Administration Guide for more information on
feature tables.

Setting the Transact Properties
After you install Transact, use the property editor to set the following:

■ Transact URL

■ eAdvisor URL

Use the property editor to set any additional Transact Server properties you want to
change.

To open the property editor

1 Start WebLogic/WebSphere.

2 Open a browser and enter the URL:

http://<localhost:7001>/PropertiesEditor

You can modify the URL as needed by your installation.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 53

Installing Transact Server

Prepare the Application to Connect with Transact Server
Table 2 provides a description of all Transact properties you can set in the property
editor.

Table 2. Transact Properties to Set in the Property Editor

Property What It Does Example

Transact Log Debug Sets the Transact log to debug on or off.
When off, errors are logged; when on, all
activities are logged.

on

Transact Log Filename The filename of the Transact log file. This
property requires an absolute path.

e:\\WebLogic\\ol_transact.log

Transact URL The URL of Transact: the URL of the
WebLogic server + “/SiebelTransact”

http://www.company.com/
SiebelTransact

eAdvisor URL The URL of the Siebel eAdvisor application. http://www.company.com/
eAdvisor

Use Third Party Cart Determines whether or not Transact is using
a third-party shopping cart.

true

OMS URL Sets the URL of the Order Management
System that will accept XML from Transact.
Transact posts the XML when the AddToCart
function is called if the Transact Third Party
Cart variable in app_config.js is set to “true.”

See “Redirecting a Page Set to a New OMS”
on page 57 for information on using multiple
Order Management Systems.

http://
www.companyName.com/
servlet/showXML

Transact Cart XSLT The URL or absolute filepath of the XSLT
stylesheet Transact will use to convert data
to the desired XML format.

http://www.company.com/
olcq2cXML.xsl

Form Post JSP Page If you are using a third-party cart and want
to use a form post, enter the name of the JSP
page you are using to dynamically create the
form.

TransactServer/form_post.jsp

SMTP Server Sets the name of your email server from
which configuration emails will be sent.

Post
54 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Prepare the Application to Connect with Transact Server
Configuration Time-Out
Period

Sets the number of days after which
configurations will be removed from the
Configuration list.

14

Use Multiple OMS Determines whether or not you are using
multiple Order Management Systems. When
you set this property to true, you will need to
implement the InitAltOMSUrl function.

See “Redirecting a Page Set to a New OMS”
on page 57 for additional information.

false

Multi-OMS Redirect If you are using multiple Order Management
Systems, use this property to specify the URL
to be displayed after the user clicks Add to
Cart.

http://www.company.com/
index.htm

Email enable flag You can turn the email flag off if you do not
wish to use the email function.

on

Display shopping cart flag You can turn the display shopping cart flag
off to avoid shopping cart being displayed
after you have executed AddToCart function.

true

Shopping cart opener If you customized your shopping cart and it
needs to refer to previous frame context,
modify this parameter to refer to your
previous frame context.

Top.opener

Login required action You can specify login required actions from
mar_guest_ok parameter.

AddToCart, SubmitCart,
ShoppingCart.jsp,
OpenPackage, ViewQuote.jsp,
EmailQuote.jsp,
EmailConfig.jsp, SavePackage,
SaveQuote, ConfigList.jsp,
QuoteList.jsp,
ShoppingCart_orig.jsp,
ShoppingCart_Header.jsp,
ShoppingCart_Bottom.jsp,
ShoppingCart_Middle.jsp

List quote database table
name

The database table name for list quote
action.

Ejb.olquotebeantbl

Table 2. Transact Properties to Set in the Property Editor

Property What It Does Example
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 55

Installing Transact Server

Prepare the Application to Connect with Transact Server
NOTE: The property editor does not check for invalid values, so be precise when you
enter a property value.

List package database
table name

The database table name for list package
action.

Ejb.olpackagebeantbl

List quote/package
database user id

The database user ID for list quote/package
action.

Dbuser

List quote/package
database user password

The database user password for list quote/
package action.

Dbpassword

List package/quote
database source name

The data source name for list package/quote
action.

DbSource. For WebLogic, you
will need to add a line in
WebLogic.property file to
indicate the data source name
(WebLogic.jdbc.DataSource.Sie
belDataSource=onlinkPool).
For WebSphere, the data source
name will be the data source
name you used when you set up
for Transact Server EJBs. You
need to append jdbc/ in front of
the data source name—for
example, jdbc/SiebelDB.

Table 2. Transact Properties to Set in the Property Editor

Property What It Does Example
56 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Prepare the Application to Connect with Transact Server
Redirecting a Page Set to a New OMS
When a user clicks Add to Cart, the selected products are sent to the Order
Management System. When you want to use different Order Management Systems
for different pagesets, you must implement the InitAltOMSUrl function to specify
which OMS URL each page set will access. You must complete this action in
addition to setting the Use Multiple OMS property in the property editor to true.

Call the InitAltOMSUrl function from the <pageset>_x.js file in Siebel eAdvisor.
This function takes one parameter (a URL) and it is at the top level of the
application.

Example:

OL.InitAltOMSUrl("http://other.oms.com/dest/");

All products ordered from the pageset that use this function will be sent to the URL
you supplied as a parameter.

See Siebel Interactive Designer Administration Guide for more information.

Configuring the HTTP Server
To set up a link between one of the Transact Server's supported Web servers and
WebLogic/WebSphere, you must configure WebLogic/WebSphere and your Web
server to redirect requests to WebLogic/WebSphere.

To set up a link between Transact Server and a Web server

1 Read the WebLogic/WebSphere manual to understand what plug-ins or sharable
libraries are needed for the Web server you are using.

2 Read the Web server manual to understand how to redirect HTTP traffic.

3 Install WebLogic/WebSphere plug-ins or sharable libraries on the Web server.

4 Set up redirection inside the Web server to the WebLogic/WebSphere URL.
Specifically, understand the need to redirect .jsp pages and specific servlet
requests.

5 For IIS Web Servers, you may need to move the transactserver folders to your
Web server root directory.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 57

Installing Transact Server

Troubleshoot Transact Server
Troubleshoot Transact Server
After installing Transact, you may encounter problems. To identify, characterize,
and solve these problems, you can turn to the log file. The discussion below
summarizes how to obtain comprehensive information from the Transact log file
and also how to manage concurrency.

Identify the Problem
If you run into problems after the installation, use the log file to identify the source
of the problem. Once identified, if you are unable to correct the problem, then you
can contact Siebel Technical Support.

To identify a problem

1 Set the Transact Log Debug property to on in the property editor.

Transact then records in the log details about all activities.

2 Perform the same actions you did when the problem occurred.

3 Open the log file.

The location of the log files is specified in the property editor.

The error message contains a time stamp, an error number, a message that states
the attempted action and consequences, the actual Java exception message, and a
stack trace of where it occurred in the code. In the following example, the
Configuration List could not be generated because the socket connection was closed
(the user navigated elsewhere before it had a chance to return). This error is given
by the Java exception.

Example Error:

8/16/00 2:55 PM[OLM_MAR_E_05000] ERROR: Couldn't complete action!

(action=ConfigList.jsp)

java.net.SocketException: Connection reset by peer: socket write
error

From looking at the log file, you may be able to determine the problem yourself. If
not, record the log activity that occurred while you were reproducing the problem
and contact technical support. Providing your technical support representative with
this information is the easiest way to resolve the problem.
58 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Installing Transact Server

Troubleshoot Transact Server
Concurrency Control
There may be cases where more than one user attempts to update a configuration.
To manage concurrent access, configurations have a date last modified
(date_modified) timestamp field which is updated whenever the object is written
to. When a configuration is accessed for reading or writing, the date_modified field
currently associated with the object is queried. When you attempt to update the
object, the date_modified held locally is compared with the date_ modified of the
stored object. If the date_modified of the object is more recent than the local copy,
you will not be able to modify the object and you will receive a message asking you
to open it and save it again, or save a new copy. By saving the configuration as a
new configuration, you can still save your work.

Only the user who initially created the configuration has permission to delete that
configuration. If you delete the configuration while someone else has it open for
reading, the other user will not be allowed to save changes and will be notified that
the user who created this configuration has deleted it and it is no longer valid. The
user can then save a new copy to save his or her work.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 59

Installing Transact Server

Troubleshoot Transact Server
60 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Working with Configurations 3
This chapter describes configurations, the configuration list, quotes, and how to
manipulate configuration lists.

When you click the Save Configuration button in your Siebel application, all of the
selections for the current page set are saved as a configuration in the configuration
list. You can then open the configuration from the configuration list and continue
to work with your saved settings.

A quote is a collection of configurations and includes quantities and pricing
information. A quote also includes account information. An order is a quote that
has been specifically submitted as an order to your Order Management System. See
the documentation for your shopping cart and Order Management System for
information about working with quotes and orders.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 61

Working with Configurations

Working with the Configuration List
Working with the Configuration List
In the Siebel application, the application developer provides a link to the
configuration list. Users can view all of the configurations they have saved by
opening the configuration list. With the proper permissions, a user can also view
and edit configurations saved by other users. For additional information, see
“Permissions” on page 109.

Maintaining the Configuration List
To make sure that your configuration list displays configurations that are in use and
do not grow too long, use the property editor to set a time-out period after which
unused configurations are deleted from the Configuration list. After configurations
are removed from the Configuration list, they remain in the database and can be
restored by making the time-out period longer or by changing the date_created field
of a particular configuration in the database. Your database administrator will
occasionally need to clean old configurations out of the database.

To set the time-out period for saved configurations, set the Configuration Time-Out
property in the property editor to the desired number of days.
62 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Working with Configurations

Modifying the Configuration List UI
Modifying the Configuration List UI
To modify the configuration list UI, edit the ConfigList JSP (Java Server Page) to call
the appropriate ConfigList functions and set the sort order. The ConfigList functions
determine what information will be displayed in the configuration list. Appendix C,
“ConfigList API” provides a list of all the functions you can use on the JSP page.

By default, the configuration list displays a configuration ID number, the name of
the configuration, the date the configuration was created, a Delete button, and a
link to the restored configuration in the Siebel application.

The default JSP page calls these functions:

■ getUniqueId()

■ getName()

■ getDateCreated()

■ getDeleteURL()

■ getRestoreURL()

During the call, the sort order is by name in descending order:

<% ConfigList.setSortField(“Name”);

ConfigList.setSortOrder(“Desc”); %>

These settings produce the following list of configurations, shown in Table 3.

Table 3. Configuration Lists

Open Config Name Date Created Delete Email

Open Golcen 2000-08-31 15:54:47.000 Delete Email Config

Open Chihuahua 2000-08-31 15:54:20.000 Delete Email Config

Open Shelty 2000-08-31 15:53:48.000 Delete Email Config
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 63

Working with Configurations

Modifying the Configuration List UI
About the JSP Page
The configuration list is created in a JSP page called ConfigList.jsp which is located
under <WebLogic home>/myServer/public_html/TransactServer.

JSP is a technology for controlling the content and appearance of Web pages
through the use of servlets. Servlets are small programs that are specified in the Web
page and run on the Web server. These programs modify the Web page before it is
returned to the requestor.

To modify the format of the Configuration List, use the ConfigList API functions.
From the JSP page, you must call the ConfigListBean. The ConfigListBean defines
the functions you can call from your JSP page.

The UseBean Tag
Implement the UseBean tag to import the ConfigListBean into your JSP page.
Include the following code near the top of your JSP page.

<!-- BEA WebLogic -->
<jsp:useBean id=”ConfigList”
scope=”page”
class=”com.siebel.isscda.wl.transact.ConfigListBean”>
<!-- BEA WebLogic -->
<!-- IBM WebSphere -->
<jsp:useBean id=”ConfigList”
scope=”page”
class=”com.siebel.isscda.ws.transact.ConfigListBean”> ">
<!-- IBM WebSphere -->

<% ConfigList.setSortField(“DateCreated”);
ConfigList.setSortOrder(“Desc”);
ConfigList.createList(session, request); %>
</jsp:useBean>

This code imports the ConfigListBean, sets up the sort order, and then creates the
configuration list.
64 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Working with Configurations

Modifying the Configuration List UI
The While Loop
The JSP page must also include a while loop. The while loop traverses the list of
saved configurations. Each iteration of the loop is a single saved configuration (or
one row in the table). Get methods are used to return information about the saved
configuration and display this information in the Configuration list.

The following HTML defines the table structure for display of the Configuration list.

<table border=1>
<tr><th>Config ID</th><th>Name</th><th>Date Created</
th><th>Delete</th><th>See XML</th></tr>
<% while (ConfigList.nextConfig()) { %>
<tr>

<td><a href=”<%= ConfigList.getRestoreURL() %>” target=”_new”><%=
ConfigList.getUniqueId() %></ td>
<td><%= ConfigList.getName() %></td>
<td><%=ConfigList.getDateCreated() %></td>
<td><a href=”<%= ConfigList.getDeleteURL() %>”>Delete</ a></
td><td><a href=”<%= ConfigList.getExportURL() %>”
target=”_new”>xml</td>
</tr>

<% } %>

Between the fourth line of code:

<% while (ConfigList.nextConfig()) { %>

and the last line of code:

<% } %>

you can add any of the get() functions from the ConfigList API.

For a complete description of the available get() functions, see Appendix C,
“ConfigList API.”
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 65

Working with Configurations

Modifying the Configuration List UI
Default ConfigList JSP Page
Below is the complete code for the default ConfigList JSP page.

<!doctype html public “-//w3c/dtd HTML 4.0//en”>
<html>
<head><title>Config List</title></head>

<%@ page
info=”JSP test”
contentType=”text/html”
%>

<!-- BEA WebLogic -->
<jsp:useBean id=”ConfigList”
scope=”page”
class=”com.siebel.isscda.wl.transact.ConfigListBean”>
<!-- BEA WebLogic -->

<!-- IBM WebSphere -->
<jsp:useBean id=”ConfigList”
scope=”page”
class=”com.siebel.isscda.ws.transact.ConfigListBean”>
<!-- BEA WebLogic -->

<% ConfigList.setSortField(“DateCreated”);
ConfigList.setSortOrder(“Desc”);
ConfigList.createList(session, request); %>

</jsp:useBean>
Saved configurations for <%= ConfigList.getUserId() %>

<table border=1>
<tr><th>Config ID</th><th>Name</th><th>Date Created</
th><th>Delete</th><th>See XML</th></tr>
<% while (ConfigList.nextConfig()) { %>
<tr>

<td><a href=”<%= ConfigList.getRestoreURL() %>” target=”_new”><%=
ConfigList.getUniqueId() %></ td>
<td><%= ConfigList.getName() %></td>
<td><%=ConfigList.getDateCreated() %></td>
<td><a href=”<%= ConfigList.getDeleteURL() %>”>Delete</ a></
td><td><a href=”<%= ConfigList.getExportURL() %>”
target=”_new”>xml</td>
</tr>
66 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Working with Configurations

Modifying the Configuration List UI
<% } %>
</table>
</body>
</html>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 67

Working with Configurations

Modifying the Configuration List UI
Emailing a Configuration
If you want to share a saved configuration with another user, you can select and
email the configuration for the configuration list.

To add the Email Configuration functionality

1 Add a button or link to the Configuration List page.

2 Call the getEmailURL function.

See “getEmailURL” on page 178 for information on implementing this function.

3 Implement a function to target a new window.

4 From the Email JSP page, call Email Bean functions to implement email
functionality.

For more information about the Email Bean functions, see Appendix D, “Email
Bean API.”

5 Specify the name of your SMTP server in the property editor.

6 Restart the WebLogic server.
68 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Working with Configurations

Modifying the Configuration List UI
Sample Email Bean JSP Page
Use the following JSP page as a template. You can modify this template to
implement the functionality that allows a user to email a configuration from the
Configuration List page.

Each section of code includes an explanation. Remove the explanations to view the
complete code for the JSP page. You can also open the Email JSP page
(EmailConfig.jsp) from the TransactServer directory located under WebLogic/
myServer/public_html.

Email JSP Page Code
<%@ page
 info="JSP test"
 contentType="text/html"
%>

This page statement states that you are in a JSP page.

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<!-- BEA WebLogic -->
<jsp:useBean id=”Email”
scope=”page”
class=”com.siebel.isscda.wl.transact.ConfigListBean”>
<!-- BEA WebLogic -->

<!-- IBM WebSphere -->
<jsp:useBean id=”Email”
scope=”page”
class=”com.siebel.isscda.ws.transact.ConfigListBean”>
<!-- BEA WebLogic -->

This statement imports the bean that contains the Email Bean functions that are
used on this page.

<%
 Email.setSession(session);
 Email.setRequest(request);
%>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 69

Working with Configurations

Modifying the Configuration List UI
These calls are placed inside the useBean tag to make sure that they are executed
first. They are initialization statements designed to provide the bean with the
session and request variables available to the JSP page. “Session” and “request” are
passed in, and JSP is equipped to recognize them.

</jsp:useBean>

This is the end tag for useBean.

<%
 if (request.getParameter("To") != null) {

This if statement searches for a parameter named “To” in the request.

There is a text field named “To” on this form. The form submits to the page that
contains the form. If the “To” parameter contains information, it means the user has
entered their email information and submitted the form. At this point, the email is
ready to be sent.

if (!Email.sendMail(request.getParameter("To"),
request.getParameter("Subject"),
request.getParameter("Message"))) {
%>

This call to sendMail sends the email. Concise syntax is used by calling sendMail
from within an if statement. The parameters for sendMail are obtained from the
request, using the field names, which are identical to the field names in the form
below (because the user filled out the form and submitted it).

<script language=JavaScript>
alert("<%=Email.getErrorMessage() %>");
</script>

If sendMail returned false, this section of code is called, displaying a JavaScript alert
whose message text is supplied by a call to getErrorMessage. getErrorMessage
returns an error message that attempts to explain to the user why the mail did not
get sent.

<%
}
else { %>
70 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Working with Configurations

Modifying the Configuration List UI
In this section, JSP tags close the if statement and start the else statement. If we get
to the else statement, we know the email was sent successfully and the next section
of code is called.

<script language=JavaScript>
self.close();
</script>

Since the mail was sent successfully, this section of code closes the email window.

<% }
 }
%>

This section closes the else and the if (request.getParameter(“To”) != null)
statements.

</head>
<body bgcolor="#FFFFFF">
<form name="Email" action="<%=Email.getAction("EmailConfig.jsp")
%>" method="post">

This section fills in the form action using the JSP call to getAction. The name of the
template is passed in to the getAction method.

<div align="center"><center>
<table border="0">
 <tr>
 <td valign="top">To:</td>
 <td valign="top"><input type="text" size="80" name="To"
value="<%= (request.getParameter(“To”)!=null ?
request.getParameter("To") : "") %>" ></td>

This statement says that if the user has entered a value for the “To” field, prefill the
text box named “To” with that value. Otherwise, leave the text box blank.

 </tr>
 <tr>
 <td valign="top">Subject:</td>
 <td valign="top"><input type="text" size="80"
name="Subject" value="<%= (request.getParameter(“Subject”) !=
null ? request.getParameter("Subject") : "") %>"></td>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 71

Working with Configurations

Modifying the Configuration List UI
This statement says that if the user has entered a value for the “Subject” field, prefill
the text box named “Subject” with that value. Otherwise, leave the text box blank.

 </tr>
 <tr>
 <td valign="top">Message: </td>
 <td valign="top">
 <p><textarea name="Message" rows="4" cols="80">
 <%= (!Email.getMailSent()?
request.getParameter("Message") : Email.getRestoreConfigURL())
%>

In this section, if the mail did not get sent, the “Message” field is prefilled with the
text the user entered when he or she submitted the message. Otherwise, a URL is
entered to reopen the configuration. This is the URL that the email recipient will
click to launch your Siebel application and restore the saved configuration in the
browser, so it is very important to include it in the message.

 </textarea></p>
 </td>
 </tr>
 <tr>
 <td align="center" colspan="2"><input type="submit"
 name="OK" value="OK"> <input type="button" name="Cancel"
 value="Cancel" onClick="self.close()"></td>

This section creates the HTML buttons for submitting or canceling out of the email
dialog box.

 </tr>
</table>
</center></div>
</form>
</body>
</html>
72 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Working with Configurations

Modifying the Save Configuration UI
Modifying the Save Configuration UI
When you click Save Configuration, a dialog box appears that solicits a name for
the configuration. If you linked back to the configuration and then clicked Save, a
dialog box would appear soliciting a unique response:

■ Overwrite the configuration

■ Save a new configuration

■ Cancel

You may want to write your own JavaScript dialog box or implement Save
Configuration as a button on your Results page. You can override the default
functionality of the Save Configuration dialog box by using the
OR_GetSaveConfigName function. For more information, see
“OR_GetSaveConfigName” on page 168.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 73

Working with Configurations

Modifying the Save Configuration UI
74 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System 4
Transact connects to your Order Management System when you add a configuration
to your shopping cart.

To enable this functionality, you must perform the following steps to integrate the
Siebel application with the Order Management System:

■ Connect buttons in the Siebel application to those of the shopping cart using the
eAdvisor Javascript API.

■ Write a style sheet to the DTD (Document Type Definition) if you want to
customize the format of the configuration information passed between the
Siebel application and the Order Management System.

■ Optionally, you can add a URL in the Order Management System that links back
to the Siebel application configurations.

This chapter describes how to complete these tasks.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 75

Integrating the Order Management System

Connecting Your Siebel Application UI to Transact
Connecting Your Siebel Application UI to Transact
To connect the Siebel application UI to Transact, you must add buttons or links to
the Siebel application and then use OnClick events to call the Transact functions.

After you add the buttons and links to the Siebel application UI, the Transact UI
occurs within the Siebel UI as illustrated by Figure 1. The Transact buttons and link
appear below the Acme Cars panel.

For information on adding buttons and links in your Siebel application, see Siebel
Interactive Designer Administration Guide.

Figure 1. The Transact UI in Your Siebel Application
76 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Connecting Your Siebel Application UI to Transact
You can use whatever kinds of links and names you choose. For example, you could
use Show Cart instead of View Cart, and use a link rather than a button in your UI.
For the purposes of discussing the UI in this guide, the working assumption is that
the following buttons and link have been added to the application UI:

■ Add To Cart button

■ View Cart button

■ Save Configuration button

■ Configuration List link

Add To Cart Button
The Add to Cart button saves the current configuration to the shopping cart.
Afterwards, the shopping cart opens and displays the configuration in the shopping
cart list.

For information on posting a form when Add to Cart is clicked, see “Posting a Form
from Add to Cart” on page 80. When you add a configuration to your cart, it is saved
in Transact so it can be referenced by the cart, but is not added to the configuration
list.

For information on connecting to your shopping cart, see “Connecting Your Siebel
Application UI to Transact” on page 76.

To connect the Add to Cart button to Transact Server

1 Set the Transact Third Part Cart property to true in app_config.js.

2 Provide the URL for the cart for the Transact Show Cart URL property in
app_config.js.

3 Set the Use third-party Cart property to true in the property editor.

4 Provide the URL of the OMS for the OMS URL property in the property editor.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 77

Integrating the Order Management System

Connecting Your Siebel Application UI to Transact
5 Add a button named Add To Cart to the eAdvisor application.

6 Call the AddToCart function from the button.

Example:

<INPUT type="button" value="Add To Cart" name=add
onClick="OL.AddToCart('_new');">

For more information, see “AddToCart” on page 156.

View Cart Button
The View Cart button opens the shopping cart.

For information on connecting to your shopping cart, see “Connecting Your Siebel
Application UI to Transact” on page 76.

To connect the View Cart button to Transact

1 Add a button named View Cart to the eAdvisor application.

2 Call the ShowCart function from the button.

Example:

Show
Cart

For more information, see “ShowCart” on page 158.
78 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Connecting Your Siebel Application UI to Transact
Save Configuration Button
The Save Configuration button saves the current configuration to the configuration
list. This list is stored in the Transact database.

To connect the Save Configuration button to Transact

1 Add a button named Save Configuration to the eAdvisor application.

2 Call the SaveConfig function from the button.

Example:

<INPUT type="button" value="Save Config" name=save
onClick="OL.SaveConfig();">

For more information, see “SaveConfig” on page 158.

Configuration List Link
The Configuration List link opens the configuration list which displays your saved
configurations.

To connect the Configuration List link to Transact

1 Add a link named List Configurations to the eAdvisor application.

2 Call the ConfigList function from the link.

Example:

<a href="" onClick="OL.ConfigList('ol_ui.mainArea');return
false;" >List Configs

For more information, see “ConfigList” on page 157.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 79

Integrating the Order Management System

Posting a Form from Add to Cart
Posting a Form from Add to Cart
Instead of connecting to your Order Management System shopping cart, you can
display a shopping cart by posting a form. This section provides an example JSP
page together with the resulting HTML that posts a form.

For more information, see Appendix C, “ConfigList API.”

Sample Form Post JSP Page
The following example JSP page posts a form.

<html><head></head><body onLoad=document.oms_form.submit()>
<!-- BEA WebLogic Application Server-->
<%@ page
contentType=”text/html” import="com.siebel.isscda.wl.transact.*"
%> ">

<jsp:useBean id="configBean"
class="com.siebel.isscda.wl.transact.ConfigAccessBean"> ">
<!-- BEA WebLogic Application Server-->

<!—IBM WebSphere Application Server-->
<%@ page
contentType=”text/html” import="com.siebel.isscda.ws.transact.*"
%> ">
<jsp:useBean id="configBean"
class="com.siebel.isscda.ws.transact.ConfigAccessBean"> ">

<!—IBM WebSphere Application Server-->
<%
 configBean.setRequest(request);
 configBean.setSession(session);
 try {
 configBean.getConfig();
 }
 catch(Exception e) {
%>
 <script language="JavaScript">
 alert("An error occurred! Your configuration was not added to
the cart!!");
<%
 }
%>
80 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Posting a Form from Add to Cart
</jsp:useBean>
<form name=oms_form action="http://www.myCompany.com"
method=POST target="new">
<input type="hidden" name="shipto_name" value="<%=
configBean.getShippingName() %>">
<input type="hidden" name="shipto_street" value="<%=
configBean.getShippingStreet() %>">
<input type="hidden" name="shipto_city" value="<%=
configBean.getShippingCity() %>">
<input type="hidden" name="shipto_state" value="<%=
configBean.getShippingState() %>">
<input type="hidden" name="shipto_zip" value="<%=
configBean.getShippingZip() %>">
<input type="hidden" name="shipto_country" value="<%=
configBean.getShippingCountry() %>">
<%

 while (configBean.hasMoreParts())
 {
 configBean.nextPart();
%>

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_description" value="<%= configBean.getPartDescr() %>">

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_siebel_id" value="<%= configBean.getPartLineItemID() %>">

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_part_num" value="<%= configBean.getPartNum()%>">

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_qty" value="<%= configBean.getPartQty()%>">

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_myfield" value="<%= configBean.getPartField("myfield")%>">

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_mydesc" value="<%= configBean.getPartField("DESC") %>">

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_price" value="<%= configBean.getPartPrice()%>">

<input type="hidden" name="item_<%= configBean.getPartIndex()
%>_extprice" value="<%= configBean.getPartExtPrice() %>">
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 81

Integrating the Order Management System

Posting a Form from Add to Cart
<%
 }

configBean.finishUp();
%>
</form>
</body>
</html>

Form Post Result
The following code is the HTML that results from the sample Form Post JSP page.

<html><head></head><body onLoad=document.oms_form.submit()>

<form name=oms_form action="http://www.myCompany.com"
method=POST target="new">

<input type="hidden" name="shipto_name" value="">

<input type="hidden" name="shipto_street" value="">

<input type="hidden" name="shipto_city" value="">

<input type="hidden" name="shipto_state" value="">

<input type="hidden" name="shipto_zip" value="">

<input type="hidden" name="shipto_country" value="">

<input type="hidden" name="item_0_description" value="cats page">

<input type="hidden" name="item_0_siebel_id" value="74">

<input type="hidden" name="item_0_part_num" value="">

<input type="hidden" name="item_0_qty" value="1">

<input type="hidden" name="item_0_myfield" value="">

<input type="hidden" name="item_0_mydesc" value="">

<input type="hidden" name="item_0_price" value="60.00">

<input type="hidden" name="item_0_extprice" value="60.00">

<input type="hidden" name="item_1_description" value="Tabby">

<input type="hidden" name="item_1_siebel_id" value="74">
82 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Posting a Form from Add to Cart
<input type="hidden" name="item_1_part_num" value="TA-MH-GR-GR-
1">

<input type="hidden" name="item_1_qty" value="1">

<input type="hidden" name="item_1_myfield" value="">

<input type="hidden" name="item_1_mydesc" value="Tabby">

<input type="hidden" name="item_1_price" value="60.00">

<input type="hidden" name="item_1_extprice" value="60.00">

</form>
</body>
</html>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 83

Integrating the Order Management System

Working With the DTD
Working With the DTD
Transact translates a configuration into an XML string which it can pass to the Order
Management System. The DTD (Document Type Definition) defines the format of
the XML string. If your Order Management System cannot read and interpret the
XML string, then you must write a style sheet to the DTD so that the XML can be
processed by the Order Management System. See “Using Style Sheets” on page 91
for more information.

The Line Item DTD organizes the data into a hierarchy of items, each identified as
parent or child. For example, if you select a computer, modem card, mouse, and
keyboard in the eAdvisor application, the modem card, mouse, and keyboard are
children of the parent computer. Items can contain an unlimited number of
subitems, and subitems of subitems.

You determine parent and children items by setting the ORDER_SUBVAR and
ORDER_ITEMVARS variables in the appconfig.js file.

There are two level entities that describe a configuration:

■ The top level is LineItem, a placeholder that contains user information and all
items that have been selected from the page set.

■ The second level is Items, a placeholder that contains configuration information,
and whether the Item is a child of another Item in the LineItem.

The LineItem DTD Elements
Elements identify the nature of the content. The LineItem DTD contains the
following elements:

■ SiebelLineItem

■ User

■ Price

■ ConfigData

■ Item
84 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Working With the DTD
Attributes are name-value pairs that occur inside tags after the element name.
Attributes for each element are listed in the following section.

SiebelLineItem
The SiebelLineItem element is required. It contains information about a line item
using the following attributes:

■ siebel_id
This required attribute provides a unique Siebel identifier that the Order
Management System will use in its linkback URL.

■ created_on
This required attribute provides the date and time when the line item was
created.

■ id
This implied element provides a third-party unique identifier.

The DTD contains the following code for this element.

<!ELEMENT SiebelLineItem (User?, Item+)>
<!—siebel_id: Siebel unique identifier —>
<!-- created_on: timestamp -->
<!-- id: 3rd party unique identifier -->
<!ATTLIST SiebelLineItem

siebel_id ID #REQUIRED
created_on #REQUIRED
id ID #IMPLIED

>

Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 85

Integrating the Order Management System

Working With the DTD
User
The User element is optional. It contains information that identifies the buyer using
the following attributes:

■ user_id
This required attribute provides a unique user identification. This attribute
matches the user id property stored in your LDAP system.

■ account_id
This implied attribute provides a unique account identification. This attribute
matches the account id property stored in your LDAP system.

■ session_id
When a configuration is passed into Transact on linkback from the Order
Management System, this implied attribute provides a unique session
identification as a persistent parameter for the OMS.

■ order_id
When a configuration is passed into Transact on linkback, this implied attribute
provides a unique order identification as a persistent parameter for the OMS.

The DTD contains the following code for this element.

<!-- user element is optional, contains buyer identification
information -->
<!ELEMENT User>
<!ATTLIST User

user_id CDATA #REQUIRED
account_id CDATA #IMPLIED
session_id CDATA #IMPLIED
order_id CDATA #IMPLIED

>

86 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Working With the DTD
Price
The price element is used for every item where price is defined in the data model.
This element contains price information for the line item using these attributes:

■ type
This required attribute defines the type of price.
Valid values: “quoted” and “discount”

■ currency
This implied attribute defines the type of currency.

The DTD contains the following code for this element.

<!--Price type examples: quoted, list, discount -->
<!ELEMENT Price (#PCDATA)>
<!ATTLIST Price
 type CDATA #REQUIRED
 currency CDATA #IMPLIED

>

ConfigData
The ConfigData element is required. This element contains information that defines
the configuration or feature data using these attributes:

■ name
This required attribute is the name of the data element in the eAdvisor data
model (table name.column name or column name).
Example: TABLENAME.DESC

■ character data
The value of the ConfigData element is the contents of the selected row for the
column, indicated by the name attribute information from the data model. In the
following example, the character data is the string Cat.
Example: <ConfigData name = PETTYPE> Cat </ConfigData>

The DTD contains the following code for this element.

<!ELEMENT ConfigData (#PCDATA)>
<!ATTLIST ConfigData

name CDATA #REQUIRED

>

Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 87

Integrating the Order Management System

Working With the DTD
<!— An item must have config data (name/value pairs) associated
with it
 An item can have zero or more items as children

An item can have zero or more Price elements —>

Item
The Item element is required. It contains the information for the item using the
attributes:

■ part_number
This implied attribute is the part number for the item. For information on setting
the part number variable (called order_subvar), see “Setting the Order_Subvar
Configuration Variable” on page 52.

■ quantity
This required attribute is the number of items ordered.

■ description
This implied attribute provides a description of the item.

The DTD contains the following code for this element.
Note that Item can have Price and Item (for nested items) children and must have
at least one ConfigData child.

<!ELEMENT Item (ConfigData+, Price*, Item*)>
<!ATTLIST Item

part_number CDATA #IMPLIED
quantity CDATA #REQUIRED
description CDATA #IMPLIED

>

88 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Working With the DTD
The Generic LineItem DTD
This section includes the complete code for the generic LineItem DTD.

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE document >
<!ELEMENT SiebelLineItem (User?, Item+)>
<!—siebel_id: Siebel unique identifier —>
<!-- created_on: timestamp -->
<!-- id: 3rd party unique identifier -->
<!ATTLIST SiebelLineItem

siebel_id ID #REQUIRED
created_on #REQUIRED
id ID #IMPLIED

>

<!-- user element is optional, contains buyer identification
information -->
<!ELEMENT User>
<!ATTLIST User

user_id CDATA #REQUIRED
account_id CDATA #IMPLIED
session_id CDATA #IMPLIED
order_id CDATA #IMPLIED

>

<!--Price type examples: quoted, list, discount -->
<!ELEMENT Price (#PCDATA)>
<!ATTLIST Price
 type CDATA #REQUIRED
 currency CDATA #IMPLIED
>

<!ELEMENT ConfigData (#PCDATA)>
<!ATTLIST ConfigData

name CDATA #REQUIRED
>

<!— An item must have config data (name/value pairs) associated
with it
 An item can have zero or more items as children

An item can have zero or more Price elements —>
<!ELEMENT Item (ConfigData+, Price*, Item*)>
<!ATTLIST Item

part_number CDATA #IMPLIED
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 89

Integrating the Order Management System

Working With the DTD
quantity CDATA #REQUIRED
description CDATA #IMPLIED

>

]>
90 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Using Style Sheets
Using Style Sheets
While an HTML form-based method of integration is available, XML is the standard
protocol for interacting with third-party Order Management Systems and Siebel
Systems encourages its use.

Transact supports any XML format that contains sufficient information for the
integration task. Transact accepts and subsequently returns any data element that
it cannot identify—for example, a unique identifier used by the third-party Order
Management System.

Transact uses XSLT stylesheets to convert XML generated to the generic DTD into a
desired XML format. In the XSLT, elements from the XML input are identified and
mapped to their desired XML element output. Static and calculated content can also
be included.

About XSLT
XSLT (Extensible Stylesheet Language Transformation) is a language primarily
designed for transforming one XML document into another. This is necessary if the
application needs to communicate with other systems that accept data in XML but
conform to a different DTD. For example, if you need to push your orders to a third-
party Order Management System, you must convert your order documents into a
format that the Order Management System can process. XSLT is used to develop
conversion or mapping rules to modify the generated XML, and these rules are
applied against the input XML documents to produce XML documents in the
required format. The sample XSLT file provided translates an XML document that
conforms to Siebel’s DTD to an XML document that conforms to a cXML DTD.

Siebel provides a sample XSLT file (olcp2cXML.xsl) to convert configurations into
cXML.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 91

Integrating the Order Management System

Using Style Sheets
Figure 2 illustrates the flow of an XML document from Siebel’s Transact application
to a third-party Order Management System. The Order Management System can
process XML only if it is in the cXML format.

The XSLT document contains the rules defined by the style sheet developer. The
XSLT processor is an engine that reads the XSLT document, applies the rules to
incoming input XML documents and, as a result of applying those rules, produces
an output XML document that is in cXML format. It can then be understood and
processed by the third-party Order Management System. For more detailed
information about XSLT, tutorials, and guides, access http://www.xslt.com.

About cXML
cXML stands for Commerce Extensible Markup Language and allows buyers,
suppliers, aggregators, and intermediaries to communicate using a single, standard,
open language.

cXML transactions consist of documents, which are simple text files with well-
defined format and contents. Most types of cXML documents are analogous to
hardcopy documents traditionally used in business.

Refer to www.cXML.org for detailed information about the cXML DTD.

Figure 2. XML to cXML Flow
92 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Using Style Sheets
About the Siebel DTD
The Siebel DTD defines the format of the XML order document. The order document
contains information about the following:

■ Siebel Line Item
siebel_id: a unique number that identifies the order
created_on: specifies the date the order was generated
id: the OMS unique id, if available

■ User
user_id: identifies the user who created the order
account_id: identifies the account associated with the user
session_id: identifies the OMS session (if available)
order_id: identifies the OMS order (if available)

■ Shipping address
Name: name of the user (will be the userid in most cases)
Street: street address including the building number, street name, and apartment
number (if any) all as one string
City: name of the city
State: a string describing the two-character state code or the full state name.
PostalCode: a string that specifies the ZIP Code.
Country: string that contains the country’s name.

■ Billing address
Name: name of the user (will be the userid in most cases)
Street: street address including the building number, street name, and apartment
number (if any) all as one string
City: name of the city
State: a string describing the two-character state code or the full state name.
PostalCode: a string that specifies the ZIP Code.
Country: string that contains the country’s name.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 93

Integrating the Order Management System

Using Style Sheets
■ Item
Part Number: identifies the item
Quantity: specifies the amount being ordered
Description: any textual description of the item
Config Data: describes the configuration
Price: describes the currency and the price of the item
Item: any subitems nested within it as children items (subitems contain the
same information as the parent)

■ Price
Type: specifies the type of the price (discount, retail, preferred, ...)
Currency: specifies the currency (USDollars, Roubles, ...)
Value of the entity: denotes the amount in the specified currency

The Sample XSLT Style Sheet
This section describes each section of code from the sample XSLT style sheet
(olcp2cXML.xsl).

The following lines of code instantiate the document as an XSLT style sheet.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform" version="1.0">

If the XML output needs to be presented for human reading, the following line
indents the XML content with new lines.

<xsl:output indent="yes"/>

cXML defines selected parameters that must be passed as part of the document.
These parameters are constructed outside of the XML style sheet and then passed
to the XSLT processor. The following lines extract the values that are passed for
those parameters from the calling client and inserts them at appropriate places in
the document as defined by the cXML DTD. For more detailed information about
cXML and its DTD, refer to the documentation at http://www.cXML.org.

<xsl:param name="timestamp"/>
 <xsl:param name="version" select="'1.0'"/>
 <xsl:param name="locale" select="'en-US'"/>
<xsl:param name="from_domain"/>
 <xsl:param name="to_domain"/>
94 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Using Style Sheets
 <xsl:param name="sender_domain"/>
 <xsl:param name="from_identity"/>
 <xsl:param name="to_identity"/>
 <xsl:param name="sender_identity"/>
 <xsl:param name="sender_secret"/>
 <xsl:param name="user_agent"/>

The following line searches for the node named "SiebelLineItem" and applies the
rules defined by this style sheet to this node.

<xsl:template match="SiebelLineItem">

Optional Code
At this point, you can include the following optional line of code.

<xsl:attribute name="version"><xsl:value-of select="$version"/
></xsl:attribute>

This line specifies the version of the cXML protocol. A validating XML parser could
also determine the version attribute from the referenced DTD. However, all cXML
documents should include the version explicitly to assist applications using
nonvalidating parsers.

<xsl:attribute name="xml:lang"><xsl:value-of select="$locale"/
></xsl:attribute>

This line specifies the locale used for all free text sent within this document. The
receiver should reply or display information in the same or a similar locale. For
example, a client specifying xml:lang="en-UK" in a request might receive "en"
data in return.

<xsl:attribute name="payloadID"><xsl:value-of
select="$payloadid"/></xsl:attribute>

This line specifies a unique number with respect to space and time, used for logging
purposes to identify documents that might have been lost or had problems. This
value should not change for retry attempts. The recommended implementation is
datetime.process id.random number@hostname.

<xsl:attribute name="timestamp"><xsl:value-of
select="$timestamp"/></xsl:attribute>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 95

Integrating the Order Management System

Using Style Sheets
This line specifies the date and time the message was sent, in ISO 8601 format. This
value should not change for retry attempts. The format is YYYY-MM-DDThh:mm:ss-
hh:mm (for example, 1997-07-16T19:20:30+01:00). <xsl:param
name="payloadid"/>

The following line instructs the XSLT processor to look for the node "User" in the
input document and retrieve the value of its attribute named "order_id," and bind
the value to a variable named "order_id." The variable "order_id" can be used
many times later in the style sheet to insert the order id into the document.

<xsl:variable name="order_id" select="./User/@order_id"/ >

At this point, the values needed to construct the header defined by cXML have been
obtained from the calling client and the input document. The following lines
construct the cXML header portion with the obtained values.

<Header>
 <From>
 <Credential>
 <xsl:attribute name="domain"><xsl:value-of
select="$from_domain"/></xsl:attribute>
 <Identity>
 <xsl:value-of select="$from_identity"/>
 </Identity>
 </Credential>
 </From>
 <To>
 <Credential>
 <xsl:attribute name="domain"><xsl:value-of
select="$to_domain"/></xsl:attribute>
 <Identity>
 <xsl:value-of select="$to_identity"/>
 </Identity>
 </Credential>
 </To>
 <Sender>
 <Credential>
 <xsl:attribute name="domain"><xsl:value-of
select="$sender_domain"/></xsl:attribute>
 <Identity>
 <xsl:value-of select="$sender_identity"/>
 </Identity>
 <SharedSecret>
 <xsl:value-of select="$sender_secret"/>
 </SharedSecret>
96 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Using Style Sheets
 </Credential>
 <UserAgent>
 <xsl:value-of select="$user_agent"/>
 </UserAgent>
 </Sender>
 </Header>

The cXML header is followed by the OrderRequest node. The OrderRequest contains
OrderRequestHeader and one or more ItemOut nodes.

<OrderRequest>
<OrderRequestHeader>

<xsl:attribute name="type">new</xsl:attribute>
<xsl:attribute name="orderID"><xsl:value-of

select="$order_id"/></xsl:attribute>

cXML defines the total node to contain the total price of the items being ordered as
well as the currency. The following lines look for any node named Total in the input
document. If more than one are returned, it selects the first one and extracts the
price and the currency from it. If no nodes named Total are found in the document,
it inserts a default Total node in the output document with the price being 0 and the
currency being “USDollars.”

<Total>
 <Money>
 <xsl:choose>
 <xsl:when test="./Total">
 <xsl:attribute name="currency"><xsl:value-of
select="./ Total[position()=1]/@currency"/></xsl:attribute>
 <xsl:value-of select="./
Total[position()=1]"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="currency"><xsl:value-of
select="'USDollars'"/ ></xsl:attribute>
 <xsl:value-of select="0.0"/>
 </xsl:otherwise>
 </xsl:choose>
 </Money>
 </Total>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 97

Integrating the Order Management System

Using Style Sheets
The following lines insert the shipping and billing addresses into the output cXML
document.

<xsl:apply-templates select="./ShippingAddress"/>
<xsl:apply-templates select="./BillingAddress"/>

The following lines insert some Siebel-specific data as extrinsic values that is
needed in order to translate the document from cXML back into Siebel XML format.

<Extrinsic>
 <xsl:attribute name="name">siebel_id</ xsl:attribute>
 <xsl:value-of select="./@siebel_id"/>
 </Extrinsic>
 <Extrinsic>
 <xsl:attribute name="name">date_created</ xsl:attribute>
 <xsl:value-of select="./@created_on"/>
 </Extrinsic>
 <Extrinsic>
 <xsl:attribute name="name">id</xsl:attribute>
 <xsl:value-of select="./@id"/>
 </Extrinsic>

</OrderRequestHeader>

Templates
At this point, use the templates below to perform the following actions.

This template searches for nodes named Item in the input document, and starts
constructing ItemOut nodes as defined by the cXML DTD to be inserted as part of
the output document.

<xsl:apply-templates select=".//Item">
 <xsl:with-param name="itemUser" select="./ User"/>
 </xsl:apply-templates>

 </OrderRequest>

 </cXML>

 </xsl:template>
98 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Using Style Sheets
This template defines rules for the XSLT processor to use to search for any node
named “ShippingAddress” in the input document and inserts its values into the
output document in the format required by cXML.

<xsl:template match="ShippingAddress">
 <ShipTo>
 <Address>
 <Name>
 <xsl:attribute name="xml:lang"><xsl:value-of
select="$locale"/></xsl:attribute>
 <xsl:value-of select="Name"/>
 </Name>
 <Street><xsl:value-of select="Street"/></Street>
 <City><xsl:value-of select="City"/></City>
 <State><xsl:value-of select="State"/></State>
 <Country><xsl:value-of select="Country"/></Country>
 <PostalCode><xsl:value-of select="PostalCode"/></
PostalCode>
 </Address>
 </ShipTo>
 </xsl:template>

 <xsl:template match="BillingAddress">
 <BillTo>
 <Address>
 <Name>
 <xsl:attribute name="xml:lang"><xsl:value-of
select="$locale"/></xsl:attribute>
 <xsl:value-of select="Name"/>
 </Name>
 <Street><xsl:value-of select="Street"/></Street>
 <City><xsl:value-of select="City"/></City>
 <State><xsl:value-of select="State"/></State>
 <Country><xsl:value-of select="Country"/></Country>
 <PostalCode><xsl:value-of select="PostalCode"/></
PostalCode>
 </Address>
 </BillTo>
 </xsl:template>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 99

Integrating the Order Management System

Using Style Sheets
This template defines rules for constructing and inserting item information from the
input document into the output document. The ItemOut as defined by cXML
consists of nodes that contain information about the price of the item (including the
currency), the quantity being ordered, the item line number, the part number of the
item, and so on. However, Siebel’s XML input document contains more information
that may not be needed by cXML-compliant applications, but is very necessary in
order to reconstruct the Siebel XML document given to the cXML document. For this
reason, any Siebel-specific information is saved as Extrinsic values so that it can be
used later on (for example, to reconstruct the original Siebel XML document). One
example would be Configuration data that may not be used by cXML but is
necessary for use in Siebel Transact applications.

<xsl:template match="Item">
 <ItemOut>
 <xsl:attribute name="quantity"><xsl:value-of
select="@quantity"/></xsl:attribute>
 <xsl:attribute name="lineNumber"><xsl:value-of select="../
@id"/></xsl:attribute>
 <ItemID>
 <SupplierPartID>
 <xsl:value-of select="@part_number"/>
 </SupplierPartID>
 </ItemID>
 <ItemDetail>
 <UnitPrice>
 <Money>
 <xsl:choose>
 <xsl:when test="./Price">
 <xsl:attribute name="currency"><xsl:value-of
select="./ Price[position()=1]/@currency"/></xsl:attribute>
 <xsl:value-of select="./ Price[position()=1]"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="currency"><xsl:value-of
select="'USDollars'"/ ></xsl:attribute>
 <xsl:value-of select="0.0"/>
 </xsl:otherwise>
 </xsl:choose>
 </Money>
 </UnitPrice>
 <UnitOfMeasure></UnitOfMeasure>
 <Description>
 <xsl:value-of select="@description"/>
 </Description>
 <xsl:if test="$itemUser">
100 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Using Style Sheets
 <Extrinsic>
 <xsl:attribute name="name">userID</ xsl:attribute>
 <xsl:value-of select="$itemUser/@user_id"/>
 </Extrinsic>
 <Extrinsic>
 <xsl:attribute name="name">accountID</ xsl:attribute>
 <xsl:value-of select="$itemUser/ @account_id"/>
 </Extrinsic>

 <Extrinsic>
 <xsl:attribute name="name">sessionID</ xsl:attribute>
 <xsl:value-of select="$itemUser/ @session_id"/>
 </Extrinsic>
 </xsl:if>
 <xsl:apply-templates select="./ConfigData"/>
 </ItemDetail>
 </ItemOut>
 </xsl:template>

 <xsl:template match="ConfigData">
 <Extrinsic>
 <xsl:attribute name="name"><xsl:value-of
select="concat('cfg_', @name)"/></xsl:attribute>
 <xsl:value-of select="."/>
 </Extrinsic>
 </xsl:template>

This line is the closing tag for the style sheet.

</xsl:stylesheet>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 101

Integrating the Order Management System

Linking Back to Configurations
Linking Back to Configurations
When users work in the Siebel eAdvisor application, they select items and then click
the Add to Cart button to save them to the shopping cart. When they have selected
all the items they want from a page set, they can click the Save Configuration button
to save all the items in their cart as a single configuration. When the configuration
is saved, the Siebel application passes it to Transact to save in its database. An order
can contain multiple configurations.

If desired, you can provide a link back to configurations in eAdvisor from the Order
Management System shopping cart. The Configuration list also provides linkback
capabilities by default. A third-party transactional system will be able to send a
request to Transact to restore the configuration state in the Siebel application, which
was previously submitted to the third-party system. You can do this in two ways:

■ From a URL you provide in your shopping cart

■ From the Configuration List URL

From the Shopping Cart
To create a link back from the shopping cart to a configuration, in the OMS shopping
cart UI, you must add a link to the Siebel application URL with the ID of the
configuration.

Example:

http://eadvisor//home.htm?config_id=<siebel_id attribute of
Siebel Line Item from XML>

For better performance, if you know the Siebel application will be running
whenever the Order Management System is running, you can directly call into
the Siebel application instead, using an OnClick event:

<top.ol>.OpenFromURL (‘config_id=<ID>’);

See the documentation for your Order Management System for instructions on
adding UI elements.
102 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Integrating the Order Management System

Linking Back to Configurations
From the Configuration List
When you click on a configuration in the Configuration list, Transact links back to
the configuration by calling getRestoreURL, which provides the URL of the
configuration.

To create a link back to a configuration from the Configuration list

1 Add a URL to the Configuration List page.

2 Use getRestoreURL for the href property.

See “getRestoreURL” on page 181 for information on implementing this
function.

3 Call RestoreConfig on the onClick event and send “this.”

See “RestoreConfig” on page 157 for information on implementing this function.

Version Checking
When you open a configuration from the configuration list, the unique key for the
configuration is passed to the server, which it uses to get the configuration data. The
data is then moved into the Siebel application, and your inputs and results pages
are displayed exactly the way they appeared when you saved the configuration.

You can implement the following two callout points that cause an event to occur
when a configuration links back to an old version:

■ COP_AppDataVersionCheck

■ COP_PagesetVersionCheck

Define these callout points to return false if the application or page set is out of date.
This prevents them from opening. You can implement a dialog box that returns a
message such as “This item may be out of date. Do you want to continue?” If the
user clicks Yes, the function returns true and the application or page set opens. If
the user clicks Cancel, the function returns false and the application or page set
does not open.

See “COP_AppDataVersionCheck” on page 162 and “COP_PagesetVersionCheck”
on page 166 for more information.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 103

Integrating the Order Management System

Linking Back to Configurations
104 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support 5
Using an LDAP system, your Siebel application provides support for user
authentication and login. When a user attempts to access restricted data, a login
page opens that prompts the user to enter a name and password. You can customize
the look of the login page by editing LoginPage.jsp. This file is located in the
WebLogic/myserver/public_html/TransactServer directory.

To set up users, permissions, and resources, you execute calls from the command
line. See “Command-Line API” on page 114 for more information.

The following sections describe the LDAP architecture, the properties to set, and the
calls to make in order to set up your LDAP system.

NOTE: The LDAP login and authentication features are optional.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 105

Authentication and Login Support

About LDAP
About LDAP
Lightweight Directory Access Protocol (LDAP) is a software protocol that allows users
to locate organizations, individuals, and other resources such as files and devices
in a network, whether on the Internet or on a corporate intranet. LDAP is a
"lightweight" (smaller amount of code) version of DAP (Directory Access Protocol),
which is part of X.500, a standard for directory services in a network. LDAP is
lighter because in its initial version it did not include security features.

LDAP is both a naming server and a directory server. The naming server provides
the capability to name something or associate a set of data with a name. For
example, in a file system we create files and give them names. The directory server
provides the capability to arrange and store these objects in some structured way to
avoid name collision and for easier retrieval.

An LDAP directory is organized in a simple "tree" hierarchy consisting of the
following levels listed in order of parent to child:

■ The root directory

■ Countries

■ Organizations

■ Organizational units (divisions, departments, and so forth)

■ Individuals (including people, files, and shared resources such as printers)

An LDAP directory can be distributed among many servers. Each server can have a
replicated version of the total directory that is synchronized periodically. An LDAP
server is called a Directory System Agent (DSA). An LDAP server that receives a
request from a user takes responsibility for the request, passing it to other DSAs as
necessary, but providing a single coordinated response for the user.

When you create your LDAP directory structure, you may have multiple
organizations.
106 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support

LDAP Models
LDAP Models
The LDAP information model defines the types of data and basic units of
information you can store in your directory. The basic unit of information in the
directory is the entry, a collection of information about an object. Often, the
information in an entry describes some real-world object, such as a person. In a
typical directory, you find thousands of entries that correspond to people,
departments, servers, printers, and other real-world objects in the organization.
Figure 3 shows part of a typical directory, with objects corresponding to some of the
real-world objects in the organization.

Where:

An entry is comprised of a set of attributes, each of which describes one particular
trait of the object. Each attribute has a type and one or more values. The type
describes the kind of information contained in the attribute, and the value contains
the actual data.

Figure 3. Sample LDAP Directory

O Organization

OU Organizational unit

UID User ID
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 107

Authentication and Login Support

LDAP Models
For example, an entry for a person may have the following attribute types and
values:

You can create your own objects and attributes that are meaningful to your
organization.

Attribute Description Example

cn Common Name Rick Aitken

sn Surname Aitken

password User ID lucky456

mail eMail Address raitken@ Siebel.com
108 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support

Default LDAP Directory
Default LDAP Directory
During the installation process, a default directory structure, eAdvisor, is created as
an organization unit under the Organization. Under eAdvisor, there are:

■ Permissions

■ ACL (resources)

■ Quote users (ol_quoteusers)

■ Business accounts (ol_bizaccounts)

Permissions
This directory contains all the permissions that used by WebLogic and the Siebel
application.

ACL (Resources)
This directory contains the resources that might need restricted access. The
resources could be servlets, JSPs, connection pools, and so on. Each ACL contains
one or more ACL entries under it. A single ACL entry contains a user or a group and
a list of permissions for that user or group to the given ACL.

For information on adding resources, see “New ACL” on page 115.

Quote Users
This directory contains one or more entries. Each entry contains a user, the quotes
group that the user is associated with, and a permission of either transactSuper or
transactGroup.

Business Accounts
This directory contains the list of customer accounts. Each account contains
information about the account, such as users associated with the account and
billing/shipping addresses.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 109

Authentication and Login Support

Login Pages
Login Pages
Various pages fall under the category of login pages.

Login Page
When a user attempts to access restricted data, a login page opens, prompting the
user to enter a name and password. You can customize the look of the login page
by editing LoginPage.jsp. This file is located in the WebLogic/myserver/
public_html/Login directory. You can also use your own login page by setting the
Login Page property in the Application Server tab of the property editor.

After Login

Login Success Page
When a user logs in successfully, by default the system performs the requested
action. When logging into the application for the first time, or in cases where you
want to display information on login, you can redirect the user to your own login
success Web page. To use your own page, edit the Login Success Page property on
the Transact tab of the property editor.

Login Error Page
When a user fails to log in successfully, the system redirects the user to a login error
page. By default, Siebel displays the message “Sorry, we didn't recognize your login
name and/or password. Please try again.” You can modify the LoginError.jsp page,
or set the Login Error Page property on the Application Server tab of the property
editor to redirect to your own error page.
110 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support

Setting LDAP Properties
Setting LDAP Properties
If you change properties on your Application server, you must modify the Siebel
Application Server properties in the property editor so that they match the new
settings in the Application server property files.

LDAP Passwords
You can change the WebLogic user system’s LDAP password or the LDAP user
directory manager’s password.

WebLogic User System’s Password
If you change this password, you must make sure that your user system’s password
in the LDAP system matches the one in the WebLogic.properties file. You cannot set
this property in the property editor. In the WebLogic.properties file, edit the
following line (all WebLogic servers require this line of code) that specifies the
password for the user system:

WebLogic.password.system=lucky68

If you change this password in the WebLogic.properties file, you must change it in
the LDAP system as well. Use the directory console (the GUI tool) provided by the
LDAP server to change the password for the user system in the LDAP server.

NOTE: All WebLogic servers sharing the same LDAP system must have the same
password for the user system.

LDAP User Directory Manager’s Password
During installation, the Netscape LDAP directory server requires that you specify a
password for the user directory manager. Update the property LDAP Credential in
the property editor with the same password. The script file uses this user (Directory
Manager and its password) to log in to LDAP and make changes.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 111

Authentication and Login Support

Setting LDAP Properties
Setting Properties
If you change properties on your Application server (WebLogic), you must modify
the Siebel Application server properties in the property editor so that they match
the new settings in WebLogic.

To set properties in the property editor

1 Start WebLogic.

2 Open a browser and enter the following URL (modify the URL as needed for your
system settings):

http://<localhost:7001>/PropertiesEditor/index.htm

3 Click Application Server.

4 Click Help for a description of the Application Server properties.

After setting the Application Server properties, you will need to set the Login and
Authentication properties.
112 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support

Setting LDAP Properties
5 Click Login and Authentication.

Since the LDAP Credential is encrypted, you have to remember to reset this field
to the correct value if you modify any field from authentication property.

Click Help for a description of all properties.

NOTE: The property editor does not check for invalid values, so be precise when
you enter a property value.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 113

Authentication and Login Support

Setting LDAP Properties
Command-Line API
During installation, the initial_login_setup script creates the necessary LDAP
directory structure. This file uses one or more of the command-line functions. The
initial_login_setup script file inserts security information that is required by
WebLogic. Transact setup adds sample users and accounts. This gives WebLogic the
basic information it needs to start up correctly.

The information in LDAP needs to be updated and maintained. You must write
script files using the command-line functions to add, delete, and modify users,
groups, ACL, and permissions. In addition, you can enroll users as members of
selected groups, which automatically gives them the permissions for that group. See
the following section, “Sample Script Templates” on page 117, for sample script
templates you can use to base your script on.

You can implement the following functions in your script.

Add Group Member cmd=addgroupmember;tgtgroup=everyone;user=john

This command adds an existing user to the specified group. In the
example above, this command adds user john to the target group
everyone.

cmd=initload must be run before running this command. See “Init
Load” on page 115 for more information.

Add Owner cmd=addowner;owneruser=system;theuser=john;acl=WebLogic.
properties.LoginProcess

Each ACL must have an owner. The owner is specified when the ACL
is created. The owner has the rights to add permissions to a user for the
ACL, add other users as owners, and delete the ACL. This command
adds the user john as one of the owners to the ACL
WebLogic.properties.LoginProcess after making sure the owner user is
system.

Create Context cmd=createcontext

This command creates a directory structure in the LDAP system. If the
structure already exists, the command throws an exception. This
command is used by the initial_login_setup script file that is run during
installation to create the structure of the LDAP system.

Delete ACL cmd=delacl;user=john;acl=WebLogic.servlet.LoginProcess

This command deletes the specified ACL. The specified user must have
the owner rights to delete an ACL. In the example above, the ACL
WebLogic.servlet.LoginProcess is deleted by the user john.
114 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support

Setting LDAP Properties
Delete Context cmd=deletecontext

This command deletes the directory structure that was created by the
createcontext in the LDAP system.

Delete Group cmd=delgroup;group=everyone

This command deletes groups from the LDAP system. In the example
above, the group everyone is deleted from the LDAP system.

Delete Group Member cmd=delgroupmember;tgtgroup=everyone;user=john

This command deletes group members from the LDAP system. In the
example above, the user john is removed from the group everyone.

Delete Owner cmd=delowner;owneruser=system;theuser=john;acl=WebLogic.
properties.LoginProcess

This command deletes ACL owners from the LDAP system. In the
example above, the user john is removed from being the owner of the
ACL WebLogic.properties.LoginProcess. The owneruser must be an
owner of the ACL in order for this command to execute successfully.

Delete Permission cmd=delpermission;permission=write

This command deletes the specified permission from the LDAP system.
In the example above, the permission write is deleted from the LDAP
system.

Delete User cmd=deluser;user=john

This command deletes users from the LDAP system. In the example
above, the user john is deleted from the LDAP system.

Init Load cmd=initload

This command instructs the program to load the data in the LDAP
system into the cache. This command needs to be run before the
following command can be run.

New ACL cmd=newacl;acl=LogOut;user=john

This command creates a new ACL with john as its owner. Only the
owner/s will be able to add users/groups as users/owners with
permissions to the ACL. The ACL is a resource that needs restricted
access, and it contains data as to who (what users) can access the
resource and how the permissions can use it.

You must log on as directory manager (cn = Directory Manager) to use
this command. The directory manager is set in the LDAP Principal and
LDAP Credential properties in the property editor.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 115

Authentication and Login Support

Setting LDAP Properties
New Group cmd=newgroup;group=everyone

This command creates a new group in the LDAP system. In the example
above, this command creates a new group called everyone in the
structure ou=Groups, o=your_org.com. In the course of maintenance,
Siebel application users will need to add and remove groups. This API
will help in creating groups relevant to your organization.

New Permission cmd=newpermission;permission=read
cmd=newpermission;permission=write

This command creates a new permission in the LDAP system which can
then be used to limit access to resources. In the example above, these
commands create new permissions in the LDAP structure
cn=permissions, cn=eAdvisor,o=your_org.com.

New User cmd=newuser;user=john;credential=john

You can add users using this command or by using the GUI tool
provided by the LDAP server.

This command adds a new user and associated password to the LDAP
system. In the example above, this command creates a new user called
john with john as the password in the structure ou=People,
o=your_org.com.

You must log on as directory manager to use the NewUser API. The
directory manager is set in the LDAP Principal and LDAP Credential
properties under Login and Authentication in the property editor.

The user “guest” created by the Transact LDAP setup is reserved for
internal use by Transact. You cannot log into Transact using the “guest”
user.

Set Permission cmd=setpermission;acl=LogOut;type=allow;permission=*;for
user=john;owneruser=system
cmd=setpermission;acl=LogOut;type=allow;permission=*;
forgroup=everyone;owneruser=system

The above commands create a record under the given ACL for the given
user or group that specifies the specific permissions that the given user
or the group has to the specified ACL.

The type contains one of two values: allow or disallow. If allow is
specified, the specified permissions are positive, which means the user
is allowed those permissions. If disallow is specified, the permissions
are negative, which means the user is denied those permissions.

You must log on as directory manager to use the SetPermission API.
The directory manager is set in the LDAP Principal and LDAP
Credential properties in the property editor.
116 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support

Setting LDAP Properties
Sample Script Templates
Several templates are available that simplify LDAP installation and maintenance.

To save and run the following script templates

1 Save the code in a file.

For example, addservlet.sci under the WebLogic home directory.

2 In the property editor, set the LDAP URL to your LDAP Server and the LDAP
Credential to “Directory Manager.”

3 Run the script from the command line by typing the following line (replacing
addservlet.sci with the name of your script file) at the prompt:

Rincon_run addservlet.sci

Supporting Adding Servlets to WebLogic
This script provides the support for WebLogic to accept new servlets. The procedure
used in this script could be used to add any kind of resource to WebLogic that
requires granting user permissions to it. This is a specific example of adding a
servlet which is a resource. This script adds a servlet called Logout that handles
logging the user out gracefully. The Logout servlet receives the request from the
client browser when the user decides to log out by clicking a button or a URL link,
and then deallocates any resources assigned to the user.

The first step is to add the servlet to the WebLogic.properties file to instruct
WebLogic to load the servlet. To do this, add the following line in the
WebLogic.properties file. (The package name of the servlet is
com.siebel.isscda.wl.servlet.)

WebLogic.httpd.register.Logout=\com.siebel.isscda.wl.servlet.rinco n.Logout

Because the servlet is a resource, WebLogic needs to know which users have what
permissions to this resource. Since WebLogic queries LDAP for all security
information relating to users, groups, and ACLs (resources), this new servlet needs
to be added as an ACL into the LDAP system as well and users granted permissions
to this resource. The following template uses the command-line API to do this.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 117

Authentication and Login Support

Setting LDAP Properties
The Script
cmd=newacl;acl=WebLogic.servlet.Logout;user=system
cmd=initload
cmd=setpermission;acl=WebLogic.servlet.Logout;type=allow
;permission=*;forgroup=everyone;owneruser=system
end

About the Script
The first command creates an ACL named WebLogic.servlet.Logout with the user
system as the owner of the ACL. Because we want to modify the data in the LDAP
system, the second command (cmd=initload) loads the data from the LDAP system
into memory. The third command gives all permissions that are positive to the
group everyone. Now anyone belonging to the group everyone automatically has the
permissions assigned to the group. The owneruser must be the owner of the ACL in
order for the setpermission command to execute successfully. The last command
(end) instructs the program that executes the script file to terminate itself.

When WebLogic loads this servlet, it gets the security access information to this
servlet from the LDAP system, and implements it accordingly.

Adding Users and Groups
This script template adds a list of users and groups. It then adds the users and
groups as members of other groups.

The Script
cmd=newuser;user=john
cmd=newuser;user=mary
cmd=newuser;user=kate
cmd=newgroup;group=Engineering
cmd=newgroup;group=Marketing
cmd=initload
cmd=addgroupmember;tgtgroup=Engineering;user=john
cmd=addgroupmember;tgtgroup=Engineering;user=kate
cmd=addgroupmember;tgtgroup=Marketing;user=mary
end

About the Script
The users john and kate automatically get the same kind of access as the
Engineering group. Mary gets the same privileges as the Marketing group.
118 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Authentication and Login Support

Setting LDAP Properties
Deleting Users and Groups
This script template deletes a list of users and groups, and removes users from
groups.

The Script
cmd=deluser;user=john
cmd=deluser;user=mary
cmd=delgroupmember;tgtgroup=Engineering;user=kate
cmd=delgroup;group=Engineering
end

About the Script
The users john and mary are deleted from the LDAP system while the user kate is
removed from the Engineering group (although she will remain in the LDAP
system). Finally, the group Engineering is deleted from the LDAP system.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 119

Authentication and Login Support

Setting LDAP Properties
120 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart 6
Once the shopping cart is installed, the Transact API calls must be inserted into the
browser-based application. These calls add items to the cart and bring up the cart
UI on demand. These calls should be put into the onClick event of a button or link,
which appears on the browser-based UI. See “Prepare the Application to Connect
with Transact Server” on page 51.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 121

The Shopping Cart

Setting Transact Shopping Cart Properties
Setting Transact Shopping Cart Properties
You should have set most of these properties during either the shopping cart or the
Transact Server installation, but verify that the following settings contain the correct
values to use with the shopping cart shelf integration.

App_config.js variables

TRANSACT_ACTIVE This Boolean variable should be set to the value ‘true’.

TRANSACT_URL This string variable should be set to the URL of your Transact Server
installation.

Example:
”http://app_hostname/siebel/SiebelTransact”;

TRANSACT_THIRD_PARTY_CART This Boolean variable should be set to the value ‘false’.

TRANSACT_CART_WINARGS This string variable should contain the window properties to be used for
the shopping cart. The format of the string follows the JavaScript
convention for setting window properties. The string should not contain
any space characters.

Example:
‘height=500,width=500,scrollbars=1,resizable=1,menubar=0’

TRANSACT_CART_TARGET This variable should contain a string specifying the frame name where
the cart UI should be loaded. Use '_new’ to indicate that a new window
should be opened. If you elect to show the cart in a new window, it will
exhibit window properties as defined by the
TRANSACT_CART_WINARGS variable above.

Example: ‘_new’
122 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Setting Transact Shopping Cart Properties
Properties Editor Properties

Use Third-Party Cart This Boolean property should be set to the value ‘false’.

OMS URL This string property should be set to contain the URL of the order
management system that is prepared to receive shopping cart submissions
from the server-side shopping cart.

Example: http://oms.mycompany.com/oms_acceptor

Transact URL This property should contain the same value as the TRANSACT_URL
variable in app_config.js.

Sales URL This property should contain the URL of your CDA application, without any
HTML page (like home.htm) specified.

Example: http://www.mycompany.com/sales.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 123

The Shopping Cart

Data Modeling For Transact Server
Data Modeling For Transact Server
For Transact Server to be able to display line items on the shopping cart, it must first
determine what data in the data model pertains to products. This process is very
simple, and the key to it is a variable in the user-modifiable application
configuration file app_config.js. The variable is called ORDER_SUBVAR. Enter as a
value for this variable the column name that you use to store product part numbers
in the data model. Make a column with this name in the main configuration table
of the data model. Each row of the MAIN configuration table corresponds to the part
number specified in the ORDER_SUBVAR column and will be interpreted by
Transact as a potential attribute of that part.

To specify subparts (children of the product in the MAIN table), use the same
column name specified in the ORDER_SUBVAR variable in feature tables that hold
information related to the subparts. When a row in the feature table is selected as
part of the configuration results, the part number will be passed to Transact as a
selected product. The other columns in the selected row of the feature table will be
passed to Transact as fields relating to that selected product. The selected row in the
MAIN configuration table will be the parent of the selected product.

If you specify an asterisk character (*) as the value for the ORDER_SUBVAR
variable, all of the selected rows in all tables will be passed to Transact with the
MAIN table being the root product and the feature tables comprising the set of
children products. No part numbers for these products will be identified by Transact
Server, however.
124 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Parts of the Cart
Parts of the Cart
The shopping cart can be thought of as having three distinct sections:

■ Header

This section displays general information pertaining to the entire quote. The
header may contain address information, account information, or other fields
created for use by the customer.

■ Quote line items

This section contains information about the products in the cart. The shopping
cart template defines the display format for a single line item. A while loop is
used to interpret this display format for each line item. A line item has a pageset
name and description associated with it, and has the ability to linkback to its
pageset, restoring the state of the configuration to what it was when the user
clicked Add To Cart. Each line item may contain multiple parts. A part generally
has a part number, description, price, and various feature table data associated
with it. Parts can have parent-child relationships, which in previous versions of
browser-based applications were described as item-subitem relationships. In the
4.0 version of browser-based applications, unlimited nesting of parts is
supported.

■ Footer

This section displays subtotal and total information, and contains buttons that
operate on the cart. These actions are available:

■ Clear Cart starts a new cart

■ Submit Cart submits the cart to the specified order management system

■ Save Cart assigns a name so that the cart can be accessed from the quote list

■ Print Cart displays a formatted, view-only cart page

■ Update Cart applies user changes
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 125

The Shopping Cart

How It Works
How It Works
When the user clicks Add To Cart, the configuration is saved as it normally would
be in the Transact database, and then the configuration is associated with the cart
for the user’s current session. The Shopping Cart.jsp template then displays the
cart. All the information about the cart is retrieved from the Transact database.
Then, the specific information referenced in the ShoppingCart.jsp template is easily
accessed and incorporated into the static HTML. Once the ShoppingCart.jsp
template has been executed, only HTML (and JavaScript) is contained in the page
displayed to the user.

To allow the user to update the contents of the cart, the ShoppingCart.jsp template
must contain an HTML form. Any updatable fields on the cart need to be
represented using form elements such as text boxes and drop-down picklists.
126 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Writing the JSP Template
Writing the JSP Template
The file ShoppingCart.jsp is located in the directory {WEBLOGIC_HOME}/
myserver/public_html/transactserver. This file specifies the UI for the server-side
shopping cart. The ShoppingCart.jsp template should first and foremost be a valid
HTML document. Dynamic content and shopping cart functionality are provided
using JSP tags that are embedded in the HTML.

The first JSP statement appearing in the file is:

<%@ page
 info="Shopping Cart"
 contentType="text/html"
%>

JSP tags always begin with “<%” and end with “%>”. Once the JSP compiler has
encountered the tag above, it looks for and processes all subsequent JSP tags. The
info and contentType attributes should be self-explanatory. The page tag should
appear somewhere before the <body> tag of the ShoppingCart.jsp page.

There are two important kinds of JSP tags used throughout the shopping cart
template. These tags come in pairs and demarcate code statements or blocks.

The Code Block Pair
One is a plain-looking pair that begins with “<%” and ends with “%>”. These tags
demarcate a code statement or code block that needs to be executed without the
result appearing on the page. You can think of these tags as almost the equivalent
of “<script>” and “</script>” tags in JavaScript. Standard Java statements, like
conditional “if” statements and loops, are wrapped in these tags. To insert HTML
into a code block and have it appear on the page, simply end the code block with
the “%>” end tag, put in the desired HTML, and then start the code again with
another “<%” open tag. This makes the JSP more powerful than the JavaScript
equivalent. So, you can have HTML appear as the result of a conditional statement
as follows:

<p> The weather is <% if (sky.equals(“blue”)) { %> clear!
<% } else { %> <i>cloudy.</i> <% } %>

If the String variable sky contains the value “blue” in the example above, the
following HTML will be produced:
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 127

The Shopping Cart

Writing the JSP Template
<p> The weather is clear!

The Single Java Statement Pair
The other JSP tag used throughout the ShoppingCart.jsp template begins with
“<%=” and ends with “%>”. This tag may contain only a single Java statement,
which does not need a semicolon at its close. The “<%=” tag tells the compiler to
evaluate the single statement and print the result on the page, in the same location
where the tag appears. A usage example of this tag is as follows:

<p>Welcome, <%= user_id %>!

If the variable user_id contained the String value “Frank,” the resulting HTML
would appear as shown below:

<p>Welcome, Frank!

This is nearly the extent of the JSP language you need to know to use and
understand the ShoppingCart.jsp template. A little more JSP syntax is introduced in
the next section. For further information on JSP syntax, see Sun’s JavaSoft Web site,
which has helpful tutorials.
128 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Using the Shopping Cart Bean
Using the Shopping Cart Bean
The ShoppingCartBean class provides the API that is used to access all the
information in the cart.

Directly following the “<%@ page” statement, there occurs the JSP statement:

<jsp:useBean id="bean"
class="com.siebel.isscda.wl.transact.ShoppingCartBean">

<%
 bean.setRequest(request);
 bean.setSession(session);
 bean.getQuote();
%>

</jsp:useBean>

The “jsp:useBean” tag just includes the ShoppingCartBean class, which implements
the API that is used to access all the data which must be displayed in the shopping
cart. The “id=bean” indicates that the ShoppingCartBean class will be referred to
using the name “bean.” If you change this to a different name, replace every
instance of “bean” in the template with your new name. The
class=”com.siebel.isscda.wl.transact.ShoppingCartBean” part of the useBean tag
gives the fully qualified name of the ShoppingCartBean class to the JSP compiler so
that it is able to find it.

Before the useBean end tag “</jsp:useBean>,” there is a code block bracketed by
“<%” and “%>”. Since “bean” is the name given in the useBean statement to refer
to the ShoppingCartBean, bean is used to call into the ShoppingCartBean API. The
specific statements in this block of code are initialization statements that must be
executed before making any further ShoppingCartBean API calls. These statements
are used inside the useBean tags to make sure that they are called directly after the
bean is included in the page.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 129

The Shopping Cart

Using the Shopping Cart Bean
The first statement in the code block above is “bean.setSession(session);”. This calls
the ShoppingCartAPI function setSession and passes the variable session. The
variable session is implicitly made available in all JSP pages (Common JSP
behavior). The variable session refers to the HttpSession object defined by the Java
class com.java.servlet.http.HttpSession (itself part of the Java servlet API). This
session object is specific to the current user’s session and can be used to store and
retrieve the session state. Transact Server has put a session state into the session
object, and so the session is passed into the setSession method of the
ShoppingCartBean. This gives the ShoppingCartBean API access to this state
information.

The format of the second statement,“bean.setRequest(request);”, is similar to that
of “bean.setSession(session);”. Request is another variable which is implicitly made
available to all JSP pages. This statement passes the request variable to the
ShoppingCartBean, giving it access to the information contained therein. The
request variable refers to the HttpRequest object generated for the HTTP request
that brought the user to the ShoppingCart.jsp template. The request variable
contains the usual information encapsulated by an HTTP request: any HTML form
variables, URL parameters, and the URL itself being the most useful.

The final statement, “bean.getQuote();”, gets the information about the current
quote from the database. Once this statement is executed, you can start accessing
information about the quote, as explained in the following section.
130 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Accessing Header Data
Accessing Header Data
You can access data in the Quote Header or custom fields in the Quote Header.

Quote Header Access Functions
Once the getQuote function has been called, data in the quote can be accessed and
displayed using the QuoteBean API functions. Quote Header information is
identified by Transact as the cart form parameters (fields) whose names begin with
“HEADER_”.

The functions that provide access to quote header data have names beginning with
“getQuote” and return a String. Examples are getQuoteName, getQuoteID, and
getQuoteAccountID. For the quote name, you must use the form parameter name
“QUOTE_NAME”. A code-level example of this technique is as follows:

<td>
Quote Name:
</td>
<td>
<input type=”text” name=”QUOTE_NAME” value=”<%=
bean.getQuoteName() %>”>

Certain fields in the header are not updatable, because they should not be changed.
These fields are as follows: account, date created, date modified, user_id.

Customer-Created Quote Header Fields
You can add custom fields to the header by adding a form element and giving it a
name prefixed with “HEADER_”. To retrieve the value entered into that field, use
the function getQuoteHeader and pass in the name of the field without the
“HEADER_” prefix. To add a Notes field onto the header, for example, you would
include a new form element and prefill the value with whatever the user had
previously entered using the getQuoteHeader function as follows:

<input type=”textbox” name=”HEADER_NOTES” value=”<%=
bean.getQuoteHeader(“NOTES”) %>”>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 131

The Shopping Cart

Accessing Header Data
When anything is entered into the HEADER_NOTES field it will automatically be
saved with the quote, and the value entered will be shown on the quote by virtue
of the getQuoteHeader(“NOTES”) function call.
132 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Accessing Header Data
Example of Defaulting Address Info from LDAP
The Transact LDAP structure can contain account and address information accessed
by Transact for display on the Shopping Cart or for inclusion in exported XML. For
further explanation of Transact’s usage of LDAP, refer to the sections on LDAP in
this guide. Transact accesses LDAP information in a read-only manner. Yet,
information provided by the LDAP system for default account billing and shipping
information may need to be modified for use on an individual quote. If you are
using LDAP default information on the Shopping Cart, display it only if there is no
quote-specific information already stored. Quote-specific information is stored in a
custom header field. An example of this technique is shown below:

<% if (bean.getQuoteHeader("SHIPPING_ADDR") != "") { %>
 <td colspan=2><textarea rows=5 name="HEADER_SHIPPING_ADDR">
 <%= bean.getQuoteHeader("SHIPPING_ADDR") %>
</textarea></td>
<% }else { %>
<td colspan=2><textarea rows=5 name="HEADER_SHIPPING_ADDR"><%=
bean.getShippingName() %>
<%= bean.getShippingStreet() %>
<%= bean.getShippingCity() %>, <%= bean.getShippingState() %>
<%= bean.getShippingZip() %>
<%= bean.getShippingCountry() %>
</textarea></td>
<% } %>

In the above example, we first check for the existence of user-entered data in the
quote header field “SHIPPING_ADDR.” If the user has entered data into this field
on the quote, then we display this information in a textarea, using a call to the
getQuoteHeader function to access the entered data. If no data has been entered
into the “SHIPPING_ADDR” header field, we display formatted default information
from LDAP using calls to getShippingName, getShippingStreet, getShippingCity, and
so on to retrieve the information from the LDAP server.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 133

The Shopping Cart

Accessing Line Item Data
Accessing Line Item Data
Since there are potentially multiple line items in a quote, a standard iteration is used
to access each line item in succession. The format is always:

<%
 while (bean.hasMoreLineItems())
 {
 bean.nextLineItem(); %>

The while statement begins the iteration. It allows the next statements to be
repeated until the condition inside the parenthesis is false, exactly as it would be in
JavaScript or any other programming language. The condition statement is a call to
the ShoppingCartBean named hasMoreLineItems, so the loop will continue until we
have gone through all the line items in the quote. The first statement inside the loop
is another call to the ShoppingCartBean to get the next line item, named
nextLineItem.

Once inside this loop, any information about the current line item may be accessed.
The loop is ended with an end curly bracket within the JSP code block tags <% }
%>. Line item index (a counter of which line item is being displayed), linkback
URL, and line item description are a few of the pieces of line item information which
you may want to display on the cart. A full listing of function calls providing line
item data access are given in the API Appendix.

Custom fields may not be created at the line item level, but they may be created at
the part level, which provides essentially identical functionality.
134 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Accessing Part (Subitem) Data
Accessing Part (Subitem) Data
Just as a quote consists of multiple line items, a line item consists of multiple parts.
And, using a method similar to the one in which we iterate through the line items
in the quote, we must iterate through the parts for the line item. Since the parts
belong to the current line item being accessed in the line item loop, we iterate
through them within the line item loop, producing a nested loop. This may sound
complicated, but it is actually fairly simple. The code sample in the above section
simply expands to the one shown below:

<%
 while (bean.hasMoreLineItems())
 {
 bean.nextLineItem();
%>
<!-- Line Item specific HTML goes here -->
<%
 while (bean.hasMoreParts())
 {
 bean.nextPart();
%>
<!-- Part specific HTML goes here -->

From within the part section of the cart, you can make calls into the
ShoppingCartBean API to get specific information about that part to display on the
shopping cart interface. Examples of part information that are provided through the
API include description, price, and part number.

Feature table data is also available through the ShoppingCartBean API. It is accessed
using a methodology similar to the retrieval of custom-defined header fields. You
can use the function getPartField and pass in the name of the column, and the
function will return the corresponding value. An example is shown below.

<%= bean.getPartField(“DESC”) %>

You can also create part-level custom fields using this function. In other words, if
the field name you provide to the function is not one that is stored for that part, it
will create it for you and any data the user may enter for that field (if it is editable)
will be stored with the cart. Any changes that are made to part level data through
the shopping cart will not be reflected on linkback. The data used for linkback is
stored separately and is not editable through the shopping cart, in order to
guarantee configuration validity on linkback.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 135

The Shopping Cart

Accessing Part (Subitem) Data
Since feature tables differ across pagesets and there is only a single cart interface to
display the myriad pagesets, the ShoppingCartBean includes an API function which
returns all matching field names in the feature table data for the current part.

For example, if you had a “PRM” column in a feature table in all of your pagesets,
but the feature tables were all named differently, you would use this function to
access the column so that you would not need to specify the table name
(“TABLE.PRM”).

The function is called getMatchingPartFields. Since this function returns all
matching field/value pairs, more than one value may be returned. To allow for this
possibility, the function returns an array of key value pair objects. The objects have
a key field and a value field which are both Strings. You access the array, and the
fields in the objects, exactly as you would in JavaScript.

An example is shown below. For a more detailed example, see the
getMatchingPartFields entry in “getMatchingPartFields” on page 214.

<% KeyValuePair [] matches = bean.getMatchingPartFields(“PRM”);
if (matches.length > 0) {
%>
<td>PRM: <%=matches[0].value %> </td>
<% } %>

The first statement in the example declares an array of KeyValuePair objects as the
return value for the getMatchingPartFields function call. This array is populated by
any and all fields and values which have “PRM” as part of their field name. The
next statement looks to see if any matching fields were returned for this part.
“matches.length” returns the number of entries in the array and if it is greater than
zero, then there is at least one matching field. Since we know that there are no other
fields in our data model containing “PRM,” we can assume that the first array
record has the value we are interested in, and we can print it into a table cell labeled
“PRM: “. That’s what the next lines do. First, we close off the code block, since we
want to print something out to the screen. Then we make our HTML table cell with
the label we want and print the value of the first array record using “<%=
matches[0].value %>”. The “matches[0]” specifies the first KeyValuePair object in
the array, and the “.value” specifies to access the value field (“.key” would give us
the field name).
136 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Totals and Discounts
Totals and Discounts
There are two functions in the ShoppingCartBean for getting total information:

■ getQuoteTotal

■ getQuoteSubtotal

They take no arguments, and you call them in the same way that you call any
function in the ShoppingCartBean:

<%= bean.getQuoteTotal() %>

These functions return a formatted price string. The only concern about using these
functions is that you must call the getPartPrice or the getPartSubPrice function in
your ShoppingCart JSP page within the hasMoreParts loop. The totals are calculated
while the parts are being displayed on the cart page for performance reasons (to
avoid a second traversal through the contents of the quote).

There are also two ShoppingCartBean functions related to discounts:

■ getLineItemDiscount

■ getQuoteDiscount

Neither takes an argument and each returns a formatted number string (for example
“5.00”). To have the entered discount percentage apply to the total and subtotal
automatically, use these functions to set and retrieve the discount percentage. The
percentage entered should be a number between 0 and 100 (decimals are acceptable
as well, for example “5.75”). Call the line item discount function to allow a discount
at the line item level, and call the quote discount function to allow a discount for
the entire quote. These functions may be used together.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 137

The Shopping Cart

Shopping Cart Buttons
Shopping Cart Buttons
The following buttons, cart submit actions, are supported by the server-side
shopping cart:

If you want to display these actions as HTML buttons, you must use the following
names for the button elements. Otherwise, you must add a URL parameter with this
name to the URL when it is clicked and a non-null value.

Submit the shopping cart to the server whenever any of these actions is selected.
The two JavaScript functions, SaveQuote and SubmitCart, submit the cart to the
server before returning.

Update Applies any changes the user has made to the cart contents on
the server.

Save Prompts the user for a name and makes the quote accessible
from the quote list.

Clear Creates a new quote and displays it in place of the current
quote.

Submit Submits the cart to the third-party order management system
for checkout processing.

Printable Quote Displays quote in printable text format.

SUBMIT ACTION BUTTON/PARAMETER NAME

Update UPDATE_QUOTE

Save Call SaveQuote() function in the onClick handler of the button
or link. If you want to bypass the SaveQuote() functionality, use
SAVE_NEW_QUOTE to save a new copy of the quote, or
UDATE_QUOTE to modify the current quote.

Clear CLEAR_QUOTE

Submit Call SubmitCart (inLink) function in the onClick handler.

Printable Quote Call ViewQuote() function in the onClick handler of the button
or link.
138 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Shopping Cart Buttons
Update Action
Below is an example of using an HTML link for the Update action, dynamically
adding the correct parameter name, and submitting the cart form to the server.

<a href=""
onClick="document.cart_form.action+='&UPDATE_QUOTE=update’;
document.cart_form.submit(); return false;">

In the onClick event, the UPDATE_QUOTE parameter name is added to the URL
already defined for the form action, and is given a non-null value (‘update’). Then
JavaScript is used to submit the form.

Clear Action
Below is an example of an HTML link used for the Clear action, which is almost
identical in syntax to the Update action above.

<a href=""
onClick="document.cart_form.action+='&CLEAR_HEADER=clear';
document.cart_form.submit();">

In the onClick event, we add the CLEAR_HEADER parameter name to the URL
already defined for the form action, and give it a non-null value (‘clear’). Then we
use JavaScript to submit the form.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 139

The Shopping Cart

Shopping Cart Buttons
Save Action
Below is an example of using an HTML link around an image for the save action.
Since save needs to prompt the user for a quote name, we call the SaveQuote
JavaScript function included in the ShoppingCart JSP, which gets the quote name
from the user and then submits the cart form using JavaScript. If the quote name
were a field on the shopping cart JSP, you could modify the SaveQuote JavaScript
function to check for a value in this field and then submit the cart form.

Submit Action
Below is an example of using the SubmitCart JavaScript call which submits the
contents of the cart to the Order Management System as an XML message over
HTTP. The SubmitCart JavaScript call is included in the ShoppingCart JSP.

140 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Error Handling
Error Handling
Errors can occur as the ShoppingCart is being processed and they may prevent the
user’s submit action from completing successfully. If this situation occurs, details
need to be communicated to the user as clearly as possible.

onLoad Error Handling
If an error has occurred before the page has finished processing, it can be caught
and conveyed to the user as part of the page’s onLoad event. The shopping cart
recognizes the types of errors listed in this section, which you handle by defining a
JavaScript function in ShoppingCart.jsp with the same name and no arguments.
These functions are most likely to be implemented to display a JavaScript alert box
telling the user more about the error, its possible consequences, and what they
should do next. Your error handling function will be called automatically in the
onLoad handler by calling the ShoppingCartBean function getCartOnLoad as
follows:

<body bgcolor=#FFFFFF onLoad="<%= bean.getCartOnLoad() %>">>

ConfigChangedError
This is a concurrency error: Another user changed the saved configuration this user
is trying to add to the cart. This error should rarely occur. The user should try to
reopen the saved configuration to see the changes made by the other user, and add
it to the cart again.

The default definition of this error handling function is:

function ConfigChangedError() {
 alert("The configuration you wanted to add to your cart\n has
been changed by another user!\nPlease try again!");
}

QuoteChangedError
This is a concurrency error. It is thrown when two users are modifying the same
saved quote simultaneously. The user who updates the quote first does so
successfully. The second user to try to update the quote gets this error and sees the
quote as the first user has saved it. The second user may then reapply his or her
changes and update again.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 141

The Shopping Cart

Error Handling
The default definition of this error handling function is:

function QuoteChangedError() {
 alert("This quote was changed by another user!\nThe changes they
made are shown here.\nPlease make your changes again!");
}

NoPermissionToChangeError
If the current user is viewing a quote which has been sent by email, then that quote
was created by another user and unless he or she has group or super permission
granted to them by Transact, that user cannot modify the quote. If the user attempts
to make a change to the quote, it will not be saved and Transact returns this error.
Users can create their own copy of the quote by choosing “Save New” on save, and
can make any desired changes to their own copy.

The default definition of this error handling function is:

function NoPermissionToChangeError() {
 alert("Sorry, this quote was created by another user and you do
not have permission to modify it. Click Save Quote and choose
Save New to save your own copy of this quote.");
}

QuoteDeletedError
If the current quote has been deleted, then the user can no longer modify or view
it (it no longer exists). The creator of the quote is the only user with permission to
delete it.

The default definition of this error handling function is:

function QuoteDeletedError() {
 alert("This quote has been deleted from the database by the user
who created it! It is no longer valid.");
}

AddToCartError
If an error occurs while a user is adding to the cart, the configuration the user tried
to add will not appear in the cart interface. You should communicate this to the user.
Then, the user can try to add the configuration to the cart again.

The default definition of this error handling function is:
142 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Error Handling
function AddToCartError() {
 alert("An error occurred on the server while adding to the
cart!\nPlease try again or contact your system administrator!");
}

DeleteError
This error is thrown when users try to delete a line item from a quote they did not
create. Only the creator of the quote has delete permission. The line item they tried
to delete remains on the quote.

The default definition of this error handling function is:

function DeleteError() {
 alert("Sorry, but you can't remove items from another user's
cart!\nSave a new copy of this cart if you want to remove line
items.");
}

ServerError
This error is a catch-all for all the other unspecified errors that might happen during
the initialization of the Shopping Cart.jsp page that are not described above. If this
error is thrown, changes that the user made to the cart in their last operation might
not be displayed.

The default definition of this error handling function is:

function ServerError() {
 alert("An error occurred during the operation you tried to
perform! Please try again or contact your system administrator.");
}

Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 143

The Shopping Cart

Error Handling
finishUp Error Handling
There are many further occasions for an error to occur after the onLoad handler is
processed. That is why, after the finishUp function is called, the ShoppingCart.jsp
template should check to see if any other error conditions have been raised. There
are two functions which the ShoppingCartBean API provides to determine if
another error has occurred. They should both be called, and an appropriate
JavaScript error handling function should be called to display the error message to
the user.

getQuoteDeletedError
If the quote was deleted by another user while the page was being displayed, this
ShoppingCartBean API function returns a Boolean value of true. An example of the
usage of this function is shown below:

<% if (bean.getQuoteDeletedError()) { %>
<script language="JavaScript">
 QuoteDeletedError();
</script>
<% } %>

getQuoteErrorCondition
If any other error has occurred during the processing of the page, this
ShoppingCartBean API function returns true. An example of this function is:

<% if (bean.getQuoteErrorCondition()) {
%>
 <script language="JavaScript">
 ServerError();
 </script>
<% }%>
144 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Shopping Cart Template Requirements
Shopping Cart Template Requirements
The following elements must be included in the ShoppingCart.jsp template.

useBean Inclusion of ShoppingCartBean
The useBean JSP call to include the ShoppingCartBean class is a required part of the
ShoppingCart template.

setRequest, setSession
Within or immediately after the useBean call, the setRequest and setSession
functions of the ShoppingCartBean API must be called, with arguments of the JSP
request and session variables, respectively.

getQuote
After calling setRequest and setSession, the getQuote function must be called. This
function retrieves all the information from the database about the quote currently
being displayed to the user through the shopping cart interface.

getCartOnLoad
In the body tag of the ShoppingCart.jsp template, the onLoad event handler should
get its JavaScript function call string from the ShoppingCartBean API function
getCartOnLoad. Other JavaScript calls may be included in the onLoad handler after
the getCartOnLoad functions.

SetQuoteID (JavaScript function)
The JavaScript function calls returned from getCartOnLoad always contain a call to
the JavaScript function SetQuoteID. This function is provided in the
ShoppingCart.jsp template by default and should not be removed. The purpose of
this function is to set the current quote ID in the context of the eAdvisor application
session.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 145

The Shopping Cart

Shopping Cart Template Requirements
cart_form (HTML form)
The ShoppingCart.jsp template must contain an HTML form which must be named
“cart_form.” The HTML form should contain form elements for all editable quote
fields.

getQuoteFormAction
The action parameter of the form should get its value from a call to the
ShoppingCartBean API function getQuoteFormAction(). The action of a form
defines the destination for the form submit. The getQuoteFormAction not only
defines the URL for the form submit, but also includes extra URL parameters. The
template author may add to these parameters by concatenating a new parameter
string to the form action, but the parameters already included should not be
removed or modified.

QUOTE_NAME (form variable)
A form variable called QUOTE_NAME must be included in the cart_form. The value
of this form element must be supplied by means of a call to the ShoppingCartBean
API function getQuoteName(). The form variable may be of type “hidden” to
prevent it from displaying on the cart interface, or it may be made visible on the
template.

finishUp
After all the quote line items and parts have been iterated through, a call must be
made to the ShoppingCartBean API function finishUp(). This function writes any
changes the user has made to the database.
146 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

Submitting the Cart to an Order Management System
Submitting the Cart to an Order Management System
When users want to check out the contents of their shopping cart and create an
order, the contents of the shopping cart will need to be transferred to an order
management system for processing and fulfillment. The order management system
may continue to ask the user for more information (such as credit card or other
payment information) to continue the checkout transaction process. There are two
principal methods for passing information to an order management system: XML
and HTML forms. Both use HTTP as the protocol for transmitting information to the
order management system, and both use the Order Management System URL
property as the target for the HTTP message.

Default XML Format
Refer to Appendix G, “Additional Code” for the DTD used by the shopping cart to
produce XML output. It is nearly identical to the Transact configuration DTD, but
contains extra data elements to display quote header information and totals.

Specifying an XSLT Stylesheet
Specify the XSLT stylesheet URL or absolute filepath in the properties editor in the
Transact Cart XSLT Stylesheet property. See “XSLT Style Sheet Example” on
page 223 for an example of an XSLT stylesheet that converts between the default
XML DTD and a cXML DTD.

HTML Form-Based Cart Submission
You can use the ShoppingCartBean to write an HTML form dynamically for
submission to a server-side program on checkout. An example of this technique is
given in Appendix D. Pass the parameter “quote_id” with the quote ID of the
current shopping cart on the URL to the JSP page containing the checkout form.
Using standard HTML techniques, the checkout JSP page might be loaded into the
window displaying the shopping cart contents, perhaps with a message that the
checkout is processing, or it could be loaded into a hidden HTML frame, which then
displays to the user any HTML returned from the program that processed the form.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 147

The Shopping Cart

Printable Order (the View-Only Cart)
Printable Order (the View-Only Cart)
The view-only cart should contain the same information as the Shopping Cart itself,
but all fields are displayed as plain text and as such are not editable by the user. The
view-only cart plays a role in two scenarios:

■ Users click open from the quote list when they already have an active shopping
cart and choose to view the quote instead of use it as their shopping cart.

■ Users click a button on the shopping cart to display a formatted view of the cart
that they may print.

The view-only cart template is formatted for easy side-by-side comparison with the
Shopping Cart. The Java bean used to access view-only cart information is in fact
the same as for the Shopping Cart (ShoppingCartBean). The JSP template
representing the view-only cart is called ViewQuote.jsp. The structure of the JSP
template for the view-only cart is for all purposes identical to the shopping cart
template.
148 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

The Quote List
The Quote List
The Quote List, similar to the configuration list, is an interface which allows a user
to access saved quotes.

QuoteList Functionality
The Quote List is an interface through which a user may access previously saved
quotes. From the list interface, users may restore quotes, delete quotes they have
created, or share quotes with others through email. The Quote List functionality
parallels the Transact Config List. The Quote List displays all quotes which are
available to the user, so if users have group or super-user permission in Transact
they will see quotes created by other users as well as their own.

QuoteListBean Initialization
The QuoteListBean must be included in the QuoteList.jsp template just as the
ShoppingCartBean does in the ShoppingCart.jsp template. There are also the
familiar setSession and setRequest functions which must pass the session and
request objects into the bean. The getQuoteList function gets all the quote list
information from the database just as the getQuote function does in the
ShoppingCartBean. But before the getQuoteList function is called, you can call some
functions to specify the sorting of the list. This is exactly the same as the ConfigList.
Following is the useBean statement from the QuoteList template and an explanation
of each call:

<jsp:useBean id="quoteList"
 scope="page"
 class="com.siebel.isscda.wl.transact.QuoteListBean">
<%
 quoteList.setSession(session);
 quoteList.setRequest(request);
 quoteList.setSortField("DateCreated");
 quoteList.setSortOrder("desc");

 quoteList.getQuoteList();
%>

</jsp:useBean>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 149

The Shopping Cart

The Quote List
The useBean statement itself is exactly like the one for ShoppingCartBean. It gives
a name in the “id” parameter, which we use to refer to the QuoteListBean in the
QuoteList template from now on. We used the name “quoteList” in the code snippet
above. The class parameter gives the fully qualified name of the QuoteListBean
class so that the JSP compiler can find the code to use for the QuoteListBean API
calls.

Inside the useBean tags, we defined a code block. It is useful to have a code block
in the useBean tags to put initialization statements related to the bean. This way,
we know that these statements will be executed before any calls into the bean may
be made.

The first statements inside the code block are calls to setSession and setRequest.
The setSession call is passed the JSP session object, and the setRequest call is
passed the JSP request object. You do not need to do anything to have access to the
session and request objects. They are automatically made available to you in every
JSP page.

The next two statements are also related in their purpose. They set the sort by field
and the sort order for the quotes in the quote list. If the sort order is set to “asc,”
then quotes will be listed in order from least to greatest according to the value in
the field specified in the setSortField call. If the sort order is set to “desc,” then the
quotes are ordered from greatest to least according to the value in the sort field. The
sort field may be specified as one of the following:

■ Name is the quote name

■ DateCreated is the date the quote was created

■ AccountID is the account assigned to the quote

■ ID is the numeric unique identifier of the quote

The last call inside the code block must be made after the four calls described
above. The call is getQuoteList and takes no arguments. This call retrieves all the
quote list information for the current user from the database.
150 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

The Quote List
Iterating Through the User’s Quote List
The code for iterating through the list of the user’s saved quotes is similar to that
used to work through the Transact ConfigList.jsp template. Each quote that is
available on the user’s quote list is displayed by iterating through the entire list with
a while loop. Inside the while loop, you can access information pertaining to the
current quote in the list and display it to the user.

The form of the while loop is:

<% while (quoteList.nextQuote()) { %>
<tr>
<td>
<%= quoteList.getID() %>
</td>
…//display more quote information…
<%}%>

The general approach here, similar to the method for displaying shopping cart line
items, is for the while loop to contain the HTML needed for formatting and
displaying the desired information pertaining to a single line item. You would put
headers for each field displayed on the list above the start of the loop in the Quote
List template.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 151

The Shopping Cart

The Quote List
Error Handling
The server may return one of two errors during quote list processing. You can test
for the occurrence of errors by using JSP at the beginning of the QuoteList template,
and then handle them by displaying an alert message to the user with JavaScript.
The alert message should give the user an idea of why the error occurred and the
possible consequences of the error condition. The default code in the QuoteList.jsp
template for handling these errors is:

<% if (quoteList.errorDeletedAnotherUserQuote()) { %>
 alert("Sorry, you cannot delete a quote created by another
user!");
<% } else if (quoteList.errorOccurred()) { %>
 alert("An error occurred on the server while retrieving your
list!\n Please try again or contact your system administrator.");
<% } %>

You can test the first error condition with the QuoteList API function
errorDeletedAnotherUserQuote, a function which returns true or false. Transact
only allows quotes to be deleted by their creator to simplify concurrent access. The
call to quoteList.errorDeletedAnotherUserQuote() returns true if the user just
attempted a delete from the quote list on a quote that the user does not own.
Transact returns a message to the user that explains why the operation is
disallowed.

The second error condition is more general and can be caused by any trappable but
nonrecoverable error on the server side. A database error that prevents successful
deletion or selection from one of the quote tables is the most frequent cause. The
API function you use to detect that the QuoteList operation has thrown an error is
the errorOccurred() function. The default handling for this error is to alert the user
that an error occurred on the server and to instruct the user to try again.
152 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

The Shopping Cart

The Quote List
What You Can Display in the Quote List
You can display the following in the Quote List:

Quote ID Unique identifier of the quote. Retrieved with QuoteList API function getID().

Quote Name Name provided by the user when quote was saved. Retrieved using the QuoteList API
function getName().

Account ID Account ID associated of saved quote. Retrieved using the QuoteList API function
getAccountID().

Index Quote’s numbered position in list. Retrieved using the QuoteList API function
getIndex().

Date Created Date when quote was created. Returned in locale-specific format using the QuoteList
API function getDateCreated().

Email URL URL string that displays the EmailQuote.jsp template used to email the quote to another
user. Retrieved using the QuoteList API function getEmailURL().

Delete URL URL string that deletes quote from database. Retrieved with QuoteList API function
getDeleteURL(). Use the function doDelete (included in the QuoteList JSP template) to
prevent user from deleting the current quote. For example:

<a href="" onClick="doDelete('<%= quoteList.getDeleteURL() %>'); return
false;">Delete

Restore Quote Restores a quote. You must call the JavaScript function top.siebel.RestoreQuote with the
quote ID as an argument. This function prompts users on whether to use the selected
quote as their shopping cart or see a view-only version of the quote. Once quote
becomes the current shopping cart, any previous shopping cart contents are lost (unless
previously saved).
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 153

The Shopping Cart

The Quote List
EmailQuote.jsp template
The EmailQuote.jsp template is shown from the quote list when the user clicks on
the link to email a quote. A pop-up window then appears, containing a form that
provides fields used to create an email message. When the form is submitted, the
email message is sent out through the SMTP (email) server specified in the Transact
Server Administration tool. The user must provide the recipient’s email address,
subject heading, and message body. The message body is prefilled with the URL
that will allow recipients to restore the quote when they click on it from their email
reader.
154 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact API for Siebel eAdvisor A
Use the Transact API functions to access the Transact functionality from anywhere
in your Siebel application.

You can use pre-event call out/override points (COP_<function name>) just
before an event to override the default behavior. See Appendix B, “Transact Server
Callout/Override Points,” for more information.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 155

Transact API for Siebel eAdvisor

AddToCart
AddToCart
AddToCart function adds the current configuration to the shopping cart.

Syntax OL.AddToCart(target)

Arguments

Usage This function is commonly called from the onClick event handler of a link, but it
can also be referred to from an image map or called from another user-defined
JavaScript function. See Siebel Interactive Designer Administration Guide for
instructions on adding link objects to your Siebel application.

For information on posting a form from Add to Cart, see “Posting a Form from Add
to Cart” on page 80.

Example <INPUT type="button" value="Add To Cart" name=add
onClick="OL.AddToCart('_new');">

target To use a frame, supply the name of the frame in which you want the cart to appear:
OL.AddToCart(‘framename’)

If you want the cart to appear in its own window, use: OL.AddToCart(‘_new’)
156 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact API for Siebel eAdvisor

ConfigList
ConfigList
ConfigList function displays the configuration list.

Syntax OL.ConfigList(target)

Arguments

Usage This function is commonly called from the onClick event handler of a link, but it
can also be referred to from an image map or called from another user-defined
JavaScript function. See Siebel Interactive Designer Administration Guide for
instructions on adding link objects to your Siebel application.

Example <a href="" onClick="OL.ConfigList('ol_ui.mainArea');return false;"
>List Configs

RestoreConfig
You can create a link on the Configuration List page to link back to and open saved
configurations. Call RestoreConfig on an onClick event, sending the HTML link as
an argument.

Example OL.restoreConfig(this)

target To use a frame, supply the name of the frame in which you want the configuration
list to appear: OL.ConfigList(‘framename’)

If you want the configuration list to appear in its own window, use:
OL.ConfigList(‘_new’)
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 157

Transact API for Siebel eAdvisor

SaveConfig
SaveConfig
SaveConfig function saves a configuration to the configuration list. SaveConfig
automatically calls GetSaveConfig, displaying a Save dialog box in which the user
enters a name for the configuration.

Syntax OL.SaveConfig()

Usage This function is commonly called from the onClick event handler of a link, but it
can also be referred to from an image map or called from another user-defined
JavaScript function. See Siebel Interactive Designer Administration Guide for
instructions on adding a link object in your Siebel application.

ShowCart
ShowCart function displays the shopping cart.

Syntax OL.ShowCart(target)

Arguments

Usage This function is commonly called from the onClick event handler of a link, but it
can also be referred to from an image map or called from another user-defined
JavaScript function. See Siebel Interactive Designer Administration Guide for
instructions on adding a link object in your Siebel application.

Example Show Cart</
a>

target To use a frame, supply the name of the frame in which you want the cart to
appear: OL.showCart(‘framename’)

If you want the cart to appear in its own window, use: OL.showCart(‘_new’)
158 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact API for Siebel eAdvisor

Error Messages
 Error Messages
The following sections describe how to display error messages.

COP.InvalidI temAdded
The COP.InvalidItemAdded is an Order API function you can define to display an
error message when a user attempts to order an invalid configuration.

Syntax COP.InvalidItemAdded()

Usage The COP.InvalidItemAdded() callout point is called if you try to order an invalid
configuration. This function is not called by default; you must manually define it.

The Order API is mainly used for internal purposes. It shields Transact from the
Siebel application engine’s internal representation of the configuration, and
removes any data that is extraneous to the purpose of restoring the configuration
state. COP.InvalidItemAdded is the one Order API function you will need to define.

ServerError
You can define ServerError with custom code. If an error occurs on the server side,
instead of displaying the default server messages, your client-side function will be
called and display the error you defined to the user. This is a static message, so if
you choose to implement this function, you can provide only one message for all
server errors.

Syntax OL.ServerError

Transact NotAccessible
In the app_config.js file, the message config variable,
TRANSACT_NOT_ACTIVE_MSSG, sets an error message to be displayed when
Transact is not turned on. When a user attempts to access Transact functionality and
Transact has not been turned on, an alert box displays the message:

Sorry, the action you have requested is currently unavailable.
Please contact your system administrator.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 159

Transact API for Siebel eAdvisor

Error Messages
160 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact Server Callout/Override Points B
Use the Transact Server callout/override points to override the default Transact
Server functionality and implement your own. Use the callout/override point before
a function to override the default behavior.

See Siebel Interactive Designer Administration Guide for more information on
callout/override points.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 161

Transact Server Callout/Override Points

COP_AppDataVersionCheck
COP_AppDataVersionCheck
Define this function to prevent out-of-date applications from opening. See “Version
Checking” on page 103 for more information.

Syntax COP_AppDataVersionCheck(obj)

Example {
var retVal = confirm("The item you are opening was created in

version \n" + obj['appDataVersion'] + "\n but your current
application is version \n" + appVersion['currAppDataVersion'] + ".
Do you wish to continue?");

return retVal;
}

162 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact Server Callout/Override Points

COP_Before AddToCart
COP_Before AddToCart
This callout point could be used to ask for confirmation before adding an item to
the cart. If the function returns true, the Add To Cart operation will continue, but if
it returns false, the item will not be added to the cart.

Example function COP_BeforeAddToCart(dataobj;target) {
 return (confirm("Are you sure you want to add this item to your
cart?"));
}

Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 163

Transact Server Callout/Override Points

COP_Before RestoreConfig
COP_Before RestoreConfig
This callout point could be used to ask for confirmation before restoring a
configuration. If the COP_BeforeRestoreConfig function returns true, the
configuration will be restored. If it returns false, the restore operation will be
canceled.

Example function COP_BeforeRestoreConfig(data_state) {
return confirm('Do you really want to open this configuration?');

}

164 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact Server Callout/Override Points

COP_Before SaveConfig
COP_Before SaveConfig
Define COP_BeforeSaveConfig to allow users to confirm that they want to save the
configuration. Returning false cancels the save, and returning true allows the save
to continue.

Example function COP_BeforeSaveConfig(data_state) {
return (confirm('Are you sure you want to save this

configuration?'));
}

Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 165

Transact Server Callout/Override Points

COP_PagesetVersionCheck
COP_PagesetVersionCheck
Define this function to prevent out-of-date page sets from opening. See “Version
Checking” on page 103 for more information.

Syntax COP_AppDataVersionCheck(obj)

Example {
var retVal = confirm("The item you are opening was created in

version \n" + obj['linkBackVersion'] + "\n but your current
application is version \n" + obj['pagesetVersion'] + ". Do you wish
to continue?");

return retVal;
}

166 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact Server Callout/Override Points

OR_ConfigSavedSuccess
OR_ConfigSavedSuccess
Define this function to override the default functionality that displays an alert box
with the message:

Your configuration has been saved!

You may choose to display a custom message or just remove the alert.

Syntax OL.OR_ConfigSavedSuccess()

Usage If this function is defined, it is called following the successful save of a
configuration.

Example function OR_ConfigSavedSuccess(){
alert(“The configuration was saved successfully”);
}

Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 167

Transact Server Callout/Override Points

OR_GetSaveConfigName
OR_GetSaveConfigName
OR_GetSaveConfigName function overrides the default dialog box for saving a
configuration.

Syntax OL.OR_GetSaveConfigName()

Usage OR_GetSaveConfigName overrides the default functionality provided by
GetSaveConfigName. GetSaveConfigName is automatically called from SaveConfig
when you save a configuration. A dialog box opens, asking the user to name the
configuration, and gives you the option to update the configuration if it already
exists, saving it as a new configuration, or canceling the operation.

Using OR_GetSaveConfigName, you can change the prompt text or allow the user
to enter a configuration name by another method. For example, you could create a
text field into which the user can enter a configuration name directly on the Inputs
page.

To use this function, write code that obtains the name of the configuration from the
user, and then call GotSaveConfigName() using the configuration name as an
argument. Like GetSaveConfigName, OR_GetSaveConfigName is automatically
called from SaveConfig.

Example function OR_GetSaveConfigName(data_state) {

if (ol_ui.mainArea.document.forms[0].config_name.value == "") {
 alert('Please enter a name for the configuration to save!');
OL.GotSaveConfigName(null);
}
else {
OL.GotSaveConfigName(ol_ui.mainArea.document.forms[0]

.config_name.value);
}

}

168 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact Server Callout/Override Points

GotSaveConfig Name
GotSaveConfig Name
By sending a null name to the GotSaveConfigName, you can cancel the save.

Syntax OL.GotSaveConfigName(string name)

Arguments

Usage Call GotSaveConfigName after obtaining the configuration name in
OR_GetSaveConfigName.

string name OL.GotSaveConfigName(‘server config’)
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 169

Transact Server Callout/Override Points

OR_Transact NotActive
OR_Transact NotActive
Define this function to override the default functionality that displays an alert box
when Transact is turned off. You may choose to display a custom page or just
remove the alert.

Example function OR_TransactNotActive(data_state) {
alert('Sorry, this feature is not available!');

}

170 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API C
The ConfigList API is created in the ConfigList bean. After importing the ConfigList
bean from the ConfigList JSP page (using the useBean tag), you can call the
functions in this Appendix from the ConfigList JSP page to customize the
configuration list.

See Chapter 3, “Working with Configurations,” for information on importing the
ConfigList bean functions and modifying the JSP page to customize the
configuration list.

In JSP, the tags <%= and %> are used to print the enclosed text on the page. The
tags <% and %> are used for code that you do not want displayed after
evaluation.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 171

ConfigList API

anyConfig
anyConfig
anyConfig function tests whether there are more configurations to display on the
list.

Syntax <bean name>.anyConfig()

Usage The anyConfig function returns false if the list is empty.

Example <% while (listBean.anyConfig())
{ %>
//code for going through list
<% } %>
172 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

createList
createList
createList function displays the list.

Syntax <bean name>.createList(HTTPSession session, HttpServletRequest
request)

Arguments

Usage You must call this function before the list can be displayed. The sort order should
be set before the list is created.

Example configList.createList(session,request);

HTTPSession session Built-in JSP variable to refer to the session object

HttpServletRequest request Built-in JSP variable to refer to the request object.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 173

ConfigList API

getAccountId
getAccountId
getAccountId function returns the account ID for current configuration in the list.

Syntax <bean name>.getAccountId()

Usage Call this function to display the account identifier associated with the current saved
configuration on the list.

Example <td><%= listBean.getAccountId() %></td>
174 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

getDateCreated
getDateCreated
getDateCreated function gets the date when the current configuration in the list was
created.

Syntax <bean name>.getDateCreated()

Usage Call this function to display the creation date associated with the current saved
configuration on the list.

Example <td><%= listBean.getDateCreated() %></td>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 175

ConfigList API

getDeleteURL
getDeleteURL
getDeleteURL function provides a Delete link from the configuration list.

Syntax <bean name>.getDeleteURL()

Usage Call the getDeleteURL function from a button or link to allow the user to delete the
configuration from the database. The list reloads to display an updated list,
excluding the deleted configuration.

Example <a href=”<%= configList.getDeleteURL() %>”>Delete
176 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

getDescription
getDescription
getDescription function returns a FAMILY DESCRIPTION for the page set for the
current configuration in the list.

Syntax <bean name>.getDescription()

Usage Call this function to display the description associated with the current saved
configuration on the list.

Example <td><%= listBean.getDescription() %></td>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 177

ConfigList API

getEmailURL
getEmailURL
getEmail URL function returns the URL to display the EmailConfig.jsp page to the
user. The EmailConfig.jsp page allows users to email the saved configuration to any
recipient they designate. The link that represents the getEmailURL call should target
a new window in order to properly display the EmailConfig.jsp page.

Before using this functionality, the application designer must set up the
EmailConfig.jsp page and set the SMTP Server Name in the property editor.

Syntax getEmailURL()

Example <%= bean.getEmailURL() %>
178 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

getIndex
getIndex
getIndex function adds an index item to the configuration list.

Syntax <bean name>.getIndex()

Usage The getIndex function returns the index item (adding one to the previous index
number) for the current configuration in the list. The first configuration in the list
will be 1, the second 2, and so on.

Example <td> <%= listBean.getIndex() %> </td>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 179

ConfigList API

getName
getName
getName function returns the name the user provided when the configuration was
saved for the current configuration in the list.

Syntax <bean name>.getName()

Example <td> <%= configList.getName() %> </td>
180 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

getRestoreURL
getRestoreURL
getRestoreURL function returns URL to restore the current configuration in the list.

Syntax <bean name>.getRestoreURL()

Usage The getRestoreURL function obtains the URL for the configuration and calls the
Order API Linkback function to restore the configuration to the Configuration list.
You will need to call OL.RestoreConfig from an OnClick event.

Example <a href =”<%=configList.getRestoreURL() %>
target=”_new><%=ConfigList.getUniqueId() %>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 181

ConfigList API

getSortField
getSortField
getSortField function sorts the configuration list by specific fields.

Syntax <bean name>.getSortField()

Usage getSortField returns the following sorted fields: Name, DateCreated, DateSubmitted,
Description, and Account ID.

The sort order is ascending or descending.

Example <td><%= listBean.getSortField() %></td>
182 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

getSortOrder
getSortOrder
getSortOrder function determines the sort order of the Config list.

Syntax <bean name>.getSortOrder()

Usage getSortOrder returns Asc (Ascending) or Desc (Descending) for the sort order of the
list. getSortOrder is a sibling function to getSortField.

Example <td><%= listBean.getSortOrder() %></td>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 183

ConfigList API

getUniqueId
getUniqueId
getUniqueId function returns the unique ID for the current configuration in the list.

Syntax <bean name>.getUniqueId()

Usage Use getUniqueId to return an internal ID for the database record of the
configuration. If a problem arises, you can use this ID to locate the record for the
configuration in your database.

Example <td><%= listBean.getUniqueId() %></td>
184 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

getUserId
getUserId
getUserId function returns the user identification (user ID, name, login, and so on)
for the current configuration in the list.

Syntax <bean name>.getUserId()

Example <td><%= listBean.getUserId() %></td>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 185

ConfigList API

nextConfig
nextConfig
nextConfig function in the while loop of a ConfigList JSP page moves to the next
configuration before calling any get methods to return information about that
configuration.

Syntax <bean name>.nextConfig()

Usage nextConfig returns false when there are no more configurations in the list.

Example <% while (configList.nextConfig()) {%>...
186 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigList API

setSortField
setSortField
setSortField function sets the sorting of the Config list before createList is called.

Syntax <bean name>.setSortField(String sort_field)
sort_field must be one of these values, "DateCreated",
"DateSubmitted", "Name", and "ID".

Usage In the following example, the list of saved configurations will appear sorted by date,
used in conjunction with setSortOrder.

Example configList.setSortField(“DateCreated”);
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 187

ConfigList API

setSortOrder
setSortOrder
setSortOrder function specifies whether the list is sorted in ascending or descending
order according to the value in the sort field.

Syntax <bean name>.setSortOrder(String sort_order)

Arguments

Usage setSortOrder orders the configuration list in ascending or descending order (for
letters or numbers) for the field you have chosen to sort by, used in conjunction
with setSortField. This function must be called before createList.

Example configList.setSortOrder(“Desc”);

Asc Sorts the list in ascending order.

Desc Sorts the list in descending order.
188 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Email Bean API D
The Email Bean API is created in the Email bean. After importing the Email bean
from the Email JSP page (using the useBean tag), you can call the following
functions from the Email JSP page to customize the Transact Server email interface.

See Chapter 3, “Working with Configurations,” for information on accessing email
functionality from the Configuration list.

In JSP, the tags <%= and %> are used to print the enclosed text on the page. The
tags <% and %> are used for code that you do not want printed.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 189

Email Bean API

getAction
getAction
getAction function returns the action used to submit your email form.

Syntax public String getAction(String pagename)

Arguments

Usage The getAction function returns the action for the email form. It takes the name of
your Email JSP page as an argument.

Example <form name="Email" action="<%=Email.getAction("EmailConfig.jsp")
%>" method="post">

String pagename The name of your Email JSP page.
190 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Email Bean API

getErrorMessage
getErrorMessage
getErrorMessage function returns the error message posted when an email has
failed to be sent. However, if the recipient mail server is down or the recipient email
address is incorrect, the API cannot send the error messages back to Transact server.

Syntax public String getErrorMessage()

Usage If the email failed to be sent (for example, sendMail returns false), call the
getErrorMessage function to get a description of the error that occurred.

Example <script language=JavaScript>
alert("<%=Email.getErrorMessage() %>");
</script>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 191

Email Bean API

getMailSent
getMailSent
getMailSent function determines whether an email was sent successfully. However,
if the recipient mail server is down or the recipient email address is incorrect, the
API cannot send the error messages back to Transact server.

Syntax public boolean getMailSent()

Usage The getMailSent function returns a true/false Boolean value indicating whether or
not the email was sent successfully.

Example <% if (!Email.getMailSent()) { %>
<script language = “JavaScript”>
alert (‘Your mail was not sent!’);
</script>

<% }%>
192 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Email Bean API

getRestoreConfigURL
getRestoreConfigURL
getRestoreConfigURL function restores the configuration.

Syntax public String getRestoreConfigURL()

Usage The getRestoreConfigURL returns the URL which will restore the configuration. This
URL must be included in the “message” parameter of the sendMail function in order
to successfully email the saved configuration.

Example <p><textarea name="Message" rows="4" cols="80">
<%= Email.getRestoreConfigURL()) %></textarea></p>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 193

Email Bean API

sendMail
sendMail
sendMail function sends the email.

Syntax public boolean sendMail(String to, String subject, String message)

Arguments

Usage The sendMail function sends the email message given in the “message” parameter
to the recipient specified in the “to” parameter with the subject in the “subject”
parameter. This function returns true if the message is sent successfully or false if
an error is encountered during send.

Example <% if (request.getParameter("To") != null) {
boolean mail_sent = Email.sendMail(request.getParameter("To"),

request.getParameter("Subject"), request.getParameter("Message")));
}
%>

String to The recipient of the email

String subject The subject for the email.

String message The email message.
194 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Email Bean API

setRequest
setRequest
setRequest function sets the request variable of your JSP page.

Syntax public void setRequest(HttpServletRequest request)

Arguments

Usage Call the setRequest function with the built-in request variable of your JSP page. The
setRequest function must be called before calling the sendMail function.

Example <% Email.setRequest(request); %>

HttpServletReq uest request Built-in JSP variable to refer to the request object.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 195

Email Bean API

setSession
setSession
setSession function sets the variable of your JSP page.

Syntax public void setSession(HttpSession session)

Arguments

Usage Call the setSession function with the built-in session variable of your JSP page. This
function must be called before calling sendMail.

Example <% Email.setSession(session); %>

HTTPSession session Built-in JSP variable to refer to the session object.
196 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigAccess Bean API E
The ConfigAccess Bean API is created in the ConfigAccess bean. After importing the
ConfigAccess bean from the Post Form JSP page (using the useBean tag), you can
call the following functions from the Post Form JSP page to customize the content
of the form post to the Order Management System.

See “Posting a Form from Add to Cart” on page 80 to see a sample form created
using the ConfigAccess Bean API.

In JSP, the tags <%= and %> are used to print the enclosed text on the page. The
tags <% and %> are used for code that you do not want printed.

NOTE: Before accessing the ConfigAccessBean API in your JSP page, you must
include the bean in your JSP page using a useBean tag.

Example
<!-- BEA WebLogic -->
<jsp:useBean id="bean" scope="page"
class="com.siebel.isscda.wl.transact.ConfigAccessBean">
<!-- BEA WebLogic -->

<!-- IBM WebSphere -->
<jsp:useBean id="bean" scope="page"
class="com.siebel.isscda.ws.transact.ConfigAccessBean">
<!-- IBM WebSphere -->
</jsp:useBean>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 197

ConfigAccess Bean API

Functions
Functions

Function Description Syntax Example

finishUp Call this function last in the page. public void finishUp() <% bean.finishUp() %>

getBillingCity Call this function to get the city
associated with the account billing
address.

public String
getBillingCity()

<%= bean.getBillingCity()
%>

getBillingName Call this function to get the name
associated with the account billing
address.

public String
getBillingName()

<%=
bean.getBillingName() %>

getBillingCountry Call this function to get the country
associated with the account billing
address.

public String
getBillingCountry

<%=
bean.getBillingCountry()
%>

getBillingState Call this function to get the state
associated with the account billing
address.

public String
getBillingState()

<%= bean.getBillingState()
%>

getBillingStreet Call this function to get the street
address associated with the account
billing address.

public String
getBillingStreet()

<%=
bean.getBillingStreet() %>

getBillingZip Call this function to get the ZIP Code
associated with the account billing
address.

public String
getBillingZip()

<%= bean.getBillingZip()
%>

getConfig This function must be called to get the
desired configuration. It must be called
before any of the part accessor methods
(for example, getPartID or nextPart).

public void
getConfig()

<% bean.getConfig(); %>
198 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigAccess Bean API

Functions
getMatchingPartFields This function returns an array of
KeyValuePair objects whose keys are
the field names and values of the part’s
config data, where the field name (key)
contains or equals the string argument
field_match. If you called
getMatchingPartFields with “PRICE” as
the field_match argument, you would
get back, for example, “PETPRICE,”
“MPRICE,” “DISCPRICE,” and “PRICE”
if those fields were all in the config data
for the part.

The KeyValuePair object is an object
containing two string fields: key and
value. If the key field of the
KeyValuePair object is the string
“PRICE,” the value will be the price.

public KeyValuePair[]
getMatchingPartFields
(String field_match)

<% KeyValuePair[] array =
bean.getMatchingPartFields(
"PRICE");

 for (int i=0;
i<array.length; i++) { %>

 field <%=array[i].key %>
has value <%=
array[i].value %>

<% } %>

getShippingCity Call this function to get the city
associated with the account shipping
address.

public String
getShippingCity()

<%=
bean.getShippingCity() %>

getShippingCountry Call this function to get the country
associated with the account shipping
address.

public String
getShippingCountry()

<%=
bean.getShippingCountry()
%>

getShippingName Call this function to get the name
associated with the account shipping
address.

public String
getShippingName()

<%=
bean.getShippingName()
%>

getShippingState Call this function to get the state
associated with the account shipping
address.

public String
getShippingState()

<%=
bean.getShippingState()
%>

getShippingStreet Call this function to get the street
address associated with the account
shipping address.

public String
getShippingStreet()

<%=
bean.getShippingStreet()
%>

getShippingZip Call this function to get the ZIP Code
associated with the account shipping
address.

public String
getShippingZip()

<%=
bean.getShippingZip() %>

getPartConfigData This function returns the ConfigData
for the configuration as a delimited
string. The delimiter used is "~|".

public String
getPartConfigData()

<%=
bean.getPartConfigData()
%>

getPartDescr This function returns a String
description of the part.

public String
getPartDescr()

<%= bean.getPartDescr()
%>

Function Description Syntax Example
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 199

ConfigAccess Bean API

Functions
getPartExtPrice This function returns the extended
price for the part (price*qty).

public String
getPartExtPrice()

<%=
bean.getPartExtPrice() %>

getPartExtSubPrice This function returns the extended
subprice for the part (subprice*qty).

Syntax

public String getPartExtSubPrice()

Example

<%= bean.getPartExtSubPrice() %>

getPartField This function returns the value of the
ConfigData field. ConfigData includes
all inputs and outputs. Inputs include
all widget selections and all related
feature table data. Inputs also include
all untabled widgets, which are usually
text input boxes that are not associated
with feature tables. Outputs are all
information from the configuration
table. Extra information from 0
columns like PRICE or PARTNUM is
also included.

public String
getPartField(String
field)

<%=
bean.getPartField("DESC")
%>

getPartItemized This function returns the value of the
ITEM_ITEMIZED variable. See Siebel
Interactive Designer Administration
Guide for more information on the
ITEM_ITEMIZED variable.

public String
getPartItemized()

<%=
bean.getPartItemized() %>

getPartParentID This function returns the unique
identifier of this part's parent, if a
parent exists.

public int
getPartParentID()

<%=
bean.getPartParentID() %>

getPartID This function returns the unique ID of
the part.

public int getPartID() <%= bean.getPartID() %>

getPartIndex This function returns the number of the
part in the list, such that the first part
has an index value of 1.

public int
getPartIndex()

<%= bean.getPartIndex()
%>

getPartLevel The getPartLevel function returns a
number indicating the number of
ancestors (parents) this part has in the
configuration. The list of parts is
traversed from parent to child. A part
with no parent will have a level of 0,
one parent a level of 1, a parent with a
parent a level of 2, and so on.

public int
getPartLevel()

<% if (bean.getPartLevel()
> 0) { %>

<p>

Function Description Syntax Example
200 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ConfigAccess Bean API

Functions
getPartNum This function returns the part's part
number as a string.

public String
getPartNum()

<%= bean.getPartNum()
%>

getPartPrice This function returns the part's price. public String
getPartPrice()

<%= bean.getPartPrice()
%>

getPartQty This function returns the quantity of
the part in the configuration.

public String
getPartQty()

<%= bean.getPartQty()
%>

getPartSubPrice This function returns the Part
“subprice.” The subprice is where the
part's price is the sum of its children's
prices.

public String
getPartSubPrice()

<%=
bean.getPartSubPrice() %>

hasMoreParts Call this function to determine whether
this configuration's list of parts
contains more parts to show. This
function returns true if there are more
parts left in the list. It is used in
conjunction with nextPart().

public boolean
hasMoreParts()

<% while
(bean.hasMoreParts()) {

 bean.nextPart();

 } %>

<% } %>

nextPart Call this function to iterate to the next
part in the configuration's list of parts.
Used in conjunction with
hasMoreParts().

public void nextPart() <% while
(bean.hasMoreParts()) {

 bean.nextPart();

 } %>

setRequest Call the setRequest function with the
built-in request variable of your JSP
page. This function must be called
before getConfig.

public void setRequest
(HttpServletRequest
request)

<%
bean.setRequest(request);
%>

setSession Call the setSession function with the
built-in session variable of your JSP
page. This function must be called
before getConfig.

public void setSession
(HttpSession session)

<%
bean.setSession(session);
%>

Function Description Syntax Example
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 201

ConfigAccess Bean API

Functions
202 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ShoppingCartBean API F
The ShoppingCartBean API is created in the ShoppingCartBean bean. After
importing the ShoppingCartBean bean from the ShoppingCart JSP page (using the
useBean tag), you can call the functions in this chapter from the ShoppingCart JSP
page to customize the ShoppingCart view.

In JSP, the tags <%= and %> are used to print the enclosed text on the page. The
tags <% and %> are used for code that you do not want printed.

NOTE: Before accessing the ShoppingCartBean API in your JSP page, you must
include the bean in your JSP page using a useBean tag.

Example
<jsp:useBean id="bean" scope="page"
class="com.Siebel.isscda.wl.ShoppingCartBean">
</jsp:useBean>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 203

ShoppingCartBean API

General Functions
General Functions

Function Description Syntax Example

getCartOnLoad Call this function in the onLoad
handler of the BODY tag in the
ShoppingCart template.

public String
getCartOnLoad()

<body bgcolor=#FFFFFF
onLoad="<%=
bean.getCartOnLoad()
%>">>

getQuote Retrieve all the information from
the database about the quote
currently being displayed to the
user through the shopping cart
interface.

public void getQuote() <%= bean.getQuote() %>

setSession Pass the JSP session object to the
bean.

public void
setSession(HttpSession
session)

<%=
bean.setSession(session)
%>

setRequest Pass the JSP request object to the
bean.

public void
setRequest(HttpServlet
Request request)

<%=
bean.setRequest(request)
%>

finishUp After all the quote line items and
parts have been iterated through,
a call must be made to the
ShoppingCartBean API function
finishUp(). This function writes
any changes the user has made to
the database.

public void finishUp() <%= bean. finishUp ()
%>

getQuoteErrorCondition Returns true if an error has
happened during the display or
update of the shopping cart
information.

public boolean
getQuoteErrorCondition()

<% if
(bean.getQuoteErrorConditi
on()) {

%>

 <script
language="JavaScript">

 ServerError();

 </script>

<% }%>
204 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ShoppingCartBean API

General Functions
getQuoteChangeError Returns true if the cart could not
be updated because of a
concurrency error (another user
made changes to the quote before
update was clicked). The current
quote information is displayed in
the shopping cart, including the
other user’s changes. Further
changes may be reapplied and
update may be clicked again.

public boolean
getQuoteChangeError()

<% if
(bean.getQuoteChangeError
())
{ %>

<script
language="JavaScript">

 …

</script>

<% } %>

getQuoteDeletedError Returns true if the cart is deleted
by another user (the creator is the
only user allowed to delete the
quote).

public boolean
getQuoteDeletedError()

<% if
(bean.getQuoteDeletedError
())
{ %>

<script
language="JavaScript">

 QuoteDeletedError();

</script>

<% } %>

getQuoteFormAction The action parameter of the
cart_form HTML form in the
ShoppingCart.jsp template should
get its value from a call to the
getQuoteFormAction() method.

public String
getQuoteFormAction()

<form name="cart_form"
action="<%=
bean.getQuoteFormAction()
%>" method=POST>

Function Description Syntax Example
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 205

ShoppingCartBean API

Quote Header Functions
Quote Header Functions

Function Description Syntax Example

getQuoteID Returns the unique
numerical identifier for the
quote.

public int getQuoteID() <td><font face="VERDANA"
size=
-2>Quote ID:</
font></td><td><font
face="VERDANA" size=
-2><%= bean.getQuoteID() %>
</td>

getQuoteUser Returns the user_id of the
user who created the
quote.

public String
getQuoteUser()

<td><font face="VERDANA"
size=
-2>Created By:
</td><td><font
face="VERDANA" size= -2><%=
bean.getQuoteUser() %>
</td>

getQuoteDateCreated Returns the date the quote
was created in locale-
specific format.

public String
getQuoteDateCreated()

<td><font face="VERDANA"
size=
-2>Date Created:</
font>
</td><td><font
face="VERDANA" size= -2><%=
bean.getQuoteDateCreated() %></
font></td>

getQuoteDateModified Returns the date the quote
was last modified in
locale-specific format.

public String
getQuoteDateModified()

<td><font face="VERDANA"
size=
-2>Date Created:</
font>
</td><td><font
face="VERDANA" size= -2><%=
bean.getQuoteDateCreated() %></
font></td>

getQuoteDateSubmitted Returns the date the quote
was submitted to the OMS
in locale-specific format.

getQuoteDateSubmitted <td><font face="VERDANA"
size=
-2>Date Created:</
font>
</td><td><font
face="VERDANA" size= -2><%=
bean.getQuoteDateSubmitted()
%></td>
206 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ShoppingCartBean API

Quote Header Functions
getQuoteName() Returns the name
provided by the user when
the quote was saved. This
always needs to be
included as an input on
the form, even if it is not
visible, so that previous
values are not lost, and
when a user does provide
a name there is a place to
put it in the form. The field
name must be
QUOTE_NAME.

public String
getQuoteName()

<input type="hidden"
name="QUOTE_NAME"
value="<%= bean.getQuoteName()
%>">

getQuoteAccountID Returns the account ID
associated with this quote.
Should be the same as the
account of the user who
created the quote.

public String
getQuoteAccountID()

<td><font face="VERDANA"
size=
-2>Account ID:
</td><td><font
face="VERDANA" size= -2><%=
bean.getQuoteAccountID() %>
</td>

getTotalPackages() Returns the total number
of line items in this quote.

public int
getTotalPackages()

<% bean.getTotalPackages() %>

getQuoteHeaderPrefix Returns the prefix string
used by Transact
(“HEADER_”) to identify
fields that should be saved
as custom header
information for the quote.
Put your own name for the
field after the prefix in the
name property of the form
element.

public String
getQuoteHeaderPrefix()

<td><font face="VERDANA"
size= -2>
Cost Center:</
td>
<td><input type=”text”
name=”<%=bean.getQuoteHeader(
)%>
CostCenter”><%=
bean.getQuoteHeader(“CostCenter”)
%>
</td>

getQuoteHeader Returns the value for the
header field specified by
the name argument. The
name should be the name
you specified to follow the
header prefix. If there is no
value for the field in this
quote yet, it will show up
as empty (returns “”).

public String
getQuoteHeader(String
name)

<td><font face="VERDANA"
size=
-2>Cost Center:
</td><td><input type=”text”
name=”<%=bean.getQuoteHeader(
)%>
CostCenter”><%=
bean.getQuoteHeader(“CostCenter”)
%>
</td>

Function Description Syntax Example
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 207

ShoppingCartBean API

Quote Header Functions
getBillingName Returns the billing name
for the account from
LDAP.

public String
getBillingName()

<% bean.getBillingName() %>

getBillingStreet Returns the billing street
address for the account
from LDAP.

public String
getBillingStreet ()

<% bean.getBillingStreet() %>

getBillingCity Returns the billing city for
the account from LDAP.

public String
getBillingCity()

<% bean. getBillingCity () %>

getBillingState Returns the billing state
for the account from
LDAP.

public String
getBillingState()

<% bean. getBillingState () %>

getBillingZip Returns the billing ZIP
Code for the account from
LDAP.

public String
getBillingZip()

<% bean. getBillingZip() %>

getBillingCountry Returns the billing country
for the account from
LDAP.

public String
getBillingCountry()

<% bean. getBillingCountry () %>

getShippingName Returns the shipping name
for the account from
LDAP.

public String
getShippingName()

<% bean.getShippingName() %>

getShippingStreet Returns the shipping street
address for the account
from LDAP.

public String
getShippingStreet ()

<% bean.getShippingStreet() %>

getShippingCity Returns the shipping city
for the account from
LDAP.

public String
getShippingCity()

<% bean. getShippingCity () %>

getShippingState Returns the shipping state
for the account from
LDAP.

public String
getShippingState()

<% bean. getShippingState () %>

getShippingZip Returns the shipping ZIP
Code for the account from
LDAP.

public String
getShippingZip()

<% bean. getShippingZip() %>

getShippingCountry Returns the shipping
country for the account
from LDAP.

public String
getShippingCountry()

<% bean. getShippingCountry () %>

Function Description Syntax Example
208 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ShoppingCartBean API

Line Item Functions
Line Item Functions

Function Description Syntax Example

hasMoreLineItems Returns true while there are still
more line items in the quote to be
displayed.

public boolean
hasMoreLineItems()

<%

 while (
bean.hasMoreLineItems())

 {

 bean.nextLineItem();

 while (
bean.hasMoreParts())

 {

 bean.nextPart();

//display quote line
items………………

 }

}

%>

nextLineItem Moves to the next line item to be
displayed.

public void
nextLineItem()

<%

 while (
bean.hasMoreLineItems())

 {

 bean.nextLineItem();

 while (
bean.hasMoreParts())

 {

 bean.nextPart();

//display quote line
items………………

 }

}

%>

getLineItemID Returns the numeric unique
identifier for the line item.

public int
getLineItemID()

<% bean.getLineItemID()
%>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 209

ShoppingCartBean API

Line Item Functions
getLineItemIndex Returns the counter value (index)
for the current line item (1, 2, and
so on).

public int
getLineItemIndex ()

<%
bean.getLineItemIndex()
%>

getLineItemDescr Returns the description field for
that line item (should come from
the pageset variable
FAMILY_NAME).

public String
getLineItemDescr()

<% bean.getLineItemDescr
() %>

getLineItemDiscount Returns the user-input discount
amount for the line item. Should
be a number between 0 and 100
with two places of decimal
precision.

public String
getLineItemDiscount()

<%
bean.getLineItemDiscount()
%>

getLineItemLinkbackURL Returns the user-input discount
amount for the line item. Should
be a number between 0 and 100
with two places of decimal
precision.

public String
getLineItemDiscount()

<%
bean.getLineItemDiscount()
%>

getLineItemDeleteURL Returns the URL the user can
click on to remove this line item
from the quote.

public String
getLineItemDeleteURL()

<%
bean.getLineItemDeleteURL(
) %>

Function Description Syntax Example
210 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ShoppingCartBean API

Part Functions
Part Functions

Function Description Syntax Example

hasMoreParts Returns true while the current line
item still has more parts to display.

public boolean
hasMoreParts ()

<%

 while (
bean.hasMoreParts())

 {

 bean.nextPart();

//display quote line
items………………

 }

%>

nextPart Returns the next part number in the
list for the current line item.

public void nextPart() <%
 while (
bean.hasMoreParts())

 {
 bean.nextPart();

//display quote line
items………………

 }

%>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 211

ShoppingCartBean API

Part Functions
getPartLevel Since parts can belong to other parts
as “children,” this function returns
an integer value designating the
“nested” level of the current part.
Therefore, if the current part is at the
top level and is not a child itself, the
level would be 0, but if the next part
in the list was a child of this part
then this function would return 1.
Parts are always returned in the
order of their family tree hierarchy,
such that you begin with a parent,
and then its children, and then its
children’s children, and so on before
returning to the parent’s siblings.

You can use the getPartLevel
function to format the display of the
parts such that it is more obvious
which children belong to which
parent, by inserting a certain
number of tabs or spacing characters
according to the part level.

public int
getPartLevel()

<% bean. getPartLevel()
%>

getPartID Returns the numeric unique
identifier for the part.

public int getPartID() <% bean. getPartID() %>

getPartIndex Returns the numeric index (counter)
for the part. Numbering of parts
starts over at one for each line item.

public int
getPartIndex()

<% bean.GetPartIndex ()
%>

getPartConfigData Returns the configuration data string
for the part including all config and
feature table data that was saved for
this part number. The
ORDER_SUBVAR variable in the
app_config.js file determines which
tables contain part numbers, and the
data from the currently selected row
in that table is associated with the
part number it contains.

public String
getPartConfigData()

<%
bean.getPartConfigData()
%>

getLineItemLinkbackURL Returns the user-input discount
amount for the line item. Should be
a number between 0 and 100 with
two places of decimal precision.

public String
getLineItemDiscount(
)

<%
bean.getLineItemDiscount()
%>

getLineItemDeleteURL Returns the URL the user can click
on to remove this line item from the
quote.

public String
getLineItemDeleteUR
L()

<%
bean.getLineItemDeleteURL
() %>

Function Description Syntax Example
212 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ShoppingCartBean API

Part Functions
getPartParentID Returns the unique identifier of the
parent item (part), if any. If the part
has no parent, returns zero.

public int
getPartParentID()

<% bean.getPartParentID()
%>

getPartLineItemID Returns the unique numeric
identifier for the line item containing
this part.

public int
getPartLineItemID()

<%
bean.getPartLineItemID()
%>

getPartQty Returns a numeric quantity for the
quantity of this part the user has
selected. Default value is 1. The
example below shows quantity being
displayed as an editable, updatable
field. The name for the updatable
quantity field must be constructed as
in the example below.

public String
getPartQty()

<td><font
face="VERDANA" size=
-2><input type="text"
name="<%=
bean.getPartPrefix()
%>_QTY" value="<%=
bean.getPartQty() %>"
size=5>
</td>

getPartDescr Returns the description for this part
as given in the data model.

public String
getPartDescr()

<tr><td><font
face="VERDANA" size= -
2><t><%=
bean.getPartDescr() %></
font>
</td>

getPartNum Returns the part number for this part
as given in the ORDER_SUBVAR
column in the data model.

public String
getPartNum()

<td><font
face="VERDANA" size=
-2><%=
bean.getPartNum() %>
</td>

getPartPrice Returns the price for this part as
given in the data model.

public String
getPartPrice()

<td><font
face="VERDANA" size=
-2><%=
bean.getPartPrice() %>
</td>

getPartSubPrice Instead of price, you may specify
subprice, which means that the price
of this part is equal to the sum of the
prices of its children parts or, when
no children are available, the price is
from the data model.

public String
getPartSubPrice()

<td><font
face="VERDANA" size=
-2><%=
bean.getPartSubPrice()
%></td>

getPartExtSubPrice Subprice from above multiplied by
part quantity.

public String
getPartExtSubPrice()

<td><font
face="VERDANA" size=
-2><%=
bean.getPartExtSubPrice()
%></td>

Function Description Syntax Example
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 213

ShoppingCartBean API

Part Functions
getPartExtPrice Price from above multiplied by part
quantity.

public String
getPartExtPrice()

<td><font
face="VERDANA" size=
-2><%=
bean.getPartExtPrice()
%></td></
tr>

getPartItemized Returns TRUE or FALSE, whether
this part is itemized, from the
pageset variable
“PAGESET_ITEMIZED.”

public String
getPartItemized()

<% bean.getPartItemized()
%>

getMatchingPartFields Returns an array of matching part
fields, where the field names either
designate user-created custom fields
or columns from the data model data
tables. Here is an example:

The first statement declares an array
of KeyValuePair objects as the return
value for the getMatchingPartFields
function call. This array will be
populated by any and all fields and
values that have “PRM” as part of
their field name. The next statement
looks to see if any matching fields
were returned for this part.
“matches.length” returns the
number of entries in the array and if
it is greater than zero, we have at
least one matching field. Since we
know that there are no other fields in
our data model containing “PRM,”
we can assume that the first array
record has the value we are
interested in, and we can print it into
a table cell labeled “PRM: ”. That is
what the next lines do. First, we
close off the code block since we
want to print something out to the
screen. Then we make our HTML
table cell with the label we want and
print the value of the first array
record using “<%=
matches[0].value %>”. The
“matches[0]” specifies the first
KeyValuePair object in the array, and
the “.value” says to access the value
field (“.key” would give us the field
name).

public KeyValuePair[]
getMatchingPartField
s
(String key_match)

<% KeyValuePair []
matches =
bean.getMatchingPartFields(
“PRM”);

if (matches.length > 0) {

%>

<td>PRM:
<%=matches[0].value
%> </td>

<% } %>

Function Description Syntax Example
214 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

ShoppingCartBean API

Part Functions
getPartField Same as the above
getMatchingPartFields, but does an
exact match on the field name, and
so returns only a single string value.
If no exact match is found, returns
empty string (“”).

public String
getPartField(String
name)

<input type=”text”
name=”<%=bean.getPart
Prefix()%>_Special_Instruc
tions”
value=”<%=bean.getPart
Field
(“_Special_Instructions”)%
>”>

getPartPrefix Returns the prefix used to save
customer-created fields associated
with a particular line item (as
opposed to the header fields, which
only provide a single field entry for
the entire quote). This prefix is
“ITEM_” concatenated with the
current line item index and the
current part number index. Use the
prefix in the name field of the form
input field that you wish to save with
the line item, followed by the name
you create.

public String
getPartPrefix()

<input type=”text”
name=”<%=bean.getPart
Prefix()%>_Special_Instruc
tions”
value=”<%=bean.getPart
Field
(“_Special_Instructions”)%
>”>

Function Description Syntax Example
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 215

ShoppingCartBean API

Footer Functions
Footer Functions

Function Description Syntax Example

getQuoteSubtotal Returns the subtotal for the quote
(equal to the sum of the extended
prices).

public String
getQuoteSubtotal()

<td colspan=2 align=left><font
face="VERDANA" size=
-2>Subtotal:
</td>

<td><font face="VERDANA"
size=
-2><%= bean.getQuoteSubtotal()
%></td></tr>

getQuoteDiscount Returns the discount percent for
the quote, which is user-definable.
This should be entered as a
number between 0 and 100 with
up to two decimal places of
precision. If no discount percent
has yet been defined for this
quote, returns zero.

public String
getQuoteDiscount()

<td colspan=2 align=left><font
face="VERDANA" size=
-2>Discount %:
</td>

<td><font face="VERDANA"
size=
-2><input type="text"
name="QUOTE_DISCOUNT"
size=5 value="<%=
bean.getQuoteDiscount()
%>"></td>

getQuoteTotal Returns the total amount for this
quote, including any discount.

public String
getQuoteTotal()

<td><font face="VERDANA"
size=
-2><%= bean.getQuoteTotal()
%>
</td>
216 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code G
This appendix covers additional code used with Siebel Transact. It includes:

■ XML Default Data Definition

■ XSLT Style Sheet Example

■ HTML Form Post of Shopping Cart Contents
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 217

Additional Code

XML Default Data Definition
XML Default Data Definition
1.1.Data Description

1.1.1.Line Item Data Description

There will be two levels of entities describing a package. The top
level entity, called LineItem, is a placeholder to contain all the
Items which have been selected from the pageset. The children of the
LineItem entity will be called Items and will contain configuration
information, and whether the Item is a child of another Item in the
LineItem.

LineItem Entity Fields

* Id

* User

* Pageset

* Pageset Version

* Date Created

* Date Submitted

* Name (if any)

* Account Id (if any)

* Quote Id (if any)

* Environment data at the pageset level

Item Entity Fields

* Id

* LineItem Id (references Id field of LineItem Entity above)

* Qty

* Config Data

* Engine Data

* Parent Id (if any)
218 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XML Default Data Definition
1.1.2.Quote Data Description

The quote data description is very simple, since a quote is simply
a container for one or more LineItems. The LineItems reference their
parent quote using the value in the Id field.

Quote Entity Fields

* Id

* Date Created

* User

* Name (if any)

* Account Id (if any)

* Date Submitted

* Header Field Data

1.1.3.Generic LineItem DTD

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE document [

<!ELEMENT SiebelLineItem (ShippingAddress?, BillingAddress?, User?,
Item+)>

<!-siebel_id: unique identifier ?

<!-- created_on: timestamp -->

<!-- id: 3rd party unique identifier -->

<!ATTLIST SiebelLineItem

siebel_id ID #REQUIRED

created_on #REQUIRED

id ID #IMPLIED

>

<!-- user element is optional, contains buyer identification
information -->
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 219

Additional Code

XML Default Data Definition
<!ELEMENT User>

<!ATTLIST User

user_id CDATA #REQUIRED

account_id CDATA #IMPLIED

session_id CDATA #IMPLIED

order_id CDATA #IMPLIED

>

<!--Price type examples: quoted, list, discount -->

<!ELEMENT Price (#PCDATA)>

<!ATTLIST Price

type CDATA #REQUIRED

currency CDATA #IMPLIED

>

<!ELEMENT ConfigData (#PCDATA)>

<!ATTLIST ConfigData

name CDATA #REQUIRED

>

<!-An item must have config data (name/value pairs) associated with
it

An item can have zero or more items as children

An item can have zero or more Price elements ?

<!ELEMENT Item (ConfigData+, Price*, Item*)>

<!ATTLIST Item

part_number CDATA #IMPLIED
220 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XML Default Data Definition
quantity CDATA #REQUIRED

description CDATA #IMPLIED

>

]>

1.1.4.Generic Quote DTD

<?xml version="1.0" standalone="yes" ?>

<!DOCTYPE document [

<!ELEMENT SiebelQuote (User?, SiebelLineItem+, Total*)>

<!ATTLIST SiebelQuote

quote_id ID #REQUIRED

date_created CDATA #REQUIRED

>

<!-Header field information -->

<!ELEMENT Header (ShippingAddress?, BillingAddress?, HeaderData*)>

<!ELEMENT HeaderData (#PCDATA)>

<!ATTLIST HeaderData

name CDATA #REQUIRED>

<!-shipping address ?

<!ELEMENT ShippingAddress (Name, Street+, City, State?,
PostalCode?,Country?>

<!-billing address ?

<!ELEMENT BillingAddress (Name, Street+, City, State?,
PostalCode?,Country?>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 221

Additional Code

XML Default Data Definition
<!ELEMENT Name (#PCDATA)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT State (#PCDATA)>

<!ELEMENT PostalCode (#PCDATA)>

<!ELEMENT Country (#PCDATA)>

<!-Total type examples: subtotal, grand, discount ?

<!ELEMENT Total (#PCDATA)>

<! ATTLIST Total

type CDATA #REQUIRED

currency CDATA #IMPLIED

>

(See SiebelLineItem for the rest of the DTD)
222 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XSLT Style Sheet Example
XSLT Style Sheet Example
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output indent="yes"/>

<!-- **

get all the parameters that are passed from outside

*** -->

<xsl:param name="payloadid"/>

<xsl:param name="timestamp"/>

<xsl:param name="version" select="'1.0'"/>

<xsl:param name="locale" select="'en-US'"/>

<xsl:param name="from_domain"/>

<xsl:param name="to_domain"/>

<xsl:param name="sender_domain"/>

<xsl:param name="from_identity"/>

<xsl:param name="to_identity"/>

<xsl:param name="sender_identity"/>

<xsl:param name="sender_secret"/>

<xsl:param name="user_agent"/>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 223

Additional Code

XSLT Style Sheet Example
<!-- **

the template that matches the root item

*** -->

<xsl:template match="SiebelQuote">

<cXML>

<!-- ***

setup the attributes for the cXML element

** -->

<xsl:attribute name="version"><xsl:value-of select="$version"/
></xsl:attribute>

<xsl:attribute name="payloadID"><xsl:value-of
select="$payloadid"/></xsl:attribute>

<xsl:attribute name="timestamp"><xsl:value-of
select="$timestamp"/></xsl:attribute>

<xsl:attribute name="xml:lang"><xsl:value-of select="$locale"/
></xsl:attribute>

<!-- ***

setup the values for the variables

** -->

<xsl:variable name="order_id" select="./User/@order_id"/>

<!-- ***

setup the cXML header

** -->
224 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XSLT Style Sheet Example
<Header>

<From>

<Credential>

<xsl:attribute name="domain"><xsl:value-of
select="$from_domain"/></xsl:attribute>

<Identity>

<xsl:value-of select="$from_identity"/>

</Identity>

 </Credential>

</From>

<To>

<Credential>

<xsl:attribute name="domain"><xsl:value-of
select="$to_domain"/></xsl:attribute>

<Identity>

<xsl:value-of select="$to_identity"/>

</Identity>

</Credential>

</To>

<Sender>

<Credential>

<xsl:attribute name="domain"><xsl:value-of
select="$sender_domain"/></xsl:attribute>

<Identity>

<xsl:value-of select="$sender_identity"/>

</Identity>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 225

Additional Code

XSLT Style Sheet Example
<SharedSecret>

<xsl:value-of select="$sender_secret"/>

</SharedSecret>

</Credential>

<UserAgent>

<xsl:value-of select="$user_agent"/>

</UserAgent>

</Sender>

</Header>

<!-- **

setup the cXML OrderRequest (Header & ItemOut)

*** -->

<OrderRequest>

<OrderRequestHeader>

<xsl:attribute name="type">new</xsl:attribute>

<xsl:attribute name="orderID"><xsl:value-of
select="$order_id"/></xsl:attribute>

<!-- **

TOTAL

*** -->

<Total>

<Money>
226 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XSLT Style Sheet Example
<xsl:choose>

<xsl:when test="./Total">

<xsl:attribute name="currency"><xsl:value-of
select="./Total[position()=1]/@currency"/></xsl:attribute>

<xsl:value-of select="./Total[position()=1]"/>

</xsl:when>

<xsl:otherwise>

<xsl:attribute name="currency"><xsl:value-of
select="'USDollars'"/></xsl:attribute>

<xsl:value-of select="0.0"/>

</xsl:otherwise>

</xsl:choose>

</Money>

</Total>

<!-- **

 SHIPPING AND BILLING ADDRESSES

*** -->

<xsl:apply-templates select="Header/ShippingAddress"/>

<xsl:apply-templates select="Header/BillingAddress"/>

<!-- **

 OTHER Siebel SPECIFIC DATA

*** -->

<Extrinsic>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 227

Additional Code

XSLT Style Sheet Example
 <xsl:attribute name="name">quote_id</xsl:attribute>

 <xsl:value-of select="./@quote_id"/>

</Extrinsic>

<Extrinsic>

 <xsl:attribute name="name">date_created</xsl:attribute>

 <xsl:value-of select="./@date_created"/>

</Extrinsic>

<xsl:apply-templates select="./Header/HeaderData"/>

<!-- **

 ITEM INFORMATION

*** -->

<xsl:apply-templates select="SiebelLineItem"/>

 </OrderRequestHeader>

 </OrderRequest>

 </cXML>

</xsl:template>

<xsl:template match="ShippingAddress">

<ShipTo>

 <Address>

<Name>
228 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XSLT Style Sheet Example
 <xsl:attribute name="xml:lang"><xsl:value-of
select="$locale"/></xsl:attribute>

 <xsl:value-of select="Name"/>

</Name>

<Street><xsl:value-of select="Street"/></Street>

<City><xsl:value-of select="City"/></City>

<State><xsl:value-of select="State"/></State>

<Country><xsl:value-of select="Country"/></Country>

<PostalCode><xsl:value-of select="PostalCode"/></PostalCode>

 </Address>

</ShipTo>

</xsl:template>

<xsl:template match="BillingAddress">

<BillTo>

 <Address>

<Name>

 <xsl:attribute name="xml:lang"><xsl:value-of
select="$locale"/></xsl:attribute>

 <xsl:value-of select="Name"/>

</Name>

<Street><xsl:value-of select="Street"/></Street>

<City><xsl:value-of select="City"/></City>

<State><xsl:value-of select="State"/></State>

<Country><xsl:value-of select="Country"/></Country>

<PostalCode><xsl:value-of select="PostalCode"/></PostalCode>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 229

Additional Code

XSLT Style Sheet Example
 </Address>

</BillTo>

</xsl:template>

<xsl:template match="HeaderData">

<Extrinsic>

<xsl:attribute name="name"><xsl:value-of select="@name"/></
xsl:attribute>

<xsl:value-of select="."/>

</Extrinsic>

</xsl:template>

<xsl:template match="SiebelLineItem">

<xsl:apply-templates select=".//Item">

<xsl:with-param name="itemUser" select="./User"/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="Item">

 <ItemOut>

 <xsl:attribute name="quantity"><xsl:value-of
select="@quantity"/></xsl:attribute>

 <xsl:attribute name="lineNumber"><xsl:value-of select="../
@id"/></xsl:attribute>

 <ItemID>

 <SupplierPartID>
230 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XSLT Style Sheet Example
<xsl:value-of select="@part_number"/>

 </SupplierPartID>

 </ItemID>

 <ItemDetail>

<UnitPrice>

<Money>

<xsl:choose>

<xsl:when test="./Price">

<xsl:attribute name="currency"><xsl:value-of
select="./Price[position()=1]/@currency"/></xsl:attribute>

<xsl:value-of select="./Price[position()=1]"/>

</xsl:when>

<xsl:otherwise>

<xsl:attribute name="currency"><xsl:value-of
select="'USDollars'"/></xsl:attribute>

<xsl:value-of select="0.0"/>

</xsl:otherwise>

</xsl:choose>

</Money>

</UnitPrice>

<UnitOfMeasure></UnitOfMeasure>

<Description>

<xsl:value-of select="@description"/>

</Description>

<xsl:if test="$itemUser">

 <Extrinsic>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 231

Additional Code

XSLT Style Sheet Example
<xsl:attribute name="name">userID</xsl:attribute>

<xsl:value-of select="$itemUser/@user_id"/>

 </Extrinsic>

 <Extrinsic>

<xsl:attribute name="name">accountID</xsl:attribute>

<xsl:value-of select="$itemUser/@account_id"/>

 </Extrinsic>

 <Extrinsic>

<xsl:attribute name="name">sessionID</xsl:attribute>

<xsl:value-of select="$itemUser/@session_id"/>

 </Extrinsic>

</xsl:if>

<Extrinsic>

<xsl:choose>

<xsl:when test="./Price">

 <xsl:attribute name="name">parentID</
xsl:attribute>

 <xsl:value-of select="../@part_number"/>

</xsl:when>

<xsl:otherwise>

 <xsl:attribute name="name">parentID</
xsl:attribute>

 <xsl:value-of select="0"/>

</xsl:otherwise>

</xsl:choose>

</Extrinsic>
232 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

XSLT Style Sheet Example
<xsl:apply-templates select="./ConfigData"/>

 </ItemDetail>

 </ItemOut>

</xsl:template>

<xsl:template match="ConfigData">

<Extrinsic>

<xsl:attribute name="name"><xsl:value-of
select="concat('cfg_', @name)"/></xsl:attribute>

<xsl:value-of select="."/>

</Extrinsic>

</xsl:template>

</xsl:stylesheet>
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 233

Additional Code

HTML Form Post of Shopping Cart Contents
HTML Form Post of Shopping Cart Contents
<%@ page

info="Shopping Cart Form Submission"

contentType="text/html"

%>

<jsp:useBean id="bean"
class="com.siebel.isscda.wl.transact.ShoppingCartBean">

<%

bean.setRequest(request);

bean.setSession(session);

bean.getQuote();

%>

</jsp:useBean>

<!doctype html public "-//w3c/dtd HTML 4.0//en">

<html>

<head>

</head>

<body bgcolor=#FFFFFF onLoad="document.checkout_form.submit();">

<form name="checkout_form" action="http://www.mycompany.com/
checkout.cgi" method=POST>

<input type="hidden" name="QUOTE_NAME" value="<%=
bean.getQuoteName() %>">

<input type="hidden" name="QUOTE_ID" value="<%= bean.getQuoteID()
%>">

<input type="hidden" name="QUOTE_ACCOUNT" value="<%=
bean.getQuoteAccountID() %>">
234 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Code

HTML Form Post of Shopping Cart Contents
<input type="hidden" name="QUOTE_DATE_CREATED" value="<%=
bean.getQuoteDateCreated() %>">

<input type="hidden" name="QUOTE_DATE_MODIFIED" value="<%=
bean.getQuoteDateModified() %>">

<% if (bean.getQuoteHeader("BILLING_ADDR") != "") { %>

<input type="hidden" name="QUOTE_BILLING_ADDR"
value="<%= bean.getQuoteHeader("BILLING_ADDR") %>">

<% }else { %>

<textarea rows=5 name="HEADER_BILLING_ADDR"><%=
bean.getBillingName() %>

<%= bean.getBillingStreet() %>

<%= bean.getBillingCity() %>, <%= bean.getBillingState() %> <%=
bean.getBillingZip() %>

<%= bean.getBillingCountry() %></textarea>

<% } %>

<% if (bean.getQuoteHeader("SHIPPING_ADDR") != "") { %>

 <input type="hidden" name="QUOTE_SHIPPING_ADDR"
value="<%= bean.getQuoteHeader("SHIPPING_ADDR") %>">

<% }else { %>

<textarea rows=5 name="HEADER_SHIPPING_ADDR"><%=
bean.getShippingName() %>

<%= bean.getShippingStreet() %>

<%= bean.getShippingCity() %>, <%= bean.getShippingState() %> <%=
bean.getShippingZip() %>

<%= bean.getShippingCountry() %>

</textarea>

<% } %>

<%

while (bean.hasMoreLineItems())

{

Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 235

Additional Code

HTML Form Post of Shopping Cart Contents
bean.nextLineItem();

while (bean.hasMoreParts())

{

bean.nextPart();

%>

<input type="hidden" name="<%= bean.getPartPrefix()%>_DESCRIPTION"
value="<%= bean.getPartDescr() %>">

<input type="hidden" name="<%= bean.getPartPrefix()%>_PART_NUM"
value="<%= bean.getPartNum() %>">

<input type="hidden" name="<%= bean.getPartPrefix()%>_QTY"
value="<%= bean.getPartQty() %>">

<input type="hidden" name="<%= bean.getPartPrefix()%>_PRICE"
value="<%= bean.getPartPrice() %>">

<input type="hidden" name="<%= bean.getPartPrefix()%>_EXT_PRICE"
value="<%= bean.getPartExtPrice() %>">

<%

 }//end while

}//end while

%>

<input type="hidden" name="QUOTE_SUBTOTAL" value="<%=
bean.getQuoteSubtotal() %>">

<input type="hidden" name="QUOTE_DISCOUNT" value="<%=
bean.getQuoteDiscount() %>">

<input type="hidden" name="QUOTE_TOTAL" value="<%=
bean.getQuoteTotal() %>">

</form>

</body>

</html>
236 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Transact Server Localization H
Currently, there is no localized resource bundle and jsp files provided. The user has
to manually localize OLResource resource bundle property and jsp files.

Transact Server
For the Transact Server resource bundle file (for example,
OLResource_en_US.properties), you can specify locale_language and
locale_country from the property editor so the application will look for the file name

OLResource_LOCALE_LANGUAGE_LOCALE_COUNTRY.properties

for displaying error and warning messages.

For example, you can translate English OLResource_en_US.properties provided by
the Transact Server into Japanese OLResource_ja_JP.properties for Japanese
resource bundle file.

For further information, please refer to the following links for resource bundle file.

http://java.sun.com/products/jdk/1.1/docs/api/java.util.ResourceBundle.html

http://java.sun.com/products/jdk/1.1/docs/api/java.util.Locale.html#_top_
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 237

Transact Server Localization

Transact Server JSP Files
Transact Server JSP Files
For localizing Transact Server jsp files, there is a Meta tag from HTML which can be
used to specify the language character set.

For example, if users specify meta tag "<meta http-equiv='Content-Type'
content='text/html; charset=big5'>" from jsp pages, the browser will translate
HTML page characters as Chinese big5 characters. Users will need to install a
language package based on the browsers needed in order to translate the jsp page
correctly.
238 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Tasks I
This appendix covers additional tasks that you can perform while setting up Siebel
Transact. It includes:

■ Set Up JDBC and Data Source for WebSphere

■ Change the DB2 Connection

■ Un-Install Transact LDAP

■ Block Display of Shopping Cart
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 239

Additional Tasks

Set Up JDBC and Data Source for WebSphere
Set Up JDBC and Data Source for WebSphere
Follow these steps to set up the JDBC driver and data source for WebSphere.

To set up the JDBC driver and data source for WebSphere

1 Start WebSphere WAS AdminServer.

2 Install JDBC Driver.

a From the View menu, select Type.

b In the left-side view panel, right-click JDBC Driver and select Create.

c Select Driver and enter a driver name.

This can be any name. Remember this driver name for the data source (for
example, DB2JDBCDriver).

d Select com.ibm.db2.jdbc.app.DB2Driver if you use DB2. Select
oracle.jdbc.driver.OracleDriver for Oracle database.

e Select jdbc:db2 for URL Prefix for DB2. Modify hostname from URL prefix to
Oracle server hostname from Oracle database.

f Select False for JTA Enabled.

3 Install the Data Source.

a In the left-side view panel, right-click DataSource and select Create.

b Enter a DataSource Name. (For example: Sample is already installed with
DB2.)

c Enter the JDBC driver name in the Database Name field.

4 From the View menu, select Topology.

5 In the left-side view panel, right-click DB2JDBCDriver and select Install.

6 Select the machine on which the user wants to install the JDBC driver.

7 Click Browse, select <SQLLIB root>/java/db2java.zip file for db2 or select
classes12.zip from <oracle folder>/jdbc/lib for Oracle database, and click
Open.
240 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Tasks

Set Up JDBC and Data Source for WebSphere
8 Click Install.

The JDBC driver will be installed.

For more information on WAS, visit the following URL:
http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/
index.html
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 241

Additional Tasks

Change the DB2 Connection
Change the DB2 Connection
Follow these directions if you want to change the DB2 database connection. This
requires you to modify the Admin.config file as follows.

To change the DB2 connection

1 For “com.ibm.ejs.sm.adminServer.dbUrl=jdbc:db2:was,” replace “was” with
the current DB2 database name.

2 For “com.ibm.ejs.sm.adminServer.dbUser=db2admin,” replace “db2admin”
with the current user connecting to the database, as specified above.

3 For “com.ibm.ejs.sm.adminServer.dbPassword=db2admin,” replace
“db2admin” with the current password of the user connecting to the database,
as specified above.
242 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Additional Tasks

Un_Install Transact LDAP
Un_Install Transact LDAP
Follow these steps to uninstall Transact LDAP:

■ Run transact_uninstall.bat.

■ Run rincon_uninstall.bat.
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 243

Additional Tasks

Block Display of Shopping Cart
Block Display of Shopping Cart
If you do not want to display a shopping cart window after you click AddToCart,
follow these steps:

1 Change the value of mar_display_cart from true to false.

2 Modify the siebel.prp file:

a Change the values of “mar_guest ok” from

“AddToCart,SubmitCart,ShoppingCart.jsp,OpenPackage”

to

“AddToCart, SubmitCart, ShoppingCart.jsp, OpenPackage, ViewQuote.jsp,
EmailQuote.jsp, EmailConfig.jsp, SavePackage, ConfigList.jsp, QuoteList.jsp,
ShoppingCart_orig.jsp, ShoppingCart_Header.jsp, ShoppingCart_Bottom.jsp,
ShoppingCart_Middle.jsp”

b You may have different file names for your shopping cart, or you may have
one or more files—Replace ShoppingCart_Header.jsp,
ShoppingCart_Bottom.jsp, ShoppingCart_Middle.jsp, based upon your
configurations.
244 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

Index
Version 7.0, Rev. I Siebel Interactive Selling Transact Server Interface Reference 245

Index
246 Siebel Interactive Selling Transact Server Interface Reference Version 7.0, Rev. I

	Contents
	Introduction
	How This Guide Is Organized
	Revision History

	Overview
	Architecture
	The Data Flow
	The Client
	The Application Server
	The Transact Java Engine
	Communication Layer
	Business Logic Layer
	Data Object Layer

	The Remote Systems
	The RDBMS
	The Order Management System

	Implementation
	Implementation Tasks and Team
	Application Server Administrator
	Database Administrator
	Integration Engineer
	Siebel Browser-Based Application Developer
	Siebel System Administrator

	Implementation Steps

	Installing Transact Server
	Prepare for the Installation
	Dependencies
	Installation Steps
	Terminology
	Generic Directories

	Install Transact on An Application Server
	Install Transact Server on Windows
	Install Transact Server on Solaris

	Configure the Application Server Environment
	The WebLogic Environment
	Setting Up the Class Path and Directory Path
	Modifying <WebLogic root>/WebLogic.Properties
	Setting Up the Database
	Oracle
	Microsoft SQL Server (Windows only)

	Setting Up the LDAP Server

	The WebSphere Environment
	Creating the Siebel Directory
	Administration for Siebel Property Files
	Setting Up the WebSphere Class Path
	Creating a Web Application
	Creating a Servlet
	Setting Up the LDAP Password
	Register EJBS
	Creating an Enterprise Application
	Enabling Security Permission
	Set Up the Transact Database
	DB2 Database Instance
	Oracle Database Instance

	Setting Up the LDAP User Group
	Setting Up eMail Service
	Setting Up the Transact Server Login

	Prepare the Application to Connect with Transact Server
	Setting the app_config.js Properties
	Setting the Order_Subvar Configuration Variable

	Setting the Transact Properties
	Redirecting a Page Set to a New OMS
	Configuring the HTTP Server

	Troubleshoot Transact Server
	Identify the Problem
	Concurrency Control

	Working with Configurations
	Working with the Configuration List
	Maintaining the Configuration List

	Modifying the Configuration List UI
	About the JSP Page
	The UseBean Tag
	The While Loop

	Default ConfigList JSP Page
	Emailing a Configuration
	Sample Email Bean JSP Page
	Email JSP Page Code

	Modifying the Save Configuration UI

	Integrating the Order Management System
	Connecting Your Siebel Application UI to Transact
	Add To Cart Button
	View Cart Button
	Save Configuration Button
	Configuration List Link

	Posting a Form from Add to Cart
	Sample Form Post JSP Page
	Form Post Result

	Working With the DTD
	The LineItem DTD Elements
	SiebelLineItem
	User
	Price
	ConfigData
	Item

	The Generic LineItem DTD

	Using Style Sheets
	About XSLT
	About cXML
	About the Siebel DTD
	The Sample XSLT Style Sheet
	Optional Code
	Templates

	Linking Back to Configurations
	From the Shopping Cart
	From the Configuration List
	Version Checking

	Authentication and Login Support
	About LDAP
	LDAP Models
	Default LDAP Directory
	Permissions
	ACL (Resources)
	Quote Users
	Business Accounts

	Login Pages
	Login Page
	After Login
	Login Success Page
	Login Error Page

	Setting LDAP Properties
	LDAP Passwords
	WebLogic User System’s Password
	LDAP User Directory Manager’s Password

	Setting Properties
	Command-Line API
	Sample Script Templates
	Supporting Adding Servlets to WebLogic
	The Script
	About the Script

	Adding Users and Groups
	The Script
	About the Script

	Deleting Users and Groups
	The Script
	About the Script

	The Shopping Cart
	Setting Transact Shopping Cart Properties
	App_config.js variables
	Properties Editor Properties

	Data Modeling For Transact Server
	Parts of the Cart
	How It Works
	Writing the JSP Template
	The Code Block Pair
	The Single Java Statement Pair

	Using the Shopping Cart Bean
	Accessing Header Data
	Quote Header Access Functions
	Customer-Created Quote Header Fields
	Example of Defaulting Address Info from LDAP

	Accessing Line Item Data
	Accessing Part (Subitem) Data
	Totals and Discounts
	Shopping Cart Buttons
	Update Action
	Clear Action
	Save Action
	Submit Action

	Error Handling
	onLoad Error Handling
	ConfigChangedError
	QuoteChangedError
	NoPermissionToChangeError
	QuoteDeletedError
	AddToCartError
	DeleteError
	ServerError

	finishUp Error Handling
	getQuoteDeletedError
	getQuoteErrorCondition

	Shopping Cart Template Requirements
	useBean Inclusion of ShoppingCartBean
	setRequest, setSession
	getQuote
	getCartOnLoad
	SetQuoteID (JavaScript function)
	cart_form (HTML form)
	getQuoteFormAction
	QUOTE_NAME (form variable)
	finishUp

	Submitting the Cart to an Order Management System
	Default XML Format
	Specifying an XSLT Stylesheet
	HTML Form-Based Cart Submission

	Printable Order (the View-Only Cart)
	The Quote List
	QuoteList Functionality
	QuoteListBean Initialization
	Iterating Through the User’s Quote List
	Error Handling
	What You Can Display in the Quote List
	EmailQuote.jsp template

	Transact API for Siebel eAdvisor
	AddToCart
	ConfigList
	RestoreConfig
	SaveConfig
	ShowCart
	Error Messages
	COP.InvalidI temAdded
	ServerError
	Transact NotAccessible

	Transact Server Callout/Override Points
	COP_AppDataVersionCheck
	COP_Before AddToCart
	COP_Before RestoreConfig
	COP_Before SaveConfig
	COP_PagesetVersionCheck
	OR_ConfigSavedSuccess
	OR_GetSaveConfigName
	GotSaveConfig Name
	OR_Transact NotActive

	ConfigList API
	anyConfig
	createList
	getAccountId
	getDateCreated
	getDeleteURL
	getDescription
	getEmailURL
	getIndex
	getName
	getRestoreURL
	getSortField
	getSortOrder
	getUniqueId
	getUserId
	nextConfig
	setSortField
	setSortOrder

	Email Bean API
	getAction
	getErrorMessage
	getMailSent
	getRestoreConfigURL
	sendMail
	setRequest
	setSession

	ConfigAccess Bean API
	Example
	Functions

	ShoppingCartBean API
	Example
	General Functions
	Quote Header Functions
	Line Item Functions
	Part Functions
	Footer Functions

	Additional Code
	XML Default Data Definition
	XSLT Style Sheet Example
	HTML Form Post of Shopping Cart Contents

	Transact Server Localization
	Transact Server
	Transact Server JSP Files

	Additional Tasks
	Set Up JDBC and Data Source for WebSphere
	Change the DB2 Connection
	Un_Install Transact LDAP
	Block Display of Shopping Cart

	Index

