
SIEBEL TOOLS REFERENCE
VERSION 7.5.3, REV. A

OCTOBER 2003
12-FRLK50

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Siebel Tools Reference 1

Introduction
How This Guide Is Organized . 25

Revision History . 26

Chapter 1. Siebel Tools Installation
Preinstallation Tasks . 31

Verifying Siebel Tools Prerequisites . 31

Installing a Database Server or Sample Database . 32

Installing Siebel Tools . 32

Language Pack Installation . 35

ODBC Installation . 35

Postinstallation Tasks . 37

Verifying Successful Installation . 37
Verifying the Siebel Tools Directory Structure . 38

Verify Read/Write Access to Tools Directories . 40

Siebel Tools ODBC Data Sources . 40

Running Multiple Local Databases . 41

Repository Naming Conventions . 43
Setting Up the Development Environment . 44

Chapter 2. Siebel Architecture (Basic Concepts)
About Siebel Tools . 49

Application Architecture Overview . 50

Siebel Objects . 50
Version 7.5.3, Rev. A Siebel Tools Reference 3

Contents
Siebel Object Definitions . 51

Object Types and Parent-Child Relationships . 52

Classes in Siebel Tools . 54

Siebel Repository . 54

Object Layers and Hierarchy . 57

Data Objects Layer . 58

Business Objects Layer . 62

Logical User Interface Objects Layer . 68

Physical UI Layer . 74

Summary of the Major Object Types . 75

Operating Architecture Overview . 76

Siebel Web Engine Infrastructure . 78

About Standard and High Interactivity . 80

JavaScript Object Architecture in High Interactivity 81

Enabling and Disabling High Interactivity for Applications 83

Enabling and Disabling High Interactivity for Views 84

High Interactivity Configuration Considerations . 84

Integrating Siebel with J2EE . 85

Siebel Partner Connect and Siebel Tools for Partner Connect 87

Chapter 3. Siebel Tools Fundamentals
What Is Siebel Tools? . 89

Siebel Tools Features . 90

Siebel Tools Application Window . 90

Siebel Objects . 90

Siebel Object Explorer . 91

Web Layout Editors . 91

Script Editors . 92

Wizards . 93
Target Browser Support . 97
Object Repository . 98
4 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
About the Object Explorer . 98

Object Explorer Window . 99

Showing and Hiding Objects in the Object Explorer 105

Filtering Object Types by Project . 106
Object List Editor Window . 107
Other Windows . 108

Hiding the Windows . 113

Docking the Windows . 113

Image Preview . 114

Drilldown . 114

Viewing Object Definitions . 114

Modifying, Copying, and Creating New Object Definitions 117

Object Definitions, Value Types, and Naming Conventions 117

Modifying Object Definitions . 118

Creating a Copy of an Existing Object Definition 120

Creating a New Object Definition . 121

Undoing New or Changed Object Definitions . 123

Validating Object Definitions . 123

Compiling and Testing Object Definitions . 129

Compiling Projects . 130

Compiling Single Objects or a Group of Objects . 131

Compiling the Siebel Repository Using the Command-Line Interface 132

Testing Repository Changes . 132

Setting Up Debug Options . 133

Understanding the Changed Flag and Pencil Icon 135

Using Queries to List Object Definitions . 137

Simple Queries . 138

Compound Queries . 139

Searching the Repository for Object Definitions 140

Getting Reports About Object Relationships . 143
Version 7.5.3, Rev. A Siebel Tools Reference 5

Contents
Viewing Object Relationships: Visualization Views 145

Details Visualization Views . 146
Relationships Visualization View . 149

Descendents Visualization View . 152

Web Hierarchy Visualization Views . 153

Siebel Tools Product Components . 154

Siebel Object Interfaces . 154

Siebel Database Extension Designer . 155

Siebel Application Upgrader . 155

Siebel Upgrade Inheritance . 156

Siebel Object Comparison and Synchronization . 156

Chapter 4. Application Configuration (Basic Concepts)
About Configuration . 159

Usage and Configuration of Non-Licensed Objects 160

Configuration Goals and Objectives . 160

Overview of the Web Configuration Process . 161

Planning Considerations . 163

Overview of the Application Development Process 164

Siebel Object Definition Sequence . 166

Application Enhancement Through Scripting and Object Interfaces 171

Server-Side Scripting . 172

Browser-Side Scripting . 173

Generating Browser Scripts . 176

Localization . 178

Locale Object Types . 178

Siebel Tools Language Mode . 179

Check In/Out . 180

Locale Management Utility . 180

Controlling Visibility Using Siebel Tools . 180
6 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Visibility Establishment Process . 180

Visibility Property Settings in Siebel Tools . 182
Security Considerations . 183

Other Ways to Customize Application Behavior 184

Personalizing Your Web Application . 185

Managing Web Content with Siebel eBriefings . 186

Dynamic Data Capture with Siebel eSmartScript . 186

Siebel Assignment Manager . 187

Siebel Business Process Designer . 187

State Model . 188

Siebel ePricer . 188

Chapter 5. Data Objects Layer
Data Object Types .191

Tables . 193

Base Tables . 194
Properties of the Table Object Type . 195

Data Tables . 196

Extension Tables . 196
Intersection Tables . 204

Column Objects .215

Column Object Type . 216

Data Columns . 218

Extension Columns . 218

System Columns . 222

Indexes . 225

Index Column Object Type . 226

User Keys . 227

EIM Interface Tables . 228

EIM Object Types . 229
Labeling Data Loaded in EIM As No Match Row Id Instead of NULL 238
Version 7.5.3, Rev. A Siebel Tools Reference 7

Contents
Access Control . 238

Party . 240

Person-Related Data . 240
Organization-Related Data . 242

Party Business Components . 245

S_PARTY Table . 246

Chapter 6. Adding Custom Extensions to the Data Model
About Extending the Siebel Data Model . 251

About Standard Database Extensibility . 252

Using Standard Database Extensibility . 254

Database Extension Planning and Design . 256

Planning and Design Steps . 256

Naming Conventions for Extension Tables and Columns 260

Accommodating Active Mobile Clients . 261

DBMS Restrictions . 261

Database Extension Implementation . 262

Checking Out and Locking the Projects . 263

Updating the Logical Schema Definition in the Local Environment 264

Creating a Custom Extension Table . 264

Adding Extension Columns to Tables . 266

Creating Extension Columns of Type LONG . 268

Modifying Extension Tables or Columns . 269

Deleting Extension Tables or Columns . 270

Using Extensions with Enterprise Integration Manager 272

Adding Custom Indexes . 274

Applying the Physical Schema Extensions to the Local Database 275

Displaying Extension Data . 277

Displaying Base Table Extension Column Data . 278
Displaying Data in One-to-One Extension Tables 279
8 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Displaying Data from One-to-Many Extension Tables 279

Preparing the Server Database Before Applying Schema Extensions 280

Applying the Changes to the Server Database .281

Applying Schema Changes Using Siebel Tools . 281

Applying Schema Changes Using the Configuration Utility 283

Applying Server Database Changes to Other Local Databases 289

Populating Extension Tables and Columns . 290

Making Extension Tables Available for Population by EIM 290

Configuring Client-Side Import . 291

Advanced Database Extensibility . 292

Creating New Tables Using the Table Wizard . 293

EIM Table Mapping Wizard . 299

Dock Objects .312

Dock Object Types . 312

Dock Object Tables . 314

Dock Object Visibility Rules . 316

Finding the Dock Object for a Business Component 318

Docking Wizard . 320

Creating a New Dock Object . 325

Adding a New Dock Table to an Existing Custom Dock Object 328

Verifying Dock Objects . 332

Deleting and Cleansing Dock Objects . 333

Consulting Siebel Expert Services . 333

Chapter 7. Business Objects Layer
Major Business Object Types . 338

Usage and Configuration of Non-Licensed Objects 341

Business Components . 342

Base Tables of Business Components . 344

Joined Tables and Extension Tables of Business Components 345
Version 7.5.3, Rev. A Siebel Tools Reference 9

Contents
Sort Specification Property . 347

Search Specification Property . 348

Configuring Data-Driven Read-Only Behavior . 350

Intersection Business Components . 356

Virtual Business Components . 358

Master-Detail Business Components . 360

Fields . 362

System Fields . 366

Calculated Fields . 367

Field Data Types . 368

Sequence Fields . 373

Joins . 378

How a Join Is Constructed . 382
Using a Predefault Value for a Join Field . 385

Party Business Components and Joins: Party Extension Tables 386

Mapping Fields in Party Business Components . 387

Bringing Party Data into a Non-Party Business Component 388

Bringing Party Data into Party Business Components 390
Mapping a Field to a Column in a Party Table . 392

Links . 393

How a Link Is Constructed . 396

Using a Link in a Master-Detail View . 398

Using a Link in a Multi-Value Group . 399

Using a Link in a Many-to-Many Relationship . 399

Using a Link When Merging Records . 399

Cascade Delete Property . 399

Multi-Value Links . 400

How a Multi-Value Link Is Constructed . 403

How an Indirect Multi-Value Link Is Constructed 408
10 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Primary ID Field . 413

How a Cascade Copy with a Multi-Value Link Is Constructed 417

About Business Objects . 418

How a Business Object Is Constructed . 423

Business Services . 425

Chapter 8. Defining Business Objects and Business
Components

About the Application Development Process . 427

Defining Business Objects . 428

Usage and Configuration of Non-Licensed Objects 429

Development Sequence for Defining Business Objects 430
Creating or Modifying a Business Component Definition 431
Adding Fields to a Business Component . 433
Configuring Dual Currency Support . 436
Creating or Modifying a Business Object Definition 439

Mapping Business Components to Business Objects 441

Using Wizards to Create Objects . 443

Business Component Wizard . 443

OLEDB Rowset Wizard . 445

Integration Object Wizard . 446

Chapter 9. Logical User Interface Objects Layer
Major User Interface Object Types . 448

Applets . 453

Types of Applets . 454

Form Applets . 462

List Applets . 472
About HTML Control Types . 479

About the Display Format Property . 484
Version 7.5.3, Rev. A Siebel Tools Reference 11

Contents
About the Type Property . 485

About the Search Specification Property . 486

Views . 488

List-Form Views . 489

Master-Detail Views . 490

Thread Bars . 493

Drilldown Behavior in a View . 494

Applet Toggles . 499

Screens . 502

About The User Interface Navigational Paradigm 504

Applications . 508

Web-Related Objects . 509

Search and Find Objects . 512

Toolbars and Menus . 513

Toolbar and Menu-Related Object Types . 515

Activating and Suppressing Menu Items and Toolbars 520

Invoke Method Targeting . 521

Icon Maps . 524

Specifying a Default Icon in an Icon Map . 525

HTML Hierarchy Bitmap . 526

Chapter 10. Logical User Interface Objects Configuration
User Interface Object Definition Sequence . 529

About Defining Applets . 530

About Applet Properties . 534

Defining List Applets . 536

Defining Form Applets . 540

Editing the Web Layout of Applets . 544

About Grid Layout . 547
12 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Converting Applets to a Grid-Based Layout . 548

Converting One or More Applets . 548

Converting Applets By Changing the Web Template 550

About Grid Layout Conversion Error Messages . 552

Supported Applet Classes and Applet Web Templates 554

Editing Applets Based on Grid Layout Templates 555

Positioning Controls . 557

Aligning Controls . 557

Resizing Controls . 558

Spacing Controls . 559

Centering Controls . 560

Setting Tab Order . 561

Resizing the Grid Canvas . 561

Setting a Default Method for an Applet . 562

About Views . 562

Creating Views Using the View Wizard . 563

Creating Views Using the Object Explorer . 564

Editing the Web Layout of Views . 566

Configuring Views for Personal Layout Control 567

Providing User Access to a New View . 570

Reasons a View Is Not Visible to a User . 570

About Screens . 572

Defining Screens . 573

About Applications . 576

Associating Screens with Page Tabs . 577

Defining Screen Menu Items . 578

About Web Pages . 579

Editing the Layout of Web Page Objects . 579

Associating Images With Siebel Objects . 582
Version 7.5.3, Rev. A Siebel Tools Reference 13

Contents
Defining Toolbars and Menus . 584

Creating Command Objects . 586

Using the Command Object Wizard . 586

Using JavaScript to Extend Toolbars . 590

Creating Applet Menus . 591

Configuring Keyboard Accelerators . 594

Adding a New Keyboard Accelerator . 594

Modifying the Key Sequence for an Existing Accelerator 595

Hiding The Key Sequence in the User Interface . 596

Design Considerations for Keyboard Accelerators 596

Configuring Spell Check . 597

Using the Locale Management Utility . 601

Finding Untranslated Text Strings . 602

Finding Existing Translations . 603

Exporting Strings and Other Locale-Specific Attributes 605

Importing Strings and Other Locale-Specific Attributes 605
Identifying Modified Objects . 608

Using the LMU to Replace Strings . 609

Running the LMU From the Command Line . 610

Chapter 11. Pick Applets and Static Picklists
Pick Applets . 613

Configuring the Originating Applet . 620
Configuring the Pick Applet . 622

Using the Pick Applet Wizard . 623

Configuring the Originating Business Component 627
Configuring Pick Business Components . 633

Configuring Picklists . 634
Creating a Picklist Using the Pick List Wizard . 636

Static Picklists . 638

Configuring Originating Applets . 643

Configuring Originating Business Components . 643
14 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Configuring the Pick List . 644

Creating a Static Picklist Using the Pick List Wizard 645

The PickList Generic Business Component . 647

Hierarchical Picklists . 648

Pop-Up Visibility Rules . 650

Working With Lists of Values .651

Multilingual Lists of Values . 654

About the Language Independent Code . 655
Enabling the Multilingual List of Values . 657

Integration Considerations . 673
Configuration Considerations . 674
MLOV Configuration and Coding Guidelines . 675
Querying and Multilingual Lists of Values . 676

Configuring Siebel Business Process Designer to Use MLOV-Enabled Fields 676
Configuring Siebel Assignment Manager to Use MLOV-Enabled Fields 681
Configuring Siebel Anywhere for Use with MLOV-Enabled Fields 683
Administering the Multilingual List of Values . 684

Chapter 12. Multi-Value Group and Association Applets
Multi-Value Group Applets . 688

Configuring the Originating Applet . 692

Configuring the Originating Business Component 692

Configuring the Multi-Value Link . 693

Configuring Links . 695

Configuring the Multi-Value Group Business Component 695

Using the MVG Wizard . 696
Configuring the Multi-Value Group Applet . 699

Using the MVG Applet Wizard . 700

Association Applets . 702

Association Applets Invoked from Master-Detail Views 707

Association Applets Invoked from Multi-Value Group Applets 711
Version 7.5.3, Rev. A Siebel Tools Reference 15

Contents
Chapter 13. Special-Purpose Applets and Controls
Chart Applets . 718

Axis Terminology . 720

Chart Layout Options . 722
Configuring Chart Applets . 737

Performance Considerations . 751

Using the Chart Applet Wizard . 751

Tree Applets . 756

Configuring Tree Applets and Explorer Views . 760
Tree Applets in the Applet Web Template Layout Window 764

Recursive Trees . 764

File Attachment Applets . 765

Configuring Attachment Applets . 768

Configuring Attachment Business Components . 769

Configuring Attachment Tables . 771

Pop-Up Windows . 772

Configuring Pop-Up Applets Launched from Applets 773

Configuring Pop-Up Wizards . 774

Configuring Pop-Up Views Launched from Applets 775

ActiveX Controls . 776

Creating DLL and Class Objects That Reference an ActiveX Control 776

Adding an ActiveX Control to an Applet . 778

Setting Properties in an ActiveX Control . 780

ActiveX Methods and Events . 782

Distributing ActiveX Controls . 783

HTML Content Controls . 783

Control Properties . 784

Administration Views . 785

Configuring Fields to Use Web Content Assets . 787
16 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Chapter 14. Physical User Interface Layer
Understanding Siebel Templates . 789

Web Template Explorer . 794

Understanding Siebel Tags . 796

Mappings Between Controls and IDs . 796

Singleton and Multi-Part Tags . 797

“This” Tag . 798

Iterators . 798
Nesting and Siebel Tags . 800

SWE Conditional Tags . 800

High Interactivity Versus Standard Interactivity 800

Navigational Constructs . 802

Primary Tab Bar . 803

Visibility Picklist and Detail Tab View Bar . 804

Subcategory Views . 809

Chapter 15. Physical UI Navigation and Templates
Page Templates .815

Web Page-Layout Container Page . 816

HTML Frames . 817

Support for Multiple Views on a Page . 822

View Templates . 825

Applet Templates . 828

Form Applets . 829

List Applets . 833

Persistently Editable List Applets . 834

Displaying Totals of List Column Values . 846

Multi-Value Group and Pick Applets . 849

Toggle Applets . 849
Tree Applets . 853
Version 7.5.3, Rev. A Siebel Tools Reference 17

Contents
Chart Applets . 860

Catalog-Style List Applets and Rich Lists . 862

Toolbars and Menus . 865

Toolbar Template Configuration . 866

Menu Template Configuration . 868

Thread Bar . 871

Chapter 16. Special Behavior Supported by Templates
Search and Find Configuration in SWE Templates 875

Search and Find Applet Tags . 875

Results Applet Tags . 877

Favorites (Predefined Queries) . 879

Conditional Tags . 880

SWE Conditional Tags . 880

Designing Browser Group-Specific Templates . 884

Conditional Mappings for Applets . 887

Browser-Specific Mappings . 888

Application-Specific Mappings . 890

More/Less Mode-Specific Mappings . 891

Image Support . 891

Configuring Images as Bitmap Objects . 892

Image Formats . 893

Using Icons for Field Values . 894

Using Images as Links in Controls . 897
Image Caching File Manager . 898

Hierarchical List Applets . 898

About Grid Layout Templates . 900

Creating Custom HTML Control Types . 903

Removing HTML Frames From Web Templates 908

Modifying Page Containers . 909
18 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Modifying Headers and Footers . 909

Modifying Views with Custom Headers and Footers 909

Known Issues When Running Siebel Applications Without HTML Frames . 910

Template Configuration Features . 910

Displaying Server Side Errors . 911
Adding Graphics . 913

Creating Directories for Your Graphics Files . 913

Adding Sorting Capabilities to Your Application . 913

Cascading Style Sheets .915

Chapter 17. Repositories
Code Pages and Unicode .917

Exporting and Importing Repository Objects .918

Exporting Individual Object Definitions . 919

Exporting Object Definitions Using the Command Line Interface 921

Exporting Entire Projects . 921

Importing Object Definitions . 923

Importing Object Definitions Using the Command Line Interface 931

Renaming, Deleting, Backing Up, and Migrating Repositories 932

Renaming and Deleting Repositories . 932

Backing Up and Restoring Repositories . 934

Using repimexp.exe for Importing, Exporting, and Creating a File Dump . . 939

Migrating Repositories and Schemas Between Databases 942

Creating Patches .951

Creating a Patch File . 952

Applying a Patch File . 955

Integrating with External Source Code Control Software 957

Enabling the Interface . 958

Configuring the srcctrl.bat File . 959

Microsoft Visual SourceSafe Examples . 964
Version 7.5.3, Rev. A Siebel Tools Reference 19

Contents
Check In/Check Out Options (Source Control Integration) 965

Upgrading Repositories: Siebel Application Upgrader 966

Web Client Migration Wizard . 968

Automatic Upgrade of Copied Objects . 968

Upgrade Inheritance Scenario . 970

Recommended Guidelines for Copying Objects . 970

How Enhancements Are Applied During an Upgrade 972

Repository Location of the Upgrade Ancestor . 972

Configuration Steps for Upgrade Inheritance . 973

Object Comparison and Synchronization . 975

Viewing the Object Comparison Dialog Box . 977

Differences Between Checked-Out Projects . 981

Entering the Comparison . 983

Chapter 18. Application Development Projects
What Are Siebel Projects? . 987

Getting Information About Repositories and Projects 989

Selecting the Current Repository . 989

Getting Information About the Current Repository 990

Viewing Object Definitions by Project . 992

Getting Projects . 993

Checking Out Projects . 995

Creating New Projects . 998

Renaming Projects . 999

Assigning Object Definitions to Projects . 999

Moving Object Definitions Between Projects . 1000

Checking In Projects . 1001

Check In Dialog Box . 1003

Check-In Guidelines . 1004
20 Siebel Tools Reference Version 7.5.3, Rev. A

Contents
Check-In/Check-Out Options (Data Sources) . 1005

Determining Project Differences at Check-In Time 1008

Undoing Check Out . 1009

Locking Projects Directly . 1010

Project Structure Considerations . 1012

Appendix A. Configuring the Customer Dashboard
Understanding the Customer Dashboard . 1015

How the Customer Dashboard is Populated With Data 1015

Architecture . 1016

Predefined Behavior . 1017

Enabling the Customer Dashboard . 1017

Configuring the Customer Dashboard . 1018

Adding a Business Component to the Dashboard Business Object 1019

Adding a Business Component Lists to the Dashboard Business Service . 1019

Mapping Business Component Fields to the Customer Dashboard 1020

Creating Field Labels . 1022

Formatting Phone # Fields . 1023
Configuring the GoTo View Drop-Down List . 1024

Configuring Labels for GoTo Views . 1025

Modifying the Look and Feel of the Customer Dashboard 1026

Changing the Background Color and Border . 1026

Changing the Size and Location . 1027

Configuring Communication Events . 1027

Configuring SmartScripts . 1029

Activating the SmartScript Player . 1029

Mapping SmartScript Variables to Customer Dashboard Fields 1030

Configuring SmartScripts to Save Answers . 1030

Using Siebel VB Script and eScript . 1032

Customer Dashboard Commands . 1032
Version 7.5.3, Rev. A Siebel Tools Reference 21

Contents
Siebel eScript Example . 1034

Siebel VB Example . 1035

About Dual Personalization . 1036

Index
22 Siebel Tools Reference Version 7.5.3, Rev. A

Introduction
This guide provides a reference book for Siebel Tools providing information on
Siebel Tools architecture, object layers, configuration, templates, tags, and
repositories.

This book will be useful primarily to people whose titles or job descriptions match
one of the following:

Product Modules and Options
This guide contains descriptions of modules that are optional and for which you
may not have purchased a license. Siebel’s Sample Database also includes data
related to these optional modules. As a result, your software implementation may
differ from descriptions in this Bookshelf. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel
sales representative.

To do the tasks described in this book, you need to have a thorough understanding
of:

■ The Siebel application environment and data model

■ The Microsoft Windows operating environment

■ Application development concepts and processes

Database
Administrators

Persons who administer the database system, including data
loading, system monitoring, backup and recovery, space
allocation and sizing, and user account management.

Siebel Application
Administrators

Persons responsible for planning, setting up, and maintaining
Siebel applications.

Siebel Application
Developers

Persons who plan, implement, and configure Siebel applications,
possibly adding new functionality.

Siebel System
Administrators

Persons responsible for the whole system, including installing,
maintaining, and upgrading Siebel applications.
Version 7.5.3, Rev. A Siebel Tools Reference 23

Introduction
■ Relational database concepts

■ Object-oriented application design

Configuring Siebel applications using Siebel Tools includes many or all of the
following tasks; you should have prior experience in doing similar tasks:

■ Installing Siebel applications and Siebel Tools

■ Setting up the Siebel application development environment (for example,
workstations and servers)

■ Installing and setting up the relational DBMS where the native data is stored

■ Importing existing native data into your Siebel application

■ Modifying or creating new Siebel object definitions

■ Writing Siebel VB or Siebel eScript application code

Product Modules and Options
This Siebel Bookshelf contains descriptions of modules that are optional and for
which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software
implementation may differ from descriptions in this Bookshelf. To find out more
about the modules your organization has purchased, see your corporate purchasing
agent or your Siebel sales representative.
24 Siebel Tools Reference Version 7.5.3, Rev. A

Introduction

How This Guide Is Organized
How This Guide Is Organized
This guide provides information necessary to implement, configure, and monitor
Siebel eBusiness Applications It contains guidance information, basic and advanced
concepts, and reference information. It presents installation and basic concepts
first. Then it covers configuration at the various layers of the Siebel object model—
data objects layer, business objects layer, user interface layer, and physical user
interface layer. Finally, it covers topics such as managing repositories, managing
projects, and performance considerations.

To access SupportWeb, you will need to provide the user name and password you
received from Siebel Support Services (support@siebel.com).

Application development reference information is also available in the following
books, available on Siebel Bookshelf and in Siebel Tools Online Help:

■ Siebel Developer’s Reference

■ Object Types Reference

■ Siebel Object Interfaces Reference

■ Siebel eScript Language Reference

■ Siebel VB Language Reference
Version 7.5.3, Rev. A Siebel Tools Reference 25

Introduction

Revision History
Revision History
Siebel Tools Reference

Version 7.5.3 Rev A
Table 1. Changes Made in Version 7.5.3 Rev A

Topic Revision

“Siebel Tools ODBC Data Sources” on
page 40

Made correction to the caution note at the end
of the table.

“About Standard and High Interactivity”
on page 80

Revised section for clarity.

“High Interactivity Configuration
Considerations” on page 84

Added section.

“Extension Tables” on page 196 Added paragraphs three and four for clarity.

“Siebel Architecture (Basic Concepts)” Removed the sections “View Layout Caching”
and “Persistent View Layout Caching.” These
sections are now included in Performance
Tuning Guide.

“Configuring Client-Side Import” on
page 291

Revised the first paragraph to include more
information about what objects support client-
side import.

“Intersection Business Components” on
page 356

Added information about displaying data from
denormalized columns in paragraph six.

“Using the Check No Match Property
with a Primary Join” on page 416

Added paragraph nine clarifying the use of the
property Use Primary Join.

“Configuring Dual Currency Support”
on page 436

Corrected errors in step four of the second
procedure in the topic.

“Applet Toggles” on page 499 Added the fourth bullet point in the second
paragraph.

“Logical User Interface Objects
Configuration”

Deleted the topic “Using the Web Layout
Wizard” because it is obsolete.

“Editing the Web Layout of Applets” on
page 544

In step six of the procedure, revised the third
row under the Action column.
26 Siebel Tools Reference Version 7.5.3, Rev. A

Introduction

Revision History
Additional Changes
■ Removed references to specific browsers.

■ Deleted the chapter on Performance. This content now appears in Performance
Tuning Guide.

Version 7.5.3

“Editing Applets Based on Grid Layout
Templates” on page 555

Added the second bullet after the fourth
paragraph.

“Hierarchical Picklists” on page 648 After step two, added substep b.

“MLOV Configuration and Coding
Guidelines” on page 675

Added first bullet about LookupName and
LookupValue function.

“File Attachment Applets” on page 765 Corrected text in the third paragraph.

“Exporting Object Definitions Using the
Command Line Interface” on page 921

Corrected the command name in the first
paragraph.

Table 2. Changes Made in Version 7.5.3

Topic Revision

“Verify Read/Write Access to Tools
Directories” on page 40

Added section.

“Setting Up Developers as Mobile Users”
on page 45

Revised for 7.5.3: Added content after step 5.

Persistent View Layout Caching New for 7.5.3: Added section to support new
functionality. Note that this section was
moved for 7.5.3, Rev A. See Table 1.

“Showing and Hiding Objects in the
Object Explorer” on page 105

Revised for 7.5.3: Revised content to support
new functionality.

“Compiling and Testing Object
Definitions” on page 129

Revised for 7.5.3: Revised content to support
new functionality.

“Setting Up Debug Options” on page 133 Revised content.

Table 1. Changes Made in Version 7.5.3 Rev A

Topic Revision
Version 7.5.3, Rev. A Siebel Tools Reference 27

Introduction

Revision History
“Siebel Tools Language Mode” on
page 179

Added note after the first paragraph.

“Creating a Custom Extension Table” on
page 264

Revised content in paragraphs preceding the
procedure.

“Adding Extension Columns to Tables” on
page 266

Added note.

“Creating Extension Columns of Type
LONG” on page 268

Added new section.

“Adding Custom Indexes” on page 274 Revised content.

“EIM Table Mapping Wizard” on page 299 Added note and revised content after step 6.

“Virtual Business Components” on
page 358

Added bullet point about support for
dynamic toggle applets.

“Configuring Dual Currency Support” on
page 436

Corrected procedure and added note.

“Form Applet Control Properties” on
page 535

Removed item for Tab Stop property.

“Defining Form Applets” on page 540 Revised for 7.5.3: Revised content to support
functionality.

“Applet Toggles” on page 499 Revised content and added a configuration
scenario.

“Dynamic Drilldown Behavior” on
page 496

Revised content.

“Editing the Web Layout of Applets” on
page 544

Revised for 7.5.3: Revised content to support
functionality.

“About Grid Layout” on page 547 New for 7.5.3: Added content to support new
functionality.

“Converting Applets to a Grid-Based
Layout” on page 548

New for 7.5.3: Added content to support new
functionality.

“Editing Applets Based on Grid Layout
Templates” on page 555

New for 7.5.3: Added content to support new
functionality.

Table 2. Changes Made in Version 7.5.3

Topic Revision
28 Siebel Tools Reference Version 7.5.3, Rev. A

Introduction

Revision History
Version 7.5, Rev. A

“Configuring Keyboard Accelerators” on
page 594

Revised section.

“Configuring Chart Applets” on page 737 Added note after Series Field item.

“Pop-Up Windows” on page 772 Revised content.

“Page Templates” on page 815 Revised definitions of Acknowledgement
Web Page and Acknowledgement Web View.

“More/Less Mode-Specific Mappings” on
page 891

Added note.

“About Grid Layout Templates” on
page 900

New for 7.5.3: Added content to support new
functionality.

“Getting Projects” on page 993 Revised for 7.5.3: Revised content to support
new functionality.

“Checking Out Projects” on page 995 Revised content.

Table 3. Changes Made in Version 7.5, Rev. A

Topic Revision

“To implement database extensions” on
page 263

Corrected step 6.

“Creating a Custom Extension Table” on
page 264

Revised section.

“Adding Extension Columns to Tables” on
page 266

Added a note after the procedure and revised
caution note.

“To map a new table to an EIM interface
table using the EIM Table Mapping
Wizard” on page 300

Added explanatory text after step 6.

“Association Applets” on page 702 Corrected the name of the event referenced in
the last note in the section.

Table 2. Changes Made in Version 7.5.3

Topic Revision
Version 7.5.3, Rev. A Siebel Tools Reference 29

Introduction

Revision History
“Multi-Record Select List Applets” on
page 845

Corrected first and second paragraphs.

“Removing HTML Frames From Web
Templates” on page 908

Added this topic.

“Exporting and Importing Repository
Objects” on page 918

Added the fourth bullet.

“Migrating Repositories and Schemas
Between Databases” on page 942

Added the second note.

“Compiling the Siebel Repository Using
the Command-Line Interface” on page 132

Corrected the first paragraph.

Table 3. Changes Made in Version 7.5, Rev. A

Topic Revision
30 Siebel Tools Reference Version 7.5.3, Rev. A

 Siebel Tools Installation 1
This chapter explains how to install Siebel Tools and set up the application
development environment.

■ Preinstallation Tasks on page 31

■ Installing Siebel Tools on page 32

■ Postinstallation Tasks on page 37

Preinstallation Tasks
Complete the following tasks before running the Siebel Tools installation program.

■ “Verifying Siebel Tools Prerequisites”

■ “Installing a Database Server or Sample Database”

Verifying Siebel Tools Prerequisites
Before you install Siebel Tools, make sure that:

■ Your client platform meets the requirements defined in Siebel System
Requirements and Supported Platforms and the Release Notes for the version of
the software you are using.

These documents can be found on Siebel SupportWeb at http://
ebusiness.siebel.com/supportweb/

■ You have all the third-party software installed, including the database
connectivity software for your chosen RDBMS, required for your
implementation.
Version 7.5.3, Rev. A Siebel Tools Reference 31

Siebel Tools Installation

Installing Siebel Tools
Installing a Database Server or Sample Database
As a prerequisite to using Siebel Tools, you must have installed a Siebel Database
Server or the Sample SQL Anywhere database included with Siebel eBusiness
Applications. These databases are used to store the Siebel Tools project repositories.

NOTE: The sort order for the server database should be set to Binary.

For more information about installing and configuring a Siebel Database Server see
Siebel Server Administration Guide and the Siebel Server Installation Guide guide for
the operating system you are using.

Installing Siebel Tools
You install Siebel Tools from the Siebel eBusiness Applications, Siebel Tools CD-
ROM.

To install Siebel Tools on a workstation

1 Insert the Siebel eBusiness Applications, Siebel Tools CD-ROM in the CD-ROM
drive of your computer.

2 Navigate to the siebel_tools_lep_2 directory, and then double-click install.exe.

The Siebel Tools installation program starts.

3 For setup language, choose English.

4 In the Welcome dialog box, click Next.

5 In the Setup Type dialog box, select the type of Siebel Tools installation to install
on this computer:

■ Typical Setup. Install all Siebel Tools components. This option is
recommended for most users. This option does not install the report source
code which is required for creating custom reports.

■ Compact Setup. Install all modules except the help files and report source
code.
32 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Installing Siebel Tools
■ Custom Setup. Lets you customize your installation by choosing among
different components. Each component is listed with the amount of disk
space it requires. Click the Disk Space button to see how much disk space is
available on the hard drive and network drives that are accessible from this
PC. This option is recommended for experienced administrators only. If you
wish to create custom reports you must perform a custom setup and check
the report source code component.

NOTE: A warning appears if there is insufficient disk space to install Siebel Tools
on the destination host machine. In this case, you must free some disk space
before continuing with the installation process.

a Select a destination directory.

The default directory for Siebel Tools is C:\sea7xx\tools.

The Installer does not permit installing Siebel Tools into a directory path
containing more than 18 characters (for example,
M:\SIEBEL\10910\TOOLS).

CAUTION: Do not install Siebel Tools in the same directory as the Siebel client.
Doing so will cause memory conflicts and program crashes.

b Click Next in the Setup Type dialog box to accept the default directory.

c Click Browse to specify a different destination directory.

The directory name cannot be more than 19 characters long, but long
filenames, including spaces, are supported. If you specify a directory other
than C:\sea7xx\tools, make the appropriate substitutions as you read this
guide.

6 Choose the installation language.

NOTE: Tools must be installed with the English language pack. If you need to
customize non-English reports, you can install other language packs as well. The
files specific to the languages chosen in this step are copied to your workstation.
Version 7.5.3, Rev. A Siebel Tools Reference 33

Siebel Tools Installation

Installing Siebel Tools
7 Select the database client and server version.

a Specify the name of your server database in the Server Database dialog box.

b Click Next.

NOTE: The installation program checks that the prerequisite database software is
installed on the machine. If it is not, the installation will not proceed.

8 Confirm the Siebel File System and Siebel Remote Server paths, to which this
client will connect, or specify different ones.

These pathnames or values should be listed in the Deployment Planning
Worksheet, which is part of Siebel Server Administration Guide. You must use
the network name (machine name) of the server where the Siebel Server is
installed. Use either the UNC name of the Siebel File System directory or a drive
letter mapped to it.

9 Specify the database identification.

■ For DB2, complete the following:

Dababase Alias. Enter the database alias for your Siebel Server Database in the
Deployment Planning Worksheet.

Tableowner. Enter the name of the database account that owns the Siebel
tables in the Deployment Planning Worksheet.

■ For Microsoft SQL Server, complete the following:

Database Alias. Enter the server name for your Siebel Server Database in the
Deployment Planning Worksheet.

Database Owner Name. Enter the name of the database owner account in the
Deployment Planning Worksheet.

NOTE: Microsoft SQL Server is case-sensitive; all information must be entered
exactly as it exists on the SQL Server database.
34 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Installing Siebel Tools
■ For Oracle, complete the following:

Database Alias. Enter the SQL*Net connect string for your Siebel Server
Database. This is recorded on Page 5, Section 11 of the Deployment Planning
Worksheet.

Table Owner. Enter the name of the database account that owns the Siebel
tables. This is also recorded on Page 5, Section 11 of the Deployment
Planning Worksheet.

NOTE: Make sure the database is configured to handle binary sort order. For more
information, see the Siebel Server Installation Guide for the operating system you
are using.

10 Select the program folder. The Siebel Tools icons are installed in this directory.
The default is Siebel Tools 7.xx If you do not want to accept the default:

■ Select a folder different from the default from the list, or

■ Type in a new program folder name.

The Event Log dialog box appears after the installer has completed copying files. It
describes the steps the installer completes during your Siebel Tools installation.

Language Pack Installation
The Siebel Installer automatically begins the Language Pack installation process.

Follow the prompts for language and database choices.

ODBC Installation

NOTE: If your PC has the exact required versions of the ODBC Text and Access drivers
(and the Microsoft SQL Server, if you are deploying on that database), the ODBC
Pack dialog box does not appear.

■ If you are not required to complete the ODBC Pack dialog box, you see a dialog
box that shows the progress of ODBC component registration.

■ You may be requested to complete the Required Software Component - ODBC
Pack dialog box.
Version 7.5.3, Rev. A Siebel Tools Reference 35

Siebel Tools Installation

Installing Siebel Tools
■ If you have newer versions of the ODBC drivers installed, this dialog box lets
you choose whether to install the older versions of the ODBC drivers
included with the Siebel application software.

■ If you have older versions of the ODBC drivers installed, you must install the
versions provided with Siebel eBusiness Applications before continuing with
the installation.

To install the Microsoft Data Access Components

1 Click Next to launch the Microsoft Data Access Components (MDAC) installer,
which installs the ODBC drivers.

NOTE: Microsoft licensing requires that at least one 32-bit Microsoft product, such
as Microsoft Word 7 (the version of Word that comes with Office 97), be
installed on the PC before Data Access Components can be installed.

2 Click Yes to accept the license agreement.

3 Click Continue to proceed with the installation.

4 Click Complete to install the required ODBC drivers.

5 If you selected Microsoft SQL Server in the Server Database dialog box, the Local
Database dialog box will appear.

a Specify the local database used by your organization for Siebel Remote
mobile users.

b Click Next.

NOTE: If your server database is not Microsoft SQL Server, you will not see this
dialog box. Proceed to the next step.

6 Click OK to exit the installer and return to the Siebel Tools installation program.

NOTE: Do not select Restart Windows if prompted to do so by the MDAC installer.
Instead, select Exit Setup. Siebel Systems recommends that you complete the
installation before rebooting your computer.
36 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Postinstallation Tasks
The Siebel Tools installation is now complete.

Postinstallation Tasks
Do the following tasks (described in the following sections) after running the Siebel
Tools installation program:

■ “Verifying Successful Installation”

■ “Verifying the Siebel Tools Directory Structure” on page 38

■ “Siebel Tools ODBC Data Sources” on page 40

■ “Running Multiple Local Databases” on page 41

■ “Repository Naming Conventions” on page 43

■ “Setting Up the Development Environment” on page 44

Verifying Successful Installation
Verify that installation was successful by connecting to the Siebel Database Server
and entering your license key for Siebel Tools.

To verify that the installation completed successfully

1 Start Siebel Tools and log onto the Siebel Database Server.

The first time you log on, the system prompts you to enter a license key number
if you have not done so already.

2 Enter your license key number in the dialog box that appears, and click OK.

You can find the license key that has been assigned to your site in your License
Key letter provided with the CD-ROM case. For more detail on license keys, refer
to Applications Administration Guide.
Version 7.5.3, Rev. A Siebel Tools Reference 37

Siebel Tools Installation

Postinstallation Tasks
Verifying the Siebel Tools Directory Structure
The Siebel Tools installation program creates the following directories.

TOOLS. The Siebel Tools root directory.

NOTE: The root directory name may differ, based on installation choices made.

actuate Actuate-related files for generating and running reports.

afc Actuate Foundation Class files.

bin Actuate binary files.

cache Actuate cache files.

bin All binary files (.exe, .dll, .cfg, .dsn, .enu, .bat), configuration files, and
user preference files.

enu Language-specific dll files.

dll Siebel Tools program library
files.

bin Siebel Tools binary files.

exe Siebel Tools executable files.

classes Java code files.

examples

examples\src

examples\src\com

examples\src\com\siebel

examples\src\com\extra

examples\src\com\integration

examples\src\com\integration\mq Examples of Java code files.

examples\src\com\integration\servlet Examples of Java code files.

help Siebel Tools help files.

enu American English language help
files.
38 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Postinstallation Tasks
local The local, extracted database.

files Local file attachments.

inbox Not used for Siebel Tools.

outbox Not used for Siebel Tools.

locale Language-specific files.

log Log files from Siebel Tools operations.

msgtempl Message files.

objects Contains siebel.srf, the compiled definition file used by Siebel Tools.
This is also the default location for .srf files created using the Siebel
Tools object compiler.

public HTML and graphics files for uploading, and cascading style sheet files.

reports All report files.

enu American-English version of
reports.

rptsrc Actuate source files for all reports.

enu American-English version.

enu\lib Report object library (.rol) files.

enu\standard Report object design (.rod) files.

lib Report object library (.rol) files.

standard Report object design (.rod) files.

sample Where the sample database (sse_samp.dbf) is installed.

files Where the sample file
attachments are installed.

inbox Not used for Siebel Tools.

outbox Not used for Siebel Tools.

scripts Location of Java Scripts.

search Location of saved searches, in target-language and in language-
independent formats.

enu

enu\data
Version 7.5.3, Rev. A Siebel Tools Reference 39

Siebel Tools Installation

Postinstallation Tasks
Verify Read/Write Access to Tools Directories
After installing Siebel Tools, verify that the Tools user has sufficient permissions to
read and write data to the Tools directory. You can review the permission settings
by selecting the Siebel Tools root directory, right clicking, and then choosing
Properties. Permissions are listed in the Securities tab.

Siebel Tools ODBC Data Sources
To create system data sources, you must modify the SystemDSN parameter in the
siebel.ini file before running the Siebel Tools installation. For information about
how to modify the SystemDSN parameter in the siebel.ini file, see Siebel Web Client
Administration Guide.

enu\data\html

enu\data\other

enu\index

enu\scripts

language-independent

sqltemp SQL statement fragments used by certain Siebel Tools operations.

temp Temporary working area.

upgrade Not used for Siebel Tools.

webtempl Location of Siebel Web Template (.swt) files.
40 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Postinstallation Tasks
The Siebel Tools Installer creates the ODBC data sources described in Table 4. By
default, these are created as user data sources, which are visible only to the user
account under which Siebel Tools is installed.

CAUTION: A name for the local database that is too long (for example, SSD LOCAL DB
M:/SIEBEL/10910/TOOLS) results in a data source that does not appear in the
Control Panel ODBC Administration applet. It also causes the failure of such Siebel
Tools operations as checkout. The total length of the data source name must be not
more than 32 characters.

Running Multiple Local Databases
You may want to have multiple local databases open at the same time—for example,
to run Siebel Tools and the Siebel client application simultaneously. If you want to
operate in this manner, you must change the local database configuration of one of
the applications.

SQL Anywhere also requires that all database files opened simultaneously have
unique filenames. Because all Siebel client applications use the same default name
for their local database files, you must rename the database file of one application
and move it to the database directory of the other.

To rename and move the local database for your Siebel Tools installation

1 Exit Siebel Tools if it is running.

2 Edit the .cfg file to change the name of your local database file:

Table 4. Siebel Tools ODBC Data Sources

Data Source Use

SSD Local Db C:/sea7xx Connects to the local SQL Anywhere database.

SSD DB2Udb C:/sea7xx Connects to the DB2 database.

SSD MSQL C:/sea7xx Connects to the Microsoft SQL Server database.

SSD Oracle C:/sea7xx Connects to the Oracle database.
Version 7.5.3, Rev. A Siebel Tools Reference 41

Siebel Tools Installation

Postinstallation Tasks
a Open the tools.cfg file (in the \bin subdirectory of your Siebel Tools
installation) with a text editor.

b Replace the file parameter for ConnectString, under the [Local] section, with
the new name and location of the Siebel Tools local database file.

For example, change:

ConnectString = c:\sea7xx\tools\local\sse_data.dbf

to:

ConnectString = c:\sea7xx\tools\local\sse_tools.dbf

3 Rename the Siebel Tools local database file and move it to the directory specified
in Step 2.

In this example, the c:\sea7xx\tools\local\sse_data.dbf file would be
renamed sse_tools.dbf and moved to the c:\sea7xx\tools\local directory.

4 Modify the ODBC data source that points to the Siebel Tools local database as
follows:

a From a DOS prompt, navigate to the \bin subdirectory of your Siebel Tools
installation.

b Type ODBCAD32 to start the ODBC administrator.

c Select the data source used by Siebel Tools.

This defaults to SSD Local Db c:\sea7xx

Where:

c:\sea7xx = the directory into which Siebel Tools was installed.

d Click the Configure button.

e Change the value in the Database File window, under the Database Startup
section, to the new location and name of the Siebel Tools local database. In
this example, change

c:\sea7xx\tools\local\sse_tools.dbf

to:
42 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Postinstallation Tasks
c:\sea7xx\tools\local\sse_tools.dbf

f Close the ODBC32 applet.

Repository Naming Conventions
Use a consistent naming convention for your repositories in all environments. The
Siebel eBusiness Applications client and Siebel Server programs point to a specific
repository by name. The procedures for upgrading to new versions of Siebel
eBusiness Applications are also dependent on repository names.

A consistent naming convention assures successful configuration and testing, and
minimizes the work required when migrating new repositories or performing
upgrades. Follow these guidelines in determining your repository naming
conventions:

■ Production environment. Decide on a repository name to be used in your
production environment. By default, the name is Siebel Repository and should
be changed only if you have a compelling reason, because much of the Siebel
documentation and the default configuration of Siebel eBusiness Applications
assume the use of this name.

■ Test environment. Choose the same name for the active repository in your test
environment and the current working repository in your production
environment. The default name is Siebel Repository. Using the same name
simplifies the process of migrating repositories from development to test and
from test to production, and eliminates the need to change your Siebel client or
server configurations when you do so.

■ Development environment. Use descriptive names for the other repositories in your
development environment. Your development environment may contain a
number of repositories in addition to the current repository that is being
configured, including the initial repository loaded with Siebel, other repository
versions used in Siebel upgrades, and repositories from previous versions of
your custom configuration.

Give these repositories unique and fully descriptive names. For example, you
might use Siebel 7.0 Original for the initial repository that was included in the
standard Siebel eBusiness Applications version 7.0.
Version 7.5.3, Rev. A Siebel Tools Reference 43

Siebel Tools Installation

Postinstallation Tasks
Setting Up the Development Environment
This section:

■ Explains how to set up and work in the Siebel Tools development environment

■ Describes how to establish the development environment

■ Lists the names of important directories

■ Explains how to set up developers as mobile users

For an example of setting up the developer environment, see Developing and
Deploying Siebel eBusiness Applications.

Creating the Development Environment
As a developer, you need to know which repository is being used for the test
environment, for the system test environment, and for the production environment.
Operating effectively with multiple environments requires the ability to work with
local databases, and a familiarity with checking projects into and out of repositories.

First, create a complete development environment that includes both a Siebel
Database Server and a Siebel Server. These can reside on the same physical
machine. This environment should be completely separate from your production
environment—no development work should be performed in the production
environment.

Create a separate test environment into which your configuration can be migrated
for system testing prior to installation in the production environment. As with the
development environment, the test environment should include both a Siebel
Database Server and a Siebel Server.

The development database will store the working copies of all repositories being
configured by all developers. Configuration work should take place only on the
development database. After you have finished configuring a repository, you will
use the Siebel Repository Migration Utility to transfer that repository to the test
(and, later, production) environment. For information about this utility, see
“Backing Up and Restoring Repositories” on page 934.
44 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Postinstallation Tasks
Setting Up Developers as Mobile Users
Because all developers need Siebel Tools and a local repository, they should install
the Siebel Mobile Client on their computers.

For more information on setting up local databases, see Siebel Remote and
Replication Manager Administration Guide.

To set up developers as mobile users

1 Install Siebel Tools on all developers’ PCs, in a directory separate from the
standard Siebel applications.

For example, if you have installed your Siebel applications in C:\siebel, install
the development tools in C:\sea7xx\tools. This makes sure that the development
and run-time environments are distinct. You may be using Siebel Remote in both
environments, so you need to make sure that the two installations do not
conflict.

2 Verify that each developer has a valid user name and password for the Siebel
development database server.

In most cases, their employee logins and passwords will also be their database
server user names and passwords.

3 Using a Siebel application client connected to the development server database,
create an Employee record and a Mobile User record for each developer.

Use the developer’s first and last names for the employee first and last names.
Use a standard naming convention, such as first initial and last name, for the
logon name. This makes it easy to identify who has locked a project.

NOTE: Password encryption interferes with project check-in and checkout. You
must disable password encryption in the client or configuration file when
running Siebel Tools if you will be checking projects in and out.

For detailed instructions on setting up mobile users, see Siebel Remote and
Replication Manager Administration Guide.
Version 7.5.3, Rev. A Siebel Tools Reference 45

Siebel Tools Installation

Postinstallation Tasks
4 Grant each developer a position and a responsibility.

Grant each developer the Developer and Siebel administrator responsibilities.
You may also create a responsibility with access to all views except the System,
Service, and Marketing Administration views to prevent unintended changes to
important system preferences. You can use a common position for all
developers, but, for testing purposes, you should also set up an organization
structure that models the business.

NOTE: If you do not grant the user the Developer responsibility, drilldowns will
not be activated in the Tools client.

5 On the Siebel Server, generate a database template.

Set the value of the SQL Anywhere Database parameter to sse_utf8_internal.dbf.
The database template sse_utf8_internal.dbf is used for developers only; the
default database template used for Mobile users is sse_utf8.dbf.

For detailed instructions on how to generate database templates and set
component request parameters, see Siebel Remote and Replication Manager
Administration Guide.

6 On the Siebel Server, extract each developer’s local database using the Database
Extract component.

Database Extract creates a template for the developer’s local database that is
populated only with business data, not repository data. All enterprise-visible
data is extracted into this template, together with any limited-visibility data
(contacts, accounts, opportunities, and so on) to which this user has access.

7 Initialize the Developer’s Mobile Client Database.

Begin by double-clicking the Siebel Tools icon and connect to the local database.

8 Enter the Siebel developer logon created in Step 3 on page 45 and an appropriate
password.

The initialization program creates the sse_data.dbf local database in the \local
directory of your Siebel Tools installation, for example c:\sea7xx\tools.
46 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Installation

Postinstallation Tasks
9 Do an initial get of all projects on each local database, as described in “Getting
Projects” on page 993.

10 Check Out selected projects you want to work on, as described in “Checking Out
Projects” on page 995.
Version 7.5.3, Rev. A Siebel Tools Reference 47

Siebel Tools Installation

Postinstallation Tasks
48 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts) 2
This chapter describes the Siebel application architecture, which is a layered
structure containing the physical user interface, logical user interface objects,
business objects, and data objects, as well as a third-party relational database
management system.

This chapter also introduces the Siebel operating architecture, which includes the
Object Manager, the Web Engine, and the Data Manager. It also outlines key
architectural considerations in setting up your application development project and
describes the application architecture and object definition terminology that define
how Siebel applications are configured.

About Siebel Tools
Siebel Tools allows you to customize Siebel applications by modifying and creating
object definitions. A standard Siebel application provides a core set of object
definitions, which you can use as a basis for your own tailored application.

NOTE: The terms object and object definition in the Siebel application context do not
mean the same thing as the terms “object,” “object class,” or “object instance” as
used in a programming language like C++.

Object definitions are grouped into four layers with different subject matter and
purposes; for example:

■ Physical User Interface Layer: Templates and tags that render UI

■ Logical User Interface Objects Layer: Presentation of data (UI)

■ Business Objects Layer: Business entities

■ Data Objects Layer: Database details (data)
Version 7.5.3, Rev. A Siebel Tools Reference 49

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Object types in a given layer depend on definitions in the next lower layer, and are
insulated from other layers in the structure. This means, for example, that you can
make changes to a Siebel application without changing the underlying database
structure. Similarly, you can extend the Siebel database schema without impacting
the Siebel application.

Application Architecture Overview
The application architecture is discussed in the following sections.

■ “Siebel Objects” on page 50

■ “Siebel Object Definitions” on page 51

■ “Object Types and Parent-Child Relationships” on page 52

■ “Classes in Siebel Tools” on page 54

■ “Siebel Repository” on page 54

■ “Object Layers and Hierarchy” on page 57

■ “Data Objects Layer” on page 58

■ “Business Objects Layer” on page 62

■ “Logical User Interface Objects Layer” on page 68

■ “Physical UI Layer” on page 74

■ “Summary of the Major Object Types” on page 75

Siebel Objects
Siebel applications are built on object-oriented principles.

A Siebel object definition is a data construct in the repository file that defines an
element of the:

■ User interface

■ Business entities
50 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
■ Database organization

An object definition consists of a set of properties with assigned values. For
example, a view might have the following properties listed in the following table:

Siebel Object Definitions
An object definition in the Siebel Tools environment implements one piece of the
software—a user interface, an abstract data representation, or a direct database
representation or construct. For example, a database column, a pop-up window for
record selection, and a join relationship between database tables are implemented
as object definitions.

An object definition consists of properties, which are characteristics of the software
construct that the object definition implements. For example, the properties of a
database column include its name, data type, length, and so on. Similarly, the
properties of a pop-up applet include the caption that appears in the title bar, and
so on.

NOTE: Object definitions in Siebel Tools are not equivalent to objects in object-
oriented programming, although Siebel object definitions are implemented using
true C++ classes and objects. Terms such as object, property, or class refer to the
Siebel application metadata and not to the corresponding terms in object-oriented
programming.

In Siebel Tools, object definitions are viewed, edited, added, and deleted in the
Object List Editor window. Each row in the Object List Editor displays an object
definition; each column displays a property. The intersection of a row and column
in the grid is a particular property setting for a particular object definition.

Property Value

Name Account List View

Title My Accounts

Inactive FALSE
Version 7.5.3, Rev. A Siebel Tools Reference 51

Siebel Architecture (Basic Concepts)

Application Architecture Overview
A property setting for an object definition is changed in the Object List Editor by
clicking the corresponding cell. A new value can then be manually entered or, in
many cases, selected from a picklist. An object definition can be added or removed
in the Object List Editor by selecting the desired row, and clicking Add New Record
or Delete Record in the Edit menu.

NOTE: Some objects contain Unicode information, others contain ASCII only. Objects
that contain Unicode information store data in tables with a suffix of _INTL in the
table name or in the S_MSG table. Objects that do not store data in these tables
contain ASCII only.

Object Types and Parent-Child Relationships
An object type is a named structure from which object definitions of that type can
be created. For example, the Account, Opportunity and Contact business
components are implemented as object definitions of the Business Component
object type. Conceptually, object types are the templates from which object
definitions are created. An object type can be thought of as the cookie cutter that is
used to make many cookies of a particular shape.

An object type has a predefined set of properties. Object definitions created from it
have values for each of these properties (the values are either default or user-
specified). For descriptions of all properties for all object types (other than Siebel-
use only object types), see Object Types Reference.

Object types are displayed in the Object Explorer window, which operates in parallel
with the Object List Editor window. Selecting a different object type in the Object
Explorer causes an Object List Editor window to display object definitions for that
object type. The title bar of the Object List Editor window identifies the kind (object
type) of object definitions it contains. Every object definition has exactly one object
type. When a new object definition is created in the Object List Editor, the object
type of the active Object List Editor window determines the new object definition's
object type.

You can change the property values in an object definition, but you cannot change
the set of properties to which the values are assigned. The set of properties is fixed
for each object type.
52 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
There is a predefined set of object types in Siebel Tools that have specific purposes.
For example, two object types are Applet and Business Component. An applet
object definition defines a user interface unit such as a data entry form or editable
list of records. A business component object definition defines a data record
structure from one or more database tables.

Object types have hierarchical relationships called parent-child relationships. These
can be seen when you expand an object type that has children in the Object
Explorer (and when the Object Explorer is in Types view). The Object Explorer in
Types view uses the same visual metaphor for displaying hierarchical relationships
as the Windows Explorer in Windows 2000 or NT. An object type (folder) beneath
and slightly to the right of another is the child object type of the one it is below, the
latter of which is the child's parent object type.

An object type can have multiple child object types. For example, if you expand
Applet in the Object Explorer, you see various child object types, including Applet
Method Menu Item, Applet Browser Script, Applet Server Script, Applet Toggle, and
so on. Object definitions, like object types, have parent-child relationships. These
relationships are based on their object types. That is, the object type of the parent
object definition determines the object types of the child object definitions. Parent-
child relationships between object definitions are displayed in Siebel Tools with two
Object List Editor windows open simultaneously.

Figure 1 on page 53 shows the Siebel Tools window displaying business component
object definitions in the upper list applet, and field object definitions in the lower
list applet for the currently selected business component.

Figure 1. Object Explorer and Two Object List Editor Windows
Version 7.5.3, Rev. A Siebel Tools Reference 53

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Parent-child relationships between object definitions imply containership. That is,
the child object definition is in, or belongs to the parent object definition. For
example, columns are in a table, fields are in a business component, joins are also
in a business component, and controls are in an applet. There is no inheritance
among object definitions, and the set of properties of an object definition is
unrelated to the set of properties of a child object definition.

Classes in Siebel Tools
In Siebel Tools, Class is a property of certain object types, such as applet and
business component. Most object types do not have a Class property. The selection
of a Class property value, when available, assigns a set of behaviors to the object
definition, and distinguishes it from other categories of object definitions of the
given object type. For example, a value of CSSFrameList in the Class property in an
applet object definition makes it a list applet. The Class property accomplishes this
by assigning a DLL to the object definition (indirectly by way of a class object
definition).

Siebel Repository
The Siebel repository contains tables in the Siebel database where Siebel object
definitions are stored. You view the contents of the Siebel repository through the
Siebel Tools windows that appear when you initialize Siebel Tools.

The set of object definitions and server scripts defining a Siebel application (such
as Siebel Service or Siebel Sales) or set of applications is compiled into a file called
a Siebel repository file, or .srf file.

NOTE: Browser scripts are compiled into the browser script compilation folder, which
can be specified in Siebel Tools on the Scripting tab under View > Options. For
more information on the browser script compilation folder, see “Browser-Side
Scripting” on page 173.
54 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
The .srf file, when opened by the object manager on behalf of a Siebel Web
application, provides the system with all of the information it needs to define
interactions with the enterprise data and software users. In its uncompiled form, the
set of object definitions is called a repository, and is stored in the database that Tools
connects to. In its compiled form, it occupies a single compressed read-only file
with the .srf file extension.

The object manager reads the information stored in the repository file on demand
as the different parts of the Web application are executed. For example, when the
user switches to a specific view, all components that form part of that view will read
information from the repository file that determines which data will be presented
and in what format. Some components are visual and the configuration information
will determine, for example, what applets to show in the view. In the case of non-
visual components, the configuration information may determine what data fields
this component provides.

The application database contains the actual data for the system, and it also
contains some administration information such as the list indicating which views a
specific type of user can access. This database can run locally or remotely. The
contents of the repository tables are compiled into a binary file that provides fast
read-only access to the repository metadata during run-time.

Figure 2 on page 56 shows the definition of the Contact repository object as viewed
in Siebel Tools.
Version 7.5.3, Rev. A Siebel Tools Reference 55

Siebel Architecture (Basic Concepts)

Application Architecture Overview
The Siebel database contains both metadata (repository objects) and user data. The
database can be populated either through the Siebel UI or a variety of interfaces.

Virtual business components allow data from external RDBMSs and applications to
be displayed in the Siebel user interface.

Figure 2. Contact Repository Objects as Viewed in Siebel Tools
56 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Object Layers and Hierarchy
The object definitions in Siebel applications fall into four architectural layers (apart
from the database management system provided by a database vendor). The four
layer architecture is illustrated in Figure 3.

The Physical User Interface Layer consists of the physical files, templates, style
sheets, and other file-based metadata that render the UI. See “Physical UI Layer” on
page 74 for detailed information.

Figure 3. Architectural Layers of Object Definitions
Version 7.5.3, Rev. A Siebel Tools Reference 57

Siebel Architecture (Basic Concepts)

Application Architecture Overview
The Logical User Interface Objects layer consists of user interface object definitions
that define the visual interface that the user sees and interacts with in a Web
browser. Data from business object definitions is represented to the user for viewing
and modification by means of user interface object definitions. See “Logical User
Interface Objects Layer” on page 68 for detailed information.

The Business Objects layer consists of business object definitions that are built on
data object definitions, and selectively combine and associate data object
definitions into logical data constructs that are useful for application design. See
“Business Objects Layer” on page 62 for detailed information.

The Data Objects layer consists of data object definitions that directly map the data
structures from the underlying relational database into Siebel applications,
providing access to those structures by object definitions in the Business Objects
layer. See “Data Objects Layer” on page 58 for further information.

Data Objects Layer
Data object definitions create a layer of abstraction over the DBMS, insulating the
application and the developer from database administration and restructuring. The
Data Objects layer is implemented by means of the data manager classes.

Object definitions in the Data Objects layer provide a logical representation of the
underlying physical database (constructs like table, column, and index), and are
independent of the installed DBMS.

This product feature allows you to migrate a Siebel application from one DBMS to
another without having to modify the repository file where the metadata is stored.
In fact, you can have a single repository file and a mix of databases from different
vendors (for example, one on the server, another for connected clients, and a third
for remote clients).

The physical tables in the DBMS are created as part of the Siebel application
installation process.
58 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Relationship Between the Siebel Application and the Database
Relational database management in Siebel applications is implemented through
layers of Siebel object definitions functioning as a superstructure over a third-party
relational DBMS. The Siebel applications generate queries in response to user
actions, in combination with the context established by relevant object definitions.
The relational DBMS holds the data, and processes the queries originating in the
Siebel application. Query results that are returned from the DBMS are processed up
through the relevant object definitions in the Siebel applications architecture, and
presented to the user.

The layered architecture in Siebel applications places various object definitions at
different levels relative to the database. In immediate proximity to the database are
the data object definitions. Individual data object definitions directly represent
individual tables, columns, and indexes in the DBMS. At an intermediate level of
relationship are the business object definitions. All business object definitions are
based on data object definitions or other business object definitions; they do not
have any direct relationship to the database. The object definitions most indirectly
related to the database are the Web interface object definitions. These are based on
business object definitions, and do not directly access either the database or the
data object definitions.

A developer or customer can change or extend Siebel applications without
impacting the database in the DBMS. Similarly, you can make database changes
without impacting, or only minimally impacting, the applications. This is possible
because each architectural layer insulates the layers above it from the layers
beneath, including the DBMS at the bottom of the architecture.

For example, a form applet is a Web interface object definition that implements a
data entry form. The textbox controls in which the user enters data for individual
columns in the database are tied not to those database columns, or to column object
definitions in the Data Objects layer, but to field object definitions in the Business
Objects layer. The controls represent fields, the fields represent column object
definitions, and the column object definitions represent database columns.
Version 7.5.3, Rev. A Siebel Tools Reference 59

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Standard Tables and Columns
A set of standard tables is provided with Siebel applications for installation in the
DBMS at a customer's site. These provide data storage for all of the features
included in the standard Siebel applications, as well as expansion capability. The
standard tables and their columns and indexes are represented by corresponding
table, column, index, and index column object definitions.

Standard tables and their table object definitions generally are of the following
types:

■ Data Tables. The data tables comprise the bulk of the table object definitions in
Siebel applications. The columns in data tables provide the data for fields. A data
table may serve as a base table for a business component. That is, it may provide
the primary source of data for that business component. Data tables may be
provided with additional columns by means of extension tables.

■ Intersection Tables. An intersection table (in combination with certain business
object definitions) implements a many-to-many relationship between two data
tables. The intersection table provides the means to implement the many-to-
many relationship as two one-to-many relationships, which the underlying
DBMS is equipped to handle (there is no database construct that implements
many-to-many relationships directly).

■ Extension Tables. An extension table provides additional columns that cannot be
directly added to a data table. The database product may support only a limited
number of columns, or will not allow adding a column to a table once it is
populated with data. An extension table allows you to provide additional
columns for use as fields in a business component without violating DBMS or
Siebel restrictions.

■ Interface Tables. The interface tables are intermediate database tables between
the Siebel application database and other databases. Interface tables are used by
the Siebel Enterprise Integration Manager to import initial data for populating
one or more base tables and, subsequently, to exchange data between Siebel
applications and other enterprise applications.

The columns in standard tables are of the following types:

■ Data Columns. The data columns are part of the original set of columns
implemented in the standard Siebel applications. They hold data that is made
available through fields to developers and users.
60 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
■ Extension Columns. An extension column is a column that is not used by standard
Siebel applications. However, it is included for use in reconfigured applications.
There are three kinds of extension columns:

■ Standard Extension Columns. Standard extension columns are included in
standard extension tables for developer use. They are named ATTRIB_nn,
where nn is a value between 01 and 47 (for example, ATTRIB_13). Each has
a predefined data type and length. (Note that some tables—for example,
S_ORDER_X, SPROD_INT_X—have more than 50 extension columns, and
that adding more columns may affect application performance adversely.
Also note that some extension columns are used by the Siebel application
and are unavailable to developers.)

■ Custom Extension Columns in an Extension or Intersection Table. These are
columns added by the developer to an extension or intersection table, and
given a custom name.

■ Custom Extension Columns in a Base Table. These are columns added by the
developer to the base table of an extension table. Their names have the X_
prefix.

■ System Columns. Various system columns appear in all tables in Siebel
applications, although no one set of system columns appears in every table.
Some standard system columns are ROW_ID, CREATED, and CREATED_BY. The
developer may use the data in system columns for various purposes; for
example, the ROW_ID column in tables is used in the construction of joins.
Generally the developer does not modify the data in system columns, although
there are exceptions, such as certain of the system columns in interface tables.

The set of tables and columns provided in standard Siebel applications implements
a very comprehensive design, and supports a very wide range of configuration
activities. However, it is also designed to work in certain ways, and changes made
that are not in accordance with Siebel standards can slow performance or cause
software failures. A developer can add extension tables as well as extension
columns to base tables using Siebel Tools. The developer cannot, however, add new
base tables, delete base tables and columns, or modify the properties of base
columns. Rather, the extension table and extension column facilities are employed.

Standards, limitations, and procedures for using extension tables are discussed in
“Extension Tables” on page 196. For information on database enhancement, see
Chapter 6, “Adding Custom Extensions to the Data Model.”
Version 7.5.3, Rev. A Siebel Tools Reference 61

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Data Object Types
The object types for the data object layer are described briefly below. For more
detailed descriptions, see Object Types Reference.

■ Table. A table object definition is the direct representation of a database table in
a DBMS. It has column and index child object definitions that represent the
table's columns and indexes. Table, column, and index object definitions within
Siebel Tools provide a detailed picture of all of the tables, columns, and indexes
in use in the DBMS.

■ Column. A column object definition represents one column in the database table.
Database columns in a database table are represented by the column object
definitions that are children of the corresponding table object definition. Each
column in the table has a corresponding column object definition.

■ Index. Each index object definition identifies a physical index file in the DBMS.

Business Objects Layer
The Business Objects layer consists of business object definitions that are built on
data object definitions and selectively combine and associate data object definitions
into logical data constructs that are useful for application design. The Business
Objects layer in the repository is implemented by means of the object manager
classes.

The major object types in the Business Objects Layer are:

■ Business component. One fundamental business entity in the enterprise—for
example, Contact, Business Address, or Activity.

■ Business object. Denotes a functional area that is a grouping of one or more
related business components.

Business Components
A business component consists of multiple fields that characterize it; for example,
some of the fields for Contact might consist of first name, job title, and email
address.
62 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Figure 4 shows that a business component maps to one main table in the Data
Objects layer and fields in the business component map to columns in the main
table. In this example, the Contact business component maps to the S_CONTACT
table.

Business components can also include data from related tables. Figure 5 shows the
Contact business component mapped to the main table (S_CONTACT) and also two
related tables, S_ORG_EXT and S_OPTY_CON.

You can think of a business component as a denormalized virtual database table
that spans multiple real tables.

The “grouping” of data can be achieved by:

■ Referencing an extension table

■ An explicit join of two tables

■ A link that joins data in an intersection table

Figure 4. Business Component Mapping to the Main Contact Table

Figure 5. Business Component Mapping to Data in Related Tables
Version 7.5.3, Rev. A Siebel Tools Reference 63

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Business Objects
A business object represents a major functional area of the enterprise—every major
entity has a business object. Examples of business objects are Opportunity,
Account, and Contact.

A business object is a collection of related business components; for example (as
shown in Figure 6), the Opportunity business object consists of Opportunities plus
related Contacts, Activities, Products, and Issues. Each business object has one
business component that serves as the master or driving business component. This
master business component provides focus for the business object, and they both
have the same name (the name is Opportunity in Figure 6).

The Opportunity business component has one and only one parent, which is the
Opportunity business object. A link would be required for the other business
components (Contact, Activity, Product, and Issues) to connect with the
Opportunity business object.

Figure 6. The Opportunity Business Object and Its Business Components
64 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Business Component Reuse
As shown in Figure 7, a business component can be defined once in terms of a
logical collection of columns from one or more tables, and then used in many
different business object contexts. One specific area of application configuration
where reuse plays a significant role is virtual business components. For more
information, see Integration Platform Technologies: Siebel eBusiness Application
Integration Volume II.

Business Object Types
The object types for the business object layer are described briefly below. For more
detailed descriptions, see Object Types Reference.

Figure 7. Business Component Reuse
Version 7.5.3, Rev. A Siebel Tools Reference 65

Siebel Architecture (Basic Concepts)

Application Architecture Overview
■ Business Component. A business component is a logical entity that associates
columns from one or more tables into a single structure. Business components
provide a layer of wrapping over tables, causing applets to reference business
components rather than the underlying tables. This design creates convenience
(all associated columns together in one bundle), developer-friendly naming, and
the isolation of the developer role from the database administrator role.

Multiple users can instantiate copies of the same business component. Data
changes made by any one user are reflected in all instances of the business
component.

■ Field. A field object definition associates a column to a business component. This
is how columns from tables are assigned to a business component and provided
with meaningful names that the customer developer can easily change.
Alternately, a field's values can be calculated from the values in other fields in
the business component. Fields supply data to controls and list columns in the
Web interface.

■ Business Object. A business object implements a business model (logical
database diagram), tying together a set of interrelated business components
using links. The links provide the one-to-many relationships that govern how the
business components interrelate in the context of this business object.

NOTE: The object type called Business Object is not to be confused with the
general category called business object types. Business Object is one of the
object types in the Business Objects layer. Similarly a business object, which is
one kind of object definition, is not the same as the category “business object
definitions.”

■ Business Object Component. A business object component object definition is
used to include a business component and, generally, a link in the business
object. The link specifies how the business component is related to another
business component in the context of the same business object.

■ Link. A link implements a one-to-many relationship between business
components. The Link object type makes master-detail views possible. A master-
detail view displays one record of the master business component with many
detail business component records corresponding to the master. A pair of links
also may be used to implement a many-to-many relationship.
66 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
■ Multi-Value Link. A multi-value link is used in the implementation of a multi-value
group. A multi-value group is a user-maintainable list of detail records
associated with a master record. The user invokes the list of detail records from
the master record when it is displayed in a list or form applet. For example, in
an applet displaying the Account business component, the user can click the
Select button to the right of the Address text box to see a pop-up window
displaying multiple Address records associated with the currently displayed
account.

■ Join. A join object definition creates a relationship between a business
component and a table that is not the business component's base table. The join
allows the business component to build fields using columns from the non-base
(joined) table. The join uses a foreign key in the business component to obtain
rows on a one-to-one basis from the joined table, even though the two do not
necessarily have a one-to-one relationship.

■ Join Specification. A join specification is a child object type of join that provides
details about how the join is implemented within the business component.

■ User Property. A user property is a temporary storage field in a business
component that is not tied to the database. When a user sets a value in a
business component user property, it is not visible to other users of the same
business component. User properties are not saved across sessions.

■ Business Service. A business service is a reusable module containing a set of
methods. It provides the ability to call its C++ or script methods from
customer-defined scripts and object interface logic, through the invoke-method
mechanism.

For more information, see Integration Platform Technologies: Siebel eBusiness
Application Integration Volume II.
Version 7.5.3, Rev. A Siebel Tools Reference 67

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Logical User Interface Objects Layer
The Logical User Interface Objects layer consists of user interface object definitions
that determine the visual interface that the user sees and interacts with in a Web
browser. Data from business object definitions is represented to the user for viewing
and modification by means of user interface object definitions. The Applet user
interface object type (along with its child object types, particularly Applet Web
Template) implements application units consisting of data controls, editable
scrolling list tables, business graphics, and so on. Other user interface object types
control toolbar and menu implementation, and the visual grouping of applets on
screen.

The user interface defines the visual elements with which users interact—for
example:

■ Layout of applets and views

■ Navigation

■ User interface controls (for example, buttons and check boxes)

The User Interface Objects Layer is insulated from the Data Objects Layer and the
underlying database by the Business Objects Layer.
68 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Various interface elements in a Siebel eBusiness Application are shown in Figure 8.

Applets
An applet allows access to the data of a single business component for viewing,
editing, and modifying fields in the business component.

An applet can be configured to allow data entry for a single record, to provide a
scrolling table displaying multiple records, or to display business graphics or a
navigation tree.

As shown in Figure 9, an applet consists of controls that map to fields in the
underlying business component or simply support user interactions with the
application, as is the case with buttons, for example:

Figure 8. User Interface Objects in a Siebel eBusiness Application

Show drop-
down list

List applet View tabsScreen tabs

Menu buttons

Form applet

History drop-down list Favorites drop-down list

Show
more
button

Next and
previous buttons

Tab jump
buttons
Version 7.5.3, Rev. A Siebel Tools Reference 69

Siebel Architecture (Basic Concepts)

Application Architecture Overview
■ A list column for a list applet (the top applet in Figure 9)

■ A text box for form applets (the bottom applet in Figure 9)

All data in a given applet must be part of the business component that calls it.

Data in a given business component can be from a single table or multiple tables.

Business components can be reused in multiple applets. Several applets can
reference the same business component definition. This is a benefit of having a
single definition in the business component of the logical-to-physical relationship.
Since the user interface (applet) layer is abstracted from the physical layer using the
business component, there is no need to revisit the details of multiple tables in the
physical layer for each of the applets that will display data for the same business
function.

NOTE: Do not confuse the applet construct in Siebel applications with Java applets.
They are somewhat similar, but there are significant differences.

Figure 9. Fields in a Contact Applet Mapped to the Contact Business Component
70 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Views
A view presents one or more applets together at one time in a predefined visual
arrangement and logical data relationship. Views are named, and a specific view is
selected by name from a combination of menus or tab symbols.

A given view is mapped to a single business object, which determines the
relationship between data displayed in two or more applets in the view. For
example, the Opportunity Contacts Detail view is based on the Opportunity
business object. Opportunity data is always displayed as the master or parent, and
other types of data (for example, Contacts) are displayed as child records of a
particular Opportunity. This allows users to see all the contacts associated with a
single Opportunity.

Each applet in a view must map to a business component in that business object.

The business components that are required to be included in each view are:

■ For a view based on the business object, all business components to which
applets in that view are mapped

■ Any business component whose data is exported in a report from a view based
on the business object

NOTE: The business component you include can be a child of another business
object.

Screens
A screen is a collection of related views.

Screens are associated with major functional areas of the enterprise.

In general, all views in a screen map to the same business object—an exception is
administration screens.
Version 7.5.3, Rev. A Siebel Tools Reference 71

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Applications
An application (for example, Siebel Sales) is a collection of screens.

NOTE: Do not confuse Siebel applications with mobile Siebel application executables
(that is, .exe files).

You can access Siebel applications through the Siebel Web client, dedicated Web
client, mobile Web client, handheld, or wireless Web client.

Your organization may have licensed more than one Siebel application (for example,
Siebel Sales and Siebel Call Center), to be used by different groups (for example, the
sales team and the customer support team) within your organization.

In that situation you can install the Siebel Sales and Siebel Call Center as separate
applications, or as a single application in which you establish different views for the
relevant responsibilities of the two groups using them.

Logical UI Object Types
The object types for the logical UI object layer are described briefly below. For more
detailed descriptions, see Chapter 5, “Data Objects Layer” or Object Types Reference.

■ Application. An application is a collection of screens. The application is opened
in a Web browser on the user's desktop by attaching to a specified URL. The
screens are accessed from the tab bar and the Site Map, as defined in the
application. Siebel eService is an example of an application. Each combination
of screens that is appropriate to a specific class of users can be provided as an
application.

■ Page Tab. A page tab object definition associates a screen to the page tab's parent
application object definition and includes it as a tab in the tab bar.

■ Screen Menu Item. A screen menu item object definition associates a screen to
the application and includes the screen as a menu item in the Site Map.

■ Screen. A screen is a logical collection of views. It is not a visual construct in
itself; rather, it is a collection of views that the menu bar and view bar can
display. The active screen is selected from the Site Map or the tab bar.
72 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
■ Screen View. A screen view object definition associates a view with the screen
view's parent screen object definition. This is how views are included in screens.

■ View. A view is a collection of applets which appear on screen at the same time.
A view can be thought of as a single window's worth of related data forms
(applets). The Siebel application window displays one view at any one time. The
user can select the current (active) view from the second-level navigation tab or
from the Site Map. A view is associated with the data and relationships in a
single business object.

■ Applet. An applet is a form, composed of controls, that occupies a portion of the
Siebel application window. An applet can be configured to allow data entry,
provide a scrolling table of business component records, or display business
graphics, a navigation tree, or a similar user interface unit. It provides viewing,
entry, modification, and navigation capabilities for data in one business
component. Pop-up windows for multi-value groups and record selection are
also implemented as applets.

■ Control. One control object definition corresponds to one data control in a form
applet, such as a text box, check box or command button. A control is something
in the applet with which the user can interact. A control usually either exposes
data from one field in the business component, or invokes programming logic
(in the case of a PushButton control).

■ List. List is a child object type of Applet. A list object definition specifies property
values that pertain to the entire scrolling list table and provides a parent object
definition for a set of list columns.

■ List Column. A list column object definition corresponds to one column in the
scrolling list table in a list applet, and to one field in the business component.

■ Web Template, Applet Web Template, View Web Template. Identify external HTML
(or other markup language) files that define the layout and Siebel Web Engine
interactions for an applet or view.

■ Applet Web Template Item. Defines a control, list item, or special Web control in
the Web implementation of an applet.

■ View Web Template Item. Defines the inclusion of an applet in the Web
implementation of a view.
Version 7.5.3, Rev. A Siebel Tools Reference 73

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Physical UI Layer
The physical user interface (UI) consists of the physical files, templates, Siebel tags,
style sheets, and other file-based metadata that control the layout (as opposed to
the content) of the user interface (for example, CSS, SWF, and GIF files). The Applet
Web Template, Applet Web Template Item, View Web Template, View Web Template
Item objects are part of the logical UI layer; their object definitions are stored in the
Siebel repository. Examples of physical UI objects are:

■ Templates files. A Siebel template is a special kind of HTML file that defines the
layout and formatting of elements of the user interface (such as views, applets,
and controls). It provides this layout information to the Siebel Web Engine when
rendering Siebel objects in the repository to HTML files.

The layout and style of HTML Web pages is dynamic, which allows
simultaneous support for multiple browser types and versions. This is
accomplished through the conditional branching in Web templates.

■ Tags. Siebel tags are special tags you insert into template files. They specify how
Siebel objects defined in the repository should be laid out and formatted in the
final HTML page in the user’s Web browser.

The process of configuring a Web application separates the layout and
formatting from the application definition and binding to data. You use Siebel
tags to map objects into a HTML physical layout.

■ CSS. Siebel Cascading Style Sheets are external style sheet documents (of type
text/CSS) to define how HTML or XML elements and their contents should
appear in a Web document.

CSS provide rules for resolving conflicts in HTML or XML These rules consist of
two main parts: a selector and a declaration. The declaration has two parts:
property and value.
74 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Application Architecture Overview
Summary of the Major Object Types
Figure 10 shows the major object types in a Siebel application, and the relationship
between them.

Figure 10. Overview of the Major Object Types and Their Relationships
Version 7.5.3, Rev. A Siebel Tools Reference 75

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
Operating Architecture Overview
The client-server architecture of the standard HTML client is illustrated in Figure 11.

Figure 11. Client-Server Architecture for Siebel Web Engine
76 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
Siebel applications are implemented on one or more servers using three major
components: the object manager, the Siebel Web Engine, and the data manager:
These components are described as follows:

■ Object Manager. The object manager hosts a Siebel application, providing the
central processing for HTTP transactions, database data, and metadata (object
definitions in the repository that are relevant to the current state of the Siebel
application). The Siebel Web Engine and data manager operate as facilities
inside the object manager.

Object definitions at all three levels of the object layer hierarchy—Web interface
definitions, business object definitions, and data object definitions—are
processed in the object manager. However, in terms of the runtime objects based
on the object definitions, only the business object layer objects (business object,
business component, and so on) are instantiated there directly. Web interface
objects are instantiated in the Siebel Web Engine, and data objects are
instantiated in the data manager.

The object manager also implements the mechanism by which the Web interface
objects receive notification of various state changes of the business component.

■ Siebel Web Engine. This is also called SWE. The user interface in Siebel
applications is generated as HTML pages on the server, and is passed to an
unmodified Web browser through HTTP. The Siebel Web Engine (in
combination with the Siebel plug-in on the Web server) makes possible the
deployment of these applications. A Web browser client (or other Siebel client)
interacts with the server-based object manager through the Siebel Web Engine,
providing the means for the user to view and edit data. SWE retrieves and
updates data by interfacing with the object manager. A notification mechanism
between SWE and the object manager is used so that when one applet modifies
data in any business component, all other applets are notified immediately so
that they can update their data on the screen.

■ Data Manager. The data manager is a facility inside the object manager that
issues SQL queries in response to object manager requests, and passes back
database result sets to the object manager. The data manager is composed of one
connector DLL for each type of database connection supported by the system.
The object manager dynamically loads the appropriate DLL based upon the
required data source.
Version 7.5.3, Rev. A Siebel Tools Reference 77

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
Siebel Web Engine Infrastructure
This section describes the Siebel Web Engine (SWE) architecture and functionality
in greater detail.

The Siebel Web Engine makes possible the deployment of applications in HTML and
other markup languages. A Web browser client (or other Siebel client) interacts with
the server-based object manager through the Siebel Web Engine, as shown in
Figure 13 on page 82.

In the Siebel architecture, no components are hosted on the client. The client
interacts through a Web browser. The user accesses a specified URL that navigates
to a Web-server hosted application. This Web server application is, in turn, supplied
with HTML (or equivalent) pages generated by the Siebel Web Engine service in the
object manager. The Siebel Web Engine consists of components on two servers—
the Siebel Plug-In (also called Siebel Web Extension) on the Web server, and the
Siebel Web Engine service in the object manager on the Siebel Server.

A Siebel plug-in (for Microsoft Web server software) runs on the Web server, and
interfaces with the Siebel Web Engine service in the object manager. Most of the
work takes place in the Siebel Web Engine (SWE); the Web server plug-in mostly
maintains the session and functions as a communication intermediary. Network
communication between the Web server plug-in and the object manager is through
SISNAPI, a TCP/IP-based Siebel Communication protocol that provides a security
and compression mechanism.

The Siebel Web Engine runs as an object manager service called the Web Engine
Interface Service. This service implements most components of the Siebel Web
Engine, deploying an interface between the Siebel plug-in on the Web server and
the object manager. From the perspective of the Siebel plug-in, the SWE interface
service provides processing for incoming HTTP requests bearing the SWE prefix,
and generates HTTP responses. From the object manager's perspective, it provides
a user interface in its OM interactions.

Applets and views are made available to the Web by associating a set of HTML
templates, which is done using Siebel Tools. At run time, when an applet needs to
be rendered, the SWE obtains the information defining the applet, the appropriate
data for the various the applet controls or list columns, and the HTML template; it
then combines them to generate the final Web page that is then sent to the browser.
78 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
Applet Web templates are defined and laid out in Siebel Tools using the Applet Web
Template and Applet Web Template Item object types and the Web Applet Designer.
View Web templates are defined using the View Web Template and View Web
Template Item object types.

How the Siebel Web Engine Generates the Web Application
Users of a Web application interact with the application through their Web
browsers. The interface they see is a set of Web pages dynamically generated by
Siebel Web Engine by matching the repository definition of the application with the
templates customized by the Web application developer.

The diagram in Figure 12 provides a graphical depiction of the relationships
between the various objects in a Web application.

Running the Web Application
When a user interacts with the Web application (by clicking a button or hyperlink
in a browser window), the Siebel Web Engine does the following:

1 Reads the repository definition of the application.

2 Retrieves relevant data from the database through the Application Object
Manager.

Figure 12. Relationship Between Objects in a Web Application
Version 7.5.3, Rev. A Siebel Tools Reference 79

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
3 Retrieves the repository object definition of the view and applet to display the
data within it.

4 Reads the .SWT file and maps the retrieved data and applet and view
information to the corresponding placeholders in the .SWT file.

5 Delivers the HTML page (including the standard HTML and the retrieved data)
through the Web Server, back to the user’s browser for display as a Web page.

About Standard and High Interactivity
Siebel applications are deployed in either Standard Interactivity or High Interactivity
mode.

Standard Interactivity mode resembles most traditional Web applications. It
supports many different types of browsers. Page refreshes occur often, such as when
users create new records, submit forms, and browse through lists of records.
Customer applications are deployed in Standard Interactivity mode.

High Interactivity mode is designed to resemble a Windows client. It supports fewer
browsers than Standard Interactivity mode, but it includes a set of features that
make data entry easier for users. For example, page refreshes do not occur as often
as they do in Standard Interactivity mode. Users can create new records in a list,
save the data, and continue browsing without a page refresh having to occur.
Employee applications are typically deployed in High Interactivity mode. Other
features supported by High Interactivity mode are:

■ Browser scripting.

■ Implicit commit, which allows the application to automatically save a record
when the user steps off it.

■ User interface features, such as drag and drop column reordering, drag and
drop file attachments, keyboard shortcuts, smart controls for calendar,
calculator and currency functions, and applet scroll bars.

NOTE: Partner applications can be deployed in either Standard Interactivity or High
Interactivity mode.
80 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
One way to distinguish between Standard and High Interactivity modes is by the
underlying technologies used by each mode (see Table 5).

There are requirements for deploying in both modes. For example, Standard
Interactivity requires that browsers support HTML 3.2 and JavaScript interpretation.
High Interactivity mode requires support for additional technologies, such as Java
Virtual Machine or Java Runtime Environment, and Active X controls.

For specific requirements for each mode, see Siebel System Requirements and
Supported Platforms.

For specific requirements related to browser settings, see Siebel Web Client
Administration Guide.

JavaScript Object Architecture in High Interactivity
Extension of browser behavior is accomplished by means of JavaScript, an
interpreted language running in many Web browsers, with different support for the
standard and varying extensions.

The browser objects layer allows you to add scripts, which run in the browser, to
the traditional Siebel objects. See “Application Enhancement Through Scripting and
Object Interfaces” on page 171.

Objects representing the applet, business component, business services, and
application objects live in the browser address space as JavaScript objects, and
provide communication with the server. These object types are the same object type
instantiated within the browser: browser applet, browser buscomp, browser
business service and browser application. Initially, these pass through to the SWE,
but can become more sophisticated and provide caching and other local processing.

Table 5. Technology Differences Between Standard and High Interactivity

Technologies
Standard
Interactivity

High
Interactivity

Uses Java technology X

Uses JavaScript technology X X

Uses Active X technology X

Uses Document Object Model X
Version 7.5.3, Rev. A Siebel Tools Reference 81

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
You can script instances of browser applets, browser buscomps, browser business
services, and browser applications.

■ Browser Applet. Provides a framework for communication and interaction
between applet controls and for specialization by the applications groups.

■ Browser Buscomp. Provides the same framework for business component-level
interactions. Immediate notifications are a characteristic of the browser
buscomp that allows the browser applets to update their state immediately as
values change in the underlying business component (due to parent/child
views, calculated values, and specialized behavior.)

■ Browser Business Service. Provides a set of methods from customer-defined
browser-side scripts, through the invoke-method mechanism. Business services
can be reused.

■ Browser Application. Provides the application-level framework. Methods that are
not business component-specific can be accessed here as well as invoke
methods on the server.

In the diagram in Figure 13, the different boxes represent different components or
different parts of the application. Specialized business component logic is shared
among all platforms; specialized Web applet logic is shared between all HTML
clients; and browser logic is the only part that is browser-specific.

Figure 13. JavaScript Architecture for High Interactivity
82 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
These browser-side JavaScript objects are maintained in sync with their server-side
counterparts, so that changes on the browser or server objects are reflected in their
corresponding objects. Application processing is performed among the browser-side
objects. Using remote procedure call protocol, the server is activated when data or
new layouts are required from the server. The server can also initiate actions on the
browser, using the notifications protocol.

Enabling and Disabling High Interactivity for Applications
Employee applications are set to use High Interactivity mode by default. You can
also set employee applications to run in Standard Interactivity mode. The mode is
determined by a parameter in the application configuration file.

NOTE: High Interactivity is not supported for customer applications.

To enable or disable high interactivity

1 Verify that the application is an employee application.

2 Open the application configuration (.cfg) file.

3 In the SWE section in the .cfg file, do one of the following:

■ To enable High Interactivity, add the parameter HighInteractivity with value
= TRUE:

[SWE]

HighInteractivity=TRUE

■ To disable High Interactivity (run Standard Interactivity mode), delete the
HighInteractivity parameter from the .cfg file.

4 Save and close the .cfg file.

NOTE: When running an application with HighInteractivity=TRUE, the Web
framework attempts to show views in high interactivity only if every applet
contained in the view supports this. Otherwise, the view will be displayed in
standard interactivity.
Version 7.5.3, Rev. A Siebel Tools Reference 83

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
Enabling and Disabling High Interactivity for Views
You can control whether views appear in High Interactivity mode by the underlying
class definitions of the applets that appear on the view. A view is displayed in High
Interactivity mode when the underlying classes of all the applets in the view have
the High Interactivity Enabled property set to 2, 3, 4, or 5. The possible values for
the High Interactivity Enabled property are summarized in Table 6.

High Interactivity Configuration Considerations
When configuring applications for deployment in High Interactivity mode, consider
the following:

■ Browser scripting is fully supported in High Interactivity mode.

■ For fields to interpret and display custom HTML, such as a URL entered by the
user, the field’s Type property must be set to URL. If it is not set to URL, the
HTML is presented and interpreted as plain text. For example, if a user typed a
URL in a field of type TEXT, the URL would not be recognized as a link to a Web
page.

■ You cannot modify the appearance of the rich text editor.

■ You cannot modify the background and text color of list applets.

■ You cannot place method-invoking controls, such as the delete function, on
every row in a list. Instead place a button that calls the method on the applet
itself. The function will act on the selected record.

Table 6. High Interactivity Enabled Property Values

Value
Works with High
Interactivity

Works with Standard
Interactivity Cachable

1 No Yes No

2 Yes No Yes

3 Yes No No

4 Yes Yes Yes

5 Yes Yes No
84 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
■ There are cases when an application’s configuration file is set to run in High
Interactivity mode and all the applets in a view are configured to support High
Interactivity, but the view appears in Standard Interactivity mode. Reasons this
might occur are:

■ One of the applets is in the Query mode. Because High Interactivity implicitly
supports query operations from the user interface, it does not support the
explicit use of the Query mode.

■ One of the applets is in the New mode and uses a New template that is
different from the Edit template used in its default mode. This can be avoided
by inactivating New templates associated with the applets used in High
Interactivity applications. The framework will then default to using the Edit
template itself to create new records.

■ One of the list applets has multi-row edits or multi-row select enabled.

■ One of the list applets is a hierarchical list applet.

■ The view uses a template that shows applets in a catalog-style layout. None
of the employee applications should be using this layout.

■ A combo box picklist uses Long Lists or has an associated pick applet. For
example, if you perform an action from a High Interactivity applet that causes
a pick applet to be displayed, the pick applet will not be in High Interactivity
mode.

Integrating Siebel with J2EE
Many enterprises, especially those involved in eBusiness, develop and implement
Java applications to meet a variety of business requirements. Typically, these
applications combine existing enterprise information systems with new business
functions to deliver services to a broad range of users.

Such services are usually architected as distributed applications consisting of three
tiers: clients, data sources, and the middle tier between the two. The middle tier is
where you typically find transports and interfaces such as HTTP and MQSeries, as
well as Java servlets and Enterprise Java Beans (EJBs) to receive the messages
(typically, these are in XML format) between applications inside and outside the
enterprise.
Version 7.5.3, Rev. A Siebel Tools Reference 85

Siebel Architecture (Basic Concepts)

Operating Architecture Overview
To further simplify integration, Siebel Applications provide a Java/XML Framework
designed to receive XML requests sent by Siebel over HTTP or MQSeries. The Java/
XML Framework provides a uniform way to receive and process Siebel Applications
requests within J2EE environment. Requests initiated from within Siebel
Applications are transmitted to the appropriate J2EE Application Server using
Siebel's eAI integration infrastructure. The Java/XML Framework consists of a
Servlet to receive HTTP requests and an MQSeries Base Server designed to retrieve
messages from an MQSeries queue.

When implementing the Java/XML Framework, you will need to implement a single
interface (ProcessRequest) responsible for understanding the contents of the
incoming request and dispatching it to the appropriate Java component.

NOTE: The Java/XML Framework may be used only to receive XML requests from
the Siebel programs. This code may be extended solely for use in object code form
and solely for the purpose of integrating the Siebel programs with non-Siebel
applications; however, any modification or extension of this code is outside of the
scope of Maintenance Services and will void all applicable warranties.

In addition to the Java/XML Framework described above, you can generate
JavaBeans that represent Siebel Integration Objects or Business Services using the
Siebel Code Generator Business Service. The JavaBeans generated by the Siebel
Code Generator provide a strong interface for Integration Objects, Business
Services, and their related components, allowing you to identify and use the Java
code you need for your application.

NOTE: The source code generated by the Siebel Code Generator Business Service may
be used only in object code form and solely for the purpose of integrating the Siebel
programs with non-Siebel applications. Any modification or extension of code
generated by the Siebel Code Generator Business Service is outside of the scope of
Maintenance Services and will void all applicable warranties.

For additional information regarding the Java/XML Framework and the Siebel Code
Generator Business Service (Java Wizard), please refer to Transports and Interfaces:
Siebel eBusiness Application Integration Volume III.
86 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Architecture (Basic Concepts)

Siebel Partner Connect and Siebel Tools for Partner Connect
Siebel Partner Connect and Siebel Tools for Partner
Connect

Siebel Partner Connect is a business-to-business integration solution that allows
brand owners to deploy integrated processes with their demand chain partners.

Siebel Tools for Partner Connect is a set of tools that brand owners use to configure
and administer their integrations with their channel partners. It includes the
following webMethods products:

■ webMethods Developer

■ webMethods Trading Networks Console

■ webMethods Business Integrator

For more information on Siebel Partner Connect and Siebel Tools for Partner
Connect, see Siebel Partner Relationship Management Administration Guide.
Version 7.5.3, Rev. A Siebel Tools Reference 87

Siebel Architecture (Basic Concepts)

Siebel Partner Connect and Siebel Tools for Partner Connect
88 Siebel Tools Reference Version 7.5.3, Rev. A

 Siebel Tools Fundamentals 3
This chapter describes the basics of working with Siebel Tools. It describes the main
windows of the Siebel Tools user interface and basic tasks, such as viewing,
creating, and modifying object definitions.

What Is Siebel Tools?
Siebel Tools is an integrated environment for configuring all aspects of a Siebel
application so a single configuration can be:

■ Deployed across HTML and wireless clients

■ Used to support multiple Siebel applications and languages

■ Easily maintained

■ Automatically upgraded to future Siebel product releases

Siebel Tools is not a programming environment; it is a declarative application
configuration tool. Standard Siebel applications provide a core set of object
definitions that you can use as a basis for your tailored application. Using Siebel
Tools and other configuration tools that are part of a Siebel solution, Siebel
application developers, system administrators, and database administrators can
customize a standard Siebel application without modifying source code or SQL.
Some of the configuration tools are accessed through the Siebel applications. Siebel
Tools, however, is a separate product with its own user interface.

Navigation in Siebel Tools is done mainly in two windows:

■ Object Explorer window

■ Object List Editor window
Version 7.5.3, Rev. A Siebel Tools Reference 89

Siebel Tools Fundamentals

Siebel Tools Features
The Object Explorer employs a hierarchical tree-structure user interface (similar to
that of the Microsoft Windows Explorer) to allow you to browse the object types
that are stored in the Siebel Repository.

Other Siebel Tools windows, like the Object List Editor and Properties windows,
show you detail about individual objects in the Siebel repository.

Siebel Tools Features
The main features of Siebel Tools include:

■ “Siebel Tools Application Window”

■ “Siebel Objects”

■ “Siebel Object Explorer” on page 91

■ “Web Layout Editors” on page 91

■ “Script Editors” on page 92

■ “Target Browser Support” on page 97

■ “Object Repository” on page 98

Siebel Tools Application Window
The main application window that appears when you start Siebel Tools is the Siebel
Tools Object Explorer. For more information about this window, see “About the
Object Explorer” on page 98.

Siebel Objects
Siebel applications are built on object-oriented principles. A Siebel object definition
is a data construct in the repository file that defines an element of the:

■ User interface

■ Business entities

■ Database organization
90 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Siebel Tools Features
For a discussion of objects, object types, and objects definitions, see Chapter 2,
“Siebel Architecture (Basic Concepts).”

In general, a large portion of the task of configuring a Siebel application involves
modifying or creating object definitions within Siebel Tools.

Siebel Object Explorer
The Siebel Object Explorer gives you the ability to customize Siebel products. It is
a graphical editing tool used for modifying and managing object definitions. Siebel
Object Explorer is the main application window and appears when you start Siebel
Tools. (For more information about using the Siebel Object Explorer, see “About the
Object Explorer” on page 98.)

Web Layout Editors
The Web Layout Editor allows you to:

■ Add and map controls and list columns to applet Web templates. You can
preview applets as they would be rendered at runtime.

See “Editing the Web Layout of Applets” on page 544 for more information.

■ Modify existing views and construct new ones by dragging and dropping applets
onto the view layout window. You can view list and form applets and the
container page in the Preview mode. No additional specification or code is
required for defining the relationships between the applets.

See “Editing the Web Layout of Views” on page 566 for more information.

■ Add and delete controls from Web page templates, modify control properties,
and map controls to placeholders. You can also preview Web pages as they
would appear at runtime.

See “About Web Pages” on page 579 for more information.

■ Visually edit Siebel application menu structures. It is accessed by right-clicking
an object in the Object List Editor and selecting Edit Web Menus.

You can launch the Web Layout Editor directly from an applet, view, or Web page
in the Object List Editor by right-clicking and choosing Edit Web Layout.
Version 7.5.3, Rev. A Siebel Tools Reference 91

Siebel Tools Fundamentals

Siebel Tools Features
Siebel Applet Editor and Siebel View Editor are editors used to configure Windows
clients. If you are using earlier versions of Siebel applications, you may wish to use
these editors as part of the migration of their configurations to the Siebel 7.0 Web
client. Siebel Applet Editor and Siebel View Editor do not show by default. To show
them, you the ClientConfigurationMode parameter in the tools.cfg file to All.
Note that these editors will not display pre-7.0 chart applets.

NOTE: When working with object definitions in make sure that the Application drop
down list in the Configuration Context Toolbar is set to the correct Siebel
application. Specifying the correct application will make sure that the Web Layout
as seen in Siebel Tools will be consistent to UI of the Siebel vertical application.

Script Editors
Scripting is used to implement functionality that cannot be achieved declaratively
(that is, by changing object properties). The Server Script Editor and the Browser
Script Editor are used to add scripts to Siebel objects. Scripting is supported through
three features in Siebel applications. These are Siebel VB, Siebel eScript, and
Browser JavaScript. For information on scripting, see “Application Enhancement
Through Scripting and Object Interfaces” on page 171.

Server Script Editor
The Server Script Editor is used to create and modify Siebel VB and eScript scripts.
The Edit Server Scripts functionality is accessed by right-clicking a scriptable entry
in the Object List Editor or from the View > Editors > Server Script Editor menu.
See Siebel eScript Language Reference and Siebel VB Language Reference for further
details.
92 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Siebel Tools Features
Browser Script Editor
The Browser Script Editor allows you to write and edit JavaScript that runs within
the client browser. The Edit Browser Scripts options is available by right-clicking
Applet, Business Component, Application, and Business Service object definitions
in Tools. You can also access it from View > Editors > Browser Script Editor menu.
The result takes the form of Applet Browser Script, BusComp Browser Script, and
so on. Each of these object types has a set of scriptable events, generally including
InvokeMethod and PreInvoke Method, as well as object-type specific ones, such as
ChangeRecord and ChangeFieldValue for applets. See Siebel Object Interfaces
Reference for further details and for a list of scriptable events and callable methods
on browser objects.

Wizards
Various wizards in Siebel Tools step you through the process of creating and
configuring an object definition of a particular object type and style—for example,
a Siebel applet.

Wherever a wizard exists for a particular task in Siebel Tools, you can choose to use
it or not:

■ If you do not use the wizard, you can create and change property settings for
object definitions directly in the Object List Editor. (Dock objects are the
exception.)

■ If you use the wizard, it asks you for your preferences, and then bases property
settings on them.

The wizards available in Siebel Tools are shown in Table 7.

Table 7. Wizards Available in Siebel Tools

Wizard Type For More Information, See This Chapter

Form Applet Chapter 10, “Logical User Interface Objects Configuration”

List Applet

Chart Applet Chapter 13, “Special-Purpose Applets and Controls”

Tree Applet
Version 7.5.3, Rev. A Siebel Tools Reference 93

Siebel Tools Fundamentals

Siebel Tools Features
BusComp Chapter 8, “Defining Business Objects and Business
Components”

MVG Applet Chapter 12, “Multi-Value Group and Association Applets”

Multi Value Group

Pick Applet Chapter 11, “Pick Applets and Static Picklists”

Picklist

Web Layout Chapter 10, “Logical User Interface Objects Configuration”

View

Applet Method Menu

Command

Table Chapter 6, “Adding Custom Extensions to the Data Model”

EIM Table Mapping

Dock Object

External Schema Import

Configuration Utility Chapter 6, “Adding Custom Extensions to the Data Model”

Chapter 17, “Repositories”

The upgrade guide for the operating system you are using.

Siebel Server Administration Guide

Upgrade The upgrade guide for the operating system you are using.

Report Siebel Reports Guide

OLEDB Integration Platform Technologies: Siebel eBusiness Application
Integration Volume II

Integration Object Overview: Siebel eBusiness Application Integration Volume I

Import Chapter 17, “Repositories”

Table 7. Wizards Available in Siebel Tools
94 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Siebel Tools Features
To access the new object wizards

1 Choose File > New Object from the Siebel Tools main menu. Icons for all the
new object wizards appear in the New Object dialog box (shown in the figure
below). You choose either the General, Applets, or EAI (Enterprise Application
Integration) tab to access the appropriate wizard.

NOTE: Some specialized wizards are not accessible from this dialog box (for
example, the Application Wizard, the Web Client Migration Wizard, the EIM
Table Mapping Wizard, and the Docking Wizard).

2 When you click on the type of new object you want to create, the Siebel wizard
guides you through the task of entering the properties that type of object
requires.
Version 7.5.3, Rev. A Siebel Tools Reference 95

Siebel Tools Fundamentals

Siebel Tools Features
Figure 14 shows the Siebel List Applet Wizard.

NOTE: To access the EIM Table Mapping Wizard and the Dock Object Wizard, right-
click entries in the Object List Editor as explained in Chapter 6, “Adding Custom
Extensions to the Data Model.” You access the Web Migration Wizard from
Tools > Upgrade > Web Client Migration menu.

Figure 14. Siebel List Applet Wizard
96 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Siebel Tools Features
Target Browser Support
A Web browser has defined capabilities such as cookies, table support, Java applet
support, and markup language. Specific browsers are aggregated into groups of
similar browser types (for example, various versions of Internet Explorer are
grouped as IE5). In Siebel Tools, a Web browser type is called a target browser.

The Target Browser feature of Siebel Tools allows you to configure applications
conditionally for different browsers. You can create a dynamic response for each
client browser type. Based on the browser group selected, conditional template tags
(template placeholders) and browser scripts are rendered in a specific way.

Select the browser type from the Target Browser drop-down list in the Configuration
Context Toolbar.

The Browser Script Editor is accessible from the main menu (as shown in
Figure 15), or by right-clicking on a record in the Object List Editor.

Figure 15. Accessing the Browser Script Editor
Version 7.5.3, Rev. A Siebel Tools Reference 97

Siebel Tools Fundamentals

About the Object Explorer
Object Repository
The Object Repository provides a multiuser development environment that includes
access to check-in/check-out functionality and version control.

In a typical Siebel Tools development environment, a server repository contains the
master application definition. As an application developer, you have a local
repository connecting to Siebel Tools. You can check out projects on the server and
copy the projects to the local database where they can be edited. After you have
made the changes, you can test the application by compiling the Siebel repository
file (.srf) from the local developer database. If the tests have been successful, you
can perform the check-in to the server database. The check-in will copy the locked
projects to the server and then unlock the projects on the server.

You can integrate the Siebel Tools check-in/check-out process with an external
version control system like Microsoft Visual SourceSafe, PVCS, or ClearCase,
enabling the development team to maintain a version history of all changes to the
repository. For further information on this topic, see Chapter 18, “Application
Development Projects.”

About the Object Explorer
Figure 16 shows the windows most often visible in Siebel Tools, the Object Explorer
and Object List Editor windows.

■ “Object Explorer Window”

■ “Showing and Hiding Objects in the Object Explorer” on page 105

■ “Object List Editor Window” on page 107

■ “Other Windows” on page 108

■ “Hiding the Windows” on page 113

■ “Docking the Windows” on page 113

■ “Image Preview” on page 114

■ “Drilldown” on page 114
98 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
Object Explorer Window
The Object Explorer window (see Figure 16 on page 100) shows a hierarchical
representation of the major object types, and the Object List Editor window shows
object definitions.
Version 7.5.3, Rev. A Siebel Tools Reference 99

Siebel Tools Fundamentals

About the Object Explorer
To make the Object Explorer window visible

■ Choose View > Object Explorer.

By default, the Object Explorer is visible when you start Siebel Tools.

NOTE: Many of the menu commands in Siebel Tools have shortcut equivalents,
which are displayed to the right of the command name in the main drop-down
menus.

The Siebel Object Explorer is composed of the following:

■ A hierarchical Object Explorer that allows you to browse the various object types

Figure 16. Object Explorer and Object List Editor Windows

Object Explorer window Object List Editor window
100 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
■ An Object List Editor for viewing and editing object definitions

■ A Properties window for editing object property values

■ A Windows-style search capability that allows you quickly to locate objects in
the Siebel repository

Types Tab
The Types tab is selected in the Object Explorer window shown in Figure 17 on
page 102.

The Types tab shows all top-level object types, listed alphabetically. The Types tab
shows the object hierarchy—clicking on the plus sign (+) to the left of an object
type displays all the child object types of the top-level object type. Clicking on the
minus sign (–) to the left of an object type collapses all its child object types.

Some object types have a hierarchy of multiple levels. For example (as shown in
Figure 17 on page 102):

■ One of the child object types of Applet is Control, and, at the next lowest level,
Control User Properties.
Version 7.5.3, Rev. A Siebel Tools Reference 101

Siebel Tools Fundamentals

About the Object Explorer
■ One of the child object types of Business Component is Field.

Figure 17. Hierarchy of Object Types (Types Tab)
102 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
Detail Tab
If you select the Detail tab of the Object Explorer (as shown in Figure 18) and select
an object type, the Object List Editor displays all object definitions of that type in
the Explorer itself. For example, Figure 18 shows 24 Applications object definitions
under the Application object type.

Figure 18. Object Explorer: Detail Tab
Version 7.5.3, Rev. A Siebel Tools Reference 103

Siebel Tools Fundamentals

About the Object Explorer
Flat Tab
The Flat tab (shown in Figure 19) of the Object Explorer shows all object types
(parent and child) in a single, alphabetically-arranged list, without displaying the
parent-child relationship.

The Flat tab view helps you:

■ Find a child object with an unknown parent.

For example, if you created a new field but do not remember what business
component it is in, you can select the Field object type in the Flat tab and search
the Name property for your field name. Each returned record has a parent
property that provides the business component name.

■ See how object definitions and properties are typically used.

Figure 19. Object Explorer: Flat Tab
104 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
Showing and Hiding Objects in the Object Explorer
Siebel Tools allows you to show or hide objects in the Object Explorer, allowing you
to tailor your workspace to suit your needs.

To show or hide objects in the Object Explorer

1 Choose View > Options.

The Development Tools Options dialog box appears.

2 Select the Object Explorer tab.

The Object Explorer Hierarchy is displayed.

3 Do one of the following:

■ Show objects by placing a check mark next to the object name.

■ Hide objects by removing the check mark next to the object name.
Version 7.5.3, Rev. A Siebel Tools Reference 105

Siebel Tools Fundamentals

About the Object Explorer
■ Restore default settings by clicking the Default button.

When you select a top-level object such as Applet, all child objects are
automatically selected. To hide child objects, you need to expand the parent
object and remove the check marks from any child objects that you want to hide.
The parent check box will then appear shaded to indicate that it contains child
objects that are not selected to show.

4 Click OK.

The objects you selected appear in the Object Explorer Window.

Filtering Object Types by Project
Use the Project field at the top of the Object Explorer to filter objects by project. For
example, you can set the Project filter so that only the object types associated with
the Account project appear in the Object Explorer, as shown in Figure 20.

Figure 20. Selecting Projects from the Projects Box
106 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
Object List Editor Window
The Object List Editor window displays the object definitions for the object type
currently selected in the Object Explorer. If the object selected in the Object Explorer
window is a second- or third-level object, two Object List Editor windows are
displayed—the object definition for the type selected in the Explorer is in the bottom
window. In the example given in Figure 21, the top-level object is Applet, the
specific applet is Activity Assoc, and the available Web templates are Base
(selected) and Query.

In the same figure, the pencil icon (to the left of the applet name) indicates that the
applet has been locked by the Siebel Tools user, so that modifications to it can be
saved.

The next applet in the list, Activity Assoc Applet - My, is printed in red, indicating
that this object is inactive. An inactive object is one with deactivated database
mappings (see “EIM Interface Tables” on page 228).

Figure 21. Object List Editor—Top-Level and Second-Level Objects
Version 7.5.3, Rev. A Siebel Tools Reference 107

Siebel Tools Fundamentals

About the Object Explorer
Other Windows
In addition to Object Explorer and Object List Editor windows, other windows can
be made visible on your Siebel Tools screen. These can be accessed from
View > Windows. The available choices are Properties Window, Applets Window,
Controls Window, Bookmarks Window, or Web Templates Window. The windows
are shown in Figure 22 through Figure 27 on page 112.

Properties Window. The Properties window (shown in Figure 22) displays the
property settings for the object definition currently highlighted in the Object List
Editor.

Figure 22. Properties Window

Value of this property.
Clicking the dropdown
arrow shows a list of
values

Property name of
this object
108 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
Applets Window. The Applets window (shown in Figure 23) displays the applets that
are part of the business object selected from the Business Object list field in the
Applets window. Clicking one of the applets opens it in the Web View Editor. You
can also drag and drop the applet icon into the view layout editor.

Figure 23. Applets Window—Icons Tab and List Tab

View using List tab

View using Icons tab
Version 7.5.3, Rev. A Siebel Tools Reference 109

Siebel Tools Fundamentals

About the Object Explorer
Controls/Columns Window. The Controls/Columns window (shown in Figure 24)
displays controls or columns in an applet layout editor available for configuration
when editing an applet layout in the Web Applet Editor. You drag and drop the
control or column icon into the placeholder in the Web Applet Editor.

Figure 24. Controls/Columns Window

The properties of
the selected
column object

The location of the
selected column object
in the Web Applet Editor

The column and control
objects for this applet

The applet as it appears
in the Web Applet Editor
110 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
Web Templates Window. The Web Templates window (shown in Figure 25) shows or
hides the Web Template Explorer window, a Windows Explorer-like listing of Web
templates. Clicking on an item in the Web Template Explorer displays the HTML
source code of the Siebel Web Template (.swt) file for review or editing in the main
window. The template files are shown as a parent-child window. The Web Template
combo box in the Web Template window allows you the choice of displaying all
Web Templates in the Explorer, the top level Web Templates only, or individual Web
Templates. A template file can be edited by right-clicking in the HTML code window
for that template.

Figure 25. Web Template Explorer

Selected child Web
template, displayed in
lower right window

Parent Web template
HTML coding

Child Web template
HTML coding

Web Template
combo box
Version 7.5.3, Rev. A Siebel Tools Reference 111

Siebel Tools Fundamentals

About the Object Explorer
Bookmarks Window. The Bookmarks window (shown in Figure 27) allows you to add
shortcuts to frequently used objects in Siebel Tools. Open the Bookmarks window
by clicking the Bookmark List icon in the toolbar (Figure 26). Add a bookmark by
clicking the Add Bookmark icon.

Figure 26. Bookmark Toolbar and Icons

Figure 27. Bookmarks Window

Adds a
bookmark

Opens the
Bookmarks window

Clicking the bookmark...

...navigates back to this screen
112 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

About the Object Explorer
Hiding the Windows
You can control whether or not the Object Explorer or the Properties, Applets,
Controls, Web Template, or Bookmarks windows are visible.

To hide the windows

Do one of the following:

■ For the Object Explorer, choose View > Object Explorer to remove the check
mark indicating that the window is visible. Alternatively, press CTRL+E to hide
the Object Explorer window.

For the Properties, Applets, Controls, Web Template, or Bookmarks windows,
choose View >Windows >[Name of] Window to remove the check mark.

■ For any of the windows, click the window to make it active, then click the right
mouse button. Select Hide from the right-click menu.

Docking the Windows
You can let the Object Explorer or Properties, Applets, Controls, Web Template, or
Bookmarks windows float, moving and sizing to fit your needs, or dock the window
in a corner of the main window.

NOTE: You cannot dock or float the Object List Editor window. It is always docked
by default, and you cannot float it.

To dock the windows

■ Drag the window to the area of the main window where you want to dock.

To undock the windows

■ Right-click the window and select Docked.

To prevent a window from docking when it is being moved

■ Hold down the CTRL key during the move.
Version 7.5.3, Rev. A Siebel Tools Reference 113

Siebel Tools Fundamentals

Viewing Object Definitions
Image Preview
You can preview images in Tools, not only in BMP format, but also other common
image formats, such as GIF, JPG and PNG.

To preview these images

1 In the Object Explorer, choose Bitmap Category > Bitmap.

2 Select a record in the Object List applet and right click.

3 Select Preview from the context menu.

You can navigate through multiple bitmap records and keep this window open.

Drilldown
In Siebel Tools, you can drill down from one object to another, when the second
object is shown as the value of one of its properties. You can drill down on an object
if the name of the object is underlined in blue (indicating a hyperlink). You can also
drill back up, using the Go Back arrow in the History toolbar. You cannot drill down
to object types if they are not displayed in the Object Explorer. (To display an object
in the Object Explorer window, see “To show or hide objects in the Object Explorer”
on page 105.)

NOTE: Siebel Tools users must be assigned the Developer responsibility to use
drilldowns. Users are assigned this responsibility in the Siebel employee
application.

Viewing Object Definitions
You can view object definitions in the Object List Editor or the Properties window.

To view definitions in the Object List Editor

1 In the Object Explorer (Types tab), select the parent type object whose definition
you want to view.

2 Expand the tree to view the child object type, if one exists.
114 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Viewing Object Definitions
3 View the object definition in the Object List Editor.

Figure 28 shows the field-level definition for the Contact business component, as
displayed in the Object List Editor windows. The top applet shows the Buscomp
Contact, and the bottom applet shows the fields.

The Properties window also displays (in alphabetical order) the definition of the
selected object—the value is shown next to the property name.

By default, the Properties window is closed when you start Siebel Tools.

To open it so you can view an object definition, choose View >Windows >
Properties Window.

Figure 28. Viewing Field-Level Information in the Object List Editor Windows

Field-level definition for the Contact
business component displayed here

Field object type selected here Contact business component
selected here
Version 7.5.3, Rev. A Siebel Tools Reference 115

Siebel Tools Fundamentals

Viewing Object Definitions
Figure 29 shows the field-level definition for the Contact business component, as
displayed in the Properties window.

NOTE: The Properties window does not display the Project and Changed properties.

Figure 29. Viewing Field-Level Information in the Properties Window
116 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Modifying, Copying, and Creating New Object Definitions
Modifying, Copying, and Creating New Object Definitions
All the object definitions required for a standard Siebel application are already
present when you install it. However, you can modify object definitions or create
new ones in the course of application configuration.

■ You modify object definitions in the Object List Editor or the Properties window.

■ You copy and create new object definitions in the Object List Editor.

For more information about guidelines for modifying, coping, and creating new
object definitions, see Configuration Guidelines.

■ “Object Definitions, Value Types, and Naming Conventions”

■ “Modifying Object Definitions” on page 118

■ “Creating a Copy of an Existing Object Definition” on page 120

■ “Creating a New Object Definition” on page 121

■ “Undoing New or Changed Object Definitions” on page 123

Object Definitions, Value Types, and Naming Conventions
Object definitions can have the following value types:

■ User-defined names

■ Numerical values

■ Boolean values (TRUE and FALSE)

■ Siebel-defined constants

■ References to the names of other object definitions

Example.

A field has the following values:

Name: Account Products

Text Length: 500
Version 7.5.3, Rev. A Siebel Tools Reference 117

Siebel Tools Fundamentals

Modifying, Copying, and Creating New Object Definitions
Read Only: FALSE

Type: DTYPE_TEXT

Column: PROD

As illustrated in the prior example, standard Siebel objects follow these naming
conventions:

■ Logical objects in the Business Object (for example, Account Products) and User
Interface Objects layers use mixed case and embedded spaces.

It is recommended that you follow this convention in the Business Objects and
User Interface Objects layers.

■ Physical objects in the Data Object Layer (for example, DTYPE_TEXT and PROD)
use uppercase and underscores.

This convention is enforced in the Data Object Layer.

NOTE: Always prefix the names of new objects with a meaningful text string.
For example, if your company name is XYZ Industrial Products, Inc. you might
prefix the name of new objects with XYZ. You will find it a valuable convention
during both development and upgrade.

For more information about naming objects, see Configuration Guidelines.

Modifying Object Definitions

To modify an object definition in the Object List Editor

1 Be sure the project the object is a part of is locked.

For information about locking projects, see Chapter 18, “Application
Development Projects.”

2 In the Object Explorer window, select the relevant object type.

3 In the Object List Editor window, select the object definition you want to change.
118 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Modifying, Copying, and Creating New Object Definitions
4 Use the TAB key to move the cursor to the specific value you want to change.

NOTE: It is recommended that you use the TAB key to move from property
column to property column in the object definition—if you use the mouse you
might unintentionally change the value of a Boolean property.

5 Type in a new value, or pick a value from the picklist (if one is provided).

6 To commit your changes, click anywhere outside the modified row (or move
outside the row with the UP or DOWN arrow).

A check mark appears in the Changed column (for more information about the
Changed column, see “Understanding the Changed Flag and Pencil Icon” on
page 135).

To modify an object definition in the Properties window

1 Be sure the project the object is a part of is locked.

For information about locking projects, see Chapter 18, “Application
Development Projects.”

2 In the Object Explorer window, select the object type.

3 In the Object List Editor window, select the relevant object definition.

4 Open the Properties window, if it is not already open (View >Windows >
Properties Window).

5 Select the current value, and then type in a new one.

6 To commit your changes, click anywhere outside the modified row (or move
outside the row with the UP or DOWN arrow).

A check mark appears in the Changed column (for more information about the
Changed column, see “Understanding the Changed Flag and Pencil Icon” on
page 135).
Version 7.5.3, Rev. A Siebel Tools Reference 119

Siebel Tools Fundamentals

Modifying, Copying, and Creating New Object Definitions
Creating a Copy of an Existing Object Definition

CAUTION: Objects that are copied are not automatically upgraded to a new Siebel
product release. Modify existing object definitions whenever possible, rather than
create new ones, in order to maximize the upgradability of your changes and
minimize maintenance costs. Should it ever be necessary to make a copy of an
Applet, Business Component, Report or Integration Object, set the Upgrade
Ancestor property of the copied object to refer to the original object so that the copy
will be upgraded appropriately. For more information on the Upgrade Ancestor
property, see Chapter 17, “Repositories.”

To create a new object that is a copy of an existing object

1 Lock the project to which the object belongs, if it is not already locked.

NOTE: The project must be selected from among those that have been locked.

2 In the Object Explorer window, select the relevant object type.

3 In the Object List Editor, locate the object definition to copy, and click anywhere
in the row to select it.

4 Choose Edit > Copy Record.

A new row appears above the copied row, containing identical property values.
The Changed flag is checked (for more information about the Changed column,
see “Understanding the Changed Flag and Pencil Icon” on page 135).

5 Enter a new value for the Name property.

6 Click in the Project field.

7 In the picklist that appears, select the name of a currently locked project to
which to assign the new object.

8 If necessary, modify any other relevant properties and child objects.

9 To commit your changes, click anywhere outside the new row or move outside
the row with the UP or DOWN arrow keys.
120 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Modifying, Copying, and Creating New Object Definitions
Creating a New Object Definition
Use the following procedure to create a new object definition.

To create a new object definition

1 Lock the project that will contain the object you intend to add.

For information about locking projects, see “Locking Projects Directly” on
page 1010.

2 Select the relevant object type in the Object Explorer.

The Object List Editor opens, listing all object definitions of this object type.

3 Click in the Object List Editor window to make it active.
Version 7.5.3, Rev. A Siebel Tools Reference 121

Siebel Tools Fundamentals

Modifying, Copying, and Creating New Object Definitions
4 Choose Edit > New Record, or right-click and select New Record.

A new record appears. The following figure shows a new business component
record.

5 Enter property values in the new row in the Object List Editor.

At a minimum, these consist of the object definition’s Name property and
Project property. Other properties may also be required, depending on the type
of object definition you are creating. All required properties must be filled in
order for the new object definition to be saved.

NOTE: Object names should not contain punctuation characters.
122 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Validating Object Definitions
6 To commit your changes, click anywhere outside the new row or move outside
of the row with the UP or DOWN arrow keys.

NOTE: New Object Wizards can also be used to create new object definitions.

Undoing New or Changed Object Definitions
The Edit > Undo Record menu option provides the means to discard your new
record or modifications as long as you are still positioned on that record.

Once you reposition to a different record, the new record or changes are committed,
and the Undo Record option is no longer available.

Validating Object Definitions
As you modify or create objects, it is very important to validate their definitions
also. Validating object definitions is generally a good practice. It should be one of
the first things that a developer does if a configuration changes produces a run-time
error.

NOTE: The validation process is time consuming. However, you can continue
working in Siebel Tools while the validation is run.

Validation is based on a set of rules that help make sure that your configuration
changes are logically consistent with existing object definitions and one another.
Validating a parent object validates all child objects as well.

The rule that checks for invalid object references is the most important. An invalid
object reference occurs when one object (an applet, for example) references another
object (a business component) that has been inactivated or deleted.

To validate an object

1 Select the object or objects you want to validate.
Version 7.5.3, Rev. A Siebel Tools Reference 123

Siebel Tools Fundamentals

Validating Object Definitions
2 Right-click and select Validate, or choose Tools >Validate Object.

The Validate dialog box appears.
124 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Validating Object Definitions
3 In the Validate dialog box, click Start.

Violations of the rules currently being enforced appear in the Errors list, as
shown in the following figure.

User Interface Elements in the Validate Window
■ Errors list table. Displays the results of the validation process. Each row in the list

table identifies a rule violation for a specific object definition. You can double-
click any of the errors to drill down to the specific object definition that contains
the error. You can sort the rows by a particular list column by clicking the
heading of that list column. You can also widen and narrow list columns by
dragging the right or left border of the heading cell.

The Errors list table contains the following columns:
Version 7.5.3, Rev. A Siebel Tools Reference 125

Siebel Tools Fundamentals

Validating Object Definitions
■ Severity. An icon appears in this list column for each violation row. It
indicates whether the violation is a warning (yellow icon with an
exclamation mark) or an error (red icon with a minus sign). Errors cause the
compiled application to generate run-time errors.

■ Rule. An integer value appears in this list column, identifying the rule that
has been violated. Rules are listed in order of rule number in the Validation
Options window (shown in Step 2 on page 127).

■ Object. The name of the object definition that failed validation.

■ Description. The description of the error or warning. It is normally cut off by
the right boundary of the list column. To view the complete text, click a
validation row, and it appears in the Details text box.

■ Details text box. The full text of the error or warning message for the currently
selected row in the Errors list table.

■ Go To button. Select an error message row and click Go To to navigate to the
corresponding object definition in the Object List Editor. Alternatively, you can
double-click the error message.

■ Log File text box. Path and filename of a log file containing the list of validation
errors and warnings. To save a list of validation rows as a log file, click Save As,
navigate to the right directory, and specify a filename. You can then reload the
list of error and warning validations at a later time by using the Load button,
rather than by repeating the validation process.

■ Load button. Opens a previously saved log file and displays its list of validations
in the Errors list table.

■ Save As button. Saves the current list of validation rows as a log file.

You can change whether or not certain validation options are enforced.

To change validation options

1 In the Validate window (see Step 2 on page 124), click Options.
126 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Validating Object Definitions
2 Change items in the Enforce column (shown in the following figure) from Yes to
No, or vice versa, for rules you want to enforce or not enforce.

You do that by selecting a row and clicking the Enforce or Ignore button.

User Interface Elements in the Validation Options Window
■ Rules list table. Lists all rules that can be enforced during validation.

Each row in the list table identifies a rule for a specific object type (or All). You
can sort the rows by a particular list column by clicking the heading of that list
column. You can also widen and narrow list columns by dragging the right or
left border of the heading cell.

The Rules list table contains the following list columns:

■ Severity. An icon appears in this list column for each rule row. It indicates
whether the rule generates a warning (yellow icon with an exclamation
point) or an error (red icon with a minus sign).
Version 7.5.3, Rev. A Siebel Tools Reference 127

Siebel Tools Fundamentals

Validating Object Definitions
■ Rule. The integer value that identifies this rule.

■ Object. Either the single object type that this rule applies to, or All.

■ Description. The description of the rule. It is normally cut off by the right
boundary of the list column. To view the complete text, click a rule row, and
it appears in the Details text box.

■ Enforce. A Yes or No value for each rule row. Yes validates all object
definitions of the object type identified in the Object list column. Yes/No
values in this list column are changed using the Enforce, Ignore, Enforce All,
and Ignore All buttons.

■ Save button. Saves the current set of rules and their state (enforced or ignored)
to a text file you specify. Other settings are saved to the preferences file
automatically when you press ENTER.

■ Enforce button. Changes the Enforce list column value in the selected row from
No to Yes.

■ Ignore button. Changes the Enforce list column value in the selected row from Yes
to No.

■ Enforce All button. Changes all values in the Enforce list column to Yes.

■ Ignore All button. Changes all values in the Enforce list column to No. This has
the effect in the next validation of not validating any object definitions.

■ Time filter check boxes. The repository Validator should be used only in
conjunction with the Time Filter, to avoid validating objects that are not being
used. Choose one of two time filters:

■ Last validated check box. When checked, validates only objects changed since
the date you enter into the corresponding date box.

■ Custom check box. When checked, validates only objects changed within the
date range you enter into the corresponding date boxes.

■ Details text box. The full text of the rule description for the currently selected row
in the Rules list table.

■ Action check boxes. Choose refinements in Validator actions.
128 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Compiling and Testing Object Definitions
■ Do not report warnings check box. When checked, reports errors only, not
warnings. It also changes the Enforced setting of all warning rules to No.

■ Abort validation after check box and text box. When the check box is checked
and an integer value appears in the text box, the system stops validating after
the specified number of errors is reached. By default, the validation process
continues to run until it is completed or cancelled.

■ OK button. Saves the validation option settings and closes the Validation Options
dialog box.

■ Cancel button. Discards the Validation Options settings and closes the Validation
Options dialog box.

Compiling and Testing Object Definitions
After you have modified object definitions, you need to compile the changes to a
repository file (.srf). The .srf file is updated with the new object definitions and they
become available in any instances of the Web client reading that repository file.

NOTE: An application’s configuration file (CFG) includes a parameter
(RepositoryFile) that defines the repository file (.srf) to read at run time.

You can compile projects or selected top-level object definitions. Compiling projects
is more efficient when you have many changes in one or more projects. Compiling
object definitions is more efficient when changes are isolated to only a few object
definitions.
Version 7.5.3, Rev. A Siebel Tools Reference 129

Siebel Tools Fundamentals

Compiling and Testing Object Definitions
Compiling Projects
The Object Compiler allows you to compile all projects or a subset of all object
projects. To compile a subset of projects, you must have compiled all projects at
least once.

CAUTION: Avoid compiling a subset of projects into an .srf file, unless the .srf file was
built from a full compilation from the same database. In particular, you should
avoid doing compiling to the generic .srf file included in standard Siebel eBusiness
Applications.

When you compile a subset of projects, the Object Compiler will not remove
inactive top-level objects from the repository file, but it will remove inactive child
objects. For example, if you inactivate the Name list column in the Account List
Applet, and then compile the Account SSE project, the Name list column will be
removed from the repository file. However, if you inactivate the Account List Applet,
and then compile the Account SSE project, the Account List Applet will not be
removed.

To compile projects

1 Choose Tools >Compile Projects.

The Object Compiler appears with the list of projects displayed.

2 Select the projects you want to compile.

3 In the Siebel repository file field, select Browse and choose the appropriate .srf
file.

Typically you will compile to the .srf file used by the local instance of the Web
client that you are using to test. The path to this .srf file is specified in the
application’s CFG file.

CAUTION: Do not attempt to compile to or modify the default .srf file used by
Siebel Tools that is displayed in the Object Compiler window—usually in
C:\sea7xx\tools\OBJECTS\siebel.srf. This file is locked because the Siebel Tools
program itself reads the .srf file as it runs. If you attempt to compile to this
filename and path, you will receive an error message.
130 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Compiling and Testing Object Definitions
4 Select the Auto-start web client option if you want to automatically start a local
instance of the Web client when the compile process finishes.

You need to have specified the location of the Siebel executable, the application
configuration file, and other relevant settings in the Development Tools Options
Dialog box. For information on how to do this, see “Setting Up Debug Options”
on page 133.

5 Click Compile.

The object definitions in your repository are compiled to the .srf file you
specified. The changes are immediately available in any instances of the Web
client that are reading the .srf file. See “Testing Repository Changes” on
page 132.

Compiling Single Objects or a Group of Objects
You can compile a single object or a group of top-level objects of the same type. For
example, if you modify the UI for several applets, rather than compiling entire
projects, you can compile only the applets that have changed.

To compile single objects or a group of objects

1 Select an object or group of objects of a particular top-level type (for example,
applet).

2 Right-click and select Compile from the menu.

The Object Compiler dialog box appears with a list of selected objects displayed.

3 In the Siebel repository file, select Browse and choose the appropriate .srf file.

4 Click Compile.

The object definitions are compiled to the .srf file you specified. The changes are
immediately available in any instances of the Web client that are reading the .srf
file. See “Testing Repository Changes” on page 132 for more information.
Version 7.5.3, Rev. A Siebel Tools Reference 131

Siebel Tools Fundamentals

Compiling and Testing Object Definitions
Compiling the Siebel Repository Using the Command-Line Interface
You can also compile projects using the command-line interface. The command-line
interface is invoked from the siebdev executable using the command switch /bc.
This command switch performs a full compile. For multilingual deployments you
can also set the Tools active language for the compile. The siebdev.exe is located in
the Bin directory of the Siebel Tools installation directory.

The syntax for the /bc switch is:

■ siebdev.exe /c <config file> /d <data source> /u <user name> /p

<password> /tl <language> /bc <Siebel Repository> <SRF file>

For example, the following command compiles the Siebel Repository into siebel .srf
with the active language set to Japanese.

■ siebdev.exe /c tools.cfg /d sample /u sadmin /p sadmin /tl JPN
/bc "Siebel Repository" siebel.srf

If no file path is specified for the .srf file, the file will be compiled into the objects
directory under the Tools installation directory. Otherwise, it will be compiled into
the specified directory.

NOTE: The Auto-start web client option that is available in the Object Compiler
dialog box is not available when compiling using the command-line interface.

Testing Repository Changes
Siebel Tools allows you to test changes to the repository immediately after you
compile them. After compiling, local instances of the Web client that are running
and are reading the repository file to which you compiled are immediately updated
with the changes. For more information about compiling, see “Compiling and
Testing Object Definitions” on page 129.

When compiling object definitions and testing the results locally, consider the
following:

■ You must have a local instance of the Siebel Web client on your machine to test
the repository changes locally. See the Siebel Web Client Administration Guide
for more information on installing a local instance of the Web Client.
132 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Setting Up Debug Options
■ If a local instance of the Web client is installed but it is not open, you can select
an option in the Object Compiler to automatically open a local Web client and
read the most current repository. See “Compiling Projects” on page 130 for more
information.

■ For repository changes to appear in local instances of the Web client, the Web
client must be reading the repository (.srf) file to which you compiled. For
example, if two local Web clients are open and they are both reading the .srf file
you just compiled, repository changes will appear in both Web clients. However,
if two local Web clients are open and one is reading .srf file A and the other is
reading .srf file B, then repository changes to .srf file A will only appear in the
Web client reading .srf file A.

■ If you cancel the compile process while the Web client is running, the Web client
goes into hibernate mode and remains in this state until you either successfully
recompile or exit the Web client process. If you successfully recompile, the Web
client will then open and read the new repository file. If you want to exit the Web
client, right-click the Web client icon in the taskbar and then choose Exit.

Setting Up Debug Options
The debug options defined in the Development Tools Options dialog box provide the
run-time settings for opening an instance of the Siebel Web client in the following
situations:

■ When the Auto-start web client option is selected in the object compiler. See
“Compiling and Testing Object Definitions” on page 129 for more information.

■ When starting an instance of the Web client by selecting Debug > Start. You
typically use this option when debugging Siebel eScript or Siebel VB. See Siebel
eScript Language Reference and Siebel VB Language Reference for more
information.

The settings defined the Debug tab of the Development Tools Options dialog are
stored in a user preference file that is named login_ID&application_name.spf
and located in tools_install\BIN.
Version 7.5.3, Rev. A Siebel Tools Reference 133

Siebel Tools Fundamentals

Setting Up Debug Options
To setup Tools to automatically open the Siebel Web client

1 In Siebel Tools, choose View > Options.

The Development Tools Options dialog box opens.

2 Click the Debug tab and then complete the following information:

3 Click OK.

Field Example Value Description

Executable Siebel.exe Name of the executable that
is opened in debug mode or
automatically opened after
the compile process.

CFG file D:\sea7xx\client\BIN\ENU\uagent.cfg Name and location of the
configuration file for the
application.

Browser C:\Program Files\Internet
Explorer\iexplore.exe

By default, the mobile Web
client will use IE 5.x, but
users can specify a different
browser.

Working
Directory

D:\sea7xx\client\BIN The directory that contains
the Siebel executable.

Arguments /h Opens the watch window
that allows you to trace the
application.

User name SADMIN User name used to log into
the test application.

Password SADMIN Password to log in to the test
application.

Datasource Sample Local database to which the
local Web client connects.
134 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Understanding the Changed Flag and Pencil Icon
Understanding the Changed Flag and Pencil Icon
After you edit a record, a check mark appears in the Changed field of the object
definition. This indicates that changes have been made to the contents of the
corresponding record since a particular date and time. (This date and time is set
using the General tab of the View > Options menu.) Lack of a check mark indicates
that the object definition has not been changed since the date and time specified in
Tools > Options.

The pencil icon in the first (W) column of an object definition indicates that the
object is locked and editable. Figure 30 shows a changed field (Access Control
Category) and many locked objects (pencil icon in column before the Name
column).

The Changed flag cascades upwards through its parents. That is, when an object
definition is edited or created, the changed flag is set for its parent object definition,
if any, and for the parent object definition of that parent, and likewise up through
the hierarchy.

To determine by whom and when a record was created and last updated

1 Select a record in the Object List Editor.

2 Choose Help > About Record from the menu bar.

Figure 30. Changed Project (System) and Locked Objects (the Pencil Icon)
Version 7.5.3, Rev. A Siebel Tools Reference 135

Siebel Tools Fundamentals

Understanding the Changed Flag and Pencil Icon
3 The Siebel Tools dialog box appears (this dialog box displays the user, date, and
time for record creation and update).

To update the Changed date manually

1 Choose Tools > Options.

2 Click the General tab.

3 Set a date and time.

4 Click OK to save the Changed date.
136 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Using Queries to List Object Definitions
Using Queries to List Object Definitions
The Object List Editor provides a Query feature that uses a query-by-example (QBE)
metaphor to let you narrow the list of object definitions in the current Object List
Editor window. For example, when you are in the list of business components, you
can use the Query feature to display only those business components in the
Contacts field, or only those having names that start with Opportunity, or any other
restrictions you can specify for particular properties.

An Object List Editor query is a search for object definitions based on matching
values in one or more properties. The queries can be simple, one-condition queries
or compound, multiple-condition queries. You can create, refine, and activate
queries from the Query menu or from the List toolbar. (Refine means impose a
further restriction on the current Object List Editor query by re-executing it with an
additional constraint.)

To create and execute an Object List Editor query

1 Navigate to the Object List Editor window listing object definitions of the
relevant object type.

2 Choose Query > New Query from the menu bar.

In the Object List Editor window, the list of object definitions is hidden, and a
query row appears, as shown in the following figure.

3 In each of one or more property cells in the query row, enter a value for which
the query will look for a match.

These values may be single literal values such as Opportunity List Applet, or
they may include wildcard symbols. In TRUE/FALSE properties, a check mark
represents TRUE.

Property cells that can hold query criteria
in the query row.
Version 7.5.3, Rev. A Siebel Tools Reference 137

Siebel Tools Fundamentals

Using Queries to List Object Definitions
4 Press ENTER or Choose Query > Execute Query from the menu bar.

The resulting list of object definitions in the Object List Editor consists of only
those meeting the set of criteria you specified.

To restore the Object List Editor window to its prequery state

1 Choose Query > New Query from the menu bar.

2 Press ENTER or choose Query > Execute Query from the menu bar.

The list of object definitions in the Object List Editor is restored to its prequery
state.

Simple Queries
A simple query finds information based on one condition. Table 8 lists the operators
you can use to create a simple query.

Table 8. Simple Operators

Operator Description

= Equal to

< Less than

> Greater than

<> Not equal to

<= Less than or equal to

>= Greater than or equal to

* Any number of characters (including none) may take the place of the
asterisk (*)

? Any one character matches the question mark (?)

IS NOT NULL Searches for non-blank fields

IS NULL Searches for blank fields

LIKE Searches for values starting with the indicated string

NOT LIKE Searches for values not starting with the indicated string
138 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Using Queries to List Object Definitions
For more information on search specifications and operators and on Siebel data
types, see Siebel Developer’s Reference.

Compound Queries
Compound queries enable you to find information based on two or more conditions.
There are three ways to create compound queries:

■ Enter conditions in two or more property columns to find records that meet all
the conditions. In other words, Siebel applications automatically connect these
conditions with the operator AND. This method is the easiest way to create a
compound query.

■ Enter a compound query within a property field using the operators OR, AND,
and NOT to create two or more conditions for that property.

■ Enter a compound query using more than one field and compound operators
AND, OR, and NOT. You can enter this type of query in any field. You might find
it convenient to use the Description or Comments field, because it is typically
the longest on a given screen.

When you create a compound query, follow the same basic steps you use to create
a simple query.

“ ” Searches for strings that contain special characters, such as a comma (,)

EXISTS () Searches for values in a multi-value group

[~] Forces the case of the text string to whatever follows the tilde

Table 8. Simple Operators

Operator Description
Version 7.5.3, Rev. A Siebel Tools Reference 139

Siebel Tools Fundamentals

Searching the Repository for Object Definitions
Use parentheses to control the order in which a compound search is conducted.
Expressions inside parentheses are searched for first (as they appear left to right).
Table 9 lists the unique operators for compound queries. Use these operators in
addition to the operators you use to create a simple query.

For more information about compound operators, see Siebel Developer’s Reference.

Searching the Repository for Object Definitions
You can use the repository search facility to search for object definitions based on
text in their names (or other properties) and their object types. It is a quick way to
locate one or more object definitions when you know all or part of their names or
some other property.

NOTE: This is a time-consuming task.

Table 9. Compound Operators

Operator Description

AND All the conditions connected by ANDs must be true for a search to retrieve a
record.

OR At least one of the conditions connected by the OR must be true for a search to
retrieve a record.

NOT The condition modified by this operator must be false for a search to retrieve a
record.
140 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Searching the Repository for Object Definitions
To display the Find In Repository window

■ Choose Tools > Search Repository.

The Search Repository dialog box appears.

User interface elements in the Find in Repository window:

■ Search Value text box. Enter the search string text to be located in the names and
property values of object definitions.

■ Case Sensitive check box. Check if you want only those object definitions whose
property values contain the search string with the same capitalization. Leave
empty if matching capitalization is unnecessary.

■ Exact Match check box. Check if you want only those object definitions whose
property values exactly match the entire search string.
Version 7.5.3, Rev. A Siebel Tools Reference 141

Siebel Tools Fundamentals

Searching the Repository for Object Definitions
■ Types to Search list box. Object type or types to search for. By default, all object
types in this list are selected. You can choose a single object type to search by
selecting it. CTRL-clicking and SHIFT-clicking can be used to select multiple
object types. For better performance, search only the object type or types you
need.

■ Select All button. Selects all the object types in the Types to Search list.

■ Clear All button. Deselects all the object types in the Types to Search list.

■ (Result Object Definitions) list table. Lists all the object definitions found in the
search. Double-click on an item in this list to bring it up in the Object List Editor.
Double-clicking on an item in the Result Objects List has the same effect as doing
an Object List Editor query that searches on the name of the object definition.

To restore the Object List Editor window to list all object definitions of the type
selected in the Object Explorer, do a query with the asterisk (*) symbol in the
Name column of the Object List Editor.

■ Search Now button. Executes the search and lists the results in the (Result Object
Definitions) list table.

■ Cancel button. Stops the search process if a search is executing. Closes the Search
Repository dialog box in Repository window.

The Result Object Definitions list has these columns:

■ Type. Object type of the object definition returned by the search.

■ Name. Name of the object definition returned by the search.

■ Property. Name of the property of the object definition in which the search value
was found.

■ Value. Value of the property of the object definition in which the search value
was found.
142 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Getting Reports About Object Relationships
Getting Reports About Object Relationships
You can get reports about the relationships between certain object types in the
repository. This section provides an introduction to using the reports facility; for
more information, see Siebel Reports Guide.

The list of records that displays in a repository report is not dependent on the
currently selected object definition in the Object List Editor—for example, if you
select the Contact business component in the Object List Editor and generate the
business components and fields report, the report will show all business
components, not just the Contact business component.

To restrict a report to a single parent object definition—that is, one business
component, business object, dock object, table, or workflow object—do a query in
the Object List Editor (for the parent object type) that restricts the list to the one
object definition you want to see.

The following example shows how to get the Tables report for S_ORG_EXT.

To get a Tables report for the S_ORG_EXT table

1 In the Object Explorer, select the Table object type.

2 Activate the Object List Editor for tables by clicking on it.

3 Choose Query > New Query from the menu bar.

4 Enter a value of S_ORG_EXT in the Name property and press Enter.

5 Choose Reports > Tables.

The generated report will provide information only for the S_ORG_EXT table.

You can use a similar approach to restrict a report to a range of object definitions
that have a property value in common. The report will include only those object
definitions satisfying the current query. For example, you can get a Tables report of
all extension tables, a business components report of all business components of a
specific class, or any of the reports restricted to a single field.
Version 7.5.3, Rev. A Siebel Tools Reference 143

Siebel Tools Fundamentals

Getting Reports About Object Relationships
The current object type in the Object Explorer determines the list of reports in the
Reports menu. Repository reports are listed by current object type in Table 10.

Table 10. Reports Available for Each Object Type

Object Type Report Description

Applet Applets by BusComp Lists the applets in the repository
alphabetically within each business
component.

Business component Business Component
and Fields

Lists the fields in each business
component alphabetically. For each
field, the base column and join table,
if any, are identified.

Business object Business Object and
Components

Lists the business object components
in each business object. For each
business object component, the
business component and link are
identified.

Dock object Repository Dock Objects For each dock object displays
selected properties, and lists the
member tables, visibility rules, and
related dock objects.

Project Project List Lists all projects, and identifies the
locking status, person locked by, and
locked date for each.

Table Tables For each table displays selected
properties, and lists the columns.
The name, physical type, length,
scale, comments, and various other
properties are identified for each
column.

Workflow Policy Object Workflow Policy Objects Lists the workflow components in
each workflow object, and within
each workflow component lists the
columns.
144 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Viewing Object Relationships: Visualization Views
You can use the Siebel Tools Visualization views to see how object definitions relate
to one another.

To invoke the Visualization views

■ Use one of two methods:

■ Choose View > Visualize > View Details, View Relationships, View
Descendents, or View Web Hierarchy.

■ Right-click an object definition of the relevant object type in the Object List
Editor, and choose the Visualization view you want. Not all of the
Visualization views are listed for all objects.

The Visualization views are:

■ View Details. Applicable to business components and business objects. The
diagram displays how the business component map to underlying tables directly
or through joins, and map to other business components through links.

■ View Relationships. Applicable to business components and tables. For business
components, the diagram displays how the business component links to other
business components using multi-value link object definitions. For tables, the
diagram displays how the table joins to other tables by way of join object
definitions.

■ View Web Hierarchy. Applicable to applets, applications, business components,
screens, and views. The diagram displays the parent-child relationships between
the selected object definition and its parent and child object definitions, as well
as the parents of the parent object definitions and children of the child object
definitions, up and down the hierarchy.

■ View Descendents. Shows all objects which have the current object marked as
their Upgrade Ancestor.
Version 7.5.3, Rev. A Siebel Tools Reference 145

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Details Visualization Views
The Details Visualization View for a business component displays how it maps to
underlying tables using joins or to business components by means of multi-value
links. The Business Object version of the diagram displays links between pairs of
business components in the business object.

Business Component Version
The selected business component appears in a box at the left of the diagram. The
business component on the left may be associated with one or more of these boxes
on the right:

■ Table box for the base table. The base table for the business component appears
to the right of the business component without any intervening join or mvlink
boxes between it and the business component.

The base table in Figure 31 on page 147 is Table S_ORG_PRDEXT.

■ Table boxes for joined tables. Tables that are joined to the business component
using join object definitions have a join box between the business component
and the joined table. The join box provides the name of the join.

The joined tables in Figure 31 on page 147 are Table S_ORG_EXT and Table
S_PROD_EXT.

■ BusComp boxes for linked business components. Business components that are
linked to the selected business component using a multi-value link have an
mvlink box between the selected business component and the linked business
component.

Figure 31 on page 147 does not show any linked business components.

For the tables and business components displayed on the right, only columns (or
fields) in use by the business component are listed, unless you click on the plus
symbol icon labeled All columns or All fields in the corresponding table or
BusComp box.

If you click the name of a field in the left-side BusComp box, an arrow appears from
that field name to the corresponding column in the base table, joined table, or
linked business component on the right. This is illustrated in Figure 31 on page 147,
where Vendor Location points to LOC.
146 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Business Object Version
The business object version of the Details Visualization view for Admin Product
Definition is shown in Figure 31.

The selected business object is represented as a horizontal bar at the top.

All immediately subordinate business components in the selected business object
appear in a row beneath the BusObj bar. In Figure 31, Internal Product is the only
business component immediately subordinate to Admin Product.

For each business component on the second row, all business components to which
the business component has links appear on the fourth row.

On the third row (the row is staggered in Figure 31) are boxes representing the links
between the two.

Figure 31. Business Object Version of the Details Visualization View
Version 7.5.3, Rev. A Siebel Tools Reference 147

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Plus and minus symbol icons identify lists that can be expanded or collapsed in a
box. Business components expand to a list of fields, Tables expand to a list of
columns, and Applets expand to a list of controls. Figure 31 on page 147 illustrates
this for three business components in a diagram; the two top ones have an
expanded fields list, and the bottom one has a collapsed fields list.

You can use the up and down arrow keys to move up or down one level at a time
in a visualization diagram. Use the left and right arrow keys to move between
objects on the same level.

Right-click anywhere in a visualization diagram to display a shortcut menu that
provides options pertaining to the entire diagram. These options are:

■ Expand All. Expands all fields lists, column lists, and control lists in boxes in the
diagram.

■ Contract All. Collapses all field, column, and control lists.

■ Zoom. Provides options for zooming in or out on the diagram.

■ Style. Provides three options governing the general style of the diagram and the
boxes in it. The default is Outline. 3D Border is similar, but it is on a gray
background and shows beveled edges on the boxes. Iconic provides an icon in
each box, which helps distinguish the object types visually.

■ Edit Definition. Opens the Object List Editor with the currently selected object
definition in the diagram displayed in the List Editor.

■ Edit Layout. When a view or applet object definition is selected in a visualization
diagram, the View Designer or Applet Designer is opened with that object
definition displayed.

If the Properties window is displayed at the same time as the window containing a
visualization diagram, the object definition whose properties appear changes as you
select different object definitions in the diagram. Use this feature to navigate from
object definition to related object definition to View properties. However, the
properties cannot be edited when the Properties window is accessed this way.

To generate a Details Visualization View for a business component

1 Right-click a business component.

2 Choose View Details from the shortcut menu.
148 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Relationships Visualization View
The Relationships Visualization View is available for business components and
tables. For business components, the diagram displays links among business
components using multi-value links. For tables, the diagram displays how the table
relates to other tables using foreign keys.

Business Components Version
The business components version of the Relationships Visualization View appears
in Figure 32.

Figure 32. Campaign Contact Business Component—Relationships Visualization View
Version 7.5.3, Rev. A Siebel Tools Reference 149

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
The selected business component (Campaign Contact in Figure 32) appears as a box
in the center of the diagram. Business components that link to the selected business
component appear in a row above it (connected by means of a row of link boxes).
Business components that the selected business component links to appear in a row
below it, again connected by a row of link boxes. The link boxes provide the names
of the links.

To navigate within the business components version of View Relationships

■ Double-click on a business component other than the initially selected one—it
becomes the focus of the diagram.

To display a View Details diagram for a selected business component

1 Right-click a business component.

2 Select View Details from the menu.
150 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Tables Version
The Tables version of the Relationships Visualization View appears in Figure 33.

The selected table appears as a box centered in the diagram. The diagram shows the
table’s immediate foreign key relationships to other tables. Tables that have foreign
keys to the selected table appear above it, and tables to which the selected table has
foreign keys appear below it.

To navigate within the tables version of View Relationships

■ Double-click on a table other than the initially selected one—it becomes the
focus of the diagram.

Figure 33. Table [S_BUSOBJ]—Relationships Visualization View
Version 7.5.3, Rev. A Siebel Tools Reference 151

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Descendents Visualization View
The Descendents Visualization view (Figure 34) displays a list of all descendents of
the selected object. Descendents all have their Upgrade Inheritance property set to
the selected object and will be upgraded the same way. The Descendents
Visualization view provides a convenient means to view Ancestor-Descendent
relationships between top level objects. Users can select a descendent from the list
for comparison and selective synchronization with the Ancestor or with each other,
thereby simplifying the process of maintaining multiple copies of similar objects.
For further information on Upgrade Inheritance, see Chapter 17, “Repositories.”

Figure 34. Descendents Visualization View
152 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Viewing Object Relationships: Visualization Views
Web Hierarchy Visualization Views
The Web Hierarchy Visualization View is available for applet, application, business
component, screen, and view object types. The diagram displays the parent-child
relationships between the selected object definition and its parent and child object
definitions, as well as the parents of the parent object definitions and children of
the child object definitions, up and down the hierarchy.

A simplified example of the Web Hierarchy Visualization View appears in Figure 35.

Figure 35. Web Hierarchy Visualization View
Version 7.5.3, Rev. A Siebel Tools Reference 153

Siebel Tools Fundamentals

Siebel Tools Product Components
The selected object definition appears as a box in the center of the diagram. For this
object definition, this diagram shows its parent-child relationships to other object
definitions of various object types. Parent object definitions appear above the
selected object definitions, and child object definitions appear below. The hierarchy
starts with the parent application at the top level and includes screens, views,
applets, and business components.

Because the entire hierarchy appears for an application, it is better to create View
Hierarchy diagrams for object definitions lower in the hierarchy than the application
level.

To navigate within a View Hierarchy diagram

■ Double-click on an object definition other than the initially selected one—it
becomes the focus of the diagram.

You can also navigate to the Details Visualization View for a business component
in the Hierarchy diagram by right-clicking the business component and selecting the
View Details option.

Siebel Tools Product Components
These features of Siebel Tools allow you to extend your application’s functionality.

■ “Siebel Object Interfaces”

■ “Siebel Database Extension Designer”

■ “Siebel Application Upgrader” on page 155

■ “Siebel Upgrade Inheritance” on page 156

■ “Siebel Object Comparison and Synchronization” on page 156

Siebel Object Interfaces
Siebel Object Interfaces allow you to access to the object definitions and data in
Siebel applications by external programs through COM, CORBA, and Java Data
Bean interfaces.
154 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Siebel Tools Product Components
Siebel Object Interfaces provide open interfaces into the Siebel applications,
supporting integration between Siebel applications—Siebel Sales, Siebel Marketing,
Siebel Service, Siebel Field Service—and external applications.

For more information on the Siebel Object Interfaces, see Siebel Object Interfaces
Reference.

Siebel Database Extension Designer
For developers who require extensions beyond built-in database extensions, Siebel
Database Extension Designer provides a point-and-click interface for extending
Siebel application tables. The Database Extension Designer allows new columns
and new one-to-one tables to be added.

Advanced Database Extensibility, on the other hand, allows new stand-alone tables,
one-to-many tables, and intersection tables to be added. Advanced Database
Extensibility also allows interface table mappings and dock objects to be created
from a wizard.

You can use these database extensions to capture data from new fields in
application screens or from external sources using the Siebel Enterprise Integration
Manager (EIM).

For more information on extending the database, refer to Siebel Enterprise
Integration Manager Administration Guide.

Siebel Application Upgrader
The Siebel Application Upgrader reduces the time and cost of version upgrades by
enabling you to acquire new features from the latest release while preserving the
custom configuration changes made to the current repository. It notifies system
administrators about conflicts between object customization and new releases,
automatically merges differences between object definitions, and enables you to
manually override and apply any changes. For more information on upgrading your
application, see the upgrade guide for the operating system you are using and
Chapter 17, “Repositories.”
Version 7.5.3, Rev. A Siebel Tools Reference 155

Siebel Tools Fundamentals

Siebel Tools Product Components
Figure 36 shows the Siebel Application Upgrader.

Siebel Upgrade Inheritance
Copied objects inherit some of the behavior of their ancestors, which makes it easier
to upgrade Siebel applications. A new property called Upgrade Target allows copied
objects to be upgraded in the same way as the ancestor objects from which they
were copied. For further information, see Chapter 17, “Repositories.”

Siebel Object Comparison and Synchronization
You can view a side-by-side comparison of any two objects of the same type. You
can select and copy properties and individual child objects from one object to the
other.

Figure 36. Siebel Application Upgrader
156 Siebel Tools Reference Version 7.5.3, Rev. A

Siebel Tools Fundamentals

Siebel Tools Product Components
Using this feature, you can propagate change made to an ancestor object to its
descendants or other objects of a similar type. You can also compare properties of
checked-out objects with their counterparts on the server. See Chapter 17,
“Repositories.”
Version 7.5.3, Rev. A Siebel Tools Reference 157

Siebel Tools Fundamentals

Siebel Tools Product Components
158 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts) 4
Siebel applications are delivered with a standard interface definition. Many Siebel
customers use standard Siebel applications just as they are purchased; however,
other customers configure the appearance and behavior of Siebel applications based
on their organization’s requirements. Siebel Tools is a development environment
that allows you to configure Siebel applications. This chapter provides an
introduction to configuring Siebel applications and an overview of the components
and capabilities of Siebel Tools.

About Configuration
Configuration is the process of altering standard Siebel applications to meet
business requirements. This can range from making minor changes, such as adding
text box controls (and their underlying fields), to creating new user interfaces and
business entities.

Siebel Tools is a software application that provides the ability to reconfigure and
extend Siebel applications—a software configuration toolset rather than a
programming language. What this means is that software is developed and
enhanced by creating and modifying object definitions and their properties.

The Siebel applications software is built on object definitions that are executed at
run time, and are available to the developer to modify. By creating new object
definitions (and adapting existing ones to new uses) you can create complete new
modules. It is not necessary for you to write C++ program code, although you may
want to write Siebel Visual Basic (VB), eScript, or browser JavaScript code to
supplement the programmatic logic of your application.

NOTE: Siebel VB and eScript are run on the server side; JavaScript is run on the client
(browser) side.
Version 7.5.3, Rev. A Siebel Tools Reference 159

Application Configuration (Basic Concepts)

About Configuration
This section helps you understand the many components of Siebel Tools that allow
you to configure an application.

To see other methods of configuration in Siebel applications, see “Other Ways to
Customize Application Behavior” on page 184.

Usage and Configuration of Non-Licensed Objects
The licensing agreement between Siebel Systems, Inc. and its customers is such that
customers are only entitled to use and configure Siebel objects (for example,
business components and tables) that belong to modules they have purchased.

If a Siebel object is not exposed to the licensed user interface—through views that
are exposed under the customer’s license key—the customer is not entitled to use
that object in custom configurations.

Customers are, however, entitled to create new tables using Siebel Database
Extensibility features and to create new business components and UI objects to
expose these tables.

Configuration Goals and Objectives
The major goal of Siebel application configuration is to create a target application
that meets the look, feel, and functional requirements of your organization and your
users—and is easy to maintain and upgrade.

Key objectives for your configuration project should include:

■ Leverage existing Siebel application functionality (that is, never create new
objects unless your requirements cannot be met by modifying existing ones).

If you follow this principle your configured application will be much easier to
maintain and upgrade to future Siebel product releases. See the section on
Upgrade Inheritance in Chapter 17, “Repositories.”

■ Standardize configuration development.

For object naming guidelines, see “Object Definitions, Value Types, and Naming
Conventions” in Chapter 3, “Siebel Tools Fundamentals.”
Follow these guidelines when you modify existing objects or create new ones.
160 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Overview of the Web Configuration Process
■ Achieve acceptable system performance.

For information about tuning performance, see Performance Tuning Guide.

■ Build a consistent and intuitive user interface.

For example, if you create a new form applet it should have the same general
look and feel as other form applets in your Siebel application.

For information about configuring your Siebel application user interface, see
Chapter 3, “Siebel Tools Fundamentals.”

Overview of the Web Configuration Process
Like other forms of software configuration, configuring a Web application is not a
completely serial process. During some phases, it makes sense for multiple pieces
to be configured concurrently. Furthermore, some tasks—most obviously testing
and debugging—are iterative, more like a loop than a straight line. For this reason,
feel free to modify the simplified, rather linear process recommended in this chapter
to suit the needs of your team.

Configuring Siebel Web applications is a modular process that separates style and
structure (style sheets and templates) from the binding (HTML display objects) to
data. Style and structure are reusable across multiple HTML display objects, using
Siebel templates. This means that modifications to the style and structure can be
easily propagated to all HTML display objects.
Version 7.5.3, Rev. A Siebel Tools Reference 161

Application Configuration (Basic Concepts)

Overview of the Web Configuration Process
Figure 37 depicts the relationships between style sheets, templates, HTML display
objects such as applets and views, Business Object Components, and the final
HTML output.

Using Siebel Tools and a text editor or HTML authoring tool, the Web application
developer does the following:

1 Configures in Siebel Tools the business objects, applets, views, and all of the
other normal elements of a Siebel application. Normally, you will be altering the
definitions of objects in an existing application.

Identify the views, applets, and other parts of the Siebel Web application which
you want to modify. Using Siebel Tools, configure HTML Display Objects
(applets and views) that:

■ Define new views and applets for your Web application

■ Contain drilldowns to each other where appropriate, for example, from
summary views to detail views

Figure 37. Relationships Between the Components in a Siebel Web Application
162 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Planning Considerations
2 Associates the views and applets with Siebel Web Template (.SWT) files.

Use Siebel Tools to map the applets and views to their respective templates.

3 Modifies or create new .SWT files as necessary to integrate the appropriate
corporate layout and formatting.

4 Establishes mapping between controls and list columns to corresponding
placeholders in template files.

5 Compiles the repository changes into an .srf file.

6 Tests and debugs the application.

7 Deploys the application.

a Copies the template files to the webtempl directory in the Siebel Server
installation.

b Copies all new HTML and images to the public directory on the Web server
machine.

c Adds a link from the existing Internet or intranet site to the application.

Planning Considerations
There are two common approaches to structuring the development work required
to configure Siebel applications:

■ Assign a single developer or group the development role for a complete
functional area.

■ For example, the group or individual person may develop a Web page and all
the supporting logical business object definitions and data object definitions.

■ This approach typically enables different groups to implement in parallel.

■ Assign a single developer or group to a specific architectural layer.

■ This approach takes advantage of the specialized expertise of developers—
for example:
Version 7.5.3, Rev. A Siebel Tools Reference 163

Application Configuration (Basic Concepts)

Overview of the Application Development Process
❏ The RDBMS specialists can implement extensions in the Data Objects
Layer.

❏ The system architects can implement the Business Object Layer.

❏ The UI developers can implement the User Interface Objects Layer.

■ Using a Web template requires each group to complete some work before
another group begins.

Overview of the Application Development Process
This section describes a typical application development process.

1 Do a thorough business analysis of your organization’s and users’ needs, and get
buy-in and time and resource commitments from the relevant organizations.

■ Can you meet the needs of your users with a standard Siebel application?

■ If not, what business needs will require changes to the application?

■ How can you assure success with your configured application?

2 Write a design document that includes:

■ The requirements that are being satisfied by the configured application

■ An ER diagram or text equivalent of the entity relationships

■ The names and descriptions of the business objects and business
components required for your application, and how they relate to one
another

■ Screen flow diagrams and a list of fields to be displayed on each applet

■ A description of your development environment and process, for example:

❏ How the work will be divided up among participating developers

❏ Naming conventions the development team will be required to use

❏ How the application will be tested and rolled out to users
164 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Overview of the Application Development Process
■ The complete step-by-step procedures your development and test team will
need to follow to complete the application

3 Have the design reviewed by:

■ Your participating organizations and users

■ The Siebel Expert Services organization

4 Set up your application development environment—for example:

■ System and database environment

■ Developer workstations

5 Develop the application:

a Within Siebel Tools, create (or modify, if possible) the necessary object
definitions:

❏ Business components and business objects

❏ User interface objects (for example, applets, views, and screens)

b Modify your template files.

c Compile your Siebel application and do unit testing.

6 Using the tools available to you in the Siebel application environment (for
example, Siebel Assignment Manager and Siebel Business Process Designer),
implement the appropriate assignment and workflow rules.

7 Extend the functionality of your application as needed through scripting using
Siebel VB or Siebel eScript.

8 Localize your application if the user interface is to be displayed in two or more
languages.

9 Do system and performance testing of your Siebel application.

10 Iterate through the development steps until your design has been fully
implemented and your application is running smoothly and meets your
performance objectives.

11 Introduce the application to your users and train them to use it effectively.
Version 7.5.3, Rev. A Siebel Tools Reference 165

Application Configuration (Basic Concepts)

Siebel Object Definition Sequence
Siebel Object Definition Sequence
This section describes a typical sequence of steps for defining a Siebel application.

NOTE: This section focuses on the tasks listed in steps 4 and 5 of “Overview of the
Application Development Process” on page 164.

Step One: Create Business Object
Create your business object as described in Chapter 8, “Defining Business Objects
and Business Components.”

Step Two: Create Screens, Applets, and Views
In the first phase, you use Siebel Tools to configure business objects. The Business
Model—business objects, business components, and so on—is defined using the
current capabilities of Siebel Tools. Alternatively, you can use the business objects
that are shipped with the Web application.

You configure the user interface by building and configuring HTML display
objects—applets and views—based on the Business Object Model that you created
in the preceding phase. This is where the applet and view Web layout changes
occur.

At this point, you can begin to think about how your application will look and work
in HTML. The HTML application is composed of several related display objects—
page containers, views, and applets. Some of these objects are shared across
application deployments, specifically applets and views.

For information about how to create objects, refer to Chapter 9, “Logical User
Interface Objects Layer.”

Step Three: Associate Each Applet and View with the Correct
Template
Now you will create an application definition in Siebel Tools. The Web application
is assembled from the various HTML display objects and templates that were
shipped with the base application, those that were customized in the configuration
process, and Web pages that do not contain any Siebel elements.
166 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Siebel Object Definition Sequence
The mapping between applets and views and their respective templates is achieved
visually in Siebel Tools. Figure 38 depicts how the Web application is assembled.

For more information about this process, refer to Chapter 10, “Logical User Interface
Objects Configuration.”

Figure 38. Assembling the Components into Your Web Application
Version 7.5.3, Rev. A Siebel Tools Reference 167

Application Configuration (Basic Concepts)

Siebel Object Definition Sequence
Step Four: Modify Templates as Needed to Create a Corporate
Image
If you need to make changes to the structure in a template, you can open the
template in an HTML editor and modify it. For example, if you are creating a list
applet, you may want to make a column bold. Or you might need to make a global
style change for the Web application to blend in with an existing Web site or support
a branded look and feel to external users.

NOTE: The templates are located in the webtempl directory below the Siebel Server
installation directory.

Step Five: Establish Mapping Between Controls and Templates
Templates are definitions of user interface layout and formatting. Each template
contains placeholders for controls. In this phase, you create the mapping between
each control in the repository definition of each applet and view with the
placeholder in the corresponding template file. For more information about
mappings between controls and templates, refer to “Mappings Between Controls
and IDs” in Chapter 14, “Physical User Interface Layer.”

Step Six: Web Application Definition
The application can do nothing at this point because it lacks an application
definition. Therefore, you must modify a version of the Web application in Siebel
Tools and save the .SRF file for the modified Web application.

To create the Web application definition in Siebel Tools

1 Using the Object List Editor, create a new Application Object, entering the
required attributes such as Name and Project.

2 Add a page container template to the Web application for your home page.

3 Select a default login page, error page, and acknowledgement page from the list
of available Web pages.

4 Associate the Web application with the newly created screens.
168 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Siebel Object Definition Sequence
The Siebel Web application model requires data to move from the database server
and the Application Object Manager to the Siebel Web Engine and, ultimately, to
the user’s browser. When this data transfer needs to happen over low-bandwidth
lines, as is often true in a Web client system, it becomes necessary to optimize the
application in order to achieve the kind of performance users expect. The next
section gives you some specific ways to modify the application definition for better
performance.

Strategies to Optimize Application Performance
To modify your application to achieve better performance, do the following:

■ Reduce the number of objects. Specifically, use fewer

■ Views per screen

■ Fields per applet

Only one page container is allowed.

■ Cut down on unnecessary duplication. While the screen size available to present an
HTML page does not limit the number of applets permitted per view, the need
to shorten load time makes it a good idea to use multiple applets only when you
consider it mandatory.

■ Minimize the number of multimedia objects such as graphics, audio, and video.

Step Seven: Compile the Repository Changes into an .SRF File
In this phase, you should compile the .srf. For more information about this
procedure, refer to Chapter 17, “Repositories.”

When the application is run, the Siebel Web Engine does the following:

1 Reads the object definitions from the .SRF file.

2 Selects the specified templates.

3 Combines the object definitions and templates.

4 Retrieves necessary data from the underlying business objects and business
components.

5 Presents the HTML output to the user.
Version 7.5.3, Rev. A Siebel Tools Reference 169

Application Configuration (Basic Concepts)

Siebel Object Definition Sequence
Repository Validator
You can use the repository validator in Siebel Tools in conjunction with the Time
Filter to detect errors in the configuration of the Web application and associated
templates. This helps you detect invalid object references and unused objects, and
verifies that all required attributes of controls and Web controls have been specified.

Step Eight: Test the Application
Having created default mappings between each object definition and an appropriate
template, you can test the whole application.

Restart the Siebel Server, Web Server, and Gateway Server, link to the application’s
URL from a browser, and begin your testing. In addition to testing links, test the
following:

■ Logging in

NOTE: When coding an HTML link in an application that directly accesses a view
or an eSmartscript, (for example, in a Web template or by script) you must make
sure that the URL adheres to the case-sensitivity used to access the HTML
application.

■ Inserting new records

■ Updating existing records

■ Deleting records

■ Performing queries

■ Performing sorts

■ Logging off

Testing with Browsers
The Siebel application templates have been tested with supported browsers. If you
have not modified the Siebel default templates, there is no need to test the
application in different browsers. However, if you have modified the Siebel default
templates, you may want to test how the application behaves in different browsers.
170 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Application Enhancement Through Scripting and Object Interfaces
Step Nine: Deploy the Application
When you have thoroughly tested the application on a development machine, you
are ready to deploy it on your Web site.

Deploying the application involves the following major steps:

1 Copying the templates to the webtempl directory in the Siebel Server installation

2 Copying all new HTML and images to the public directory on the Web Server
machine

3 Adding a link from the existing Internet or intranet site to the application

For more information about installing the application and infrastructure, see Siebel
Server Administration Guide.

Application Enhancement Through Scripting and Object
Interfaces

The Siebel applications are primarily enhanced by creating and modifying object
definitions. This provides many of the important benefits of the Siebel architecture,
such as ease of application configuration, maintenance, and upgrade. Scripting is
supported through three features in Siebel applications. These are Siebel Visual
Basic (VB), Siebel eScript, and Browser JavaScript.

Siebel VB and Siebel eScript enable you to write event procedures, known as scripts,
which are attached to object definitions of specific object types. (These object types
include Application, Business Component, Business Service, and Web Applet.) For
example, these custom event procedures can be used to attach additional validation
logic to a business component.

NOTE: Scripts are associated with the Siebel Event Model. Each script is associated
with a specific object and event.
Version 7.5.3, Rev. A Siebel Tools Reference 171

Application Configuration (Basic Concepts)

Application Enhancement Through Scripting and Object Interfaces
Server-Side Scripting
These are server-side Siebel VB or eScript scriptable object types, and respond to
events on object manager objects (business components, applets, business services,
and applications).

The Script Editor, Debugger, and Compiler are used to create and test Siebel VB,
eScript scripts, or browser scripts to extend and further configure Siebel
applications. This capability is integrated with the Siebel Web Applet Editor, so you
can attach scripts to user interface element controls like fields and ActiveX controls.

■ Siebel VB. Siebel VB is a language provided in Siebel Tools that is similar to
Microsoft Visual Basic. You can write event procedures to attach to certain object
types. For example, these custom event procedures can be used to attach
additional validation logic to a business component.

NOTE: Siebel VB is available on Windows platforms only.

■ Siebel eScript. Siebel eScript is a JavaScript-compatible language provided in
Siebel Tools that is used to write event procedures. Siebel eScript supports
scripting in Windows as well as non-Windows environments such as UNIX.

■ Simultaneous Use of eScript and VB Script. You can write scripts that respond to
various client-side events using Siebel VB and Siebel eScript simultaneously in
the same environment. VB and eScript can be used concurrently (but not within
the same object). The preferred way is to use eScript alone because it works on
UNIX as well as Windows servers. When you initially script the object, you will
be prompted to choose the scripting type you would like to use on the object.

Siebel VB and Siebel eScript can be used to program the following kinds of
enhancements:

■ Data validation routines. These routines enforce specific business rules before
or after performing record manipulation operations. Validation routines are
performed before the user performs an update or an insert. The intent is to
make sure that illogical or incomplete data is not entered into the database.

■ Data manipulation and computational routines. These routines can be used to
modify or analyze data.
172 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Application Enhancement Through Scripting and Object Interfaces
■ Data transport routines. These routines import and export small volumes of
data between Siebel applications and other applications.

■ Application launching routines. These routines launch external applications on
the server side in response to Siebel events, and pass start-up parameters.
Valid for browser scripting only.

The Siebel VB and Siebel eScript development environments provide you with a
programming platform to:

■ Integrate Siebel applications with third-party cooperative applications

■ Extend the base functionality of the Siebel application screens and business
components

For more information on Siebel VB and Siebel eScript, see Siebel eScript Language
Reference and Siebel VB Language Reference.

NOTE: Scripts already written for prior releases of Siebel eBusiness Applications can
be redeployed in the Siebel Web Client. However, some modifications may be
required. For more information, see the Siebel Upgrade Guide for the operating
system you are using.

Browser-Side Scripting
Browser script allows you to extend browser behavior using JavaScript, an
interpreted language that runs in many Web browsers. Browser scripts respond to
events on browser-side Java objects. These browser objects work in tandem with
their corresponding objects running in the object manager.

Browser scripts are written using Siebel Tools and can be associated with the
following Siebel object types: applets, business components, business services, and
applications. See Figure 39 on page 175.

Like their server-side counterparts, browser script object types enable you to write
event procedures. However, the set of events that can be scripted with browser
object types are different from their server-side counterparts. Browser-supported
events can be scripted for the following cases:
Version 7.5.3, Rev. A Siebel Tools Reference 173

Application Configuration (Basic Concepts)

Application Enhancement Through Scripting and Object Interfaces
■ For Siebel customer applications, a wide array of browser-supported events can
be scripted. However, the OnClick event is not supported for HTML controls.

See Siebel eScript Language Reference for detailed information.

■ For Siebel employee applications, the OnBlur and OnFocus events are the only
control events that can be scripted.

NOTE: In standard interactivity, the following Siebel objects are not available for
browser scripting: applet, application, business component, and business service.
You cannot write script to handle pre- and post- events. However, you can write
scripts to handle control-level events such as Onclick, Onblur, and Text controls.
174 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Application Enhancement Through Scripting and Object Interfaces
For scripting against browser-side events, you are provided with Browser Script
children object types of the Application, Applet, Business Component and Business
Service object types. These object types are illustrated below, along with their
server-side (Script and Web Script—for scripting in Siebel VB, JavaScript, or Java)
counterparts.

Figure 39. Customer Scripting Object Types
Version 7.5.3, Rev. A Siebel Tools Reference 175

Application Configuration (Basic Concepts)

Application Enhancement Through Scripting and Object Interfaces
The following example, shown in Figure 40, illustrates how you can configure
client-side form field validation using Browser Script. It shows browser script for the
Account BrowserBusComp PreSetFieldValue event handler.

NOTE: For employee applications that use the High Interactivity Framework,
business component browser script is appropriate when only active objects (that is,
Siebel objects exposed on the UI) are used in the script.

For Standard Interactivity applications, Browser Script must be written on the
control’s onChange browser event and must use the native methods of the browser
Document Object Model (DOM). Each control associated to an applet can be
scripted for standard browser events, such as onChange, onMouseOver, onFocus,
onMouseOut, and onBlur.

Generating Browser Scripts
Browser scripts are JavaScript files (.js) that are generated in two ways.

■ They are automatically generated when you compile objects to a repository file.

When you compile objects to a repository file, browser scripts are generated for
compiled objects only. They are placed in the directory specified in the
Development Tools Options dialog (View > Options > Scripting).

If you do not specify a directory, browser scripts are stored in the following
default directory:

tools_root\public\language_code\srf_timestamp\bscripts\all

Figure 40. Example Browser Script
176 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Application Enhancement Through Scripting and Object Interfaces
■ They can also be generated using the genbscript.exe utility from the command
line interface.

When you run genbscript.exe, all browser scripts in the repository are generated.
They are placed in a directory that you specify using the destination directory
parameter (dest_dir). The genbscript.exe utility is located in:

siebsrv_root/bin or client_root/bin

The syntax for running genbscript is:

genbscript config_file dest_dir [language]

For example:

genbscript c:\sea15022\client\bin\enu\uagent.cfg
c:\sea15022\client\public\enu enu

NOTE: The language parameter is optional for ENU, but must be specified for
other languages.

Browser scripts must be deployed in the following directories on the Siebel Server
and the Siebel Mobile Web Client:

■ On the Siebel Server, browser scripts must be located in:

siebsrvr_root\webmaster

■ On the Siebel Mobile Web Client, browser scripts must be located in:

client_root\public\language_code

When browser scripts are generated, a directory path is created and named
according to the version of the repository file (.srf). It is appended to the path
specified as the destination directory. For example, after compiling browser scripts
to the correct location on the Siebel Server, the complete path to the browser script
files would be:

siebsrvr_root\webmaster\srfTimestamp\bscripts\all\
Version 7.5.3, Rev. A Siebel Tools Reference 177

Application Configuration (Basic Concepts)

Localization
If you are migrating scripts from one location to another, you must be sure to copy
the directories (\srfTimestamp\bscripts\all\) to the correct location.

NOTE: If you are migrating browser scripts to a Siebel Server running on Solaris or
AIX, after compiling on a Windows machine, you must FTP the directories to the
correct location on the UNIX machine.

After you compile browser scripts you must do one of the following to load the
scripts into the Siebel Web server extension, otherwise you may receive an Object
Not Found error message:

■ Stop and restart the Web server.

■ Run the SWE command:

<\\host\callcenter\start.swe?SWECmd=UpdateWebImages&SWEPasswo
rd=passwd>

Where passwd is the WebUpdatePassword from the eapps.cfg file.

Localization
All the language-specific attributes of Siebel Objects for different languages are
maintained in the same repository. Language-specific attributes include translatable
strings and locale specific layout information. The Editors in Siebel Tools allow you
to edit the locale-specific attributes of objects, such as Applets, Views, and Controls
in multiple languages.

Locale Object Types
For all Siebel object types that contain localizable data, such as the Title property
of an Applet, there are child locale objects used to define the locale-specific data for
the parent object. For example, the Applet object type includes a child object type
called Applet Locale.
178 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Localization
Locale object types store their data in a set of repository tables used specifically for
storing locale-specific data. These tables follow a naming convention that includes
the name of the base table followed by the suffix _INTL. For example, the Applet
object type stores its data in the S_APPLET table; the Applet Locale object type
stores its data in the S_APPLET_INTL table.

Siebel Tools Language Mode
To determine what localizable data to use with translatable attributes, Siebel Tools
runs in a particular language mode. Siebel Tools itself runs in an English-American
user interface, but you can edit all localizable data in the language that you wish.
English-American is the default edit language. Siebel Tools has a language mode
that can be set from the Development Tools Options dialog box. See Figure 41.

NOTE: If additional languages are added to the system, the language code must be in
all capital letters.

Figure 41. Development Tools Options
Version 7.5.3, Rev. A Siebel Tools Reference 179

Application Configuration (Basic Concepts)

Controlling Visibility Using Siebel Tools
Check In/Out
The server keeps track of the language in which the project was checked out. This
information is shown in the Server Language column in the Check Out dialog box.
This feature allows your team to work with language-specific data in languages
other than the ones in which the project has been checked out.

Locale Management Utility
The Locale Management Utility (LMU) allows you to export and import text strings
and locale-specific information to an external file. This is typically used to export
strings to send out for translation and then to import the translated strings back into
the repository. It facilitates a concurrent application configuration and localization
process.

The primary users for this option are customers deploying in multiple languages.
This utility can be invoked from the Repository menu by choosing
Tools > Utilities > Locale Management option.

See Chapter 10, “Logical User Interface Objects Configuration” for more
information about using the LMU.

Controlling Visibility Using Siebel Tools
Siebel Tools can be used to control user access to views and data in Siebel
applications.

■ “Visibility Establishment Process”

■ “Visibility Property Settings in Siebel Tools” on page 182

■ “Security Considerations” on page 183

Visibility Establishment Process
This section briefly discusses visibility establishment. Visibility refers to the level of
access users have to the content of the application.
180 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Controlling Visibility Using Siebel Tools
After a successful logon to the DBMS, the Siebel application engine locates the
user's database logon ID in the Employee business component in the Siebel
applications. The employee records may be viewed and maintained in Siebel
applications by anyone with administration access rights in the Application
Administration screen.

Each employee record has a Login Name value assigned, which is the same as that
person's database username. This value makes it possible for the system to access
the user's Employee record following database logon. Each employee record also
has a Position field and a Responsibility field. These two fields (each of which can
hold multiple values), in addition to the user logon, establish visibility for that user.
Visibility refers to the set of access rights that identify the portions of the application
and data that are visible to specific employees (users). The roles of Responsibility,
Position, and Login Name are explained briefly as follows:

■ Responsibility. A user can have one or more responsibilities assigned. A
responsibility is a class of multiple users who require access to the same set of
application features. A user's responsibility (or set of responsibilities, if more
than one) identifies the views to which the user can navigate in Siebel
applications. When a user's responsibility does not include a specific view, the
ability to navigate to that view (using menu options, screen tabs or drilldown
features in other views) is disabled.

■ Login Name. The user's login name is registered in records that the user creates,
thereby providing Personal visibility to these records. In some business
components, such as Contact, it is also possible for an authorized user to assign
Personal visibility to a particular user.

■ Position. A user can have one or more positions assigned. The position describes
the person's job title in the organization, such as Marketing Assistant, Lead
Engineer, or Call Center Agent. The user's position may appear in the Sales Team
for particular records, which provides Sales Team visibility to those records.
Sales Teams are updated through the territory assignment process in Siebel
Assignment Manager. The position is also used in determining if the user
supervises persons who have visibility to particular records. In this case, the
user has Manager visibility to those records.
Version 7.5.3, Rev. A Siebel Tools Reference 181

Application Configuration (Basic Concepts)

Controlling Visibility Using Siebel Tools
In addition to visibility rules, which establish the user's access rights to records
through a network to which the user is directly connected, there are routing rules.
The routing rules specify which records are to be propagated to mobile users. For
example, routing rules may limit a particular user to receiving only certain accounts,
thereby eliminating the unnecessary transmission of records for which the user has
no need.

For further information about authentication and routing rules, see Security Guide
for Siebel eBusiness Applications and Siebel Remote and Replication Manager
Administration Guide.

Visibility Property Settings in Siebel Tools
Access control in Siebel applications is implemented through three mechanisms:
responsibilities, visibility, and routing.

Record access visibility behavior is controlled by properties in object definitions that
you can modify. The object types that have visibility-related properties are briefly
described in Chapter 7, “Business Objects Layer.” Routing rules are briefly
discussed in the section on Dock Objects Wizard in Chapter 6, “Adding Custom
Extensions to the Data Model.” For further information about authentication and
routing rules, see Security Guide for Siebel eBusiness Applications and Siebel Remote
and Replication Manager Administration Guide.
182 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Controlling Visibility Using Siebel Tools
Security Considerations
The following section briefly discusses security issues related to your Web
application. For further details on secure views and login, see Security Guide for
Siebel eBusiness Applications.

Secure Views
You can create secure views for your Web application, using the HTTPS protocol. If
a view is marked as secure, the Siebel Web Engine will verify that the current
request used the HTTPS protocol, thereby preventing a client from obtaining access
to a secure view by typing HTTP instead of HTTPS into their browser.

To specify that a view is secure

1 Edit the Secure attribute of the View object in Siebel Tools.

By default, this attribute is FALSE.

2 To make the view secure, set this attribute to TRUE.

If a view is secure, all URLs to the view generated by the Siebel Web Engine will
specify the HTTPS protocol.

NOTE: The implementation of HTTPS is external to Siebel Web Engine. HTTPS is
negotiated by the browser and the Web Server. Siebel Web Engine only specifies that
HTTPS should be used for a particular view. Therefore, any server that is expected
to provide secure views must have HTTPS enabled.

Explicit Login
You can specify that users must type in their password and username to access a
view, if they have not already done so.

Users can log in to Siebel Web Engine applications using a cookie (after having
selected Save My Username and Password), or by explicitly typing their username
and password at the login page. If they have logged in using a cookie, you may still
want them to supply their username and password to access a sensitive part of the
Web site.
Version 7.5.3, Rev. A Siebel Tools Reference 183

Application Configuration (Basic Concepts)

Other Ways to Customize Application Behavior
To specify that you want a view to require a login

1 Edit the Explicit Login attribute of the View object in Siebel Tools.

By default, this attribute is FALSE.

2 To require login for a view, set this attribute to TRUE.

In the case that the user logs in using a cookie, and they attempt to access an explicit
login view, they will be required to explicitly type their username and password at
the login screen before gaining access to the view. Users will only be required to do
this once per session. After supplying their username and password, all subsequent
visits to the explicit login view will not require login.

User Authentication
Authentication is the process of verifying the identity of a user before allowing the
user to access an application. Siebel applications support three approaches for
authenticating users: database authentication, security adapter authentication, and
Web single sign on.

Security adapter authentication and Web single sign on are external authentication
strategies. You can implement either strategy with a Siebel-provided security
adapter or Siebel-compliant third party security adapter and other third party
software.

Security Guide for Siebel eBusiness Applications is the principal resource on the
Siebel Bookshelf for detailed information about implementing user authentication
strategies, registering and administering users, and controlling user access to data
for Siebel employee, partner, and customer applications.

Other Ways to Customize Application Behavior
Although the purpose of this reference guide is to permit extensive application
configuration, it is sometimes not necessary to use Siebel Tools to achieve the
desired results.
184 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Other Ways to Customize Application Behavior
Siebel applications make use of several mechanisms that support business logic,
such as Siebel Personalization, Siebel SmartScript, Siebel Business Process
Designer, Siebel Assignment Manager, State Model, and Siebel ePricer. These areas
of functionality are controlled through client administration views rather than
Siebel Tools, but are generally important for developers as well as administrators.

Personalizing Your Web Application
Personalization allows you to target content within applets that are directed to
particular users based on their preferences or profile. For example, you can include
a salutation applet in your application that greets the user by name, indicates how
long it has been since the user last visited the site, and presents the user with
information about specific products or services you believe the user may be
interested in.

Some key points about personalization:

■ Personalization is available on any applet in your Web application.

■ Personalization uses rules and rule sets to specify which records a user should
see in a given applet, based on the user’s profile. Rules evaluate profile attributes
to determine which records and applications to display. A rule set is a group of
rules. If desired, you can create multiple rule sets such that if none of the criteria
in one set of rules is met, the next rule set is evaluated.

■ The user profile is based on any attribute that belongs to a Contact and the
contact’s account (if the user is a contact) or any attribute that belongs to an
Employee and the employee’s division (if the user is an employee).

■ Personalization uses a new object called the User Profile Attributes to hold and
retrieve elements of a user profile. These attributes can be used for display in the
user interface of the Web application, and in Rules that determine the content
users see.

■ You can track events that occur in the context of the Web application.
Specifically Siebel Personalization can track application, business component
and applet events. When an event occurs, it triggers a Personalization Action
which modifies a user's profile attributes.
Version 7.5.3, Rev. A Siebel Tools Reference 185

Application Configuration (Basic Concepts)

Other Ways to Customize Application Behavior
■ Actions can be called by a rule or on an event. An action is used to set either a
predefined profile attribute or a profile attribute created dynamically during run
time. Profile attributes created dynamically during run time only exist for the
duration of the user session. Profile attributes that are configured in Siebel Tools
and those that are created during run time can be used to store state information
in much the same way that variables stored in cookies or persistent frames might
be. Wherever possible, profile attributes should be used in placed of cookies.

■ Rules or actions can invoke business component methods or business services
methods. Typically, these methods are used to return values that can be used
either as criteria for a rule, or for setting a profile attribute.

For more information about personalization, refer to Personalization Administration
Guide.

Managing Web Content with Siebel eBriefings
Siebel Interactive technology enables customers to incorporate HTML documents
stored either on the same or on a different Web site. By configuring business
components based on the CSSBCExternalUrl and CSSBCVExternalUrl classes, and
setting the appropriate field, field user property, and configuration file parameters,
configurators can implement functionality for retrieving and displaying internal or
external HTML content. Through this type of configuration, you can
programmatically forward and execute search specifications against desired Web
servers. This functionality is also ideal for managing large stores of internal HTML-
based content which may have informational value for users (for example, FAQs
and so on).

For more information about eBriefings, refer to Siebel eBriefings Guide.

Dynamic Data Capture with Siebel eSmartScript
Siebel eSmartScript allows you to deploy an interactive guide in a Web page to direct
users down a path to find the right answer to their questions. The interactive guide
continually asks users to answer questions to refine their search. Based on their
answers, the guide continues down branching paths to find the correct answers.
Siebel eSmartScript is completely integrated with Siebel SmartScript to allow you to
define scripts using a single administrative user interface, and then deploy those
scripts to either call center agents or to end users through the Web.
186 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Other Ways to Customize Application Behavior
Siebel eSmartScript is configured through the same administrative screens used by
SmartScript.

Existing SmartScripts can be deployed with little or no additional configuration.
Application configurators and administrators need only expose the eSmartScript
view, and the rest of the views, applets, and so on will be generated dynamically.

Siebel eSmartScripts can dramatically simplify Web configuration by making
applications more data-driven. Additionally, Siebel eSmartScripts are relatively easy
to configure, deploy and administer.

For more information about Siebel eSmartScript, refer to Siebel SmartScript Guide.

Siebel Assignment Manager
Siebel Assignment Manager is used to assign the most qualified people to specific
tasks. This is accomplished by matching candidates to predefined and user-
configurable assignment objects. To assign the most qualified candidate to each
object, Siebel Assignment Manager applies assignment rules that you define.

You can customize the way Assignment Manager makes assignments by defining
how attributes will be matched or by creating and configuring your own
components. Assignment Manager can be run in different modes to process
assignments interactively in real time, dyamically when database changes are made
by connected or mobile users, or periodically assigning objects in batches. For more
information on Siebel Assignment Manager, see Siebel Assignment Manager
Administration Guide.

Siebel Business Process Designer
Siebel Business Process Designer uses as its basic model the processes
organizations use in their sales, marketing, and service departments that determine
business workflow. You can use Siebel Business Process Designer to assure
consistency and adherence to agreements through the automatic enforcement of
business policies and procedures. Siebel Business Process Designer is a
customizable business application providing the capability to manage and enforce
business processes such as response time objectives, specifying review policies, and
monitoring service requests or opportunities over time. For more information, see
Siebel Business Process Designer Administration Guide.
Version 7.5.3, Rev. A Siebel Tools Reference 187

Application Configuration (Basic Concepts)

Other Ways to Customize Application Behavior
State Model
The state model provides a data-driven method for extending workflow control
based on the status of an object such as a service request or a product defect.

A state model is the blueprint of acceptable states and state transitions that the state
machine enforces. The state machine then makes sure that these objects go through
the desired process defined in the state model.

A state machine is an engine that enforces the transitions between states for an
object during its lifetime. A state represents the status of an object, such as Open,
Closed, or Pending. The state represents where the object is in its lifetime. The state
can also control whether or not the data of that object can be modified. As an
example, a service request that is in a Closed state may be considered frozen, such
that its attributes cannot be modified.

A state transition defines the allowable migration of an object from one state to the
next. For instance, a service request that has been closed but must be re-opened
may go from the Closed state to an Open state, and may go from Open to Pending,
but may not transition directly from Closed to Pending. The allowable migration of
a service request from Closed to Open, or Open to Pending, represents defined state
transitions.

State Model is administered through the Siebel Business Process Designer on the
Siebel client. For more information on accessing and using the State Model views
see Siebel Business Process Designer Administration Guide.

Siebel ePricer
Siebel ePricer provides a solution for creating, assessing, administering, and
deploying flexible pricing strategies. Siebel ePricer consists of the following:

■ A set of administration views that allow users to define pricing adjustments and
the conditions under which they should be applied.

■ An engine that evaluates the condition statements and determines which pricing
adjustments should be applied.

■ A testing area that allows assessment of the pricing adjustments.
188 Siebel Tools Reference Version 7.5.3, Rev. A

Application Configuration (Basic Concepts)

Other Ways to Customize Application Behavior
■ Integration with end-user interfaces, such as Quotes, Orders, Siebel eSales,
Siebel PRM, and Siebel eConfigurator.

Siebel ePricer is composed of the following components:

■ Price lists. Price lists contain base prices.

■ Pricing models. Pricing models are a management tool to control a set of related
pricing factors.

■ Pricing factors. Pricing factors are statements that define conditions and pricing
adjustments.

■ Scripting. The scripting capability lets you use business services with a pricing
factor to extend the pricing calculation and to access external data.

■ Pricing validation. The validation facility lets you test pricing factors and the
pricing model before releasing for use by end users.

■ Reports. The reporting facility lets you print reports of pricing factors.

■ Pricer Engine. The Pricer engine evaluates conditional statements and applies
pricing adjustments.

For more information on accessing and using the State Model views, see Pricing
Administration Guide.
Version 7.5.3, Rev. A Siebel Tools Reference 189

Application Configuration (Basic Concepts)

Other Ways to Customize Application Behavior
190 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer 5
This chapter describes the objects in the data layer of the Siebel application
architecture.

Data Object Types
Data objects fall under two data object types:

■ Table, and child object types:

■ Column

■ Index

■ User Key

■ EIM (Enterprise Integration Manager) objects

Interface Table data objects map to underlying physical data objects that are
stored in a relational DBMS.
Version 7.5.3, Rev. A Siebel Tools Reference 191

Data Objects Layer

Data Object Types
Siebel applications store and retrieve most of the data from a relational DBMS.
Figure 42 shows the database columns in a Siebel application database table,
S_ORG_EXT, as displayed in the SQL*Plus viewer in Oracle.

Figure 42. S_ORG_EXT Table Displayed in Oracle’s SQL*Plus
192 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
Figure 43 shows the column object definitions in the S_ORG_EXT table object
definition in the Object List Editor of Siebel Tools.

One Table object definition exists in Siebel Tools for each database table, and there
are similar correspondences between Column and Index object definitions in Siebel
Tools with physical columns and indexes.

Tables
A table object definition is the direct representation of a physical database table in
a DBMS.

Siebel applications provide a set of standard tables that are included in standard
Siebel applications. These tables have predefined names and structures, and
typically begin with one of the following prefixes:

Figure 43. S_ORG_EXT Columns in the Object List Editor of Siebel Tools
Version 7.5.3, Rev. A Siebel Tools Reference 193

Data Objects Layer

Tables
■ S_. Table names starting in S_ are standard tables for supplied with Siebel Sales
and Siebel Service. For example, the S_CONTACT table stores contact
information, and S_OPTY stores opportunity information. Nearly all standard
tables are of this type.

■ W_. Table names starting in W_ are Data Warehouse tables used in Siebel
Analytics to denormalize data used in the S_ tables.

Base Tables
The term base table is used in two different contexts:

■ The base table for an extension table is the table it extends. This is specified in
the Base Table property of the extension table’s object definition. Extension
tables are discussed in “Extension Tables” on page 196.

■ The base table for a business component is the table that provides most of its
essential fields. This is specified in the Table property of the Business
Component object definition. The set of fields supplied by the base table is
supplemented by nonupdateable fields that are obtained from joins. Business
components are discussed in “Business Components” on page 342.

Tables have various styles based on the value in the Type property. They include,
among others, Data, Extension, Intersection, and Interface. Table styles are
summarized under the Type property heading in “Properties of the Table Object
Type” on page 195, and each is discussed in detail in a subsequent section.
194 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
Properties of the Table Object Type
The following are the key properties in a table object definition:

■ Name. Provides the name of the table in the DBMS.

■ Type. Indicates which of the following styles describes the table.

■ Data (Public). Public data tables are among the original set of tables
implemented in Siebel applications. They hold data that is made available
through business components to developers and users. Public data tables can
be extended using extension tables and extension columns. These extension
are subject to database restrictions.

Data tables are discussed in “Data Tables” on page 196.

■ Data (Private). Private data tables are similar to public data tables, but cannot
have extension columns.

■ Data (Intersection). Identifies an intersection table. An intersection table
implements a many-to-many relationship between two data tables.

Intersection tables are discussed in “Intersection Tables” on page 204.

■ Extension. An extension table adds additional columns to a data table that the
original data table is unable to hold due to DBMS platform or Siebel
application design restrictions. Extension table names have an _X suffix, or
_XM or one-to-many, or _T for TAS extension tables.

NOTE: Extension tables that have _XM suffix have table type of “Data
(Public).”

Extension tables are discussed in “Extension Tables” on page 196.

■ Interface. Interface tables are used by Siebel Enterprise Integration Manager
(EIM) to import initial data for populating one or more base tables and
subsequently to perform periodic batch updates between Siebel applications
and other enterprise applications. Interface table names end in _IF or _XMIF.

Interface tables are discussed in “Column Objects” on page 215.

■ Database View, Dictionary, Journal, Log, Repository, Virtual Table, and Warehouse
styles. These are all table types that are reserved for Siebel internal use.
Version 7.5.3, Rev. A Siebel Tools Reference 195

Data Objects Layer

Tables
■ Extension (Siebel). These tables are reserved for Siebel use only. They are
usually extensions from S_PARTY. If customers want to extend person- and
organization-related tables they need to extend from S_PARTY.

For example, S_CONTACT is an extension table of S_PARTY. Because
S_CONTACT is of type Extension (Siebel), you cannot use it as a parent table
for an extension table. You must use S_PARTY.

For a business component based on your new table to show data from
S_CONTACT, you must create a Join object that references S_CONTACT and
has a Join Specification child object with a Source Field property set to Parent
Id and Destination Column property set to ROW_ID. The row ID of an
S_CONTACT record will be the same as the row ID of the corresponding
S_PARTY record.

■ Base Table. Identifies the base table if the table in the object definition is an
extension table. If the table in the object definition is a base table, this property
is blank. An extension table always identifies a base table.

■ User Name. A longer, descriptive name that aids in identifying the table when
used in configuration.

■ Alias. A name that can be used as a synonym for the table name to make the
name more understandable. For example, an alias such as
S_Organization_External could be specified for the S_ORG_EXT table.

Data Tables
Data tables comprise most of the tables in Siebel applications. They serve as base
tables for business components, and their columns provide the data for fields. Data
tables can be public or private.

Extension Tables
An extension table provides additional columns to a data table that cannot be
directly added to the original table because the underlying DBMS may support only
a limited number of columns, or will not allow adding a column to a table once it
is populated with data. An extension table allows you to provide additional columns
for use as fields in a business component without violating DBMS or Siebel
application restrictions.
196 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
An extension table is a logical augmentation of an existing table. Its columns are
provided mostly for developers, and are generally not used by standard Siebel
applications. An extension table extends a base table in the sense that it effectively
adds additional columns. These columns are not physically part of the base table,
but are available for use in a business component alongside the base table columns
as if they were.

When columns in a base table are updated, the time stamps of its extension tables
are not updated unless columns in those extension tables are also updated.

When records in an extension table are changed, system columns in a parent table
are updated. This is done because the associated record in an extension table is
considered by the object manager to be logically a part of its parent record.

The relationships between a base table, an extension table, and the business
component that uses them are illustrated in Figure 44.

Note the following distinctions between standard and custom extension tables:

Figure 44. Business Component, Base Table and Extension Table
Version 7.5.3, Rev. A Siebel Tools Reference 197

Data Objects Layer

Tables
■ Siebel applications provide standard extension tables for several of the standard
data tables. A standard extension table has a predefined relationship with a
standard data table. This relationship allows you to add columns for new
functionality without making alterations to the base table. You cannot create or
delete standard extension tables.

■ You can use the Table Wizard to create custom extension tables to extend data
tables, provided the data tables are of type Data (Public).

An extension table, whether standard or custom, provides a set of generic columns
of various data types and lengths for your use. These may eliminate the need to add
a custom column to the extension table. Generic columns in an extension table have
names of the form ATTRIB_xx, where xx stands for a two-digit number. For
example, there are generic columns named ATTRIB_04 and ATTRIB_12.

The standard Siebel applications use certain columns in extension tables. The
following columns in these tables are used:

■ S_CONTACT_X. ATTRIB_03, 04, 05, 06, 07, 08, 14, 15, 26, 48, and
MODIFICATION_NUM.

■ S_EMPLOYEE_X. ATTRIB_48.

■ S_OPTY_X. ATTRIB_04, 05, 08, 09, 10, 11, 15, 16, 17, 18, 34, 35, 36, 37, 38, 39,
41, 42, 43, 44, 45.

■ S_ORG_EXT_X. ATTRIB_01, 02, 03, 08, 14, 15, 16, 27, 48, 49, 50, 51, 52, 53.

NOTE: Extension columns used by standard Siebel applications should be treated as
data columns in base tables—that is, they should not be modified or deleted.
198 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
Figure 45 illustrates how columns from a standard one-to-one extension table are
used in the Contact business component in Siebel applications.

There are eight fields in the Contact business component displaying data from
generic columns in S_CONTACT_X; only three are shown here. Extension tables
themselves are “sparse”—extension table rows exist only for those base table rows
that have extension data to store.

Extension tables can be of the one-to-one or one-to-many style:

■ Rows in one-to-one extension table have a one-to-one relationship with
corresponding rows in the base table. A one-to-one extension table extends the
base table horizontally, as shown in Figure 45 on page 199. One-to-one
extension tables are described in greater detail in the following paragraph.

■ In a one-to-many extension table, there are multiple extension table rows for
each base table row. There are standard one-to-many extension tables for certain
of the major business components, including Opportunity, Contact and Account.
These are used primarily to create multi-value groups based on user-created
business components. One-to-many extension tables are described in “One-to-
Many Extension Tables” on page 203.

Figure 45. Extension Table Example
Version 7.5.3, Rev. A Siebel Tools Reference 199

Data Objects Layer

Tables
One-to-One Extension Tables
One-to-one extension tables have the _X suffix on their names (with the exception
of TAS tables, which have the suffix _T). The details of the object definition
relationships (excluding the implied join) are illustrated in Figure 46.

The object definitions in Figure 46 are:

■ Business component. Business component being extended.

■ Fields based on base columns. Fields that represent data from columns in the
business component’s base table. They are unaffected by the extension table.

■ Fields based on extension columns. Represent data from columns in the extension
table.

■ Extension table. Provides columns that may be used to add developer-defined
fields to the business component.

When writing data to a one-to-one extension table, at least one column of the
extension table must be updated for a record to be written to the extension table.

Figure 46. Extension Table Details (Excluding Implied Join)
200 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
For example, you might want to create a workflow policy based on a column in a
1:1 extension table. If there is no data to be written, the record will not be updated.
Therefore, the workflow policy will not be triggered.

Implied Joins
Underlying the one-to-one extension table’s relationships with the base table and
business component is a set of hidden relationships called an implied or implicit
join. The implied join makes the extension table rows available on a one-to-one
basis to the business component that uses the extension table. Every extension table
has an implied join with the business component it extends. This join always has
the name of the extension table.

An implied join is different from joins defined as object definitions. Data can be
updated through an implied join. Data can be displayed only through other joins.
This update capability is important for extension table functionality.

When a field in the business component is based on a column in the extension
table, the Column property of the Field object is set to the name of the column, and
the Join property is set to the name of the extension table. For example, the Birthday
field in the Contact business component has a Column property value of ATTRIB_26
and a Join property value of S_CONTACT_X.
Version 7.5.3, Rev. A Siebel Tools Reference 201

Data Objects Layer

Tables
The details of the object definition relationships in an implied join are illustrated in
Figure 47.

The following definitions participate in the implementation of the implied join:

■ Id field. The Id field is a system field in the business component. It represents the
ROW_ID column in the base table, and it can be used in joins involving
extension tables and other joined tables.

Figure 47. Extension Table Details with Implied Join
202 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
■ PAR_ROW_ID column. PAR_ROW_ID stands for parent row ID. Every extension
table has this column, and every extension table row has a value there. It is used
as a foreign key to the base table that is extended by the extension table.

For more information, see “Joins” on page 378.

One-to-Many Extension Tables
One-to-many extension tables have a Type property value of Data (Public) rather
than Extension. However, from a functional standpoint, one-to-many extension
tables are considered extension tables, and they have the same set of generic and
system columns. The names of one-to-many extension tables have the suffix _XM.

You can extend existing one-to-many extension tables. You can also add new one-
to-many extension tables using Advanced Database Extensibility. For information,
see “Advanced Database Extensibility” on page 292.

You can use one-to-many extension tables to create multi-value groups and master-
detail views that are based on custom business components—that is, business
components not present in standard Siebel applications.

For example, you may have a need for three new multi-value fields in the Contact
business component to store information on hobbies, prior companies, and areas of
expertise for each contact. No business components exist for these entities.
However, you can implement the same functionality using S_CONTACT_XM, the
one-to-many extension table that extends the Contact business component. A one-
to-many, rather than one-to-one, extension table is required because there can be
many hobbies, prior companies, or areas of expertise for one contact. Since the
relationship is one-to-many rather than one-to-one, a link is required rather than an
implicit join. See Chapter 7, “Business Objects Layer” for a discussion of master-
detail business components.
Version 7.5.3, Rev. A Siebel Tools Reference 203

Data Objects Layer

Tables
Intersection Tables
An intersection table implements a many-to-many relationship between two
business components.

NOTE: You might find it helpful to read the section titled “Links” on page 393 before
reading this section.

A many-to-many relationship is one in which there is a one-to-many relationship
from either direction. For example, there is a many-to-many relationship between
Opportunities and Contacts. One Opportunity can be associated with many Contact
people, and one Contact person can be associated with many Opportunities. Two
different views can appear (in different business objects) which associate the two
business components in opposite ways, as illustrated in Figure 48 and Figure 49 on
page 205.

Figure 48 shows the Account Detail - Contacts View, in which one account is
displayed with multiple detail contacts.

Figure 48. Account Detail - Contacts View
204 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
Figure 49 shows the Contact Detail - Accounts View, in which one master contact
is displayed with multiple detail accounts.

Figure 49. Contact Detail - Accounts View

Contact master record Accounts detail records
Version 7.5.3, Rev. A Siebel Tools Reference 205

Data Objects Layer

Tables
To implement a many-to-many relationship, two links and a table designated as an
intersection table are required. The table is designated as an intersection table in its
Type property by means of a value of Data (Intersection). The intersection table
represents the many-to-many relationship as two one-to-many relationships, which
the underlying DBMS is designed to handle. There is no database construct that
implements many-to-many relationships directly. This representation design is
illustrated in Figure 50.

You can configure custom intersection tables using Advanced Database
Extensibility. For information, see “Advanced Database Extensibility” on page 292.
However, if your organization needs this functionality, contact Siebel Expert
Services for assistance.

Figure 50. Many-to-Many Relationship as Two One-to-Many Relationships
206 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
How Intersection Tables Are Configured
Figure 51 displays the object types used in the implementation and use of an
intersection table.

Figure 51. Intersection Table Architecture
Version 7.5.3, Rev. A Siebel Tools Reference 207

Data Objects Layer

Tables
The intersection table contains one row for each association between a row in one
business component’s base table and a row in the other business component’s base
table, regardless of which one-to-many relationship the association pertains to. The
association row in the intersection table stores the ROW_ID values of the row in
each business component base table. The details of intersection table relationships
are illustrated in Figure 52.

Figure 52. Intersection Table Details
208 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
Figure 52 shows the object definition relationships in greater detail.

Notice how the associations stored in one intersection table serve both the
Opportunity/Contact and Contact/Opportunity links, and their corresponding
views. An association is simply a pair of ROW_ID values pointing to rows in their
respective business component base tables. One association may appear in both
views, for example, the association between Cynthia Smith and Smith Dry Goods in
Figure 52 on page 208.

The set of object definitions and relationships in Figure 52 on page 208 pertains to
one of the two links. The other link uses the same set of object types, but slightly
different relationships.

The following are descriptions of the object definitions in Figure 52 on page 208:

■ Business object. The business object references the link (indirectly through the
business object’s child business object component) that uses the intersection
table. It also contains the two business components included in the link.

■ Business object components. Business Object Component object definitions are
used to include business components in the business object. Business Object
Component is a child object type of Business Object. The detail business object
component references both the detail business component, by means of the
Business Component property, and the link, by means of the Link property. The
master business object component only references its corresponding business
component.

■ Link. The link object definition establishes a one-to-many relationship between
the two business components in a particular direction. That is, the property
settings in the link specify that one business component is the master and the
other is the detail in the master-detail relationship.

■ Master and detail business components. The two business components are
specified in the link. They provide data to the user interface object definitions
that display the master-detail relationship. The base table of each business
component contains the ROW_ID column referenced by the Inter Child Column
(detail) and Inter Parent Column (master) properties of the Link object type.
Version 7.5.3, Rev. A Siebel Tools Reference 209

Data Objects Layer

Tables
■ Intersection table. The intersection table holds the associations between rows in
the base tables of the master and detail business components. Each row in the
intersection table represents one association between the two business
components. Two columns in the intersection table serve as foreign keys to the
base tables of the two business components. These columns are identified in the
Inter Parent Column and Inter Child Column properties of the link.

■ Inter Parent column. This column in the intersection table holds the pointer to the
associated row in the master business component’s base table. It is identified in
the Inter Parent Column property of the Link object.

■ Inter Child column. This column in the intersection table holds the pointer to the
associated row in the detail business component’s base table. It is identified in
the Inter Child Column property of the Link object.

■ ROW_ID columns. The base table of each business component has a unique
identifier column for the rows in that table. This is the ROW_ID column.

NOTE: The Inter Table, Inter Parent Column, and Inter Child Column properties of
the Link object type are specific to links used in implementing many-to-many
relationships based on intersection tables, and are blank in other links.
210 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
Figure 53 illustrates the property settings in the two links used to implement a
many-to-many relationship—in this case the relationship between Opportunities
and Contacts.

Notice how the inter child column of one link is the inter parent column of the other,
and the other way around. Also notice how the parent business component in one
link is the child business component in the other, and the other way around. The
two links are mirror images of each other.

Figure 53. Two-Link Intersection Table Example
Version 7.5.3, Rev. A Siebel Tools Reference 211

Data Objects Layer

Tables
Intersection Data in the Intersection Table
In addition to the two foreign key columns that establish relationships between the
records in the two business components, an intersection table may contain various
columns that hold data specific to the intersection of the two. These columns are
called intersection data columns.

For example, in the S_OPTY_CON table, which implements the many-to-many
relationship between Opportunity and Contact, there are several data columns in
addition to OPTY_ID and PER_ID. These columns hold information about the
combination of a particular opportunity and a particular contact. A description of a
few of these columns follows:

■ ROLE_CD. The role played by this contact in this opportunity.

■ TIME_SPENT_CD. The time spent on this opportunity with this contact.

■ COMMENTS. Comment specific to this combination of opportunity and contact.

Some intersection data columns are useful primarily to one master-detail
relationship, some primarily to the other, and some to both. For example, ROLE_CD
would make sense only in the context of a master-detail relationship in which an
opportunity was the master record with multiple detail contact records. In contrast,
TIME_SPENT_CD would make sense in the context of either master-detail
relationship. That is, each contact has a unique role in the opportunity and the
converse does not make sense. However, the time spent with each contact on an
opportunity could be seen from the alternative perspective of the time spent on each
opportunity with a contact.
212 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Tables
An intersection data column is accessed by a field in a business component using a
join. An implied join exists for any intersection table, and has the same name as the
intersection table. The implied join is created when a link using an intersection table
is created. It will exist for the child business component. For example, the ROLE_CD
column in S_OPTY_CON is mapped into the Role field in the Contact business
component. The Join property of this field has the value S_OPTY_CON. The Contact
business component does not have a child join object definition named
S_OPTY_CON; the join is automatically provided and invisible in the Object
Explorer. This is similar to the implied join that exists for one-to-one extension
tables. Data can also be updated through the implicit join.

NOTE: Intersection tables can be extended with extension columns. They cannot be
extended with custom extension tables.

Joins are not the only way to expose intersection data. An alternative is to use the
intersection table as the base table for an intersection business component.
Intersection business components are described in “Intersection Business
Components” on page 356.
Version 7.5.3, Rev. A Siebel Tools Reference 213

Data Objects Layer

Tables
Updating Fields That Are Based on Columns in Extension Tables
of Intersection Tables
It is not possible to update a field that is based on a column in an intersection table's
standard extension table, through an implied or explicit join from the parent or child
business component (Figure 54).

Figure 54. Cannot Use an Implied or Explicit Join to Update the Field
214 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Column Objects
To update such fields, you can create a field in an intersection business component
(Figure 55). Expose this field in the parent or child business component (Business
Component B in Figure 55) using a multi-value link and multi-value field.

However, an easier solution is to use a custom extension column to the intersection
table.

Column Objects
A Column object definition is the direct representation of a database column in a
DBMS. The name, data type, length, primary key and foreign key status, alias, and
other properties of the database column are recorded as properties in the
corresponding column object definition. Additional properties internal to Siebel
applications are provided in the object definition, such as the Changed and Inactive
statuses, and Type (a classification for column object definitions).

Figure 55. Use a Field in an Intersection Business Component with a Multi-Value Link and a Multi-Value Field
Version 7.5.3, Rev. A Siebel Tools Reference 215

Data Objects Layer

Column Objects
A column has one of several styles based on the value in the Type property. These
styles include Data, Extension, IFMGR, System, and others.

The Column object type is described in the next section followed by discussion of
the various column styles.

Column Object Type
The column object corresponds to one database column in the database table that
is represented by the parent table object definition. Each database column in the
database table needs to have a corresponding column object definition. The
important properties of the Column object type are as follows:

■ Name. Provides the name of the database column in the database table.

■ Default. Provides a default value when new rows of this table are added.

■ Physical Type (Physical Type Name). Identifies the data type of the column in the
database. The following data types are supported:

■ Character. Used for fixed-length text. Also used for Boolean columns, which
are character columns with a length of 1.

NOTE: Defining a Column as a Char when the data being stored in the column is
variable in length may cause the data to be padded with blank spaces in order
to make up the full size of the length of the column. This may cause problems
in Siebel Remote.

■ Long. Long text. You can store approximately 16K worth of data in long
columns. By default, you cannot have char greater than 1. If you want, you
need to set the preference under Options/Database.

■ Varchar. Variable-length text. Used for memo-type fields and to store row-ID
and foreign key values.

■ Number. Any numeric data. Typical numeric columns in Siebel applications
are 22,7 for general-purpose numbers, and 10,0 for integers.

Data of this type is limited to 16 digits without a decimal point or 15 digits
before a decimal point.
216 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Column Objects
■ UTC Date Time. Time is saved in Greenwich mean time.

■ Date. Date values only, without time.

■ Date Time. Combined date and time values in the same column.

■ Time. Time values only, without the date.

■ Precision. Specifies the maximum number of digits in a number column. For
noninteger columns, the precision is 22. For integer columns, the precision is 10.

■ Scale. Specifies the maximum number of digits after the decimal point. For
noninteger columns, the scale is 7. For integer columns, the scale is 0.

■ Primary Key. If TRUE, this column is the primary key for the table. With minor
exceptions, the ROW_ID column in a table is the primary key, and has a TRUE
value for this property.

■ Type. Indicates which of the following styles describes the column:

■ Data (Public). Public data columns are among the original set of columns
implemented in Siebel applications. They hold data that is made available
through fields to developers and users.

■ Data (Private). Private data columns are reserved for Siebel use only; they
apply to tables used to manage the EIM process (for example, interface
tables).

■ Denormalized. A denormalized column duplicates the data in a column in
another (base) table for performance reasons. The table and column names
of the duplicated column are specified in the Denormalization Path property
of the Column object definition of the denormalized column. The
denormalized column should not be in the same table as the column whose
data it duplicates.

■ Extension. An extension column is generally not used by standard Siebel
applications. It is used only in reconfigured applications. There are three
kinds of extension columns: standard extension columns, custom extension
columns in a base table, and custom extension columns in an extension
table.
Version 7.5.3, Rev. A Siebel Tools Reference 217

Data Objects Layer

Column Objects
■ IFMGR: xxx. These columns have names such as IFMGR: ROW_ID and
IFMGR: Status. They are found in interface tables, and are for internal use by
the Siebel Enterprise Integration Manager.

NOTE: Interface tables also contain special columns, such as IF_ROW_STAT
and IF_ROW_BATCH_NUM. These columns are related to EIM processing,
but you can modify the contents of these columns. They have a type of
System rather than IFMGR: xxx.

■ System. System columns appear in all tables in Siebel applications. However,
no one set of system columns appears in every table. You can use the data in
system columns for various purposes, although most system columns are
read-only.

NOTE: When configuring a custom extension column, you should set only the
following properties: Comments, Default, Foreign Key Table Name, Inactive, LOV
Bounded, LOV Type, Name, Unable, Physical Type, Precision, Scale, Text Length,
and the Translation Table Name (this property should be set to S_LST_OF_VAL for
multilingual list of values).

Data Columns
Data columns comprise most of the columns in Siebel applications. They are
sometimes referred to as base columns. Data columns provide the data for fields, or
serve as foreign keys that point to rows in other tables. The developer cannot modify
the properties of data columns, unlike extension columns. Data columns can be
public or private.

Extension Columns
Extension columns have a value of Extension in their Type property.

NOTE: Always use extension columns. Do not use Siebel-defined columns for other
purposes even if they seem to be unused.
218 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Column Objects
An extension column is a column that is not used by standard Siebel applications.
There are three kinds of extension columns:

■ Standard extension columns. Extension columns are include in extension tables
for developer use. They are named ATTRIB_nn, where nn is a value between 01
and 47 (for example, ATTRIB_13).

■ Custom extension columns in an extension table. These are columns added by the
developer to an extension table. They have the prefix X_ in their names.

■ Custom extension columns in a base table. These are columns added by the
developer to a base table. The relational database system that you use with
Siebel applications determines whether or not this is allowed. When the
database system supports custom extension columns in base tables, it may be
preferable for performance reasons to add them there, rather than to an
extension table. Performance may be affected if the extension columns are
added to an extension table, because extra SQL is generated to join to the
extension table.
Version 7.5.3, Rev. A Siebel Tools Reference 219

Data Objects Layer

Column Objects
Standard Extension Columns
Each extension table provided with Siebel applications includes standard extension
columns of various data types. Table 11 lists the different data types found in Siebel
extension tables and the number of columns of each data type. These columns are
named ATTRIB_nn, where nn is a value from 01 to 47.

NOTE: Extension columns with a Physical Type of VarChar have a text length limit of
2000.

The benefit of using standard extension columns is that they provide the means to
add fields to business components for new functionality with a minimum of effort
and database impact. If there is a need for a custom column, you can adapt an
existing standard extension column in an existing standard extension table without
adding any new columns to the database schema.

However, the standard Siebel applications use certain columns in extension tables.
The following columns in these tables are used:

■ S_CONTACT_X. ATTRIB_03, 04, 05, 06, 07, 08, 14, 15, 26, 48, and
MODIFICATION_NUM.

■ S_EMPLOYEE_X. ATTRIB_48.

Table 11. Standard Extension Columns

Data Type Number of Columns

Number 12

Date 10

VarChar(255)
VarChar(100)

1
5

VarChar(50) 10

VarChar(30) 5

Char(1) 4
220 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Column Objects
■ S_OPTY_X. ATTRIB_04, 05, 08, 09, 10, 11, 15, 16, 17, 18, 34, 35, 36, 37, 38, 39,
41, 42, 43, 44, 45.

■ S_ORG_EXT_X. ATTRIB_01, 02, 03, 08, 14, 15, 16, 27, 48, 49, 50, 51, 52, 53.

NOTE: Extension columns used by standard Siebel applications should be treated as
data columns in base tables—that is, they should not be modified or deleted.

Extension Columns and Foreign Keys
Use caution when configuring a standard extension column to hold foreign keys;
generally you should avoid the practice. Foreign key extension columns can be
appropriate when pointing to enterprise-visible business objects, but not when
pointing to limited-visibility business objects such as Opportunity, Contact,
Account, or Service Request.

Foreign key relationships based on extension columns in the limited-visibility
situation can cause some users not to receive the record, causing the loss of the
relationship for all users.

For example, a foreign key may be set to 'No Match Row Id' if Siebel is unable to
find the parent record that the foreign key is pointing to. Such cases could arise
when you have a limited-visibility business object routed to a mobile user based on
a set of visibility rules. As not all records are routed to a local database, your client
might end up with a situation where there is a record with a Primary Id Field (for
example, on a Multi Value Link) pointing to a record not present on their local
database. In such cases, Siebel sets this field to 'No Match Row Id'. Subsequently,
when the user synchs up with the server, this Primary Id Field will be set to 'No
Match Row Id' for all users on the server. Also, business objects can change from
enterprise-visible to limited-visibility with a new release of Siebel applications.

You will also need the assistance of Siebel Expert Services to configure EIM to
import data into a foreign key column, because the necessary EIM object types are
not customer-configurable. For more information on using EIM to populate foreign
key columns, see “EIM Interface Tables” on page 228.
Version 7.5.3, Rev. A Siebel Tools Reference 221

Data Objects Layer

Column Objects
If in doubt, avoid configuring extension columns as foreign key columns.

NOTE: Do not define columns with names longer than 18 characters in the DB2
environment.

System Columns
System columns have a value of System in their Type property. System columns
appear in all tables in Siebel applications, although the same set of system columns
does not appear in every table. You can use the data in system columns for various
purposes; for example, the ROW_ID column in tables is used in the construction of
joins. Generally you should not modify the data in system columns. However, there
are exceptions, such as certain system columns in interface tables. Some common
system columns are described below:
222 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Column Objects
■ ROW_ID. The ROW_ID column is present in all tables and provides a unique
identifier to the rows in the table. It is the typical destination column of foreign
key relationships from other tables. In standard data tables, it is often
represented by a field called Id for use in joins and links. For example, the
ROW_ID column in the S_ORG_EXT table is represented as the Id field in the
Account business component.

NOTE: The Id field that represents the ROW_ID column in business components
is an implied field, and does not appear in the Object Explorer as a child field of
any business components. However, every business component has an Id field,
which represents the ROW_ID column of its base table, as defined in the Table
property of the business component. The Id field is referenced in various
property settings throughout Siebel applications, such as in the Source Field
property of a link (in which a blank value also means the Id field).

The format of the ROW_ID is one of the following:

CP-NS For records created by the Siebel Sales Enterprise user interface

XX-XX-XXX For records created by Interface Manager

where:

CP = Corporate Prefix, up to 2 alphanumeric characters

NP = Next Prefix, up to 6 alphanumeric characters

NS = Next Suffix, up to 7 alphanumeric characters

Total maximum 15 alphanumeric characters.

NOTE: Do not alter the ROW_ID column. It is unique throughout the database
with the exception of when there is an extension table for the base table. In such
cases, the ROW_ID column in the extension table is a duplicate of the
corresponding ROW_ID column in the base table.

■ CREATED. Provides the creation date and time of each record.
Version 7.5.3, Rev. A Siebel Tools Reference 223

Data Objects Layer

Column Objects
■ CREATED_BY. Stores the ROW_ID of the S_USER record of the person who created
the record—not to be confused with the user name that the user logged in with.

■ LAST_UPD. Provides the date of last update of each record.

■ LAST_UPD_BY. Stores the ROW_ID of the S_USER record of the person who last
updated the record—not to be confused with the user name that the user logged
in with.

NOTE: The CREATED, CREATED_BY, LAST_UPD, and LAST_UPD_BY columns all
provide date-time and logon stamps for record creation and update on the client,
not server, databases.

■ PAR_ROW_ID. The PAR_ROW_ID column is a foreign key to the ROW_ID column
of the base table. Extension tables, as well as _ATT and _T tables, have this
system column.

LAST_UPD, ROW_ID, LAST_UPD_BY, CREATED, and CREATED_BY columns are
system fields that are updated automatically by the Siebel application.

System fields should not be explicitly defined for a business component. If the
business component fields that are based on these columns are defined, the
application will attempt to write a value to these columns twice in the insert
statement and will cause a duplicate column SQL error.

Updating the extension table does not update the base table automatically. This
needs to be configured. One method is to add an extension column to the base table,
which would be populated using SVB code whenever an extension table was
updated.

Table 12 identifies the correspondences between system fields and system columns.

Table 12. System Fields and Their System Columns

System Field Name System Column Name Description

Id (or blank) ROW_ID Primary key for the table.

Created CREATED Creation date and time of the row.
224 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Indexes
These fields are automatically provided, and do not need to be explicitly declared.
You can reference them in the Field property of controls, list columns and other
object definitions, even though they do not display in the Object List Editor for the
business component.

Indexes
An Index object definition is the direct representation of a database index in a
DBMS.

Siebel applications include a set of standard indexes. All indexes supplied by Siebel
have the S_ prefix.

NOTE: You cannot modify or delete standard indexes.

You can create custom indexes if you determine that an additional index would
benefit your implementation.

The Index object type has the following key properties:

■ Name. The name of the database index.

Created By CREATED_BY Stores the ROW_ID of the S_USER record of the
person who last updated the record.

Updated LAST_UPD Date of last update of the row.

Updated By LAST_UPD_BY Stores the ROW_ID of the S_USER record of the
person who last updated the record.

In some cases, this field is updated even
though the user does not actively update the
record. For example, this may occur when a
multi-value link is configured with a primary
join. See “Primary ID Field” on page 413 for
more information.

Table 12. System Fields and Their System Columns

System Field Name System Column Name Description
Version 7.5.3, Rev. A Siebel Tools Reference 225

Data Objects Layer

Index Column Object Type
■ Unique. A TRUE or FALSE value indicating whether multiple rows with the same
value are allowed.

■ Type. Indicates which of the following styles describes the index:

■ Primary Key value. A primary key index is indexed on the ROW_ID column.

■ User Key value. A user key index is developer-created. The set of index
columns is developer-specified. It must consist of a unique combination of
columns.

■ Extension value. An extension index is created by default when the developer
adds an index. The set of index columns is system-specified.

■ System value. System indexes are included in standard Siebel applications,
and you cannot modify them.

NOTE: You can use Siebel Tools to create indexes in ascending or descending order.
For Oracle, all indexes will be created in 'asc' mode (even if defined as 'desc' in
Tools) since only the Rule Based Optimizer (RBO) is currently supported by the
Siebel application for Oracle databases.

Index Column Object Type
Index Column is a child object type of the Index object. An Index Column object
definition associates one column to the index that is the parent object definition of
the index column. The Index Column object type has the following important
properties:

■ Column Name. The name of the column object definition to include in this index
object definition.

■ Sequence. The integer value that indicates the order of the column in the index
relative to other columns, if more than one column is present.
226 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

User Keys
■ Sort Order. The sort order for the index column. Its value can be either Asc
(ascending) or Desc (descending).

NOTE: Do not define indexes with names longer than 18 characters in the DB2
environments.

User Keys
A user key specifies columns that must contain unique sets of values. It is used to
determine the uniqueness of records during data import operations, such as in EIM
and remote synchronization. The purpose of user keys is to prevent users from
entering duplicate records.

A user key is designated by the name of its parent table with an _Un suffix, such as
S_PROD_INT_U1. Each user key has User Key Column child objects that specify the
table columns that must have unique values, for example BU_ID, NAME, and
VENDR_OU_ID in the S_PROD_INT_U1 user key.

A predefined index exists for each Siebel-defined user key. This index also takes the
form S_TABLE_NAME_Un.

NOTE: Modifying user keys in standard Siebel tables or EIM base tables is a restricted
activity and should not be attempted. Siebel Expert Services can assist customers in
evaluating strategies to remap data in their implementations to make use of the
current user key structure within their specific business requirements.

For more information, see “EIM Interface Tables” on page 228.
Version 7.5.3, Rev. A Siebel Tools Reference 227

Data Objects Layer

EIM Interface Tables
EIM Interface Tables
Interface tables are intermediate database tables between the Siebel application
database and other databases. A database administrator populates these tables with
information to be processed by Siebel applications. You then invoke Siebel
Enterprise Integration Manager (EIM) to process this information. EIM manages the
exchange of data between Siebel database tables and other corporate databases. You
can use EIM to perform bulk imports, exports, merges or deletes.

Interface tables have names that take the form EIM_.

All interface tables have a value of Interface in the Type property of their object
definitions.

For more information about interface tables and EIM, see Siebel Enterprise
Integration Manager Administration Guide.

When tables or columns are added to the database, including extension tables and
extension columns, it is generally necessary to configure the corresponding EIM and
docking or routing interfaces. Siebel Experts typically perform the configuration of
EIM and docking interfaces. Or you can use the EIM/Docking Wizard to extend
Siebel EIM/Docking model. However, you can create and configure Attribute
Mapping object definitions and view the other object types for the purpose of
studying your existing interfaces. After you create an extension column, you must
add one or more Attribute Mapping object definitions in interface tables that will
supply data to it.

Two terms will be useful in the discussion that follows: foreign key column and
attribute column. A foreign key column contains a reference to the primary key of
another table, providing the means to perform a join from one table to the other. In
contrast, an attribute column holds data, and does not point anywhere else.

NOTE: Do not modify the EIM attribute mappings shipped as part of the standard
Siebel repository. Doing so may cause EIM to behave incorrectly.
228 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

EIM Interface Tables
EIM Object Types
EIM object types are illustrated in Figure 56.

The object types used in EIM configuration are described in the following section.

Figure 56. Architecture of EIM Object Types
Version 7.5.3, Rev. A Siebel Tools Reference 229

Data Objects Layer

EIM Interface Tables
■ EIM Interface Table object type. The EIM Interface Table object type is an
alternative representation of the Table object type, for tables of type Interface
only. That is, each interface table has a table object definition (with a value of
Interface in the Type property) and an EIM interface table object definition. This
is illustrated in Figure 57.

The EIM Interface Table object type has all the properties of the Table object
type, plus several additional properties that are specific to interface tables. EIM
Interface Table has the following child object types: EIM Interface Table Column,
EIM Table Mapping, and Interface Table User Key Usage.

Figure 57. Relationship Between EIM Interface Table and Table
230 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

EIM Interface Tables
■ EIM Interface Table Column object type. The EIM Interface Table Column object
type is an alternative representation of the Column object type, for columns that
are child object definitions of interface tables. For a given interface table, the
same list of columns appears as column children of the table object definition
and as EIM interface table column children of the corresponding EIM interface
table object definition. This is illustrated in Figure 58.

The EIM Interface Table Column object type contains all the properties of the
Column object type, in addition to some that are specific to EIM.

NOTE: The Price List interface table EIM_PRI_LST is used in this and subsequent
examples in the section.

Figure 58. Relationship Between EIM Interface Table Column and Column
Version 7.5.3, Rev. A Siebel Tools Reference 231

Data Objects Layer

EIM Interface Tables
■ Interface Table User Key Usage object type. This object type provides support for
alternative user keys for base tables. An interface table user key usage object
definition defines the use of a nontraditional user key for a given base table in a
specific interface table.

NOTE: Modifying user keys in standard Siebel tables or EIM base tables is a
restricted activity and should not be attempted. Siebel Expert Services can assist
customers in evaluating strategies to remap data in their implementations to
make use of the current user key structure within their specific business
requirements.

■ EIM Table Mapping object type. Identifies a data table that is updated by the parent
EIM interface table object definition. One interface table may update one or
more data tables, and each data table to be updated requires an EIM Table
Mapping child object definition of the EIM Interface Table object. Each EIM
Table Mapping object definition identifies the name of the destination table (data
table to update) in its Destination Table property. This is illustrated in Figure 59.

EIM Table Mapping has two child object types: Attribute Mapping and Foreign
Key Mapping.

Figure 59. EIM Table Mapping Configuration
232 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

EIM Interface Tables
■ Attribute Mapping object type. Identifies an attribute (data) column to update in
the destination (base) table specified in the parent EIM table mapping. Each
Attribute Mapping object definition identifies the column in the interface table
that supplies the data (in the Interface Table Data Column property). It also
identifies the column in the destination table that receives the data (in the Base
Table Attribute Column property). This is illustrated in Figure 60.

You can configure the Attribute Mapping object type. You should add a
corresponding Attribute Mapping object definition when you add an extension
column to a table, if the extension table is to be populated by an interface table.

Figure 60. Attribute Mapping Configuration
Version 7.5.3, Rev. A Siebel Tools Reference 233

Data Objects Layer

EIM Interface Tables
■ Foreign Key Mapping object type. Each Foreign Key Mapping object definition
identifies a foreign key column in the destination table that is to be populated
from the interface table. Because foreign key values are stored as numeric row
ID values in data tables, to populate one from an interface table it is necessary
to map from the interface column to a combination of user key columns in the
destination table, rather than directly to the foreign key column.

A foreign key mapping is not a one-to-one column mapping from interface table
to destination table, as occurs with non-foreign key columns. The numeric
foreign key does not even exist in the interface table, so it cannot be mapped.
Instead, a combination of attribute columns in the destination table of the
foreign key is used to access the desired row, and the foreign key value can be
obtained from that row. These relationships are illustrated in Figure 61 on
page 235.
234 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

EIM Interface Tables
Figure 61. Foreign Key Mapping Configuration
Version 7.5.3, Rev. A Siebel Tools Reference 235

Data Objects Layer

EIM Interface Tables
■ Foreign Key Mapping Column object type. Each Foreign Key Mapping Column
object definition identifies a piece of the user key columns; that is, one of the
attribute columns used to locate rows in the table the foreign key points to. The
user key columns, taken together, uniquely identify rows in that table. The
Foreign Key Mapping Column object definitions identify these user key columns
to the interface table, so that foreign key values can be derived when import or
export takes place.

■ User Key object type. User Key is a child object type of Table. Each user key object
definition provides a set of attribute columns and related information that
specifies how the table’s rows can be accessed in a particular EIM scenario. User
Key has two child object types: User Key Column and User Key Attribute.

■ User Key Column object type. User key columns can be either attributes or foreign
keys. In most cases these are the columns in the user key index (usually the
index with a suffix of _U1), with the exception of the CONFLICT_ID column.

■ User Key Attribute object type. Each user key attribute object definition in the
parent user key specifies one in the set of attribute columns that collectively
identify rows in the grandparent table. The column name is specified in the
Name property of the User Key Attribute object definition. User Key Attribute
has one child object type, which is User Key Attribute Join.

■ User Key Attribute Join object type. Each User Key Attribute object definition has
one or more User Key Attribute Join child object definitions. The user key
attribute join specifies a join operation that can be used to convert a user key
attribute that is itself a foreign key to another table into attribute column values
in that table. For example, the S_PROD_INT (products) table has a user key
consisting of three attributes: PROD_NAME, PROD_VENDOR and
PROD_VEN_LOC. The PROD_NAME (product name) attribute column is directly
obtained from the S_PROD_INT table, so no join is required. However, the
PROD_VENDOR and PROD_VEN_LOC columns occur in the S_ORG_EXT
(accounts) table, and must be obtained using a join on VENDR_OU_ID, a foreign
key from S_PROD_INT to S_ORG_EXT.
236 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

EIM Interface Tables
Adding and modifying attribute mappings are subject to the restrictions identified
in Table 13.

NOTE: Do not map multiple interface table columns to a single column in a target
table. This creates ambiguity for EIM. However, you can map a single column in an
interface table to multiple base tables or extension tables.

You can deactivate mappings if they are no longer necessary. To deactivate a
mapping, navigate to the Attribute Mapping Object definition in the Object List
Editor and place a check mark in the Inactive property. You should not delete any
mappings.

NOTE: No validation is performed against interface table or column definitions. LOV
validation is performed against the LOVs defined for the base columns to which
they are mapped.

Table 13. Restrictions on Adding and Modifying Mappings

From To Conditions

Interface table column Base column Supported if there are
existing mappings from this
interface table into this data
table.

Interface table extension column Base column Supported if there are no
other mappings to this base
column. Use with caution.

Interface table column Extension table column Supported if there are
existing mappings from this
interface table into the
extension table’s base table.

Interface table extension column Extension table column Supported if there are
existing mappings from this
interface table into the
extension table’s base table.
Version 7.5.3, Rev. A Siebel Tools Reference 237

Data Objects Layer

Access Control
Labeling Data Loaded in EIM As No Match Row Id Instead of NULL
When you are loading data through EIM and a primary child column has no match,
it is labeled as NULL, whereas loading it through the user interface would produce
No Match Row Id.

To fix the problem you need to open the record set in the client user interface and
manually step through each record created by EIM—each instance of a NULL value
for PR_TERR_ID will be replaced with No Match Row Id.

For more information, see “Using the Check No Match Property with a Primary
Join” on page 416.

Access Control
S_PARTY allows modeling of real-life relationships between different business
entities. This section describes the role of S_PARTY; it allows you to configure
business components related to access control and to import access control data
and populate the necessary extension tables with data about persons and
organizations.
238 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Access Control
S_PARTY and its extension tables are used to store data for many business
components as shown in Figure 62 below.

Figure 62. S_PARTY Overview
Version 7.5.3, Rev. A Siebel Tools Reference 239

Data Objects Layer

Access Control
Party
Party refers to all types of Siebel person and business entities. This includes:

■ Person-related entities (for example, Contact, Employee, User, Partner
Employee)

■ Organization-related entities (for example, Account, Position, Division,
Organization, Household)

■ Grouping for access control (for example, Access Group, User List). It also allows
for grouping of instances of different types of entities.

Person-Related Data
A person refers to someone using the application or referred to in the application:

■ Employee in a company that is using a Siebel application

■ Individual at a channel partner

■ Customer using the Web site

■ Individual external to your company who is associated with the business
process

Person-Related Business Components
Person-related business components store the majority of their data in S_CONTACT.
Only the Siebel userID is stored in the S_USER table (Figure 63 on page 241).
240 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Access Control
Many business components also use these tables to store person-related data
(Figure 63).

Relationships for Responsibility
User-Responsibility (many-to-many) relationships use the S_PER_RESP intersection
table (Figure 64). Any user can be granted a responsibility.

Figure 63. Many Business Components Store Person-Related Data

Figure 64. Relationships for Responsibility
Version 7.5.3, Rev. A Siebel Tools Reference 241

Data Objects Layer

Access Control
Organization-Related Data
Organization-related data represents any business enterprise associated with a
Siebel application:

■ The company or part of the company using the Siebel application (division,
organization)

■ An external company that purchases your products (account)

■ A partner company that assists you in your business (channel partner)

■ A household

Organization-Related Business Components
Organization-related business components store their primary data in S_ORG_EXT
and store additional data in S_BU (Figure 65).

Figure 65. Organization-Related Business Components
242 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Access Control
Many business components use these tables to store organization-related data
(Figure 66).

S_BU Table
The S_BU table, shown in Figure 67, does the following:

■ Permits indexing on organization name

■ Supports organizational visibility

Figure 66. Many Business Components Store Organization-Related Data

Figure 67. S_BU Table
Version 7.5.3, Rev. A Siebel Tools Reference 243

Data Objects Layer

Access Control
Single-Organization Visibility
Single-organization visibility is implemented by the BU_ID foreign key column in
the table for a single-organization business component (Figure 68).

Figure 68. Single-Organization Visibility
244 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Access Control
Multi-Organization Visibility
Multi-organization visibility is implemented by an intersection table between S_BU
and the table for the multiple-organization business component. Intersection tables
for organizations have a _BU suffix (Figure 69).

Party Business Components
Party business components consist of business components that represent people
and organizational units. For example, the following list references the S_PARTY
table.

■ Account

■ Contact

■ User

■ Organization

■ Employee

■ Position

■ Household

Figure 69. Multi-Organization Visibility
Version 7.5.3, Rev. A Siebel Tools Reference 245

Data Objects Layer

Access Control
S_PARTY Table
The S_PARTY table serves as the base table for all party business components and
stores the party name and party type. It has multiple extension tables that store the
business data for the party business components. The S_PARTY table allows you to
model the complicated business relationships from the real world into Siebel
applications (Figure 70).

Party
Party includes business components that represent groupings of party instances
(Figure 71 on page 247).

■ User List: Group of Users

Figure 70. S_Party Table
246 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Access Control
■ Access Group: Grouping of Access Group Members (for example, household,
account, organization, division, position, user list).

S_PARTY_PER
S_PARTY_PER is an intersection table that relates two instances of parties and is
used to implement group-member relationships between the following, respectively
(Figure 72):

■ User Lists and Users

■ Accounts and Contacts

■ Employees and Positions

■ Access Groups and Members

Figure 71. Party

Figure 72. S_PARTY_PER
Version 7.5.3, Rev. A Siebel Tools Reference 247

Data Objects Layer

Access Control
In the implied join between S_PARTY_PER and S_PARTY:

■ S_PARTY_PER.PARTY_ID maps to the group’s row ID (S_ORG_EXT.ROW_ID)

■ S_PARTY_PER.PERSON_ID maps to the member’s row ID
(S_CONTACT.ROW_ID)

Summary
In summary, S_PARTY and its extension tables are used to store data for many
business components (Figure 73).

Use the following guidelines when working with S_PARTY-related tables:

■ Configuring business components:

■ All person-related business components use S_CONTACT.

■ All organization-related business components use S_ORG_EXT.

■ Over 100 party-related business components reference S_PARTY but store
their data in one of the many S_PARTY extension tables.

■ Importing data for party-related business components:

■ You must populate columns in S_PARTY table in addition to tables that store
the data of interest to users.

Figure 73. Overview of S_PARTY and Its Extension Tables
248 Siebel Tools Reference Version 7.5.3, Rev. A

Data Objects Layer

Access Control
■ Importing data for organization-related business components:

■ For single-organization data, you must populate BU_ID.

■ For multi-organization data, you must populate the corresponding
intersection table.
Version 7.5.3, Rev. A Siebel Tools Reference 249

Data Objects Layer

Access Control
250 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model 6
This chapter describes the various options available for extending the Siebel Data
Model.

About Extending the Siebel Data Model
Options for extending the Siebel data model include the following:

■ Standard (Static) Extensibility. The standard extensibility includes the Siebel
Database Extension Designer that allows you to add columns to Siebel tables or
create 1:1 extension tables. For developers who require extensions beyond built-
in database extensions, the Database Extension Designer provides a point-and-
click interface for extending Siebel application tables. Customers can use these
database extensions to capture data from new fields in application screens or
from external sources using Siebel Enterprise Integration Manager (EIM).

■ Advanced Database Extensibility. Advanced Database Extensibility includes the
following wizards:

■ Table Wizard automates the generation of new table objects and standard
system and foreign key columns. It allows you to create the following types
of tables:

❏ Stand-alone tables that are not related to any other type of table in the
Siebel Data Model.

❏ Tables that have a Many: One or One: One relationship with a table in the
Siebel Data Model.

❏ Tables intersecting between two existing tables in the Siebel Data Model.
Version 7.5.3, Rev. A Siebel Tools Reference 251

Adding Custom Extensions to the Data Model

About Standard Database Extensibility
■ EIM Table Mapping Wizard allows you to create or associate the new table
to the appropriate interface tables for using EIM. You can generate EIM Table
Mapping objects for importing data into tables you have created, and you can
automate the creation of EIM Attribute maps on extension columns added to
base tables, which speeds up the development of complex EIM table
mapping objects.

■ The Dock Object Mapping Wizard allows you to associate the new table with
an existing or new customer Dock object to support the synchronization of
its data to remote users.

Benefits include:

■ Ability to import data into custom tables using EIM

■ Ability to synchronize the contents of custom tables to remote users

■ Automatically generate basic index and User Key objects for new 1:1, M:1, and
intersection tables.

NOTE: Advanced Database Extensibility should be used only after having
exhausted other mechanisms including the use of prebuilt extensions and the
Database Extension Designer. Changes made using Advanced Database
Extensibility are upgradable from release to release and will not conflict with
modifications made by Siebel.

■ External Schema Import Wizard allows you to create a new Table object in the
siebel repository based upon the contents of a DDL. See “Advanced Database
Extensibility” on page 292 for further information.

About Standard Database Extensibility
Standard Database Extensibility refers to capabilities in Siebel Tools allowing you to
extend the Siebel eBusiness Applications Data Model. It has two major components:
252 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

About Standard Database Extensibility
■ Static Database Extensions. The Siebel eBusiness Applications Data Model
contains several columns and tables that you can customize for your own
purposes. These columns and tables are already part of the Data Model and
require no schema modifications.

If you need to track information that is not captured in the base entities, your
first option is to determine if the static extensions can be used to solve the
problem.

The following are the types of static database extensions:

■ Static Database Column Extensions. The Siebel Data Model includes over
30,000 columns in Base Tables that are specifically included for you to use
for your own purposes.

■ Static 1:1 Database Table Extensions. The Siebel Data Model includes over 40
tables that provide 1:1 relationships with Base tables that are specifically
included for you to use for your own purposes.

■ Static Many:1 Database Table Extensions. The Siebel Data Model includes over
20 tables that provide 1:Many relationships with Base Tables that are
specifically included for you to use for your own purposes.

■ Database Extension Designer (Dynamic Database Extensions). For developers who
require extensions beyond built-in database extensions, Siebel Database
Extension Designer provides a point-and-click interface for extending Siebel
application tables. Customers can use these database extensions to capture data
from new fields in application screens or from external sources using Siebel
Enterprise Integration Manager (EIM). Siebel Database offers the following
extension capabilities:

■ Dynamic Database Column Extensions. You may add your own columns to any
existing Base Table in the Siebel Data Model.

■ Dynamic Database Table Extensions. You may add your own tables bearing 1:1
relationships with Base Tables in the Siebel Data Model.

It allows you to do the following:

■ Capture additional attributes on entities. You can add columns to database
tables. You can use these columns to store additional information for use by
business object definitions. You can then modify the user interface object
definitions to display and update the contents of added columns.
Version 7.5.3, Rev. A Siebel Tools Reference 253

Adding Custom Extensions to the Data Model

Using Standard Database Extensibility
■ Create your own extension tables. You can also extend the Siebel Data Model
by creating new 1:1 extension tables for Siebel base tables.

■ Carry custom attributes forward with new releases. As part of the
implementation process, the Database Extension Designer generates the
necessary database-specific DDL commands, and registers the columns in
the Siebel application dictionary. Siebel applications recognize the columns,
and carries them forward into subsequent releases of the application.

■ Integrate with Siebel Remote. After implementing a database extension, you
can request that Siebel applications automatically generate a new structure
for mobile client local databases. Siebel applications provide a standard
methodology for propagating changes to mobile clients.

The Database Extension Designer uses a point-and-click interface for adding
columns to tables. It works in conjunction with the Object Explorer and Object List
Editor to allow you to view all tables in the database and all columns in each table,
and add extension columns to a table as necessary. This approach simplifies the
process of implementing necessary changes, allowing you to meet the needs of your
users more quickly.

NOTE: You need to have a thorough understanding of the Siebel Object Architecture
and Siebel Data Model before you undertake database extension.

Using Standard Database Extensibility
You can use Standard Database Extensibility to implement database extensions that
meet various business requirements, without having to resort to Advanced
Database Extensibility. For example:
254 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Using Standard Database Extensibility
■ Many: One Tables

Requirement: You need to track an entity that does not exist in the Siebel
eBusiness Applications Data Model and that bears a Many: One relationship
with a Base Table.

Case 1: The Base Table already has an _XM table associated with it.

In this case, you can use this table to track multiple entities by using the TYPE
column to group records.

Case 2: The Base Table does not have an _XM table associated with it, but there
is another table in the Data Model that bears a Many: One relationship to the
Base Table and is not being used in the Siebel implementation.

In this case, you may repurpose this table for your needs by adding columns to
it to track the necessary attributes.

■ Intersection Table

Requirement: You need to implement a Many: Many relationship between two
tables (T1 and T2).

■ Look for an existing _XM table for T1 or another table that bears a Many: One
relationship to T1 and is not used in the implementation. If such a table
exists, you may be able to use it as an Intersection table.

■ If the table identified in step a is an _XM table, use the NAME column as the
Foreign Key to the table (T2). You will also need to make the configuration
changes necessary to make sure that the TYPE column gets populated with
a default value.

■ If the table identified in step a is an unused table, then you will need to
choose an appropriate (required) column that can serve as a Foreign Key to
the table (T2). You will also need to make the configuration changes
necessary to make sure that all other required columns are populated.
Version 7.5.3, Rev. A Siebel Tools Reference 255

Adding Custom Extensions to the Data Model

Database Extension Planning and Design
■ Stand-Alone Table

Requirement: You need to create a table that is not related to any other tables in
the data model; this table does not have to be available through synchronization.

Case 1: The data exists in an external system or database.

You should consider using a Virtual Business Component to access this table.
This option has the added advantage that there is no need to replicate the data
within the Siebel Data Model. For more information about Virtual Business
Components, see Integration Platform Technologies: Siebel eBusiness Application
Integration Volume II.

Case 2: The data does not exist in an external system or database.

You could create the table, possibly in the same database and under the same
table owner as the rest of the Siebel Data Model. Though this table is not
represented in the Repository, its data can be accessed through the Virtual
Business Component mechanism.

Database Extension Planning and Design
Siebel Tools and Siebel applications provide several tools that automate much of the
process of implementing database extensions. However, to be successful, you need
to plan and design your extensions before using these tools. Planning and design
tasks are listed in this section, and those that the Database Extension Designer
facilitates are described in more detail in subsequent sections.

You should use a test database environment where you can make and verify
database extensions before they are propagated to the production database.

NOTE: Be sure to lock these projects when extending the database through Siebel
Tools: Newtable, EIM Interface Table, and ERP Interface Table.

Planning and Design Steps
The following procedures describe the steps for planning and designing database
extensions.
256 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Database Extension Planning and Design
To plan for adding a custom column to the database

1 Decide whether a new column is needed, or whether a standard extension
column such as ATTRIB_03 or ATTRIB_27 in the standard extension table will
meet your needs.

In many cases it is better to use a new column in the base table rather than a
standard extension column, because it gives somewhat better performance (that
is, you avoid a join to the extension table). However, there are some exceptions
to this guideline. Siebel Expert Services can identify when these exceptions
might apply during a review such as a configuration design review or EIM
mapping review.

If you need to store additional data that almost always exists for a given base
record and is regularly accessed, the recommended approach is to extend the
base table to store this data. By doing this you avoid an extra join to an extension
table. However, this might result in slower access to the base table if there is a
lot of data (that is, many large fields have been added and they are always
populated), because fewer rows now fit on one page.

If a large number of extension fields is required, and if the view displaying this
data is accessed infrequently, use an extension table. A join is executed for the
extension table, but only when this view is accessed.

NOTE: When you create a new extension column in the Siebel schema, there
might be padding issues with Siebel Remote. For details regarding what data
type to use, see “Generating a New Database Template” in Siebel Remote and
Replication Manager Administration Guide.

2 If you choose to use a standard extension column, verify that the column is not
already in use by a field.

To find any fields currently using the standard extension column, do the
following:

a In the Siebel Tools Object Explorer, click the Flat tab.

b Select the Field object type.
Version 7.5.3, Rev. A Siebel Tools Reference 257

Adding Custom Extensions to the Data Model

Database Extension Planning and Design
c Initiate a query by choosing Query > New Query from the menu bar. In the
QBE row in the Object List Editor, enter the name of the column you want to
use (in the Column property) and the name of the extension table (in the Join
property). Press ENTER.

d If the query does not return any Field object definitions, the column is
unused in the extension table and is available. If the query returns one or
more object definitions, find another extension column in that table. To
determine which extension columns are currently in use, perform the query
again with the same extension table specified (in the Join property) and the
value “ATTRIB*” in the Column property.

CAUTION: If the column is in use by a field defined by a Siebel application, do
not deactivate the original field in order to use that column for another
purpose.

3 If you will add a new custom column, decide whether you will be implementing
it after you have deployed active mobile clients. Mobile clients will either have
to be reextracted to get the new column, or Siebel Anywhere will need to be used
to distribute the schema change.

4 Design the extension column. Decide on a description, name, user name, and
characteristics (such as data type, length, and default values).

5 Decide on the applet, view, and screen where the column will be used. Decide
if users can only view column data, or view and update it.

6 Decide where your custom column will reside: in a base table, a standard
extension table, or a custom extension table.

To find any existing columns in which you might place the field, do the
following:

a In Siebel Tools, navigate to the applet to which you want to add a control or
list column.

b Note the value in the Business Component property.
258 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Database Extension Planning and Design
c Navigate to this business component using the Object Explorer and Object
List Editor. The object definition for the business component in the Object
List Editor displays, in its Table property, the name of the base table. Note
the name of this base table.

d In the Object Explorer, select the Table object type.

e In the Object List Editor, perform a query to restrict the list of tables to just
display extension tables with a base table name matching the previously
identified base table, as follows:

❏ Type property set to a value of Extension

❏ Base Table property equal to the base table’s name, in all capitals

The result of this query is a display of the extension tables for the identified
base table.

NOTE: Alternatively, you could review the base table to determine if it would
be appropriate to create an extension column there. This would require a
different Object List Editor query, in which you set the Name property to the
Name of the identified base table, and expand the Column object type in the
Object Explorer.

7 Decide on the method for loading data into the extension column. You may be
able to populate the extension column using the Enterprise Integration Manager
(EIM). For more information, see “Populating Extension Tables and Columns”
on page 290. Alternatively, you could have your users enter data through the
user interface, or use Siebel Object Interfaces and Siebel VB or Siebel eScript to
update the data programmatically.

8 Document the planned changes, and work with Siebel Technical Services to
review the design.
Version 7.5.3, Rev. A Siebel Tools Reference 259

Adding Custom Extensions to the Data Model

Database Extension Planning and Design
9 Develop an implementation schedule that includes adequate time to test and
implement your work, as well as to propagate the changes to your active mobile
clients.

NOTE: Because all extensions are made and tested first against a local
development database, then made and tested against the test server
environment, your mobile users can continue to synchronize as you implement
database extensions.

Naming Conventions for Extension Tables and Columns
The Database Extension Designer enforces a naming convention for extension
tables and columns to prevent naming conflicts and make sure that you can upgrade
your application.

Extension Table Names
The table name for an extension table comprises the name of the base table, an
underscore, and a suffix. The “X” suffix denotes a one-to-one (1:1) extension table;
the suffix “XM” denotes a one-to-many (1:M) extension table. For example:

■ S_OPTY_X is the name of the 1:1 extension table for the S_OPTY base table.

■ S_OPTY_XM is name of the 1:M extension table for the S_OPTY base table.

NOTE: Custom extension tables have a prefix of CX_. This prefix is used to
distinguish custom tables that have been created from tables provided by your
Siebel application. Prefix CX_ is used to distinguish custom tables from all Siebel
tables, not just Siebel Extension tables.

The user name of an extension table (in the User Name property) comprises the
user name of the base table, a space, and a suffix. The suffix Extension denotes a
1:1 extension table; the suffixes M:1 Extension or 1:M Extension denote a many-to-
one or one-to-many extension table. For example:

■ Opportunity Extension is the user name for the S_OPTY_X extension table.

■ Opportunity M:1 Extension is the user name for the S_OPTY_XM extension
table.
260 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Database Extension Planning and Design
Extension Column Names
The column name for an extension column in a base table consists of a prefix, an
underscore, and a column name. For example:

■ X_DISCOUNT

■ X_SPECIALCHG

The user column name for an extension column in a base table uses a column name
and a suffix. For example:

■ Discount Extension

■ Special Charge Extension

NOTE: The Database Extension Designer imposes no naming convention on
extension columns in an extension table. Be careful not to use database reserved
words.

There are eight predefined system columns added to a Customized Extension table
you create. However, as part of the standard Siebel application, there are 47
predefined data columns of varying types in standard extension tables.

Accommodating Active Mobile Clients
Whenever possible, you should implement custom attributes before extracting
mobile clients. If you can do so, then propagating custom attributes to these clients
occurs during normal client installation.

DBMS Restrictions
You can add extension columns to a base table, standard extension table, or custom
extension table.

However, you should be aware that different DBMS systems have different limits on
the width of a table row, either on the maximum number of columns in a table or
the maximum number of bytes in a row. If you need to exceed the limit, you can
add extension columns to custom extension tables only. Some examples of DBMS
systems limitations are:
Version 7.5.3, Rev. A Siebel Tools Reference 261

Adding Custom Extensions to the Data Model

Database Extension Implementation
■ Microsoft SQL Server 7.0 has a maximum Varchar length of 8000.

■ Customers cannot add long columns to Siebel tables. However, customers can
add one long column to custom extension tables in Oracle.

After it has been added to the physical table, a column cannot be removed. Refer to
your database system’s documentation for information on this constraint.

NOTE: Customers are advised not to decrease the length of a column because this can
cause data loss [for example, decreasing a varchar (30) to varchar (20)] or to
decrease the precision [for example, decreasing from number (10,3) to number
(10,1)] because this can cause a loss of precision.

Database Extension Implementation
After planning and designing your database extensions, complete the following
steps to implement your extension tables and columns on the Siebel test database
server. If you are performing this work after your Siebel applications are in
production, you should establish a separate test environment and database. This
approach assures the safety and integrity of your production system as you develop
and test your database extensions.

NOTE: During the process of implementing extension columns and tables, Siebel
Tools generates and executes the SQL data definition language (DDL) that is used
to modify the database and update other Siebel system components.

As with configuration work, database extensibility must first be performed against
the local database. This allows you to recover the data in the event of mistakes, and
allows you to test thoroughly the changes before making them available to all
developers.

CAUTION: Creating tables using SQL is not supported; use only Siebel Tools to create
tables and perform other logical database schema extensions.
262 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Checking Out and Locking the Projects
To implement database extensions

1 Check out and lock the project to which the table being extended belongs.

2 Update the logical schema definition in the local environment.

3 Apply the physical schema extensions to the local database.

4 Update and test configuration changes that apply to the extension.

5 Prepare the server database prior to applying schema extensions.

6 Apply the changes to the server database and click Activate.

The Activate button makes the changes effective for server tasks like EIM and
Generate New Database.

7 Apply the server database changes to other local databases.

The following sections discuss each step in detail. Once you have implemented your
extensions in your test environment, refer to the section entitled “Migrating
Repositories and Schemas Between Databases” in Chapter 17, “Repositories” for
instructions on implementing these extensions in your production database.

Checking Out and Locking the Projects
With Siebel Tools running against the local database, check out the project to which
the table you are extending belongs (in most cases this is Newtable). Be certain to
specify Server Lock when checking out the projects.

NOTE: If you want to import data into the new column using EIM, you need to check
out whatever project the appropriate interface table belongs to.
Version 7.5.3, Rev. A Siebel Tools Reference 263

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
Updating the Logical Schema Definition in the Local
Environment

The logical schema (data object definitions) must be updated with your extensions
in Siebel Tools before you apply them to the physical database. Logical schema
update is performed against your local development repository. Any changes made
to your logical schema will be indicated by a check mark in the Changed column
for the table or column affected.

This section is organized into the following subsections:

■ “Creating a Custom Extension Table” on page 264

■ “Adding Extension Columns to Tables” on page 266

■ “Modifying Extension Tables or Columns” on page 269

■ “Deleting Extension Tables or Columns” on page 270

■ “Using Extensions with Enterprise Integration Manager” on page 272

■ “Adding Custom Indexes” on page 274

Carry out all of the steps in all of the subsections, in the order given here.

Creating a Custom Extension Table
Siebel eBusiness Applications provide standard extension tables for the major base
tables in the schema. Each extension table has standard extension columns that you
can use to hold custom data. In some cases, however, you may need to create
custom extension tables.

When configuring custom extension tables, consider the following:
264 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
■ If you wish to create an extension table for tables whose type is Extension
(Siebel), you must extend from S_PARTY. For example, S_CONTACT is an
extension table of S_PARTY. Because S_CONTACT is of type Extension (Siebel),
you cannot use it as a parent table for an extension table. You must use S_PARTY.
For a business component based on your new table to show data from
S_CONTACT, you must create a Join object that references S_CONTACT and has
a Join Specification child object with a Source Field property set to Parent Id and
Destination Column property set to ROW_ID. The row ID of an S_CONTACT
record will be the same as the row ID of the corresponding S_PARTY record. For
more information about S_PARTY, see “Access Control” on page 238 for more
information.

■ After creating a new table using the Extend button, you will need to restart
Siebel Tools if you want to delete any custom tables.

■ Custom 1:1 extension tables do not need new docking rules, as the data
contained in these tables is implicitly routed according to the docking rules of
their parent tables.

■ Limit the number of extension tables for a given base table to help avoid
performance problems. The number of extension tables is also limited by the
underlying database capacity.

■ You cannot add more than 20 extension tables to a base table. If for some reason
you need more than 20 extension tables on a base table, you must use the
Advanced Database Extensibility option. For more information, see “Advanced
Database Extensibility” on page 292. You should also consult Siebel Expert
Services.

To create a custom 1:1 extension table

1 Connect to your local development database with Siebel Tools.

2 In the Object Explorer, select the Table object type.

3 In the Object List Editor, select the base table for which you want to create an
extension table. Verify that its Type property has a value of Data (Public).
Version 7.5.3, Rev. A Siebel Tools Reference 265

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
4 Click Extend.

The extension table appears in the list of tables in the Object List Editor. The
Database Extension Designer will automatically create the necessary standard
columns and standard indexes. Temporary columns in interface tables that are
imported to the base table for this extension table are also created automatically.

5 Create any additional extension columns on the custom extension table,
following the instructions in “Adding Extension Columns to Tables.”

Adding Extension Columns to Tables
You can add extension columns to any of the following table types:

■ Data tables

■ Intersection tables

■ Interface tables

■ Standard extension tables

■ Custom extension tables

■ Extension (Siebel)

You should check the Type property for a table to verify that you can extend it:

■ You cannot add extension columns to private data tables—that is, tables with a
Type property of Data (Private).

■ Some interface tables are private, although most are public.

NOTE: For Oracle databases, the maximum length of extension columns with data
type of Varchar is 2000 characters. If you create a column of type Varchar that is
longer than 2000, it is implemented as a column with data type of LONG.

To add an extension column

1 Connect to your local development database with Siebel Tools.

2 In the Object Explorer, expand the Table object type.
266 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
3 In the Object List Editor, select the table to which you will add an extension
column or columns.

4 Make sure that the table is not of type Data (Private).

5 Select Column in the Object Explorer.

6 Select Edit > New Record to add an extension column.

NOTE: Do not use column names that are reserved words on your server or client
database.

When you add columns to base tables or interface tables, Siebel Tools enforces the
naming conventions described in the section “Naming Conventions for Extension
Tables and Columns” on page 260.

You must provide a default value, in the Default property, for any column that you
designate as mandatory (with a FALSE value in the Nullable property). Although
you can create a mandatory column without providing a default, you will encounter
problems when using this column. For example, if you try to add a column to a table
that is already populated with data, the database will fail to create the column. If
the table does not yet contain data, attempts to add data (through the user interface,
Enterprise Integration Manager, or Siebel Remote) may fail.

In an extension column, use only default values for the following properties:

■ Translate

■ Use FKey

■ Sequence Object

■ Cascade Clear
Version 7.5.3, Rev. A Siebel Tools Reference 267

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
■ Foreign Key Table Name

CAUTION: Be extremely careful when using custom extension columns to track
foreign keys. If you choose to implement this, you must consult with Siebel Expert
Services concerning the visibility rules applied to the foreign key table. Additionally,
you must set the Foreign Key Table Name property to NULL for that column to load
values into it using Enterprise Integration Manager.

For information on creating foreign key mappings for EIM, see “EIM Table Mapping
Wizard” on page 299.

Creating Extension Columns of Type LONG
You can create an extension column of type LONG, but you are limited to one
column of this type per table. When configuring LONG columns, consider the
following:

■ You can only add LONG columns to 1:1 Extension Tables that have a valid base
table identified in the Base Table property of the table object definition.

■ You cannot add LONG columns to tables of type Data (Public), such as
S_EVT_ACT. Siebel Systems reserves the right to implement LONG columns in
these tables in the future.

■ You can use LONG columns store a maximum of 16 KB or 16383 characters.

To create a LONG extension column

1 Find an appropriate 1:1 extension table that corresponds to the base table that
needs the LONG column available.

An example of a 1:1 extension table for S_EVT_ACT, for instance, is
S_EVT_ACT_X.

2 For the column that is created in the table, set the Physical Type to 'Long' and
Length set to '0'.

You apply the LONG extension column like any other custom extension column.

3 Create a new field that maps to the extension column.
268 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
Modifying Extension Tables or Columns
You may need to modify your extension tables or columns after creating or
activating them. You can modify properties of extension tables or columns only.
Modification of standard base tables and their columns is not supported. If you
delete the custom table, you need to delete the data object as well, if there is any.

To modify an existing extension column

1 Connect to your local development database with Siebel Tools.

2 In the Object Explorer, expand the Table object type.

3 In the Object List Editor, select the table containing the extension column to
modify.

NOTE: If you are adding a new extension table to the EIM Table Mapping list,
make sure you click Activate to create all the necessary temporary columns that
are needed for EIM processing.

4 In the Object Explorer, select Column.

5 In the Object List Editor, select the extension column to modify.

6 Modify the appropriate properties.

You can rename a column prior to applying it to the server. However, once the
column has been added or applied to the server, you cannot simply rename the
column and must deactivate the existing column and create a replacement
extension column.

To rename an existing extension column

1 Deactivate the unwanted column.

2 Create the new column in Siebel Tools (the logical schema).

3 Export the data from the old column.

4 Drop the old column.

5 Use ddlsync.ksh to synchronize the logical and physical schema and import the
data back in.
Version 7.5.3, Rev. A Siebel Tools Reference 269

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
To modify an existing extension table

1 Connect to your local development database with Siebel Tools.

2 In the Object Explorer, select the Table object type.

3 In the Object List Editor, select the extension table to modify.

4 Modify the appropriate properties.

NOTE: Be careful when modifying the Physical Type property for columns;
depending on existing data in the column, changes may not be possible.

Deleting Extension Tables or Columns
If you have created an extension table or column that is no longer required, you can
delete it from the logical schema. You can delete only custom extension columns
and tables; you cannot delete any standard tables or their columns.

To delete an existing extension column

1 Connect to your local development database with Siebel Tools.

2 In the Object Explorer, expand the Table object type.

3 In the Object List Editor, select the table containing the extension column to be
deleted.

4 In the Object Explorer, select Column.

5 In the Object List Editor, select the extension column to be deleted.

6 Select Edit > Delete from the menu to delete the extension column.

NOTE: Siebel Tools does not cascade the deletion of an extension column. You should
delete or inactivate the attribute mapping after deleting the extension column.

To delete a mapping, navigate to the Attribute Mapping object in the Object List
Editor and select Edit > Delete Record. To deactivate a mapping, set the Inactive
property to TRUE for the Attribute Mapping object definition.
270 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
To delete an existing extension table

1 Connect to your local development database with Siebel Tools.

2 In the Object Explorer, select the Table object type.

3 In the Object List Editor, select the extension table to delete.

4 Select Edit > Delete from the menu to delete the extension table.

Extension tables or columns that are deleted are removed from the logical schema.
If you delete an extension table, the corresponding temporary columns in any
interface table that is imported to the base table for the extension table are not
deleted. These columns cannot be deleted through Siebel Tools, and will remain in
the logical and physical schema.

After you have deleted an extension table or column from the logical schema in the
Siebel repository, the table or column still exists in the physical schema of the
database. You must apply your changes to the physical database by clicking the
Apply button. This will synchronize the logical and physical schemes, dropping any
tables or columns from the database that you have deleted from the repository. See
“Applying the Physical Schema Extensions to the Local Database” on page 275 for
more information.

NOTE: In some database platforms, such as DB2, dropping a column requires you to
reconstruct the entire table. However, if there is an object based on the table, a DB2
object such as a view for example, you cannot drop the table from the database.
Version 7.5.3, Rev. A Siebel Tools Reference 271

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
Using Extensions with Enterprise Integration Manager
If you plan to use the Enterprise Integration Manager (EIM) to populate an
extension column with data, you could manually add an extension column or table
to the appropriate interface table, and map this extension column to the extension
column in the base table or extension table. Or you could use the EIM Table
Mapping Wizard to generate mapping automatically. See “EIM Table Mapping
Wizard” on page 299.

NOTE: After the EIM objects are modified, you do not need to compile and distribute
a new .srf with these changes for EIM to recognize the new mappings. They are read
directly from the database.

The Database Extension Designer and EIM support mappings between the columns
in extension tables and columns in interface tables. When you create an extension
table, you need to extend the EIM table manually and map the new columns.

You can make new mappings from an interface table to a base table if either of two
conditions is true:

■ There are already mappings from the interface table into the base table.

■ The target table is an extension table, and there are already mappings from the
interface table into the corresponding base table.

NOTE: Interface table names start with EIM_ in Siebel 7.5.

For example, you can create an extension column in the EIM_ACCOUNT table called
X_CUST_NUM, and map this either to an extension column you added to
S_ORG_EXT or to an existing column in the S_ORG_EXT_X extension table.

NOTE: Mappings from interface extension columns to base columns are not
supported.

The following EIM Table Mapping properties are to be used only by Siebel Systems
and should not be modified by customers:
272 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
■ EIM Duplicate Proc Column

■ EIM Exists Proc Column

■ EIM ROW_ID Proc Column

■ EIM Status Proc Column

■ EIM Status Proc Column

To create and map interface extension columns

1 Identify the interface table in the Table Object List Editor that is used to populate
your extension column.

2 Create the extension column on the interface table, following the instructions in
“Adding Extension Columns to Tables” on page 266.

3 In the Object Explorer, select the EIM Interface Table object type. In the Object
List Editor, select the appropriate interface table.

4 In the Object Explorer, select the EIM Table Mapping object type. In the Object
List Editor, select the base table or extension table that contains the column to
be populated.

5 In the Object Explorer, select the Attribute Mapping object type.

6 Select Edit > New Record from the menu bar to create a mapping from the
interface extension column to the appropriate extension column in the base
table.

NOTE: Verify that the new interface extension column's Inactive flag is not checked.
The new interface extension column will appear in the drop-down list whether the
column's Inactive flag is checked or not.

EIM Processing Columns do not show in the drop-down list. Therefore if the new
interface column does not show in the drop-down list, change the column’s EIM
Processing Column Flag from TRUE to FALSE.

You should not map multiple interface table columns to a single column in a target
table. You can, however, map a single column in an interface table to multiple base
tables or extension tables for a base table of the interface table.
Version 7.5.3, Rev. A Siebel Tools Reference 273

Adding Custom Extensions to the Data Model

Updating the Logical Schema Definition in the Local Environment
You can either delete or deactivate mappings if they are no longer necessary. To
delete the mapping, navigate to the Attribute Mapping object in the Object List
Editor and select Edit > Delete Record. To deactivate a mapping, set the Inactive
property to TRUE for the Attribute Mapping object definition.

Adding Custom Indexes
You can create custom indexes to enhance the performance of your implementation.

NOTE: You cannot modify standard indexes, or delete them from the schema.

When implementing custom indexes, consider the following:

■ While adding an index may improve the performance of one query, it might
adversely affect the performance of others. It is strongly recommended that you
consult Siebel Expert Services to help evaluate the potential impact of a custom
index in your database.

■ If at some point you no longer require a custom index that you have created, do
not delete it from the Siebel repository. Instead, inactivate it by selecting the
object’s Inactive property check box in the Object List Editor.

Deleting the custom index from the repository would remove the record from the
logical schema but not from the physical schema. This would result in the logical
and physical schemas being out of sync.

■ Any custom indexes should be thoroughly tested in a test environment before
being introduced into production.

To create a custom index

1 Connect to your local development database with Siebel Tools.

2 In the Object Explorer, expand the Table object type.

3 In the Object List Editor, select the table to which you want to add an index.

4 In the Object Explorer, expand the Index object type.
274 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Applying the Physical Schema Extensions to the Local Database
5 Select Edit > New Record to add a custom index.

For more information on index properties, see Object Types Reference.

Do not use index names that are reserved words on your server or client
database.

When you add custom indexes to tables, Siebel appends an _X to the index
name.

6 In the Object Explorer, select the Index Column object type.

7 Select Edit > New Record to specify each column to add to the index.

Applying the Physical Schema Extensions to the Local
Database

Once your changes are complete, you are ready to update your local environment.

NOTE: Siebel eBusiness Applications version 7 do not support customized database
triggers. If you have created customized triggers on your Siebel base tables, you
must disable them before updating the logical database schema. You will then need
to recreate the triggers after the update is finished.

To update your local environment

1 In the Object Explorer, select the table from which you want to apply changes to
the database.

2 Click Apply in the Object List Editor.

A dialog box appears, alerting you that you are about to connect to a local
database and asking if you want to continue.

3 Click OK.

The Apply Schema dialog box appears.
Version 7.5.3, Rev. A Siebel Tools Reference 275

Adding Custom Extensions to the Data Model

Applying the Physical Schema Extensions to the Local Database
4 Fill in the fields as shown in the following table, and then click Apply.

NOTE: When applying changes to an Oracle database, the privileged user id and
password must be the tableowner name.

Field Description

Tables Select one of the following options from the drop-down
menu:

■ All. Update the database to reflect all changes made to
the dictionary. This option forces each database object
to be compared with the data dictionary, and updated if
required.

■ Current Query. Update the database to reflect
modifications made to the tables in the current query
only.

■ Current Row. Update the database to reflect
modifications made to the table in the current row
only.

Table space Leave blank.

16K table space Leave blank.

32K table space Leave blank.

Index space Leave blank.

Table groupings file Optional.

This file is provided by the DBA and is specific to your
database.

Privileged user id Enter your database user ID, for example SADMIN.

The table owner is read from tools.cfg.
276 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Displaying Extension Data
5 To activate extensions to EIM tables, select the appropriate tables, and then click
Activate.

Your extension tables and columns are now available to use in your
configuration.

To make your new database extensions available to other developers

1 Have the developers check out the relevant projects from the server. This gives
them the schema change logically, that is, in Siebel Tools object definitions.

2 Have them apply these changes to their local databases to obtain the changes
physically.

Displaying Extension Data
Typically, data model changes are exposed in applets. You should test all of the new
extension tables or columns, checking out updated copies modified by other
developers, if necessary, against the local development database.

NOTE: When compiling the new .srf file, compile the projects.

Privileged user password Enter your database user password, for example SADMIN.

Note: When the database initialization for a mobile client
is performed, the table owner changes from SIEBEL to the
mobile user's password. In this case, use the mobile user’s
password in the password field.

ODBC data source Verify that the ODBC connection specified in the ODBC
Data Source text box is correct for your environment.

You cannot apply schema changes to any database other
than the one you are currently connected to (for example,
by specifying the ODBC name of a different database).

Field Description
Version 7.5.3, Rev. A Siebel Tools Reference 277

Adding Custom Extensions to the Data Model

Displaying Extension Data
Displaying Base Table Extension Column Data
Configuring an applet to display data from an extension column of a base table
involves creating or modifying fields in the business component on which the
applet is based, and then exposing these fields as controls or list columns.

To display data from an extension column of a base table

1 In the Object Explorer, expand the Business Component object type.

2 In the Object List Editor, select the business component to which you will add a
field.

3 In the Object Explorer, select the Field object type.

4 In the Object List Editor, select Edit > New Record.

5 In the Column property in the new Field object definition, specify the column in
the business component’s base table that the field will represent.

6 In the Object Explorer, select the Applet object type.

7 Use the Applet Designer to add a control or list column in which this field will
be displayed.

8 In the new control or list column object definition, specify the name of the new
field.
278 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Displaying Extension Data
Displaying Data in One-to-One Extension Tables
Configuring an Applet to display data from an extension column of a 1:1 extension
table involves adding a field based on a join to the business component.

To display data from a 1:1 extension table

1 In the Object Explorer, expand the Business Component object type.

2 In the Object List Editor, select the business component to which you will add a
field.

3 In the Object Explorer, select the Field object type.

4 In the Object List Editor, select Edit > New Record.

5 In the Column property, specify the column from which you wish to map this
field.

6 In the Object Explorer, select the Applet object type.

7 Use the Applet Designer to add a control or list column where this field will be
displayed.

8 In the new Control or List Column object definition, specify the name of the new
field.

Displaying Data from One-to-Many Extension Tables
Displaying data from an extension column of a 1:M extension table involves
creating a new business component and fields for the 1:M extension table, and
creating a link and business object component to provide a master-detail
relationship between the new (detail) business component and its master business
component. Create an applet to represent the new business component, and a new
view to display the link relationship.

To display data from a 1:M extension table

1 In the Object Explorer, expand the Business Component object type.

2 In the Object List Editor, select Edit > New Record.

3 In the Table property, specify the name of the 1:M extension table.
Version 7.5.3, Rev. A Siebel Tools Reference 279

Adding Custom Extensions to the Data Model

Preparing the Server Database Before Applying Schema Extensions
4 Specify all other necessary properties for a business component.

5 In the Object Explorer, select the Field object type.

6 Create a link between the existing master and the new (extension table-based)
business components.

7 Add the new business component to the appropriate business object (by adding
a business object component child of the business object), and specify the link
with the master business component.

8 Create an applet that displays the detail business component. Create and
administer a master-detail view using the new applet (the one that displays the
detail business component).

Preparing the Server Database Before Applying Schema
Extensions

Once you have tested your extensions in the local environment, complete the
following actions before applying the changes to the server database:

■ Ask all mobile users to synchronize.

■ Make sure all connected clients are disconnected from the database server.

■ Once all mobile user transactions have been merged and routed, stop all Siebel
Servers.

■ Perform a full backup of the database.

NOTE: If you are making schema changes to custom extension columns and tables
that already have data in the production environment (server database), you must
export that data before making the schema changes. After making the changes,
import the data back into the production environment.
280 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
Applying the Changes to the Server Database
Check the projects back in to the server database to update the repository schema
definition there.

At this point, the logical database schema of the server database has been updated,
but the changes have not been applied to the physical server database.

Applying Schema Changes Using Siebel Tools
Use the Apply dialog to apply schema changes to the server database.

To apply and activate the changes to the server database

1 Connect to the server.

2 In the Object Explorer, select the table from which you want to apply changes to
the database.

3 Click Apply in the Object List Editor.

A dialog box appears, alerting you that you are about to connect to a local
database and asking if you want to continue.

4 Click OK.

The Apply Schema dialog box appears.
Version 7.5.3, Rev. A Siebel Tools Reference 281

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
5 Fill in the fields as shown in the following table, and then click Apply.

Field Description

Tables Select one of the following options from the drop-down
menu:

■ All. Update the database to reflect all changes made to
the dictionary. This option forces each database object
to be compared with the data dictionary, and updated if
required.

■ Current Query. Update the database to reflect
modifications made to the tables in the current query
only.

■ Current Row. Update the database to reflect
modifications made to the table in the current row
only.

Table space Leave blank.

16K table space Leave blank.

32K table space Leave blank.

Index space Leave blank.

Table groupings file Optional.

This file is provided by the DBA and is specific to your
database.

Privileged user id Enter your database user ID, for example SADMIN.

The table owner is read from tools.cfg.

Privileged user password Enter your database user password, for example SADMIN.

When the database initialization for a mobile client is
performed, the table owner changes from SIEBEL to the
mobile user's password. In this case, use the mobile user’s
password in the password field.

ODBC data source Verify that the ODBC connection specified in the ODBC
Data Source text box is correct for your environment.

You cannot apply schema changes to any database other
than the one you are currently connected to (for example,
by specifying the ODBC name of a different database).
282 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
NOTE: If you receive an error message and cannot apply changes to the server
database, you must use the Database Server Configuration Utility. See “Applying
Schema Changes Using the Configuration Utility” on page 283.

6 Restart the Siebel Server.

Your extension tables and columns are now available to use in your
configuration.

7 Click Activate in the Object List Editor. This increases the custom database
schema version and thus prepares for the mobile client upgrade.

Once this process has been completed, any extensions included in the tables you
selected will now physically exist on your server database.

Applying Schema Changes Using the Configuration Utility
Complete the steps in this section only if you are unable to apply schema changes
to the server database as discussed in the previous section.

NOTE: Stop the Siebel Server before running the Database Server Configuration
Utility. Otherwise, the task can fail due to a locking issue.

The Configuration Utility performs the following sequence of steps:

■ Exports logical schema definition from the specified repository to the .ddl file.

■ Synchronizes the physical schema of the application database with this logical
schema definition.

■ Propagates new repository schema changes to mobile users (if Siebel Anywhere
is being used).
Version 7.5.3, Rev. A Siebel Tools Reference 283

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
To migrate the schema under Windows

1 If you are not using Siebel Anywhere, stop all processes running on all Siebel
Application Servers, including all Siebel Remote Processes, once all mobile user
transactions have been merged and routed.

If you are using Siebel Anywhere, stop all Siebel Application Server processes
except the Transaction Preprocessor and Transaction Routers.

2 Launch the Database Server Configuration Utility by choosing
Start > Programs > Siebel Enterprise Server version_number > Configure DB
Server.

The Gateway Server Address screen appears.

3 Specify your Gateway Server Address and Enterprise Server Name and click
Next.

The Installation and Configuration Parameters: Siebel Server Directory dialog
box appears.

4 In the Siebel Server Directory dialog box, either accept the default value or
choose the Browse button to select a directory, and then click Next.

The Siebel Database Server Directory dialog box appears.

5 Either accept the default value or choose the Browse button to select a directory,
and then click Next.

The RDBMS Platform dialog box appears.

6 Choose your db platform and click Next.

NOTE: The default is DB2 UDB.

The Siebel Database Operation dialog box appears.

7 Choose Run Database Utilities and click Next.

The Database Utility Selection dialog box appears.

8 Choose Synchronize Schema Definition and click Next.
284 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
9 The next dialog boxes are described as follows:

■ Database Encoding: enter whether or not the database is Unicode or Non-
Unicode.

■ ODBC Datasource Name dialog box

■ Database User Name dialog box: enter user name and password

■ Database Table Owner dialog box: enter table owner and password

■ Index Table Space Name dialog box:

❏ Index 4K tablespace (DB2)

❏ 16K/32K tableSpace (DB2)

❏ Index tablespace (Oracle)

10 Click Next on these dialog boxes.

The Repository Name dialog box appears.

11 Enter the repository name you wish to synchronize.

NOTE: The default is Siebel Repository.

12 Click Next.

The Configuration Parameter Review dialog box appears. It lists all the
parameters you have chosen.

NOTE: Passwords are in asterisks.

13 Click Finish.

The runnow dialog box asks you to verify your choices.
Version 7.5.3, Rev. A Siebel Tools Reference 285

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
14 You can either run the ddlsync process now or later. If you choose OK, the
Upgrade Wizard is launched. If you choose Cancel, you can run the process later
by typing siebupg.exe/m master_ddlsync.ucf from the siebsrvr/bin directory.

If you choose OK, the following Siebel Upgrade Wizard dialog box appears.

15 If you choose OK in the Siebel Upgrade Wizard dialog box, the ddlsync process
starts. Its displays your progress by placing a check after each step is completed.
If there are any errors during the process, the Upgrade Wizard stops. You can go
to the siebsrvr/log and look at the log files there. Fix the problem and then
relaunch the Upgrade Wizard through siebupg.exe/m master_ddlsync.ucf.

NOTE: You must verify that there is no driver_ddlsync directory under siebsrvr/
upgrade before you launch the Database Server Configuration Utility. This
directory keeps a record of where you are in the ddlsync process for restarting.
If you have already run ddlsync, you need to delete this directory before running
ddlsync again, or you will receive an error message.

To migrate the schema under UNIX

1 Source environment variables from $SIEBEL_ROOT.

SIEBEL_ROOT should be the path of your Siebel installation directory.

LANGUAGE should be set to the language in which the Configuration Wizard
prompts appear; for example, enu for U.S. English.

If either of these values is incorrect or empty, reset them using one of the
following commands, as appropriate to the shell you use:

setenv LANGUAGE New Value

or

export LANGUAGE|SIEBEL_ROOT=New Value

2 Depending on your shell, enter:

Korn shell
286 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
export SIEBEL_LOG_EVENTS trace3

C shell

setenv SIEBEL_LOG_EVENTS trace3

NOTE: Setting trace to 3, creates an appropriate level of detail in the log file for
this activity.

3 Navigate to $SIEBEL_ROOT /bin and enter:

dbsrvr_config.ksh

This launches the Database Server Configuration Wizard.

4 Review the values of the following environment variables and confirm whether
or not the settings are correct by entering either Y or N.

NOTE: If either the SIEBEL_ROOT or LANGUAGE value is not set or is incorrect, you
must correct them before proceeding.

5 In the Siebel Server Directory dialog box, either accept the default value or
choose the Browse button to select a directory, and then click Next.

The Siebel Database Server Directory dialog box appears.

6 Either accept the default value or choose the Browse button to select a directory,
and then click Next.

The Siebel Database Operation screen appears.

7 Choose Run Database Utilities (5).

The Database Utility Selection screen appears.

8 Choose Synchronize Schema Definition.

The RDBMS Platform screen appears.
Version 7.5.3, Rev. A Siebel Tools Reference 287

Adding Custom Extensions to the Data Model

Applying the Changes to the Server Database
9 Choose your db platform.

NOTE: The default is DB2 UDB.

10 The next screens are described as follows:

■ Database Encoding: enter whether or not the database is Unicode or Non-
Unicode.

■ ODBC Datasource Name

■ Database User Name: enter user name and password

■ Database Table Owner: enter table owner and password

■ Index Table Space Name:

❏ Index 4K tablespace (DB2)

❏ 16K/32K tablespace (DB2)

❏ Index tablespace (Oracle)

11 Press Enter on these screens (leave the parameters blank).

The Repository Name screen appears.

12 Enter the repository name you wish to synchronize, or press Enter to use the
default (Siebel Repository).

The Configuration Parameter Review screen appears. It lists all the parameters
you have chosen.

NOTE: Passwords are in asterisks.

13 You can either run the ddlsync process now or later. If you enter Y, the Upgrade
Wizard is launched. If you enter N, you can run the process later by typing
siebupg.exe/m master_ddlsync.ucf from the siebsrvr/bin directory.
288 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Applying Server Database Changes to Other Local Databases
14 If you enter Y, the ddlsync process starts. It displays your progress by placing a
check after each step is completed. If there are any errors during the process, the
Upgrade Wizard stops. You can go to the siebsrvr/log and look at the log files
there. Fix the problem and then relaunch the Upgrade Wizard through
siebupg.exe/m master_ddlsync.ucf.

NOTE: You must verify that there is no driver_ddlsync directory under siebsrvr/
upgrade before you launch the Database Server Configuration Utility. This
directory keeps a record of where you are in the ddlsync process for restarting.
If you have already run ddlsync, you need to delete this directory before running
ddlsync again, or you will receive an error message.

Applying Server Database Changes to Other Local
Databases

At this point, your extensions have been applied to your server database, and exist
on the physical database. Next, you must propagate the schema changes to mobile
users.

To propagate schema changes to mobile users

1 Have all mobile users perform a full synchronization.

2 Activate the extensions. This procedure differs depending on whether or not you
are using Siebel Anywhere.

Using Siebel Anywhere. Perform the following steps:

a Create an Upgrade Kit on your Server database that includes the Siebel
Database Schema as the upgrade kit component. Refer to Siebel Anywhere
Guide for information on creating upgrade kits.

b Click Activate on the Upgrade Kits View to make the upgrade kit available.

Without Siebel Anywhere. Perform the following steps:

c Log on to Siebel Tools while connected to your server database.
Version 7.5.3, Rev. A Siebel Tools Reference 289

Adding Custom Extensions to the Data Model

Populating Extension Tables and Columns
d Click Activate in the Table List view. Executing this process will increase the
database schema version number, and therefore require a schema upgrade
for mobile users.

3 Run gennewdb to regenerate the template local database.

The Server Administration screen in the Siebel client has a view where this job
can be run. You can also use the srvrmgr.exe utility through a DOS prompt. See
Siebel Remote and Replication Manager Administration Guide.

4 Reextract mobile clients. Mobile clients will need to reinitialize their local
databases with the extracted data. This procedure differs depending on whether
or not you are using Siebel Anywhere.

Using Siebel Anywhere. In the Upgrade Configurations View, click Distribute. This
action will make the new custom schema version available for a schema
upgrade. The Required flag is set manually. See Siebel Anywhere Guide for
detailed information on Siebel Anywhere Configurations screen.

Without Siebel Anywhere. Manually reextract and reinitialize all mobile user
databases.

Populating Extension Tables and Columns
You can load initial data into your extension tables and columns by using a view
where the new fields are displayed in an applet. If you have a large amount of data
to load, or if the user interface does not permit data entry, you may be able to use
EIM or client-side import to load data into the extension table or column.

Making Extension Tables Available for Population by EIM
To understand how to modify your data schema to use EIM, see Chapter 5, “Data
Objects Layer.” Work with your database administrator to populate the interface
table with the extension column data and matching user keys. Run EIM to import
the data from the interface table into the target tables.

To make an extension table available for population by EIM

1 Lock the EIM Interface Table project.
290 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Populating Extension Tables and Columns
2 Navigate to the EIM Interface Table object, create a new record, and then
complete its properties, for example Name and Target Table Name.

3 Click Activate in the EIM Tables list.

The temporary columns required to populate the extension table are created.

4 Navigate to the Table object, and then select the EIM interface table created in
Step 2.

5 Click Apply in the Tables list, complete the fields in the Apply Schema dialog as
shown in “To update your local environment” on page 275.

The generated temporary columns are applied to the database.

6 Click Activate in the Tables list.

The extension table is available to be populated by EIM.

Configuring Client-Side Import
You can use client-side import to populate fields with data. Client-side import uses
the applet-level menu import functionality in the Siebel Web Client. It is configured
using the Import Object object in Siebel Tools, which sets business component fields
to be populated. Client-side import is supported for parent business components
only. Applets configured for client-side import must allow records to be inserted;
that is, the No Insert property of the applet must be set to False.

For an example of how client-side import is configured, see the Contact business
component in the standard Siebel repository. The contact business component is
configured as an Import Object with fields defined as Import Field child objects.

To enable client-side import for a business component

1 Lock the project to which the business component belongs.

2 In the Object Explorer, select Import Object.

3 Add a new record with the business component and its project as properties.

4 With the new record selected, expand Import Object, and then select the Import
Field child object.
Version 7.5.3, Rev. A Siebel Tools Reference 291

Adding Custom Extensions to the Data Model

Advanced Database Extensibility
5 Add new records for each business component field you wish to be populated.

NOTE: You can also add import fields to already existing import objects, such as
Contact.

6 Compile the .srf, selecting the locked project.

The new fields will be displayed in the Select a Siebel Field dialog and can be
mapped to fields in the External Data Source Field dialog when importing data.

Advanced Database Extensibility
The Advanced Database Extensibility option allows you to create new tables and
enable them for docking and EIM processes. You can add the following types of
tables to the Siebel Data Model:

■ Stand-Alone Table: A new table that is not related to any existing table in the
Siebel Data Model.

■ 1:1 Extensions to Existing Tables: A new table that bears a a 1:1 relationship to an
existing Base Table in the Siebel Data Model.

■ M:1 Extensions to Existing Tables: A new table that bears a Many: 1 relationship
to an existing Base Table in the Siebel Data Model. This table closely resembles
a _XM table in the current Siebel Data Model.

■ Intersection Tables between Existing Tables: An intersection table (Many: Many)
between two existing tables.

The Table Wizard allows you to create the types of tables described above.

NOTE: Changes made using the Advanced Database Extensibility module are
upgradable. Before undertaking database extensions and modifications using
Advance Database Extensibility module, make sure that all other extensibility
options have been considered.
292 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Creating New Tables Using the Table Wizard
The EIM Mapping wizard allows you to create or associate the new table to the
appropriate interface tables for using EIM and to import data into custom tables
using EIM. The Docking Wizard allows you to associate the new table with an
existing or new Dock object in order to support the synchronization of the contents
of custom tables to remote users.

Creating New Tables Using the Table Wizard
The Table Wizard allows you to create new stand-alone tables, extension tables, and
intersection tables. It provides picklists with appropriate choices for each type of
table and makes sure that the naming conventions are observed. You can only
create tables of types: Data (Public), Data (Intersection), and Data (Extension). You
must explicitly grant permissions on any table that you create.

To use the Table Wizard

1 Choose File > New Objects.

The New Objects dialog box appears.
Version 7.5.3, Rev. A Siebel Tools Reference 293

Adding Custom Extensions to the Data Model

Creating New Tables Using the Table Wizard
2 Select the Table Wizard icon.

The General dialog box appears.

3 In the “Enter a name for the new Table” field, it is noted that you must enter a
new table that starts with “CX_” or it will automatically add a prefix.

NOTE: The Table Name must be upper case. Mixed case or lower case names may
lead to problems when applying the changes on certain databases.
If you choose 1:1 extension tables, “_X” is suffixed to the table names.

4 In the “Choose a Project in which you wish to create the Table” field, choose a
project.

NOTE: The Project list is restricted only to those projects that have been locked
by the developer. All picklists are restricted to objects that belong to projects that
are locked.
294 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Creating New Tables Using the Table Wizard
5 In the “Select the type of the Table” field, choose from the options: A stand-alone
Table, 1:1 Extension Table for an existing Table, M:1 Extension Table for an
existing Table, An intersection Table between two existing Tables.

6 Click Next.

NOTE: The next dialog box displayed depends on the type of table that is being
added.

a If you choose Stand-alone Tables, the Parent Specification Table dialog box is
not displayed and you are taken to the Finish dialog box, stating that the new
table can now be created.

b For 1:1 Extension Tables and M:1 Tables, the Parent Specification Table dialog
box allows you to select the parent table. See the following figure:

c For 1:1 Extension Tables, the picklist of available parent tables is restricted to
tables of type Data (Public).
Version 7.5.3, Rev. A Siebel Tools Reference 295

Adding Custom Extensions to the Data Model

Creating New Tables Using the Table Wizard
d For M:1 Extension Tables, the picklist of available parent tables is restricted
to tables of type Data (Public).

NOTE: Users can add new columns to S_CONTACT, S_ORG_EXT, S_POSTN, or
S_USER, for example (and this is generally preferable to adding new columns
to S_PARTY); they cannot create new 1:1 relationships to them.

e For Intersection Tables, the dialog box allows you to add both parent tables
and names of foreign key columns to the parent tables. See the following
figure.

■ The picklist for the “Select the first Parent Table” field is restricted to all
tables of type Data (Public).

■ The picklist for the “Select the second Parent Table” field is restricted to
tables of type Data (Public) with the following added restrictions, based on
the choice of the first parent table.

■ The names of the Foreign Key columns (“Enter a Foreign Key Column name
for the first Parent Table” field and “Enter a Foreign Key Column name for
the second Parent Table” field) are verified to make sure that they are unique
(that is, do not conflict with each other or the system column names).
296 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Creating New Tables Using the Table Wizard
7 Click Next on the Parent Table Specification dialog box.

The Finish dialog box appears, which allows you to review the changes made
before the objects are actually created. The Finish dialog box verifies that “The
new Table can now be created” and asks you to make sure that the information
about the Name, Project, Type of Table, and Parent Table 1 is correct.

8 Click Finish to generate the table.

You then see the new table listed (User Name CX_X) in the Object List Editor
(the Type is Extension, the Base Table is CX).

Table Wizard Actions
The following columns are generated by the Table Wizard.

■ For all types of tables, the Table Wizard creates seven system columns and the
P1 index on ROW_ID.

■ For 1:1 Extension Tables, the Table Wizard sets Type of Table =’Extension’ and
creates the following:

■ PAR_ROW_ID column

❏ User Key Sequence=1

❏ Foreign Key Table=<Base Table Name>

■ U1 index comprised of PAR_ROW_ID(1) and CONFLICT_ID(2)

❏ Unique/Cluster=TRUE

❏ Type=User Key

❏ User Primary Key=TRUE

■ For M:1 Extension Tables, the Table Wizard sets Type of Table=Data (Public)
and creates the following:

■ PAR_ROW_ID, TYPE, NAME columns

■ U1 index comprised of PAR_ROW_ID(1), TYPE (2), NAME (3), and
CONFLICT_ID (4)

❏ Unique/Cluster=TRUE
Version 7.5.3, Rev. A Siebel Tools Reference 297

Adding Custom Extensions to the Data Model

Creating New Tables Using the Table Wizard
❏ Type=User Key

❏ User Primary Key=TRUE

■ M1 index on TYPE (1) and NAME (2)

❏ Unique/Cluster=FALSE

❏ Type=System

■ P1 index on ROWID

■ For intersection tables, the Table Wizard sets the type of the table to
Data(Intersection) and creates the following:

■ TYPE column for added user functionality

■ Two Foreign Key columns with names specified in the Table Wizard

User Key Sequence=1 and 2

Foreign Key Table=<Parent Table>

■ U1 index on the two Foreign Keys (1, 2), TYPE (3), and CONFLICT_ID (4)

Unique/Cluster=TRUE

Type=User Key

User Primary Key=TRUE

■ F1 index on the Foreign Key to the second parent table

NOTE: When a custom extension table is added using the Table Wizard, a U1 index
is added to the table. However, the User Key column is blank and does not allow
the definition of user keys. This is because there is no need to create user keys: they
are only needed to resolve foreign keys while using EIM, and EIM does not work
with foreign keys to custom tables.
298 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
EIM Table Mapping Wizard
The EIM Table Mapping Wizard is accessed by right-clicking on a table entry in the
Table list applet. The EIM menu item is only enabled with the non-standalone
customer table. You can select an interface table and specify a prefix for the
interface table columns that are generated by the wizard and that create a complete
hierarchy of EIM Table Mapping objects needed to import and export data to and
from the selected table. See Figure 74 on page 300.

The EIM Table Mapping Wizard does not map foreign key columns if they point to
a parent table column that does not have user key attributes. Because you cannot
add user key attributes, this means that the EIM Table Mapping Wizard does not
work with either standalone tables or foreign keys to custom tables.

In order to invoke the EIM Table Mapping Wizard for those Siebel base tables that
do not have the foreign key as part of the user key, you need to create a temporary
column with the following properties:

By creating this temporary column, when you launch the EIM Mapping Wizard, it
will list standard EIM interface tables that are already mapped to this table as the
target or destination tables. The wizard will also list EIM tables that are mapped to
tables to which this table has a foreign key. However, the foreign key must be part
of the “Traditional U1 Index” user key of this table. After the EIM Mapping Wizard
finishes, you should delete this temporary column.

NOTE: The EIM Table Mapping Wizard is only available to tables of type Data
(Public). Data (Intersection), Data (Extension), and Data (Extension-Siebel).

Field Value

Inactive Y

User Key Sequence <> NULL (for example, set it to 0)

FK (Foreign Key) Set (FK) Foreign Key table as itself
Version 7.5.3, Rev. A Siebel Tools Reference 299

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
The EIM Table Mapping Wizard is only available to tables of type Data (Public),
Data (Intersection), Data (Extension), Data (Extension-Siebel).

To map a new table to an EIM interface table using the EIM Table Mapping Wizard

1 Lock the project.

2 Select Table object type in the Object Explorer.

Figure 74. EIM Mapping
300 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
3 Select an entry in the Object List Editor.

Choose from the list a base table that will be mapped to an EIM Table. It will be
the primary table into which data from the existing Interface table will be
imported.

4 Right-click and select EIM Mapping Table from the menu.

The Interface Mapping dialog box is displayed with the Base Table name field
populated with the selection you made in the Object List Editor.

5 In the Edit the Column name prefix field, enter a distinguishing prefix.

If a prefix does not already exist for the selected EIM table, the new prefix will
be added to specified EIM Interface Table Columns related to the target table. If
a prefix already exists, the existing prefix will be used.
Version 7.5.3, Rev. A Siebel Tools Reference 301

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
6 In the Select an interface table field, select from the picklist.

The picklist for selecting the EIM Interface Table is constrained to show interface
tables that are mapped to tables to which your new custom table has a foreign
key relationship.

The list of candidate interface tables is sorted by EIM table name. Interface
tables with EXIST=Y means that these EIM tables already have the base table
mapped. If you extend existing Siebel tables, consider these tables the ideal
candidates for EIM mapping.

7 Click Next on the Interface Table Mapping dialog box.

The Summary dialog box appears with a summary of the choices you have
made.

8 Click Finish on the Summary dialog box to accept the choices you made and
generate the EIM Interface Table object.

Based on this information, the wizard creates new EIM table mapping objects and
adds several child objects to an existing EIM interface table object:

■ EIM Interface Table Column

■ EIM Table Mapping

■ Attribute Mapping

■ EIM Explicit Primary Mapping

■ Foreign Key Mapping

❏ Foreign Key Mapping Column

EIM Object Specifications
The specifications for EIM objects are as follows:
302 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ EIM Interface Table (Table 14)

■ EIM Interface Table Columns (Table 15)

Table 14. EIM Interface Table Object Specifications

Specification Value

Target Table Selected by the developer

EIM Delete Proc Column T_DELETED_ROW_ID

EIM Export Proc Column T_EXPORTED_ROW_ID

EIM Merge Proc Column T_MERGED_ROW_ID

Table 15. System Columns on the EIM Interface Table

Name Physical Type Length Type
EIM Processing
Column

CONFLICT_ID Varchar 15 System FALSE

CREATED Date Time 7 System FALSE

CREATED_BY Varchar 15 System FALSE

IF_ROW_BATCH_NUM Number 22 System FALSE

IF_ROW_MERGE_ID Varchar 15 System FALSE

IF_ROW_STAT Varchar 30 System FALSE

IF_ROW_STAT_NUM Number 22 System FALSE

LAST_UPD Date Time 7 System FALSE

LAST_UPD_BY Varchar 15 System FALSE

MODIFICATION_NUM Number 22 System FALSE

ROW_ID Varchar 15 System FALSE
Version 7.5.3, Rev. A Siebel Tools Reference 303

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ Generic EIM Interface Table Columns for EIM processing

For each EIM Table Interface the following three columns are created to facilitate
processing. Customers cannot change their values, which are shown in Table 16.

Table 16. Generic EIM Interface Table Columns for EIM Processing

Name
Physical
Type Length Type User Name

EIM
Processing
Column

T_DELETED_ROW_ID Varchar 15 Data (Private) Deleted ROW_ID from
base table

TRUE

T_EXPORTED_ROW_ID Varchar 15 Data (Private) Exported ROW_ID from
target table

TRUE

T_MERGED_ROW_ID Varchar 15 Data (Private) Merged into ROW_ID from
target table

TRUE
304 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ EIM Interface Table Columns for processing a mapping to a particular table

There are four of these columns for each EIM Table Mapping object, with the
following properties (Table 17):

For example, if the target table selected by the user is CX_SEC_LEV, an EIM Table
Mapping object is created. The following four column objects are generated,
with the corresponding default properties (Table 18):

Table 17. EIM Interface Table Columns for Processing a Particular Mapping

Column Value

Name Derived from the name of the target table:

“T_”+ [EIM Table Mapping Name without the “CX_”]+
“_”+ [Process-specific suffix]

Physical Type Depends on the process to which the column is related

Length Depends on the process to which the column is related

Type Depends on the process to which the column is related

User Name Name of the EIM Table Mapping object for which the
column is being created

EIM Processing Column TRUE

Table 18. EIM Interface Table Columns for Processing a Mapping to CX_SEC_LEV

Name Physical Type Length Type User Name
EIM Processing
Column

T_SEC_LEV_EXS Character 1 IFMGR: Exists CX_SEC_LEV TRUE

T_SEC_LEV_RID Varchar 15 IFMGR: ROW_ID CX_SEC_LEV TRUE

T_SEC_LEV_STA Number 22 IFMGR: Status CX_SEC_LEV TRUE

T_SEC_LEV_UNQ Character 1 IFMGR: Unique CX_SEC_LEV TRUE
Version 7.5.3, Rev. A Siebel Tools Reference 305

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ EIM Interface Table Columns for foreign key processing

A column is created for each foreign key on the relevant EIM Table Mapping
object (that is, the target table). These columns have the following properties
(Table 19):

For example, if CX_SEC_LEV contains foreign key columns called OPTY_ID and
ACCNT_ID to the S_OPTY and S_ORG_EXT tables, respectively, the following
EIM Table Columns are generated (Table 20):

Table 19. EIM Interface Table Columns for Foreign Key Processing

Column Value

Name Derived from the target table name and the corresponding foreign
key column on the target table in the following format:

[Target Table name (with the “CX” prefix replaced by
“T”)]+[Target table foreign key column]

Type Set to IFMGR: Fkey

Physical Type Physical type of foreign key column on Target Table (typically
Varchar)

Length Length of foreign key column on Target Table (typically 15)

User Name [Target Table (or EIM Table Mapping) name]+”.”+[Foreign key
column name]

Table 20. EIM Interface Table Columns for Processing Foreign Keys in CX_SEC_LEV

Name Physical Type Length Type User Name

T_SEC_LEV_OPTY_ID Varchar 15 IFMGR: Fkey CX_SEC_LEV.OPTY_ID

T_SEC_LEV_ACCNT_ID Varchar 15 IFMGR: Fkey CX_SEC_LEV.ACCNT_ID
306 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ EIM Interface Table Columns for foreign keys

A separate foreign key column will be created for each U1 user key column on
the foreign key tables. The columns have the following properties (Table 21):

Continuing with the CX_SEC_LEV example (Table 22):

NOTE: Depending on the base column type, corresponding EIM columns are
generated accordingly.

Table 21. EIM Interface Table Columns for Foreign Keys

Column Value

Name [First four letters of foreign key table name without the “S_” prefix,
trimmed to remove any trailing “_”characters] + “_”+[foreign key
column name on target table]

Physical Type Physical type of the user key column on the target table (typically
Varchar)

Length Length of these columns will correspond to the length of user key
columns upon which they are based (typically 15)

Type Data (Public)

Table 22. EIM Interface Table Columns for CX_SEC_LEV Foreign Keys

Name Physical Type Type

OPTY_BU_ID Varchar Data (Public)

OPTY_NAME Varchar Data (Public)

OPTY_PR_DEPT_OU_ID Varchar Data (Public)

ORG_BU_ID Varchar Data (Public)

ORG_NAME Varchar Data (Public)

ORG_LOC Varchar Data (Public)
Version 7.5.3, Rev. A Siebel Tools Reference 307

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ EIM Interface Table Column for each attribute on the target table

Attribute columns on the target table are those of type Data (Public) that have a
null Foreign Key Table property. These EIM interface table columns will have the
following properties (Table 23):

For example, if you enter a prefix of SECL and have the following attribute
columns in CX_SEC_LEV: NAME (Varchar 100), DESC_TEXT (Varchar 250), and
AUTO_UPDATE (Char 1), the following EIM interface table columns are
generated (Table 24):

Table 23. EIM Interface Table Columns for Each Attribute on the Target Table

Column Value

Name [Prefix entered—for example, CON or ACCNT]+”_”+[name of
the corresponding column in the target table]

Physical Type Data (Public)

Length Length of corresponding column in the target table

User Name Name of corresponding column in the target table

Table 24. EIM Interface Table Columns for Each Attribute on CX_SEC_LEV

Name Physical Type Length Type User Name

SECL_NAME Varchar 100 Data (Public) Security Level
Name

SECL_DESC_TEXT Varchar 250 Data (Public) Security Level
Description

SECL_AUTO_UPDATE Char 1 Data (Public) Auto Update
Flag
308 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ EIM Table Mapping objects based on the target table

The name and destination columns will be set to the name of the target table.
The processing column properties will correspond to those that have been
automatically generated. For example (Table 25):

■ Attribute Mapping objects for each EIM interface column generated

These should have the following property values (Table 26):

Table 25. EIM Table Mapping Objects Based on the Target Table

Column Value

Name CX_SEC_LEV

Destination Table CS_SEC_LEV

EIM Exists Proc Column T_SEC_LEV_EXS

EIM Row Id Proc Column T_SEC_LEV_RID

EIM Status Proc Column T_SEC_LEV_STA

EIM Unique Proc Column T_SEC_LEV_UNQ

Table 26. Attribute Mapping Objects for Each EIM Interface Column

Object Value

Name Attribute column on target table

Interface Table Data Column Name of corresponding EIM interface table column
generated (Table 24 on page 308)

Base Table Attribute Column Name of attribute column on target table
Version 7.5.3, Rev. A Siebel Tools Reference 309

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ Foreign Key Mapping for each foreign key column on the Target Table

A separate Foreign Key Mapping object is created for each foreign key mapping
column on the target table. The following properties are set for each (Table 27):

Continuing with the CX_SEC_LEV example (Table 28):

Table 27. Foreign Key Mapping for Each Foreign Key Column on a Target Table

Object Value

Name Name of the user key column

Foreign Key Column Name of the user key column

User Key Name of the U1 user key of the foreign key table

EIM Foreign Key Proc Column Corresponding EIM interface table column for foreign
key processing:

“T_”+[Target table name without “CX_” prefix]
+”_”+[user key column name]

Table 28. Foreign Key Mapping for Each Foreign Key Column on CX_SEC_LEV

Name
Foreign Key
Column User Key

EIM Foreign Key Proc
Column

OPTY_ID OPTY_ID S_OPTY_U1 T_SEC_LEV_OPTY_ID

ACCNT_ID ACCNT_ID S_ORG_EXT_U1 T_SEC_LEV_ACCNT_ID
310 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

EIM Table Mapping Wizard
■ Foreign Key Mapping Columns for each Foreign Key Mapping object

A separate Foreign Key Mapping Column object is created for each user key
column in the user key specified for the parent Foreign Key Mapping object
(Table 27 on page 310). The following properties are set for each foreign key
mapping column (Table 29):

Continuing with the CX_SEC_LEV example (Table 30):

Table 29. Foreign Key Mapping Columns for Each Foreign Key Mapping Object

Column Value

Name EIM interface table column to which the user key column
on the target table should be mapped.

This EIM interface table column is generated according to
the specifications in Table 21 on page 307.

Interface Data Column EIM interface table column to which the user key column
on the target table should be mapped.

This EIM interface table column is generated according to
the specifications in Table 21 on page 307.

User Key Attribute Name of the corresponding user key column that belongs
to the user key specified in Table 27 on page 310.

Table 30. Foreign Key Mapping Columns for CX_SEC_LEV

Name Interface Data Column User Key Attribute

OPTY_BU_ID OPTY_BU_ID BU_ID

OPTY_NAME OPTY_NAME NAME

OPTY_PR_DEPT_OU_ID OPTY_PR_DEPT_OU_ID PR_DEPT_OU_ID

ORG_BU_ID ORG_BU_ID BU_ID

ORG_NAME ORG_NAME NAME

ORG_LOC ORG_LOC LOC
Version 7.5.3, Rev. A Siebel Tools Reference 311

Adding Custom Extensions to the Data Model

Dock Objects
Dock Objects
Siebel applications can selectively replicate server data into the local database, and
thus support mobile computing by allowing field personnel to share information
across the enterprise, including both mobile and connected users. This is
accomplished using Siebel Remote.

Dock objects are the foundation of Siebel Remote. Dock objects are collections of
related tables. Each Dock Object object in Siebel Tools has one primary table and
several other related tables as Dock Object Table child objects.

Different data is replicated to different local databases, depending on each local
database owner’s employee identity, position, organization, and visibility to data
from different dock objects, and on the relationship between the dock objects.
These rules are known collectively as routing rules or Dock Object Visibility Rule
child objects.

When the data is updated on the server, the local database is synchronized when
the mobile user connects to the Siebel Server and performs the synchronization, but
only the data that should be replicated into the local database is synchronized.
During the synchronization, any updates in the local database are also uploaded to
the server.

For more information on routing rules and synchronization, see Siebel Remote and
Replication Manager Administration Guide.

Dock Object Types
There are three types of dock objects:

■ Private. Private dock objects are used exclusively for routing of non-configurable
data. This setting makes sure that the rows in these dock objects are never
routed to any mobile clients. All records from tables that are part of a private
dock object are uploaded to the server during synchronization. None of these
records are downloaded to remote users.
312 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
■ Enterprise. Enterprise dock objects involves a distribution of records without
restriction. All records from tables that are part of an Enterprise dock object are
uploaded to the server during synchronization. Most of these tables should only
be updated by an administrator and are typically downloaded but not uploaded
by mobile users. To minimize synchronization time, Enterprise dock objects
should only be used with tables that contain small volumes of data or are semi-
static in nature (that is, the contents change infrequently).

■ Limited. Limited dock objects contain numerous individual rules for determining
the records that should be downloaded to particular users; these users should
only get those records with which they have some direct or indirect involvement.

There are nine types of visibility rules used for Limited dock objects:

■ Employee. Evaluates record according to whether it has a foreign key to the
mobile user’s Employee record.

■ Employee Manager. Evaluates record according to whether it has a foreign key
to the Employee record of someone who directly reports to the mobile user.

■ Position. Evaluates record according to whether it has a foreign key to the
mobile user’s primary Position record.

■ Position Manager. Evaluates record according to whether it has a foreign key
to the Position record of someone who directly reports to the mobile user.

■ Organization. Evaluates record according to whether it is associated with the
same business unit as the mobile user.

■ Check Dock Object. Evaluates record according to whether it is related to
another record that the user receives.

■ Calendar. Applies only to calendar appointment records. Evaluates record
according to whether the mobile user has access to the calendar of the
record’s owner.

■ Category. Evaluates record according to whether it is in a category visible to
the user.

■ SQL Rule. Used to handle special exceptions through custom SQL.

For more information, see “Dock Object Visibility Rules” on page 316.
Version 7.5.3, Rev. A Siebel Tools Reference 313

Adding Custom Extensions to the Data Model

Dock Objects
Dock Object Tables
The Dock Object Table object type is a child object type of Dock Object, and is used
to specify the tables whose records are actually transferred in conjunction with the
Dock Object. The Opportunity dock object and its child dock object tables are
shown in Figure 75.

All of the tables identified in dock object tables for a given dock object are related,
through foreign keys in the data model, to one driving table (also represented by a
Dock Object Table object definition). The driving table is identified in the Primary
Table property in the Dock Object object type.

Figure 75. Dock Object and Dock Object Tables
314 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
For example, the Opportunity dock object shown in Figure 75 on page 314 is based
on the primary table S_OPTY, but it also includes other dock object tables such as
S_NOTE_OPTY (notes for the opportunity) and S_OPTY_REL (relationships
between opportunities). Also included are the extension tables for S_OPTY.

A dock object is therefore a set of logical records (opportunities in this case), where
each such logical record is itself a collection of one or more physical database
records spread across multiple tables.
Version 7.5.3, Rev. A Siebel Tools Reference 315

Adding Custom Extensions to the Data Model

Dock Objects
Dock Object Visibility Rules
To determine which records in a dock object to download to each mobile user, the
Siebel application evaluates the dock object visibility rules for that dock object.
Dock Object Visibility Rule is a child object type of Dock Object, as illustrated for
Opportunity in Figure 76.

Each visibility rule has a Comment property that explains specifically what the rule
checks. For example, the dock object visibility rules on the Opportunity dock object
include the following: “You are on the sales team of the Opportunity,” “You are the
manager of the primary sales rep on the Opportunity’s sales team,” and so on. In
addition, each dock object visibility rule has a Visibility Strength property and a
Sequence property.

Figure 76. Dock Object and Dock Object Visibility Rules
316 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
Siebel applications determine which database records to propagate to each mobile
user (for dock objects that have limited visibility) by evaluating the visibility
strength of the user for a dock object, and comparing this with the visibility
strengths of the tables it contains.

The user’s visibility strength for a dock object is determined from the child dock
object visibility rules. For each dock object record, and for each mobile user, the
Siebel application sequentially evaluates the rules in order of descending visibility
strength and ascending sequence until one of them “passes” (that is, evaluates to
TRUE). As soon as one of the rules passes, the Siebel application stops this
evaluation process, and gives the current dock object record to the current mobile
user.

When a dock object visibility rule passes, the mobile user gets the parent dock
object record with a visibility strength value obtained from the corresponding
property in the dock object visibility rule that caused him or her to get the record.
If none of the dock object visibility rules passes for a given dock object record and
a given mobile user, then that user will not receive that particular record.

For example, consider two different dock object visibility rules in the Opportunity
dock object:

■ The first visibility rule (“You are on the sales team of the Opportunity”) has a
visibility strength of 100.

■ The sixth rule (“Opportunity for an Account you have full visibility on”) has a
visibility strength of 50.

If users are on the sales team for a particular opportunity, they get that opportunity
record with a visibility strength of 100. However, if they are not on the sales team
for that opportunity—and if the next four visibility rules also fail—they still get the
opportunity record with a visibility strength of 50 if they have full visibility to the
account for that opportunity.
Version 7.5.3, Rev. A Siebel Tools Reference 317

Adding Custom Extensions to the Data Model

Dock Objects
Visibility strength values are integers between 0 and 100. A visibility strength of 100
denotes full visibility, while a visibility strength of 0 denotes no visibility. Any value
between 1 and 100 (typically 25 or 50) implies partial visibility.

NOTE: The integer range for a visibility strength value is actually 0–254, but a value
of 100 is, by convention, considered to mean full visibility. If your configuration
does not require the use of values higher than 100, use values in the 0–100 range
rather than 0–254.

The user’s visibility strength (obtained from the successful dock object visibility
rule) is compared with each dock object table’s visibility strength, as specified in its
Visibility Strength property. For users to receive the records from a particular dock
object table, their visibility strength must be greater than or equal to the visibility
strength specified for that table.

For example, suppose that a particular mobile user receives a particular logical
record from the Opportunity dock object with a visibility strength of 50. The Siebel
application will then propagate to the user’s local database all physical records that
are related to the given opportunity on any of the dock object tables that have a
visibility strength less than or equal to 50 in the Opportunity dock object.

For more information on routing (visibility) rules and their implementation, see the
chapter about Siebel Remote administration in Siebel Remote and Replication
Manager Administration Guide.

Finding the Dock Object for a Business Component
Dock objects are provided for standard Siebel applications. Review the standard
dock objects and associated visibility rules thoroughly to see if they satisfy a desired
visibility change.
318 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
Some important business components and their associated dock objects are shown
in Table 31.

NOTE: Although the Employee and Position records are represented by the Party dock
object, which is of Limited visibility, the employee and position records themselves
have Enterprise visibility, based on SQL Rule type rules within the Party dock
object.

To determine the dock object to which a business component belongs

1 In the Object Explorer, select the Business Component object, and then query
for the desired business component.

2 Note the Table property of the business component.

For example, the base table of Opportunity is S_OPTY.

Table 31. Important Business Components and Their Dock Objects

Business Component Dock Object Primary Table Visibility Level

Action Activity S_EVT_ACT Limited

Account Party S_PARTY Limited

Asset Mgmt - Asset Asset S_ASSET Limited

Contact Party S_PARTY Limited

Employee Party S_PARTY Limited

Opportunity Opportunity S_OPTY Limited

Position Party S_PARTY Limited

Internal Product Product S_PROD_INT Limited

Service Request ServiceRequest S_SRV_REQ Limited
Version 7.5.3, Rev. A Siebel Tools Reference 319

Adding Custom Extensions to the Data Model

Dock Objects
3 In the Object Explorer, select the Flat tab, select the Dock Object object, and then
query in the Dock Object Table field for the table.

If the table belongs to a dock object, that dock object will be listed. For example,
the dock object to which the Opportunity business component belongs is
Opportunity.

Docking Wizard
The Docking Wizard is used to extend Siebel Remote functionality to support
custom database schema changes. You can use the Docking Wizard to do the
following:

■ Create new dock objects for custom extension tables that are not already in a
dock object.

■ Create new dock object tables for custom dock objects.

■ Create new dock object visibility rules for custom and existing dock objects.

NOTE: This is not done directly by the user. The appropriate visibility rules will
be added to the dock object depending on the visibility type of the dock object
and the structure of the tables involved.

New dock object visibility rules can be added as a result of one of two actions:

■ A table is added to a custom dock object as a dock object table using the
Docking Wizard.

■ The Docking Wizard is invoked from a custom extension column that acts as
a foreign key to another table.

The Docking Wizard automatically creates or updates Dock Object, Dock Object
Table, and Dock Object Visibility Rule objects for custom tables. You can create
Public, Private, and Limited dock objects through the Docking Wizard.

The Docking Wizard creates Limited dock object visibility rules of the following
types:
320 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
■ Employee. Employee rules replicate data depending on the mobile user’s
employee identity. To find all candidate rules, find all columns that are foreign
keys to S_USER table, except CREATED_BY and LAST_UPD_BY.

■ Employee Manager. Employee Manager rules replicate data based on which
employees report to the mobile user. The algorithm for finding all candidate
rules is the same as for Employee rules.

■ Position. Position rules replicate data based on the position the mobile user
holds. To find all candidate position rules, the algorithm finds all columns that
are foreign keys to the S_POSTN table.

■ Position Manager. Position manager rules replicate data based on which positions
report to the mobile user position. The algorithm to find all candidate rules is
the same as for Position rules.

■ Check Dock Object. Check Dock Object rules replicate data depending on which
piece of data from other dock objects is replicated to the mobile local database.
The relationship between data in other dock objects and the current dock object
determine which records from the current dock object are replicated.

The Docking Wizard can only find the candidate Check Dock Object rules based
on the “Foreign Key Table Name” property definitions for columns. For each
foreign key, there are two candidate Check Dock Object rules, regardless of
where the foreign key column resides:

■ Rules that use this dock object as the destination dock object. There are two
types of these rules:

❏ Based on foreign keys on the primary table of the current dock object. The
algorithm to find this kind of candidate rule must find in the table of the
current dock object all foreign key columns, other than those pointing to
S_USER or S_POSTN. For these foreign key columns, the algorithm needs
to find the foreign key table to which these foreign key columns refer. The
dock object of the foreign key table will become the Check Dock Object
object of the newly created Check Dock Object rule in the current dock
object.
Version 7.5.3, Rev. A Siebel Tools Reference 321

Adding Custom Extensions to the Data Model

Dock Objects
❏ Based on foreign keys on the primary table of other dock objects. To find this
type of candidate rule, the algorithm must find all foreign key columns
that refer to the primary table of the current dock object, on any table that
is part of a limited dock object. The algorithm will add the appropriate
Check Dock Object visibility rules to these limited dock objects, with the
current dock object being the Check Dock Object object.

■ Rules that use this dock object as the source dock object, that is, Check Dock
Object rules. There are two types of these rules:

❏ Based on foreign keys on the primary table of the current dock object.

❏ Based on foreign keys on the primary table of other dock objects.

The algorithm for these types of rules is similar to the algorithm for rules that
use this dock object as the destination dock object. The main difference
involves switching the source table or column and target table or column.

The Docking Wizard process flow is shown in Figure 77.

Figure 77. Docking Wizard Flow
322 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
Before using the Docking Wizard, you should be aware of the following
considerations:

■ You can only invoke the Docking Wizard on custom extension tables that are not
already placed into any dock objects.

■ You cannot invoke the Docking Wizard on standard Siebel out of the box tables.
However, you can invoke the Docking Wizard from a custom extension column
that has been added to a standard table.

■ For a custom table that has a mandatory foreign key to another custom table that
is already in a custom dock object, you can either create a new dock object for
it or add it to the existing custom dock object. The approach depends on the
business requirements and desired outcome.

■ The rules created by the Docking Wizard will have a check dock object visibility
strength of 100 and a visibility strength of 50. These strengths can not be
modified without engaging Expert Services.

■ When custom tables are added as dock object tables, they are added with a
visibility strength of 50. If this is not appropriate for the business requirements,
Expert Services needs to be engaged to modify this strength.

The Docking Wizard can be invoked from two places:

■ Table

■ Column

To invoke the Docking Wizard from a table

1 Select a custom extension table.

2 Lock the project.

3 Right-click the table record, and then choose Docking Wizard from the pop-up
menu.

The Docking Wizard will not be activated if the table already exists in a dock
object. If the Docking Wizard completes successfully for the table, the Docking
Wizard will not be activated again on right-clicking the mouse.
Version 7.5.3, Rev. A Siebel Tools Reference 323

Adding Custom Extensions to the Data Model

Dock Objects
To invoke the Docking Wizard from a column

1 Select a custom extension column.

Custom extension columns have the prefix X_.

2 Lock the project.

3 Right-click the column record, and then choose Docking Wizard from the pop-
up menu.

The Docking Wizard is activated if the column name is prefixed by X_ or the
table name is prefixed by CX_ and the table is already in a dock object, whether
the table is a Siebel table or a custom table.

The Docking Wizard can be invoked multiple times, regardless of whether it has
been run for this column before or not.

The behavior of the Docking Wizard differs depending on where it is invoked:

■ From a table:

■ If the custom table is standalone, the only option is to create a new dock
object for it. After the dock object creation, appropriate routing rules will also
be created.

■ If the custom table has appropriate foreign keys to other custom tables
(excluding Siebel tables) already in certain dock objects, there are two
options. Appropriate routing rules will be created for either option.

❏ Create a new dock object.

❏ Add the table to an existing custom dock object.

■ From a column:

You do not need to make any choices. The Docking Wizard will add appropriate
routing rules:

■ For a regular foreign key, two Check Dock Object routing rules will be added:
one from the table's dock object to the foreign key table's dock object and
the other in the opposite direction.

■ For a foreign key to S_POSTN, only a position rule will be added.
324 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
Creating a New Dock Object
If you create a new dock object for a standalone customer table, you need to lock
the project where you want the new dock object to reside. If you create a new dock
object for a non-standalone customer table, you not only need to lock the project
where you want the new dock object to reside, but also lock all the projects
containing the dock objects in which the parent tables of the customer table reside.

If you invoke the Docking Wizard from a standalone custom table, only the Create
a New Dock Object option is activated. The Add the Table to an Existing Dock
Object option will be deactivated. When the Docking Wizard creates rules, it creates
rules on associated dock objects. If any other project needs a rule added to a dock
object in that project, a dialog box appears warning you that other projects need to
be locked, if they are not already locked.

NOTE: You must select a custom extension table (that is, beginning with CX_), and
then right-click to access the Docking Wizard.

To create a table for the new dock object

1 Lock the project that will contain your new table, for example Newtable.

2 Select File > New Object.

The New Object dialog box appears.

3 Select the Table icon under the General tab.
Version 7.5.3, Rev. A Siebel Tools Reference 325

Adding Custom Extensions to the Data Model

Dock Objects
4 In the first General dialog box enter the name of your new table beginning with
CX_, select the project, and then select the radio button for the type of table you
want.

For example, create a standalone custom extension table called CX_TEST_PRI.

5 Click Next.

The Finish dialog box with your entries appears.

6 Click Finish to accept the entries.

You are taken to the Tables Object List Editor, where you see your new table
displayed.

To create the new dock object

1 Lock the project that will contain the dock object, for example Dock
Opportunity.

2 In the Tables Objects List Editor, select the table for which you want to create a
dock object (for example, CX_TEST_PRI created above).
326 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
3 Right-click, and then select Docking Wizard from the menu options.

NOTE: The Docking Wizard can be launched from entries in the Tables Object List
Editor in Table > Column, Table > Index, or Table > User Key object types.

The Add Table to Dock Object dialog box appears.

NOTE: If you invoke the Docking Wizard from a standalone table, only the Create
a New Dock Object option is activated. The Add the Table to an Existing Dock
Object option is deactivated. When the Docking Wizard creates rules, it creates
rules on associated dock objects. If a rule needs to be added to a dock object in
a different project that is unlocked, a dialog box appears warning you that other
projects should also be locked.

4 In the Dock Object field, enter the name of the dock object, for example,
DOX PRI.

NOTE: This field must be populated with the DOX prefix.
Version 7.5.3, Rev. A Siebel Tools Reference 327

Adding Custom Extensions to the Data Model

Dock Objects
5 In the Project field, all locked projects are listed in the picklist.

6 Choose the project for the dock object.

7 In the Visibility level section, choose Private, Enterprise, or Limited.

NOTE: If you chose Limited, the employee, employee manager, position, and
position manager rules are created on the new dock object, depending on the
structure of the table. Dock object rules are created on both the new dock objects
and the parent tables’ dock objects.

8 Click Next.

The Summary page appears.

9 If the information displayed is correct, click Finish.

The Docking Wizard creates the new dock object.

Adding a New Dock Table to an Existing Custom Dock Object
Your new table should be a dock object table of an existing dock object. In this
situation, the new table is a child of an existing dock object table. Mobile users
receive records in the new table if they have access to its parent record in the
existing table.

NOTE: You must select a custom extension table (that is, beginning with CX_) and
right-click to access the Docking Wizard.

You add new dock object visibility rules for existing dock objects when you use the
Docking Wizard. By creating a new dock object visibility rule, you provide access
to records in existing tables to mobile users who “own” a record in the new table.

This is appropriate when the new table can act as a parent to the primary table of
another, limited visibility dock object or when the new table has a foreign key to
the primary table of another limited visibility dock object.
328 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
Before launching the Docking Wizard, you need to lock the project containing the
customer dock object to which you want to add your new table. You also need to
lock all projects containing the dock objects where your new table’s parent tables
reside.

To create a new table to be added to an existing dock object

1 Lock all necessary projects.

2 Select File > New Object.

The New Object dialog box appears.

3 Select the Table icon under the General tab.

4 In the first General dialog box enter the name of your new table beginning with
CX_, select the project, and then select the radio button for the type of table you
want.

For example, create a new one-to-many extension table of CX_TEST_PRI.

5 Click Next.

The Parent Table Specification dialog box appears.
Version 7.5.3, Rev. A Siebel Tools Reference 329

Adding Custom Extensions to the Data Model

Dock Objects
6 Specify the parent table, for example CX_TEST_PRI.

7 Click Next to display the Finish dialog box with a summary of your choices.

8 Click Finish.

The new table is created and displayed in the Object List Editor.

To add the new table to an existing dock object

1 Select the Table object type in the Object Explorer.

2 Select the new table, for example CX_TEST_PRI_XM, in the Tables list.

3 Right-click and select Docking Wizard from the menu options.

The Add Table to Dock Object dialog box appears.

4 Select the Add the Table to an Existing Dock Object radio button.

330 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
5 Select an entry in the Dock Object field.

The choices are a list of all Dock Objects that contain tables to which the new
table has a foreign key.

The associated locked project is displayed in the Project field.

6 Select an entry in the Source Column field.

This field allows you to choose a column from the new table that is a foreign key
to the parent table contained in the selected Dock Object Table. Frequently, there
is only one such column, but there may be more in some cases.

NOTE: When the Source Column field entry is selected, the Target Table field is
populated.

7 Click Next to display the Summary dialog box.
Version 7.5.3, Rev. A Siebel Tools Reference 331

Adding Custom Extensions to the Data Model

Dock Objects
8 If the information displayed is correct, click Finish.

The Docking Wizard creates a Dock Object Table object based on the new table
and displays it in the Object List Editor.

Verifying Dock Objects
You can verify newly created dock objects, dock object tables, and dock object
visibility rules within Siebel Tools.

To verify dock objects

1 In the Object Explorer, select Dock Object.

2 Expand Dock Object, and then select Dock Object Table.

3 Look for the created item in the Dock Object Tables list.

4 Select Dock Object Visibility Rule.

5 Look for the created item in the Dock Object Visibility Rules list.
332 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
For more information on dock object visibility rules, see “Dock Object Visibility
Rules” on page 316 and Siebel Remote and Replication Manager Administration
Guide.

Deleting and Cleansing Dock Objects
Custom dock objects (those with prefix DOX) can be deleted.

When a custom table, column, or dock object is deleted, or when a foreign key
column is redefined to point to a different table, dock object integrity may be
broken. The dock objects will need to be cleansed before the Docking Wizard is
used again or before Siebel Remote can be used.

The Cleanse button is located on the Dock Object list applet in Siebel Tools. By
clicking it, all dock objects are examined, and you are prompted to make sure the
dock objects are all clean; if not, some objects will be deleted. If the projects on
which you are working are not locked, you are prompted to lock them. After the
process is completed, you are prompted again on what has been deleted.

Consulting Siebel Expert Services
■ Reviewing alternatives to creating new objects or new rules. Before creating a new

dock object visibility rule, you should consider all configuration alternatives. It
is recommended that Expert Services be engaged to research and review any
configuration alternatives that might exist. This will make sure that no dock
object visibility rules are added unnecessarily.

■ Reviewing implemented changes with regards to docking. The Docking Wizard is a
new feature for Siebel 7. If for any reason you do not feel comfortable using it
or analyzing its effects, please consult Expert Services.
Version 7.5.3, Rev. A Siebel Tools Reference 333

Adding Custom Extensions to the Data Model

Dock Objects
■ Inactivating docking. When the Docking Wizard creates new dock object visibility
rules, the rules are bidirectional. For example, if you create a custom foreign key
on the S_OPTY table in relation to the ROW_ID of S_ASSET then two rules are
created: one for the Opportunity dock object and one for the Asset dock object.

However, the business requirement might be to dock assets as they are related
to opportunities that a user receives at 100% visibility, but not to dock
opportunities based on the fact that they are related to an asset that the user is
receiving. Therefore, you would need to request that the new dock object
visibility rule that is created in the Opportunity dock object be inactivated.
Expert Services would perform this task.

You might also need a standard Siebel dock object visibility rule to be inactivated
due to the volumes of data which are downloaded to mobile users. This can also
be analyzed by Expert Services.

■ Activating docking. Before adding a dock object visibility rule a team should
thoroughly research and determine if an existing (but inactive) dock object
visibility rule would provide the necessary functionality. If this is true, Expert
Services must be engaged to activate the rule and research the performance
impact.

■ Adding a new table to an existing dock object. Currently, the Docking Wizard does
not support the addition of a new table to an existing dock object. If this is a
requirement, you should request assistance from Expert Services.

NOTE: The functionality that is currently supported by the Docking Wizard is to
create custom dock objects and to support custom foreign key relationships
between existing dock objects.
334 Siebel Tools Reference Version 7.5.3, Rev. A

Adding Custom Extensions to the Data Model

Dock Objects
■ Changing visibility strengths. When using the Docking Wizard to add new
visibility rules, visibility strength might need to be altered because the Check
Dock Object Visibility property is set to 100% and the Visibility Strength
property for the dock object based on the new rule is set to 50%.

For example, if a rule is created as mentioned above to implement a custom
relationship between S_OPTY and S_ASSET, the rule in the Asset dock object
would check to make sure that the Opportunity dock object was received at
100%. If it was, the Asset dock object would be docked at 50%.

However, this would mean that the S_NOTE_ASSET table would not be docked
because the visibility strength of this table in the Asset dock object is 100%. This
means that for mobile users to receive records in S_NOTE_ASSET, they must
have received the parent S_ASSET record at 100% or greater. If this scenario
does not satisfy the docking requirements for asset records, Expert Services
could be engaged to analyze the design and modify the visibility strengths if
appropriate.

■ Implementing Non-Primary Manager Visibility. Expert Services can activate the dock
object visibility rules that assist in the implementation of Non-Primary Manager
Visibility. This can have very serious performance implications and should be
avoided.

■ Using routing models. New with Siebel 7. Routing models are position- and
responsibility-based models that improve the performance and synchronization
time. The standard routing models all have specific rules excluded from
synchronization. If you use these models and request that rules either be added
or deleted from the models, Expert Services will need to be engaged.
Version 7.5.3, Rev. A Siebel Tools Reference 335

Adding Custom Extensions to the Data Model

Dock Objects
336 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer 7
This chapter describes objects in the Business Objects Layer of the Siebel eBusiness
Applications architecture. Siebel business objects consist of:

■ Business components

■ Fields

■ Joins

■ Links
Version 7.5.3, Rev. A Siebel Tools Reference 337

Business Objects Layer

Major Business Object Types
Major Business Object Types
The full set of business object types and their relationships is illustrated in Figure 78
on page 338.

Figure 78. Details of User Interface Architecture
338 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Major Business Object Types
The following user interface object types are introduced in Figure 78 on page 338:

■ Business Component. A business component is a logical entity that associates
columns from one or more tables into a single structure. Business components
provide a layer of wrapping over tables, causing applets to reference business
components rather than the underlying tables. This design creates convenience
(all associated columns together in one bundle), developer-friendly naming, and
the isolation of the developer role from the database administrator role.

■ Field. A field object definition associates a column to a business component. This
is how columns from tables are assigned to a business component and provided
with meaningful names that the customer developer can change. Alternately, a
field's values can be calculated from the values in other fields in the business
component. Fields supply data to controls and list columns in the Web interface.

■ Business Object. A business object implements a business model (logical
database diagram), tying together a set of interrelated business components
using links. The links provide the one-to-many relationships that govern how the
business components interrelate in the context of this business object.

NOTE: The object type called Business Object is not to be confused with the
general category called business object types. Business Object is one of the
object types in the Business Objects layer. Similarly a business object, which is
one kind of object definition, is not the same as the category “business object
definitions.”

■ Business Object Component. A business object component object definition is
used to include a business component and, generally, a link in the business
object. The link specifies how the business component is related to another
business component in the context of the same business object.

■ Link. A link implements a one-to-many relationship between business
components. The Link object type makes master-detail views possible. A master-
detail view displays one record of the master business component with many
detail business component records corresponding to the master. A pair of links
also may be used to implement a many-to-many relationship.
Version 7.5.3, Rev. A Siebel Tools Reference 339

Business Objects Layer

Major Business Object Types
■ Multi-Value Link. A multi-value link is used in the implementation of a multi-value
group. A multi-value group is a user-maintainable list of detail records
associated with a master record. The user invokes the list of detail records from
the master record when it is displayed in a list or form applet. For example, in
an applet displaying the Account business component, the user can click the
Select button to the right of the Address text box to see a pop-up window
displaying multiple Address records associated with the currently displayed
account.

■ Join. A join object definition creates a relationship between a business
component and a table that is not the business component's base table. The join
allows the business component to build fields using columns from the non-base
(joined) table. The join uses a foreign key in the business component to obtain
rows on a one-to-one basis from the joined table, even though the two do not
necessarily have a one-to-one relationship. For example, an Account can have
multiple Contacts, and each Contact identifies one Account in its foreign key.
This makes it possible to generate, by means of a join between Contacts and
Accounts, a list of Contacts with Account information about each.

■ Join Specification. Join Specification is a child object type of Join that provides
details about how the join is implemented within the business component.

■ Business Service. A business service is a reusable module containing a set of
methods. It provides the ability to call its C++ or script methods from
customer-defined scripts and object interface logic, through the invoke-method
mechanism.

■ Table. A table object definition is the direct representation of a database table in
a DBMS. It has column and index child object definitions that represent the
table's columns and indexes. Table, column, and index object definitions within
Siebel Tools provide a detailed picture of all of the tables, columns, and indexes
in use in the DBMS.

■ Column. A column object definition represents one column in the database table.
Database columns in a database table are represented by the column object
definitions that are children of the corresponding table object definition. Each
column in the table has a corresponding column object definition.

■ Index. Each index object definition identifies a physical index file in the DBMS.
340 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Usage and Configuration of Non-Licensed Objects
■ Page Tab. A page tab object definition associates a screen to the page tab’s parent
application object definition and includes it as a tab in the Tab bar.

■ Find. A Find object definition adds a type of record to search for to the Find
dialog box for the application.

■ Application Find. An Application Find object definition associates a find to the
application, adding it to the Find dialog box for that application.

■ Find Field. A Find Field object definition adds a search field to a find.

■ Find View. A Find View object definition adds a view to the list of possible views
that can be presented in response to a find.

For more information on object types, their usage, and their properties, see Object
Types Reference.

Usage and Configuration of Non-Licensed Objects
The licensing agreement between Siebel and its customers is such that customers
are only entitled to use and configure Siebel objects (for example, business
components and tables) that belong to modules they have purchased.

If a Siebel object is not exposed to the licensed user interface—through views that
are exposed under the customer’s license key—the customer is not entitled to use
that object in custom configurations.

Customers are, however, entitled to create new tables using Siebel Database
Extensibility features and to create new business components and UI objects to
expose these tables.
Version 7.5.3, Rev. A Siebel Tools Reference 341

Business Objects Layer

Business Components
Business Components
A business component is a logical entity that associates columns from one or more
tables into a single structure. Business components provide a layer of wrapping over
tables, so that applets reference business components rather than the underlying
tables. This creates convenience (all associated columns are together in one
bundle), developer-friendly naming, and the separation of the developer role from
the database administrator role. A business component can also have a default sort
or search specification, providing records to applets in a predetermined sort order
and according to a selection criterion.

When instantiated in a Siebel application, a business component is comparable to
a recordset. Its definition in Siebel Tools provides the foundation for controlling how
data is selected from, inserted, and updated within the tables it references.

Figure 79 illustrates business component records displayed in a list applet.

Figure 79. Business Component Records in a List Applet

Business component records
342 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
A business component contains fields. Each column whose data is included in a
business component is represented with a field. The Field object type is a child of
the Business Component object type. The Column object type is a child of the Table
object type. The set of field child object definitions of a business component maps
a corresponding set of columns into the business component. These relationships
are shown in Figure 80.

In addition to connecting a column to the business component, the Field object type
also allows you to specify a meaningful name that refers to that column. Columns
in tables are often cryptically named to match the names in the DBMS, whereas
fields can have more meaningful and longer names than the columns they represent
(75 characters long as opposed to, typically, 30 characters).

NOTE: Not all fields are representations of columns. Some fields are calculated fields,
whose values are computed from the values in other fields. The data in calculated
fields is not stored separately in the database.

Figure 80. Business Component Field and Column Relationships
Version 7.5.3, Rev. A Siebel Tools Reference 343

Business Objects Layer

Business Components
Base Tables of Business Components
A base table of a business component is assigned to the business component to
provide the most important columns for use as fields in the business component.
Fields built on the base table can be edited, whereas fields built on joined tables can
only be displayed.

The base table is assigned to the business component with the Table property in the
Business Component’s object definition. Figure 81 shows an example of some fields
in the Contact business component that map corresponding columns from the
business component’s base table, S_CONTACT.

Every business component has a base table assigned to it. It is not essential that the
business component include all of the columns in the base table, although typically
it will include most of them. In particular, system columns in the base table such as
ROW_ID, CREATED_BY and LAST_UPD_BY are automatically represented in the
business component through implied fields. System columns do not require field
object definitions in the business component.

Figure 81. Examples of Fields Representing Columns
344 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
Joined Tables and Extension Tables of Business Components
Not every table used by a business component is a base table. In addition to
columns from the base table, columns may also be included from joined tables and
extension tables. For further information on tables see chapter on Using Extension
Tables and Columns.

Joined Tables
A joined table provides rows on a one-to-one basis to the business component as a
result of a foreign key relationship between the joined table and the business
component’s base table. That is, for every record in the business component (which
corresponds to a row in the base table) there can be a corresponding row in the
joined table. However, not every record in the base table will have a record in the
joined table.

The data obtained by a business component through a join (other than to an
extension table) is read-only in that business component.

The use of fields from both the base table and joined tables is illustrated in
Figure 82.

Figure 82. Fields from the Base Table and a Joined Table
Version 7.5.3, Rev. A Siebel Tools Reference 345

Business Objects Layer

Business Components
Using the contact example, most contacts belongs to an account. Account
information is stored in another table, S_ORG_EXT. The account is uniquely
identified in each contact record (S_CONTACT row) by means of a foreign key, the
Account Id field (the PR_DEPT_OU_ID column). A join uses these relationships to
make account data columns available to the Contact business component for each
contact. This is illustrated in Figure 83.

Extension Tables
Extension tables are a special kind of joined table. Like other joined tables,
extension tables provide rows on a one-to-one basis in parallel with base table rows.
Extension tables are identified by the _X suffix in the table name, such as
S_ORG_EXT_X, which extends S_ORG_EXT.

Extension tables are provided specifically to allow columns to be virtually added to
a base table rather than physically added. This provides the means to expand base
tables without violating DBMS or database design restrictions, and without the need
to perform complicated database restructuring operations. Extension table data,
unlike the data in other joined tables, can be updated in the business component.

Figure 83. Fields from a Joined Table
346 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
Extension tables are discussed in greater detail in “Extension Tables” on page 196.

Sort Specification Property
The value in the Sort Specification property, if it is non-blank, is the name of a field
or list of fields that imposes a sort order on the records returned to an applet that is
associated with this business component. The field or fields must be child object
definitions of the business component.

For example, the Account business component (as delivered in Siebel applications)
has a Sort Specification property value of “Name, Location.” This indicates that
account records are provided in Name (account name) order, and where multiple
account records have the same Name, they are to be sorted within Name by Account
Location.

Observe the following syntax considerations:

■ Use commas to separate field names in a sort specification.

■ To indicate that a field in the list sorts in descending order, include
(DESCENDING) or (DESC) after the field name, as in “Start Date
(DESCENDING).” If you do not specify a sort order, ascending order is used.

■ Do not enclose the field name in square brackets, as in [Account Name].
Brackets are accepted in search specifications, but not in sort specifications.

■ The sort specification expression must be 255 characters or less.

Be aware that sort specifications have the following behaviors:

■ If the Sort Specification value is blank, the Siebel application returns the records
in the order in which they occur in the table.

■ When a check box field is included in a sort specification, there are three values
that are sorted: Y, N, and NULL. If you specify that the sorting is in Descending
order, the order is NULL, Y, and N.

■ When a multi-value field is included in a sort specification expression in a
business component, the sorting is on the initial value of the multi-value field.
This makes sense only if the multi-value group uses a primary foreign key.

■ A sort specification that includes a multi-value field in the expression does not
sort the records in the underlying multi-value group. Instead, you create a sort
specification in the detail business component of the multi-value link to do this.
Version 7.5.3, Rev. A Siebel Tools Reference 347

Business Objects Layer

Business Components
■ For sorting the values in a static picklist or pick applet differently than the
default sorting for the underlying business component, the sort specification on
the business component can be overridden with a sort specification on the
picklist. The default value for the Sort Specification property in a Pick List object
definition is blank, which means that the business component’s sorting is to be
used. If a sort specification appears in the picklist, this overrides the business
component’s sorting with that of the picklist.

NOTE: If a predefined query exists, it can potentially override a sort specification that
has been defined as a property of the business component.

Improperly chosen sort specifications can hurt performance. This is particularly
true when the sorting is on fields based on joins. Siebel Expert Services will review
any custom search or sort specifications when performing a configuration review,
in order to identify any potential performance issues.

Siebel applications force the sort in the All visibility mode to be on the primary key.
The sort in Manager mode is on a column in the denormalized reporting
relationship table. Users can still sort records after the initial query. For better
performance, you should sort records after filtering for a small record set.

NOTE: Null records will always appear at the top of the record-set if a sort
specification is placed on a field with null values.

Search Specification Property
If the value in the Search Specification property in a Business Component object
definition is non-blank, the set of records provided to an applet using this business
component is restricted. The search specification contains the names of one or more
fields in the business component and various operators, combined to create a
conditional expression. Records in which the value of the conditional expression
evaluates to TRUE are provided to the applet for display; those records in which the
expression evaluates to FALSE are excluded.

NOTE: Search specifications on child applets are not executed.
348 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
Some sample search specification expressions appear below:

[Type]= "COST LIST"

[Revenue] > 5000

[Competitor] IS NOT NULL and [Competitor] <> "N"

[Type] = LookupValue ("TODO_TYPE", "In Store Visit")

Search specification expressions are built according to the following syntax rules:

■ Standard comparison operators are used to compare a field to a constant, or one
field to another field. These include =, <>, >, <, >=, and <=.

Example: [Revenue] > 5000

■ String constants are enclosed in double quotation marks. String values are case
sensitive, so the use of uppercase and lowercase letters in the search
specification should exactly match that of the records you want returned.

Example: [Type] <> "COST LIST"

■ The logical operators AND, OR, and NOT are used to negate or combine
expressions. Case is ignored in these operators; for example, “and” is the same
as “AND”).

Example: [Competitor] IS NOT NULL and [Competitor] <> "N"

■ A field name in a search specification must be enclosed in square brackets.

Example: [Conflict Id] = 0

■ The LIKE operator may be used to create text string comparison expressions in
which a field is compared to a constant, or a field to another field, and a match
on only the first several characters is required. The wildcard characters “*” and
“?” are used to indicate any number of characters, and a single character,
respectively.

Example: [Last Name] LIKE "Sm*"

In this example, the Last Name values of Smith, Smythe, Smallman, and so on
would cause the expression to evaluate to TRUE.
Version 7.5.3, Rev. A Siebel Tools Reference 349

Business Objects Layer

Business Components
■ The search specification expression must be 255 characters or less.

An applet search specification cannot be used to override the search specification
of the underlying business component, if the business component has one. Rather
than overriding the business component’s search specification, the applet’s search
specification is appended to that of the business component. Search specifications
should appear in the business component or the applets that use it, but not both.

The search specification on an applet is converted to a WHERE clause by the data
manager at runtime. When two applets based on the same business component
appear in the same view, one query is generated against the database to populate
both applets. Because a database select statement only supports one WHERE
clause, only one of the applets should have a search specification—or if both do,
they should have the same specification.

For example, the Account List Applet and the Account Entry Applet both appear in
the Account List View. The record that is selected in the Account List Applet also
appears in the Account Entry Applet. When you select a different row in the list or
scroll through the list, the Account Entry Applet is updated to show the same record
that is selected in the Account List Applet. This is made possible by the fact that
both applets are populated from the same query and therefore show the same
record set.

To prevent the two applets from being synchronized, they would have to be on
separate business components, for example by copying the business component on
which the first applet is based.

For more information on the usage of the Search Specification property of applets,
see Siebel Developer’s Reference.

NOTE: Search specifications can impact performance negatively, particularly when
you include fields based on joins in the search specification. Search specifications
with NOT or OR can also adversely affect performance by forcing the database to
execute a full table scan.

Configuring Data-Driven Read-Only Behavior
Business components and fields can be configured as dynamically accessible, with
their read-only status turned on and off depending on the value in a particular field
in the current record. This is accomplished using one of the following Business
Component object type user properties, depending on the requirement:
350 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
■ BC Read Only Field

Specifies a TRUE or FALSE field in the record that, when TRUE, causes the
current record to become read-only.

■ Field Read Only Field: fieldname

Specifies a TRUE or FALSE test field and a target field in the same business
component. When the TRUE/FALSE field is true, the target field becomes read-
only.

NOTE: FieldName syntax works if FieldName is not a join field. If FieldName is a
join field to another table, then this syntax does not prepopulate the field that
uses this syntax in its Pre Default Value.

■ Parent Read Only Field

Specifies a TRUE or FALSE test business component or field combination in the
parent chain (parent, grandparent, and so on) that, when TRUE, causes the
target business component to become read-only.

These user properties are described individually in greater detail in the subsections
that follow.

The following warnings are common to all three user properties:

■ Wherever a business component or field name is specified, whether in the Name
or Value property of the user property object definition, make sure that the
capitalization, spelling, and use of blank spaces are correct. Also make sure that
quotation marks are not present.
Version 7.5.3, Rev. A Siebel Tools Reference 351

Business Objects Layer

Business Components
■ These user properties do not function when used in an applet in a view where
the view's Admin Mode property is set to TRUE.

Admin Mode, when TRUE, turns off all insert and update restrictions for the
business components used by the view, including those specified by business
component user properties. The business component Sales Rep and Personal
visibility modes are ignored. Records that do not have a primary team member
are also visible. However, pop-up visibility is not overridden.

NOTE: The Admin Mode flag should be set to TRUE only in a view that is part of
a screen containing all administration views. Do not use the Admin Mode flag
for a view in a screen that contains any non-administration views.

You can have a list view with Admin Mode set to TRUE that drills down to a
detail view not marked as an administration view, while remaining in Admin
Mode. This allows you to share detail views with non-administration list views.

BC Read-Only Field
This user property specifies a Boolean field that, when TRUE, causes all fields in the
current record to become read-only. This also prevents the user from updating or
deleting the record, but does not prevent the addition of new records to the business
component. The Name and Value properties in the user property record are
specified as follows:

■ Name

Contains the literal text BC Read Only Field.

■ Value

Contains the name of a field in the same business component as the parent
object definition of the user property. This field must be a TRUE or FALSE field.

An example of the use of BC Read Only Field is the situation in which you need to
prevent users from updating inactive accounts. The Inactive Account field in an
account record is a TRUE or FALSE field that, when TRUE, indicates that the account
is inactive. To configure dynamic read-only behavior for the Account business
component based on this field, add a business component user property child object
definition to the Account business component, with the following property settings:
352 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
■ Name

BC Read-Only Field

■ Value

Inactive Account

Field Read Only Field
This user property is similar to BC Read Only Field, in that it tests the field specified
in the Value property and enforces a read-only restriction when the test field has a
value of TRUE in the current record. However, unlike BC Read Only Field, the Field
Read Only Field user property restricts one field in the same business component,
rather than the entire business component record.

The Name and Value properties in the user property record are specified as follows:

■ Name

Contains an expression in the following format:

Field Read Only Field: fieldname

For example:

Field Read Only Field: Account Status

Note that there is only a single space between the colon and the field name.

■ Value

Contains the name of the test field. This is a TRUE or FALSE field in the same
business component as the parent object definition of the user property.

One Field Read Only Field user property must be created for each field you want to
make conditionally read-only.

An example of the use of Field Read Only Field is the situation in which you want
to make the Competitor field in an account record read-only when the Type field has
a value of Competitor. In other words, if an account record has been included
because that account is a competitor, you do not want users to be specifying that
account’s competitors. The following procedure describes how to accomplish this.
Version 7.5.3, Rev. A Siebel Tools Reference 353

Business Objects Layer

Business Components
To restrict the Competitor field in an account based on the account’s type

1 Navigate to the Business Component object type in the Object Explorer, and then
to the Account object definition in the Object List Editor.

2 Create a calculated Boolean field in this business component that will have a
value of TRUE when the Type field has a value of Competitor.

For purposes of the example, the name of this test field can be Competitor Calc,
although the name is unimportant as long as it is referenced correctly in the user
property.

3 In the calculation property of the Competitor Calc field, enter the following
value:

IIf([Type] = "Competitor", "Y", "N")

4 Expand the Business Component object type in the Object Explorer, and select
the Business Component User Prop object type. Click the Object List Editor to
make it active, and choose Edit > New Record.

5 Set the following values in the new Business Component User Prop object
definition:

■ Name

Field Read Only Field: Competitor

■ Value

Competitor Calc

Parent Read Only Field
This property, like BC Read Only Field, places a read-only restriction on an entire
business component, rather than a single target field. This restriction occurs when
a TRUE or FALSE test field has a TRUE value. However, unlike BC Read Only Field
and Field Read Only Field, this user property is used to place a restriction on a child
or grandchild (and so on) business component of the business component
containing the test field. In the other user properties, the read-only restriction is
placed on the business component containing the test field, or on another field in
the same business component.
354 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
Parent Read Only Field is used primarily to restrict the detail records in a multi-value
group. It could also be used to restrict the detail records in a master-detail view, but
in that case you need to make sure that the restricted business component is not
also used in the context of some other business object than the intended one.

The Name and Value properties in the user property record are specified as follows:

■ Name

Contains the literal text Parent Read-Only Field.

■ Value

Contains an expression in the following format:

buscompname.fieldname

where fieldname is the name of the test field, that is, the TRUE or FALSE field to
be evaluated, and buscompname is the name of the business component in
which the test field is located. For example:

Account.Inactive Account

The business component to be conditionally restricted is the one to which you add
the user property as a child object definition. The business component containing
the test field must be a parent or grandparent of the restricted business component
by way of a link or series of link relationships.

An example of the use of this user property is the situation where you want to
disable the update of the Account Address multi-value group when the account
record has a Type of Competitor. To accomplish this, you add the same calculated
field as in the Field Read Only Field example, and then add a user property to the
Business Address business component with the following values:

■ Name

Parent Read Only Field

■ Value

Account.Competitor Calc
Version 7.5.3, Rev. A Siebel Tools Reference 355

Business Objects Layer

Business Components
This causes the Account Address multi-value group to be read-only when the
account record is for a competitor.

NOTE: When using the Parent Read Only Field user property, the test field must have
its Link Specification property set to TRUE. Otherwise the dynamic read-only
functionality does not work. However, if the child record is displayed in the multi-
value field in the parent business component, it is not necessary to have the Link
Specification property of the field set to TRUE.

Intersection Business Components
An intersection business component is a business component based on an
intersection table. It provides the means to display all of the combinations of data
in a many-to-many relationship, instead of only one or the other one-to-many
relationship of which it is composed.

Intersection tables implement many-to-many relationships. Some (such as
S_OPTY_CON and S_ACCNT_POSTN) also provide intersection data through a join
to one or the other master business component that uses the intersection table.
Intersection data is data that resides in columns other than the two required foreign
key columns in the intersection table, and is specific to the intersection of the two
master business components. Intersection data columns are described in
“Intersection Data in the Intersection Table” on page 212.

An example of an intersection data column exposed only through a join is the
ROLE_CD column in S_OPTY_CON. This column specifies the role of each contact
in each opportunity, and is exposed in contact records through the S_OPTY_CON
join. Exposure through a join is adequate in many circumstances, namely when the
many-to-many relationship only needs to be viewed from the perspective of one or
the other master business component. In this example, the purpose of exposing the
intersection data column is to identify the role of each contact in a list of contacts
for one opportunity.

If it were necessary to view all contacts for all opportunities in a single list, an
intersection business component based on the S_OPTY_CON table would be
required.
356 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
An example of an intersection business component that is exposed in the user
interface is Opportunity Product. It is based on the S_REVN table, and used in the
applets in the Opportunity Products screen, shown in Figure 84.

The list applet in this view displays all current opportunity-product combinations.
When an intersection business component is used for the display and modification
of data in an intersection table, it is not necessary to use an association applet to
create new association rows. The user can add a new record in the list applet that
displays the intersection business component, and enter or pick values in list
columns that specify the two masters. In the case of the opportunity product list, an
Opportunity and a Product list column are provided, and selection is made in one
or the other, using the corresponding pick applet.

Intersection business components can be used to expose data from denormalized
columns in intersection tables. Be sure to configure the applet controls used to
display data from denormalized columns as read only. This is because
denormalized columns are populated by the system, not by input through applet
controls.

For more information on using intersection business components, see “Updating
Fields That Are Based on Columns in Extension Tables of Intersection Tables” on
page 214.

Figure 84. Opportunity Products Screen
Version 7.5.3, Rev. A Siebel Tools Reference 357

Business Objects Layer

Business Components
Virtual Business Components
Business components based on external data are called virtual business
components. Virtual business components are used when the business component
has to obtain data from a location other than a database table in the Siebel database,
but the information has to be presented in the standard Siebel user interface
(applets and views). This is typically real-time information from another database,
such as from the Report Encyclopedia in Actuate, or from an SAP table, although
anything that can supply data in response to a SQL query is a candidate.

Virtual business components allow you to:

■ Represent external data (for example, data in an SAP R/3 database) as a virtual
business component within a Siebel application—the business component
configuration specifies the DLL to use to access the data

■ Use business services to transfer data

Virtual business components support properties such as:

■ Single-value fields

■ Field-level validation

■ Standard business component event model (for example, PreNewRecord,
PreDelete, and so on)

■ Insert, delete, query, and update operations

Additional information about virtual business components:

■ Applets can be based on virtual business components.

■ Virtual business components can be accessed through object interfaces.

■ All business component events are available for scripting.

■ Virtual business components cannot be docked.

■ Virtual business components can be used as stand-alone or children business
components in a business object.

■ Virtual business components support dynamic applet toggles. For more
information about applet toggles, see “Applet Toggles.”
358 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
■ Virtual business components can function as parent member of Link objects in
1:M relationships with standard business components.

■ Virtual business components generate Siebel row IDs the same way as
standard business components.

■ M:M relationships involving virtual business components are not supported.

■ M:M relationships in an external system (for example, SAP) that function
similarly to a 1:M relationship are supported.

For more information about using virtual business components, see Overview:
Siebel eBusiness Application Integration Volume I.
Version 7.5.3, Rev. A Siebel Tools Reference 359

Business Objects Layer

Business Components
Master-Detail Business Components
The relationships between object definitions used to implement a multi-value field
that is based on a one-to-many extension table are illustrated in Figure 85.

The object definitions in Figure 85 are described in detail in the following section.

Master Business Components
The master business components will hold the new multi-value fields. Master
business component contain the following important object definitions:

■ Key field. This is the key field in the master business component; it is used to
reference individual records. Typically, it is named Id. The Source Field property
of the Link object definition points to this field. The property value may be blank
because, by default, a blank Source Field value refers to the Id field.

Figure 85. One-to-Many Extension Table Details
360 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Components
■ Multi-value field. The multi-value field provides access to a corresponding field
value in the current record of the detail business component. The control or list
column that displays the multi-value field normally will be able to invoke a
multi-value group applet for display and maintenance of the detail records.

■ Multi-value link. The multi-value link provides access to the set of records in the
detail business component. One multi-value link is created for each multi-value
group that is created using the one-to-many extension table.

Link
The link object definition creates the one-to-many relationship between the master
and detail business components. There are no special link configuration issues
related to one-to-many extension tables. For more information on the configuration
of links, refer to “Links” on page 393.

Detail Business Component
The detail business component represents the one-to-many extension table used by
the multi-value link and multi-value group applet. Multiple custom business
components can be created using the same one-to-many extension table. Each
custom business component presents a different type of data for use in a different
multi-value group.

The detail business component contains custom fields that represent generic
(ATTRIBxx) extension columns, and hold whatever data is required for the
application. For example, an Area Of Expertise business component might have a
Subject Area field, a Years Of Experience field, and a Licensed field. Each field is a
mapping of a different generic extension column.

The following three fields are part of the User Key (U1), which uniquely identifies
a row for EIM:

■ Name field. The name field represents the NAME column from the extension
table. It provides the means for the user to enter an identifying value in each
record. For example, in a Hobbies business component, the name field might be
called Hobby. The user would enter the name of a hobby into each record in this
field.
Version 7.5.3, Rev. A Siebel Tools Reference 361

Business Objects Layer

Fields
■ Type field. The type field is usually named Type, and represents the TYPE
column. It contains the same value for all records in one multi-value group, and
distinguishes the records of that multi-value group from others. It should be set
in the Predefault property to some identifying word or phrase, such as HOBBY,
EXPERTISE or PRIOR JOB, and should not be exposed in the user interface.

■ Parent ID field. The parent ID field represents the PAR_ROW_ID column.
Generally it is named Parent Contact Id, Parent Account Id, or something similar.
It identifies the row ID of the base table row corresponding to the parent record
in the master business component. The parent ID field is specified in the
Destination Field property of the Link object.

The detail business component contains one important property for use with a one-
to-many extension table:

■ Search Specification. The Search Specification property should be set to restrict
the records retrieved to only those with a specific value in the Type field. This is
the same value that is specified in the Pre Default Value property for that field.
In this way, the only records retrieved in the business component (and,
indirectly, the multi-value link and multi-value group applet) are those
designated as being in this multi-value group.

NOTE: Do not define tables with names longer than 18 characters in the DB2
environment.

Fields
A field associates a column with a business component. This is how columns are
assigned to a business component, and provided with meaningful names that do
not require knowledge of the tables or joins of their origin.
362 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
Fields are the source of data for controls and list columns in applets. Figure 86
illustrates data from fields displayed in a form applet.

Figure 87 illustrates data from fields displayed in a list applet.

Figure 86. Data from Fields Displayed in a Form Applet

Figure 87. Fields Displayed in a List Applet

Displays the Account
field from the

Displays the Name
field

Displays the
Revenue field

Displays the Name field for
Accounts business
component

Displays the Work
Phone # field
Version 7.5.3, Rev. A Siebel Tools Reference 363

Business Objects Layer

Fields
As you can see from Figure 86 and Figure 87, controls in a form applet and list
columns in a list applet obtain their data from fields in the business component
used by the applet. The Field property setting in a Control or List Column object
definition specifies the field. The Business Component property in the applet
specifies the business component. These property relationships are illustrated in
Figure 88.

Field is a child object type of Business Component. A field represents information
from a database column obtained through the corresponding column object
definition. Columns may be from the base table, extension tables, and joined tables
of the business component. Alternately, a field may be a calculated field whose
values are derived from the values in other fields in the business component, but
not stored in the database.

Figure 88. Field Property Relationships
364 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
In the field object definition (for other than calculated fields), the column and Join
properties together specify the table and column from which the field’s data is
obtained. The Join property, if blank, indicates that the column is obtained from the
business component’s base table. If it is non-blank, the Join property identifies the
join object definition that supplies data from an extension table or other joined
table. Based on the Join property, the table supplying the field’s data is identified.
The Column property identifies the column to use within the specified table. These
relationships are illustrated in Figure 89.

NOTE: You should not map multiple fields to the same column in a table. This can
lead to error messages when updating the data. The SQL query fails because it tries
to access the same column twice in the same query.

Figure 89. Field Relationship Details
Version 7.5.3, Rev. A Siebel Tools Reference 365

Business Objects Layer

Fields
System Fields
System fields are provided in all business components in standard Siebel eBusiness
Applications. These fields represent the data from system columns, which are
described in “System Columns” on page 222.

Table 32 identifies the correspondences between system fields and system columns.

These fields are automatically provided, and do not need to be explicitly declared.
They may be referenced in the Field property of controls, list columns and other
object definitions even though they do not display in the Object List Editor for the
business component.

NOTE: Do not change system fields, for example by renaming them. Changing Siebel
system fields is not supported.

Table 32. System Fields and Their System Columns

System Field Name System Column Name Description

Id (or blank) ROW_ID Primary key for the table.

Created CREATED Creation date and time of the row.

Created By CREATED_BY User logon ID of the person who created the
row.

Updated LAST_UPD Date of last update of the row.

Updated (system field) is updated only when
the row with the Updated column in it is
changed.

Updated By LAST_UPD_BY User logon ID of the person who last updated
the row.
366 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
Calculated Fields
Calculated fields have a Calculated property of TRUE and a non-blank Calculated
Value property. Calculated fields obtain their values from other fields in the same
business component, or from the master business component in an active link in
which the current business component is the detail.

NOTE: Calculated fields are not automatically refreshed when a related field value
changes; they are refreshed only after committing the record. To have them refresh
immediately after the fields have been changed the Immediate Post Changes
property of the field needs to be set to TRUE.

The Calculated Value property contains an expression built from field names,
standard functions, and string, numeric and logical operators. For example, the Full
Name field in the Contact business component has the following Calculated Value
property setting:

IIf (Language () = "JPN", [Last Name] + ' ' + [First Name],
[First Name] + ' ' + [Last Name])

The meaning of this expression is as follows: if the active client language setting is
Japanese, construct the Full Name from the Last Name, a blank space, and then the
First Name. Otherwise, construct the Full Name from the First Name, a blank space,
and then the Last Name.

NOTE: A calculated field cannot reference itself in the Calculated Value property. For
example, you cannot use [Last Name] in a calculation expression for the Last Name
field.

For information on the construction of calculated field expressions for the
Calculated Value property, see Siebel Developer’s Reference.

NOTE: Queries on calculated fields are not supported if the Cache Data property of
the business component is set to TRUE.

If you need to remove a calculated field, use the following procedure.
Version 7.5.3, Rev. A Siebel Tools Reference 367

Business Objects Layer

Fields
To remove a calculated field

1 Delete the calculated fields from the desired list applet or set the Inactive
property of the List columns objects at the Applet Level to TRUE.

2 Navigate to the desired Business Component > Field objects level and set the
Inactive Property for the calculated field to TRUE.

3 Set the Force Active property to FALSE.

4 Compile the relevant projects.

Field Data Types
The Type property specifies the data type for the field. Field data types are used to
identify the type of data retrieved from and sent to the database server.

NOTE: Calculated fields are not automatically refreshed when a related field value
changes; they are refreshed only after committing the record. To have them refresh
immediately after the fields have been changed the Immediate Post Changes
property of the field needs to be set to TRUE.

These data types are not mapped to the physical data types defined by the database.
The data type of the field is generally more specific than the data type of the
underlying column (as identified in the Physical Type property of the column). For
example, both DTYPE_NUMBER (decimal) and DTYPE_INTEGER field data types
have the Number physical data type in the column.

It is not recommended to map a field to a different table column type, for example
a DTYPE_NUMBER field mapping to a table column of type Varchar.

Just as the data type of the underlying column restricts the set of field data types
that will work correctly, the data type of the field restricts the set of correctly
functioning format options in the control or list column that displays it.
368 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
Most formatting is defaulted from the Microsoft Windows Control Panel. Overriding
the default format in the repository is possible but might lead to confusion. For
example, overriding a number format to show more or fewer decimal places would
be useful, but overriding a date format to DD/MM/YY would be confusing to a user
who has set the date format to MM/DD/YY in the Control Panel.

NOTE: Multi-value fields (fields with a Multi Valued property setting of TRUE) have
a blank Type property, because the data type of the field is specified in the detail
business component that populates it.
Version 7.5.3, Rev. A Siebel Tools Reference 369

Business Objects Layer

Fields
All field data types are prefaced with DTYPE_. Table 33 describes the Siebel field
data types.

Table 33. Field Data Types

Field Data Type
Physical
Type

Max.
Length Description

DTYPE_BOOL Character 1 Refers to data stored as Y or N, often displayed as TRUE or
FALSE and checked or unchecked.

DTYPE_CURRENCY Number 22 Refers to the data as currency.

You can control the appearance of currency values on a screen
through the Windows Control Panel, or you can specify an
explicit format mask in the Display Format property by using
the following symbols:

■ Dollar sign ($). Specifies the position for the currency
symbol.

■ Trailing period (.). Specifies the default precision for the
currency.

■ All valid symbols described for DTYPE_NUMBER.

DTYPE_DATE Date 7 Refers to the data as a date. When the date is returned, any
additional information (for example, time) is ignored. You can
set the appearance of date values through the Windows
Control Panel, or you can specify an explicit date format using
the following symbols:

■ YY. Two-digit year without a leading zero.

■ Y. Two-digit year with a leading zero.

■ YYYY. Four-digit year without a leading zero.

■ YYY. Four-digit year with a leading zero.

■ MM. Month without a leading zero.

■ M. Month with a leading zero.

■ DD. Day without a leading zero.

■ D. Day with a leading zero.

■ Slash (/). Position of the date separator (you specify the
character in the Windows Control Panel).
370 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
DTYPE_DATETIME Date Time 7 Refers to the data as a date and time. You can set the
appearance of time and date values through the Windows
Control Panel, or you can specify an explicit date format using
a combination of the symbols for DTYPE_DATE and
DTYPE_TIME.

Alternatively, you can use one of the following three
properties:

■ Date. Displays only the date portion of the value, using the
format specified in the Windows Control Panel.

■ Time. Displays only the time portion of the value, using the
format specified in the Windows Control PanelTimeNoSec.
Displays only the hour-and-minute portion of the value,
using the format specified in the Windows Control Panel.

■ TimeNoSec. Displays only the hour-and-minute portion of
the value, using the format specified in the Windows
Control Panel.

DTYPE_
UTCDATETIME

UTC Date
Time

30 Indicates that the corresponding field represents date
information, with both a date and a time component, that will
be stored in the database in UTC time (UTC is the equivalent
of Greenwich Mean Time without any adjustments for daylight
savings time). Fields of this type should correspond to
database columns of type U, and the display values for these
fields will be converted to/from UTC based on the default time
zone specified in the user's preferences.

DTYPE_ID Varchar 15 Refers to the data as the primary key automatically generated
by the application.

Fields mapped to extension columns of physical type
Varchar(15) will automatically default to data type DTYPE_ID.

DTYPE_INTEGER Number 22* Refers to data as whole numbers ranging in value from
- 2147483648 to 2147483647.

Table 33. Field Data Types

Field Data Type
Physical
Type

Max.
Length Description
Version 7.5.3, Rev. A Siebel Tools Reference 371

Business Objects Layer

Fields
DTYPE_NOTE Long 16 KB Refers to the data as a long string less than or equal to 16 KB
(16383 bytes); the default, if the length is not explicitly
defined, is 16 KB. When used with the Pop-up Edit property in
a control or list column, this data type is used to indicate to the
user interface that a multiline edit box should be used.

Users cannot query on fields of type DTYPE_NOTE.

DTYPE_NUMBER Number 22 Refers to the data as a number.

You can control the appearance of numeric values through the
Windows Control Panel, or you can specify an explicit format
mask using the following symbols:

■ Zero (0). Specifies the position of a mandatory digit.

■ Pound sign (#). Specifies the position of an optional digit.

■ Comma (,). Specifies the position of the thousands
separator (you specify the character in the Windows
Control Panel).

■ Period (.). Specifies the position of the decimal separator
(you specify the character in the Windows Control Panel).

■ Trailing period (.). Specifies default display precision.

■ Plus sign (+). Specifies the position and appearance of
negative value indicator (plus sign if positive, minus sign if
negative).

■ Minus sign (-). Same as plus sign.

DTYPE_PHONE Number 40 Refers to the data as a phone number. The DisplayFormat
property is ignored for values of this type.

DTYPE_TEXT Varchar 2 KB Refers to the data as a string less than or equal to 2000 bytes;
the default is 255. The DisplayFormat property is ignored for
values of this type.

You can use ForceCase = “Upper” or ForceCase = “Lower” to
force the text to all uppercase or all lowercase after the end
user tabs out of the field. You can use ForceCase =
“FirstUpper” to force the first letter of each word to uppercase
after the user steps off the record. Otherwise, the text is in
mixed case as the user entered it.

Table 33. Field Data Types

Field Data Type
Physical
Type

Max.
Length Description
372 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
NOTE: You cannot add long (16 KB limit) columns to Siebel base tables.

Sequence Fields
Situations can occur in which you need to create a field that provides sequential
numbering for the parent business component. For example, you may need to
number line items in an Order or products in an Opportunity. Sequential numbering
is not automatically provided in any system columns in standard tables in Siebel
applications. However, you can configure a sequence field in a detail business
component by adding a business component user property called Sequence Field
and creating a sequence business component with a special business component
class called CSSSequence.

DTYPE_TIME Time 7 Refers to the data as a time.

When the time is retrieved, any additional information (such
as date) is ignored. You can set the appearance of time values
through the Windows Control Panel, or you can specify an
explicit time format using the following symbols:

■ HH. Hour (based on 24-hour clock) without a leading zero.

■ H. Hour (based on 24-hour clock) with a leading zero.

■ hh. Hour (based on 12-hour clock) without a leading zero.

■ h. Hour (based on 12-hour clock) with a leading zero.

■ mm. Minute without a leading zero.

■ m. Minute with a leading zero.

■ ss. Second without a leading zero.

■ s. Second with a leading zero.

■ Colon (:). The position of the time separator (you specify
the character in the Windows Control Panel).

Table 33. Field Data Types

Field Data Type
Physical
Type

Max.
Length Description
Version 7.5.3, Rev. A Siebel Tools Reference 373

Business Objects Layer

Fields
The details of configuration of a sequence field appear in Figure 90.

The roles of the object definitions in Figure 90 on page 374 are as follows:

Figure 90. Sequence Field Configuration Details
374 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
■ Master business component. In the master-detail relationship in which the detail
records are to be numbered, this is the business component that holds master
records. For example, the Opportunity business component is the master in the
master-detail relationship with Opportunity Product.

■ Numbered detail business component. In the master-detail relationship, this is the
business component that holds detail records. For example, the Opportunity
Product business component is the detail in the master-detail relationship with
Opportunity. The numbered detail business component has the following
important child object definitions:

■ Line Number field. This field, named Line Number, is a field of type
DTYPE_NUMBER that holds the resulting sequence value.

■ Business component user. A business component user property object
definition named Sequence Field needs to be present, with the Value property
set to “Line Number.”

■ Sequence business component. This business component is named xx.Line
Number (Sequence), where xx is the name of the numbered detail business
component. It has a specialized class of CSSSequence, and the following two
fields:

■ Sequence field. This field, named Sequence, is of type DTYPE_NUMBER.

■ Foreign key field. This field is a foreign key field based on a foreign key column
in the detail table. The foreign key column points to the primary key of the
base table of the master business component, and may be used to specify the
link between the master and sequence business components.

■ Detail table. The detail table is the base table for both the numbered detail and
sequence business components.

■ Links. One link provides the master-detail relationship between the master and
numbered detail business components. The other link provides the master-detail
relationship between the master and sequence business components. The link
to the numbered detail business component is usually pre-existing, such as
Opportunity or Opportunity Product. The link to the sequence business
component is usually added by the developer, except when the sequence
configuration is included in standard Siebel applications. Opportunity or
Opportunity Product.Line Number (Sequence) is an example of a link to a
sequence business component.
Version 7.5.3, Rev. A Siebel Tools Reference 375

Business Objects Layer

Fields
■ Business Object. The second link is included in the same business object that
holds the first link.

For an example of sequence field configuration and procedures see Chapter 8,
“Defining Business Objects and Business Components.”

Examples of sequence field configuration in standard Siebel applications can be
viewed in Siebel Tools. For example, examine the Opportunity Product and
Opportunity Product.Line Number (Sequence) business components, which are the
numbered detail and sequence business components, respectively.

To add a sequence field to a business component that does not currently have one

NOTE: Before you begin the procedure, check to see if the class of the detail business
component is CSSBCBase. If it is not, you need to contact Siebel Technical Services
before going any further.

1 Verify that the business component to which you want to add a sequence field
is the detail business component in a master-detail relationship. This is the
numbered detail business component.

NOTE: The numbering of detail records will start from 1 within each master
record.

2 Add a child field object definition to the numbered detail business component.
Set the Name property value to Line Number, the Type to DTYPE_NUMBER and
the column to a numeric extension column such as ATTRIB_14.

3 Add a child business component user prop object definition to the numbered
detail business component. Set the Name property value to Sequence Field, and
the Value property to Line Number.

4 Create a business component. Set the Class property to CSSSequence, the table
to the name of the base table of the numbered detail business component, and
the Name to xx.Line Number (Sequence), where xx is the name of the numbered
detail business component. This is the sequence business component.

5 Set the Sort Spec of the xx.Line Number (Sequence) business component to
Sequence (DESCENDING).
376 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Fields
6 Add a child field object definition to the sequence business component. Specify
a Name property value of Sequence, and a column value the same as the
extension column specified for the Line Number field in the numbered detail
business component.

7 Add a child field object definition to the sequence business component. This is
the foreign key field that establishes the master-detail relationship to the master
business component. The Column property should be set to the same column as
the corresponding field in the numbered detail business component.

8 Create a link object definition that establishes a master-detail relationship
between the master and sequence business components.

9 Create a Business Object Component child object definition of the business
object or business objects that use the existing link between the master and
numbered detail business components. Specify the new link and the sequence
business component in the Link and Business Component properties,
respectively.

10 Expose the Line Number field in applets that display records from the numbered
detail business component.
Version 7.5.3, Rev. A Siebel Tools Reference 377

Business Objects Layer

Joins
Joins
A Join object definition creates a relationship between a business component and a
table other than its base table. The join allows the business component to use
columns from that table. The join uses a foreign key in the business component to
obtain rows on a one-to-one basis from the joined table, even though the two do not
necessarily have a one-to-one relationship. Figure 91 shows the Contacts list
displaying two list columns obtained from a join.

A Contact business component record represents a contact person at an account.
Therefore, one account record has one or more contact records, meaning that there
is a one-to-many (master-detail) relationship between the tables holding account
and contact information. A detail record (or row) in a master-detail relationship
always has one master record (or row), as illustrated in Figure 92.

Figure 91. List Columns Obtained from a Join

The Contacts list displays
records from the Contacts
business component.

This list column displays the
NAME column from a join to
the S_ORG_EXT table.

This list column displays
the LOC column from the
same join.

Figure 92. Master-Detail Relationship in a Join
378 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Joins
The master-detail relationship is implemented with a foreign key column in the
detail table. Multiple rows in the detail table have the same foreign key value
pointing back to the same row in the master table.

Returning to the accounts and contacts example, you can look at accounts
(S_ORG_EXT table rows) from the perspective of contacts (S_CONTACT table
rows). Each detail table row (S_CONTACT) has exactly one master table row
(S_ORG_EXT) in the one-to-many relationship. The one account row for each
contact row makes it possible to treat account rows as if they were appended onto
the ends of the contact rows. This provides account information about each
contact’s account, along with the other contact information.

NOTE: Contact may have 1 or 0 Accounts.

A business component whose base table is a detail table in a master-detail
relationship can include columns from the master table as fields. This is the
principle behind a join.
Version 7.5.3, Rev. A Siebel Tools Reference 379

Business Objects Layer

Joins
Figure 93 illustrates the set of rows resulting from a join between the Contacts
business component and S_ORG_EXT (accounts) table.

In the diagram, the account number (Acct 1) in Contacts is the foreign key.

Figure 93. Set of Rows Resulting from a Join
380 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Joins
A join is always one-to-one and it is always between a business component and a
table. Once a join is created, you can create additional fields in the business
component based on columns in the joined table. In the diagram, the account name,
city and state are fields that can be added to the Contact business component
because of this join.

NOTE: It is possible to base a join on a joined field. It is possible to use a joined field
as Source Field on the join specification. This is important if, for example, you need
to join in grandparent data through the parent id field on the parent business
component.
Version 7.5.3, Rev. A Siebel Tools Reference 381

Business Objects Layer

Joins
How a Join Is Constructed
The object definition relationships in a join are illustrated in Figure 94.

The roles of the object definitions in the diagram are summarized as follows:

■ Business Component object type. The business component is the parent object
definition of the join. Because of the join, fields in the business component
(called joined fields) can represent columns from the joined table.

Figure 94. Join Relationships
382 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Joins
■ Joined field. A joined field in the business component represents a column from
a table other than the business component’s base table. Therefore, a joined field
must obtain its values through a join. A joined field has the name of the join in
its Join property. Together the Join property and Column property identify the
column and how to access it. When creating a joined field in a business
component, you can change the Type property from the default DTYPE_TEXT to
a more appropriate type. For example, if you are joining a table column that
contains phone numbers, you can change the Type field to DTYPE_PHONE.

■ Join object type. Join is a child object type of the Business Component object
type. The Join object definition uniquely identifies a join relationship for the
parent business component and provides the name of the destination (joined)
table. The join object definition identifies the joined table in the Table property.
The name of the base table is already known to the business component.
Typically, a join object definition is given the same name as the joined table.

■ Join Specification object type. The join specification object definition is a child of
the join object definition. It identifies the foreign key field in the business
component and the primary key column in the joined table (that the foreign key
points to).

The Source Field property identifies the foreign key field in the business
component. If left blank, the Source Field is the Id field, indicating a one-to-one
relationship between the business component and the joined table.
Occasionally, a system field such as Created By or Updated By may be specified
as the foreign key field in the Source Field property.

The Destination Column property identifies the primary key column in the
joined table. A non-blank Destination Column property value is required if the
join occurs on a column other than ROW_ID. A blank value in the Destination
Column property means that the destination column is ROW_ID, which is
typically the primary key in tables in Siebel applications.

NOTE: In rare circumstances, there can be multiple join specifications in a single
join. For example, the Sub Campaign business component has a join to the
S_LANG table with two join specifications. In such cases the source fields in the
join specifications should be based upon the same table.
Version 7.5.3, Rev. A Siebel Tools Reference 383

Business Objects Layer

Joins
■ Join Constraints. A join constraint is a constant-valued search spec applied to a
column during a join. It is for use with outer joins.

NOTE: Set the Outer Join Flag to TRUE if you want to retrieve all the records in
the business component even when the joined fields are empty.

■ Foreign key (source) field and foreign key column. The foreign key field is identified
in the Source Field property of the join specification. It represents a foreign key
column in the base table, pointing to rows in a particular table used in joins. For
example, in the Contact business component, the foreign key field to the join on
accounts data is the Account Id field, which represents the PR_DEPT_OU_ID
column in the base table.

■ Joined table. The joined table is the master table in the master-detail relationship.
It provides columns to the business component through the join. The joined
table is identified in the Table property of the Join object definition.

NOTE: When configuring a recursive or self join, the Alias name of the joins must
be different than the Table Name. Using the same name will result in the
following error message: “Table ‘T1’ requires a unique correlation name.” This
error is often due to a faulty recursive or self join definition.

■ Primary key (destination) column. The join specification identifies the primary key
column in the joined table (in the Destination Column property). Every standard
table in standard Siebel applications has a ROW_ID column that uniquely
identifies rows in the table. ROW_ID is the destination in most joins.

■ Mapped column. Columns in the joined table are available for use in fields in the
business component.
384 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Joins
Using a Predefault Value for a Join Field
Since a join field cannot be updated, you cannot use a predefault value in the
regular way as a default field value if nothing is specified when a record is inserted.
You can use a predefault value for a join field to show the join field value
immediately as the new record is being inserted.

To use a predefault value for a join field

The following procedure uses the Opportunity Product business component as an
example.

1 Define a join to S_OPTY in the Opportunity Product business component.

2 Define two new fields based on the join to show Opportunity Sales Stage and
Name.

3 Add the two fields to the Opportunity Product applet.

4 Compile and test using the standard Opportunities—Products view.

a Add a new Product for an Opportunity.

b Note that the join fields are not populated until you requery the applet.

(However, the source field—Oppty Id—for the join is populated.)

5 Set the Predefault properties of the new fields to Parent:
'ParentBusinessComponent.JoinedField'.

For example, predefault Opportunity Name with Parent: 'Opportunity.Name'
and predefault Opportunity Sales Stage with Parent: 'Opportunity.Sales Stage'.

6 Set the Link Specification property of the joined fields (Name and Sales Stage)
in the parent business component to TRUE.

7 Compile and then add a new product for an Opportunity.

The join fields are populated immediately, and you do not need to requery the
applet to see them.
Version 7.5.3, Rev. A Siebel Tools Reference 385

Business Objects Layer

Party Business Components and Joins: Party Extension Tables
Party Business Components and Joins: Party Extension
Tables

Party business components consist of business components that represent all types
of Siebel person and organization entities and reference the S_PARTY table. The
following are examples of party business components:

■ Account

■ Contact

■ User

■ Organization

■ Employee

■ Position

■ Household

■ Access Group

■ User List

S_PARTY has many extension tables, including S_ORG_EXT, S_CONTACT,
S_POSTN, S_USER, and so on. Party business components store their main data in
these extension tables.

You can bring party data into non-party and party business components for display
in applets. (Party data refers to data stored in a S_PARTY extension table such as
S_CONTACT (contacts) or S_ORG_EXT (accounts).)

NOTE: For a description of the S_PARTY data model, see Chapter 5, “Data Objects
Layer.”
386 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Party Business Components and Joins: Party Extension Tables
Mapping Fields in Party Business Components
There is an implicit join available for each extension table for a base table. Party
business components store their main data in S_PARTY extension tables
(Figure 95). The main fields are mapped using the implicit join for the extension
table (Figure 96 on page 388).

Figure 95. Mapping Extension Tables to S_PARTY
Version 7.5.3, Rev. A Siebel Tools Reference 387

Business Objects Layer

Party Business Components and Joins: Party Extension Tables
Bringing Party Data into a Non-Party Business Component
For example, you can bring account data from the S_ORG_EXT table into the
Opportunity business component to display in an applet, as shown in Figure 97.

Figure 96. Mapping Fields in Party Business Components Using Implicit Joins

Figure 97. Bringing Party Data into a Non-Party Business Component
388 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Party Business Components and Joins: Party Extension Tables
Join Definition
The join definition references the extension table storing the data of interest
(Figure 98).

Join Specification Definition
Source Field references the relevant foreign key column to the joined table.
Destination Column references the PAR_ROW_ID column in the joined table
(Figure 99).

Figure 98. Join Definition

Figure 99. Join Specification Definition
Version 7.5.3, Rev. A Siebel Tools Reference 389

Business Objects Layer

Party Business Components and Joins: Party Extension Tables
PAR_ROW_ID
The PAR_ROW_ID column identifies the primary key of the related record
(Figure 100).

Bringing Party Data into Party Business Components
For example, you can bring account data from the S_ORG_EXT table into the
Contact business component to display in an applet, as shown in Figure 101.

Figure 100. PAR_ROW_ID

Figure 101. Bringing Party Data Into a Party Business Component
390 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Party Business Components and Joins: Party Extension Tables
Join Definition
You should not use the implicit join for S_ORG_EXT that already exists. Both
S_CONTACT and S_ORG_EXT are extension tables for S_PARTY. You must use an
explicit join to S_ORG_EXT based on the appropriate foreign keys. It will have a
different alias (Figure 102).

Figure 102. Join Definition
Version 7.5.3, Rev. A Siebel Tools Reference 391

Business Objects Layer

Party Business Components and Joins: Party Extension Tables
Mapping a Field to a Column in a Party Table
You must do the following:

■ Create the required join if it does not exist.

■ Create the single-value field.

Creating a Join to a Party Table
■ Verify that the relationship is 1:1 or M:1.

■ Identify the foreign key column for the desired relationship to the joined table.

■ Create, if necessary, a field in the business component to reference the foreign
key column.

■ Create the join. Assign an appropriate alias property.

■ Create the join specification. Use PAR_ROW_ID for the Destination Column.

Creating a Single-Value Field
■ Select the appropriate explicit join (Figure 103).

■ Select the desired column in the joined table.

■ Set the appropriate type.

Figure 103. Mapping a Field to a Column in a Party Table
392 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Links
Links
A link implements a one-to-many (or master-detail) relationship between business
components based on their base tables. The Link object type makes master-detail
views possible, in which one record of the master business component displays
with many detail business component records that correspond to the master. A
master-detail relationship appears in Figure 104, showing the Contact in the form
and the many accounts assigned to contact in the list.

Figure 104. Link in a Master-Detail View

The form applet displays
one record from the master
business component.

The list applet displays all records
from the detail business component
that correspond to the master record.
Version 7.5.3, Rev. A Siebel Tools Reference 393

Business Objects Layer

Links
In this master-detail view, each Opportunity record can have many Product records.
The synchronization between the master and detail business components in a
master-detail view is accomplished with a link between the two business
components and the inclusion of the link and business components in a business
object. Business objects are described in “About Business Objects” on page 418.

NOTE: Link destination fields are initialized automatically when you add a record to
the child business component in a link.

Links are also used in the implementation of multi-value group applets. A multi-
value group applet is a dialog box that displays multiple records of data associated
with one control in the originating applet. For example, a multi-value group applet
may be used to list the addresses, industries, or sales team members associated with
an Account. A multi-value group applet for account addresses appears in
Figure 105.

Figure 105. Multi-Value Group Applet Example

For one Account record... ...the Account Addresses (MVG Applet) dialog box
displays many Business Address records.
394 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Links
The relationship between the business component of the originating applet and the
business component of the multi-value group applet is one-to-many; that is, a
master-detail relationship. This master-detail relationship, as with all master-detail
relationships in Siebel applications, is implemented through a Link object (in
addition to other object types). A multi-value link is necessary to adapt a link for
multi-value group applet use.

NOTE: The relationship between the two business components is one-to-many in the
context of the multi-value link and multi-value group. There may be, in fact, a
many-to-many relationship (for example, between opportunities and positions), but
in the context of the multi-value group, only one master-detail relationship is
presented.
Version 7.5.3, Rev. A Siebel Tools Reference 395

Business Objects Layer

Links
How a Link Is Constructed
The relationships between object definitions used to implement a link appear in
Figure 106.

The object definitions in Figure 106 are as follows:

■ Link. The Link object definition specifies a master-detail relationship between
two business components. It identifies the master and detail business
components, the key field in the master business component, and the foreign
key field in the detail business component.

■ Master business component. The master business component is the “one” in the
one-to-many relationship. The name of this object definition is specified in the
Parent Business Component property in the Link object definition.

Figure 106. Link Property Relationships
396 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Links
■ Detail business component. The detail business component is the “many” in the
one-to-many relationship. The name of this object definition is specified in the
Child Business Component property in the Link object definition.

NOTE: The Calendar business component should not be used as the master or
detail business component in a link.

■ Source (primary key) field. The source field, also known as the primary key field,
is a field in the master business component that uniquely identifies records in
the business component. It represents the ROW_ID column from the business
component’s base table. The name of this field is specified in the Source Field
property in the Link object definition. Source field typically, but not necessarily,
represents the row id column from the business component’s base table.

■ Destination (foreign key) field. The destination field, also known as the foreign key
field, is a field in the detail business component that points back to the master
record in the business component. Account Id and Opportunity Id are typical
foreign key fields. A foreign key field represents a foreign key column from the
detail business component’s base table, such as PR_DEPT_OU_ID (the base
table for the Account business component). The name of this field is specified
in the Destination Field property in the Link object definition.

In a link based on an intersection table, that is, one in which the Inter Table,
Inter Parent Column, and Inter Child Column properties are non-blank, you do
not specify the Source Field or Destination Field properties. Otherwise, the
Destination Field property needs to contain the name of a field in the base table
of the business component (not based on a join), and the field has to be
updated.

NOTE: For a M:M link, you could specify a source field. Destination will always
default to Id, even if another value is specified.
Version 7.5.3, Rev. A Siebel Tools Reference 397

Business Objects Layer

Links
Using a Link in a Master-Detail View
A link in a master-detail view is implemented using the object types illustrated in
Figure 107.

In a master-detail view, a Link object definition is incorporated into a business
object (by means of a Business Object Component object definition) to establish the
master-detail relationship. This relationship applies to any use of the two business
components together within the context of the business object. Each view specifies
the business object it uses in its Business Object property. This forces the view to
operate as a master-detail view, as specified in the link, without any additional
configuration of the view. This is discussed in greater detail in “Master-Detail
Views” on page 490.

Figure 107. Link Architecture
398 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Links
Using a Link in a Multi-Value Group
A link object definition provides the basis for a multi-value link object definition,
which in turn is used to implement a multi-value group applet. A multi-value group
applet is a dialog box that provides the means to display and maintain multiple
records of data associated with one control in the originating applet.

Multi-value links are described in “Multi-Value Links” on page 400.

Using a Link in a Many-to-Many Relationship
Two link object definitions with opposite master-detail settings are used to establish
a many-to-many relationship based on an intersection table. The Inter Table, Inter
Parent Column, and Inter Child Column properties of the two Link object definitions
are used to establish the connection between the links and the intersection table.

For information on this use of links and how to configure them for this purpose,
refer to “Intersection Tables” on page 204.

Using a Link When Merging Records
When you merge two records into a business component, any attached records (for
example, the record for another business component) are not reassigned. For re-
assignment to take place, you need to define a link between the two business
components.

Cascade Delete Property
The Cascade Delete property in a Link object definition indicates what action to
perform on detail business component records of the link if the master record is
deleted. The following three values are available for this property:

■ CLEAR. If CLEAR, the foreign key reference is removed if the master record is
deleted, but the detail records remain in place.

■ DELETE. If DELETE, the detail records are deleted along with the master.
Version 7.5.3, Rev. A Siebel Tools Reference 399

Business Objects Layer

Multi-Value Links
■ NONE. If NONE, no operations are performed on the detail record in response to
deletion of the master, and the foreign key reference is not removed.

CAUTION: Do not use DELETE if the child business component in this link is also a
detail business component in another link. In this case, you use CLEAR instead.

Cascade Delete is not available for many-to-many links. With a many-to-many link,
Siebel applications will automatically delete the intersection record but will leave
the child record intact, as it may have other parents.

When you delete a record which is pointed to by foreign keys of other tables, the
references to it may or may not be deleted. If those references are not deleted, the
user is left with row IDs which point to nonexistent records. In the case of multi-
value groups, sometimes these foreign keys will be converted to say “No Match
Row Id.”

Multi-Value Links
The Multi Value Link object type is a child object type of the Business Component
object type. A multi-value link implements a special use of the Link object type,
which is the maintenance by the user of a list of records attached to a control or list
column in an applet. The group of attached detail records is called a multi-value
group.
400 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
An example of a multi-value group is the Account Addresses dialog box invoked
from the Address Line 1 text box in the Account Entry Applet. This is illustrated in
Figure 108 and Figure 109.

Figure 108. Multi-Value Group Example

The Account Addresses dialog box
invokes the MVG applet and
displays the primary Address
value.

The Address text box displays
primary field value from the
multi-value group.
Version 7.5.3, Rev. A Siebel Tools Reference 401

Business Objects Layer

Multi-Value Links
An account can have multiple addresses. These are stored in the Business Address
business component. Clicking the Select button to the right of the Address text box
brings up a dialog box. This dialog box lists the attached addresses, including the
street address, city, state, and ZIP Code for each. It also provides the means for the
user to add, delete or modify individual records.

In the Account Form Applet, the Address, City, State, Zip and Country text boxes
display the values from the corresponding fields in the primary record in the
Business Address business component. The primary record is indicated in the multi-
value group applet with a checkmark in the list column labeled Primary. The user
can select a different primary record by clicking the Primary list column in a
different record.

Figure 109. Multi-Value Group Example

The Pick Organization dialog
box invokes the MVG applet

and displays the primary
Organization value.

The Organization text box
displays primary field value from
the multi-value group.
402 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
The fields in the master business component (Account in the illustration) that are
populated by the primary record in the multi-value group business component are
called multi-value fields.

NOTE: If you want to query the originating applet for all master records that have a
detail record with a specific field value you can only use Multi-value fields.

Multi-value fields are populated with data from a record in the detail business
component because of the multi-value link. Multi Value Link is a child object type
of Business Component that defines a master-detail relationship (based on a link)
to embed in the business component. These embedded master-detail relationships
are used to expose fields from the detail business component as fields directly in the
master business component.

NOTE: Most, but not all, multi-value links are set up to designate a primary record.
Those that do not designate a primary use the first record retrieved from the detail
business component. For more information, refer to “Primary ID Field” on
page 413.

How a Multi-Value Link Is Constructed
A multi-value link is based on a link object definition; the link is referenced in the
Destination Link property of the Multi Value Link object definition. It is the link
object definition that specifies the one-to-many relationship between the master
and detail business components. The multi-value link object definition performs
two roles:

■ To give fields in the master business component access to primary record field
values through the link.

■ To allow embedding of detail data in the same business component as master
data, so both can appear in the same applet.
Version 7.5.3, Rev. A Siebel Tools Reference 403

Business Objects Layer

Multi-Value Links
The object types illustrated in Figure 110 participate in the configuration of a multi-
value link.

The object type box in the diagram labeled (Multi Value) Field indicates that either
field or multi-value field is correct for referring to this object type in this context.
Multi Value Field is a distinct object type, but only in the sense that it can be
accessed in the Object Explorer. It is only a representation of the Field object type.
Multi-value fields are those fields that have a non-blank Multi Value Link property
and a Multi Valued property value of TRUE; all other fields are single-value fields.

Figure 110. Multi-Value Link Architecture
404 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
The details of the object definition relationships appear in Figure 111.

The roles of the object definitions in Figure 111 are explained in the following list.
References to the address example refer to the Account Addresses dialog box
illustrated in Figure 108 on page 401.

■ Master business component. The master business component is the “master” in
the master-detail relationship specified in the link. Fields from this business
component are displayed in the applet from which the multi-value group applet
is initiated. The master business component in the Account Addresses dialog
box example is Account.

NOTE: The Account Addresses dialog box example is illustrated in Figure 108 on
page 401. The explanations of object definitions below refer to this example.

Figure 111. Multi-Value Link Details
Version 7.5.3, Rev. A Siebel Tools Reference 405

Business Objects Layer

Multi-Value Links
■ Multi-value fields. Multi-value fields are fields in the master business component
that are populated by the current (typically primary) record in the detail
business component through the multi-value link and link object definitions.
Each of these fields has the name of the multi-value link specified in its Multi
Value Link property, and a Multi Valued property setting of TRUE. A multi-value
field has a blank Column property setting because its values are obtained from
the current record in the detail business component, rather than from the master
business component's base table.

■ Key field. The key field in the master business component is the primary key for
that business component. The key field is referenced in the Source Field property
of the Link object definition.

■ Multi Value Link object. The Multi Value Link object definition defines the
relationship between the link object definition and fields in the master business
component, using the following properties:

■ Destination Link. Identifies the link.

■ Destination Business Component. Identifies the detail business component.

■ Primary Id Field. Identifies the field in the detail business component that
designates which record is the primary.

In the example, the multi-value link is called Business Address.

■ Link. The Link object definition specifies a master-detail relationship between
the two business components. The Link object definition can be used in other
contexts, such as master-detail views or other multi-value links. The multi-value
link identifies the link in its Destination Link property. In the address example,
the link is Account and Business Address.

■ Detail business component. The detail business component supplies the detail
records in the master-detail relationship. In the address example, this is Business
Address.
406 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
■ Foreign key field. The foreign key field contains row ID values that point back to
records in the master business component and uniquely identify the master for
each detail business component record. The foreign key field is used in the
specification of the link; the link identifies the foreign key field in its Destination
Field property. In the address example, the foreign key field is Account Id.

NOTE: There is no foreign key field specified in a link based on an intersection
table.

■ Primary ID field. The primary ID field in the master business component holds the
row ID value of the primary record for each multi-value group in the detail
business component. It is identified in the Primary Id Field property of the multi-
value link. The primary ID field allows the primary detail record to be identified
for each master record. For more information, refer to “Primary ID Field” on
page 413.
Version 7.5.3, Rev. A Siebel Tools Reference 407

Business Objects Layer

Multi-Value Links
How an Indirect Multi-Value Link Is Constructed
If there is a join object definition that joins a master business component to the
master business component of the link, the existing link can be used in a multi-
value link. In essence, the multi-value link is being based on a “join to a link.” Such
a multi-value link is known as an indirect multi-value link. The configuration of an
indirect multi-value link is illustrated in Figure 112.

Figure 112. Indirect Multi-Value Link Details
408 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
In Figure 112 on page 408, the object definition names have been provided for an
example multi-value link called Business Address in the Contact business
component. Although given the same name as its counterpart in the Account
business component, this is a different object definition. For a comparison of
conventional and indirect multi-value links, review Figure 111 on page 405.

The primary difference between the Business Address multi-value link in the
Contact business component and in its Account counterpart is that the multi-value
link object definition is found in a business component other than the master
business component.

The Source Field property in the multi-value link in the Contact business
component is non-blank. In a conventional multi-value link this property is blank,
indicating that the Id field in the current business component is used
(corresponding to ROW_ID in the base table). In the indirect multi-value link, the
Source Field property specifies a field in the S_ORG_EXT join called Joined Account
ID. The Joined Account ID field provides the Account Id of the Account that
corresponds to the current Contact.

The roles of the object definitions in Figure 112 on page 408 are explained as
follows:

■ Join business component. The join business component has a master-detail
relationship with the master business component in the link. In this
relationship, the join business component is the detail rather than master. The
indirect multi-value link is established as a child object definition of the join
business component.

■ Multi-value fields. Multi-value fields are fields in the join business component that
are populated by the primary record in the detail business component through
the multi-value link and link object definitions. Each field has the name of the
multi-value link specified in its Multi Value Link property, a Multi-Valued
property setting of TRUE, and a blank Column property.

■ Multi-value link. The Multi-Value Link object definition defines the relationship
between the link object definition and fields in the master business component,
using the following properties:

■ Destination Link. Identifies the link.

■ Destination Business Component. Identifies the detail business component.

■ Primary Id Field. Identifies the field from the business component that the
MVL belongs to.
Version 7.5.3, Rev. A Siebel Tools Reference 409

Business Objects Layer

Multi-Value Links
■ Joined field. In a conventional multi-value link, the Source Field property is
blank. In an indirect multi-value link, the Source Field property specifies a
joined field in the same business component as the multi-value link. The joined
field represents the ROW_ID column from the base table of the master business
component. The ROW_ID column is obtained by means of a join.

■ Join and join specification. The Join and Join Specification object definitions make
it possible to populate the joined field.

■ Foreign key field (in the joined business component). The foreign key field represents
a foreign key column in the base table. The foreign key field points to rows in
the joined table, in this case the base table of the master business component.
The foreign key field is used in the implementation of the join.

■ Master business component. The master business component is the “master” in
the master-detail relationship specified in the link. The master business
component in the example in Figure 112 on page 408 is Account.

■ Base table. The join, join specification, and foreign key field in the join business
component access the base table of the master business component. This makes
possible a join relationship that provides a master business component record
and, indirectly, a set of detail business component records for each join business
component record.

■ Key field. The key field in the master business component is the primary key for
that business component. The key field is referenced in the Source Field property
of the Link object definition.

■ Link. The Link object definition specifies a master-detail relationship between
the master and detail business components.

■ Detail business component. The detail business component supplies the detail
records in the master-detail relationship.

■ Foreign key field (in the detail business component). The foreign key field contains
row ID values that point back to records in the master business component.
These row ID values uniquely identify the master for each detail business
component record. The foreign key field is identified in the link in the
Destination Field property.
410 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
■ Primary ID field. The primary ID field in the master business component holds the
row ID value of the primary record for each multi-value group in the detail
business component. The primary ID field is identified in the Primary Id Field
property of the multi-value link. The primary ID field allows the primary detail
record to be identified for each master record. For more information, refer to
“Primary ID Field” on page 413.

The parent component of a multi-value link is usually the same as the business
component in which the MVL is defined. However, by using the Source Field
property of the Link object, it is also possible to create an MVL whose parent
business component is related to the current business component indirectly using
a join or another MVL.

Every MVL in a Siebel application is based on an underlying Link object, whose
name is specified by the Destination Link property of the multi-value link. Every
link, in turn, defines a one-to-many relationship between two business
components. Typically, the business component in which an MVL is defined is the
same as the parent business component of the underlying link on which the MVL
is based.

For example, consider the Business Address multi-value link in the Account
business component:

[MultiValueLink]

DestBusComp = “Business Address”
DestLink = “Account/Business Address”
PrimaryIdField = “Primary Address Id”
CheckNoMatch = “TRUE”
PopupUpdOnly = “TRUE”
NoCopy = “TRUE”

The Destination Link property indicates that this MVL is based on the Account/
Business Address link, which is itself defined as:

[Link]

Name = “Account/Business Address”
ParentBusComp = “Account”
ChildBusComp = “Business Address”
DestField = “Account Id”
CascadeDelete = “Delete”
Version 7.5.3, Rev. A Siebel Tools Reference 411

Business Objects Layer

Multi-Value Links
The parent business component of this link is the Account business component,
which is also the business component in which the MVL has been defined. In this
typical MVL configuration, the multi-value group will be populated with all the
children Business Address records for whichever Account is currently selected in
the Account business component.

Indirect Multi-Value Links Using Joins
Although the parent business component of a multi-value group is usually the same
as the business component in which the multi-value link is defined, this is not
always the case. For example, the Opportunity business component—like the
Account business component—contains a multi-value group of Business Addresses.
In this case, however, the Business Addresses are not directly related to the
Opportunities themselves; instead, they are children records of whatever Account
is associated with the current Opportunity (if there is such an Account). In order for
Siebel applications to populate this MVG correctly, it needs to know how to find the
appropriate parent Account record for the link given the current record in the
Opportunity business component. The Source Field property of the Link object
exists for this purpose.

Using the above example, the Business Address MVL is defined as follows within
the Opportunity business component:

[MultiValueLink]

SrcField = “Joined Account Id”
DestBusComp = “Business Address”
DestLink = “Account/Business Address”
PrimaryIdField = “Primary Address Id”
CheckNoMatch = “TRUE”
PopupUpdOnly = “TRUE”

The Destination Link property of this MVL is still the Account and Business Address
link, which defines the one-to-many relationship between Accounts and Business
Addresses. Therefore, in this case, the parent business component of the link (that
is, Account) is not the same as the business component in which the MVL is defined
(that is, Opportunity).
412 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
In order to determine the appropriate Account record for which to get the children
Business Addresses, the Siebel application looks at the Source Field property of the
MVL. For this particular multi-value link, the Source Field property refers to the
Joined Account Id field in the Opportunity business component, which maps to the
ROW_ID database column from the joined S_ORG_EXT table. Therefore, for each
Opportunity record, the Siebel application will populate the MVG with all Business
Address records that are children of whichever Account is indicated by the ROW_ID
value stored in the Joined Account Id field.

Primary ID Field
The Link and Multi Value Link object definitions have a set of properties that you
can use to specify to the system how to obtain the record ID of the first record to
display of the detail table each time the master record changes. These properties are
Primary Id Field, Use Primary Join, and Auto Primary. Together they implement the
primary ID field.

The basic concept behind a primary ID is that it is faster for a Siebel application to
retrieve one primary record from the MVG business component through a join than
retrieve all of them through a sub-query—especially since users can see values from
only one child record until they open up the MVG applet. To create a primary field
for a one-to-many or many-to-many relationship, complete the following procedure.

To configure a primary field for a 1:M or M:M relationship

1 Create a Primary Id column.

2 Create a field based on that Primary Id column.

3 In a Multi-Value Link, set the Primary Id Field attribute to the new Primary Id
field.

4 Set the Use Primary Join attribute to TRUE.
Version 7.5.3, Rev. A Siebel Tools Reference 413

Business Objects Layer

Multi-Value Links
For example, in the Account business component the primary ID field for the
Address multi-value group is called Primary Address Id. The Account Address Mvg
Applet displays the corresponding multi-value group. The primary record, indicated
with a checkmark in the list column labeled Primary, has its row ID stored in the
Primary Address Id field in the account record. Each time there is a different account
record displayed, the multi-value fields for the Address load the primary Business
Address record’s values only. It is not necessary to query the Business Address
business component for multiple rows. This can be a significant performance
enhancement, especially in list applets.

NOTE: In a multi-value group applet, the list column that displays the check mark
(indicating the primary or nonprimary status of each record) obtains its data from
a system field called SSA Primary Field. This field does not appear in the Object
Explorer or Object List Editor, but may be referenced by a list column for this
purpose.

The benefit of using a primary ID, from the system’s standpoint, is that it converts
a one-to-many relationship into a one-to-one relationship. This allows the row
retrieval process to be simplified from a query with subqueries to a simple join
query. This substantially improves performance, especially when the user is
scrolling through the records of a list applet that displays the master.

The properties of Link or Multi-Value Link object types used to implement a primary
ID field are as follows:

■ Primary ID Field. This property specifies the name of the field in the master
business component that holds the row ID values pointing to primary records in
the detail business component.

■ Use Primary Join. The Use Primary Join property is a TRUE or FALSE property that
turns the Primary Join feature on or off. If TRUE, the primary detail record is
obtained for each master record through a join on the primary ID field. If FALSE,
the detail table is queried again with each master record change.
414 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
■ Auto Primary. This property setting determines how row ID values are populated
in the primary ID field, based on a system-supplied list column labeled Primary
in the multi-value group applet. The user can manually select the primary. Auto
Primary determines how, if at all, the primary selection is defaulted. The
possible values for Auto Primary are DEFAULT, SELECTED, or NONE as follows:

■ DEFAULT. The first record automatically becomes the primary.

■ SELECTED. The highlighted record becomes the primary when the user views
the multi-value group applet and then exits.

■ NONE. The user must manually specify the primary.

SELECTED only pertains when there are several multi-value links pointing to the
same detail business component. This is the case for the Bill To Business
Address and Ship To Business Address multi-value links in a standard Siebel
Sales application. These multi-value links exist under both the Order and
Account business components. In this case, an example of the desired behavior
is as follows: if a primary is not set for the Bill To address, then when the Siebel
application does a separate query to bring back all addresses associated with the
account (or order), it will check to see whether one of the addresses has already
been selected as primary for the Ship To address and, if so, it will SELECT (that
is, set) that address as the primary for Bill To address as well.

When the Auto Primary property of a Multi Value Link object has a value of
SELECTED, setting read-only properties at the applet level still does not force the
SSA Primary Field to be read-only.

NOTE: If the destination business component of the Multi-Value Link is read-only,
you may receive the following error message, “This operation is not available for
a read-only field ‘SSA Primary Field’.” This is because the Primary ID field is
automatically updated through the system field ‘SSA Primary Field’, which
belongs to the destination business component. Additionally, if this business
component is read-only, the field is read-only as well and cannot be updated.
Version 7.5.3, Rev. A Siebel Tools Reference 415

Business Objects Layer

Multi-Value Links
Allowing Users to Set Primaries
You can set the MVG Set Primary Restricted: visibility_mvlink_name user property
in the business component underlying the MVG applet to allow certain users to set
primaries. Setting this user property to FALSE allows the Primary team member to
be altered by someone other than the Manager or Siebel Administrator.

If this user property is not set, only Siebel Administrators (in Admin mode) and
Managers (in Manager view mode) have the ability to change the Primary team
member on opportunities, accounts and contacts.

For more information, see Configuration Guidelines.

Using the Check No Match Property with a Primary Join
When a multi-value link has been configured with a primary join—which is the
typical situation—there are circumstances in which the foreign key used by this join
to identify the primary record is unable to find the primary. For example, this can
happen when the primary record has been deleted from the multi-value group or
the multi-value group is newly created and has no records. In such cases, the multi-
value link can be configured to update the primary foreign key to a value of NULL,
or to a special value of NoMatchRowId, depending on your requirements. This
behavior is configured through the Check No Match property of the Multi Value
Link object type, and has performance consequences.

The purpose of the special “NoMatchRowId” value is to prevent secondary queries
on foreign key values that are known to have failed, thereby improving
performance, much in the same way that using a primary join improves
performance.

The NoMatchRowId generating and testing behavior is activated by setting Check
No Match to FALSE for the MVL. This setting has the following results:

■ When the application encounters a master record where the primary foreign key
is NULL or invalid, it performs a secondary query to determine if there are detail
records in the multi-value group. If it finds there are no detail records, it sets the
primary ID field to the special value NoMatchRowId.

■ When the application encounters a master record where the primary foreign key
has the value “NoMatchRowId,” this indicates to the system that there are no
detail records in the multi-value group and the secondary query is not
performed.
416 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Multi-Value Links
If you set Check No Match to TRUE, the Siebel application will perform a secondary
query whenever the outer join on the primary fails, or is set to NULL or
NoMatchRowId. If the secondary query finds a matching detail record, it updates
the foreign key with that record’s row ID, provided the MVL has an Auto Primary
property setting of DEFAULT. If no matching child record is found, or Auto Primary
is set to NONE, the application leaves the existing value intact.

A Check No Match setting of TRUE can have serious negative performance
consequences. If a multi-value group is sparsely populated (that is, most master
records do not have any detail records in the multi-value group) and has Check No
Match set to TRUE, it will be almost as slow as not having a primary join at all.

Check No Match should be set to FALSE for most multi-value links because of the
performance consequences. It should only be set to TRUE if the multi-value group
could possibly have records added to it without going through the MVG itself. For
example, account addresses might actually be inserted by means of the Business
Address multi-value group on the Contact business component instead of the
Address multi-value group on the Account business component. Also, if records can
be added to the detail business component through EIM, the TRUE setting is the
appropriate one.

The Use Primary Join property should be set to TRUE if CheckNoMatch is TRUE. If
CheckNoMatch is set to TRUE and Use Primary Join is FALSE, then the Siebel
application will always do the secondary query to find the child records.

How a Cascade Copy with a Multi-Value Link Is Constructed
It is often desirable to be able to configure a business component to support the
copying of its detail records when one of its records is copied. You implement this
with a feature called cascade copy. For example, when you make a copy of an
opportunity record to create a similar opportunity, you may always want the list of
contacts for that opportunity copied with it.

To implement the cascade copy feature for a business component, you create a
Multi Value Link child object definition and specify the following properties:

■ Destination Link. The name of the link in which the master-detail relationship is
specified.

■ Destination Business Component. The name of the detail business component.
Version 7.5.3, Rev. A Siebel Tools Reference 417

Business Objects Layer

About Business Objects
■ No Copy. This must be set to FALSE and #Field ID should be set to No Copy =
FALSE. If the No Copy property is set to TRUE, cascade copying is disabled.
However, an exception to this occurs when the corresponding field is defined as
the Destination field in a link. In this case, the link automatically populates the
field and ignores the value of the No Copy property.

A multi-value link used in the implementation of a multi-value field automatically
copies the detail records (unless disabled with No Copy) because it is assumed that
a multi-value group travels with its parent record. For example, you would normally
want the account addresses, sales team, and industry list for an account to copy
with that account.

This capability is used for a different purpose when cascade copy is implemented
for a multi-value link not used in a multi-value field. The multi-value link does not
need to be attached to a field in the business component, or used in a multi-value
group. It just needs to be created as a child object definition of the master business
component, configured to point to the detail business component and link, and set
with copying enabled (a No Copy value of FALSE).

Cascade copy can be implemented for a many-to-many relationship, that is, where
the destination link has a non-blank Inter Table property value. In this
circumstance, new intersection table rows are created rather than new detail
business component records. New associations are created rather than new records.
These associations are between the new master and the existing detail records.

NOTE: Cascade copy has the potential to violate the requirement of uniqueness of
values in indexes. For this reason, if copying the detail records would cause any
unique index violations, the copy operation is aborted by the system.

About Business Objects
A business object implements a business model (as represented in a logical
database diagram), tying together a set of interrelated business components using
links. The links provide the one-to-many relationships that govern how the business
components interrelate in the context of this business object.
418 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

About Business Objects
The set of relationships established in a business object provides the foundation for
views and screens. For example, Figure 113 shows the Contact Detail - Opportunities
View, a view that operates based on a one-to-many relationship defined in the
Contact business object.

Figure 113. Master-Detail View Based on a Business Object

One master record from the
Contact business component

Many detail records from the
Opportunity business component
Version 7.5.3, Rev. A Siebel Tools Reference 419

Business Objects Layer

About Business Objects
Every view has a business object assigned to it. A master-detail view can implement
only a one-to-many relationship supported by its underlying business object. For
example, the view in Figure 113 can display a one contact to many opportunities
relationship because Contact and Opportunity have this kind of relationship in the
Contact business object, and the view (Contact Detail - Opportunities View) uses
the Contact business object. In order to implement a view displaying the reverse
relationship (one Opportunity master record to many Contact detail records), the
Opportunity (rather than Contact) business object would be required as the
business object of the view.

Figure 114 displays the abstract relationships between the Business Object object
type and two user interface object types, View and Screen.

Many views are built based on the same business object. Typically only one screen
is associated with one business object. A business object is not assigned to a screen
through a property setting the way a business object is assigned to a view. The
relationship between a business object and a screen is an informal one dictated by
good design practice, and it is not strictly enforced by the Siebel Tools software. In
general, all of the views in a screen are implementations of the same business
object.

Figure 114. Relationship Between Business Object, Screen, and Views
420 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

About Business Objects
The logical database diagram in Figure 115 on page 421 illustrates the complete set
of one-to-many relationships between business components in a single business
object. In this case, it is the Account business object.

Figure 115. Master-Detail Relationships in the Account Business Object
Version 7.5.3, Rev. A Siebel Tools Reference 421

Business Objects Layer

About Business Objects
The boxes represent business components, and the three-way connectors represent
one-to-many relationships. A one-to-many relationship is implemented with a
business object component and a link, as is explained in “How a Business Object Is
Constructed” on page 423.

The business object collects a logical grouping of business components and a set of
links that associate them. Some of the same business components and links may
appear in other business objects. The same two business components may have a
one-to-many relationship in one business object, and the opposite one-to-many
relationship (or no relationship) in another business object.

However, within the context of one business object, there is an unambiguous set of
relationships between the business components in the grouping. When a particular
business object is active because a view that uses it is active, the population of data
records in business components in the business object is based on the relationships
in the business object.

The benefit of business objects is reusability. The same business component can be
used in various different sets of relationships by including it in multiple business
objects.

NOTE: Not all business components included in a business object participate in
master-detail relationships. Business components that are not part of the business
model may also be incorporated in the business object. A Business Component
object makes such a business component available for use in views based on the
specified business object.
422 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

How a Business Object Is Constructed
How a Business Object Is Constructed
The object types illustrated in Figure 116 participate in the configuration of a
business object.

Figure 116. Business Object Architecture
Version 7.5.3, Rev. A Siebel Tools Reference 423

Business Objects Layer

How a Business Object Is Constructed
The relationships between object definitions used to implement a business object
appear in Figure 117.

The object definitions in Figure 117 are described as follows:

■ Business Object object type. The business object is a parent for multiple business
object component child object definitions. Each business object component
specifies a master-detail relationship. View object definitions reference the
business object in their Business Object property.

■ Business Object Component object type. Business Object Component is a child
object type of Business Object. Typically, each business object component
defines one master-detail relationship within the parent business object. Two
properties within the business object component specify this relationship:

■ Link. Identifies the link object definition.

Figure 117. Business Object Details
424 Siebel Tools Reference Version 7.5.3, Rev. A

Business Objects Layer

Business Services
■ BusComp. Identifies the detail business component object definition.

A business object component can be used to include a business component in
the business object without a link. To accomplish this, you enter a blank value
in the Link property of the business object component. A link-free business
object component allows you to incorporate a business component in the
business object for use in views based on the business object, even though the
business component does not have one-to-many relationships with other
business components in the context of that business object.

■ Link object type. One link is referenced by each business object component. The
Link object definition specifies the master-detail relationship that is being
included in the business object by way of the business object component. Links
are described in “Links” on page 393.

■ Master business component. The master business component is the “one” in the
one-to-many relationship specified in the link. The Parent Business Component
property in the Link object definition specifies the master business component.

■ Detail business component. The detail business component is the “many” in the
one-to-many relationship. The detail business component is specified both in
the Child Business Component property of the Link object type and in the
BusComp property of the Business Object Component object type.

Business Services
A business service is an object that encapsulates and simplifies the use of some set
of functionality. Business components and business objects are objects that are
typically tied to specific data and tables in the Siebel data model. Business services,
on the other hand, are not tied to specific objects, but rather operate or act upon
objects to achieve a particular goal.

Business services can simplify the task of moving data and converting data formats
between the Siebel eBusiness Application and external applications. Business
services can also be used outside the context of Siebel EAI to accomplish other types
of tasks, such as performing a standard tax calculation, shipping rate calculation,
or other specialized functions.
Version 7.5.3, Rev. A Siebel Tools Reference 425

Business Objects Layer

Business Services
You can create business services in the Siebel client or in Siebel Tools. These
services can then be accessed by Siebel VB or Siebel eScript code that you write and
call from workflow processes. For the purposes of your integration projects using
Siebel EAI, you must use Siebel eScript to write your scripts. Siebel EAI uses
business services within a workflow pipeline.

For information about business services in general, see Integration Platform
Technologies: Siebel eBusiness Application Integration Volume II. For information on
creating workflow processes, which use business services you create, see Siebel
Business Process Designer Administration Guide. See Siebel VB Language Reference
and Siebel eScript Language Reference for more information on accessing property
sets and business services with Siebel VB and Siebel eScript.
426 Siebel Tools Reference Version 7.5.3, Rev. A

 Defining Business Objects and Business
Components 8
This chapter gives you information on configuring the business objects layer of the
Siebel Web application. You should be aware that configuration done at the
business objects layer might need to be exposed through the UI objects. The
methods used to determine whether this is necessary, as well as additional
configuration guidelines, are covered in this chapter and in subsequent chapters.

About the Application Development Process
The general sequence of application development tasks starts from the bottom
layers and proceeds to the layers above. For example, a generalized sequence of
tasks might look like the following:

1 Create or modify objects in the Business Object Layer:

a Business components

b Links

c Business objects

2 Create or modify objects in the User Interface Layer:

a Applets

b Views

c Screens

d Applications

You must define business components, links, applets, and views in the order shown,
or you will encounter application errors. It is also recommended that you define
business objects, screens, and applications in the order shown, and then refine their
definitions, as required, during the application development cycle.
Version 7.5.3, Rev. A Siebel Tools Reference 427

Defining Business Objects and Business Components

Defining Business Objects
This chapter covers configuration work at the business objects layer. Subsequent
chapters discuss configuring objects in the user interface layer.

Defining Business Objects
The Business Objects Layer of the Siebel application architecture is where your
application’s data organization is defined.

You need to develop object definitions in this layer before developing definitions in
the User Interface Layer.

The following Business Object Layer object types (introduced in Chapter 2, “Siebel
Architecture (Basic Concepts)”) are the foundation of all Siebel applications:

■ Business components

■ Fields (child objects of business components)

■ Business objects

Business component and field definitions in the Business Objects Layer map to table
and column definitions in the Data Objects Layer.
428 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Defining Business Objects
Figure 118 summarizes the mappings required between user interface objects and
business objects.

To do the mapping you need to have knowledge of the underlying data model.

Usage and Configuration of Non-Licensed Objects
The licensing agreement between Siebel and its customers is such that customers
are only entitled to use and configure Siebel objects (for example, business
components and tables) that belong to modules they have purchased.

If a Siebel object is not exposed to the licensed user interface—through views that
are exposed under the customer’s license key—the customer is not entitled to use
that object in custom configurations.

Customers are, however, entitled to create new tables using Siebel Database
Extensibility features and to create new business components and UI objects to
expose these tables.

Figure 118. Mapping of UI Layer Objects to BO Layer Objects
Version 7.5.3, Rev. A Siebel Tools Reference 429

Defining Business Objects and Business Components

Defining Business Objects
Development Sequence for Defining Business Objects

NOTE: Follow this sequence when you work with objects in the Business Objects
Layer (the assumption is that you have already created a project and checked it out,
as described in Chapter 18, “Application Development Projects”):

1 Create a business component (or modify an existing one) and add it to the
project.

2 Add fields to the business component.

3 Create links that will relate the business components to one another within a
business object.

4 Create a business object and add it to the project.

5 Associate the business component with the business object.

6 Validate your business object definitions.

These steps are discussed in more detail in the following sections.
430 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Defining Business Objects
Creating or Modifying a Business Component Definition
General instructions for modifying or creating object definitions are provided in
“Modifying, Copying, and Creating New Object Definitions” on page 117.

Figure 119 shows the object definition for a business component called Account
Category.

Figure 119. Business Component Object Definition: Account Category
Version 7.5.3, Rev. A Siebel Tools Reference 431

Defining Business Objects and Business Components

Defining Business Objects
Business Component Properties
Following are descriptions for key properties for the Business Component object
type. For a complete list and more detailed descriptions, see Object Types Reference.

■ Class. The C++ class that implements the functionality of the business
component.

A picklist of values appears for setting this property.

Siebel applications have a hierarchy of business component classes.
CSSBusComp is at the top of the hierarchy. (Account Category in Figure 119 is
in the CSSBusComp business component class.) All other specialized business
component classes (CSSBCOppty is an example) are derived from CSSBusComp.

The functionality that is common between business components includes
navigation (moving through a result set returned from the database), get or set
field values in records, create and delete records, commit changes, undo/redo,
bookmark, search, and sort.

NOTE: Do not change the Class property of preconfigured business components.

■ Name. (Required.) Must be unique among all business components in the
repository. All references to the business component are done through its name.

■ No Delete, No Insert, No Update properties. (Default is FALSE.) If set to TRUE, then
you can’t do data manipulation operations.

■ Search Specification. A conditional expression used to restrict the records
retrieved.

■ Sort Specification. A sort expression used to order the records returned.

■ Table. (Required.) The name of the SQL table from which records are retrieved
to populate the majority of fields in the business component. A list of tables
appears in a picklist.
432 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Defining Business Objects
Adding Fields to a Business Component

To add a field to a business component

1 In the Object Explorer window, select the Business Component object type.

2 In the Object List Editor window, select the business component you are
defining.

3 In the Object Explorer window, expand the Business Component object type,
and then select Field.

4 Modify the Field properties, as shown in Figure 120.

Figure 120. Single Value Field Properties of a Business Component (Account Product)
Version 7.5.3, Rev. A Siebel Tools Reference 433

Defining Business Objects and Business Components

Defining Business Objects
Field Properties
Following are descriptions for key properties of the Field object type. For a complete
list and more detailed descriptions, see Object Types Reference.

■ Column. (Required unless it is a calculated field.) The name of the table’s
column. Default table is the business component table.

■ Name. (Required.) User-defined name for the field. It must be unique within the
business component.

■ No Copy. If TRUE, the field’s value is not copied into the newly created record
during a Copy Record operation. The No Copy property of a Multi Value Link
will override the No Copy property of a Field in the child Business Component.

■ Read Only. If TRUE, the field value cannot be changed by the user.

■ Required. If TRUE, a value must be entered before the record can be written.

■ Text Length. Siebel Tools gets the text length from the database and, for columns
with a physical type of varchar, sets the Text Length property for a business
component field to this value.

If the physical type is character(1), the Text Length is set to 1 and the Type is set
to DTYPE_BOOL.

For number, date, and datetime fields, Siebel Tools does not put a value in Text
Length. Exceptions are fields mapped to foreign key columns (these columns
have names that end in ID and have a physical type of varchar and length of 15).
These fields get a Siebel Type of DTYPE_ID and a Text Length of 15.

If you edit the value in the Text Length property, it is ignored unless the value in
a picklist is longer than what is specified on the business component field. In
this case you get an error.

■ Type. The field data type.

For information about the data types for the field object type, see Object Types
Reference.
434 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Defining Business Objects
Single-Value and Multi-Value Fields
As shown in Figure 121, the Object Explorer shows Business Component child
object types for Field, Single Value Field, and Multi-Value Field.

Normally you would modify all Field objects by selecting the Field object type,
finding the field you want, and making the changes. If you select the Single Value
Field object type, you see only Single Value objects and their properties; the Multi
Value Field object type shows only Multi Value objects. You can also configure
particular Single Value Field and Multi Value Field objects by viewing and changing
them within Single Value Field and Multi Value Field object type. Changes you make
there will be reflected when you select the changed object in Field object type.

NOTE: You can configure queries to be case sensitive or case insensitive by setting
the Use Default Sensitivity property in the configuration (.cfg) file. Set the property
to TRUE for case-sensitive queries. Set the property to FALSE for case-insensitive
queries. However, you cannot configure fields of the type DTYPE_ID in this way
because these fields always conduct case sensitive searches.

Figure 121. Field, Single Value Field, and Multi-Value Field Object Types
Version 7.5.3, Rev. A Siebel Tools Reference 435

Defining Business Objects and Business Components

Defining Business Objects
Configuring Dual Currency Support
Use the following steps to configure the display of dual currencies.

1 Create a new field in the business component to hold the currency code to which
the conversion should be performed.

■ This field is not a foreign key to another table; it must be of type
DTYPE_TEXT.

■ Specify PickList = PickList Currency.

■ In the corresponding Pick Map, associate Pick List Field = Currency Code
with the newly created currency code field.

2 Create a new field in the business component to hold the converted currency
amount.

NOTE: You cannot configure Forecast business components to display dual
currency because the list columns displaying monetary values do not map to
fields. The list columns display values that are computed by buttons using
specialized methods.

■ This field must be of type DTYPE_CURRENCY.

■ It must be a calculated field, Calculated Value = [Unconverted Amount]. The
field Unconverted Amount must also be of type DTYPE_CURRENCY.

■ The Exchange Date Field property must point to a field of type
DTYPE_DATETIME.

■ The Currency Code Field property points to the currency code field of Step 1.

3 Set the Runtime property to be TRUE in the applet that displays the converted
currency.

A pick or detail applet need not be specified, because your Siebel application
automatically launches the default applet that matches the field type.

4 Before that currency conversion takes place, the underlying currency business
component must be filled with a minimum number of valid values. To access
the lists of currencies, conversion dates, and exchange rates in your Siebel
application, navigate to Site Map > Application Administration >Currencies.
436 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Defining Business Objects
■ The two currencies between which you want to convert must be marked as
active (for example, name the original one O and the converted one C).

■ At least one exchange rate value must be defined for O to C. (For the reverse
conversion C to O, another exchange rate value is required.)

■ At least one of the exchange rates of a certain exchange direction must have
a date at or before the date that is used as 'Exchange Date'.

The following is an example of configuring dual currency display.

To configure dual currency display

1 Add a field to the Opportunity business component for the currency code to
which the conversion is made, as shown in the following table:

The field is stored in an unused column in the extension table S_OPTY_X.

2 Add a record to the field’s child Pick Map object, as shown in the following table:

Property Value

Name My_Currency

Type DTYPE_TEXT

Join S_OPTY_X

Column ATTRIB_03

PickList PickList Currency

Property Value

Field My_Currency

Pick List Field Currency Code
Version 7.5.3, Rev. A Siebel Tools Reference 437

Defining Business Objects and Business Components

Defining Business Objects
3 Add a field to the Opportunity business component for the converted revenue,
as shown in the following table:

4 Add two new list columns to the Opportunity List Applet, as shown in the
following tables:

5 Compile the Oppty and Oppty (SSE) projects.

Property Value

Name My_Cvt_Revenue

Calculated TRUE

Calculated Value [Revenue]

Currency Code Field My_Currency

Exchange Date Field Sales Stage Date

Type DTYPE_CURRENCY

Property Value

Field My_Currency

Display Name Converted Currency Code

Property Value

Field My_Cvt_Revenue

Display Name Converted Revenue

Runtime TRUE
438 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Defining Business Objects
Creating or Modifying a Business Object Definition
General instructions for modifying or creating object definitions are provided in
“Modifying, Copying, and Creating New Object Definitions” on page 117.

Figure 122 shows the object definition for a business object called Account.

Figure 122. Properties of the Account Business Object
Version 7.5.3, Rev. A Siebel Tools Reference 439

Defining Business Objects and Business Components

Defining Business Objects
Business Object Properties
Following are descriptions for key properties of the Business Object object type. For
a complete list and more detailed descriptions, see Object Types Reference.

■ Name. The name of the business object must be unique among business objects
in the repository. All references to the business object are done through its name.

■ Query List Business Component. The default value is Query List. It identifies the
business component used to store predefined queries for the business object.
440 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Defining Business Objects
Mapping Business Components to Business Objects
As shown in Figure 123, select Business Object Component under Business Object,
and then pick from the picklist the business component that the business object
needs to be associated with.

Figure 123. Mapping a Business Object (Account) with a Business Component (Account)
Version 7.5.3, Rev. A Siebel Tools Reference 441

Defining Business Objects and Business Components

Defining Business Objects
Mapping Business Objects to Data Objects
Figure 124 illustrates object definition mappings.

If you change the value of the Name property of an object definition, you must
update property values in other object definitions that refer to the original Name
value so that they now refer to the new Name value.

Figure 124. Mappings Between Business Objects and Data Objects
442 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Using Wizards to Create Objects
Mapping User Interface Objects to Business Objects
Figure 125 shows how objects in the User Interface Layer are mapped to objects in
the Business Objects Layer.

Using Wizards to Create Objects
Several wizards are available for creating business object layer objects. The
following section describes the Business Component Wizard, OLEDB Rowset
Wizard, and Integration Object Wizard.

Business Component Wizard
You use the New Business Component Wizard to create Business Component
objects.

Figure 125. Mapping of UI Layer Definitions to BO Layer Definitions
Version 7.5.3, Rev. A Siebel Tools Reference 443

Defining Business Objects and Business Components

Using Wizards to Create Objects
To open the Business Component wizard

1 Choose File > New Objects.

2 Select the BusComp icon, and click OK.

The New Business Component dialog box appears as shown in the following
figure.
444 Siebel Tools Reference Version 7.5.3, Rev. A

Defining Business Objects and Business Components

Using Wizards to Create Objects
3 Select a Project and the master Business Component and click Next.

The second New Business Component dialog box appears.

4 Select a column in the Base table and enter a name for the field.

5 Click Add and Finish.

When you click Finish, you are taken to the business component you just
created in the Object List Editor, where you can further configure the new
Business Component object.

For more information about business components, see “Business Components”
on page 342.

OLEDB Rowset Wizard
OLEDB is a specification for a set of data access interfaces designed to enable
heterogeneous datastores to work together. Components built to the OLEDB
standard behave as a table, even though complex computing processes can occur
between the data sources and the applications.
Version 7.5.3, Rev. A Siebel Tools Reference 445

Defining Business Objects and Business Components

Using Wizards to Create Objects
The Siebel OLEDB Rowset wizard is a read-only provider that exposes Siebel
business components as virtual OLEDB tables. Using the Siebel OLEDB Provider,
external OLEDB-enabled applications can access data stored in Siebel by referring
to Siebel objects like Contact or Account without the need to understand the
internal functioning of the Siebel Data Model. You can configure the Siebel business
components that are exposed to the client application as OLEDB tables.

The OLEDB Rowset wizard steps you through the process of creating OLEDB tables.

For more information about the OLEDB Rowset wizard, see Transports and
Interfaces: Siebel eBusiness Application Integration Volume III.

Integration Object Wizard
You can create Integration Object objects using the Integration object wizard. For
more information about integration objects and Integration Object Wizard, see
Integration Platform Technologies: Siebel eBusiness Application Integration Volume
II.
446 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer 9
This chapter describes objects in the User Interface Objects Layer in the Siebel
application architecture.
Version 7.5.3, Rev. A Siebel Tools Reference 447

Logical User Interface Objects Layer

Major User Interface Object Types
Major User Interface Object Types
Figure 126 shows user interface objects in a typical Siebel application session.

Figure 126. User Interface Objects in a Typical Siebel Application Session

Screen: Accounts

View: All Accounts

Form: Accounts

List: Account

Application: Siebel Call Center
448 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Major User Interface Object Types
The Application, Screen, View, and Applet object types have hierarchical (one-to-
many) relationship based on parent/child object type relationships and property
settings. The full set of user interface object types and their relationships is
illustrated in Figure 127 on page 450.
Version 7.5.3, Rev. A Siebel Tools Reference 449

Logical User Interface Objects Layer

Major User Interface Object Types
Figure 127. Details of User Interface Architecture
450 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Major User Interface Object Types
The following user interface object types are introduced in Figure 127 on page 450:

The object types in the diagram (plus some additional ones that are not shown) are
described briefly below. For more detailed descriptions, see Object Types Reference.
Note that these are only a subset of the full set of object types in the Siebel
architecture.

Application. An application is a collection of screens. The application is opened in a
Web browser on the user's desktop by attaching to a specified URL. The screens are
accessed from the tab bar and the Site Map (Screen Menu Item), as defined in the
application. Siebel eService is an example of an application. Each combination of
screens that is appropriate to a specific class of users can be provided as an
application.

Page Tab. A page tab object definition associates a screen to the page tab's parent
application object definition and includes it as a tab in the tab bar.

Screen Menu Item. A screen menu item object definition associates a screen with the
application and includes the screen as a hyperlink on the Site Map.

Screen. A screen is a logical collection of views. It is not a visual construct in itself;
rather, it is a collection of views that the screen tabs and view tabs can display. The
active screen is selected from the Site Map or the screen tabs.

NOTE: For more information, see “Screens” on page 502.

Screen View. A screen view object definition associates a view with the screen view's
parent screen object definition. This is how views are included in screens.

View. A view is a collection of applets which appear onscreen at the same time. A
view can be thought of as a single window's worth of related data forms (applets).
Generally, the Siebel application window displays one view at any one time. The
user can select the current (active) view from the view bar, thread bar or from a
hyperlink on the Site Map. A view is associated with the data and relationships in
a single business object.
Version 7.5.3, Rev. A Siebel Tools Reference 451

Logical User Interface Objects Layer

Major User Interface Object Types
Applet. An applet is a form, composed of controls, that occupies a portion of the
Siebel application window. An applet can be configured to allow data entry, provide
a table of business component records, or display business graphics, a navigation
tree, or a similar user interface unit. It provides viewing, entry, modification, and
navigation capabilities for data in one business component. Pop-up windows for
multi-value groups and record selection are also implemented as applets.

Control. One control object definition corresponds to one data control or a button in
a form applet, such as a text box, check box or command button. A control is
something in the applet with which the user can interact. A control usually either
exposes data from one field in the business component, or invokes programming
logic (in the case of a PushButton control).

For more information, refer to “Form Applet Controls” on page 465.

List. List is a child object type of Applet. A list object definition specifies property
values that pertain to the entire scrolling list table and provides a parent object
definition for a set of list columns.

NOTE: For more information, refer to “Configuring the List” on page 476.

List Column. A list column object definition corresponds to one "column" in the
scrolling list table in a list applet, and to one field in the business component.

NOTE: For more information, refer to “Configuring the List Columns” on page 476.

Web Template, Applet Web Template, View Web Template. Identify external HTML (or
other markup language) files that define the layout and Siebel Web Engine
interactions for an applet or view.

Applet Web Template Item. Defines list columns and controls to be mapped to place
holders in a Web Template. They contain the name of the list column or control as
well as a unique identifier for a placeholder in the template. The placeholder to
which an Applet Web Template Item is mapped determines the position of the item
within the template. Applet Web Template Item objects are automatically created
when you drag and drop controls and list columns onto a Web template using the
Web Applet Layout Editor.
452 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
View Web Template Item. Defines applets to be mapped to place holders in a Web
Template. They contain the name of the applet as well as a unique identifier for a
placeholder in the template. The placeholder to which a View Web Template Item
is mapped determines the position of the applet within the template. View Web
Template Item objects are automatically created when you drag and drop applets
onto a Web template using the Web Applet Layout Editor.

Applets
An applet is a data entry form, composed of controls, that occupies some portion of
the Siebel application user interface. An applet can be configured to allow data
entry, provide a table of data rows, or display business graphics, or a navigation
tree. It provides viewing, entry, modification, and navigation capabilities for data in
one business component.

An applet is always associated with a business component. Although the same
business component can be associated with multiple applets, an applet is associated
with only one business component.

Applets are associated with one or more Siebel Web templates. Web templates are
files that contain HTML and proprietary Siebel tags that define the layout and
format of the applet in the user interface.

For more information about applets and Web templates, see Chapter 15.
Version 7.5.3, Rev. A Siebel Tools Reference 453

Logical User Interface Objects Layer

Applets
Types of Applets
This section summarizes the various applet styles found in Siebel applications.

■ Form applet. A form applet displays data in a data entry form. Fields in the
business component appear on the form applet as text boxes, check boxes, and
other standard controls. A form applet appears in Figure 128.

See “Form Applets” on page 462 for more information about form applets.

Figure 128. Opportunity Form Applet
454 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ List applet. A list applet allows the simultaneous display of data from multiple
records. A list applet displays data in a list table format, much like a spreadsheet
or word processor table. Rows in the list applet correspond to records in the
business component; list columns in the list applet correspond to fields in the
business component. In addition to textual data, lists also support images in
JPEG and GIF formats and edit controls such as check boxes, drop-down lists,
MVGs, and text fields. A list applet appears in Figure 129.

See “List Applets” on page 472.

Figure 129. List Applet
Version 7.5.3, Rev. A Siebel Tools Reference 455

Logical User Interface Objects Layer

Applets
■ Pick applet. A pick applet is a dialog box window that appears when a selection
is to be made in a control or list column that has the check mark icon to its right.
The pick applet provides a list or table of selection values, from which the user
selects a value or record. A pick applet displays data that has a M:1 relationship
to the data in the parent applet. A pick applet appears in Figure 130.

For more information about pick applets, see “Pick Applets and Static Picklists”
on page 613.

■ Multi-value group applet. A multi-value group applet is used for entry,
maintenance, and viewing of a list of detail records associated with one or more
fields in the currently displayed master record. MVGs allow the user to associate
multiple records to a single field in a form or list and provide a way of
representing one-to-many relationships within a single record of data.

There are two ways in which users can add data to the MVG:

■ Inputting data

Figure 130. Pick Applet
456 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ Selecting from existing database records

For example, an account can have multiple members on an account team. A
multi-value group applet can be invoked from the Account Team check mark
control in the Account Entry form applet to display or maintain the list of
members associated with the current account.

Both Pick List and MVG dialog boxes allow users to add or edit records in their
lists, provided the user has permission to do so. A multi-value group applet
appears in Figure 131.

For more information about MVGs, see “Multi-Value Group and Association
Applets” on page 687.

Figure 131. Multi-Value Group Applet

Button that invokes the
MVG applet

MVG Applet
Version 7.5.3, Rev. A Siebel Tools Reference 457

Logical User Interface Objects Layer

Applets
■ Chart applet. A chart applet graphically displays data from a business component
in a bar chart, line graph, pie chart, scatter diagram or other format. It
summarizes and illustrates data relationships. Charts are usually accessed
through a tab in the third-level navigation level and contain a number of sub-
category views (multiple charts of data). These are displayed in an overview of
miniature chart graphics (.gif images) with title text. Both the mini-graphics and
the title text for the chart are hyperlinked to the detailed version of the chart. A
chart applet appears in Figure 132 on page 458.

For more information about chart applets, see Chapter 13, “Special-Purpose
Applets and Controls.”

Figure 132. Chart Applet
458 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
Once the full chart is displayed, the fourth-level navigation Show drop-down list
is used to navigate between the various charts of data (for example, Sales
Pipeline or Size Analysis). Additional controls on the graphs provide a means to
filter the data being charted and to change the chart type (from bar to line, for
example). See Figure 132 on page 458.

■ Association applet. An association applet provides the user with the ability to
associate records of two business components that have a many-to-many
relationship. It is invoked from the check mark icon in a multi-value group
applet. An association applet appears in Figure 133 on page 459.

For more information about association applets, see Chapter 12, “Multi-Value
Group and Association Applets.”

Figure 133. Association Applet
Version 7.5.3, Rev. A Siebel Tools Reference 459

Logical User Interface Objects Layer

Applets
■ Explorer or Tree applet. A tree applet is used to create an explorer view that allows
the user to navigate hierarchically through a structured list of object instances.
A tree applet appears in Figure 134.

For more information about tree applets, see “Special-Purpose Applets and
Controls” on page 717.

Figure 134. Explorer or Tree Applet
460 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ File attachment applet. File attachment applets provide access to external
documents, such as spreadsheets, word processing documents, and
presentations, that have been imported in compressed format into records in a
Siebel application. A file attachment applet appears in Figure 135.

For more information about chart applets, see Chapter 13, “Special-Purpose
Applets and Controls.”

Figure 135. File Attachment Applet

Opportunity Form Applet Attachment Applet
Version 7.5.3, Rev. A Siebel Tools Reference 461

Logical User Interface Objects Layer

Applets
Form Applets
A form applet presents business component information in a data entry form layout.
An example of a form applet in Siebel Call Center appears in Figure 136.

Figure 136. Form Applet in Siebel Call Center
462 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
Users enter data using text boxes, check boxes, buttons, and similar visual
constructs known collectively as controls. The Control object type implements data
controls, as well as buttons and links that invoke methods. The controls that display
data show a value from a particular field in the current business component row.
The relationships between objects used to implement a form applet appear in
Figure 137.

A form applet is implemented in Siebel Tools by means of an applet object
definition, multiple control object definitions, applet Web template definitions, and
applet Web template item definitions. These object types have the following roles:

■ Applet. Provides the properties that belong to the entire applet, such as the
Name, Business Component, and specifies in the Class property that the applet
is a form applet (CSSFrame class).

■ Control. Identifies individual data controls in the data entry form, such as text
boxes and command buttons. A control either corresponds to one field in the
business component, or invokes program logic (in the case of a button control).

Figure 137. Form Applet Architecture
Version 7.5.3, Rev. A Siebel Tools Reference 463

Logical User Interface Objects Layer

Applets
■ Applet Web Template. Associates an applet to a Web template. Web templates
determine the layout and format of the applet when it is rendered in the user
interface. An applet can be displayed in four of the five standard modes. An
Applet Web template is defined for each mode. The modes are listed below:

■ Base. Read only.

■ Edit. Used for editing records where users can update values. You can also
use the edit for creating new records and querying.

NOTE: Typically, New and Query modes are not necessary because Edit mode
can be used for these type of actions.

■ New. Used for creating a new record where the requirements for new mode
are different from the edit mode.

■ Query. Used for querying where the requirements for the query mode are
different from the edit mode.

■ Edit List. Not applicable for form applets.

■ Applet Web Template Items. Maps controls to placeholders tags in a Web template.
It contains the name of a control or list column as well as unique identifier of a
template placeholder. The placeholder determines its position of the control or
list column in the Web page rendered at runtime. Applet Web Template Items
are automatically populated when users drag and drop controls into
placeholders using the Applet Web Layout editor.

For more information about mapping controls and list columns to Web
templates, see “Editing the Web Layout of Applets” on page 544.
464 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
Form Applet Controls
Following creation and placement of data controls in the applet using the Applet
Web Layout Editor, the properties of the corresponding control object definitions
can be edited in the Object List Editor.

NOTE: Controls for form applets using the “Applet Form 4 Column (Edit/New)” Web
template can be associated to either a “2-Column Wide field” or a “1-Column Wide
field”. To associate a control to a “2-Column Wide field”, you must set the HTML
Width property to 412. If you do not specify an HTML Width property, the control
will appear as a “1-Column Wide field” even when it is associated to a “2-Column
Wide field” on a form applet.

All control object styles have the following important properties, except where
otherwise noted:

■ Name. The name of the control, for identification by other objects.

■ HTML Type. Specifies the style of the control. Examples of control types include
Field, Text, ComboBox, CheckBox, Button, and Active X. These Control styles
are described in a subsection below.

See the sections below for descriptions of some controls.

NOTE: HTML Type values in the repository that begin with the prefix “cfg” are
used for Siebel Product Configurator.
Version 7.5.3, Rev. A Siebel Tools Reference 465

Logical User Interface Objects Layer

Applets
■ Caption. The Caption property provides descriptive text in, on, or near the
control, depending on the type of the control. The caption specified for a button
control is the text that appears on the button face. The Caption property is
unspecified for control styles which do not have identifying text. An example of
a Text control with a caption is shown in Figure 138.

■ HTML Sequence. An integer value specifying the tab sequence of this control
relative to other controls in the applet. Tab sequence is the order in which the
tab key moves the focus from control to control on the applet. The lower the
integer value you enter for sequence in a particular control in the applet, the
sooner the tab key will access this control relative to others.

Some control styles (as specified in the Type property) are described briefly in the
following sections.

Text Controls
A text control displays text inside a rectangular box. An example of a text control is
Name, shown in Figure 139.

Some characteristics of Text controls are as follows:

■ A text control allows the entry and editing of text, unless the Text control is read-
only (in which case it has a gray background, and displays text which cannot be
altered).

Figure 138. Caption for a Text Control

Figure 139. Text Control

Caption specified as a property of the
text box

Text box control
466 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ A text control displays data of a particular data type, such as alphanumeric,
numeric, date, or currency.

■ A Select icon is automatically attached to the right edge of a Text control when
the MVG Applet property has a non-blank value or the Pop-up Edit property is
TRUE. This enables the user to call up a multi-value group applet or a calendar
or calculator widget.

NOTE: The Runtime property must also be TRUE any time the field is supposed
to pop up a Calendar or Calculator type control.

■ The Select button is attached to the right edge of a text control when the Pick
Applet property has a non-blank value. This allows the user to call up a picklist
by clicking the icon.

Static picklists and pick applets are discussed in Chapter 11, “Pick Applets and
Static Picklists.”

NOTE: Trailing spaces are truncated in data displayed through the Siebel application
user interface or through Siebel Tools.

Controls of type Text have the following essential properties:

■ Field. The field in the business component from which the Text control displays
data.

■ Display Format. A format specification for data displayed by the Text control, used
for numeric, date, currency, and similar non-text data types. Used as follows:

■ For DTYPE_NUMBER data, the property can be left blank (indicating that the
appearance of numeric values should be as set in the Regional Settings
section of the Windows Control Panel) or explicitly specified using 0, #, +,
minus sign, comma, and period symbols.

■ For DTYPE_CURRENCY data, the property can be specified explicitly using
the same symbols as for DTYPE_NUMBER, plus the dollar sign. The display
of currency values can also be controlled using the Scale field in the
Currencies view under the Application Administration screen.
Version 7.5.3, Rev. A Siebel Tools Reference 467

Logical User Interface Objects Layer

Applets
■ For DTYPE_DATETIME data, one of the keywords Date, Date Time, Date
TimeNoSec, and TimeNoSec may be specified.

■ For DTYPE_DATE data, the property can be left blank (indicating that the
appearance of date values should be as set in the Windows Control Panel) or
explicitly specified using combinations of M, D, Y, and / symbols.

■ For DTYPE_TIME data, the keyword TimeNoSec can be entered, the property
may be left blank (indicating that the appearance of time values should be as
set in the Windows Control Panel), or a format mask may be explicitly
specified using combinations of H, h, m, s, and : symbols.

■ For DTYPE_PHONE data, the Display Format property is left blank, and the
Windows Control Panel setting is used.

NOTE: Postal code formatting options are not explicitly provided, and hyphens in
a postal code are not supported. Generally, for postal codes you should use the
DTYPE_NUMBER data type, and a format mask in the Display Format property
consisting of number signs and blank spaces, such as ##### #### for U.S. Zip+4
postal codes.

■ Read Only. A TRUE/FALSE value. Indicates if the user can edit the value displayed
in the text box.

NOTE: The Read Only property must be set to FALSE to use the Runtime property
to access multi-value groups and pick applets.

■ Runtime. This is a TRUE/FALSE value. When the text box control has an MVG
Applet or Pick Applet property setting other than blank, a value of TRUE in the
Runtime property directs the system to activate an icon or drop-down arrow to
the right of the text box. A FALSE value directs the system not to provide the icon
or arrow. This makes the multi-value group or pick applet inaccessible.

NOTE: A Runtime setting of TRUE, combined with blank MVG Applet and Pick
Applet property settings, directs the system to determine from the data type of
the underlying field if an icon for a calculator, calendar, or currency pop-up
applet should be provided.
468 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ MVG Applet. Identifies the applet to use for the multi-value group dialog box
(multi-value group applet). The field for the control must be a multi-value field,
and the Runtime property must be set to TRUE.

■ Pick Applet. Identifies the applet to use for the picklist dialog box (pick applet).
The field for the control must have a picklist specified, and the Runtime property
must be set to TRUE.

Button Controls
Button controls initiate an action when clicked. There are several types of button
controls, including Button, MiniButtonEdit, and MiniButtonNew. The Button
control type is rendered as an HTML button. MiniButtons are custom controls
whose formatting is defined in a .swf file. All button types are formatted slightly
different. Example buttons are illustrated in Figure 140.

For more information on customized controls, see “Creating Custom HTML Control
Types” on page 903.

A button can invoke a built-in method (supplied with Siebel applications), or a
custom method programmed in Siebel VB, Siebel eScript, or Browser Script.

The Method Invoked property is the name of the method invoked when the button
control is clicked.

There are instances when you might want to put your own custom methods in the
Method Invoked property. For example, this is the only way to invoke Siebel VB,
Siebel eScript, or Browser Script on a button-click event.

NOTE: The Runtime property must be set to TRUE for button controls. Otherwise the
method associated with it will not execute.

Figure 140. Button Controls
Version 7.5.3, Rev. A Siebel Tools Reference 469

Logical User Interface Objects Layer

Applets
Combo Box Controls
A combo box is implemented as a control with a Type property setting of ComboBox.
It consists of a text box with a drop-down button attached at the right edge. The
user clicks the drop-down button, which activates a selection list, and then clicks a
selection in the list. The selected value replaces the previous value in the box. An
example of a combo box is shown in Figure 141.

Combo box controls implement special-purpose picklists in chart, calendar, and
pick applets. In chart applets they implement the Show and By combo boxes. In
calendar applets they implement the user name combo box. In pick applets they
implement the Find combo box. Combo box controls appear and behave almost
identically to static picklists, but they are implemented through a different control
type (ComboBox rather than Text Box).

For information on the use and configuration of the specialized combo boxes in a
chart applet and information on static picklists, refer to Chapter 11, “Pick Applets
and Static Picklists.”

Check Box Controls
A check box is implemented as a control with a HTML Type property setting of
CheckBox. It is a small, open square into which an X can be inserted or removed
by clicking the box. An example of a check box appears in Figure 142.

Figure 141. Combo Box Control

Figure 142. Check Box Control

Check box control

Caption
470 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
A check box is used to represent a TRUE/FALSE field with a data type of
DTYPE_BOOL. A TRUE value is represented as an X, and a FALSE value as an empty
box.

ActiveXControl
Allows the placement of an ActiveX control in the applet.

File
Creates a user interface element that can be used to attach a file.

Hidden
Creates an HTML input of type Hidden. These controls are not visible in the Web
page but can be accessed through scripting.

Link
Used with controls that have an "InvokeMethod" specified (this could be a built-in
method that is supplied with Siebel applications). Creates an HTML hyperlink that
will invoke the method when activated.

Mailto
Used with controls that contain an email address. The control value will be
displayed as a link, which when activated will open the user’s default email
program with the address filled in with the control value.

Password
Creates a user interface element that can be used to input a password field. The
characters entered in this control will be masked by the “*” character.

PositionOnRow
Custom control that shows the currently selected record in a list.

TextArea
Used to create a user interface element that can be used to enter text in multiple
lines.

URL
Used with controls that contain URL values. The value will be displayed as a
hyperlink, which when activated will take the user to the URL.
Version 7.5.3, Rev. A Siebel Tools Reference 471

Logical User Interface Objects Layer

Applets
Label Controls
A label control, is a visual aid only. It has no data display or entry capabilities. Use
a label control when you need to place wording somewhere inside the form applet.
There are also some specialized label controls, such as the Applet Title.

NOTE: If a caption has any HTML reserved characters, such as &, <, >, “, then it
should be HTML encoded as &, <, >, ", respectively.

List Applets
A list applet allows simultaneous display of data from multiple records and presents
business component information in a list table format with multicolumn layout
with each record of data represented in a row. In addition to textual data, lists also
support images in JPEG and GIF formats and edits control such as check boxes,
drop-down lists, noneditable MVGs, and text fields.

The Accounts List Applet is an example of a list applet in Siebel Call Center, and
appears in Figure 143.

Columns in a list applet are called list columns, and have a corresponding object
type (List Column). Data entry in a list applet is performed in the cells that are at
the intersections of rows and list columns. Cells in different list columns can
function in different ways, depending on the properties of their list columns. Some
examples of cell behavior based on list column properties are:

Figure 143. List Applet in Siebel Sales

List column displaying the contents of the Last
Name field and containing drilldown
(hypertext) jumps to another view
472 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ Cells in some list columns function like text controls in a form applet. This kind
of cell is used for the display and editing of a text, numeric, date, or currency
value. If the list column is not read-only, you can click the cell to activate an
editing cursor, and edit the text.

■ Cells in some list columns function like check box controls in a form applet. A
check mark in the box is a TRUE value; an empty box has a FALSE value.

NOTE: When TRUE, a check box in a list column holds a check mark symbol,
whereas a check box in a control in a form applet holds an X symbol.

■ Cells containing underlined, colored text are drilldown fields. Drilldown fields
let the user navigate from the cell to another view that presents detailed
information about the selected row.
Version 7.5.3, Rev. A Siebel Tools Reference 473

Logical User Interface Objects Layer

Applets
The relationships between object types used to implement a list applet appear in
Figure 144.

A list applet consists of an applet object definition, a list object definition, multiple
list column object definitions, and multiple control object definitions (including, at
a minimum, the list control). These object definitions have the following roles in a
list applet:

■ Applet object. The applet object definition provides the properties that apply to
the entire applet, such as the Name, Business Component, Width, and Height.
It specifies in the Class property that the applet is a list applet (CSSFrameList
class).

Figure 144. List Applet Architecture
474 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ List object. The list object definition provides properties that govern how the list
table operates, such as whether or not totals appear at the bottom of numeric
columns. Configuration of the list object definition is described in “Configuring
the List” on page 476.

■ List Column object. Each list column object definition identifies one list column
in the scrolling list table. A list column corresponds to one field in the business
component. Configuration of the list columns is described in “Configuring the
List Columns” on page 476.

■ Control object. Each Control object definition identifies one visual construct in
the list applet. With the exception of the list control, they all appear outside of
the scrolling list table. Typical controls in the list applet include the Title control,
which indicates the current record and the total number of records listed.
Sometimes a set of navigation command buttons are also included in a list
applet. Configuration of the controls in the list applet is described in
“Configuring Controls in a List Applet” on page 478.

■ Applet Web Template object. Associates an applet to a Web template. Web
templates determine the layout and format of the applet when it is rendered in
the user interface. An applet can be displayed in five modes. An Applet Web
Template is defined for each mode. The modes are:

■ Base. Read only.

■ Edit. Used for editing records where users can update values. You can also
use the edit for creating new records and querying.

NOTE: Typically, New and Query modes are not necessary because Edit mode
can be used for these type of actions.

■ New. Used for creating a new record where the requirements for new mode
are different from the edit mode.

■ Query. Used for querying where the requirements for the query mode are
different from the edit mode.

■ Edit List. Used for editing records in a list applet.
Version 7.5.3, Rev. A Siebel Tools Reference 475

Logical User Interface Objects Layer

Applets
■ Applet Web Template Items object. Maps controls to placeholder tags in a Web
template. They contain the name of a control or list column as well as unique
identifier of a template placeholder. The placeholder determines its position of
the control or list column in the Web page rendered at runtime. Applet Web
Template Items are automatically populated when users drag and drop controls
into placeholders using the Applet Web Layout editor.

For more information about mapping controls and list columns to Web
templates, see “Editing the Web Layout of Applets” on page 544.

Configuring the List
List is a child object type of Applet. A list applet has exactly one list object
definition, named List. The List object definition provides property values that
pertain to the entire scrolling list table, and it serves as a parent object definition for
the list column object definitions.

A List object definition (and a list control) are created when you create a new list
applet in the Applet wizard. In an existing list applet you can select the list object
definition by clicking the list table. You can then edit the properties in the Properties
window or use the Object List Editor.

Configuring the List Columns
List Column is a child object type of List. It identifies one column in the scrolling
list table and corresponds to one field in the business component. The List Column
object type has the following important properties:

■ Name. The name of the list column, for reference by other object definitions. The
Name must be unique among the child list column object definitions of the list.

■ Field. This property identifies the field from which the list column derives its
values.

■ HTML Sequence. This property defines the tab sequence when the list applet is
shown for certain actions like query, new, edit, and so on. It does not apply to
list columns.

■ Display Name. The text which appears at the top of the list column, identifying
the column.
476 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ Display Format. A format specification for data displayed by the list column. It is
used for numeric, date, currency, and similar non-text data types. For details,
refer to “Form Applet Controls” on page 465.

■ MVG Applet. This property identifies which applet to use for the pop-up multi-
value group if the field for the list column is a multi-value field.

■ Pick Applet. This property identifies the applet to use for the pop-up pick applet
if the field for the list column has a picklist specified.

■ Text Alignment. Specifies the alignment of text in the list column. Valid values are
Left, Center, and Right.

■ Total Required. A TRUE/FALSE property indicating whether the list column is to
be totaled. An example of a list applet with totals in a list column is the Expense
Item List Applet.

■ HTML Type. Specifies the style of the control. Examples of control types include
Field, Text, ComboBox, CheckBox, Button, and Active X. See the section “Form
Applet Controls” on page 465 for descriptions of common control types.

For a complete description of properties of the List Column object type, see Object
Types Reference.
Version 7.5.3, Rev. A Siebel Tools Reference 477

Logical User Interface Objects Layer

Applets
Configuring Controls in a List Applet
The controls in a list applet generally appear outside of the scrolling list table and
control the behavior of the scrolling list table or display information about the list
table. However, some controls, such as the Label in Figure 145, appear inside the
scrolling list table.

For more information about controls, see “Form Applet Controls” on page 465.

Figure 145. Controls in a List Applet

Save Button

Label

Next Record Button
478 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
About HTML Control Types
HTML control types are described in Table 34.
Version 7.5.3, Rev. A Siebel Tools Reference 479

Logical User Interface Objects Layer

Applets
Custom controls are defined in SIEBSRVR_ROOT\WEBTEMPL\CCHTMLType.swf,
dCCHTMLType.swf, and CfgHTMLType.swf. The SWE framework references these
files for information on how to display the controls (only base controls are defined
in SWE). Users can add additional custom types.

Table 34. HTML Control Types

Display Value Description

ActiveXControl Allows the placement of an ActiveX control in the applet.

Button This type can be used with controls that have a Method
Invoked property defined. This can be a built-in method
supplied with Siebel applications or a custom method
programmed in Siebel VB or Siebel eScript. It creates a UI
element that when clicked invokes the method.

The Runtime property of a button control must be set to TRUE.
Otherwise the method associated with it will not execute.

To enable a button the WebApplet_PreCanInvokeMethod event
must be scripted to set its CanInvoke parameter to TRUE.

eScript example:

function WebApplet_PreCanInvokeMethod
(MethodName, &CanInvoke)

{

if(MethodName == "Map") {

CanInvoke = "TRUE";

return(CancelOperation);

}else {

return (ContinueOperation);

}

}

ButtonDiv Custom control, a divider that separates buttons.
480 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
Caption Similar to the Label type. The difference between the Label and
Caption type is in the SWE tag syntax used for this control in
the Web template.

To show a control of type Caption, use the syntax
<swe:control property="FormattedHtml"/>.

CheckBox Creates a UI element that supports toggling between two states.
Check boxes are used for Yes/No or True/False options.

ComboBox Creates a UI element that allows the selection of a value from a
set of values. This type can be used only if the control has a
picklist defined that provides the list of values.

Div Custom control, a divider.

DrilldownTitle Custom control, a title of an applet that can bring the user to
the appropriate view. This is used frequently by applets on the
home page.

Field Custom control, a field label for a list applet.

FieldLabel Custom control, a field label for a form applet.

File Creates a UI element that can be used to attach a file.

FormSection Custom control, a label that helps to group related fields in an
applet. The FormSection label expands to fit the region where
you place it. To set it apart, the label appears against the
FormSection color defined in the cascading style sheet.

The control might not appear to expand to fit within the layout
editor but it will render that way in production.

Hidden Creates an HTML input of type Hidden. Such controls are not
visible in the Web page but can be accessed through scripting.

ImageButton Custom control, an image-based minibutton. See the
description for MiniButton.

Table 34. HTML Control Types

Display Value Description
Version 7.5.3, Rev. A Siebel Tools Reference 481

Logical User Interface Objects Layer

Applets
Label Allows a label to be placed in the applet. A label is a text string
that remains constant rather than displaying dynamic
information.

To show a control of type Label the property attribute can be
set to either DisplayName or FormattedHtml. This type was
added to handle a special case where the above difference is
important. Normally, the type Label should be used instead of
Caption.

Link Used with controls that have a Method Invoked property
specified (this could be a built-in method (supplied with Siebel
applications). Creates an HTML hyperlink that will invoke the
method when activated.

MailTo Used with controls that contain an email address. The control
value will be displayed as a link which when activated will
open the user’s default email program with the address filled in
with the control value.

Table 34. HTML Control Types

Display Value Description
482 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
MiniButton Custom control that produces a rounded button. MiniButton is
the standard button control in Siebel applications.

Used with controls that have a Method Invoked property
defined. This can be a built-in method supplied with Siebel
applications or a custom method programmed in Siebel VB or
Siebel eScript. When the button is clicked, the method is
invoked.

The Runtime property of a button control must be set to TRUE.
Otherwise the method associated with it will not execute.

To enable a button the WebApplet_PreCanInvokeMethod event
must be scripted to set its CanInvoke parameter to TRUE.

eScript example:

function WebApplet_PreCanInvokeMethod
(MethodName, &CanInvoke)

{

if(MethodName == "Map") {

CanInvoke = "TRUE";

return(CancelOperation);

}else {

return (ContinueOperation);

}

}

MiniButtonEdit Custom control that displays a button when the applet is in Edit
mode. See the description for MiniButton.

MiniButtonEditNew Custom control that displays a button when the applet is in Edit
or New mode. See the description for MiniButton.

MiniButtonNew Custom control that displays a button when the applet is in
New mode. See the description for MiniButton.

Table 34. HTML Control Types

Display Value Description
Version 7.5.3, Rev. A Siebel Tools Reference 483

Logical User Interface Objects Layer

Applets
About the Display Format Property
You can specify an explicit format mask in the Display Format property of a control
(in a form applet) or list column (in a list applet) using various symbols.

MiniButtonQuery Custom control that displays a button when the applet is in
Query mode. See the description for MiniButton.

Password Creates a UI element that can be used to input a password field.
The characters entered in this control will be masked by the *
character.

PositionOnRow Custom control that shows the currently selected record in a
list.

RTCEmbedded Custom control, an embedded text editor.

RTCEmbeddedLinkField Custom control that allows you to display graphics and links in
the RTCEmbedded object.

RadioButton Can be used in standard interactivity instead of the combo box
to show the choices as a radio button.

RecNavNxt Custom control used to display the next set of records.

RecNavPrv Custom control used to display the previous set of records.

SSNxt Custom control used to display the next question in a
SmartScript.

SSPrv Custom control used to display the previous question in a
SmartScript.

Text Creates a UI element that can be used to enter text.

TextArea Creates a UI element that can be used to enter text in multiple
lines.

URL Used with controls that contain URL values. The value will be
displayed as a hyperlink which when activated will take the
user to the URL.

Table 34. HTML Control Types

Display Value Description
484 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
For DTYPE_DATETIME you can also specify Date, Time, or TimeNoSec in the
Display Format property that will display the specified portion using the format in
the Windows Control Panel. The Display Format property is ignored for values of
DTYPE_PHONE.

About the Type Property
For controls or list columns based on fields with certain data types, Siebel
applications enable certain controls to pop up at runtime, as shown in Table 35.

To cause a runtime pop-up control to appear, the Runtime property of the list
column or control must be set to TRUE.

If there is a picklist defined for a field that has one of the types mentioned above,
then a picklist pops up at runtime, instead of a calculator or calendar.

NOTE: The Read Only property of the list column or control must be set to FALSE to
use the Runtime property to access runtime pop-up controls.

Table 35. Runtime Pop-Up Controls

Field Data Type Pop-Up Control

DTYPE_DATE Calendar

DTYPE_TIME Time

DTYPE_DATETIME Combination calendar/time

DTYPE_NUMBER Calculator

DTYPE_INTEGER Calendar
Version 7.5.3, Rev. A Siebel Tools Reference 485

Logical User Interface Objects Layer

Applets
About the Search Specification Property
If the value in the Search Specification property in an Applet object definition is
non-blank, the set of records provided to an applet is restricted. The search
specification contains the names of one or more fields in the business component
and various operators, combined to create a conditional expression. Records in
which the value of the conditional expression evaluates to TRUE are provided to the
applet for display; those records in which the expression evaluates to FALSE are
excluded.

NOTE: Search specifications on child applets are not executed.

Some sample search specification expressions appear below:

[Type]= "COST LIST"

[Revenue] > 5000

[Competitor] IS NOT NULL and [Competitor] <> "N"

[Type] = LookupValue ("TODO_TYPE", "In Store Visit")

Search specification expressions are built according to the following syntax rules:

■ Standard comparison operators are used to compare a field to a constant, or one
field to another field. These include =, <>, >, <, >=, and <=.

Example: [Revenue] > 5000

■ String constants are enclosed in double quotation marks. String values are case
sensitive, so the use of uppercase and lowercase letters in the search
specification should exactly match that of the records you want returned.

Example: [Type] <> “COST LIST”

■ The logical operators AND, OR, and NOT are used to negate or combine
expressions. Case is ignored in these operators; for example, “and” is the same
as “AND”).

Example: [Competitor] IS NOT NULL and [Competitor] <> “N”
486 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Applets
■ A field name in a search specification must be enclosed in square brackets.

Example: [Conflict Id] = 0

■ The LIKE operator can be used to create text string comparison expressions in
which a field is compared to a constant, or a field to another field, and a match
on only the first several characters is required. The wildcard characters “*” and
“?” are used to indicate any number of characters, and a single character,
respectively.

Example: [Last Name] LIKE “Sm*”

In this example, the Last Name values of Smith, Smythe, Smallman, and so on
would cause the expression to evaluate to TRUE.

■ The search specification expression must be 255 characters or less.

An applet search specification cannot be used to override the search specification
of the underlying business component, if the business component has one. Rather
than overriding the business component’s search specification, the applet’s search
specification is appended to that of the business component. Search specifications
should appear in the business component or the applets that use it, but not both.

The search specification on an applet is converted to a WHERE clause by the data
manager at runtime. When two applets based on the same business component
appear in the same view, one query is generated against the database to populate
both applets. Because a database select statement only supports one WHERE
clause, only one of the applets should have a search specification—or if both do,
they should have the same specification.

For example, the Account List Applet and the Account Entry Applet both appear in
the Account List View. The record that is selected in the Account List Applet also
appears in the Account Entry Applet. When you select a different row in the list or
scroll through the list, the Account Entry Applet is updated to show the same record
that is selected in the Account List Applet. This is made possible by the fact that
both applets are populated from the same query and therefore show the same
record set.

To prevent the two applets from being synchronized, they would have to be on
separate business components, for example by copying the business component on
which the first applet is based.
Version 7.5.3, Rev. A Siebel Tools Reference 487

Logical User Interface Objects Layer

Views
For more information on the usage of the Search Specification property of applets,
see Object Types Reference.

When the Applet Visibility Type property of the View Web Template Item object is
set to a non-null value, it might cause search specifications on the applets in that
view to be ignored. This property is recommended for use mainly where the applets
in a view are based on different business components. If you use this property, test
it thoroughly for functionality.

Search specifications can impact performance negatively, particularly when you
include fields based on joins in the search specification. Search specifications with
NOT or OR can also adversely affect performance by forcing the database to execute
a full table scan.

Views
A view is a collection of applets that appear at the same time on the same screen.
A view can be thought of as a single window’s worth of data forms (applets).
Generally, a Siebel application window displays one view at any one time. The
currently active view is changed by selecting a different view from the view tabs or
from a menu suboption in the Site Map.

CAUTION: Do not modify Server Administration views.

Information in these views is read from the siebens.dat file and displayed in the user
interface by the Server Manager. Configurations made to these views would also
have to be made to the siebens.dat file. However, it is not possible to configure the
product to store such information in siebens.dat. Therefore, configuration of server
views is neither recommended nor supported.

Views are typically of the following styles:

■ List-form view. In a list-form view, a list applet and a form applet display data from
the same business component. The list applet appears above the form applet.
The form applet presents the same information as the currently selected record
in the list applet, with a different arrangement that may include more fields.

List-form views are described in “List-Form Views” on page 489.
488 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Views
■ Master-detail view. In a master-detail view, a form applet and a list applet display
data from two business components related by a link. The form applet appears
above the list applet. The form applet displays one record from the master
business component in the master-detail relationship. The list applet displays all
of the records from the detail business component that have as their master
record the record currently displayed in the form applet.

Master-detail views are discussed in “Master-Detail Views” on page 490.

NOTE: Master-detail views can display multiple master-detail relationships, with
a different applet for display of records from each detail business component.

List-Form Views
In a list-form view, a list applet and a form applet display data from the same
business component. The list applet appears above the form applet. The form applet
presents the same information as the currently selected record in the list applet.

Figure 146 illustrates the Accounts List View, which is a list-form view in Edit mode.

Figure 146. List-Form View
Version 7.5.3, Rev. A Siebel Tools Reference 489

Logical User Interface Objects Layer

Views
The form applet displays information from the same account, but in a form which
can be viewed without scrolling. Notice the Select button and down-arrow icons to
the right of some text boxes in the form applet. These indicate that multi-value
group applets and picklists are also available from the list applet. Select buttons and
down-arrow icons are not visible in the list applet until list column cells containing
them are clicked.

The applets in this view are Account List applet and Account Entry applet. Both are
based on the Account business component. The Account List view uses the property
settings in Table 36.

Master-Detail Views
In a master-detail view, typically a form applet and a list applet display data from
two business components related by a link. The form applet appears above the list
applet. The form applet displays one record from the master business component
in the master-detail relationship. The list applet displays all of the records from the
detail business component that have as their master record the record currently
displayed in the form applet.

NOTE: In another variant of the master-detail view style, the view can consist of two
list applets. The records in the detail list applet are detail records of the currently
selected record in the master list applet.

Table 36. Property Settings in Account List View

Property Value

Business Object Account

Title My Accounts
490 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Views
Figure 147 illustrates the Contact Detail - Accounts view, which is a master-detail
view.

The list of Accounts for this Contact appears in the list applet. If a different Contact
appeared in the form applet, a different set of Accounts would appear in the list
applet.

Figure 147. Master-Detail View in a Siebel Application

Form applet containing
the master record

List applet containing
the detail records
Version 7.5.3, Rev. A Siebel Tools Reference 491

Logical User Interface Objects Layer

Views
The applets in this view are Contact Form applet and Contact Account applet. They
are based on the Contact and Account business components, respectively. The
business object associated with the view is Contact. In the context of the Contact
business object, the master-detail relationship between Contact and Account is
based on the Contact/Contact Account link. See Figure 148 for the relationships
among the objects.

The object definitions in this diagram are briefly described in the following:

■ Master-detail view. The view being implemented.

■ Master applet. The form applet used to display the master record.

■ Detail applet. The list applet used to display the corresponding detail records.

Figure 148. Master-Detail View Architecture
492 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Views
■ Business object. Business object associated with the view by means of the
Business Object property of the View object. The business object establishes the
context that determines the active link between the business components
associated to the two applets.

■ Business object components. The business object components are child objects of
the business object. Each business object component associates a business
component to the business object.

■ Master business component. The business component associated with the master
applet.

■ Detail business component. The business component associated with the detail
applet.

■ Link. The link that specifies the master-detail relationship between the master
and detail business components. It is identified in the Link property of the detail
Business Object Component object.

Thread Bars
The thread bar is a navigational tool for the user. It provides the means to navigate
from view to view among the views previously visited in the current screen. The
Thread Bar is identified in Figure 149.

The entries in the thread bar identify a view (based on a different business object)
that the user has visited. The name of the view is given in the box.

Figure 149. Thread Bar in a Siebel Application
Version 7.5.3, Rev. A Siebel Tools Reference 493

Logical User Interface Objects Layer

Views
The following properties in each view object definition are set in order to configure
thread behavior:

■ Thread Applet. Specifies which of the applets appearing in the view supplies the
data value for the thread field.

■ Thread Field. The name of the field whose data value is included in the arrow box,
following the Thread Title. This is a field in the business component associated
with the applet identified in the Thread Applet property.

■ Thread Title. The text used in the thread to identify the view. For example, in most
of the views displaying Accounts (such as Account List view and Account Detail
- Contacts view), the Thread Title is Acct.

Drilldown Behavior in a View
The Drilldown Object object type is a child of Applet, used primarily in list applets.
It allows the user to drill down from a cell in a list applet (or using a pop-up menu
in either a form or list applet) to a particular view. Drilldown controls or list
columns in a list applet in Siebel applications consist of colored, underlined text,
much like a hypertext link in a Web browser. Drilldowns in a list applet are
illustrated in Figure 150.

NOTE: Drilldown behavior is not supported on MVG applets, pick applets, or
association applets.

Figure 150. Drilldown List Columns in a List-Form View

Drilldowns in
Account list column
494 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Views
In the standard (or static) drilldown configuration, a specific view is referenced for
each hyperlink list column or control. Clicking the hypertext in the list column or
control takes you to that view under all circumstances. Another kind of drilldown
configuration, dynamic drilldown, is discussed in “Dynamic Drilldown Behavior”
on page 496.

If the driving applet of a view has a search specification, this search specification is
also applied to the destination view when drilling down.

For more information, see “About the Search Specification Property” on page 486
and Object Types Reference.

NOTE: If the target view of a drilldown object has a different visibility type from the
origin view, drilling down on a cell will take the user to the first record of the
destination view and not to the drilldown record.

Static Drilldown Behavior
In the example, underlined account name appears in the list column labeled Name.
If the user clicks the account in the Name list column, a master-detail view appears,
with the selected account in a form applet above an applet displaying the
corresponding list of contacts.

Drilldowns appear as hypertext only in list applets.
Version 7.5.3, Rev. A Siebel Tools Reference 495

Logical User Interface Objects Layer

Views
Figure 151 displays the property relationships between the list applet, business
component, and view in a static drilldown configuration.

One Drilldown Object object definition is specified for each list column in the list
applet to have drilldown functionality.

Dynamic Drilldown Behavior
Dynamic drilldown enables hyperlink navigation to multiple views from the same
hyperlink field, depending on the value of a field in the applet’s current record.

Figure 151. Static Drilldown Configuration
496 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Views
This is useful in the situation where special processing is desired for various types
of contacts, opportunities, accounts, and so on. The business component may have
a field that indicates a classification, such as the Lead Quality for an opportunity or
the primary Industry for an account. The drilldown behavior can be to check this
field in the current record, and navigate to different views for different values found
there.

Dynamic drilldown behavior for a hyperlink field (and the corresponding list
column or control) is configured with one or more Dynamic Drilldown Destination
child object definitions of the Drilldown Object. This is illustrated in Figure 152.

Figure 152. Dynamic Drilldown Configuration Details
Version 7.5.3, Rev. A Siebel Tools Reference 497

Logical User Interface Objects Layer

Views
As in a static drilldown configuration, the Drilldown Object object definition
identifies a hyperlink field and a view. These property settings continue to have the
same purpose in dynamic drilldown, namely to specify the list column or control
that has hyperlink capabilities, and the destination view when the hyperlink is
clicked.

However, for dynamic drilldowns, you define Drilldown objects for each candidate
view. The Drilldown object with the lowest sequence number contains child
Dynamic Drilldown Destination objects that are used to define the conditions under
which each of the Drilldown objects should be activated. When the conditions
defined in a Dynamic Drilldown Destination are matched, the logic routes to one of
the candidate Drilldown objects. When all conditions expressed in the Dynamic
Drilldown Destinations are false, the parent Drilldown object acts as the default.

For example, the Industry field in the Account business component could be
designated as the type field in a list of Dynamic Drilldown Destinations. When the
Industry value is “Manufacturing,” the drilldown could route to a Drilldown Object
with a view tailored for manufacturing accounts. When the value is
“Transportation,” the destination could be a different Drilldown Object and view,
and so on.

The list of Dynamic Drilldown Destinations contained in a Drilldown Object
specifies a set of criteria, of which any number may be met. If the condition in one
Dynamic Drilldown Destination is met, the hyperlink routes to the specified
Drilldown Object. If more than one is met, the first encountered (as specified in the
Sequence property) specifies the destination Drilldown Object. If none is met (or no
Dynamic Drilldown Destination object definitions are supplied as children of the
Drilldown Object), the Drilldown Object itself supplies the name of the destination
view.

Be careful to avoid routing hyperlinks from one dynamically evaluated Drilldown
Object to another. That is, if you create Dynamic Drilldown Destination children of
a Drilldown Object, do not have them route to a Drilldown Object that itself has
Dynamic Drilldown Destination children. This practice could lead to ambiguity or
looping.

If multiple drilldown objects for the applet are defined, a given field in the business
component should be mentioned only once for all available drilldown objects. For
a dynamic drilldown, the drilldown object that contains the dynamic drilldown
destinations should have the Hyperlink Field property set.
498 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Views
Applet Toggles
Applet toggles allow users to switch back and forth between different applets within
the same view. This is useful when you want to display different types of data or
present the same data in a different way. There are two types of applet toggles, static
and dynamic:

■ Static applet toggles. Allow users to toggle between applets by selecting the name
of the applet from the Show drop-down list.

■ Dynamic applet toggles. Automatically toggles between applets based on the
value of a field in a parent applet.

When configuring applet toggles, consider the following:

■ For applets involved in a toggle cycle the search spec on the form applet in the
view will be applied first. Therefore, to apply a search spec on a list applet in a
toggle cycle, you also need to add the search spec for the form applet.

■ Dynamic toggle applets must be based on the same business component.

■ Static toggle applets do not have to be based on the same business component.

■ You cannot configure more than one applet toggle in a view.

To understand applet toggles consider an example. Suppose you need to store
information about your customer’s preferred payment method using the contact
business component. Payment methods are cash, credit card or check. For each
payment method, you need to gather different data:

■ Cash. No special data requirement, this is the default payment method

■ Credit Card. Credit Card Type, Credit Card Number, Expiration Date

■ Check. Checking Account Number, Routing Number, Driver License Number,
Driver License State

You could configure this scenario using a static toggle applet or a dynamic toggle
applet. A static toggle applet would require the user to toggle between the different
applets by selecting it from the Show drop-down list. Dynamic toggle would
automatically toggle between applets based on the value entered in a Payment Type
field.
Version 7.5.3, Rev. A Siebel Tools Reference 499

Logical User Interface Objects Layer

Views
To configure applet toggles (an example)

1 Create new fields in the Contact business component to capture the following
information:

■ Payment Method (use a static bound picklist that contains Cash, Credit Card,
and Check)

■ Credit Card Type

■ Credit Card Number

■ Expiry Date

■ Checking Account Number

■ Routing Number

■ Driver License Number

■ Driver License State

2 Expose the Payment Method Field in the Contact Form Applet. This is the default
applet that would be used when the contact's preferred payment method is
Cash.

3 Create two copies of the Contact Form Applet.

Name one of them Contact Form Applet - Credit Card and the other Contact
Form Applet - Check.

4 Expose the following fields in the Contact Form Applet - Credit Card:

■ Credit Card Type

■ Credit Card Number

■ Expiry Date BC Fields

NOTE: When the contact's preferred payment method is Credit Card, the Contact
Form Applet - Credit Card applet allows the user to enter a contact's credit card
information.

5 Expose the following fields in the Contact Form Applet - Check:
500 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Views
■ Checking Account Number

■ Routing Number

■ Driver License Number

■ Driver License

■ State BC Fields

NOTE: When the contact's preferred payment method is Check, the Contact Form
Applet - Check applet allows the user to enter a contact's checking account
information.

6 Find and select the Contact Form Applet in the Object List Editor, navigate to the
Applet Toggle child object, type and create the following records:

■ Record 1:

❏ Applet=Contact Form Applet - Check

❏ Auto Toggle Field=Payment Method

❏ Auto Toggle Value=Check

❏ Name=Contact Form Applet - Check

❏ Parent Name=Contact Form Applet

■ Record 2:

❏ Applet=Contact Form Applet - Credit Card

❏ Auto Toggle Field=Payment Method

❏ Auto Toggle Value=Credit Card

❏ Name=Contact Form Applet - Credit Card
Version 7.5.3, Rev. A Siebel Tools Reference 501

Logical User Interface Objects Layer

Screens
❏ Parent Name=Contact Form Applet

NOTE: To configure this example as a static toggle applet that allows the user to
select the appropriate applet from the Show drop-down list, leave the Auto
Toggle Field and Auto Toggle Value properties blank.

7 Compile your changes and test.

Screens
A screen is a logical collection of views. It is not a visual construct in itself; rather,
it associates views so that other visual constructs, such as the Site Map and tab bar,
can reflect the list of views contained in the currently active screen.

A screen does not have a direct relationship with a business object in the same way
that a view does. No property in the Screen object type specifies a business object.
However, a screen normally contains only views relating to the same business
object; this is good design practice. In this sense, it can be loosely said that a screen
corresponds to one business object.
502 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Screens
You can select a screen from the Site Map or from the first level of tabs shown in
Figure 153.

A screen is implemented as a Screen object definition with Screen View child object
definitions. Each Screen View object definition associates an existing view with the
screen. Properties within each screen view object definition specify the screen's
appearance in the view tabs and Site Map.

NOTE: You can create two different views based on different business components;
however, in that situation the Siebel application cannot keep track of record context
and you will not be able to navigate between them.

Figure 153. First Level Navigation Tabs

Accounts Screen

My Accounts View
Version 7.5.3, Rev. A Siebel Tools Reference 503

Logical User Interface Objects Layer

About The User Interface Navigational Paradigm
About The User Interface Navigational Paradigm
The user interface contains four levels of navigation.

1 Top level tabs (Page Tabs) allow users to navigate between screens.

2 Views displayed in the Show: combo box on the toolbar allow users to navigate
between views. These views are often context views controlled by visibility
properties, such as My Contacts, All Contacts, and My Team’s Contacts. They
can also be a list of all available views in a screen, such as the views displayed
in the Application Administration screen.

3 View tabs (displayed between the top applet and the bottom applet in a typical
view) allow users to navigate between master-detail views to see different kinds
of data.
504 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

About The User Interface Navigational Paradigm
4 Views displayed in a Show: combo box that appears in the banner of a subview
allow users to select between different subviews, such as different chart views
as shown in Figure 154.

Figure 154. Four Levels of Navigation

2nd level
navigation: Show:

1st level navigation:
Screen Tabs

3rd level
navigation:

4th level navigation:
Show: combo box on

subview
Version 7.5.3, Rev. A Siebel Tools Reference 505

Logical User Interface Objects Layer

About The User Interface Navigational Paradigm
Each of these navigation levels are controlled by the following objects:

■ Page tabs. Child objects of the Application object type. Page tabs appear as the
first-level navigation tabs in the user interface. Each page tab is associated with
a screen. Users select the tab to navigate to a particular screen.

See “Associating Screens with Page Tabs” on page 577 for more information.
506 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

About The User Interface Navigational Paradigm
■ Views. The Visibility Applet property of the view object determines whether a
view appears in the Show: combo box on the toolbar or as a View tab.

If this property is not null, then the view appears in the Show: combo box. For
example, views such as My Accounts, All Accounts, and My Team’s Accounts
appear in the Show: combo box because the visibility property is set to a non-
null value.

However, if the Visibility Applet property is set to a null value, then the view
appears as a View tab, as is typically the case with master-detail views.

It is useful to group views this way, because it allows you to separate the views
that show the same type of data, but filter it differently based on visibility rules,
from views that show different types of data. Views that show the same data but
filter it differently appear in the Show: combo box and views that show different
types of data appear as View tabs.

See “About Views” on page 562 for more information.

When a query is performed in a view or a predefined query is executed for a
view, the current query context remains when users navigate to another view
using a view tab, where the driving applet is based on the same business
component as the previous view.

However, a fresh query is applied when the view is visited from the Site Map.

The visibility rules of the new view are also applied. If a query is entered in an
All view and then a View tab is used to navigate to a Manager view or a Sales
Rep view, only the subset of records that is visible to the user as a manager or
as a sales representative will be seen.

If there is a search specification on a driving applet in a view and the user
navigates from this view to another using a view tab, the search specification is
applied to the destination view—keeping the same query.

An explicit search specification can be specified for the applet in the target view
to force a new query. For more information, see “About the Search Specification
Property” on page 486 and Object Types Reference.

■ Screen view. A view appears in the Show: combo box on a subview (fourth-level
navigation) if the Screen View with which the view is associated has non-null
values for the following properties:
Version 7.5.3, Rev. A Siebel Tools Reference 507

Logical User Interface Objects Layer

Applications
■ Category. This is a logical representation of what category the view belongs
to.

■ Category Menu Text. The display value that appears within the combo box.

■ Category Viewbar text properties. The display text of the View tab under which
it appears.

NOTE: The values for Category and Category Viewbar text are generally the
same.

See “About Screens” on page 572 for more information about screen views.

Applications
Siebel applications are primarily a collection of screens that users can invoke from
the desktop by double-clicking an icon or by pointing a browser to a server running
the application. Each combination of screens that is appropriate to a specific class
of users can be provided as an application. Siebel Sales, Siebel Service, and Siebel
eMarketing are examples of applications. Custom applications can be configured as
well, uniquely combining user interface object definitions to meet particular
requirements of the organization. However, developers should rarely need to do
this.

In addition to collecting a group of screens and their views, an application object
definition includes the following:

■ Find object definitions that configure the Find dialog box.

For more information, refer to “Screens” on page 502.

■ Scripts written in Siebel VB or Siebel eScript and browser JavaScript that can be
implemented as event procedures on startup, prior to closing, and so on. These
are implemented through Application Script child object definitions, and created
and maintained in the Siebel VB or Siebel eScript Editor.

For more information, about Siebel VB and Siebel eScript, see Siebel VB
Language Reference and Siebel eScript Language Reference.
508 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Web-Related Objects
■ Custom menu options for Siebel-provided methods. These are implemented
through the application method menu item object definitions, and created in the
Applet Method Menu Item Wizard.

See “Defining Web Menus Using the Applet Method Menu Wizard” on page 591
for more information.

NOTE: Applets can have their own custom menus as well.

A desktop icon is configured to activate a specific application through the /c
command line switch and the ApplicationName parameter in the configuration file.

Screens are included in an application object definition using page tab and screen
menu item child object definitions. Each page tab or screen menu item object
definition associates a screen to the application. The page tabs add screens to the
Tab bar. The screen menu items add screens to the Site Map. Note that the list of
screens in the Tab bar can be different from the list of screens in the Site Map.
Typically the site map will be the more complete of the two if the Tab bar and Site
Map differ. The set of screens in an application is the union of the screens found in
the Tab bar and Site Map.

Web-Related Objects
This section provides a general description of the Web-related objects in Siebel
Tools.

■ Web Page. Defines attributes that are mapped to a Web page template. Web pages
contain views and other persistent objects. The relationship between a Web page
and a view is established using tags within the Web Page SWT template. Web
Page objects/templates are also used for displaying Login, Error pages, and so
on.

■ Web Page Item. Item that can be shown on a Web page. Similar to control, except
it is not placed on an applet.

■ Web Page Item Parameter. Parameter of the Web Page Item. Definition varies
depending on the item. For example, for a page item that has Invoked Method
set to GoToView, an optional parameter is view, and its value is the name of the
destination view.
Version 7.5.3, Rev. A Siebel Tools Reference 509

Logical User Interface Objects Layer

Web-Related Objects
■ Web Template. Establishes a relationship between a representation of an SWT file
in the repository and the actual file stored in a file directory.

■ View Web Template. Establishes an association between a parent View object and
a Web Template. Each View object can have at most one View Web Template
child.

■ View Web Template Item. Siebel Applets mapped to View Template.

■ Applet Web Template. Establishes an association between a parent Applet and a
Web Template. There are four types: Base, Edit, New, and Query, corresponding
to the record operation performed within each. Applets may have several Edit
and New Applet Web Templates but will have at most one Base and Query
Applet Web Template.

■ Applet Web Template Item. List items, applet controls, and Web controls that
belong to Applet Web Template.

■ Applet Server Script. Script associated with an Applet that is exposed in an
application (through one or more Applet Web Templates). Web scripts can be
used to modify output from the Siebel Web Engine (SWE) before it is sent to the
browser.
510 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Web-Related Objects
Table 37 describes the new Web-related properties of existing Siebel objects.

Table 37. Existing Siebel Objects with New Web-Related Properties

Web-related Control
Attributes Description

HTML Display Mode Values are:

■ DontEncodeData. Leaves the data as is. This is useful if the configurators wish to
put their own HTML in the Caption property and expose the caption to the Web
page.

■ EncodeData. Let Siebel Web Engine convert data into HTML format.

■ FormatData. Replace the data. By default, <CR> is replaced with
.

HTML Row Sensitive Used to indicate to the SWE that it must reposition the Applet on the correct row
before invoking the method defined in the MethodInvoked property. Within applets
there are controls which can invoke methods. Some of these methods require the
existence of a current row before the method can be invoked. For example,
DeleteRecord, EditRecord require a specific record, and NewRecord, ExecuteQuery
do not.

If you set this to TRUE, SWE will try to locate the record first before invoking the
method. If the method for your control does not need the current row, you must set
it to FALSE. If set incorrectly, SWE may return an error message.

For these methods HTML Row Sensitive should be set to TRUE: CopyRecord,
DeleteRecord, Drilldown, EditField, EditRecord, PickRecord, UndoRecord,
WriteRecord, and GetImage.

For these methods HTML Row Sensitive should be set to FALSE: CloseApplet,
AddRecord, CreateRecord, ExecuteQuery, ExecuteSort, Find, GotoFirstSet,
GotoLastSet, GotoNextSet, GotoPreviousSet, NewQuery, NewRecord, NewSort,
ResetRecord, SortAscending, SortDescending, and SortOrder.

HTML Type The type to be used in the Web client. Values are Button, CheckBox, ComboBox,
File, Hidden, Label, Link, Mailto, Password, Text, TextArea, and URL. Used by the
Web engine only when the corresponding placeholder tag appears within a form tag.

For information on HTML control types, see Table 34 on page 480.

Method Invoked Siebel Method invoked by the control (frequently used for buttons). Some methods
require a Control or List Column User property to specify an argument. For example,
the GotoView method requires that the destination view be specified in a User
Property.
Version 7.5.3, Rev. A Siebel Tools Reference 511

Logical User Interface Objects Layer

Search and Find Objects
Search and Find Objects
Search objects and Find objects can be configured to meet your organizations
requirements.

■ Find. Allows users to query the database on a field-by-field basis from anywhere
in a Siebel application. Find objects define what objects and fields to query
against.

■ Search. Allows users to perform full text searches across multiple business
components and files with one operation. Search objects are a logical entities
that define all search characteristics and behaviors for an object. They include
attributes that define the business component and fields to search upon, drill-
down results views, and records which may be associated with a particular
result.

For detailed information about Search and Find objects and related configuration
information, see Siebel Search Administration Guide.

Field Field which will be used to retrieve data from the business component.

Caption Used with corresponding tags to display the Caption value of the control or list
column. If necessary, the Caption property can be used to store unformatted HTML
tags. For example a help button might have the following value for its Caption
property: <a href="help/Siebel_eBusiness_Help.htm"
target=_blank>Help

Table 37. Existing Siebel Objects with New Web-Related Properties

Web-related Control
Attributes Description
512 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Toolbars and Menus
Toolbars and Menus
Toolbars and menus allow users to initiate various actions. The application-level
menu (File, View and Help) appears in its own frame near the top of the application
in the browser window, and the toolbar appears just beneath the primary tab bar,
as shown in Figure 155.

Figure 155. Toolbar and Application-Level Menu

Application-level menus Tool bar
Version 7.5.3, Rev. A Siebel Tools Reference 513

Logical User Interface Objects Layer

Toolbars and Menus
The applet-level menus are invoked from the applet menu button, in the banner at
the top of an applet. See Figure 156.

The user's click on a toolbar icon or menu item is normally translated into a call to
an invoke method, which may reside in a service on the browser or server, or in
classes in the browser application or server infrastructure (applet or business
component classes, SWE frame manager, or model). The toolbar icon or menu item
is configured to target a method name, a method handler (from which it may be
automatically retargeted if not found), and optionally a service.

Application-level items (which include both toolbar icons and application-level
menus) are implemented through the use of Command object definitions in Tools,
which are then mapped to Toolbar Item or Menu Item object definitions.

Figure 156. Applet Menu

Applet Menu button.

Menu invoked when Applet
menu button is clicked.
514 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Toolbars and Menus
In SWE templates, the <swe:toolbar> tag specifies a named toolbar (where the
name corresponds to the Name property in the Toolbar object definition in the
repository), and the <swe:toolbaritem> tag between the toolbar start and end
tags recursively retrieves all of the toolbar items for that toolbar from the repository.

See “Toolbar Template Configuration” on page 866 for more information about
Toolbars and swe: tags.

Toolbar and Menu-Related Object Types
The relevant object types for configuration of menus and toolbars in Tools are
described in the following sections.

Command Object Type
A Command object definition specifies which invoke method is called when a
toolbar icon or application-level menu item associated with the command is
executed (applet-level menus do not use command objects). It also specifies which
bitmap appears on the toolbar icon for toolbar items. Command object definitions
are referenced by Toolbar Item or Menu Item object definitions.

See “Using the Command Object Wizard” on page 586 for more information about
creating Command objects.

A Command object definition has the following significant properties:

■ Target. Specifies which entity handles the invoke method the command calls.
Available options are the following:

■ Browser. The method handler is a JavaScript service on the browser, or the
JavaScript application, depending on whether a service is specified in the
Business Service property.

■ Server. The method handler is an object manager service on the server or the
object manager infrastructure (the SWE UDF loader, or, secondarily, the
model), depending on whether a service is specified in the Business Service
property.

■ Browser Applet. Used with high interactivity.

For more details on the configuration of the Target property and related properties,
see “Invoke Method Targeting” on page 521.
Version 7.5.3, Rev. A Siebel Tools Reference 515

Logical User Interface Objects Layer

Toolbars and Menus
■ Business Service. Specifies the service (either browser or server, depending on
the Target property) that handles the invoke method. If the property is left blank,
the browser or server infrastructure is targeted rather than a specific service. If
a service is specified, it must handle CanInvokeMethod and InvokeMethod for
the method specified in the Method property.

■ Method. Specifies the name of the method to invoke when the menu item or
toolbar icon is selected. This is a required property.

See “Invoke Method Targeting” on page 521.

■ Method Argument. Provides the means to pass an argument to the invoke method
specified in the Method property. For example, a command item that opens a
new window and navigates to a URL in that window can specify the GotoURL
method in Method and the URL to navigate to in Method Argument.

■ Show Popup. If TRUE, specifies that a new browser window is opened before
invoking the method. If FALSE, specifies that the method is invoked in the
current browser window.

■ HTML Popup Dimensions. Dimensions, in pixels, of the pop-up window, when
Show Popup is TRUE. An example is 640x480 (specified with the “x” and
without blank spaces).

■ HTML Bitmap. Specifies bitmap used by the Command object.

■ Tooltip Text. This is the tooltip text which appears when the cursor lingers on a
toolbar icon. For built-in methods, the tooltip text should be left blank; blank
indicates that the method will dynamically supply the text, and language
localization takes place as a part of this process. For developer-defined methods,
you should enter literal text (but note that this turns off language localization for
this tooltip text).
516 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Toolbars and Menus
Toolbar Object Type
For each toolbar in the application, you create a Toolbar object definition in the
Object List Editor. This provides a named toolbar that the user can activate or
deactivate in Siebel applications, and to which icons (Toolbar Item object
definitions) can be associated or removed. Typical toolbar functionality for most
applications is implemented using HTML toolbars. In an HTML toolbar, the buttons
are static images, which may be dimmed to indicate unavailability, but otherwise
are not manipulated by program logic on the browser. In contrast, communications
toolbars in applications such as Call Center, require toolbar icons that can be altered
in response to events, such as blinking a particular toolbar icon when a call is
incoming. This requires the use of Java toolbars. To specify that a toolbar is of the
Java type, a class name is entered in the Class property.

For more information about configuring communications toolbars, see Siebel
Communications Server Administration Guide.

Important properties of Toolbar are:

■ Class. Left blank for an HTML toolbar, specified for a Java toolbar - the name of
the Java class that implements the toolbar is entered.

■ Name. Referenced by other object definitions, and by the <swe:toolbar> tag
in the "name=" clause.

■ Display Name. Used for the History button and to show or hide toolbars by name.

Toolbar Item Object Type
The Toolbar Item object type associates a Command object definition (identified by
name as a property in the Command property) with a Toolbar object definition (the
parent of the Toolbar Item). This association places a toolbar icon, whose bitmap
image, invoke method, and target are specified in the Command object definition,
on the specified toolbar in a given location (relative to the other toolbar icons on
that toolbar). The following properties are significant in a Toolbar Item object
definition:

■ Command. Name of the Command object definition that is to provide the bitmap,
method and target for the toolbar item. One or more hyphens can be specified
instead of the name of a Command object to tell the system to insert a separator
there between icons.
Version 7.5.3, Rev. A Siebel Tools Reference 517

Logical User Interface Objects Layer

Toolbars and Menus
■ HTML Type. Identifies the type of control to be displayed in the toolbar in the
browser. Options include ComboBox, Button, Edit, Label, Hyperlink, MiniButton
and Timer.

■ Name. Name of the toolbar item. Used internally in Siebel Tools only. This needs
to be unique within the scope of a toolbar.

■ Sequence. Integer that orders the toolbar item in the parent toolbar from left to
right. A higher sequence number relative to other toolbar items places this icon
further to the right than the others.

■ Position. Used for sideways toolbars. A value of .1, .2, and so on, is used.

■ Menu. Defines a set of application-level main menus. Currently the only Menu
object definition in use is called “Generic.” It is the parent of Menu Item.

■ Menu Item. Defines an application-level main menu or menu item within the
parent Menu object definition. Significant properties are the following:

■ Name. Uniquely identifies the menu or menu item.

■ Command. Name of the Command object definition that is to provide the
method and target for the menu item.

■ Caption. The text displayed in the menu or menu item.

■ Position. Specifies the position of the menu or menu item in the menu tree.
The top-level positions for menus (rather than items within them) are single
integers such as 1, 2, and 3 (or 10, 20, and 30). Position values for menu
items (2nd level and below in the menu tree) are specified using a dot
notation, where the value to the right of the rightmost dot specifies the order
of the item on its level, and the value or values to the left of that dot specify
the parent menu or menu item. For example, 3.1 is the first item in the
submenu of the third item of the top-level menu. Note that values on a level
are not required to be consecutive; for example, the values 1110, 1115, 1120,
and 1130 may be used to indicate four menu items on the same level; their
sequence determines their order of display in the menu.

Applet Method Menu Item
Defines a menu item in the applet-level menu for the parent Applet object
definition. Important properties are the following:
518 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Toolbars and Menus
■ Menu Text. The text displayed in the menu item.

■ Suppress Menu Item. Default is FALSE. If TRUE, causes the class-level menu item
of the specified name to be removed from the applet-level menu in the applet
where this property is specified.

■ Command. Name of the Command object definition that is to provide the bitmap,
method and target for the applet menu item.

■ Position. The sequence of the menu item in the single-level list of menu items.

See “Defining Web Menus Using the Applet Method Menu Wizard” on page 591 for
more information.

Class Method Menu Item
Class Method Menu Item is a child of Class. It adds (or suppresses) a menu item on
applet-level menus for all SWE applets of the specified applet class and its
subclasses.

Significant properties are the following:

■ Target. Specifies which entity handles the invoke method specified in the Method
property. Available options are the following:

■ Browser. The method handler is a JavaScript service on the browser, or the
JavaScript applet class (secondarily the JavaScript business component
class) on the browser, depending on whether a service is specified in the
Business Service property.

■ Server. The method handler is an object manager service on the server or the
applet and business component and their superclasses, depending on
whether a service is specified in the Business Service property.

■ Menu Text. The text displayed in the menu item.

■ Method. The method invoked when the item is selected.

■ Business Service. If specified, identifies the service on which to invoke the
method. If unspecified, the method is invoked on the applet class on the browser
or server (as specified in the Target property) with subsequent retargeting if
unhandled.
Version 7.5.3, Rev. A Siebel Tools Reference 519

Logical User Interface Objects Layer

Toolbars and Menus
■ Suppress Menu Item. Default is FALSE. If TRUE, causes the applet-level menu
items of the specified name to be removed from the applet-level menu in all
applets derived from this class and its subclasses.

■ Position. The sequence of the menu item in the single-level list of menu items.

Activating and Suppressing Menu Items and Toolbars
Menu items (both application-level and applet-level) and toolbar items can be
activated or disabled at runtime, by means of the CanInvokeMethod mechanism.
CanInvokeMethod (for the method specified in the Command, Applet Method
Menu Item, or Class Method Menu Item object) will be called automatically for each
item prior to displaying the menu or toolbar. If CanInvokeMethod returns FALSE,
the toolbar item or menu item is not displayed. The CanInvokeMethod logic in most
cases is retargeted from the browser application to the applet class hierarchy on the
server, and from there to the business component class hierarchy. The targeting
sequence is described below in Invoke Method Targeting.

Suppression and activation of individual applet-level menu items at design time is
supported by means of the Suppress Menu Item property in the Class Method Menu
Item and Applet Method Menu Item object types. This is applicable to applet-level
menus only, not application-level menus or toolbars, in which the item must be
added or removed explicitly in Tools. Design-time menu activation or suppression
for applet-level menus provides the means to make a menu item available globally
for applets of a given class and its subclasses, and then suppress it in particular
applets where it is not desired. Certain applet-level menu items appear in virtually
all applets (such as Copy, Edit, and Delete), others appear in virtually all list applets
(such as Columns Displayed), and so on, but there are always exceptions in which
a "standard" menu item for the applet's class needs to be suppressed for a specific
applet.
520 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Toolbars and Menus
To add applet-class-level menu items, you would add a Class Method Menu Item for
a standard menu item for a given applet class. This menu item would not need to
be re-included as Applet Method Menu Item object definitions in applets where you
want the menu item to appear. You would only create Applet Method Menu Item
object definitions in two circumstances: to add a menu item (not already provided
by the applet's class) to the applet, or to suppress display of an applet-class-level
item that the applet would normally inherit. In this latter case, you create an Applet
Method Menu Item object definition with the same name as the applet-class-level
menu item you want to suppress, and enter a value of FALSE for the Suppress Menu
Item property.

Invoke Method Targeting
The Method, Business Service, and Target properties appear in the Command object
type for use in toolbars, application-level menus, and applet menus. The target
property specifies the object or service that will process the method invoked by the
command. Under some circumstances, if a method cannot be handled by the
specified target it is automatically directed to an underlying object or service for
handling. This could be a mirror instance of the object that exists on the server
rather than the browser, or it could be an inherited class. In these cases we say that
the method invocation has been retargeted.

Two settings are available for the Target property, with the following behavior:

■ Browser target. The method handler for this target is the JavaScript application,
a JavaScript applet, or a JavaScript service, on the browser side. In all cases, a
method name must be specified in the Method property. A service is targeted if
a service name is specified in the Service property. If a service is not specified,
method handling differs based on whether the calling entity is application-level
or applet-level, as follows:

■ Application-level. Targets to the specified method in the JavaScript application.
Does not retarget.

■ Applet-level. Targets to the specified method in the JavaScript applet. If not
handled, retargets to the specified method in the corresponding JavaScript
business component. No inheritance or additional retargeting.
Version 7.5.3, Rev. A Siebel Tools Reference 521

Logical User Interface Objects Layer

Toolbars and Menus
■ Server target. This target is for invoking a method in a C++ class on the server,
either on a service or on the infrastructure. If a Service property value is not
specified, the invoke method is targeted to the infrastructure. It will target the
infrastructure differently depending on whether the menu or toolbar icon
invoking the method is applet-level (menu only) or application-level (menu or
toolbar).

■ Application-level. The method handler is initially the SWE UDF loader on the
server side, and secondarily the model.

■ Applet-level. The method handler is initially the applet class to which the
applet belongs, and is retargeted successively up through the applet class
hierarchy to CSSSWEFrame. If still unhandled, handling is retargeted to the
business component class of the applet's business component, and
successively upwards through the business component class hierarchy to
CSSBusComp.

If a service is specified in the Service property, the method handler is the specified
service. This targeting is also dependent on whether the calling menu item or
toolbar icon is applet-level or application-level, as follows:

■ Application-level. The method handler is the specified OM service. It does not
retarget.

■ Applet-level. The method handler performs a SetBC call to set to the business
component of the applet, and then calls the specified OM service. It does not
retarget.
522 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Toolbars and Menus
The results of the possible settings of the Target and Business Service properties at
the applet and application levels are summarized in Table 38 on page 523.

Table 38. Target and Business Service Properties Matrix

Menu/Toolbar Level Target Service Result

Application level Server Specified The method handler is the specified business service on
the server. It does not retarget.

Unspecified The method handler is the base functionality associated
with an application object.

Browser Specified Targets to the method in the specified browser-side
service. It does not retarget.

Unspecified Targets to the specified method in the JavaScript
application. It does not retarget.

Applet level Server Specified The method handler calls the specified service on the
server. It does not retarget.

Unspecified The method handler is initially the applet class to which
the applet belongs, and is retargeted successively up
through the applet class hierarchy to CSSSWEFrame. If
still unhandled, handling is retargeted to the business
component class of the applet's business component, and
successively upwards through the business component
class hierarchy to CSSBusComp.

Browser Specified Targets to the method in the specified browser-side
service. It does not retarget.

Unspecified Targets to the specified method in the JavaScript applet.
If not handled, retargets to the specified method in the
corresponding JavaScript business component. There is
no inheritance or additional retargeting.
Version 7.5.3, Rev. A Siebel Tools Reference 523

Logical User Interface Objects Layer

Icon Maps
Icon Maps
The Icon Map object type allows you to render control or list column field values as
icons. Each Icon Map is a collection of child objects called Icons. Icon objects are
associated with a Bitmap object, which defines the image for the Icon and
corresponds to a particular field value. Controls and list columns have an attribute
called Icon Map that allows you to define the icon map object that you want to use
for rendering the field values.

The following procedure uses an example to show you how to configure icons for
use as field values. The example uses the Status list column on the Activity List
Applet. Suppose that the Status field can have values Not Started, In Progress, and
Done. You want to configure the Status field to display an icon for each of these
values.

To render fields using Icons

1 Create a Bitmap Category.

For example, create a Bitmap Category called Activity Status Icons.

2 Create Bitmaps (child object of Bitmap Category) for each image that you want
to display and specify the file name of the image.

For example, create the following records:

3 Create a new Icon Map object.

For example, create an Icon Map named Activity Status.

4 Create one Icon object (child of Icon Map) for each field value and set the
following properties:

■ Name. Set to the name of the field value.

Name File Name

Not Started notstarted.gif

In Progress inprogress.gif

Done done.gif
524 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

Specifying a Default Icon in an Icon Map
■ Bitmap Category. Set to the Bitmap Category you want to show for the field
value.

■ Bitmap. Set to the bitmap you want to show for the field value.

For example, create the following records:

5 Set the HTML Icon Map attribute of the list column or control to the Icon Map
defined in Step 3.

For example, set the Status list column of the Activity List Applet to the icon map
Activity Status.

After compiling the changes, the Siebel Web Engine will render the image
corresponding to the bitmap when the field value matches one of the icons
defined. If the field value does not match any of the icons, the Siebel Web Engine
renders the field value itself.

Specifying a Default Icon in an Icon Map
You can create an icon named Default in a Icon Map object. If the field value does
not match any of the icons, then the Default icon is used for the field. This feature
is useful to create an icon to be used with fields that could contain different values,
such as URLs. In this case you would set the HTML Type property of the field to be
URL and its IconMap property to an IconMap object that contains only one icon
named Default.

Name Bitmap Category Bitmap

Not Started Activity Status Icon Not Started

In Progress Activity Status Icon In Progress

Done Activity Status Icon Done
Version 7.5.3, Rev. A Siebel Tools Reference 525

Logical User Interface Objects Layer

HTML Hierarchy Bitmap
HTML Hierarchy Bitmap
An HTML Hierarchy bitmap is a top-level object that defines the images used by
hierarchical objects such as a Tree applet when it is rendered in the user interface.
For example, the folders, the plus symbol, and the minus symbol in Figure 157 are
icons defined in the Hierarchy Bitmap object. An example of a Tree Applet in the
repository is an Account Tree Applet. An example of an hierarchical list applet is
Quote Item List Applet.

Hierarchy Bitmap objects have the following important properties:

■ Name. The name for the HTML Hierarchy Bitmap object.

■ Collapse Bitmap, Collapse Elbow Bitmap, Collapse Tee Bitmap. Icons to be used to
collapse a node.

■ Expand Bitmap, Expand Elbow Bitmap, Expand Tee Bitmap. Icons to be used to
expand a node.

■ Elbow Bitmap, Tee Bitmap. Icons to be used for creating an elbow (L) or a Tee (T).

■ Bar Bitmap. Icon for creating a vertical line.

■ Space Bitmap. Icon for indents.

■ Open Bitmap. Icon to be used for a node that is an expanded state.

Figure 157. Tree Portion of the Account Tree Applet
526 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Layer

HTML Hierarchy Bitmap
■ Close Bitmap. Icon to be used for a node that is in a collapsed state.

■ Leaf Bitmap. Icon for a leaf node.

■ Arrow Down Bitmap, Arrow Up Bitmap. Icons for scrolling a tree up or down.

The bitmap objects for these attributes used by the standard tree applets are defined
in the Bitmap Category HTML Hierarchy Icons.

The Tree and List objects in tools have an attribute called HTML Hierarchy Bitmap.
This attribute can be set to the name of any HTML Hierarchy Bitmap object. This
allows the various instances of the Tree object and List object to share these
bitmaps.

The Tree Node object has the attributes HTML Open Bitmap and HTML Close
Bitmap. These attributes are optional. If you do not specify, the Open Bitmap and
Close Bitmap attributes of the HTML Hierarchy Bitmap object will be used. If the
attributes are specified, then for that node the specified attributes will be used. This
is useful if you want different nodes to have different icons.

See “Hierarchical List Applets” on page 898 for more information.
Version 7.5.3, Rev. A Siebel Tools Reference 527

Logical User Interface Objects Layer

HTML Hierarchy Bitmap
528 Siebel Tools Reference Version 7.5.3, Rev. A

 Logical User Interface Objects Configuration 10
This chapter describes how to define objects in the user interface layer.

User Interface Object Definition Sequence
Follow this sequence when you create objects in the User Interface Object Layer.

Before you begin working on user interface objects:

■ Check out the relevant project.

■ Define the required objects in the Business Objects Layer.

To create the objects in the User Interface Objects Layer

1 Define applets, as well as the required controls and list columns.

See “About Defining Applets” on page 530 for more information.

2 Map list columns and controls to Web templates.

See “Editing the Web Layout of Applets” on page 544 for more information.

3 Define a view.

See “Creating Views Using the View Wizard” on page 563 for more information.

4 Map applets to view Web template.

See “Editing the Web Layout of Views” on page 566 for more information.

5 Define a screen and Add the view to the screen.

See “About Screens” on page 572 for more information.
Version 7.5.3, Rev. A Siebel Tools Reference 529

Logical User Interface Objects Configuration

About Defining Applets
6 Associate the screens to the page tabs and menu items.

See “About Screens” on page 572 for more information.

7 Create an application (or use an existing one).

See “About Applications” on page 576 for more information.

8 Validate your business object definitions.

About Defining Applets
Applets provide viewing, entry, modification, and navigation capabilities for data in
one business component.

Applets appear as part of a view and are typically implemented as a list table or data
entry form. Applets can be populated with standard controls like buttons, text
boxes, check boxes, and custom controls. Applets can also include ActiveX controls,
which are externally created program units that can interact with the applet through
property settings, methods, and events.

Some applets perform specialized roles as dialog boxes, charts, and trees. For more
information about applet styles and types, see Chapter 9, “Logical User Interface
Objects Layer.”
530 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

About Defining Applets
Figure 158 shows the object definition for a list applet called Opportunity.

Figure 158. Opportunity List Applet
Version 7.5.3, Rev. A Siebel Tools Reference 531

Logical User Interface Objects Configuration

About Defining Applets
Typically it is easier to modify an existing applet than create a new one. However,
in some cases it may be necessary to add a new applet using the steps shown in
Figure 159.
532 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

About Defining Applets
Figure 159. Defining List Applets
Version 7.5.3, Rev. A Siebel Tools Reference 533

Logical User Interface Objects Configuration

About Applet Properties
About Applet Properties
Following are descriptions for key applet properties. For a complete list and more
detailed descriptions, see Object Types Reference.

■ Business Component. (Required.) The name of the business component whose
data is to be displayed in the applet.

■ Class. (Required.) The C++ class used to manage the applet. Form applets use
the CSSFrame class, and list applets use the CSSFrameList class. There are also
some specialized classes for applets that use special business components and
have special features.

CAUTION: Controls on applets belonging to a specialized class should not be
deleted because this may break methods used on the applets.

NOTE: Do not change the Class property of previously configured applets.

■ Name. (Required.) Name of the applet.

■ No Delete, No Insert, No Update. If TRUE, you are not allowed to perform the data
manipulation operation.

NOTE: If these are true for the business component on which the applet is based,
the applet will automatically inherit the restrictions from the business
component.

■ Search Specification. A conditional expression used to restrict the records
displayed.

■ Title. The text used for the title of the applet.

Applet Controls
Following are descriptions for key applet Control properties. For a complete list and
more detailed descriptions, see Object Types Reference.
534 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

About Applet Properties
List Applet Control Properties
The following are the key control properties for all list applets:

■ List. (List Control.) Control used for displaying columns of data from the
underlying business component.

Accept the default values for these list applet controls.

Form Applet Control Properties
■ Caption. (MiniButton, CheckBox, Group, Label Controls.) Display value that

identifies the purpose of the control to the end user. The caption is typically
rendered as a label within or next to the control.

■ Field. (TextBox, CheckBox.) Business component field for which the control is
displaying data.

■ Method Invoked. (PushButton.) Method invoked when the button control is
pushed.

■ Name. (Required.) The name of the control.

■ Read Only. (TextBox, CheckBox.) If TRUE, the control is read-only and the value
in it cannot be modified.

■ HTML Sequence. The position of this control relative to other controls in the
applet, indicating tab sequence. Valid values are numbers greater than zero.

■ Text Alignment. (Label Controls.) Left is the default. It indicates how to align the
text in the control.

■ HTML Type. The control type.

NOTE: Controls on applets belonging to a specialized class should not be deleted
because it may break methods used on the applets.
Version 7.5.3, Rev. A Siebel Tools Reference 535

Logical User Interface Objects Configuration

Defining List Applets
Defining List Applets
You create list applets using the List Applet Wizard. The List Applet Wizard helps
you identify all the correct properties and automatically creates child objects, such
as Web Template Items, based on the information you enter. You can also create
applets manually by defining all the necessary properties and child objects.

The List Applet Wizard does the following:

■ Creates the list applet

■ Creates the applet Web template

■ Creates the list, list columns, and controls

■ Creates applet Web template items

To create a list applet using the List Applet Wizard

1 Select File > New Object from the Siebel Tools main menu.

The New Object Wizard dialog box appears.

2 Click the Applets tab, and then double-click the List Applet icon.

The General page of the List Applet Wizard appears.
536 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining List Applets
3 In the General Page, enter the following information for the applet, and then
click Next.

The wizard will use information to create an applet object and define the
required applet properties.

4 In the Web Layout-General page, enter the Web templates to use for the applet,
and then click Next.

Field Example Value Comment

Project Account Only locked projects appear in the
picklist.

Business Component Account The business component that the
applet is based on.

Applet Name New Account List
Applet

A unique name for the Applet.

Display Title Accounts The name to appear in the user
interface.
Version 7.5.3, Rev. A Siebel Tools Reference 537

Logical User Interface Objects Configuration

Defining List Applets
NOTE: A thumbnail image for most templates appears when you select the
template name. For a complete description of all templates, see Siebel
Developer’s Reference.

5 In the Web Layout - Fields page, select the fields that you want to appear on the
applet, and then click Next.

The fields that appear in the Available pane are those fields defined for the
business component that you selected in Step 3 on page 537.

6 In the second Web Layout-Fields page, choose the controls in the Available
Controls box that you want to appear on the applet, and then click Next.

All the entries in the Selected Controls box are added by default. If you wish to
exclude some of the controls and move them to the Available Controls box,
select the controls and click the activated arrow.

NOTE: The available controls come from the Model HTML Controls Applet. This
applet specifies the available controls and also to which template each control
is mapped. Users can modify this applet if necessary by adding or removing
controls from the applet.

7 Review the information displayed in the Finish page, and then click Finish.

The List Applet Wizard creates the applet and supporting object definitions
based on the selections you made.

NOTE: You can return to previous pages by clicking the Back button.
538 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining List Applets
Defining List Columns in a List Applet
Figure 160 shows list columns mapped to fields in the Opportunity business
component.

End User Settings and Preferences
End users can choose which list columns to display, and the order in which they are
displayed in the Siebel client. These settings override Siebel Tools configuration
settings.

To test a configuration without user-specified settings

■ In the Siebel Web client, go to the list applet to which your completed
configuration changes apply, click the menu button, select Columns Displayed,
and then click the Reset Defaults button. Inspect the list applet to be sure your
configuration changes are what you expect.

Figure 160. Field List Columns in Opportunity Business Component
Version 7.5.3, Rev. A Siebel Tools Reference 539

Logical User Interface Objects Configuration

Defining Form Applets
Lists and List Columns
A list applet contains only list columns, or list columns and buttons.

List is the parent of the List Column object type. A list applet can contain only one
List object definition.

HTML Type Property of List Columns and Controls
The HTML Type property of a list column or control determines the type of control.
Examples of HTML Type controls are, Check Box, Combo Box, Text, MiniButtons,
Password, PositionOnRow, and URL.

For more complete descriptions of each control type, see “About HTML Control
Types” on page 479.

Enhancing the Behavior of List Columns and Controls
For Text controls and list columns:

■ If a calendar or calculator needs to appear for control, set the Runtime property
of the control to TRUE.

■ If a pop-up editor needs to appear, set the Popup Edit property of the control to
TRUE.

■ If you want to make a list column unavailable in the user interface, set the
Available property to FALSE.

■ If you want a list column to be displayed in the list by default, set the Show in
List property to TRUE. However, if you want the list column to be hidden by
default, but you want end users to be able to select a list column to be displayed
using the Columns Displayed dialog box, set the Show in List property to FALSE.

Defining Form Applets
You create form applets using the Form Applet Wizard. The Form Applet Wizard
helps you define the correct properties and automatically creates child objects, such
as Web Template Items, based on the information you enter. You can also create
applets manually by creating all the necessary objects and defining object
properties.
540 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining Form Applets
The Form Applet Wizard does the following:

■ Creates the form applet

■ Maps the applet to an applet Web template

■ Creates the controls

■ Maps controls to Web templates by creating Applet Web Template Items

To create a Form Applet using the Form Applet Wizard

1 Choose File > New Object from the Siebel Tools main menu.

The New Object Wizard dialog box appears.

2 Click the Applets tab, and then double-click the Form Applet icon.

The General page of the Form Applet Wizard appears.
Version 7.5.3, Rev. A Siebel Tools Reference 541

Logical User Interface Objects Configuration

Defining Form Applets
3 In the General Page, enter the following information for the applet.

The wizard will use information to create an applet object and define the
required applet properties.

If you selected Use Grid Layout, the appropriate grid layout Web template is
associated with the template and you can skip the next step and go to directly
to Step 5.

Field/Checkbox Example Value Comment

Project Account Only locked projects appear in the picklist.

Business Component Account The business component that the applet is
based on.

Applet Name New Account
Form Applet

A unique name for the Applet.

Display Title Accounts The name to appear in the user interface.

Use Grid Layout Check mark Select this option if you want to have the
ability to control the layout of the form
applet using the Web Layout Editor. For
more information see “About Grid Layout”
on page 547.
542 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining Form Applets
4 If you did not select the Use Grid Layout option In the Web Layout-General page,
enter the Web templates to use for the applet, and then click Next.

For a complete description of templates, see Siebel Developer’s Reference.

5 In the Web Layout - Fields page, select the fields that you want to appear on the
applet and then click Next.

The fields that appear in the Available pane are those fields defined for the
business component that you selected in Step 3 on page 537.

6 In the second Web Layout-Fields page, choose the controls in the Available
Controls box that you want to appear on the applet and then click Next.

All the entries in the Selected Controls box are added by default. If you wish to
exclude some of the controls and move them to the Available Controls box,
select the controls and click the activated arrow.

NOTE: The available controls come from the “Model HTML Controls” applet. This
applet specifies the available controls and also to which template each control
is mapped. Users can modify this applet if necessary by adding or removing
controls from the applet.
Version 7.5.3, Rev. A Siebel Tools Reference 543

Logical User Interface Objects Configuration

Editing the Web Layout of Applets
7 Review the information displayed in the Finish page, and then click Finish.

The Form Applet Wizard creates the applet and supporting object definitions
based on the selections you made.

NOTE: You can return to previous pages by clicking the Back button.

Editing the Web Layout of Applets
You edit the web layout of applets using the Web Layout Editor. The Web Layout
Editor allows you to perform the following tasks for all applets:

■ Add, delete, and position controls

■ Modify Captions for controls and Display Names for list columns

■ Configure a control to be hidden by default and to appear when the user clicks
the More button on the applet

■ Preview the applet layout as it will appear in the user’s Web Browser at runtime

■ Export the preview to an HTML File

For applets based on Grid Layout templates, the Web Layout Editor also allows you
to perform additional formatting tasks. See “About Grid Layout” on page 547 for
more information.

To modify the layout of applets

1 Select a Target Browser from the drop-down list in the Configuration Context
toolbar.

If you do not select a browser, an error message appears when you open the Web
Layout Editor.

2 In the Object Explorer, select the Applet object type.

3 In the Object List Editor, select an applet.
544 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Editing the Web Layout of Applets
4 Right-click, and then choose Web Layout Editor.

The Web Layout Editor appears.

NOTE: If an applet Web template is not yet associated with the applet you
selected, a dialog box appears that allows you to open Applet Wizard to
associate a web template with the applet. See “Defining List Applets” on
page 536 or “Defining Form Applets” on page 540 for more information.

5 In the Mode field of the Configuration Context toolbar, choose the applet Web
template that you want to edit.

Make sure that you select an active Web template. Both active and inactive Web
templates are displayed.

Changes to an applet layout in one mode are not automatically propagated to the
applet layout in another mode.

6 Perform the following tasks as necessary:

Task Action

Add existing controls and
list columns

Drag a control or list column from the Control/Column
window and drop it onto the applet layout. In applets
based on Grid Layout applet Web templates, labels and
controls are treated as separate items to provide more
flexibility when designing the form layout. However, this
requires you to map both the control and its
corresponding label onto the applet layout. Note that a
label has the same name as its corresponding control,
except that it is appended with the word label. See
“About Grid Layout” on page 547 for more information.

Add new controls and
columns

Drag and drop new controls from the Web Controls
toolbar. The control is automatically created as a child
object of the applet. After you save your changes, you can
define the properties for the control using the Properties
Window. To display the properties window, select the
control, right-click, and then choose View Properties
Window.
Version 7.5.3, Rev. A Siebel Tools Reference 545

Logical User Interface Objects Configuration

Editing the Web Layout of Applets
Position controls Drag and drop controls to different locations on the web
layout canvas. For applets based on column-based Web
templates, the available locations are determined by
placeholders in the Web template. For applets based on
Grid Layout Web templates, you can position controls
and their corresponding labels anywhere in the canvas.
See “Editing the Web Layout of Applets” on page 544.
Note that placeholders in the banner region across the
top of applets are indented for use with button controls
only, not fields.

Delete controls Select the control you want to delete, right-click, and
then select Delete. You can select multiple controls by
holding down the Ctrl key and selecting the controls you
want to delete.

Edit display names and
captions

For column-based applet Web templates, double-click a
control, highlight the display name or caption, and then
type new text. After you save your work, the Display
Name property for list columns and the Caption property
for controls are automatically changed.

For grid-based templates, you cannot change the Caption
value of a label. Labels get their property values from
their corresponding controls. See “Editing the Web
Layout of Applets” on page 544 for more information
about labels and controls in a grid-based applet Web
template.

Display a control only
after the Show More
button has been clicked

Select the control, right-click, and then choose More. An
arrow is displayed next to the control and label. The
arrow indicates that the control will appear only after the
user selects the Show More button. You can select
multiple controls by holding down the Ctrl key and
selecting the controls.

Preview the Web layout Right-click, and then choose Preview. The applet is
displayed as it would be rendered in the user interface at
runtime.

Task Action
546 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

About Grid Layout
7 Save your changes to the Web Layout by choosing File > Save.

After you save your changes to the Web layout, objects for any new controls are
created. You can then define object properties, such as Field and Name, using
the Properties window.

About Grid Layout
Grid Layout is a set of visual design features in the Web Layout Editor and
supporting applet Web templates that allow you to modify form layout without
having to directly modify applet Web templates. The work space is a grid-based
canvas where controls snap to a grid of cells that measure 8 x 8 pixels each. You
can configure the layout of form applets using a palette of layout tools, such as
resizing, aligning, and centering. See “Supported Applet Classes and Applet Web
Templates” on page 554 for more information about performing these tasks.

To support the Grid Layout features in the Web Layout Editor, applets must be based
on one of the grid layout type applet Web templates. For more information about
Grid Layout applet Web templates, see “About Grid Layout Templates” on page 900.

Export the preview to an
HTML file

Select File > Export, and then in the dialog box that
appears, choose a file name and define
siebel_tools_installation\tools\public\enu as the
directory. You need to specify this directory so that image
files, such as buttons, are rendered in the HTML file.

Check mappings—
validate that controls and
list columns are mapped
to placeholders in the
Web template

In the Web Layout Editor, right-click, and then select
Check Mappings. If a control or list column is not
mapped to a placeholder, you are prompted to delete it
from the Web template. This may occur when a control
or list column object has been deleted from the
repository, but still appears on the Web template. Or it
may occur when a new Web template is associated with
an applet, and the existing placeholder IDs for controls or
list columns do not exist in the new template.

Task Action
Version 7.5.3, Rev. A Siebel Tools Reference 547

Logical User Interface Objects Configuration

Converting Applets to a Grid-Based Layout
When creating new form applets you can base them on the grid-based templates
and use the Grid Layout features in the Web Layout Editor. For more information,
see “Defining Form Applets” on page 540.

Applets shipped with the Siebel repository are not based on grid-based applet Web
templates. To be able to use the Grid Layout features with these applets, you must
convert them to Grid Layout. For more information, see “Converting Applets to a
Grid-Based Layout” on page 548.

NOTE: You can determine if an applet uses a grid-based applet Web template by
looking at the Web Template property of the Applet Web Template object type (child
object of Applet). If it is a grid-based applet Web template, Grid Layout will appear
in the name.

Converting Applets to a Grid-Based Layout
Applets shipped with the Siebel repository are not based on Grid Layout Web
Templates. To be able to use the Grid Layout features, you must convert an existing
applet to a grid-based layout using one of the methods covered in this section.

This section describes the following topics:

■ “Converting One or More Applets.”

■ “Converting Applets By Changing the Web Template” on page 550.

■ “About Grid Layout Conversion Error Messages” on page 552.

■ “Supported Applet Classes and Applet Web Templates” on page 554.

Converting One or More Applets
The Applet Web Template Conversion Wizard allows you to convert one or more
existing applets to a grid-based layout.
548 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Converting Applets to a Grid-Based Layout
To convert one or more applets to a grid-based layout

1 In the Configuration Context Toolbar, make sure the application context that you
want, such as All Applications, is selected.

The wizard only converts controls that are valid in the current application
context selected in the Configuration Context Toolbar. For example, if Siebel
ERM is selected, only controls valid in the context of Siebel ERM are converted.
If controls are not valid in the selected application context, a dialog box appears
giving you the option of canceling the conversion or continuing. If you choose
to continue, the controls not converted are written to a log file
(awtconversion.txt) that is located in tools_install\temp. See “About
Grid Layout Conversion Error Messages” on page 552.

2 In the Object Explorer, select the Applet object type.

3 In the Object List Editor, select the applet or applets that you want to convert.

The applet must be based on one of the supported applet classes and one of the
applet Web templates listed in “Supported Applet Classes and Applet Web
Templates” on page 554.

4 Do one of the following:

■ Right-click and then select Convert to Grid Layout.

■ Select Tools > Convert to Grid Layout.

The Applet Web Template Conversion Wizard appears.

5 Move the applets you want to convert from the Available Applets window to the
Selected Window.

6 Select additional options.

It is recommended that you select the Backup existing Applet Web Templates
option.

If you select the option to Display the Web Layout Editor after conversion
completes, the applet web template displayed in the editor is the last applet that
was selected in Step 5.
Version 7.5.3, Rev. A Siebel Tools Reference 549

Logical User Interface Objects Configuration

Converting Applets to a Grid-Based Layout
7 Click Next.

The wizard converts the applets from standard Web templates to grid-based
layout Web templates.

If no errors occur, you can edit the layout of these applets using the Web Applet
Editor. For more information, see “Editing the Web Layout of Applets” on
page 544.

If errors occur, they are displayed in a dialog box at the end of the conversion
wizard. The same content is stored in a log file (awtconversion.txt) that is
located in tools_install\temp. For more information about errors, see “About
Grid Layout Conversion Error Messages” on page 552.

Converting Applets By Changing the Web Template
You can also convert applets to a grid-based layout by changing the Web template
associated with the applet. In Siebel Tools, change the Web template file associated
with each applet mode to a template that supports a grid-based layout.

There are two applet Web templates that support grid layout. See Table 39.

See “About Grid Layout Templates” on page 900 for more information.

To convert an applet to grid-based layout by changing the Web template

1 In the Object Explorer, select the Applet object type.

Table 39. Grid Layout Templates

Web Template File Name Comments

Applet Form Grid
Layout

CCAppletFormGridLayout.swt Use with all modes of
form applets.

Applet Popup Form
Grid Layout

CCAppletPopupFormGridLayout.swt Use with all modes of
popup form applets.
550 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Converting Applets to a Grid-Based Layout
2 In the Object List Editor, select the applet that you want to convert to a grid-
based layout and then right-click and choose Edit Web Layout.

The applet must be based on one of the supported applet classes and one of the
applet Web templates listed in “Supported Applet Classes and Applet Web
Templates” on page 554.

3 In the Web Controls toolbar, click the Change Template button.

If the Web Controls toolbar is not displayed, choose View > Toolbars > Web
Controls to display it.

The Choose Template dialog box appears.

4 In the Choose Template dialog box, select one of the following templates:

For form applets, select Applet Form Grid Layout.

For pop-up form applets, select Applet Popup Form Grid Layout.

5 Repeat Step 4 for each applet mode.

After associating a grid layout template with each mode of an applet, you can
edit the applet layout using the Web Layout Editor.

For general instruction on editing the layout of applets, see “Editing the Web
Layout of Applets” on page 544.

For information on editing applets using grid-based layout features, see
“Supported Applet Classes and Applet Web Templates” on page 554.
Version 7.5.3, Rev. A Siebel Tools Reference 551

Logical User Interface Objects Configuration

Converting Applets to a Grid-Based Layout
About Grid Layout Conversion Error Messages
The error messages listed in Table 40 may appear during the conversion. These
errors appear in a dialog box at the end of the conversion process and are written
to a log file (awtconversion.txt) that is located in tools_install\temp.

Table 40. Conversion to Grid Layout Error Messages and Solutions

Error Message Cause Solution

Controls or labels
cannot be mapped.

May be due to the web template
item not being explicitly mapped
to a control on the original applet
web template. Each web
template item must have the
Control property populated in
order to appear on the new grid-
based applet web template.

Use Web Layout Editor to
map controls to the applet
layout. See “Editing the Web
Layout of Applets” on
page 544.
552 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Converting Applets to a Grid-Based Layout
Applet cannot be
converted.

Applet class or associated Web
templates are not supported for
Grid Layout. See “About Grid
Layout” on page 547.

The applet and web template
combination you are trying to
convert is not currently
supported. You can submit an
enhancement request to
Siebel Technical support
requesting that the class or
template be supported for
future releases.

The Applet Web
Template...is
configured for more
than one application
context.

The wizard only converts
controls that are valid in the
application context selected in
the Configuration Context
Toolbar at the time of the
conversion. For example, if
Siebel ERM is selected, only
controls valid in the context of
Siebel ERM are converted. If
controls are not valid in the
selected application context, a
dialog box appears giving you
the option of canceling the
conversion or continuing. If you
choose to continue, the controls
that are not converted are listed
in a dialog box and are written to
the error log file.

Note that the Expression
property of the Web Template
Item object type determines the
application context for a control.

Select the appropriate
application in the Application
field of the Configuration
Context toolbar and run the
Conversion Wizard again.

If the configuration Context
toolbar is not displayed,
choose View >Toolbars >
Configuration Context.

For more information, see
“Converting One or More
Applets” on page 548.

Table 40. Conversion to Grid Layout Error Messages and Solutions

Error Message Cause Solution
Version 7.5.3, Rev. A Siebel Tools Reference 553

Logical User Interface Objects Configuration

Converting Applets to a Grid-Based Layout
Supported Applet Classes and Applet Web Templates
Not all form applets can be converted to a grid layout. For version 7.5.3, an applet’s
class and its associated Web templates must be supported for conversion to a grid-
based layout. This section lists the supported applet classes applet Web templates
at the time of publication. For the most current list, review the Applet Web Template
Conversion Wizard’s configuration file. The file name is awtcvtcfg.txt and the
file location is Tools_Install\BIN.

NOTE: Editing the list of applet classes and applet Web template files defined in the
Applet Web Template Conversion Wizard configuration file (awtcvtcfg.txt) is not
supported.

Applet Classes
The applet classes supported for conversion to a grid-based layout are:

■ CSSFrame

■ CSSFrameBase

■ CSSFrameSalutation

■ CSSSWEFrameWeb

■ CSSFrameQuote

■ CSSSWEFrame

■ CSSSWEFrameBase

■ CSSFrameList

■ CSSFrameListBase

■ CSSFrameListWeb

■ CSSFrameListFile

NOTE: The applet classes with “List” in the title, such as CSSFrameList, are list
applets with edit modes that are forms. The Edit mode of these applets can be
converted to a grid-based layout.
554 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Editing Applets Based on Grid Layout Templates
Applet Web Templates
The applet Web templates supported for conversion to a grid-based layout are:

■ Applet List Edit (Edit/New/Query)

■ Applet List Edit (Edit/New/Query) Toggle Bar

■ Popup Query

■ Applet Form 4 Column (Edit/New)

■ Applet Form 4 Column (Base)

■ Applet Form 4 Column (Base) Toggle Bar

■ Applet Form 4 Column (Edit/New) - Expanded

■ Applet Form 4 Column (Base) - Expanded

■ DotCom Applet Form 4-Column

■ DotCom Applet Form 2-Column

■ DotCom Applet Form 1-Column

■ Applet Form 1 Column (Base/Edit/New)

■ Applet Form 4-Col (No Record Nav)

■ DotCom Applet Form Basic

■ DotCom Applet Form Base 1 Column

■ Applet Form Plain

■ DotCom Applet Form 4-Column (No Record Nav)

Editing Applets Based on Grid Layout Templates
Grid layout features allow you to modify the layout of applets more easily than in
previous versions. You can specify the layout of controls in form applets without
having to modify Web templates. Only applets that are based on grid layout applet
Web templates support these features. See “About Grid Layout” on page 547 for
more information.
Version 7.5.3, Rev. A Siebel Tools Reference 555

Logical User Interface Objects Configuration

Editing Applets Based on Grid Layout Templates
The tasks in this section cover the layout and formatting for applets based on grid-
based layout, including:

“Positioning Controls” on page 557.

“Aligning Controls” on page 557.

“Resizing Controls” on page 558.

“Spacing Controls” on page 559.

“Centering Controls” on page 560.

“Setting Tab Order” on page 561.

For general instructions about using the Web Layout Editor, see “Editing the Web
Layout of Applets” on page 544.

When working with grid layout applets in the Web Layout Editor, consider the
following:

■ Controls snap to a grid in which each grid cell measures 8 x 8 pixels.

■ Grid-based layouts do not automatically resize based on the user’s monitor
settings. For example, if a grid-based form designed to run on a monitor set to a
resolution of 1024 x 768 (full width) is displayed on a monitor that is set to 800
x 600, the user would have to scroll to the right to see the right edge of the
layout. If the same form is displayed on a monitor set to a resolution of 1280 x
1024, it would not occupy the entire width of the screen.

■ Labels appear as separate items from their corresponding controls or list
columns. This gives you the ability to configure the layout of labels
independently from their corresponding controls. However, labels do not exist
as separate controls in the Siebel repository. They share the Caption or Display
Name property of their corresponding control or list column, but other
properties do not apply. Labels are used as constructs in the Applet Web Layout
Editor only.
556 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Editing Applets Based on Grid Layout Templates
■ By default, when you save an applet layout, the Web Layout Editor checks for
overlapping controls. If overlapping controls exist, a dialog box appears giving
you the option to save the layout or cancel. If you save the layout, with the Web
Layout Editor open, the overlapping controls are highlighted. If you select
cancel, the layout is not saved. You can control whether the Web Layout Editor
checks for overlapping controls by choosing Tools > Options, and then setting
the Prompt when saving overlapping controls option.

■ When working in the Web Layout Editor, the last item selected on the canvas
will be the one to which all other items will be aligned, centered, spaced, and
so on.

Positioning Controls
Grid layout allows you to position controls in the applet layout.

To position controls

1 In the Web Layout Editor, select one or more controls.

2 Do one of the following:

■ Drag and drop the control or controls to the desired position.

■ Use the arrow keys to move the control or controls to the desired position.

3 Choose File > Save.

Aligning Controls
Grid layout allows you to align controls relative to each other.

To align controls

1 In the Web Layout Editor, hold down the Ctrl key, and then click the controls you
want to align.

The last item selected is the one to which all other items will be aligned.
Version 7.5.3, Rev. A Siebel Tools Reference 557

Logical User Interface Objects Configuration

Editing Applets Based on Grid Layout Templates
2 Perform the following tasks as necessary:

3 Select File > Save.

Resizing Controls
Grid Layout allows you to resize controls. If you resize a control in one mode, such
as Edit, the control will also be resized in the layout for other modes, such as Base.

To resize controls

1 In the Web Layout Editor, hold down the Ctrl key, and then click the controls you
want to resize.

The last item selected is the one to which all other items will be resized.

Task Button

Align the left side of controls.

Align the center of controls vertically.

Align the right side of controls.

Align the top edge of controls.

Align the middle of controls horizontally

Align the bottom edge of controls
558 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Editing Applets Based on Grid Layout Templates
2 Perform the following tasks as necessary:

3 Select File > Save.

Spacing Controls
Grid Layout allows you to control the horizontal and vertical spacing of controls
relative to each other.

To change the space between controls

1 In the Web Layout Editor, hold down the Ctrl key, and then click the controls
whose spacing you want to modify.

The last item selected is the one that is used as the basis for the spacing.

2 Perform the following tasks as necessary:

Task Button

Make selected controls the
same width.

Make selected controls the
same height.

Make selected controls the
same size.

Task Button

Make horizontal spacing
equal

Increase horizontal spacing

Decrease horizontal spacing
Version 7.5.3, Rev. A Siebel Tools Reference 559

Logical User Interface Objects Configuration

Editing Applets Based on Grid Layout Templates
3 Select File > Save.

Centering Controls
Grid Layout allows you to center controls vertically or horizontally.

To center controls

1 In the Web Layout Editor, hold down the Ctrl key, and then click the controls you
want to center.

The last item selected is the one to which all other items will be centered.

2 Perform the following tasks as necessary:

Remove horizontal spacing

Make vertical spacing equal

Increase vertical spacing

Decrease vertical spacing

Remove vertical spacing

Task Button

Task Button

Center controls vertically

Center controls horizontally
560 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Editing Applets Based on Grid Layout Templates
3 Select File > Save.

Setting Tab Order
Grid Layout allows you to set the sequence of controls that are activated each time
a user presses the tab button. You can set the tab order by pointing and clicking in
the Web Applet Layout Editor.

To set the tab order

1 In the Web Layout Editor, select Format > Set Tab Order from the main Tools
menu.

The Web Layout Editor changes to Set Tab Order mode. Applet controls appear
with a number next to them. The number indicates the sequence in which the
user will progress through the controls using the tab button.

2 Define the tab order by clicking on controls in the sequence you want.

Each time you select a control the control is assigned a sequence number.

NOTE: If you do not click on a control, for example if you click on the layout
background, the Web Applet Editor returns to normal edit mode.

3 Select File > Save.

4 Select Format > Set Tab Order.

The Web Layout Editor returns to normal edit mode.

5 Repeat steps Step 1 through Step 4 for each applet Web template mode.

Resizing the Grid Canvas
You can resize the grid canvas in the Web Layout Editor.

To resize the grid canvas

1 In the Web Applet Editor, use the scroll bars to display the bottom right corner
of the grid canvas.
Version 7.5.3, Rev. A Siebel Tools Reference 561

Logical User Interface Objects Configuration

Setting a Default Method for an Applet
2 Place your cursor over the canvas border (bottom edge, right edge, or bottom
right corner) and drag it to the new position.

The grid canvas is resized.

Setting a Default Method for an Applet
The default method is the one that is invoked when the user presses Ctrl+Enter.
For applets in query mode, this is ExecuteQuery (pressing Alt+Enter will also
execute the query). For other modes, the DefaultMethod applet user property can
be set.

NOTE: This must be a valid applet InvokeMethod, such as NewRecord or
GotoNextSet.

To set the default method for an applet

1 In Siebel Tools, select the Applet object, and then select the desired applet.

2 Expand the Applet object, and then select the Applet User Prop object.

3 Add a new record with the name DefaultMethod and the value of the method
you want to be invoked.

About Views
Views define a visual representation of a business object’s data.

A Siebel application window displays one view at any one time.

Views:

■ Contain applets.

■ Are components of a screen (each screen includes one or more views).

■ Appear in one of the three primary view styles—list, detail, and explorer.
562 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Creating Views Using the View Wizard
You create new views by using the View Wizard or by defining views in the view
object in the Object List Editor.

NOTE: Views can appear in the user interface in the Show: combo box or as view
tabs. See “About The User Interface Navigational Paradigm” on page 504 for more
information.

Creating Views Using the View Wizard
The View Wizard helps you create views and define all the necessary properties and
child objects.

To create a view using the wizard

1 Check out and lock the project to which you want to add the view.

2 Choose File > New Object from the Siebel Tools main menu.

The New Object Wizard dialog box appears.

3 Click the View icon, and then click OK.

4 In the New View page, do the following:

■ Select the project that you want the view to be part of.

■ Enter a unique name for the new view.

■ Select the Business object whose data the view will display.

■ Enter the title for the view.

5 In the View Web Layout - Select Template page, select the template you wish to
use for your new view.

For a complete list of View Web Templates, see Siebel Developer’s Reference.

6 In the Web Layout - Applets page, select the applets that you want to appear in
the Web layout and then click Next.
Version 7.5.3, Rev. A Siebel Tools Reference 563

Logical User Interface Objects Configuration

Creating Views Using the Object Explorer
7 In the Finish page, review your selections, and then click Finish.

The View Web Template (Base) - Layout window appears. If necessary, you can
drag and drop applets from the Applets Window to the sectors in the Web Layout
Editor. For more information, see “Editing the Web Layout of Views” on
page 566.

8 To preview the view, right-click in the Web Layout Editor, and then choose
Preview.

9 Save your new view by selecting File > Save.

Creating Views Using the Object Explorer
You can define views manually by using:

■ Object List Editor, Property list window, or both

■ Web Layout Editor

To define a view in the Object List Editor

1 From the Object Explorer, select View.

The Object List Editor opens.

2 Choose Edit > New Record to add a new view object definition.

3 Set the following properties for the new view record:

■ Name. (Required.) The name of the view. All references to views are done
through its name.

■ Business Object. (Required.) The name of the business object used by the
view. This determines the relationship between business components on
which member applets are based.

All the sector properties must have a value specified (except explorer view).

■ Screen Menu. If TRUE, the view should be included in the Site Map.

■ Title. Text string used as the window title.
564 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Creating Views Using the Object Explorer
■ Visibility Applet. A non-null value places the view in the Show: combo box. A
null value places the view as a view tab.

See “About The User Interface Navigational Paradigm” on page 504.

■ Visibility Applet Type. Limits view visibility by organization or responsibility.
Valid values for Visibility Applet Type are:

❏ All

❏ Personal

❏ Sales Rep

❏ Manager

❏ Organization

❏ Sub-Organization

❏ Catalog

❏ Group

If Visibility Applet is blank, the view appears as a view tab and is not listed
in the Show menu. Its visibility is determined by the value of Visibility Applet
Type.

If Visibility Applet Type is blank, the view's visibility defaults to the most
restrictive type defined for the business component. (This usually means
Personal or Sales Rep visibility, depending on the corresponding visibility
settings of the business component of the view's Thread Applet property.)
The view is listed in the Show menu by the name given in the Visibility
Applet property.

If both are blank, the visibility depends on the navigation context:

❏ When navigating from another view to this view using the Show menu,
the query context and record focus are kept from the previous view,
assuming that the business components and search specifications are
relevant.
Version 7.5.3, Rev. A Siebel Tools Reference 565

Logical User Interface Objects Configuration

Editing the Web Layout of Views
❏ When navigating to this view using the Site Map or the Screen tabs, the
visibility defaults to the most restrictive type defined for the business
component.

For more information on view visibility rules, see Security Guide for Siebel
eBusiness Applications.

Editing the Web Layout of Views
You edit the Web layout of a view in the Web Layout Editor. The Web Layout Editor
allows you to edit the mapping between applets in the view and placeholders in the
template.

To use the Web Layout Editor to modify the layout of a view

1 Select a view in the Object List Editor.

2 Right-click, and then choose Edit Web Layout.

If the view has a template associated with it, the Web Layout Editor appears. The
Web Layout Editor renders the underlying view template with mapped and
unmapped placeholders.

3 Add an applet to the Web layout of the view by dragging it from the Applets
window and dropping it onto an applet placeholder in the template.

The Applets window shows all applets based on business components in the
business object of the view. When an applet is mapped to a placeholder, the
applet is displayed in the position it would appear at runtime.

4 Delete an applet from the layout by selecting it, and then clicking the DELETE
key.

5 Preview the view design by right-clicking on the layout, and then choosing
Preview.

The preview simulates what the view would look like in the runtime
environment by removing unmapped placeholders. This preview is not intended
to be an exact representation of the eventual HTML output; it is intended to give
you a rough idea about the structure and look of the generated output.
566 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Configuring Views for Personal Layout Control
6 Export the preview to an HTML file by choosing File > Export, and then
choosing a file name and location in the Save As dialog box that appears.

7 Change the Web template used by clicking the Change Template button that
appears next to the Template text box in the Web Controls toolbar.

NOTE: This might result in some mappings becoming invalid if the corresponding
placeholder IDs do not exist in the new template. You can test for invalid
mapping by right-clicking and selecting Check Mapping.

For information about editing templates, see Chapter 15, “Physical UI
Navigation and Templates.”

8 Save your changes by choosing File > Save.

Configuring Views for Personal Layout Control
Certain views in Siebel applications, such as home page views, allow the user to
control the layout of the view. For example, these views allow the user to:

■ Reorder applets

■ Collapse or expand applets

■ Show or hide applets

See the Customizing Your Home Page section in Fundamentals for a description of
this feature from the end-user perspective.

The user can edit view layout in two modes. Show mode and Edit Layout mode.

■ Show mode. Allows users to move, collapse and expand, show and hide
individual applets within the view, using controls placed at the top of each
applet on the view. For example, home page views are displayed in Show mode
until a user clicks the Edit Layout button.
Version 7.5.3, Rev. A Siebel Tools Reference 567

Logical User Interface Objects Configuration

Configuring Views for Personal Layout Control
■ Edit Layout mode. Allows users to move, expand and collapse, show and hide,
individual applets, plus perform the following operations on all applets within
the view: show all applets, hide all applets, minimize all applets, maximize all
applets, and reset the default layout definition. This mode is presented to the
user using a separate applet called the Layout Controls applet and appears after
the user clicks the Edit Layout button.

To configure a view to support personal layout control

1 Set the User Layout property of the View’s View Web Template object to TRUE.

2 Define the default layout of the view by setting the following properties of the
View Web Template Items associated with the view.

■ Display Size. Determines whether the applet is minimized or maximized.
Always Maximized indicates that the applet cannot be minimized by the end
user.

NOTE: Minimized and maximized are referred to as collapse and expand in the
client user interface.

■ Display Visibility. Determines whether the applet is shown or hidden. Always
Show indicates that the applet cannot be hidden by the end user.

■ Move Range. Defines a range in which the applet may be moved. For example,
on an application home page with two columns, applets would specify a
move range of either Column1 or Column2. Any applet with a move range of
Column1 is movable only within the first (left) column. Any applet with a
move range of Column2 is movable only within the second (right) column.

If this property is not defined, the applet cannot be moved by the end-user.
The applet location is fixed within the view. For example, the salutation
applet on the home page would typically not have move range specified for
it.
568 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Configuring Views for Personal Layout Control
3 Add the Layout Controls Applet to the view, add a corresponding View Web
Template Item, and map the applet to a placeholder in the Web Template.

There is an applet in the Siebel repository called Layout Controls applet. Add this
applet to the view that you want to enable for personal layout control. It serves
as a container for the controls that handle view-level operations, such as Reset
Default Layout. In Show Mode, this applet appears as the Edit Layout button. In
Edit Layout mode, which appears after the user clicks the Edit Layout button,
this applet shows all applets on the view, and allows the user to Hide All
Applets, Show All Applets, Reset Default Layout, and return to Show mode by
clicking Done.

4 Add the following view layout controls to applets within personalized views, add
corresponding Applet Web Template Items, and map the controls to the
appropriate placeholders in the Web template.

■ ButtonMoveAppletUp

■ ButtonMoveAppletDown

■ ButtonHideApplet

■ ButtonShowApplet

■ ButtonMinimizeApplet

■ ButtonMaximizeApplet

These view layout controls use Invoke Methods to manipulate the user's view
layout preferences.
Version 7.5.3, Rev. A Siebel Tools Reference 569

Logical User Interface Objects Configuration

Providing User Access to a New View
Providing User Access to a New View
After creating a new view, you need to register the view in the Siebel application.
This will provide users access to a new view. This is an application administration
task.

NOTE: This is an important step to remember. If you simply define a view without
providing access to it, it will not be accessible to any users in the Siebel application
client. You also need to do this to be able to test the new view in the Web client.

Once you add a new view to the Siebel repository, an application administrator
needs to do the following:

■ Log in to the Siebel application as a user with the right level of administrative
responsibility.

■ Add the new view to the list of views.

■ Add the view to the appropriate responsibility.

Depending on the nature of the new view and the users who need access to it, the
application administrator may also need to:

■ Add new responsibilities.

■ Add employees to the new responsibilities.

For more information about doing these tasks, see Applications Administration
Guide.

Reasons a View Is Not Visible to a User
When a view is not visible to the logged-in user, there are the following possible
reasons:
570 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Reasons a View Is Not Visible to a User
■ The view does not exist in the .srf file.

This includes a possible misspelling when the view was registered (Site
Map > Application Administration > Views); that is, it does not match the
view name in the .srf file. If it matches, compile the .srf file again using the All
Projects option (full compile).

■ The view is not included in one of the logged-in user's responsibilities.

■ Determine which responsibilities the logged-in user has
(Site Map > User Administration > Employees).

■ Determine for each responsibility whether the view is included
(Site Map > Application Administration > Responsibilities).

■ The view is hidden using personalization rules.

Determine this under Personalization Administration > Views. For testing
purposes, you can also switch off the EnablePersonalization parameter in the
.cfg file.

■ The view is not included either in the menu or in the view tabs. In this case, the
view can only be accessed by drilling down from another view.

■ In Siebel Tools, examine the Screen Menu property of the View object. It must
be set to TRUE for the view to be included in the Site Map.

■ Determine whether the view is included in a screen and that the Viewbar
Text property of the Screen View child object of the screen is set
appropriately.

■ Determine whether the view’s Visibility Applet and Visibility Applet Type
properties are set correctly. For more information, see “Creating Views Using
the Object Explorer” on page 564.

■ The view belongs to a screen that is not included in the currently running
application.

■ In Siebel Tools, determine whether the screen is included in the application
(Screen Menu Item child object of the application).

■ Determine whether the application name is spelled correctly in the .cfg file.
Version 7.5.3, Rev. A Siebel Tools Reference 571

Logical User Interface Objects Configuration

About Screens
■ The view does not belong to the same business object as the screen's default
view.

Make sure that the view is based on the same business object.

For restrictions on the Screen property, see Object Types Reference.

■ The view is not available due to upgrade problems.

If an upgrade was done, make sure that it was successful by verifying all the log
files that were created. The upgrade log files are found in the
DBSERVER_ROOT\DB_PLATFORM directory.

■ The view is not included in your license keys.

If none of the previous reasons is responsible for the view not being visible, it is
likely that the view is not included in your license keys. Send the license keys to
Siebel Expert Services for examination. See also Alert 0041 on Siebel
SupportWeb.

■ The screen menu item or page tab is not translated into its target language.

Make sure that for each screen associated with the application (Screen Menu
Item object) there is a translated string available in the target language and a
Screen Menu Item Locale child object. If not, the screen will not appear in the
Site Map.

Similarly, for a page tab to appear, the Page Tab object must have a translated
string and a Page Tab Locale child object with the appropriate language code.

For example, if the application runs in Norwegian, there must be Screen Menu
Item Locale and Page Tab Locale objects with the Language Code property set to
NOR.

About Screens
A screen is a collection or group of related views:

■ The screen represents a logical grouping of views pertaining to one business
function.
572 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining Screens
■ All the views in a screen usually map to a single business object.

You access screens through the Site Map or the tabs in the Tab bar. The menu and
tab that provide access to a screen are defined as part of an application object
definition—one or both may exist for a given screen. Screen definitions specify the
default view that appears when a tab is clicked.

Screens have a single child object type: Screen View. The screen view object type
controls which views appear in the fourth-level navigation Show: combo box.

NOTE: The Site Map is limited to visibility-level views only. Non-visibility level
views, such as Account Profile View and Account Attachment View, do not show
up on the Site Map.

See “About The User Interface Navigational Paradigm” on page 504.

Defining Screens
You create screens by creating new objects and defining object properties in Siebel
Tools. There is no wizard to walk you through the process.

To define a screen

1 From the Object Explorer, select Screen.

The Object List Editor opens.

2 Choose Edit > New Record to add a new Screen object definition.

3 Set the following properties for the new Screen record:

■ Name. (Required.) Name of the screen. All references to a screen are done
through its name.
Version 7.5.3, Rev. A Siebel Tools Reference 573

Logical User Interface Objects Configuration

Defining Screens
■ Default View. View that will be used when the user clicks on a page tab for a
Screen.

NOTE: A view must be added to the screen before it can be specified as a
default.

Figure 161 shows the definition for the Accounts Screen.

To define a screen view

1 From the Object Explorer, select the Screen object type. The Object List Editor
opens.

2 Choose Edit > New Record to add a new screen object definition.

Figure 161. Accounts Screen Definition
574 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining Screens
3 Set the following properties for the new Screen View object:

■ Menu Text. Both the Screen View Menu Text property and the Screen Menu
Item display value show up in the Site Map. The former shows up as a
subitem under the latter.

■ Sequence. Specifies the order in which the views will appear in the cascading
menu for the Screen menu item.

If you want the view to appear in the View Category Show: combo box, set the
following properties. Typically, Category Menu Text and Category Viewbar Text
are the same value.

■ Category. This is a logical representation of what category the view belongs
to.

■ Category Menu Text. The display value that appears within the combo box.

■ Category Viewbar Text. The last is the display text of the View tab under which
it appears.

See “About The User Interface Navigational Paradigm” on page 504 for more
information.
Version 7.5.3, Rev. A Siebel Tools Reference 575

Logical User Interface Objects Configuration

About Applications
Figure 162 shows the Account Address view definition in the Object List Editor and
Properties windows.

The Applets window shows only the available applets in either icon or list form. An
applet is considered available if it is associated with a business component that is
present in the business object for this view.

You can delete an applet on the layout by selecting it and pressing the DELETE key.

About Applications
An application is a collection of screens—it defines which screens will be accessible
through menus and tabs. You can create new applications, but developers should
rarely do so. Typically, developers will modify existing applications to meet an
organization’s requirements.

Figure 162. Account Address View Definition
576 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Associating Screens with Page Tabs
Many applications can be supported in a single repository.

The application’s name is the one used in the configuration file that is read when
the application is executed. Application names are case-sensitive and space-
sensitive.

Siebel applications place application object definitions in their own separate
project. This is done to minimize locking of the application object definition.

If you are adding new screens to an application you need to:

■ Associate screens with Page Tabs

■ Associate screens with Screen Menu Items

Associating Screens with Page Tabs
Page Tabs are a child object type of the Application object type. They appear as the
first-level navigation in the user interface, allowing users to click the tab to go to the
associated screen. Figure 163 shows Page Tabs in the user interface.

To create Page Tabs in an application

1 In the Object Explorer, expand the Application object type.

2 Select the child object of Application called Page Tab. The Page Tabs List Editor
appears as the bottom windowpane in the Object List Editor window.

3 With the Page Tabs List Editor active, choose Edit > New Record to add a new
Page Tab object definition.

4 Set the properties for the new Page Tab record:

■ Screen. The screen you want to expose through a page tab.

Figure 163. Page Tabs in the User Interface
Version 7.5.3, Rev. A Siebel Tools Reference 577

Logical User Interface Objects Configuration

Defining Screen Menu Items
■ Sequence. Specifies the order of the page tabs for an application.

■ Text. Specifies the text that will be displayed on the page tab.

Defining Screen Menu Items
Screen Menu Items are child objects of the Application Object Type. Screen Menu
Items appear as hyperlinks on the Site Map. They allow users to click the hyperlink
to go to the screen. Figure 164 shows Screen Menu Item definitions displayed on the
Site Map.

NOTE: The site map is available by choosing View from the application-level menu
and then choosing Site Map.

To associate screens with screen menu items

1 From the Object Explorer, expand the Application object type.

2 Select the child object called Screen Menu Item.

The Screen Menu Items List Editor appears as the bottom windowpane in the
Object List Editor window.

Figure 164. Screen Menu Items Displayed on the Site Map
578 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

About Web Pages
3 With the Screen Menu Items List Editor active, choose Edit > New Record to
add a new Screen Menu Item object definition.

4 Set the properties for the new Screen Menu Item record:

■ Screen. The screen that will be accessed with the menu item.

■ Sequence. The position of the menu item on the Site Map for the application.

Duplicate sequence numbers are acceptable—in that case the first one added
will be the first to appear.

You can also use gaps in sequence numbers so that you can insert additional
screens between your original entries.

■ Text. The text to use for the menu item.

About Web Pages
The Web Page Object is the top-level object in the Web hierarchy that is used to
create Web pages such as the following:

■ Login pages

■ Error pages

■ Container pages

Editing the Layout of Web Page Objects
Like applets and views, Web pages are associated with templates. Web Page Items
(child objects of Web pages) are mapped to placeholders in the templates. The
Visual Web Page Editor allows a user to view and edit Web page objects.
Version 7.5.3, Rev. A Siebel Tools Reference 579

Logical User Interface Objects Configuration

Editing the Layout of Web Page Objects
To access the Web Page Layout Editor

1 Select a Target Browser from the drop-down list on the toolbar.

NOTE: If you do not select a browser, an error message appears when you choose
the Edit Web Layout option from the menu.

2 Lock your project.

3 In the Object Explorer, select the Web Page Object.

4 In the Web Pages list object editor, select the Web Page you want to modify,
right-click, and then choose Edit Web Layout.

The Web Page-Layout (Container Page) window appears.
580 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Editing the Layout of Web Page Objects
NOTE: The layout editor shows multiple images because the template on which
the Web page is based contains a conditional tag such as<swe:if> and
<swe:case>. The template content that is used varies depending on whether
any one of the conditions is met. For example, in the case of the Page Container,
the condition can simply be whether or not a CTI Java Applet is used or some
other subtle or nonvisual differences. The effect is that the layout editor shows
the page as if all the conditions were true. This is useful in case you want to edit
any of them. However, typically only one condition would be true at run time,
so you would not see the repeating images in the Web client.

5 Select a custom control from the combo box on the toolbar and drag it to a place
holder.
Version 7.5.3, Rev. A Siebel Tools Reference 581

Logical User Interface Objects Configuration

Associating Images With Siebel Objects
6 Set properties (like caption, invoke method, and so on) for the control using the
Properties window.

If you click on the Web Page Item object type in the Object Explorer, the Web
Page Items list applet displays these mappings.

Associating Images With Siebel Objects
You can associate image files, such as GIF and JPG, with Siebel objects, including:

■ Toolbar buttons

■ Command buttons

■ Icon maps

■ Page tabs

■ Tree nodes

■ Views

Images are defined in the repository using the Bitmap object type. Image files can
be of any format supported by the target browser. The Bitmap object type identifies
the location of the image file and other properties, such as width and height. See
Object Types Reference for more information about the properties of the Bitmap
object type.

NOTE: Only images that are associated with Siebel objects, such as icon maps, page
tabs, and so on, are defined as Bitmap objects in the Siebel repository. Some images
used in Web templates, such as static images, are not associated with Siebel objects
and are not defined as Bitmap objects in the Siebel repository. These objects are
defined in the application’s configuration (.cfg) file.

The Bitmap Category object type allows you to group image files together by
function. For example, there is a category called Button Icons that contains all
images for buttons on applets used in Siebel applications.
582 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Associating Images With Siebel Objects
Figure 165 shows bitmaps associated with the Calendar bitmap category.

To create a new Bitmap Category and associate bitmap objects to it

1 In the Object Explorer, select Bitmap Category.

2 Add a new bitmap category.

3 Select the Bitmap child object.

4 Add a new bitmap record.

5 Enter the name of the image file you want to use.

NOTE: Image files are stored in the following directory:
Siebel_installatoin\PUBLIC\language_code\IMAGES

Figure 165. Bitmaps Associated with the Calendar Bitmap Category
Version 7.5.3, Rev. A Siebel Tools Reference 583

Logical User Interface Objects Configuration

Defining Toolbars and Menus
6 Preview the image to verify that it is the correct one and the correct size.

Using Bitmap Objects with Button Controls
You can associate bitmap objects with button controls to display images instead of
text, much like a Toolbar icon. Unlike a Toolbar icon, however, a bitmap button
control is a command button in the applet. A good example of the use of a Bitmap
object with a button control in an applet is the More/Less button. The More/Less
button appears in the upper-right corner of many applets. The control uses a bitmap
object called BTTNS_MORE that belongs to the Bitmap Category HTML Control
Icons.

You associate Bitmap Object with button controls using the following properties of
the Button Control object definition:

■ HTML Bitmap. Defines the Bitmap object used when the button is active.

■ HTML Disable Bitmap. Defines the Bitmap object to use when the button is
inactive.

See “Image Support” on page 891 for more information about how images are
handled by Web templates.

Defining Toolbars and Menus
You can create new toolbars for an application by defining a toolbar object and
modifying the appropriate Siebel Web templates to expose the new object in the
user interface. You can also add new icons to existing toolbars.

To define a new toolbar

1 In Types view in the Object Explorer, double-click the Toolbar object type.

2 Click to the left of a row in the Object List Editor, and then choose Edit > New
Record.

3 Specify the name of the new toolbar in the Name property of the new object
definition.
584 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining Toolbars and Menus
4 To expose the toolbar to the user interface, you need to add a specific tag to the
Container Page or one of its child templates that you are using.

For detailed information on templates and tags, see Siebel Developer’s Reference.

To add a new toolbar icon to an existing toolbar

1 Verify that the bitmap image you want to use on the toolbar icon surface
currently exists as a child bitmap object definition of the bitmap category object
definition named Command Icons.

If it does not exist, create a bitmap object definition in this bitmap category as
described in “Associating Images With Siebel Objects” on page 582. If it does
exist, note the name of the bitmap object definition.

2 Verify that the method you want for this toolbar icon to invoke currently exists,
or add a Siebel VB or eScript script to the application PreInvokeMethod.

You need to write an If or Case statement based on MethodName and write the
instructions for that MethodName within the If or Case statement.

You also need to change the last line of PreInvokeMethod to CancelOperation
(from ContinueOperation).

3 Navigate to the Command object type in the Object Explorer, and add a new
Command object definition in the Object List Editor. Specify the HTML bitmap
to use in the Bitmap property, the method to invoke in the Method property, and
other properties.

4 Navigate to the Toolbar object definition to which the new Toolbar Item is to be
added.

5 In the Object Explorer, select the Toolbar Item object type.

6 In the Object List Editor, add a new Toolbar Item object definition. Specify the
name, the name of the Command object definition which supplies the bitmap
and method, and the sequence number of the toolbar icon relative to the other
toolbar icons appearing in the Toolbar Items list in the Object List Editor.
Version 7.5.3, Rev. A Siebel Tools Reference 585

Logical User Interface Objects Configuration

Defining Toolbars and Menus
Creating Command Objects
A command object definition specifies which invoke method is called when a
toolbar icon, application-level menu item, or applet menu item is associated with
the command is executed. It also specifies which bitmap appears on the toolbar icon
for the toolbar items. Command object definitions are referenced by Toolbar Item,
Menu Item, or Applet Method Menu Item object definitions.

NOTE: If you look in the target property for the command object, you will see six
values in the picklist. The only valid values are Browser and Server. These values
are the only options when you use the Command Wizard to create a new command
object.

Using the Command Object Wizard
The Command Object wizard creates Command object definitions by helping you
select the appropriate properties for the object.

To use the Command Object Wizard

1 Choose File > New Object.

The New Object dialog box appears.
586 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining Toolbars and Menus
2 Click the Command object icon.

The Command dialog box appears.

3 In the Command dialog box, do the following:

■ Enter the project for which you wish to create the new command object.

■ Enter a unique name for the command object.

■ Select whether you want the Method invoked by the command to be handled
by the browser or the server.

■ Click Next.

4 In the next dialog box, do the following:

■ Select the object that will handle the command. If the command is to be
handled by a business service, specify the business service from the drop-
down list. You must know whether the selected business service is available
for your choice of browser/server.
Version 7.5.3, Rev. A Siebel Tools Reference 587

Logical User Interface Objects Configuration

Defining Toolbars and Menus
■ Enter the Method to be invoked by the command. Specify the method to be
invoked by the command. You are responsible for choosing a method that is
available for the business service or application chosen.

■ You can provide the argument to be passed to the method (this is optional).
The argument must be correct for the chosen method.

■ Click Next.

5 In the Window dimensions dialog box, do the following:

■ Specify if the command should be executed in a new browser window. If it
should be, the window's height and width must be specified. Both these
values must be valid integers.

■ Specify the HTML bitmap and the tooltip text to be shown on the toolbar
button associated with the command (optional).
588 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Defining Toolbars and Menus
■ Click Next.

6 In the Command dialog box that appears review your entries.
Version 7.5.3, Rev. A Siebel Tools Reference 589

Logical User Interface Objects Configuration

Defining Toolbars and Menus
7 If any corrections need to be made, click Back to return to the appropriate page
on which the correction is to be made.

If the properties are correct, click Finish to generate the command object. After
the object has been generated, the user will be taken to its definition in tools.

Using JavaScript to Extend Toolbars
You can take advantage of the functionality of high interactivity by extending
JavaScript toolbars and creating new ones. Creating new JavaScript files to extend
JavaScript toolbars is necessary if you need more toolbar icon types than the
standard ones (Link, Button, Label, and Separator in Siebel 7.5).

To extend a toolbar using JavaScript

1 Create a JavaScript file to define an extended JavaScript toolbar class that is a
subclass of JSSToolbar.

2 Copy the JavaScript file to

SIEBSRVR_ROOT\webmaster\<Siebel_build_number_in_use>\scripts.

3 In Siebel Tools, create a DLL object as shown in the following table.

4 Create a Class object as shown in the following table.

Field Value

Name User-defined name for the DLL object, for example BarcodeToolbar

Project A currently locked project in the Siebel Repository

File Name File name that references the JavaScript file, for example
barcodeToolbar.js

Field Value

Name Name of the class defined in the JavaScript file, for example
JSSBarcodeToolbar

Project The locked project used in Step 3
590 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Creating Applet Menus
5 If you are creating a new toolbar, create a Toolbar object, as shown in “To define
a new toolbar” on page 584.

The Class property must be the class defined in the JavaScript file, for example
JSSBarcodeToolbar.

6 Add new toolbar items as shown in “To add a new toolbar icon to an existing
toolbar” on page 585.

7 If you are creating a new toolbar, add a <swe: toolbar> tag to the appropriate
Web template as shown in “HTML and JavaScript Toolbars” on page 866.

The name property in the swe: toolbar tag must be the name of the Toolbar
object in Step 5.

8 Add <swe: toolbaritem> tags to the appropriate swe: toolbar tag as shown in
“HTML and JavaScript Toolbars” on page 866.

Creating Applet Menus
You can configure the applet menus that come with Siebel applications and also
create custom applet menus of your own using the Applet Method Menu Wizard.

Defining Web Menus Using the Applet Method Menu Wizard
The Applet Menu Wizard will allow the user to modify an applet's method menu
(applet level menus). Applet method menus are constructed by inheriting method
menu items from the class to which the applet belongs and its super classes, and
also by explicitly creating method menu items for the applet. Using the wizard, you
can do the following:

■ Suppress inherited method menu items

DLL Name of the DLL object created in Step 3

High
Interactivity
Enabled

1

Field Value
Version 7.5.3, Rev. A Siebel Tools Reference 591

Logical User Interface Objects Configuration

Creating Applet Menus
■ Resurrect inherited method menu items

■ Create new method menu items for an applet

■ Delete existing method menu items of an applet

To use the Applet Method Menu Wizard

1 Choose File > New Object.

The New Object dialog box appears.

2 Select the Applet Method Menu object.

The Applet Method Menu dialog box appears.

3 In the Applet Method Menu dialog box, do the following:

■ Specify the applet whose method menu you wish to modify and also the
project for the applet.

Only projects locked by the user will appear in the drop-down list.

■ Click Next.

4 In the second Applet Method Menu dialog box, do the following:

■ Make a menu item visible in an applet by moving the item to the Selected
Menu Items window.

■ Suppress a menu item by moving it out of the Selected Menu Items Window.

■ Click Finish or select Create New Menu Item. If you click Finish, all the
changes that you have made are committed to the repository, and you are
taken to the applet's object definition in the Object List Editor. If you select
Create New Menu Item, the Finish button becomes the Next button.

5 If you are creating a new menu item, and you have checked the box labeled
Create New Menu Item on the Applet Method Menu dialog box, then click Next.

6 Create a new method menu item definition by selecting an entry from the Select
the Command to be executed by this Menu field.
592 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Creating Applet Menus
7 From the Enter the text to be displayed for this Menu Item field, specify the text
to display for this method menu item, and then click Next.

The Applet Method Menu Item dialog box appears.

You can examine the properties that you specified earlier. If any changes have to
be made, you can click Back and return to the appropriate dialog box on which
the correction is to be made.

8 If the properties are correct, you can click Create Menu Item to generate the
method menu item object. After the item is generated, the Back button is
deactivated and the Next button becomes enabled.

9 Click Next.

The second Applet Method Menu dialog box appears and the method menu item
you just created is displayed in the Selected Items list box.

10 Click Finish.

The Applet Layout screen appears.

Creating Menus Manually
You can also create menus by creating an Applet Method Menu Item manually in
the Object List Editor.

To use the Applet Method Menu Item Object to create the menu manually

1 Choose Applet > Applet Method Menu Item object.

2 Select an entry in the Applets object list editor.

3 Right-click and select Edit Web Menus.

The applet-menu window appears for you to create your menus.
Version 7.5.3, Rev. A Siebel Tools Reference 593

Logical User Interface Objects Configuration

Configuring Keyboard Accelerators
Configuring Keyboard Accelerators
Keyboard accelerators are implemented using the command architecture. They are
configured in Siebel Tools using the Accelerator object, which is a child of the
Command object. Since accelerators are mapped directly to commands, the scope
of the actions represented may be specific to the currently active applet, or it may
apply to the application session as a whole. For example, an accelerator to initiate
a new query will have specific focus on the current applet, while an accelerator to
invoke the Site Map page is independent of the current application context.

Commands must be loaded into the active menu structure at runtime in order to be
available. This means that the command represented by each accelerator must be
available to the user at a given point in time for the associated keyboard accelerator
to be active. For a command to be available to the user, it must be associated with
either the application menu or the applet-level menu for the currently active applet.

Adding a New Keyboard Accelerator
You can add new keyboard accelerators.

To add an accelerator

1 Make sure the action to be performed by the accelerator is represented by a
command object in the Siebel Repository.

If not, you must add a command object. See “Creating Command Objects” on
page 586 for information.

2 Make sure the command to be mapped to the new accelerator is included as part
of the active menu hierarchy, at either the application or applet level, for the
application contexts in which the accelerator will be active.

3 Navigate to the Commands object in the Object Explorer view.

4 Select the command that you want to modify.

5 Expand the Command object type, and then select the Accelerator child object.

6 Add a new record.

7 Specify the key sequence.
594 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Configuring Keyboard Accelerators
8 Specify the display name to be associated with the accelerator.

9 In the Platform field, specify the keyboard enablement mode or modes for which
this accelerator will be active.

■ Extended for extended mode only

■ Basic for basic mode only

■ All for both modes

10 Compile and check-in the project.

NOTE: Keyboard accelerators for commands related to the Siebel Communications
Server are configured through administrative screens in the application. They are
not compiled in the Siebel Repository File using Siebel Tools. Any such accelerators
defined through the Siebel Communications Server administrative screens will take
precedence over accelerators defined in the Siebel Repository File for identical key
sequences. For more information, see Siebel Communications Server Administration
Guide

Modifying the Key Sequence for an Existing Accelerator
You can modify the key sequence for an existing accelerator.

To modify the Key Sequence for an accelerator

1 Navigate to the Commands object in the Object Explorer view.

2 Identify and highlight the command to modify.

3 Select the accelerator that you want to modify (Accelerator is a child object of
the Command object).

4 Modify the Key Sequence property for the accelerator.

See “Design Considerations for Keyboard Accelerators” on page 596.

5 Compile and check-in the project.
Version 7.5.3, Rev. A Siebel Tools Reference 595

Logical User Interface Objects Configuration

Configuring Keyboard Accelerators
Hiding The Key Sequence in the User Interface
You can hide the key sequence so that it is not displayed in the user interface. The
Key sequence for a given accelerator is defined by the Display Name property of the
Accelerator Locale record. To hide the key sequence, leave this property blank.

Design Considerations for Keyboard Accelerators
Key sequences that resemble the underlying command are useful since they help
the user remember the accelerator (for example, “Ctrl+N” for “New Record”).
However, it can be beneficial to keep several design considerations in mind to help
maximize productivity gains when adding or modifying keyboard accelerators.

For applications running extended mode keyboard enablement, take care not to
override native browser functionality that the user community uses regularly. For
example, “Ctrl-C” copies a text string to the clipboard in Microsoft Internet Explorer
5.5. This could be a useful feature within the Siebel application browser
environment for managing text.

Keep related accelerators grouped as much as possible in terms of mapped key
sequences. For example, mapping key sequences that all start with “Ctrl+Alt…” for
query management functions can assist users in remembering related accelerators.

Take care not to map frequently used commands to key sequences that are similar
to those of commands with severe results. For example, mapping a frequently used
command to “Ctrl+Alt+X” may lead to unwanted accidental logouts for users if
the “Logout” command is mapped to “Ctrl+Shift+X”.

Keyboard accelerators for commands related to the Siebel Communications Server
are configured through administrative screens in the application. They are not
compiled in the Siebel Repository File using Siebel Tools. Any such accelerators
defined through the Siebel Communications Server administrative screens will take
precedence over accelerators defined in the Siebel Repository File for identical key
sequences.

For more information about Keyboard Accelerators, see Applications Administration
Guide.
596 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Configuring Spell Check
Configuring Spell Check
Siebel Spell Check is available for use by many Siebel eBusiness applications. This
feature helps users, such as call center agents, identify spelling errors before
sending out emails, faxes, or other text communications. For additional information
on Siebel Spell Check, see Siebel eMail Response Administration Guide and Siebel
Call Center User Guide.

Users can invoke Siebel Spell Check from an applet-level menu item. You configure
this menu item by creating a “Check Spelling Field” user property for the applet
where the Check Spelling button and the field to be checked are located. The
workflow is described in the sections that follow.

1 Create a Spell Check button. You need to create a Spell Check button for the applet
containing the field to be checked. For information on performing this
procedure, see “To create a Spell Check button.”

2 Set the Spell Check button user properties. For information on performing this
procedure, see “To set the Spell Check button User Properties” on page 598.

3 Edit the Web Applet template. After creating a Spell Check button, you add it to
the template where it will appear. For information on performing this procedure,
see “To edit the Web Applet” on page 599.

4 Add the Spell Check business component to a business object. Next, you add the
Spell Check business component to the business object of the applet containing
the field to be checked. For information on performing this procedure, see “To
add the Spell Check business component to a business object” on page 599.

5 Create a Spell Check menu item. You need to create a Spell Check menu item for
the applet containing the field you want to be checked. For information on
performing this procedure, see “To create a Spell Check Menu Item” on
page 600.

6 Compile the project. For information on performing this procedure, see
“Compiling Projects” on page 130.

7 Test the applet. You can test the applet by running a Siebel application,
navigating to the applet you have configured, and making sure that the Check
Spelling button is present and working correctly.
Version 7.5.3, Rev. A Siebel Tools Reference 597

Logical User Interface Objects Configuration

Configuring Spell Check
To create a Spell Check button

1 In the Object Explorer, double-click the Applet object type to expand it.

2 In the Applets window, select the name of the applet for which you are creating
a Spell Check button.

3 In the Object Explorer, select the Control object type and add a new record.

Create the new record with the following values:

NOTE: If the Method Invoked value does not appear in the pick list, type it in.

To set the Spell Check button User Properties

1 In the Object Explorer, double-click the Controls object type to expand it.

2 Select the Control User Properties object type.

3 Click Control User Properties.

Field Value

Name ButtonCheckSpelling

Caption Check Spelling

Field [field name]

HTML Type MiniButton

HTML Only True

Method Invoked ShowPopup
598 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Configuring Spell Check
4 In the Control User Properties window, create new records for the following user
properties, with the corresponding values:

To edit the Web Applet

1 In the Object Explorer, double-click the Applet object type to expand it.

2 In the Applets window, select the name of the applet for which you are creating
a Spell Check button, and then right-click and choose Edit Web Layout.

3 In the Web Control toolbar, from the Mode drop-down list, select Edit.

4 In the Controls window, select the “Check Spelling” icon, and then drag it to a
placeholder in the Web template.

5 In the Web template, right-click and choose Preview.

You can see the Spell Check button as it will appear in the user interface.

To add the Spell Check business component to a business object

1 In the Object Explorer, click the Business Object type.

2 In the Business Objects window, select the business object to which you want
to add the Spell Check business component.

3 In the Object Explorer, double-click Business Object to expand it, and then select
Business Object Component.

Field Value

Mode Edit

Popup Spell Checker Popup Applet

Popup Dimensions 560 X 350 (recommended initial size)
Version 7.5.3, Rev. A Siebel Tools Reference 599

Logical User Interface Objects Configuration

Configuring Spell Check
4 In the Business Object Component (child) window, add a new record.

Create the new record with the following values:

To create a Spell Check Menu Item

1 In the Object Explorer, click Applet, and then select the applet for which you
want to create a Spell Check menu item.

2 Double-click the Applet object type to expand it, and then select Applet Method
Menu Item.

3 In the Applet Method Menu Item window, add a new record.

Create the new record with the following values:

4 Select the Applet User Property object type.

5 In the Applet User Properties window, add a new record.

Create the new record with the following values:

Field Value

BusComp Spell Checker Applet VBC

Field Value

Command Check Spelling

Menu Text &Check Spelling

Position 2

Field Value

Name Check Spelling

Value [Name of the field that will use Spell Check]
600 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Using the Locale Management Utility
Using the Locale Management Utility
The Locale Management Utility (LMU) in Siebel Tools helps you manage the process
of localizing text strings, such as field labels, and other locale-specific attributes,
such as the height and width of controls. This includes exporting the strings to a
file, which is then translated and imported back into the repository. The LMU
provides the export and import tools to do this.

You use the Locale Management Utility to:

■ Find strings that need to be translated.

■ Find existing translations to use for untranslated strings.

■ Export strings and locale-specific attributes to a file for localization.

■ Import strings and locale-specific attributes from a file back into the repository.

■ Search for strings and locale-specific attributes that have changed since the last
export.

■ Compare object definitions in the repository to the object definitions stored in
the export file.
Version 7.5.3, Rev. A Siebel Tools Reference 601

Logical User Interface Objects Configuration

Using the Locale Management Utility
Finding Untranslated Text Strings
You can use the Locale Management Utility to find text strings in the repository that
have not been translated or need to be re-translated since the source string has
changed since the last translation.

NOTE: The LMU performs search and comparison functions at the object level, not
the attribute level. Therefore, if a locale object contains multiple string attributes,
the search function will return all strings contained in the locale object, even if only
one of them has been translated.

To find and export strings that need to be translated

1 Choose Tools > Utilities > Locale Management.

The Locale Management Utility appears.

2 Select the source language and the target language.

3 Select the applications or projects that you want to localize.

4 Select the Untranslated Strings tab.

5 If you also want to see strings that have been marked as Redo, select the Report
string attributes of objects marked with 'Redo' flag check box.

The Redo flag is marked when a record in the repository has been changed since
the last time export occurred and therefore may need to be translated again.

See “Identifying Modified Objects” on page 608 for more information about
Redo.

6 Click Find Strings.

The Locale Management Utility searches through the string attributes of objects
in the selected applications or projects and displays the ones that have not been
translated and, if Report string attributes of objects marked with 'Redo' flag check
box was selected, the strings that need to be re-translated are also displayed.

7 After you find untranslated strings you can perform the following tasks:
602 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Using the Locale Management Utility
■ Find the views that the untranslated strings belong to by clicking the Find
View button.

■ Go to the parent object of the string in the Object Explorer by selecting a
string, and then clicking the Go To button.

■ Export all untranslated strings to a text file by clicking the Export button.

Finding Existing Translations
You can search through objects in the repository to find existing translations for
untranslated strings. This allows you to reuse existing translations for user interface
objects that you have created or modified.

The LMU compares untranslated strings with string attributes of other objects in the
repository. If it finds an object with the same string, it searches for a translation in
the language that you have selected as the target language of the current LMU
session. If a translation exists, the LMU displays the best candidate for translation
and allows you to export it to a file.

For example, suppose you have selected English-American as your source language
and Spanish as the target language. You have an applet with a title of Customer that
has not been translated. After clicking the Find Translation button, the LMU
searches through the repository for other objects with attributes of Customer. If it
finds one, it looks for a Spanish translation of the string. If a translation already
exists, the translation is displayed and you can export it to a file.

If the LMU finds more than one translation for a source string, the following rules
apply:
Version 7.5.3, Rev. A Siebel Tools Reference 603

Logical User Interface Objects Configuration

Using the Locale Management Utility
■ If the source string is an attribute of an object that is related to a business
component, such as Control Caption or List Column Display Name, then
translations from the same business component are examined first. If multiple
translations exist in the same business component, the string that occurs the
most is selected. If none of the translations exist in the same business
component, then the translation that occurs the most often from among all
business components is selected.

For example, suppose Applet A is based on the Account business component.
Applet A contains a control caption with the value of Account and this value has
been translated to Account_FRA for French. Now suppose you create a new
applet, Applet B, that is also based on the Account business component and that
also contains a control caption with the value of Account. When you run Find
Translations, the LMU would find Account_FRA as an existing translation and
select it as the best candidate for this string.

■ If the source string is not an attribute related to a business component, such as
Menu Item Caption, the translation that occurs the most is selected as the best
candidate.

To find translated strings

1 Choose Tools > Utilities > Locale Management.

The Locale Management Utility appears.

2 Select the source language and the target language.

3 Select the applications or projects that you want to localize.

4 Select the Untranslated Strings tab.

5 Click the Find Translations button.

The LMU compares untranslated strings with strings of other objects in the
repository. If other objects use the same source string, the LMU looks for existing
translations of the string and displays the best candidates for translation in the
Results window.
604 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Using the Locale Management Utility
Exporting Strings and Other Locale-Specific Attributes
You use the Locale Management Utility to export strings and other locale-specific
attributes to an external file.

To export strings and other locale-specific attributes

1 Choose Tools > Utilities > Locale Management.

The Locale Management Utility appears.

2 Select the Source and Target Languages.

3 Select the applications or projects that you want to localize.

4 Select the Export Tab.

5 Select whether you want to export Strings only or all localizable attributes.

All localizable attribute includes Strings and other layout attributes, such as the
positions of controls. These attributes may be different for different locales.

6 Click Export.

When you click export the objects that you selected are exported to a file. The
default directory for the file is the Tools/Objects directory of your Siebel
installation. If you have chosen to export Strings Only, the strings are exported
to a text file called “results.txt.” If you have selected to export All Localizable
Attributes, Strings and other UI attributes are exported to a file called
“results.slf.”

Importing Strings and Other Locale-Specific Attributes
You use the Locale Management Utility to import translated strings and other locale-
specific attributes back into the repository. Use the preview functionality to see the
results of the import process before you actually import them into the repository.

To preview the results of the import process

1 Choose Tools > Utilities > Locale Management.

The Locale Management Utility appears.

2 Select a source language and a target language.
Version 7.5.3, Rev. A Siebel Tools Reference 605

Logical User Interface Objects Configuration

Using the Locale Management Utility
3 Select the Import tab.

4 Enter the directory path and name of the file you are going to import.

5 Enter the path and name of the file where you want to store the results for
previewing.

The default file name is “preview.txt.”

6 Click Preview.

The Locale Management Utility writes the results of the import process to the
log file rather than to the repository.

NOTE: LMU will not mark changed records with a Redo flag when running in
Preview mode.

To import strings and other locale-specific attributes into the repository

1 Choose Tools > Utilities > Locale Management.

The Locale Management Utility appears.

2 Select a source language and a target language.

3 Select the Import tab.

4 Enter the file name of the file from which you want to import locale-specific
attributes.

You can also use the Browse button to find and select the file. The default file
name is:

■ Results.txt if the file contains strings only

■ Results.slf if the file contains all locale-specific attributes
606 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Using the Locale Management Utility
5 Select whether you want to mark records in the repository with the Redo flag
that have changed since the export occurred.

When the import occurs, the LMU compares the source language records in the
repository with the source language records in the import file. If the records in
the repository have changed since the export occurred they are marked with the
Redo flag. This helps you identify records that may need to be retranslated.

6 Click Import.

The locale-specific attributes are imported into the repository.
Version 7.5.3, Rev. A Siebel Tools Reference 607

Logical User Interface Objects Configuration

Using the Locale Management Utility
Identifying Modified Objects
You can use the Locale Management Utility to identify objects that have been
modified in the repository since the last time you exported strings. This is useful
when your development and localization efforts occur simultaneously. It helps you
keep strings in the repository in sync with the strings that have been exported to a
file for localization.

You can search for modified objects using the following two methods:

■ Base your search on a specific date.

■ Compare objects in the repository with objects in a source file, such as
results.txt.

NOTE: When you base your search on a specific date, and run the search by clicking
the Start button, all records returned for a modified project are marked as “Redo,”
regardless of whether a particular locale attribute has changed. This is because the
LMU searches for changes at the object level (the base record), not the attribute
level.

To identify modified objects

1 Choose Tools > Utilities > Locale Management.

The Locale Management Utility appears.

2 Select a source language and a target language.

3 Select the Modified Objects tab.

4 Define the search criteria you want to use:

■ Select the Changed since check box and then specify a date after which you
want to find modified objects.

■ Select the Different from file check box and then specify the file to compare
the repository against.

5 Do one of the following:
608 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Using the Locale Management Utility
■ Click Start to find records that match the search criteria, display the results,
and flag records returned in the search as Redo. Redo indicates that a record
has been changed since the last time export occurred and therefore may need
to be retranslated.

■ Click Preview to find records that match the search criteria and display the
results. Preview does not mark records as Redo.

6 After you have identified modified objects, you can perform the following tasks:

■ Click the Save button to save a result set in a log file.

■ Click the Go To button to open the Object Explorer and go to the parent object
of the string or attribute.

NOTE: The Load button allows you to import a result set from a previously saved
file. After loading the result set in the display window, you can perform Save or
Goto operations on those records.

Using the LMU to Replace Strings
You can use the LMU to replace strings in a bulk mode. For example, suppose that
you need change occurrences of Accounts to Companies for the English locale. You
can use the LMU to export the strings to a file, manipulate the file so that it only
contains the strings you want to replace, and then supply Companies as the string
to replace Account. When using the LMU to replace strings, the source and target
language are the same.

To use the LMU to replace strings

1 Identify the applications and/or projects to which the strings belong.

2 Export the strings you want to replace to an LMU file.

Use the procedure described in “Exporting Strings and Other Locale-Specific
Attributes” on page 605.

3 Remove strings from the LMU file that you do not want to replace.

4 In the Target String column of the LMU file, enter the string that you want to
substitute for the original value.
Version 7.5.3, Rev. A Siebel Tools Reference 609

Logical User Interface Objects Configuration

Using the Locale Management Utility
5 Use the LMU to import the LMU file.

a Select source and target language (both are the same).

b Navigate to Import tab and specify the LMU file path.

c Click Import to replace the strings.

Running the LMU From the Command Line
You can run the LMU from the command line interface. Commands, syntax, usage
and examples are proved in the following sections.

The syntax for the commands below use these conventions:

■ <xxx> is a placeholder for a required parameter.

■ [xxx] is a placeholder for an optional parameter.

■ xxx|yyy is an selection parameter (that is, xxx or yyy)

NOTE: When specifying file names, the absolute path must be provided. For example,
if you specify LMU file as results.txt for export, it will be created under the current
directory. That is, assuming an installation directory of d:\sea750\tools, the file
would created under d:\sea750\tools\bin, not d:\sea750\tools\objects.

Export Strings and Locale-Specific Attributes

Syntax /lmu <srclang> <trglang> export <proj|app> <all|string> [<file>]

Usage This command allows you to export localizable attributes for all projects or for all
applications. If you specify all, then all attributes (translatable and language
override attributes) are exported to a file with the extension of .slf; if you specify
string, then string attributes only are exported to a file with a .txt extension. If file
name is not specified, the exported file is named either results.txt or results.slf, and
the file is exported to /tools_root/objects/ directory.

Example siebdev /u sadmin /p db2 /d server /lmu ENU FRA export proj all
C:\temp\my_proj_results.txt
610 Siebel Tools Reference Version 7.5.3, Rev. A

Logical User Interface Objects Configuration

Using the Locale Management Utility
This example instructs LMU to export all attributes (string and language override
attributes) for all projects to a LMU file located at C:\temp, called
my_proj_results.txt. The source language is English-American and the target
language is French.

Import a LMU File

Syntax /lmu <srclang> <trglang> import <file>

Usage This command allows you to import a LMU file and mark all target locale objects
as 'Redo' if the source string from the import file and the repository differ. You must
specify the file name (with absolute path) to the import file.

Example siebdev /u sadmin /p db2 /d server /lmu ENU FRA import
D:\sea750\tools\objects\results.slf

This example instructs the LMU to import a file called results.slf from the folder
D:\sea750\tools\objects. The source language of the LMU file is English-American
(ENU) and the target language is French (FRA). The LMU file contains all
localizable attributes (string and language override attributes).

Export Strings to be Translated

Syntax /lmu <srclang> <trglang> todo <proj|app> [<file>]

Usage This command allows you to export all untranslated strings and strings marked with
'Redo' flag to an LMU file. You can specify whether you want to export for all
projects or all applications. The exported LMU file contains the related View Names.

Example siebdev /u sadmin /p db2 /d server /lmu ENU FRA todo app
D:\sea750\tools\objects\results.txt

This example instructs the LMU to find all untranslated strings and redo strings for
all applications and export the results to D:\sea750\tools\objects\results.txt. The
source language is English-American (ENU) and the target language is French
(FRA).
Version 7.5.3, Rev. A Siebel Tools Reference 611

Logical User Interface Objects Configuration

Using the Locale Management Utility
612 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists 11
This chapter provides a conceptual overview of pick applets and picklists in Siebel
applications. It also walks you through the steps in configuration process, using the
Pick Applet and Pick List Wizards.

Pick Applets
Pick applets allow users to select a value from a list, and have the selection entered
into controls or list column cells (Figure 166).

NOTE: In end-user documentation, pick applets are referred to dialog boxes.

Figure 166. Pick Applet in a Siebel Application

Pick applet Select button invokes the pick appletOriginating Applet
Version 7.5.3, Rev. A Siebel Tools Reference 613

Pick Applets and Static Picklists

Pick Applets
Pick applets are invoked by clicking the Select button that appears next to certain
fields. Pick applets contain a scrolling list table of available selections in one list
column, with the information from related fields in adjacent list columns. The user
selects a row in the list table and clicks the OK button to accept the selection. The
pick applet is dismissed, and the user’s selection populates the text box or list
column cell in the originating applet (the applet from which the pick applet was
invoked). The user’s selection can also populate other controls or list column cells
in the originating applet.

For example, when a user clicks the Select button in the Account field in the
Opportunity Form applet, the Pick Account dialog box (pick applet) appears for the
selection of an account (as illustrated in Figure 166 on page 613). Once an account
has been selected, and the Pick Account dialog box has been dismissed, the Account
text box contains the selected account, and the Site text box in the originating applet
contains the site that corresponds to the selected account.
614 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Pick Applets
The data in the pick applet typically comes from a different business component
than the data in the originating applet. There can be exceptions, for example,
picking a parent Account for an Account or a parent Position for a Position record.
When the user selects a record in the pick applet, the values in certain list columns
in the selected record are copied to corresponding list columns in the originating
applet. This is illustrated in Figure 167.

The following steps take place, from the user’s perspective:

Figure 167. Data Flow in a Pick Applet
Version 7.5.3, Rev. A Siebel Tools Reference 615

Pick Applets and Static Picklists

Pick Applets
1 In the Opportunity Form applet, the user enters information for the Organic
Cereals opportunity.

2 In the Opportunity Form applet, the user clicks the Select button.

3 The Account pick applet appears.

4 The pick applet displays rows from the Account business component.

5 The user selects Account 1, Smith’s Dry Goods, in the pick applet, and then
clicks OK.

6 Account data for Smith’s Dry Goods populates controls in the Opportunity Form
applet.

Pick applets maintain the foreign keys that facilitate join relationships. In the
opportunity and account example, there is a foreign key in the Opportunity business
component identifying the account for each opportunity. When the user selects an
account in the pick applet, it populates this foreign key field. This selection
associates the account with this opportunity for future use by the join that uses the
foreign key.
616 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Pick Applets
Pick applets are implemented using object types illustrated in Figure 168.

Figure 168 shows the object definitions used in the implementation of a pick applet
in greater detail, and identifies the interrelationships.

Figure 168. Pick Applet Architecture
Version 7.5.3, Rev. A Siebel Tools Reference 617

Pick Applets and Static Picklists

Pick Applets
The roles of the object definitions in Figure 168 on page 617 are summarized in the
following list and discussed in greater detail in the subsequent subsections. The
pick applet example referenced is the Account pick applet illustrated in Figure 166
on page 613.

■ Originating applet. Contains the control or list column that invokes the pick
applet. After the pick applet is invoked and a value is selected, specific controls
in the originating applet display revised values. In the example the originating
applet is the Opportunity Form Applet.

■ Pick applet. Dialog box that is invoked for the selection of a value. The dialog box
is a list applet containing scrolling list table rows. Each row corresponds to a
business component record. In the example, the pick applet is called Account
pick applet.

■ Originating business component. Business component of the originating applet.
This business component (in the example, the Opportunity business
component) supplies the data presented in the originating applet (Opportunity
form applet). The selection process in the pick applet results in the update of the
current record in this business component.

■ Pick business component. Business component of the pick applet. Data from fields
in this business component is displayed in the list columns of the pick applet. In
the example the pick business component is Account.

■ Originating control or originating list column. Appears in the originating applet.
When you click the originating control or list column, it invokes the pick applet.
In the example, the originating control is the Account control.

■ Originating field. Field in the originating business component that the originating
control represents. It has pick map child object definitions that define the
mapping of fields from the pick business component into the originating
business component. In the example the originating field is the Account field.

■ Pick List. Referenced by the field of the originating control, and identifies the pick
applet’s business component. In the example, the pick list object is called
PickList Opportunity Account.
618 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Pick Applets
■ Pick maps. Children of the originating field. Each pick map object definition
defines a correspondence between a field in the pick business component and
one in the originating business component. These correspondences provide the
information required to update the current originating business component
record with information from the pick business component record as soon as a
record is picked.

When a user selects a value from an unbounded picklist, it is copied to the field
with which the picklist is associated using the corresponding pick map that
references the same field. Fields associated with other child pick maps are only
populated when the picklist is bounded.

NOTE: Typing a new value into an unbounded picklist does not automatically add
it to the list of values that can be picked.

Fields in pick map objects are NOT updated when a user picks a value from an
unbounded picklist. Any applet based on CSSBuscomp or CSSBCBase with an
unbound picklist will not map all the values in the pick map. For all the values
in a pick map to be mapped, the picklist must be bounded.

■ Join and join specification. Child object definition of the originating business
component. The join specification is a child of the join and is referenced by the
join field. One of the pick maps updates the join field. A change in the value of
the join field results in the update of all fields whose values are derived from the
join. This update is not as immediate as the update performed by the pick maps.
In the absence of the other pick maps, the data would not be updated until the
user left the view and returned to it. In the example the join is called
S_ORG_EXT and the join specification is Account Id.
Version 7.5.3, Rev. A Siebel Tools Reference 619

Pick Applets and Static Picklists

Pick Applets
Configuring the Originating Applet
The originating applet contains the control or list column that invokes the pick
applet. It may also contain other controls or list columns that are populated by the
user’s selection from the list applet. The originating applet itself requires no special
configuration.

Figure 169 is a detail of the originating applet in Figure 168 on page 617.

As indicated in Figure 169, the important property setting for the originating applet
is as follows:

■ Business Component. Creates the association between the originating applet and
the originating business component.

The important child object definitions of the originating applet are the following:

Figure 169. Originating Applet Details
620 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Pick Applets
■ Originating control. Invokes the pick applet, as the result of the user’s clicking the
drop-down icon. The originating control has the name of the pick applet in its
Pick Applet property. The field specified in the Field property of the originating
control is the originating field, and has pick map child object definitions, as
discussed in “Configuring Originating Business Components” on page 643.

The control or list column must have its Runtime property set to TRUE.

■ Controls populated by the pick applet. Each control for which some field in the
originating business component is populated by a pick map object definition will
be updated when the user makes a selection from the pick applet.

■ Controls unrelated to the pick applet. Other controls in the applet.
Version 7.5.3, Rev. A Siebel Tools Reference 621

Pick Applets and Static Picklists

Pick Applets
Configuring the Pick Applet
The pick applet is the dialog box that is invoked for the selection of a value. It is a
list applet containing a scrolling list of rows. Each row corresponds to a business
component record in the pick business component.

Figure 170 shows a detailed definition of the pick applet from Figure 168 on
page 617.

The pick applet (Applet object type) has the following important property settings:

■ Business Component. Pick business component.

■ Class. CSSFrameList, indicating that this is a list applet.

■ Type. A value of Pick List is entered, to indicate that this is a pick applet. This
setting configures the behavior of the dialog box and button controls.

Figure 170. Pick Applet Details
622 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
■ Title. Name of the pick applet that appears in the title bar.

The pick applet has the following important child object definitions:

■ List. List columns are attached to the list.

■ List columns (grandchild object definitions). Each displays the contents of one field
in the business component.

■ Pick Record control. Invokes the PickRecord method when clicked. The
PickRecord method locates the pick map child object definitions of the
originating field and, from these, determines which fields to update in the
originating business component. These fields are updated based on the record
selected from the pick business component by the user.

■ Web Templates. Define the layout, such as position of list columns and controls,
for each of the defined modes.

■ Web Template Items. Map list columns and controls to placeholders in the Web
template. Web template items exist for each list column and control defined for
the applet.

Using the Pick Applet Wizard
You can use the Pick Applet Wizard to create a pick applet.

To configure applets using the Pick Applet Wizard

1 From Siebel Tools main menu, choose File > New Object.

The New Object Wizards dialog box appears.

2 Click the Applets tab.

3 Click the Pick Applet icon, and then click OK.

The General dialog box appears.

4 In the General dialog box, enter information for the following and then click
Next.

■ Project
Version 7.5.3, Rev. A Siebel Tools Reference 623

Pick Applets and Static Picklists

Using the Pick Applet Wizard
■ Pick business component

■ Name for the Picklist Applet

■ Display Name

The Web Layout General dialog box appears.

5 In the Web Layout General dialog box, select the templates to use for the Base
and Edit List modes, and then click Next.
624 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
6 In the Web Layout - Fields dialog box, select the fields you want to appear in the
pick applet, and then click Next.
Version 7.5.3, Rev. A Siebel Tools Reference 625

Pick Applets and Static Picklists

Using the Pick Applet Wizard
7 In the Second Web Layout - Fields dialog box, select the controls you want to
appear in the pick applet and then click Next.

NOTE: By default all the controls are present in the Selected Controls box. If you
wish to deselect any of these controls, highlight them and click the left-facing
arrow to move these controls into the Available Controls box. The controls that
appear by default are based on the Model Pick Applet in the Siebel repository.

8 In the Finish dialog box, review the information, and then click Finish.

The Pick Applet Wizard creates the pick applet object, and then opens the Web
Layout editor that you can use to map list columns and controls to the
placeholders in the Web Template.

See “Editing the Web Layout of Views” on page 566 for more information.
626 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
Configuring the Originating Business Component
The originating business component is the business component of the originating
applet, as specified in the Business Component property of the Applet object. This
business component supplies the data presented in the originating applet. The
selection process in the pick applet results in the update of the current record in this
business component. Figure 171 on page 628 shows the detailed definition of the
originating business component from Figure 168 on page 617.
Version 7.5.3, Rev. A Siebel Tools Reference 627

Pick Applets and Static Picklists

Using the Pick Applet Wizard
Figure 171. Originating Business Component Details
628 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
The originating business component has no important property settings that are
related to its role in the pick process.

The originating business component has the following important child object
definitions:

■ Originating field. The originating control displays the data from this field. The
originating field has no special role other than being the parent of the pick map
object definitions. The Pick List property of the Field specifies the Pick List
object. In the Siebel application architecture, pick maps are children of an
originating field, rather than the originating business component, in order to
support pick applets on more than one field in the business component.

NOTE: The originating field should be a field based on a database column. Pick
applets and picklists cannot be associated with read-only fields, including
calculated fields.

■ Pick maps. Children of the originating field. Each pick map defines a
correspondence between a field in the pick business component and one in the
originating business component. These correspondences provide the
information required to immediately update the current originating business
component record with information from the pick business component record
when a record is picked. Additionally, one of the pick maps updates the join
field, and eventually this causes the join to update the fields in the business
component that are dependent on the join.

NOTE: Test your pick map definition after creating it. If the originating field stays
the same after choosing a value from the pick applet, you should check the pick
map definition for that field.

Each Pick Map object definition has two important properties:

■ Field. Identifies a field in the (grandparent) originating business component
that is to be populated by data from a field in the pick business component,
when the PickRecord method is invoked.
Version 7.5.3, Rev. A Siebel Tools Reference 629

Pick Applets and Static Picklists

Using the Pick Applet Wizard
■ Pick List Field. Identifies a field in the pick business component that is the
source of data for the field in the Field property of the Pick Map object.

Fields in Pick Map objects are updated when the user picks a value from an
unbounded picklist. However, fields in Pick Map objects are not updated by
the picklist when the user types in a new value (the field the user typed
something into is, however, obviously updated with the user’s entry).

Typing a new value into an unbounded picklist does not automatically add it
to the list of values that can be picked.

Do not define more than one multi-value field in the originating business
component that maps to the same destination field in the pick applet's
underlying business component (Pick List Field Property). Doing so causes
the drop-down arrow for the picklist not to show; as a result, users will not
be able to use the picklist.

■ Join field. Serves as a foreign key in the join used by the pick applet. Typically,
the join field contains Id in its name, such as Account Id or Key Contact Id. It is
identified in the Source Field property of the join specification. The join field is
one of the fields identified in a pick map object definition. When the user selects
a record from the pick applet, the join field is updated (because of the pick map
in which it is identified), and this results in the update of all fields that are based
on the join.

NOTE: Fields in the originating business component, and the controls or list
columns that represent them, initially are updated by the action of the pick
maps. The join and join specification do not update the contents of the applet
until the user leaves the view and returns to it.

■ Join and join specification. The join and join specification object definitions set up
the join between the base tables of the originating and pick business
components. This join populates those fields in the originating business
component that have this join's name in their Join property.
630 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
■ Fields populated by the pick applet and join. Fields that have the join’s name in their
Join property are updated when the join field’s value changes. Fields that are
identified in the Field property of Pick Map object definitions are updated when
a selection is made from the pick applet. There is some overlap in the roles of
the pick maps and join, in that both generally update the same fields, but the
action of the pick maps is immediate and that of the join is somewhat delayed.

That is, even though pick maps can update the display value of joined fields (for
example, Account Name) when the user picks a record, pick maps do not
physically copy a value to the joined fields—only to the foreign key field (for
example, Account Id).

Constraining a Picklist
You can dynamically filter a pick applet to display only records that have field
values matching corresponding fields in the originating business component’s
records. This is called constraining a picklist. For example, a Contact’s pick applet
invoked from an applet that displays quotes could be configured to display only
contacts for the current quote’s account.

Pick applet constraints are defined using the Constrain property in the Pick Map
object type. For example, if you want to configure a Country picklist to display only
states that are part of that country, you need a way to indicate the relationship
between each state and its country. You could use the existing Description field in
the Picklist Generic BusComp to do this or alternatively, you could extend the table
and use a new column. Next, you would need to fill the Description field with valid
Country values. Use one of the following methods to accomplish this.

■ From the client application, choose Site Map > Application Administration >
List Of Values View and populate the Description field with valid Country
values.

■ From Siebel Tools, choose Account BusComp > State Field > PickMap. Insert a
new record in the PickMap list and set the following properties:

■ Field = Country

■ Constrain = True

■ Pick List Field = Description
Version 7.5.3, Rev. A Siebel Tools Reference 631

Pick Applets and Static Picklists

Using the Pick Applet Wizard
After a user selects a value from the Country picklist, the State picklist appears. The
values in the State picklist are constrained by the value selected from the Country
picklist. The value chosen from the Country picklist is used to filter the values that
appear in the State picklist. Only the values where the Description field contains the
selected value from the Country picklist will appear in the State picklist.

Pick maps can be of two types: copy pick map or constraint pick maps. Copy pick
maps perform the role described in “Configuring Originating Business
Components” on page 643: a copy pick map updates the current originating
business component record with information from the pick business component. A
constraint pick map also configures a mapping between the originating and pick
business components, but its purpose is different. It is used to filter the list of
records displayed in the pick applet to present only those that have matching values
in corresponding fields in the originating and the pick business component.

A pick map is configured as a constraint pick map by setting its Constrain property
to TRUE. If FALSE (which is the default), the pick map is a copy picklist.

The pick applet displays only contacts with the same Account, Account Id, and
Account Location as the quote. To accomplish this, define a constraint pick map as
a child object of the Contact Last Name field (in addition to the various copy pick
map object definitions provided in order to implement pick behavior). The presence
of this constraint pick map indicates to the system that it is to filter the displayed
records in the pick applet.

NOTE: If the constrained field refers to a joined table in the pick business component,
the foreign key field must also be constrained. Otherwise, a “This operation is not
available for read-only field” error will occur if a new record is created in the pick
applet.
632 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
Configuring Pick Business Components
The pick business component is the business component of the pick applet. Data
from fields in this business component is displayed in the list columns of the pick
applet.

Figure 172 shows a detailed definition of the pick business component from
Figure 168 on page 617.

The pick business component has no important property settings with respect to its
role in the pick process.

The pick business component has the following important child object definitions:

Figure 172. Pick Business Component Details
Version 7.5.3, Rev. A Siebel Tools Reference 633

Pick Applets and Static Picklists

Using the Pick Applet Wizard
■ Fields displayed in the pick applet. Populate the list columns in the pick applet.
They are referenced in the Field property of corresponding list columns in the
pick applet. Some of the same fields may be identified in the Pick List Field
property of Pick Map object definitions and, hence, have a role in updating
corresponding fields in the originating business component.

■ Fields not displayed in the pick applet. Although not displayed in list columns in
the pick applet, some of these fields may be identified in the Pick List Field
property of Pick Map object definitions and therefore have a role in updating
corresponding fields in the originating business component.

Configuring Picklists
The field of the originating control references the Pick List object definition. The
Pick List object definition identifies the pick business component. In this way, the
identity of the pick business component is made known to the pick applet.

Figure 173 shows the detailed definition of the Pick List object definition from
Figure 168 on page 617.

Figure 173. Pick List Details
634 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
The Pick List object definition has the following important property, when used in
pick applet configuration: Business Component. This property identifies the pick
business component.

NOTE: When configuring a pick applet invoked from a multi-value group applet,
define the picklist on the originating field in the originating business component,
not on fields in the multi-value group business component. For more information
on multi-value group applets, refer to Chapter 12, “Multi-Value Group and
Association Applets.”
Version 7.5.3, Rev. A Siebel Tools Reference 635

Pick Applets and Static Picklists

Using the Pick Applet Wizard
Creating a Picklist Using the Pick List Wizard
You can use the Pick List Wizard to create dynamic picklists.

To open the Pick List wizard

1 From the Tools main menu, choose File > New Object.

The New Object Wizards dialog box appears.

NOTE: You can also invoke the Pick List wizard by selecting the field for which
you would like to create a picklist, right-clicking, and choosing Add Pick List.

2 Select the Pick List icon, and then click OK.

The Pick List Wizard appears.

3 In the Pick List dialog box, enter the following information and then click Next.

■ Project

■ Business Component (originating business component; the parent business
component of the field that will display the picklist)

■ Field

4 In the Pick List Type dialog box, select Dynamic.

NOTE: Static picklists draw their values from a predefined list of values (LOV).
Dynamic picklists draw their values from a business component. For more
information about static pick lists, see “Creating a Static Picklist Using the Pick
List Wizard” on page 645.

5 In the Pick List Definition dialog box, choose whether you want to create a new
picklist or use and existing one:

■ If you want to create a new picklist, select the Create a New Pick List radio
button, and then click Next.

The Pick List Definition dialog box appears. Go to Step 6.
636 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Using the Pick Applet Wizard
■ If you want to use an existing picklist, select the Use Existing Pick List radio
button, select the picklist from the Pick List box and then click Next.

The Pick Map dialog box appears. Skip to Step 7.

6 In the Pick List Definition dialog box, enter the information for the picklist, and
then click Next.

■ Business Component (pick business component)

■ Sort field in the picklist

■ Name

■ Search Specification (not required)

■ Comment (not required)

7 In the Pick Map dialog box, select the source field in the originating business
component and the target field in the pick business component, and then click
Add.

The selected fields are displayed in the Current Map window.

8 Click Next, verify the information in the Finish Dialog box, and then click Finish.
Version 7.5.3, Rev. A Siebel Tools Reference 637

Pick Applets and Static Picklists

Static Picklists
Static Picklists
A static picklist is a selection list that is invoked from a particular text box or list
column in an applet. A static picklist in a Siebel application is shown in Figure 174.

When the user clicks the drop-down button to the right of the text box, a single-
column picklist appears. The user selects a value from the list by clicking the
desired value. The selected value replaces the previous value in the text box.

NOTE: You cannot delete the lookup value. You can set the picked field (for example,
Lead Quality) back to NULL, unless it is required.

Here is how a static picklist compares with a dynamic pick applet:

■ They are similar in that a static picklist allows the user to select a value to
populate a text box with data.

■ They are different in that a static picklist does not draw values dynamically from
a pick business component. A static picklist is a static list of available selection
values. Configuration of these values is an administration activity that is
performed in the List of Values Administration view in a Siebel application.

Figure 174. Static Picklist in a Siebel Application

Drop-down buttonPicklist
638 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Static Picklists
■ They are different in that a static picklist generally does not invoke a dialog box
with multiple list columns and buttons. All that appears is a simple one-column
pop-up list, without buttons.

NOTE: It is possible to use a pick applet rather than a simple drop-down list to
display a static list of values, but this is not common practice.

■ They are different in that a static picklist does not populate multiple controls in
the originating applet. It populates a single control in the applet, and the
corresponding field in the underlying business component.
Version 7.5.3, Rev. A Siebel Tools Reference 639

Pick Applets and Static Picklists

Static Picklists
Static picklists are implemented using object types illustrated in Figure 175.

Figure 175. Static Picklist Architecture
640 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Static Picklists
Figure 176 shows the object types used in the implementation of a static picklist in
greater detail, and identifies their interrelationships.

The roles of the object definitions in Figure 176 are summarized in the following
list, and discussed in greater detail in the subsequent sections. The static picklist
example refers to the Quality picklist illustrated in Figure 174 on page 638.

■ Originating applet. Contains the control or list column that invokes the picklist.
After the selection of a value from the picklist, the originating control displays a
revised value. In the example, the originating applet is the Opportunity form
applet.

Figure 176. Static Picklist Details
Version 7.5.3, Rev. A Siebel Tools Reference 641

Pick Applets and Static Picklists

Static Picklists
■ Originating business component. Business component of the originating applet.
This business component (in the example, the Opportunity business
component) supplies the data presented in the originating applet (Opportunity
form applet). The selection process in the picklist results in the update of one
field in the current record in this business component.

■ Originating control or originating list column. Appears in the originating applet. It
initiates the picklist when clicked. In the example, this is the Quality control.

■ Originating field. Field in the originating business component that the originating
control represents. Generally, it has one pick map child object definition that
defines the mapping of a field from the PickList Generic business component
into the originating business component. In the example, the originating field is
Quality.

NOTE: If the originating field is a custom field, make sure that it can
accommodate the LOV table values. A field shorter than the LOV table values
will cause truncation when it is displayed or stored in the database.

■ PickList Generic business component. Special-purpose business component for the
list-of-value lists that are used in static picklists. It is administered through the
List of Values view in the System Administration screen in Siebel applications.
To access the List of Values view choose Site Map > Application
Administration >List of Values from the menu bar.

■ Pick List object. The field of the originating control references the Pick List object
definition. The Pick List object definition identifies the pick applet’s business
component, which is always PickList Generic. In the example, the Pick List is
called Picklist Quality.

■ Pick Map object. Child of the originating field. The pick map defines a
correspondence between the Value field in the PickList Generic business
component and the originating field. This correspondence provides the
information required to update the current originating business component
record with information from the PickList Generic business component record
when a selection is made.
642 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Static Picklists
■ Sequence Property. Defines the sequence for udating fields in the current
originating business component record with information from pick business
component record when picking this record. If you do not define sequence
numbers on pick maps, they will e executed in the order in which they were
created.

Configuring Originating Applets
The originating applet (Applet object type) has the following important properties:

■ Business Component. Identifies the originating business component.

The originating control (Control object type) or list column (List Column object
type) has the following important properties:

■ Field. Identifies the originating field in the originating business component.

■ Pick Applet. Leave blank for a static picklist.

■ Runtime. Set to TRUE to indicate that a static picklist is attached, and needs to
be activated in response to a user click on the control or list column.

Configuring Originating Business Components
The originating business component is the business component of the originating
applet. The data value selected from the pick applet updates the value in the
originating field of this business component.

The originating business component has no essential properties for the
configuration of a static picklist. However, the field (child) and pick map
(grandchild) object definitions are significant.

The originating field is specified in the Field property of the originating Control or
List Column object. It has the following important properties:

■ PickList. Identifies the Pick List object definition.

The originating field has one important child object definition, the Pick Map object.
Unlike dynamic picklists, static picklists generally have exactly one Pick Map object
definition. The Pick Map object has the following important properties:

■ Field. Contains the name of the originating (parent) field.
Version 7.5.3, Rev. A Siebel Tools Reference 643

Pick Applets and Static Picklists

Static Picklists
■ Pick List Field. In this property enter “Value.” This setting references the Value
field in the PickList Generic business component.

NOTE: You would use multiple pick maps only if you use a multiple column
selection list.

Configuring the Pick List
The Pick List object is referenced by the originating field and identifies the business
component and field that populate the pick applet. The Pick List object definition
has the following important properties:

■ Business Component. In this property enter the value PickList Generic. This
indicates that the list of values comes from the system tables.

■ Type Field. In this property enter the value Type. This indicates that Type is the
field in the PickList Generic business component to search for types. Each list of
values has a type, which uniquely identifies the list and each value in it.

■ Type Value. In this property enter the relevant type for the list of values. For
example, in the Lead Quality picklist in Figure 174 on page 638, the values that
appear in the list have a Type field value of LEAD_QUALITY in the List of Values
View in Siebel applications.

■ Search Specification. If a Search Specification value is defined for the Pick List, it
overrides the business component’s Search Specification. If a Search
Specification is not defined, the Search Specification for the business component
is used. The default value of the Search Specification is blank.

■ Sort Specification. If a Sort Specification value appears in the Pick List object
definition, this overrides the business component’s sorting with that of the Pick
List. The default value for the Sort Specification property is blank, which tells
the system to use the business component’s sorting.

This feature is useful for non-standard sorting of values in a static picklist that
is based on a list of values in the PickList Generic business component. By
default, a list of values is sorted in ascending order on the Order By field within
a Type. If the Order By values are blank, the entries for the Type are
alphabetically sorted on the Value field, in ascending order. You can alter this
behavior for one static picklist by setting a sort specification in its picklist.
644 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Static Picklists
■ No Insert. Static picklists must have their No Insert property set to TRUE to work
properly. If this property is set to FALSE the application generates the following
error message:

“Unable to create picklist popup applet.”

Creating a Static Picklist Using the Pick List Wizard
You can create a static picklist by using the Pick List Wizard.

To create a static pick list using the Pick List Wizard

1 From the Tools main menu, choose File > New Object.

The New Object Wizards dialog box appears.

NOTE: You can also invoke the Pick List wizard by selecting the field for which
you would like to create a picklist, right-clicking, and choosing Add Pick List.

2 Select the Pick List icon, and click OK.

3 In the Pick List dialog box, enter the following information, and then click Next.

■ Project

■ Business Component (originating business component; the parent business
component of the field that will display the picklist)

■ Field

4 In the Pick List Type dialog box, select Static, and then click Next.

NOTE: Static picklists draw their values from a predefined list of values (LOV).
Dynamic picklists draw their values from a business component. For more
information about dynamic picklists, see “Creating a Picklist Using the Pick List
Wizard” on page 636.

5 In the Pick List Definition dialog box, do one of the following:
Version 7.5.3, Rev. A Siebel Tools Reference 645

Pick Applets and Static Picklists

Static Picklists
■ If you want to create a new picklist, select the Create New Pick List radio
button and then click Next.

The Pick List Definition dialog box appears.

■ If you want to use an existing picklist, select the picklist and associated list
of values you want to use, and then click Next.

The Finish dialog box appears. Go to Step 8.

6 If you are creating a New List of Values, do the following:

a Enter a unique name for the picklist.

b Select the Create New List of Values radio button, and then click Next.

c In the List of Values dialog box, enter a name for the List of Values and the
Values.

For more information about List of Values, see Applications Administration
Guide.

d Click Next.
646 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Static Picklists
7 If you are using an existing List of Values, do the following:

a Enter a unique name for the picklist.

b Select the Use predetermined List of Values radio button.

c Select the List of Values Type, and then click Next.

d In the third Pick List Definition dialog box, enter a search specification, a
comment, and select whether you want the picklist to be bounded.

e Click Next.

8 In the Finish dialog box, review the specifications for the picklist, and then click
Finish.

The PickList Generic Business Component
The PickList Generic business component is a specialized business component
reserved for lists of values for static picklists. The data in the Picklist Generic
business component looks something like Table 41.

Table 41. Example of Data in Picklist Generic Business Component

Type Field Contents Value Field Contents

LEAD_QUALITY Excellent

LEAD_QUALITY Very Good

LEAD_QUALITY High

LEAD_QUALITY Fair

LEAD_QUALITY Poor

PERSON_TITLE Mr.

PERSON_TITLE Ms.

PERSON_TITLE Dr.
Version 7.5.3, Rev. A Siebel Tools Reference 647

Pick Applets and Static Picklists

Static Picklists
Two of the fields in the Picklist Generic business component together define and
group the lists of values, as follows:

■ Type. Each list of values has a type. The type groups together all records that are
in one list of values. For example, a type of LEAD_QUALITY identifies a record
as a member of the Lead Quality list of values, and the type ACCOUNT_TYPE
refers to the Account Type list of values.

■ Value. The Value is the portion of the record that actually appears in the static
picklist. For example, Lead Quality values are Excellent, Very Good, High, Fair,
and Poor.

Hierarchical Picklists
A hierarchical picklist displays values that are constrained by values selected in
another picklist. For example, in the Service Request Detail Applet, the Area and
Subarea fields are both picklists that draw their values from the List of values table
(S_LST_OF_VAL). The items available in the Subarea picklist depend on what the
user has selected in the Area picklist.

The hierarchical relationship between the values is established in the list of values
table. All the values for picklists within the hierarchy are defined using the same
LOV Type. For example, for Area and Subarea, the values are defined using the
SR_AREA LOV Type.

ACCOUNT_TYPE Commercial

ACCOUNT_TYPE Competitor

ACCOUNT_TYPE Customer

Table 41. Example of Data in Picklist Generic Business Component

Type Field Contents Value Field Contents
648 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Static Picklists
The Parent Independent Code column is used to specify a parent value. For example,
consider the following example LOV shown in Table 42.

Assume two picklists are configured to display the values shown in Table 42 in a
hierarchical relationship. One picklist is the parent picklist, and the other picklist is
the child. The parent picklist displays the values {1, 2}. If the user selects 1, the
values displayed in the child picklist are {A, B}; If the user selects 2, the values
displayed in the child picklist are {C, D}.

Implementing a hierarchical list of values also involves configuration work. You
must configure two picklists to support this hierarchical relationship. The parent
picklist must be based on the PickList Hierarchical business component, and the
child picklist must be based on the PickList Hierarchical Sub-Area business
component.

To implement a hierarchical picklist

1 Configure a parent and a child picklist.

a Set the Business Component property of the parent picklist to Picklist
Hierarchical.

b Set the Business Component property of the child picklist to Sub-Area Picklist
Hierarchical.

2 Go to the business component that contains the fields that you want to associate
the hierarchical picklists with.

Table 42. Sample LOVs for Hierarchical Picklist

Type DIsplay Value Language Independent Code Parent LIC

SAMPLE_LOV 1 1

SAMPLE_LOV A A 1

SAMPLE_LOV B B 1

SAMPLE_LOV 2 2

SAMPLE_LOV C C 2

SAMPLE_LOV D D 2
Version 7.5.3, Rev. A Siebel Tools Reference 649

Pick Applets and Static Picklists

Static Picklists
a Set the Picklist property of the parent field to the parent picklist.

b Set the Immediate Post Changes property of the parent field to TRUE.

c Set the PickList property of the child field to the child picklist.

d For the child field, create the following Pick Map objects.

3 Compile changes to a repository file.

4 Add LOV values using the Parent LIC column to designate the parent value.

See table above for a simple example and see the Constrained Lists of Values
section in Applications Administration Guide for detailed discussion.

5 Test.

Pop-Up Visibility Rules
You can limit picklist visibility by organization or responsibility using the following
properties of the Business Component object type:

■ Popup Visibility Auto All. Valid values are TRUE, FALSE, and blank.

■ Popup Visibility Type. Valid values are:

■ All

■ Personal

■ Sales Rep

■ Manager

■ Organization

■ Sub-Organization

Field PickList Field Constrain

[name of parent field] Parent TRUE

[name of child field name] Value
650 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Working With Lists of Values
■ Group

■ Catalog

If Popup Visibility Auto All is set to TRUE and the user has access to any “All” views,
pop-up visibility will be All. If the user does not have access to any “All” views, pop-
up visibility will be the value of Popup Visibility Type.

If Popup Visibility Auto All is set to TRUE, the user does not have access to any “All”
views, and Popup Visibility Type is blank, pop-up visibility will default to the most
restrictive value defined for the business component, for example Sales Rep.

If Popup Visibility Auto All is blank, pop-up visibility will be the value for Popup
Visibility Type.

If both properties are blank, pop-up visibility will default to the most restrictive
value defined for the business component.

For more information on visibility rules, see Security Guide for Siebel eBusiness
Applications.

Working With Lists of Values
After configuring a new picklist, you may need to add a new list of values to display
in the picklist. For example, if you are customizing an applet and want to provide a
picklist field that contains a list of values that is not already available in your Siebel
application, you can create a new list of values.

Every static picklist includes a type property as part of its definition in Siebel Tools.
For example the picklist that allows a user to select the personal title for a contact
or an employee has a Type Value property of MR_MS, which in turn is associated
with a list of values that includes Miss, Ms, Mrs., Mr., and Dr. To create a new list
of values for a custom picklist, you first create a record that defines the new list-of-
values type, in which the type corresponds to the type property of a picklist object.
You then add records to define each value that will be available for that type.

NOTE: If you want to see the additions or changes to a list of values in real time, you
need to clear the cache.
Version 7.5.3, Rev. A Siebel Tools Reference 651

Pick Applets and Static Picklists

Working With Lists of Values
You can create a new lists of values using Siebel Tools or using the List of Values
view in the Siebel Web client. For information about working with existing lists of
values, see Applications Administration Guide.

To create a new list of values using Siebel Tools

1 Choose Screens > System Administration > Lists of Values.

Lists of values are displayed in the Object List Editor.

2 Enter new records for the List of Values.

Some of the fields are described in the table below. For a complete description
of LOV fields, see Applications Administration Guide.

For information about fields used for multilingual lists of values, such as
Translate, Multilingual, and Language-Independent Code, see “Multilingual Lists
of Values” on page 654 and “Administering the Multilingual List of Values” on
page 684.

Field Description

Type The name of the list of values type, for
example REAL_ESTATE_TYPE. This value
is used to group all other values for this
type. The value defined in this field must
match the value defined in the Type Value
property of the picklist that is configured to
display these values.

Display Value Value displayed in the picklist.

Language Independent Code Typically the same value as the American
English version of the display value. See
“About the Language Independent Code”
on page 655.

Language Name Name of the language for the Display
Value.
652 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Working With Lists of Values
To create a new list-of-values type using the List of Values view in the Web client

1 From the application-level menu, choose View > Site Map > Application
Administration > List of Values.

2 Click New to create a new record, and then enter LOV_TYPE in the Type field.

This type is used specifically when you want to define a new list of values.

Enter the text specified as the type property in Siebel Tools. For example, to
create a new list of values that will contain real estate types, the type property
might be REAL_ESTATE_TYPE. The text you enter here will become the text
used for this list-of-values type.

3 In both the Display Value field and the Language Independent Code field, enter
the name of the list-of-values type.

The Display Value is the value displayed to the user in the picklist.

The Language-Independent Code is typically the American English version of
the display value. For more information about the role of Language Independent
Code in a multi-lingual list of values, see “Multilingual Lists of Values” on
page 654 and “Administering the Multilingual List of Values” on page 684.

4 Enter a value in the Language Name field.

After you enter this value, the record has all required information. This list of
values has now been created as a new list-of-values type.

Add the values you want this list to contain by continuing with the next steps.

5 Click the New button to create another record and enter REAL_ESTATE_TYPE in
the Type field.

This will be the first value for the list-of-values type REAL_ESTATE_TYPE.

6 In the Display Value field and the Language Independent Code field, enter a
value that you want to display in the REAL_ESTATE_TYPE list.

For example, you might enter Apartment.

7 Enter a value in the Language Name field.
Version 7.5.3, Rev. A Siebel Tools Reference 653

Pick Applets and Static Picklists

Multilingual Lists of Values
8 If applicable, in the Order field, you can enter a number to indicate the
numerical order in which the value appears in a drop-down list.

For example, if you plan to create REAL_ESTATE_TYPE records for Apartment,
House, Condo, and Commercial, you might want the order numbers to be 1 for
Apartment, 2 for House, 3 for Condo, and 4 for Commercial.

9 If appropriate, fill in the remaining fields in the record.

For a complete description of these fields, see Applications Administration
Guide.

10 To add another value to the list, repeat Step 5 through Step 9.

Multilingual Lists of Values
You can configure your Siebel application to display multilingual lists of values
(MLOV) in static picklists. This allows you to display values in the active language
of the user. It also allows the values selected by a user in one language to be
retrieved by users working in other languages.

See Global Deployment Guide for more information about the user’s active
language.

NOTE: To enable MLOV, the static picklist must be bounded and must not be a
hierarchical picklist.
654 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
An example of a multilingual picklist appears in Figure 177. When the user clicks
the drop-down arrow, a list appears with values displayed in the user’s active
language that the user can select to populate the field.

About the Language Independent Code
The LOV table contains a Display Value column and a Language Independent Code
column. Both monolingual and multilingual lists of values display values from
Display Value column to the user. However, after the user selects a value in a
picklist, the actual value stored in the database is different for monolingual and
multilingual lists of values.

■ A monolingual picklist stores the Display Value.

■ A multilingual picklist stores the Language Independent Code.

Figure 177. Static Picklist

Drop-down arrowStatic picklist
Version 7.5.3, Rev. A Siebel Tools Reference 655

Pick Applets and Static Picklists

Multilingual Lists of Values
For example consider the values in Table 43. A multilingual picklist would display
the Display Value (Mr., Señor, or Herr) depending on the active language of the user,
but it would store the value Mr. in the database, because that is the value defined
in the Language Independent Code column.

NOTE: Generally the language-independent code value is the same as the American-
English version of a particular selection value.

Storing the value from LIC column rather than the Display Value column allows the
data to be stored in a form that users working in other languages are able to retrieve
and allows the roll up of data for management reports, regardless of the language
of the users who enter the data.

CAUTION: The length of the language-independent code (the value stored in the
database) must be equal to the longest display value for the MLOV. If it is not, the
display value will be truncated. If the standard column does not meet your
requirements and you are using a custom extension column, the column must be
VARCHAR and have a maximum length (width) of 30.

Table 43. Example LIC

Display Value Language Independent Code

Mr. Mr.

Señor Mr.

Herr Mr.
656 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
Enabling the Multilingual List of Values
To set up an MLOV operation, you must modify the LOV configuration in Siebel
Tools, as well as perform administration tasks. For MLOV to be enabled the
following conditions must be met:

■ The column of the field using the picklist has the Translation Table property set
to S_LST_OF_VAL

■ The picklist must be bounded (Lov Bounded Property is set to True)

■ The picklist must use the same LOV Type as specified in the Lov Type property
of the column.

NOTE: A picklist’s LOV Type should always match the LOV Type of the underlying
column (the column on which the picklist’s field is based).

You enable MLOVs by completing the following tasks.

1 “Identifying Which Columns to Enable” on page 658.

a “Making Sure the LOV Type Is Translatable” on page 659.

b “Determining If the Picklist Is Bounded” on page 660.

2 “Configuring the Multilingual List of Values in Siebel Tools” on page 663.

3 “Adding Translated Display Values in Application Administration” on page 664.

4 “Upgrading Existing Data Using the MLOV Upgrade Utility” on page 665.

5 “Recompiling and Deploying” on page 673.

These steps are discussed in the following sections.

NOTE: Configuration of MLOVs can impact performance, especially when the field
on which the picklist is based is used as part of a search or sort. Performance
characteristics should be considered and verified in conjunction with configuration
of MLOVs.
Version 7.5.3, Rev. A Siebel Tools Reference 657

Pick Applets and Static Picklists

Multilingual Lists of Values
Identifying Which Columns to Enable
Not every list of values type can be enabled as multilingual. You need to determine
which columns you can enable based on the LOV type. LOV types must meet the
following conditions:

■ The column must be marked as translatable. See “Making Sure the LOV Type Is
Translatable” on page 659.

■ The picklist must be bounded. See “Determining If the Picklist Is Bounded” on
page 660.

■ The column must not be one of the “Special Cases.” See “Special Cases” on
page 662.

NOTE: Do not set up a column for a MLOV unless you are sure that you intend to use
that column for your implementation.

Columns storing data that is read by server programs, such as Assignment
Manager, Siebel Remote, Siebel Anywhere, or Workflow Manager, require additional
configuration. See the following for more information:

■ “Configuring Siebel Business Process Designer to Use MLOV-Enabled Fields” on
page 676

■ “Configuring Siebel Assignment Manager to Use MLOV-Enabled Fields” on
page 681

■ “Configuring Siebel Anywhere for Use with MLOV-Enabled Fields” on page 683

Configuring MLOVs may also include changes to the Siebel Visibility Rules. Any
reference in a Visibility Rule to an LOV entry for a type you plan to configure for
multilingual support must be changed from the Display Value to the language-
independent Code. Check the visibility rules for references to any LOV entries as
part of your configuration of MLOVs.

NOTE: Custom extension columns can always be MLOV enabled.
658 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
To check visibility rules

1 In Siebel Tools, navigate to the Dock Object Visibility Rules view.

Use the flat screen view to simplify searching.

2 Go to the SQL Statement field and search for literals across all rows that are not
null.

3 Examine the results for values that need to be translated.

NOTE: Changing visibility rules requires the assistance of Siebel Expert Services.

Making Sure the LOV Type Is Translatable
A translatable type is a list of values type that can be modified, or translated into
additional languages, without affecting the functionality of your application. This is
indicated in the Translate setting in the List of Values Administration view in Siebel
eBusiness Applications.

If an item is translatable, it can be modified without affecting Siebel eBusiness
Applications functionality.

To determine if an LOV type is translatable

1 Connect to the server database using Siebel eBusiness Applications.

2 From the application-level menu, choose View > Site Map > Application
Administration >List of Values.

3 For the LOV type that you are interested in, look in the Translate list column for
a check mark.

If you add a LOV type, set this list column according to your configuration. Do not
change any existing settings shipped with Siebel eBusiness Applications, because
these are set to reflect the Siebel eBusiness Applications configuration. Changing
this setting will not allow you to enable an LOV type.
Version 7.5.3, Rev. A Siebel Tools Reference 659

Pick Applets and Static Picklists

Multilingual Lists of Values
Determining If the Picklist Is Bounded
A bounded picklist is a picklist where users must choose from the existing choices
and cannot enter their own data. An unbounded picklist is a picklist where users
may either enter their own data or choose from the existing choices. Only bounded
picklists can be configured to be multilingual.

You must verify that the picklist is bounded and that the underlying column has the
Lov Bounded property set to True.

To determine if a picklist is bounded from the Picklists list

1 Connect to the server database using Siebel Tools.

2 Select the Flat tab in the Object Explorer.

3 Select the Pick List object type.

4 Query the Type Value property for the list of values type you are interested in.

If the Bounded property is checked, then that item is a bounded picklist.

To determine if a picklist is bounded from the Columns list

1 Connect to the server database using Siebel Tools.

2 Select the Flat tab in the Object Explorer.

3 Select the Column object type.

4 Query the LOV Type property for the list of values type you are interested in.

If the LOV Bounded property has a check mark, then the picklist for that target
column is bounded.

NOTE: The Translate property of the column is only for internal use, and has
nothing to do with the configuration of MLOVs.

All columns for a particular LOV type must be bounded. If any of the columns for
the LOV type is not bounded, then none of the columns can be set to multilingual
for that LOV type.
660 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
For example, Table 44 shows the columns for the LOV type AVAILABILITY_STATUS.
Although three of the columns are LOV bounded, you would not be able to enable
these columns as multilingual, because one column (NEXT_AVAIL_CD) is
Unbounded. If you were to run the MLOV Upgrade Utility, you would receive an
error message that says the columns are inconsistently bounded. See “About the
MLOV Upgrade Log File” on page 671 for more information.

The Lov Bounded and Lov Type properties in the column object are read-only for
standard columns in Siebel eBusiness Applications, but are editable for columns
that have been added using the Database Extension Designer. If you add columns,
you must set both the Lov Bounded and the Lov Type properties for each column
individually, consistent with your configuration.

NOTE: You need to modify the Lov bounded property for standard Siebel columns,
you must contact Siebel Expert Services to determine the feasibility of this change.

Table 44. Example of Inconsistently Bounded Columns

Name LOV Type LOV Bounded

CURR_AVAIL_CD AVAILABILITY_STATUS Y

NEXT_AVAIL_CD AVAILABILITY_STATUS Y

CURR_AVAIL_CD AVAILABILITY_STATUS Y

NEXT_AVAIL_CD AVAILABILITY_STATUS N
Version 7.5.3, Rev. A Siebel Tools Reference 661

Pick Applets and Static Picklists

Multilingual Lists of Values
Special Cases
There are special cases that should be considered when determining whether an
LOV TYPE can be enabled for multilingual display. The columns listed in Table 45
cannot be MLOV enabled.

Table 45. Columns That Cannot Be MLOV Enabled

Table Column

S_AGREE_POSTN APPR_ROLE_CD

S_CONTACT PREF_LANG_I

S_CONTACT_X ATTRIB_48

S_CS_RUN STATUS_CD

S_DOC_ORDER TAX_EXEMPT_REASON

S_ONL_LAYOUT CONTROL_TYPE_CD

S_ORG_EXT DIVN_CD

S_ORG_EXT DIVN_TYPE_CD

S_ORG_EXT_XM NAME

S_PRI_LST_ITEM PRI_METH_CD

S_PROD_INT_CRSE CRSE_TYPE_CD

S_PROD_INT_X ATTRIB_50

S_PROD_INT_X ATTRIB_51

S_PROD_INT_X ATTRIB_53

S_PROJ_ORG PROJ_ROLE_CD

S_PROJITEM PROD_AREA_CD

S_PROJITEM STATUS_CD

S_SRC SRC_CD

S_SRC STATUS_CD
662 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
Configuring the Multilingual List of Values in Siebel Tools
Once you have determined which columns to enable as multilingual, you configure
those columns in Siebel Tools.

List of values types are enabled for multilingual support on a target-column basis.
Because a list of values type can be used for different target columns, the
Multilingual property must be implemented for all target columns that use the same
type.

The following procedure describes the process for manually enabling a column. The
list of values type ACCOUNT_TYPE is used as an example.

To enable a column for multilingual storage and display

1 Open Siebel Tools, and connect to the server database.

2 Select the Flat tab in the Object Explorer.

3 Select the Column object type.

4 Choose Query > New Query, enter the name of the desired list of values type in
the LOV Type property, and then press ENTER to execute the query.

In this example, you would search for an LOV Type of ACCOUNT_TYPE. The
query shows you the columns that use that LOV type, in this case there is only
one column named OU_TYPE_CD.

S_SRC_EVT FORMAT_CD

S_SRCH_PROP NAME

Table 45. Columns That Cannot Be MLOV Enabled

Table Column
Version 7.5.3, Rev. A Siebel Tools Reference 663

Pick Applets and Static Picklists

Multilingual Lists of Values
5 Check that all the columns using that type have a check mark in the LOV
Bounded property.

6 Change the Translation Table Name to S_LST_OF_VAL for all the columns
returned by the query.

NOTE: Changing the properties of object definitions directly on the server is a
nonstandard practice that is used only for configuration of columns for multilingual
storage and display. Under all other circumstances, the correct and safe way to
change object definition properties is to check out projects to the local repository,
make the desired changes, and check them back in to the server. See Chapter 18,
“Application Development Projects,” for more information about checking in and
checking out projects.

Adding Translated Display Values in Application Administration
Once you have configured a column to be multilingual, display values must be
defined for each language that will be supported.

To add translated display values

1 Using the Siebel Web client, connect to the server database.

2 From the application-level menu, choose Site Map > Application
Administration > List of Values.

3 Find the list of values type for the enabled target columns.

4 For every language that will be supported, create a new record for each display
value for that list of values type.

For instance, if you plan to support German and French in addition to the
existing English display values, create two new records for each display value—
one in German and one in French.

5 For each new record, the language-independent code must be the same as for
the original record, but the entries in the Language and Display Value list
columns are set differently, as appropriate.

For more information on adding and maintaining translated values, refer to
“Administering the Multilingual List of Values” on page 684.
664 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
Upgrading Existing Data Using the MLOV Upgrade Utility
After you have configured your application for use with MLOVs and added new
display values for all the languages you intend to support, you must upgrade your
existing LOV data. You do this using the MLOV Upgrade Utility.

NOTE: Even if you have just completed a new installation of your Siebel application,
you must perform this data upgrade.

You run the MLOV Upgrade Utility in two modes.

■ Validation. Running the utility in this mode validates the current repository for
data inconsistencies. If the utility finds inconsistencies, the program stops and
writes the errors to a log file.

■ Translation. Running the utility in this mode:

■ Changes data in target columns that are configured for MLOVs from the
display value to the language-independent code.

■ When you set the target column for an LOV Type to multilingual, the utility
sets the MULTI-LINGUAL flag in the LOV table (S_LST_OF_VAL) to make
sure of consistency between the multilingual state of the target column and
its corresponding List of Values in the LOV table (S_LST_OF_VAL).

■ Verifies that all target columns using the desired MLOV type have been
enabled.

NOTE: Target columns are columns that store either the display value or the
language-independent code as part of user data.

The MLOV Upgrade Utility upgrades target columns that are marked as bounded
and updates list of values types that are not already marked as multilingual. You
can run the utility as often as you need to; only data that has not already been
upgraded will be affected.

NOTE: The upgrade process run by MLOV Upgrade Utility is not reversible.
Version 7.5.3, Rev. A Siebel Tools Reference 665

Pick Applets and Static Picklists

Multilingual Lists of Values
Running the MLOV Upgrade Utility
You run the MLOV Upgrade Utility using the Siebel Software Configuration Utility.
The Siebel Software Configuration Utility is a wizard that will help you define the
required parameters for running the MLOV Upgrade Utility. You run the utility in
validation mode first, fix errors as they appear, and then run it in translate mode,
which will enable your existing data for MLOVs.

NOTE: Before running the MLOV upgrade, drop all indexes from the columns that
you are upgrading. Once the MLOV upgrade is complete, recreate the indexes.

To run the MLOV Upgrade Utility in a Windows Environment

1 Start the Siebel Software Configuration Utility by choosing Start > Siebel
Enterprise Server >Configure DB Server.

NOTE: You can also start the Siebel Software Configuration Utility from the
DOS Prompt command line. See “To start the MLOV Upgrade Utility from the
DOS Prompt” on page 668.

The Siebel Software Configuration Utility appears.

2 Enter the required parameters to run the MLOV Upgrade Utility in validation
Mode.

See Table 46 for a list of the wizard dialog boxes, options, and required values.

When you run the MLOV Upgrade Utility, it checks for errors and writes them to
a log file. The default name of the log file is mlovupgd_verify.log and the
default location is the siebsrvr\LOG directory.

3 Review the log file and resolve errors as necessary.

See “About the MLOV Upgrade Log File” on page 671 for more information.

4 If an error is detected, resume running MLOV Upgrade Utility in validation mode
by using the DOS Prompt to navigate to the BIN directory of your Siebel Server
root directory (SIEBEL_ROOT\BIN), and then at the command prompt typing:
666 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
siebupg /m master_mlov_verify.ucf

The MLOV Upgrade Utility resumes running.

5 Repeat Step 1 through Step 4 until no errors are detected.

6 Start the Siebel Software Utility following the steps described in Step 1.

7 Enter the required parameters to run the MLOV Upgrade Utility in translation
mode.

See Table 46 on page 670 for a list of the wizard dialog boxes, options, and
required values.

The MLOV Upgrade Utility enables your existing data for MLOV. For columns
configured for MLOVs, the MLOV Upgrade Utility finds LOV values in user data
that are not in S_LST_OF_VAL and inserts them into S_LST_OF_VAL as inactive.
It changes the display value of bounded columns to the language independent
code and sets the value for the Multilingual attribute to true.

To run the MLOV Upgrade Utility in a UNIX Environment

1 Start the Siebel Software Configuration Utility doing the following:

❏ Navigate to the Siebel root directory and type source siebenv.csh

❏ Type setenv LANGUAGE DISPLAY_LANGUAGE (where DISPLAY_LANGUAGE
represents the three letter code for the display language; for example
ENU, FRA, DEU, and so on).

❏ Type setenv SIEBEL_ROOT SIEBEL_ROOT (where SIEBEL_ROOT is the
name of the directory where you installed the Siebel Server).

❏ Type the command dbsrvr_config.ksh

The Siebel Software Configuration Utility appears.
Version 7.5.3, Rev. A Siebel Tools Reference 667

Pick Applets and Static Picklists

Multilingual Lists of Values
2 Enter the required parameters to run the MLOV Upgrade Utility in validation
Mode.

See Table 46 for a list of the wizard dialog boxes, options, and required values.

When you run the MLOV Upgrade Utility, it checks for errors and writes them to
a log file. The default name of the log file is mlovupgd_verify.log and the
default location is the siebsrvr\LOG directory.

3 Review the log file and resolve errors as necessary.

See “About the MLOV Upgrade Log File” on page 671 for more information.

4 If an error is detected, resume running MLOV Upgrade Utility in validation mode
by navigating to the bin directory of your Siebel Server root directory
(SIEBEL_ROOT/bin), and then typing the following command:

svrupgwiz /m master_mlov_verify.ucf

The MLOV Upgrade Utility resumes running.

5 Repeat Step 1 through Step 4 until no errors are detected.

6 Start the Siebel Software Utility following the steps described in Step 1.

7 Enter the required parameters to run the MLOV Upgrade Utility in translation
mode.

See Table 46 on page 670 for a list of the wizard dialog boxes, options, and
required values.

The MLOV Upgrade Utility enables your existing data for MLOV. For columns
configured for MLOVs, the MLOV Upgrade Utility finds LOV values in user data
that are not in S_LST_OF_VAL and inserts them into S_LST_OF_VAL as inactive.
It changes the display value of bounded columns to the language independent
code and sets the value for the Multilingual attribute to true.

To start the MLOV Upgrade Utility from the DOS Prompt

1 From the DOS Prompt, navigate to the \BIN directory of your Siebel Server root
directory.

For example: cd siebsrv/BIN
668 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
2 Run the MLOV Upgrade Utility in validation mode by typing the following at the
command prompt:

ssincfgw -1 language_code -v Y

where language_code is the three-letter code (all capitals) for the language in
which you want to display the GUI.

For example, to run the MLOV Upgrade Utility in English, you would type:

ssincfgw -1 ENU -v Y

The Open dialog box appears.

3 Select dbsrvr.scm and then click Open.

The Siebel Software Configuration Utility -DB Server Configuration dialog box
appears.

Resume Running MLOV Upgrade Utility
In case of an error, you can resume running the MLOV Upgrade Utility in validation
mode or translation mode.

To resume the MLOV Upgrade Utility in a WIndows environment

1 At the DOS Prompt, navigate to the BIN directory of your Siebel Server root
directory (SIEBEL_ROOT\BIN)

2 At the command prompt do one of the following:

■ To resume running in validation mode, type siebupg /m
master_mlov_verify.ucf

■ To resume running in translation mode, type siebupg /m
master_mlov_translate.ucf

To resume the MLOV Upgrade Utility in a UNIX Environment

1 Navigate to the bin directory of your Siebel Server root directory
(SIEBEL_ROOT/bin).

2 At the prompt, do one of the following:
Version 7.5.3, Rev. A Siebel Tools Reference 669

Pick Applets and Static Picklists

Multilingual Lists of Values
■ To resume running in validation mode, type srvrupgwiz /m
master_mlov_verify.ucf

■ To resume running in translate mode, type srvrupgwiz /m
master_mlov_translate.ucf

MLOV Upgrade Utility Parameters
To run the MLOV Upgrade Utility, complete the dialog boxes listed in Table 46 and
enter or select the values as you go.

Table 46. MLOV Upgrade Utility

In This Dialog Box Enter Or Select The Following

Siebel Enterprise Parameters: Gateway
Server Address

Gateway Server Address

Enterprise Server Address

Installation and Configuration Parameters:
Siebel Server Directory

Siebel Server Directory

Installation and Configuration Parameters:
Siebel Database Server Directory

Database Server Directory

Database Server Options: Siebel Database
Operation

Run Database Utilities

Database Utilities: Database Utility Selection Multi-lingual List of Values Conversion

MLOV Parameters: MLOV Operation Validate or Translate, depending on the
mode you want to run.

Installation and Configuration Parameters:
Language Selection

Base language of your Siebel application.

Installation and Configuration Parameters:
RDBMS Platform

RDBMS Platform

Installation and Configuration Parameters:
OBDC Data Source Name

OBDC Data Source Name

Installation and Configuration Parameters:
Database User Name

Database User Name

Database Password

Installation and Configuration Parameters:
Table Owner

Table Owner Name

Table Owner Password
670 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
About the MLOV Upgrade Log File
After the utility runs in either validation mode or translation mode, it writes any
errors to a log file. The default names of the log files are mlovupgd_verify.log
and mlovupgd_translate.log. The files are located in the siebsrvr/LOG
directory.

■ LOVs Inconsistently Bounded or Translation Table Property Not Set to S_LST_VAL. The
message that appears in the log file for LOVs that have the bounded property on
columns where they are used set inconsistently (one bounded and one not
bounded) or LOV domains that do not have the Translation Table property set to
S_LST_VAL is the following:

The following Validation checks for:

1- Two or more columns defined in the same LOV domain are
inconsistently bounded (one bounded, one not)

2- Two or more columns are defined in the same LOV domain and
at least one of them does not have a Translation Table Name of
S_LST_OF_VAL.

Any errors of these types are listed in the log file. The information listed includes
the LOV Type, Column, and Table.

To fix the LOV types that appear in the log file

1 Open Siebel Tools, and connect to the server database.

2 Select the Flat tab in the Object Explorer.

3 Select the Column object type.

4 Choose Query > New Query, and then enter the name of the list of values type
that has a problem in the LOV Type property.

MLOV Parameters: Repository Name Repository Name

Configuration Parameter Review Review the parameters you have defined
and then click Finish

Table 46. MLOV Upgrade Utility

In This Dialog Box Enter Or Select The Following
Version 7.5.3, Rev. A Siebel Tools Reference 671

Pick Applets and Static Picklists

Multilingual Lists of Values
5 Press Enter to execute the query.

6 For all the columns displayed, make sure all of them are LOV BOUNDED = Y.

7 Set the Translation Table Name for all the columns displayed to S_LST_OF_VAL.

8 Run MLOV Upgrade Utility in validation mode to make sure that there are no
more errors.

■ LOV Domains Not in the S_LST_OF_VAL Table. The message that appears in the log
file for LOV domains that are not represented in S_LST_OF_VAL table is the
following:

The following Validation checks for:

LOV domains in the repository that are not represented in
S_LST_OF_VAL

This message means that an LOV domain is in the repository, but is not
represented as a value in the list of values table, with a list of values type of
LOV_TYPE. This can happen when you delete a record in the list of values table,
instead of deactivating it, or when you enter an incorrect entry in the LOV Type
property for a column added using a database extension.

For more information, refer to “Deleting Compared to Deactivating Records” on
page 685.

To fix this problem, add the LOV domain in the List of Values Administration
view and specify LOV_TYPE in the Type list column, or correct the entry in the
LOV Type property in the repository. See “Adding Records” on page 685 for more
information.

For any values found in the target tables without matching records in the list of
values table, the script will create a matching record in the list of values table.
These records are marked as inactive. Remember to add language-specific
entries for these base records, so that they display in the active language.
672 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
Recompiling and Deploying
Every time you change the configuration to enable another column to be
multilingual, you must compile a new .srf file based on the newly configured
repository. Only the Newtable project needs to be compiled again. Additionally, you
need to deploy the changes to users so that users can see the configured picklists in
the desired language.

Integration Considerations
Enabling MLOVs does not affect just the Siebel eBusiness Applications client and
the relevant target tables. Other features in your Siebel eBusiness Applications
implementation must also consider this new configuration.

Enterprise Integration Manager
With Enterprise Integration Manager (EIM), you can import and export data. You
can import data into both the list of values table and other tables in Siebel eBusiness
Applications.

When importing data into the list of values table, the source table must have a
language code and a name-value pair. This pair consists of the Display Value and
the Language Independent Code.

When importing data into any other table, you must provide a language code for
the /LANGUAGE command-line parameter for EIM. The source table must include
the display value for multilingual columns in the language specified in the
parameter. EIM validates imported data against list of values entries. The incoming
data will be converted to associated language-independent codes during the import.

List of values entries that are marked inactive are ignored during the validation of
multilingual LOV values during import by EIM.

When exporting data, you must specify a language code for the /LANGUAGE
parameter, so that EIM can correctly translate the language-independent code in the
table to the display value during the export.

For more information about command-line parameters for EIM, and information on
EIM in general, see Siebel Enterprise Integration Manager Administration Guide.
Version 7.5.3, Rev. A Siebel Tools Reference 673

Pick Applets and Static Picklists

Multilingual Lists of Values
Configuration Considerations
MLOVs are implemented below the business component level, so there are no
special configuration considerations, other than what is described here. Fields that
point to MLOVs with enabled target columns will automatically return display
values that match the client language setting.

Since MLOVs are configured on a column basis, target columns that are not
configured to be multilingual will behave as before; that is, target columns will store
display values instead of language-independent codes.

For display, the underlying language-independent code is converted to its
corresponding display value using a Siebel eBusiness Applications lookup. For
searching and sorting, however, a database join is performed by your Siebel
application to the list of values table. Therefore, when configuring the application,
make sure that any configuration directly involving the list of values table is
compatible with your Siebel application MLOV functionality.

It is only possible to have one multilingual picklist type running off each column.
This means that for a table that has more than one business component mapped to
it and hence several fields mapped to the same column, it is not possible to have a
multilingual LOV attached to only one of the fields. This is checked by the MLOV
upgrade utility running in validation mode. See “Upgrading Existing Data Using the
MLOV Upgrade Utility” on page 665.
674 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
MLOV Configuration and Coding Guidelines
The following guidelines should be followed when MLOVs are enabled in your
environment.

■ LookupName and LookUpValue functions. These functions can only be used in
calculated fields or search specification expressions. They cannot be used with
Siebel scripting.

■ Pre/Post default values for fields with LOV picklists. Always use the LookupValue
function with Expr: in front of it. The first argument is the LOV Type and the
second is the LIC. The function returns the language-specific Display Value. For
example:

Expr: “LookupValue (““FS_PROD_ALLOC_RULES””, ““Default””)”

■ Dynamic drilldowns and toggle applets. These are usually based on a field that has
a LOV value. For example, a dynamic drilldown might navigate the user to a
Credit Card screen if the account type is equal to Credit Card or to a Savings
screen if the account type is equal to Savings. Do not hard-code the drilldown or
toggle conditions. Rather, use the LookupValue function (as described in the
previous bullet).

■ Search specs for business components, links, applets, and picklists. Always use the
LookupValue function. For example:

[Invoice Code] = LookupValue('FS_INVOICE_CODE', 'Auction')

■ VB functionality. VB does not offer a function to retrieve the language-specific
Display Value. However, the Display Value must never be hard-coded; you
should use the language-independent code instead. To write VB code using the
language-independent code only, you must create calculated fields that hold the
language-specific translation for a language-independent code.

■ Language and ResourceLanguage parameters. Set these parameters only in the
configuration file, for example, Language =<lang>, ResourceLanguage =
ENU. If you do not set these parameters only in the configuration file, for
example, when /L=<language>and ResourceLanguage = ENU, you will
intermittently receive error 2009.
Version 7.5.3, Rev. A Siebel Tools Reference 675

Pick Applets and Static Picklists

Multilingual Lists of Values
Querying and Multilingual Lists of Values
To run queries against fields that are controlled by MLOVs, use the Display Value
for the search specification; do not use the Language Independent Code for
querying. Querying will translate the search specification to the appropriate
Language Independent Code to perform the query.

The Display Value used as the search specification should correspond to the
Language being used by the application performing the query. If the query is being
run through one of the Siebel interfaces (such as CORBA or COM), then the
Language used for this translation is specified in the .cfg file used with the interface.

There is no difference to the user in the apparent functionality of the product when
MLOVs are on or off. Internally, searches are applied using a function applied to the
language-independent code. You can also do this with predefined queries and
search expressions in the repository by using the same function (LookupValue (LOV
Type, Language-Independent Code)). For more information about the LookupValue
function and how it is used with MLOVs, see “MLOV Configuration and Coding
Guidelines” on page 675.

For more information about Query Operators and Expressions, see Siebel
Developer’s Reference.

Configuring Siebel Business Process Designer to Use MLOV-Enabled
Fields

Additional configuration is required to enable the Siebel Business Process Designer
to use MLOV-enabled fields. Siebel Business Process Designer compares values in
target tables with values in the Business Process administration tables to determine
whether a particular condition is true. For columns enabled for MLOVs, the value
stored in the target table is the Language-Independent Code rather than the Display
Value. However, the value in the Business Process Administration table is the
Display Value. Siebel Business Process Designer cannot evaluate a condition by
comparing the Language-Independent Code to the Display Value.

To enable Siebel Business Process Designer to work with MLOV-enabled columns,
you must configure Workflow entities so that they compare the language-
independent code in the target table with the language-independent code in the
Business Process Designer administration table. You must do this for the following
entities:
676 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
■ Policy Conditions

■ Action Arguments

Policy Conditions
Before you enable Policy Conditions, you must:

■ Determine all the business component fields that are enabled for MLOVs.

■ Of the fields that are MLOV-enabled, identify which ones are referenced by
Policy conditions.

For each of the fields that reference a Workflow Policy condition, you must complete
the following tasks:

■ Create a new picklist to display LIC values.

■ Create a new applet to display LIC values.

■ Configure the Workflow Policy Column to use the new picklist and applet.

■ Repick the values for existing workflow policies.

To create a LIC picklist for a Workflow Policy Column

1 In Siebel Tools, navigate to the Workflow Policy Column object type that you
want to enable to use with MLOVs.

2 Find the Workflow Policy Column that references the MLOV enabled field.

3 In the PickList property field, click the picklist name.

The Pick Lists window appears in the Object List Editor.

4 Create a new picklist by copying the existing one and append LIC to the name.

For example, Picklist Account Status LIC.

5 Verify that the Sort Specification property of the picklist is set to "Name".

To create a new LIC applet for a Workflow Policy Column

1 Navigate back to the Workflow Policy Column selected in the previous
procedure.
Version 7.5.3, Rev. A Siebel Tools Reference 677

Pick Applets and Static Picklists

Multilingual Lists of Values
2 In the Applet property field, double-click the name of the associated applet.

The Applet window appears in the Object List Editor.

3 Create a new applet by copying the existing one and append LIC to the name.

4 Add a new list column to the applet for the language-independent Code.

a In the Object List Editor, select List object type and then select the List
Column object type.

b In the List Column window, create a new record by copying an existing one,
and then set the Field property to “Name.”

To configure the Workflow Policy Column

1 Navigate back to the Workflow Policy Column selected in the previous section.

2 In the PickList property field, select the new picklist created in Step 4 of the
procedure “To create a LIC picklist for a Workflow Policy Column” on page 677.

3 In the Source Field property, change the value from Value to Name.

4 Compile changes.

To repick the Values

1 Log on using a client connected to the modified repository file.

2 From the application level menu, choose View > Site Map > Business Process
Administration > Workflow Policies.

3 Repick the Values by selecting the conditions and reselecting the appropriate
display values.

This will store the language-independent code.

Action Arguments
Before you enable Action Arguments, you must:

■ Determine all the business component fields that are enabled for MLOVs.

■ Of the fields that are MLOV enabled, identify which ones are referenced by
Policy conditions.
678 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
For each of the fields that reference a Action Argument, you must complete the
following tasks:

■ Create a new picklist to display LIC values.

■ Create a new applet to display LIC values.

■ Configure the Action Arguments to use the new picklist and applet.

■ Repick the values for the existing work flow policies.

To create a LIC picklist for a Workflow Policy Program Argument

1 In Siebel Tools, navigate to the Workflow Policy Program object type and the
Workflow Policy Program that contains the argument that you want to enable
for use with MLOVs.

2 Select the Workflow Policy Program Argument object type (child of Workflow
Policy Program) and then select the Argument you want to enable for use with
MLOVs.

3 In the PickList property field, click the picklist name.

The PickLists window appears in the Object List Editor.

4 Create a new picklist by copying the existing one and append LIC to the name.

To create a new LIC applet for a Workflow Policy Program Argument

1 Navigate back to the Workflow Policy Program Argument selected in the
previous procedure.

2 In the Applet property field, double-click the name of the associated applet.

If no applet exists, you must create one.

The Applet window appears in the Object List Editor.

3 Create a new applet by copying the existing one and append LIC to the name.

4 Add a new list column to the applet for the language-independent code.

a In the Object List Editor, select List object type and then select the List
Column object type.
Version 7.5.3, Rev. A Siebel Tools Reference 679

Pick Applets and Static Picklists

Multilingual Lists of Values
b In the List Column window, create a new record by copying an existing one
and set the Field property to Name.

To configure the Workflow Policy Program Argument

1 Navigate back to the Workflow Policy Program Argument selected in the
previous section.

2 In the PickList property field, select the new picklist created in Step 4 of the
procedure “To create a LIC picklist for a Workflow Policy Program Argument” on
page 679.

3 In the Source Field property, change the value from Value to Name.

4 Compile changes.

To repick the values

1 Log on using a client connected to the modified repository file.

2 From the application level menu, choose View > Site Map > Business Process
Administration > Workflow Policies.

3 Repick the Values of arguments for existing workflow policies.

For more information about Siebel Business Process Designer, see Siebel Business
Process Designer Administration Guide.
680 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
Configuring Siebel Assignment Manager to Use MLOV-Enabled Fields
Additional configuration is required to enable Siebel Assignment Manager to use
MLOV-enabled fields. Siebel Assignment Manager compares values in target tables
with values in Assignment Manager administration tables to determine whether a
particular condition is true. For columns enabled for MLOVs, the value stored in the
target table is the Language-Independent Code rather than the Display Value.
However, the value in the Assignment Manager administration table is the Display
Value. Assignment Manager cannot evaluate a condition by comparing the
Language-Independent Code to the Display Value.

To enable Siebel Assignment Manager to work with MLOV-enabled columns, you
must configure Assignment Manager entities so that they compare the language-
independent code in the target table with the language-independent code in the
Assignment Manager administration table. You must do this for the following
entities:

■ Criteria Values

■ Criteria Skills

■ Workload Rules

Criteria Values and Criteria Skills
Before configuring Criteria Values and Criteria Skills, you must:

■ Determine all the business component fields that are enabled for MLOVs

■ Of the fields that are MLOV enabled, identify which ones are referenced by
Criteria Values or Criteria Skills.

For each of the fields that reference Criteria Values or Criteria Skills (Assignment
Attributes), you must set the Translate column to True and define the language-
independent code field as the Translate Pick Field.

To configure Assignment Criteria and Skills for MLOVs

1 In the Object Explorer, select the Assignment Attribute object type.

2 In the Object List Editor, select the Assignment Attribute that you want to work
with MLOV enabled fields.
Version 7.5.3, Rev. A Siebel Tools Reference 681

Pick Applets and Static Picklists

Multilingual Lists of Values
3 Set the Translate property for the Assignment Attribute to True.

4 Set the Translate Pick Field property to the field name that stores the language-
independent code.

Typically the Name field stores the language-independent code.

5 Compile changes.

Workload Rules
Before configuring Workload Rules, you must:

■ Determine all the business component fields that are enabled for MLOVs.

■ Of the fields that are MLOV enabled, identify which ones are referenced by
Workload Rules.

For each of the fields that reference Workload rules, you must complete the
following tasks:

■ Create a new picklist to display LIC values.

■ Create a new applet to display LIC values.

■ Configure the Workflow Policy Column to use the new picklist and applet.

■ Repick the values for existing records.

The detailed steps for completing these tasks are the same as the steps for
configuring Workflow Policy Columns covered in “Policy Conditions” on page 677.

For more information about Siebel Assignment Manager, see Siebel Assignment
Manager Administration Guide.
682 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
Configuring Siebel Anywhere for Use with MLOV-Enabled Fields
Siebel Anywhere requires additional configuration to be able to use fields enabled
for MLOVs.

To configure Siebel Anywhere for MLOVs

1 Open Siebel Tools.

2 In the Object Explorer, select the Table object type.

3 In the Tables window, query for S_UPG_KIT.

4 In the Object Explorer, select Column object type (child of Table).

5 In the Column window, select the STATUS column.

6 In the Translation Table Name field, click the drop-down list and select the
S_LST_OF_VAL.

7 Compile an .srf file.

This enables Siebel Anywhere to use MLOV enabled fields.

After completing this procedure, you can perform standard tasks associated with
Siebel Anywhere, such as creating a client repository upgrade kit and distributing
to clients.

■ Distribute the upgrade kit to Mobile Web Clients.

■ Upgrade Siebel Servers with the new .srf file.

NOTE: Distributing Siebel executable to multilingual remote clients requires
additional configuration. See Siebel Anywhere Guide.
Version 7.5.3, Rev. A Siebel Tools Reference 683

Pick Applets and Static Picklists

Multilingual Lists of Values
Administering the Multilingual List of Values
After you have configured your Siebel eBusiness Application for MLOVs, use the
List of Values views to administer and monitor LOV entries.

For detailed information about administering Lists of Values, see Applications
Administration Guide.

Important Fields in List of Values Administration Views
Several list columns in the list of values views help you to administer multilingual
LOVs:

■ Multilingual. This field indicates which list of values types have been configured
to be multilingual. When you run the MLOV upgrade utility (mlovupgd.exe), it
sets this flag for the list of values entries. For more information on the upgrade
script, refer to “Upgrading Existing Data Using the MLOV Upgrade Utility” on
page 665.

If you add entries after the script has been executed, you must manually update
this information to reflect your configuration.

■ Language. This field indicates for which language the entry is valid. The entries
for this picklist come from the Language Administration view. To access this
view, from the application-level menu, choose View > Site Map > Application
Administration >Languages.

■ Translate. This field indicates whether the entry’s display value can be
changed—for instance, translated to another language.

Only the LOV types that are marked as translatable are candidates for
multilingual configuration. For any entries added, you must update this
information manually to reflect your configuration. Do not change existing
Siebel entries. Doing so will not allow the LOV to be translated.

■ Language-Independent Code (or Code in the Explorer view). This field is the internal
code used for a list of values entry. It is stored in the database when MLOV is
enabled and referenced by configurations. The language-independent code must
be 30 characters or less. It is typically the English-American version of a
particular selection value. The language-independent code cannot be changed.
684 Siebel Tools Reference Version 7.5.3, Rev. A

Pick Applets and Static Picklists

Multilingual Lists of Values
■ Display Value. This field is required and holds the text that will appear in picklists.
The display value is stored in the database when MLOV is not enabled.

If there are display values for more than one language for a list of values entry,
the display value shown is determined by the current active language.

Adding Records
When you add a new list of values record for a LOV type that has been multilingual-
enabled, you also need to add records for all supported languages. For example,
when adding a new entry for FREIGHT-TERMS type, you need to add values for all
supported languages.

If you add a new entry and do not add corresponding additional records for each
supported language, the language-independent code will be displayed instead of the
display value when a user with one of these languages tries to view the information.

Adding records for all the languages you support is also important for Assignment
Manager. For more information, refer to “Configuration Considerations” on
page 674.

For more information about adding records to the LOV table, see Applications
Administration Guide.

Deleting Compared to Deactivating Records
As you administer MLOVs, you may find that there are records that you no longer
need and would like to make inactive. If you delete a MLOV record, then records in
other tables that have already been entered using that list of values record will no
longer display correctly. The display value in the list of values entries is used to
display the language-specific text.

Instead of deleting a record, inactivate it. Inactive values that have already been
used and are referenced in other tables in the database will still display correctly.
Inactive records are not included in any picklists, however, and are ignored by EIM
when it performs validation against LOVs.

The Active list column in the List of Values Administration view is checked by
default. To deactivate a record, remove the check mark.
Version 7.5.3, Rev. A Siebel Tools Reference 685

Pick Applets and Static Picklists

Multilingual Lists of Values
If you try to delete a record, you will get a message asking you if you really want to
delete the record, or just deactivate it. If you choose Inactivate from the dialog box,
the check mark in the Active list column is removed.

If you do delete an LOV record, any language-independent codes in the target
columns referring to the deleted record will then display the language-independent
code. Searching and sorting will not function correctly on these values.

Constraints
LOVs are constrained in the following ways:

■ You cannot have children of a list of values entry active when the parent list of
values entry is inactive.

■ Hierarchical LOVs do not support MLOVs.

■ LOV_TYPE should not be enabled for multilingual list of values. It has a single-
language entry only.
686 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets 12
This chapter explains how to implement multi-value group and association applets
in Siebel applications.
Version 7.5.3, Rev. A Siebel Tools Reference 687

Multi-Value Group and Association Applets

Multi-Value Group Applets
Multi-Value Group Applets
A multi-value group (MVG) applet (shown in Figure 178) is a dialog box that
provides the means to display and maintain a set of records of data from another
business component associated with the currently displayed business component
record. The multi-value group applet is invoked from a control or list column in the
originating applet.

Figure 178 shows the Account Addresses multi-value group applet. It is invoked
when the user clicks the check mark button to the right of the Address Line 1 text
box. This multi-value group applet lists one or more addresses for the account. The
record with a check mark in the Primary check box is the one whose data appears
in corresponding controls in the originating applet.

Figure 178. Multi-Value Group Applet in a Siebel Application

Multi-value group
applet dialog box

Originating
applet

Button that initiates the
multi-value group applet
688 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Multi-Value Group Applets
While the multi-value group applet is open, the user can view the entire list of team
member records for this account, not just the primary one. The user can also add,
query, and delete records in this window.

Multi-value group applets are implemented using object types illustrated in
Figure 179.

Figure 179. Multi-Value Group Architecture
Version 7.5.3, Rev. A Siebel Tools Reference 689

Multi-Value Group and Association Applets

Multi-Value Group Applets
Figure 180 shows the object definitions used in the implementation of a multi-value
group applet in greater detail, and identifies their interrelationships.

The roles of the object definitions in Figure 180 are summarized in the following list
and discussed in greater detail in the subsequent sections. The multi-value group
example refers to the Account Address MVG applet illustrated in Figure 178 on
page 688.

Each of the following objects is discussed in greater detail in the following sections.

Figure 180. Multi-Value Group Details
690 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Multi-Value Group Applets
■ Originating applet. Contains the control or list column that invokes the multi-
value group applet. In the example, the originating applet is called Account
Entry applet.

■ Originating business component. Business component of the originating applet.
This business component (in the example, the Account business component)
supplies the data presented in the originating applet (Account Entry applet).

■ Multi-value fields. Fields in the originating business component that are populated
by the multi-value link. Data population relationship is indicated by the
presence of the multi-value link’s name in their multi-value link property. The
Field property in each identifies the corresponding field in the multi-value group
business component that provides its data. Multi-value fields used in this multi-
value group situation are Street Address, Address Id, City, Country, Fax Number,
Postal Code, and State.

NOTE: If the field is a multi-value field, then the Required attribute will be
ignored. In this case you can use a script in Siebel VB or Siebel eScript or the
primary address field, if it exists.

■ Multi-value links. Child of the originating business component. It identifies the
link that provides the field values from the multi-value group business
component. In the example, the multi-value link is Business Address.

■ Links. Specifies the master-detail relationship between the originating and multi-
value group business components. This is a property of the Multi Value Link
object definition from which the fields in the originating business component
obtain their values. In the example, the link is Account/Business Address.

■ Multi-value group applet. Dialog box that appears when the user clicks on the
ellipsis button in the originating applet. It lists the multi-value group business
component records that are detail records in the master-detail relationship with
the current originating business component record. It also provides the means
to add, edit, and delete detail records. In the example, the multi-value group
applet is called Account Address MVG Applet.
Version 7.5.3, Rev. A Siebel Tools Reference 691

Multi-Value Group and Association Applets

Multi-Value Group Applets
■ Multi-value group business component. Stores the detail records of the master-detail
relationship with the originating business component. The records displayed in
the multi-value group applet are those in the multi-value group business
component. In the example, the multi-value group business component is called
Business Address.

Configuring the Originating Applet
The originating applet contains the control or list column that invokes the multi-
value group applet. The originating applet has the following important property:

■ Business Component. Identifies the originating business component.

The originating Control object or List Column object has the following important
properties:

■ Field. Identifies the originating field in the originating business component.

■ MVG Applet. Name of the multi-value group applet to be invoked.

■ Runtime. Must be set to TRUE.

Configuring the Originating Business Component
The originating business component is the business component of the originating
applet. The data values that appear in the originating field and other multi-value
fields are obtained from corresponding fields in a record in the multi-value group
business component. The record from which these values are obtained is the one
indicated as primary.

The originating business component has no essential properties for the
configuration of a multi-value group. However, the field and Multi Value Link child
object definitions are significant.

The originating field is the field specified in the Field property of the originating
control or list column. Other than its relationship with the originating control, its
role is identical to that of the other multi-value fields sharing the multi-value link.
(A multi-value field is a field with a non-null Multi Value Link property.) Each of
the multi-value fields participating in the multi-value group has the name of the
multi-value link in its Multi Value Link property. The multi-value fields in the
originating business component have the following important properties:
692 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Multi-Value Group Applets
■ Multi Value Link. Identifies the multi-value link that provides values, by way of
the link object definition, from the multi-value group business component.

■ Field. Identifies the field in the multi-value group business component that, by
way of the multi-value link and link object definitions, provides values for the
field in the originating business component.

Pick maps can be used for multi-value fields similarly to how they are used for
single-value fields. The MVF Pick Map object is a child object of Multi Value Field.
Each pick map defines a correspondence between a field in the multi-value group
business component and one in the originating business component. These
correspondences provide the information required to immediately update the
current originating business component record with information from the MVG
business component when a record is picked.

Each MVF Pick Map object definition has two important properties:

■ Field. Identifies a field in the originating business component that is to be
populated by data from a field in the MVG business component, when the
PickRecord method is invoked.

■ Pick List Field. Identifies a field in the MVG business component that is the source
of data for the field in the Field property of the Pick Map object.

An example is the MVF pick map on the State multi-value field of the Account
business component. Account has a multi-value link to the Business Address
business component, where it obtains address information.

Configuring the Multi-Value Link
The multi-value link object definition is a child of the originating business
component. It identifies the link that provides the field values from the multi-value
group business component. The multi-value link in the originating or joined (in the
case of an indirect multi-value link) business component has the following
important properties:

■ Destination Link. Identifies the link object definition that provides the master-
detail relationship between the originating (or joined) and multi-value group
business components.
Version 7.5.3, Rev. A Siebel Tools Reference 693

Multi-Value Group and Association Applets

Multi-Value Group Applets
■ Primary Id Field. Identifies the foreign key field in the originating, or joined,
business component. The foreign key field identifies the primary record in the
set of records for one multi-value group (in the multi-value group business
component). The primary record is the one that displays in the originating or
employing business component.

■ Destination Business Component. Name of the child business component.

NOTE: An indirect multi-value link may be used in place of a conventional multi-
value link when there is an existing link object definition which would be
appropriate for use in a multi-value link, but the originating business component is
different from the master business component. If there is a Join object definition
that joins the desired master business component to the master business
component of the link, the existing link can be used in the multi-value link.

When configuring a pick applet invoked from a multi-value group applet, define the
Pick List on the originating field in the originating business component, not on
fields in the multi-value group business component. Changes must also be made to
the pick map. See the following example of configuring conjoined fields in MVG
applets.

On the Contact Business Component, there is a Multi-Value Link, Contact Category
(with Contact Category as the destination buscomp), and a Multi-Value Field,
Category (with Category as a destination field). On the Contact Category BusComp,
Category is a joined field with a picklist.

To modify Category using a multi-value group applet, you must configure the
Category field on the Contact buscomp by completing the following steps:

1 Set Picklist=Picklist Contact Category

2 Add two new entries to Pickmap:

Field: Pick List Field

Category: Name

Categ Id: Id
694 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Multi-Value Group Applets
3 Category Id is a new MVF created by setting the following:

MVL=Contact Category

Field=Category Id

Configuring Links
The Link object definition specifies the master-detail relationship between the
originating and multi-value group business components. This makes possible the
Link object definition from which the fields in the originating business component
obtain their values. The Link object type has the following important properties:

■ Parent business component. Identifies the originating business component.

■ Child business component. Identifies the multi-value group business component.

■ Source Field. Identifies the field in the originating business component that
serves as a unique ID to that business component. If this property is blank, it
indicates that the field that maps to the ROW_ID column, generally called Id, is
the source field.

■ Destination Field. Identifies the field in the multi-value group business
component that identifies the master record for each detail record. It is a foreign
key that points back to the originating business component.

NOTE: In a link based on an intersection table (the relationship between the
originating and MVG business component is many-to-many—that is, one in
which the Inter Table, Inter Parent Column and Inter Child Column properties
are non-blank), you do not specify the Source Field or Destination Field
properties. You can specify a source field (although it is not common to do so).
Destination field always defaults to Id.

Configuring the Multi-Value Group Business Component
This business component stores the detail records of the master-detail relationship
with the originating business component. The records displayed in the multi-value-
group applet are from the multi-value group business component.
Version 7.5.3, Rev. A Siebel Tools Reference 695

Multi-Value Group and Association Applets

Multi-Value Group Applets
The multi-value group business component has no important properties with
respect to its role in the implementation of a multi-value group. It has field child
object definitions that are used in the following ways:

■ To store data for a field in the multi-value group

Each field with this role is represented by a list column in the multi-value group
applet. It may also participate in the multi-value link to supply data to a
corresponding field in the originating business component.

■ To identify the primary record in the multi-value group

Primary records are identified by the primary field which is specified in the
Primary Field Id property in the multi-value link.

NOTE: For all intents and purposes, the primary field has nothing to do with the
multi-value group business component. It does have relevance to the originating
business component, the multi-value link, and the multi-value group applet.

■ As the destination field of the link

The field with this role is a foreign key to the originating business component.

Using the MVG Wizard
You can use the MVG Wizard to help you create an the necessary relationships
between business components and define multi-value fields. If you need to make
any modifications, you can use the Back button to return to the appropriate dialog
box.

To configure a multi-value group using the MVG Wizard

1 Choose File > New Objects.

The New Object Wizards dialog box appears.

2 Under the General Tab, double-click the MVG icon.

The Multi Value Group dialog box appears.

3 In the Multi Value Group dialog box, select:
696 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Multi-Value Group Applets
■ The project to which the MVG will belong. Only locked projects are available
for you to select.

■ The master business component. The business component must belong to
the selected project.

■ Click Next.

4 In the second Multi Value Group dialog box, do the following:

■ Select the detailed business component.

■ Enter a name for the Multi Value Link.

■ Click Next.

5 In the Direct Links dialog box, select the link that you want to use, and then click
Next.

The available links are those that already exist between the master and detail
business component.

6 In the Primary ID Field, do the following:

■ Select the Primary ID Field in the Master Business Component.

■ Set the value for the Auto Primary property.

■ Select other options as necessary.
Version 7.5.3, Rev. A Siebel Tools Reference 697

Multi-Value Group and Association Applets

Multi-Value Group Applets
■ Click Next.

7 In the Multi Value Link dialog box, select the properties that you want to define
and then click Next.

8 In the Multi Value Fields dialog box, enter information for creating multi-value
fields on the master business component.

■ Select a field on destination business component.

■ Enter a name for the multi-value field.

■ Click Add.

■ Repeat for each field you want to add.

■ Click Next.

9 In the Finish dialog box, review the information you have entered for the MVG
and then click Finish.
698 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Multi-Value Group Applets
Configuring the Multi-Value Group Applet
This applet is the dialog box that appears when the user clicks the ellipsis button in
the originating applet. It lists the multi-value group business component records
that are detail records in the master-detail relationship with the current originating
business component record. It also provides the means to add and delete detail
records. The multi-value group applet contains list column object definitions that
present the data from corresponding fields in the multi-value group business
component.

The multi-value-group applet has the following important properties:

■ Business Component. Identifies the multi-value group business component.

■ Class. Enter a value of CSSFrameList in this property. This setting indicates that
this is a standard list applet.

■ Type. Enter a value of MVG in this property. This setting indicates that this is a
multi-value group applet. This configures the behavior of the dialog box and
button controls.

■ Title. Identifies the multi-value group applet to appear in the title bar.

The List Column object definitions in the multi-value group applet have the
following important property:

■ Field. Identifies the field in the multi-value group business component from
which the list column displays data.

If users will perform queries on fields mapped to MultiValue Groups, do the
following.

Determine the query destination field (the multi-value link field being used for the
query)—the field that is mapped to a database column.
Version 7.5.3, Rev. A Siebel Tools Reference 699

Multi-Value Group and Association Applets

Multi-Value Group Applets
In Siebel Tools, remove the check mark from the Use Default Sensitivity property
for that destination field.

NOTE: For fields of type DTYPE_ID the follow rules hold true:
Queries are case-sensitive if Use DefaultSensitivity is TRUE and the .cfg file

CaseInsensitive setting is FALSE.
Queries are case-insensitive if Use Default Sensitivity is TRUE and the .cfg

file CaseInsensitive setting is TRUE.

Siebel data types are discussed in more detail in Object Types Reference.

Using the MVG Applet Wizard
You can use the MVG Applet Wizard to create an MVG applet. It will help you define
all the necessary object definitions for an MVG applet.

To create and MVG applet

1 Choose File >New Object from the Siebel Tools main menu.

The New Object Wizard dialog box appears.

2 Click the Applets tab and then double-click the MVG Applet icon.

The General page of the MVG Applet Wizard appears.
700 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Multi-Value Group Applets
3 In the General Page, enter the following information for the applet, and then
click Next.

The wizard will use information to create an applet object and define the
required applet properties.

4 In the Web Layout-General page, enter the Web templates to use for the applet,
and then click next.

Typically, MVG applets use the Popup List template.

NOTE: If you plan to include a New button on your MVG applet, you will also
need to define an Edit mode manually, using the Popup Query template.

For a complete description of templates, see Siebel Developer’s Reference.

5 In the Web Layout - Fields page, select the fields that you want to appear on the
applet, and then click Next.

The fields that appear in the Available pane are those fields defined for the
business component that you selected in Step 3 on page 701.

Field Comment

Project Only locked projects appear in the picklist.

Business Component The business component that the applet is based on.

Applet Name A unique name for the Applet.

Display Title The name to appear in the user interface.
Version 7.5.3, Rev. A Siebel Tools Reference 701

Multi-Value Group and Association Applets

Association Applets
6 In the second Web Layout-Fields page, choose the controls in the Available
Controls box that you want to appear on the applet, and then click Next.

All the entries in the Selected Controls box are added by default. If you wish to
exclude some of the controls and move them to the Available Controls box,
select the controls and click the activated arrow.

NOTE: The available controls come from the “Model HTML Controls” applet. This
applet specifies the available controls and also to which template each control
is mapped. Users can modify this applet if necessary by adding or removing
controls from the applet.

7 Review the information displayed in the Finish page, and then click Finish.

The MVG Applet Wizard creates the applet and supporting object definitions
based on the selections you made.

NOTE: You can return to previous pages by clicking the Back button.

Association Applets
An association applet (shown in Figure 181) provides users with the ability to
associate a parent record with one or more children through an intersection table.
For example, association applets are provided for assigning Team Members to an
Account, Contacts to an Opportunity, and Products to a Price List.
702 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Association Applets
An association applet is a dialog box. Multi-selection is only available in the
association applet. Fields in association applets cannot be updated.

The association applet lists the records from a business component. The user selects
one or more records with the aid of the Find and Starting With controls, if needed,
and clicks the Add button to associate the selected record with the active master
record.

Association applets are used only with pairs of business components that have a
many-to-many relationship. A many-to-many relationship in Siebel applications is
implemented by means of an intersection table and a pair of links.

When a one-to-many (simple master-detail) relationship exists between business
components, an association applet is unnecessary, and records can be directly
added or inserted in the applet displaying the detail business component. The
means to add and delete records can be provided by using a master-detail view or
a multi-value group applet. When a many-to-many relationship exists, an
association applet provides the only means to associate a pair of records from their
respective business components. Figure 182 on page 704 and Figure 183 on
page 705 illustrate the reason for this.

NOTE: Records in an association applet are read-only; they cannot be modified from
within the association applet dialog box.

Figure 181. Association Applet in a Siebel Application
Version 7.5.3, Rev. A Siebel Tools Reference 703

Multi-Value Group and Association Applets

Association Applets
Figure 182 illustrates how a one-to-many relationship is implemented.

The two applets in a master-detail view display one master record and a list of detail
records in their respective business components. A foreign key in each of the detail
records points to the one master record. To add another detail row, a row is added
to the detail table (S_CONTACT in the illustration), and a value is set in the foreign
key that points back to the master row. Every row in the detail table has a master
row because of the link relationship between the master and detail business
components. Adding a row to the detail table always results in the linkage of the
new row to a row in the master table. No additional applet is necessary to create an
association between a new detail row and a master row.

Figure 182. Row Relationships in a One-to-Many Relationship
704 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Association Applets
The situation in a many-to-many relationship is illustrated in Figure 183.

“Adding” a record to the detail business component in a many-to-many relationship
can in reality mean associating an existing detail record to a master record, rather
than creating a new detail record from scratch. This is because master and detail
are relative terms in a many-to-many relationship. For example, the Opportunity
and Contacts business components in Figure 183 can be displayed as one
opportunity to many contacts, or one contact to many opportunities, depending on
the active view.

In this situation, the user needs to be presented with a selection list of available
detail records. If users see the desired detail record in the selection list, they choose
it. If not, they have the option to create a new detail record. In the context of a
many-to-many relationship, creating a new association for an existing detail record
is called association; creating a new detail record and an association is called
addition. Both association and addition of detail records result in the creation of a
new row in the intersection table. Addition also results in the creation of a new row
in the detail table.

In the association applet, the Add button performs association and the New button
performs addition.

Figure 183. Row Relationships in a Many-to-Many Relationship
Version 7.5.3, Rev. A Siebel Tools Reference 705

Multi-Value Group and Association Applets

Association Applets
In Siebel applications, association applets are invoked in one of two ways:

■ From the list applet in a master-detail view, by choosing the Edit >
Add New Record menu option.

■ From a multi-value group applet window, by clicking the New button.

Each of these scenarios is discussed in the following sections.

NOTE: An association applet cannot be configured to be constrained or filtered
through properties the way a pick applet can (using the Constrain property of a Pick
List). To constrain an association applet, you must use Siebel VB or Siebel eScript
to query using the Exists clause in the WebApplet_Load event on the association
applet.
706 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Association Applets
Association Applets Invoked from Master-Detail Views
Figure 184 illustrates an association applet invoked in a master-detail view by
selecting New Record from the menu on the Contacts list applet.

The master-detail view in Figure 184 is Opportunity Detail - Contacts List View, one
of two master-detail views displaying opportunity and contact information. The
other is Contacts Detail - Opportunities List View, which displays the inverse
master-detail relationship. When the user chooses New Record from the
Opportunities edit menu, the Opportunities dialog box appears for selection of an
existing opportunity record to insert, or for creation of a new opportunity record. A
new opportunity record is created by clicking the New button and then entering
data into the new record in the Add Opportunities dialog box.

For example, the Add Contacts dialog box is implemented as an association applet
called Contact Assoc applet.

Figure 184. Association Applet Invoked from a Master-Detail View

...invokes the Add Contacts
association applet.

Click New Record in the
applet-level menu and it...
Version 7.5.3, Rev. A Siebel Tools Reference 707

Multi-Value Group and Association Applets

Association Applets
Association applets are implemented using the object types illustrated in
Figure 185.

Figure 185. Association Applet Architecture
708 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Association Applets
The details of the object relationships are shown in Figure 186.

Roles of the object definitions in Figure 186:

■ View (Opportunity Detail - Contacts List view). Provides the context in which the
association applet is invoked, although no properties of the view directly identify
the association applet. The Business Object property of the view establishes the
master-detail relationship between the business components whose data is
displayed.

■ Master applet (Opportunity form applet). Form applet that displays one record from
the master business component. It has no special properties to configure.

■ Detail applet (Opportunity Contact list applet). List applet that displays a list of
records from the detail business component that are detail records for the
current master record in the master business component. The name of the
association applet is specified in its Associate Applet property.

Figure 186. Association Applet (Invoked from Master-Detail View) Details
Version 7.5.3, Rev. A Siebel Tools Reference 709

Multi-Value Group and Association Applets

Association Applets
■ Business components (Opportunity and Contact). Provide the data for their
respective applets in the view. The detail business component also provides the
data displayed in the association applet.

NOTE: In the association applet, all records from the detail business component
are displayed; in the detail applet, the only records displayed are those which
have already been associated to the current master record.

■ Association Applet (Contact Assoc applet). Implements the dialog box that appears
when the user attempts to add or insert a record in the detail applet. It has a Type
property value of Association List, which indicates that it is an association
applet, and a Class property value of CSSFrameList, indicating that it is a list
applet. The association applet is configured as a standard list applet, with a List
child object definition that, in turn, has List Object child object definitions.

■ List columns. Specify the fields that are displayed in the association applet, and
in what order. They duplicate some or all of the list columns in the detail applet
in the view.

■ Controls. Several specialized controls appear in an association applet. They are
the following:

■ Check button. Associates selected records to the current parent. The result at
the table level is to create an intersection table row between the row
identified in the master applet and the row identified in the association
applet. The control is named PopupQueryAdd and has a method invoked of
AddRecord.

■ New button. Creates an empty scrolling table row in the association applet for
user entry of a new detail business component record. Following entry of the
new record, it is inserted in the detail applet. The result at the table level is
to create a new row in the detail table, and an intersection table row between
the row identified in the master applet and the row created in the association
applet. The control is named ButtonNew and has a method invoked of
NewRecord.

■ Cancel button. Dismisses the dialog box.
710 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Association Applets
■ Find combo box. In combination with the Starting With text box and Find
button, provides the user with search capabilities for locating the desired
record in the association applet. The user selects in this combo box the field
to search.

■ Starting With text box. Text box where the user enters the search criteria. The
criteria entered in this control are automatically completed by a wild card. It
is not possible initiate another search and enter exact search criteria.

■ Go button. The user clicks this button to initiate the search specified in the
Find combo box and Starting With text box.

Association Applets Invoked from Multi-Value Group Applets
Figure 187 illustrates an association applet invoked from a multi-value group
applet. Figure 188 on page 712 shows the dialog box that appears when you click
the New button. Figure 189 on page 712 shows the dialog box that appears when
you click the Add button.

Figure 187. Multi-Value Group Applet Invoked from Organization Field

Then click the New button in a
multi-value group applet...

Click the Select button in an
MVG field to invoke an MVG
Version 7.5.3, Rev. A Siebel Tools Reference 711

Multi-Value Group and Association Applets

Association Applets
The applet in the upper section of the view shown in Figure 187 on page 711 is an
Account form applet, which is used in various views to display a single record of
account information at the top of the view. Five of the fields in this applet display
multi-value fields: Sales Team, Organizations, Territories, and Account. Each of
these text boxes has a check mark button that invokes a specific multi-value group
applet when clicked.

Figure 188. Association Applet Invoked from a Multi-Value Group Applet

Figure 189. Added Entry

After clicking New an
association applet appears.

Click OK to add entry to list.

A new record is added to
the list.
712 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Association Applets
Some multi-value-group applets add and remove records without the use of an
association applet. Such applets are based on a one-to-many relationship between
the master and detail business components, and no intersection table is involved.
The Account Address MVG applet (invoked from the Address text box in the
Account form applet) is that kind of multi-value group applet. You can confirm that
no association applet is involved by examining the value in the Associate Applet
property in the multi-value group applet’s object definition, which is blank in this
case.

Other multi-value group applets are based on a many-to-many relationship
implemented through an intersection table. The user may either create or associate
records. This requires that an association applet be invoked when the New button
in the multi-value group applet is clicked. The Industry Mfg applet, invoked from
the Industries text box, is of this type. The name of an association applet (Industry
Assoc applet) appears in the Associate Applet property in the multi-value group
applet’s object definition.

In Figure 187 on page 711, the user has clicked the ellipsis button to the right of the
Industries text box, and the Add Industries dialog box has appeared. The Add
Industries dialog box (association applet) allows the user to add an existing industry
record to the multi-value group, or to create a new industry record in the multi-
value group. A new Industry record is created by clicking the New button, and
entering data into the new record in the Add Industries dialog box.
Version 7.5.3, Rev. A Siebel Tools Reference 713

Multi-Value Group and Association Applets

Association Applets
The Add Industries dialog box is implemented as an association applet called
Industry Assoc applet. The details of the object relationships are shown in
Figure 190.

The roles of the object definitions in Figure 190 are the following:

■ Form applet (Account Form applet). Contains one or more text box controls
displaying multi-value fields. The MVG Applet property for each of these text
box controls identifies a multi-value group applet that is invoked when the user
clicks the ellipsis button to the right of the text box.

■ Multi-value group applet (Industry Mfg. applet). Displays the list of records assigned
to the multi-value field in the form applet. The Associate Applet property in the
multi-value group applet’s object definition identifies the association applet to
invoke when the user clicks the New button in the multi-value group applet.

Figure 190. Association Applet (Invoked from Multi-Value Group Applet) Details
714 Siebel Tools Reference Version 7.5.3, Rev. A

Multi-Value Group and Association Applets

Association Applets
■ Multi-Value Group business component (Industry). Stores the (detail) multi-value
group records for each master business component record. The multi-value
group business component supplies records to both the multi-value group applet
and the association applet.

■ Association applet (Industry Assoc applet). Implements the dialog box that appears
when the user attempts to add or insert a record in the multi-value group applet.
The association applet has a Type property value of Association List, which
indicates that it is an association applet. It has a Class property value of
CSSFrameList, indicating that it is a list applet. The association applet is
configured as a standard list applet, with a List child object definition that has
List Object child object definitions.

The child object definitions for the association applet are described in greater detail
at the end of “Association Applets Invoked from Master-Detail Views” on page 707.
Typically Association applets are based on the same business component as multi-
value group applets.
Version 7.5.3, Rev. A Siebel Tools Reference 715

Multi-Value Group and Association Applets

Association Applets
716 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls 13
This chapter discusses special-purpose applets and controls:

■ Chart applets

■ Tree applets

■ File attachment applets

■ Pop-up windows

■ ActiveX controls

■ HTML content controls

■ Dynamic toggle applets
Version 7.5.3, Rev. A Siebel Tools Reference 717

Special-Purpose Applets and Controls

Chart Applets
Chart Applets
A chart applet graphically displays data from a business component in various
formats for analysis of trends, category comparison, and other data relationships.
Any data in a business component can be included in a chart. The data in a chart
applet reflects the current query for the business component. The user can update
the chart with changes to the query by clicking inside the chart. Figure 191 shows
a chart applet in a view.

Figure 191. Opportunity Size Analysis View
718 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
This view, titled Opportunity Size Analysis (Oppty Chart View - Opportunity Size
Analysis in Siebel Tools), lists all opportunities in the upper (list) applet and
aggregates them by size in the lower (chart) applet. By default, the chart applet in
this view (Oppty Chart Applet - Competitor Frequency Analysis) displays the data
in bar chart format, in a specific type of bar chart called 3dBar. The user can select
different chart types from the Type picklist at upper right in the chart applet. Chart
types are discussed in “Chart Layout Options” on page 722.

NOTE: To change the size of the legend for a chart applet, right-click on the legend
and select one of the options.
Version 7.5.3, Rev. A Siebel Tools Reference 719

Special-Purpose Applets and Controls

Chart Applets
Axis Terminology
Specialized terminology is used for axes in Siebel Tools and Siebel applications.
Each axis has a special name, as shown in Table 47.

Table 47. Axis Terminology

Axis Name Meaning in Bar Charts Meaning in Line Charts Meaning in Pie Charts

X axis Category The horizontal axis
(except in horizontal
bar charts, in which
the X axis is vertical
along the left).

The horizontal axis. The set of pie slice
labels.

Y axis Data
Values

The vertical axis
(except in horizontal
bar charts, in which
the Y axis is
horizontal along the
bottom).

The vertical axis. The percentage of
the circle occupied
by each pie slice,
and the
corresponding
numeric value.

Z axis Series A set of labels in the
legend. In the
stacked bar or cluster
bar charts, each
series label
corresponds to a bar
segment or bar of a
particular color
appearing in each
stack or cluster.

A set of labels in the
legend. In line charts,
each series label in
the legend
corresponds to one
curve.

Do not use a series
field with pie charts,
because only the
first entry in each
series will be
charted.
720 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
An example of a chart with all three axes is the Project Revenue Analysis chart
shown in Figure 192.

In this chart, the amount of revenue is plotted on the Y (data values) axis, quarters
appear on the X (category) axis, and each bar color (Z, or series, axis) identifies a
a different project.

NOTE: In charts with two Y axes, the first Y axis refers to the vertical axis on the left
side, while the second Y axis refers to the one on the right side.

Figure 192. Project Revenue Analysis Chart in Siebel Service

Y, or data points, axis X, or category, axis Z, or series, axis.
Version 7.5.3, Rev. A Siebel Tools Reference 721

Special-Purpose Applets and Controls

Chart Applets
Chart Layout Options
The user can select different chart types from the Type picklist at the upper right in
most chart applets. Chart types provide various layout options, including horizontal
bar, stacked bar, pie, line, scatter, spline, and combo (combined line and bar).
Several of these are available in either 2- or 3-dimensional format. The 3-
dimensional types are functionally the same as the corresponding 2-dimensional
types, but provide the illusion of bar, line, or pie thickness for visual attractiveness.

The following styles of charts are available (although not all styles are supported
for all chart applets).

Bar Charts
Bar charts are typically used to compare the absolute difference in data from one
category to another.

■ 3dBar. The 3dBar type divides data from the source records into categories, and
displays the total for each category as a vertical bar. This is shown in Figure 193.

Figure 193. 3dBar Chart
722 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
If the chart is configured with a Z (series) axis, a cluster of bars appears for
categories rather than a single bar. This is shown in Figure 194.

Figure 194. 3dBar Chart with Series Axis
Version 7.5.3, Rev. A Siebel Tools Reference 723

Special-Purpose Applets and Controls

Chart Applets
■ 3dHorizBar. A 3dHorizBar chart is functionally equivalent to a 3dBar chart, but
has the X and Y axes switched, with the result that the bars are horizontal. A
3dHorizBar chart appears in Figure 195.

Figure 195. 3dHorizBar Chart
724 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
The individual horizontal bars are replaced by clusters of horizontal bars if a
series axis is present, as shown in Figure 196.

Figure 196. 3dHorizBar Chart with Series Axis
Version 7.5.3, Rev. A Siebel Tools Reference 725

Special-Purpose Applets and Controls

Chart Applets
■ 3dStackedBar. A 3dStackedBar chart normally has a series axis. The chart
displays a single stack of bars for each category, within which appears a bar of
a different color for each series. Stacked bar charts are useful for seeing the
individual value for each series within the category as well as their total for the
category. An example of a 3dStackedBar chart appears in Figure 197.

This figure displays a Project Revenue Analysis chart. The data values axis
corresponds to project revenue, the category axis corresponds to a quarter, and
the series axis corresponds to the project name. So for each quarter along the X
axis, there is a stack of bars. Each bar in the stack indicates the revenue reached
in a particular quarter. The stacks within each bar indicate the individual
projects.

Figure 197. 3dStackedBar Chart
726 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
■ 2dBar. A 2dBar chart is functionally equivalent to a 3dBar chart, but is displayed
without the illusion of depth. Two-dimensional charts are generally easier to
read accurately, but may seem less visually attractive than their three-
dimensional counterparts. A 2dBar chart appears in Figure 198.

Like the 3dBar chart, a 2dBar chart displays bars in clusters if a series axis is
present.

Figure 198. 2dBar Chart
Version 7.5.3, Rev. A Siebel Tools Reference 727

Special-Purpose Applets and Controls

Chart Applets
■ 2dHorizBar. The 2dHorizBar chart type is functionally equivalent to the
3dHorizBar type, but is displayed without the illusion of depth. A sample
2dHorizBar chart appears in Figure 199.

Figure 199. 2dHorizBar Chart
728 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
■ 2dStackedBar. The 2dStackedBar chart type is functionally equivalent to the
3dStackedBar type, but is displayed without the illusion of depth. A sample
2dStackedBar chart appears in Figure 200.

Line Charts
Line Charts are used to observe trends across categories or over time.

Figure 200. 2dStackedBar Chart
Version 7.5.3, Rev. A Siebel Tools Reference 729

Special-Purpose Applets and Controls

Chart Applets
■ 2dLine. The 2dLine chart type displays one or more line curves plotted against
the X-Y grid. If there is no series axis, a single line curve appears. If there is a
series axis, one line curve appears for each color in the legend. A 2dLine chart
appears in Figure 201.

■ 3dLine. The 3dLine chart type is functionally equivalent to the 2dLine type, but
appears with the illusion of depth. A 3dLine chart (showing the same data as the
2dLine chart in Figure 201) appears in Figure 202.

Figure 201. 2dLine Chart

Figure 202. 3dLine Chart
730 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
■ 2dSpline. The 2dSpline chart type displays one or more line curves plotted
against the X-Y grid, with the points plotted accurately but the line between
them smoothed mathematically. If there is no series axis, a single curve and set
of points appear. If there is a series axis, one curve and corresponding set of
points appear for each color in the legend. A 2dSpline chart appears in
Figure 203.

Figure 203. 2dSpline Chart
Version 7.5.3, Rev. A Siebel Tools Reference 731

Special-Purpose Applets and Controls

Chart Applets
■ 3dSpline. The 3dSpline chart type is functionally equivalent to the 2dSpline type,
but appears with the illusion of depth, and does not display the actual data
points, only the smoothed curve. A 3dSpline chart (showing the same data as
the 2dSpline chart in Figure 203) appears in Figure 204.

Figure 204. 3dSpline Chart
732 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
■ Combo. A chart of the Combo type displays a single bar chart with dots
superimposed on it. The two charts share the category axis, but each has its own
data points axis (on the left for the bar chart, and on the right for the line chart).
A sample Combo chart appears in Figure 205.

Pie Charts
Pie Charts are used to compare the relative difference across categories by dividing
a circle into segments that represent each category’s percentage of the whole.

Figure 205. Combo Chart
Version 7.5.3, Rev. A Siebel Tools Reference 733

Special-Purpose Applets and Controls

Chart Applets
■ 3dPie. The 3dPie chart type aggregates data point data in the records by category,
and displays each category as a separate segment in the pie. The category (X)
axis is the set of pie slices and corresponding labels. The data points (Y) axis
determines the relative size of each pie slice as a percentage of the total. You
cannot specify a series axis for pie charts. The 3dPie chart type gives the illusion
of depth, for visual attractiveness. A sample 3dPie chart appears in Figure 206.

Figure 206. 3dPie Chart
734 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
■ 2dPie. The 2dPie chart type is functionally the same as the 3dPie type, but
without the illusion of depth. A sample 2dPie chart appears in Figure 207.

Scatter Charts
■ 2dScatter. A scatter chart—a chart with the 2dScatter type—displays the

distribution of data according to two attributes. This is useful for probability
distributions, among other applications. The category axis must contain
numeric, as opposed to date or text data. This makes the 2dScatter type
unsuitable for conversion to other chart types such as bar, line, or pie. For this
reason, the 2dScatter type does not appear in Type picklists, and a 2dScatter
chart does not have a Type picklist. A 2dScatter chart appears in Figure 208.

Figure 207. 2dPie Chart
Version 7.5.3, Rev. A Siebel Tools Reference 735

Special-Purpose Applets and Controls

Chart Applets
Figure 208. 2dScatter Chart
736 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
Configuring Chart Applets
A chart is built as an applet containing one or more Chart object definitions. The
Chart object type is a child of applet. The Chart object type has Chart Element
children. This section describes how chart applets are configured.

You can also use the Chart Applet Wizard to create chart applets. See “Using the
Chart Applet Wizard” on page 751.

Business Component Mapping
A chart applet has, like all applets, a business component identified in its Business
Component property. Records in this business component—subject to the current
view, the current query, and visibility considerations—provide the data displayed in
the applet. In the case of a chart applet, specific fields are used to provide the data
for the category, data point, and series axes. The correspondence between axes and
fields is specified in properties in the Chart object definition.

In the simplest case—a single bar or line graph, with no series axis—a category field
and a data point field are specified. Pairs of category and data point field values are
plotted as points or bars. If multiple records have the same category value, their
data point values are added together.
Version 7.5.3, Rev. A Siebel Tools Reference 737

Special-Purpose Applets and Controls

Chart Applets
The Oppty Chart Applet - Source Analysis applet provides an illustration of this
process (Figure 209).

Figure 209. Oppty Chart Applet - Source Analysis
738 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
This applet displays the number of opportunities on the data point axis plotted
against the source of the opportunity (referral, magazine article, Web site, and so
on) on the category axis. To generate the data required for the curve, the Source field
in each record is checked and the number of opportunities for each distinct source
value is tallied. The result is a two-row temporary table with a column for each
source, as shown in Figure 210.

For a multiple-curve chart, a row is added to the temporary table for each curve in
the series (Figure 211).

Figure 210. Temporary Table for Single-Curve Chart Data

Figure 211. Multiple-Curve Chart
Version 7.5.3, Rev. A Siebel Tools Reference 739

Special-Purpose Applets and Controls

Chart Applets
The temporary table for a multiple-curve chart is illustrated in Figure 212.

To define the data mapping from the business component into the chart applet, you
need to define the following properties in the Chart object:

■ Category Field. Contains the name of a text or date field in the business
component (except for scatter charts, which use a numeric category field).
When the business component records are scanned, the different values found
in this field are mapped into different categories. These values are displayed on
the chart’s X-axis labels.

■ Data Point Field. Contains the name of a numeric field in the business
component, or is unspecified. If specified, the value in this field in each record
is added to the total for the category field value in the same record. If a data point
field is not specified, the count for the corresponding category field is
incremented rather than adding the data point value to the total for the category
field. These counts or totals determine the height along the Y-axis of a bar or line
curve point for each unique category field value in the curve. Rather than a total
or a count, some other function (specified in the Data Function property) may
determine the use of the data point field data.

Figure 212. Temporary Table for Multiple-Curve Chart Data
740 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
■ Series Field. Contains the name of a text field in the business component, or is
unspecified. When the business component records are scanned, the different
values found in this field are mapped into different curves. These values are
displayed on the chart’s legend labels.

NOTE: The maximum number of Series cannot exceed 50 when running the chart.
If it does exceed 50, an error message is displayed. The user may have to run
another query that results in less than 50 Series.

■ Data Function. The Data Function property determines how the data point field
values are converted into the new table’s cell values. Possible values are Sum
(simple addition), Count (number of occurrences of a cell value), Average
(average value per record), and Plot (different from Count only in that when a
cell is empty, it is charted as NULL instead of 0).

The preceding descriptions cover the use of these properties for the most general
cases. There are a number of special cases in which these properties are configured
differently than described. Some special case configuration scenarios are described
in the sections that follow. For descriptions of the properties, see Object Types
Reference.
Version 7.5.3, Rev. A Siebel Tools Reference 741

Special-Purpose Applets and Controls

Chart Applets
Configuring the Picklists
A chart applet typically provides one or more picklists along the upper edge that
allow the user to reconfigure the chart’s presentation or use of data. These picklists
are illustrated in Figure 213.

These picklists are described as follows:

■ Type picklists. This is the most common of the four picklists, and appears in most
chart applets. It provides the user with the means to select a different type of
chart for the same data, such as a pie chart instead of a bar chart, or a
two-dimensional line chart instead of a three-dimensional one. The chart types
are described in detail in “Chart Layout Options” on page 722.

The options for the Type picklist are specified in the Picklist Types property of
the Chart object definition, as a comma-separated list of chart type names such
as the following:

Figure 213. Picklists in a Chart Applet

Show picklist

By picklist Type picklist
742 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
3dBar,3dStackedBar,3dPie,3dHorizBar,2dBar,2dStackedBar,2dPie,
2dHorizBar

There cannot be any spaces between the elements in the comma-separated list.

The default type—the chart type to appear when the chart is initially displayed—
is specified in the Type property. Charts without a Type picklist use the Type
property to specify the chart type of the chart; in that situation the chart type
cannot be changed by the user.

■ Show picklists. This picklist allows the user to change what is displayed on the Y
axis. The choices available depend on the configuration of certain properties in
the Chart object definition. The Show picklist displays a selection list of field/
function combinations which determines what values are plotted along the Y
axis.

For information on configuring the Show picklist, refer to “Configuring Show
Picklists” on page 744.

■ By Picklist. This picklist allows the user to change what is displayed on the X
axis. This can provide any one of three roles, depending on the configuration of
certain properties in the Chart object definition:

■ In period Charts, the By picklist is populated with different periods. This
allows the user to select from a list of possible X-axis periods for calendar
(day/week/month/quarter/year) data. This requires selection options to be
specified in the Picklist Periods property in the Chart object definition.

■ When a list of source fields is specified rather than a single source field, the
picklist allows the user to choose which source field populates the X axis.

■ It can allow the user to invert the X and Z axes, so the user can see the data
from a source field in a business component displayed along the X or Z axis
per the picklist selection.

For information on configuring the By picklist, refer to “Configuring the By
Picklist” on page 746.

■ Second “By” picklists. This picklist allows the user to choose which source field
populates the Z axis. For information on configuring the second By picklist, refer
to “Configuring the Second By Picklist” on page 747.
Version 7.5.3, Rev. A Siebel Tools Reference 743

Special-Purpose Applets and Controls

Chart Applets
Each of the four picklists requires a corresponding control of type ComboBox, as a
child object definition of the chart applet. Each has required values in the Name and
MethodInvoked properties, as detailed in Table 48.

Configuring Show Picklists
The Show picklist (the combo box control named ChartPickfunction) can be
configured to display a selection list of field/function combinations, the selection
from which determines what values are plotted along the Y axis. Multiple
combinations of source field and function are provided in the selection list. The Y
axis title is obtained from the text in the user’s Show picklist selection.

To configure the Show picklist, the following three properties of the Chart object
definition are used:

■ Data Point Field. You enter a comma-separated list of source fields, one for each
entry that is to appear in the Show picklist. The first entry in the list is the
default. If only one field name is entered, it applies to all functions in the
picklist.

■ Data Function. You enter a comma-separated list consisting of the following
function names: SUM, COUNT, AVERAGE, or PLOT. PLOT indicates that the Y
values are derived directly from the values in the source field. The order in the
comma list determines the association with a data point field and title (picklist
function). If the comma-separated list is omitted or it contains fewer elements
than the list of names in the Picklist Functions property, the list
Sum,Count,Average,Plot is substituted.

■ Picklist Functions. You enter a comma-separated list of Y-axis titles, which are
also the text which appears in the picklist. The order in the comma list
determines the association with a data point field and data function.

Table 48. Name and MethodInvoked Properties for Four ComboBox Controls

Picklist Control Name MethodInvoked

Type ChartPicktype PickChartType

Show ChartPickfunction PickYAxis

By ChartPickby PickXAxis

By #2 ChartPickby2 PickZAxis
744 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
For example, you could configure a Show picklist with explicit syntax that offers
three choices: Number of Opportunities, Opportunity Revenue and Opportunity
Expected Revenue. This is configured with the property settings shown in Table 49.

As can be seen from the table, there are three values in each comma-separated list.
The first entry, Number of Opportunities, performs a Count function on the Name
field. The second entry, Opportunity Revenue, performs a Sum function on the
Revenue field. The third entry, Opportunity Expected Revenue, performs a Sum
function on the Expected Revenue field.

An example of a Show picklist configured with implicit syntax and the standard
function list is in the Lead Source Analysis chart in the Opportunity New Business
Analysis view in Siebel Sales (Oppty Chart Applet - New Business). The picklist
offers three choices: Number of Opportunities, Opportunity Revenue, and Average
Opportunity Revenue. This is configured with the property settings shown in
Table 50.

The value of Revenue in the Data Point Field property applies to all entries in the
picklist.

Table 49. Show Picklist Properties for Sales Method Bar Chart

Property Value

Picklist Functions Number of Opportunities, Opportunity Revenue, Opportunity
Expected Revenue

Data Function Count,Sum,Sum

Data Point Field Name,Revenue,Expected Revenue

Table 50. Show Picklist Properties for Lead Source Analysis Chart

Property Value

Picklist Functions Number of Opportunities,Opportunity Revenue, Avg Opportunity
Revenue

Data Function Count

Data Point Field Revenue
Version 7.5.3, Rev. A Siebel Tools Reference 745

Special-Purpose Applets and Controls

Chart Applets
The value of Count in the Data Function property is unnecessary; it could be left
blank instead. Whenever the number of entries in the Data Function property is not
the same as the number in the Picklist Functions property, the system supplies a
standard Data Function list. This list is the following:

Count,Sum,Average,Plot

The first picklist entry, Number of Opportunities, performs a Count function on the
Revenue field. The second entry, Opportunity Revenue, performs a Sum function on
the same field. The third entry, Avg Opportunity Revenue, performs an Average
function.

This means of configuring Show picklist behavior predates the ability to specify
triplets of name, function, and field, and is more restrictive. It has been retained for
backwards compatibility with earlier versions of Siebel applications. Generally it
makes more sense to explicitly specify the values in the three properties.

Configuring the By Picklist
The contents of the Category Field property in the Chart object definition determine
the behavior of the By picklist (ChartPickBy combo box control), as follows:

■ Calendar increments in the picklist and X axis. If the Category Field property
contains the name of a single field that has a DTYPE_DATE data type, the X axis
displays calendar increments and the chart is considered a period chart. In this
situation, the picklist is populated with calendar increment options, including
user defined periods (specified in View > Site Map > Application
Administration >Periods) such as Day, Week, Month, Quarter, and Year.

For example, in the New Business Analysis chart, the category field is Created
(the date of creation of the record, hence of the opportunity). As a result, the
category axis contains date increments, based on the increment the user selects
in the By picklist.
746 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
■ Text labels in the X axis, category and series field names in the picklist. If the
Category Field property contains the name of a single text field from the business
component, and a series field has also been specified (in the Series Field
property), the By picklist is populated with the names of the category field and
the series field. The user can select either field to populate the X axis with labels
derived from the contents of that field; the unselected field populates the legend
box (Z axis) with labels. The category field is the default, and is initially
displayed on the X axis.

For example, the chart in the Service Request Product Analysis view in Siebel
Service has a category field of Product and a series field of Severity. When the
chart is initially displayed, the X axis labels are product names and the legend
labels are severity levels. However, the field names Product and Severity appear
in the By picklist, and the latter selection allows the user to display severity
levels in the X axis and product names in the legend.

■ Text Labels in the X axis, multiple field names in the picklist. If the Category Field
property contains a comma-separated list of field names, the user is provided
with this list of fields at run time in the By picklist. The user’s selection
determines the field which populates the X axis. The first value in the comma-
separated list is the default. (You should avoid blank spaces before or after field
names in the list.)

■ Numeric values in the X axis, no picklist. If the Category Field property contains the
name of a single numeric field, the X axis is populated with numeric increments,
similar to the process of generating increments for the Y axis. In this situation,
the By picklist is not shown.

For example, the Probability Cluster Analysis chart in the Opportunity
Probability Cluster Analysis view has a category field of Rep % (the probability
of a sale). In this chart, probability is plotted against the X axis, the X axis
increments are percentages from 0% to 100%, and no By picklist appears.

Configuring the Second By Picklist
The contents of the Series Field property in the Chart object definition determine
the behavior of the second By picklist (the combo box control named
ChartPickBy2), as follows:

■ If the Series Field property is blank, all records are mapped into a single series.
Version 7.5.3, Rev. A Siebel Tools Reference 747

Special-Purpose Applets and Controls

Chart Applets
■ If the Series Field property contains the name of a field from a business
component, the Z axis (legend) is populated with labels derived from the
contents of that field.

■ If the Series Field property contains a comma-separated list of field names, the
user is provided with this list of fields at run time in the second By picklist. The
user’s selection determines the field which populates the Z axis. The first value
in the comma-separated list is the default.

Charts with Multiple Curves Plotted Against One Y Axis
Multiple line graph curves can be plotted against the same Y axis, based on different
source field/function combinations. The name for each curve appears in the legend.
For example, you may want revenue, expected revenue, and net profit to appear as
superimposed curves on the same line graph. To accomplish this, set the following
property values in the Chart object definition:

■ Data Point Field. Provide a comma-separated list of source fields, one for each
curve to appear in the graph.

■ Data Function. Provide a comma-separated list consisting of some of the
following function names: SUM, COUNT, AVERAGE, or PLOT. PLOT indicates
that the Y values are derived directly from the values in the source field. The list
of function names must have the same number of entries as the Data Point Field
list. The order in the comma list determines the association with a data point
field and title.

■ Picklist Functions. Provide a comma-separated list of Y-axis titles, which identify
the individual curves in the Legend. The list of titles must have the same number
of entries as the Data Point Field list. The order in the comma list determines the
association with a data point field and data function.

■ Series Field. Remove any existing value(s) from this property; it must be blank.
Otherwise, the multiple curves are converted to a Z axis.

■ Multi Data Point. Set to TRUE. This indicates that multiple curves are to be
plotted.

You should also remove the Show combo box and its label in the Applet Web Editor.
748 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
Charts with Two Y Axes
Two line graph curves can appear in the same Chart, plotted against different Y axes
(one to the left of the graph, the other to the right). Any field/function combination
can be used on the left Y axis, and likewise for the right. To accomplish this, set the
following property values in the Chart object definition:

■ Data Point Field. Specify two fields, separated by a comma. The first is for the left
Y axis, the second is for the right Y axis.

■ Data Function. Specify two functions, separated by a comma. The first is for the
left Y axis, the second is for the right Y axis.

■ Type. Set to Combo.

Axis Points—Limiting and Sorting
The number of X axis (category) or Z axis (series) labels can be limited to some
predefined number. This can be useful if you are interested in displaying only the
N highest or N lowest values for some field or calculated Y value. For example, you
could display the 10 highest revenue accounts by charting the Revenue field in
descending order and limiting the X axis to 10 data points. This is accomplished
using two properties of the axis label Chart Element for the appropriate axes, as
follows:

■ Divisions property (X or Z axis). Enter an integer to limit the number of X axis or
Z axis labels to the number you enter. Note that the AxisId property must be
either XAxis or ZAxis, and the Type property must be AxisLabel.

■ SortSpecification property (Y axis). Enter a value of Ascending or Descending.
Note that the AxisId property must be set to YAxis and the Type property must
be AxisLabel.

You can set up a sort specification on the Y axis independent of limiting the number
of X or Z axis divisions. A sort specification on Y will order the data points
regardless of whether you are limiting the display to the first N points. The converse
is not true, however; it would not make sense to set a number of X or Z axis
divisions without also setting a sort specification on Y.
Version 7.5.3, Rev. A Siebel Tools Reference 749

Special-Purpose Applets and Controls

Chart Applets
You also can sort on X axis or Z axis labels instead of Y axis values. To accomplish
this, you set the Sort Specification in the X axis (or Z axis) label Chart Element
object definition rather than in the Y axis label. For example, if the X axis is
displaying country names, they can appear alphabetically from left to right. This is
different from sorting on Y axis values, which are numeric values from a field in a
business component or function based on that field.

Chart Element Object Type
Chart Element is a child object type of Chart. The following types of Chart Elements
(as specified in the Type field in the Chart Element object type) are supported:

■ AxisLabel. Displayed along each axis, with one label for each division of the axis.

■ AxisLineGrid. Grids make it easier to comprehend a Chart. You can set various
grid properties, such as grid color, width, and visibility, on an axis-by-axis basis.

■ AxisTitle. Displayed along each axis, with one title per axis.

■ Graphic. A line, rectangle, or ellipse used to emphasize a region of the Chart.

■ Legend. The list of colored rectangles with accompanying category labels on the
left side of the Chart.

■ Plot. The area that contains the graphs, usually in the center of the Chart.

■ Title. The large string of text, usually at the top of a Chart.

■ Font, Color, and Size. For most Chart Elements that contain text, you can set such
text properties as font, color, and size.

■ Fill color. You can set the fill color of the Chart and Plot Chart Element types.

The properties of the Chart Element that apply to the axis label for the X axis
(Coordinates, Display Format, Divisions, List Of Values, Sort Specification, and
Text) should not be used when specifying a list of X axis source fields, as they can
be relevant only for one X axis field. Also, the text of the X axis title is determined
dynamically from the combo box selection if the By combo box provides a list of
source fields. Whatever is in the Text property in the AxisTitle chart element for the
X axis is overridden at run time.

The same restrictions are relevant for the Z axis.
750 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
Making X-Axis Labels Vertical
You can make x-axis labels vertical so that they do not overlap with each other. To
do this, set the Vertical property to TRUE for the Chart Element object whose Axis
Id property is set to XAxis.

Sizing Chart Images
You can change the size of a chart applet by setting the HTML Width and HTML
Height properties (in pixels) for the Chart control child object of the applet.

The default values are 1012 for HTML Width and 560 for HTML Height.

Performance Considerations
When a chart is traversing records in the business component, its progress is
indicated at the bottom of the window. Since traversing all of the records of a
business component can be time-consuming, charts are not well suited for data sets
larger than 1,000 records.

Various factors affect the performance of charts in Siebel applications:

■ The number of records in the business component

■ Whether the chart needs to search a multi-value group to obtain its data

■ Whether a data point field is specified

■ If the data point field is a currency field, the number of records whose currency
is not the functional currency

■ The processor, operating system, and database system

Using the Chart Applet Wizard
The following procedure identifies the steps required to create a new chart applet
using the Chart Applet Wizard.
Version 7.5.3, Rev. A Siebel Tools Reference 751

Special-Purpose Applets and Controls

Chart Applets
To create a new chart applet

1 Choose File > New Object.

The New Object Wizard dialog box appears with the list of objects that can be
created through wizards.

2 Select the Applets tab and then select the Chart Applet icon.

The Chart Applet Wizard appears.

3 In the General dialog box, complete the following information and then click
Next:

■ Project

■ Business Component

■ Name

■ Display Name
752 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
4 In the Y Axis dialog box, enter the options that will be displayed on the Y axis
and then click Next.

For more information about the Y Axis, see “Axis Terminology” on page 720.
Version 7.5.3, Rev. A Siebel Tools Reference 753

Special-Purpose Applets and Controls

Chart Applets
5 In the X Axis dialog box, enter the necessary information for the X Axis and then
click Next.

For more information about the X Axis, see “Axis Terminology” on page 720.
754 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Chart Applets
6 In the Z Axis dialog box, enter the necessary information, and then Click Next.

For more information about the Z Axis see “Axis Terminology” on page 720.

7 In the Chart Title dialog box, enter a title, and then click Next.

8 In the Web-Layout-General dialog box, select the template that will be associated
for the base read-only mode and then click Next.

9 In the Finish dialog box review the information and then click Finish.

The Chart Applet Wizard creates the necessary object definitions and sets the
property values based on information you entered in the wizard. The Web
Applet Layout Editor opens allowing you to map controls to placeholders in the
Web template.

For more information, see “Editing the Layout of Web Page Objects” on
page 579.
Version 7.5.3, Rev. A Siebel Tools Reference 755

Special-Purpose Applets and Controls

Tree Applets
Tree Applets
A tree applet is used to create a view, called an explorer view, that allows the user
to navigate hierarchically through a structured list of records of related business
components. An example of a tree applet and explorer view in Siebel Service is the
Service Requests applet in the Service Request Explorer view, shown in Figure 214.

This view (SR Explorer View) contains a tree applet (SR Tree Applet) in the left side,
and one of various predefined list applets in the right side. The particular list applet
that appears on the right depends on which node is selected in the tree on the left.
For example, if the user double-clicks on the Change Requests folder in the tree
hierarchy, the list applet on the right changes to display change requests records.

A tree applet in an explorer view is similar in operation to the Object Explorer and
Object List Editor in Siebel Tools. The user may expand and collapse folders in the
tree applet, and view the records in that folder in the list applet. The hierarchy
displayed in the tree applet represents master-detail relationships between records
of different business components.

Figure 214. Service Requests Explorer View
756 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Tree Applets
For example, when the user expands a service request (document icon) by double-
clicking, a set of folders appears hierarchically beneath it including Activities,
Attachments, Change Requests, Solutions and so on. When the user expands one of
these child folders, a list of records appears of the corresponding business
component. If the user expands the folder for a service request, and then expands
the Activities folder beneath it, the list of records displayed is the set of Activities
for that service request. In the master-detail relationship between service requests
and Activities, these Activity records are detail records of the master service request
record that was expanded.

The user can also add or associate detail records of various kinds to particular
master records. For example, the user could navigate through the hierarchy to the
Solutions folder beneath a particular service request, click in the list applet, and
select New Record from the applet-level menu to associate a solution record from
an association applet. The product solution record would become a detail record of
the service request.

A tree applet in an explorer view uses the set of master-detail relationships
implemented in the business object assigned to the view. As described in “About
Business Objects” on page 418, a business object implements a business model or
entity-relationship diagram, and specifies the set of master-detail relationships
between the business components it includes. This makes it possible to arrange the
records of these various business components hierarchically, which can be a very
useful feature.
Version 7.5.3, Rev. A Siebel Tools Reference 757

Special-Purpose Applets and Controls

Tree Applets
Figure 215 shows the full set of master-detail relationships in the Service Request
business object.

Figure 215. Service Request Business Object
758 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Tree Applets
The portion of the Service Request business object used in the Service Request
Explorer view is shown in Figure 216.

The correspondence between business components in the Service Request business
object and folder names in the tree applet is indicated in Table 51.

Figure 216. Service Request Business Object Components Used in SR Explorer View

Table 51. Business Components Corresponding to Folder Names

Business Component Folder Name in Tree Applet

Service Request Service Requests

Action Activities

Service Request Attachment Attachments

Product Defect Change Request

Order Entry - Orders Service Orders

Account External Product Service Profile

Solution SR/PD Solutions
Version 7.5.3, Rev. A Siebel Tools Reference 759

Special-Purpose Applets and Controls

Tree Applets
The tree applet and explorer view for service requests can be reconfigured to
include additional business components. For example, Contacts, Customer Surveys,
and Service Agreements folders could be added as child folders of Service Requests,
and a Line Items folder could be added as a child of RMAs/Service Orders. However,
only business components from the business object (Service Request in this case)
can be added in an explorer view based on that business object. Furthermore, a
business component can only be added as the immediate child folder of the
business component that is its master in the business object. For example, you
could add Order Entry Line Items as a child of RMAs/Service Orders, but not of
Activities.

Configuring Tree Applets and Explorer Views
A tree applet appears in the left sectors of an explorer view. The applet has a tree
object definition as a child. The tree object definition has tree node children. Each
tree node child object definition implements one folder symbol. These object types
are described in greater detail below.

View
An explorer view has a tree applet mapped to it as a View Web Template Item.
However, there are no list applets mapped to it. The list applet is determined
dynamically by the folder (Tree Node) that is currently highlighted by the user. A
significant property of the View object the Business Object property. The business
object selected determines which business components can be displayed, and
which business components can be indicated as child nodes of which other nodes.

Tree Applet
A tree applet has no special property settings in the applet object definition, other
than the class, which is set to CSSFrameTree. The Applet object type has the
following important property settings:

■ Class. Set to CSSFrameTree. This is required in order for the tree applet
functionality to work.
760 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Tree Applets
■ Business Component. Points to the same business component as the top-level tree
node.

NOTE: Search specifications on tree applets are not supported.

Tree
The Tree object definition provides only a name; it is an object definition to which
tree nodes can be attached, and which itself can be attached to the applet object
definition. It always has the name “Tree.” The Tree object type is similar to the List
object type used in list applets, in that it serves as an attachment point for child
object definitions.

Tree Node
Each folder symbol is implemented using one tree node object definition. This
includes the top-level node (Service Requests in the example). All of the tree node
object definitions are immediate child object definitions of the tree object definition.
There is no hierarchy of child and grandchild tree node object definitions (reflecting
the hierarchy in the tree applet) under the tree; this is not feasible in the object
definitions hierarchy in the repository. Instead, each tree node’s hierarchical
position in the tree applet is specified in the Position property of the tree node object
definition.

The Tree Node object definition has the following important properties:

■ Display Name. This property specifies the name of the tree node (folder) as it will
appear in the tree applet in Siebel applications. The display name appears to the
immediate right of the folder symbol.

■ Applet. This property specifies the applet that is opened in the right half of the
view when the user opens the corresponding folder. Generally a list applet is
specified. The applet must be based on a business component that is in the
appropriate hierarchical position in the business object.
Version 7.5.3, Rev. A Siebel Tools Reference 761

Special-Purpose Applets and Controls

Tree Applets
■ Position. The tree node’s hierarchical position relative to other tree nodes, and
its sequence on its level, are specified with this property. The Position value
consists of an integer, or a set of integers separated by periods, such as 1.1.2.
The top-level node (Service Requests in the example) is specified as having a
position of 1. All immediate child nodes of the top-level node have values of the
form 1.x, where x specifies the node’s order relative to other nodes on the same
level. For example, in order for the Activities folder to appear after the
Attachments folder rather than before it, their Position values (1.1 and 1.2,
respectively) should be swapped.

To attach a child node at the third level, you specify a Position value for the new
node with its first two integers matching the position of the node to attach it to.
For example, to attach a node to the RMAs/Service Orders node (currently 1.4),
you would give the new node a position of 1.4.1. In general, the rightmost digit
in a position specifies its order relative to others on the same level, and all other
digits specify the position it attaches to.

■ Business Component. This needs to be set to the same business component as is
specified in the right-side applet.

■ Label Field. This property points to the name of the field that is used to populate
the names in the record list that appears when the node is expanded by the user.
For example, the Order Number field would provide the values for the RMAs/
Service Orders node, and the Description field for the Activities node.

■ Selected Bitmap Index. This should be set to the value 5, which corresponds to
the folder symbol.

Using the Tree Applet Wizard
The following procedure identifies the steps required to create a new tree applet
using the Tree Applet Wizard.

NOTE: The Tree Applet Wizard creates the tree object but does not create Tree Node
child objects. You must add a Tree Node object for each applet that you want to
appear in the Explorer section of the view, including the top-level node, such as
service requests. See “Tree Node” on page 761 for more information.
762 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Tree Applets
To create a tree applet using the Tree Applet Wizard

1 From the Tools main menu, choose File > New Object.

The New Object Wizard dialog box appears.

2 Select the Applets tab and then select the Tree Applet icon.

3 In the General dialog box, enter the following information, and then click Next:

■ Project

■ Business Component

■ Name

■ Display Name

4 In the Web Layout-General dialog box, select the Web template to use for the
tree applet, and then click Next.

Some templates used for tree applets are:

■ Applet Tree

■ Applet Tree 2

■ Applet Tree Marketing

5 In the Finish dialog box, review the information, and then click Finish.

The Tree Applet Wizard creates the tree object and sets the required properties
based on the information you entered.
Version 7.5.3, Rev. A Siebel Tools Reference 763

Special-Purpose Applets and Controls

Tree Applets
Tree Applets in the Applet Web Template Layout Window
Tree applets can be created and modified in the Web Layout Editor. When you drag
a TreeControl onto the applet, the tree controls and the Tree object definition are
created.

When you right-click over the tree control, a pop-up menu appears with the
following tree-specific options:

■ Select Tree option. Allows you to copy and paste the tree control into another
applet.

■ Create New Tree Node option. Adds a new tree node to the tree. The tree node is
created at the top level, and is subsequently moved using the Move Selected Tree
Node option.

■ Move Selected Tree Node option. Allows you to change the position of the tree
node in the tree. You first click on the tree node you wish to move. Then you can
use up, down, left, and right arrow keys, with the SHIFT key depressed, to move
the node up or down a level or change its position within its level.

The Position property on all of the nodes is automatically updated for all operations.

Pressing the DELETE key when the tree appears in the Applet Web Template Layout
window deletes the currently selected tree node. The Undo and Redo options in the
Edit menu are active for all tree manipulation operations in the Applet Web Editor.

Recursive Trees
In a recursive tree, all levels in the hierarchy are of the same object type. For
example, the Account Explorer Applet consists of a tree applet in which the only
node is for the Account business component, and subaccounts appear beneath
accounts which have them. Recursive trees are provided in standard Siebel
applications for accounts, activities, campaigns, opportunities, positions, and
various other business components in which records can have subrecords. Almost
any number of levels of subrecords are possible in a recursive tree.
764 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

File Attachment Applets
In order for a recursive tree to be implemented, the business component used must
contain a pointer to the record of the same type at the next level up in the hierarchy.
In the accounts tree example, the Account business component has a Parent
Account Id field which points to its parent account. A Link object definition must
exist that references this field in its Destination Field property. In the accounts
example, this link is Account/Account.

A recursive tree is implemented with a tree object definition to which only one tree
node object definition is attached. In the Tree Node object definition, the following
special properties are set:

■ Recursive. This property is set to TRUE to indicate that this is a recursive tree.

■ Recursive Link. This property points to the link object definition that specifies the
one-to-many relationship between the master business component and itself.

■ Root Search Spec. This property contains a search specification expression that
identifies how the list of top-level records is derived. Generally the top-level
records are those that have nothing in the parent Id field, and therefore the
search specification is of the form “[Parent xxx Id] is NULL,” for example,
“[Parent Account Id] is NULL.”

File Attachment Applets
A file attachment applet (or attachment applet) provides access to external
documents, such as spreadsheets, word processing documents, and slide
presentations, from within Siebel applications. A file attachment applet provides the
following capabilities:

■ Allows the user to open a document of any Windows-supported file type by
clicking on its name in a list.

■ Allows the user to add document files to a list, edit them, or remove them.

■ Provides synchronization and shared access support for attached documents.
Version 7.5.3, Rev. A Siebel Tools Reference 765

Special-Purpose Applets and Controls

File Attachment Applets
An example of a file attachment applet appears in Figure 217.

Figure 217 shows the Account Attachment view. The upper applet is the standard
Account Form Applet. The lower applet is a file attachment applet called Account
Attachment Applet. There is a master-detail relationship between the account and
the list of account attachments, so that all file attachments for the current account
are listed in the lower applet.

Each document is represented by a row in the attachments list. The document’s
filename, local/server status, file size, Windows file type (filename extension), and
date of last update are displayed. Additionally, the name of each file appears in
underlined, colored text, indicating that the file may be opened in the appropriate
Windows application by clicking on the name.

To add a document to the attachment list

1 On the Attachments list, choose the menu button and choose New Record.

The Attachments list now shows the following:

Figure 217. File Attachment Applet: Account Attachment View
766 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

File Attachment Applets
2 Select the Browse button to display the Choose File dialog box.

The Windows Choose File dialog box appears.

The Siebel application searches for files to be attached in the directory specified
in the Start in field of the program icon's Properties dialog (Start >Programs >
Program_Name > Program_Icon). If a user chooses a different folder when
attaching a file, the Siebel application searches for the file in this folder the next
time the user attaches a file.
Version 7.5.3, Rev. A Siebel Tools Reference 767

Special-Purpose Applets and Controls

File Attachment Applets
Configuring Attachment Applets
Attachment applets use functionality built into the Siebel file system. Various
specialized objects and methods are provided in the Siebel File System that provide
the attachment support and synchronization capabilities:

■ An attachment applet is based on an attachment business component. The
details of attachment business components are discussed in the section
“Configuring Attachment Business Components” on page 769.

■ An attachment applet has the Class property set to either CSSFrameListFile or
CSSFrameFile. CSSFrameListFile is used for attachment list applets.
CSSFrameFile is used for attachment form applets.

■ The Name list column or text box control has a Detail Applet property setting of
File Popup Applet. This refers to the dialog box that appears when you click on
the ellipsis button in the list column or text box.

Several of the list columns or controls in the applet are based on corresponding
fields in the attachment business component. This business component is described
in “Configuring Attachment Business Components” on page 769. These will
typically include those listed in Table 52.

Table 52. List Columns or Controls in an Attachment Applet

 Display Name Field Type

Name xxxFileName TextBox

Local Dock Status CheckBox

Request xxxFileDockReqFlg CheckBox

Size xxxFileSize TextBox

Type xxxFileExt TextBox

Modified xxxFileDate TextBox

Auto Update xxxFileAutoUpdFlg CheckBox
768 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

File Attachment Applets
The “xxx” prefix refers to a standard prefix found in the names of the fields in the
attachment business component. For example, for account attachments the prefix
is “Accnt” and the actual field names referenced from the applet would be
AccntFileName, AccntFileDockReqFlg, and so on.

Configuring Attachment Business Components
The Business Component property of the attachment list applet identifies the
business component that the Siebel file system uses to store the attachment list
data. For the Account Attachment Applet, this business component is called
Account Attachment. The attachment business component must adhere to the
following requirements:

■ The Class property of the Business Component object must be set to CSSBCFile.

■ The Table property must refer to an attachment table, as described in the section
“Configuring Attachment Tables” on page 771. In the Account Attachment
Applet, this table is S_ACCNT_ATT.

■ Two Business Component User Prop object definitions must be created as
children of the attachment business component, as follows:

■ DefaultPrefix user. This is the text of the prefix used in the names of the Siebel
File Engine-based field object definitions. These are fields which are based
on the base table for the business component. (There may be fields which
are based on a joined table, and these will have a different prefix.) For the
Account Attachment business component in the example, the prefix is
“Accnt,” which appears in field names such as AccntFileName and
AccntAutoUpdFlag.

■ FileMustExist user. This is a TRUE/FALSE value indicating whether or not the
user can enter the name of a file to be provided later. Typically this is set to
TRUE, indicating that the file must already exist in order to add it as an
attachment.

■ The FileDockReqFlg field must have the value for the predefault property set to
“N”. The FielDockReqFlg maps to the required column FILE_DOCK_REQ_FLG in
the attachment table.
Version 7.5.3, Rev. A Siebel Tools Reference 769

Special-Purpose Applets and Controls

File Attachment Applets
The field names of file engine-supplied fields have to adhere to a special format, and
map to specific column names in the attachment table. These names consist of the
prefix, as specified in the DefaultPrefix user property, followed by a required set of
suffixes. These field names, corresponding columns, and data types are listed in the
Table 53.

Table 54 lists a non-file engine field that will usually be present, although it is not
required.

Table 53. Fields in an Attachment Business Component

Name Column Type Text Length

xxxFileAutoUpdFlg FILE_AUTO_UPD_FLG DTYPE_BOOL 1

xxxFileDate FILE_DATE DTYPE_DATETIME

xxxFileDeferFlg FILE_DEFER_FLG DTYPE_TEXT 1

xxxFileDockReqFlg FILE_DOCK_REQ_FLG DTYPE_TEXT 1

xxxFileDockStatFlg FILE_DOCK_STAT_FLG DTYPE_TEXT 1

xxxFileExt FILE_EXT DTYPE_TEXT 10

xxxFileName FILE_NAME DTYPE_TEXT 220

xxxFileRev FILE_REV_NUM DTYPE_ID 15

xxxFileSize FILE_SIZE DTYPE_NUMBER

xxxFileSrcPath FILE_SRC_PATH DTYPE_TEXT 220

xxxFileSrcType FILE_SRC_TYPE DTYPE_TEXT 30

Table 54. Non-File Engine Field in an Attachment Business Component

Name Column Type Calculation

Dock
Status

(calculated) DTYPE_BOOL IIf ([AccntFileDockStatFlg] = “N” OR
[AccntFileDockStatFlg] IS NULL,“N”,“Y”)
770 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

File Attachment Applets
Additional fields can be included as needed. For specialized uses of attachments,
such as an image control, the file engine fields may be present in addition to the
fields from a standard business component (often through a join). For example, a
Product or Literature business component can contain file engine fields to support
display of product picture or brochure picture bitmap images.

Multiple sets of file engine fields from different tables can be incorporated in the
same business component. For example, literature attachments can have sub-
attachments, with the subattachments derived from an intersection table or
extension table. The field name prefix must be different for each table.

Configuring Attachment Tables
Attachment tables provide the underlying data storage for the attachment business
components. Unlike the attachment business component, which can support
purposes in addition to file engine functionality, the attachment table stores file
engine data only.

Users will not populate the attachment table directly. Rather, users are provided
with an initially empty attachment table, and populate it one file at a time using
drag and drop or the browser dialog box in the corresponding file attachment
applet.

Table 55 lists the columns that appear in an attachment table. Note that the columns
whose names begin with FILE_ are required columns, and must be named as
specified in the table. The User Name values can be the same as or different from
those listed.

Table 55. File Columns in an Attachment Table

Name Default User Name Type Physical Type Length

FILE_AUTO_UPD_FLG File Auto Upd Flg Data (Public) Character 1

FILE_DATE File Date Data (Public) Date Time

FILE_DEFER_FLG File Defer Flg Data (Public) Character 1

FILE_DOCK_REQ_FLG File Dock Req Flg Data (Public) Character 1

FILE_DOCK_STAT_FLG File Dock Stat Flg Data (Public) Character 1
Version 7.5.3, Rev. A Siebel Tools Reference 771

Special-Purpose Applets and Controls

Pop-Up Windows
Various system columns not related to the file engine will also be present, such as
CREATED, LAST_UPD_BY, and ROW_ID.

A table that has file engine columns must be flagged as such with a TRUE value in
the File property of the corresponding table object definition.

Pop-Up Windows
This section describes how to create pop-up windows and dialog boxes. There are
various scenarios in which pop-up windows are implemented:

■ “Configuring Pop-Up Applets Launched from Applets”

■ “Configuring Pop-Up Wizards” on page 774

■ “Configuring Pop-Up Views Launched from Applets” on page 775

When configuring pop-up windows, consider the following:

■ Pop-up applets must use classes derived from CSSSWEFramePopup. Business
components are not required for the applets. However, if your pop-up applet is
associated with a business component, that business component must be a child
of the business object of the view containing the applet from which the pop-up
window is launched.

FILE_EXT File Ext Data (Public) Varchar 10

FILE_NAME File Name Data (Public) Varchar 255

FILE_REV_NUM 0 File Rev Num Data (Public) Varchar 15

FILE_SIZE File Size Data (Public) Number 22

FILE_SRC_PATH File Src Path Data (Public) Varchar 255

FILE_SRC_TYPE File Src Type Data (Public) Varchar 30

Table 55. File Columns in an Attachment Table

Name Default User Name Type Physical Type Length
772 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Pop-Up Windows
■ One level of pop-up window is supported. If you activate a pop-up window from
within a pop-up window, it replaces the original pop-up window.

■ The More/Less feature is not supported on Pop-up applets. See “More/Less
Mode-Specific Mappings” on page 891 for more information.

Configuring Pop-Up Applets Launched from Applets
This is the typical scenario in which clicking a button on an applet invokes a pop-
up window for editing a set of values, or browsing through a list, and so on.

To configure a pop-up applet

1 Select the applet from which to launch the pop-up window.

2 Create a control for the applet.

3 Set the Method Invoked property of the control to ShowPopup.

4 Expand the Control object, and then select the Control User Prop object.

5 Create three control user properties:

■ Popup. Set to the applet you want to appear. This applet must use a class
derived from CSSSWEFramePopup.

■ Mode. Optional. Mode of the applet, either Base or Edit. If not specified, the
default is Base.

■ Popup Dimension. Optional. Dimension of the pop-up window. The format is
Height X Width, for example 500 X 800. If not specified, the dimensions will
default to the value specified in the applet’s HTML Popup Dimension
property. If that is not specified, the pop-up window dimensions will default
to 600 X 600.

6 Create the pop-up applet.

7 Add controls to the pop-up applet:

■ Cancel. Set the Method Invoked property of the control to CloseApplet or
UndoRecord. This will close the pop-up applet when Cancel is clicked.
Version 7.5.3, Rev. A Siebel Tools Reference 773

Special-Purpose Applets and Controls

Pop-Up Windows
■ OK. Set the Method Invoked property of the control to CloseApplet to close
the applet after you finish processing other calls within your invoked
method. This will close the pop-up applet, and then refresh the parent applet
in the main browser window.

Configuring Pop-Up Wizards
If you want to have a wizard-style set of pop-up applets, the procedure is similar to
configuring a dialog box invoked from an applet control. See “Configuring Pop-Up
Applets Launched from Applets” on page 773.

NOTE: The parent applet must be in Edit mode.

To configure a pop-up wizard

1 In Siebel Tools, select the pop-up applet, expand the Applet object, and then
select the Applet Web Template object.

2 Add multiple templates of type Edit in Siebel Tools to the Applet Web Template.

3 Assign a different value to the Sequence property of each of the templates, in the
order you want them to appear.

4 To navigate between pages, add two controls:

a Previous button:

❏ Set the Method Invoked property to PostChanges.

❏ Add a Control User Prop child object called Sequence with a value of -1.

This posts the changes that the user has made, and then goes back to the
page whose sequence number is one less than the current one.

b Next button:

❏ Set the Method Invoked property to PostChanges.

❏ Add a Control User Prop child object called Sequence with a value of 1.

This posts the changes that the user has made, and then goes to the page
whose sequence number is one greater than the current one.
774 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

Pop-Up Windows
5 On the last template, create a control called Finish that closes the applet, and
then updates the parent applet.

Configuring Pop-Up Views Launched from Applets
A view (rather than a single applet) can be loaded into a pop-up window. This is
not recommended, especially in employee applications. Instead, you should
navigate to a new view in the same window (invoking the GotoView method) rather
than pop up a view in a new window. However, if there is a requirement for this
functionality, perform the following task.

To configure a pop-up view

1 Select the applet from which to launch the pop-up view.

2 Create a control for the applet.

3 Set the Method Invoked property of the control to ShowPopup.

4 Expand the Control object, and then select the Control User Prop object.

5 Create two control user properties:

■ View. Set to the view that you want to pop up.

■ Popup Dimension. Set the dimensions of the pop-up. The format is Height X
Width, for example 500 X 800.

Users must use the browser's Close (X) button to close the window. There is no way
to close the window programmatically.
Version 7.5.3, Rev. A Siebel Tools Reference 775

Special-Purpose Applets and Controls

ActiveX Controls
ActiveX Controls
An ActiveX control is a self-contained program unit that can be run from within
other programs. An ActiveX control typically registers itself in the Windows registry.
In Siebel applications, any registered ActiveX control can be incorporated in an
applet. This provides the means to add one or more specialized features to an
applet, such as a slider or media player. You can also embed entire applications that
are available as ActiveX controls.

NOTE: ActiveX controls will work in most environments, but the programming
environment itself may or may not support it. For example, trying to insert a Siebel
ActiveX application control into an Excel worksheet generates a “Cannot insert
object” error.

Certain third-party ActiveX controls, for example Microsoft Web Browser, Microsoft
Rich Textbox, and CTreeView, do not work with Siebel applications and are not
supported.

Creating DLL and Class Objects That Reference an ActiveX Control
To make an ActiveX control available for use, you must create DLL and Class objects
in Siebel Tools that reference the CAB file containing the control.

To create an ActiveX control

1 Create a CAB file containing the control, if it does not already exist.

Microsoft provides some utilities for doing this.

2 Copy the CAB file to the correct folder.
776 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

ActiveX Controls
a When deploying to a server environment, copy the CAB file to the
<Siebel_install_dir>\SWEApp\public\language_code\applets folder,

where:

<Siebel_install_dir> is the full path to the Siebel Web Applications
installation directory on the Siebel Web Server

language_code is the three-letter code for the language, for example ENU for
US English and JPN for Japanese

b When deploying a CAB file on the Mobile Web Client, copy the CAB file to
the <Siebel_Client_install_dir>\PUBLIC\language_code\applets folder,

where:

<Siebel_Client_install_dir> is the full path to the Siebel Mobile Web Client
root directory

language_code is the three-letter code for the language, for example ENU for
US English and JPN for Japanese

3 In Siebel Tools, select the DLL object, and then add a new record.

4 Fill in the fields as shown in the following table.

5 Select the Class object, and then add a new record.

Field Value

Name User-defined name for the DLL object

Project A currently locked project in the Siebel Repository

File Name File name & version that references the CAB file containing the
ActiveX control, for example:

subman.cab#Version=7,0,0,0

Code or Class Id Class Id of the ActiveX control, for example:

clsid:06314967-EECF-11D2-9D64-0000949887BE
Version 7.5.3, Rev. A Siebel Tools Reference 777

Special-Purpose Applets and Controls

ActiveX Controls
6 Fill in the fields as shown in the following table.

Adding an ActiveX Control to an Applet
You add an ActiveX control to an applet using the Applet Web Editor.

To add an ActiveX control to the applet

1 Open the applet in the Applet Web Editor.

2 Click the ActiveX Control toolbar icon in the Web Control toolbar.

3 Drag the control to a placeholder in the Web template.

The Insert ActiveX Control dialog box appears for the selection of one of the
currently registered ActiveX controls on your system.

Field Value

Name User-defined name of the Class object

Project The locked project used in Step 4

DLL Name of the DLL object created in Step 4

Object Type ActiveX Control
778 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

ActiveX Controls
4 Select the desired ActiveX control and click OK.

The selected control replaces the placeholder in the Applet Web Editor.

The illustration shows a movie player control called ActiveMovie Control in a
form applet.

5 Set the Class property of the control to the name of the class created in Step 6 of
“To create an ActiveX control.”

The default properties of the ActiveX control will be defined as Control User
Properties.

ActiveX control
Version 7.5.3, Rev. A Siebel Tools Reference 779

Special-Purpose Applets and Controls

ActiveX Controls
6 Compile the .srf file.

Setting Properties in an ActiveX Control
An ActiveX control includes its own property list, which varies from control to
control. In addition, an ActiveX control in an applet has the full set of properties of
the Control object type. There are two ways to view and modify properties for an
ActiveX control in an applet: by using the Properties window, or by activating the
control’s built-in property sheet.

To change properties in the Properties window

1 Choose View > Windows Properties.

2 Select the ActiveX control in the Applet Web Template Layout window.

The Properties window lists the properties for the ActiveX control.

3 Click the Categorized tab at the top of the Properties window.

This clusters all of the control’s native properties under the ActiveX heading, and
all of the standard Control object type properties under the Misc. heading.

4 Make changes to property settings as you would in any Siebel object definition.

The changes you make to the control’s native properties are generally displayed in
the Applet Web Template Layout window, such as when you change a text color or
font property. Additionally, changes you make to the control’s native properties are
saved with the applet, just as with the Siebel properties.

The alternative approach to changing property settings is to use the control’s native
property sheet. When you make property changes using the control’s native
property sheet, you can modify only the properties of the ActiveX object, not those
of the standard control object definition. To alter the standard control properties,
you must use the Properties window.

To change properties in the ActiveX control’s native property sheet

1 Select the ActiveX control in the Applet Web Template Layout window, and
right-click.
780 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

ActiveX Controls
2 In the shortcut menu that appears, select ActiveX Control Properties.

If the control has a native property sheet, it is activated. The native property
sheet for the ActiveMovie control appears below:

3 Make any desired changes to property settings. These settings are saved with the
applet when you exit the Applet Web Template Layout window or do a Save.
Version 7.5.3, Rev. A Siebel Tools Reference 781

Special-Purpose Applets and Controls

ActiveX Controls
ActiveX Methods and Events
An ActiveX control in an applet exposes a set of methods and events that are
provided with the control. The methods may be called from scripts written in
browser script attached to the control or other objects, and event procedures can be
programmed in to respond to the events the control generates.

To see the list of available methods for the ActiveX control

1 In the Applet Web Template Layout window, click the ActiveX control to select it.

2 Right-click to access the shortcut menu.

See “To change properties in the ActiveX control’s native property sheet” on
page 780 for an illustration of the shortcut menu.

3 Select the ActiveX Control Methods menu option.

The ActiveX Control Methods dialog box appears.

This dialog box lists the methods, and specifies the syntax for calling them. It is
for reference purposes only.

4 Click Close to dismiss the dialog box.
782 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

HTML Content Controls
Distributing ActiveX Controls
You can distribute ActiveX controls to licensed end users. When you do this, you
will also need to distribute any dependency DLLs along with the ActiveX controls.
For information about these dependency DLLs (such as the number and type of
DLLs that need to accompany the ActiveX controls), contact the ActiveX vendor.

HTML Content Controls
HTML content controls allow you to display HTML content in fields in the user
interface. The HTML content can be static HTML or HTML from an external content
source. You can configure any control type to display HTML content, as shown in
Figure 218.

Configuring fields to display HTML content is a matter of setting properties of the
control in Siebel Tools and defining any necessary supporting information, such as
URL, host name, syntax, and authentication parameters using a set of
administration views in the Siebel Web client.

Figure 218. Example Fields Using HTML Content Controls
Version 7.5.3, Rev. A Siebel Tools Reference 783

Special-Purpose Applets and Controls

HTML Content Controls
Control Properties
The key Control object type properties for displaying HTML content are the
following:

■ Field Retrieval Type. This property determines the type of HTML to be displayed
in the field. Possible values are:

■ Symbolic URL. This value specifies that the content will come from an external
host based on a symbolic URL. You need to define the necessary information
needed to access the external source. This includes the syntax used for the
request, the host name, necessary arguments, and so on.

See Siebel Portal Framework Guide for more information about defining
Symbolic URLs.

■ Field Data. This value specifies that the HTML content will be stored as data.

■ Service. This value specifies that the field will be rendered by a business
service. The control must have a User Prop defined with the name Field
Retrieval Service and the value is the name of the business service.

For example, you can define a control to display a Content Center asset by
setting the Field Retrieval Type to Service and then adding a Control User
Property child object with the name Field Retrieval Service and the value
ContentBase - Asset Publish Service.

For more information about Content Center Assets, see Applications
Administration Guide.

■ HTML Attachment. This value specifies that the field will display an HTML
attachment. The control will render the HTML Attachment identified by the
underlying field.

■ URL. This value specifies that content will be displayed from an external
source based on the simple URL specified in the underlying field.

■ ContentFixupName. This property determines how to correct links post
processing. It provides the name of a Fixup as displayed in the Fixup
Administration View. This value does not work if Field Retrieval Type is HTML
Attachment or Service.
784 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

HTML Content Controls
■ HTML Display Mode. This property should be set to DontEncodeData so that the
HTML content renders properly in the browser. Possible values are:

■ DontEncodeData. Use this value when the field value is actual HTML text and
you want it to be shown as such.

■ EncodeData. If the field value contains HTML reserved characters, such as
angle brackets (< >), ampersand (&), and so on, they are encoded before
they are displayed so that they appear correctly within the browser.

Administration Views
There are four administration views that allow you to specify the necessary
information related to HTML content controls. This includes information such as,
host name, URL, required arguments, authentication parameters, and so on.

The views used to enter this information are described in Table 56:

Table 56. Administration Views for HTML Content

View Name Menu Path Description

Host Administration From the application-level
menu, choose View >
Site Map > Integration >
Host Administration.

Allows you to enter the HTTP
host, including virtual name and
authentication parameters.

Fixup Administration From the application-level
menu, choose View >
Site Map > Integration >
Fixup Administration.

Allows you to specify how to
handle links post processing.

Symbolic URL
Administration

From the application-level
menu, choose View >
Site Map > Integration >
Fixup Administration.

Allows you to specify the content
agent for an external host. This
includes URL, host name, fixup
name, and arguments.

Content Sets From the application-level
menu, choose View >
Site Map > Content
Center > Content Sets.

Allows you to upload and manage
Web content to be rendered in the
Siebel Application.
Version 7.5.3, Rev. A Siebel Tools Reference 785

Special-Purpose Applets and Controls

HTML Content Controls
For an overview of content agents and symbolic URLs as well as procedure for
administering content agents, see Siebel Portal Framework Guide.

The Host Administration View
The Host Administration view is used to specify hosts that either require fixup
processing, authentication, or to simply obscure the true host name. Only links
associated with a specified host are fixed up.

For each host, you need to specify an external content host server. The specification
of a host enables one or more of the following features:

■ It obscures the true servername in the generated HTML.

■ It allows the specification of a set of NCSA Basic Authentication credentials for
content hosts that require authentication.

■ It allows administrators to control fixup at the host level.

Fixup Administration View
Administrators can use this view to control the behavior of links embedded within
the external content. A fixup has a Link Context, which corresponds to the fixup
type. There are four types of fixups:

■ Do Nothing. This fixup does not affect any of the links. The links (relative or
absolute) remain as they are with the content being passed back in its original
form.

■ Outside Application. This fixup converts all of the relative links to absolute links
using the host and path of the parent URL. No links are proxied.

■ Inside Application. This fixup converts all of the relative links to absolute links
and any links using a host from the Hosts table (for example, navigated to by
choosing Integration Administration > Host Administration) are proxied in
order to maintain all of the SWE context.

■ Inside Applet. This fixup performs the same as the Inside Application fixup.

NOTE: Fixup is required for all links within applications that use high interactivity.
786 Siebel Tools Reference Version 7.5.3, Rev. A

Special-Purpose Applets and Controls

HTML Content Controls
Proxied Links
When using either the Inside Application or Inside Applet fixup type, any link using
a host from the Hosts table is proxied. Any relative link is first converted to an
absolute URL, and then if the host is in the Hosts table, the link is proxied.

Default Link Targets
There are no default link targets applied to a fixup. However, a fixup may have a
link target specified for it, in which case the link target will be added to the fixup.

Configuring Fields to Use Web Content Assets
Any business component can take advantage of Web Content Assets to add fields
that are rendered as HTML content. For example, you can use display static HTML
messages to your end users in the Partner Relationship Manager application, or
represent a Product Description as HTML content.

This section describes the steps for configuring this functionality, using the Partner
Message business component as an example.

To configure fields to use Web Content Assets

1 In Siebel Tools navigate to the Partner Message business component.

2 Navigate to the Message field and set the Pick List to ContentBase Asset
Hierarchical PickList.

3 Query for Partner Message List Applet.

4 Navigate to the list column named Message Body and set the Pick Applet
property to ContentBase Asset Hierarchical PickList.

5 Query for Partner Message Entry Form Applet.

6 Navigate to the control name Message Body Preview and set the Field Retrieval
Type property to Service.

7 Navigate to the Control User Props for this control and add a Control User Prop
with the name Field Retrieval Service and the value ContentBase - Asset Publish
Service.

8 Query for Partner Message Form Applet (SCW).
Version 7.5.3, Rev. A Siebel Tools Reference 787

Special-Purpose Applets and Controls

HTML Content Controls
9 Navigate to the control named MessageBody and set the Field Retrieval Type
property to Service.

10 Navigate to the Control User Props child object for this control and add a control
user property with the name Field Retrieval Service and the value
ContentBase - Asset Publish Service.

11 Compile your changes and test.
788 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer 14
This chapter provides an overview of the templates and tags that represent the
physical UI for employee and customer/partner applications. These are different
from the object definitions in the repository that refer to the logical UI, business
objects, and data model layers.

This chapter covers the following topics:

■ Understanding Siebel templates

■ Understanding Siebel tags

■ Navigational constructs in the Siebel Web Client

■ Application appearance using standard and high interactivity

For more information on templates and tags, see Siebel Developer’s Reference.

Understanding Siebel Templates
A Web template is a special kind of file that contains markup (HTML, WML XML,
and so on) interspersed with special Siebel Web engine-specific tags (prefixed by
“swe”). It defines the layout and formatting of elements of the user interface (such
as views, applets, and controls). Web browsers require HTML to define the layout
and formatting of a page. Siebel Web Templates provide this HTML layout
information to the Siebel Web Engine when rendering Siebel objects in the
repository definition of the application. Wireless applications are rendered in the
same manner except for the fact that the markup language in the templates is WML
or XML. This section focuses on the configuration of Web (HTML) applications, but
many of the concepts are generic across markup languages.
Version 7.5.3, Rev. A Siebel Tools Reference 789

Physical User Interface Layer

Understanding Siebel Templates
Templates are filled with data and user interface elements by associating views,
applets, controls, and other objects defined in Siebel Tools with them. For each
view, applet, or control, you map the repository definition to a placeholder in the
template. For example, you may have a View object with three applets. You
associate a View Template with the view, and map each applet to a placeholder in
that template.

An important feature of Siebel Web Templates is that they can be shared between
many objects in the repository. Because a template has only placeholders, any
number of repository objects can be mapped to a specific placeholder. This allows
you to propagate style or structural changes to numerous user interface elements by
changing only one template. A typical Web application will contain on the order of
5-50 templates, which together form the bases for several hundred views and
applets. For instance, a template which defines the layout and formatting of a
standard list applet can be shared among all list applets repository definitions in an
application.

The reusability of templates is further enhanced in that the Siebel Web Engine skips
over template placeholders which are not mapped in the repository. If a placeholder
is not mapped, then it and the HTML contained in between the Siebel tags that
define the placeholder are simply ignored. Thus, if the template contains layout for
a 10 column wide list applet, but only 2 of the columns are mapped, the other 8 are
simply ignored.

Siebel Applications provide numerous applet and view templates with the product,
which are extremely flexible; you may not have to modify any of the applet and
view templates to support your migrated application. However, in some cases
(especially customer and partner applications) you may wish to modify the default
templates to reflect your corporate look and feel, or, in some cases, create an
entirely new template. Siebel templates must use valid HTML. Adding JavaScript
beyond what is already generated by the Siebel Web Engine is not recommended.
If it is necessary to add JavaScript, it should be done in Siebel Tools using Browser
Script.

NOTE: You can view Web templates using Siebel Tools, but you modify templates
using an external editor. For more information, see “Web Template Explorer” on
page 794 and “Setting Web Preferences” on page 795.
790 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Understanding Siebel Templates
To allow for even greater flexibility, Siebel eBusiness Applications have provided a
mechanism in which a particular template file can include another one. This device
is used, for example, to separate handling of the title of an applet from the body. A
standard applet layout can be defined once and combined with multiple different
title layouts by including a template file that defines the title within the applet
template.

By convention, the filenames of Siebel Templates take the .SWT extension; for
example, CCPageContainer.SWT, CCHomePageView.SWT, and so on. This Siebel-
suggested convention is an abbreviation for Siebel Web Template.

You do not have to follow this convention; the Siebel Web Engine recognizes and
interprets the files correctly regardless of how you name them. However, ending
your Siebel filenames with .SWT may help you.

NOTE: Template files are typically stored in the Web Template directory under your
Tools installation directory. The Filename property references the Web Template
object type.

The layout and style of HTML Web pages is dynamic, which allows simultaneous
support for multiple browser types and versions. Siebel Web templates support
conditional branching. Conditions are evaluated based on the results of a business
service. See “Displaying Server Side Errors” on page 911 in Chapter 16, “Special
Behavior Supported by Templates.”

Generated HTML Files
After you configure your application and deploy it on your Web site, it becomes
available for viewing through a client’s browser.

When a client requests a specific view (either through the application URL directly
or by clicking the appropriate link from within another page), the Siebel Web
Engine does the following:

1 Retrieves the object definition of the view from the .srf and retrieves the object
definition of each applet in that view.

2 Retrieves the data specified in the object definition from the data manager layer
of the Application Object Manager.
Version 7.5.3, Rev. A Siebel Tools Reference 791

Physical User Interface Layer

Understanding Siebel Templates
3 Matches this data with the template specified by the view and each applet within
it.

4 Renders this view by using the placeholders in the template to define where each
element (control, list element) in the object definition is to be placed and how
it should be formatted.

When the user views the generated HTML file in a Web browser, it is rendered as a
Web Page, and includes all the layout specified in the original template as well as
the data and controls retrieved.

Figure 219 shows how Siebel Web Engine generates HTML output using templates,
repository definitions, and HTML.

Figure 219. How Siebel Web Engine Generates HTML Output
792 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Understanding Siebel Templates
Types of Templates
The templates you modify fall into one of several groups, depending on the purpose
of the template or what the template contains.

■ View template. Used for displaying a view; specifies where to lay out applets and
other page-level controls on the view, and what the formatting of the view
should be.

■ Applet template. Specifies where to lay out fields and controls for an applet. Also
specifies the formatting for elements within the applet.

Applets can have more than one mode. The types of modes are:

■ Base: Read-only mode for displaying but not editing data. Views appear by
default in Base mode.

■ Edit. Mode for editing an existing record.

If New/Query templates do not exist, Edit is used when creating and
querying.

■ Edit List. Allows users to edit fields in a list applet.

If Edit/New/Query templates do not exist, Edit List is used in employee
applications running high interactivity when editing, creating, and querying.
Standard interactivity applications, such as customer and partner
applications, do not use Edit List, so you must define an Edit mode template.

■ New: Mode for creating a new record.

■ Query: Mode that allows you to perform a query-by-example (QBE).

Each mode has a corresponding template. Some templates, such as edit-mode
templates, can be shared by many applets.

NOTE: New and Query should only be used if they are different from Edit.
Otherwise Edit is used.

■ Web Page template. Specifies the layout of the whole display. Has information
about where the screen bar/view bar/view should appear.
Version 7.5.3, Rev. A Siebel Tools Reference 793

Physical User Interface Layer

Web Template Explorer
■ Page Container template. Used as container pages for view templates. The
overall purpose of the page container is to provide a structure for the overall
application. There is one page container per application, but views can be
flagged indicating they should not use the container page (for example, the
login page cannot use the page container).

■ Formatting templates. Templates that allow you to create custom HTML types,
such as specialized controls. list items, and page items. These templates have
the extension .SWF (Siebel Web Format). For more information about .SWF files,
refer to “Adding Sorting Capabilities to Your Application” on page 913 in
Chapter 16, “Special Behavior Supported by Templates.”

Your application can contain other pages, of course, that do not contain any Siebel
tags. For example, you may have an About This Application help page. However,
this page, by definition, is not a template.

Web Template Explorer
The Web Template Explorer window is a Windows Explorer-like concatenated tree
listing of Web templates. It allows you to visualize a color-coded HTML view of the
Web Template hierarchy. Clicking on the items in the Web Template Explorer
displays the HTML source code of the Siebel Web Template (.swt) file for review or
editing in the main window. Since a template (parent) can include other templates
(children), a split view is presented to view a parent and child template at the same
time. The Web Template combo box in the Web Template window allows you the
choice of displaying all Web Templates in the Explorer, the top level Web Templates
only, or individual Web Templates.

To access the Web Template Explorer

1 Choose View>Windows>Web Templates Window.

The Web Template Explorer appears.
794 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Web Template Explorer
2 Select a template file in the Web Template Explorer.

The selected Web template appears. If a top-level template is selected, then the
parent template is shown in the upper part of the window, while the selected
(child) template is shown in the bottom part. The vertical splitter that divides
the two parts of the window can be dragged to change the viewable area in each
part of the window.

Setting Web Preferences
You can select the HTML editor that should be launched for editing templates by
specifying it in the Web Template Editor tab of the Development Tools Options box.

To set Web preferences

1 Choose View >Options.

2 Select the Web Template Editor tab.

The Web Template Editor tab option appears.
Version 7.5.3, Rev. A Siebel Tools Reference 795

Physical User Interface Layer

Understanding Siebel Tags
3 Specify the path of the external HTML editor executable that you want to use to
edit the templates. You can also specify any parameters specific to the command-
line invocation of the external editor.

4 Click OK.

The changes will take effect the next time the Web Applet or Web View Editor
is launched.

Understanding Siebel Tags
Siebel tags are special tags you insert into template files. They specify how objects
defined in the repository should be laid out and formatted in the final HTML page
in the user’s Web browser.

The process of configuring a Web application separates the layout and formatting
from the application definition and binding to data. You use Siebel tags to determine
the layout and formatting of controls in your application.

Mappings Between Controls and IDs
The .SWT template files do not include references to specific controls in the
repository. Instead, they specify a layout and style, with placeholder tags. The
following is an example of a Siebel tag that places a Web Page Item in a Web Page.
Other Siebel tags might place other items, such as view bars, applets, or controls,
for instance, in a Web Page.

<swe:Control id="1" property="FormattedHtml"/>

To process this tag and generate the final HTML the Siebel Web Engine does the
following:

1 Examines the compiled .srf file for the properties of the Web Page Item in the
current Web Page that has an Item Identifier equal to 1. This is the mapping
between the template file object and repository object.

2 Renders the Formatted HTML representation of this repository object in place of
the abstract placeholder in the template file.
796 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Understanding Siebel Tags
Figure 220 shows how the mappings between controls and IDs work for displaying
an image as a link to add a new contact. The example illustrates the general point,
but note that in your actual implementation, the HREF probably will not look
exactly like this. If you create the right controls and template mappings, Siebel Web
Engine will construct a URL in the HREF that will execute the method NewRecord
in the correct context.

Singleton and Multi-Part Tags
Singleton and multi-part tags are part of the basic vocabulary of SGML, so they are
only discussed here to introduce the concepts and terminology. Siebel eBusiness
Applications use singleton and multi-part tags in the standard way.

A singleton element is a tag that includes the end-tag slash in the same tag as the
tag name. There are no child elements in a singleton tag. The following is an
example of a singleton tag:

<swe:pageitem name="value"/>

The following is an example of a multi-part tag because it does not have the end-
tag slash:

Figure 220. Mappings Between Controls and IDs
Version 7.5.3, Rev. A Siebel Tools Reference 797

Physical User Interface Layer

Understanding Siebel Tags
<swe:control id="1" property="formattedHTML">

...HTML here...

</swe:control>

“This” Tag
Sometimes you will want to use a multi-part tag, but make reference to the SWE-
generated control at some point other than the beginning and end of the tag. To do
this, you can use a “this” tag:

<swe:control id="1">

...HTML here...

<swe:this property="formattedHTML"/>

</swe:control>

The <swe:this> tag is an alias for the nearest enclosing Siebel context. Often, this
context is established by an enclosing <swe:xxx> element. For example,
<swe:this> commonly appears inside a multi-part <swe:control> element. In
that case, <swe:this> is an alias for the control. It is used to display properties of
the control. In some cases, the context is less direct. For example, if an <swe:this>
element appears in an applet template file, outside of any <swe:control> tag, it is
an alias for the applet, and can be used to display properties of the applet.

Iterators
Iterator tags specify the number of times the tag should iterate its contents. For
example, the swe:for-each tag allows you to reduce the size of the template files
where the same HTML and Siebel tags are used with controls or page items with
different values for the id parameter:

<swe:for-each count="x" iteratorName="yyyy" startValue="z"/>

Other iterator tags include swe:for-each-row, swe:for-each-child, swe:for-
each-node, swe:for-each-indent, swe:for-each-value.

The attributes of the swe:for-each tag are as follows:

■ count. Specifies the number of times the tag should iterate its contents.
798 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Understanding Siebel Tags
■ startValue. The value that should be assigned to the iterator at the start of the
iteration. The tag will start the iteration by assigning this value to the iterator,
and will increment it by one for each iteration.

■ iteratorName. The name of the iterator. This name can be used to get the value
of the iterator during the iteration using the syntax swe:iteratorName.

In the section enclosed by the swe:for-each tag, references to the current value of
the iterator is through the name specified in the iteratorName attribute. For
example, if you set the value of the iteratorName to “CurrentID,” then you can get
the value of the iterator using the syntax swe:CurrentID. You can also reference a
value that is an increment over the current value as swe:CurrentID+x. The
fragment below illustrates this usage:

<swe:for-each startValue="2301" count="50"
iteratorName="currentId">

<swe:control id="swe:currentId">

.

.

</swe:control>

<swe:control id="swe:currentId+100" />

</swe:for-each>
Version 7.5.3, Rev. A Siebel Tools Reference 799

Physical User Interface Layer

High Interactivity Versus Standard Interactivity
Nesting and Siebel Tags
You cannot nest a Siebel tag inside HTML tags. For example, the following is not
valid and will generate an error:

<img src="<swe:control id="1"/>">

In addition, you cannot nest some Siebel tags. For example, the following is not
valid and will generate an error:

<swe:control id="1">

<swe:control id="2" property="formattedHTML"/>

<swe:this property="formattedHTML"/>

</swe:control>

</swe:control>

SWE Conditional Tags
The SWE framework supports the <swe:if> conditional tag, which provides a
simple conditional branching capability. The <swe:if-var> tag is a variation on
<swe:if> that permits you to evaluate a namespace within an applet template. For
further information see Chapter 16, “Special Behavior Supported by Templates.”

High Interactivity Versus Standard Interactivity
Traditional Web applications follow a model whereby almost every user action
results in a page refresh. Some of the user actions that can trigger a page refresh are
a user changing the quantity of an item in the Siebel eSales Shopping Cart, a user
inserting a new appointment in the calendar, and a user selecting a different item
from a list to see its details. These frequent page refreshes not only slow down users
by forcing them to wait for new pages, but also waste time as users reorient
themselves with the frequently changing context caused by these page refreshes. In
addition, frequent page refreshes are expensive in terms of network bandwidth
utilization, as each page refresh requires the same HTML information, already
displayed in the browser, to be downloaded with new data.
800 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

High Interactivity Versus Standard Interactivity
High interactivity solves the problem of lowered employee productivity and high
bandwidth requirements by reducing the number of page refreshes.

High interactivity depends on capabilities that are only available in Internet
Explorer 5.5 and higher versions, and is only used for employee applications such
as Siebel Sales and Siebel Call Center. Customer applications such as Siebel eSales
and Siebel eService do not use high interactivity.

Some differences between standard interactivity and high interactivity are as
follows:

■ Support for client-side scripting. Client-side scripting is available for both types of
applications. However, in high interactivity, customers have access to Siebel
objects through which they can build data validation logic on the client side to
reduce further the number of page refreshes needed.

■ Support for interactive controls. High interactivity employs specialized JavaScript
controls for drop-downs, date and time, lists, and so on. These controls provide
greater levels of interactivity than traditional HTML controls that appear in
standard interactivity, are designed for JavaScript controls, and are different
from the HTML controls based on list applets used in standard interactivity. For
example, the list control supports resizing of columns, and drop-down lists
support auto-completion.

■ Support for application-level menus. Application-level menus require support for
Java applets. Because there is no support for Java applets in standard
interactivity, there are no application-level menus.

■ Support for extensible toolbars. You can take advantage of the functionality of high
interactivity by extending JavaScript toolbars and creating new ones. JavaScript
toolbar objects reside in the JSSApplication hidden frame, which usually does
not reload during the application life cycle. Therefore, they are not redrawn
when there is a page refresh. The UI part of the JavaScript toolbar resides in a
visible HTML frame (recommended to be a persistent frame that reloads
infrequently) and redraws when the HTML frame reloads.

■ Support for Implicit save. High interactivity supports an implicit save model
whereby navigating off a record causes the changes to be saved. The benefit of
this model is the efficiency with which data can be entered; an explicit save
operation for each record is not required to commit the changes.
Version 7.5.3, Rev. A Siebel Tools Reference 801

Physical User Interface Layer

Navigational Constructs
■ Appearance of applet-level menus. In standard interactivity, the applet-level menus
for Siebel applications are represented in the form of drop-down lists. These
menus show up as dynamic drop-down controls in high interactivity.

■ Support for browser back and forward buttons. Standard interactivity supports
browser forward and back buttons, which are used for navigating within an
application. High interactivity uses Siebel bookmarks to support navigation that
is accessible through provided controls for back and forward movement within
a session and a history drop-down list.

For more information on high interactivity, its architecture, and enabling it, see
Chapter 2, “Siebel Architecture (Basic Concepts).”

Navigational Constructs
The user interface has four navigational constructs that allow you to access screens
and views.

1 First Navigational Level (Primary Tabs or Screens). The tab bar consists of tabs
allowing you to select a Screen. By using one of these tabs you can navigate to
that Screen's default View. Refer to “Primary Tab Bar” on page 803.

2 Second Navigational Level (Visibility picklist, Show picklist, or Context Views picklist).
The Visibility picklist allows you to select a specific View within the current
primary tab (Screen). The set of Views listed in this picklist are not all of the
Views in the Screen; rather they are the context views, generally those Views that
have visibility defined, such as My Accounts or My Team's Opportunities.
Selection of a context View in the second-level picklist establishes visibility for
the Views obtainable from the third-level tabs. Refer to “Visibility Picklist and
Detail Tab View Bar” on page 804.

3 Third Navigational Level (Detail View Tabs). Detail View tabs allow you to navigate
from the context View initially selected in the Visibility picklist to a non-context
View. This tab bar resides at the top of the detail applet. These tabs provide a
form of drilldown: when the user selects a record in the upper applet and
chooses a detail View tab, the application navigates to a new View in which the
master record is the one selected in the previous view. Refer to “Visibility Picklist
and Detail Tab View Bar” on page 804.
802 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Navigational Constructs
4 Fourth Navigational Level (Subcategory Views Picklist, Current View Picklist). The
subcategory views (fourth navigational level) picklist appears inside an applet,
just beneath the row of third-level view drilldown tabs. It allows the user to
choose a view from the category represented by the selected third-level view bar
tab, when the view bar tab is for a category rather than an individual view. Refer
to “Subcategory Views” on page 809.

Primary Tab Bar
The tab bar allows you to select between the functional areas of an application
(Screens). Selecting a screen by clicking on one of these tabs allows you to navigate
to that Screen's default View, and alters the contents of the Visibility picklist by
listing context Views for the selected Screen.

The primary tab bar is defined in Tools by using the object definitions of the Page
Tab object type. The Page Tab object type is a child of the Application object type.
One Page Tab child object definition is specified for each Screen (primary tab) that
appears in the primary tab bar, given a particular parent Application object
definition. The Page Tab object definition creates an association between a Screen
object definition and an Application object definition. For example, the Siebel
Service application has primary tabs of Activities, Category, Contacts,
Correspondence, and so on, and this is defined by creating Page Tab children of the
Application object definition called Siebel Service, one for each tab required.

The primary tab bar or “screenbar” is defined using the <swe:screenbar> and
embedded <swe:screenlink> tags.

The following code is some sample code from a page container template:

<tr>

<swe:screenbar>

<swe:screenlink state="Active” property=”FormattedHtml” >

<td></td>

<td background=”images/nav/tabon_back.gif”>

<nobr> <swe:screenname/> </nobr>

</td>
Version 7.5.3, Rev. A Siebel Tools Reference 803

Physical User Interface Layer

Navigational Constructs
<td> </td>

</swe:screenlink>

<swe:screenlink state=”Inactive” property=”FormattedHtml” >

<td class='tier1Off'><nobr> <swe:screenname/>
<img src=”images/nav/tab_rightcap.gif” align=”absmiddle”
width=”6” height=”19” border=”0” alt=”alt=””/></nobr></td>

</swe:screenlink>

</swe:screenbar>

<td class=”tier1Back”></td>

</tr>

The <swe:screenbar> tag expands to show all the Page Tab names for Screens
assigned to an application. The <swe:screenlink> tag defines the link to access
for a particular Page Tab. The attribute “state” allows you to specify a different look
for when the screenbar is selected (Active) versus when it is not selected (Inactive).

Visibility Picklist and Detail Tab View Bar
Views are grouped into context Views (second level navigation: the Visibility
picklist) and non-context Views (third level navigation: the detail View bar). You
should choose an initial View that establishes business object and visibility context
before drilling down into related Views. The visibility setting that has been
established by choosing the context View in the Visibility picklist is maintained
during subsequent navigation among the non-context Views available in the detail
view bar.

Visibility (specifically in this case, record access visibility) refers to the user's access
rights to see particular records of particular business components, as determined
from the user's logon and other information maintained by an administrator. For
more information on visibility, see Security Guide for Siebel eBusiness Applications.

The set of context Views for a selected Screen is established based on the following
rules:
804 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Navigational Constructs
■ When all Views assigned to the Screen (through Screen View object definitions)
belong to the same business object, the context Views are the set of Views in the
Screen that have visibility rules (like “My Accounts”, “All Contacts,” and so on).
The remaining Views that do not have visibility rules are grouped as non-context
views (like “Account-Contacts”, “Charts,” and so on).

■ When some of the Views assigned to the Screen belong to different business
objects, the entire set of Views in the Screen are grouped as context Views, and
appear in the Visibility picklist. Such Screens do not have any non-context
Views, and so the detail View bar is empty. An example is the Administration
screen.

The segregation of Views into context and non-context views for the Accounts
screen is illustrated in Figure 221.

Notice that View categories appear with non-context Views in the detail View bar.
View categories are described in “Subcategory Views” on page 809.

Figure 221. Context and Non-Context Views
Version 7.5.3, Rev. A Siebel Tools Reference 805

Physical User Interface Layer

Navigational Constructs
Context views are automatically segregated from non-context views based on the
Business Object and Visibility Applet/Visibility Applet Type properties in each View
object definition. The only configuration in Tools required to implement second-
and third- level View navigation in a Screen is the assignment of views to that screen
using Screen View object definitions. You should avoid using views from different
business objects in the same Screen.

The Visibility picklist appears in the “view bar” frame (see the
CCPageContainer.swt and CCFrameViewbar.swt templates). The Visibility picklist is
implemented as a <swe:viewbar> tag with a Type setting of Select and a Mode
setting of Context:

<swe:form>

<td nowrap>

<swe:viewbar type=”Select” mode=”Context”>

<swe:this property=”FormattedHtml”/>

</swe:viewbar>

</td>

</swe:form>

The detail View bar is also implemented by means of a <swe:viewbar> tag, but
with different attribute settings. Specifically, the Type attribute is omitted, and the
Mode attribute has a value of NonContext instead of Context. This creates a
horizontal View bar consisting of tabs populated with the display names of all the
non-context Views instead of a picklist control populated with the display names of
the context Views. The template logic for rendering the detail View bar is as follows
(see CCViewbar_Tabs.swt):

<swe:viewbar mode=”NonContext”>

<swe:viewlink state=”Active” property=”FormattedHtml” >

<td><img src=”images/nav/tabon_arrw.gif” align=”absmiddle”
width=”6” height=”19” border=”0” alt=”alt=””/></td>

<td class='tier3OnLabel' background=”images/nav/tabon_back.gif”>
<nobr> <swe:viewname/> </nobr></td>
806 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Navigational Constructs
<td><img src=”images/nav/tabon_rightcap.gif”
align=”absmiddle”
width=”6” height=”19” border=”0” alt=”alt=”” /></td>

</swe:viewlink>

<swe:viewlink state=”Inactive” property=”FormattedHtml” >

<td class='tier3Off'><nobr> <swe:viewname/>
<img src=”images/nav/tab_rightcap.gif” align=”absmiddle”
width=”6” height=”19” border=”0” alt=”alt=””/></nobr></td>

</swe:viewlink>

</swe:viewbar>

The detail View bar implementation of the <swe:viewbar> tag requires the use of
the child tags <swe:viewlink> and <swe:viewname>. The Visibility picklist
implementation omits these child tags.

The syntax of the <swe:viewbar> tag appears below:

■ <swe:viewbar>

Usage: <swe:viewbar type=”xxx” mode=”yyy" property=”zzz”>

Attributes:

■ Type. This can have one value which is “Select.” If the type is set to “Select,”
the view bar is rendered as a HTML select control showing the set of
available views (context, non-context or both, depending on the Mode
setting). The user navigates to the selected view after making this choice of
control.

■ Mode. The mode can have two values: Context and NonContext. If the value
is Context only the context based views will be shown. If the value is
NonContext, only the non-context views are shown.

■ Property. This attribute should be used only when the type is set to Select.
This attribute can have a value of FormattedHtml, in which case the HTML
select control is rendered.
Version 7.5.3, Rev. A Siebel Tools Reference 807

Physical User Interface Layer

Navigational Constructs
■ <swe:viewlink>

Purpose:

Outputs a link to navigate to the view.

Attributes:

■ State. This is optional. Can have values “Active” or “Inactive.” If state is
“Active,” this tag will be used only if the current view name being rendered
is the currently active view. If state is “Inactive,” this tag will be used only if
the current view name being rendered is not the currently active view. If not
specified, the tag will be shown for all views.

■ Property. This is optional. Can have only one value, “FormattedHtml,” which
will output the HTML for creating a link to navigate to the view. If this
attribute is not specified, then no output will be generated.

■ htmlAttr. This is optional. Can be used to add additional HTML attributes to
the generated HTML tag.

NOTE: The swe:viewlink tag can be used without specifying the property
attribute, but with a value for the state attribute to show conditionally different
HTML for active and inactive views. When the property attribute is not
specified, the property can be displayed within the body of the swe:viewlink
tag using the swe:this tag.

■ <swe:viewname>

Purpose: Outputs the name of the view.
808 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Navigational Constructs
Subcategory Views
The fourth navigational level is the Subcategory View picklist inside the detail
applet, just beneath the row of third-level view tabs. It allows the user to choose a
View from the category represented by the selected detail View bar tab, when the
View bar tab is for a category rather than an individual View. This is shown in
Figure 222 on page 810.

NOTE: The Applet Toggle picklist, which, if present, is inside the applet just beneath
the Subcategory View picklist, is not the same as the Subcategory View picklist. The
Subcategory View picklist is for View navigation; the Applet Toggle picklist is for
selection of an applet within the detail portion of the view. For more information on
applet toggles, refer to “Toggle Applets” on page 849.

Categories are groupings of Views within a Screen. If Views are grouped into
categories within a Screen, the category names for these Views are rendered in the
detail View bar instead of the individual Views, requiring the user to drill down
through the subcategory picklist to access the categorized Views. Uncategorized
Views appear directly in the detail View bar. For example, in the Accounts screen
there is a set of views under the Charts category (including Account Analysis By
Rep, State Analysis and Territory Analysis). A detail tab (third navigational level)
would be defined for Charts, and when the user clicked on this tab, the Current
View picklist (fourth navigational level) would be populated with the names of
these three views.
Version 7.5.3, Rev. A Siebel Tools Reference 809

Physical User Interface Layer

Navigational Constructs
The hierarchy of screens, categories, and categorized views (first level, third level,
and fourth level, in this case) is illustrated in Figure 222.

Any of the non-context Views in a Screen can be categorized (categories are ignored
if specified for context Views). Specification of a category involves the use of the
Category property in the Screen View object definition for each View to be included
in a category. For example, the Account Analysis By Rep, State Analysis, and
Territory Analysis views in the Accounts screen are given a Category value of
“Charts.” The Category value needs to be identical in spelling and capitalization
among the Views being categorized together in the Screen, or multiple (slightly
different) categories will result.

Figure 222. Hierarchy of Levels
810 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Navigational Constructs
Screen View object definitions with a non-blank Category property result in their
corresponding View names being accessible only from the subcategory picklist. A
View bar tab is rendered for the category name instead of the names of the
individual Views.

A subcategory View picklist is implemented using a <swe:subviewbar> tag. The
<swe:subviewbar> tag can alternately be configured to display a second horizontal
tab bar beneath the detail View bar, but the picklist is the preferable approach. It
can either be a dropdown picklist or a set of tabs, depending on attribute settings
in the tag. The actual placement of it depends where the <swe:subviewbar> tag is
placed in the template.

The default behavior of the <swe:viewbar> tag, if the <swe:subviewbar> tag is
not present, is to display the default View for that category when the user selects
the category name in the detail View bar. The default View is the View with the
lowest sequence number in that category that is visible to the user.

By including the <swe:subviewbar> tag, this behavior is augmented with a picklist
or subcategory tab bar that conditionally appears when the currently active View
belongs to a category. This tag expands to list all the Views that belong to the
selected category. If the currently active View does not belong to a category, then
this tag does not render anything on the page. Thus, if the user chooses a category
name from the detail View bar (which means the default View within that category
is now the active View), the subcategory picklist or tab bar is rendered in that
default View if this tag is present. If the user chooses a non-category View from the
detail View bar, the subview bar tag does not render anything on the resulting page.

The <swe:subviewbar> tag usage is described as follows:

■ <swe:subviewbar>

Usage: <swe:subviewbar type=”xxx” property=”zzz”>

Attributes:

■ Type. This can have one value: “Select”. If the type is set to Select, the
subview bar will be rendered as a HTML select control (picklist) showing the
set of available Views in the selected category.
Version 7.5.3, Rev. A Siebel Tools Reference 811

Physical User Interface Layer

Navigational Constructs
■ Property. This attribute is to be used only when the type is set to Select (it will
not have any effect in other cases). This attribute can have a value of
“FormattedHtml,” in which case the HTML Select control is rendered. If this
attribute is not specified, then this tag acts as a conditional tag to show its
contents if there are subviews.

When the Type attribute is not set to Select, <swe:viewlink> and <swe:viewname>
tags are used within the body of the <swe:subviewbar> tag. The behavior of these
tags is similar to their use inside of a <swe:viewbar> tag.

Examples of Use:

■ As an HTML select control (subcategory picklist), refer to CCViewDetail.swt and
CCSubViewbar_Drop.swt:

<swe:form>

<swe:subviewbar type=”Select”>

<tr class=”tier4On”>

<td> </td>

<td valign=”top”><swe:pageitem id=”2” property=”DisplayName”/>

</td>

<td ><swe:this property=”FormattedHtml” /></td>

<td width=”100%”> </td>

</tr>

</swe:subviewbar>

</swe:form>

■ As tabs or links in a subcategory tab bar, refer to CCSubviewbar_tabs.swt:

<td class='tier4Off'><img src=”images/nav/left_cap.gif”
align=”absmiddle” width=”6” height=”19” border=”0” alt=”alt=””/>

</td>

<swe:subviewbar>

<swe:viewlink state=”Active” property=”FormattedHtml” >
812 Siebel Tools Reference Version 7.5.3, Rev. A

Physical User Interface Layer

Navigational Constructs
<td><img src=”images/nav/tabon_arrw.gif” align=”absmiddle”
width=”6” height=”19” border=”0” alt=”alt=””/></td>

<td class='tier4OnLabel' background=”images/nav/tabon_back.gif”>
<nobr> <swe:viewname/> </nobr></td>

<td><img src=”images/nav/tabon_rightcap.gif” align=”absmiddle”
width=”6” height=”19” border=”0” alt=”alt=””/></td>

</swe:viewlink>

<swe:viewlink state=”Inactive” property=”FormattedHtml” >

<td class='tier4Off'><nobr> <swe:viewname/>
<img src=”images/nav/tab_rightcap.gif” align=”absmiddle”
width=”6” height=”19” border=”0” alt=”alt=””/></nobr></td>

</swe:viewlink>

</swe:subviewbar>

<td width=”100%” class=”tier4Back”> </td>
Version 7.5.3, Rev. A Siebel Tools Reference 813

Physical User Interface Layer

Navigational Constructs
814 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates 15
This chapter discusses these topics:

■ “Page Templates” on page 815

■ “View Templates” on page 825

■ “HTML Frames” on page 817

■ “Applet Templates” on page 828

■ “Toolbars and Menus” on page 865

■ “Thread Bar” on page 871

Page Templates
The application is associated with a set of templates through properties in the
Application object definition. These properties include Container Web Page, Error
Web Page, Login Web Page, Logoff Acknowledgement Web Page, Sort Web Page, and
Acknowledgement Web Page. Each property that is applicable identifies a template
to use in the corresponding circumstance.

Acknowledgement Web Page. The Web page displayed after the user logs in. This
page is used as the first page the user is taken to after a successful login, except in
the case of a login after a time-out. In the case of a login after a time-out, the user
is taken to the view to which he or she was trying to navigate when the time-out
occurred.

Acknowledgement Web View. The Siebel view displayed after login. This page is used
as the first view the user is taken to after a successful login, except when:

■ A user logs in after a time-out. In this case, the user is taken to the view to which
he or she was trying to navigate when the time-out occurred.
Version 7.5.3, Rev. A Siebel Tools Reference 815

Physical UI Navigation and Templates

Page Templates
■ Explicit login is specified for an SI mode view. In a standard interactive
application such as eService, if view accessible through the home page as the
Explicit Login property is set to TRUE (anonymous browsing), then after
successfully entering the login credentials, the user is taken to this view instead
of the Acknowledgement Web View defined in this property.

Container Web Page. A page that defines the structure of the application. This page
can contain the common UI components like screen bars, view bars, logos, and so
on. This page can be used to define the HTML Frame definition document for the
application. All views and pages (optionally) are shown within the context of the
container page. “Web Page-Layout Container Page” on page 816.

Error Web Page. The page to use when an error occurs in the application.

Login Web Page. The page to use as the Login page.

Logoff Acknowledgement Web Page. The page to which the user is taken to after
logging off the application.

Sort Web Page. The page to be used to create a dialog to perform an advanced sort
of list applet columns.

Web Page-Layout Container Page
The Web Page-Layout (Container Page) contains markup language and SWE tag
elements that define the Web equivalent of the application window. You can see this
template's logic in CCPageContainer.swt. The container page template, like view
and applet templates, is processed by the Siebel Web Engine.

The container page is the outermost template; it references view templates that in
turn reference applet templates. For further information on the Web Page Layout
(Container Page), see Chapter 4, “Application Configuration (Basic Concepts).”

Container Page Areas
In the Web Page Layout Container Page, you find the following elements:

■ The top of the container page contains markup such as corporate banner, as well
as Siebel tags for predefined queries (favorites).
816 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Page Templates
■ The screen (tab) bar is generated beneath these as a table, and loaded by means
of the SWE logic associated with the <swe:screenbar> and <swe:screenlink>
tags.

■ The view bar is also loaded, into the left-hand portion of the page, by means of
the <swe:viewbar> and <swe:viewlink> tags.

Once the container page is loaded, with screen and view names displayed, the
screen and view names function as hyperlinks.

■ When a screen name is clicked, the template for the default view for that screen
is obtained, and the view is generated and displayed.

■ When a view name is clicked in the view bar, the view template that is
referenced in the view's object definition is loaded.

The Siebel Web Engine processes the set of tags in the view template to incorporate
applets into the page. The view object definition identifies the applets to appear in
specific sectors, and the templates for these are obtained. Similarly, tag references
to controls in each applet are resolved by obtaining the corresponding controls from
the repository, which are loaded into the Web page as specified in the applet’s
template. The container page can contain frames to support independent updating
and scrolling of the various areas of a page. The use of frames is described in the
next section.

HTML Frames
HTML frames are available to use in the application's container page and in View
templates.
Version 7.5.3, Rev. A Siebel Tools Reference 817

Physical UI Navigation and Templates

Page Templates
Frames are used in the container page of the application to provide independent
updating and scrolling of each of the three navigation and control areas—toolbars,
tab bar, and application menus/View picklist—as well as the content (View) area.
This is illustrated in Figure 223.

Figure 223. HTML Frame

Banner and Application
Menus Frame

Tab Bar FrameApplication
Menus

Browser Controls Area

View FrameView Control Frame
818 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Page Templates
In a View template, applets can be grouped into separate frames, although this is
considered a non-standard practice except in cases where independent refresh or
independent scrolling is a significant requirement.

Rather than using the HTML <frame> and <frameset> tags, the <swe:frame> and
<swe:frameset> tags are used in the Siebel applications so that SWE is aware of
the frame names, and can control refresh and the targeting of URLs. These two SWE
tags are described as follows:

■ <swe:frameset>

Purpose: This tag is analogous to the HTML frameset tag and is used to define
the set of frames contained in the document. This tag is rendered by SWE as an
HTML <frameset> tag. The body of this tag can only contain the <swe:frame>
tags described below.

Usage: <swe:frameset htmlAttr="xxx"> ... </swe:frameset>

Attributes:

■ htmlAttr. This attribute can be used to specify the attributes for the HTML
<frameset> tag. For example, htmlAttr=”rows=’89,25,*’” will support a
layout in which the frames that belong to the frameset will take up 89 pixels,
29 pixels, and the rest of the window respectively.

■ <swe:frame>

Purpose: This tag is used to mark the beginning and end of the contents to be
placed into a frame. SWE renders this tag as an HTML <frame> tag, with its src
attribute set to a SWE URL that will retrieve the contents of the frame. This tag
should be placed within the body of the <swe:frameset> tag.

Usage: <swe:frame type="xxx" name="yyy"> </swe:frame>

Attributes:

■ Type. The type attribute is used to indicate the nature of the contents of the
frame. SWE uses this information to decide when to refresh this frame. SWE
supports the following values for this attribute.

❏ Toolbar. In a container page template, specifies that the frame contains the
tool bar.
Version 7.5.3, Rev. A Siebel Tools Reference 819

Physical UI Navigation and Templates

Page Templates
❏ Screenbar. In a container page template, specifies that the frame contains
the primary tab bar.

❏ Viewbar. In a container page template, specifies that the frame contains
the application menus, Visibility picklist, and Search picklist.

❏ View. In a container page template, specifies that the frame contains the
current view, that is, the content area.

❏ Page. In a container page template, specifies that the frame contains a
Web page. These frames will not be refreshed after initially loading.

❏ Applet. In a View template, specifies that the frame contains an applet.

❏ Content. Supports multiple views on a page. The Content type frame
defines the content area. It will contain a frame of type View that shows
the main view. It can also contain one or more frames of type AltView to
show alternate views, like the search center.

❏ AltView. Used to designate subframes to show one or more alternate views
in the content frame, such as the search center, in addition to the one in
the View frame.

❏ Name. This attribute can be used only when the type of the frame is Page.
In this case, you can use this attribute to specify a name for the frame. For
other frame types, SWE will generate standard names for the frames.

NOTE: SWE supports nested framesets. In this case the <swe:frame> tag will
contain a <swe:frameset> tag, and the Type attribute of the outer <swe:frame>
tag is set to Page.

HTML Frames in Container Page Templates
A container page template is used to create the frame definition document for the
application. Note the following implementation details of <swe:frame> and
<swe:frameset> tags in container pages:

■ You do not have to define the contents of a frame using the <swe:include> tag
although it is recommended. The contents can be placed directly into the body
of the <swe:frame> tag.
820 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Page Templates
■ The contents of the <swe:frame> have to be complete HTML documents, that
is, they should contain the HTML document structure tags like <html>, <head>,
<body>, and so on. This includes the view templates as well.

■ The contents of the <swe:frame> tag when the type is View should contain only
the <swe:current-view/> tag.

The following <swe:frameset> definition is from the standard container page,
CCPageContainer.swt:

<swe:frameset htmlAttr="rows='60,21,25,*' border='0'
frameborder='No'">

<swe:frame type="Page" htmlAttr="marginheight='0'
marginwidth='0'noresize scrolling='No'">

<swe:include file="CCFrameBanner.swt"/>

</swe:frame>

<swe:frame type="Screenbar" htmlAttr="marginheight='0'
marginwidth='0' noresize scrolling='No'">

<swe:include file="CCFrameScreenbar.swt"/>

</swe:frame>

<swe:frame type="Viewbar" htmlAttr="marginheight='0'
marginwidth='0' noresize scrolling='No'">

<swe:include file="CCFrameViewbar.swt"/>

</swe:frame>

<swe:frame type="View" htmlAttr="marginheight='0'
marginwidth='0' noresize scrolling='Auto'">

<swe:current-view/>

</swe:frame>

</swe:frameset>
Version 7.5.3, Rev. A Siebel Tools Reference 821

Physical UI Navigation and Templates

Page Templates
Support for Multiple Views on a Page
The SWE framework supports showing multiple views simultaneously on a page.
The multiple views consist of a Main view and one or more Alternate views. The
main view is the view that is selected using the view bar (level two or three) for a
given screen. There is only one main view. Alternate views are other views that can
be shown along with the main view: for example, the Search View that shows
applets that can be used for find/search operations.

The multiple views shown on a page can be placed into separate HTML frames or
can share the same frame. Multiple views can also be shown with the main view in
the main browser window and a single alternate view in a pop-up window.

In employee applications that use high interactivity, only the main view can be in
high interactivity. The alternate views will be shown in standard interactivity. It is
recommended that you configure alternate views as simple views without any
complex navigation links.

NOTE: The examples given here describe creating multiple view layouts when HTML
frames are used. The process is similar when frames are not used. In such cases,
HTML tables can be used in the place of frames and framesets to position the views.

To support multiple views, the structure of framesets and frames used in the
application has to be modified. Defined framesets and frames in the application's
container template and in the view template were discussed earlier in chapter. In
addition, there is another layer, the Content Container (the container page for the
Content area).

The frame of type View which was in the Application's Container page should be
replaced with a frame of type Content. This frame defines the area where one or
more views can be loaded. Initially this frame will contain a frameset that will have
the View type frame.

The structure of the container template is given in the example below:

<swe:frameset htmlAttr="rows='80,50,50,*' border='0'
frameborder='No'">

<swe:frame type="Page" htmlAttr="marginheight='0'
marginwidth='0' noresize scrolling='No'">
822 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Page Templates
<swe:include file="CCBanner.swt"/>

</swe:frame>

<swe:frame type="Screenbar" htmlAttr="marginheight='0'
marginwidth='0' noresize scrolling='No'">

<swe:include file="CCScreenbar.swt"/>

</swe:frame>

<swe:frame type="Viewbar" htmlAttr="marginheight='0'
marginwidth='0' noresize scrolling='No'">

<swe:include file="CCViewbar.swt"/>

</swe:frame>

<swe:frame type="Content" htmlAttr="marginheight='0'
marginwidth='0' noresize scrolling='Yes'">

<swe:include file="CCMainView.swt"/>

</swe:frame>

</swe:frameset>

The file CCMainView.swt defines a frameset that contains the main view.

<swe:frameset htmlAttr="cols='100%' border='0' frameborder='No'">

<swe:frame type="View" htmlAttr=" noresize scrolling='Yes'">

<swe:current-view/>

</swe:frame>

</swe:frameset>

After making this change, the application should behave as before. All that was
changed was the introduction of one additional layering of frames in the content
area. The previous application container page template that had the View frame
without the outer Content frame does not generate any errors, but does not allow
showing multiple views in the application. All the application container templates
should be modified to use the Content frame.
Version 7.5.3, Rev. A Siebel Tools Reference 823

Physical UI Navigation and Templates

Page Templates
To show additional views in the content area, a different Content Container page in
the Content frame should be loaded. This can be done by invoking the method
LoadContentContainer from a control or page item. The Content Container to be
loaded should be passed in using the User Property Container.

NOTE: This should be set to the Web Template Name of the content container page
and not to the .SWT file name. For example, to show the search view along with the
main view, create a content container page (for example,
CCSMainAndSearchView.swt), and load it using the LoadContentContainer
method. CCSMainAndSearchView.swt contains the tags to load the main view and
search view into two frames as shown:

<swe:frameset htmlAttr="cols='100%' border='0' frameborder='No'">

<swe:frame type="View" htmlAttr="noresize scrolling='Yes'">

<swe:current-view/>

</swe:frame>

<swe:frame type="AltView" name="Search" htmlAttr="noresize
scrolling='Yes'">

<swe:view name="Search View" id="Search" />

</swe:frame>

</swe:frameset>

The main view is still called the <swe:current-view> tag. Alternate views are
referred to using the <swe:view> tag.

■ <swe:view>

Syntax:

<swe:view name="xxx" id="yyy">

Attributes:

■ Name. Name of the Alternate View
824 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

View Templates
■ Id. An Id for the location (or zone) occupied by this view. This Id will be used
to replace this view with another view in its place.

The <swe:frame> tag contains alternate views called AltView.

To switch from showing the Search and Main views to showing only the Main View,
invoke the LoadContentContainer method again, this time passing in the
CCMainView.swt based container page.

View Templates
A view is a collection of applets displayed on a screen at the same time. It consists
of a single window displaying related data forms and lists (applets). The user can
select the current (active) view from either the Screenbar (the default view for that
screen), the second-level Visibility picklist, a third-level tab, the fourth level
Category-view picklist, the thread bar, the history list, history forward and back
buttons, or by a drilldown from another view. Access to particular views is
determined by the four navigational constructs in the physical UI.

View Templates are associated with a view through the View Web Template object
definition. A view template primarily contains placeholders for applets as specified
by the <swe:applet> tag. The mapping of specific applets to these placeholders is
done visually through the View Web layout editor. The following is an example of
a view template.

<!-- Template Start: CCViewBasic.swt -->

<!------------ Page Title ------------->

<title>

<swe:this property="Title"/>

</title>

<!----------- Salutation applet and Search Applet, table 3.1 ------>

<table border="0" cellspacing="0" cellpadding="1" width="100%">

<tr>

<td width="66%"><swe:applet id="101"/> </td>
Version 7.5.3, Rev. A Siebel Tools Reference 825

Physical UI Navigation and Templates

View Templates
<td width="33%"><swe:applet id="201"/> </td>

</tr>

</table>

<!-------- End Salutation applet and Search Applet, table 3.1 ------>

<!------------ Regular Applet(s) ---->

<swe:for-each count=5 iteratorName="currentId" startValue="1">

<swe:applet id="swe:currentId"/>

</swe:for-each>

<!------------ Special Applet(s) ---->

<swe:for-each count=3 iteratorName="currentId" startValue="11">

<swe:applet id="swe:currentId"/>

</swe:for-each>

<!-- Template End: CCViewBasic.swt -->

Notice that each <swe:applet id=x> tag acts as a placeholder for an applet’s
location in the view template. This same view template can be used to show
different views by mapping the view’s applets to these placeholders. In the default
view templates shipped with Siebel Applications, swe:applet tags with IDs of 101
and 201 are used to show the salutation and search applets at the top of the views.
The IDs 1 through 10 are used to show the main applets in the view, and the IDs
starting with 11 are used to show some special applets that appear at the bottom of
some views.

HTML Frames in View Templates
HTML frames can be used in View templates to create a frame definition document
to show the Applets in the View. SWE will refresh these frames only when one or
more of the Applets contained in a frame has new data.

NOTE: You can use frames in a View template only if frames are also used in the
container page and there is a separate frame in the container page for the View.
826 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

View Templates
In a View template, applets can be grouped into separate frames, although this is
considered a non-standard practice except in cases where independent refresh or
independent scrolling is a significant requirement. One situation where frames are
required in the content area is when displaying an explorer View, in which a tree
applet occupies a frame on the left and the corresponding list applet occupies the
frame on the right. Another situation requiring frames is when the user activates a
search, at which time a Search frame, and subsequently a Results frame, are
activated in the right portion of the content area.

The following shows the implementation details of frameset definitions in View
templates:

■ When placing Applets into frames you need to make sure that at least one
<swe:applet> tag within a frame gets mapped to an Applet in the repository.
Otherwise empty frames will occur.

■ When a <swe:frame> block contains a <swe:applet> tag, its type attribute
should be set to Applet.

Given below is an example of a view template that uses frames:

<!-- CCView_33_66_Frame.swt start -->

<swe:frameset htmlAttr="cols='33%,66%'' border='1'
frameborder='Yes'">

<!-- Column 1 Applets -->

<swe:frame type="Applet" htmlAttr="marginheight='0' margin
width='0' scrolling='Auto'">

<swe:for-each count=10 iteratorName="currentId" startValue="101">

<swe:applet id="swe:currentId" hintText="Applet" var="Parent">

<!--start applet-->

<swe:this property="FormattedHtml"/>

<!--end applet-->

</swe:applet>

</swe:for-each>
Version 7.5.3, Rev. A Siebel Tools Reference 827

Physical UI Navigation and Templates

Applet Templates
</swe:frame>

<!-- Column 2 Applets -->

<swe:frame type="Applet" htmlAttr="marginheight='0' marginwidth='0'
scrolling='Auto'">

<swe:for-each count=10 iteratorName="currentId" startValue="201">

<swe:applet id="swe:currentId" hintText="Applet" var="Parent">

<!--start applet-->

<swe:this property="FormattedHtml"/>

<!--end applet-->

</swe:applet>

</swe:for-each>

</swe:frame>

</swe:frameset>

<!-- CCView_33_66_Frame.swt end --> </HTML>

Applet Templates
The Applet Web Template child object type (of Applet) makes it possible to specify
multiple templates for a single applet, each template file associated with one or
more modes. The Applet Web Template object type has the following important
properties:

■ Name. Indicates the edit mode that the applet template supports (such as Edit or
New).

■ Web Template. Provides the name of the Web Template used for that mode.

The Applet Web Template Item child object type (of Applet Web Template) defines
the mappings between controls and list columns to placeholders in the Web
template file. The Applet Web Template Item object type has the following
properties:
828 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
■ Name. Name of the object definition, generally the same as the Control property.

■ Control. Specifies the name of the control as it is to appear.

■ Item Identifier. This specifies a unique numeric identifier for each control,
generated in the layout editor. The value is used in the markup language tag that
specifies the corresponding control in a template, binding the control to a
specific position on the page.

■ Type. Consists of the value Control, List Item, or Web Control, indicating what
kind of control the applet Web template item defines.

The following types of applets are discussed in this section:

■ Form applets

■ List applets (including MVG and pick applets)

■ Toggle applets

■ Tree applets

■ Chart applets

■ Pop-up applets

■ Catalog-style list applets and rich lists

Form Applets
A Form Applet can appear in any of the four major modes—Base, Edit, New, and
Query. The following is an example of a Form Applet template for use in Edit, New,
and Query modes. Applets to be used in Base mode are similar except that they do
not contain the <swe:form> tag.

<swe:control id="1100">

<div class=CmdTxt>

<swe:this property="FormattedHtml" hintText="Outside Applet
Help Text"/>

</div>

</swe:control>
Version 7.5.3, Rev. A Siebel Tools Reference 829

Physical UI Navigation and Templates

Applet Templates
<table class="AppletStyle1" width="100%" align="center">

<swe:form>

<tr>

<td colspan="2">

<swe:include file="CCTitle.swt"/>

</td>

</tr>

<tr>

<td>

<swe:error>

<swe:this property="FormattedHtml"/>

</swe:error>

</td>

</tr>

<swe:for-each startValue="1301" count="10"
iteratorName="currentId">

<swe:control id="swe:currentId" hintMapType="FormItem">

<tr valign="top">

<td class="scLabelRight">

<swe:this property="RequiredIndicator"
hintText="Required"/>

<swe:this property="DisplayName" hintText="Label"/>

</td>

<td class="scField">

<swe:this property="FormattedHtml" hintText="Field"/>

</td>
830 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
</tr>

</swe:control>

</swe:for-each>

</swe:form>

</table>

The main tags that appear in this template are <swe:form>, <swe:control>, and
<swe:error>.

■ <swe:form>

The <swe:form> tag is analogous to a an HTML <form> tag and encloses a
section of a page that accepts user input. The main attributes of this tag are
htmlAttr and Name, both of which are optional.

The values of the htmlAttr should be valid attributes of the HTML <form> tag
other than method, name, and action. These attributes will be used as is with
the HTML <form> tag that is generated. The name attribute creates an HTML
form with the specified name. If this attribute is not specified, an internally
generated name is used.

■ <swe:control>

The <swe:control> tag specifies placeholders for controls. The main attributes
of this tag are id, which maps the control to the placeholder, and the property,
which specifies the property of the control to be rendered. The values for the
property attribute that are germane to form applets include FormattedHTML,
DisplayName, and RequiredIndicator.

The FormattedHTML property causes the data value of the control to be
rendered, while the DisplayName corresponds to the Caption property. The
RequiredIndicator results in specific HTML being rendered if the underlying
Business Component Field is required.
Version 7.5.3, Rev. A Siebel Tools Reference 831

Physical UI Navigation and Templates

Applet Templates
■ <swe:error>

When a server side error occurs on submitting a form, the same page will be
shown again with the error message displayed within the page. The
<swe:error> tag denotes the location of this error message. The only attribute
of the tag is a property whose value must be FormattedHtml. This results in the
contents of the error message to be displayed. If when the form is rendered there
are no errors, the contents of the <swe:error> tag are skipped.

NOTE: For errors that occur outside of a form submission, the application's Error
Page will be used.

In applications where the task activities are primarily data editing and input, you
can forego read-only forms (Base mode) and use persistently editable forms. This
type of form saves considerable time since data can be entered without first clicking
an edit button and waiting for the form to appear in edit mode. An illustration of a
persistently editable form applet appears in Figure 224.

If an applet is set to be in the Edit mode in a view (as specified by the mode property
of the View Web Template Item), this applet is never shown in the Base mode. If
you update the field values in this applet and commit the change, the applet
continues to be shown in this mode after the changes are written to the database.
You can, however, invoke a method like NewQuery or NewRecord on an applet that
is shown in an Edit mode to show it in the Query or New modes. After executing
the query or writing the new record, the applet is shown in the Edit mode.

Figure 224. Editable Form Applet

Editable Text Field
832 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
To show a form applet in Edit mode in a view

1 Update the control used to save the record so that it invokes the ExplicitWrite
Record method.

In a persistently editable form applet, use the ExplicitWriteRecord method
(HTML Row Sensitive property set to TRUE) instead of WriteRecord.

2 Map this control to the Applet Web Template of type Edit.

For an applet that you are showing in the Edit mode in a view, you do not need
to specify a Base type template, as the applet is never shown in the Base mode.

Because the applet is being shown in the Edit mode by default in the view, you
do not need the EditRecord, WriteRecord, or UndoRecord controls. You only
need the ExplicitWriteRecord and ResetRecord controls.

3 Map the applet to the view template in the Edit mode.

In Siebel Tools, the View Web Template Item object type has a property called
Applet Mode. This property is used to specify the mode to be used for the applet
when rendering the view. The default value is Base. To make the form applet
editable in the view, set the value of the Applet Mode property to Edit when
mapping the applet in the View Web Template.

List Applets
Standard list applets allow simultaneous display of data from multiple records. The
standard list displays data fields in a multi-column layout with each record of data
represented in a row. In addition to textual data, lists also support images in JPEG
and GIF formats and edit controls such as check boxes, drop-down lists, MVGs, and
text fields.
Version 7.5.3, Rev. A Siebel Tools Reference 833

Physical UI Navigation and Templates

Applet Templates
A single row at a time within the standard list applet is selected for editing by
clicking in the far left column selection area. When selected, the fields within the
row can activate either input or edit controls. Clicking the New button creates a new
row with a series of blank fields for the user to populate. A standard list applet in
edit mode is shown in Figure 225.

Persistently Editable List Applets
Edit List applets are shown in a persistently editable mode in views that use high
interactivity. The purpose of an editable list applet is to allow users to modify the
records in a list applet without switching to an edit page.

The editable list applet has the following features:

■ Editable cells displayed as text input, list box, or mini buttons

■ Modified records that can be saved individually

Edit List mode renders list applets persistently editable. A list applet that is rendered
in this mode can still be shown in the Edit mode by invoking the EditRecord
method. Typically, the Edit List mode is used for editing the most commonly
updated fields, and the Edit mode is used to edit the record.

A given list applet exhibits different behavior and appears differently depending on
whether it is part of a view being displayed using standard or high interactivity:

Figure 225. Standard List Applet

Editable Text FieldDrill-down field
834 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
■ In standard interactivity, there is a row selector control that allows the user to
select a specific row for editing. When selected, the fields within the row can
activate either input or edit controls. Clicking the New button creates a new row
with a series of blank fields for the user to populate.

■ Row selection using high interactivity is done by clicking on any area within a
row in the list. Therefore, the row selection is redundant, and the control is
automatically deleted when the list is rendered. Also, because high interactivity
uses an implicit save model, a Save control is not required. When a user steps
off the current record, the changes are automatically saved. A list applet in Edit
List mode is shown in Figure 225 on page 834.

To show list applets in Edit List mode

1 Add new controls for the applet that are required to support Editable Lists.

The editable list applets will be rendered in a view with the currently selected
row showing editable fields as data entry (as opposed to read-only) controls.
Users can change the values of these fields and then use a Save control to
commit the changes to the database. To update another row, the user has to
select that row, upon which the fields in the previously selected row return to
read-only status and the fields in the newly selected row change to data entry
controls. To obtain this behavior, the following two controls should be added to
the list applet.

■ Control to Select a Row. This control should invoke the method
PositionOnRow, and its HTML Row Sensitive property should be set to TRUE.
This control appears once per row. (Refer to “Current Record Selection in List
Applets” on page 840 for more details.)

■ Control to Save a Row. This control should invoke the method WriteRecord,
and its HTML Row Sensitive property should be set to TRUE. This should
appear once for the entire list.
Version 7.5.3, Rev. A Siebel Tools Reference 835

Physical UI Navigation and Templates

Applet Templates
2 Mark the list columns that you want to edit in the list applet.

By default, all list columns in the list applet are editable in the Edit List mode if
the business component allows updates to the field and if the Read Only
property of the list column is not set to FALSE. However, having all columns
editable is not recommended. Only the fields that would require frequent
updates should be shown as editable. You still must provide an Edit Record link
to edit all the fields in the record. To mark which columns in the list applet
should not be editable when rendering the applet as an editable list, set the
property HTML List Edit of the list column to FALSE (The default is TRUE).

3 Set the template to be used for rendering the applet in the Edit List mode.

In Tools, add a new Applet Web Template for the list applet, where the Type
property is set to Edit List, and the Web Template is set to the template to be
used for rendering the applet in this mode. Add the two controls mentioned
above as Applet Web Template Items for this template.

NOTE: For an applet showing the Edit List mode, you do not need to specify a
Base type template since the applet is never shown in the base mode. Also, you
can share the same Web Template object between list applets in the Base and
Edit List modes.

4 Map the list applet to the view template in the Edit List mode.

The View Web Template Item has a property called Applet Mode, which is used
to specify the mode to be used for the applet when rendering the view. The
default value is Base. To make the list applet editable in the view, set the value
of this property to Edit List when mapping the applet in the View Web Template.

Sample List Applet Template
<table width="100%" cellspacing="0" cellpadding="0" border="0"
align="center">

<swe:form>

...

<swe:list>

<!-- List Header Section Start>
836 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
<swe:control id="147">

<td class="Header" align="center">

<swe:this property="DisplayName"/>

</td>

</swe:control>

<swe:select-row>

<td width="42" align="center" class="Header">

</td>

</swe:select-row>

<swe:for-each startValue="501" count="20" iteratorName="currentId">

<swe:control id="swe:currentId">

<td align="swe:this.TextAlignment" class="Header">

<swe:this property="ListHeader"/>

</td>

</swe:control>

</swe:for-each>

<swe:control id="142">

<td class="Header" align="center">

<swe:this property="DisplayName"/>

</td>

</swe:control>

<!-- List Header Section End>

<!------------ Loop for all 7 records, List Body ------------->

<swe:for-each-row count="7">

<tr class="swe:this.RowStyle">
Version 7.5.3, Rev. A Siebel Tools Reference 837

Physical UI Navigation and Templates

Applet Templates
<swe:control id="147">

<td width="42" align="center" class="Row">

<swe:this property="FormattedHtml" hintMapType="Control"/>

</td>

</swe:control>

<swe:select-row>

<td width="42" align="center" class="Row">

<swe:this property="FormattedHtml" />

</td>

</swe:select-row>

<!-- ---------- List Field Values (501-520) ------------->

<swe:for-each startValue="501" count="40" iteratorName="currentId">

<swe:control id="swe:currentId">

<td align="swe:this.TextAlignment" class="Row">

<swe:this property="FormattedHtml"

hintText="Field"/>

</td>

</swe:control>

</swe:for-each>

<!-- ---------- Per-record Control Buttons ------------->

<swe:control id="142">

<td align="center" class="Row">

<swe:this property="FormattedHtml" hintMapType="Control"/>

</td>

</swe:control>
838 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
</tr>

</swe:for-each-row>

<!-- ---------- End Loop, List Body ------------->

</swe:list>

...

</swe:form>

</table>

Tags that typically appear in a list applet template include swe:form, swe:list,
swe:control, swe:select-row, and swe:for-each-row.

■ <swe:form>

As with form applets, this tag encloses an editable section. It is therefore used
for editable list applets.

■ <swe:list>

This tag encloses the section of the template that contains the list header and
body. For applications that use high interactivity, the section between the start
and end of the swe:list tags is replaced by the specialized List Control that
supports capabilities such as resizing columns, and so on. This tag is ignored for
standard interactivity applications.

■ <swe:control>

This tag defines a placeholder for List Columns. The property attribute takes the
same values as in the case of form applets - DisplayName for the Display Name
attribute of the list column object, FormattedHTML for the data value. In
addition, certain attributes of a list column object can be used to control the
attributes of an HTML element contained within the enclosing swe:control tag.
For example, the align attribute of a contained TD tag can be set to be equal to
the Text Alignment property of the enclosing list column as follows:

<td align="swe:this.TextAlignment">
Version 7.5.3, Rev. A Siebel Tools Reference 839

Physical UI Navigation and Templates

Applet Templates
■ <swe:select-row>

This tag is used to render check boxes for selecting a row for the purposes of
multi-selection. This is described in greater detail in the section on multi-select
lists.

■ <swe:for-each-row>

This tag encloses the section of the template that is to be repeated for each list
row.

Current Record Selection in List Applets
The Web client has a feature that allows users to select a record as the currently
active record in a list applet in the Base and the Edit List modes.

NOTE: This applies only to standard interactivity applications. For high interactivity
applications, row selection is achieved by clicking anywhere within the current row.

To select a record as the currently active record

1 Add a control to all list applets that invokes the method PositionOnRow.

2 The HTML Row Sensitive property of this method should be set to TRUE.

3 Place this control on the list applet where you want the link to select the row.
You are able to select the record by clicking on this link.

SWE provides two options to show the currently selected record. These options can
be used together or individually:

1 You are able to specify the formatting to be used for the currently selected row.

This feature is based on changing the CSS style sheet class associated with a row
(for example in a <TR> tag) to specify different formatting information. You can
associate a list applet with a named style to be used for formatting its rows. You
can define this attribute in the cfg file used by the application under the SWE
section. (This is currently limited to all list applets used by an application so they
have the same row formatting style.)
840 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
ListRowStyle = "Siebel List"

You can specify any name for the row style. The actual style sheet classes used
by this named style is specified in a new file type called the Siebel Web Style file
(similar to the Siebel Web Format file used for custom html types). The Siebel
Web Style files (SWS files) will have the extension .sws, and should be installed
in the same folder as the template files.

As in the case of the SWF files, the SWS files used by an application are specified
in the .cfg file of the application. There are two parameters that define the SWS
file. One defines the file defined by the Siebel application teams and the other
the file that can be defined by customers to either override the styles specified
by the application teams or to add new styles. The parameters should be defined
in the SWE section of the cfg file.

SystemSWSName = CCStyles.sws

;UserSWSName = // for customer use only

In the SWS file you can define the style sheet classes to be used with a named
style using two new SWE tags and conditional tags like <swe:if> or
<swe:switch>. These tags are described as follows:

■ swe:style

Usage: <swe:style type="XXX" name="YYY">

Attributes:

■ type. Currently supports only one value which is RowStyle. Other values will
be supported in the future.
Version 7.5.3, Rev. A Siebel Tools Reference 841

Physical UI Navigation and Templates

Applet Templates
■ name. Name of the style (like Siebel List)

swe:class

Usage: <swe:class name="XXX"/>

Attributes:

name. Name of the CSS style sheet class. The style sheet that defines this class
should be loaded through the template.

The following is a sample entry in a SWS file that will achieve the same
formatting as the conditional tags that were put in the template file using the
earlier approach:

<swe:style type="RowStyle" name="Siebel List">

<swe:switch>

<swe:case condition="Web Engine State Properties, IsErrorRow">

<swe:class name="listRowError"/>

</swe:case>

<swe:case condition="Web Engine State Properties,
IsCurrentRow">

<swe:class name="listRowOn"/>

</swe:case>

<swe:case condition="Web Engine State Properties,
IsOddRow">

<swe:class name="listRowOdd"/>

</swe:case>

<swe:case condition="Web Engine State Properties,
IsEvenRow">

<swe:class name="listRowEven"/>

</swe:case>

<swe:default>
842 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
<swe:class name="listRowOff"/>

</swe:default>

</swe:switch>

</swe:style>

In the template file used by the list applet, the conditional tags used earlier
should be replaced with a new property of the applet called “RowStyle” that can
be set to the class attribute of any HTML tag. The format used for specifying the
RowStyle property of the list applet is similar to that used for specifying the
TextAlignment property of a list column.

<swe:for-each-row count="7">

<tr class="swe:this.RowStyle">

<swe:for-each startValue="501" count="20"
iteratorName="currentId">

<swe:control id="swe:currentId">

<td align="swe:this.TextAlignment" class="Row"><swe:this
property="FormattedHtml" hintText="Field"
hintMapType="ListItem"/></td>

</swe:control>

</swe:for-each>

</tr>

</swe:for-each-row>

2 You can use the PositionOnRow control itself to distinguish between the selected
and the unselected rows. Once a row is selected, the PositionOnRow control on
that row will be in a disabled state. So you can use different images for the
disabled and enabled state of the control to differentiate between selected and
unselected rows.
Version 7.5.3, Rev. A Siebel Tools Reference 843

Physical UI Navigation and Templates

Applet Templates
Multi-Row Editable List Applets
This is an extension to the Editable List Applet capability. By default when an applet
is rendered in the Edit List mode in a view, only the currently selected row is
editable. To edit other rows, you need to save the current changes and then select
the next row to edit.

It is also possible to render list applets in Edit List mode where all the rows are
editable. Users can update multiple rows and then save all the records with one
invocation of the SaveEditRecord control.

To make a list applet support multi-row edits in Edit List mode, set the HTML Multi
Row Edit property of the List object in tools to TRUE. The default for this attribute
is FALSE. All the other steps are the same as for the regular Edit List mode.

NOTE: You do not need to place the SaveEditRecord control on each row. Only one
such control is required for the applet.

There are certain limitations around the usage of this feature:

■ If an error occurs while committing any of the records, the Siebel Web Engine
will try to commit as many of the records that it can and will report errors on all
the failed records. However, the error messages may not have sufficient
information on which rows failed.

■ Changes in the current working set must be committed before you can navigate
to another working set (in other words you need to save your changes before
calling GotoNextSet, GotoPreviousSet, and so on).

Because of these limitations, this feature should be used only in cases where these
limitations will not cause a significant impact on the application’s usability.

Hence this feature should be used only when the following conditions are met:

■ Validation errors in the editable fields of the applet can be caught with client side
validation (using the Browser Script).

■ Only one user will be updating the records of this applet at any given time.

■ The number of records in the list applet are small enough that they can be
rendered on a single page without the Next or Previous controls.
844 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
A good example of the use of this feature is to update the Quantity field in the
Shopping Cart applet.

NOTE: This feature is specific to standard interactivity applications. Applications that
use high interactivity commit implicitly as you navigate between rows of a list
applet. You can edit any row of a list applet, and as you proceed these changes will
be committed to the database.

Multi-Record Select List Applets
Multi-select list applets provide a way to select multiple items for a transaction. The
check boxes in the left column are used to select the items. The Select All button
allows the user to select all available records in the list. The Select action button
selects all of the records that have been chosen for inclusion in the selection.

This feature is specific to standard interactivity applications. In applications that use
high interactivity, multi-row selection is available in all list applets rendered using
the <swe:list> tag, except for pick applets. In these applets, multiple rows can be
selected using the Control/Shift keys, as in any standard Windows application

The Siebel Web Engine supports the selection of multiple records in list applets for
invoking methods that act on these selected records. With the HTML Client the
selection of rows is done using check boxes that are placed on each row.

This is different from positioning the current record using the PositionOnRow
control. You can have both the PositionOnRow control and Multiple Row Selection
on the same list applet.

When you initially navigate to a list applet, the record on which the bus comp is
positioned is automatically selected. Users can unselect this using the check box if
desired. Unlike PositionOnRow, when you select rows using the check box there is
no server round trip. The selected records are marked as selected on the bus comp
only when a method is invoked on the applet. You can select records across multiple
pages (that is, you can navigate using the Next and Previous controls and select
records from different working sets).

By default, multirecord selection is not enabled for list applets. To enable this
feature on list applets where this needs to be supported, set the new attribute of the
List object in Tools called HTML Multi Row Select to TRUE.
Version 7.5.3, Rev. A Siebel Tools Reference 845

Physical UI Navigation and Templates

Applet Templates
To render the check boxes to select multiple rows in list applet templates, the tag
<swe:select-row> is used. The syntax of this tag is:

<swe:select-row property="FormattedHtml" />

or

<swe:select-row>

<swe:this property="FormattedHtml" />

</swe:select-row>

When the property attribute is set to FormattedHtml in either the <swe:select-
row> or <swe:this> tag, the check box will be rendered if the applet is enabled for
multirecord selection in Tools. When <swe:select-row> tag is used without the
property attribute, it acts as a conditional tag to show its body if the applet is
enabled for multirecord selection.

By using this tag, you can create a generic list applet template that can be used with
list applets that support multi-record selection and those that do not. In the list
header, use the <swe:select-row> tag conditionally to put in a <td> for the header
for the row selection check box column, and in the list body use the <swe:select-
row> tag along with the <swe:this> tag conditionally to put in a <td> that contains
the check box.

NOTE: You must place your list applet controls/list columns within a <swe:form> tag
when you enable the multi-select feature, as any invoke method on the applet
requires the form which contains the row selection check boxes to be submitted.

Controls that do not support invoking methods when multiple records are selected
are not disabled when the user selects multiple records since there is no server call
when selecting multiple records. Instead, when the control is activated a message
will be shown to the user that the action cannot be performed when multiple
records are selected

Displaying Totals of List Column Values
This feature supports the following:
846 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
■ Simple summation of values in a list column

■ Totals based on expressions defined at the business component field level

For example, the Revenue business component has the fields Quantity, Price, and
Calculated Revenue. The field Calculated Revenue has an expression defined in its
Calculated Value attribute as [Quantity]*[Price]. In a list applet based on this
business component, you can show the total quantity and the total revenue. The
total value for quantity is the sum of all quantity field values. The total value for
revenue is the product of the totals of the quantity and price columns.

To configure a list applet to display totals

1 Set the Totals Displayed and Totals Required properties of the List object to
TRUE.

2 Set the Total Required property of the specific list columns that need to be totaled
to TRUE.

3 Set the Web Template used by the Base or Edit List applet Web template to
Applet List Totals (Base/EditList).

4 Use the value Total for the Property attribute of the <swe:control> tag in the
template file:

<swe:control id=”XXX” property=”Total”/>

or

<swe:control id=”XXX”>

<swe:this property=”Total”/>

</swe:control>

When the Property attribute is set to Total, either in the <swe:control> tag or
the <swe:this> tag, the total for the list column values is rendered if the list
column is enabled for totals. If the list column is not enabled for totals, no output
is generated. This property is valid only when the <swe:control> tag is mapped
to a list column.
Version 7.5.3, Rev. A Siebel Tools Reference 847

Physical UI Navigation and Templates

Applet Templates
To enable expression-based totals

1 Check that the business component field to which the list column is mapped has
an expression defined.

2 Set the Total Required attribute.

3 Add a user property named TotalAsExpr for the list column.

NOTE: Adding the user property is enough to evaluate the totals as an expression; the
fields properties are ignored.

4 Use the value Total for the Property attribute of the <swe:control> tag in the
template file as described in Step 4 under “To configure a list applet to display
totals” above.

You can also show totals in a separate applet. An example of showing the totals in
a separate applet can be seen in the Quote Details View. A form applet appears
below a list, which contains summations of columns within the list.

To show totals in a separate applet

1 Create a form applet and place it below the list applet in the view.

2 Create a field in the business component that sums a multivalued field using the
calculated expression syntax Sum([Multi Value Field]).

3 Create in the business component a Multi Value Link object and a Multi Value
Field object based on the link.

The Multi Value Link object references the business component that supports
the list of values to be summed.

CAUTION: Never put a Sum([Multi Value Field]) expression in a list column. This
requires that a separate query be executed for each record in the list, which is a
significant performance issue.
848 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
Multi-Value Group and Pick Applets
If a control or list column has an MVG applet configured in tools, SWE will have the
following behavior:

■ In Base mode, the field shows the primary value in the MVG. There is no link to
pop up the MVG applet in this mode.

■ In Edit, New or Edit List mode (provided the control or list column is editable),
the field will show the primary value of the MVG as read-only text followed by
a link to pop up the MVG applet. The style of the link to the MVG is configured
using the EditFieldCaption and EditFieldType properties in the cfg file.

■ When the link is activated, the MVG applet is rendered on a separate pop-up
window.

■ If the MVG applet has an Edit List type template defined in the repository, that
template is used to render the applet. If not, the Base template is used. An error
is generated if both Base and Edit List templates are not defined.

■ The MVG applet behaves like any other list applet in the pop-up window. You
can invoke methods like EditRecord, AddRecord, and CreateRecord. When these
methods are invoked, the appropriate template is displayed in the current pop-
up window. After the record is saved or selected, the MVG applet is again
rendered in this window in the Base/Edit List mode.

Toggle Applets
Links to navigate between the toggle applets can be rendered as drop-down select
controls or links, or tabs (Figure 226).

Figure 226. Toggle Picklist Applet

Applet toggle picklist
Version 7.5.3, Rev. A Siebel Tools Reference 849

Physical UI Navigation and Templates

Applet Templates
The toggle selection control can be rendered in any applet template using the new
tag <swe:togglebar>. This tag works similarly to the <swe:viewbar> and
<swe:screenbar> tags.

■ <swe:togglebar>

Usage:

<swe:togglebar type="xxx" property="zzz">

Attributes:

■ Type. This can have one value, which is Select. If the type is set to Select, the
togglebar will be rendered as a HTML Select control showing the set of
applets that are available for the toggle. The applet titles are used as values
in the select control.

■ Property. This attribute is to be used only when the type is set to Select (will
not have any effect in other cases). This attribute can have a value of
FormattedHtml, in which case the HTML Select control is rendered. If this
attribute is not specified, this tag acts as a conditional tag to show its
contents if there are toggle applets defined. The <swe:this> tag will be used
within the body of this tag in this case to render the select control.

If the applet does not have toggle applets defined, this tag and its contents are
skipped.

When the type attribute is not set to Select, <swe:togglelink> and
<swe:togglename> tags can be used within the body of the <swe:togglebar> tag
to create the toggle links or tabs, similar to use of <swe:viewlink> and
<swe:viewname> tags.

■ <swe:togglelink>

Usage:

<swe:togglelink state="xxx" property="yyy">

Attributes:
850 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
■ State. This is optional. Can have values Active or Inactive. If state is Active,
this tag will be used only if the current applet title being rendered is the
currently active applet. If state is Inactive, this tag will be used only if the
current applet title being rendered is not the currently active applet. If not
specified, the tag is shown for all applets.

■ Property. This is optional. Can have only one value, FormattedHtml, which
will output the HTML for creating a link to toggle to the applet. If this
attribute is not specified, then no output is generated.

■ <swe:togglename>

Usage:

<swe:togglename/>

Outputs the title of the applet.

Examples
To show the toggle applets as a select control:

<swe:togglebar type="Select" >

<table><tr>

<td>

<swe:control id="1" property="DisplayName">

</td>

<td>

<swe:this property="FormattedHtml"/>

</td>

</tr></table>

</swe:togglebar>

Here the control is used to create a label like Show: before the select control. To
show the toggle applets as tabs or links:

<swe:togglebar>
Version 7.5.3, Rev. A Siebel Tools Reference 851

Physical UI Navigation and Templates

Applet Templates
<table><tr>

<td>

<swe:togglelink property="FormattedHtml">

<swe:togglename>

</swe:togglelink>

</td>

</tr></table>

</swe:togglebar>
852 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
Tree Applets
The explorer-style (or tree) applet presents hierarchically structured information in
an expandable tree control. The tree control is displayed in a frame on the left side
of the applet content area. Detailed information for a selected tree node is displayed
in the details applet in a frame to the right. The separate vertical frames allow the
contents of the tree applet to be scrolled independently from the details applet. This
is important because trees’ structures can typically grow very large in length and
width.

A tree applet in an explorer view is similar in operation to the Object Explorer and
Object List Editor in Siebel Tools. The user may expand and collapse folders in the
tree applet, and view the records in that folder in the list applet. The hierarchy
displayed in the tree applet represents master-detail relationships between records
of different business components. A tree applet in an explorer view uses the set of
master-detail relationships implemented in the business object assigned to the view.
The Opportunities Explorer View is illustrated in Figure 227.

Figure 227. Opportunities Explorer View
Version 7.5.3, Rev. A Siebel Tools Reference 853

Physical UI Navigation and Templates

Applet Templates
For example, when the user expands an opportunity by double-clicking, a set of
folders appears hierarchically beneath it including Opportunities, Contacts,
Partners, Quotes, Activities, Notes, and so on. When the user expands one of these
child folders, a list of records appears of the corresponding business component. If
the user expands the opportunity and then expands the Activities folder beneath it,
the list of records displayed is the set of activity records for that opportunity. In the
master-detail relationship between opportunities and activities, these activity
records are detail records of the master opportunity record that was expanded. The
user can also add or associate detail records of various kinds to particular master
records.

NOTE: The architectural aspects of tree applets are described in the Tree Applets
section of the Chapter 13, “Special-Purpose Applets and Controls.”

This section describes the configuration of the templates for the explorer applet.

Here is a sample view template for a view containing an explorer applet:

<!--View with tree applet on the left and list applet on the right-->

<table border=”0” cellspacing=”0” cellpadding=”1” width=”100%”>

<tr>

<!-- Begin Tree Applet -->

<td>

<swe:applet id=”1” hintText=”Tree Applet”/>

</td>

<!-- Begin List Applet -->

<td>

<swe:applet-tree-list/>

</td>

</tr>

</table>
854 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
The <swe:applet-tree-list> tag that appears in this template provides a
placeholder for a list applet that is displayed as a result of selecting or expanding a
tree item (node). The applet that is rendered depends on the node that is currently
selected.

Here is a sample applet template for an explorer applet. It displays the tree in a
single-column table:

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>

<TBODY>

<swe:for-each-node>

<TR VALIGN=top>

<TD NOWRAP>

<swe:for-each-indent>

<swe:indent-img/>

</swe:for-each-indent>

<swe:node type=”DisplayName”>

<swe:this property=”FormattedHtml”/>

</swe:node>

<swe:node type=”FieldValue”>

<swe:this property=”FormattedHtml”/>

</swe:node>

</TD>

</TR>

</swe:for-each-node>

</TBODY>

</TABLE>
Version 7.5.3, Rev. A Siebel Tools Reference 855

Physical UI Navigation and Templates

Applet Templates
A tree control can have repository tree nodes and field values as elements in the
tree. The term tree item is used for a tree element regardless of whether it is a “root,”
“branch,” or a “leaf” in the tree. A repository tree node is called a tree node. The
<swe:node> tag specifies the placeholder for a tree item. For a tree node, the display
name is shown, whereas for tree items, the field values are shown. In the example
above, the <swe:node> tag with type DisplayName is ignored for tree items, and
the <swe:node> with type FieldValue is ignored for tree nodes.

In order to display a tree, the logic iterates over each item of the tree in a top-down,
depth-first fashion, and displays one item at a time. This is specified in the template
using the <swe:for-each-node> tag.

Each tree item is indented to place the text in the correct indent level relative to the
root using the <swe:for-each-indent> tag, and to display the expand/collapse
mark, the text of the item, and the hyperlinks. The indentation is accomplished
using a series of GIF images, or just white spaces (when in text-only mode). The
expand/collapse mark and the item are displayed using images (or just text, in text-
only mode), specified in the template using the <swe:indent-img> tag. The list
applet associated with the currently selected tree node is displayed as part of the
view.

Details about the various tags used in Tree Applet Templates are described below:

■ <swe:for-each-node>

Purpose:

Iterates over each visible item in the tree control in a top-down, “depth-first”
fashion. This tag is used to display tree nodes and field values. The attributes
are optional. If Count is not specified, the tag iterates over all nodes in the tree.

Attributes:

■ Count. Specifies the number of times the tag should iterate its contents. This
attribute is provided for situations where specific tree formatting is required.

■ StartValue. The value at which the iteration starts. The tag starts the iteration
by assigning this value to an internal iterator, and increments it by one for
each iteration.
856 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
■ <swe:for-each-indent>

Purpose:

Iterates over each level of a tree item. Used for creating indentation when
displaying tree items.

Attributes: None.

■ <swe:indent-img>

Purpose:

Provides a placeholder for a GIF image corresponding to a tree item's current
indentation level. At each level, SWE determines which GIF file to use in the
tag to output. The GIF images can be either a blank space or a vertical bar.

Attributes: None.

■ <swe:node>

Purpose:

Provides a placeholder for an item in the tree. A tree item can be a repository
tree node or a field value. The display name is printed if the tree item is a tree
node. Otherwise, the field value is generated. The expand/collapse mark, the
item's icon, and the links are also parts of a tree item. Depending on the
configuration file settings, the expand/collapse mark is shown as either a GIF
image or text. The expand/collapse mark is only shown for tree items with child
items. There are two links associated with each item. There is a link for the
+/— mark to expand or collapse the item and a link for the item image for
selecting the item (or for going to next or previous workset). The item selection
allows the user to access the list applet associated with the tree node. This tag
should use <swe:this> as a child tag.

Attributes:

■ type. Set to “DisplayName” or “FieldValue”. Outputs the repository tree
node's Display Name if “DisplayName.” Otherwise, outputs field values.
Version 7.5.3, Rev. A Siebel Tools Reference 857

Physical UI Navigation and Templates

Applet Templates
Configuration File Parameters
A tree control consists of reusable graphic elements and text obtained from business
component records, as shown in Figure 228.

The text is obtained from business components, as defined in the Tree and Tree
Node object types in the repository. The graphic elements (expansion and
contraction boxes, elbows, folder symbols and so on) are defined in the
configuration file in the [SWE] section. Configuration file parameters are specified
to customize the appearance of the folder and document symbols, expand and
collapse marks, elbows, spacers, and so on. The syntax of a configuration file
parameter line for defining a graphic is as follows:

parameter_name =

For example:

TreeNodeCollapseCaption = "<img src='images/tree_collapse.gif'
alt='-' border=0 align=left vspace=0 hspace=0>"

Figure 228. Tree Control
858 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
A text replacement for an image, for use by text-only browsers, is specified using
the alt= parameter in the tag.

Four parameters are also available for configuring the display of text obtained from
field values. These are the TreeNodeFontStyle, TreeNodeFontSize,
TreeNodeSelectBgColor, and TreeNodeSelectFgColor parameters. The syntax for
these is:

parameter_name = value

The term caption as used in the parameter names is a bit misleading. By caption,
what is actually meant is icon or graphic. The so-called caption precedes the text
that is generated from field values, or precedes another so-called caption. The
supported caption graphic and text style parameters are listed below by category.

Elbows and Trees
■ TreeNodeCollapseElbowCaption

■ TreeNodeCollapseTeeCaption

■ TreeNodeElbowCaption

■ TreeNodeExpandElbowCaption

■ TreeNodeExpandTeeCaption

■ TreeNodeTeeCaption

Root, Leaf, and Open/Closed Folder Icons
■ TreeNodeCloseFolderCaption.

■ TreeNodeLeafCaption.

■ TreeNodeOpenFolderCaption—Open folder with the dangling line.

■ TreeNodeOpenFolder2Caption—Open folder without the dangling line.

■ TreeNodeRootCaption.

■ TreeNodeArrowDownCaption—This icon indicates that there are additional
records not shown below, and when clicked, displays the next group.

■ TreeNodeArrowUpCaption—This indicates that there are additional records not
shown above.
Version 7.5.3, Rev. A Siebel Tools Reference 859

Physical UI Navigation and Templates

Applet Templates
Indentation Graphics
■ TreeNodeBarCaption.

■ TreeNodeSpaceCaption.

Text Style Parameters
■ TreeNodeFontStyle. Defaults to MS Sans Serif,Arial,Helvetica.

■ TreeNodeFontSize. Defaults to 1.

■ TreeNodeSelectBgColor. Defaults to #000080.

■ TreeNodeSelectFgColor. Defaults to #ffffff.m

Chart Applets
Chart Applets display business component data as different types of charts and
graphs. Templates for charts contain a handful of swe:control tags to map the
Chart Control (id=599) in the standard configuration) and the various controls for
switching between different chart types, and so on. A typical chart template is
shown below:

<table width="98%" cellspacing="0" cellpadding="0" border="0"
align="center">

<swe:form>

...

<table width="100%" valign="top" align="center">

<swe:togglebar type="Select">

<tr>

<td>

<swe:control id="2" property="DisplayName" />

</td>

<td>

<swe:this property="FormattedHtml"/>
860 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
</td>

</tr>

</swe:togglebar>

</table>

...

<table class="AppletBack" width="100%" border="0">

<tr>

<td align="center">

<swe:control id="599" property="FormattedHtml"
hintText="Chart"/>

</td>

</tr>

</table>

...

</swe:form>

</table>
Version 7.5.3, Rev. A Siebel Tools Reference 861

Physical UI Navigation and Templates

Applet Templates
Catalog-Style List Applets and Rich Lists
This feature supports a catalog-like layout for views with master-detail applets.
Records from the master applet and the detail applet can be shown interwoven with
each other. This allows the creation of the layout like the one shown below in
Figure 229:

In this case the bullet items under Portable Music are from records in the master
applet. The values below it are records from the detail applet for that record in the
master applet.

To create this layout, the master and detail applets are configured to be list applets.
The master applet will be called a root level applet. It is possible to show more than
one set of master-detail relationships within a view (that is, there could be more
than one root level applet). To define the relationship between the applets, the new
Position attribute of the View Web Template Item object type is used. The position
attribute works similarly to the Position attribute of the Tree Node object type. The
root level applets will have position values like 1, 2, and so on. For the applet with
position 1, its immediate child applets will be assigned position values 1.1, 1.2, and
so on. It is possible to define a third level applets with position 1.1.1, 1.1.2, and so
on (that is, these are the child applets of the applet with position 1.1).

In the View Web Template Item object definition, only the root level applets are
mapped to <swe:applet> tags in the view template. The other applets in the view
defined in the View Web Template Item object are not assigned an Id value. The
layout of these non-root applets are not specified in the view template, but are
specified in the applet template of the root level applets. The following new tags are
used to specify this layout. Only applets in the base mode in this layout are
supported.

Figure 229. Master-Detail Applet
862 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Applet Templates
■ swe:for-each-child

Usage:

<swe:for-each-child> ... </swe:for-each-child>

Purpose: This tag iterates over each of the child applets defined for this applet
(based on the Item Identified in the View Web Template Item object of the view
to which the applet belongs). This tag can be used only in the base template of
an applet. If the applet does not have any child applets, this tag is skipped.

■ swe:child-applet

Usage:

<swe:child-applet/>

Purpose:

This tag is used to place the child applet within the parent applet. The base
template of the child applet is used to render the child applet at the point where
this tag is placed.

Example
This section presents a master-detail applet relationship with the master applet
being Category Items List Applet and the detail being Sub Category Items List
Applet. The View Web Template Item of the view that contains this applet has the
following values (Table 57):

The base template for the Category Items List Applet will have the following table
definition:

<table>

<swe:for-each-row>

Table 57. View Web Template Item Properties

Item Identifier Applet Applet Mode Position

101 Category Items List Applet Base 1

Sub Category Items List Applet Base 1.1
Version 7.5.3, Rev. A Siebel Tools Reference 863

Physical UI Navigation and Templates

Applet Templates
<tr>

<td>

<swe:control id = "5001" /> <!-- field value like "Small
Business" -->

</td>

<td>

<swe:for-each-child>

<swe:child-applet> <!-- Show the child applet -->

</swe:for-each-child>

</td>

</tr>

</swe:for-each-row>

</table>

The base template for the Sub Category Items List Applet will have the following:

<table><tr>

<swe:for-each-row>

<td>

<swe:control id="5001"/> <!-- field value like "Desktop" -->

</td>

</swe:for-each-row>

</tr></table>

NOTE: Set the HTML Number of Rows property of the Sub Category Items List Applet
to the number of values you want to show under each category value. To allow
drilldown from the category and sub-category values, configure the appropriate
drilldown objects.
864 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Toolbars and Menus
Toolbars and Menus
Toolbars and menus allows the user to initiate various actions. Toolbars appear in
their own frame near the top of the application in the browser window, and the
application menus (File, View and Help) appear just beneath the primary tab (first
navigational level) bar, as shown in Figure 230.

The applet-level menus are invoked from the applet menu button, in the control
banner at the top of an applet. This is illustrated in Figure 231 where the menu
button is in the left corner of the control banner.

Figure 230. Primary Tab Bar

Figure 231. Applet Menu Button

Toolbar Application Level
Menus
Version 7.5.3, Rev. A Siebel Tools Reference 865

Physical UI Navigation and Templates

Toolbars and Menus
Clicking on a toolbar icon or menu item is normally translated into a call to an
invoke method, which may reside in a service on the browser or server, or in classes
in the browser application or server infrastructure (applet or business component
classes). The toolbar icon or menu item is configured to target a method name, a
method handler, and optionally a service.

Application-level items (which include both toolbar icons and application-level
menus) are implemented through the use of Command object definitions in Tools,
which are then mapped to Toolbar Item or Menu Item object definitions. Applet-
level menus do not use Command object definitions, but the set of properties used
for targeting the method are essentially the same as those found in the Command
object type.

In SWE templates, the <swe:toolbar> tag specifies a named toolbar (where the
name corresponds to the Name property in the Toolbar object definition in the
repository), and the <swe:toolbaritem> tag between the toolbar start and end tags
recursively retrieves all of the toolbar items for that toolbar from the repository.

Toolbar Template Configuration
Three types of toolbars are supported: regular and Java applet. Regular toolbars are
displayed as HTML toolbars in standard interactivity applications and as extensible
JavaScript toolbars in high interactivity applications.

HTML toolbars reside in the topmost frame in the application template, which is set
aside for this purpose. JavaScript toolbar objects reside in the JSSApplication
hidden frame, which usually does not reload during the application life cycle.
Therefore, they are not redrawn when there is a page refresh. The UI part of the
JavaScript toolbar resides in a visible HTML frame (recommended to be a persistent
frame that reloads infrequently) and redraws when the HTML frame reloads.

An additional frame beneath these is specified for Java applet toolbars in Siebel Call
Center and similar applications using CTI. If no Java applet toolbar is used, this
frame is omitted.

HTML and JavaScript Toolbars
For an HTML or JavaScript toolbar, add the following to the SWT file:

<swe:toolbar name=xxx> // where xxx is the name of toolbar in the
repository.

// any HTML stuff here...
866 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Toolbars and Menus
<swe:toolbaritem>

// any HTML stuff here...

</swe:toolbar>

NOTE: For combobox items, the command has to be targeted to a service.

Java Toolbars
For a Java toolbar, add the following to the SWT file:

<swe:toolbar name="xxx" javaapplet="true" />

The Java applet invokes the ShellUIInit method on the command target service
when it tries to initialize. It invokes ShellUIExit when it exits. There is a set of
communication protocols defined for the communication between the Java Applet
and the service.

The toolbar is implemented as a Java Applet (including all the toolbar controls and
the threads interacting with the server).

The full syntax specifications for the <swe:toolbar> and <swe:toolbaritem> tags
are below:

■ <swe:toolbar>

Purpose:

In SWE templates, the <swe:toolbar> tag specifies a named toolbar (where the
name corresponds to the Name property in the Toolbar object definition in the
repository), and the <swe:toolbaritem> tag between the toolbar start and end
tags recursively retrieves all of the toolbar items for that toolbar from the
repository. Siebel eBusiness Applications currently support two types of
toolbars: HTML toolbars and Java applet toolbars, as specified in the javaapplet
attribute.

Usage:
Version 7.5.3, Rev. A Siebel Tools Reference 867

Physical UI Navigation and Templates

Toolbars and Menus
<swe:toolbar name="XXX" javaapplet="true/false" width="XXX"
height="XXX" />

Attributes:

■ name. The name of the toolbar as defined in Tools.

■ javaapplet. This should be set to true for java toolbar, and false for HTML
toolbar.

■ width. Width of the toolbar in pixels.

■ height. Height of the toolbar in pixels.

■ <swe:toolbaritem>

Usage: <swe:toolbaritem>

Attributes: None.

Menu Template Configuration
A menu, in SWE templates, is a button or link that activates a drop-down list of
menu selection items when clicked by the user. There are application-level and
applet-level menu buttons/links, as described previously. The <swe:menu> tag will
render all menus that are appropriate at the template level where it occurs—
application (container page) or applet. Menus are shown only when running in the
High Interactive mode. An applet menu is rendered as an icon button, generally
placed to the left of the other buttons such as Edit and Delete. For a description of
the configuration of the set of menu options for an applet menu, see Chapter 9,
“Logical User Interface Objects Layer.” At runtime, the set of menu options for a
given applet are generated from the .srf file. Note that for applet level menus, the
tag must be specified in an applet template.

A sample of the template for rendering an applet's buttons, including the menu
button, appears below (from CCFormButtons.swt):

<!-- Buttons (Edit, Delete, Optional, Optional, Optional) --->

<!-- Menu,179 -->

<td valign="middle" nowrap>

<swe:menu/>
868 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Toolbars and Menus
</td>

<td valign="middle"><img src="images/bttns/div.gif" height="13"
border="0" align="middle" alt=""></td>

<!-- EditRecord -->

<swe:control id="132">

<td valign="middle" nowrap>

<swe:this property="FormattedHtml" hintText="Edit"
hintMapType="Control"/>

</td>

<td> </td>

</swe:control>

(and so on...)

For the application level menu, the <swe:menu> tag can be specified in any
template other than an applet template. The set of menus is rendered from the one
<swe:menu> tag, based on the Menu and Menu Item object definitions in the
repository. The Menu object definition that is used is the one pointed to by the
Menu property in the Application object definition. This Menu object definition
specifies a set of top-level menu names and menu options within each top-level
menu. The Profile and Logout menu options are automatically provided in all
applications, and do not have to be defined within the application's Menu object
definition and its children.

The following code sample (from CCFrameBanner.swt) illustrates the inclusion of
the <swe:menu> tag at the start of the definition for a banner:

<!--Start Banner-->

<swe:menu/>

<table class="banner" cellpadding='0' cellspacing='0' border='0'>

<tr>

<td width="50%">

<img src="images/SiebelLogo.gif" width="282" height="57"
border="0" alt="" />
Version 7.5.3, Rev. A Siebel Tools Reference 869

Physical UI Navigation and Templates

Toolbars and Menus
</td>

<td width="50%">

<img src="images/spacer.gif" width="100%" height="58"
border="0" alt="" />

</td>

</tr>

The syntax for the <swe:menu> tag appears as follows:

■ <swe:menu>

Purpose:

Renders menu buttons or links for all menus defined for the relevant entity,
either an application or an applet. For an application, one button or link is
rendered for each top-level menu defined for the application (in its associated
Menu object definition and children). For an applet, one button is rendered, the
applet menu button.

Usage:

<swe:menu type="XXX" bitmap="XXX" width="XXX" height="XXX"
bgcolor="XXX" fgcolor="XXX" />

Attributes:

■ type. The type can be set to Default (which is the default value if this attribute
is not specified) or Button. If set to Default the menu is rendered showing the
top level menu entries (like File Edit Help). If set to Button, a button is
created that, when activated, shows a drop-down menu with the top level
menu entries.

■ bitmap. This attribute is used only when the Type attribute is set to Button.
This attribute is used to specify the name of a bitmap object to be used as the
label for the button. This bitmap is defined in Tools under the bitmap
category HTML Control Icons.

■ width. This attribute is used to specify the width of the menu in pixels.

■ height. This attribute is used to specify the height of the menu in pixels.
870 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Toolbars and Menus
■ bgcolor. This attribute is used to specify the background color of the menu.
The color should be specified using the hexadecimal triplet format used in
HTML like #FFFFFF.

■ fgcolor. This attribute is used to specify the foreground color of the menu. The
color should be specified using the hexadecimal triplet format.

Thread Bar
The thread bar is used to track user navigation among the views. A thread bar in
HTML text format has been implemented. An example of the thread bar is as
follows:

Home > Consumer:PCs > PCs:Laptops > Laptops:Pentium III

Home, Consumer:PCs, and so on are the thread buttons. The thread buttons are
displayed in title: value format, and either title or value can be omitted when
appropriate. The thread button may contain a hyperlink, which leads the user to a
previous page. The thread buttons are separated by separators— “>” in the above
example.

A thread button may have a hyperlink that leads the user to a previous page. The
hyperlink requires a new SWE Command: GotoBookmarkView. The hyperlink for
each thread button should contain at least the following parameters:

SWECmd=GotoBookmarkView&SWEBMCount=2SWECount =3

The SWEBMCount = 2 indicates that bookmark #2 will be used to create the view.
SWECount=3 is the bookmark ID for the current view. With the definition of the
swe tags and thread link format, a thread button for account A.K. Parker will be
translated into HTML format as:

<a href = " www.siebel.com/
start.swe?SWECmd=GotoBookmarkView&SWEBMCount=2& SWECount=3>
Account: AK Parker

A new bookmark is created when the user clicks the thread button and brings back
a bookmarked view. The bookmark ID for the new view is the current swe count
(the count passed to the server in the request) increased by 1.
Version 7.5.3, Rev. A Siebel Tools Reference 871

Physical UI Navigation and Templates

Toolbars and Menus
Bookmark deletion policy is not modified with the above bookmark ID assignment
policy. By default, the system keeps the most recently created 20 bookmarks and
deletes previous ones. If the swe count in the user request is less than the swe count
on the server side, all the bookmarks with a swe count larger than what is in the
user request is deleted.

The behavior of the HTML threadbar is summarized below:

■ When a new screen is requested, a new thread is created to replace the current
thread.

■ When a view button is clicked, the last thread step is replaced by that of the new
view requested.

■ When the user follows a drilldown link, a new step is appended on the thread
bar for the view requested.

■ When a thread button is clicked, all the thread buttons to the right of it are all
deleted.

■ Some views may not have a thread applet or thread field defined. Showing these
views do not cause the thread button to be updated.

When a thread button is clicked, the thread proceeds to the step view indicated by
SWEBMCount.

The following three swe tags are defined to create an HTML thread bar. The usage
of these swe tags is very similar to that of the screen bar and view bar tags.

■ <swe:threadbar> Indicates the start and finish of the thread bar section.

■ <swe:threadlink> Indicates the definition of a thread button on the thread bar.
This tag has two properties defined:

■ FormattedHtml property. Indicates that HTML hyperlink should be included.

■ Title property. Indicates that the title / value pair of the thread button should
be displayed.

■ <swe:stepseparator> Specifies the symbol used to separate thread buttons.

The <swe:threadlink> and <swe:stepseparator> tags should only be used
within the <swe:threadbar> tag.
872 Siebel Tools Reference Version 7.5.3, Rev. A

Physical UI Navigation and Templates

Toolbars and Menus
To use a thread bar, insert thread bar definitions into an appropriate SWT file by
using the tags defined above. An example is given below:

<!-- Begin Threadbar section -->

<table class="Theadbar" width=100% border="0" cellspacing="0"
cellpadding="0">

<tr valign="left">

<td nowrap bgcolor="#6666CC" width=110>

<img src="images/spacer.gif" width="110" height="25"
border="0">

</td>

<td width=99%>

<swe:threadbar>

<img src="images/spacer.gif" width="10" height="25"
border="0" align="absmiddle">

<swe:threadlink property="FormattedHtml">

 <nobr><swe:this
property="Title"/></nobr>

</swe:threadlink>

<swe:stepseparator>></swe:stepseparator>

</swe:threadbar>

<img src="images/spacer.gif" width="10" height="25" border="0"
align="absmiddle">

</td>

</tr>

</table>

<!-- End Threadbar section -->

This creates a thread bar as shown below:
Version 7.5.3, Rev. A Siebel Tools Reference 873

Physical UI Navigation and Templates

Toolbars and Menus
Home > Consumer:PCs > PCs:Laptops

For applications without frames, put the definition in a container page such as
CCPageContainer.swt; for applications with frames, insert it in the “Viewbar” frame
swt file or View frame swt file.
874 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates 16
This chapter describes some of the special behavior supported by templates, such
as Search and Find, favorites (predefined queries), and conditional mappings for
applets.

Search and Find Configuration in SWE Templates
The Siebel Web client supports a unified search model that merges the functions of
search, find, and query in order to provide users with multiple methods of locating
records. Depending on business requirements, various application-level searching/
querying and applet-level querying are available to the customer to configure and
add. See “Screens” on page 502 for further information about this feature.

Various specialized SWE tags are used in the Search and Find applet, and the
Results applet. They fall into two groups.

Search and Find Applet Tags
These tags are used to display the Basic and Advanced Search or Find applets. The
tags are <swe:srchCategoryList>, <swe:srchCategory>,
<swe:srchCategoryText>, and <swe:srchCategoryControl>.

Example:

<swe:srchCategoryList>

<swe:srchCategory>

<td><swe:srchCategoryText/></td>

<td><swe:srchCategoryControl/></td>

</swe:srchCategory>
Version 7.5.3, Rev. A Siebel Tools Reference 875

Special Behavior Supported by Templates

Search and Find Configuration in SWE Templates
</swe:srchCategoryList>

The syntax for each tag is described as follows:

■ <swe:srchCategoryList>

Purpose:

An iterator tag that encloses all the search categories that need to be displayed.

Usage:

<swe:srchCategoryList> … </swe:srchCategoryList>

Encloses all three tags described below. This tag also establishes a context.

■ <swe:srchCategory>

Purpose:

Represents a search category object.

Usage:

<swe:srchCategory> … </swe:srchCategory>

Encloses the two tags described below.

■ <swe:srchCategoryText>

Purpose:

Displays the “display name” of the search category.

Usage:

<swe:srchCategoryText/>

Can be called only within the context of a “srchCategory.”
876 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Search and Find Configuration in SWE Templates
■ <swe:srchCategoryControl>

Purpose:

Displays the control of the search category. In the case of the Advanced Search,
it is a check box.

Usage:

<swe:srchCategoryControl/>

Can be called only within the context of a “srchCategory.”

Results Applet Tags
These tags are used to display the Search/Find results list applet. They appear in
the CCListBodySearchResults.swt and dCCListBodySearchResults.swt templates,
and include the following tags: <swe:srchResultFieldList>,
<swe:srchResultField>, and <swe:this>.

Example:

<swe:srchResultFieldList>

<swe:srchResultField><td align=”swe:this.TextAlignment”
class=”Row”><swe:this property=”FormattedHtml”/> </td>

</swe:srchResultField>

</swe:srchResultFieldList>

The syntax for these tags is described as follows:
Version 7.5.3, Rev. A Siebel Tools Reference 877

Special Behavior Supported by Templates

Search and Find Configuration in SWE Templates
■ <swe:srchResultFieldList>

Purpose:

An iterator tag that encloses all the search result fields that are defined in Tools
under a Search Engine Object. The result fields are created dynamically in the
buscomp and then displayed on the applet.

Usage:

<swe:srchResultFieldList> … </swe:srchResultFieldList>

Encloses both tags described below. This tag also establishes a context.

■ <swe:srchResultField>

Purpose:

Represents a result field object.

Usage:

<swe:srchResultField> … </swe:srchResultField>

Encloses the tag described below and can be called only within the context of
the srchResultFieldList.

■ <swe:this>

Purpose:

Depending on the property= setting, retrieves either the text alignment setting
or the value for the current result field.

Usage:

<swe:this/>

Attributes:

■ property=“TextAlignment.” Retrieves the text alignment property for the result
field from the Tools object “Search Definition - Custom result Field.”

■ property=”FormattedHtml.” Retrieves the value for the current result field from
the results obtained by executing the search on the search adapter.

Behavior varies depending on the enclosing context.
878 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Favorites (Predefined Queries)
Favorites (Predefined Queries)
Configuration of the predefined query feature has configuration file aspects, SWE
tag aspects, and menu/toolbar command aspects.

The SWE tag <swe:PDQbar> is used to implement PDQ functionality. It has no
parameters and can be located anywhere in the application. The user selects the
query to be executed. The only thing the template developer needs to explicitly
provide besides the <swe:PDQBar> tag is the “Favorites” label to the left of it.
Ideally, the Favorites label should be implemented as a control rather than HTML
text, so that it will be translated for localized or multilingual applications.

The <swe:pdqbar> tag is not required to be in the view frame. The <swe:pdqbar>
tag should be placed either in the view frame or the view bar frame in applications
that use HTML frames.

Query Management Commands
Users add their named queries into the combo box by means of the query
management commands available as invoke method calls through the base applet
classes. These are made available to the user as menu options or toolbar buttons.
The following commands are supported:

■ New. SWEMthdNewQueryE. This command places the applet in new query
mode.

■ Refine. SWEMthdRefineQueryE. This command places the applet in query-
refinement mode.

■ Save. SWEMthdSaveQueryE. This command saves the current query as a named
query using its current name.

■ Save As. SWEMthdSaveQueryAsE. This command opens up a dialog box to save
the current query as a named query using a user-specified name.
Version 7.5.3, Rev. A Siebel Tools Reference 879

Special Behavior Supported by Templates

Conditional Tags
■ Delete. SWEMthdDeleteQueryE. This command opens up a dialog box to delete
one of the named queries.

NOTE: Siebel Systems does not recommend implementing an Edit button for the
predefined query (PDQ) feature. To implement the Edit button you would need to
have it call the Refine invoke method. However, there can be problems associated
with implementing an Edit button in a multiview environment, in which there is no
way to determine the active view.

Conditional Tags
The following sections describe conditional tags in Siebel Web templates.

SWE Conditional Tags
The SWE framework supports the following conditional tags.

■ <swe:if>

Provides a simple conditional branching capability.

Usage:

<swe:if condition=”xxx”> ... </swe:if>

Attributes:

■ Condition. The condition to check for. If the condition evaluates to TRUE, the
body of the <swe:if> tag is processed. If the condition evaluates to FALSE,
the body of the tag is skipped.

NOTE: This tag does not provide an “else” capability like the if tags in
programming languages. To get that behavior use the tags <swe:switch>,
<swe:case>, and <swe:default> described below.
880 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Conditional Tags
■ <swe:switch>, <swe:case>, and <swe:default>

These three tags are used together to provide a conditional branching capability
similar to the switch, case, and default statements in JavaScript. The
<swe:switch> is a container tag for the <swe:case> and <swe:default> tags.
Anything other than <swe:case> and <swe:default> within the body of the
<swe:switch> tag is ignored. The condition to check is specified as an attribute
of the <swe:case> tag. The <swe:case> tags are checked starting from the first
<swe:case> tag. If any of the <swe:case> tags satisfies the condition, the other
<swe:case> tags and the <swe:default> tags are skipped. If none of the
<swe:case> tags satisfy their condition, the body of the <swe:default> tag is
processed. There should only be one <swe:default> tag within the body of a
<swe:switch> tag.

Usage:

<swe:switch>

<swe:case condition=”xxx”>

...

</swe:case>

<swe:case condition=”yyy”>

...

</swe:case>

<swe:default>

...

</swe:default>

</swe:switch>

Attributes:
Version 7.5.3, Rev. A Siebel Tools Reference 881

Special Behavior Supported by Templates

Conditional Tags
■ Condition. Supported only in the <swe:case> tag. If the condition evaluates
to TRUE, the body of the <swe:case> tag is processed. Any subsequent
<swe:case> tags within the <swe:switch> tag is skipped without checking
their associated conditions. If the condition evalues to FALSE, the body of the
tag is skipped.

The SWE framework supports a limited set of conditions that can be checked
using the conditional tags. These are described in the following sections.

■ <swe:if-var>

The <swe:if-var name=”[value]”> tag is used within applet templates to
conditionally express its body based on a variable set in a parent view template.
When an applet is associated with a view, the applet's template(s) acts as a child
of the view's template for the purposes of the swe:if-var tag. The applet
placeholder in the view template must specify a variable for the swe:if-var tag
in the child applet template to evaluate. The swe:if-var expression returns true
or false depending on whether the variable it is evaluating is a property of the
<swe:applet> tag in the corresponding view template. This construct is useful
for conditionally displaying parts of an applet depending on its position within
a view.
882 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Conditional Tags
Figure 232 shows a diagram of the relationships.

Consider an example where a view uses a template that contains the following tags:

<swe:applet hintMapType=”Applet” id=”1” property=”FormattedHtml”
hintText=”Applet” var=”Parent”/>

<swe:applet hintMapType=”Applet” id=”2” property=”FormattedHtml”
hintText=”Applet” var=”Child”/>

Figure 232. Object Relationships

View object

View Web
Template object

View Web
Template Item

object

(View) Template
object

<applet id=“101”
var=“foo”>

Applet object

(Applet)
Template object

View Template
file

Applet Template
file

<swe:if-var
name=“foo”>

Item Identifier = “101”
Implied parent-
child relationship

Applet Web
Template object

View object

View Web
Template object

View Web
Template Item

object

(View) Template
object

<applet id=“101”
var=“foo”>

Applet object

(Applet)
Template object

View Template
file

Applet Template
file

<swe:if-var
name=“foo”>

Item Identifier = “101”
Implied parent-
child relationship

Applet Web
Template object
Version 7.5.3, Rev. A Siebel Tools Reference 883

Special Behavior Supported by Templates

Conditional Tags
The view object also references an applet (through a view Web template item)
whose template includes the following tags:

<swe:if-var name=”Parent”>

<td valign=”middle” nowrap>

<swe:menu type=”Button” bitmap=”MenuBttn” width=”38”
height=”15” bgcolor=”gray” fgcolor=”blue”/>

</td>

</swe:if-var>

<swe:if-var name=”Child”>

<td valign=”middle” nowrap>

<swe:menu type=”Button” bitmap=”MenuBttn” width=”38”
height=”15” bgcolor=”gray” fgcolor=”red”/>

</td>

</swe:if-var>

If the user drags and drops the applet into the placeholder in the view template with
an id=1, the first swe:if-var condition will return TRUE and the second will
return FALSE. This is because the <swe:applet> placeholder with an id=1 has its
var property set to “Parent.” As a result, the button menu will be displayed with a
foreground color of blue. By contrast, if the user had mapped the applet to the
placeholder represented by <swe:applet id=”2”>, the reverse would be true, and
the button menu will be displayed with a foreground color of red.

Designing Browser Group-Specific Templates
The SWE framework supports a set of browser group-related conditions that can be
checked in the Web templates using SWE conditional tags. This allows showing
different sections of the template based on which browser is used to access the
application.
884 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Conditional Tags
The information about the supported user agents is defined in the Web Browser
Administration views accessible through the Web Client out-of-the-box. Siebel
applications have a series of predefined browsers and their associated capabilities.
Examples of capabilities include items such as “FrameSupport,” which indicates
that a browser can support ActiveX controls. Customers can modify the records that
define these browsers and their capabilities as new browsers or new versions of
existing browsers are introduced. Details on how to do this are provided in the
Applications Administration Guide.

Given below is an example of the capabilities associated with Microsoft Internet
Explorer:

[IE 5.0]

CookiesAllowed=TRUE

HighInteract=TRUE

ActiveX=TRUE

Browser=IE

Version=5

DefaultMarkup=HTML

VBScript=TRUE

JavaScript=TRUE

JavaApplets=TRUE

User-Agent=Mozilla/4.0 (compatible; MSIE 5.0

SynchExternalContent=TRUE

FramesSupport=TRUE

TablesSupport=TRUE

Below is an example of the extended sections for Microsoft Internet Explorer:

[MSIE 5.0]

User-Agent=Mozilla/4.0 (compatible; MSIE 5.0

Parent=IE 5.0
Version 7.5.3, Rev. A Siebel Tools Reference 885

Special Behavior Supported by Templates

Conditional Tags
Accept=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-powerpoint, application/vnd.ms-excel,
application/msword, */*

[MSIE 5.5]

User-Agent=Mozilla/4.0 (compatible; MSIE 5.5

Parent=IE 5.0

Version=5.5

Accept=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-powerpoint, application/vnd.ms-excel,
application/msword, */*

XML=TRUE

WAP=FALSE

StyleSheets=TRUE

JavaScriptVer=1.3

DHTML=TRUE

The following conditions can be used to check browser related information.

NOTE: Practically speaking the term “User Agent” is a synonym for “Browser.” Its
usage comes from the User Agent header property of an HTTP request which
provides a unique identifier for the type of client that is making the request, such
as “Mozilla/4.0 (compatible; MSIE 5.0; Windows NT 4.0)” for Microsoft Internet
Explorer 5.0.

The conditions are specified in the format <service>, <method>, <args> ...

■ Service: Web Engine User Agent

Method: IsUserAgent

Args: UserAgent:<A User Agent name defined in the UA.INI file>

Purpose: Checks for a particular User Agent.

Example:
886 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Conditional Mappings for Applets
<swe:if condition=”Web Engine User Agent, IsUserAgent,
'UserAgent:MSIE 5.5'">

...

</swe:if>

The condition evaluates to TRUE for the Microsoft Internet Explorer 5.5 browser
and FALSE for all other browsers.

■ Service: Web Engine User Agent

Method: TestCapability

Args: Capability Name:Capability Value

Purpose: Check for specific user agent capabilities. When more than one
capability is provided as an argument, the condition evaluates to TRUE when the
user agent has all these capabilities (AND operation).

Example:

<swe:if condition=”Web Engine User Agent, TestCapability,
'JavaScript:TRUE', 'JavaApplets:TRUE'”>

...

</swe:if>

The condition evaluates to TRUE for any user agent that supports JavaScript and
Java Applets in the browser.

Conditional Mappings for Applets
Conditional mappings are settings in the repository that modify the appearance of
an applet depending on the current target browser group, application, language,
and more/less mode. These are implemented with properties in the Applet Web
Template object type, and its children and grandchildren, and are set using certain
UI features in the Tools environment.

The following features support conditional control mappings in applets:
Version 7.5.3, Rev. A Siebel Tools Reference 887

Special Behavior Supported by Templates

Conditional Mappings for Applets
■ Browser Specific. Based on the target browser group or virtual browser group the
user is using.

■ Application Specific. Based on the application the user is running.

■ Language Specific. Based on the language/locale in which the application is
running.

■ More/Less Mode Specific. Based on whether the applet is being displayed by the
user in the More mode or the Less mode. The user can toggle between these
modes to display more or fewer controls or list columns.

Conditional control mappings are added and removed in Tools when working in the
Applet Web Editor by using picklist controls in the toolbar that specify the affected
target browser group, application(s), language(s) and more/less mode. Conditional
mappings are interpreted by SWE at runtime as it interprets and parses the
template.

Each of the functional areas of conditional mapping is described in a subsection.

Browser-Specific Mappings
As described above, different browsers can have different associated capabilities as
defined in the Web Browser Administration view. Differences in the abilities of
particular browsers to use features such as frames and JavaScript may necessitate
different applet layouts for different classes of browsers. The browser group-specific
mappings feature allows this kind of browser-specific layout customization.

A Target Browser combo box appears in the toolbar when the View > Toolbars >
Configuration Context option is activated. The first item in the combo box is Target
Browser Config, which activates a dialog box for selecting browsers.

The Target Browser Configuration dialog box lists all of the browsers in the Available
browsers selection box at the upper left. You select the ones you are interested in
working with by moving the names of these browsers into the Selected browsers for
layout editing section at right. You can also view various features of the selected
browser in the Capability Name and Value box in the lower half of the dialog box.
The boxes in the dialog box include the following:

■ Available browsers: List of available browser groups.
888 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Conditional Mappings for Applets
■ Selected browsers for layout editing: Specifies which browser groups are affected
by subsequent layout editing in the Web Layout Editor.

■ Capability Name and Value: Specifies what capabilities or properties the
currently selected virtual browser group has.

The target browser group determines how conditional template tags are expressed
in the layout editor.

Inside the template are SWE:IF tags that conditionally execute blocks of code.
(Markup is included.) At edit time you see the applet the way it would show up for
the particular browser you have chosen. At run time, the conditional sections in the
template are executed appropriately for the current browser.

For example, a user may associate a template to a view that contains the following
tags:

<swe:if condition=”Web Engine User Agent, TestCapability,
'FrameSupport:TRUE'”>

<swe:frameset htmlAttr=”cols='33%,66%'' border='1'
frameborder='Yes'”>

<swe:frame type=”Applet” htmlAttr=”marginheight='0'
marginwidth='0' scrolling='Auto'”>

<swe:applet id=”101” hintText=”Applet” var=”Parent”>

<swe:this property=”FormattedHtml”/>

</swe:applet>

</swe:frame>

</swe:frameset>

</swe:if>

If the user opens a view in the Web Layout Editor when his or her Target Browser
is set to IE 5.0, the user will see a placeholder for the applet in the frame with an
underlying identifier of 101. The user can then drag and drop a particular applet to
the placeholder. This is because IE 5.0 has a FrameSupport capability with a value
of TRUE. However, if the user's Target Browser is set to IE 1.5, he or she will simply
not see the placeholder in the layout editor since the FrameSupport capability for IE
1.5 is set to FALSE.
Version 7.5.3, Rev. A Siebel Tools Reference 889

Special Behavior Supported by Templates

Conditional Mappings for Applets
Application-Specific Mappings
Application-specific controls or list column mappings specify that the
corresponding control is active or not when a particular application is active. This
provides the means to display or remove controls or list columns at runtime based
on the application that is running. They can be repositioned for individual
applications.

The application setting of the Application combo box in the Configuration Context
toolbar determines the setting applied to control mappings that are subsequently
added or removed. By default, the layout editor is in All Applications mode, which
leaves the controls that are added or deleted during the session unmodified. A
specific application name can instead be chosen from the combo box, which places
the layout editor in single-application mode, with the effect that controls that are
added or deleted have that effect only for the selected application.

A conditional application-specific setting for a control is implemented with the
Expression property in the Applet Web Template Item object definition for the
control. The Expression property functions as a search specification or query
condition, limiting the display of the control to those applications that match the
expression condition. The Expression property is normally blank, which means
“unrestricted,” that is, the control appears in all applications. A single application
name in the property value, such as eSales, restricts the control to appearing only
in the specified application. A negation expression, such as NOT eSales, specifies
that the control appears in all applications except the negated one.

Normally, the Expression value is not entered directly. Instead, the developer sets
the Application combo box in the toolbar to the application to work on, and adds
and removes controls or list columns through drag-and-drop. When a user adds a
control with an application selected specifies that control only appears for the
selected application (the application name is automatically entered in the
Expression property for the control).

NOTE: This feature could be used to add a new button that is only required in a
particular application.
890 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Image Support
If you choose a different selection in the Application combo box during an editing
session, the layout window changes to reflect the set of controls that is specified for
that application. Namely, the controls appearing would be those specified for All
Applications, plus those specified for the current application, less those negated for
this application.

Unlike the target browser specific mappings, wizards do not affect application-
specific mappings. If you use wizards to create something, it always gets created for
all applications.

More/Less Mode-Specific Mappings
This feature provides the ability for an applet to display initially with a limited set
of fields, and expand to display a larger number of fields when the user clicks a
More button. The applet has two modes, a Less mode and a More mode. The user
can toggle between these modes to display more or fewer controls or list columns.

There is a More/Less property (or a similar name) in the Applet Web Template Item
object definition for each control, providing the ability to specify whether the
control always appears, or only in More mode.

To specify that a control only shows up in the More mode a user would highlight it
from the Applet layout editor, right mouse click and select “More” from the context
menu.

NOTE: The More/Less feature is not supported for Pop-up applets. For more
information about Pop-up applets, see “Pop-Up Windows” on page 772.

Image Support
This section describes how to do the following:

■ Configure images as bitmap objects

■ Use image formats

■ Use icons for field values
Version 7.5.3, Rev. A Siebel Tools Reference 891

Special Behavior Supported by Templates

Image Support
■ Use images as links in controls and list columns

■ Use images in template files

■ Use image caching file manager

Configuring Images as Bitmap Objects
The Bitmap object in Tools supports image formats used in Web Applications like
JPEG and GIF. The Bitmap object has an attribute called “File Name.” To configure
a gif or a jpeg image in Tools, create a new Bitmap object and set its “File Name”
attribute to the file name of the image file. When setting the image name assume
that the images will be published in a folder named “images” under the public
folder of the application. For images that are published within subfolders in the
image folder, include the subfolder in the image name.

Example:

■ For the image asterix.gif that is published in the eapps/public_enu/images
folder, set the “File Name” attribute to “asterix.gif”.

■ For the image next_on.gif that is published in the eapps/public_enu/images/
bttns folder, set the “File Name” attribute to “bttns/next_on.gif”.

SWE will render the bitmap object using the HTML tag. The “Height” and
“Width” attributes of the Bitmap object can be set to the height and width of the
image that you want to display on the Web page. If these attributes are set, SWE
will use them as “width” and “height” attributes of the tag. This allows the
creation of various bitmap objects that share the same image file, but are rendered
with different dimensions. The Bitmap object has another new attribute called “Alt
Text.” This attribute can be set to the text to be used in the “alt” attribute of the
image tag. The other attributes of the Bitmap Object like “Data” and “Transparent
Color” are not used with Web Images.

SWE supports the use of these bitmap objects in various places like:

■ In templates (as a replacement to the tags in the templates)

■ As links for controls/list columns that invoke methods

■ In the creation of the tree controls and hierarchical list applets
892 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Image Support
■ In displaying icons for field values

SWE also has a feature where the images are published from the Siebel Server to
the Web servers. Instead of being installed on the Web server, the image files are
installed on the Siebel Server like the template files. These files are then
automatically published to all the Web servers that connect to the Siebel Server.

You can configure your Bitmap objects so that the images are published to the
public_language/images folder at runtime

where

language = the Siebel code for the Language Pack you have installed.

See “Associating Images With Siebel Objects” on page 582 for more information
about using the Bitmap object type.

Image Formats
GIF and JPG formats commonly used in Web clients. These types of images are not
stored in the repository but instead are stored in files and referred to from the
repository Bitmap objects.

■ If the image format is not BMP, such as GIF, the image file name should be
specified in File Name field. The corresponding image file should be located in
the Public\$lang\images folder.

■ After the File Name value is set, if you right-click on an entry in the Bitmaps
applet in the Object List applet, the menus for Import Bitmap, Export Bitmap and
Transparent Color are disabled since there is no need to import/export these
bitmaps into the repository and since the concept of transparent color is not
applicable. Files need to be copied to the Web server or Web client.

■ If the image type is BMP, after the image is imported into the repository, the File
Name field becomes read-only.
Version 7.5.3, Rev. A Siebel Tools Reference 893

Special Behavior Supported by Templates

Image Support
Using Icons for Field Values
SWE supports a feature to render control/list column field values as icons. A
repository object called “Icon Map” supports this. Each icon map object is a
collection of objects called “Icons.” An icon uses a bitmap object to define the
image for the icon. Each icon within an icon map corresponds to a field value.
Controls/List Columns have a attribute called “Icon Map” that can be set to the icon
map object to be used for rendering the field values. Configuring and using these
objects is explained below in detail.

For example, consider rendering the “Status” list column on the “Activity List
Applet” using icons. The status field can have values “Not Started,” “In Progress,”
and “Done.” Other values include notstarted.gif, inprogress.gif, and done.gif as the
corresponding iconic image files.

NOTE: If you want to use custom icons in a list applet, you must size them in
accordance with the list applet’s row font size. For example, when using an 8-pt font
(standard for Siebel eBusiness Applications), icons should be 23 pixels in width x
14 pixels in height.

If you change the list applet row font size dynamically or place an icon larger than
23 x 14 in a row, the list applet rows will be scrambled.
894 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Image Support
To render a field using image files

1 Create a new Bitmap Category, for example, “Activity Status Icons,” to contain
the bitmaps used for these icons.

Within this category, create bitmaps “NOTSTARTED”, “INPROGRESS” and
“DONE.” These bitmaps should be configured to use the Web images
notstarted.gif, inprogress.gif, and done.gif.

The Bitmap object in Tools has been extended to support image formats used in
Web Applications like jpeg and gif. The Bitmap object has a new attribute called
“File Name.” To configure a gif or a jpeg image in Tools, create a new Bitmap
object and set its “File Name” attribute to the file name of the image file. When
setting the image name assume that the images will be published in a folder
named “images” under the public folder of the application. For images that are
published within subfolders in the image folder, include the subfolder in the
image name.

For example:

■ For the image asterix.gif that is published in the eapps/public_enu/images
folder, set the “File Name” attribute to “asterix.gif”.

■ For the image next_on.gif that is published in the eapps/public_enu/images/
bttns folder, set the “File Name” attribute to “bttns/next_on.gif”.

SWE will render the bitmap object using the HTML tag. The “Height”
and “Width” attributes of the Bitmap object can be set to the height and width
of the image that you want to display on the Web page. If these attributes are
set, SWE will use them as “width” and “height” attributes of the tag.
This will allow creation of various bitmap objects that share the same image file,
but are rendered with different dimensions. The Bitmap object has another new
attribute called “Alt Text”. This attribute can be set to the text to be used in the
“alt” attribute of the image tag. The other attributes of the Bitmap Object like
“Data” and “Transparent Color” are not used with Web Images.

SWE will support the use of these bitmap objects in various places like:

■ In templates (as a replacement to the tags in the templates)

■ As links for controls/list columns that invoke methods

■ To create the tree controls and hierarchical list applets
Version 7.5.3, Rev. A Siebel Tools Reference 895

Special Behavior Supported by Templates

Image Support
■ To show icons for field values

■ Other future uses

2 Create a new “Icon Map” object named, for example, “Activity Status.”

3 Create “Icon” objects as child objects of the “Activity Status” icon map. Create
one icon object for each field value that the status field can have. Set the “Name”
attribute of the icon as the field value. Set the “Bitmap Category” and “Bitmap”
attributes of the icon to the bitmap you want to show for the field value. Thus
you will create the following icons in this example:

4 Set the “Icon Map” attribute of the “Status” list column of the “Activity List
Applet” to the icon map “Activity Status Icons.”

The procedure is the same with control field values.

SWE renders the image corresponding to the bitmap when the field value matches
one of the icons defined.

If you create an icon named “Default” in a Icon Map object in tools and if the field
value does not match any of the icons, then the icon named “Default” is used for
the field. This feature is used to create an icon used with fields that could contain
different values (for example, URLs). In this case, you would still set the HTML Type
property of the field to be “URL” and its IconMap property to an IconMap object
that contains only one icon named “Default.” If the field value does not match any
of the icons and a “Default” icon is not defined, then the field value itself is
rendered.

For more information about Icon Maps, see “Icon Maps” on page 524.

Name Bitmap Category Bitmap

Not Started Activity Status Icons NOT STARTED

In Progress Activity Status Icons INPROGRESS

Done Activity Status Icons DONE
896 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Image Support
Using Images as Links in Controls
You can use an image as a link with a control that invokes a method by using two
attributes of controls called “HTML Bitmap” and “HTML Disabled Bitmap.”

The “HTML Bitmap” attribute is used to set the name of the bitmap to be rendered
when the control is in an enabled state (that is, the method can be invoked), and
the “HTML Disabled Bitmap” is used to set the name of the bitmap to be rendered
when the control is in a disabled state.

SWE will use the “HTML Bitmap”/”HTML Disabled Bitmap” attributes only when
the “HTML Type” of the control/list column is set to “Link.” If set to “Button,” the
caption property of the control is used as the button label. You can use the “HTML
Bitmap”/”HTML Disabled Bitmap” properties with custom HTML types. If you use
the tag <swe:this property=”Data” type=”Link”/> within the definition of the
custom html type in the SWF file, then SWE uses the bitmaps.

If the “HTML Bitmap”/”HTML Disabled Bitmap” attributes are not set, SWE will
default to using the “Caption” property for the link.

These bitmaps have to be created in Tools under the Bitmap Category “HTML
Control Icons.”
Version 7.5.3, Rev. A Siebel Tools Reference 897

Special Behavior Supported by Templates

Hierarchical List Applets
Image Caching File Manager
In eapps.cfg, set the following parameters:

[ImageCache]

swe_image_cache_root = d:/swe_cache/

swe_image_cache_num_subdirs = 256

swe_image_cache_size = 8092 //In KB

swe_image_cache_cleanup_idle = 7200 //in seconds

swe_image_cache_cleanup_threshold = 2880 //in minutes

swe_image_cache_enabled = TRUE //Default is True

The default values are set as above; one can change them to different ones.

The image caching file manager only caches the product catalog images in Web
server. In order to test it, one has to set images in the product catalog view
(ThumbNailImage field).

Hierarchical List Applets
The Siebel Web Engine supports rendering hierarchical list applets. These applets
are used to show records that have a hierarchical relationship. These applets are
modeled as list applets, and the hierarchy is implemented in the business
component by setting the Hierarchy Parent Field attribute. These applets can be
shown as a hierarchy in the Base and Edit List modes.
898 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Hierarchical List Applets
Hierarchical list applets do not need new templates. The icons required to display
the hierarchy are added automatically to the first column in the list applet that is
mapped to a business component field (Figure 233).

It is also possible to show a hierarchical list applet using a Windows Explorer–like
UI (very similar to the tree control). An example of this is the Categories list used
to create and manage catalog categories in Siebel eSales.

The icons used for rendering the list applet should be specified in the repository
using the HTML Hierarchy Bitmap object named in the HTML Hierarchy Bitmap
attribute of the list object. The following bitmaps need to be specified for the HTML
Hierarchy Bitmap—Expand Bitmap, Collapse Bitmap, and Space. The other bitmaps
(except Arrow Down/Up Bitmap which is used only by tree controls) can be
specified to get an applet that resembles the tree applet (which is not specified for
hierarchical list applets in the current UI standards).

The hierarchical list applets also let you edit the hierarchy. This is done by adding
controls that invoke the following methods on the applet (Table 58).

Figure 233. Hierarchical List Applet

Table 58. Hierarchical List Applet Methods

Method Action

Indent Moves the current record to be a child of its preceding peer record (such
as the record above)

Outdent Moves the current record to be a peer of its parent record

MoveUp Moves the current record up over its peer record

MoveDown Moves the current record down over its peer record
Version 7.5.3, Rev. A Siebel Tools Reference 899

Special Behavior Supported by Templates

About Grid Layout Templates
When Indent and Outdent methods are invoked on a record, its relation to its child
records does not change. The child records are also indented or outdented.

The MoveUp and MoveDown methods are used to position a record to invoke the
Indent method. The changes made by the MoveUp and MoveDown methods are
temporary; they are not saved to the database.

For a better appearance, the number of columns displayed in a hierarchical list
applet should be small since the width of the column with the expand/collapse
controls expand as a user navigates down the hierarchy. Similarly, the column with
the expand/collapse controls should be a column with short field values.

About Grid Layout Templates
Grid Layout applet Web templates, Siebel tags, and enhanced features in the Web
Layout Editor allow you to modify form layout without having to directly modify
the underlying applet Web templates.

Standard applet Web templates (not grid-based) use placeholder tags to define an
applet’s layout. You could use the Web Layout Editor in Siebel Tools to map controls
to any of the available placeholders, but you cannot use Web Layout Editor to
change the layout of the placeholders themselves. To change the layout of the
placeholders in these templates, you have to directly modify the applet Web
template file.

Grid Layout applet Web templates use a pair of Siebel tags (<swe:form-applet-
layout> and </swe:form-applet-layout>) that do not use placeholder tags.
Instead they serve as a single container for all controls in the main body of a form
applet. These tags enable you to use the Web Layout Editor as a WYSIWYG (what
you see is what you get) design tool to configure the layout of form applets. In fact,
this is the only way you can configure the layout of an applet based on a grid-based
applet Web template.

The Grid Layout Web templates are:
900 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

About Grid Layout Templates
■ CCAppletFormGridLayout. This template may be used for form applets. See
Figure 234.

■ CCAppletPopupFormGridLayout. This template may be used for popup form
applets. See Figure 235.

Grid Layout applet Web templates consist of a body region and a header and footer
region. The body region of the template is defined by the swe:form-applet-
layout tag and contains no placeholder tags. However, the header and footer
regions do use placeholder tags for buttons such as New and Save. You cannot edit
the layout of header and footer regions using the grid layout features of the Web
Layout editor.

The following list summarizes how grid-based applet Web templates differ from
standard (not grid-based) applet Web templates:

Figure 234. Grid-Based Applet Web Template for Form Applets

Figure 235. Grid-Based Applet Web Template for Popup Form Applets
Version 7.5.3, Rev. A Siebel Tools Reference 901

Special Behavior Supported by Templates

About Grid Layout Templates
■ With grid-based templates, you can modify the layout of the form using Siebel
Tools without having to modify the web template itself.

■ With grid-based templates, Labels and Controls behave as separate items in the
Web Layout Editor. This allows you to place them independently in the applet
layout. However, Labels and Controls are really a single object in the repository
with one set of shared properties.

■ Grid-based templates do not automatically compress empty space in a column.

You can modify the background colors of applets based on Grid Layout Web
templates by modifying the appropriate selectors in the cascading style sheet,
main.css.

■ When the applet is the parent applet (the top applet on a view) modify the
.AppletStyle1 selector as shown in the example below:

/*Parent Applet Style*/

.AppletStyle1{background-color : #f00000; color:#00f0ff; }

■ When the applet is the child applet (not the top applet on the view) modify
.AppletStyle3 selector as shown in the example below:

/*Child Applet Style*/

.AppletStyle3 {background-color : #f0f000; }

For more information about modifying main.css, see Developing and Deploying
Siebel eBusiness Applications.

Grid-based templates make configuring the layout of form applets much simpler
than configuring the layout of applets based on standard (not grid-based) templates.
Using Grid Layout templates makes the process of designing a form applet similar
to working in other palette-based graphics design applications.

See “About Grid Layout” on page 547 for more information about Grid Layout.
902 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Creating Custom HTML Control Types
Creating Custom HTML Control Types
Siebel applications support the use of several different control types out of the box
(for example, Check Box, Button, Mail To, Text Area, and so on). However, there
may be cases in which additional HTML types are needed. You can define your own
HTML types by adding type definitions to the .SWF file.

Unlike cascading style sheets, which are used primarily to define general stylistic
information about labels, titles, background colors, and so on, user-defined types in
the CCHTMLTYPE.SWF file would normally be used to define more complex
attributes that determine either the appearance or client-side functionality of a type
of HTML element. Examples might include a button type that is associated with a
particular GIF or a type of link that connects the user with an FTP site.

Again, these attributes could also be given to a page element by specifying the
appropriate tags and attributes directly in the .SWT file. However, by defining them
as types within the CCHTMLTYPE.SWF file, they can be referenced from within
Siebel Tools for a specific control on a specific Applet Web Template or Web Page
object. This preserves the generality of .SWT templates by avoiding the need to
place HTML directly within them. It also improves the maintainability of the
application by minimizing customization done to templates and storing more
configuration information within the repository.

To create and use a new HTML Type

1 Add the name of the new type (for example, “MiniButton”) to the List of Values
used for the HTML Type property in Siebel Tools
(REPOSITORY_HTML_CTRL_TYPE).

2 Add the formatting information for the new type to one of the application's two
.SWF files. These files, which should use the extension .SWF, must reside in the
same directory as the template files. One file contains the special types defined
by Siebel Systems, Inc.; the other contains customer definitions, either to add
additional types or to override Siebel types.

The format for rendering the custom type is specified by using two tags:

■ <swe:htmltype>
Version 7.5.3, Rev. A Siebel Tools Reference 903

Special Behavior Supported by Templates

Creating Custom HTML Control Types
■ <swe:this>

The details of defining a new format are explained below, but for now, the form
is as follows:

<swe:htmltype name=”XXX” mode=”AAA” state=”BBB”>

..... HTML

<swe:this property=”YYY” />

.... More HTML

</swe:htmltype>

3 Specify the names of the .SWF files to be used by an application in the [SWE]
section of the .CFG file used by the application's object manager.

[SWE]

SystemSWFName = CCHtmlType.swf

UserSWFName = MyFormat.swf // You must set this name.

4 In Siebel Tools, change the HTML Type property of the control, list column, or
page item to the new type.

5 In the template file, use the FormattedHTML property for the <swe:control> or
<swe:pageItem> element.

When SWE Uses a Custom HTML Type
If the HTML type of a control, list column, or page item is a custom type, the Siebel
Web Engine will use the .SWF format when rendering any elements that are
mapped to the control, and that specify the FormattedHtml property.

The following cases exist:

■ <swe:control id=”1” property=”FormattedHtml”/>

■ <swe:control id=”1”> ... <swe:this property=”FormattedHtml”/> ...
</swe:control>

■ <swe:pageitem id=”1” property=”FormattedHtml”/>
904 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Creating Custom HTML Control Types
■ <swe:pageitem id=”1”> ... <swe:this property=”FormattedHtml”/>
... </swe:pageitem>

The formatting will not be used with any other property, such as Display Name.
However, in the .SWF file, the <swe:this> element can refer to these properties
(except the FormattedHtml property itself).

More About Format
The .SWF files contain multiple format specs. Each format spec includes two parts:

■ An enclosing XML element that names the type and optionally names the mode
and state in which the current format is used

■ The enclosed format content

The format content syntax follows these rules:

■ It must be valid, regular SWE syntax.

■ It may refer to all the properties of the current control, except “FormattedHtml”
(in order to prevent recursion).

■ It may use a new swe:this property, “Data,” which is explained below.

Examples
Example 1: To create a new HTML type for a control called “LabelRed” that shows
the caption of the control in red, the formatting might look like this.

<swe:htmltype name=”LabelRed”>

 <swe:this property=”DisplayName”/>

</swe:htmltype>

Example 2: The Data property of <swe:this> is something like a macro that casts
the current, custom type to one of the intrinsic types, and then inserts the
FormattedHtml property of the intrinsic type. To use the Data property, you add an
additional Type attribute to the <swe:this> tag, that names the intrinsic type. For
example, to create a new type called “MiniButton,” in which special formatting is
added to the Web Engine intrinsic type Link, you might write a format something
like this:

<swe:htmltype name=”MiniButton”>
Version 7.5.3, Rev. A Siebel Tools Reference 905

Special Behavior Supported by Templates

Creating Custom HTML Control Types

<swe:this property=”Data” type=”Link” />

</swe:htmltype>

Here the <swe:this property=”Data” type=”Link” /> will output the same
HTML as if the template included a separate <swe:this> tag, where the property
was FormattedHtml, and the HTML type of the control were the built-in type Link.

You can only specify built-in types and not custom types for the type attribute of
Data elements.

Example 3: You can also define custom formats for the different applet modes (Base,
Edit, New, Query), by using the Mode attribute for the <swe:htmltype> tag. If a
mode is specified, then that formatting is used only if the current show mode
matches the value specified for this attribute. For example, if you want to create a
new HTML type called SiebelText to show a control which displays as a label and a
text field while in Edit template, and as read-only text in Base mode, you specify the
format as:

<swe:htmltype name=”SiebelText”>

<swe:this property=”Data” type=”Text”/>

</swe:htmltype>

<swe:htmltype name=”SiebelText” mode=”Edit”>

<swe:this property=”DisplayName”/>: <swe:this
property=”Data” type=”Text”/>

</swe:htmltype>

Example 4: You can define another optional attribute to the <swe:htmltype> tag,
namely State, to show different formatting depending on the state of the control or
list item. Currently Siebel Web Engine supports two states:

■ Disabled. For controls or list columns that invoke methods, where the method
cannot be invoked on the record.

■ Required. For controls or list columns that are required.
906 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Creating Custom HTML Control Types
For example, to show grayed-out buttons when a method cannot be invoked, add
the following format definition in addition to the default definition shown earlier.

<swe:htmltype name=”MiniButton” state=”Disabled”>

<swe:this property=”Data” type=”Link” />

</swe:htmltype>

With built-in HTML types, if a method cannot be invoked, then the control or list
item is not shown (same as the current behavior). With custom HTML types,
however, the formatting specified in the .SWF file is always shown. The HTML
generated for the property Data (<swe:this property=”Data” type=”Link” />)
when the method cannot be invoked is simply the caption of the control or list item
without any <a href> tags.

You can hide a control or list item with a custom HTML type when a method cannot
be invoked by creating an empty <swe:htmltype> tag for the Disabled state.

<swe:htmltype name=”MiniButton” state=”Disabled”></swe:htmltype>

NOTE: This only hides the <swe:control> or <swe:this> tag that invokes the
FormattedHtml property.

Example 5: To show the SiebelText type with an indicator (*) for required fields you
can add the following format definition in addition to the definitions for this type
shown earlier.

<swe:htmltype name=”SiebelText” mode=”Edit” state=”Required”>

*

<swe:this property=”DisplayName”/>

:

<swe:this property=”Data” type=”Text”/>
Version 7.5.3, Rev. A Siebel Tools Reference 907

Special Behavior Supported by Templates

Removing HTML Frames From Web Templates
</swe:htmltype>

NOTE: When SWE looks up HTML Type definitions in the .SWF file, the order of
precedence will be Mode and then State. It is recommended to always create a
default format definition (that is, without specifying the mode and state attributes)
for all custom HTML types.

Removing HTML Frames From Web Templates
Default Web templates are designed to use HTML frames to display Siebel
applications in distinct regions of a page, such as the menu bar, screen tabs, and
content area. In most cases, using frames is desirable. However, for some partner
and customer applications, such as eSales or PRM, there may be cases where frames
are undesirable. For example, a company may have corporate style guidelines that
restrict the use of frames and require Web pages to be displayed in a single, scrolling
region.

You can configure customer and partner applications to run without visible frames.
You do this by modifying several of the default Web templates. Be aware that there
are certain features that rely on frames and therefore will not be available if HTML
frames are removed. These known issues are described below in “Known Issues
When Running Siebel Applications Without HTML Frames.”

NOTE: Employee applications, such as Siebel Sales or Siebel Call Center, require
HTML frames and cannot be configured to run without them.

To run customer and partner applications without visible HTML frames, you need
to modify the following Web templates:

■ page container

■ page header and footer

■ views with custom headers and footers
908 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Removing HTML Frames From Web Templates
Modifying Page Containers
The default template for page containers consists of an HTML frameset that defines
the main regions of the page. You can remove the frameset and insert the referred
to HTML directly into the page container.

Modifying Headers and Footers
After you have modified the container page so that it runs without frames, you must
modify the view containers so that they work in the new page container. By default,
view containers contain <head> and <body> tags because they are designed to run
in frames. However, when running without frames these view containers are
inserted inline into the HTML page. To operate correctly this requires that the view
container not insert these extraneous <head> and <body> tags.

Most views include standard header and footer Web template files which are
responsible for adding the <head> and <body> tags. By modifying these files, you
can enable most views to operate correctly in frameless mode.

To update all customer views for running without frames, replace the contents of
the header and footer Web templates with a single placeholder tag. Note
that while these modified Web templates are in use, the views that use them will no
longer operate correctly when used with frames.

Partner applications (PRM) use a number of employee views. Therefore you must
also update employee headers and footers. When the modified Web template files
are applied, any employee applications using them will not operate correctly. It is
recommended that frameless PRM and employee applications use distinct Web-
template directories.

Modifying Views with Custom Headers and Footers
There are a small number of special-purpose views that do not use the standard
header and footer .swt files. To enable these views to run in a frameless mode,
delete the <head> block and the <body> and </body> tags so that only the
contents that were contained within the body block remain.
Version 7.5.3, Rev. A Siebel Tools Reference 909

Special Behavior Supported by Templates

Template Configuration Features
Known Issues When Running Siebel Applications Without HTML Frames
Certain features in Siebel applications are designed to work with HTML frames.
When you remove frames, these features will not behave as expected. The following
are known issues that occur when you run customer or partner applications without
HTML frames.

■ Top Level Hidden Frames.

■ While the approach described in this section eliminates any visible frames in
customer and partner applications, Siebel applications still generate a top
level frameset and one or more hidden frames.

■ Partner Relationship Manager.

■ Search Center and Customer Dashboard are areas of the UI that can be turned
on or off by a user. These are implemented using frames, and are not
available in frameless mode.

■ InfoCenter Explorer view is not displayed correctly in frameless mode.

■ Calender view is not displayed correctly in frameless mode.

■ eCustomer.

■ Clicking the Go button or the Advanced Search link opens a new browser
window. This is due to Search Center not being available in frameless mode.

■ Parametric Search view does not work correctly in frameless mode.

■ eConfigurator.

■ The eConfigurator runtime does not operate correctly in frameless mode.

■ eAdvisor.

■ eAdvisor is not supported in frameless mode.

Template Configuration Features
The following section describes the template configuration features.
910 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Template Configuration Features
Displaying Server Side Errors
When a server side error occurs on submitting a form, SWE shows the same page
again with the error message displayed within the page. For errors that occur
outside of a form submission SWE continues to use the application's Error Page.

This error message display is mainly developed for showing error messages within
a form. It is also used to show an error message in an error page to replace the to
be depreciated pageitem.errorMsg way of showing error messages.

To display the error message within a form, place the following tags inside
<swe:form> tag:

<swe:error>

<swe:this property=“FormattedHtml”/>

</swe:error>

The error messages are shown in plain text, but each error message takes a new
paragraph. It is the responsibility of the enclosing HTML tags to modify the font and
style of the error message. Sometimes, the error message may not be visible; this is
because the font uses the same color as the background.

If the application developer does not use error tags in the swt files, the code
automatically generates an error node (a CSSSWEErrorSWX instance). This
automatically generated error node is inserted as the first child of the enclosing
page/form node.

The syntax of the <swe:error> tag is as follows:

■ <swe:error>

Usage:

<swe:error property=”FormattedHtml”/>

or

<swe:error>

<swe:this property=”FormattedHtml”/>
Version 7.5.3, Rev. A Siebel Tools Reference 911

Special Behavior Supported by Templates

Template Configuration Features
<swe:error/>

This tag should be used within all <swe:form> tags.

You should also use this tag instead of the <swe:pageitem> tag mapped to the
“_SWEErrMsg” item in the application's Error Page. The use of the
“_SWEErrMsg” item is deprecated for 7.0.

An example of the use of this tag is:

<swe:form>

<swe:error>

 <swe:this property=”FormattedHtml”/> </
font>

</swe:error>

...

</swe:form>

When the form is being rendered when there are no errors, the contents of the
<swe:error> tag will be skipped.
912 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Template Configuration Features
Adding Graphics
To enhance the appearance or navigation of your application, you can create .GIF
files and include links to them from the HTML pages.

Creating Directories for Your Graphics Files
Your Siebel Web installation includes three directories for your application. These
directories will contain all the files used by your application, including the graphics
files.

You should place your graphics in the public\lang\images directory. This directory
gets created during the installation of the Siebel Web applications.

Adding Sorting Capabilities to Your Application
To add sorting capabilities to your applications, you use the template file for the Sort
Dialog by specifying the Application property Sort Web Page. You can use the Sort
Dialog to show one or more instances of a list of fields to sort on, and the sorting
order to use. You can invoke the Sort Dialog using a Control that invokes the
SortOrder method. This control should be used only in base templates of List
Applets.

You use the tag <swe:sort-field> to show the list of sortable fields and the sorting
order options. This tag takes one attribute called sequence, which specifies the sort
column order. This is a required attribute.

<swe:sort-field sequence=”1”/>

This tag will render two HTML select lists. The first select list will show the list of
fields that can be sorted and have been mapped to <swe:control> tags in the base
template for the applet. The second select list will show the two options for sorting
order: Ascending and Descending. You can have as many <swe:sort-field> tags
in the Sort Web Page as you want. Each <swe:sort-field> tag should specify the
order in which the selected columns should be sorted, using the sequence attribute.

To create the link or button that would execute the sort, create a Web Page Item that
invokes the ExecuteSort method. You do not have to specify the parameters View
and Applet for this method; these will default to the currently active view and
applet.
Version 7.5.3, Rev. A Siebel Tools Reference 913

Special Behavior Supported by Templates

Template Configuration Features
Example
Below is a fragment from a sample Sort Web Page.

<swe:form>

<table width=100% bgcolor=”#EEEEEE” border=0 cellspacing=0
cellpadding=3>

<tr>

<td><swe:pageitem id=”1” property=”DisplayName”/></td>

<!--”Sort By” Label -->

</tr>

<tr>

<td><swe:sort-field sequence=”1”/></td>

<!-- First column to sort on -->

</tr>

<tr>

<td><swe:pageitem id=”2” property=”DisplayName”/></td>

<!-- “Then By” Label -->

</tr>

<tr>

<td><swe:sort-field sequence=”2” /></td>

<!-- Second column to sort on -->

</tr>

<tr>

<td><swe:pageitem id=”2” property=”DisplayName”/> </td>

<!-- “Then By” Label -->

</tr>

<tr>
914 Siebel Tools Reference Version 7.5.3, Rev. A

Special Behavior Supported by Templates

Cascading Style Sheets
<td><swe:sort-field sequence=”3”/></td>

<!-- Third column to sort on --></tr>

<tr>

<td><swe:pageitem id=”5” property=”FormattedHtml”/></td>

<!-- Execute Sort -->

</tr>

</table>

</swe:form>

Cascading Style Sheets
The look and feel of user interface elements are controlled by cascading style sheets.
Cascading style sheets contain classes that define elements such as color schemes
and fonts. Cascading style sheet files (.css files) are located in:

■ The Siebel Server installation directory

siebsrvr_root\WEBMASTER\files\language_code

■ The Mobile or Dedicated Web Client installation directory

client_root\PUBLIC\language_code\FILES.

■ The Tools installation directory

tools_root\PUBLIC\language_code\FILES

The following are examples of how you could use cascading style sheets to modify
the look and feel of the user interface:

■ Have text appear in the font of your choice

■ Specify that size of text in points, pixels, and many other units

■ Add any color or background color for images
Version 7.5.3, Rev. A Siebel Tools Reference 915

Special Behavior Supported by Templates

Cascading Style Sheets
The .SWT templates can be configured to use formatting tags. By storing style-
related information in cascading style sheets rather than .SWT templates, you can
increase the modularity and consistency of your applications and the ease with
which the .SWT templates can be modified and reused.

See Siebel Developer’s Reference for more information about cascading style sheets.

Since style-related information stored in cascading style sheets is rendered slightly
differently in different browsers, customers should test the results in both browsers
unless their users are restricted to one or the other.

See Siebel Developer’s Reference for cascading style sheet definitions.
916 Siebel Tools Reference Version 7.5.3, Rev. A

 Repositories 17
This chapter explains how to:

■ Archive, export, and import entire projects and individual repository objects

■ Rename, delete, back up, and migrate repositories

■ Create patches

■ Manage your Siebel repositories with third-party source control software

Code Pages and Unicode
Siebel applications support migrating repository data from the source environments
to the target environments listed in Table 59. This applies to importing, exporting,
backing up, or migrating repository data using any of the methods described in this
chapter.

Table 59. Code Pages and Unicode Support for Repository Migration

 Source Environment Target Environment

Code page Code page

Unicode Unicode

Unicode Code page

Code Page Unicode
Version 7.5.3, Rev. A Siebel Tools Reference 917

Repositories

Exporting and Importing Repository Objects
Exporting and Importing Repository Objects
Archive files contain object definitions exported from a repository; they are
available for importing into other repositories.

Archive files:

■ Have an .sif extension, by default

■ Can be version-controlled using third-party source control systems

■ Are used to share object definitions among repositories in a multiple repository
development effort

■ Can only be exported and imported into repositories with the same repository
schema definition

You can include any of the following in an export file:

■ One object definition

■ Multiple object definitions of various object types

■ All object definitions assigned to a specific project or multiple projects

NOTE: The Project property is never exported to or imported from an archive file.

When you do the import you can specify conflict resolution at the object-definition
level, telling the system whether to ignore the imported object definition, replace an
existing definition with an imported one, or merge the two on a property-by-
property basis.

CAUTION: Exported objects from one version of Siebel eBusiness Applications should
not be imported (through .sif files) into a different version, as object definitions
might have changed. Importing an invalid object might result in invalid
configurations and an unsupported application.
918 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Exporting and Importing Repository Objects
Exporting Individual Object Definitions
Only top-level object types—the object types that are visible in the Object List Editor
when you click an object type in the Types tab of the Object Explorer—can be
exported. Child object definitions are exported and imported along with their
parents.

To export individual object definitions

1 In the Object Explorer, navigate to the object type of the object you want to
export.

2 In the Object List Editor, select the object or objects you want to archive.

3 Select Tools > Add To Archive from the menu bar.

The Export to Archive File dialog box appears.

Status messages appear showing which child object definitions are being
included. When the process completes, the selected top-level object definition
or definitions appear in the Objects to Archive list table in the Export to Archive
File dialog box.

4 If you need to add object definitions of another object type, navigate to that
object type in the Object Explorer without closing or saving the Export to
Archive File dialog box.

Move the Export to Archive File dialog box out of the way, if necessary.

5 Repeat Step 2 through Step 4 for each object you want to archive.
Version 7.5.3, Rev. A Siebel Tools Reference 919

Repositories

Exporting and Importing Repository Objects
6 If you want to remove an object definition from the list, select it and press DEL.

7 When you are finished adding object definitions to the list, enter in the Archive
File box the path and filename of the archive file to create. Alternatively, you can
browse to an existing archive file using the Browse button and the resulting Save
As dialog box.

8 Click Save. If a file of this name and location already exists, you are prompted
to overwrite it or cancel.

Figure 236 shows the Account Business Component ready to be exported.

Figure 236. Exporting the Account Business Component
920 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Exporting and Importing Repository Objects
Exporting Object Definitions Using the Command Line Interface
You can also export object definitions using the Command Line Interface. The
command line interface is invoked from the siebdev executable using the command
switch /batchexport. The siebdev.exe is located in the Bin directory of the Siebel
Tools installation directory.

The syntax of the /batchexport switch is:

siebdev.exe /c <config file> /d <database> /u <user name> /p
<password> /batchexport <Repository Name> <Input File Name> <Log
File>

The command line interface provided by the /batchexport switch accepts an input
file that specifies export objects. The input file takes a comma-delimited format of
Object Type, Object Name Search Expression, and .sif file name. The search
expression takes any Tools accepted query criteria. To specify .sif file, you can use
absolute file path or relative file path to the current directory.

You can place multiple lines in the input file, each requesting to export multiple
objects into one .sif file. However, if you specify the same .sif export file in multiple
lines, only the last export will take effect—the previous exports will be overwritten.

As an example, the following content in an input file would request the batchexport
switch to export all business components whose name is like “*Account*” into
exports.sif:

"Business Component,*Account*,export.sif"

NOTE: There should be no space before and after commas.

The following sample export command would export objects specified in the input
file, obj.txt. It will also log results into export.log:

siebdev.exe /c tools.cfg /d sample /u sadmin /p sadmin /
batchexport "siebel repository" obj.txt export.log

Exporting Entire Projects
The following procedure describes how to export an entire project.
Version 7.5.3, Rev. A Siebel Tools Reference 921

Repositories

Exporting and Importing Repository Objects
To export an entire project or projects

1 In the Object Explorer, navigate to the Project object type.

2 In the Object List Editor, click the Project object definition to select it.

3 Select Tools > Add to Archive from the menu bar.

The Export to Archive File dialog box appears.

4 Enter the path and filename of the archive file to be created in the Archive File
box.

5 Click Save.

Figure 237 illustrates this procedure.

Figure 237. Exporting the Account Project
922 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Exporting and Importing Repository Objects
NOTE: It is possible, but inadvisable, to export an entire repository by adding a
Repository object definition to an export list. The resulting export file will contain
all object definitions in the repository, but the processes of exporting and importing
such an archive will take an extremely long time, and the archive file will be very
large. If you need to export an entire repository, refer to “Renaming, Deleting,
Backing Up, and Migrating Repositories” on page 932.

Importing Object Definitions
You can import object definitions from an archive file into a local repository.

The Import process consists of the following major steps (described in the following
sections):

1 Preparing the target repository for import

2 Loading an archive file into the Import Wizard’s preview window, and
specifying the default resolution of conflicts between imported and pre-existing
object definitions

3 Adjusting the details of conflict resolution

4 Importing as specified

5 Testing and checking in the changed projects

Preparing the Target Repository for Import
You need to import into a checked-out project or projects on the local database of a
client computer—do not import to the Server database. Make sure the following
conditions exist before importing:

■ The import file is accessible to the local machine by way of the network or local
drives.

■ The target repository is open in Siebel Tools and is the active repository.
Version 7.5.3, Rev. A Siebel Tools Reference 923

Repositories

Exporting and Importing Repository Objects
■ The projects that will be affected by import have been checked out to the local
database. This includes any project that any object definition in the export file
is assigned to.

The only exception consists of projects (or their object definitions) that are in
the archive file, but that do not exist yet in the target repository. These are not
checked out because they do not exist in the target repository.

NOTE: In some cases it may be difficult to know in advance which projects need
to be checked out. The Import wizard informs you of any projects that were not
locked but need to be. This occurs on the second panel of the Import wizard,
after it has analyzed the object definitions in the archive file and compared them
to the object definitions in your repository.

Loading Object Definitions from an Archive File Into the Preview
Window
You need to load the object definitions from an archive file into preview window to
resolve any conflicts between objects.

To load object definitions from an archive file into the preview window

1 Open the target repository in Siebel Tools, if it is not already open.

2 Select Tools > Import From Archive.

The Select Archive To Import dialog box appears.
924 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Exporting and Importing Repository Objects
3 Navigate to the archive (.sif) file in the dialog box and click Open.

The Import Wizard - Preview window appears.

This window identifies the projects and the nonproject top-level object
definitions in the archive file you have opened so you can preview the contents
of the archive file.

4 Select a radio button in the Conflict Resolution radio button group.

This specifies the default resolution for conflicts between the archive file and the
target repository. You will have the opportunity in subsequent windows in the
Import Wizard to change this choice for individual object definitions.

There are three choices available in the Conflict Resolution radio button group,
as follows:
Version 7.5.3, Rev. A Siebel Tools Reference 925

Repositories

Exporting and Importing Repository Objects
■ Overwrite the object definition in the repository. If the same top-level object
definition is found in the archive file and target repository, delete the version
in the target repository, along with its children, and replace them with the
object definition and children from the archive file.

■ Merge the object definitions from the archive with the definition in the repository.
Merging is the default, and generally the safest option. When the same top-
level object definition occurs in both the target repository and the archive
file:

❏ Replace differing properties in the target top-level and child-level
definitions with those in the file being imported.

❏ Add new child object definitions to the target repository if they are not
already present.

❏ Do not change child object definitions in the target repository that are not
also present in the archive file.

The resulting top-level object definition has the same properties and children
as the object definition in the archive, plus any children that were already
present in the repository definition.

■ Do not import the object definition from the archive. Do not change the object
definitions in the target repository.

5 Validate your selections and click Next to proceed.

6 If there are object definitions you will be replacing or modifying and whose
projects are not locked, the following warning message appears:

If this message appears, you need to cancel the import process, lock the projects,
and restart the Import Wizard.
926 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Exporting and Importing Repository Objects
Adjusting the Details of Conflict Resolution
You have made general decisions about conflict resolution in the Conflict Resolution
radio button group in the previous window of the Import wizard. In the Review
Conflicts and Actions window (shown in Figure 238), you can make adjustments
for individual object definitions and properties.

The three windowpanes are Conflicting Objects, Object Differences, and Attribute
Differences.

Conflicting Objects Windowpane
The Conflicting Objects windowpane displays the hierarchy of object definitions for
which there are differences. It is used for navigation and behaves like the Object
Explorer in Detail mode. The hierarchy in this windowpane mirrors the object type/
object definition hierarchy in a Siebel repository, but shows only conflicts to resolve
rather than all repository or archive object definitions.

Figure 238. Review Conflicts and Actions Window
Version 7.5.3, Rev. A Siebel Tools Reference 927

Repositories

Exporting and Importing Repository Objects
If you select an object definition in the hierarchy, it and others at its level appear in
the Object Differences windowpane.

Object Differences Windowpane
The Object Differences windowpane displays object definitions, one to a row. It
shows for each object definition whether it exists only in the archive file, only in the
target repository, or in both, and what resolution is specified. You can change the
resolution here.

The object definitions displayed in the Object Differences windowpane include
those at all hierarchical levels, not just top-level object definitions. This provides the
means for making adjustments to the resolution for any affected object definitions.

The File and Repository list columns indicate whether each identified object
definition is present in the archive file or target repository. An “X” indicating the
object definition’s presence can appear in the File list column, the Repository list
column, or both. These list columns are for information only; you cannot change
the check marks.

The Action list column indicates the proposed resolution for each object definition
in the list. This setting is initially generated for each object definition from the
default behavior selected in the Conflict Resolution radio button group in the
Preview window. You can right-click on the value in the Action list column and
select a different value from a shortcut menu. The available selections include the
following:

■ File. Equivalent to the “Overwrite the object definition in the repository”
selection in the previous window.

■ Merge. Equivalent to the “Merge the object definitions from the archive with the
definition in the repository” option in the previous window.

The resulting top-level object definition has the same properties and children as
the object definition in the archive, plus any children that were present in the
repository definition.

■ Repository. Equivalent to the “Do not import the object definition from the
archive” option in the previous window.

For more information about these options, see “Loading Object Definitions from an
Archive File Into the Preview Window” on page 924.
928 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Exporting and Importing Repository Objects
Attribute Differences Windowpane
The Attribute Differences windowpane displays the property value conflicts for the
currently selected object definition in the Object Differences windowpane. Those
properties are listed only where there is a conflict.

The Attribute Differences list contains the following list columns:

■ Attribute List Column. Name of the property.

■ File List Column. Value of the property in the archive file version of the object
definition.

■ Repository List Column. Value of the property in the target-repository version of
the object definition.

■ Resolution List Column. Value of either File or Repository for each property,
depending on whether the archive-file or target-repository version of the object
definition is to determine the value of the property in the final definition.

This list column can be updated only if the object definition whose properties
are being displayed has an Action setting of Merge in the Object Differences list.
Otherwise, the shortcut menu options are read-only and are grayed out, and the
value displayed is the same as that in the Action column of the Object
Differences list.

To change the Resolution value from Repository to File or the reverse, right-click
on the Attribute row to change and select Repository or File from the shortcut
menu.
Version 7.5.3, Rev. A Siebel Tools Reference 929

Repositories

Exporting and Importing Repository Objects
After you click Next in the Review Conflicts and Actions window, you are shown a
summary of your changes and prompted to proceed or cancel, as shown in
Figure 239.

If you choose to proceed, the Summary window appears, as shown in Figure 240.

Figure 239. Summary Prompt

Figure 240. Summary Window
930 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Exporting and Importing Repository Objects
Importing occurs while the Summary window is displayed. The import actions are
logged and displayed as they occur. When the import process is completed, click
Finish.

A log file named importlog.txt is created in c:\sea7xx\tools \temp. It contains the
same list of messages that appeared in the Summary window. You may find it useful
to store this file elsewhere for a record of what changes were made to the repository.
It is also a good idea to change the filename so it reflects the date of the import.

Importing Object Definitions Using the Command Line Interface
You can also import object definitions using the Command Line Interface. The
command line interface is invoked from the siebdev executable using the command
switch /batchimport. The siebdev.exe is located in the Bin directory of the Siebel
Tools installation directory.

The syntax of the /batchimport switch is:

siebdev.exe /c <config file> /d <database> /u <user name> /p
<password> /batchimport <Siebel Repository name> <Import Mode>
<.sif file1, .sif file2, .sif fileN; or directory where .sif files
can be found> <log file>

NOTE: You can specify .sif file and log file by full path or relative path to the
current directory.

For example, the following sample import command imports import1.sif, located in
the parent directory, and import2.sif, located in the Tools directory, into the Siebel
repository using the overwrite mode. It also logs the results to import.log:

siebdev.exe /c tools.cfg /d sample /u sadmin /p sadmin /
batchimport "siebel repository" overwrite ..\import1.sif
c:\Tools\import2.sif import.log

The following sample import command imports all files under c:\tools\importfiledir
into the Siebel repository using the merge mode. It also logs the results to
import.log.

siebdev.exe /c tools.cfg /d sample /u sadmin /p sadmin /
batchimport "siebel repository" merge c:\tools\importfiledir
import.log
Version 7.5.3, Rev. A Siebel Tools Reference 931

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
Renaming, Deleting, Backing Up, and Migrating
Repositories

Various executable (.exe) programs are available outside Siebel Tools for working
with an entire repository as a unit. These programs are found on the application
server and database server. This section describes the use of these programs, as well
as other procedures you can perform that act on an entire repository.

Development tools are installed with the Siebel Server to manage repositories across
enterprises (development, test, and production) that do the following:

■ Import a repository

■ Export a repository

■ Move a repository from a source environment to a target environment

All of these utilities manage the entire repository definition. To manage projects and
objects within a given repository, the archive functionality in Tools is
recommended.

CAUTION: If versions of these program files appear in your Siebdev directory or its
subdirectories, do not use the ones found there. Use only the programs found on
the server.

Renaming and Deleting Repositories
You might need to rename a repository in some situations. However, renaming can
cause problems unless all developers check in their checked-out projects prior to
renaming the repository. Following the renaming, they need to do a get on all
projects. Siebel Systems recommends that the current active repository in
production always be named Siebel Repository.

To rename a repository

NOTE: You should be connected directly to the server database when you do these
steps.
932 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
1 Have all developers check in all projects that have been checked out from this
repository.

2 In the Object Explorer, select the Repository object type.

NOTE: The type is not visible by default in the Object Explorer; it must be selected
by choosing View>Options, selecting the Object Explorer tab, and moving
Repositories into the “Visible top level objects” section of the Development Tools
Options dialog box.

3 In the Object List Editor, click in the Name property of the repository you want
to rename.

4 Enter the new name.

5 Click outside of the record to save your changes.

6 Have developers do a get of all projects.

In the Server Parameters view (accessed from the application-level menu by
choosing View > Site Map > Server Administration >Servers >Server
Parameters), verify references to the repository name in all Siebel client .cfg files
and Siebel Servers. The name of the current production repository needs to be
Siebel Repository. You should indicate which server parameter is identified by the
Siebel Repository and show how it can be changed and also indicate the specific
parameter name in the .cfg files that reference the repository name.

Deleting a Repository
The delete process remove all records associated with the repository. It is
recommended that you only delete a repository after you have verified that you do
not need any contents in this repository. It is best to export and archive the
repository if you are unsure.

NOTE: To copy a repository, use the Import/Export Repository option.

To delete a repository

1 Click the Repository object type in the Object Explorer.
Version 7.5.3, Rev. A Siebel Tools Reference 933

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
2 In the Object List Editor, click anywhere in the row for the repository you want
to delete.

3 Choose Edit > Delete Record.

4 Click outside the record to commit the Delete action.

NOTE: Deleting a repository takes a long time and requires system resources such as
rollback segment, cursors, tablespace, and so on. You might want to consult your
DBA to check on system resources before deleting a repository.

Backing Up and Restoring Repositories
A configuration utility is generally used when backing up and restoring a repository.
You use this utility to perform the following functions:

■ Import a repository. You can import a repository from the contents of the export
file.

NOTE: When you are importing a custom repository (not the standard Siebel
Repository), all languages which were part of the original repository are restored
during import. For example, if you archive repositories weekly and your
development repository contains support for both ENU and DEU, then both ENU
and DEU are included when one of the archived repositories is imported.

■ Export a repository. You can generate an export file in compressed format.

■ Migrate a repository. For more information on using the configuration utility to
migrate a repository, see “Migrating Repositories and Schemas Between
Databases” on page 942.
934 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
If you need to back up the entire content of the Siebel database, use the database
utilities provided by your RDBMS vendor.

NOTE: Whenever you make a change to the repository, compile all projects that
belong to the latest version of the repository to create an updated .srf file. Keep a
backup of the .srf file, so you can be sure .srf file truly reflects the contents of the
updated repository.

When the Siebel Server and Database Server are installed, icons are created under
the program group, which are called Configure DB Server and Configure Siebel
Server. You only have to launch the Configure DB Server to invoke the command
line you have written.

To import or export a repository under Windows

1 Launch the Database Server Configuration Utility by choosing Start > Programs
> Siebel Enterprise Server version_number > Configure DB Server.

The Gateway Server Address screen appears.

2 Specify your Gateway Server Address and Enterprise Server Name and click
Next.

The Installation and Configuration Parameters: Siebel Server Directory dialog
box appears.

3 In the Siebel Server Directory dialog box, either accept the default value or
choose the Browse button to select a directory, and then click Next.

The Installation and Configuration Parameters: Siebel Database Server Directory
dialog box appears.

4 Either accept the default value or choose the Browse button to select a directory,
and then click Next.

The Siebel Database Server Options: Siebel Database Operation dialog box
appears.
Version 7.5.3, Rev. A Siebel Tools Reference 935

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
5 In the Siebel Database Server Options: Siebel Database Operations dialog box,
select Import/Export Repository from the list of operations, and then click Next.

The Import Repository Parameters: Select Repository Operation dialog box
appears.

6 Choose Import Repository, and then click Next.

You can also choose the following options: Add language to an existing
Repository, or Export Repository.

The Import Repository Parameters: Import Selection dialog box appears.

7 Choose Import Standard Siebel Repository or Import Custom Repository, and
then click Next.

The following succession of dialog boxes appears:

Dialog Box Description

Installation and Configuration
Parameters: Language Selection

Select a language and click Next. English is
the default language.

Installations and Configuration
Parameters: RDBMS Platform

Select a RDBMS Platform. IBM DB2 UDB
v7.1 is the default selection.

Installation and Configuration
Parameters: ODBC Data Source Name

Select the ODNBC Data Source Name.

Installation and Configuration
Parameters: Database User Name

Select the Database User Name and
Database Password.

Installation and Configuration
Parameters: Database Table Owner

Select the Database Table Owner and
Database Table Owner Password.

Installation and Configuration
Parameters: Import Repository Name

Select the name of the repository that you
want to import and the filename from which
you are importing.

Configuration Parameter Review Summary dialog box gives a list of your
choices. You can accept the configuration by
clicking Finish.
936 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
To import or export a repository under UNIX

1 Source environment variables from $SIEBEL_ROOT.

SIEBEL_ROOT should be the path of your Siebel installation directory.

LANGUAGE should be set to the language in which the Configuration Wizard
prompts appear; for example, enu for U.S. English.

If either of these values is incorrect or empty, reset them using one of the
following commands, as appropriate to the shell you use:

setenv LANGUAGE New Value

or

export LANGUAGE|SIEBEL_ROOT=New Value

2 Depending on your shell, enter:

Korn shell

export SIEBEL_LOG_EVENTS trace3

C shell

setenv SIEBEL_LOG_EVENTS trace3

NOTE: Setting trace to 3, creates an appropriate level of detail in the log file for
this activity.

3 Navigate to $SIEBEL_ROOT /bin and enter:

dbsrvr_config.ksh

This launches the Database Server Configuration Wizard.

4 Review the values of the following environment variables and confirm whether
or not the settings are correct by entering either Y or N.

NOTE: If either the SIEBEL_ROOT or LANGUAGE value is not set or is incorrect, you
must correct them before proceeding.
Version 7.5.3, Rev. A Siebel Tools Reference 937

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
5 In the Siebel Server Directory dialog box, either accept the default value or
choose the Browse button to select a directory, and then click Next.

The Installation and Configuration Parameters: Siebel Database Server Directory
dialog box appears.

6 Either accept the default value or choose the Browse button to select a directory,
and then click Next.

The Siebel Database Operation screen appears.

7 In the Siebel Database Operations screen, select Import/Export Repository.

The Import Repository Parameters: Select Repository Operation screen appears.

8 Choose Import Repository.

The Import Repository Parameters: Import Selection screen appears.

9 Choose Import Standard Siebel Repository or Import Custom Repository and
click Next.
938 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
10 The following succession of screens appears:

NOTE: You follow the same procedure for Export Repository.

Using repimexp.exe for Importing, Exporting, and Creating a File Dump
The repimexp.exe program imports, exports, or creates a file dump of a repository.
It can also do an INTL table import. INTL tables contain language-specific
information and are a part of the repository.

You would rarely need to use repimexp.exe directly—you would use the
configuration utility instead. The only circumstances when you would run
repimexp.exe directly might be:

■ You need to run repimexp.exe with special parameter settings that are
inaccessible through the batch files.

■ You need to perform a file dump.

Dialog Box Description

Language Selection Select a language and click Next. English is the
default language.

RDBMS Platform Select a RDBMS Platform. IBM DB2 UDB v7.1 is
the default selection.

ODBC Data Source Name Select the ODNBC Data Source Name.

Database User Name Select the Database User Name and Database
Password.

Database Table Owner Select the Database Table Owner and Database
Table Owner Password.

Import Repository Name Select name of the repository that you want to
import and the filename from which you are
importing.

Configuration Parameter Review Summary dialog box gives a list of your choices.
You can accept the configuration by entering Y.
Version 7.5.3, Rev. A Siebel Tools Reference 939

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
To import a repository using repimexp

■ In the command line, type the following:

repimexp /A I /G language_codes

where language_codes is a list such as ENU, FRA, JPN. Use ALL for all
languages.

NOTE: If you want to import your repository with locale objects, you must specify
at least one language code. Otherwise no locale objects will be imported.
Therefore, when you compile the imported repository, it will not have any text
in the user interface.

To export a repository using repimexp

■ In the command line, type the following:

repimexp /A E argument_list

Export uses the arguments listed in Table 60.

Table 60. Parameter Settings Passed as Export Arguments to repimexp.exe

Parameter Required Meaning

/U <userName> Yes Siebel administrator user name.

/P <password> Yes Siebel password.

/C <ODBC data source> Yes ODBC data source. The default is the value in the
SIEBEL_DATA_SOURCE environment variable.

/D <table owner> Yes Siebel database table owner. The default is the
value in the SIEBEL_TABLE_OWNER
environment variable.

/W <language code> Yes Language mode, such as ENU or JPN. The default
is SIEBEL_LANGUAGE. If this is not set, the
default is ENU.

/R <repository> Yes Repository name. The default is Siebel
Repository.
940 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
To create a file dump using repimexp

■ In the command line, type the following:

repimexp /A D /F <dataFile> [/L <logFile>]

/1 <export repository userName> Yes Export repository user name. The default is the
same as for /U.

/2 <export repository password> Yes Export repository password. The default is the
same as for /P.

/3 <export repository ODBC data source> Yes Export repository ODBC data source. The default
is the same as for /C.

/4 <export repository table> Yes Export repository table owner. Use siebel for
Oracle and DB2, dbo for MS SQL Server. The
default is the same as for /D.

/5 <export repository> Yes Export repository name. The default is Siebel
Repository.

/B <appServer root> Yes Siebel Server installation directory to override
SIEBEL_HOME environment variable.

/F <dataFile> Yes Data file, including path, to which to export.

/T <Y|N> No Test only, do not export into database.

/V <Y|N> No Verify data. The default is N.

/N <0|1|2> No Change creation and update information:

■ 0= no change

■ 1= change CREATED_BY, UPDATED_BY

■ 2=change CREATED_BY, UPDATED_BY,
dates columns

The default is 1.

/M <Y|N> No Commit changes even if verification fails. The
default is N.

/L <logFile> No Log file for output messages.

Table 60. Parameter Settings Passed as Export Arguments to repimexp.exe

Parameter Required Meaning
Version 7.5.3, Rev. A Siebel Tools Reference 941

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
To perform an INTL table import using repimexp

■ In the command line, type the following:

repimexp /A X argument_list

INTL import uses the arguments listed in Table 61.

Migrating Repositories and Schemas Between Databases
It is recommended that you have development and test environments that are
isolated from the production environment.

The repository and user data need to be migrated in parallel between databases so
the database schema for the user data, the business objects, and the user interface
remain synchronized. Populate the test database, and when sufficient testing has
taken place, migrate the repository and update the production database schema.

For information about setting up your system and database environment, see the
Siebel Server Installation Guide for your operating system.

CAUTION: Do not migrate repositories between different versions of Siebel
applications, as this will lead to an inconsistent environment.

Table 61. Parameter Settings Passed as INTL Import Arguments to repimexp.exe

Parameter Required Meaning

/G <language codes> Yes A list of language codes such as ENU, FRA, JPN.
Use ALL for all languages.

/O <Y|N> Yes Abort INTL import if unable to resolve parent
row in server repository, that is orphans.

The default is N.

/I <Y|N> Yes Abort INTL import if insert fails.

The default is Y.
942 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
If you configure only business object and user interface object definitions, you need
to replace only the object definitions in the production repository with those in the
development repository. Do this using the configuration utility, as described in
“Backing Up and Restoring Repositories” on page 934. Then distribute a new .srf
file to client computers.

However, for upgrades involving schema changes, you need to use the configuration
utility, which:

■ Upgrades the data in the production server to the new schema

■ Updates the repository object definitions

All mobile users need to synchronize prior to the upgrade and (if not using Siebel
Anywhere) re-extract following the upgrade.

If you are using Siebel Anywhere, mobile users need to synchronize the next time
they log on to their local database after the migration has occurred. Synchronizing
will download new schema changes from the server to the mobile user’s local
database. If they do not synchronize, there will be a mismatch between the local
database and the server database.

It is recommended that you follow these major steps to migrate a repository and
schema from one database to another. The first three steps are described in the
following sections. The final step is an application administration task, and is
described in Applications Administration Guide.

■ Check in all projects—in both the source and target databases.

If you migrate a database schema with some projects still checked out, the
migration will work but the project state will be not locked in the target
database.

■ Prepare the target database for the new repository.

The Target Repository parameter should be the name of a repository that does
not already exist in the target database. Rename the current production
repository if you already have one, for example, to Old Repository.
Version 7.5.3, Rev. A Siebel Tools Reference 943

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
■ Run the repository migration configuration utility.

NOTE: Siebel eBusiness Applications version 7.0 do not support customized
database triggers. If you have created customized triggers on your Siebel base
tables, you must disable them before migrating the schema. You will then need
to recreate the triggers after the migration is finished.

■ Upgrade mobile databases that are dependent on the target database.

■ If you move a repository from one database to another, such as from
development to test, you need to also re-create any new views, responsibilities,
and list of values entries in the new environment.

Preparing the Target Database for the New Repository
Complete the following actions before you migrate the repository to the target
database:

■ Make sure that all mobile users perform a full synchronization to avoid any
unexpected issues in a production environment as a result of database schema
changes made to the new repository.

■ Stop all server tasks and disconnect all database access until migration has been
successfully executed.

NOTE: All connected users (including the database administrator) must
disconnect before running the repository migration Configuration Utility.

■ Do a full backup of the production database once all mobile user transactions
have been merged.

■ Make sure that the production database configuration meets the database
requirements outlined in the Siebel Server installation guide for your operating
system.
944 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
■ Verify the names of all repositories in the target database.

You will later choose a new name that the repository being migrated will have
in the target database. Siebel Systems recommends that you keep the name of
your production repository constant. Accordingly, rename the existing
production repository to show that it has been superseded. You will also later
import a repository, to which you should give the standard name for your
production repository.

Running the Repository Migration Configuration

NOTE: When you are migrating repositories over a wide area network (WAN) and
running the Repository Migration Utility from the target environment, only the
process of exporting the source repository to a flat file takes place on the WAN. All
other processing takes place on the local area network (LAN) of the target
environment.

The configuration utility does the following:

■ Exports the designated repository from the source database

■ Imports the designated repository into the target database

■ Exports the logical schema definition from the specified repository to a .ddl file

■ Synchronizes the physical schema of the target database with this logical
schema definition

■ (If you are using Siebel Anywhere) propagates new repository schema changes
to mobile users

NOTE: If you have custom table spaces defined, the Database Server Configuration
Utility used in the migration process is tablespace-aware.

To migrate a repository under Windows

1 Launch the Database Server Configuration Utility by choosing Start > Programs
> Siebel Enterprise Server version_number > Configure DB Server.

The Gateway Server Address screen appears.
Version 7.5.3, Rev. A Siebel Tools Reference 945

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
2 Specify your Gateway Server Address and Enterprise Server Name and click
Next.

The Siebel Server Directory dialog box appears.

3 In the Siebel Server Directory dialog box, either accept the default value or
choose the Browse button to select a directory, and then click Next.

The Siebel Database Server Directory dialog box appears.

4 In the Siebel Database Server Directory dialog box, either accept the default
value or choose the Browse button to select a directory, and then click Next.

The RDBMS Platform dialog box appears.

5 In the RDBMS Platform dialog box, select the platform for your environment and
then click Next.

The Siebel Database Operations dialog appears.

6 In the Siebel Database Operations dialog box, select Migrate Repository from the
list of operations, and then click Next.

The following succession of dialog boxes appears.

7 Progress by completing the information in each dialog box, and then clicking
Next.

Dialog Box Description

ODBC Data Source Name Enter the ODBC Data Source Name.

Database User Name Enter the Database User Name and Database
Password.

Database Table Owner Enter the Target Database Table Owner and
Table Owner Password.

Source Database Repository Name Enter the Database Repository Name and the
Target Database Repository Name.

Target RDBMS Platform Select the Target RDBMS Platform. IBM DB2
UDB v7.1 is the default.
946 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
To migrate the schema under UNIX

1 Source environment variables from $SIEBEL_ROOT by typing:

source siebenv.csh

2 Set the following environment variables:

■ SIEBEL_ROOT should be the path of your Siebel eBusiness Application
installation directory.

Target Database Encoding Select whether or not the target database is
Unicode.

Target Database ODBC Datasource Enter the Target Database ODBC Datasource.

Target Database User Name Enter the Target Database User Name and
Password.

Target Database Table Owner Enter the Target Database Table Owner and
Table Owner Password.

Index Table Space Name

(DB2-specific)

If you choose IBM DB2 for the Target
Database Platform, you get this dialog box.

Enter the Index Table Space Name and 4 KB
Table Space Name.

16 KB Table Space Name

(DB2-specific)

If you choose IBM DB2 for the Target
Database Platform, you get this dialog box.

Enter the 16 KB Table Space Name and 32 KB
Table Space Name.

Index Table Space Name

(Oracle-specific)

If you choose Oracle as the Target DB
Platform, you have only two questions about
Index and Table space. There are no 4 KB, 16
KB, and 32 KB tablespaces in Oracle.

For Microsoft SQL server, there are no dialog
boxes about tablespaces.

Configuration Parameter Review Summary dialog box gives a list of your
choices. You can accept this configuration by
clicking Finish.

Dialog Box Description
Version 7.5.3, Rev. A Siebel Tools Reference 947

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
■ LANGUAGE should be set to the language in which the Configuration Wizard
prompts appear; for example, enu for U.S. English.

If either of these values is incorrect or empty, reset them using one of the
following commands:

■ setenv LANGUAGE ENU (where ENU represents your display language)

■ setenv SIEBEL_ENTERPRISE <Enterprise Name>

3 Navigate to $SIEBEL_ROOT /bin and enter:

dbsrvr_config.ksh

This launches the Database Server Configuration Wizard.

4 Review the values of the following environment variables and confirm whether
or not the settings are correct by entering either Y or N.

■ SIEBEL_ROOT

■ LANGUAGE

NOTE: If either the SIEBEL_ROOT or LANGUAGE value is not set or is incorrect,
you must correct them before proceeding.

5 Specify the path of your Siebel Server root directory, or accept the default by
pressing ENTER.

6 Specify the path of your database server root directory, or accept the default by
pressing ENTER.

7 Enter the number that corresponds to your database platform.

8 From the Select Repository Operations menu, choose Migrate Repository (4).
948 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
9 Progress by completing the information in each screen.

Dialog Box Description

RDBMS Platform Select an RDBMS Platform. IBM DB2 UDB
v7.1 is the default.

Target Database Encoding Select whether or not the target database is
Unicode.

ODBC Data Source Name Enter the ODBC Data Source Name.

Database User Name Enter the Database User Name and Database
Password.

Database Table Owner Enter the Target Database Table Owner and
Table Owner Password.

Source Database Repository Name Enter the Source Database Repository Name.

Target Database Repository Name Enter the Target Database Repository Name.

Target RDBMS Platform Select the Target RDBMS Platform. IBM DB2
UDB v7.1 is the default.

Target Database ODBC Datasource Enter the Target Database ODBC Datasource.

Target Database User Name Enter the Target Database User Name and
Password.

Target Database Table Owner Enter the Target Database Table Owner and
Table Owner Password.

Index Table Space Name

(DB2-specific)

If you choose IBM DB2 for the Target
Database Platform, you get this dialog box.

Enter the Index Table Space Name and 4-KB
Table Space Name.

16K Table Space Name

(DB2-specific)

If you choose IBM DB2 for the Target
Database Platform, you get this dialog box.

Enter the 16-KB Table Space Name and 32-
KB Table Space Name.
Version 7.5.3, Rev. A Siebel Tools Reference 949

Repositories

Renaming, Deleting, Backing Up, and Migrating Repositories
NOTE: Updating statistics with a full table scan is the job of the DBA once any
repository migration, upgrade, or installation finishes.

Upgrading Mobile Databases
Follow these steps:

1 Restart Siebel Remote processes.

If you have mobile users in your target database environment, restart the
Application Server Processes, regardless of whether you are using Siebel
Anywhere.

When you have restarted the processes, wait until the Transaction Pre-Processor
and the Transaction Router have processed all pending transactions before
proceeding with the remaining steps.

2 Regenerate local database templates.

Use the Siebel Server component Generate New Database to regenerate the local
database template file to update its schema to the same version as the database
server.

Index Table Space Name

(Oracle-specific)

If you choose Oracle as the Target DB
Platform, you have only two questions about
Index and Table space. There are no 4K, 16K,
and 32K tablespaces in Oracle.

For Microsoft SQL server, there are no dialog
boxes about tablespaces.

Configuration Parameter Review Summary dialog box gives a list of your
choices. You can accept this configuration by
entering Y.
950 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Creating Patches
3 Re-extract mobile users.

If you are not using Siebel Anywhere to upgrade your mobile clients, re-extract
all mobile users, using the Database Extract Component.

Make sure that you have copied the new database template to all production
Siebel Remote Servers before re-extracting the mobile users. The distmpl.ksh
(check) helps you copy the database template.

NOTE: However, if mobile databases are not reextracted, users will still be able to
synchronize—no error message will be generated. This is to allow Siebel
Anywhere, which users might use to upgrade mobile databases, to continue
working.

If you are using Siebel Anywhere, refer to Developing and Deploying Siebel
eBusiness Applications for instructions on propagating schema extensions.

Creating Patches
A patch file, like an archive file, consists of exported object definitions. The
difference between a patch file (.spf file) and an archive file (.sif file) is that the
patch file contains two versions of each object definition, one from the pre-upgrade
source repository and one from the post-upgrade. (An archive file contains only one
version of each object definition, and all object definitions are from the same
repository.)
Version 7.5.3, Rev. A Siebel Tools Reference 951

Repositories

Creating Patches
Figure 241 shows how pre- and post-upgrade versions of an object definition are
paired in the patch file, and then utilized in applying the patch to the target
repository.

The pair of pre- and post-release object definitions in the patch file provide before
and after snapshots of the object definition. The patch application process considers
both when determining what changes to make to the target repository.

Creating a Patch File
A wizard steps you through the process of creating a patch.

Figure 241. How a Patch Works
952 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Creating Patches
To create a patch file

1 Make sure that both the original source and the modified source repositories are
present on the client computer.

2 Select File > Open Repository from the menu bar and open the modified source
repository.

NOTE: You can skip this step if you are building a patch file from an archive file.

3 Select Tools > Utilities > Build Patch from the menu bar.

The Build Patch - Setup window appears.

4 In the “Select modifications from” radio button group, select either Changed
objects in current repository or Archive file:
Version 7.5.3, Rev. A Siebel Tools Reference 953

Repositories

Creating Patches
■ Changed objects in current repository. Allows you to generate the set of source
object definitions in the patch file from all object definitions in the currently
open (modified source) repository that have a value of TRUE in their
Changed property. The Changed property indicates changes to property
values or child object definitions for all object definitions that have changed
since a specified date. This is an easy way to capture all object definitions
that have changed since the start of work on the new release.

NOTE: This is useful for creating cumulative patch files—that is, if several
patches are created over time, each successive patch will include all changes
that went into previous patches plus the most recent changes, as long as the
Changed Indicator Date has not been modified. This is the real reason that it
is possible to define a patch using the Changed property. If you use the
Changed indicator in this or any other way, you need to be careful that the
Changed Indicator Date does not get set arbitrarily.

■ Archive file. Allows you to use an existing archive file to generate the same set
of object definitions in the patch file. Use this option when the set of patch
object definitions is identical to a recently exported archive file, or when you
want to explicitly select individual top-level object definitions to be included.
In this latter case, generate the archive file prior to generating the patch file.
Building a patch from an archive file may also be preferable when there are
too many object definitions with a Changed value of TRUE.

If you selected the Archive File option, specify a pathname and filename for
the archive file in the File Name box, or click the Browse button and navigate
to the archive file.

5 In the Repository box, select the name of the original source repository.

6 In the Patch File box, specify a pathname and filename for the patch file to
create.
954 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Creating Patches
7 Click Next.

The Build Patch Summary window appears.

If you selected the Archive file option, the list of object definitions for the patch
loads immediately.

If you selected the Changed objects option, the system requires a minute or more
to generate the list, because it needs to scan through the repository and check
all the Changed property values.

8 Click Finish.

The patch file is generated in the directory location you specified in Step 4 on
page 922.

Applying a Patch File
The patch upgrades the repository to which it is applied similarly to how the
Application Upgrader does. The difference is that you do not have the opportunity
to override the default conflict resolution rules. A conflict only occurs if an object
property changes in both the source and the target repositories simultaneously.
Version 7.5.3, Rev. A Siebel Tools Reference 955

Repositories

Creating Patches
For example, if you create a new Account field based on an extension column in the
target repository, and then apply a patch from the source repository that includes
the Account business component, the new field will not be overwritten in the target
repository because the same new field has not been added in the source.

If you change the sort specification of the Account business component in the target
repository, and the sort specification has not changed in the source, the new sort
specification in the target will remain. However, if the sort specification has
changed in both the source and the target, then a conflict arises for which a
resolution is required.

The default conflict resolution rules can be read from the repository by looking at
the Type object in Siebel Tools. It has a child object type called Attribute, which has
a property called Siebel Wins (or Standard Wins in the Object List Editor). If this is
set to TRUE, the value in the source repository is accepted. If FALSE, the value in
the target repository is accepted.

To apply a patch

1 In Siebel Tools, choose Tools > Utilities > Apply Patch.

The Select Patch to Apply dialog box appears.

2 Select the Siebel Patch (.spf) file, and then click Open.

The Apply Patch - Preview window appears, and the patch is opened.

3 Click Next.

The Apply Patch - Summary window appears. The patch is loaded, the patch
objects are compared to their corresponding repository objects, and then the
patch is applied.

4 Click Finish to exit.
956 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Integrating with External Source Code Control Software
Integrating with External Source Code Control Software
You can optionally interface your repository check in/check out mechanism in
Siebel Tools with a third-party source code-control system such as Microsoft Visual
SourceSafe. When source control integration is enabled, each time a project is
checked into the server repository, an archive file containing all the object
definitions in the project is also checked into the source control system. As a result,
successive versions of the project are maintained in the source control system.

If you want to revert to an earlier version of a project, you can check out the project
archive file from the source control system to your local machine. Then you check
out the project from the server, import the archive file into the local repository
(overwriting the object definitions locally), and check the project back into the
server repository.
Version 7.5.3, Rev. A Siebel Tools Reference 957

Repositories

Integrating with External Source Code Control Software
Enabling the Interface
You enable and partly configure the interface to an external source control system
using the Development Tools Options dialog box.

To enable the source control interface

1 Select the Tools > Options menu option.

The Development Tools Options dialog box appears.

2 Select the Check In/Out tab.

The Check In/Out tab in the dialog box appears.

3 Click the Enable Source Control Integration check box to set it to TRUE.

4 Click the “Show execution of the integration batch file” check box to enable this
feature. A DOS window is launched in the foreground when the srcctrl.bat batch
file is executed. This feature is for diagnostic purposes and facilitates debugging
a customized batch file.
958 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Integrating with External Source Code Control Software
5 If the srcctrl.bat file is in a different directory location than the one indicated,
type in a different location or select it using the Browse button.

By setting the Enable Source Control Integration check box to TRUE and specifying
a srcctrl.bat batch file, you are informing the system that it is to generate an archive
file for each project when performing repository check-in, and to run the batch file
at the conclusion of repository check-in. The batch file executes command-line
interface commands that are specific to the source code control software you are
using. Each command-line command launches the external source control software
with instructions to check an archive file or files into the source control system.

Archive files for source code control have the same format and .sif filename
extension as an archive file generated with the Export feature. One .sif file is
generated for each project checked in to the server repository.

Configuring the srcctrl.bat File
The srcctrl.bat batch file contains the sequence of commands to be executed in
order to check the archived projects in to the source control system. The name of
the archive file for the project to be checked in is specified as an argument to the
batch file, in addition to other arguments. The syntax for the command line that
executes the batch file is as follows:

SRCCTRL action dir comment_file project_file

The arguments for srcctrl.bat are shown in Table 62.

Table 62. Arguments for the srcctrl.bat File

Argument Description

action Check in or check out.

dir Pathname of the directory on your local file system where the items are
located.

comment_file Contains the comment text to be provided to the source control software
with the project file.

project_file Name of the archive file for one project, enclosed in double quotes.
Version 7.5.3, Rev. A Siebel Tools Reference 959

Repositories

Integrating with External Source Code Control Software
Srcctrl.bat executes once for each project, following the completion of repository
check-in. It checks the archive file for the project into or out of the source control
system. Srcctrl.bat is executed from a command line that is internally generated
from the Siebel application software. You do not have access to the command line
setup, and you cannot modify the parameter list.

The following batch file program code is taken from the standard srcctrl.bat file
provided with Siebel applications, and is designed to work with Microsoft Visual
SourceSafe. Comment lines have been removed. You need to customize the program
code in this batch file, particularly if you are running source control software other
than Microsoft Visual SourceSafe, or if the path is incorrect.

set PATH=C:\Program Files\DevStudio\Vss\win32\;%PATH%

set SOFTWARE=ss

set CHECKIN=%SOFTWARE% checkin

set CHECKOUT=%SOFTWARE% checkout

set ADD=%SOFTWARE% add

set SETPROJ=%SOFTWARE% cp

set PROJECT=$/PROJPOOL

set SRC_USR=

set SRC_PSWD=

set OPTIONS=-i-y -y%SRC_USR%,%SRC_PSWD%

set COMMENT=-c@

set NON_COMMENT=-c-

set FILE=

set LOGFILE=C:\Temp\xml.log

echo
=======================srcctrl.bat========================== >>
%LOGFILE%

set ACTION=%1

shift
960 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Integrating with External Source Code Control Software
set DIR=%1

shift

set COMMENT=%COMMENT%%1

shift

set FILE=%1

echo Change local directory to %DIR% >> %LOGFILE%

chdir %DIR% >> %LOGFILE% 2>&1

echo Set %PROJECT% as the working folder at Source Control System
>> %LOGFILE%

%SETPROJ% %PROJECT% >> %LOGFILE% 2>&1

if errorlevel 100 goto END

if %ACTION%==checkout goto CHECK_OUT

if %ACTION%==checkin goto CHECK_IN

:CHECK_OUT

echo ============Check out file %FILE% from Source Control
System============

if not exist %FILE% echo "New File" >> %FILE%

attrib +r %FILE%

echo Add %FILE% in case it doesn't exist in Source Control System
>> %LOGFILE%

%ADD% %FILE% %NON_COMMENT% %OPTIONS% >> %LOGFILE% 2>&1

echo Start checking out %FILE% from Source Control System >>
%LOGFILE%

%CHECKOUT% %FILE% %NON_COMMENT% %OPTIONS% >> %LOGFILE% 2>&1

goto END

:CHECK_IN
Version 7.5.3, Rev. A Siebel Tools Reference 961

Repositories

Integrating with External Source Code Control Software
echo ============Check in file %FILE% into Source Control
System============

echo Check in %FILE% into Source Control System >> %LOGFILE%

%CHECKIN% %FILE% %COMMENT% %OPTIONS% >> %LOGFILE% 2>&1

attrib -r %FILE%

goto END

:END

echo ===================End Of srcctrl.bat======================
>> %LOGFILE%

Table 63 explains the variables used in the srcctrl.bat batch file.

Table 63. Variables in srcctrl.bat

Variable Description

PATH Identifies the directory where the source code control software is installed.
Modify this setting to reflect its actual location on your machine.

SOFTWARE Source control system’s command line utility. The command line utility for
Microsoft Visual SourceSafe is “ss”.

CHECKIN Command at the start of the command line that calls for check-in into the
source control system.

CHECKOUT Command at the start of the command line that calls for check-out from the
source control system.

ADD Command at the start of the command line that calls for adding files in the
source control system.

SETPROJ Command at the start of the command line that calls for setting the working
folder in the source control system.

PROJECT Project (working folder) in the source control system where the items will
be checked in/checked out.

COMMENT Command-line Comments clause for each of the files being checked in or
out. This is generated from the Comment argument to the batch file.

OPTIONS Text of the Options clause to include in a command line.
962 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Integrating with External Source Code Control Software
You need to:

■ Change the program code in the batch file to reflect the development
environment

■ Distribute to all of the developers at your site

These MS-DOS limitations exist in Windows 95 and 98:

■ The default command-line character limitation is 127 characters. You can
increase the global command-line character limit to its maximum by placing the
following line in config.sys:

shell=c:\windows\command.com /u:255

■ The default environment space limitation is 256 bytes. You can increase it by
placing the following line in config.sys:

shell=c:\command.com /p /e:2048

or by placing the following line in the [NonWindowsApp] section in the
system.ini file:

CommandEnvSize=2048

2048 is the size of the new environment space, so you might specify a different
value here.

SRC_USR User logon name to include in the Options clause. This is a source control
software user name, not the user name for a Siebel application.

SRC_PSWD User password to include in the Options clause. This is a source control
software password.

FILE Filename of the archive file, obtained from the argument list of the batch
file. This file needs to be checked in or out.

LOGFILE Path and filename of the log file that will be generated.

Table 63. Variables in srcctrl.bat

Variable Description
Version 7.5.3, Rev. A Siebel Tools Reference 963

Repositories

Integrating with External Source Code Control Software
Microsoft Visual SourceSafe Examples
The following sections provide you with examples for using Microsoft Visual
SourceSafe.

Check In Example
You have two projects checked out that you want to simultaneously check in to the
server and to the source control software. The projects selected are “Project A” and
“Project B.” The latest version of Project A.sif in Visual SourceSafe is 6, and the
latest version of Project B.sif is 5.

When you click the Check In button, the following sequence occurs:

1 Project A and Project B are checked in to the server repository.

2 C:\sea7xx\tools\bin\srcctrl.bat is invoked. This carries out steps 3, 4, and 5.

3 Project A.sif and Project B.sif are checked out and locked in Visual SourceSafe.

4 Project A is exported to C:\sea7xx\tools\temp\projects\Project A.sif, and
Project B is exported to C:\sea7xx\tools\projects\Project B.sif.

5 Project A.sif and Project B.sif are checked in to Visual SourceSafe. The version
numbers are incremented so that the latest version of Project A.sif in Visual
SourceSafe is version 7, while Project B.sif is version 6.

Revert to Previous Version Example
Consider the situation in which an erroneous definition of Project A has been
checked in to the server repository. This is stored in Microsoft Visual Source Safe as
version 5 of Project A.sif. You want to revert to version 4 of Project A, since that
does not contain the errors.

1 Check out version 4 of Project A.sif from Visual SourceSafe into C:\sea7xx\tools
\temp.

2 Check out Project A from the server repository.

3 Import Project A.sif into the local repository using the Overwrite option to
resolve object definition conflicts. This replaces the existing definition of Project
A with the one in the archive file.
964 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Check In/Check Out Options (Source Control Integration)
4 Check Project A in to the server repository. Project A.sif is automatically checked
in to Visual SourceSafe as version 6.

Check In/Check Out Options (Source Control
Integration)

The Check In/Out tab in the Development Tools Options dialog box (Figure 242)
provides options for setting up check-in and check-out.

The Source control integration options are discussed below; for information about
the Data sources options, see “Check-In/Check-Out Options (Data Sources)” on
page 1005.

The Source control integration options are the following:

Figure 242. Check In/Out tab in Development Tools Options window
Version 7.5.3, Rev. A Siebel Tools Reference 965

Repositories

Upgrading Repositories: Siebel Application Upgrader
■ Enable Source Control Integration check box. Set this check box to TRUE and
specify the location of the srcctrl.bat batch file in the Integration batch file text
box if you want to generate an archive file for each project when performing
repository check in, and at the conclusion of repository check in to run the batch
file once for each project.

■ Show execution of the integration batch file check box. Set this to TRUE to launch
a DOS window in the foreground when the srcctrl.bat batch file is executed. This
feature is for diagnosis purposes and facilitates debugging a customized batch
file.

■ Integration batch file text box and browse button. Specifies the location of the
srcctrl.bat batch file used by Siebel applications to instruct the source control
software to provide check in or check out of archive files.

Upgrading Repositories: Siebel Application Upgrader
The Siebel Application Upgrader reduces the time and cost of version upgrades by
allowing you to acquire new features from the latest release while preserving the
custom configuration changes made to the current repository. It notifies system
administrators about conflicts between object customizations and new releases,
automatically merges differences between object definitions, and allows you to
manually override and apply any changes.

The Siebel Application Upgrader allows you to upgrade custom configurations to
new releases by merging them with a current Siebel eBusiness software release.
This capability minimizes the cost of application upgrades and allows you to
quickly deploy production versions of Siebel eBusiness Applications. For more
information, see the upgrade guide for your operating system.

The Application Upgrader allows you to accomplish the following:

■ Determine what has changed with new releases of Siebel eBusiness Applications

■ Compare custom configurations with new changes delivered in a new Siebel
release
966 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Upgrading Repositories: Siebel Application Upgrader
■ Choose which changes to apply, whether made by your company’s developers
or by Siebel Systems in the new release

NOTE: The Application Upgrader is for merging an entire customized repository with
a standard one. To merge portions of repositories, use the Import/Export or Patch
features.

Figure 243 shows the Application Upgrade-Objects List.

For more information about the Application Upgrader, see the upgrade guide for
your operating system.

Figure 243. Siebel Application Upgrader
Version 7.5.3, Rev. A Siebel Tools Reference 967

Repositories

Web Client Migration Wizard
Web Client Migration Wizard
The Web Client Migration Wizard allows you to convert UI elements from Win32
clients connected to a server or local database to the Web client. You can move your
configurations and users to the Web Client interface when you upgrade to Siebel
Web applications. To support this migration, a new feature is included for
converting applets and views into Web applets and view applets. In particular, this
applies to new applets and views that you have created and may have customized.
The conversion process is comprised of two parts:

1 The bulk conversion of All New and Customized Applets and Views that is
performed immediately after the Repository Merge. This is initiated from the
Application Upgrader screen.

2 The next step is to review the migration and to redo it selectively for certain
applets or views. This is initiated from the Applets and Views list applet in the
Object List Editor.

You are able to select and enable Web customizations of multiple applets or views
using Web Client Migration Wizard, which helps convert applets and views that you
have created.

For more information, see the upgrade guide for your operating system.

Automatic Upgrade of Copied Objects
Siebel Tools allows copied objects to inherit some of the behavior of their ancestors,
which makes it easier to upgrade Siebel applications, reduces the time and cost of
adjusting an application after an upgrade, and also supports parallel development
by allowing some frequently used objects to be copied.

Certain repository objects that are copied during configuration can be upgraded
with a new property called Upgrade Ancestor that stores the name of the ancestor
object. This allows copied objects to be upgraded in the same way as the ancestor
objects from which they were copied. Thus when you copy an existing object, you
can specify its upgrade ancestor; during an upgrade the copied object will be
upgraded the same way as the original. This feature is available only for objects of
type Applet, Business Component, Report, and Integration Object.
968 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Automatic Upgrade of Copied Objects
Upgrade Inheritance functionality:

■ The Upgrade Ancestor property stores the name of the ancestor object (that is,
the one from which the current object was copied).

■ If the Upgrade Ancestor property is not null, you can upgrade the copied object
as if it were the ancestor object.

■ No special action is taken during import even if the “Upgrade Ancestor” property
is specified, for this is specific to application upgrades. But imported objects can
have this property set. When the next application upgrade is done, the property
is taken into account.

■ Inheritance does not apply to patch files. The “Upgrade inheritance” property is
applicable only during application upgrades. Its not taken into account during
the application of a patch and no action is performed based on this property.

■ During the merge, the newly created objects are given all the changes
corresponding to their ancestor. Objects with the Upgrade Ancestor property
include:

■ Applets

■ Business Components

■ Integration Objects

■ Reports

Basically, you can create a copy of an existing object (applets, business
components, integration objects, and reports) and specify an Upgrade Ancestor.
Version 7.5.3, Rev. A Siebel Tools Reference 969

Repositories

Automatic Upgrade of Copied Objects
Upgrade Inheritance Scenario
For example, you may want to make a copy of the Account List applet and call it the
Premium Account List applet. This new applet may differ from the original one in
that it has a special search specification that is displayed only in those accounts that
are considered premium accounts. In a subsequent release, Siebel Systems may add
new out-of-the-box list columns to the Account List applet. During an application
upgrade, your Account List applet and the Premium Account List applet will retain
the configuration changes you made. However, both applets will receive the new
out-of-the-box list columns added in the new version because of Upgrade
Inheritance functionality. Without this new feature, the copied applet would not
receive the new list columns during the upgrade process.

Recommended Guidelines for Copying Objects
The guidelines for copying objects vary. If the object is a UI object such as an applet
or view, it should only be copied if significant changes will be made to the look and
feel of the object. Copying the object rather than using the out-of-the-box object
makes certain that the modified look and feel would be preserved following the
upgrade. If only minor changes will be made to the UI object, it is better to use the
out-of-the-box object since this will eliminate the time spent on configuration and
the continuing maintenance of the repository. Other valid reasons for copying UI
objects would be:

■ If two different UI objects had to display different records (that is, different
search specifications on applets).

■ If different read/write properties between two objects were necessary (that is,
one applet is read-only, and the other is editable) and if this could not be
accomplished through the dynamic read-only buscomp user property.

■ If different drilldowns were necessary for different applets depending on the
view that contains them (and provided this could not be accomplished through
a dynamic drilldown).

When copying an applet that uses a business component based on a specialized
class, the following guidelines apply:

■ The copied applet must be used with the original business component, not a
copy of the original business component.
970 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Automatic Upgrade of Copied Objects
■ If you want to use a copied applet with a copied business component, you need
to change the class of the copied applet.

These guidelines are illustrated in the following example:

If you copy the Quote List (SCW) applet, the copied applet can only use the original
Quote business component, not a copy of the Quote business component. However,
if you change the class of the copied Quote List (SCW) applet from
CSSFrameListQuote to CSSFrameList, then you can use the copied Quote List (SCW)
applet with a copy of the Quote business component (which is still based on the
CSSBCQuote class).

If the object is a non-UI object, such as a business component or business object, it
is recommended that you not copy them if not absolutely necessary. These
recommendations pertain mainly to the copying of BCs, which is more common
than copying BOs. Copying BCs and BOs should be avoided. In other words, the out-
of-the-box object should be used, and modifications should be made to this object
rather than creating a copy and using the copy in the configuration. There are some
situations when the copying of BCs cannot be avoided. The following reasons are
given for this:

■ When a BC must appear twice in a business object; for example, when the
Account BC and Sub Account BC both appear within the Account BO.

■ When two BCs contain different search specifications and predefault values for
the type field that differentiates the records of these two BCs.

These guidelines are aimed at minimizing the use of copied BCs because of the
problems that can occur with repository maintenance, specialized classes, and
upgrading. Even with the Upgrade Inheritance feature it is important to be careful
in deciding to use copied objects.

Applet Applet Class Business Component
Business Component
Class

Quote List (SCW) CSSFrameListQuote Quote CSSBCQuote
Version 7.5.3, Rev. A Siebel Tools Reference 971

Repositories

Automatic Upgrade of Copied Objects
How Enhancements Are Applied During an Upgrade
During upgrades, it is very common that objects in the repository are changed. For
example, an applet might have a few list columns added or a business component
might have some fields and a multi-value link added. To do this, the objects that
need to be changed during the upgrade are recognized by their Name property. For
example, you would query the repository for the Account BC and add the necessary
new items to it. If you did not have the Upgrade Inheritance feature and the Account
BC had been copied as Acme Account, you would not recognize the new BC as a
copy of the Account BC and would not add the required changes to the copy during
the upgrade. These additions might be minor, but often these omissions can cause
numerous application errors after the upgrade and can be time-consuming to detect
and correct.

During an upgrade, the Upgrade Inheritance feature makes sure that copied objects
receive the same changes that are applied to the object from which they were
copied. This is done automatically by the upgrader, and there is no manual step
involved except for specifying the property.

NOTE: This functionality is applied only to the following object types: business
component, applet, integration object, and report.

Repository Location of the Upgrade Ancestor
During the application upgrade the contents of three repositories are compared to
produce the final, post-upgrade repository which contains both the customizations
made by the customer as well as any enhancements that were added by engineering
during the upgrade. The three repositories compared are the following:

■ Prior Standard Repository: Ancestor Repository.

■ Prior Customer Repository: Ancestor Repository that has been customized by
the client.

■ New Standard Repository: New Siebel Repository.

The Upgrade Ancestor object of a copied object must exist in the New Standard
repository in order for any enhancements to be applied to descendants during the
merge. The repository produced is the following:
972 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Automatic Upgrade of Copied Objects
■ New Customer Repository: New Siebel Repository customized by the client.

Ancestor objects must be found in the repository in order to be applied to their
descendants during a merge.

Configuration Steps for Upgrade Inheritance
UI objects should be copied if the look-and-feel of the application will change
significantly or if there is a difference needed between two objects (that is, different
search specifications on two applets). Business components should only be copied
after all other configuration approaches have been exhausted, and copying is clearly
the only solution. The issues involving repository maintenance and specialized
classes still are present with copied business components. Upgrade Inheritance
functionality allows certain copied objects to be upgraded and inherit the same
characteristics that the parent object possessed. This avoids post-upgrade errors and
configuration problems.

After creating the copied object, specify the parent object name in the Upgrade
Ancestor property of the copied object. This is what allows the copied object to be
recognized as a copy during the application upgrade, and it is changed along with
its parent object.

NOTE: You must manually populate this property because it is not automatically
populated when you copy an object. Remember that this property can only be
populated if the copied object is an applet, business component, integration object,
or report object type.

To copy an applet, business component, integration object, or report object and
children

1 Select the Object type (Applet, Business Component, Integration Object, or
Report) in the Object Explorer.

2 Select an entry in the Object list applet.

3 Choose Edit > Copy Record to create a copy of this record.

4 In the new record, fill in a new name in the Name field.
Version 7.5.3, Rev. A Siebel Tools Reference 973

Repositories

Automatic Upgrade of Copied Objects
5 Click the ellipsis in the Upgrade Ancestor field.

The Upgrade Ancestor pick list appears.

6 Select a value, and then click Pick.

The picklist shows all the other business components, applets, integration
objects, and reports in the repository.

To view all descendants or copies of an object

1 Right-click an object.

A dialog box is displayed.
974 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Object Comparison and Synchronization
2 Select View Descendants from the dialog box.

A dialog box appears showing the Parent Name and Descendants.

Propagating Changes from a Parent to Descendants
The new Object Comparison and Synchronization feature allows two objects to be
compared, and the differences between the two objects applied to one another to
keep them synchronized. See the section, “Object Comparison and
Synchronization” on page 975.

Object Comparison and Synchronization
You can view a side-by-side comparison of any two objects of the same type.
Differences are visually highlighted through color-coded icons. You can select and
copy properties and individual child objects from one object to the other.
Version 7.5.3, Rev. A Siebel Tools Reference 975

Repositories

Object Comparison and Synchronization
Using this feature, you can propagate a change made to an ancestor object to its
descendants or other objects of a similar types. Differences between similar objects
can easily be assessed and adjusted. You can also compare properties of checked-
out objects with their counterparts on the server.
976 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Object Comparison and Synchronization
Viewing the Object Comparison Dialog Box
The Object Comparison dialog box displays the differences between the selected
objects. First, you should select the two objects you would like to compare.

To view differences between two objects

1 Select any two top-level objects of the same object type.

Select the second one using SHIFT.

2 Choose Tools > Compare Objects > Selected. (Selected-Repository, Selected-
Archive, and Archive-Archive are the other options.) Compare Objects is also
available by right-clicking as shown in the following example.
Version 7.5.3, Rev. A Siebel Tools Reference 977

Repositories

Object Comparison and Synchronization
The Object Comparison dialog box appears. This dialog box shows the
differences between two objects.

The following features are important in the Object Comparison dialog box:

Explorer Applets. The Explorer applets in the upper left and right sections of the
dialog box are similar to what you see after clicking the Detail table of the Object
Explorer. They are always in sync in order to show a line-by-line comparison.

Child objects that do not exist in either tree applet are represented with
placeholders.
978 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Object Comparison and Synchronization
Expanding and collapsing folders are synchronized between the two tree
applets. If you expand or collapse an object in one tree applet, its counterpart is
automatically expanded or collapsed in the other applet.

Icons. Distinctive icons are used visually to identify child objects that either have
no counterpart or have conflicting properties with their counterparts.

■ Instances where the two objects do not have property differences are marked
by a blue diamond icon. In the example AppletTitle and List for both objects
have blue diamonds and are therefore the same.
Version 7.5.3, Rev. A Siebel Tools Reference 979

Repositories

Object Comparison and Synchronization
■ Instances where there are differences are marked by a red diamond icon. In
the example, ButtonGetList and ButtonImport have differences. The
highlighted control for the objects being compared is ButtonGetList.
ButtonGetList for the Account - SAP Orders List applet has a Method Invoked
value of SAPGetList. The value for the Account - SAP Orders List (MO) applet
is SAPGetList (MO).

Properties. By default, only those properties that are different are shown. You
need to check the Show All User Properties check box to view all the properties
(Figure 244). The Show All Objects check box refers to objects on the Tree
controls. By default all objects are shown (those with and without any property
differences), and Show All Objects is checked. Show System Properties check
box refers to some specific properties like Created, Created By, Updated,
Updated By, and so on.

Copying and Deleting. The dialog box has features that allow you to copy and
delete specific instances while comparing objects. For example, you can choose
a specific Control from the ACD Transfer Call Applet and click Delete. Copying
of objects to reconcile the differences between two objects is also accomplished
by using the arrows.

NOTE: These operations can only be performed on objects that belong to locked
projects.

Arrows. You can copy from one object to the other using the left and right arrows.

■ The buttons marked with two plus or two minus signs are used to expand or
contract the whole tree. The button marked with two minus signs contracts
the whole tree.

Figure 244. Properties Dialog Box
980 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Object Comparison and Synchronization
■ When you select an object instance, the right pointing arrow is enabled if you
have the object on the right locked. The left pointing arrow is enabled if you
have the object on the left locked.

■ When you click the right-pointing arrow, the selected objects in the left tree
applet are copied to the object in the right tree applet. If the objects do not
exist in the right tree applet they will be created. If they do exist, the objects
in the right tree applet will have their properties changed to reflect those in
the left tree applet. When you click the left-pointing arrow, the same pattern
will occur.

■ When you copy an object from one tree applet to the other, the children of
the object are copied as well.

NOTE: These arrows are disabled if the destination object does not have its
project locked.

Deleting an Object.

■ You can delete an object by selecting it and clicking the Delete button under
the selected tree applet.

■ You can delete only one object at a time.

■ The Delete button is only active when you lock the object and when you have
selected a single object instance. If you want to delete specific instances of
an object, a dialog box is displayed showing the changes and asking you,
“Are you sure you want to perform the operation?” If you click No, no
changes will be made. If you click Yes, the deletion is made.

■ Read-only objects and child objects are greyed out and cannot be updated.

Differences Between Checked-Out Projects
The Object Comparison dialog box can also be used to view the differences between
projects that are checked out and their counterparts on the server. Multiple projects
can be selected and their differences can be viewed at the same time.
Version 7.5.3, Rev. A Siebel Tools Reference 981

Repositories

Object Comparison and Synchronization
To view differences between checked-out projects and those on the server

1 Choose Tools > Check In.

The Check In dialog box appears.

2 From the Check In dialog box, select the two projects you want to compare and
click the Diff... button.

The Object Comparison dialog box appears with the selected projects.

You are not allowed to perform Copy or Delete operations in this situation.

NOTE: Undo Check Out button allows you to undo all the checkouts.
982 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Object Comparison and Synchronization
Entering the Comparison
You can make comparisons between any two objects of the same type in the
following locations.

NOTE: These options are available in the Compare Objects submenu that is available
when you click the right mouse button after selecting one or more objects. They are
also available under Tools >Compare Objects. The Compare Objects dialog box can
also be launched from the View Descendants dialog box. You can compare the
ancestor and one descendant or the ancestor and many descendants.

1 Two objects that are in the same repository (see “Option One” below)

2 One object is in the current repository and the other is in another repository in
the same database (see “Option Two” on page 983)

3 One object is in the current repository and the other is in an archive file (see
“Option Three” on page 984)

4 Both objects are in archive files (see “Option Four” on page 985)

Option One
If you select any two objects in the Object List Editor and right click to access a
menu item called Compare Objects > Selected, the only option that is available is
Selected, which is described below:

Selected Option: Allows you to make comparisons between two selected objects
from the same repository. After you right-click the two objects and choose Selected,
the Compare Objects dialog box is launched.

Option Two
If you select only one object and choose Tools> Compare Objects, one of the
options you get is the following:
Version 7.5.3, Rev. A Siebel Tools Reference 983

Repositories

Object Comparison and Synchronization
Selected vs. Archive Option: A Select Archive File to Compare Against dialog box
opens (Figure 245), and you can select a .sif file that will be used for comparison
with the object selected in the Object List Editor (OBLE).

If a corresponding object type is not found in the archive file, the user will receive
a message indicating this and the Object Comparison dialog box will not open.
Otherwise, the comparison will be conducted starting at the project level.

Option Three
If you select only one object and choose Tools >Compare Objects, one of the
options you get is the following:

Figure 245. Select Archive File to Compare Against Dialog Box
984 Siebel Tools Reference Version 7.5.3, Rev. A

Repositories

Object Comparison and Synchronization
Selected vs. Repository Option: You will be presented with a dialog box with a list of
repositories in current database (Figure 246). You select one and click OK or Cancel.

When you pick a repository and click OK, Tools finds a corresponding object with
the same name. The Object Comparison dialog box opens with the object in the
current working repository displayed in the left applet and the corresponding object
in the selected repository in the right applet.

You will be able to update the current working repository or the selected repository
from the Object Comparison dialog box if you have the appropriate projects locked
in both repositories.

Option Four
If you select only one object and choose Tools> Compare Objects, one of the
options you get is the following:

Archive vs. Archive Option: You are able to compare two archive files at the project
level by selecting this option.

Figure 246. Open Repository Dialog Box
Version 7.5.3, Rev. A Siebel Tools Reference 985

Repositories

Object Comparison and Synchronization
When you select this menu item, you are presented with a Select Left File for Left
Side of Comparison dialog box that allows you to select an archive file (Figure 247).
When you select an archive file and click OK, the Object Comparison dialog box
opens with the left side populated with the contents of the selected archive file.

The Select Archive File for Right Side of Comparison dialog box is then displayed
so you can select another file and click OK. The right side of the Object Comparison
dialog box is populated with the contents of the second file.

When comparing the two files, both will be read-only.

Figure 247. Select Archive File for Left Side of Comparison Dialog Box
986 Siebel Tools Reference Version 7.5.3, Rev. A

3

 Application Development Projects 18
This chapter defines Siebel projects and explains how to:

■ Get information about projects

■ Create projects

■ Assign object definitions to projects

■ Check out and check in projects

■ Compile projects

What Are Siebel Projects?
Projects are named sets of object definitions that reside in the Siebel repository—
mechanisms to meaningfully group object definitions so they can be worked on by
teams of application developers.

The master copy of the repository resides on a server database. Multiple developers
can access it to make changes and additions by locking and checking out groups of
server repository object definitions to local (client) repository databases for
modification, and checking them back in to the server following modification and
testing.

A Siebel application is delivered with a large number of existing projects.
Version 7.5.3, Rev. A Siebel Tools Reference 987

Application Development Projects

What Are Siebel Projects?
Figure 248 shows a list of projects displayed in the Object List Editor window.

The names of projects that are delivered with a standard Siebel application indicate
the functional area with which they are associated. For example, Account contains
definitions pertaining to the Account functional area. A name without a suffix (like
Account) usually contains Business Object Layer definitions that span multiple
Siebel applications.

Project names that have a suffix (for example, Account(SSE)) contain user interface
or business object definitions that are specific to the Siebel application indicated by
the suffix. The suffix SSE in Account(SSE) (fourth entry from the top in Figure 248
on page 988) indicates an entry containing Account user interface data for the
Siebel Sales application.

Other suffixes indicating user interface data only are SSV for Siebel Service and CC
for Siebel Call Center.

Other suffixes indicating both user interface and business object data are FS for
Field Service, TAS for Targeted Account Sales, UI for User Interface, and DBM for
Database Management.

Figure 248. List of Projects Displayed in the Object List Editor Window
988 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Getting Information About Repositories and Projects
Getting Information About Repositories and Projects
This section discusses:

■ Selecting the current repository

■ Getting information about the current repository

■ Viewing object definitions by project

Selecting the Current Repository
Under normal circumstances there is only one repository available on your local
database, and one available on the server database for your development
workgroup. Typically this repository (in either location) is called the Siebel
repository and is opened by default when you open Siebel Tools and log on to Local
or Server. However, there are circumstances—especially when your group is in the
process of upgrading to a new version of Siebel eBusiness Applications—in which
multiple repositories can be present, especially on the server.

Whenever there is a possibility of multiple repositories, choose File >Open
Repository and verify that you already have the correct repository open, or select a
different one.

The File >Open Repository option lists only the repositories that have been
previously checked out from the server. In order to see an additional server
repository, you must first do a Get to get all of the projects for that repository in the
Check Out window. This is described in “Getting Information About the Current
Repository” on page 990.
Version 7.5.3, Rev. A Siebel Tools Reference 989

Application Development Projects

Getting Information About Repositories and Projects
Getting Information About the Current Repository
You can get version, compilation, and path information about the current repository
by choosing Help >About SRF from the menu bar in Siebel Tools. The About
Repository File window is shown in Figure 249.

This window displays the following information:

■ Internal version. Version number maintained internally at Siebel that changes
only when the internal format of the .srf file changes, such as at the time of a
major release. It has no significance for customer developers.

■ User version. Reserved for use by Siebel Anywhere, which maintains this number
when kits are created that upgrade the .srf file. The value is read when a version
check occurs.

Figure 249. About Repository File Window
990 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Getting Information About Repositories and Projects
■ Full compile/Last incremental compile radio buttons. Determines whether the
Compile Information fields display information about the most recent full
compilation or incremental compilation. If there have been no incremental
compilations since the full compilation, the latter option is dimmed (as shown
in Figure 249 on page 990).

■ When. Date of the last compilation—incremental or full, as specified in the radio
buttons.

■ Machine name. Name of the client computer on which the .srf file was compiled.

■ Language. Language code of the language specified for user interface translation.

■ User name. User name (that is, the Microsoft Windows logon name) of the user
who compiled the repository.

■ Repository. Repository name of the repository that was current when the
compilation was run, generally Siebel repository.

■ Tools version. The version number and build number of the Siebel Tools software
used to compile the repository. This is useful information for Siebel Technical
Services if they are helping you in resolving a problem with your configuration.

■ Schema version. Database schema version of the database from which the
repository was compiled.

■ File name. Name and path of the .srf file being used internally to define the Siebel
Tools application, generally located in C:\sea7xx\tools\objects.

NOTE: This is not the same Siebel application .srf file that is produced by
compilation and distributed to client machines. Siebel Tools itself is a
customized Siebel application, so it has its own repository file.
Version 7.5.3, Rev. A Siebel Tools Reference 991

Application Development Projects

Getting Information About Repositories and Projects
Viewing Object Definitions by Project
To restrict the objects displayed in the BusObject Designer to those that belong to a
particular project, select an entry from the project picklist you access at the top of
the Siebel Tools Object Explorer window (shown in Figure 250).

To see all projects, select the All Projects entry from the top of the picklist.

Figure 250. Project Picklist
992 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Getting Projects
The Object Explorer displays object types only if there are definitions of that type
in the selected project. Figure 251 on page 993 shows the applets in the Account
(SSE) project.

Getting Projects
The process of copying all projects from the repository on the server database to
your local development database is known as a full get. Doing a full get differs from
checking out projects (see “Checking Out Projects”) in the following ways:

■ A full get does not lock the projects on the server database.

■ A full get copies all projects from the server repository to your local repository.
You cannot select individual projects.

■ A full get will override all projects on your local database, whether they are
locked or not locked.

Figure 251. Applets in the Account (SSE) Project
Version 7.5.3, Rev. A Siebel Tools Reference 993

Application Development Projects

Getting Projects
You must perform a full get to populate a newly initialized local database with a
copy of all projects from the server repository. You cannot compile before doing a
full get because your .srf files must be based on the comprehensive set of Siebel
object definitions plus any changes you make. You can also use a full get to refresh
your local repository with the repository stored on the server.

NOTE: The sample database, unlike the local database, cannot receive checked-out
object definitions, and its object definitions cannot be checked in to the server
database. The sample database is strictly for instructional use.

By default the full get process performs database commits in regular intervals
during the get process rather than a single commit at the end of the get process. You
can disable this option by choosing View > Options, selecting the Check In/Out
tab, and then clearing the Enable incremental commit during Full Get check box.

To do the initial get of all projects from the repository

1 Choose Tools > Check Out...

The Check Out dialog box appears (see Figure 252 on page 996).

2 Choose the name of your development repository from the Repository picklist.

NOTE: The repository that you select is not necessarily the one opened by Siebel
Tools.

3 Select the All Projects radio button.

4 Click Options.

5 In the Development Tools Options window, make sure your Server Data Source
is pointing to your server development database and your Client Data Source is
pointing to the local database you previously initialized and are currently
running against.

6 Close the Development Tools Options window.
994 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Checking Out Projects
7 In the Check Out dialog box (see Figure 252 on page 996), click Get.

After the get is complete, your currently open local repository has the same
contents as the server repository from which you did the get.

Checking Out Projects
Project Check In/ Out is a source control mechanism that allows you to coordinate
development work with multiple developers. When you check out projects from the
server repository, the project is locked on the server and is copied to your local
repository. This allows you to make changes to the project and prevents others from
working in the same project.

Checking out a project differs from a full get in the following ways:

■ You can select the projects you want to check out.

■ Projects you check out are locked on the server.

NOTE: Check Out must be performed against the server database from which the
local database has been extracted.

To check out a copy of one or more projects

1 Select Repository > Check Out.

The Check Out dialog box appears (see Figure 252 on page 996).

2 Make sure that the correct repository is selected.

3 Select the projects you want to modify.

4 Click the Options button.

5 In the Development Tools Options window (see Figure 255 on page 1006), make
sure the Server and Client data sources are specified correctly.

6 Close the Development Tools Options window.
Version 7.5.3, Rev. A Siebel Tools Reference 995

Application Development Projects

Checking Out Projects
7 In the Check Out dialog box, click Check Out.

The contents of the object definitions you have checked out are not
automatically displayed or redisplayed in the Object List Editor following check
out. Select View > Refresh Windows to display updated information.

CAUTION: Password encryption interferes with check out. If you will be checking out
projects, you need to disable password encryption in the client or CFG file when
running Siebel Tools.

Check Out Dialog Box
The Check Out dialog box is shown in Figure 252 on page 996.

You can check out projects only in the language Siebel Tools runs in. Check the
current Siebel Tools language mode by choosing View > Options and clicking the
Language Settings tab.

Figure 252. Check Out Dialog Box
996 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Checking Out Projects
User interface elements in the Check Out dialog box are:

■ Repository picklist. Available repositories on the server. The list of projects in the
projects list table reflects the list of projects in the selected server repository. If
you select a different server repository from the one currently open in Siebel
Tools locally, a warning appears, and you must either get all projects or change
the repository selection.

■ Projects list. Projects in the server repository.

Click a project or projects to check out or get.

The projects list contains the following list columns:

■ Project list column. Displays the name of each project in the server repository.

■ Get Locale specific data only. Gets only the locale (language) specific data in
selected projects, in the language specified during Siebel Tools installation.

■ Server Language. The language of the project currently locked on the server.
Only one language can be locked at one time.

■ Client Language. The language of the project currently locked on the client.
Only one language can be locked at one time.

■ Updated. A value of Yes appears if the server Locked By and Locked Date are
different from the client version, indicating that your version of the project is
out of sync with the server’s version.

■ Server Locked By. Logon ID of the developer who currently has this project
checked out on the server.

■ Server Locked Date. Check-out date.

■ Client Locked By. Logon ID of the developer who currently has this project
locked locally.

■ Client Locked Date. Date the project was locked locally.

■ Selected projects radio button. When this radio button is checked, you can select
individual projects to check out or get.

■ All projects radio button. When this radio button is checked, all projects in the
repository are selected to check out or get.
Version 7.5.3, Rev. A Siebel Tools Reference 997

Application Development Projects

Creating New Projects
■ Updated projects radio button. When this radio button is active, only projects with
an Updated value of Yes are selected. This allows you to check out or get only
those projects on the server that are new or different from corresponding
projects in the local repository. Normally you will get rather than check out such
projects, to bring your local repository up to date.

■ Get button. Selected projects are copied to the local repository, replacing pre-
existing versions there. The lock status of these projects is not changed on the
server. You can get any projects on the server, including those locked by others.

■ Check Out button. Copies all object definitions in the selected projects to the local
repository and locks them on the server (and client). You cannot check out
projects that are currently locked on the server (if you select a locked project in
the projects list, the Check Out button dims).

■ Options button. Opens the Development Tools Options dialog box with the Check
In/Out tab selected. This is the same dialog box that appears when you choose
Tools >Options from the menu bar.

■ Cancel button. Cancels check-out and closes the Check Out dialog box.

■ Get Local Specific Data Only check box. Checking this box gets string translations
and locale-specific attributes being stored in the locale objects.

Creating New Projects
You can create a new project by selecting the Project object type in the Object
Explorer (Types tab) and creating a new record in the Object List Editor.

In general, you would add new projects:

■ To break large numbers of object definitions into more manageable groups.

■ When developers are contending for different sets of object definitions in the
same projects.

CAUTION: Once you create a project you cannot delete it from Siebel Tools, but you
can do it through SQL.
998 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Renaming Projects
Renaming Projects
You need to rename projects on the server, not on the local database.

CAUTION: Never change the name of a project that standard Siebel Object definitions
are associated with.

To rename a project or reassign object definitions on the server

1 Make sure developers have checked in all checked-out projects.

2 Open the server repository.

3 Change the Name property of the project or the Project properties of the relevant
object definitions.

4 Have developers do a get of all projects on the server repository.

5 Have developers do a full compilation the next time they compile.

Assigning Object Definitions to Projects
Every object definition must be assigned to one and only one project, either:

■ A Siebel-supplied project, or

■ A user-created project

You assign an object definition to a project by setting the Project property.
Version 7.5.3, Rev. A Siebel Tools Reference 999

Application Development Projects

Moving Object Definitions Between Projects
The Competitor (SME) business component shown in Figure 253 (the selected
business component) has an assigned Project property of Oppty (SME).

Moving Object Definitions Between Projects
To move an object definition between two projects

1 Check out both projects to your local database.

2 Change the Project property of the object definition you intend to move, so that
it reflects the name of the new project.

3 Check in both projects together.

CAUTION: Failure to check in both projects at the same time can leave the
repository in an inconsistent state.

Figure 253. Project Property of a Business Component
1000 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Checking In Projects
4 Inform other developers that they must do a simultaneous get of the two projects
prior to doing any subsequent work on the object definition in either project.

NOTE: If you delete an object from a particular project, and then re-create it with the
same name in another project, this has the same effect as moving the object
between projects. Therefore, you should take the same precautions.

In general, you should not delete object definitions. Deleting objects might cause
parts of your application not to work. If you do not want to use an object, you
should set the value of its Inactive property to TRUE.

Checking In Projects
Use Check In to copy new or modified object definitions in a local repository to the
server repository.

The check-in process:

■ Replaces any existing versions of the checked-out object definitions with
modified versions, and adds any new ones

■ Unlocks the project

If you use Check In with Maintain lock, the server repository is updated, but the
project is still locked to your local repository.

When checking in projects, consider the following:

■ Password encryption interferes with check-in. You need to disable password
encryption when running Siebel Tools if you will be checking in projects.

■ You can only check in projects under the same working language in which you
checked them out.

■ Check In must be performed against the server database from which the local
database has been extracted.
Version 7.5.3, Rev. A Siebel Tools Reference 1001

Application Development Projects

Checking In Projects
To check in new or modified object definitions

1 Choose Repository > Check In...

The Check In dialog box appears (see Figure 254 on page 1003).

2 Click the Options button.

In the Development Tools Options dialog box, make sure the server and client
Data Sources are pointing to the correct databases.

3 Close the dialog box.

4 In the Check In dialog box, select the appropriate repository in the Repository
picklist.

5 Do one of the following:

■ Click the Selected projects radio button and select the individual projects to
check in.

■ To check in all locked and new projects, click the Locked/New Projects radio
button.

6 Click Check In.

CAUTION: Depending on the size of the project, the check-in process might require
some time. Do not interrupt the process, as doing so can leave your repository in an
unstable state. If for any reason the check-in process is interrupted, you must redo
it. This completes the unfinished tasks and unlocks the project on the server.
1002 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Checking In Projects
Check In Dialog Box
Figure 254 shows the Check In dialog box. You can check in any previously
checked-out project in any language.

User interface elements in the Check In dialog box:

■ Repository picklist. Available repositories in the local database. The list of
projects in the Projects list table reflects the list of projects in the selected
repository (in addition to locally created projects).

■ Projects list table. Identifies all projects in the local repository selected in the
Repository picklist. It contains the following list columns:

■ Undo check out. Does not check in object definitions to the server. This releases
the lock on the server, so that another developer can work on those objects.

■ Language. The language of the project checked out.

Figure 254. Check In Dialog Box
Version 7.5.3, Rev. A Siebel Tools Reference 1003

Application Development Projects

Checking In Projects
■ Project. Displays the name of each new or checked-out project in the local
repository. Projects obtained by means of get operations are not listed,
because these are not available for check-in. (You can check in only projects
that you have previously checked out or created locally.)

■ Status. Contains the value New or Locked for each project, indicating
whether you created it yourself or obtained it through check-out.

■ Lock/Creation Date. Displays the date and time when you created the project
or checked it out from the server.

■ Language. Displays the language in which the project was checked out.

■ Selected projects radio button. When this radio button is checked, you can
manually select individual projects to check in.

■ Locked/New projects radio button. Selects all of the projects in the list—that is, all
projects you have created or obtained through check-out.

■ Maintain lock check box. When checked, tells the system to check in the projects,
but keep them locked on the server.

■ Check In button. Initiates the check-in process.

■ Diff button. Opens the Project Differences window for comparison of the object
definitions in the projects you are checking in with their corresponding versions
on the server. For more information, see “Determining Project Differences at
Check-In Time” on page 1008.

■ Options button. Opens the Developer Tools Options window where you specify
check-in/check-out settings, especially server and client data source names.

■ Cancel button. Closes the Check In dialog box.

■ Validate button. Validates selected projects.

Check-In Guidelines
Here are some rules to follow when you check in projects:

■ Before doing a check-in, make sure that the projects you are checking in are in
a stable state and have been thoroughly tested against your local repository.
Check in projects only when all dependent Siebel VB code is complete.
1004 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Check-In/Check-Out Options (Data Sources)
■ Check in all dependent projects at the same time to be sure that the
configuration on the server remains consistent.

For example, if you create a new PickList object definition in the PickList project
and reference that object definition in your Oppty project, check in both projects
to the server at the same time.

■ Consider the timing of your check-in and its impact on the work of other
developers. In some instances, you may need to check in a project before you
have fully completed the configurations required in that project because another
developer’s configurations may depend on a particular feature you have added
to your project.

Check-In/Check-Out Options (Data Sources)
The Check-In/Out tab in the Development Tools Options dialog box (Figure 255)
provides options for setting up check-in and check-out.
Version 7.5.3, Rev. A Siebel Tools Reference 1005

Application Development Projects

Check-In/Check-Out Options (Data Sources)
The Data sources options are discussed below; for information about the Source
control integration options, see “Check In/Check Out Options (Source Control
Integration)” on page 965.

Data sources user interface elements in the Development Tools Options window:

Figure 255. Check In/Out Tab in Development Tools Options Window
1006 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Check-In/Check-Out Options (Data Sources)
■ Server data source text box and change button. ODBC data source of the server
repository. When you click the Change button, the Change Data Source window
appears (Figure 256) so you can enter and modify the ODBC data source
parameters.

User interface elements in the Change Data Source window:

■ ODBC data source. Full ODBC data source string that provides communication
with the server repository database.

■ User name. User logon ID (in all uppercase) used to access the server
database.

■ Password. User password (in all uppercase) used to access the server
database.

■ Table owner. Table owner name used to access the repository on the server
database.

■ Client data source text box and Change button. ODBC data source of the local
repository. When you click the Change button, the Change Data Source window
appears so you can enter and modify the ODBC data source parameters. These
parameters are similar to those described in the prior section for the server data
source. In particular, the user name and password must be in all uppercase
letters.

Figure 256. Change Data Source Window
Version 7.5.3, Rev. A Siebel Tools Reference 1007

Application Development Projects

Determining Project Differences at Check-In Time
Determining Project Differences at Check-In Time
From the Project Differences window you can view details of changes made to
checked-out projects prior to checking them in—it is a debugging tool that helps
you find errors or omissions before your changes are committed to the server
repository.

To invoke the Project Differences window

■ Click the Diff button in the Check In dialog box (Figure 254 on page 1003). The
Object Comparison window appears (Figure 257).

Figure 257. Object Comparison Window
1008 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Undoing Check Out
The Object Comparison window compares the local project with the server project.

Project Differences Windowpane
The Project Differences windowpane displays the hierarchy of object definitions for
which there are changes from the originally checked-out versions. It behaves like
the Object Explorer in the Detail mode and is used for navigation. The hierarchy in
this windowpane mirrors the object type/object definition hierarchy in a Siebel
repository, but shows only changes since check-out rather than all repository or all
checked-out object definitions.

Selection of an object definition in this hierarchy causes this object definition and
the others at its level to appear in the Object Differences windowpane.

Undoing Check Out
You can undo projects that have been checked out from the Check In dialog box.

To undo a project check out

1 Choose Tools > Check In.
Version 7.5.3, Rev. A Siebel Tools Reference 1009

Application Development Projects

Locking Projects Directly
2 From the Check In dialog box, select the project or projects for which you want
to undo check-out, and click the Undo Check Out button.

The project is unlocked on the server but not on your local database.

If one of the projects you select is new, the Undo Check Out button is disabled.

NOTE: You can also use Get to overwrite a project that you have checked out from
the server database. Perform the Get for the project you want to overwrite, and the
project in your local database will be overwritten with the project from the server.
Then check the project back in to the server. This will undo the lock for the project.

Locking Projects Directly
You can lock and unlock projects directly (as contrasted with the check-out
procedure, which locks projects as it checks them out).
1010 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Locking Projects Directly
To lock local projects directly

■ All Project object definitions have a Locked property that you can set to TRUE
or FALSE in one of two ways:

■ Set the Locked property to TRUE in the Object List Editor by clicking the
Locked field (if the Locked field has no check mark).

■ Set the Locked property to TRUE in the Properties window.

Figure 258 shows a locked project (Account).

You lock at the project level, even though the Locked property is associated with a
particular Business, Data, or User Interface Object. That is, when you lock a specific
object, the entire project associated with the object is locked.

It might not seem logical to do a direct lock on a local project, because if it is not
also locked on the server, other developers might check it out and your changes and
theirs might ultimately conflict. Direct local locking does make sense, however, if
you are:

■ Prototyping your ideas and do not really want to prevent others from checking
out the project you are working on

■ Intending to discard your work when you are done

Figure 258. Locked Project (Account)
Version 7.5.3, Rev. A Siebel Tools Reference 1011

Application Development Projects

Project Structure Considerations
Be aware, though, that you cannot change your mind and decide to use your
prototype created this way in your application, because:

■ You can check in only those projects you have checked out.

■ Your local project’s definition will be overwritten the next time you get or check
out that project.

Locking Server Projects Directly
Although you can do a direct lock on server projects (by changing the Locked
property), Siebel Systems recommends that you never do this. Always lock by doing
a check-out, instead, because:

■ When you lock on the project directly, other developers who do a get on the
object definitions in the directly locked project may find that the definitions are
in an incomplete, inconsistent, and untested state.

■ You, as the project owner, lose your ability to cancel the check-out and restore
the original object definitions.

NOTE: You can check the project back in only in the project language in which it was
checked out. If you switch language mode in Siebel Tools, you lose the lock you had
with the project in the previous language mode.

Project Structure Considerations
The project structure supplied with Siebel Tools is usually well suited to having
several developers work on the same repository without contention for the same
object definitions.

To determine if the Siebel Tools project structure will work in your environment:

■ Create an application development plan that includes a PERT chart showing
dependencies and parallel activities.
1012 Siebel Tools Reference Version 7.5.3, Rev. A

Application Development Projects

Project Structure Considerations
■ Analyze the plan to see if the project structure interferes with developers who
need access to object definitions in the same projects at the same time. If so,
break out groups of object definitions into separate projects to enable concurrent
development.

During development, it is recommended that:

■ You do not change the project structure in standard Siebel eBusiness
Applications without a compelling reason.

■ You limit application modifications as much as possible.
Version 7.5.3, Rev. A Siebel Tools Reference 1013

Application Development Projects

Project Structure Considerations
1014 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard A
This chapter describes the tasks necessary to configure the Customer Dashboard. It
also discusses the various methods for populating the customer dashboard,
including populating it from the current record displayed, a communications event,
Smart Script, and Search Center results.

Understanding the Customer Dashboard
The customer dashboard provides access to key customer information, such as
contact name and account number, in an area of the screen that remains persistent
as the user navigates in the application.

The customer dashboard is visible as a separate frame below the Communications
Toolbar and screen tabs. It exists in addition to the primary content area of the
Siebel Web client, also known as the base view, and the Search Center frame.

For more information about end user procedures, see Siebel Call Center User Guide.

How the Customer Dashboard is Populated With Data
The dashboard must be open to be populated. Once the dashboard is populated, the
information will remain in the dashboard until the Clear Dashboard command is
executed. During a session, all information populated in the Customer Dashboard
is saved and the forward and backward buttons allow you to see the previous or
next information populated in the dashboard. You can also configure a button on
an applet to update the customer dashboard with information from the selected
row. For more information, see “Using Siebel VB Script and eScript” on page 1032.

The customer dashboard can be populated with data using any of the following
methods:
Version 7.5.3, Rev. A Siebel Tools Reference 1015

Configuring the Customer Dashboard

Understanding the Customer Dashboard
■ Selected Record. You can update the Customer Dashboard from a view by
selecting a record and clicking the Update button in the Customer Dashboard.
At this time it takes the primary business component for the view and updates
the fields with data for this record.

■ Communications event. When a user accepts an incoming call, the dashboard is
automatically updated with contact information for the caller.

■ SmartScript answer. You can configure the Customer Dashboard so that the
answer to a question in a SmartScript automatically populates the dashboard.

■ Search Center results. When the customer cannot be automatically identified
from an inbound call, the user can search for the contact in Search Center and
then click the Set Dashboard icon to populate the dashboard with the search
results.

Architecture
The dashboard is implemented as a separate frame and view below the application
toolbar and above the base view. It is based on a virtual business component called
Persistent Customer Dashboard, which is associated with the Persistent Customer
Dashboard business object. The objects in the Siebel repository that are related to
the customer dashboard are:

■ Persistent Customer Dashboard business object. Groups together business
components that can populate the dashboard with data.

■ Persistent Customer Dashboard business component. Is a virtual business
component.

■ Persistent Customer Dashboard business service. Controls the functionality of the
dashboard.

■ Persistent Customer Dashboard applet. Displays data in the user interface.

■ Persistent Customer Dashboard view. Displays applet in the user interface.

The method used for updating the dashboard is UpdateDashboard. If you want to
configure to update the dashboard from a button you would use the InvokeMethod
function and pass a set of name-value pairs such as:

■ Source Name: 'Base View'
1016 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Enabling the Customer Dashboard
■ BusComp Name: 'Contact'

■ RowId: 'srowid'

See “Using Siebel VB Script and eScript” on page 1032 for more information.

Upon receiving the arguments, the member functions go through the set of fields
configured to be displayed and populate the dashboard after retrieving the data
from the database.

Predefined Behavior
The Customer Dashboard has been configured to display a set of fields from several
business components, including Account, Contact, Employee, Service Request,
Asset Mgmt, and so on. You can configure the Customer Dashboard to display
information from other business components as well. See “Configuring the
Customer Dashboard” on page 1018 for more information.

NOTE: You can see which business components the Customer Dashboard is
configured to display, by using Siebel Tools to review the list of Business Object
Components associated with the Persistent Customer Dashboard business object.
See “Adding a Business Component to the Dashboard Business Object” on
page 1019.

The Customer Dashboard can be populated with data from a single business
component or multiple business components. However, the Customer Dashboard
does not display data from multiple business components at one time. Rather, it is
configured to display data in different contexts. For example, when the user is in the
Accounts screen and clicks the Update button, account information is displayed;
when the user is in the Contacts screen and clicks the Update button, contact
information is displayed.

Enabling the Customer Dashboard
By default, the Customer Dashboard is enabled for Siebel Call Center, Siebel Sales,
and Siebel Service. However, you can enable the Customer Dashboard for other
applications as well.
Version 7.5.3, Rev. A Siebel Tools Reference 1017

Configuring the Customer Dashboard

Configuring the Customer Dashboard
To enable the customer dashboard

1 Find the Persistent Customer Dashboard business service.

2 Verify that the Inactivate property is set to FALSE.

FALSE is the default setting.

3 Add the target application as a value for the Applications user property.

For example, to activate Customer Dashboard for Siebel Employee Relationship
Management, you would add Siebel ERM to the user property as shown in the
table below:

Configuring the Customer Dashboard
You can configure the customer dashboard to display data from any business
component. The tasks for doing this include the following:

■ “Adding a Business Component to the Dashboard Business Object”

■ “Adding a Business Component Lists to the Dashboard Business Service”

■ “Mapping Business Component Fields to the Customer Dashboard” on
page 1020

■ “Creating Field Labels” on page 1022

■ “Formatting Phone # Fields” on page 1023

■ “Configuring the GoTo View Drop-Down List” on page 1024

■ “Configuring Labels for GoTo Views” on page 1025

Name Value

Applications Siebel Universal Agent; Siebel Field Service; Siebel Sales
Enterprise; Siebel ERM
1018 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Configuring the Customer Dashboard
Adding a Business Component to the Dashboard Business Object
You may need to display data from a business component that the Customer
Dashboard is not preconfigured to support. To do this, first you must add the
business component to the Persistent Customer Dashboard business object.

To add a new business component to the dashboard business object

1 In the Object List Editor, locate the Persistent Customer Dashboard business
object.

2 Define a new Business Object Component (child of business object) for the
business component.

Adding a Business Component Lists to the Dashboard Business Service
User properties of the Persistent Customer Dashboard business service specify the
business components and the list of fields available to display in the Customer
Dashboard. These user properties are also known as Business Component Lists.
Each user property name begins with List and is appended with a value to make the
name unique, for example List1, List2, and so on. The user property value identifies
the name of a business component and the list of available fields.

For example, Table 64 shows the preconfigured user properties that identify the
Contact and Opportunity business components and their corresponding fields:

To define a user property to represent a business component and fields

1 In the Object List Editor, locate the Persistent Customer Dashboard business
service.

Table 64. Example Persistent Customer Dashboard Business Service User Propertie
s

Name Value

List1 Contact;Last Name;First Name;Full Name;Email Address;Work Phone
#;Account;Account Location;Fax Phone #;Job Title;Mobile Phone #

List2 Opportunity;Name;Account;Account Location;Oppty Id;Close Date;Sales
Rep;Revenue;Sales Stage
Version 7.5.3, Rev. A Siebel Tools Reference 1019

Configuring the Customer Dashboard

Configuring the Customer Dashboard
2 Add the List user property and define the business component name and field
names as the user property’s value.

■ Name. The syntax for the name is the word List followed by a number. For
example, List1, List2, List3, and so on.

■ Value. The value of the user property lists the name of the business
component and then the corresponding field names. Each value must be
separated by a semicolon. See Table 64 for an example.

Mapping Business Component Fields to the Customer Dashboard
User properties defined for the Persistent Customer Dashboard business service
map the available fields from the business component to fields on the Customer
Dashboard applet.

The user property name identifies the Customer Dashboard fields, such as Field 1,
Field 2, and so on.

NOTE: The following fields are preconfigured for the Customer Dashboard, Field 1,
Field 2, Field 3, Field 4, Field 5, Field 10, Field 12. Field 4 is formatted to display
phone numbers.

The value of the user property defines the business component list and one of the
available fields. The syntax for the value is the name of the list user property, for
example List1, followed by the position of the field in the list for that user property.
For example, List 1.1 is the first field available from List1, List1.2 is the second field
available from List1, and so on. For more information about business component
lists, see “Adding a Business Component Lists to the Dashboard Business Service”
on page 1019.
1020 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Configuring the Customer Dashboard
For example, to display the Last Name field from the Contact business component
(see List1 in Table 65 on page 1021) in Field 1 of the Customer Dashboard, you
would define a user property as shown in Table 65 below:

You can display fields from more than one business component in a single Customer
Dashboard field. To do this, you define multiple values for the Customer Dashboard
field’s user property. For example, suppose that when the Customer Dashboard is
in the context of Contacts, you want Field 1 of the dashboard to display Last Name.
However, when the Customer Dashboard is in the context of Opportunities, you
want Field 1 to display Opportunity Name.

To map multiple business component fields to a single customer dashboard field,
you define the user property as shown in Table 66. List 1.1. represents the first field
of List one. List2.1 represents the first field of List2.

The customer dashboard business service searches through the list of user
properties, starting with Field, and looks for fields that are mapped to the dashboard
from the current business component. For example, when the Contact business
component is instantiated, the business service looks for Fields mapped from the
Contact business component. Fields in the dashboard not mapped fields in the
current business component remain empty.

Table 65. Example User Property to Map Fields

Name Value

Field 1 List1.1

Table 66. Mapping Multiple Business Component Fields to a Single Dashboard Field

Name Value

Field 1 List1.1;List2.1
Version 7.5.3, Rev. A Siebel Tools Reference 1021

Configuring the Customer Dashboard

Configuring the Customer Dashboard
Creating Field Labels
The field labels that appear in the Customer Dashboard are dynamic, they change
depending on the data being displayed in the dashboard. When no data is available
for the dashboard, the labels for the default business component are displayed. The
default business component is specified in the Customer Dashboard business
service. Contacts has been preconfigured as the default business component for the
dashboard.

There are placeholder controls, such as Label 1, Label 2, and so on, that are
predefined in the Siebel Repository. There are also predefined business service user
properties, also named Label 1, Label 2, and so on, that map these placeholder
labels to fields on the Customer Dashboard.

If you add additional fields to the Customer Dashboard, you define the actual labels
that will replace placeholder labels at runtime. You define the actual labels by
creating an additional applet control for each business component field that you
want to display. The naming convention for the applet control identifies it as a
Label, and identifies the business component and field that determine when it
should be displayed.

To create an applet control to represent a label

1 Go to the Persistent Customer Dashboard applet.

2 Create a new applet control.

3 In the Name field, enter a name using the word Label, followed by a space, then
followed by the business component name and field name separated by a dot.

For example: Label ServiceRequest.SR Number

4 In the Caption field, specify the text that you want to appear in the Customer
Dashboard.

5 Repeat this process for each label that you want to display for a particular
dashboard field.
1022 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Configuring the Customer Dashboard
Formatting Phone # Fields
You can configure the Customer Dashboard to recognize different telephone
extensions. You use a business service user property to define the parameters that
associates your company’s telephone switch extensions to their full-length phone
numbers. The user property name is Phone Number Prefix. Three values, separated
by semicolons, define the parameters. The values are as follows:

■ The first value specifies the number of digits in an extension.

■ The second value specifies the number of digits to remove from the front of the
extension.

■ The third value specifies the prefix to append to the beginning of the number.

Consider the example shown in Table 67:

-

The example shown in Table 67 would allow a user to dial the extension 24565. The
extension has 5 digits. The first digit, 2, is removed. The prefix, 650555, is added.
The resulting phone number is 650-555-4565.

Table 67. Phone Number Prefix Example

Name Value

Phone Number Prefix 1 5;1;650555
Version 7.5.3, Rev. A Siebel Tools Reference 1023

Configuring the Customer Dashboard

Configuring the Customer Dashboard
Configuring the GoTo View Drop-Down List
The Customer Dashboard includes a drop-down list that allow users to navigate to
additional views related to the current record. The list of views changes depending
on the data currently displayed in the Customer Dashboard.

The list of views available in the Go To drop-down list are configured using business
service user properties, such as View 1, View 2, and so on. At runtime the Persistent
Customer Dashboard business service searches through the list of user properties
that start with View, finds the display name for the associated view, and then adds
the name to the Go To drop-down list.

NOTE: The name of the view specified in the user property must exactly match the
name as it is defined in the Siebel repository.

You can modify the views associated with the preconfigured View user properties
or add additional views. The syntax for the user property is:

■ Name. The word View followed by a number.

■ Value. The value of the View user properties includes the following values
separated by a semicolon:

■ Name of the business component

■ Name of the view

■ Name of the primary applet on the view

■ Name of the foreign key on a linked business component. This value is only
necessary when you are navigating to a view based on a business component
other than the current business component of the dashboard.

For example, if the dashboard is configured to display data from the Contact
business component, and the All Activities view is a view listed on the GoTo
drop-down list, this value would specify the foreign key in the Action
business component that points back to Contacts. It allows a query of all
activities related to the contact currently displayed in the dashboard.
1024 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Configuring the Customer Dashboard
For example, Table 68 shows several preconfigured View user properties.

NOTE: In View 1 shown in Table 68 specifies that when the dashboard is populated
with data from the Contact business component, the All Activities view should
appear in the GoTo View drop-down list. After the user selects the view from the
drop-down list, only records for the current Contact ID appear in the view.

Configuring Labels for GoTo Views
You can specify the view labels for each view that you configure to appear in the
GoTo drop-down list.

To configure labels for GoTo views

1 Locate the Persistent Customer Dashboard applet.

2 Go to the Applet Controls.

3 Create a new control for the view that you have configured to appear on the
GoTo drop-down list.

The name of the control must be in the format of the word Label followed by the
name of the View user property. For example, Label View 1 for View 1, and so
on.

4 In the Caption property, enter a text you want to appear in GoTo drop-down list.

Table 68. Example View User Properties

Name Value

View 1 Contact; All Activity List View; Activity List Applet With Navigation;
Contact Id

View 2 Contact; Contact Activity Plan; Contact Form Applet

View 3 Contact; Agreement List View; Agreement List Applet No Parent; Contact
Person Id
Version 7.5.3, Rev. A Siebel Tools Reference 1025

Configuring the Customer Dashboard

Modifying the Look and Feel of the Customer Dashboard
Modifying the Look and Feel of the Customer Dashboard
You can modify the look and feel of the Customer Dashboard, including its color,
size, and location.

Changing the Background Color and Border
You can change the background color and border color properties in the main.css
file, which is located in PUBLIC\Language_Code\FILES\ directory of your Siebel
installation, where language code represents the three-letter code for your
installations language pack.

To modify the background color or border

1 Locate the main.css file in the PUBLIC\Language_Code\FILES\ directory of
your Siebel installation.

2 Open the file with Notepad or other editor.

3 Find the following section and modify the values for dashbrdBorder and
dashbrdBack as necessary.

/*---------------------*/

/*Dashboard Definitions*/

/*---------------------*/

.dashbrdBorder {background-color:#6666CC;}

.dashbrdBack {background-color:#E0E0E0;}
1026 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Configuring Communication Events
Changing the Size and Location
You can change the size and location of the dashboard. For example you can make
the dashboard appear in the bottom of the view or you can make it occupy the
complete horizontal space or a certain percentage of the content frame size.

NOTE: The dashboard is located outside of the Content Frame and you can only move
the dashboard around the Content Frame of the application.

All changes can be done by modifying five template files:

■ CCFrameContent_V.swt

■ CCFrameContent_VS.swt

■ CCFrameContent_VD.swt

■ CCFrameContent_VSD.swt

■ CCAppletDashboard.swt

A move to the bottom of the view is a mirroring operation. A move to the left or
right of the content frame will have to take into consideration the sizing issues
present when search center is open. Moving the dashboard to the right side is not
recommended because it breaks the connection between actions taken in Search
Center and results returned in the main content area. When making changes to the
dashboard location, be sure to test that the dashboard frame, content frame, and
search center frame are working properly together.

Configuring Communication Events
One of the ways to populate the Customer Dashboard is from communication
events, such as an inbound email message, voice call, or web collaboration work
item. The Multichannel Def A configuration has been preconfigured to populate the
Customer Dashboard with contact information for certain communication events.
However, you can configure any communication event to populate the customer
dashboard for any business component, based on information passed to the event.
Version 7.5.3, Rev. A Siebel Tools Reference 1027

Configuring the Customer Dashboard

Configuring Communication Events
The API for the communication between communication events and the customer
dashboard is a member function UpdatefromCTI of the Customer Dashboard
business service. The CTI administration views are preconfigured to call
InvokeMethod_(with UpdateDashboard as a parameter) when a significant event
occurs and pass variables, such as Phone number and Number of calls in queue, as
arguments.

To populate the customer dashboard during a communications command or event,
you need to call the method to update the customer dashboard and pass three
parameters, including the business component, the field for that business
component, and the value that you are getting from this communication.

For example, the parameters listed in Table 69 instruct the customer dashboard to
populate with contact information for the contact whose Work Phone # matches the
ANI of the inbound call.

You can also call the customer dashboard business service from the
communications event log. See the steps below for an example.

1 Locate the Event Handler InboundCallReceived.

2 Click on the Associated Event Logs tab.

3 Drill down on the log LogIncomingCallContactFound.

Table 69. Customer Dashboard Parameters for Communications Events

Parameter Example Value

ServiceMethod Persistent Customer Dashboard.Update Dashboard from
CTI

ServiceParam.Field Work Phone #

ServiceParam.Value {ANI}

ServiceParam.BusCompName Contact
1028 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Configuring SmartScripts
4 In the log parameters, you define the following parameters:

Configuring SmartScripts
You can configure the Customer Dashboard so that the answer to a question in a
SmartScript automatically populates the dashboard. The configuration tasks
required to do this are:

■ “Activating the SmartScript Player”

■ “Mapping SmartScript Variables to Customer Dashboard Fields”

■ “Configuring SmartScripts to Save Answers”

NOTE: You cannot update the Customer Dashboard from VB or eScript that executes
within a SmartScript. There is a one-to-one relationship between a user interface
event and the ability to update a frame in the application. Because each user
interface event within a SmartScript updates the SmartScript frame, it cannot also
update the Customer Dashboard frame. If you were to pass parameters to the
Customer Dashboard from VB or eScript within a SmartScript, the dashboard would
receive the parameters but would not be able to display them.

Activating the SmartScript Player
When using the customer dashboard with SmartScripts you need to verify that the
Notify Dashboard property of the Smart Script Player Applet (Tree Only) is set to
true.

Parameter Example Value

ServiceMethod Persistent Customer Dashboard.Update
Dashboard from CTI

ServiceParam.Field Id

ServiceParam.Value {Contact.Id}

WorkTrackingObj.ContactId {Contact.Id}
Version 7.5.3, Rev. A Siebel Tools Reference 1029

Configuring the Customer Dashboard

Configuring SmartScripts
To verify that the Notify Dashboard user property is set to TRUE

1 Locate the applet named Smart Script Player Applet (Tree Only).

2 Locate the applet user property named Notify Dashboard.

3 Verify that the value of the user property is Y.

Mapping SmartScript Variables to Customer Dashboard Fields
You must map the variables in the SmartScript to fields on the Customer Dashboard.
You do this by defining the SmartScript List user property of the Persistent Customer
Dashboard business service. The mechanism for doing this is similar to defining
user properties for a business component list. See “Mapping Business Component
Fields to the Customer Dashboard” on page 1020.

The user property name is SmartScript List. The value for the user property specifies
the variables from SmartScript answers that are to be displayed in the Configuration
Dashboard.

To define the SmartScript List user property

1 Locate the Persistent Customer Service Dashboard business service.

2 Define a user property with the name SmartScript List and values that represent
the variables from the SmartScript.

NOTE: The values of the user property must exactly match the variable names
specified in the SmartScript.

Configuring SmartScripts to Save Answers
To be able to pass SmartScript answers to the Customer Dashboard, you must
configure the SmartScript to save the answers. You do this in the SmartScript
Administration view.

Name Value

SmartScript List Fname;Lname;Phone;Interests
1030 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Configuring SmartScripts
To configure SmartScripts questions

1 Navigate to Site Map > SmartScript Administration > Questions.

2 In the Questions list, select a question.

3 In the More Info form, enter the name of the variable in the Save User
Parameters field.

This enables the answer to be saved as a global variable to the script.

NOTE: The name of the variable must exactly match the name as it is listed in the
SmartScript List user property of the Persistent Customer Dashboard business
service. See “Mapping Business Component Fields to the Customer Dashboard”
on page 1020.

4 From the Show drop-down list, choose Scripts.

5 In the Translation form, enter the name of the variables from each question.

The syntax for entering the variables is the name of the variable enclosed in
brackets, separated by spaces; for example, [Fname] [Lnmae] and so on.

6 Repeat the steps above for each question you need to configure for the customer
dashboard.

The values for the variables in the Dashboard Text field are passed to the
Customer Dashboard.
Version 7.5.3, Rev. A Siebel Tools Reference 1031

Configuring the Customer Dashboard

Using Siebel VB Script and eScript
Using Siebel VB Script and eScript
The customer dashboard provides APIs to pull information from or push
information to the dashboard using Siebel VB or eScript. Since the customer
dashboard is a separate frame in the application, it requires a UI event to update the
dashboard using Siebel VB or eScript. This means that you can only update the
dashboard in this manner by adding a button to an applet and then calling the
Update Dashboard command. When adding the button make sure that you set the
Target Frame View property to Dashboard.

NOTE: The Customer Dashboard architecture only allows one UI update for each user
UI event. For example, if you put a button on a view, the clicking of the button is
one UI event. For that event, you can only execute one UI update, such as updating
the dashboard. The code behind a single button cannot have two UI updates, such
as updating the dashboard and then going to a new view in the main frame of the
application.

To add a button that calls the Update Dashboard Command

1 Locate the applet on which you want to place the button.

2 Add the button as an applet control and the script behind the button

See “Customer Dashboard Commands” for a list of available commands.

3 Set the button property, Target Frame View to Dashboard.

Customer Dashboard Commands
Since the customer dashboard is a business service, in your script you will need to
use the GetService ("Persistent Customer Dashboard") command. Using the code
behind a button you may either push information to the dashboard or pull
information from the dashboard.

There are two commands to pull information from the dashboard including getting
the record id for the current record populated in the dashboard or obtaining
individual field values for fields populated in the dashboard. Details for these
commands are described in the following sections.
1032 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Using Siebel VB Script and eScript
GetCurrentContactId
This command returns the record ID for the current record populated in the
dashboard. For example, if the record is from the Contact business component, then
it returns the ContactId; if the record is from the Account business component, then
it returns the AccountId.

No input argument should be specified.

The output argument is always "ContactId."

NOTE: The "ContactId" is a variable used by the dashboard but this refers to the
record ID for whichever business component is populated in the dashboard.

For example:

bs.InvokeMethod("GetCurrentContactId",inpargs,outargs); var
fvalue = outargs.GetProperty("Contact Id");

GetDashboardFieldValue
This command returns the current field value for the record populated in the
dashboard. The input argument is the name-value pair for the dashboard field. The
output argument is "Field Value."

For example:

inpargs.SetProperty("Field Name","Field 4");
bs.InvokeMethod("GetDashboardFieldValue",inpargs,outargs); var
fvalue = outargs.GetProperty("Field Value");

Update Dashboard
This command is used to populate the dashboard with a new record.

■ Source Name: Base View

■ Buscomp Name: Contact

■ RowId: E301

For example:
Version 7.5.3, Rev. A Siebel Tools Reference 1033

Configuring the Customer Dashboard

Using Siebel VB Script and eScript
inpargs.SetProperty("Source Name","Base View", "Buscomp Name",
"Contact", "RowId", "E301"); bs.InvokeMethod("Update
Dashboard",inpargs,outargs);No output argument

NOTE: In Siebel 7 version 7.0.3 and 7.0.4 there are two spaces between "Buscomp"
and "Name" in the second parameter. In subsequent versions, there is one space.

Siebel eScript Example
The example below is a script, written in Siebel eScript, that uses the dashboard
commands. It gets the contact ID, Field 4, and Field Time for the current record
populated in the dashboard and prints those values to a file.

For more information about using Siebel eScript, see Siebel eScript Language
Reference.

function Script_Open ()
{

var fn1=Clib.fopen("d:\\sabari5.txt", "wt");
var bs = TheApplication().GetService("Persistent Customer

dashboard");
var inpargs= TheApplication().NewPropertySet();
var outargs = TheApplication().NewPropertySet();

bs.InvokeMethod("GetCurrentContactId",inpargs,outargs);
var fvalue = outargs.GetProperty("Contact Id");
Clib.fprintf (fn1, "The current id in the dashboard = %s

\n",fvalue);

inpargs.SetProperty("Field Name","Field 4");
bs.InvokeMethod("GetDashboardFieldValue",inpargs,outargs);
var fvalue = outargs.GetProperty("Field Value");
Clib.fprintf (fn1, "The Account Name in the dashboard = %s

\n",fvalue);

inpargs.SetProperty("Field Name","Field Time");
bs.InvokeMethod("GetDashboardFieldValue",inpargs,outargs);
var fvalue = outargs.GetProperty("Field Value");
Clib.fprintf (fn1, "The current time of the agent/customer in the

dashboard = %s \n",fvalue);
1034 Siebel Tools Reference Version 7.5.3, Rev. A

Configuring the Customer Dashboard

Using Siebel VB Script and eScript
Clib.fclose(fn1);
return(ContinueOperation);
}

Siebel VB Example
Below is an example script written in Siebel VB that uses the dashboard commands.
It gets the contact ID, Field 4, and Field Time for the current record populated in
the dashboard and prints those values to a file.

For more information about using Siebel eScript, see Siebel VB Language Reference.

Sub Script_Open

Dim bs as Service
Dim inpargs as PropertySet
Dim outargs as PropertySet
Dim fvalue as String

Open "d:\sabari.txt" for Output as #1
Set bs = TheApplication().GetService("Persistent Customer
dashboard")

Set inpargs = TheApplication.NewPropertySet
Set outargs = TheApplication.NewPropertySet

bs.InvokeMethod "GetCurrentContactId",inpargs,outargs
fvalue = outargs.GetProperty("Contact Id")
Write #1, "The current id in the dashboard = " & fvalue

Inpargs.SetProperty "Field Name","Field 4"
bs.InvokeMethod "GetDashboardFieldValue",inpargs,outargs
fvalue = outargs.GetProperty("Field Value")
Write #1," The Account Name in the dashboard = "& fvalue
Close #1

End Sub
Version 7.5.3, Rev. A Siebel Tools Reference 1035

Configuring the Customer Dashboard

About Dual Personalization
About Dual Personalization
The Personalization engine has the ability to personalize the Call Center application
based on both the agent’s profile and the customer's profile. The agent's profile is
loaded when the agent logs into the Call Center application. The customer's profile
is loaded when the customer information is populated in the Customer Dashboard.
This allows the agent to see customer-specific information based on the
personalization rules created by your Siebel administrator.

For example, based on the customer's profile you could show a different applet or
view to the agent. You could have a Recommended Products applet which only
shows products for this customer based on products he previously purchased.

To access the profile information you create personalization rules. The Me.attribute
allows you to access agent’s profile information and the You.attribute to access the
customer’s profile information. Examples of these commands are displayed below.

■ GetProfileAttr("You.Last Name");

■ GetProfileAttr("Me.Last Name");

See Personalization Administration Guide for more information about profile
attributes and creating personalization rules.
1036 Siebel Tools Reference Version 7.5.3, Rev. A

Index
Symbols
.sif file. See archive file
.spf file. See patch file
.srf file

note, about compiling projects 277

Numerics
2dBar bar chart, about and screen

example 727
2dHorizBar bar chart, about and screen

example 728
2dLine line chart, about and screen

example 730
2dScatter scatter chart, about and screen

example 735
2dSpline line chart, about and screen

example 731
2dStackedBar bar chart, about and screen

example 729
3dBar bar chart, about and screen

example 722
3dHorizBar bar chart, about and screen

example 724
3dLine line chart, about and screen

example 730
3dPie pie chart, about and screen

example 734
3dSpline line chart, about and screen

example 732
3dStackedBar bar chart. about and screen

example 726

A
About Repository File window, getting

information on 990, 991

access control
business components, about

configuring 238
organization-related data 242
party business components 245
party described 240
person-related data 240
S_PARTY table 246
summary 248

Account Entry applet, property
settings 490

Account List applet, property settings 490
action arguments, enabling 678
Active X controls

about 776
applet, adding to 778
distributing, about 783
methods, viewing list of available

methods 782
properties, changing in the native

property sheet 780
properties, changing in the Properties

window 780
Add button, association applets, in 710
Advanced Database Extensibility

See also database extension, planning and
design; database extension,
implementing

about using to extend data model 251
note, changes unupgradable 292
Table Wizard, columns created by 297
Table Wizard, note, types of tables

created 293
Table Wizard, using 293
tables, types 292
Version 7.5.3, Rev. A Siebel Tools Reference 1037

Alias property, about 196
AND operator, search specification, in

a 349, 486
Applet Designer 92
Applet Menu Wizard

new method menu item, creating 592
using 591

Applet Method Menu Item Object, using to
create applet menu 593

Applet Method Menu Item Wizard, about
implementing custom menu
options 509

applet object definition, about 474
Applet object type

Tree applet properties 761
Applet property

Tree Node object type 761
Applet template, template type 793
Applet Toggle picklist, location and use

of 809
Applet Web Template

object properties 828, 829
Web-related object that contains the list

items, applet controls, and Web
controls 510

Applet Web template
described 73

Applet Web template item
described 73

Applet Web template item, user interface
object 452

Applet Web Template Items object, applet
object definition

form applet 464
list applet 476

Applet Web Template Layout Window
tree applets, using and options 764

Applet Web Template object, applet object
definition

form applet 464
list applet 475

Applet Web template, user interface
type 452

applet-level menus
invoking, about and screen example 865

applets
See also list applets; form applet; pick

applets; specialized applets; tree
applets; user interface objects,
configuring

Account List View, property settings,
table of 490

Active X controls, adding to 778
applet menus, creating using

wizards 593
applet modes 793
Applets window, deleting from 576
association applet, about and

example 459
bitmap button controls, about using

in 584
catalog style list applets 862
chart applet, about and example 458
configuring applets using wizards 623,

626
Controls/Columns window, about using

to edit applet layout 110
defined 453
docking, preventing 113
docking/undocking 113
explorer applet, about and example 460
file attachment applet, about and

example 461
form applet, about and example 454
form applets, about using persistently

editable forms 832
hiding 113
language-independent code, creating for

Workflow Policy Column 677
language-independent code, creating for

Workflow Policy Program
Argument 679

links, about using in multi-value group
applet 399

list applet, about and example 455
list applets, physical ui navigation 833
1038 Siebel Tools Reference Version 7.5.3, Rev. A

method menu, modifying using the
Applet Menu Wizard 591, 592

multi-value group, about and
example 456

multi-value group, about using links to
implement 394

new method menu item, creating using
the Applet Menu Wizard 592, 593

object types, described 73
pick applets, about and example 456
popups, about creating in SWE 772, 849
Search Specification property, about,

sample search expressions, and
syntax 486 to 488

template used to layout fields and
controls 793

toggle applets, about and creating 849
toggle applets, coding guidelines 675
tree applet, about and example 460
tree applets 853, 860
user interface element, described and

example 69
user interface object 452
Web layout, adding to Web layout of the

view 566
Web layout, editing using the Web Layout

Editor 547
Web-related object that maps applets to

View Template 510
Web-related object, script exposed in a

Siebel Web application 510
Applets by BusComp report,

described 144
Applets window

deleting applets from window 576
described 109

applets, modifying appearance
conditional mapping, removing 888
conditional mappings, about 887
controls/list columns, displaying or

removing at runtime 890
More button, using to expand applet 891

application

defining, about 576
naming conventions for 577
page tabs, creating in 577
screen menu items, associating screens

to 578
application definition

creating the Web application definition in
Siebel Tools 168

overview of the creation process 166
strategies to optimize application

performance 169
application executables, confusion with

applications user interface
element 72

Application Find object type 341
application launching routines 173
application object definition, about and

contents of 508
application object definition, described 72
Application Script object type, about using

to implement scripts 508
Application Upgrader. See Siebel

Application Upgrader
application window

Siebel Tools 91
application window, Siebel Tools 90
application, user interface object type 451
applications

logical UI object types, described 72
user interface element, described and

example 72
applications, configuring

associating each applet and view with the
correct template 166

compiling the repository changes into an
.SRF file 169

creating applets and views 166
deploying the application 171
establishing mapping between control

and templates 168
modifying templates to create corporate

image 168
Version 7.5.3, Rev. A Siebel Tools Reference 1039

overview of the configuration
process 161

personalizing your Web application, key
points 185

relationships between components in a
Siebel Web application
(diagram) 162

testing the application 170
architectural diagrams

of user interface object types 338
architecture

Business Objects layer 62
class, defined 54
configuration guidelines 163
Data Object layer, described 58
data object types, described 62
high interactivity, about 80
layered structure of 49
object definitions and properties,

defined 51
object definitions, value types 117
Physical User Interface layer,

described 74
repository, defined, Contact object type

example, and contents 54, 56
servers, components deployed on 77
User Interface Objects layer, diagram

example and described 68
archive file, contents of 918
Assignment Criteria and Skills, configuring

for MLOV 681
Assignment Manager

about using 187
association applet (Contact Assoc applet)

object type, about 710
association applet (Industry Assoc applet)

object type, about 715
association applets

about and example 459
about and screen example 702
architecture (diagram) 708
filtering or constrained, about 715

master-detail view, about invoked from,
about and screen example 707

multi-value group applets, about invoked
from, about and screen
examples 711

multi-value group applets, object
definitions (diagram) 714

multi-value group applets, object
definitions, list of 714

note, filtering, about 706
object definitions, list of 709
object relationships (diagram) 709
row relationships in a many-to-many

relationship, described and
diagram 705

row relationships in a one-to-many
relationship, described and
diagram 704

attachment applets, about using for
attachment support and
synchronization 768, 769

attachment business component,
requirements and fields 769, 771

attribute column, about 228
Attribute Differences windowpane,

about 929, 931
Attribute Mapping, about 233
attributes, locale-specific

exporting 605
importing 605, 607

ATTRIBxx extension columns, about and
example 361

Auto Primary property, about 415
axis

chart applet axis terminology 720
X axis or Z axis labels, limiting and

sorting 749
AxisLabel value, Chart Element object

type 750
AxisLineGrid value, Chart Element object

type 750
AxisTitle value, Chart Element object

type 750
1040 Siebel Tools Reference Version 7.5.3, Rev. A

B
bar charts

2dBar, about and screen example 727
2dHorizBar, about and screen

example 728
2dStackedBar, about and screen

example 729
3dBar, about and screen example 722
3dHorizBar, about and screen

example 724
3dStackedBar, about and screen

example 726
base columns, about 218
Base mode for applets, described 793
Base Table property Table, about 196
base tables

business component, of 344
columns, length limit to add to base

tables 373
custom extension columns,

described 61
extension column data, displaying 278
multi-value link object definition 410
note, modifying user keys 227, 232
two different contexts used in 194

BC Read Only Field user property
about, properties, and example 352

bitmap button controls
applets and views, about using in 584

Bitmap Category object type
associating bitmap images, about 582

Bitmap objects
images, configuring as 892, 893
images, previewing 114
LGIF and JPG formats, about using 893

Bookmarks windows
described 112
docking, preventing 113
docking/undocking 113
hiding 113

Boolean columns, Column object type used
for 216

browser
browser group specific templates,

designing 884, 887
browsers, testing phase of configuration

process 170
BusComp property, Business Object

component, about 425
business component

See also virtual business components
business object, described and

example 64
business object, reuse described and

example 65
described and examples 62
object type described 66

Business Component and Fields report,
described 144

Business Component object type,
about 382

Business Component property
Applet object type 761
Tree Node object type 762

business component property
Single Value Field object type. about 534

Business Component Wizard, using to
create Business Component
objects 444

business components
See also originating business components
about 342
association applets, (Opportunity and

Contact) object type 710
attachment business components,

requirements and fields 769, 771
base table, of 344
base table, two different contexts used

in 194
Business Component Wizard, using to

create business components 444
business objects, mapping to 441
chart applets, mapping 737, 740
chart applets, properties 740, 741
copying, guidelines for 973
Version 7.5.3, Rev. A Siebel Tools Reference 1041

Details Visualization View, example and
described 146

Details Visualization View, generating
for 148

external business components 360
field, adding to 433
field/column relationships, about 343
intersection business component 356
joined table and extension tables 345
map to underlying tables, viewing 145
MLOV implementation 674
multi-value applets, originating business

component object type 691
multi-value group, about storing data and

identifying primary record 695
pick applet, Picklist Generic business

component, about and
examples 647

properties, described 432
read-only behavior, configuring 350
Relationships Visualization View,

example and described 149, 150
Search Specification property, about,

sample search expressions, and
syntax 348

Single Value field properties 434
sort specification property, about,

example, and syntax 347
static picklist, Picklist Generic business

component object type 642
View Details diagram, displaying for

selected business component 150
View Relationships, navigating with the

business components version of 150
viewing link using multi-value link object

definitions 145
virtual business components 358

business object
about 62
Applet window, about using to display

applets 109
Bookmarks window, about using to

display Bookmarks 112

Business Object layer, described and
example 64

Business Object layer, reuse described
and example 65

component object definition,
described 66

Controls/Columns window, about using
to edit applets 110

Details Visualization View, example and
described 147, 148

master-detail view object definition 493
object type, described 66
Web Templates window, about using to

display Web templates 111
Business Object and Components report,

described 144
Business Object Component object type,

about 424
Business Object Component, about 209
business object components

master-detail view object definition 493
Business Object object type, about 424
business object types

note, Business Object, not confused
with 66

business objects
about 418
architecture (diagram) 423
intersection tables, use with 209
logical database diagram and description

of 418, 421
object definitions, list of 424
object definitions, relationship between

(diagram) 424
Business Objects layer

business components, business object
described and example 64

business components, business object
resuse, described and example 65

business components, described and
examples 62

business objects, defining 434
1042 Siebel Tools Reference Version 7.5.3, Rev. A

Business Component child object types,
viewing 435

business component properties,
described 432

business component, adding a field
to 433

business components, mapping to 441
Business Object object types, key

properties of 440
development sequence for defining 430
sequence order for defining 427
user interface object and business

objects, mapping required
(diagram) 428

business services
defined and overview 425
described 67

BusObject Designer 91
BusObject Repository Manager 98
buttons

control properties 469
By picklist

about 743
configuring, properties and

examples 746

C
calculated fields

about 367
data types, specifying 368

calculator
ellipsis icon, providing for 468
list applet type property 485

Calendar business component, note, about
using in a link 397

calendar/time control, list applet type
property 485

calendars
ellipsis icon, providing for 468
list applet type property 485

Cancel button, in association applets 710
Caption property

Control object type, about and
example 466

form applet control property 535
cascade copy, about constructing with

multi-value link 417
Cascade Delete property

about and values 399
Cascading Style Sheets

examples of use 915
Cascading Style Sheets, described 74
catalog style list applets

about and screen example 862
configuring 862
example 863

Category Field property
By picklist, populating 747
Chart object 740

Char, note, defining column as 216
Character data type, Physical Type property

of Column object type 216
Chart Applet Wizard, using to create a new

chart applet 751
chart applets

about and example 458
about and screen example 718
axis example (diagram) 721
axis terminology, table of terms 720
bar charts, types of and screen

examples 722
chart layout options, about 722
line charts, types of and screen

examples 729
new chart applet, using Chart Applet

Wizard to create 751, 755
pie charts, types of and screen

examples 733
scatter charts, types of and screen

examples 735
chart applets, configuring

about 737
business component mapping, about and

screen examples 737
business component properties 740
Version 7.5.3, Rev. A Siebel Tools Reference 1043

By picklist, properties and
examples 746, 747

chart element object type, about and
types 750

ComboBox controls, control type for
picklist 744

multiple line graphs plotted against one Y
axis, about and object
properties 748

performance considerations 751
picklists, configuring 742
second By picklist, properties and

examples 747
Show picklist, properties and

examples 744, 746
size 751
two Y axes charts. configuring and

properties 749
X axis or Z axis labels, limiting and

sorting 749
Chart Elements, about and types 750
check box controls, about and

example 470
Check button, in association applets 710
Check In dialog box, user interface

elements, described 1003, 1004
check mark

See also date, and time setting; object
definitions

list column, about displaying in 473
meaning of 135

Check No Match Property, using with a
primary join 416

Check Out dialog box, user interface
elements described 996, 998

checking in
project differences, viewing 981, 982
repositories, integrating with external

source code control 957
source control integration, Check In/Out

tab, about and options 965
checking in projects

Check In dialog box, user interface
elements 1003

data source options 1005
guidelines 1004
object definitions, new or modified 1001
object definitions, viewing hierarchy

changes 1009
checking out

project differences, viewing 981, 982
repositories, integrating with external

source code control 957, 965
source control integration, Check In/Out

tab, about and options 965, 966
checking out projects

Check Out dialog box, user interface
elements, described 996, 998

checking out copy 995
data source options 1005, 1007
undoing project check out 1009

check-mark icon, about attaching to text
box 467

Child Business Component property
Link object type 397

Class property
Applet object type 760
Business Component object type 432
Single Value Field object type 534

class, defined 54
CLEAR value, Cascade Delete

property 399
coding guidelines for MLOV 675
Color, Chart Element object type 750
Column Name property, about 226
column object definition, described 62
Column objects

about and styles 215
column object types, list of 216
data columns, about 218
extension columns 218
system columns 222

Column property, Single Value Field object
type 434

columns
1044 Siebel Tools Reference Version 7.5.3, Rev. A

Char, note, defining column as 216
custom columns, adding to the

database 257
database, about configuring EIM and

docking/routing interfaces 228
extension column names, about and

examples 261
intersection data 212
note, length limit to add to base

tables 373
combo box controls, about and

example 470
Combo line chart, about and screen

example 733
ComboBox value, about implemented as a

combo box control 470
Command object

picklist, valid values 586
properties, using the Command Object

Wizard to select 586, 590
Command Object Wizard, using to select

object properties 586
Comment property, Dock Object Visibility

Rule object type 316
comparison operators

search specification, in a 349, 486
compiling projects

See also projects
caution, about compiling or modifying

.srf file 130
object compiler, accessing 130
single or group objects, compiling 131

compound queries, about creating and table
of 139

conditional mapping
applets, about using to modify

applets 887
applets, displaying or removing control/

list columns at runtime 890, 891
applets, using More button to expand

applet display 891
removing 888

configuration

MLOV configuration compatibility 674
MLOV implementation 674
multilingual target columns,

enabling 663, 664
Siebel Anywhere for MLOV-enabled

fields 683
Siebel Assignment Manager for MLOV-

enabled fields 681
Siebel Field Service for MLOV-enabled

fields 683
target columns for multilingual use 663
visibility rules and MLOV 658
Workflow Manager for MLOV 676

configuration goals and objectives 160
configuration guidelines

architectural considerations 163
configuration tasks 164
conflict resolution

individual object definitions, about
adjusting for (screen diagram) 927

object definitions, displaying hierarchy of
differences, about 927

object definitions, displaying property
value conflicts for selected
definitions 929, 931

objects definitions, displaying one to a
row, about 928

Conflicting Objects windowpane,
about 927, 928

Constrain property, about using to filter pick
applets 631

Contact Account applet, about 491
Contact Form applet, about 491
content area, showing additional

views 824
Contract All option, Visualization view

shortcut menu 148
control column

field values, rendering as icons 894, 896
images, using as links in 897

Control object definition
applet object definition 475
described 73
Version 7.5.3, Rev. A Siebel Tools Reference 1045

user interface object definition,
about 452

control types
about 903
custom HTML type, about SWE

using 904, 908
new HTML type, creating and using 903

controls
association applet object type,

described 710, 711
docking, preventing 113
docking/undocking 113
hiding 113
list applet 478

copying
about inheriting behavior 156
cascade copy, constructing with multi-

value link 417
objects, guidelines for 970, 971

CREATED system column, about 223
CREATED_BY system column, about 224
Creating the Development

Environment 44
Criteria Values and Skills, configuring 681
CSSFrameList class, list applet Class

property 474
CSSSequence class

Sequence business component,
about 375

currency popup applet
ellipsis icon, providing for 468

currency values, using in text box 467
custom columns

database, adding to 257
Custom extension columns 658
custom extension columns

configuring, setting properties 218
extension table and base table 219
in a base table, described 61

custom extension columns in an extension
table described 61

custom extension tables, described 198
customized repositories

note, about using Application Upgrader to
merge 967

CX_extension table, about 260

D
data

EIM and imported data 673
exporting 673
importing 673
MLOV upgrade log file, about 671, 672
upgrading bounded columns 665

Data (Private) property
extension columns, about adding to 266

Data (Private) value
Type property of Column object

type 217
Type property of Table object type 266

Data (Public) value, Type property of
Column object type 217

data columns
about 218
described 60
private Column object type, about 217

data computational routines 172
Data Function property, Chart object

type 741
data manager, about 77
data manipulation routines 172
data model

See also Standard Database Extensibility
extending 251

data object definitions, updating
See also extension tables, existing

extension column
base table extension column data,

displaying 278
developers, making new extensions

available to 277
EIM, about using extensions with 272
Enterprise Integration Manager, creating

and mapping interface columns 273
existing extension column, deleting 270
1046 Siebel Tools Reference Version 7.5.3, Rev. A

extension table, creating custom
table 264

extension tables and columns,
populating 290

indexes, adding custom indexes 274
local environment, updating 275
LONG extension column, adding to

extension table 268
one-to-many extension table, displaying

data 279
one-to-one extension table, displaying

data 279
server database, applying and activating

changes 281
server database, ddlsync.ksh,

executing 284
server database, preparing prior to

applying schema 280
server database, propagating changes to

mobile user 289
data objects

business objects, mapping to
(diagram) 442

data object types 191
Data Objects layer

See tables
about 58
data object types, described 62
relational DBMS implemented through,

about 59
tables and columns, described and list

of 60
Data Point Field property, Chart object

type 740
data sources

system data sources, creating 40
data tables 60, 196
data transport routines 173
data validation routines 172
data, blank spaces, result of defining

column as Char 216
Database Extension Designer 155

database extension designer (Dynamic
Database Extensions)

about and extension capabilities 253
Database Extension Designer, about using

to edit picklists 661
database extension planning and design

about 256
custom column, planning for adding to

database 257
DBMS restrictions 261
extension tables and columns, naming

conventions 260
mobile clients, about accommodating

for 261
database extension, implementing

about 262
base table extension column data,

displaying 278
custom extension table, creating 264
developers, making new extensions

available to 277
Enterprise Integration Manager, about

using extensions 272
Enterprise Integration Manager, creating

and mapping interface columns 273
Enterprise Integration Manager, deleting/

deactivating mappings 274
existing extension column,

renaming 269
existing extension table, deleting 271
existing extension table, modifying 270
extension column, adding to extension

table 266
extension tables and columns,

populating 290
indexes, adding custom indexed 274
local environment, updating 275
LONG extension column, adding to

extension tables 268
one-to-many extension table, displaying

data 279
one-to-one extension table, displaying

data 279
Version 7.5.3, Rev. A Siebel Tools Reference 1047

process steps for implementing 263
projects, checking out and locking,

about 263
server database, applying and activating

changes 281
server database, ddlsync 284
server database, preparing prior to

applying scheme 280
server database, propagate changes to

mobile users 289
databases

 See repositories, migrating between
databases

local databases, renaming and
moving 41, 43

mobile, upgrading 950, 951
date

and time, setting 135
changed date, updating manually 136

Date data type, Physical Type of Column
object type 217

Date Time data type, Physical Type of
Column object type 217

date time data, using in text box 468
date values, using in text box 468
date-time stamps, columns that provide

for 224
DB2, note, length of table names 362
DBMS, extension columns, restrictions on

adding 261
ddlsync.ksh, executing 284
Default property, Column object type 216
DEFAULT value, Auto Primary

property 415
DELETE value, Cascade Delete

property 399
deleting

custom dock objects 333
extension tables or columns 270
repository 933

Denormalization Path property, specifies
table and column names of duplicated
column 217

Denormalized value, Type property of
Column object type 217

Descendents Visualization View
described 145
example and described 152

Destination (foreign key) field, about 397
Destination Business Component property

cascade copy feature, used to
implement 417

Multi Value link object of the multi-value
link 406

Multi-value link of the indirect multi-
value link 409

Destination Column property
Join Specification object type, about 383
Primary key column, about 384

Destination Field property
destination field, specified in 397
foreign key field, specified in 407
Link object type, about based on 397
parent ID field, specified in 362

Destination Link property
Business Component object type 406
cascade copy feature, used to

implement 417
Multi Value Link object definition,

referenced in 403
Multi Value link object of the multi-value

link 406
Multi-value link of the indirect multi-

value link 409
Destination Table property, about 232
detail applet

association applets, (Opportunity Contact
list applet) object type 709

records displayed in the association
applet 710

Detail applet, master-detail view object
definition 492

detail business component
about 209
business object, about 425
indirect multi-value link, about 410
1048 Siebel Tools Reference Version 7.5.3, Rev. A

Link object definition, about 397
master-detail business components,

about 361
master-detail view object definition 493
multi-value link object definition,

about 406
records displayed in the association

applet 710
Search Specification property, about 362

Detail tab
described and example 103

detail View bar
about and rules for context views for a

selected view 804, 805
SWE template configuration, about and

code syntax 806, 807
Details Visualization View

business component, generating a
view 148

business object version, example and
described 147

described 145
shortcut menu, displaying 148

developers
Data Object layer columns 61
database extensions, making available

to 277
mobile users, setting up as 45, 47

development environment
creating 44
mobile users, setting up developers

as 45
repository naming convention

guidelines 43
Development Tools Options dialog box,

check in/check out options (data
sources), described 1005, 1007

directories, location and contents 913
directory structure, verifying 38
Display Format property

Control object type, list of
properties 467

explicit format mask, about
specifying 484

List Column object type 477
Display Name property

List Column object type 476
Tree Node object type 761

Display Value
field described 685
language-independent code, about

columns enabled for MLOV 676
queries, about using to run 676

displays, multilingual, special cases 662
Dock Object Visibility Rule object type 316
Dock Object Wizard

flow diagram 322
running in Tools 320

dock objects
about 312
deleting, about 333
Dock Object Table object, about and

example 314
dock object visibility rules, about and

example 316
Dock Object Wizard, flow diagram 322
Dock Object Wizard, running in

Tools 320
dock objects, dock object tables, and dock

object visibility rules, verifying 332
existing dock object, adding a new dock

table to 328
Limited dock objects, visibility rules 313
new dock object, creating 325
type of 312

docking windows
preventing when moved 113
procedure 113

DOS command prompt
MLOV Upgrade Utility, starting from 668

drilldown behavior
Drilldown object type, about and

example 494
dynamic drilldown, about and

configuration (diagram) 496
Version 7.5.3, Rev. A Siebel Tools Reference 1049

static drilldown, about and configuration
(diagram) 495

drilldown fields, text field with 473
drilldown, dynamic 675
driving table, about 314
drop-down arrow buttons, about attaching

to text box 467
DTYPE_BOOL data type, described 370
DTYPE_CURRENCY data type,

described 370
DTYPE_DATE data type

described 370
Display Format property of Control object

type 468
DTYPE_DATETIME data type,

described 371
DTYPE_ID data type, described 371
DTYPE_ID, note, multi-value group applet

rules 700
DTYPE_INTEGER data type, described 371
DTYPE_NOTE data type, described 372
DTYPE_NUMBER data type, described 372
DTYPE_PHONE data type, described 372
DTYPE_TEXT data type, described 372
DTYPE_TIME data type, described 373
Dynamic Database Extensions, about and

extension capabilities 253
dynamic drilldown, about and configuration

details (diagram) 496

E
eBriefings, using to manage Web content,

about 186
Edit Definition option, Visualization View

shortcut menu 148
Edit Layout option, Visualization View

shortcut menu 148
Edit List mode for applets described 793
Edit List mode, showing list applets 834,

836
Edit mode

applets, described 793
form applet, showing 832

EIM
extensions, about using with 272
extensions, creating and mapping

interface extension columns 273
extensions, deleting/deactivating

mappings 274
EIM attribute mappings, note,

modifying 228
EIM base tables, note, modifying user

keys 227, 232
EIM Interface Table Column object type,

about 231
EIM Interface Table object type, about 230
EIM Interface Table project 256
EIM interface tables

about 228
EIM object types architecture

(diagram) 229
loaded data labeled as NULL, fixing 238
mappings, restrictions on adding and

modifying, table 237
object types used in configuration

described 229
EIM prefix. See EIM interface tables
EIM Table Mapping list

note, new extension table, adding to 269
EIM Table Mapping object type, about 232
EIM table mapping objects

EIM interface column, attribute mapping
objects for each column
generated 309

EIM interface table 303
EIM interface table columns 303
EIM processing, generic EIM interface

table columns for 304
foreign key map, Foreign Key Mapping

Column for each 311
foreign key processing, EIM interface

table columns for 306
foreign keys, EIM interface table columns

for 307
table, EIM interface table columns for

processing mapping for 305
1050 Siebel Tools Reference Version 7.5.3, Rev. A

target table, EIM table mapping object
based on selected table 309

target table, foreign key mapping for each
foreign key column on 310

target table. attribute for each EIM
interface column on the 308

EIM Table Mapping Wizard
See also EIM table mapping objects
accessing and about 299
adding 300
flow diagram 300

Enterprise Integration Manager, about using
to import and export data 673

Enterprise Integration Manager. See EIM
interface tables

environment
local environment, updating 275

ERP Interface Table project 256
error messages

forms, displaying within form 911, 912
errors

LOV type messages 671, 672
eSmartScript, configuring for dynamic data

capture 186
existing extension column, modifying 269
Expand All option

Visualization View shortcut menu 148
explorer applet, about and example 460
explorer view. See tree applets
export process 673
exporting

export file, contents of 918
individual object definitions 919
projects 922
repository 935, 939
repository, about adding a repository

object definitions to an export
list 923

repository, using repimexp.exe 939
extension column names

about and examples 261
extension columns

configuring 269

configuring, setting properties 218
described 61
extension columns and foreign keys 221
note, using database reserved words 261
populating 290
standard extension columns, about and

table of 220
value and types of extension

columns 218
extension table

custom extension table, creating 264
extension tables

base table, two different contexts used
in 194

business components, about 346
configuring 269
custom extension columns,

described 61
described and relationship with other

tables (diagram) 196
displaying data in 279
Enterprise Integration Manager, about

using with 272
Enterprise Integration Manager, creating

and mapping interface extension
columns 273

Enterprise Integration Manager, deleting/
deactivating mappings 274

existing extension column, deleting 270
existing extension column,

modifying 269
existing extension column,

renaming 269
existing extension table, deleting 271
existing extension table, modifying 270
extension column, adding to 266
implied joins, about, example, and

definitions 201
LONG extension column, adding to 268
naming conventions 260
one-to-many extension tables, about and

example 203
Version 7.5.3, Rev. A Siebel Tools Reference 1051

one-to-one extension tables, diagram and
object definitions 200

populating 290
Siebel 2000, created in 260
standard and custom extension tables,

distinctions between 197
table object definition, described 60
types of 199

Extension value
Type property of Column object

type 217
Type property of Index object type 226

external business components
detail business component, object

definitions 361
link object definition 361
master business components, object

definitions 360
one-to-many extension table details

(diagram) 360

F
field data types

about and example 370
table of 370

field object definition, described 66
Field property

Control object type 467
Control or List Column object, specifies

field 364
form applet control property 535
List Column object type 476

Field Read Only Field user property
about, properties, and example 353
restricting field procedure 353

fields
about, form and list applet

examples 362
calculated fields, about 367
calculated fields, data types,

specifying 368
search specification, in a 349, 487

sequence fields, about and object
definitions 373

sequence fields, adding sequence field to
business component, procedure 376

system fields, about and fields and
columns, table of 366

file attachment applets
about, capabilities, and example 765
attachment applets, about using for

attachment support and
synchronization 768

attachment business component,
requirements and fields 769

attachment tables, about file columns
(table) 771

document, adding to attachment
list 766

file attachment applets, about and
example 461

Fill color, Chart Element object type 750
filtering a pick applet, about and

example 632
find

Applet Web Template, object
properties 828, 829

search and find applet tags, list of tags
and example 875, 877

Search/Find results list applet, list of tags
and example 877, 878

Find combo box
association applets, in 711

Find Field object type 341
Find in Repository window, user interface

elements 141
Find object type 341
Find objects, about configuring 512
Find View object type 341
Flat tab, described and example 104
Font, Chart Element object type 750
Foreign key field

indirect multi-value link (in the detail
business component), about 410
1052 Siebel Tools Reference Version 7.5.3, Rev. A

indirect multi-value link (in the joined
business component), about 410

multi-value link, about 407
Foreign Key Mapping Column object

definition, about 236
Foreign Key Mapping object definition,

about 234
foreign keys

caution, using extension columns to
track 268

column, about 228
extension column, about

configuring 221
Join object definition, about 384

form applet (Account Form applet) object
type, about 714

form applets
about and example 454
architecture (diagram) 463
button control properties 469
check box controls, about and

example 470
combo box controls, about and

example 470
control properties, list of 535
controls, list of 465
Edit mode view, showing form applet

in 832
label controls, about and example 472
object types and roles in

implementing 463
persistently editable forms, about using

and screen example 832
text boxes, characteristics 466
text boxes, properties 467

Formatting templates, template type 794
forms, displaying within error

messages 911, 912

G
GIF formats, about using 893
Go button, in association applets 711

Graphic value, Chart Element object
type 750

grid layout
about 547
applet Web templates 900
converting applets to 548
editing 555

H
high interactivity

about 80
HTML files, files that define layout and

Siebel Web Engine, about 73
HTML frames

about and screen example 817, 819
about using in View templates 825, 826
support for multiple views on a

page 822, 825
swe template configuration 819, 820
using container page template 820, 821
using in View templates 826, 828

HTML Hierarchy bitmap, about and
properties 526

HTML type
custom HTML type, about SWE

using 904, 908
definitions, changing the order of

precedence 908
new HTML type, creating and using 903
templates used to create custom HTML

types 794
HTML Type property of List Column object

type, about and example 540
HTML Type property, List Column object

type, about 477

I
Icon Map object type, about and rendering

fields as 524
Icon Map, using to render control/list

column field values to icons 894, 896
Id field
Version 7.5.3, Rev. A Siebel Tools Reference 1053

implied join definition, described 202
ROW_ID column, about

representing 223
IFMGR: xxx value, Type property of Column

object type 218
images

Bitmap object, about configuring and
example 892

control/list column field values,
rendering as icons 894

controls/list columns, using images as
links in 897

GIF and JPG formats, about using 893
image caching file manager,

parameters 898
previewing 114

implied joins, about, example, and
definitions 201

importing
object definitions and properties,

adjusting conflict resolution 927
object definitions from an archive file,

process of 923
object definitions, loading from an

archive file into the Preview
window 924

repository 935, 939
repository, using repimexp.exe 939
target repository, conditions before

importing 923
importlog.txt, about 931
Index Column object type

about and properties 226
index object definition

about and key properties, list of 225
index column object type, about and

properties 226
note, length of index names 227

index object definition, described 62
indexes, adding custom indexes 274
indirect multi-value links

construction of and object
definitions 408

joins, using to populate MVG 412
parent components, indirectly related to

business component 411
indirect multi-value links, note, using in

place of multi-value link 694
Informix, note, length of table names 362
inheritance behavior, about copying and

inheriting 156
installation

development environment, setting
up 44

directory structure, verifying, example
and described 38

installation successful, verifying 37
local databases, renaming and

moving 41
Microsoft Data Access Components,

installing 36
ODBC data sources, created during

install 41
pre-install tasks 31
repository naming conventions, about

and guidelines 43
workstation, installing on 32

Integration Object objects
wizard, about using to create 446

Inter Child Column property
about 210
destination field properties, about

specifying if field non-blank 397
Inter Parent Column property

destination field properties, about
specifying if field non-blank 397

Inter Parent Column property, about 209
Inter Table property, about specifying if field

non-blank 397
interface extension columns

creating and mapping 273
deleting/deactivating mappings 274

interface standard Siebel 159
interface table columns, note, about

multiple columns to single
column 237
1054 Siebel Tools Reference Version 7.5.3, Rev. A

Interface Table User Key Usage object
type 232

interface tables
See also EIM interface tables
described 60
special columns relating to EIM

processing 218
intersection business components

about and example 356
intersection data columns 212
intersection table, described 60
intersection tables

Advanced Database Extensibility,
between existing tables 292

architecture of (diagram) 207
configuring, about and architecture 207
described and many-to-many

relationship 204
example with two links 211
extending, about 213
intersection business components,

and 356
intersection data columns, described and

examples 212
link, about based on 397
links used for many-to-many relationship,

property settings and diagram 211
object definitions 209

J
J2EE environment, about integrating Siebel

with 85
java, about integrating Siebel with 85, 86
Java/XML Framework, about using to

receive XML requests from Siebel 86
JavaBeans, about integrating with

Siebel 86
JavaScript object architecture,

described 81, 83
Join business component, about 409
Join Constraints, about 384
Join object definition

indirect multi-value link, about 410
join object definition, about 383

join object definition, described 67
Join property, Field object type 383
join specification object definition

described 67
indirect multi-value link 410
join object definition 383

join specification, pick list object type 619
join, pick list object type 619
joined field

indirect multi-value link, about 410
join object definition, about 383

joined tables
business components, about 345
join object definition, about 384

joins
about and example 378
master-detail relationship, described and

diagram 378
object definition relationships (diagram)

and object definitions 382
pre-default value, using for a join

field 385
rows resulting from joins (diagram) 380

JPG formats, about using 893

K
Key field

indirect multi-value link, about 410
master-detail business component,

about 360
multi-value link, about 406

keyboard accelerators, configuring 594
ksh, executing 284

L
label controls, about and example 472
Label Field property

Tree Node object type 762
Language column, described 684
language-independent code
Version 7.5.3, Rev. A Siebel Tools Reference 1055

applet, creating for Workflow Policy
Column 677

applet, creating for Workflow Policy
Program Argument 679

avoiding in queries 676
deleted LOV records 686
display of 674
and Display Value 676
display value translation 664
exporting data 673
List of Values use 684
picklist, creating for a Workflow Policy

Column 677
picklist, creating for Workflow Policy

Program argument 679
and querying 676
and S_LST_OF_VAL 656
sorting and searching 674
target column display 674

LAST_UPD system column, about 224
LAST_UPD_BY system column, about 224
Legend value, Chart Element object

type 750
LIKE operator

search specification, in a 349, 487
Limited dock objects

visibility rules 313
line charts

2dLine, about and screen example 730
2dSpline, about and screen example 731
3dLine, about and screen example 730
3dSpline, about and screen example 732
Combo line, about and screen

example 733
link

master-detail view object type,
about 493

Link destination fields, note, about
automatically initialized 394

Link object definition
links object type, about 396
master-detail business components,

about 361

multi-value link, about 406
Link object type

business objects, about 425
indirect multi-value link, about 410
intersection tables 209

link object type
described 66

Link property, Business Object component,
about 424

links
about, master-detail relationship and

used in multi-value group
applets 393

architecture (diagram) 398
Cascade Delete property, about and

values 399
intersection table, based on 695
many-to-many relationship, about using

in 399
master-detail views, about using 398
merging records, about using a link

when 399
multi-value group applet, about and

properties 695
multi-value group applet, about using

in 399
multi-value group object type,

about 691
object definitions, list of 396
relationship between object definitions

(diagram) 396
List Applet Wizard, using to create list

applet 536
list applets

about and examples of cell behavior 472
about and screen example 833
applet style described 455
architecture (diagram) 474
configuring the list, about 476
control properties, list of 535
controls, about configuring and

descriptions of controls 478
1056 Siebel Tools Reference Version 7.5.3, Rev. A

Edit List mode, showing list applets
in 834

explicit format mask, about
specifying 484

list applet definition, steps in creating
(diagram) 532

List Applet Wizard, using to create 536,
538

List Column, configuring 476
lists and list columns, about 540
multi-record select applets, about and

screen example 845
multi-record select applets,

enabling 845
multi-record select applets, rendering

checkboxes to select multiple
rows 846

multi-row edits, about and
limitations 844

multi-row edits, enabling 844
record, selecting as active record 840
testing configuration without user-

specified settings 539
totals of list column values, two methods

of showing 846 to ??
type properties, list of 485

list column
field values, rendering as icons 894, 896
images, using as links in 897

list column object definition
applet object type, about 475
described 73
user interface type, about 452

List Column object type, about and
example 540

List Column, configuring 476
list columns

about in list applet 472
association applet object type 710
control behavior, enhancing 540

list object definition
applet object definition 475
described 73

List property, list applet control
property 535

list, user interface object 452
list-form view

about 488
applets, property setting in Account List

View 490
list-form, about and example 489

LMU. See Locale Management Utility
local databases, renaming and moving 41,

43
local environment, updating 275
Locale Management Utility

See also localization
about using 601
modified objects, identifying 608, 609
note, about modified records for project

marked as Redo 608
note, about not marking changed records

in Preview mode 606
strings and other locale-specific

attributes, exporting 605
strings and other locale-specific

attributes, importing 605, 607
untranslated text strings, finding 602,

603
locale object, about finding untranslated

text strings 602
locale-specific attributes

exporting 605
importing 605, 607

localization
See also Locale Management Utility

locking projections
when extending the database through

Siebel Tools 256
locking projects

local projects 1011, 1012
note, displaying projects that need to be

locked 924
server projects 1012

locking when extending the database
through Siebel Tools 256
Version 7.5.3, Rev. A Siebel Tools Reference 1057

log file 671, 672
log file, Summary window messages, list

of 931
logical operators

search specification, in a 349, 486
logical schema, updating. See data object

definitions, updating
logical UI object types, described 72, 73
login, specifying explicit login ID 183
logon stamps, columns that provide

for 224
Long data type, Physical Type of Column

object type 216
LONG extension column, creating 268
LOV table

See language-independent code
administration columns 684
constraints on entries 686
display value 685
EIM validation 685
enabling for multilingual LOV

(MLOV) 658
entries, constraints on 686
Language column 684
multilingual integration

considerations 673
records, adding 685
records, deactivating 685
records, deleting 685
Translatable column 684

LOV Type
See also LOV table
enabling multilingual support 663
enabling target columns for MLOV 663
error messages about 671, 672
fixing from log file 671
multilingual designation 684
Multilingual property 663
querying 660
and translation 659

LOV_Upgrade.log 671, 672
LOVs

domains not in S_LST_OF_VAL
table 672

inconsistently bounded columns 661,
671

multilingual, about enabling 657

M
M:M link, about specifying source

field 397
many-to-many relationship

links, about using in 399
many-to-many relationship. See intersection

tables
many-to-one extensions

Advanced Database Extensibility,about
adding to existing tables 292

Mapped column, about 384
mappings

adding and modifying, restrictions
on 237

business components to business
objects 441

deactivating 237
screens to screen menu items 578

master applet (Opportunity form applet)
object type, about 709

Master applet, master-detail view object
definition 492

master business component
about 209
business object details, about 425
indirect multi-value link, about 410
link object type, about 396
master-detail business components,

about 360
master-detail view object definition 493
multi-value link, about 405

master-detail view
about 488
about and example 490
Contact Form applet and Contact Account

applet, about 491
links, about using in 398
1058 Siebel Tools Reference Version 7.5.3, Rev. A

object definitions, list of 492
MDAC (Microsoft Data Access

Components), installing 36
menus

about and figures 513
applet-level menus, about invoking and

screen example 865
menu items and toolbars, activating and

suppressing 520
method targeting, invoking 521
SWE templates, menu configuration 868
toolbar and menu-related object

types 515
Method Invoked property

Control object type 469
form applet control property 535

Microsoft Data Access Components,
installing 36

Microsoft Visual SourceSafe
examples 964
repository management, about using

in 957
Microsoft Web server software, interfacing

with the Siebel Web Engine 78
Microsoft Windows Control Panel, note,

formatting field data types 369
MLOV

Assignment Criteria and Skills,
configuring 681

configuration and coding guidelines 675
configuration for data read by server

programs 658
drilldown, dynamic 675
enabling, about 657
querying 676
search specifications 675
and Siebel Anywhere 683
and Siebel Assignment Manager 681
and Siebel Field Service 683
toggle applets, coding guidelines 675
and Translate property 660
upgrade utility, about 665
VB functionality, about 675

visibility rules, checking 659
Workflow Manager, configuring for 676

MLOV table
administering MLOV entries 684
administration columns 684
columns, identifying which to

enable 658, 659
configuration compatibility 674
displaying columns, warning about 662
EIM validation 685
multilingual designation 684
multilingual integration

considerations 673
Multilingual property 663
records, adding 685
records, deactivating 685
records, deleting 685
target columns 663, 664
translating display values 664
visibility rule changes 658

MLOV Upgrade Utility, starting from DOS
Prompt 668

mobile databases, upgrading 950, 951
mobile users

See dock objects
developers, setting up as 45, 47
server database, propagating changes

to 289
Multi Value Field

object type, viewing 435
multi value link

object type, about 406
multi value link, described 67
multi value list

text box, about popping up list 467
Multilingual column, described 684
multilingual displays, special cases 662
multilingual lists of values. See individual

MLOV entries
Multilingual property, LOV type 663
multi-part tags, about and example 797,

798
multi-value fields
Version 7.5.3, Rev. A Siebel Tools Reference 1059

indirect multi-value link, about 409
master business component, about 403
master-detail business component,

about 361
multi valued property, with setting of

true 369
multi-value group object type 691
multi-value link, about 406

multi-value group applet
object type properties 699
pick applet, about configuring when

invoked from MVG applet 635
multi-value group applet (Industry Mfg.

applet) object type, about 714
multi-value group applets

See also association applets
about and example 456, 688
implementing, links used 394
links, about using in 399
multi-value group business component,

about storing data and identifying
primary record 695

MVG architecture (diagram) 689
object definitions (diagram) 690
object type, about 691
object types, list of 691

multi-value group business component
(Industry) object type, about 715

multi-value group business component,
multi-value group object type 692

multi-value groups
defined 400

multi-value links
See also indirect multi-value links;

Primary ID field
about and examples 400
architecture, described and

diagrams 403
cascade copy, about constructing 417
indirect multi-value link, about 409
master-detail business component 361
multi-value group applet, about and

properties 693

multi-value group applet, using to modify
Category 694

multi-value group type 691
note, using indirect multi-value link 694
object definition, list of 405

MVG Applet property
Control object type, about 469
List Column object type, about 477

MVG Applet Wizard
configuring a MVG wizard 696
using to configure applets 623, 626

N
Name field, about 361
Name property

about 216
Business Component object type 432
Business Object object type 440
Control object type, about 465
form applet control property 535
Index object type 225
List Column object type, about 476
Single Value Field object type 434
Single Value Field object type, about 534
User Key Attribute object type 236
value, about changing 442

navigation
first level, primary tab bar 803
fourth level 809, 813
levels of navigation, described 802
levels, screen examples 802
second and third levels 804

nesting, Siebel tags, about and
example 800

New button, in association applets 710
New mode for applets, described 793
New Object wizards 93
Newtable project 256
No Copy property

cascade copy feature, used to
implement 418

Single Value Field object type 434
No Delete property
1060 Siebel Tools Reference Version 7.5.3, Rev. A

Business Component object type 432
Single Value Field object type 534

No Insert property, Business Component
object type 432

No Insert property, Single Value Field object
type 534

No Update properties, Business Component
object type 432

No Update property, Single Value Field
object type 534

NONE value
Auto Primary property value, about 415
Cascade Delete property, about 400

NOT operator, search specification, in
a 349, 486

null records, appear in record-set 348
Number data type, Physical Type of Column

object type 216
number data, displaying in text box 467

O
object comparison

See individual repositories item
about 975
archive files, comparing two 985
differences between checked-out projects,

viewing 981
differences, viewing between two

objects 977
repository, selecting 985
.sif file, using for comparison with

object 984
two objects of the same type, ways to

compare 983
Object Comparison window,

invoking 1008, 1009
Object Compiler dialog box

accessing 130
caution, about compiling or modifying

.srf file 130
objects, compiling single or groups

of 131
object definitions

See also importing; exporting; Data
Objects Layer; objects; queries

about and examples 49
caution about changing 664
changed date, updating manually 136
Check In dialog box, user interface

elements, described 1003, 1004
check mark and pencil icons, meaning

of 135
created and last update, determining by

whom and when 135
defined 51
exporting individual object

definitions 919, 920
in Data Objects layer 63
intersection tables 209
new object definition, creating 121
new object, creating from copy of existing

object 120
note, property column, moving to 119
Object Explorer window Detail tab,

displaying all object definitions 103
Object List Editor, modifying 118
Object List Editor, viewing through 114
parent-child relationships, displaying

object definition and its parent\child
definitions 153

project structure guidelines 1012
projects, assigning to 999
projects, checking in new or modified

object definitions 1001
projects, moving between 1000
Properties window, using to modify 119
Properties window, viewing

through 115
reassigning object definitions 999
report, restricting to a single parent object

definition 143
undoing record or modification 123
Validate window user interface

elements 125
validating procedure 123
validation options, changing 126
Version 7.5.3, Rev. A Siebel Tools Reference 1061

value types, list of and examples 117
visualization diagram, selecting object

definition properties 148
Object Differences windowpane

about 928
object definitions, using to view hierarchy

of object definitions at check in 1009
Object Explorer window

docking, preventing 113
docking/undocking 113
hiding 113
making visible 100
object definitions, about displaying in the

Object List Editor window 107
tabs in 101
visible object types, configuring 105,

106
visible, making 99
window example 98
windows, available to make visible 108

Object Explorer, viewing Business
Component child object types 435

object layers
architectural layers diagram and layers

described 57
object types in Siebel apps and

relationships between (diagram) 75
Object List Editor window

See also queries
about 107
note, about docking or floating, default

setting 113
object definitions, using to modify 118
object definitions, viewing through 114,

116
Object List Editor, using to define

view 564
object manager, about 77
object relationships

business components\business objects,
mapping to underlying tables, display
of 146, 148

Visualization Views, list of 145

Visualization Views, two methods of
invoking 145

object types
about 49
defined and parent-child

relationships 52
filtering 106
major in Siebel apps and relationships

between (diagram) 75
Object Explored window Types tab,

accessing from 102
Object Explorer window Types tab,

accessing from 101
parent and child without relationship,

accessing 104
reports available for each object

type 144
visible in object explorer,

configuring 105
objects

adding, modifying, copying 117
comparison and synchronization,

about 156
descendents or copies, viewing 973, 974
new object, creating from copy of existing

object 120
objects, identifying modified objects 608,

609
ODBC data sources

install, created during 41
OLEDB Rowset wizard

about 445
OLEDB specification, about 445
one-to-many extension table

data, displaying 279
Search Specification property, about 362

one-to-many extension tables
about and example 203
rows, about 199

one-to-many relationships
See also business objects; links

one-to-one extension tables
data, displaying 279
1062 Siebel Tools Reference Version 7.5.3, Rev. A

diagram and object definitions 200
implied joins, about, example, and

definitions 201
rows, relationship with rows in base

table 199
one-to-one extensions

Advance Database Extensibiltiy
table 292

one-to-one relationships, and joins 381
OR operator, search specification, in

a 349, 486
originating applets

multi-value group applet properties 692
multi-value group object type,

about 691
pick applet, about, detail diagram, and

property settings 620
pick list object type, about 618
Static pick list, property settings 643
static picklist object type 641

originating business components
about and detail diagram 627
multi-value group applet, about and

properties 692
multi-value group object type,

about 691
pick list object type, about 618
property settings 629
static picklist object type, about 642
static picklist, about and property

settings 643
originating control

pick list object type 618
static picklist object type 642

originating field
pick list object type 618
static picklist object type 642

originating list column
pick list object type 618
static picklist object type 642

P
Page Container template, template

type 794
page tab object definition

described 72
user interface type, about 451

Page Tab object type 341
page tabs, creating in application 577, 578
PAR_ROW_ID column

implied join definition 203
system column, about 224

PAR_ROW_ID column, about 362
Parent Business Component property

Link object type 396
Parent ID field, about 362
Parent Read Only Field

about, properties, and example 354
parent-child relationships

object definitions, viewing relationship
between 145

parent-child relationships, defined 53
party 240
password encryption

checking out projects, problem
using 996

patch file
See also individual repositories item
about, differences from archive file, and

process diagram 951
creating 953
note, about creating cumulative patch

files 954
pencil icon

See also date, and time setting; object
definitions

meaning of 135
performance

note, search specifications, impact
on 350, 488

strategies to optimize application
performance 169
Version 7.5.3, Rev. A Siebel Tools Reference 1063

performance considerations, chart
applets 751

period charts, about 746
phone data, using in text box 468
Physical Type property

about 216
note, about modifying property for

columns 270
Physical User Interface layer

described 74
pick applet object type

See also static picklists
about 618
about, detail diagram, and property

settings 622
Pick Applet property

Control object type, about 469
List Column object type, about 477

Pick Applet Wizard, using to configure
applets 623

pick applets
about and example 456, 613
architecture (diagram) 617
data flow in pick applet 615
filtering, about and example 631, 632
object definitions, list of 618
using, example 615

pick applets, about, detail diagram, and
property settings 634

pick business component
pick applets, about, detail diagram, and

property settings 633
pick list object type, about 618

pick list
object type, about 618
Pick List wizard, using to create a

picklist 645
pick list object definition

filtering a pick applet, about and
example 631

pick list, about, detail diagram, and
property setting 634

static picklist, about and properties 644

pick list object, pick list object type 642
Pick List wizard, using to create a pick

list 645, 647
pick maps

note, about using multiple pick
maps 644

pick applet object type 619
static picklist object type 642

PickList Generic business component
pick applet object type 647, 648
static picklist object type 642

Picklist Types property
Chart object type 742

picklists
See also chart applets, configuring
bounded 660
display value 685
language-independent code,

creating 677, 679
list applet type property 485
multilingual LOVs, about enabling 657
pick list object definition, about, detail

diagram, and property settings 634,
635

repository, recompiling after
changes 673

text box, about popping up list 467
unbounded 660
unbounded, about type in new

values 630
upgrading bounded columns 665

pie charts
3dPie, about and screen example 734

Plot value, Chart Element object type 750
Policy Conditions, enabling 677
pop-up

list applet type property 485
static picklist, visibility rules 650

popup applets
applet, launching from within 773
CSSSWEFramePopup, about using 772
multi-value group applet, behavior

of 849
1064 Siebel Tools Reference Version 7.5.3, Rev. A

popup view, launching from applet 775
Wizard style popup. about and

example 774
Popup Edit property

Control or List object type 372
Popup Visibility Type property, about using

to limit picklist visibility 650
Position property

Tree Node object type 762
postal code formatting options, about 468
Pre Default Value property

Field object type 362
Precision property, about 217
pre-defined queries

configuration and SWE tags 879
pre-install tasks 31
Primary ID field

about using and example 413
multi-value link object type 407
No Match Property, using with 416
object definitions 414

Primary Id Field property
Multi Value link object of the multi-value

link 406
Multi-value link of the indirect multi-

value link 409
Primary key (destination) column,

about 384
Primary Key property, about 217
Primary Key value, Type property of Index

object type 226
primary tab bar

described 803
swe:screenbar, about and code

snippet 803, 804
tools configuration 803

private data columns, about 217
Private dock object, about 312
production environment, repository naming

convention guidelines 43
Project List report, described 144
Project property, note, about exporting/

importing from an archive file 918

projects
See also compiling projects; importing:

exporting
caution, about compiling or modifying

default ,srf file 130
caution, about incremental

compilations 130
Check In dialog box, user interface

elements described 1003
check in guidelines, list of 1004
check in/check out options (data

sources) 1005
Check Out dialog box, user interface

elements described 996
check out, undoing 1009
checked out projects, viewing

differences 981, 982
checking in projects 1001
checking out copy 995
defined and about (screen example) 987
deleting, about 998
differences at check in, viewing details of

changes 1008
differences at check in, viewing hierarchy

definitions changes 1009
EIM Interface Table 256
ERP Interface Table 256
exporting 922
full get, described 994
initial get, described 994
locking local projects directly 1011
locking server projects directly 1012
new projects, creating and when to add

new projects 998
Newtable 256
note, displaying projects that need to be

locked 924
object definitions, assigning to 999
object definitions, moving between

projects 1000
object definitions, viewing by

projects 992
project structure guidelines 1012
Version 7.5.3, Rev. A Siebel Tools Reference 1065

renaming 999
repository, doing an initial get of all

projects 994
Scopus Migration 256
suffix names, meaning of 988

properties
defined 51
docking, preventing 113
docking/undocking 113
hiding 113
settings, using Properties window to

display 108
Properties window

described 108
object definitions, using to modify 119
object definitions, viewing through 115,

116
PushButton control, about 73

Q
QBE. See queries
queries

compound queries, about creating and
table of 139

object definitions, about using to
list 137

Object List Editor query, creating and
executing 137

Object List Editor window, restoring to
pre-query state 138

pre-defined queries, configuration and
SWE tags 879

simple operators, table of 138
queries, about running against

MLOVs 676
Query List Business Component property,

about 440
Query mode for applets, described 793
query-by-example. See queries

R
RDBMS, implemented through Data Objects

layer 59
Read Only property

Control object type 468
form applet control property 535
Single Value Field object type 434

read-only behavior
about and object type user

properties 350
user properties, warnings on 351

record, selecting active record as 840, 843
records

changed date, updating manually 136
check mark and pencil icons, meaning

of 135
created and last update, determining by

whom and when 135
merging, about using a link when 399

recursive trees, about and properties 764,
765

Redo, about Locale Management Utility
marking projects 608

relational DBMS. See RDBMS
Relationships Visualization View

business component version, example
and described 149

described 145
Tables version, example and

described 151
Tables version, navigating within 151
View Details diagram, displaying for

selected business component 150
View Relationships, navigating within

business components version of 150
remote clients, configuring

multilingual 683
reports

reports available for each object
type 144

single parent object definition, restricting
report to 143
1066 Siebel Tools Reference Version 7.5.3, Rev. A

Tables report for the S_ORG_EXT table,
getting 143

repositories
backing up and restoring, about 934
deleting 933
export, using repimexp.exe 939
file dump, using repimexp.exe 939
import, using repimexp.exe 939
importing or exporting 935
note, about compiling projects after

changing repository 935
note, about merging customized

repository using Application
Upgrader 967

note, exporting by adding Repository
object definition to an export list 923

renaming 933
reverting to previous version,

example 964
target repository, preparing for

importing 923
repositories, integrating with external

source code control
about 957
example, check in 964
example, reverting to previous

version 964
source control interface, enabling 958
srcctrl.bat file, configuring 959

repositories, migrating between databases
about 942
mobile databases. upgrading 950
procedure 945
processing steps 943
target database, preparing for new

repository 944
repositories, upgrading

See also upgrading inheritance
Siebel Application Upgrader, about

using 966
repository

See also reports

about and Contact repository object
example 54

contents of 56
current repository, getting information on

and about 990
current repository, opening and verifying

you have the correct repository 989
initial get of all projects, doing 994, 995
naming conventions, about and

guidelines 43
object definitions, displaying and

finding 141
Repository Dock Objects report,

described 144
repository validator, using to detect errors in

configuring .COM applications 170
reprimexp.exe

parameters (table) 940, 942
reprimexp.exe, about using and parameters

(tables) 939
Required attribute, note, about ignoring

attribute 691
Required property

Single Value Field object type 434
results.slf, about 605
results.txt, about 605
reverting to previous version of

repository 964
ROW_ID Column, about and format of 223
rows, example resulting from joins 380
Runtime property, Control object type 468

S
S prefix table names, about 194
S_LST_OF_VAL

and language-independent code 656
LOV domains not in table 672

S_PARTY. See access control
Scale property, about 217
scatter chart, 2dScatter chart 735
schemas, migrating between databases

about 942, 943
mobile databases, upgrading 950, 951
Version 7.5.3, Rev. A Siebel Tools Reference 1067

processing steps 943
target database, preparing for new

repository 944, 945
target database, procedure 945, 950

Scopus Migration project 256
screen menu item object definition

about 451
described 72

screen object definition
described 72

screen user interface object type 451
screen view

defining 574, 576
object definition, about 451
object definition, described 73

screens
about, example, and object

definition 502
application object definition, about and

contents of 508
defining procedure 573, 574
defining, about 572, 573
screen menu items, associating to 578
user interface element, described and

example 71
scripts, Siebel VB or Siebel eScript,

application object definition 508
search

Applet Web Template, object
properties 828

repository, searching for object
definitions 141

search and find applet tags, list of tags
and example 875

Search/Find results list applet, list of tags
and example 877

Search objects, about configuring 512
Search Specification property

about 362
Business Component object type 432
sample search expressions, and

syntax 348, 486 to 488
Single Value Field object type 534

second By picklist
about 743
configuring, properties and

examples 747
security considerations

authentication 184
explicit login ID, specifying 183

Selected Bitmap Index property
Tree Node object type 762

SELECTED value, Auto Primary property,
about 415

Sequence Field, child object definition
business component user
property 375

sequence fields
about and sequence field configuration

details (diagram) 373
object definitions 375
sequence field, adding to a business

component 376
Sequence property

about 226
Control object type, about 466
Dock Object object type 316
Dock Object Visibility Rule object

type 317
form applet control property 535
List Column object type, about 476
static picklist object list 643

Series Field property
By field, about populating 747
Chart object type 741

server database
ddlsync.ksh, executing 284
mobile users, propagating changes

to 289
schema extensions, applying and

activating changes 281
schema extensions, preparing before

applying 280
server views, note, about not

modifying 488
servers, deployed on components 77
1068 Siebel Tools Reference Version 7.5.3, Rev. A

Show picklist
about 743
configuring, properties and

examples 744
Siebel 2000, extension tables created

in 260
Siebel Anywhere

and MLOV-enabled fields 683
Siebel Anywhere, about using to upgrade

mobile clients 951
Siebel Applet Designer

about 92
Siebel Application Upgrader 155

repositories, about using to
upgrade 966, 967

Siebel Assignment Manager, configuring to
use MLOV-enabled fields 681

Siebel base tables
note, LONG extension columns, about

adding to 268
Siebel Business Process Designer

about using 187
Siebel BusObject Designer 91
Siebel Cascading Style Sheets

described 74
Siebel client, caution, installing in Siebel

Tools directory 33
Siebel Code Generator Business Service,

about code generated by 86
Siebel Database Extension Designer 155
Siebel Database Server

pre-install tasks, about 32
Siebel Enterprise Integration Manager. See

EIM interface tables
Siebel Field Service and MLOV-enabled

fields 683
Siebel Remote

 See dock object
integrating with after implementing a

database extension 254
Siebel repository. See repository
Siebel Spell Check, configuring 597
Siebel tags

about 796
controls and IDs, mappings between,

about and process (diagram) 796
described 74
nesting, about and example 800
singleton and multi-part tags, about and

example 797
"This" tag, described 798

Siebel templates
See also Siebel tags
described 74
interface, process of creating 791
templates, list of types 793
understanding 789
Web preferences, setting 795

Siebel Tools
about 89
application window 90, 91
installing 32
using the repository validator to detect

errors in configuring .COM
applications 170

Siebel Tools components
Application Upgrader 155
BusObject Repository Manager 98
New Object wizards 93
Siebel BusObject Designer 91

Siebel Tools Object Explorer window, using
to view project by object
definitions 992, 993

Siebel upgrade inheritance, about 156
Siebel Web Client, about high

interactivity 80
Siebel Web Engine

about 77
architecture and functionality

described 78
changing the order of precedence in the

.SWF file 908
Web application, about generating 79
Web application, running 79, 80

Siebel Web Format (.SWF) extension,
described 794
Version 7.5.3, Rev. A Siebel Tools Reference 1069

Siebel Web installation
directories, location and contents 913

Siebel Workflow Manager, configuring for
MLOV-enabled fields 676

Siebel-defined columns, note, using
extension columns 218

Single Value Field
object type, viewing 435
properties 434

Single Value field properties, list of 434
singleton tags, about and example 797,

798
Single-Value Field properties, list of 534
Size, Chart Element object type 750
sizing, chart applet 751
sort

application, adding sorting capabilities
to 913, 915

Sort Specification property
about, example. and syntax 347
Business Component object type 432
default value 348

Source (primary key) field, about 397
source control integration

Check in/Out tab, about and
options 965, 966

Source Field property
Join object type 384
Join Specification object type 383
Link object type, about based on 397

spell check, configuring 597, 600
srcctrl.bat batch file

about and arguments (table) 959, 960
DOS window launched, purpose of 958
program code, about changing 963
source code example 960
variables, table of 962
Windows 95 and 98, MS-DOS

limitations 963
srvrmg.exe utility, using to regenerate the

template local database 290
stand alone table

note, invoking Dock Wizard from 327

stand-alone table, about 292
Standard (Static) Extensibility

about 251
Standard Database Extensibility

components, listed 252
techniques to fulfill business

requirements, without using
Advanced Database
Extensibility 254

standard extension columns
about and table of 220
described 61
name in extension tables 219

standard extension tables, described 198
Starting With text box, in association

applets 711
state model

about using 188
static database extensions, about and list of

types 253
static drilldown, about and configuration

(diagram) 495
static picklists

about, example, and comparison with
pick applet 638

architecture (diagram) 640
object definitions, list of 641
object types architecture (diagram) 641
pop-up visibility rules 650

string constants
search specification, in a 349, 486

strings
attributes, finding multiple 602
exporting 605
importing 605, 607
untranslated, finding and exporting 602,

603
Style option

Visualization view shortcut menu 148
style sheets, Cascading Style Sheets,

described 74
Subcategory View picklist

about and screen example 809
1070 Siebel Tools Reference Version 7.5.3, Rev. A

hierarchy of screen, categories, and
categorized views (diagram) 809

swe:subviewbar, about, tag usage, and
example 811

tools configuration 810
Summary window, log file containing

contents of 931
SWE conditional tags, list of and

attributes 800, 880, 882
swe tags

tree control, for 856, 857
SWE templates

Applet Web Template, object
properties 828, 829

menu configurations 868, 871
search and find applet tags, list of tags

and example 875, 877
Search/Find results list applet, list of tags

and example 877, 878
toolbar configurations 866, 868

SWE. See Siebel Web Engine
.SWF files

Formatting templates extension 794
system columns

system fields, about and list of 224
system fields, table identifying

correspondence between fields and
columns 224

values and common types
described 222

system columns, described 61
system data sources

creating 40
system fields, about and field and columns,

table of 366
System value

Type property of Column object
type 218

Type property of Index object type 226

T
T suffix extension table names. See

extension tables

T suffix table names. See TAS tables
tab bar

described 803
swe:screenbar, about and code

snippet 803, 804
tools configuration 803

table object definitions
described 62
list of 195

Table property
Business Component object type 432
Join object type 383
joined table 384

Table Wizard
columns, created by 297
note, types of tables created 293
using 293

tables
See also extension tables
Advanced Database Extensibility, list that

can be added using 292
base tables, two different contexts used

in 194
data object types, described 62
Data Objects layer, described and list

of 60, 61
data tables, about 196
database, about configuring EIM and

docking/routing interfaces 228
extension table, standard and custom

extension tables, distinctions
between 197

joined, about 384
note, modifying user keys 227, 232
table object definition and standard tables

described 193
table object definitions, list of 195

Tables report
described 144
S_ORG_EXT table, getting report for 143

Tables version, Relationship Visualization
View

example and described 151
Version 7.5.3, Rev. A Siebel Tools Reference 1071

navigating within 151
tags

Siebel tags, described 74
Target Browser Group combo box, using to

group browsers 888
target columns

defined 665
display values vs. language-independent

codes 674
LOV Type and multilingual support 663
Multilingual property 663
multilingual use, enabling for 663, 664
translating display values 664
upgrading bounded columns 665

target property, valid properties in the
picklist 586

tasks
configuration 164

template, configuration features
browser group specific templates,

designing 884
.CIF files, about adding 913
control layout and formatting,

customizing 903
custom HTML type, about SWE

using 904
directories, location and contents 913
error messages within form,

displaying 911
new HTML type, creating and using 903
sorting capabilities, adding to the

application 913
SWE conditional tags 800, 880

templates
Siebel template, described 74
Web layout, changing to another

template 567
Territory Assignment and MLOV, about

implementation 674
Territory Assignment Manager

about using 187
test environment, repository naming

convention guidelines 43

testing with browsers 170
Text Alignment property

List Column object type, about 477
Text Alignment property, form applet

control property 535
text boxes

characteristics 466
properties 467

Text Length property, Single Value Field
object type 434

Text Style object type 453
TextBox type controls

control behavior, enhancing 540
"This" tag, described 798
Thread Applet property, View object

definition 494
Thread Bar

about, example, and properties 493
configuring 494

thread bar
physical navigation, about 871

Thread Field property, View object
type 494

Thread Title property, View object
type 494

time control, list applet type property 485
Time data type, Physical Type of Column

object type 217
time values, using in text box 468
time, and date, setting 135
Title property, Single Value Field object

type 534
Title value, Chart Element object type 750
toggle applets

about and creating 849
toolbars

about and figures 513
menu items and toolbars, activating and

suppressing 520
method targeting, invoking 521
new, defining new toolbar 584
SWE templates, toolbar

configuration 866
1072 Siebel Tools Reference Version 7.5.3, Rev. A

thread bar, about physical
navigation 871

toolbar and menu-related object
types 515

toolbar configuration, about 866
toolbar icon, adding to existing

toolbar 585
Total Required property, List Column object

type 477
Translatable column, described 684
translatable types, defined 659
Translate property, about using 660
translations

and LOV Type 659
custom extension columns 658
display values, adding 664
mode, about running MLOV Upgrade

Utility 665
Tree Applet Wizard, using to create a new

tree applet 763
tree applets

about and example 460
about and examples 756
about and screen example 853
Applet Web Template Layout Window,

using and options 764
configuration file parameters, tree control

contents 858
configuring, about and object types 760
recursive trees, about and

properties 764
tree control, swe tags 856
using Tree Applet Wizard to create 763

Tree Node object type, about and
properties 761, 762

Tree object type, about 761
Type field, about 362
Type picklists, about and default type 742
Type property

Column object type, about 217
Control object type, about 465
extension columns, about adding to 266
form applet control property 535

Index object definition, about 226
Single Value Field object type 434

Types tab
described and example 101

U
UI elements

using Web Client Migration Wizard to the
Web client 968

UI objects
copying, guidelines for 973

unbounded picklists
note, typing new values into 630

Undo Record object definitions,
undoing 123

undocking windows
preventing when moved 113
procedure 113

undoing project check out 1009
Unique property, about 226
Upgrade Ancestor, viewing all objects

marked as 145
Upgrade Ancestor, viewing objects marked

as
See upgrading inheritance

Upgrade Inheritance property
caution, creating new object

definitions 121
parent object, list of all descendents set

to 152
upgrade utility, about running in two

modes 665
upgrading

caution, creating objects not
automatically upgraded 121

upgrading inheritance
about
copy of object, creating 973
copying objects, guidelines 970
descendent or copies of an object,

viewing 974
enhancements, process of applying 972
Version 7.5.3, Rev. A Siebel Tools Reference 1073

parent to descendents, propagating
changes from 975

repositories, about comparison of 972
UI objects and business components,

guidelines for copying 973
using scenario 970

Use Primary Join property, about 414
user interface

physical, described 74
standard Siebel 159

user interface object types
architectural diagrams of 338

user interface objects
architecture (diagram) 450
business objects, mapping

(diagram) 443
object types, list of 451
screen example 448

User Interface Objects layer
See also Physical User Interface layer
applets, described and example 69, 70
applications, described and example 72
interface elements diagram 68
logical UI object types, described 72, 73
screens, described and example 71
views, described 71

user interface objects, configuring
See also application; list applets
applets, about 530
bitmap button controls, about using in

applets and views 584
bitmap category, creating and adding a

bitmap to it 583
bitmaps, about associating with applets,

toolbar icons, and view bars 582
form applet control properties 535
HTML Type property 540
new view, about providing access to 570
process steps 529
screen view, defining 574
screens, about defining 572
screens, defining procedure 573

toolbar icon, adding to an existing
toolbar 585

toolbar, defining a new toolbar 584
views, about defining 562
views, defining using the Object List

Editor 564
User Key Attribute Join, about 236
User Key Attribute, about 236
User Key Column, about 236
User Key object type, about 236
User Key value, Type property of Index

object type 226
user keys, note, modifying in Siebel table or

EIM base tables 227, 232
User Name property, about 196
User Profile Attributes, object used by

personalization for user profile 185
UTC Date Time, Physical Type of Column

object type 217

V
validate

object definitions procedure 123
Validate window user interface

elements 125, 126
validation options, changing 126

Validate window
user interface elements 125, 126
validating procedure 123
validation options, changing 126

validation mode, MLOV Upgrade
Utility 665

validation mode, MLOV Upgrade Utility,
about 665

Value property
Business Component object type 375

values
repicking (Workflow Policy

Column) 678
repicking (Workflow Policy Program

Argument) 680
Varchar data type, Physical Type of Column

object type 216
1074 Siebel Tools Reference Version 7.5.3, Rev. A

VB functionality, about writing VB
code 675

view
object type, described 73
user interface element, described 71

view (Opportunity Detail-Contacts List
view) object type, about 709

View Hierarchy diagram, navigating
within 154

View object, Tree applet properties 760
View template

template type 793
View templates

HTML frames, using in 825, 826, 828
View Web template item

described 73
user interface type 453

View Web template, described 73
View Web template, user interface

type 452
View Wizard, using to create view 563
view, user interface type 451
views

See also drilldown behavior
about and styles of 488
about defining 562
bitmap button controls, about using

in 584
creating using the View Wizard 563,

564
new view. about providing access to 570
Object List Editor, defining view in 564
Web layout, adding applet to 566
Web layout, editing using the Web Layout

Editor 566
virtual business components

about 358
Virtual Table value, about 195
visibility

properties related to 182
Visibility picklist

about and rules for context views for a
selected view 804

SWE template configuration, about and
code syntax 806

visibility rules
checking 659
MLOVs, and configuring 658

visibility strength concept in dock object
visibility 317

Visibility Strength property
Dock Object object type 316
Dock Object Visibility Rule object

type 317
Visual SourceSafe

examples 964
repository management, about using

in 957
Visual Web Page Editor

Web Page Layout Editor, accessing 579,
582

visualization diagram, selecting object
definition properties 148

Visualization View
Descendents Visualization View 152
Details Visualization View 146
invoking, two methods of 145
list of views 145
Relationships Visualization View 149
Web Hierarchy Visualization View 153

W
W prefix table names, about 194
Warehouse value, about 195
Web application

personalizing 185
running 79, 80

Web applications, running
HTML frames, about and screen

example 817
HTML frames, about using in View

templates 825
HTML frames, support for multiple views

on a page 822
HTML frames, swe template

configuration 819
Version 7.5.3, Rev. A Siebel Tools Reference 1075

HTML frames, using container page
template 820

HTML frames, using in View
templates 826

Web Page Layout Container Page,
about 816

Web Client architecture
JavaScript objects, described 81
Web application, about generating 79
Web application, running 79

Web Client Migration Wizard, using 968
Web client, Win32 UI elements,

converting 968
Web Hierarchy Visualization View 153

described 145
View Hierarchy diagram, navigating

within 154
Web layout

applet, adding to the Web layout of the
view 566

template, changing to another 567
view design, previewing 566
views, editing in the Web Layout

Editor 566
Web Layout Editor, using to edit Web layout

of a view 566
Web Layout Editor, using to edit Web layout

of applets 547
Web Menu Editor

about using 591
applet menus, creating 593

Web page
Web-related object shown on a Web

page 509
Web-related object, parameter of the Web

Page item 509
Web Page Layout Container Page

about 816, 817
Web Page Layout Editor

accessing 579
Web page objects

Web Page Layout Editor, accessing 579,
582

Web page template
template type 793
Web-related object, defines Web page

template attributes 509
Web preferences, setting 795
Web template

See also Web page; Web page template
described 73
user interface type 452

Web Templates windows
described 111, 794

widget text box, about popping up list 467
wildcard characters

search specification, in a 349, 487
Win32 client, using Web Client Migration

Wizard to convert UI elements 968
windows

docking, preventing when moved 113
docking/undocking 113
hiding 113

Windows 95 and 98, limitations and the
srcctrl.bat batch file 963

Wizard style popup, about and
example 774

wizards
Business Component Wizard, using 444

Workflow Policy Column
configuring 678
LIC picklist, creating for 677
repicking 678

Workflow Policy Objects report,
described 144

Workflow Policy Program Argument
configuring 680
LIC picklist, creating for 679
repicking values 680

workflows
about using 187

Workload Rules, configuring 682

X
X axis, about limiting and sorting 749
X suffix
1076 Siebel Tools Reference Version 7.5.3, Rev. A

extension table name and examples 260
X suffix extension table names. See

extension tables
X suffix table names. See one-to-one

extension tables
X suffix, in table names. See extension

tables
x symbol, displaying in a form applet 473
XM suffix

extension table name and examples 260
XM suffix able names. See one-to-many

extension tables
XM suffix extension table names. See

extension tables

XMIF suffix interface table names. See EIM
interface tables

Y
Y axis

multiple line curves plotted against,
object definitions 748

note, about charts with two Y axes 721
two Y axes charts, configuring and

properties 749

Z
Z axis, about limiting and sorting 749
Zoom option

Visualization view shortcut menu 148
Version 7.5.3, Rev. A Siebel Tools Reference 1077

1078 Siebel Tools Reference Version 7.5.3, Rev. A

	Contents
	Introduction
	Product Modules and Options
	Product Modules and Options
	How This Guide Is Organized
	Revision History
	Version 7.5.3 Rev A
	Additional Changes

	Version 7.5.3
	Version 7.5, Rev. A

	Siebel Tools Installation
	Preinstallation Tasks
	Verifying Siebel Tools Prerequisites
	Installing a Database Server or Sample Database

	Installing Siebel Tools
	Language Pack Installation
	ODBC Installation

	Postinstallation Tasks
	Verifying Successful Installation
	Verifying the Siebel Tools Directory Structure
	Verify Read/Write Access to Tools Directories
	Siebel Tools ODBC Data Sources
	Running Multiple Local Databases
	Repository Naming Conventions
	Setting Up the Development Environment
	Creating the Development Environment
	Setting Up Developers as Mobile Users

	Siebel Architecture (Basic Concepts)
	About Siebel Tools
	Application Architecture Overview
	Siebel Objects
	Siebel Object Definitions
	Object Types and Parent-Child Relationships
	Classes in Siebel Tools
	Siebel Repository
	Object Layers and Hierarchy
	Data Objects Layer
	Relationship Between the Siebel Application and the Database
	Standard Tables and Columns
	Data Object Types

	Business Objects Layer
	Business Components
	Business Objects
	Business Component Reuse
	Business Object Types

	Logical User Interface Objects Layer
	Applets
	Views
	Screens
	Applications
	Logical UI Object Types

	Physical UI Layer
	Summary of the Major Object Types

	Operating Architecture Overview
	Siebel Web Engine Infrastructure
	How the Siebel Web Engine Generates the Web Application
	Running the Web Application

	About Standard and High Interactivity
	JavaScript Object Architecture in High Interactivity
	Enabling and Disabling High Interactivity for Applications
	Enabling and Disabling High Interactivity for Views
	High Interactivity Configuration Considerations
	Integrating Siebel with J2EE

	Siebel Partner Connect and Siebel Tools for Partner Connect

	Siebel Tools Fundamentals
	What Is Siebel Tools?
	Siebel Tools Features
	Siebel Tools Application Window
	Siebel Objects
	Siebel Object Explorer
	Web Layout Editors
	Script Editors
	Server Script Editor
	Browser Script Editor

	Wizards
	Target Browser Support
	Object Repository

	About the Object Explorer
	Object Explorer Window
	Types Tab
	Detail Tab
	Flat Tab

	Showing and Hiding Objects in the Object Explorer
	Filtering Object Types by Project
	Object List Editor Window
	Other Windows
	Hiding the Windows
	Docking the Windows
	Image Preview
	Drilldown

	Viewing Object Definitions
	Modifying, Copying, and Creating New Object Definitions
	Object Definitions, Value Types, and Naming Conventions
	Modifying Object Definitions
	Creating a Copy of an Existing Object Definition
	Creating a New Object Definition
	Undoing New or Changed Object Definitions

	Validating Object Definitions
	User Interface Elements in the Validate Window
	User Interface Elements in the Validation Options Window

	Compiling and Testing Object Definitions
	Compiling Projects
	Compiling Single Objects or a Group of Objects
	Compiling the Siebel Repository Using the Command-Line Interface
	Testing Repository Changes

	Setting Up Debug Options
	Understanding the Changed Flag and Pencil Icon
	Using Queries to List Object Definitions
	Simple Queries
	Compound Queries

	Searching the Repository for Object Definitions
	Getting Reports About Object Relationships
	Viewing Object Relationships: Visualization Views
	Details Visualization Views
	Business Component Version
	Business Object Version

	Relationships Visualization View
	Business Components Version
	Tables Version

	Descendents Visualization View
	Web Hierarchy Visualization Views

	Siebel Tools Product Components
	Siebel Object Interfaces
	Siebel Database Extension Designer
	Siebel Application Upgrader
	Siebel Upgrade Inheritance
	Siebel Object Comparison and Synchronization

	Application Configuration (Basic Concepts)
	About Configuration
	Usage and Configuration of Non-Licensed Objects
	Configuration Goals and Objectives

	Overview of the Web Configuration Process
	Planning Considerations
	Overview of the Application Development Process
	Siebel Object Definition Sequence
	Step One: Create Business Object
	Step Two: Create Screens, Applets, and Views
	Step Three: Associate Each Applet and View with the Correct Template
	Step Four: Modify Templates as Needed to Create a Corporate Image
	Step Five: Establish Mapping Between Controls and Templates
	Step Six: Web Application Definition
	Strategies to Optimize Application Performance

	Step Seven: Compile the Repository Changes into an .SRF File
	Repository Validator

	Step Eight: Test the Application
	Testing with Browsers

	Step Nine: Deploy the Application

	Application Enhancement Through Scripting and Object Interfaces
	Server-Side Scripting
	Browser-Side Scripting
	Generating Browser Scripts

	Localization
	Locale Object Types
	Siebel Tools Language Mode
	Check In/Out
	Locale Management Utility

	Controlling Visibility Using Siebel Tools
	Visibility Establishment Process
	Visibility Property Settings in Siebel Tools
	Security Considerations
	Secure Views
	Explicit Login
	User Authentication

	Other Ways to Customize Application Behavior
	Personalizing Your Web Application
	Managing Web Content with Siebel eBriefings
	Dynamic Data Capture with Siebel eSmartScript
	Siebel Assignment Manager
	Siebel Business Process Designer
	State Model
	Siebel ePricer

	Data Objects Layer
	Data Object Types
	Tables
	Base Tables
	Properties of the Table Object Type
	Data Tables
	Extension Tables
	One-to-One Extension Tables
	Implied Joins
	One-to-Many Extension Tables

	Intersection Tables
	How Intersection Tables Are Configured
	Intersection Data in the Intersection Table
	Updating Fields That Are Based on Columns in Extension Tables of Intersection Tables

	Column Objects
	Column Object Type
	Data Columns
	Extension Columns
	Standard Extension Columns
	Extension Columns and Foreign Keys

	System Columns

	Indexes
	Index Column Object Type
	User Keys
	EIM Interface Tables
	EIM Object Types
	Labeling Data Loaded in EIM As No Match Row Id Instead of NULL

	Access Control
	Party
	Person-Related Data
	Person-Related Business Components
	Relationships for Responsibility

	Organization-Related Data
	Organization-Related Business Components
	S_BU Table
	Single-Organization Visibility
	Multi-Organization Visibility

	Party Business Components
	S_PARTY Table
	Party
	S_PARTY_PER
	Summary

	Adding Custom Extensions to the Data Model
	About Extending the Siebel Data Model
	About Standard Database Extensibility
	Using Standard Database Extensibility
	Database Extension Planning and Design
	Planning and Design Steps
	Naming Conventions for Extension Tables and Columns
	Extension Table Names
	Extension Column Names

	Accommodating Active Mobile Clients
	DBMS Restrictions

	Database Extension Implementation
	Checking Out and Locking the Projects
	Updating the Logical Schema Definition in the Local Environment
	Creating a Custom Extension Table
	Adding Extension Columns to Tables
	Creating Extension Columns of Type LONG
	Modifying Extension Tables or Columns
	Deleting Extension Tables or Columns
	Using Extensions with Enterprise Integration Manager
	Adding Custom Indexes

	Applying the Physical Schema Extensions to the Local Database
	Displaying Extension Data
	Displaying Base Table Extension Column Data
	Displaying Data in One-to-One Extension Tables
	Displaying Data from One-to-Many Extension Tables

	Preparing the Server Database Before Applying Schema Extensions
	Applying the Changes to the Server Database
	Applying Schema Changes Using Siebel Tools
	Applying Schema Changes Using the Configuration Utility

	Applying Server Database Changes to Other Local Databases
	Populating Extension Tables and Columns
	Making Extension Tables Available for Population by EIM
	Configuring Client-Side Import

	Advanced Database Extensibility
	Creating New Tables Using the Table Wizard
	Table Wizard Actions

	EIM Table Mapping Wizard
	EIM Object Specifications

	Dock Objects
	Dock Object Types
	Dock Object Tables
	Dock Object Visibility Rules
	Finding the Dock Object for a Business Component
	Docking Wizard
	Creating a New Dock Object
	Adding a New Dock Table to an Existing Custom Dock Object
	Verifying Dock Objects
	Deleting and Cleansing Dock Objects
	Consulting Siebel Expert Services

	Business Objects Layer
	Major Business Object Types
	Usage and Configuration of Non-Licensed Objects
	Business Components
	Base Tables of Business Components
	Joined Tables and Extension Tables of Business Components
	Joined Tables
	Extension Tables

	Sort Specification Property
	Search Specification Property
	Configuring Data-Driven Read-Only Behavior
	BC Read-Only Field
	Field Read Only Field
	Parent Read Only Field

	Intersection Business Components
	Virtual Business Components
	Master-Detail Business Components
	Master Business Components
	Link
	Detail Business Component

	Fields
	System Fields
	Calculated Fields
	Field Data Types
	Sequence Fields

	Joins
	How a Join Is Constructed
	Using a Predefault Value for a Join Field

	Party Business Components and Joins: Party Extension Tables
	Mapping Fields in Party Business Components
	Bringing Party Data into a Non-Party Business Component
	Join Definition
	Join Specification Definition
	PAR_ROW_ID

	Bringing Party Data into Party Business Components
	Join Definition

	Mapping a Field to a Column in a Party Table
	Creating a Join to a Party Table
	Creating a Single-Value Field

	Links
	How a Link Is Constructed
	Using a Link in a Master-Detail View
	Using a Link in a Multi-Value Group
	Using a Link in a Many-to-Many Relationship
	Using a Link When Merging Records
	Cascade Delete Property

	Multi-Value Links
	How a Multi-Value Link Is Constructed
	How an Indirect Multi-Value Link Is Constructed
	Indirect Multi-Value Links Using Joins

	Primary ID Field
	Allowing Users to Set Primaries
	Using the Check No Match Property with a Primary Join

	How a Cascade Copy with a Multi-Value Link Is Constructed

	About Business Objects
	How a Business Object Is Constructed
	Business Services

	Defining Business Objects and Business Components
	About the Application Development Process
	Defining Business Objects
	Usage and Configuration of Non-Licensed Objects
	Development Sequence for Defining Business Objects
	Creating or Modifying a Business Component Definition
	Business Component Properties

	Adding Fields to a Business Component
	Field Properties
	Single-Value and Multi-Value Fields

	Configuring Dual Currency Support
	Creating or Modifying a Business Object Definition
	Business Object Properties

	Mapping Business Components to Business Objects
	Mapping Business Objects to Data Objects
	Mapping User Interface Objects to Business Objects

	Using Wizards to Create Objects
	Business Component Wizard
	OLEDB Rowset Wizard
	Integration Object Wizard

	Logical User Interface Objects Layer
	Major User Interface Object Types
	Applets
	Types of Applets
	Form Applets
	Form Applet Controls
	Text Controls
	Button Controls
	Combo Box Controls
	Check Box Controls
	ActiveXControl
	File
	Hidden
	Link
	Mailto
	Password
	PositionOnRow
	TextArea
	URL
	Label Controls

	List Applets
	Configuring the List
	Configuring the List Columns
	Configuring Controls in a List Applet

	About HTML Control Types
	About the Display Format Property
	About the Type Property
	About the Search Specification Property

	Views
	List-Form Views
	Master-Detail Views
	Thread Bars
	Drilldown Behavior in a View
	Static Drilldown Behavior
	Dynamic Drilldown Behavior

	Applet Toggles

	Screens
	About The User Interface Navigational Paradigm
	Applications
	Web-Related Objects
	Search and Find Objects
	Toolbars and Menus
	Toolbar and Menu-Related Object Types
	Command Object Type
	Toolbar Object Type
	Toolbar Item Object Type
	Applet Method Menu Item
	Class Method Menu Item

	Activating and Suppressing Menu Items and Toolbars
	Invoke Method Targeting

	Icon Maps
	Specifying a Default Icon in an Icon Map
	HTML Hierarchy Bitmap

	Logical User Interface Objects Configuration
	User Interface Object Definition Sequence
	About Defining Applets
	About Applet Properties
	Applet Controls
	List Applet Control Properties
	Form Applet Control Properties

	Defining List Applets
	Defining List Columns in a List Applet
	End User Settings and Preferences

	Lists and List Columns
	HTML Type Property of List Columns and Controls
	Enhancing the Behavior of List Columns and Controls

	Defining Form Applets
	Editing the Web Layout of Applets
	About Grid Layout
	Converting Applets to a Grid-Based Layout
	Converting One or More Applets
	Converting Applets By Changing the Web Template
	About Grid Layout Conversion Error Messages
	Supported Applet Classes and Applet Web Templates
	Applet Classes
	Applet Web Templates

	Editing Applets Based on Grid Layout Templates
	Positioning Controls
	Aligning Controls
	Resizing Controls
	Spacing Controls
	Centering Controls
	Setting Tab Order
	Resizing the Grid Canvas

	Setting a Default Method for an Applet
	About Views
	Creating Views Using the View Wizard
	Creating Views Using the Object Explorer
	Editing the Web Layout of Views
	Configuring Views for Personal Layout Control
	Providing User Access to a New View
	Reasons a View Is Not Visible to a User
	About Screens
	Defining Screens
	About Applications
	Associating Screens with Page Tabs
	Defining Screen Menu Items
	About Web Pages
	Editing the Layout of Web Page Objects
	Associating Images With Siebel Objects
	Using Bitmap Objects with Button Controls

	Defining Toolbars and Menus
	Creating Command Objects
	Using the Command Object Wizard
	Using JavaScript to Extend Toolbars

	Creating Applet Menus
	Defining Web Menus Using the Applet Method Menu Wizard
	Creating Menus Manually

	Configuring Keyboard Accelerators
	Adding a New Keyboard Accelerator
	Modifying the Key Sequence for an Existing Accelerator
	Hiding The Key Sequence in the User Interface
	Design Considerations for Keyboard Accelerators

	Configuring Spell Check
	Using the Locale Management Utility
	Finding Untranslated Text Strings
	Finding Existing Translations
	Exporting Strings and Other Locale-Specific Attributes
	Importing Strings and Other Locale-Specific Attributes
	Identifying Modified Objects
	Using the LMU to Replace Strings
	Running the LMU From the Command Line
	Export Strings and Locale-Specific Attributes
	Import a LMU File
	Export Strings to be Translated

	Pick Applets and Static Picklists
	Pick Applets
	Configuring the Originating Applet
	Configuring the Pick Applet

	Using the Pick Applet Wizard
	Configuring the Originating Business Component
	Constraining a Picklist

	Configuring Pick Business Components
	Configuring Picklists
	Creating a Picklist Using the Pick List Wizard

	Static Picklists
	Configuring Originating Applets
	Configuring Originating Business Components
	Configuring the Pick List
	Creating a Static Picklist Using the Pick List Wizard
	The PickList Generic Business Component
	Hierarchical Picklists
	Pop-Up Visibility Rules

	Working With Lists of Values
	Multilingual Lists of Values
	About the Language Independent Code
	Enabling the Multilingual List of Values
	Identifying Which Columns to Enable
	Making Sure the LOV Type Is Translatable
	Determining If the Picklist Is Bounded
	Special Cases
	Configuring the Multilingual List of Values in Siebel Tools
	Adding Translated Display Values in Application Administration
	Upgrading Existing Data Using the MLOV Upgrade Utility
	Running the MLOV Upgrade Utility

	Resume Running MLOV Upgrade Utility
	MLOV Upgrade Utility Parameters
	About the MLOV Upgrade Log File

	Recompiling and Deploying

	Integration Considerations
	Enterprise Integration Manager

	Configuration Considerations
	MLOV Configuration and Coding Guidelines
	Querying and Multilingual Lists of Values
	Configuring Siebel Business Process Designer to Use MLOV-Enabled Fields
	Policy Conditions
	Action Arguments

	Configuring Siebel Assignment Manager to Use MLOV-Enabled Fields
	Criteria Values and Criteria Skills
	Workload Rules

	Configuring Siebel Anywhere for Use with MLOV-Enabled Fields
	Administering the Multilingual List of Values
	Important Fields in List of Values Administration Views
	Adding Records
	Deleting Compared to Deactivating Records
	Constraints

	Multi-Value Group and Association Applets
	Multi-Value Group Applets
	Configuring the Originating Applet
	Configuring the Originating Business Component
	Configuring the Multi-Value Link
	Configuring Links
	Configuring the Multi-Value Group Business Component
	Using the MVG Wizard
	Configuring the Multi-Value Group Applet
	Using the MVG Applet Wizard

	Association Applets
	Association Applets Invoked from Master-Detail Views
	Association Applets Invoked from Multi-Value Group Applets

	Special-Purpose Applets and Controls
	Chart Applets
	Axis Terminology
	Chart Layout Options
	Bar Charts
	Line Charts
	Pie Charts
	Scatter Charts

	Configuring Chart Applets
	Business Component Mapping
	Configuring the Picklists
	Configuring Show Picklists
	Configuring the By Picklist
	Configuring the Second By Picklist

	Charts with Multiple Curves Plotted Against One Y Axis
	Charts with Two Y Axes
	Axis Points—Limiting and Sorting
	Chart Element Object Type
	Making X-Axis Labels Vertical
	Sizing Chart Images

	Performance Considerations
	Using the Chart Applet Wizard

	Tree Applets
	Configuring Tree Applets and Explorer Views
	View
	Tree Applet
	Tree
	Tree Node
	Using the Tree Applet Wizard

	Tree Applets in the Applet Web Template Layout Window
	Recursive Trees

	File Attachment Applets
	Configuring Attachment Applets
	Configuring Attachment Business Components
	Configuring Attachment Tables

	Pop-Up Windows
	Configuring Pop-Up Applets Launched from Applets
	Configuring Pop-Up Wizards
	Configuring Pop-Up Views Launched from Applets

	ActiveX Controls
	Creating DLL and Class Objects That Reference an ActiveX Control
	Adding an ActiveX Control to an Applet
	Setting Properties in an ActiveX Control
	ActiveX Methods and Events
	Distributing ActiveX Controls

	HTML Content Controls
	Control Properties
	Administration Views
	The Host Administration View
	Fixup Administration View
	Proxied Links
	Default Link Targets

	Configuring Fields to Use Web Content Assets

	Physical User Interface Layer
	Understanding Siebel Templates
	Generated HTML Files
	Types of Templates

	Web Template Explorer
	Setting Web Preferences

	Understanding Siebel Tags
	Mappings Between Controls and IDs
	Singleton and Multi-Part Tags
	“This” Tag
	Iterators
	Nesting and Siebel Tags
	SWE Conditional Tags

	High Interactivity Versus Standard Interactivity
	Navigational Constructs
	Primary Tab Bar
	Visibility Picklist and Detail Tab View Bar
	Subcategory Views

	Physical UI Navigation and Templates
	Page Templates
	Web Page-Layout Container Page
	Container Page Areas

	HTML Frames
	HTML Frames in Container Page Templates

	Support for Multiple Views on a Page

	View Templates
	HTML Frames in View Templates

	Applet Templates
	Form Applets
	List Applets
	Persistently Editable List Applets
	Sample List Applet Template
	Current Record Selection in List Applets
	Multi-Row Editable List Applets
	Multi-Record Select List Applets

	Displaying Totals of List Column Values
	Multi-Value Group and Pick Applets
	Toggle Applets
	Examples

	Tree Applets
	Configuration File Parameters
	Elbows and Trees
	Root, Leaf, and Open/Closed Folder Icons
	Indentation Graphics
	Text Style Parameters

	Chart Applets
	Catalog-Style List Applets and Rich Lists
	Example

	Toolbars and Menus
	Toolbar Template Configuration
	HTML and JavaScript Toolbars
	Java Toolbars

	Menu Template Configuration
	Thread Bar

	Special Behavior Supported by Templates
	Search and Find Configuration in SWE Templates
	Search and Find Applet Tags
	Results Applet Tags

	Favorites (Predefined Queries)
	Query Management Commands

	Conditional Tags
	SWE Conditional Tags
	Designing Browser Group-Specific Templates

	Conditional Mappings for Applets
	Browser-Specific Mappings
	Application-Specific Mappings
	More/Less Mode-Specific Mappings

	Image Support
	Configuring Images as Bitmap Objects
	Image Formats
	Using Icons for Field Values
	Using Images as Links in Controls
	Image Caching File Manager

	Hierarchical List Applets
	About Grid Layout Templates
	Creating Custom HTML Control Types
	When SWE Uses a Custom HTML Type
	More About Format
	Examples

	Removing HTML Frames From Web Templates
	Modifying Page Containers
	Modifying Headers and Footers
	Modifying Views with Custom Headers and Footers
	Known Issues When Running Siebel Applications Without HTML Frames

	Template Configuration Features
	Displaying Server Side Errors
	Adding Graphics
	Creating Directories for Your Graphics Files
	Adding Sorting Capabilities to Your Application
	Example

	Cascading Style Sheets

	Repositories
	Code Pages and Unicode
	Exporting and Importing Repository Objects
	Exporting Individual Object Definitions
	Exporting Object Definitions Using the Command Line Interface
	Exporting Entire Projects
	Importing Object Definitions
	Preparing the Target Repository for Import
	Loading Object Definitions from an Archive File Into the Preview Window
	Adjusting the Details of Conflict Resolution
	Conflicting Objects Windowpane
	Object Differences Windowpane
	Attribute Differences Windowpane

	Importing Object Definitions Using the Command Line Interface

	Renaming, Deleting, Backing Up, and Migrating Repositories
	Renaming and Deleting Repositories
	Deleting a Repository

	Backing Up and Restoring Repositories
	Using repimexp.exe for Importing, Exporting, and Creating a File Dump
	Migrating Repositories and Schemas Between Databases
	Preparing the Target Database for the New Repository
	Running the Repository Migration Configuration
	Upgrading Mobile Databases

	Creating Patches
	Creating a Patch File
	Applying a Patch File

	Integrating with External Source Code Control Software
	Enabling the Interface
	Configuring the srcctrl.bat File
	Microsoft Visual SourceSafe Examples
	Check In Example
	Revert to Previous Version Example

	Check In/Check Out Options (Source Control Integration)
	Upgrading Repositories: Siebel Application Upgrader
	Web Client Migration Wizard
	Automatic Upgrade of Copied Objects
	Upgrade Inheritance Scenario
	Recommended Guidelines for Copying Objects
	How Enhancements Are Applied During an Upgrade
	Repository Location of the Upgrade Ancestor
	Configuration Steps for Upgrade Inheritance
	Propagating Changes from a Parent to Descendants

	Object Comparison and Synchronization
	Viewing the Object Comparison Dialog Box
	Differences Between Checked-Out Projects
	Entering the Comparison
	Option One
	Option Two
	Option Three
	Option Four

	Application Development Projects
	What Are Siebel Projects?
	Getting Information About Repositories and Projects
	Selecting the Current Repository
	Getting Information About the Current Repository
	Viewing Object Definitions by Project

	Getting Projects
	Checking Out Projects
	Check Out Dialog Box

	Creating New Projects
	Renaming Projects
	Assigning Object Definitions to Projects
	Moving Object Definitions Between Projects
	Checking In Projects
	Check In Dialog Box
	Check-In Guidelines

	Check-In/Check-Out Options (Data Sources)
	Determining Project Differences at Check-In Time
	Project Differences Windowpane

	Undoing Check Out
	Locking Projects Directly
	Locking Server Projects Directly

	Project Structure Considerations

	Configuring the Customer Dashboard
	Understanding the Customer Dashboard
	How the Customer Dashboard is Populated With Data
	Architecture
	Predefined Behavior

	Enabling the Customer Dashboard
	Configuring the Customer Dashboard
	Adding a Business Component to the Dashboard Business Object
	Adding a Business Component Lists to the Dashboard Business Service
	Mapping Business Component Fields to the Customer Dashboard
	Creating Field Labels
	Formatting Phone # Fields
	Configuring the GoTo View Drop-Down List
	Configuring Labels for GoTo Views

	Modifying the Look and Feel of the Customer Dashboard
	Changing the Background Color and Border
	Changing the Size and Location

	Configuring Communication Events
	Configuring SmartScripts
	Activating the SmartScript Player
	Mapping SmartScript Variables to Customer Dashboard Fields
	Configuring SmartScripts to Save Answers

	Using Siebel VB Script and eScript
	Customer Dashboard Commands
	GetCurrentContactId
	GetDashboardFieldValue
	Update Dashboard

	Siebel eScript Example
	Siebel VB Example

	About Dual Personalization

	Index

