
SIEBEL VB LANGUAGE
REFERENCE
VERSION 7.5, REV. C

JULY 2003

12-FRKIMH

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Siebel VB Language Reference 1

Introduction
Supported Uses of Siebel VB . 18

How This Guide Is Organized . 19

Typographic Conventions . 20

Revision History . 21

Chapter 1. Quick Reference: Statements and Functions
Arrays . 24

Compiler Directives . 25

Control Flow . 26

Dates and Times . 28

Declarations . 30

Environment Control . 32

Errors . 33

Files: Disk and Folder Control . 34

Files: File Control . 35

Files: File Input/Output . 36

Math Functions: Financial Functions . 38

Math Functions: Numeric Functions . 39

Math Functions: Trigonometric Functions . 40

Objects . 41

ODBC . 42
Version 7.5, Rev. C Siebel VB Language Reference 3

Contents
Strings: String Functions . 43

Strings: String Conversions . 45

Variants . 46

Chapter 2. Language Overview
Conventions . 51

Arguments . 51

Named Arguments . 52

Comments . 53

Data Types . 54

Arrays . 54

Numbers . 55

Records . 56

Strings . 56

Type Characters . 57

Data Type Conversions . 58

Dynamic Arrays . 59

Variant Data Type .61

Expressions . 63

Numeric Operators . 63

String Operators . 64

Comparison Operators (Numeric and String) . 64

Logical Operators . 65

Object Handling . 66

Creating an Object Variable to Access the Object . 67

Using Methods and Properties to Act on Objects . 67

Error Handling . 68

Trapping Errors Returned by Siebel VB . 69

Option 1: Trap Errors Within Body of Code . 70

Option 2: Trap Errors Using an Error Handler . 70
4 Siebel VB Language Reference Version 7.5, Rev. C

Contents
Trapping User-Defined, Non-Siebel VB Errors . 71

Trapping Errors Generated by Siebel VB Methods 73

Siebel VB and Unicode . 74

Chapter 3. Siebel VB Language Reference
Abs Function . 76

ActivateField Method . 77

ActivateMultipleFields Method . 78

ActiveBusObject Method . 79

ActiveViewName Method . 80

AddChild Method . 81

Application_Close Event . 82

Application_InvokeMethod Event . 83

Application_Navigate Event . 84

Application_PreInvokeMethod Event . 85

Application_PreNavigate Event . 86

Application_Start Event . 87

Asc Function . 88

Associate Method . 89

Atn Function . 90

BusComp Method . 92

BusComp_Associate Event . 93

BusComp_ChangeRecord Event . 94

BusComp_CopyRecord Event . 95

BusComp_DeleteRecord Event . 96

BusComp_InvokeMethod Event . 97

BusComp_NewRecord Event . 98

BusComp_PreAssociate Event . 99
Version 7.5, Rev. C Siebel VB Language Reference 5

Contents
BusComp_PreCopyRecord Event . 100

BusComp_PreDeleteRecord Event . 101

BusComp_PreGetFieldValue Event . 102

BusComp_PreInvokeMethod Event . 103

BusComp_PreNewRecord Event . 104

BusComp_PreQuery Event . 105

BusComp_PreSetFieldValue Event . 106

BusComp_PreWriteRecord Event . 107

BusComp_Query Event . 108

BusComp_SetFieldValue Event . 109

BusComp_WriteRecord Event . 110

BusObject Method . 111

Call Statement . 112

CCur Function . 115

CDbl Function . 117

ChDir Statement . 118

ChDrive Statement . 120

Chr Function . 121

CInt Function . 123

ClearToQuery Method . 125

Clipboard . 126

CLng Function . 128

Close Statement . 129

Const Statement . 131

Copy Method . 132

Cos Function . 133

CreateObject Function . 134

CSng Function . 137
6 Siebel VB Language Reference Version 7.5, Rev. C

Contents
CStr Function . 139

CurDir Function . 141

CurrencyCode Method . 142

CVar Function . 143

CVDate Function . 144

Date Function . 146

Date Statement . 147

DateSerial Function . 149

DateValue Function .151

Day Function . 153

DeactivateFields Method . 154

Declare Statement . 155

Deftype Statement . 158

DeleteRecord Method . 160

Dim Statement .161

Dir Function . 167

Do...Loop Statement . 169

Environ Function .171

Eof Function . 173

Erase Statement . 175

Erl Function . 177

Err Function . 179

Err Statement . 180

Error Function . 182

Error Statement . 184

ExecuteQuery Method . 185

ExecuteQuery2 Method . 186

Exit Statement . 187
Version 7.5, Rev. C Siebel VB Language Reference 7

Contents
Exp Function . 188

FileAttr Function . 190

FileCopy Statement . 192

FileDateTime Function . 194

FileLen Function . 195

FirstRecord Method . 196

Fix Function . 197

For...Next Statement . 199

Format Function . 202

FreeFile Function . 212

Function...End Function Statement . 213

FV Function . 216

Get Statement . 218

GetAssocBusComp Method . 221

GetAttr Function . 222

GetBusComp Method . 223

GetBusObject Method . 224

GetChild Method . 225

GetChildCount Method . 226

GetFieldValue Method . 227

GetFirstProperty Method . 228

GetFormattedFieldValue Method . 229

GetMultipleFieldValues Method . 230

GetMVGBusComp Method . 231

GetNamedSearch Method . 232

GetNextProperty Method . 233

GetObject Function . 234

GetPicklistBusComp Method . 237
8 Siebel VB Language Reference Version 7.5, Rev. C

Contents
GetProfileAttr Method . 238

GetProperty Method . 239

GetPropertyCount Method . 240

GetSearchExpr Method . 241

GetSearchSpec Method . 242

GetService Method . 243

GetSharedGlobal Method . 244

GetType Method . 245

GetUserProperty Method . 246

GetValue Method . 247

GetViewMode Method . 248

Global Statement . 249

GoTo Statement . 253

GotoView Method . 255

Hex Function . 256

Hour Function . 257

If...Then...Else Statement . 259

Input Function .261

Input Statement . 262

InsertChildAt Method . 264

InStr Function . 265

Int Function . 268

InvokeMethod Method . 270

IPmt Function .271

IRR Function . 273

Is Operator . 275

IsDate Function . 276

IsEmpty Function . 277
Version 7.5, Rev. C Siebel VB Language Reference 9

Contents
IsMissing Function . 279

IsNull Function . 281

IsNumeric Function . 283

Kill Statement . 284

LastRecord Method . 286

LBound Function . 287

LCase Function . 289

Left Function . 290

Len Function . 292

Let (Assignment Statement) . 293

Like Operator . 295

Line Input Statement . 297

Loc Function . 299

Lock Statement . 300

Lof Function . 302

Log Function . 303

LoginId Method . 304

LoginName Method . 305

LookupMessage Method . 306

Lset Statement . 307

LTrim Function . 309

Me . 311

Mid Function . 312

Mid Statement . 314

Minute Function . 316

MkDir Statement . 318

Month Function . 320

Name Method . 322
10 Siebel VB Language Reference Version 7.5, Rev. C

Contents
Name Statement . 323

New Operator . 325

NewPropertySet Method . 326

NewRecord Method . 327

NextRecord Method . 328

Nothing Function . 329

Now Function .331

NPV Function . 333

Null Function . 334

Object Class . 336

Oct Function . 338

On...GoTo Statement . 340

On Error Statement . 341

Open Statement . 344

Option Base Statement . 347

Option Compare Statement . 350

Option Explicit Statement . 352

ParentBusComp Method . 354

Pick Method . 355

Pmt Function . 356

PositionId Method . 358

PositionName Method . 359

PostChanges Method . 360

PPmt Function .361

PreviousRecord Method . 363

Print Statement . 364

PropertyExists Method . 366

Put Statement . 367
Version 7.5, Rev. C Siebel VB Language Reference 11

Contents
PV Function . 369

RaiseError Method . 371

RaiseErrorText Method . 372

Randomize Statement . 373

Rate Function . 375

ReDim Statement . 377

RefineQuery Method . 379

Rem Statement . 380

RemoveChild() Method . 382

RemoveProperty Method . 383

Reset Method . 384

Reset Statement . 385

Resume Statement . 387

Right Function . 388

RmDir Statement . 390

Rnd Function . 392

Rset Statement . 394

RTrim Function . 396

Second Function . 397

Seek Function . 399

Seek Statement . 401

Select Case Statement . 403

SendKeys Statement . 405

Service_InvokeMethod Event . 409

Service_PreInvokeMethod Event . 410

Set Statement . 411

SetAttr Statement . 413

SetFieldValue Method . 414
12 Siebel VB Language Reference Version 7.5, Rev. C

Contents
SetFormattedFieldValue Method . 415

SetMultipleFieldValues Method . 416

SetNamedSearch Method . 417

SetPositionId Method . 418

SetPositionName Method . 419

SetProfileAttr Method . 420

SetProperty Method .421

SetSearchExpr Method . 422

SetSearchSpec Method . 423

SetSharedGlobal Method . 424

SetSortSpec Method . 425

SetType Method . 426

SetUserProperty Method . 427

SetValue Method . 428

SetViewMode Method . 429

Sgn Function . 430

Shell Function . 432

Sin Function . 433

Space Function . 434

Spc Function . 435

SQLClose Function . 437

SQLError Function . 439

SQLExecQuery Function . 442

SQLGetSchema Function . 445

SQLOpen Function . 448

SQLRequest Function .451

SQLRetrieve Function . 454

SQLRetrieveToFile Function . 457
Version 7.5, Rev. C Siebel VB Language Reference 13

Contents
Sqr Function . 459

Static Statement . 460

Stop Statement . 461

Str Function . 462

StrComp Function . 463

String Function . 465

Sub...End Sub Statement . 467

Tab Function . 469

Tan Function . 471

TheApplication Method . 472

Time Function . 473

Time Statement . 475

Timer Function . 477

TimeSerial Function . 479

TimeValue Function . 481

Trace Method . 483

TraceOff Method . 484

TraceOn Method . 485

Trim Function . 486

Type Statement . 487

Typeof Function . 489

UBound Function . 490

UCase Function . 492

UndoRecord Method . 493

Unlock Statement . 494

Val Function . 495

VarType Function . 497

WebApplet_InvokeMethod Event . 499
14 Siebel VB Language Reference Version 7.5, Rev. C

Contents
Web_Applet_Load Event . 500

Web_Applet_PreCanInvoke Event .501

WebApplet_PreInvokeMethod Event . 502

WebApplet_ShowControl Event . 503

WebApplet_ShowListColumn Event . 504

Weekday Function . 505

While...Wend Statement . 507

Width Statement . 509

With Statement . 510

Write Statement .512

WriteRecord Method .514

Year Function .515

Appendix A. Siebel VB Compared to Other Basic Products
Differences Between Siebel VB and Earlier Versions of Basic518

Line Numbers and Labels . 518

Subroutines and Modularity of the Language . 519

Variable Scope . 519

Data Types . 519

Financial Functions . 519

Date and Time Functions . 520

Object Handling . 520

Environment Control . 520

Differences Between Siebel VB and Visual Basic 521

User Interface and Control-Based Objects . 521

Data Types . 521
Version 7.5, Rev. C Siebel VB Language Reference 15

Contents
Appendix B. Trappable Errors

Appendix C. Derived Trigonometric Functions

Glossary

Index
16 Siebel VB Language Reference Version 7.5, Rev. C

Introduction
Siebel VB is an enhanced configuration environment which includes:

■ A fully functional procedural programming language

■ A bidirectional application interface to provide bidirectional access to Siebel
Business Objects

■ An editing environment to create and maintain custom Siebel VB routines

■ A debugger to assist in detecting errors in Siebel VB routines

■ A compiler to compile the custom Siebel VB routines

■ A run-time engine (similar to a Basic interpreter) to process the custom Siebel
VB routines

You can use Siebel VB to create scripts that automate a variety of daily tasks.

Developers looking for scripting functionality on their UNIX-hosted Siebel Object
Managers should read Siebel eScript Language Reference.
Version 7.5, Rev. C Siebel VB Language Reference 17

Introduction

Supported Uses of Siebel VB
Supported Uses of Siebel VB
This document describes the supported functionality of the Siebel VB language and
provides examples of how a Siebel developer uses Siebel VB. Siebel eBusiness
Applications provide a high performance client/server application specifically
designed to meet the most rigorous sales and marketing information requirements
of large multi-national corporations. Caution should be exercised when extending
the Siebel Sales Enterprise application, which should be done only by trained
technical professionals.

NOTE: Improper application configuration can adversely effect the reliability and
performance characteristics of your configured Siebel application. Thorough testing
is strongly recommended before production rollout of your configured application.

In summary Siebel VB supports:

■ Siebel VB language to behave as documented

■ Siebel Tools for creating, modifying, and deleting of Siebel VB scripts as
documented in Siebel Object Interfaces Reference.

Siebel VB does not support:

■ Functionality developed through custom programming

■ Automatic upgrades of custom routines with the Siebel Application Upgrader

■ Development of separate, standalone applications with Siebel VB

■ Accessing server management functions through Siebel VB; such functions
should be accessed only through the UI or the command line

NOTE: Siebel VB is not supported in a UNIX environment.
18 Siebel VB Language Reference Version 7.5, Rev. C

Introduction

How This Guide Is Organized
How This Guide Is Organized
This guide is divided as follows.

Chapter 1, “Quick Reference: Statements and Functions” offers a summary of the
commands and functions, divided into functional areas. It also contains brief
descriptions of each command and function.

Chapter 2, “Language Overview” describes the essential rules and components of
Siebel VB.

Chapter 3, “Siebel VB Language Reference” contains a full listing of every command
and function, including examples, in Siebel VB. The Appendixes provide
information about trappable error codes and derived trigonometric functions, and
comparisons between Siebel VB and other versions of Basic.
Version 7.5, Rev. C Siebel VB Language Reference 19

Introduction

Typographic Conventions
Typographic Conventions
This guide uses the following typographic conventions.

Table 1. Typographic Conventions

To Represent Help Syntax Is

Statements and functions Initial letter uppercase: Abs Len(variable)

Arguments to statements or
functions

Lowercase, italicized letters; an internal capital may be
used to indicate multiple English words:

variable, rate, prompt, sringVar

Optional arguments and/or
characters

Arguments and/or characters in brackets:

[, caption], [type], [$]

Required choice for an
argument from a list of choices

A list inside braces, with OR operator (|) separating
choices:

{Goto label | Resume Next | Goto 0}
20 Siebel VB Language Reference Version 7.5, Rev. C

Introduction

Revision History
Revision History
Siebel VB Language Reference, Version 7.5, Rev. C

Version 7.5, Rev. C

Version 7.5, Rev. B

Additional Changes:

■ Modified examples to remove errors.

Table 2. Changes Made in Rev. C

Topic Revision

“Arrays” on page 163 Modified explanation of element counts.

“Declare Statement” on page 155 Modified Usage information.

“Input Function” on page 261 Modified Usage information.

“Open Statement” on page 344 Modified Usage information.

ShowStatus Method Removed. This method has been deprecated.

Table 3. Changes Made in Rev. B

Topic Revision

“Call Statement” on page 112 Updated usage information.

“Language Overview” on page 47 Added information on date comparisons.

“Now Function” on page 331 Improved the Returns information.

“SQLRetrieve Function” on page 454 Added limitation information on
Destination().

“Strings” on page 56 Added information on CRLF issues.

“Type Statement” on page 487 Updated usage information.
Version 7.5, Rev. C Siebel VB Language Reference 21

Introduction

Revision History
Version 7.5, Rev. A

Additional Changes:

■ Modified examples to remove deprecated commands.

Table 4. Changes Made in Rev. A

Topic Revision

“Object Handling” on page 66 Added text on good programming practice.

“SQLOpen Function” on page 448 Repaired syntax error in the example.

“SQLRequest Function” on page 451 Repaired syntax error in the example.
22 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions 1
This quick reference lists the Siebel VB statements and functions by functional
group.

■ “Arrays” on page 24

■ “Compiler Directives” on page 25

■ “Control Flow” on page 26

■ “Dates and Times” on page 28

■ “Declarations” on page 30

■ “Environment Control” on page 32

■ “Errors” on page 33

■ “Files: Disk and Folder Control” on page 34

■ “Files: File Control” on page 35

■ “Files: File Input/Output” on page 36

■ “Math Functions: Financial Functions” on page 38

■ “Math Functions: Numeric Functions” on page 39

■ “Math Functions: Trigonometric Functions” on page 40

■ “Objects” on page 41

■ “ODBC” on page 42

■ “Strings: String Functions” on page 43

■ “Strings: String Conversions” on page 45

■ “Variants” on page 46
Version 7.5, Rev. C Siebel VB Language Reference 23

Quick Reference: Statements and Functions

Arrays
Arrays
The following functions and statements are used for manipulating arrays.

Function
or
Statement Purpose For More Information

Erase Reinitializes the contents of an array “Erase Statement” on
page 175

LBound Returns the lower bound of an array’s dimension “LBound Function” on
page 287

ReDim Declares dynamic arrays and reallocates memory “ReDim Statement” on
page 377

UBound Returns the upper bound of an array’s dimension “UBound Function” on
page 490
24 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Compiler Directives
Compiler Directives
The following statements are compiler directives.

Function or
Statement Purpose

For More
Information

Rem Treats the remainder of the line as a comment “Rem Statement”
on page 380

' Treats the remainder of the line as a comment “Rem Statement”
on page 380

_ Treats the next line as a continuation of the current line
Version 7.5, Rev. C Siebel VB Language Reference 25

Quick Reference: Statements and Functions

Control Flow
Control Flow
The following statements control the logic flow.

Statement Purpose For More Information

Call Transfers control to a subprogram “Call Statement” on page 112

Do...Loop Controls repetitive actions “Do...Loop Statement” on
page 169

Exit Causes the current procedure or loop structure to return “Exit Statement” on
page 187

For...Next Loops a fixed number of times “For...Next Statement” on
page 199

Goto Sends control to a line label “GoTo Statement” on
page 253

If...Then...Else Branches on a conditional value “If...Then...Else Statement”
on page 259

Let Assigns a value to a variable “Let (Assignment
Statement)” on page 293

Lset Left-aligns one string or a user-defined variable within
another

“Lset Statement” on
page 307

On...Goto Branches to one of several labels depending upon value “On...GoTo Statement” on
page 340

Rset Right-aligns one string or a user-defined variable within
another

“Reset Statement” on
page 385

Select Case Executes one of a series of statement blocks “Select Case Statement” on
page 403

Set Sets an object variable to a value “Set Statement” on page 411

Stop Stops program execution “Stop Statement” on
page 461
26 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Control Flow
While...Wend Controls repetitive actions “While...Wend Statement”
on page 507

With Executes a series of statements on a specified variable or
object

“With Statement” on
page 510

Statement Purpose For More Information
Version 7.5, Rev. C Siebel VB Language Reference 27

Quick Reference: Statements and Functions

Dates and Times
Dates and Times
The following functions and statements are for use with date and time information.

Function or
Statement Purpose For More Information

Date Function Returns the current date “Date Function” on
page 146

Date Statement Sets the computer’s date “Date Statement” on
page 147

DateSerial Returns the date value for year, month,
and day specified

“DateSerial Function” on
page 149

DateValue Returns the date value for the string
specified

“DateValue Function” on
page 151

Day Returns the day of month component of a
date-time value

“Day Function” on
page 153

Hour Returns the hour of day component of a
date-time value

“Hour Function” on
page 257

IsDate Determines whether a value is a legal date “IsDate Function” on
page 276

Minute Returns the minute component of a date-
time value

“Minute Function” on
page 316

Month Returns the month component of a date-
time value

“Month Function” on
page 320

Now Returns the current date and time “Now Function” on
page 331

Second Returns the second component of a date-
time value

“Second Function” on
page 397

Time Function Returns the current time “Time Function” on
page 473

Time Statement Sets the current time “Time Statement” on
page 475
28 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Dates and Times
Timer Returns the number of seconds since
midnight

“Timer Function” on
page 477

TimeSerial Returns the time value for the hour,
minute, and second specified

“TimeSerial Function” on
page 479

TimeValue Returns the time value for the string
specified

“TimeValue Function” on
page 481

Weekday Returns the day of the week for the
specified date-time value

“Weekday Function” on
page 505

Year Returns the year component of a date-
time value

“Year Function” on
page 515

Function or
Statement Purpose For More Information
Version 7.5, Rev. C Siebel VB Language Reference 29

Quick Reference: Statements and Functions

Declarations
Declarations
The following statements are for data declarations.

Statement Purpose For More Information

Const Declares a symbolic constant “Const Statement” on
page 131

Declare Forward declares a procedure in the same
module or in a dynamic-link library

“Declare Statement”
on page 155

Deftype Declares the default data type for variables “Deftype Statement”
on page 158

Dim Declares variables “Dim Statement” on
page 161

Function...End
Function

Defines a function “Function...End
Function Statement”
on page 213

Global Declares a global variable “Global Statement”
on page 249

Option Base Declares the default lower bound for array
dimensions

“Option Base
Statement” on
page 347

Option Compares Declares the default case sensitivity for
string comparisons

“Option Compare
Statement” on
page 350

Option Explicit Forces variables to be declared explicitly “Option Explicit
Statement” on
page 352

ReDim Declares dynamic arrays and reallocates
memory

“ReDim Statement”
on page 377

Static Defines a static variable or subprogram “Static Statement” on
page 460
30 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Declarations
Sub...End Sub Defines a subprogram “Sub...End Sub
Statement” on
page 467

Type Declares a user-defined data type “Type Statement” on
page 487

Statement Purpose For More Information
Version 7.5, Rev. C Siebel VB Language Reference 31

Quick Reference: Statements and Functions

Environment Control
Environment Control
The following functions and statements relate to the computer’s environment.

Function or
Statement Purpose

For More
Information

AppActivate Activates another application “SendKeys
Statement” on
page 405

Command Returns the command line specified when the
MAIN sub was run

Date Statement Sets the current date “Date Statement”
on page 147

Environ Returns a string from the operating system’s
environment

“Environ
Function” on
page 171

Randomize Initializes the random-number generator “Randomize
Statement” on
page 373

SendKeys Sends keystrokes to another application “SendKeys
Statement” on
page 405

Shell Runs an executable program “Shell Function”
on page 432
32 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Errors
Errors
The following functions and statements relate to error handling.

Function or
Statement Purpose

For More
Information

Erl Returns the line number where a run-time error
occurred

“Erl Function”
on page 177

Err Function Returns a run-time error code “Err Function”
on page 179

Err Statement Sets the run-time error code “Err Statement”
on page 180

Error Function Returns a string representing an error “Error
Function” on
page 182

Error Statement Generates an error condition “Error
Statement” on
page 184

On Error Controls run-time error handling “On Error
Statement” on
page 341

Resume Ends an error-handling routine “Resume
Statement” on
page 387

Trappable Errors Errors that can be trapped by Siebel VB code “Trappable
Errors” on
page 523
Version 7.5, Rev. C Siebel VB Language Reference 33

Quick Reference: Statements and Functions

Files: Disk and Folder Control
Files: Disk and Folder Control
The following functions and statements relate to folders.

Function or
Statement Purpose For More Information

ChDir Changes the default folder for a drive “ChDir Statement” on
page 118

ChDrive Changes the default drive “ChDrive Statement” on
page 120

CurDir Returns the current folder for a drive “CurDir Function” on
page 141

Dir Returns a filename that matches a pattern “Dir Function” on page 167

MkDir Creates a folder on a disk “MkDir Statement” on
page 318

RmDir Removes a folder from a disk “RmDir Statement” on
page 390
34 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Files: File Control
Files: File Control
The following functions and statements are for file control.

Function or
Statement Purpose For More Information

FileAttr Returns information about an open file “FileAttr Function” on
page 190

FileCopy Copies a file “FileCopy Statement”
on page 192

FileDateTime Returns the modification date and time of a
specified file

“FileDateTime
Function” on page 194

FileLen Returns the length of a specified file in bytes “FileLen Function” on
page 195

GetAttr Returns attributes of a specified file, folder, or
volume label

“GetAttr Function” on
page 222

Kill Deletes files from a disk “Kill Statement” on
page 284

Name Renames a disk file “Name Statement” on
page 323

SetAttr Sets attribute information for a file “SetAttr Statement” on
page 413
Version 7.5, Rev. C Siebel VB Language Reference 35

Quick Reference: Statements and Functions

Files: File Input/Output
Files: File Input/Output
The following functions and statements are for file input and output.

Function or
Statement Purpose For More Information

Close Closes a file “Close Statement” on
page 129

Eof Checks for end of file “Eof Function” on
page 173

FreeFile Returns the next unused file number “FreeFile Function” on
page 212

Get Reads bytes from a file “Get Statement” on
page 218

Input Function Returns a string of characters from a file “Input Function” on
page 261

Input Statement Reads data from a file or from the keyboard “Input Statement” on
page 262

Line Input Reads a line from a sequential file “Line Input Statement”
on page 297

Loc Returns the current position in an open file “Loc Function” on
page 299

Lock Controls access to some or all of an open
file by other processes

“Lock Statement” on
page 300

Lof Returns the length of an open file “Lof Function” on
page 302

Open Opens a disk file for I/O “Open Statement” on
page 344

Print Prints data to a file or to the screen “Print Statement” on
page 364

Put Writes data to an open file “Put Statement” on
page 367
36 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Files: File Input/Output
Reset Closes all open disk files “Reset Statement” on
page 385

Seek Function Returns the current position for a file “Seek Function” on
page 399

Seek Statement Sets the current position for a file “Seek Statement” on
page 401

Spc Outputs a given number of spaces “Spc Function” on
page 435

Tab Moves the print position to the given
column

“Tab Function” on
page 469

Unlock Controls access to some or all of an open
file by other processes

“Unlock Statement” on
page 494

Width Sets the output-line width for an open file “Width Statement” on
page 509

Write Writes data to a sequential file “Write Statement” on
page 512

Function or
Statement Purpose For More Information
Version 7.5, Rev. C Siebel VB Language Reference 37

Quick Reference: Statements and Functions

Math Functions: Financial Functions
Math Functions: Financial Functions
The following functions are for calculating financial information.

Function Purpose For More Information

FV Returns future value of a cash flow stream “FV Function” on
page 216

IPmt Returns interest payment for a given period “IPmt Function” on
page 271

IRR Returns internal rate of return for a cash flow stream “IRR Function” on
page 273

NPV Returns net present value of a cash flow stream “NPV Function” on
page 333

Pmt Returns a constant payment per period for an annuity “Pmt Function” on
page 356

PPmt Returns principal payment for a given period “PPmt Function” on
page 361

PV Returns present value of a future stream of cash flows “PV Function” on
page 369

Rate Returns interest rate per period “Rate Function” on
page 375
38 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Math Functions: Numeric Functions
Math Functions: Numeric Functions
The following functions are for mathematics.

Function Purpose For More Information

Abs Returns the absolute value of a number “Abs Function” on
page 76

Exp Returns the value of e raised to a power “Exp Function” on
page 188

Fix Returns the integer part of a number “Fix Function” on
page 197

Int Returns the integer part of a number “Int Function” on
page 268

IsNumeric Determines whether a value is a legal number “IsNumeric Function”
on page 283

Log Returns the natural logarithm of a value “Log Function” on
page 303

Rnd Returns a random number “Rnd Function” on
page 392

Sgn Returns a value indicating the sign of a number “Sgn Function” on
page 430

Sqr Returns the square root of a number “Sqr Function” on
page 459
Version 7.5, Rev. C Siebel VB Language Reference 39

Quick Reference: Statements and Functions

Math Functions: Trigonometric Functions
Math Functions: Trigonometric Functions
The following functions are for trigonometric calculations.

Function Purpose For More Information

Atn Returns the arc tangent of a number “Atn Function” on page 90

Cos Returns the cosine of an angle “Cos Function” on
page 133

Sin Returns the sine of an angle “Sin Function” on
page 433

Tan Returns the tangent of an angle “Tan Function” on
page 471

Derived Functions How to compute other trigonometric
functions

“Derived Trigonometric
Functions” on page 527
40 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Objects
Objects
The following commands and statements are for object control.

Command or
Statement Purpose For More Information

Clipboard Accesses the Windows Clipboard “Clipboard” on
page 126

CreateObject Creates a COM automation object “CreateObject
Function” on
page 134

GetObject Retrieves a COM object from a file or gets the active COM object for
a COM class

“GetObject Function”
on page 234

Is Determines whether two object variables refer to the same object “Is Operator” on
page 275

Me Gets the current object “Me” on page 311

New Allocates and initializes a new COM object “New Operator” on
page 325

Nothing Sets an object variable to not refer to an object “Nothing Function”
on page 329

Object Declares a COM automation object “Object Class” on
page 336

Typeof Checks the class of an object “Typeof Function” on
page 489

With Executes statements on an object or a user-defined type “With Statement” on
page 510
Version 7.5, Rev. C Siebel VB Language Reference 41

Quick Reference: Statements and Functions

ODBC
ODBC
The following functions are for data access.

Function Purpose For More Information

SQLClose Closes a data source connection “SQLClose Function”
on page 437

SQLError Returns a detailed error message (ODBC functions) “SQLError Function”
on page 439

SQLExecQuery Executes a SQL statement “SQLExecQuery
Function” on page 442

SQLGetSchema Obtains information about data sources, databases,
terminology, users, owners, tables, and columns

“SQLGetSchema
Function” on page 445

SQLOpen Establishes a connection to a data source for use by other
functions

“SQLOpen Function”
on page 448

SQLRequest Makes a connection to a data source, executes a SQL
statement, returns the results

“SQLRequest
Function” on page 451

SQLRetrieve Returns the results of a select statement that was executed by
SQLExecQuery into a user-provided array

“SQLRetrieve
Function” on page 454

SQLRetrieveToFile Returns the results of a select statement that was executed by
SQLExecQuery into a user-specified file

“SQLRetrieveToFile
Function” on page 457
42 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Strings: String Functions
Strings: String Functions
The following functions and statements are for string manipulation.

Function or
Statement Purpose For More Information

GetField Returns a substring from a delimited source string “GetFieldValue
Method” on
page 227

Hex Returns the hexadecimal representation of a number,
as a string

“Hex Function” on
page 256

InStr Returns the position of one string within another “InStr Function” on
page 265

LCase Converts a string to lower case “LCase Function” on
page 289

Left Returns the left portion of a string “Left Function” on
page 290

Len Returns the length of a string or size of a variable “Len Function” on
page 292

Like
Operator

Compares a string against a pattern “Like Operator” on
page 295

LTrim Removes leading spaces from a string “LTrim Function” on
page 309

Mid
Function

Returns a portion of a string “Mid Function” on
page 312

Mid
Statement

Replaces a portion of a string with another string “Mid Statement” on
page 314

Oct Returns the octal representation of a number, as a
string

“Oct Function” on
page 338

Right Returns the right portion of a string “Right Function” on
page 388

RTrim Removes trailing spaces from a string “RTrim Function” on
page 396
Version 7.5, Rev. C Siebel VB Language Reference 43

Quick Reference: Statements and Functions

Strings: String Functions
SetField Replaces a substring within a delimited target string “SetFieldValue
Method” on
page 414

Space Returns a string of spaces “Space Function” on
page 434

Str Returns the string representation of a number “Str Function” on
page 462

StrComp Compares two strings “StrComp Function”
on page 463

String Returns a string consisting of a repeated character “String Function” on
page 465

Trim Removes leading and trailing spaces from a string “Trim Function” on
page 486

UCase Converts a string to upper case “UCase Function”
on page 492

Function or
Statement Purpose For More Information
44 Siebel VB Language Reference Version 7.5, Rev. C

Quick Reference: Statements and Functions

Strings: String Conversions
Strings: String Conversions
The following functions are for string conversion.

Function Purpose
For More
Information

Asc Returns an integer corresponding to a character code “Asc Function” on
page 88

CCur Converts a value to currency “CCur Function”
on page 115

CDbl Converts a value to double-precision floating point “CDbl Function”
on page 117

Chr Converts a character code to a string “Chr Function” on
page 121

CInt Converts a value to an integer by rounding “CInt Function” on
page 123

CLng Converts a value to a long by rounding “CLng Function”
on page 128

CSng Converts a value to single-precision floating point “CSng Function”
on page 137

CStr Converts a value to a string “CStr Function” on
page 139

CVar Converts a number or string to a variant “CVar Function” on
page 143

CVDate Converts a value to a variant date “CVDate Function”
on page 144

Format Converts a value to a string using a picture format “Format Function”
on page 202

Val Converts a string to a number “Val Function” on
page 495
Version 7.5, Rev. C Siebel VB Language Reference 45

Quick Reference: Statements and Functions

Variants
Variants
The following functions are for variant data.

Function Purpose For More Information

IsEmpty Determines whether a variant has been initialized “IsEmpty Function”
on page 277

IsNull Determines whether a variant contains a NULL value “IsNull Function”
on page 281

Null Returns a null variant “Null Function” on
page 334

VarType Returns the type of data stored in a variant “VarType Function”
on page 497
46 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview 2
If you have never programmed in Visual Basic before, you may find the following
hints helpful.

Declare your variables. As a general rule, use the Option Explicit statement, because
it forces you to declare your variables (using the Dim statement) before you use
them. Declaring your variables makes it easier for others to understand your code,
and for you to debug the code. You can declare a variable without giving it a data
type. If you do not specify a data type, Siebel VB assumes the type Variant, which
requires 16 bytes—twice as much memory as the next smallest data type. If you can
avoid using Variant variables, you reduce the amount of memory required by your
code, which may make execution faster. In Siebel VB, you place Option commands
in the (general) (declarations) window.

Use standardized naming conventions. Another way to improve the readability of your
code is to follow a set of standardized naming conventions. It does not matter what
conventions you follow as long as everyone in the programming group follows the
same conventions. One very common convention is to prefix each variable with a
letter denoting its type, as shown here.

Data Type Symbol Example

String s sName

Integer i iReturn

Long integer l lBigCount

Single-precision number si siAllowance

Double-precision number d dBudget

Object o oBusComp

Currency c cAmtOwed
Version 7.5, Rev. C Siebel VB Language Reference 47

Language Overview
You can also use suffix characters on your variable names, as described in “Type
Characters” on page 57.

The Me object reference. The special object reference Me is a VB shorthand for “the
current object.” Use it in place of references to active Siebel business objects. For
example, in a business component event handler, you should use Me in place of
ActiveBusComp, as shown in the following example.

Function BusComp_PreSetFieldValue(FieldName As String, FieldValue
As String) As Integer

If Val(Me.GetFieldValue(“Rep %”)) >75 Then
....
End If
BusComp_PreSetFieldValue = ContinueOperation

End Function

Trap errors. Especially in a LAN environment, where you cannot be sure that a
record has not been changed or deleted by another user, you should create routines
that keep the program from failing when it meets an unexpected condition. For
more information about error-handling routines, read “Error Handling” on page 68.

Make effective use of the Select Case construct. Use the Select Case construct to
choose among any number of alternatives your require, based on the value of a
single variable. This is preferable to a series of nested If statements, because it
simplifies code maintenance, and also improves performance, because the variable
must be evaluated only once. For a full description of the Select Case construct, read
“Select Case Statement” on page 403.

Use the With shortcut. Use the With statement to apply several methods to a single
object. It makes the code easier to read, reduces typing, and improves performance.
Instead of a series of statements such as

Set oBusComp = objBusObject.GetBusComp("Opportunity")
oBusComp.ClearToQuery
oBusComp.SetSearchSpec . . .
oBusComp.ExecuteQuery ForwardBackward
oBusComp.FirstRecord
oBusComp.NewRecord NewAfter
oBusComp.SetFieldValue "QuoteNumber", sQuoteId
oBusComp.SetFieldValue "Account", sAccount
. . .
sSolutionId(cSolution) = oBusComp.GetFieldValue("Id")
. . .
48 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview
use the following:

Set oBusComp = objBusObject.GetBusComp("Opportunity")
With oBusComp

.ClearToQuery

.SetSearchSpec . . .

.ExecuteQuery ForwardBackward

.FirstRecord

.NewRecord NewAfter

.SetFieldValue "QuoteNumber", sQuoteId

.SetFieldValue "Account", sAccount

. . .
sSolutionId(cSolution) =.GetFieldValue("Id")
. . .

End With

Use extreme care when working with date variables. When working with date
variables, be careful with the date format. GetFieldValue returns the date in the
format dd/mm/yyyy (followed by the time). The CVDate() function expects the
regional setting. As a result, applying the CVDate() function to the return value may
cause an error. The GetFormattedFieldValue method uses the regional settings of the
user's operating system. The regional settings specify the year with two digits in
most cases, thereby creating the possibility of Y2K noncompliance. For these
reasons, you should use the following approach for performing date arithmetic:

■ Retrieve the value of date fields with the GetFieldValue method. For more
information, read Siebel Object Interfaces Reference.

■ Convert it into a date variable using the DateSerial function.

■ Perform the required date arithmetic.

Here is an example:

Dim strDate as String, varDate as Variant
strDate = oBC.GetFieldValue("Date Field")
varDate = DateSerial(Mid(strDate,7,4), Left(strDate,2), _

Mid(strDate,4,2))
[any date arithmetic]
Version 7.5, Rev. C Siebel VB Language Reference 49

Language Overview
When comparing date values, use the DateSerial function on the date values first.
This makes sure that the values are in the same format so that the comparison is
valid. Date values from different sources may be in different formats. DateSerial
provides a uniform format for all dates. For example, you are checking to see if an
employee’s hire date is before a specific benefits changeover date. You should use
the DateSerial function on both the hire date and the benefits changeover date, and
then you can make a valid comparison between the two date values because they
are in the same format.
50 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Conventions
Conventions
The following describes the programming conventions used by Siebel VB.

■ “Arguments” on page 51

■ “Named Arguments” on page 52

■ “Comments” on page 53

Arguments
Arguments to subprograms and functions you write are listed after the subroutine
or function and might or might not be enclosed in parentheses. Whether you use
parentheses depends on whether you want to pass the argument to the subroutine
or function by value or by reference.

If you pass an argument by value, the variable used for that argument retains its
value when the subroutine or function returns to the caller. If you pass an argument
by reference, the variable's value may be changed for the calling procedure. For
example, suppose you set the value of a variable, x, to 5 and pass x as an argument
to a subroutine, named mysub. If you pass x by value to mysub, then x remains 5
after mysub returns. If you pass x by reference to mysub, however, then x can be
changed by mysub and may have a different value.

NOTE: Siebel VB functions support a maximum of 32 arguments. If you need to use
more than 32 arguments, use the Type function to define a custom data type and
pass arguments of this new type.

To pass an argument by value, use one of the following syntax options:

Call mysub((x))

mysub(x)

y = myfunction((x))

Call myfunction((x))

To pass an argument by reference, use one of the following options:
Version 7.5, Rev. C Siebel VB Language Reference 51

Language Overview

Conventions
Call mysub(x)

mysub x

y = myfunction(x)

Call myfunction(x)

Externally declared subprograms and functions (such as DLL functions) can be
declared to take byVal arguments in their declaration. In that case, those arguments
are always passed byVal.

NOTE: Array variables cannot be passed to externally declared subprograms and
functions.

Named Arguments
When you call a subroutine or function that takes arguments, you usually supply
values for those arguments by listing them in the order shown in the syntax for the
statement or function. For example, suppose you define a function this way:

myfunction(id, action, value)

From the preceding syntax, you know that the function called myfunction requires
three arguments: id, action, and value. When you call this function, you supply
those arguments in the order shown. If the function contains just a few arguments,
you can remember their order with ease. However, if a function has several
arguments, and you want to be sure the values you supply are assigned to the
correct arguments, use named arguments.

Named arguments are arguments that are identified by name rather than by position
in the syntax. To use a named argument, use the following syntax:

namedarg:= value

Using this syntax for myfunction, you get:

myfunction id:=1, action:="get", value:=0
52 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Conventions
The advantage of named arguments is that you do not need to remember the
original order as they were listed in the syntax, so the following function call is also
correct:

myfunction action:="get", value:=0, id:=1

With named arguments, order is not important.

The area in which named arguments have a significant advantage is in calls to
functions or subprograms that have a mix of required and optional arguments.
Ordinarily, you need to use commas as placeholders in the syntax for the optional
arguments that you do not use. However, with named arguments you can specify
just the arguments you want to use and their values without regard to their order
in the syntax. For example, if myfunction is defined as:

myfunction(id, action, value, Optional counter)

you can use named arguments as follows:

myfunction id:="1", action:="get", value:="0"

or

myfunction value:="0", counter:="10", action:="get", id:="1"

NOTE: Although you can shift the order of named arguments, you cannot omit
required arguments. Siebel VB functions and statements accept named arguments.
The argument names are listed in the syntax for each statement and function.

Comments
Comments are preceded by an apostrophe and can appear on their own line in a
procedure or directly after a statement or function on the same line:

' This comment is on its own line

Dim i as Integer ' This comment is on the code line

Comments are also indicated by the Rem statement.
Version 7.5, Rev. C Siebel VB Language Reference 53

Language Overview

Data Types
Data Types
Basic is a strongly typed language. Variables can be declared implicitly on first
reference by using a type character. If no type character is present, the default type
of Variant is assumed. Alternatively, the type of a variable can be declared explicitly
with the Dim statement. In either case, the variable can contain data only of the
declared type. Variables of a user-defined type must be explicitly declared. Siebel
VB supports standard Basic numeric, string, record, and array data. Siebel VB also
supports Dialog Box Records and Objects (which are defined by the application).

■ “Arrays” on page 54

■ “Numbers” on page 55

■ “Records” on page 56

■ “Strings” on page 56

■ “Type Characters” on page 57

Arrays
Arrays are created by specifying one or more subscripts at declaration or when the
array is redimensioned by the ReDim statement (read “ReDim Statement” on
page 377). Subscripts specify the beginning and ending index for each dimension.
If only an ending index is specified, the beginning index depends on the Option
Base setting. Array elements are referenced by enclosing the proper number of
index values in parentheses after the array name. For example, arrayName(i,j,k)
indicates an array with three dimensions. For more information, read “Dim
Statement” on page 161.

For examples of the use of arrays, read “IsEmpty Function” on page 277, “IsNull
Function” on page 281, “NPV Function” on page 333, “Null Function” on page 334,
“Option Base Statement” on page 347, and “VarType Function” on page 497.
54 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Data Types
Numbers
Table 5 shows the numeric types.

Numeric values are always signed.

Siebel VB has no true Boolean variables. Basic considers 0 to be FALSE and any
other numeric value to be TRUE. Only numeric values can be used as Booleans.
Comparison operator expressions always return 0 for FALSE and -1 for TRUE.

Integer constants can be expressed in decimal, octal, or hexadecimal notation.
Decimal constants are expressed by simply using the decimal representation. To
represent an octal value, precede the constant with &O or &o (for example, &o177).
To represent a hexadecimal value, precede the constant with &H or &h (for example,
&H8001).

Table 5. Numeric Types

Type Description From To

Integer 2-byte integer -32,768 32,767

Long 4-byte integer -2,147,483,648 2,147,483,647

Single 4-byte floating-
point number

-3.402823e+38
0.0,
1.401298e-45

-1.401298e-45,

3.402823466e+38

Double 8-byte floating-
point number

-1.797693134862315d+308,
0.0,
2.2250738585072014d-308

-4.94065645841247d-308,

1.797693134862315d+308

Currency 8-byte number
with a fixed
decimal point

-922,337,203,685,477.5808 922,337,203,685,477.5807
Version 7.5, Rev. C Siebel VB Language Reference 55

Language Overview

Data Types
Records
A record, or record variable, is a data structure containing one or more elements,
each of which has a value. Before declaring a record variable, a Type must be
defined. When the Type is defined, the variable can be declared to be of that type.
The variable name should not have a type character suffix. Record elements are
referenced using dot notation, for example,

record.element

where record is the previously defined record name and element is a member of that
record. Records can contain elements that are themselves records.

Strings
Siebel VB strings can be either fixed or dynamic. Fixed strings have a length
specified when they are defined, and the length cannot be changed. Fixed strings
cannot be of 0 length. Dynamic strings have no specified length. Any string can vary
in length from 0 to 32,767 characters. There are no restrictions on the characters
that can be included in a string. For example, the character whose ANSI value is 0
can be embedded in strings.

NOTE: You can use characters only from the current character set. Within a character
set, any character can be embedded either by cutting and pasting or by using the
Chr function. For more information, read “Chr Function” on page 121.

When exchanging data with other applications, be aware of terminating characters.
Siebel VB terminates its output text with a carriage return and a line feed (CRLF),
and expects the same characters on input (unless specifically noted for some input
functions). Some applications generate and expect only carriage returns.
56 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Data Types
Type Characters
Siebel VB permits the use of special characters as the suffix to the name of a
function, variable, or constant. The character defines the data type of the variable
or function, and operates as a de facto declaration. The type characters are shown
in Table 6.

Table 6. Data Type Suffix Characters

Data Type Suffix

Dynamic String $

Integer %

Long Integer &

Single-precision floating-point !

Double-precision floating-point #

Currency (exact fixed point) @
Version 7.5, Rev. C Siebel VB Language Reference 57

Language Overview

Data Type Conversions
Data Type Conversions
Numeric conversions. Siebel VB converts data between any two numeric types. When
converting from a larger type to a smaller type (for example, Long to Integer), a run-
time numeric overflow may occur. This indicates that the number of the larger type
is too large for the target data type. Imprecision is not a run-time error (for example,
when converting from Double to Single, or from either float type to either integer
type).

String conversions. Siebel VB also converts between fixed strings and dynamic
strings. When converting from a fixed a string to a dynamic string, it creates a
dynamic string that has the same length and contents as the fixed string. When
converting from a dynamic string to a fixed string, some adjustment may be
necessary. If the dynamic string is shorter than the fixed string, the resulting fixed
string is extended with spaces. If the dynamic string is longer than the fixed string,
the resulting fixed string is a truncated version of the dynamic string. No run-time
errors are caused by string conversions.

Variant conversions. Siebel VB converts between any data type and variants. Basic
converts variant strings to numbers when required. A type mismatch error occurs
if the variant string does not contain a valid representation of the required number.

No other implicit conversions are supported. In particular, Siebel VB does not
convert automatically between numeric and string data. Use the Val function to
convert string to numeric data, and the Str function to convert numeric to string
data.
58 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Dynamic Arrays
Dynamic Arrays
Dynamic arrays differ from fixed arrays because a subscript range for the array
elements is not specified when the array is dimensioned. Instead, the subscript
range is set using the ReDim statement. With dynamic arrays, the number of array
elements can be set based on other conditions in your procedure. For example, you
may want to use an array to store a set of values entered by the user, but you may
not know in advance how many values the user will enter. In this case, you
dimension the array without specifying a subscript range and then execute a ReDim
statement each time the user enters a new value. Or you may want to prompt for
the number of values to be entered and execute one ReDim statement to set the size
of the array before prompting for the values.

If you use ReDim to change the size of an array and want to preserve the contents
of the array at the same time, be sure to include the Preserve argument to the ReDim
statement:

Redim Preserve ArrayName(n)

The following procedure uses a dynamic array, varray, to hold cash flow values
entered by the user:

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim msgtext as String
Dim x as Integer
Dim netpv as Double
cflowper=2
ReDim varray(cflowper)
For x= 1 to cflowper
varray(x)=500
Next x
aprate=10
If aprate>1 then

aprate=aprate/100
End If
netpv=NPV(aprate,varray())
msgtext="The net present value is: "
msgtext=msgtext & Format(netpv, "Currency")
TheApplication.raiseErrorText msgtext

End Sub
Version 7.5, Rev. C Siebel VB Language Reference 59

Language Overview

Dynamic Arrays
If you declare a dynamic array (with a Dim statement) before using it, the maximum
number of dimensions it can have is 8. To create dynamic arrays with more
dimensions (up to 60), do not declare the array at all and use only the ReDim
statement inside your procedure.
60 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Variant Data Type
Variant Data Type
The variant data type can be used to define variables that contain any type of data.
A tag is stored with the variant data to identify the type of data that it currently
contains. You can examine the tag by using the VarType function.

A variant can contain a value of any of the types listed in Table 7.

A newly defined Variant defaults to being of Empty type to signify that it contains
no initialized data. An Empty Variant is converted to zero when used in a numeric
expression, or to an empty string when used in a string expression. To test whether
a variant is uninitialized (empty), use the IsEmpty function.

Table 7. Variant Value Types

Type/Name Size of Data Range

0 (Empty) 0 N/A

1 Null 0 N/A

2 Integer 2 bytes (short) -32768 to 32767

3 Long 4 bytes (long) -2.147E9 to 2.147E9

4 Single 4 bytes (float) -3.402E38 to -1.401E-45 (negative)

1.401E-45 to 3.402E38 (positive)

5 Double 8 bytes (double) -1.797E308 to -4.94E-324 (negative)

4.94E-324 to 1.797E308 (positive)

6 Currency 8 bytes (fixed) -9.223E14 to 9.223E14

7 Date 8 bytes (double) Jan 1st, 100 to Dec 31st, 9999

8 String up to 2GB Length is limited by the amount of
random access memory, up to 2 GB

9 Object N/A N/A
Version 7.5, Rev. C Siebel VB Language Reference 61

Language Overview

Variant Data Type
Null variants have no associated data and serve only to represent invalid or
ambiguous results. You can test whether a variant contains a null value with the
IsNull function. Null is not the same as Empty, which indicates that a variant has
not yet been initialized.
62 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Expressions
Expressions
An expression is a collection of two or more terms that perform a mathematical or
logical operation. The terms are usually either variables or functions that are
combined with an operator to evaluate to a string or numeric result. You use
expressions to perform calculations, manipulate variables, or concatenate strings.

Expressions are evaluated according to precedence order. Use parentheses to
override the default precedence order.

The precedence order (from high to low) for the operators is:

■ “Numeric Operators” on page 63

■ “String Operators” on page 64

■ “Comparison Operators (Numeric and String)” on page 64

■ “Logical Operators” on page 65

Numeric Operators

Operator Comments

^ Exponentiation.

-,+ Unary minus and plus.

*, / Numeric multiplication or division. For division, the result is a Double.

\ Integer division. The operands can be Integer or Long.

Mod Modulus or Remainder. The operands can be Integer or Long.

-, + Numeric addition and subtraction. The + operator can also be used for
string concatenation.
Version 7.5, Rev. C Siebel VB Language Reference 63

Language Overview

Expressions
String Operators

Comparison Operators (Numeric and String)

For numbers, the operands are widened to the least common type (Integer is
preferable to Long; Long is preferable to Single; Single is preferable to Double). For
Strings, the comparison is case-sensitive, and is based on the collating sequence
used by the language specified by the user using the Windows Control Panel. The
result is 0 for FALSE and -1 for TRUE.

Operator Comments

& String concatenation

+ String concatenation

Operator Comments

> Greater than

< Less than

= Equal to

<= Less than or equal to

>= Greater than or equal to

<> Not equal to
64 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Expressions
Logical Operators

Operator Comments

NOT Unary Not—operand can be Integer or Long. The operation is performed
bitwise (one's complement).

AND And—operands can be Integer or Long. The operation is performed bitwise.

OR Inclusive Or—operands can be Integer or Long. The operation is performed
bitwise.

XOR Exclusive Or—operands can be Integer or Long. The operation is performed
bitwise.

EQV Equivalence—operands can be Integer or Long. The operation is performed
bitwise. (A EQV B) is the same as (NOT (A XOR B)).

IMP Implication—operands can be Integer or Long. The operation is performed
bitwise. (A IMP B) is the same as ((NOT A) OR B).
Version 7.5, Rev. C Siebel VB Language Reference 65

Language Overview

Object Handling
Object Handling
Objects are reusable blocks of code that can be instantiated or referenced to perform
specific tasks. They may be the end products of a software application, such as a
spreadsheet, graph, or document. Each software application has its own set of
properties and methods that change the characteristics of an object.

Properties affect how an object behaves. For example, width is a property of a range
of cells in a spreadsheet, colors are a property of graphs, and margins are a property
of word processing documents.

Methods cause the application to perform an action on an object. Examples are
Calculate for a spreadsheet, Snap to Grid for a graph, and Auto-Save for a
document.

In Siebel VB, you can access Siebel objects and change the properties and methods
of that object. This means that you can access an object that is part of the Siebel
application by running a VB program external to the Siebel program.

However, before you can use a non-Siebel object in a Siebel VB procedure, you must
instantiate the object by assigning it to an object variable. Then attach an object
name (with or without properties and methods) to the variable to manipulate the
object.

Alternatively, when accessing Siebel objects within Siebel VB you can declare an
object as one of the supported Siebel object types. The syntax for doing this is
shown in the following example code.
66 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Object Handling
In this example, oBC is not declared “as Object”, but rather is declared
“as BusComp”. Here you are instantiating one of the Siebel object types, the
business component (BusComp) object type. You could declare it as an object, but
if you want to use the methods associated with the object type, as shown in step 2,
you must declare it as the appropriate object type.

Finally, the preceding example ends by setting oBC to “nothing”. In keeping with
good programming practices, always set an object to “nothing” when it has been
instantiated.

NOTE: You can use a similar procedure to access other types of COM-compliant
objects. Use the original software application that created them to change properties
and methods of the objects. You can see an example in “CreateObject Function” on
page 134.

Creating an Object Variable to Access the Object
The Dim statement creates an object variable called oBC and assigns a picklist
business component to it. The Set statement assigns the business component to the
variable oBC using a Get method. If you are instantiating an application, use either
GetObject or CreateObject. Use GetObject if the application is already open on the
Windows desktop. Use CreateObject if the application is not open.

Using Methods and Properties to Act on Objects
To access an object, property or method, use this syntax:

appvariable.object.property
appvariable.object.method

For example, me.GetPickListBusComp(“Sales Stage”) is a value returned by the
GetPickListBusComp method of the BusComp object for the Siebel application,
which is assigned to the object variable oBC.
Version 7.5, Rev. C Siebel VB Language Reference 67

Language Overview

Error Handling
Error Handling
Siebel VB contains three error handling statements and functions for trapping errors
in your program: Err, Error, and On Error. Siebel VB returns a code for many of the
possible run-time errors you might encounter. For a list of codes, read “Trappable
Errors” on page 523

In addition to the errors trapped by Siebel VB, you may want to create your own set
of codes for trapping errors specific to your program. For example, create your own
set of codes if your program establishes rules for file input and the user does not
follow the rules. You can trigger an error and respond appropriately using the same
statements and functions you would use for error codes returned by Siebel VB.

Regardless of the error trapped, you can use two methods to handle errors. You can
put error-handling code directly before a line of code where an error might occur
(such as after a File Open statement), or you can label a separate section of the
procedure just for error handling, and force a jump to that label if any error occurs.
The On Error statement handles both options.

For more information, read “Trapping Errors Returned by Siebel VB” on page 69 and
“Trapping User-Defined, Non-Siebel VB Errors” on page 71.
68 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Trapping Errors Returned by Siebel VB
Trapping Errors Returned by Siebel VB
This code example shows the two ways to trap errors. Option 1 places error-
handling code directly before the line of code that could cause an error. Option 2
contains a labeled section of code that handles any error.

“Option 1: Trap Errors Within Body of Code” on page 70

“Option 2: Trap Errors Using an Error Handler” on page 70
Version 7.5, Rev. C Siebel VB Language Reference 69

Language Overview

Trapping Errors Returned by Siebel VB
Option 1: Trap Errors Within Body of Code
The On Error statement identifies the line of code to go to in case of an error. In this
case, the Resume Next parameter means that execution continues with the next line
of code after the error. In this example, the line of code to handle errors is the If
statement. It uses the Err statement to determine which error code is returned.

Option 2: Trap Errors Using an Error Handler
The On Error statement used here specifies a label to jump to in case of errors. The
code segment is part of the main procedure and uses the Err statement to determine
which error code is returned. To make sure your code does not accidentally fall
through to the error handler, precede it with an Exit statement.
70 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Trapping User-Defined, Non-Siebel VB Errors
Trapping User-Defined, Non-Siebel VB Errors
These code examples show the two ways to set and trap user-defined errors. Both
options use the Error statement to set the user-defined error to the value 30000. To
trap the error, option 1 places error-handling code directly before the line of code
that could cause an error. Option 2 contains a labeled section of code that handles
any user-defined errors.
Version 7.5, Rev. C Siebel VB Language Reference 71

Language Overview

Trapping User-Defined, Non-Siebel VB Errors
72 Siebel VB Language Reference Version 7.5, Rev. C

Language Overview

Trapping Errors Generated by Siebel VB Methods
Trapping Errors Generated by Siebel VB Methods
Many Siebel VB methods return error codes, but they must be handled differently
from those returned by the standard VB functions and statements. Siebel VB
methods use numeric error codes in the range from 4000 to 4999. For errors
generated by Siebel VB methods, use a construct of this form to see the text of the
error message:

DisplayError:
If ErrCode <> 0 Then

ErrText = GetLastErrText
TheApplication.RaiseErrorText ErrText
Exit Sub

End If

For more information, read Siebel Object Interfaces Reference.

Note that DisplayError: is a label and is the target of a Goto statement elsewhere
in the program.

NOTE: The GetLastErrText method is available only through interfaces external to
Siebel Tools. Therefore, you can use it in Microsoft VB, but not in Siebel VB.
Version 7.5, Rev. C Siebel VB Language Reference 73

Language Overview

Siebel VB and Unicode
Siebel VB and Unicode
Siebel VB supports Unicode with the following exceptions. Functions that provide
File Input/Output or which access external DLLs are code page-dependent and not
Unicode-compliant.
74 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference 3
This language reference lists the Siebel VB statements and functions in alphabetical
order, and indicates:

■ Syntax

■ Return value

■ Usage

■ An example

■ A list of related commands

This reference also includes information about Siebel VB methods and events.
Siebel VB methods are used to access and affect components of the Siebel software
architecture such as applets and business components. Siebel VB methods must be
prefaced by the name of the architecture component to be addressed; for example:

BusComp.GetFieldValue(fieldName)

Standard VB commands do not address specific components of the Siebel software
architecture. In this guide, standard VB functions and statements and Siebel VB
methods are always identified as such in the description. For details about Siebel
VB events and methods, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 75

Siebel VB Language Reference

Abs Function
Abs Function
This standard VB function returns the absolute value of a number.

Syntax Abs(number)

Returns The absolute value of number.

Usage The data type of the return value matches the type of the number. If number is a
variant string (vartype 8), the return value is converted to vartype 5 (double). If the
absolute value evaluates to vartype 0 (Empty), the return value is vartype 3 (long).

Example This example finds the difference between two variables, oldacct and newacct.

Sub Button_Click
Dim oldacct, newacct, count

oldacct = 1234566
newacct = 33345
count = Abs(oldacct - newacct)

End Sub

See Also “Exp Function” on page 188
“Fix Function” on page 197
“Int Function” on page 268
“Log Function” on page 303
“Rnd Function” on page 392
“Sgn Function” on page 430
“Sqr Function” on page 459

Argument Description

number Any valid numeric expression
76 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

ActivateField Method
ActivateField Method
ActivateField allows queries to retrieve data for the argument-specified field. It is
used with business component objects. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 77

Siebel VB Language Reference

ActivateMultipleFields Method
ActivateMultipleFields Method
ActivateMultipleFields allows users to activate the fields specified in the property
set input argument. For details, read Siebel Object Interfaces Reference.
78 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

ActiveBusObject Method
ActiveBusObject Method
ActiveBusObject returns the business object for a Siebel business component for the
active applet. This method is used with the application object. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 79

Siebel VB Language Reference

ActiveViewName Method
ActiveViewName Method
ActiveViewName returns the name of the active view. It is used with applet and
application objects. For details, read Siebel Object Interfaces Reference.
80 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

AddChild Method
AddChild Method
Use the AddChild method to add subsidiary property sets to a property set to form
tree-structured data structures. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 81

Siebel VB Language Reference

Application_Close Event
Application_Close Event
The Close Siebel VB event handler is called before exiting the application and after
the PreClose event. This allows Basic scripts to perform last minute cleanup (such
as cleaning up a connection to a COM server). It is called when the application is
notified by Windows that it should close, but not if the process is terminated
directly. For details, read Siebel Object Interfaces Reference.
82 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Application_InvokeMethod Event
Application_InvokeMethod Event
The InvokeMethod Siebel VB event handler is called after a specialized method is
invoked. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 83

Siebel VB Language Reference

Application_Navigate Event
Application_Navigate Event
The Navigate event is called after the client has navigated to a view. For details, read
Siebel Object Interfaces Reference.
84 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Application_PreInvokeMethod Event
Application_PreInvokeMethod Event
The PreInvokeMethod Siebel VB event handler is called before a specialized method
is invoked by a user defined applet menu or by calling InvokeMethod on the
application. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 85

Siebel VB Language Reference

Application_PreNavigate Event
Application_PreNavigate Event
The PreNavigate() event is called before the client has navigated from one view to
the next. For details, read Siebel Object Interfaces Reference.
86 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Application_Start Event
Application_Start Event
The Application_Start event handler is called when the user has successfully logged
into the application. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 87

Siebel VB Language Reference

Asc Function
Asc Function
This standard VB function returns an integer corresponding to the ANSI code of the
first character in the specified string.

Syntax Asc(string)

Returns An integer corresponding to the ANSI code of the first character in the argument.

Usage To change an ANSI code to string characters, use Chr.

Example This example asks the user for a letter and returns its ANSI value.

Sub Button_Click
Dim userchar As String
Dim ascVal as Integer
userchar = "Z"
ascVal = Asc(userchar)

End Sub

See Also “Chr Function” on page 121

Argument Description

string A string expression of one or more characters
88 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Associate Method
Associate Method
The Associate method creates a new many-to-many relationship for the parent
object through an association business component. It is used with business
components. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 89

Siebel VB Language Reference

Atn Function
Atn Function
This standard VB function returns the angle (in radians) for the arctangent of the
specified number.

Syntax Atn(number)

Returns The arctangent of number.

Usage The Atn function assumes number is the ratio of two sides of a right triangle: the
side opposite the angle to find and the side adjacent to the angle. The function
returns a single-precision value for a ratio expressed as an integer, a currency, or a
single-precision numeric expression. The return value is a double-precision value
for a long, variant, or double-precision numeric expression.

To convert radians to degrees, multiply by (180/PI). The value of PI is
approximately 3.14159.

Example This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16-foot span from the outside wall to the center of the
house. The Atn function returns the angle in radians; it is multiplied by 180/PI to
convert it to degrees.

Sub Button_Click
Dim height As Single, span As Single, angle As Single
Dim PI As Single
PI = 3.14159
height = 8
span = 16
angle = Atn(height/span) * (180/PI)

End Sub

Argument Description

number Any valid numeric expression
90 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Atn Function
See Also “Cos Function” on page 133
“Sin Function” on page 433
“Tan Function” on page 471
“Derived Trigonometric Functions” on page 527
Version 7.5, Rev. C Siebel VB Language Reference 91

Siebel VB Language Reference

BusComp Method
BusComp Method
The BusComp Siebel VB method returns a Siebel Business Component that is
associated with an object. It is used with applet objects, and business objects. For
details, read Siebel Object Interfaces Reference.
92 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_Associate Event
BusComp_Associate Event
The Associate Siebel VB event handler is called after a record is added to a business
component to create an association. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 93

Siebel VB Language Reference

BusComp_ChangeRecord Event
BusComp_ChangeRecord Event
The ChangeRecord Siebel VB event handler is called after a record becomes the
current row in a Siebel business component. For details, read Siebel Object Interfaces
Reference.
94 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_CopyRecord Event
BusComp_CopyRecord Event
The CopyRecord Siebel VB event handler is called after a row has been copied in a
Siebel business component and that row has been made active. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 95

Siebel VB Language Reference

BusComp_DeleteRecord Event
BusComp_DeleteRecord Event
The DeleteRecord Siebel VB event handler is called after a row in a Siebel business
component is deleted. The current context is a different row (the Fields of the just-
deleted row are no longer available). For details, read Siebel Object Interfaces
Reference.
96 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_InvokeMethod Event
BusComp_InvokeMethod Event
The InvokeMethod Siebel VB event handler is called when a specialized method is
called on a Siebel business component. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 97

Siebel VB Language Reference

BusComp_NewRecord Event
BusComp_NewRecord Event
The NewRecord Siebel VB event handler is called after a new row has been created
in a Siebel business component and that row has been made active. The event may
be used to set up default values for Fields. For details, read Siebel Object Interfaces
Reference.
98 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_PreAssociate Event
BusComp_PreAssociate Event
The PreAssociate Siebel VB event handler is called before a record is added to a
Siebel business component to create an association. The semantics are the same as
BusComp_PreNewRecord. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 99

Siebel VB Language Reference

BusComp_PreCopyRecord Event
BusComp_PreCopyRecord Event
The PreCopyRecord Siebel VB event handler is called before a new row is copied in
a Siebel business component. The event may be used to perform precopy validation.
For details, read Siebel Object Interfaces Reference.
100 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_PreDeleteRecord Event
BusComp_PreDeleteRecord Event
The PreDeleteRecord Siebel VB event handler is called before a row is deleted in a
Siebel business component. The event may be used to prevent the deletion or to
perform any actions in which you need access to the record that is to be deleted.
For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 101

Siebel VB Language Reference

BusComp_PreGetFieldValue Event
BusComp_PreGetFieldValue Event
The PreGetFieldValue Siebel VB event handler is called when the value of a business
component field is accessed. For details, read Siebel Object Interfaces Reference.
102 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_PreInvokeMethod Event
BusComp_PreInvokeMethod Event
The PreInvokeMethod Siebel VB event handler is called before a specialized method
is invoked on a Siebel business component. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 103

Siebel VB Language Reference

BusComp_PreNewRecord Event
BusComp_PreNewRecord Event
The PreNewRecord Siebel VB event handler is called before a new row is created in
a Siebel business component. The event may be used to perform preinsert
validation. For details, read Siebel Object Interfaces Reference.
104 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_PreQuery Event
BusComp_PreQuery Event
The PreQuery Siebel VB event handler is called before query execution. For details,
read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 105

Siebel VB Language Reference

BusComp_PreSetFieldValue Event
BusComp_PreSetFieldValue Event
The PreSetFieldValue Siebel VB event handler is called before a value is pushed
down into a Siebel business component from the user interface or through a call to
SetFieldValue. For details, read Siebel Object Interfaces Reference.
106 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_PreWriteRecord Event
BusComp_PreWriteRecord Event
The PreWriteRecord Siebel VB event handler is called before a row is written out to
the database. The event may perform any final validation necessary before the
actual save occurs. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 107

Siebel VB Language Reference

BusComp_Query Event
BusComp_Query Event
The Query Siebel VB event handler is called just after the query is done and the
rows have been retrieved, but before the rows are actually displayed. For details,
read Siebel Object Interfaces Reference.
108 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusComp_SetFieldValue Event
BusComp_SetFieldValue Event
The SetFieldValue Siebel VB event handler is called when a value is pushed down
into a Siebel business component from the user interface or through a call to
SetFieldValue. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 109

Siebel VB Language Reference

BusComp_WriteRecord Event
BusComp_WriteRecord Event
The WriteRecord Siebel VB event handler is called after a row is written out to the
database. For details, Siebel Object Interfaces Reference.
110 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

BusObject Method
BusObject Method
BusObject returns the business object for the specified object. It is used with applet,
service, control, and web applet objects. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 111

Siebel VB Language Reference

Call Statement
Call Statement
This standard VB function transfers control to a subprogram or function.

Syntax A Call subprogram_name [(argument_list)]

Syntax B subprogram_name argument_list

subprogram_name is the name of the subprogram or function to which control is to
be passed.

Returns If a function, its output; if a subprogram, not applicable.

Usage Use the Call statement to call a subprogram or function written in Basic or to call C
procedures in a DLL. These C procedures must be described in a Declare statement
or be implicit in the application. Make sure the DLL is present on every Siebel
Server.

If a procedure accepts named arguments, you can use the names to specify the
argument and its value. Order is not important. For example, if a procedure is
defined as follows:

Sub mysub(aa, bb, optional cc, optional dd)

The following calls to this procedure are equivalent to each other:

call mysub(1, 2, , 4)
mysub aa := 1, bb := 2, dd := 4
call mysub(aa := 1, dd:= 4, bb := 2)
mysub 1, 2, dd:= 4

The syntax for named arguments is as follows:

argname := argvalue

where argname is the name for the argument as supplied in the Sub or Function
statement and argvalue is the value to assign to the argument when you call it.

Argument Description

argument_list The arguments, if any, to be passed to the subroutine or function
112 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Call Statement
The advantage to using named arguments is that you do not have to remember the
order specified in the procedure’s original definition, and if the procedure takes
optional arguments, you do not need to include commas (,) for arguments that you
leave out.

The procedures that can use named arguments include:

■ Functions defined with the Function statement.

■ Subprograms defined with the Sub statement.

■ Procedures declared with Declare statement.

■ Many built-in functions and statements.

■ Some externally registered DLL functions and methods.

Arguments are passed by reference to procedures written in Basic. If you pass a
variable to a procedure that modifies its corresponding formal parameter, and you
do not want to have your variable modified (that is, if you need to retain the
“before” value), enclose the variable in parentheses in the Call statement. This tells
Siebel VB to pass a copy of the variable. (This is called passing by value.) Note,
however, that generally passing by value is less efficient, and should not be done
unless necessary.

When a variable is passed to a procedure that expects its argument by reference, the
variable must match the exact type of the formal parameter of the function. (This
restriction does not apply to expressions or variants.)

When calling an external DLL procedure, arguments can be passed by value rather
than by reference. This is specified in the Declare statement, the Call statement
itself, or both, using the ByVal keyword. If ByVal is specified in the declaration, then
the ByVal keyword is optional in the call. If present, it must precede the value. If
ByVal was not specified in the declaration, it is illegal in the call unless the data type
was unspecified in the declaration.

Example This example calls a subprogram named CreateFile to open a file, write the
numbers 1 to 10 in it, and leave it open. The calling procedure then checks the file’s
mode. If the mode is 1 (open for Input) or 2 (open for Output), the procedure closes
the file.
Version 7.5, Rev. C Siebel VB Language Reference 113

Siebel VB Language Reference

Call Statement
(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x

End Sub

Sub Button1_Click
Dim filemode as Integer
Dim attrib as Integer
Call CreateFile
attrib = 1
filemode = FileAttr(1,attrib)
If filemode = 1 or filemode = 2 then

Close #1
End If
Kill "c:\temp001"

End Sub

See Also “Declare Statement” on page 155
114 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CCur Function
CCur Function
This standard VB function converts an expression to the data type currency.

Syntax CCur(expression)

Returns The value of expression as a number of type currency.

Usage CCur accepts any type of expression. Numbers that do not fit in the currency data
type result in an Overflow error. Strings that cannot be converted result in a Type
Mismatch error. Variants containing null result in an Illegal Use of Null error.

Example This example converts a yearly payment on a loan to a currency value with four
decimal places. A subsequent Format statement formats the value to two decimal
places before displaying it in a message box.

Sub Button_Click
Dim aprate, totalpay, loanpv

Dim loanfv, due, monthlypay
Dim yearlypay, msgtext
loanpv = 5000
aprate = 6.9
If aprate >1 then

aprate = aprate/100
End If
aprate = aprate/12
totalpay = 360
loanfv = 0

Rem Assume payments are made at end of month
due = 0
monthlypay = Pmt(aprate,totalpay,-loanpv,loanfv,due)
yearlypay = CCur(monthlypay * 12)
msgtext = "The yearly payment is: " & _

Format(yearlypay, "Currency")
End Sub

Argument Description

expression Any expression that evaluates to a number
Version 7.5, Rev. C Siebel VB Language Reference 115

Siebel VB Language Reference

CCur Function
See Also “CDbl Function” on page 117
“Chr Function” on page 121
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144
116 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CDbl Function
CDbl Function
This standard VB function converts an expression to the data type double.

Syntax CDbl(expression)

Returns The value of expression as a double-precision number.

Usage CDbl accepts any type of expression. Strings that cannot be converted to a double-
precision floating point result in a Type Mismatch error. Variants containing null
result in an Illegal Use of Null error.

Example This example calculates the square root of 2 as a double-precision floating-point
value and displays it in scientific notation.

Sub Button_Click
Dim value

Dim msgtext
value = CDbl(Sqr(2))
msgtext = "The square root of 2 is: " & Value

End Sub

See Also “CCur Function” on page 115
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144

Argument Description

expression Any expression that evaluates to a number
Version 7.5, Rev. C Siebel VB Language Reference 117

Siebel VB Language Reference

ChDir Statement
ChDir Statement
This standard VB statement changes the default folder for the specified drive.

Syntax ChDir [drive][[\]folder\]folder

Returns Not applicable

Usage If the drive argument is omitted, ChDir changes the default folder on the current
drive. If the initial backslash in [\]folder\ is omitted, ChDir changes to a folder
within the current folder. If it is included, the path is followed from the root folder.

The ChDir statement does not change the default drive. To change the default drive,
use ChDrive.

Example This example changes the current folder to C:\Windows, if it is not already the
default.

Sub Button_Click
Dim newdir as String
newdir = "c:\Windows"
If CurDir <> newdir then

ChDir newdir
End If

End Sub

Argument Description

drive The name of the drive containing the desired default folder as a letter, or
a string expression representing the drive name; a colon is not required

[\]folder\ If the folder is not within the current folder of the specified drive (or the
default drive if none is specified), the path to the folder to become the
default, or a string expression representing the path

folder The name of the folder to become the default, or a string expression
representing the folder name
118 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

ChDir Statement
See Also “ChDrive Statement” on page 120
“CurDir Function” on page 141
“Dir Function” on page 167
“MkDir Statement” on page 318
“RmDir Statement” on page 390
Version 7.5, Rev. C Siebel VB Language Reference 119

Siebel VB Language Reference

ChDrive Statement
ChDrive Statement
This standard VB statement changes the default drive.

Syntax ChDrive drive

Returns Not applicable

Usage A colon is permitted but not required as part of the name of the drive; a single letter
suffices. The drive to be made the default must exist and must be within the range
specified by the LASTDRIVE statement in the config.sys file. If a null string ("")
is supplied as the argument, the default drive remains the same. If the drive
argument is a string, ChDrive uses the first letter only. If the argument is omitted,
an error message is displayed. To change the current folder on a drive, use ChDir.

Example This example changes the default drive to A.

Sub Button_Click
Dim newdrive as String
newdrive = "A"
If Left(CurDir,2) <> newdrive then

ChDrive newdrive
End If

End Sub

See Also “ChDir Statement” on page 118
“CurDir Function” on page 141
“Dir Function” on page 167
“MkDir Statement” on page 318
“RmDir Statement” on page 390

Argument Description

drive A string expression designating the new default drive
120 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Chr Function
Chr Function
This standard VB function returns the one-character string corresponding to an
ANSI code.

Syntax Chr[$](charCode)

Returns The character represented by charcode.

Usage The dollar sign ($) in the function name is optional. If it is included, the return type
is string; otherwise the function returns a variant of vartype 8 (string).

Example This example displays the character equivalent for an ASCII code between 65 and
122 typed by the user.

Sub Button_Click
Dim numb as Integer
Dim msgtext as String
Dim out as Integer
out = 0
Do Until out

numb = 75
If Chr$(numb)> = "A" AND Chr$(numb)< = "Z" _

OR Chr$(numb)> = "a" AND Chr$(numb)< = "z" then
msgtext = "The letter for the number " & numb _

&" is: " & Chr$(numb)
out = 1

ElseIf numb = 0 then
Exit Sub

Else
msgtext = "Does not convert to a character; try again."

End If
Loop

End Sub

Argument Description

charCode An integer between 0 and 255 representing the ANSI code for a character
Version 7.5, Rev. C Siebel VB Language Reference 121

Siebel VB Language Reference

Chr Function
See Also “Asc Function” on page 88
“CCur Function” on page 115
“CDbl Function” on page 117
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144
“Format Function” on page 202
“Val Function” on page 495
122 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CInt Function
CInt Function
This standard VB function converts an expression to the data type integer by
rounding.

Syntax CInt(expression)

Returns The value of expression as an integer.

Usage After rounding, the resulting number must be within the range of -32767 to 32767,
or an error occurs.

Strings that cannot be converted to an integer result in a Type Mismatch error.
Variants containing null result in an Illegal Use of Null error.

Example This example calculates the average of ten golf scores.

Sub Button_Click
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum = 0
For x = 1 to 10

score = 7-
sum = sum + score

Next x
msgtext = "Your average is: " & _

Format(CInt(sum/ (x - 1)), "General Number")
End Sub

Argument Description

expression Any expression that evaluates to a number
Version 7.5, Rev. C Siebel VB Language Reference 123

Siebel VB Language Reference

CInt Function
See Also “CCur Function” on page 115
“CDbl Function” on page 117
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144
124 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

ClearToQuery Method
ClearToQuery Method
The ClearToQuery method clears the current query and sort specifications on a
Siebel business component. It is used with business component objects. For details,
read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 125

Siebel VB Language Reference

Clipboard
Clipboard
The Clipboard methods are standard VB methods that allow you to access the
Windows Clipboard as an object.

Syntax Clipboard.Clear
Clipboard.GetText()
Clipboard.SetText string
Clipboard.GetFormat()

Returns Not applicable

Usage The Windows Clipboard can be accessed directly by your program so you can
transfer text to and from other applications that support the Clipboard. The
supported Clipboard methods are as follows:

NOTE: Data on the Clipboard is lost when another set of data of the same format is
placed on the Clipboard (either through code or through a cut or copy operation in
an application).

Example This example places the text string “Hello, world.” on the Clipboard.

Argument Description

string A string or string expression containing the text to send to the Clipboard

Method Description

Clear Clears the contents of the Clipboard

GetText Returns a text string from the Clipboard

SetText Puts a text string on the Clipboard

GetFormat Returns TRUE (non-zero) if the format of the item on the Clipboard is text;
otherwise, returns FALSE (0)
126 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Clipboard
Sub Button_Click
Dim mytext as String
mytext = "Hello, world."
Clipboard.Settext mytext

End Sub
Version 7.5, Rev. C Siebel VB Language Reference 127

Siebel VB Language Reference

CLng Function
CLng Function
This standard VB function converts an expression to the data type long by rounding.

Syntax CLng(expression)

Returns The value of expression as a number of type long.

Usage After rounding, the resulting number must be within the range of -2,147,483,648 to
2,147,483,647, or an error occurs.

Strings that cannot be converted to a long result in a Type Mismatch error. Variants
containing null result in an Illegal Use of Null error.

Example This example divides the US national debt by the number of people in the country
to find the amount of money each person would have to pay to wipe it out. This
figure is converted to a long integer and formatted as currency.

Sub Button_Click
Dim debt As Single
Dim msgtext
Const Populace = 250000000
debt = 8000000000000
msgtext = "The $/citizen is: " & _

Format(CLng(Debt/ Populace), "Currency")
End Sub

See Also “CCur Function” on page 115
“CDbl Function” on page 117
“CInt Function” on page 123
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144

Argument Description

expression Any expression that can evaluate to a number
128 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Close Statement
Close Statement
This standard VB statement closes a file, concluding input/output to that file.

Syntax Close [[#]filenumber [, [#]filenumber ...]]

Returns Not applicable

Usage Filenumber is the number assigned to the file in the Open statement and can be
preceded by a pound sign (#). If this argument is omitted, every open file is closed.
When a Close statement is executed, the association of a file with filenumber is
ended, and the file can be reopened with the same or a different file number.

When the Close statement is used, the final output buffer is written to the operating
system buffer for that file. Close frees the buffer space associated with the closed
file. Use the Reset statement so that the operating system flushes its buffers to disk.

Example This example opens a file for random access, gets the contents of one variable, and
closes the file again. The subprogram, CreateFile, creates the file c:\temp001
used by the main subprogram.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1
Reset

End Sub

Argument Description

filenumber The file number used in the Open statement to open the file, identifying
the file to close
Version 7.5, Rev. C Siebel VB Language Reference 129

Siebel VB Language Reference

Close Statement
Sub Button1_Click
Dim acctno as String * 3
Dim recno as Long
Dim msgtext as String
Call CreateFile
recno = 1
newline = Chr(10)
Open "c:\temp001" For Random As #1 Len = 3
msgtext = "The account numbers are:" & newline & newline
Do Until recno = 11

Get #1,recno,acctno
msgtext = msgtext & acctno
recno = recno + 1

Loop
Close #1
Reset
Kill "c:\temp001"

End Sub

See Also “Open Statement” on page 344
“Reset Statement” on page 385
“Stop Statement” on page 461
130 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Const Statement
Const Statement
This standard VB statement declares symbolic constants for use in a Basic program.

Syntax [Global] Const constantName [As type] = expression [, constantName [As type] =
expression] …

Returns Not applicable

Usage Instead of using the As clause, the type of the constant can be specified by using a
type character as a suffix (# for numbers, $ for strings) to constantName. If no type
character is specified, the type of constantName is derived from the type of the
expression.

To specify a Global Const, you must follow the same rules as for declaring a Global
variable: It must be declared in the (general) (declarations) section of the modules
in which you wish to access the Global variable.

Example For an example, read “CLng Function” on page 128.

See Also “Declare Statement” on page 155
“Deftype Statement” on page 158
“Dim Statement” on page 161
“Let (Assignment Statement)” on page 293
“Type Statement” on page 487

Argument Description

constantName The variable name to contain a constant value

type The data type of the constant (Number or String)

expression Any expression that evaluates to a constant number
Version 7.5, Rev. C Siebel VB Language Reference 131

Siebel VB Language Reference

Copy Method
Copy Method
Copy returns a copy of a property set. For details, read Siebel Object Interfaces
Reference.
132 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Cos Function
Cos Function
This standard VB function returns the cosine of an angle.

Syntax Cos(number)

Returns The cosine of number.

Usage The return value is between -1 and 1. The return value is a single-precision number
if the angle has a data type of integer or currency, or is a single-precision value. The
return value is a double-precision value if the angle has a data type of long or
variant, or is a double-precision value.

The angle can be either positive or negative. To convert degrees to radians, multiply
by (PI/180). The value of PI is approximately 3.14159.

Example This example finds the length of a roof, given its pitch and the distance of the house
from its center to the outside wall.

Sub Button_Click
Dim bwidth As Single, roof As Single, pitch As Single
Dim msgtext
Const PI = 3.14159
Const conversion = PI/180
pitch = 35
pitch = Cos(pitch * conversion)
bwidth = 75
roof = bwidth/pitch
msgtext = "The length of the roof is " & _

Format(roof, "##.##") & " feet."
End Sub

See Also “Atn Function” on page 90
“Sin Function” on page 433
“Tan Function” on page 471
“Derived Trigonometric Functions” on page 527

Argument Description

number An angle in radians
Version 7.5, Rev. C Siebel VB Language Reference 133

Siebel VB Language Reference

CreateObject Function
CreateObject Function
Creates a new COM automation object.

Syntax CreateObject(application.objectname)

Returns Not applicable

Usage To create an object, you first must declare an object variable, using Dim, and then
Set the variable equal to the new object, as follows:

Dim excelObj As Object
Set excelObj = CreateObject("Excel.Application")

To refer to a method or property of the newly created object, use the syntax
objectvar.property or objectvar.method, as follows:

Dim cellVal as String
cellVal = excelObj.ActiveSheet.Cells(1,1).Value

Refer to the documentation provided with your Web Client Automation Server
application for correct application and object names. Modal or nonmodal forms
cannot be displayed from server-based applications. DLLs instantiated by this
function should be Thread-Safe.

CAUTION: When invoking a COM object, a 440 error message may occur if you pass
the wrong number, order, or type of parameters to the COM object.

Example This example uses CreateObject to create an Excel worksheet and then edits and
saves the worksheet.

Argument Description

application The name of the application

objectname The name of the object to be used
134 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CreateObject Function
Sub BtnExcel_Click
Dim oWorkSheet As Object
Dim sfileName As String
Set oWorkSheet = CreateObject("Excel.Sheet")
If oWorkSheet Is Nothing the

Exit Sub
End If

' Make Excel visible through the Application object.
oWorkSheet.Application.Visible = 1
' Place some text in the first cell of the sheet
oWorkSheet.ActiveSheet.Cells(1,1).Value = "Column A, Row 1"
' Save the sheet
sfileName = "C:\demo.xls"
oWorkSheet.SaveAs (fileName)
' Close Excel with the Quit method on the Application object
oWorkSheet.Application.Quit
' Clear the object from memory
Set oWorkSheet = Nothing

End Sub

This example uses CreateObject to create a Word document and then edits and
saves the document.

Sub BtnWrd_Click
Dim oWord As Object
Dim fileName As String
fileName = "C:\demo.doc"
Set oWord = CreateObject("Word.Application")
' Create a new document
oWord.Documents.Add
If oWord Is Nothing then

Exit Sub
End If
' Make Word visible through the Application object
oWord.Application.Visible = 1
' Add some text
oWord.Selection.TypeText "This is a demo."
' Save the document
oWord.ActiveDocument.SaveAs (fileName)
' Close Word with the Quit method on the Application object
oWord.Quit
' Clear the object from memory
Set oWord = Nothing

End Sub
Version 7.5, Rev. C Siebel VB Language Reference 135

Siebel VB Language Reference

CreateObject Function
See Also “GetObject Function” on page 234
“Is Operator” on page 275
“Me” on page 311
“New Operator” on page 325
“Nothing Function” on page 329
“Object Class” on page 336
“Typeof Function” on page 489
136 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CSng Function
CSng Function
This standard VB function converts an expression to the data type single.

Syntax CSng(expression)

Returns The value of expression as a single-precision floating-point number.

Usage The expression must have a value within the range allowed for the single data type,
or an error occurs.

Strings that cannot be converted to an integer result in a Type Mismatch error.
Variants containing null result in an Illegal Use of Null error.

Example This example calculates the factorial of a number. A factorial (notated with an
exclamation mark, !) is the product of a number and each integer between it and
the number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or the
value 120.

Sub Button_Click
Dim number as Integer
Dim factorial as Double
Dim msgtext As String
number = 25
If number <= 0 then

Exit Sub
End If

factorial = 1
For x = number to 2 step -1

factorial = factorial * x
Next x

'If number <= 35, then its factorial is small enough to
' be stored as a single-precision number

If number< 35 then
factorial = CSng(factorial)

Argument Description

expression Any expression that can evaluate to a number
Version 7.5, Rev. C Siebel VB Language Reference 137

Siebel VB Language Reference

CSng Function
End If
msgtext = "The factorial of " & number & " is " & factorial

End Sub

See Also “CCur Function” on page 115
“CDbl Function” on page 117
“CInt Function” on page 123
“CLng Function” on page 128
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144
138 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CStr Function
CStr Function
This standard VB function converts an expression to the data type string.

Syntax CStr(expression)

Returns A string containing the value of expression.

Example This example uses the string functions to operate on a string that was originally
entered as a number.

Sub Button_Click
Dim var1, msgtext as String, code as Integer
var1 = 77

msgtext = Cstr(var1)
msgtext = Left(var1,1)
code = Asc(msgtext)

msgtext = "The first digit you entered was," & msgtext
msgtext = msgtext & ". Its ANSI code is " & code & "."

End Sub

Argument Description

expression Any expression that can evaluate to a number

Expression Return value

Date A string containing a date

Empty A zero-length string ("")

Error A string containing Error, followed by the error number

Null A run-time error

Other Numeric A string containing the number
Version 7.5, Rev. C Siebel VB Language Reference 139

Siebel VB Language Reference

CStr Function
See Also “Asc Function” on page 88
“CCur Function” on page 115
“CDbl Function” on page 117
“Chr Function” on page 121
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CVar Function” on page 143
“CVDate Function” on page 144
“Format Function” on page 202
140 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CurDir Function
CurDir Function
This standard VB function returns the default folder (and drive) for the specified
drive.

Syntax CurDir[$][(drive)]

Returns The default drive and folder.

Usage A colon is not required after the drive name. The drive must exist, and must be
within the range specified in the LASTDRIVE statement of the config.sys file. If a
null argument ("") is supplied, or if no drive is indicated, the path for the default
drive is returned.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

To change the current drive, use ChDrive. To change the current folder, use ChDir.

Example This example changes the current folder to C:\Windows, if it is not already the
default.

Sub Button_Click
Dim newdir as String
newdir = "c:\Windows"
If CurDir <> newdir then

ChDir newdir
End If

End Sub

See Also “ChDir Statement” on page 118
“ChDrive Statement” on page 120
“Dir Function” on page 167
“MkDir Statement” on page 318
“RmDir Statement” on page 390

Argument Description

drive The letter of the drive to search
Version 7.5, Rev. C Siebel VB Language Reference 141

Siebel VB Language Reference

CurrencyCode Method
CurrencyCode Method
CurrencyCode returns the operating currency code associated with the division to
which the user’s position has been assigned. It is used with the application object.
For details, read Siebel Object Interfaces Reference.
142 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CVar Function
CVar Function
This standard VB function converts an expression to the data type variant.

Syntax CVar(expression)

Returns The expression as an expression of type variant.

Usage CVar accepts any type of expression.

CVar generates the same result as you would get by assigning the expression to a
variant variable.

Example This example converts a single variable to a variant variable.

Sub Button_Click
Dim singleAnswer as Single
Dim variantAnswer as Variant
singleAnswer = 100.5
variantAnswer = CVar(singleAnswer)

end Sub

See Also “CCur Function” on page 115
“CDbl Function” on page 117
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144

Argument Description

expression Any expression that can evaluate to a number
Version 7.5, Rev. C Siebel VB Language Reference 143

Siebel VB Language Reference

CVDate Function
CVDate Function
This standard VB function converts an expression to the data type variant of type
date.

Syntax CVDate(expression)

Returns The value of expression expressed as a variant of vartype 7 (date).

Usage CVDate accepts both string and numeric values.

The CVDate function returns a variant of vartype 7 (date) that represents a date
from January 1, 100, through December 31, 9999. A value of 2 represents January 1,
1900. Times are represented as fractional days.

CVDate converts the time portion of a date expression if one is included as part of
the expression, or if the time expression is the only argument. For ways to display
the desired result of a date conversion, read “Format Function” on page 202.

Example This example displays the date for one week from the date entered by the user.

Sub Button_Click
Dim str1 as String

Dim nextweek
Dim msgtext as String

i:
str1 = "2/5/2001"
answer = IsDate(str1)
If answer = -1 then

str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
msgtext = "One week from the date entered is:
msgtext = msgtext & "Format(nextweek,"dddddd")

Else
Goto i

End If
End Sub

Argument Description

expression Any expression that can evaluate to a number
144 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

CVDate Function
See Also “Asc Function” on page 88
“CCur Function” on page 115
“CDbl Function” on page 117
“Chr Function” on page 121
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“DateValue Function” on page 151
“Format Function” on page 202
“Val Function” on page 495
Version 7.5, Rev. C Siebel VB Language Reference 145

Siebel VB Language Reference

Date Function
Date Function
This standard VB function returns a string representing the current date as
determined by the computer’s clock.

Syntax Date[$]

Returns The current date, as a value of type string.

Usage The Date function returns a ten-character string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

Example This example displays the date for one week from today’s date (the current date on
the computer).

Sub Button_Click
Dim nextweek
nextweek = CVar(Date) + 7

End Sub

See Also “CVDate Function” on page 144
“Date Statement” on page 147
“DateSerial Function” on page 149
“Format Function” on page 202
“Now Function” on page 331
“Time Function” on page 473
“Time Statement” on page 475
“Timer Function” on page 477
“TimeSerial Function” on page 479

Argument Description

Not applicable
146 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Date Statement
Date Statement
This standard VB function sets the computer’s date.

Syntax Date[$] = expression

In the preceding string forms, the placeholders are interpreted as follows:

Returns Not applicable

Usage If the dollar sign ($) is omitted, expression can be a string containing a valid date,
a variant of vartype 7 (date), or a variant of vartype 8 (string).

If expression is not already a variant of vartype 7 (date), Date attempts to convert it
to a valid date from January 1, 1980, through December 31, 2099. Date uses the
Short Date format in the International section of Windows Control Panel to
recognize day, month, and year if a string contains three numbers delimited by valid
date separators. In addition, Date recognizes month names in either full or
abbreviated form.

Argument Description

expression A string in one of the following forms:

■ mm-dd-yy

■ mm-dd-yyyy

■ mm/dd/yy

■ mm/dd/yyyy

Placeholder Meaning

mm A month expressed as a two-digit number (01 to 12)

dd A day expressed as a two-digit number (01 to 31)

yy A year expressed as a two-digit number (00 to 99)

yyyy A year expressed as a four-digit number (1980 to 2099)
Version 7.5, Rev. C Siebel VB Language Reference 147

Siebel VB Language Reference

Date Statement
Example This example changes the computer’s date to a date entered by the user.

Sub Button_Click
Dim userdate
Dim answer

i:
userdate = "2/5/2001"
If userdate = "" then

Exit Sub
End If
answer = IsDate(userdate)
If answer = -1 then

Date = userdate
Else

Goto i
End If

End Sub

See Also “Date Function” on page 146
“Time Function” on page 473
“Time Statement” on page 475
148 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

DateSerial Function
DateSerial Function
This standard VB function returns a date value for the year, month, and day
specified.

Syntax DateSerial(year, month, day)

Returns A variant of vartype 7 (date) that represents a date from January 1, 100, through
December 31, 9999, where January 1, 1900, is 2.

Usage A numeric expression can be used for any of the arguments to specify a relative
date: a number of days, months, or years before or after a certain date.

Example This example finds the day of the week for November 7 in the year 2009.

Sub Button_Click
Dim checkdate As Variant, daynumber As Variant
Dim msgtext As String, checkday as Variant
Const checkyear = 2009
Const checkmonth = 11
checkday = 7
checkdate = DateSerial(checkyear,checkmonth,checkday)
daynumber = Weekday(checkdate)
msgtext = "November 7, 2009 falls on a " & _

Format(daynumber, "dddd")
End Sub

Argument Description

year An integer representing a year between 100 and 2099 or a numeric
expression

month An integer representing a month between 1 and 12 or a numeric expression

day An integer representing a day between 1 and 31 or a numeric expression
Version 7.5, Rev. C Siebel VB Language Reference 149

Siebel VB Language Reference

DateSerial Function
See Also “DateValue Function” on page 151
“Day Function” on page 153
“Format Function” on page 202
“Month Function” on page 320
“Now Function” on page 331
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515
150 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

DateValue Function
DateValue Function
This standard VB function returns a date value for the string specified.

Syntax DateValue(date)

Returns A variant of vartype 7 (date) that represents a date from January 1, 100, through
December 31, 9999, where January 1, 1900, is 2.

Usage DateValue accepts several different string representations for a date. It makes use of
the operating system’s international settings for resolving purely numeric dates. In
contrast to the CVDate function (read “CVDate Function” on page 144), the
argument to the DateValue function must be in a valid date format. If given a time
in acceptable format, DateValue changes the time to 12:00:00 AM regardless of the
value given. If given a number that is not an acceptable date or time format,
DateValue returns a Type Mismatch error. For ways to display the desired result of
a date conversion, read “Format Function” on page 202.

Example This example displays the date for one week from the date entered by the user.

Sub Button_Click
Dim str1 As String, answer As Integer, msgtext As String
Dim nextweek

i:
str1 = "12/22/2000"
answer = IsDate(str1)
If answer = -1 then

str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
msgtext = "One week from your date is: "
msgtext = msgtxt & Format(nextweek,"dddddd")

Else
msgtext = "Invalid date or format. Try again."
Goto i

End If
End Sub

Argument Description

date A string representing a valid date
Version 7.5, Rev. C Siebel VB Language Reference 151

Siebel VB Language Reference

DateValue Function
See Also “DateSerial Function” on page 149
“Day Function” on page 153
“Format Function” on page 202
“Month Function” on page 320
“Now Function” on page 331
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515
152 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Day Function
Day Function
This standard VB function returns the day of the month of a date-time value.

Syntax Day(date)

Usage Day attempts to convert the input value of date to a date value. The return value is
a variant of vartype 2 (integer). If the value of date is null, a variant of vartype 1
(null) is returned.

Example This example finds the month (1 to 12) and day (1 to 31) values for this Thursday.

Sub Button_Click
Dim x As Integer, Today As Variant, msgtext As String
Today = DateValue(Now)
Let x = 0
Do While Weekday(Today + x) <> 5
x = x + 1
Loop
msgtext = "This Thursday is: " & Month(Today + x) & "/" & _

Day(Today + x)
End Sub

See Also “Date Function” on page 146
“Date Statement” on page 147
“Hour Function” on page 257
“Minute Function” on page 316
“Month Function” on page 320
“Now Function” on page 331
“Second Function” on page 397
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515

Argument Description

date Any expression that can evaluate to a date
Version 7.5, Rev. C Siebel VB Language Reference 153

Siebel VB Language Reference

DeactivateFields Method
DeactivateFields Method
DeactivateFields deactivates the Fields that are currently active from a business
component SQL query statement. It is used with business component objects. For
details, read Siebel Object Interfaces Reference.
154 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Declare Statement
Declare Statement
This standard VB statement declares a procedure in a module or dynamic link
library (DLL).

Syntax A Declare Sub name [(parameter [As type])]

Syntax B Declare Function name [(parameter [As type])] [As funcType]

Returns Syntax A: Not applicable

Syntax B: A value of the type funcType, which can be used in an expression.

Usage To specify the data type for the return value of a function, end the function name
with a type character or use the As funcType clause shown previously. If no type is
provided, the function defaults to data type variant.

Siebel Tools compiles custom functions in alphabetical order. Therefore, when a
procedure in the current module is referenced before it is defined, a declaration
must be used.

For example, suppose you have created the following subroutines in the (general)
(declarations) section of a module:

Sub A
' Calling B
B
End Sub

Argument Description

name The name of the subprogram or function procedure to declare

parameter The arguments to pass to the procedure, separated by commas

type The data type for the arguments

funcType The data type of the return value of the function
Version 7.5, Rev. C Siebel VB Language Reference 155

Siebel VB Language Reference

Declare Statement
Sub B
theApplication.RaiseErrorText "Sub B called"
End Sub

Compilation fails with the message, “Unknown function: B.” However, place the
statement:

Declare Sub B

before Sub A and the code compiles and runs properly.

The data type of a parameter can be specified by using a type character or by using
the As clause. Record parameters are declared by using an As clause and a type that
has previously been defined using the Type statement. Array parameters are
indicated by using empty parentheses after the parameter; array dimensions are not
specified in the Declare statement.

External DLL procedures are called with the Pascal calling convention (the actual
arguments are pushed on the stack from left to right). By default, the actual
arguments are passed by Far reference. For external DLL procedures, there are two
additional keywords, ByVal and Any, that can be used in the parameter list.

When ByVal is used, it must be specified before the parameter it modifies. When
applied to numeric data types, ByVal indicates that the parameter is passed by
value, not by reference. When applied to string parameters, ByVal indicates that the
string is passed by Far pointer to the string data. By default, strings are passed by
Far pointer to a string descriptor.

Any can be used as a type specification, and permits a call to the procedure to pass
a value of any datatype. When Any is used, type checking on the actual argument
used in calls to the procedure is disabled (although other arguments not declared
as type Any are fully type-safe). The actual argument is passed by Far reference,
unless ByVal is specified, in which case the actual value is placed on the stack (or
a pointer to the string in the case of string data). ByVal can also be used in the call.
The external DLL procedure has the responsibility of determining the type and size
of the passed-in value.

When an empty string ("") is passed ByVal to an external procedure, the external
procedure receives a valid (non-NULL) pointer to a character of 0. To send a NULL
pointer, Declare the procedure argument as ByVal As Any, and call the procedure
with an argument of 0.
156 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Declare Statement
Example This example declares a function that is later called by the main subprogram. The
function does nothing but set its return value to 1. For other examples of functions,
read “Function...End Function Statement” on page 213 and “GoTo Statement” on
page 253.

(general) (declarations)
Option Explicit
Declare Function SVB_exfunction()

Function SVB_exfunction()
SVB_exfunction = 1

End Function

Sub Button_Click
Dim y as Integer
Call SVB_exfunction
y = SVB_exfunction

End Sub

See Also “Const Statement” on page 131
“Deftype Statement” on page 158
“Dim Statement” on page 161
“Static Statement” on page 460
“Type Statement” on page 487
Version 7.5, Rev. C Siebel VB Language Reference 157

Siebel VB Language Reference

Deftype Statement
Deftype Statement
This standard VB statement specifies the default data type for one or more
variables.

Syntax DefCur varTypeLetters
DefInt varTypeLetters
DefLng varTypeLetters
DefSng varTypeLetters
DefDbl varTypeLetters
DefStr varTypeLetters
DefVar varTypeLetters

Returns Not applicable

Usage VarTypeLetters can be a single letter, a comma-separated list of letters, or a range of
letters. For example, a-d indicates the letters a, b, c, and d.

The case of the letters is not important, even in a letter range. The letter range a-z
is treated as a special case: it denotes all alpha characters, including the
international characters.

The Deftype statement affects only the module in which it is specified. It must
precede any variable definition within the module.

Variables defined using a Global or Dim statement can override the Deftype
statement by using an As clause or a type character.

Example This example finds the average of bowling scores entered by the user. Because the
variable average begins with A, it is defined as a single-precision floating point
number. The other variables are defined as integers.

DefInt c,s,t
DefSng a
Sub Button_Click

Argument Description

varTypeLetter The first letter of a variable name to use
158 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Deftype Statement
Dim count
Dim total
Dim score
Dim average
Dim msgtext
For count = 0 to 4

score = 180
total = total + score

Next count
average = total/count
msgtext = "Your average is: " &average

End Sub

See Also “Declare Statement” on page 155
“Dim Statement” on page 161
“Global Statement” on page 249
“Let (Assignment Statement)” on page 293
“Type Statement” on page 487
Version 7.5, Rev. C Siebel VB Language Reference 159

Siebel VB Language Reference

DeleteRecord Method
DeleteRecord Method
DeleteRecord removes the current record from a Siebel business component. It is
used with business component objects. For details, read Siebel Object Interfaces
Reference.
160 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Dim Statement
Dim Statement
This standard VB statement declares variables for use in a Basic program.

Syntax Dim [Shared] variableName [As[New] type] [, variableName [As[New] type]] ...

Returns Not applicable

Usage Dim is a declaration statement. It is an abbreviation for Declare in Memory;
however, you must use the short form.

VariableName must begin with a letter and contain only letters, numbers, and
underscores. A name can also be delimited by brackets, and any character can be
used inside the brackets, except for other brackets.

Dim my_1st_variable As String

Dim [one long and strange! variable name] As String

If the As clause is not used, the type of the variable can be specified by using a type
character as a suffix to variableName. The two different type-specification methods
can be intermixed in a single Dim statement (although not on the same variable).

Basic is a strongly typed language: variables must be given a data type or they are
assigned the data type variant. The available data types are:

■ Array

■ Double (double-precision floating-point number)

■ Integer

■ Long (double-precision integer)

■ Object

Placeholder Description

variableName The name of the variable to declare

type The data type of the variable
Version 7.5, Rev. C Siebel VB Language Reference 161

Siebel VB Language Reference

Dim Statement
■ Record

■ Single (single-precision floating-point number)

■ String

■ Variant

For details on these variable types, read “Data Types” on page 54.

NOTE: Good programming practice is to declare every variable. To force variables to
be explicitly declared, use the Option Explicit statement (read “Option Explicit
Statement” on page 352). Place procedure-level Dim statements at the beginning of
the procedure.

Variables can be shared across modules. A variable declared inside a procedure has
scope local to that procedure. A variable declared outside a procedure has scope
local to the module. If you declare a variable with the same name as a module
variable, the module variable is not accessible. For details, read “Global Statement”
on page 249.

The Shared keyword is included for backward compatibility with older versions of
Basic. It is not allowed in Dim statements inside a procedure. It has no effect.

Regardless of which mechanism you use to declare a variable, you can choose to
use or omit the type character when referring to the variable in the rest of your
program. The type suffix is not considered part of the variable name.

CAUTION: You can declare several variables on one line; however, unless you include
the type for each variable, the type applies only to the last variable declared.

For example,
Dim Acct, CustName, Addr As String
causes only Addr to be declared as type string; the other variables are implicitly
declared as type variant. On the other hand,
Dim Acct As String, CustName As String, Addr As String
declares the variables as type string.
162 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Dim Statement
Arrays
The available data types for arrays are numbers, strings, variants, and records.
Arrays of arrays and objects are not supported.

Array variables are declared by including a subscript list as part of the
variableName. The syntax to use for variableName is:

Dim variable([[startSubcript To] endSubscript, ...]) As typeName

or

Dim variable_with_suffix([[startSubcript To] endSubscript, ...])

If startSubscript is not specified, 0 is used as the default. Thus, the statement
Dim counter (25) as Integer

creates an array named counter that has 26 elements (0 through 25). To change the
default, use the Option Base statement.

Both startSubscript and endSubscript are valid subscripts for the array. The
maximum number of subscripts that can be specified in an array definition is 60.
The maximum total size for an array is limited only by the amount of memory
available.

If no subscriptRange is specified for an array, the array is declared as a dynamic
array. In this case, the ReDim statement must be used to specify the dimensions of
the array before the array can be used.

Numbers
Numeric variables can be declared using the As clause and one of the following
numeric types: currency, integer, long, single, double. Numeric variables can also
be declared by including a type character as a suffix to the name. Numeric variables
are initialized to 0.

Argument Description

startSubscript [Optional] the index number of the first array element, followed by the
keyword To

endSubscript The index number of the last element of the array
Version 7.5, Rev. C Siebel VB Language Reference 163

Siebel VB Language Reference

Dim Statement
Objects
Object variables are declared using an As clause and a typeName of a class. Object
variables can be set to refer to an object, and then used to access members and
methods of the object using dot notation.

Dim COMObject As Object
Set COMObject = CreateObject("spoly.cpoly")
COMObject.reset

An object can be declared as New for some classes. For example:

Dim variableName As New className
variableName.methodName

In such instances, a Set statement is not required to create the object variable; a new
object is allocated when the variable is used.

NOTE: The New operator cannot be used with the Basic Object class.

Records
Record variables are declared by using an As clause and a typeName that has been
defined previously using the Type statement. The syntax to use is:

Dim variableName As typeName

Records are made up of a collection of data elements called fields. These fields can
be of any numeric, string, variant, or previously defined record type. For details on
accessing fields within a record, read “Type Statement” on page 487.

Strings
Siebel VB supports two types of strings: fixed-length and dynamic. Fixed-length
strings are declared with a specific length (between 1 and 32767) and cannot be
changed later. Use the following syntax to declare a fixed-length string:

Dim variableName As String * length

Dynamic strings have no declared length, and can vary in length from 0 to 32,767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:
164 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Dim Statement
Dim variableName$

or

Dim variableName As String

When initialized, fixed-length strings are filled with zeros. Dynamic strings are
initialized as zero-length strings.

Variants
Declare variables as variants when the type of the variable is not known at the start
of, or might change during, the procedure. For example, a variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a variant:

Dim variableName

or

Dim variableName As Variant

Variant variables are initialized to vartype Empty.

Example This example shows a Dim statement for each of the possible data types.

' Must define a record type before you can declare a record
' variable

Type Testrecord
Custno As Integer
Custname As String

End Type

Sub Button_Click
Dim counter As Integer
Dim fixedstring As String * 25
Dim varstring As String
Dim myrecord As Testrecord
Dim ole2var As Object
Dim F(1 to 10), A()
'...(code here)...

End Sub
Version 7.5, Rev. C Siebel VB Language Reference 165

Siebel VB Language Reference

Dim Statement
See Also “Global Statement” on page 249
“Option Base Statement” on page 347
“ReDim Statement” on page 377
“Service_InvokeMethod Event” on page 409
“Static Statement” on page 460
“Type Statement” on page 487
166 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Dir Function
Dir Function
The standard VB function Dir returns a filename that matches the specified pattern,
having the specified attributes.

Syntax Dir[$] [(pathname[, attributes])]

Returns The first filename that matches the pathname argument and has the specified
attributes. Use the following integer values for attributes to return the specified type
of file.

NOTE: The values in the table can be added together to select multiple attributes. For
example, to list hidden and system files in addition to normal files, set attributes to
6 (6 = 2 + 4). If attributes is set to 8, the Dir function returns the volume label of
the drive specified in the pathname argument, or of the current drive if a drive is
not explicitly specified.

Argument Description

pathname A string or string expression evaluating to a path or filename

attributes An integer expression specifying the file attributes to select

Integer File Type

0 (default) Normal files (no attributes set)

2 Normal and hidden files

4 Normal and system files

8 Volume label (only)

16 Normal files and folders
Version 7.5, Rev. C Siebel VB Language Reference 167

Siebel VB Language Reference

Dir Function
Usage Pathname can include a drive specification and wildcard characters (? and *). An
empty string ("") passed as pathname is interpreted as the current folder (the same
as “.”). To retrieve additional matching filenames, call the Dir function again,
omitting the pathname and attributes arguments. If no file is found, an empty string
("") is returned.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise, the function returns a variant of vartype 8 (string).

Example This example lists the contents of the diskette in drive A.

Sub Button_Click
Dim msgReturn
Dim folder, count
Dim x, msgtext
Dim A()
count = 1

ReDim A(100)
folder = Dir ("A:*.*")
Do While folder <> ""

A(count) = folder
Count = count + 1
folder = Dir

loop
msgtext = "Contents of drive A:\ is:" & Chr(10) & Chr(10)
For x = 1 to count

msgtext = msgtext & A(x) & Chr(10)
Next x

End Sub

See Also “ChDir Statement” on page 118
“ChDrive Statement” on page 120
“CurDir Function” on page 141
“MkDir Statement” on page 318
“RmDir Statement” on page 390
168 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Do...Loop Statement
Do...Loop Statement
This standard VB control structure repeats a series of program lines as long as (or
until) an expression is TRUE.

Syntax A Do [{ While|Until } condition]

statement_block

[Exit Do]

statement_block

Loop

Syntax B Do

statement_block

[Exit Do]

statement_block

Loop [{ While|Until } condition]

Returns Not applicable

Usage When an Exit Do statement is executed, control goes to the statement after the Loop
statement. When used within a nested loop, an Exit Do statement moves control
out of the immediately enclosing loop.

Example For examples, read “Dir Function” on page 167, “Eof Function” on page 173, and
“Err Function” on page 179.

Placeholder Description

condition Any expression that evaluates to TRUE (non-zero) or FALSE (0)

statement_block Program lines to repeat while (or until) condition is TRUE (non-zero)
Version 7.5, Rev. C Siebel VB Language Reference 169

Siebel VB Language Reference

Do...Loop Statement
See Also “Exit Statement” on page 187
“Stop Statement” on page 461
“While...Wend Statement” on page 507
170 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Environ Function
Environ Function
This standard VB function returns the string setting for a keyword in the operating
system’s environment table.

Syntax A Environ[$](environment-string)

Syntax B Environ[$](numeric_expression)

Returns The string value assigned to an environment variable.

Usage If you use the environment-string parameter, enter it in uppercase, or Environ
returns a null string (""). The return value for Syntax A is the string associated with
the keyword requested.

If you use the numeric_expression parameter, the numeric expression is rounded to
a whole number, if necessary. The return value for Syntax B is a string in the form
KEYWORD=value.

Environ returns a null string if the specified argument cannot be found.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

Example This example lists the strings from the operating system environment table.

Sub Button_Click
Dim str1(100)
Dim msgtext
Dim count, x
Dim newline
newline = Chr(10)
x = 1

Argument Description

environment-string The name of a keyword in the operating system

numeric_expression An integer for the position of the string in the environment table
(1st, 2nd, 3rd, and so on)
Version 7.5, Rev. C Siebel VB Language Reference 171

Siebel VB Language Reference

Environ Function
str1(x) = Environ(x)
Do While Environ(x) <> ""

str1(x) = Environ(x)
x = x + 1
str1(x) = Environ(x)

Loop
msgtext = "The Environment Strings are:" & newline & newline
count = x
For x = 1 to count

msgtext = msgtext & str1(x) & newline
Next x

End Sub
172 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Eof Function
Eof Function
This standard VB function is used to determine whether the end of an open file has
been reached.

Syntax Eof(filenumber)

Returns The value -1 if the end of the specified open file has been reached, 0 otherwise.

Usage For more information about assigning numbers to files when they are opened, read
“Open Statement” on page 344.

Example This example uses the Eof function to read records from a Random file, using a Get
statement. The Eof function keeps the Get statement from attempting to read
beyond the end of the file. The subprogram, CreateFile, creates the file
C:\TEMP001 used by the main subprogram. For another example, read
“FileDateTime Function” on page 194.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMP001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim acctno
Dim msgtext as String
newline = Chr(10)
Call CreateFile

Argument Description

filenumber The file number used in the Open statement to open the file
Version 7.5, Rev. C Siebel VB Language Reference 173

Siebel VB Language Reference

Eof Function
Open "C:\temp001" For Input As #1
msgtext = "The account numbers are:" & newline
Do While Not Eof(1)

Input #1,acctno
msgtext = msgtext & newline & acctno & newline

Loop
Close #1
Kill "C:\TEMP001"

End Sub

See Also “Get Statement” on page 218
“Input Function” on page 261
“Input Statement” on page 262
“Line Input Statement” on page 297
“Loc Function” on page 299
“Lof Function” on page 302
“Open Statement” on page 344
174 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Erase Statement
Erase Statement
This standard VB statement reinitializes the contents of a fixed array or frees the
storage associated with a dynamic array.

Syntax Erase Array[, Array]

Returns Not applicable

Usage The effect of using Erase on the elements of a fixed array varies with the type of the
element:

Example This example prompts for a list of item numbers to put into an array and clears the
array if the user wants to start over.

Sub Button_Click
Dim msgtext
Dim inum(100) as Integer
Dim x, count
Dim newline
newline = Chr(10)

Argument Description

Array The name of the array variable to re-initialize

Element Type Erase Effect

Numeric Each element is set to zero.

Variable-length string Each element is set to a zero-length string ("").

Fixed-length string Each element’s string is filled with zeros.

Variant Each element is set to Empty.

User-defined type Members of each element are cleared as if the members were
array elements; that is, numeric members have their values set
to zero, the strings to "", and so on.

Object Each element is set to the special value Nothing.
Version 7.5, Rev. C Siebel VB Language Reference 175

Siebel VB Language Reference

Erase Statement
x = 1
count = x
inum(x) = 0
Do

inum(x) = x + 1
If inum(x) = 99 then

Erase inum()
x = 0

ElseIf inum(x) = 0 then
Exit Do

End If
x = x + 1

Loop
count = x-1
msgtext = "You entered the following numbers:" & newline
For x = 1 to count

TheApplication.TraceOn "c:\temp\trace.txt", "Allocation",
"All"

TheApplication.Trace msgtext & inum(x) & newline
Next x

End Sub

See Also “Dim Statement” on page 161
“LBound Function” on page 287
“ReDim Statement” on page 377
“UBound Function” on page 490
176 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Erl Function
Erl Function
This standard VB function returns the line number where an error was trapped.

Syntax Erl

Returns The line number on which an error occurred.

Usage If you use a Resume or On Error statement after Erl, the return value for Erl is reset
to 0. To maintain the value of the line number returned by Erl, assign it to a variable.

The value of the Erl function can be set indirectly through the Error statement.

Example This example prints the error number using the Err function and the line number
using the Erl statement if an error occurs during an attempt to open a file. Siebel VB
assigns line numbers, starting with 1, which is the Sub Button_Click statement.

Sub Button_Click
Dim msgtext, userfile
On Error GoTo Debugger
msgtext = "Enter the filename to use:"
userfile = "c:\temp\trace.txt"
Open userfile For Input As #1
'etc....
Close #1

done:
Exit Sub

Debugger:
msgtext = "Error number " & Err & " occurred at line: " & Erl

Resume done
End Sub

Argument Description

Not applicable
Version 7.5, Rev. C Siebel VB Language Reference 177

Siebel VB Language Reference

Erl Function
See Also “Err Function” on page 179
“Err Statement” on page 180
“Error Function” on page 182
“Error Statement” on page 184
“On Error Statement” on page 341
“Resume Statement” on page 387
“Trappable Errors” on page 523
178 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Err Function
Err Function
This standard VB function returns the run-time error code for the last error trapped.

Syntax Err

Returns The run-time error code for the last standard VB error trapped.

Usage If you use a Resume or On Error statement after Erl, the return value for Err is reset
to 0. To maintain the value of the line number returned by Erl, assign it to a variable.

The value of the Err function can be set directly through the Err statement, and
indirectly through the Error statement.

The standard VB trappable errors are listed in “Trappable Errors” on page 523

CAUTION: You cannot view Siebel VB errors with this function. Instead, use the
appropriate method for the Siebel interface you are using (COM, ActiveX, or
CORBA). Error trapping methods and examples for each interface are documented
in Siebel Object Interfaces Reference.

Example For examples, read “Erl Function” on page 177 and “Error Function” on page 182.

See Also “Erl Function” on page 177
“Err Statement” on page 180
“Error Function” on page 182
“Error Statement” on page 184
“On Error Statement” on page 341
“Resume Statement” on page 387
“Trappable Errors” on page 523

Argument Description

Not applicable
Version 7.5, Rev. C Siebel VB Language Reference 179

Siebel VB Language Reference

Err Statement
Err Statement
This standard VB statement sets a run-time error code.

Syntax Err = errornumber

Returns Not applicable

Usage The Err statement is used to send error information between procedures.

Example This example generates an error code of 10000 and displays an error message if a
user does not enter a customer name when prompted for it. It uses the Err statement
to clear any previous error codes before running the loop the first time, and it also
clears the error to allow the user to try again. For another example, read “Error
Statement” on page 184.

Sub Button_Click
Dim custname as String
On Error Resume Next
Do

Err = 0
custname = "Acme Inc."
If custname = "" then

Error 10000
Else

Exit Do
End If
Select Case Err

Case 10000
TheApplication.RaiseErrorText "You must enter a

customer name."
Case Else

TheApplication.RaiseErrorText "Undetermined error.
Try again."

End Select

Argument Description

errornumber An integer between 1 and 32,767 representing an error code, or a 0 if no
error occurs
180 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Err Statement
Loop Until custname <> ""
TheApplication.RaiseErrorText "The name is: " & custname

End Sub

See Also “Erl Function” on page 177
“Err Function” on page 179
“Error Function” on page 182
“Error Statement” on page 184
“On Error Statement” on page 341
“Resume Statement” on page 387
“Trappable Errors” on page 523
Version 7.5, Rev. C Siebel VB Language Reference 181

Siebel VB Language Reference

Error Function
Error Function
This standard VB function returns the error message that corresponds to the
specified error code.

Syntax Error[$] [(errornumber)]

Returns The text of the error message corresponding to the error code; if this argument is
omitted, Siebel VB returns the error message for the run-time error that has
occurred most recently.

If no error message is found to match the error code, a null string ("") is returned.

Usage The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

The standard VB trappable errors are listed in “Trappable Errors” on page 523

Example This example prints the error number, using the Err function, and the text of the
error, using the Error$ function, if an error occurs during an attempt to open a file.

Sub Button_Click
Dim msgtext, userfile
On Error GoTo Debugger
msgtext = "Enter the filename to use:"
userfile = "c:\temp\trace.txt"
Open userfile For Input As #1
'etc....
Close #1

done:
Exit Sub

Debugger:
msgtext = "Error " & Err & ": " & Error$

Resume done
End Sub

Argument Description

errornumber An integer between 1 and 32,767 representing an error code
182 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Error Function
See Also “Erl Function” on page 177
“Err Function” on page 179
“Err Statement” on page 180
“Error Statement” on page 184
“On Error Statement” on page 341
“Resume Statement” on page 387
“Trappable Errors” on page 523
Version 7.5, Rev. C Siebel VB Language Reference 183

Siebel VB Language Reference

Error Statement
Error Statement
This standard VB statement simulates the occurrence of a Siebel VB or user-defined
error.

Syntax Error errornumber

Usage If an errornumber is one that Siebel VB already uses, the Error statement simulates
an occurrence of that error.

User-defined error codes should employ values greater than those used for standard
Siebel VB error codes. To help make sure that non-Siebel VB error codes are chosen,
user-defined codes should work down from 32,767.

CAUTION: Error codes for the Siebel VB methods described in Siebel Object Interfaces
Reference are between 4000 and 4999. Do not use codes in this range for user-
defined error codes.

If an Error statement is executed, and there is no error-handling routine enabled,
Siebel VB produces an error message and halts program execution. If an Error
statement specifies an error code not used by Siebel VB, the message “User-defined
error” is displayed.

See Also “Erl Function” on page 177
“Err Function” on page 179
“Err Statement” on page 180
“Error Function” on page 182
“Error Statement” on page 184
“On Error Statement” on page 341
“Resume Statement” on page 387
“Trappable Errors” on page 523

Argument Description

errornumber An integer between 1 and 32,767 representing an error code
184 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

ExecuteQuery Method
ExecuteQuery Method
ExecuteQuery returns a set of business component records using the criteria
established with methods such as SetSearchSpec. It is used with business
component objects. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 185

Siebel VB Language Reference

ExecuteQuery2 Method
ExecuteQuery2 Method
ExecuteQuery2 returns a set of business component records using the criteria
established with methods such as SetSearchSpec. It is used with business
component objects. For details, read Siebel Object Interfaces Reference.
186 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Exit Statement
Exit Statement
This standard VB statement terminates loop statements or transfers control to a
calling procedure.

Syntax Exit {Do | For | Function | Sub}

Returns Not applicable

Usage Use Exit Do inside a Do...Loop statement. Use Exit For inside a For...Next statement.
When the Exit statement is executed, control transfers to the statement after the
Loop or Next statement. When used within a nested loop, an Exit statement moves
control out of the immediately enclosing loop.

Use Exit Function inside a Function...End Function procedure. Use Exit Sub inside
a Sub...End Sub procedure.

Example This example uses the On Error statement to trap run-time errors. If there is an error,
the program execution continues at the label “Debugger.” The example uses the Exit
statement to skip over the debugging code when there is no error.

Sub Button_Click
Dim msgtext, userfile
On Error GoTo Debugger
msgtext = "Enter the filename to use:"
userfile = "c:\temp\trace.txt"
Open userfile For Input As #1
'etc....
Close #1

done:
Exit Sub

Debugger:
msgtext = "Error " & Err & ": " & Error$

Resume done
End Sub

See Also “Do...Loop Statement” on page 169
“Function...End Function Statement” on page 213
“Sub...End Sub Statement” on page 467
Version 7.5, Rev. C Siebel VB Language Reference 187

Siebel VB Language Reference

Exp Function
Exp Function
This standard VB function returns the value e (the base of natural logarithms) raised
to a power.

Syntax Exp(number)

Returns The value of e raised to the power number.

Usage If the variable to contain the return value has a data type of integer, currency, or
single, the return value is a single-precision value. If the variable has a data type of
long, variant, or double, the value returned is a double-precision number.

The constant e is approximately 2.718282.

Example This example estimates the value of a factorial of a number entered by the user. A
factorial (notated with an exclamation mark, !) is the product of a number and each
integer between it and the number 1. For example, 5 factorial, or 5!, is the product
of 5*4*3*2*1, or the value 120.

Sub Button_Click
Dim x as Single
Dim msgtext, PI
Dim factorial as Double
PI = 3.14159

i: x = 55
If x< = 0 then

Exit Sub
ElseIf x>88 then

Goto i
End If
factorial = Sqr(2 * PI * x) * (x^x/Exp(x))
msgtext = "The estimated factorial is: " & Format _

(factorial, "Scientific")
End Sub

Argument Description

number The exponent value for e
188 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Exp Function
See Also “Abs Function” on page 76
“Fix Function” on page 197
“Int Function” on page 268
“Log Function” on page 303
“Rnd Function” on page 392
“Sgn Function” on page 430
“Sqr Function” on page 459
Version 7.5, Rev. C Siebel VB Language Reference 189

Siebel VB Language Reference

FileAttr Function
FileAttr Function
This standard VB function returns the file mode or the operating system handle for
an open file.

Syntax FileAttr(filenumber, returntype)

Returns

Usage The argument filenumber is the number used in the Open statement to open the file.

Example This example closes an open file if it is open in input or output mode. If open in
append mode, it writes a range of numbers to the file. The second subprogram,
CreateFile, creates the file and leaves it open.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Argument Description

filenumber The file number used in the Open statement to open the file

returntype An integer representing the type of information to return

If returntype is: Returns:

1 The file mode of the open file, where

■ 1 indicates Input mode

■ 2 indicates Output mode

■ 8 indicates Append mode

2 The operating system handle of the open file
190 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

FileAttr Function
Write #1, x
Next x

End Sub

Sub Button_Click
Dim filemode as Integer
Dim attrib as Integer
Call CreateFile
attrib = 1
filemode = FileAttr(1,attrib)
If filemode = 1 or 2 then

Close #1
Else

For x = 11 to 15
Write #1, x

Next x
Close #1

End If
Kill "c:\temp001"

End Sub

See Also “GetAttr Function” on page 222
“Open Statement” on page 344
“SetAttr Statement” on page 413
Version 7.5, Rev. C Siebel VB Language Reference 191

Siebel VB Language Reference

FileCopy Statement
FileCopy Statement
This standard VB function copies a file.

Syntax FileCopy [path1]source, [path2]target

Returns Not applicable

Usage Wildcards (* and ?) are not allowed in any of the arguments. The source file cannot
be copied if it is opened by Siebel VB for anything other than Read access, or if it is
open in another program.

Example This example copies one file to another. Both filenames are specified by the user.

Sub Button_Click
Dim oldfile, newfile
On Error Resume Next
oldfile = "c:\temp\trace.txt"
newfile = "c:\temp\newtrace.txt"
FileCopy oldfile,newfile
If Err <> 0 then

msgtext = "Error during copy. Rerun program."
Else

msgtext = "Copy successful."
End If

End Sub

Argument Description

path1 The path of the file to copy (optional unless source$ is not in the current
folder)

source The name, and if necessary, the path, of the file to copy

path2 The path to the folder to which the file should be copied (optional unless
the file is to be copied to the current folder)

target The name to which the file should be copied
192 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

FileCopy Statement
See Also “FileAttr Function” on page 190
“FileDateTime Function” on page 194
“GetAttr Function” on page 222
“Kill Statement” on page 284
“Name Statement” on page 323
Version 7.5, Rev. C Siebel VB Language Reference 193

Siebel VB Language Reference

FileDateTime Function
FileDateTime Function
This standard VB function returns the last modification date and time for the
specified file.

Syntax FileDateTime(pathname)

Returns The date and time the file was last modified.

Usage Pathname can contain path and disk information, but cannot include wildcards
(* and ?).

See Also “FileLen Function” on page 195
“GetAttr Function” on page 222

Argument Description

pathname A string or string expression evaluating to the name of the file to query
194 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

FileLen Function
FileLen Function
This standard VB function returns the length of the specified file.

Syntax FileLen(pathname)

Returns The length of the file specified in pathname.

Usage Pathname can contain path and disk information, but cannot include wildcards
(* and ?).

If the specified file is open, FileLen returns the length of the file before it was
opened.

Example This example returns the length of a file.

Sub Button_Click
Dim length as Long
Dim userfile as String
Dim msgtext
On Error Resume Next
msgtext = "Enter a filename:"
userfile = "trace.txt"
length = FileLen(userfile)
If Err <> 0 then

msgtext = "Error occurred. Rerun program."
Else

msgtext = "The length of " & userfile & " is: " & length
End If

End Sub

See Also “FileDateTime Function” on page 194
“GetAttr Function” on page 222
“Lof Function” on page 302

Argument Description

pathname A string or string expression evaluating to the name of the file to query
Version 7.5, Rev. C Siebel VB Language Reference 195

Siebel VB Language Reference

FirstRecord Method
FirstRecord Method
FirstRecord moves to the first record in a Siebel business component, invoking any
associated Basic events. This method is used with business component objects. For
details, read Siebel Object Interfaces Reference.
196 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Fix Function
Fix Function
This standard VB function returns the integer part of a number.

Syntax Fix(number)

Returns The integer part of number.

Usage The return value’s data type matches the type of the numeric expression. This
includes variant expressions, unless the numeric expression is a string (vartype 8)
that evaluates to a number, in which case the data type for its return value is vartype
5 (double). If the numeric expression is vartype 0 (empty), the data type for the
return value is vartype 3 (long).

For both positive and negative numbers, Fix removes the fractional part of the
expression and returns the integer part only. For example, Fix (6.2) returns 6;
Fix (-6.2) returns -6.

The effect of this function is the same as that of the Int function, except in the
handling of negative numbers. Thus:

■ Fix(-8.347) = -8

■ Int(-8.347) = -9

Example This example returns the integer portion of a number provided by the user.

Sub Button_Click
Dim usernum
Dim intvalue
usernum = 77.54
intvalue = Fix(usernum)

End Sub

Argument Description

number Any valid numeric expression
Version 7.5, Rev. C Siebel VB Language Reference 197

Siebel VB Language Reference

Fix Function
See Also “Abs Function” on page 76
“CInt Function” on page 123
“Exp Function” on page 188
“Int Function” on page 268
“Log Function” on page 303
“Rnd Function” on page 392
“Sgn Function” on page 430
“Sqr Function” on page 459
198 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

For...Next Statement
For...Next Statement
This standard VB control structure repeats a series of program lines a fixed number
of times.

Syntax For counter = start To end [Step increment]

statement_block

[Exit For]

statement_block

Next [counter]

Returns Not applicable

Usage The start and end values must be consistent with increment. If end is greater than
start, increment must be positive. If end is less than start, increment must be
negative. Siebel VB compares the sign of (start - end) with the sign of increment. If
the signs are the same, and end does not equal start, the For...Next loop is started.
If not, the loop is omitted in its entirety.

Placeholder Description

counter A numeric variable for the loop counter

start The initial value of the counter

end The ending value of the counter

increment The amount by which the counter is changed each time the loop is
run; the default is 1

statement_block the Basic functions, statements, or methods to be executed
Version 7.5, Rev. C Siebel VB Language Reference 199

Siebel VB Language Reference

For...Next Statement
With a For...Next loop, the program lines following the For statement are executed
until the Next statement is encountered. At this point, the Step amount is added to
the counter and compared with the final value, end. If the beginning and ending
values are the same, the loop executes once, regardless of the Step value. Otherwise,
the Step value controls the loop as follows:

Within the loop, the value of the counter should not be changed, as changing the
counter makes programs more difficult to maintain and debug.

For...Next loops can be nested within one another. Each nested loop should be given
a unique variable name as its counter. The Next statement for the inside loop must
appear before the Next statement for the outside loop. The Exit For statement can
be used as an alternative exit from For...Next loops.

If the variable is left out of a Next statement, the Next statement matches the most
recent For statement. If a Next statement occurs prior to its corresponding For
statement, Siebel VB returns an error message.

Multiple consecutive Next statements can be merged together. If this is done, the
counters must appear with the innermost counter first and the outermost counter
last. For example:

For i = 1 To 10
statement_block
For j = 1 To 5

statement_block
Next j, i

Example For an example, read “CSng Function” on page 137.

Step Value Loop Execution

Positive If counter is less than or equal to end, the Step value is added to counter.
Control returns to the statement after the For statement and the process
repeats. If counter is greater than end, the loop is exited; execution resumes
with the statement following the Next statement.

Negative The loop repeats until counter is less than end.

Zero The loop repeats indefinitely.
200 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

For...Next Statement
See Also “Do...Loop Statement” on page 169
“Exit Statement” on page 187
“While...Wend Statement” on page 507
Version 7.5, Rev. C Siebel VB Language Reference 201

Siebel VB Language Reference

Format Function
Format Function
This standard VB function returns a formatted string of an expression based on a
given format.

Syntax Format[$](expression[, format])

Select one of the topics that follow for a detailed description of format strings.

Returns The expression in the specified format.

Usage The Format function formats the expression as a number, date, time, or string
depending upon the format argument. The dollar sign ($) in the function name is
optional. If it is included, the return type is string. Otherwise the function returns a
variant of vartype 8 (string). As with any string, you must enclose the format
argument in quotation marks ("").

Numeric values are formatted as either numbers or date/times. If a numeric
expression is supplied and the format argument is omitted or null, the number is
converted to a string without any special formatting.

Both numeric values and variants can be formatted as dates. When formatting
numeric values as dates, the value is interpreted according the standard Basic date
encoding scheme. The base date, December 30, 1899, is represented as zero, and
other dates are represented as the number of days from the base date.

Strings are formatted by transferring one character at a time from the input
expression to the output string.

CAUTION: The Format function does not give the correct format if the format string
does not match the Regional Settings, or if the Date in the Windows setting is not
set to the U.S. format.

Argument Description

expression The value to be formatted; it can be a number, string, or variant

format A string expression representing the format to use
202 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Format Function
Formatting Numbers
The predefined numeric formats with their meanings are as follows:

To create a user-defined numeric format, follow these guidelines:

For a simple numeric format, use one or more digit characters and (optionally) a
decimal separator. The two format digit characters provided are zero, “0”, and
number sign, “#”. A zero forces a corresponding digit to appear in the output; while
a number sign causes a digit to appear in the output if it is significant (in the middle
of the number or non-zero).

Format Description

General
Number

Displays the number without thousand separator.

Fixed Displays the number with at least one digit to the left and at least two
digits to the right of the decimal separator.

Standard Displays the number with thousand separator and two digits to the right
of decimal separator.

Scientific Displays the number using standard scientific notation.

Currency Displays the number using a currency symbol as defined in the
International section of the Control Panel. Use thousand separator and
display two digits to the right of decimal separator. Enclose negative value
in parentheses.

Percent Multiplies the number by 100 and displays it with a percent sign
appended to the right; displays two digits to the right of decimal separator.

True/False Displays FALSE for 0, TRUE for any other number.

Yes/No Displays No for 0, Yes for any other number.

On/Off Displays Off for 0, On for any other number.

Number Format Result

1234.56 # 1235

1234.56 #.## 1234.56
Version 7.5, Rev. C Siebel VB Language Reference 203

Siebel VB Language Reference

Format Function
A comma placed between digit characters in a format causes a comma to be placed
between every three digits to the left of the decimal separator.

NOTE: Although a comma and period are used in the format specification to denote
separators for thousands and decimals, the output string contains the appropriate
character based upon the current international settings for your machine.

Numbers can be scaled either by inserting one or more commas before the decimal
separator or by including a percent sign in the format specification. Each comma
preceding the decimal separator (or after all digits if no decimal separator is
supplied) scales (divides) the number by 1000. The commas do not appear in the
output string. The percent sign causes the number to be multiplied by 100. The
percent sign appears in the output string in the same position as it appears in
format.

1234.56 #.# 1234.6

1234.56 ######.## 1234.56

1234.56 00000.000 01234.560

0.12345 #.## .12

0.12345 0.## 0.12

Number Format Result

1234567.8901 #,#.## 1,234,567.89

1234567.8901 #,#.#### 1,234,567.8901

Number Format Result

1234567.8901 #,.## 1234.57

1234567.8901 #,,.#### 1.2346

Number Format Result
204 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Format Function
Characters can be inserted into the output string by being included in the format
specification. The following characters are inserted in the output string in a location
matching their position in the format specification:

- + $ (space

Any set of characters can be inserted by enclosing them in double quotes. Any
single character can be inserted by preceding it with a backslash, \.

You can use the standard VB Chr function if you need to embed quotation marks in
a format specification. The character code for a quotation mark is 34.

Numbers can be formatted in scientific notation by including one of the following
exponent strings in the format specification:

E- E + e- e +

1234567.8901 #,#,.## 1,234.57

0.1234 #0.00% 12.34%

Number Format Result

1234567.89 $#,0.00 $1,234,567.89

1234567.89 "TOTAL:" $#,#.00 TOTAL: $1,234,567.89

1234 \ = \>#,#\<\ = = >1,234< =

Number Format Result
Version 7.5, Rev. C Siebel VB Language Reference 205

Siebel VB Language Reference

Format Function
Precede the exponent string with one or more digit characters. The number of digit
characters following the exponent string determines the number of exponent digits
in the output. Format specifications containing an uppercase E result in an
uppercase E in the output. Those containing a lowercase e result in a lowercase e
in the output. A minus sign following the E causes negative exponents in the output
to be preceded by a minus sign. A plus sign in the format causes a sign to always
precede the exponent in the output.

A numeric format can have up to four sections, separated by semicolons. If you use
only one section, it applies to every value. If you use two sections, the first section
applies to positive values and zeros, the second to negative values. If you use three
sections, the first applies to positive values, the second to negative values, and the
third to zeros. If you include semicolons with nothing between them, the undefined
section is printed using the format of the first section. The fourth section applies to
Null values. If it is omitted and the input expression results in a NULL value, Format
returns an empty string.

Number Format Result

1234567.89 ###.##E-00 123.46E04

1234567.89 ###.##e + # 123.46e + 4

0.12345 0.00E-00 1.23E-01

Number Format Result

1234567.89 #,0.00;(#,0.00);"Zero";"NA" 1,234,567.89

-1234567.89 #,0.00;(#,0.00);"Zero";"NA" (1,234,567.89)

0.0 #,0.00;(#,0.00);"Zero";"NA#" Zero

0.0 #,0.00;(#,0.00);;"NA" 0.00

Null #,0.00;(#,0.00);"Zero";"NA" NA

Null "The value is: " 0.00
206 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Format Function
Formatting Dates and Times
As with numeric formats, there are several predefined formats for formatting dates
and times:

In a user-defined format for a date, the format specification contains a series of
tokens. Each token is replaced in the output string by its appropriate value.

Format Description

General Date If the number has both integer and real parts, displays both date and
time (for example, 11/8/93 1:23:45 PM); if the number has only an
integer part, displays it as a date; if the number has only a fractional
part, displays it as time

Long Date Displays a Long Date; Long Date is defined in the International section
of the Control Panel

Medium Date Displays the date using the month abbreviation, without the day of the
week (for example, 08-Nov-93)

Short Date Displays a Short Date; Short Date is defined in the International section
of the Control Panel

Long Time Displays a Long Time; Long Time is defined in the International section
of the Control Panel and includes hours, minutes, and seconds

Medium Time Does not display seconds; displays hours in 12-hour format and uses the
AM/PM designator

Short Time Does not display seconds; uses 24-hour format and no AM/PM
designator
Version 7.5, Rev. C Siebel VB Language Reference 207

Siebel VB Language Reference

Format Function
A date can be output by using a combination of the following tokens:

Finer control over the output is available by including format tokens that deal with
the individual components of the date-time. These tokens are:

Token Output

c The equivalent of the format ddddd ttttt. Read the definitions that follow.

ddddd The date including the day, month, and year according to the machine’s
current Short Date setting; the default Short Date setting for the United States
is m/d/yy.

dddddd The date including the day, month, and year according to the machine’s
current Long Date setting; the default Long Date setting for the United States
is mmmm dd, yyyy.

ttttt The time including the hour, minute, and second using the machine’s current
time settings; the default time format is h:mm:ss AM/PM.

Token Output

d The day of the month as a one or two digit number (1–31)

dd The day of the month as a two digit number (01–31)

ddd The day of the week as a three letter abbreviation (Sun–Sat)

dddd The day of the week without abbreviation (Sunday–Saturday)

w The day of the week as a number (Sunday as 1, Saturday as 7)

ww The week of the year as a number (1–53)

m The month of the year or the minute of the hour as a one or two digit number.
The minute is output if the preceding token was an hour; otherwise, the month
is output.

mm The month or the year or the minute of the hour as a two digit number. The
minute is output if the preceding token was an hour; otherwise, the month is
output.

mmm The month of the year as a three letter abbreviation (Jan–Dec)

mmmm The month of the year without abbreviation (January–December)
208 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Format Function
By default, times display using a military (24-hour) format. Several tokens are
provided in date time format specifications to change this default. They use a 12-
hour format. These are:

q The quarter of the year as a number (1–4)

y The day of the year as a number (1–366)

yy The year as a two-digit number (00–99)

yyyy The year as a three- or four-digit number (100–9999)

h The hour as a one- or two-digit number (0–23)

hh The hour as a two-digit number (00–23)

n The minute as a one- or two-digit number (0–59)

nn The minute as a two-digit number (00–59)

s The second as a one- or two-digit number (0–59)

ss The second as a two-digit number (00–59)

Token Output

AM/PM An uppercase AM with any hour before noon; an uppercase PM with any hour
between noon and 11:59 PM

am/pm A lowercase am with any hour before noon; a lowercase pm with any hour
between noon and 11:59 PM

A/P An uppercase A with any hour before noon; an uppercase P with any hour
between noon and 11:59 PM

a/p A lowercase a with any hour before noon; a lowercase p with any hour
between noon and 11:59 PM

AMPM The contents of the 1159 string (s1159) in the WIN.INI file with any hour
before noon; the contents of the 2359 string (s2359) with any hour between
noon and 11:59 PM. Note: ampm is equivalent to AMPM.

Token Output
Version 7.5, Rev. C Siebel VB Language Reference 209

Siebel VB Language Reference

Format Function
Any set of characters can be inserted into the output by enclosing them in double
quotes. Any single character can be inserted by preceding it with a backslash, “\”.

Formatting Strings
By default, string formatting transfers characters from left to right. The exclamation
point, !, when added to the format specification causes characters to be transferred
from right to left. By default, characters being transferred are not modified. The less
than, <, and the greater than, >, characters force case conversion on the
transferred characters. Less than forces output characters to be in lowercase.
Greater than forces output characters to be in uppercase.

Character transfer is controlled by the at sign, @, and the ampersand, &, characters
in the format specification. These operate as follows:

A format specification for strings can have one or two sections separated by a
semicolon. If you use one section, the format applies to all string data. If you use
two sections, the first section applies to string data, the second to Null values and
zero-length strings.

Examples This example demonstrates some of the string-formatting tokens.

Sub Button1_Click
Dim msgtext As String
msgtext = Format("Section #AB-234", "<\[&&&&&&&&&&&&&&&\]") _
& Chr$(13) & Chr$(13) & Format("incoming", ">@@@@@@@@\!\!") _
& Chr$(13) & Chr$(13) _
& Format("Profits are expected to rise.", _
"!&&&&&&&&&&&&&&&&&")

End Sub

Character Interpretation

@ Output a character or a space; if there is a character in the string being
formatted in the position where the @ appears in the format string, display
it; otherwise, display a space in that position.

& Output a character or nothing; if there is a character in the string being
formatted in the position where the & appears, display it; otherwise, display
nothing.
210 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Format Function
This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

Sub Button1_Click
Dim value As Double
Dim msgtext As String
value = CDbl(Sqr(2))
msgtext = "The square root of 2 is " & Format(value,

"Scientific")
End Sub

This example uses several different date-formatting tokens to format the result of
the Now function, which returns the current date and time on the computer’s clock.

Sub ClickMe_Click
dim msgtext As String
msgtext = Now & Chr$(13) & Chr$(13) _
& "Today is " & Format(Now, "dddd") & ", " _
& Format(Now, "mmmm") & " " & Format(Now, "dd") & ", " _
& Format(Now, "yyyy") & "." _
& Chr$(13) & "The time is " & Format(Now, "h:nn am/pm") _
& " and " & Format(Now, "s") & " seconds."

End Sub

For other examples of the Format function, read “CCur Function” on page 115, “FV
Function” on page 216, and “GoTo Statement” on page 253.

See Also “Asc Function” on page 88
“CCur Function” on page 115
“CDbl Function” on page 117
“Chr Function” on page 121
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144
“Str Function” on page 462
Version 7.5, Rev. C Siebel VB Language Reference 211

Siebel VB Language Reference

FreeFile Function
FreeFile Function
This standard VB function returns the lowest unused file number.

Syntax FreeFile

Returns The lowest file number not in use.

Usage The FreeFile function is used when you need to supply a file number and want to
make sure that you are not choosing a file number that is already in use.

The value returned can be used in a subsequent Open statement.

Example This example opens a file and assigns to it the next file number available.

Sub Button_Click
Dim filenumber As Integer
Dim filename As String
filenumber = FreeFile
filename = "d:\temp\trace.txt"
On Error Resume Next
Open filename For Input As filenumber
If Err <> 0 then

Exit Sub
End If
Close #filenumber

End Sub

See Also “Open Statement” on page 344

Argument Description

Not applicable
212 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Function...End Function Statement
Function...End Function Statement
This standard VB construct defines a function procedure.

Syntax [Static] [Private] Function name([[Optional]parameter
[As type]][, ...]) [As funcType]

name = expression

End Function

Returns The value calculated by the expression; the program line name = expression assigns
the return value to the name of the function.

Usage The purpose of a function is to produce and return a single value of a specified type.
Recursion is supported.

The data type of name determines the type of the return value. Use a type character
as part of the name, or use the As funcType clause to specify the data type.
Otherwise the default data type is variant. When calling the function, you need not
specify the type character.

The parameters are specified as a comma-separated list of variable names. The data
type of a parameter can be specified by using a type character or by using the As
clause. Record parameters are declared using an As clause and a type that has
previously been defined using the Type statement. Array parameters are indicated
by using empty parentheses after the parameter. The array dimensions are not
specified in the Function statement. Every reference to an array parameter within
the body of the function must have a consistent number of dimensions.

Placeholder Description

name The name of the function

parameter The argument to pass to the function when it is called

type The data type for the argument

funcType The data type for the value returned by the function
Version 7.5, Rev. C Siebel VB Language Reference 213

Siebel VB Language Reference

Function...End Function Statement
You specify the return value for the function name using the name = expression
assignment, where name is the name of the function and expression evaluates to a
return value. If omitted, the value returned is 0 for numeric functions and an empty
string ("") for string functions and vartype 0 (Empty) is returned for a return type
of variant. The function returns to the caller when the End Function statement is
reached or when an Exit Function statement is executed.

If you declare a parameter as Optional, a procedure can omit its value when calling
the function. Only parameters with variant data types can be declared as optional,
and optional arguments must appear after the required arguments in the Function
statement. The function IsMissing must be used to check whether an optional
parameter was omitted by the user or not. Named parameters are described under
the Call statement heading, but they can be used when the function is used in an
expression as well.

The Static keyword specifies that the variables declared within the function retain
their values as long as the program is running, regardless of the way the variables
are declared.

The Private keyword specifies that the function is not accessible to functions and
subprograms from other modules. Only procedures defined in the same module
have access to a Private function.

Basic procedures use the call by reference convention. This means that if a
procedure assigns a value to a parameter, it modifies the variable passed by the
caller. Use this feature with great care.

Use Sub to define a procedure with no return value.

CAUTION: You cannot write your own functions or subprograms directly in the
methods and events exposed in Siebel Tools. You can write functions and
subprograms in the (general) (declarations) section of a given method script.
However, if you want your routines to be available throughout the program, you can
use the Application_PreInvokeMethod or an external DLL file as a central place to
write them. For details, read Siebel Technical Notes #207 and #217.
214 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Function...End Function Statement
If you create more than one function or subprogram in the (general) (declarations)
section, be sure that any function or subprogram that may be called by other user-
defined functions and subprograms appears before the procedure that calls it.
Otherwise, you cannot compile your procedures.

Example This example declares a function that is later called by the main subprogram. The
function performs a calculation on the value sent to it, thereby changing the value
of the variable. For other examples, read “Declare Statement” on page 155, and the
second example within “GoTo Statement” on page 253.

(general) (declarations)
Option Explicit
Declare Function Calculate(i as Single) As Single

Function Calculate(i As Single)
i = i * 3 + 2
Calculate = i

End Function

Sub Button_Click
Dim x as String
Dim y As Single
x = 34
y = val(x)
Call Calculate(y)

End Sub

See Also “Call Statement” on page 112
“Dim Statement” on page 161
“Global Statement” on page 249
“IsMissing Function” on page 279
“Option Explicit Statement” on page 352
“Static Statement” on page 460
“Sub...End Sub Statement” on page 467
Version 7.5, Rev. C Siebel VB Language Reference 215

Siebel VB Language Reference

FV Function
FV Function
This standard VB function returns the future value for a constant periodic stream of
cash flows as in an annuity or a loan.

Syntax FV(rate, nper, pmt, pv, due)

Returns A number representing the future value of an investment such as an annuity or
loan.

Usage The given interest rate is assumed constant over the life of the annuity.

If payments are on a monthly schedule and the annual percentage rate on the
annuity or loan is 9%, the rate is 0.0075 (.0075 = .09/12).

Example This example finds the future value of an annuity, based on terms specified by the
user.

Sub Button_Click
Dim aprate, periods
Dim payment, annuitypv
Dim due, futurevalue
Dim msgtext
annuitypv = 100000
aprate = 6.75
If aprate >1 then

aprate = aprate/100
End If

Argument Description

rate The interest rate per period

nper The total number of payment periods

pmt The constant periodic payment per period

pv The present value or the initial lump sum amount paid (as in the case of an
annuity) or received (as in the case of a loan)

due An integer value indicating when the payments are due (0 = end of each
period, 1 = beginning of the period)
216 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

FV Function
periods = 60
payment = 10000
' Assume payments are made at end of month
due = 0
futurevalue = FV(aprate/12,periods,-payment,-annuitypv,due)
msgtext = "The future value is: " & Format(futurevalue,

"Currency")
End Sub

See Also “IPmt Function” on page 271
“IRR Function” on page 273
“NPV Function” on page 333
“Pmt Function” on page 356
“PPmt Function” on page 361
“PV Function” on page 369
“Rate Function” on page 375
Version 7.5, Rev. C Siebel VB Language Reference 217

Siebel VB Language Reference

Get Statement
Get Statement
This standard VB function reads data from a file opened in Random or Binary mode
and puts it in a variable.

Syntax Get [#]filenumber, [recnumber], varName

Returns Not applicable

Usage For more information about how files are numbered when they are opened, read
“Open Statement” on page 344.

The Recnumber argument is in the range 1 to 2,147,483,647. If this argument is
omitted, the next record or byte is read.

NOTE: The commas before and after the recnumber are required, even if you do not
supply a recnumber.

For Random mode, the following rules apply:

Blocks of data are read from the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement. If the size of varName is smaller
than the record length, the additional data is discarded. If the size of varName is
larger than the record length, an error occurs.

For variable length string variables, Get reads two bytes of data that indicate the
length of the string, then reads the data into varName.

Argument Description

filenumber The file number used in the Open statement to open the file

recnumber An expression of type long containing either the number of the record at
which to start reading in Random mode, or the offset of the byte at which
to start reading in Binary mode

varName The name of the variable into which Get reads file data; varName can be
any variable except Object or Array variables, although single array
elements can be used
218 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Get Statement
For variant variables, Get reads two bytes of data that indicate the type of the
variant, then it reads the body of the variant into varName. Note that variants
containing strings contain two bytes of data type information followed by two bytes
of length followed by the body of the string.

User defined types are read as if each member were read separately, except no
padding occurs between elements.

Files opened in Binary mode behave similarly to those opened in Random mode,
except that:

■ Get reads variables from the disk without record padding.

■ Variable-length Strings that are not part of user-defined types are not preceded
by the two-byte string length. Instead, the number of bytes read is equal to the
length of varName.

Example This example opens a file for Random access, gets its contents, and closes the file
again. The second subprogram, createfile, creates the c:\temp001 file used by
the main subprogram.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button1_Click
Dim acctno as String * 3
Dim recno as Long
Dim msgtext as String
Call CreateFile
recno = 1
newline = Chr(10)
Open "c:\temp001" For Random As #1 Len = 3
msgtext = "The account numbers are:" & newline
Version 7.5, Rev. C Siebel VB Language Reference 219

Siebel VB Language Reference

Get Statement
Do Until recno = 11
Get #1,recno,acctno
msgtext = msgtext & acctno
recno = recno + 1

Loop
Close #1

Kill "c:\temp001"
End Sub

See Also “Open Statement” on page 344
“Put Statement” on page 367
“Type Statement” on page 487
220 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetAssocBusComp Method
GetAssocBusComp Method
GetAssocBusComp returns the association business component. The association
business component can be used to operate on the association using the normal
business component mechanisms. This method is used with business component
objects. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 221

Siebel VB Language Reference

GetAttr Function
GetAttr Function
This standard VB function returns the attributes of a file, folder, or volume label.

Syntax GetAttr(pathname)

Returns An integer representing a file attribute. The file attributes returned by GetAttr are as
follows:

Usage Pathname can contain drive and folder information, but cannot contain wildcards
(* and ?).

If GetAttr returns a value other than those in the preceding list, the return value
represents the sum of the return values for those attributes that are set; thus, for
example, a return value of 6 represents a hidden system file.

See Also “FileAttr Function” on page 190
“SetAttr Statement” on page 413

Argument Description

pathname A string or string expression evaluating to the name of the file, folder, or
volume label to query

Value Meaning

0 Normal file

1 Read-only file

2 Hidden file

4 System file

8 Volume label

16 Directory (folder)

32 Archive—file has changed since last backup
222 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetBusComp Method
GetBusComp Method
The GetBusComp method returns the specified Siebel business component. It is
used with Siebel business objects. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 223

Siebel VB Language Reference

GetBusObject Method
GetBusObject Method
The GetBusObject method instantiates and returns a new instance of the argument
specified business object. It is used with the application object. For details, read
Siebel Object Interfaces Reference.
224 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetChild Method
GetChild Method
GetChild returns a specified child property set of a property set. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 225

Siebel VB Language Reference

GetChildCount Method
GetChildCount Method
GetChildCount returns the number of child property sets attached to a parent
property set. For details, read Siebel Object Interfaces Reference.
226 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetFieldValue Method
GetFieldValue Method
GetFieldValue returns the value for the argument-specified field for the current
record of a Siebel business component. Use this method to access a field value. This
method is used with business component objects. For details, read Siebel Object
Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 227

Siebel VB Language Reference

GetFirstProperty Method
GetFirstProperty Method
GetFirstProperty retrieves the name of the first property of a business service or
property set. For details, read Siebel Object Interfaces Reference.
228 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetFormattedFieldValue Method
GetFormattedFieldValue Method
GetFormattedFieldValue returns the field value in the current local format; it returns
values in the same format as the Siebel UI. It is used with business component
objects. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 229

Siebel VB Language Reference

GetMultipleFieldValues Method
GetMultipleFieldValues Method
GetMultipleFieldValues() allows users to retrieve the field values for a particular
record as specified in the property set input argument. For details, read Siebel Object
Interfaces Reference.
230 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetMVGBusComp Method
GetMVGBusComp Method
GetMVGBusComp returns the MVG business component associated with a Siebel
business component field. This business component can be used to operate on the
multi-value group using the normal business component mechanisms. This method
is used with business component objects. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 231

Siebel VB Language Reference

GetNamedSearch Method
GetNamedSearch Method
GetNamedSearch returns the named search specification specified by searchName.
It is used with business component objects. For details, read Siebel Object Interfaces
Reference.
232 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetNextProperty Method
GetNextProperty Method
When the name of the first property has been retrieved, this method retrieves the
name of the next property of a business service. For details, read Siebel Object
Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 233

Siebel VB Language Reference

GetObject Function
GetObject Function
This standard VB function returns a COM object associated with the file name or
the application name.

Syntax A GetObject(pathname)

Syntax B GetObject(pathname, class)

Syntax C GetObject(, class)

Returns The object associated with pathname or the object associated with class.

Usage Use GetObject with the Set statement to assign a variable to the object for use in a
Basic procedure. The variable used must first be dimensioned as an object.

Syntax A of GetObject accesses a COM object stored in a file. For example, the
following two lines dimension a variable as an object and assign the object
payables.xls to it. Payables.xls is located in the My Documents folder:

Dim oFileObject As Object
Set oFileObject = GetObject("C:\My Documents\payables.xls")

If the application supports accessing component objects within the file, you can
append an exclamation point and a component object name to the file name, as
follows:

Dim oComponentObject As Object
Set oComponentObject = _
GetObject("C:\My Documents\payables.xls!R1C1: R13C9")

Argument Description

pathname The full path and filename for the object to retrieve

class A string containing the class of the object
234 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetObject Function
Syntax B of GetObject accesses a COM object of a particular class that is stored in
a file. Class uses the syntax appName.objectType, where appName is the name of
the application that provides the object, and objectType is the type or class of the
object. For example:

Dim oClassObject As Object
Set oClassObject = GetObject("C:\My _
Documents\payables.xls", "Excel.Sheet")

The third form of GetObject accesses the active COM object of a particular class.
For example:

Dim oApplication As _
SiebelHTMLApplication

Set oApplication = _
GetObject(,"SiebelHTML.SiebelHTMLApplication.1")

If you use the third form of GetObject with an empty string ("") as the pathname,
a new object instance of the specified type is returned. Thus, the preceding example
gets an open instance of the Siebel application, while

Set oApplication = _
GetObject("","SiebelHTML.SiebelHTMLApplication.1")

instantiates the Siebel application in memory, independent of the user interface.

NOTE: The last two examples refer to the object SiebelAppServer, which has been
defined as an object type as configured in your external Visual Basic environment.

Example This example opens a specific Excel worksheet and places the contents of the Name
field of the active business component in it. The worksheet file must already exist.

Sub Button1_Click
Dim ExcelSheet As Object
Set ExcelSheet = GetObject("C:\demo\test.xls")

'Make Excel visible through the Application object.
ExcelSheet.Application.Visible = 1

'Place some text in the first cell of the sheet.
ExcelSheet.ActiveSheet.Cells(1, 1).Value = _

theApplication.ActiveBusComp.GetFieldValue("Name")
Version 7.5, Rev. C Siebel VB Language Reference 235

Siebel VB Language Reference

GetObject Function
'Save the sheet.
ExcelSheet.Save
'Close Excel with the Quit method on the Application object.

+ExcelSheet.Application.Quit
End Sub

See Also “CreateObject Function” on page 134
“Is Operator” on page 275
“Me” on page 311
“New Operator” on page 325
“Nothing Function” on page 329
“Object Class” on page 336
“Typeof Function” on page 489
236 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetPicklistBusComp Method
GetPicklistBusComp Method
GetPicklistBusComp returns the pick business component associated with the
specified field in the current business component. This method is used with
business component objects. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 237

Siebel VB Language Reference

GetProfileAttr Method
GetProfileAttr Method
GetProfileAttr returns the value of an attribute in a user profile. For details, read
Siebel Object Interfaces Reference.
238 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetProperty Method
GetProperty Method
The GetProperty method returns the value of the property whose name is specified
in its argument on the object on which it is invoked. For details, read Siebel Object
Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 239

Siebel VB Language Reference

GetPropertyCount Method
GetPropertyCount Method
GetPropertyCount() returns the number of properties associated with a property set.
For details, read Siebel Object Interfaces Reference.
240 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetSearchExpr Method
GetSearchExpr Method
GetSearchExpr returns the current search expression for a Siebel business
component. This method is used with business component objects. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 241

Siebel VB Language Reference

GetSearchSpec Method
GetSearchSpec Method
GetSearchSpec returns the search specification for the field specified in its
argument. This method is used with business component objects. For details, read
Siebel Object Interfaces Reference.
242 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetService Method
GetService Method
The GetService method returns a specified business service. If the service is not
already running, it is constructed. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 243

Siebel VB Language Reference

GetSharedGlobal Method
GetSharedGlobal Method
The GetSharedGlobal method gets the shared user-defined global variables. It is
used with the application object. For details, read Siebel Object Interfaces Reference.
244 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetType Method
GetType Method
GetType retrieves the value stored in the type attribute of a property set. For details,
read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 245

Siebel VB Language Reference

GetUserProperty Method
GetUserProperty Method
GetUserProperty returns the value of a named UserProperty. This method is used
with business component objects. For details, read Siebel Object Interfaces
Reference.
246 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GetValue Method
GetValue Method
The GetValue method returns the value of a control in a Siebel applet, or of the value
attribute of a property set. If used with control objects, the type of the return value
depends on the specific control object. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 247

Siebel VB Language Reference

GetViewMode Method
GetViewMode Method
GetViewMode returns the current visibility mode for a Siebel business component.
This affects which records are returned by queries according to the visibility rules.
This method is used with business component objects. For details, read Siebel
Object Interfaces Reference.
248 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Global Statement
Global Statement
This standard VB statement declares Global variables for use in a Basic program.

Syntax Global variableName [As type] [,variableName [As type]] ...

Returns Not applicable

Usage In Siebel VB, a Global variable must generally be declared in every module from
which you wish to access that variable. Declare Global variables in the (general)
(declarations) section for the module.

Basic is a strongly typed language: variables must be given a data type or they are
assigned a type of variant.

If the As clause is not used, the type of the global variable can be specified by using
a type character as a suffix to variableName. The two different type-specification
methods can be intermixed in a single Global statement (although not on the same
variable).

Regardless of which mechanism you use to declare a global variable, you can
choose to use or omit the type character when referring to the variable in the rest
of your program. The type suffix is not considered part of the variable name.

The available data types are:

■ Arrays

■ Numbers

■ Records

■ Strings

■ Variants

Argument Description

variableName A variable name

type The variable’s data type
Version 7.5, Rev. C Siebel VB Language Reference 249

Siebel VB Language Reference

Global Statement
Arrays
The available data types for arrays are numbers, strings, variants, and records.
Arrays of arrays, dialog box records, and objects are not supported.

Array variables are declared by including a subscript list as part of the
variableName. The syntax to use for variableName is:

Global variable([subscriptRange, ...]) [As typeName]

where subscriptRange is of the format:

[startSubscript To] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base statement
can be used to change the default to 1.

Both the startSubscript and the endSubscript are valid subscripts for the array. The
maximum number of subscripts that can be specified in an array definition is 60.

If no subscriptRange is specified for an array, the array is declared as a dynamic
array. In this case, the ReDim statement must be used to specify the dimensions of
the array before the array can be used.

Numbers
Numeric variables can be declared using the As clause and one of the following
numeric types: currency, integer, long, single, and double. Numeric variables can
also be declared by including a type character as a suffix to the name.

Records
Record variables are declared by using an As clause and a type that has previously
been defined using the Type statement. The syntax to use is:

Global variableName As typeName

Records are made up of a collection of data elements called fields. These fields can
be of any numeric, string, variant, or previously defined record type. For details on
accessing fields within a record, read “Type Statement” on page 487.

You cannot use the Global statement to declare a dialog record.
250 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Global Statement
Strings
Siebel VB supports two types of strings, fixed-length and dynamic. Fixed-length
strings are declared with a specific length (between 1 and 32767) and cannot be
changed later. Use the following syntax to declare a fixed-length string:

Global variableName As String * length

Dynamic strings have no declared length, and can vary in length from 0 to 32767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:

Global variableName$

or

Global variableName As String

Variants
Declare variables as variants when the type of the variable is not known at the start
of, or might change during, the procedure. For example, a variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a variant:

Global variableName

or

GlobalvariableName As Variant

Variant variables are initialized to vartype Empty.

Example This example contains two subroutines that share the variables total and acctno,
and the record grecord.

(general)(declarations)
Option Explicit
Type acctrecord

acctno As Integer
End Type
Version 7.5, Rev. C Siebel VB Language Reference 251

Siebel VB Language Reference

Global Statement
Global acctno as Integer
Global total as Integer
Global grecord as acctrecord
Declare Sub CreateFile

Sub CreateFile
Dim x
x = 1
grecord.acctno = 2345
Open "c:\temp001" For Output as #1
Do While grecord.acctno <> 0

grecord.acctno = 0
If grecord.acctno <> 0 then

Print #1, grecord.acctno
x = x + 1

End If
Loop
total = x-1
Close #1

End Sub

Sub Button_Click
Dim msgtext
Dim newline as String
newline = Chr$(10)
Call CreateFile
Open "c:\temp001" For Input as #1
msgtext = "The new account numbers are: " & newline
For x = 1 to total

Input #1, grecord.acctno
msgtext = msgtext & newline & grecord.acctno

Next x
Close #1

Kill "c:\temp001"
End Sub

See Also “Const Statement” on page 131
“Dim Statement” on page 161
“Option Base Statement” on page 347
“ReDim Statement” on page 377
“Static Statement” on page 460
“Type Statement” on page 487
252 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GoTo Statement
GoTo Statement
This standard VB method transfers program control to a specified label.

Syntax GoTo label

Returns Not applicable

Usage A label has the same format as any other Basic name. Reserved words are not valid
labels.

GoTo cannot be used to transfer control out of the current Function or Subprogram.

Example This example displays the date for one week from the date entered by the user. If
the date is invalid, the GoTo statement sends program execution back to the
beginning.

Sub Button_Click
Dim str1 as String
Dim nextweek
Dim msgtext

start:
str1 = "5/20/2001"
answer = IsDate(str1)
If answer = -1 then

str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
msgtext = "One week from the date entered is "
msgtext = msgtext & Format(nextweek,"dddddd")

Else

Argument Description

label A name beginning in the first column of a line of code and ending in a colon (:)
Version 7.5, Rev. C Siebel VB Language Reference 253

Siebel VB Language Reference

GoTo Statement
GoTo start
End If

End Sub

NOTE: Good programming practice is to avoid the use of GoTo statements. When
possible, other constructs should be used to accomplish the same end. For example,
the previous example could be reworked so that the If statement appears in a
separate function called by the main program. If the test failed, the initial routine
could be called again. The following example demonstrates this alternative.

(general) (declarations)
Option Explicit
' Variables must be declared in this section so that they
' can be used by both procedures.
Dim str1 As String, nextweek, MsgText As String
Declare Function CheckResponse(Answer) As String

Function CheckResponse(Answer) As String
str1 = CVDate(str1)
nextweek = DateValue(str1) + 7
CheckResponse = "One week from the date entered is " & _

Format(nextweek, "dddddd")
End Function

Sub Button1_Click
Dim Answer as String
str1 = "2/5/2001"
Answer = IsDate(str1)
If Answer <> -1 Then

‘Invalid date or format. Try again.
Button1_Click

Else
Answer = CheckResponse(Answer)
End If

End Sub

See Also “Do...Loop Statement” on page 169
“If...Then...Else Statement” on page 259
“Select Case Statement” on page 403
“While...Wend Statement” on page 507
254 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

GotoView Method
GotoView Method
GotoView activates the named view and its business object. As a side effect, this
method activates the view’s primary applet and its business component and
activates the primary applet’s first tab sequence control. Further, this method
deactivates any business object, business component, applet, or control objects that
were active prior to this method call. It is used with the application object. For
details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 255

Siebel VB Language Reference

Hex Function
Hex Function
This standard VB function returns the hexadecimal representation of a number, as
a string.

Syntax Hex[$](number)

Returns The hexadecimal representation of number as a string.

Usage If number is an integer, the return string contains up to four hexadecimal digits;
otherwise, the value is converted to a long integer, and the string can contain up to
8 hexadecimal digits.

To represent a hexadecimal number directly, precede the hexadecimal value with
&H. For example, &H10 equals decimal 16 in hexadecimal notation.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

Example This example returns the hex value for a number entered by the user.

Sub Button_Click
Dim usernum as Integer
Dim hexvalue as String
usernum = 23
hexvalue = Hex(usernum)

End Sub

See Also “Format Function” on page 202
“Oct Function” on page 338

Argument Description

number Any numeric expression
256 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Hour Function
Hour Function
This standard VB function returns the hour-of-day component (0–23) of a date-time
value.

Syntax Hour(time)

Returns If the expression evaluates to a date-time or time value, the hour component of that
value; otherwise 0.

Usage Time can be any type, including string, and the Hour function attempts to convert
time to a date value.

The return value is a variant of vartype 2 (integer). If the value of time is Null, a
variant of vartype 1 (null) is returned.

For Hour to function without an error, the values passed to it must be in some form
that can be interpreted as a time or date-time value. Thus, 13:26, or 1:45:12 PM
returns valid results, but 1326 returns a 0.

Time is a double-precision value. The numbers to the left of the decimal point
denote the date and the decimal value denotes the time (from 0 to .99999). Use the
TimeValue function to obtain the correct value for a specific time.

Argument Description

time Any numeric or string expression that can evaluate to a date-time or
time value
Version 7.5, Rev. C Siebel VB Language Reference 257

Siebel VB Language Reference

Hour Function
See Also “Date Statement” on page 147
“DateSerial Function” on page 149
“DateValue Function” on page 151
“Day Function” on page 153
“Minute Function” on page 316
“Month Function” on page 320
“Now Function” on page 331
“Second Function” on page 397
“Time Statement” on page 475
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515
258 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

If...Then...Else Statement
If...Then...Else Statement
This standard VB control structure executes alternative blocks of program code
based on one or more expressions.

Syntax A If condition Then then_statement [Else else_statement]

Syntax B If condition Then

statement_block

[ElseIf expression Then

statement_block]...

[Else

statement_block]

End If

Returns Not applicable

Usage When multiple statements are required in either the Then or Else clause, use the
block version (Syntax B) of the If statement.

Example This example checks the time and the day of the week and returns an appropriate
message.

Placeholder Description

condition Any expression that evaluates to TRUE (non-zero) or FALSE (zero)

then_statement Any valid single expression

else statement Any valid single expression

expression Any expression that evaluates to TRUE (non-zero) or FALSE (zero)

statement_block 0 or more valid expressions, separated by colons (:), or on different
lines
Version 7.5, Rev. C Siebel VB Language Reference 259

Siebel VB Language Reference

If...Then...Else Statement
Sub Button_Click
Dim h, m, m2, w
h = hour(now)
If h > 18 then

m = "Good evening, "
Elseif h >12 then

m = "Good afternoon, "
Else

m = "Good morning, "
End If

w = weekday(now)
If w = 1 or w = 7

Then m2 = "the office is closed."
Else m2 = "please hold for company operator."
End If

End Sub

See Also “Do...Loop Statement” on page 169
“GoTo Statement” on page 253
“On...GoTo Statement” on page 340
“Select Case Statement” on page 403
“While...Wend Statement” on page 507
260 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Input Function
Input Function
This standard VB function returns a string containing the characters read from a file.

Syntax Input[$](number, [#]filenumber)

Returns The data read from the file, as a string.

Usage The file pointer is advanced the number of characters read. Unlike the Input
statement, the Input function returns every character it reads, including carriage
returns, line feeds, and leading spaces.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

The input buffer can hold a maximum of 32 K characters. Be aware of this limit
when attempting to pass in large amounts of data.

See Also “Get Statement” on page 218
“Input Statement” on page 262
“Line Input Statement” on page 297
“Open Statement” on page 344
“Write Statement” on page 512

Argument Description

number An integer representing the number of characters (bytes) to read from
the file

filenumber The number identifying the open file to use
Version 7.5, Rev. C Siebel VB Language Reference 261

Siebel VB Language Reference

Input Statement
Input Statement
This standard VB statement reads data from a sequential file and assigns the data
to variables.

Syntax Input [#]filenumber, variable[, variable]...

Returns Not applicable

Usage The filenumber is the number used in the Open statement to open the file. The list
of variables is separated by commas.

Example This example prompts a user for an account number, opens a file, searches for the
account number, and displays the matching letter for that number. It uses the Input
statement to increase the value of x and at the same time get the letter associated
with each value. The second subprogram, CreateFile, creates the file c:\temp001
used by the main subprogram.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Global x as Integer
Global y(100) as String

Sub CreateFile
' Put the numbers 1-10 and letters A-J into a file

Dim startletter
Open "c:\temp001" for Output as #1
startletter = 65
For x = 1 to 10

y(x) = Chr(startletter)
startletter = startletter + 1

Next x

Argument Description

filenumber The file number used in the Open statement to open the file from which
to read

variable One or more variables to contain the values read from the file
262 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Input Statement
For x = 1 to 10
Write #1, x,y(x)

Next x
Close #1

End Sub

Sub Button2_Click
Dim acctno as Integer
Dim msgtext
Call CreateFile

start: acctno = 2
If acctno<1 Or acctno>10 then

Goto start:
End if
x = 1
Open "c:\temp001" for Input as #1
Do Until x = acctno

Input #1, x,y(x)
Loop

msgtext = "The letter for account number " & x & " is: " _
& y(x)

Close #1
Kill "C:\TEMP001"

End Sub

See Also “Get Statement” on page 218
“Input Function” on page 261
“Line Input Statement” on page 297
“Open Statement” on page 344
“Write Statement” on page 512
Version 7.5, Rev. C Siebel VB Language Reference 263

Siebel VB Language Reference

InsertChildAt Method
InsertChildAt Method
InsertChildAt inserts a child property set into a parent property set at a specific
location. For details, read Siebel Object Interfaces Reference.
264 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

InStr Function
InStr Function
This standard VB function returns the position of the first occurrence of one string
within another string.

Syntax A InStr([start,] string1, string2)

Syntax B InStr(start, string1, string2[, compare])

Returns The position of the first character of string2 in string1.

Usage If not specified, the search starts at the beginning of the string (equivalent to a start
of 1). These arguments can be of any type. They are converted to strings.

InStr returns a zero under the following conditions:

■ start is greater than the length of string2.

■ string1 is a null string.

■ string2 is not found.

If either string1 or string2 is a null variant, Instr returns a null variant.

If string2 is a null string (""), Instr returns the value of start.

Argument Description

start An integer representing the position in string1 to begin the search, with the
first character in the string as 1

string1 The string to search

string2 The string to find

compare 0 if a case-sensitive search is desired

1 if a case-insensitive search is desired
Version 7.5, Rev. C Siebel VB Language Reference 265

Siebel VB Language Reference

InStr Function
If compare is 0, a case-sensitive comparison based on the ANSI character set
sequence is performed. If compare is 1, a case-insensitive comparison is done based
upon the relative order of characters as determined by the country code setting for
your computer. If compare is omitted, the module level default, as specified with
Option Compare, is used.

Example This example generates a random string of characters, then uses InStr to find the
position of a single character within that string.

Sub Button_Click
Dim x as Integer
Dim y
Dim str1 as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim position as Integer
Dim msgtext, newline
upper = Asc("z")
lower = Asc("a")
newline = Chr(10)
For x = 1 to 26

Randomize
randomvalue = Int(((upper - (lower + 1)) * Rnd) + lower)
letter = Chr(randomvalue)
str1 = str1 & letter

'Need to waste time here for fast processors
For y = 1 to 1000
Next y

Next x
str2 = "i"
position = InStr(str1,str2)
If position then

msgtext = "The position of " & str2 & " is: " _
& position & newline & "in string: " & str1

Else
msgtext = "The letter: " & str2 & " was not found in: " _

& newline
msgtext = msgtext & str1
End If

End Sub
266 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

InStr Function
See Also “Left Function” on page 290
“Mid Function” on page 312
“Mid Statement” on page 314
“Option Compare Statement” on page 350
“Right Function” on page 388
“Str Function” on page 462
“StrComp Function” on page 463
Version 7.5, Rev. C Siebel VB Language Reference 267

Siebel VB Language Reference

Int Function
Int Function
This standard VB function returns the integer part of a number.

Syntax Int(number)

Returns The integer part of number.

Usage For positive numbers, Int removes the fractional part of the expression and returns
the integer part only. For negative numbers, Int returns the largest integer less than
or equal to the expression. For example, Int (6.2) returns 6; Int(-6.2) returns -7.

The return type matches the type of the numeric expression. This includes variant
expressions that return a result of the same vartype as input, except vartype 8
(string) returns as vartype 5 (double) and vartype 0 (empty) returns as vartype 3
(long).

The effect of this function is the same as that of the Fix function, except in the
handling of negative numbers. Thus:

■ Fix(-8.347) = -8

■ Int(-8.347) = -9

Example This example uses Int to generate random numbers in the range between the ASCII
values for lowercase a and z (97 and 122). The values are converted to letters and
displayed as a string.

Sub Button_Click
Dim x As Integer, y As Integer
Dim str1 As String, letter As String
Dim randomvalue As Double
Dim upper As Integer, lower As Integer
Dim msgtext, newline
upper = Asc("z")
lower = Asc("a")

Argument Description

number Any numeric expression
268 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Int Function
newline = Chr(10)
For x = 1 to 26

Randomize
randomvalue = Int(((upper - (lower + 1)) * Rnd) + lower)
letter = Chr(randomvalue)
str1 = str1 & letter

'Need to waste time here for fast processors
For y = 1 to 1500
Next y

Next x
msgtext = "The string is:" & newline

msgtext = msgtext & str1
End Sub

See Also “Exp Function” on page 188
“Fix Function” on page 197
“Log Function” on page 303
“Rnd Function” on page 392
“Sgn Function” on page 430
“Sqr Function” on page 459
Version 7.5, Rev. C Siebel VB Language Reference 269

Siebel VB Language Reference

InvokeMethod Method
InvokeMethod Method
The InvokeMethod method calls a specialized method on an object that is not part
of the object’s interface. It may be used with applet, business component, business
object business service, web applet, and application objects. When used with a
business service, it may be used to implement a user-defined method. For details,
read Siebel Object Interfaces Reference.
270 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

IPmt Function
IPmt Function
This standard VB function returns the interest portion of a payment for a given
period of an annuity.

Syntax IPmt(rate, period, nper, pv, fv, due)

Returns The interest portion of a payment for a given payment period.

Usage The given interest rate is assumed to be constant over the life of the annuity. If
payments are on a monthly schedule, then rate is 0.0075 if the annual percentage
rate on the annuity or loan is 9%.

Example This example finds the interest portion of a loan payment amount for payments
made in the last month of the first year. The loan is for $25,000 to be paid back over
5 years at 9.5% interest.

Sub Button_Click
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, intpaid
Dim msgtext
aprate = .095
payperiod = 12

Argument Description

rate Interest rate per period

period The specific payment period, in the range 1 through nper

nper The total number of payment periods

pv The present value of the initial lump sum paid (as in an annuity) or received
(as in a loan)

fv The future value of the final lump sum required (as in a savings plan) or
paid (which is 0 in a loan)

due 0 if payments are due at the end of the payment period

1 if payments are due at the beginning of the payment period
Version 7.5, Rev. C Siebel VB Language Reference 271

Siebel VB Language Reference

IPmt Function
periods = 120
loanpv = 25000
loanfv = 0
' Assume payments are made at end of month
due = 0
intpaid = IPmt(aprate/12,payperiod,periods, _
loanpv,loanfv,due)
msgtext = "For a loan of $25,000 @ 9.5% for 10 years," _
 & Chr(10)
msgtext = msgtext + "the interest paid in month 12 is: "_

& Format(intpaid, "Currency")
End Sub

See Also “FV Function” on page 216
“IRR Function” on page 273
“NPV Function” on page 333
“Pmt Function” on page 356
“PPmt Function” on page 361
“PV Function” on page 369
“Rate Function” on page 375
272 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

IRR Function
IRR Function
This standard VB function returns the internal rate of return for a stream of periodic
cash flows.

Syntax IRR(valuearray(), guess)

Returns The internal rate of return for a stream of periodic cash flows.

Usage Valuearray() must have at least one positive value (representing a receipt) and one
negative value (representing a payment). Payments and receipts must be
represented in the exact sequence. The value returned by IRR varies with the
change in the sequence of cash flows.

In general, a guess value of between 0.1 (10 percent) and 0.15 (15 percent) is a
reasonable estimate.

IRR is an iterative function. It improves a given guess over several iterations until
the result is within 0.00001 percent. If it does not converge to a result within 20
iterations, it signals failure.

Example This example calculates an internal rate of return (expressed as an interest rate
percentage) for a series of business transactions (income and costs). The first value
entered must be a negative amount, or IRR generates an “Illegal Function Call”
error.

Sub Button_Click
Dim cashflows() as Double
Dim guess, count as Integer
Dim i as Integer
Dim intnl as Single
Dim msgtext as String
guess = .15
count = 2

Argument Description

valuearray() An array containing cash-flow values

guess An estimate of the value returned by IRR
Version 7.5, Rev. C Siebel VB Language Reference 273

Siebel VB Language Reference

IRR Function
ReDim cashflows(count + 1)
For i = 0 to count-1

cashflows(i) = 3000
Next i
intnl = IRR(cashflows(),guess)
msgtext = "The IRR for your cash flow amounts is: "

msgtext = msgtext & Format(intnl, "Percent")
End Sub

See Also “FV Function” on page 216
“IPmt Function” on page 271
“NPV Function” on page 333
“Pmt Function” on page 356
“PPmt Function” on page 361
“PV Function” on page 369
“Rate Function” on page 375
274 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Is Operator
Is Operator
Compares two object expressions and returns -1 if they refer to the same object, 0
otherwise.

Syntax objectExpression Is objectExpression

Returns Not applicable

Usage Is can also be used to test if an object variable has been set to Nothing.

Example For examples of the Is operator, read “CreateObject Function” on page 134 and
“GetObject Function” on page 234.

See Also “CreateObject Function” on page 134
“GetObject Function” on page 234
“Me” on page 311
“Nothing Function” on page 329
“Object Class” on page 336
“Typeof Function” on page 489

Argument Description

objectExpression Any valid object expression
Version 7.5, Rev. C Siebel VB Language Reference 275

Siebel VB Language Reference

IsDate Function
IsDate Function
This standard VB function indicates whether or not an expression is a legal date.

Syntax IsDate(expression)

Returns -1 (TRUE) if expression is a legal date, 0 (FALSE) if it is not.

Usage IsDate returns -1 (TRUE) if the expression is of vartype 7 (date) or a string that can
be interpreted as a date.

Example This example adds a number to today’s date value and checks to see if it is still a
valid date (within the range January 1, 100 AD, through December 31, 9999 AD).

Sub Button_Click
Dim curdatevalue
Dim yrs
Dim msgtext
curdatevalue = DateValue(Date$)
yrs = 20
yrs = yrs * 365
curdatevalue = curdatevalue + yrs
If IsDate(curdatevalue) = -1 then

msgtext = Format(CVDate(curdatevalue))
Else

"The date is not valid."
End If

End Sub

See Also “CVDate Function” on page 144
“IsEmpty Function” on page 277
“IsNull Function” on page 281
“IsNumeric Function” on page 283
“VarType Function” on page 497

Argument Description

expression Any valid expression
276 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

IsEmpty Function
IsEmpty Function
This standard VB function is used to determine whether a variable of data type
variant has been initialized.

Syntax IsEmpty(expression)

Returns -1 (TRUE) if a variant has been initialized; 0 (FALSE) otherwise.

Usage IsEmpty returns -1 (TRUE) if the variant is of vartype 0 (empty). Any newly defined
variant defaults to being of Empty type, to signify that it contains no initialized data.
An Empty variant converts to zero when used in a numeric expression, or an empty
string ("") in a string expression.

Example This example prompts for a series of test scores and uses IsEmpty to determine
whether the maximum allowable limit has been hit. (IsEmpty determines when to
exit the Do...Loop.)

Sub Button_Click
Dim arrayvar(10)
Dim x as Integer
Dim tscore as Single
Dim total as Integer
x = 1
Do

tscore = 88
arrayvar(x) = tscore
x = x + 1

Loop Until IsEmpty(arrayvar(10)) <> -1
total = x-1
msgtext = "You entered: " & Chr(10)
For x = 1 to total

 msgtext = msgtext & Chr(10) & arrayvar(x)
Next x

End Sub

Argument Description

expression Any expression containing a variable of data type variant
Version 7.5, Rev. C Siebel VB Language Reference 277

Siebel VB Language Reference

IsEmpty Function
See Also “IsDate Function” on page 276
“IsNull Function” on page 281
“IsNumeric Function” on page 283
“VarType Function” on page 497
278 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

IsMissing Function
IsMissing Function
This standard VB function is used to determine whether an optional argument for
a procedure has been supplied by the caller.

Syntax IsMissing(argname)

Returns -1 (TRUE) if an optional parameter was not supplied by the user; 0 (FALSE)
otherwise.

Usage IsMissing is used in procedures that have optional arguments to find out whether
the argument’s value was supplied or not.

Example This example prints a list of uppercase characters. The quantity printed is
determined by the user. If the user wants to print every character, the Function
myfunc is called without any argument. The function uses IsMissing to determine
whether to print every uppercase character or just the quantity specified by the user.

Function myfunc(Optional arg1)
If IsMissing(arg1) = -1 then

arg1 = 26
End If
msgtext = "The letters are: " & Chr$(10)
For x = 1 to arg1

msgtext = msgtext & Chr$(x + 64) & Chr$(10)
Next x

End Function

Sub Button_Click
Dim arg1
arg1 = 0
If arg1 = 0 then

myfunc()
Else

Argument Description

argname An optional argument for a subprogram, function, Siebel VB statement, or
Siebel VB function
Version 7.5, Rev. C Siebel VB Language Reference 279

Siebel VB Language Reference

IsMissing Function
myfunc(arg1)
End If

End Sub

See Also “Function...End Function Statement” on page 213
280 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

IsNull Function
IsNull Function
This standard VB function is used to determine whether a variant variable has the
Null value.

Syntax IsNull(expression)

Returns -1 (TRUE) if a variant expression contains the Null value, 0 (FALSE) otherwise.

Usage Null variants have no associated data and serve only to represent invalid or
ambiguous results. Null is not the same as Empty, which indicates that a variant
has not yet been initialized.

Example This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total count of
scores (originally 10) to just those with positive values before calculating the
average.

Sub Button_Click
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count = 10
total = 0
For x = 1 to count

tscore = 88
If tscore<0 then

arrayvar(x) = Null
Else

arrayvar(x) = tscore
total = total + arrayvar(x)

End If
Next x
Do While x <> 0

x = x - 1

Argument Description

expression Any expression containing a variable of data type variant
Version 7.5, Rev. C Siebel VB Language Reference 281

Siebel VB Language Reference

IsNull Function
If IsNull(arrayvar(x)) = -1 then
count = count-1

End If
Loop
msgtext = "The average (excluding negative values) is: "

msgtext = msgtext & Chr(10) & Format(total/count, "##.##")
End Sub

See Also “IsDate Function” on page 276
“IsEmpty Function” on page 277
“IsNumeric Function” on page 283
“VarType Function” on page 497
282 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

IsNumeric Function
IsNumeric Function
This standard VB function is used to determine whether the value of a variable is
numeric.

Syntax IsNumeric(expression)

Returns -1 (TRUE) if expression has a data type of Numeric, 0 (FALSE) otherwise.

Usage IsNumeric returns -1 (TRUE) if the expression is of vartypes 2-6 (numeric) or a
string that can be interpreted as a number.

If numeric input is required, IsNumeric can be used to determine whether the value
input by the user is a valid number before converting the input to a numeric data
type for processing.

See Also “IsDate Function” on page 276
“IsEmpty Function” on page 277
“IsNull Function” on page 281
“VarType Function” on page 497

Argument Description

expression Any valid expression
Version 7.5, Rev. C Siebel VB Language Reference 283

Siebel VB Language Reference

Kill Statement
Kill Statement
Deletes files from a hard disk or floppy drive.

Syntax Kill pathname

Returns Not applicable

Usage The pathname specification can contain paths and wildcards (? and *). Kill deletes
files only, not folders. To delete folders, use the RmDir function.

Example This example prompts a user for an account number, opens a file, searches for the
account number, and displays the matching letter for that number. The second
subprogram, CreateFile, creates the file c:\temp001 used by the main
subprogram. After processing is done, the first subroutine uses Kill to delete the file.

(general) (declarations)
Option Explicit
Declare Sub CreateFile
Global x as Integer
Global y(100) as String

Sub CreateFile
' Put the numbers 1-10 and letters A-J into a file

Dim startletter
Open "c:\temp001" for Output as #1
startletter = 65
For x = 1 to 10

y(x) = Chr(startletter)
startletter = startletter + 1

Next x
For x = 1 to 10

Write #1, x,y(x)
Next x

Close #1
End Sub

Argument Description

pathname A string expression that represents a valid DOS file specification
284 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Kill Statement
Sub Button_Click
Dim acctno as Integer
Dim msgtext
Call CreateFile

i: acctno = 6
If acctno<1 Or acctno>10 then

Goto i:
End if
x = 1
Open "c:\temp001" for Input as #1
Do Until x = acctno

Input #1, x,y(x)
Loop

msgtext = "The letter for account number " & x & " is: _
" & y(x)

Close #1
kill "c:\temp001"

End Sub

See Also “FileAttr Function” on page 190
“FileDateTime Function” on page 194
“GetAttr Function” on page 222
“RmDir Statement” on page 390
Version 7.5, Rev. C Siebel VB Language Reference 285

Siebel VB Language Reference

LastRecord Method
LastRecord Method
LastRecord moves to the last record in a business component. This method is used
with business component objects. For details, read Siebel Object Interfaces
Reference.
286 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

LBound Function
LBound Function
This standard VB function returns the lower bound of the subscript range for an
array.

Syntax LBound(arrayname [, dimension])

Returns The lower bound (lowest index number) of dimension dimension of arrayname.

Usage The dimensions of an array are numbered starting with 1. If the dimension is not
specified, 1 is the default.

LBound can be used with UBound to determine the length of an array.

Example This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and ReDim
to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1

Sub Button_Click
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total = 0
x = 1
count = 4
ReDim arrayvar(count)

start:
Do until x = count + 1
 arrayvar(x) = 98
 x = x + 1
Loop
x = LBound(arrayvar,1)

Argument Description

arrayname The name of the array to query

dimension The dimension to query
Version 7.5, Rev. C Siebel VB Language Reference 287

Siebel VB Language Reference

LBound Function
count = UBound(arrayvar,1)
For y = x to count

 total = total + arrayvar(y)
Next y

End Sub

See Also “Dim Statement” on page 161
“Global Statement” on page 249
“Option Base Statement” on page 347
“ReDim Statement” on page 377
“Static Statement” on page 460
“UBound Function” on page 490
288 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

LCase Function
LCase Function
This standard VB function returns a lowercase copy of a string.

Syntax LCase[$](string)

Returns A copy of string, with uppercase letters converted to lowercase.

Usage The substitution of characters is based on the country specified in the Windows
Control Panel. LCase accepts expressions of type string. LCase accepts any type of
argument and converts the input value to a string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string). If the value
of string is NULL, a variant of vartype 1 (Null) is returned.

The LCase or UCase function is useful for comparing string data when you need to
compare the actual text values, but the case in which input is entered is irrelevant.

Example This example converts a string entered by the user to lowercase.

Sub Button_Click
Dim userstr as String

userstr = "This Is A Test"
userstr = LCase$(userstr)

End Sub

See Also “UCase Function” on page 492

Argument Description

string A string or an expression containing a string
Version 7.5, Rev. C Siebel VB Language Reference 289

Siebel VB Language Reference

Left Function
Left Function
This standard VB function returns a string of a specified length copied from the
beginning of another string.

Syntax Left[$](string, length)

Returns A substring of string, of length length, beginning at the first character of string.

Usage If length is greater than the length of string, Left returns the whole string.

Left accepts expressions of type string. Left accepts any type of string, including
numeric values, and converts the input value to a string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string). If the value
of string is NULL, a variant of vartype 1 (Null) is returned.

Example This example extracts a user’s first name from the entire name entered.

Sub Button_Click
Dim username as String
Dim count as Integer
Dim firstname as String
Dim charspace
charspace = Chr(32)
username = "Chris Smith"
count = InStr(username,charspace)

firstname = Left(username,count)
End Sub

Argument Description

string A string, or an expression containing a string, from which a portion is to be
copied

length An integer representing the number of characters to copy
290 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Left Function
See Also “Len Function” on page 292
“LTrim Function” on page 309
“Mid Function” on page 312
“Mid Statement” on page 314
“Right Function” on page 388
“RTrim Function” on page 396
“Str Function” on page 462
“StrComp Function” on page 463
“Trim Function” on page 486
Version 7.5, Rev. C Siebel VB Language Reference 291

Siebel VB Language Reference

Len Function
Len Function
This standard VB function returns the length of a string or string variable.

Syntax A Len(string)

Syntax B Len(varName)

Returns The length of string or the string contained in the variable varName.

Usage If the argument is a string, the number of characters in the string is returned. If the
argument is a variant variable, Len returns the number of bytes required to
represent its value as a string; otherwise, the length of the built-in data type or user-
defined type is returned.

If syntax B is used, and varName is a variant containing a NULL, Len returns a Null
variant.

Example This example returns the length of a name entered by the user (including spaces).

Sub Button_Click
Dim username as String
username = "Chris Smith"
count = Len(username)

End Sub

See Also “InStr Function” on page 265

Argument Description

string A string or an expression that evaluates to a string

varName A variable that contains a string
292 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Let (Assignment Statement)
Let (Assignment Statement)
The Let statement is a standard VB statement that assigns an expression to a Basic
variable.

Syntax [Let] variable = expression

Returns Not applicable

Usage The keyword Let is optional.

The Let statement can be used to assign a value or expression to a variable with a
data type of numeric, string, variant, or record variable. You can also use the Let
statement to assign to a record field or to an element of an array.

When assigning a value to a numeric or string variable, standard conversion rules
apply.

Let differs from Set in that Set assigns a variable to a COM object. For example,

Set o1 = o2 sets the object reference.

Let o1 = o2 sets the value of the default member.

Example This example uses the Let statement for the variable sum. The subroutine finds an
average of 10 golf scores.

Sub Button_Click
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum = 34
For x = 1 to 10

score = 76
sum = sum + score

Placeholder Description

variable The variable to which a value is to be assigned

expression The expression containing the value to be assigned to variable
Version 7.5, Rev. C Siebel VB Language Reference 293

Siebel VB Language Reference

Let (Assignment Statement)
Next x
msgtext = "Your average is: " & CInt(sum/(x-1))

End Sub

See Also “Const Statement” on page 131
“Lset Statement” on page 307
“Service_InvokeMethod Event” on page 409
294 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Like Operator
Like Operator
Like is a standard VB operator used to compare the contents of string expressions.

Syntax string LIKE pattern

Returns -1 (TRUE) if string matches pattern, 0 (FALSE) otherwise.

Usage pattern can include the following special characters:

Both ranges and lists can appear within a single set of square brackets. Ranges are
matched according to their ANSI values. In a range, startchar must be less than
endchar.

If either string or pattern is NULL, then the result value is NULL.

The Like operator respects the current setting of Option Compare.

For more information about operators, read “Expressions” on page 63.

Placeholder Description

string Any string or string expression

pattern Any string expression to compare to string

Character Matches

? A single character

* A set of zero or more characters

A single digit character (0–9)

[chars] A single character in chars

[!chars] A single character not in chars

[startchar–endchar] A single character in the range startchar to endchar

[!startchar–endchar] A single character not in the range startchar to endchar
Version 7.5, Rev. C Siebel VB Language Reference 295

Siebel VB Language Reference

Like Operator
Example This example tests whether a letter is lowercase.

Sub Button_Click
Dim userstr as String
Dim revalue as Integer
Dim msgtext as String
Dim pattern
pattern = "[a-z]"
userstr = "E"
retvalue = userstr LIKE pattern
If retvalue = -1 then

msgtext = "The letter " & userstr & " is lowercase."
Else

msgtext = "Not a lowercase letter."
End If

End Sub

See Also “InStr Function” on page 265
“Option Compare Statement” on page 350
“StrComp Function” on page 463
296 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Line Input Statement
Line Input Statement
This standard VB statement reads a line from a sequential file into a string variable.

Syntax A Line Input [#] filenumber, varName

Syntax B Line Input [prompt,] varName

Returns Not applicable

Usage If it is included, the filenumber is the number used in the Open statement to open
the file. If filenumber is not provided, the line is read from the keyboard.

If prompt is not provided, a question mark (?) is displayed as the prompt.

Line Input is used to read lines of text from a text file in which the data elements
are separated by carriage returns. To read data from a file of comma-separated
values, use Read.

Example This example reads the contents of a sequential file line by line (to a carriage return)
and displays the results. The second subprogram, CreateFile, creates the file
C:\temp001 used by the main subprogram.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Argument Description

filenumber The file number, given in the Open statement, of the open file from which
to read

varName A string variable into which a line of data or user input is to be read

prompt A string literal prompting for keyboard input
Version 7.5, Rev. C Siebel VB Language Reference 297

Siebel VB Language Reference

Line Input Statement
Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim testscore as String
Dim x
Dim y
Dim newline
Call CreateFile
Open "c:\temp001" for Input as #1
x = 1
newline = Chr(10)
msgtext = "The contents of c:\temp001 is: " & newline
Do Until x = Lof(1)

Line Input #1, testscore
x = x + 1
y = Seek(1)
If y>Lof(1) then

x = Lof(1)
Else

Seek 1,y
End If
msgtext = msgtext & testscore & newline

Loop
Close #1

Kill "c:\temp001"
End Sub

See Also “Get Statement” on page 218
“Input Function” on page 261
“Input Statement” on page 262
“Open Statement” on page 344
298 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Loc Function
Loc Function
This standard VB function returns the current offset within an open file.

Syntax Loc(filenumber)

Returns For random files, the number of the last record read or written; for files opened in
append, input, or output mode, the current byte offset divided by 128; for files
opened in binary mode, the offset of the last byte read or written.

Example This example creates a file of account numbers as entered by the user. When the
user finishes, the example displays the offset in the file of the last entry made.

Sub Button_Click
Dim filepos as Integer
Dim acctno() as Integer
Dim x as Integer
x = 0
Open "c:\TEMP001" for Random as #1
Do

x = x + 1
Redim Preserve acctno(x)
acctno(x) = 234
If acctno(x) = 0 then

Exit Do
End If
Put #1,, acctno(x)

Loop
filepos = Loc(1)
Close #1

Kill "C:\TEMP001"
End Sub

See Also “Eof Function” on page 173
“Lof Function” on page 302
“Open Statement” on page 344

Argument Description

filenumber The number given in the Open statement, of the open file to query
Version 7.5, Rev. C Siebel VB Language Reference 299

Siebel VB Language Reference

Lock Statement
Lock Statement
This standard VB statement controls access to an open file.

Syntax Lock [#]filenumber[, [start] [To end]]

Returns Not applicable

Usage For binary mode, start and end are byte offsets. For random mode, start and end are
record numbers. If start is specified without end, then only the record or byte at start
is locked. If end is specified without start, then records or bytes from record number
or offset 1 to end are locked.

For Input, output, and append modes, start and end are ignored and the whole file
is locked.

Lock and Unlock always occur in pairs with identical parameters. Locks on open
files must be removed before closing the file, or unpredictable results may occur.

Example This example locks a file that is shared by others on a network, if the file is already
in use. The second subprogram, CreateFile, creates the file used by the main
subprogram.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the letters A-J into the file
Dim x as Integer
Open "c:\temp001" for Output as #1

Argument Description

filenumber The file number of the open file as used in the Open statement

start A long integer representing the number of the first record or byte offset
to lock or unlock

end A long integer representing the number of the last record or byte offset
to lock or unlock
300 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Lock Statement
For x = 1 to 10
Write #1, Chr(x + 64)

Next x
Close #1

End Sub

Sub Button_Click
Dim btngrp, icongrp
Dim defgrp
Dim answer
Dim noaccess as Integer
Dim msgabort
Dim msgstop as Integer
Dim acctname as String
noaccess = 70
msgstop = 16
Call CreateFile
On Error Resume Next
btngrp = 1
icongrp = 64
defgrp = 0
answer = 1
If answer = 1 then

Open "c:\temp001" for Input as #1
If Err = noaccess then

‘File Locked -Aborted
Else

Lock #1
Line Input #1, acctname
Unlock #1

End If
Close #1

End If
Kill "C:\TEMP001"

End Sub

See Also “Open Statement” on page 344
“Unlock Statement” on page 494
Version 7.5, Rev. C Siebel VB Language Reference 301

Siebel VB Language Reference

Lof Function
Lof Function
This standard VB function returns the length in bytes of an open file.

Syntax Lof(filenumber)

Returns The length of the open file, in bytes.

Usage The filenumber is the number used in the Open statement that opened the file.

Example This example opens a file and prints its contents to the screen.

Sub Button_Click
Dim fname As String,fchar() As String
Dim x As Integer, msgtext As String, newline As String
newline = Chr(10)
fname = "d:\temp\trace.txt"
On Error Resume Next
Open fname for Input as #1
If Err <> 0 then

Exit Sub
End If
msgtext = "The contents of " & fname & " is: " _

& newline & newline
Redim fchar(Lof(1))
 For x = 1 to Lof(1)

 fchar(x) = Input(1,#1)
 msgtext = msgtext & fchar(x)

Next x
Close #1

End Sub

See Also “Eof Function” on page 173
“FileLen Function” on page 195
“Loc Function” on page 299
“Open Statement” on page 344

Argument Description

filenumber The number of the open file, as used in the Open statement
302 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Log Function
Log Function
This standard VB function returns the natural logarithm of a number.

Syntax Log(number)

Returns The natural logarithm of number.

Usage The return value is single-precision for an integer, currency, or single-precision
numeric expression; double precision for a long, variant, or double-precision
numeric expression.

Example This example uses the Log function to determine which number is larger: 999^1000
(999 to the 1000th power) or 1000^999 (1000 to the 999th power). Note that you
cannot use the exponent (^) operator for numbers this large.

Sub Button_Click
Dim x
Dim y
x = 999
y = 1000
a = y * (Log(x))
b = x * (Log(y))
If a>b then

 "999^1000 is greater than 1000^999"
Else

 "1000^999 is greater than 999^1000"
End If

End Sub

See Also “Exp Function” on page 188
“Fix Function” on page 197
“Int Function” on page 268
“Rnd Function” on page 392
“Sgn Function” on page 430
“Sqr Function” on page 459

Argument Description

number Any valid numeric expression
Version 7.5, Rev. C Siebel VB Language Reference 303

Siebel VB Language Reference

LoginId Method
LoginId Method
The LoginId method returns the login id of the user who started the Siebel
applications. It is used with the application object. For details, read Siebel Object
Interfaces Reference.
304 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

LoginName Method
LoginName Method
The LoginName method returns the login name of the user who started the Siebel
application (the name typed into the login dialog box). It is used with the
application object. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 305

Siebel VB Language Reference

LookupMessage Method
LookupMessage Method
The LookupMessage method returns the translated string for the specified key, in
the current language, from the specified category. For details, read Siebel Object
Interfaces Reference.
306 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Lset Statement
Lset Statement
This standard VB statement copies one string to another or assigns a user-defined
type variable to another.

Syntax A Lset string = string-expression

Syntax B Lset variable1 = variable2

Returns Not applicable

Usage If string is shorter than string-expression, Lset copies the leftmost characters of
string-expression into string. The number of characters copied is equal to the length
of string.

If string is longer than string-expression, every character in string-expression is
copied into string, filling it from left to right. Leftover characters in string are
replaced with spaces.

In Syntax B, the number of characters copied is equal to the length of the shorter of
variable1 and variable2.

Lset cannot be used to assign variables of different user-defined types if either
contains a variant or a variable-length string.

Example This example puts a user’s last name into the variable *c. If the name is longer than
the size of lastname, then the user’s name is truncated.

Argument Description

string A string variable or string expression to contain the copied characters

string-expression A string variable or string expression containing the string to be
copied

variable1 A variable within a user-defined type to contain the copied variable

variable2 A variable containing a user-defined type to be copied
Version 7.5, Rev. C Siebel VB Language Reference 307

Siebel VB Language Reference

Lset Statement
Sub Button_Click
Dim lastname as String
Dim strlast as String * 8
lastname = "Smith"
Lset strlast = lastname
msgtext = "Your last name is: " & strlast

End Sub

See Also “Rset Statement” on page 394
308 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

LTrim Function
LTrim Function
This standard VB function returns a string with leading spaces removed.

Syntax LTrim[$](string)

Returns A copy of string with leading space characters removed.

Usage LTrim accepts any type of string, including numeric values, and converts the input
value to a string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function typically returns a variant of vartype 8 (string). If
the value of string is NULL, a variant of vartype 1 (Null) is returned.

Example This example trims the leading spaces from a string padded with spaces on the left.

Sub Button_Click
Dim userinput as String
Dim numsize
Dim str1 as String * 50
Dim strsize
strsize = 50
userinput = "abdcGFTRes"
numsize = Len(userinput)
str1 = Space(strsize-numsize) & userinput
' Str1 has a variable number of leading spaces.
str1 = LTrim$(str1)

' Str1 now has no leading spaces.
End Sub

Argument Description

string A string or string expression containing the string to be trimmed
Version 7.5, Rev. C Siebel VB Language Reference 309

Siebel VB Language Reference

LTrim Function
See Also “Left Function” on page 290
“Mid Function” on page 312
“Mid Statement” on page 314
“Right Function” on page 388
“RTrim Function” on page 396
“Trim Function” on page 486
310 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Me
Me
Me is standard VB shorthand used to refer to the currently used object.

Syntax A With Me

.methodname() statement

End With

Syntax B Me.methodname() statement

Returns Not applicable

Usage Some Siebel VB modules are attached to application objects, and Siebel VB
subroutines are invoked when such an application object encounters events. For
example, Me may refer to a button that triggers a Basic routine when the user clicks
on it, or when a method is invoked on an application object by a program
statement.

Subroutines in such contexts can use the variable Me to refer to the object that
triggered the event (for example, the button that was clicked). The programmer can
use Me in the same way as any other object variable, except that Me cannot be Set.

Example For examples, read “Service_InvokeMethod Event” on page 409 and “With
Statement” on page 510.

See Also “CreateObject Function” on page 134
“GetObject Function” on page 234
“New Operator” on page 325
“Nothing Function” on page 329
“Object Class” on page 336
“Typeof Function” on page 489

Placeholder Description

methodname The name of the method to be used with the object

statement The code to be executed, or the arguments to the method
Version 7.5, Rev. C Siebel VB Language Reference 311

Siebel VB Language Reference

Mid Function
Mid Function
This standard VB function returns a portion of a string, starting at a specified
location within the string.

Syntax Mid[$](string, start[, length])

Returns A substring of string, of length length, beginning at the start character of string.

Usage Mid accepts any type of string, including numeric values, and converts the input
value to a string. If the length argument is omitted or if string is smaller than length,
then Mid returns computer characters in string. If start is larger than string, then
Mid returns an empty string ("").

The index of the first character in a string is 1.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function typically returns a variant of vartype 8 (string). If
the value of string is Null, a variant of vartype 1 (Null) is returned. Mid$ requires
the string argument to be of type string or variant. Mid allows the string argument
to be of any data type.

To modify a portion of a string value, read “Mid Statement” on page 314.

Example This example uses the Mid function to find the last name in a string entered by the
user.

Sub Button_Click
Dim username as String
Dim position as Integer
username = "Chris Smith"
Do

Argument Description

string A string or string expression containing the string to be copied

start An integer representing the starting position in string to begin copying
characters

length An integer representing the number of characters to copy
312 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Mid Function
position = InStr(username," ")
If position = 0 then

Exit Do
End If
position = position + 1
username = Mid(username,position)
Loop

End Sub

See Also “Left Function” on page 290
“Len Function” on page 292
“LTrim Function” on page 309
“Mid Function” on page 312
“Right Function” on page 388
“RTrim Function” on page 396
“Trim Function” on page 486
Version 7.5, Rev. C Siebel VB Language Reference 313

Siebel VB Language Reference

Mid Statement
Mid Statement
Mid replaces part (or all) of one string with another, starting at a specified location.

Syntax Mid (stringVar, start[, length]) = string

Returns The value of stringVar with string embedded at the specified location.

Usage If the length argument is omitted, or if there are fewer characters in string than
specified in length, then Mid replaces the characters from the start to the end of the
string. If start is larger than the number of characters in the indicated stringVar, then
Mid appends string to stringVar.

If length is greater than the length of string, then length is set to the length of string.
If start is greater than the number of characters in stringVar, an illegal function call
error occurs at runtime. If length plus start is greater than the length of stringVar,
then only the characters up to the end of stringVar are replaced.

Mid never changes the number of characters in stringVar.

The index of the first character in a string is 1.

Example This example uses the Mid statement to replace the last name in a user-entered
string with asterisks (*).

Sub Button_Click
Dim username as String
Dim position as Integer
Dim count as Integer
Dim uname as String

Argument Description

stringVar The string to be changed

start An integer representing the position in stringVar at which to begin
replacing characters

length An integer representing the number of characters to replace

string The string to place into stringVar
314 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Mid Statement
Dim replacement as String
username = "Chris Smith"
uname = username
replacement = "*"
Do

position = InStr(username," ")
If position = 0 then

Exit Do
End If
username = Mid(username,position + 1)
count = count + position

Loop
For x = 1 to Len(username)

count = count + 1
Mid(uname,count) = replacement
Next x

End Sub

See Also “LCase Function” on page 289
“Left Function” on page 290
“Len Function” on page 292
“LTrim Function” on page 309
“Mid Statement” on page 314
“Right Function” on page 388
“RTrim Function” on page 396
“Trim Function” on page 486
Version 7.5, Rev. C Siebel VB Language Reference 315

Siebel VB Language Reference

Minute Function
Minute Function
This standard VB function returns the minute component (0–59) of a date-time
value.

Syntax Minute(time)

Returns If the expression evaluates to a date-time or time value, the minute component of
that value; otherwise 0.

Usage Time can be of any type, including strings, and the Minute function attempts to
convert the input value to a date-time value.

For Minute to function without an error, the values passed to it must be in some
form that can be interpreted as a time or date-time value. Thus, 13:26, or 1:45:12
PM returns valid results, but 1326 returns a 0.

The return value is a variant of vartype 2 (integer). If the value of time is null, a
variant of vartype 1 (Null) is returned.

Example This example extracts just the time (hour, minute, and second) from a file’s last
modification date and time.

Sub Button_Click
Dim filename as String
Dim ftime
Dim hr, min
Dim sec
Dim msgtext as String

i: msgtext = "Enter a filename:"
filename = "d:\temp\trace.txt"
If filename = "" then

Exit Sub
End If
On Error Resume Next
ftime = FileDateTime(filename)

Argument Description

time Any numeric or string expression that can evaluate to a date-time or time
value
316 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Minute Function
If Err <> 0 then
Goto i:

End If
hr = Hour(ftime)
min = Minute(ftime)
sec = Second(ftime)

End Sub

See Also “Date Statement” on page 147
“DateSerial Function” on page 149
“DateValue Function” on page 151
“Day Function” on page 153
“Hour Function” on page 257
“Month Function” on page 320
“Now Function” on page 331
“Second Function” on page 397
“Time Statement” on page 475
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515
Version 7.5, Rev. C Siebel VB Language Reference 317

Siebel VB Language Reference

MkDir Statement
MkDir Statement
This standard VB statement creates a new folder.

Syntax MkDir [drive:][\folder\]folder

Returns Not applicable

Usage The drive: argument is optional. If drive: is omitted, MkDir creates the new folder
on the current drive. If the drive: argument is used, it must include the colon.

Example This example makes a new temporary folder in C:\ and then deletes it.

Sub Button_Click
Dim path as String
On Error Resume Next
path = CurDir(C)
If path <> "C:\" then

ChDir "C:\"
End If
MkDir "C:\TEMP01"
If Err = 75 then
Else

RmDir "C:\TEMP01"
End If

End Sub

Argument Description

drive: (Optional) The name of the drive on which the folder is to be created, as a
letter, or a string expression representing the drive name

\folder\ If the folder is not to be created on the current folder of the specified drive
(or the default drive if none is specified), the path to the folder in which
the new folder is to be created, or a string expression representing the path

folder The name of the folder to be created, or a string expression representing the
folder name
318 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

MkDir Statement
See Also “ChDir Statement” on page 118
“ChDrive Statement” on page 120
“CurDir Function” on page 141
“Dir Function” on page 167
“RmDir Statement” on page 390
Version 7.5, Rev. C Siebel VB Language Reference 319

Siebel VB Language Reference

Month Function
Month Function
This standard VB function returns an integer for the month component (1–12) of a
date-time value.

Syntax Month(date)

Returns If the expression evaluates to a date-time or date value, the month component of
that value; otherwise 0.

Usage Date can be of any type, including string, and the Month function attempts to
convert the input value to a date-time value.

For Month to function without an error, the values passed to it must be in some form
that can be interpreted as a time or date-time value. Thus, 11/20, or 11-20-2001
returns valid results, but 1120 returns a 0.

The return value is a variant of vartype 2 (integer). If the value of date is null, a
variant of vartype 1 (null) is returned.

Example This example finds the month (1–12) and day (1–31) values for this Thursday.

Sub Button_Click
Dim x As Integer, Today As Variant
Dim msgtext
Today = DateValue(Now)
Let x = 0
Do While Weekday(Today + x) <> 5

x = x + 1
Loop
msgtext = "This Thursday is: " & Month(Today + x) &"/" _

& Day(Today + x)
End Sub

Argument Description

date Any numeric or string expression that can evaluate to a date-time or date
value
320 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Month Function
See Also “Date Statement” on page 147
“DateSerial Function” on page 149
“DateValue Function” on page 151
“Day Function” on page 153
“Hour Function” on page 257
“Minute Function” on page 316
“Now Function” on page 331
“Second Function” on page 397
“Time Statement” on page 475
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515
Version 7.5, Rev. C Siebel VB Language Reference 321

Siebel VB Language Reference

Name Method
Name Method
The Name method returns the name of the object with which it is used. It can be
used with applet, business component, business object, control, and application
objects. For details, read Siebel Object Interfaces Reference.
322 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Name Statement
Name Statement
This standard VB statement renames a file or copies a file from one folder to
another.

Syntax Name [path1\]oldfilename As [path2\]newfilename

Returns Not applicable

Usage To be renamed, the file must be closed. If the file oldfilename is open or if the file
newfilename already exists, Siebel VB generates an error message.

If this statement is used within the Siebel application, and no path2\ is specified, a
copy of the original file goes in the c:\siebel\bin folder under the new name.

Example This example creates a temporary file, c:\temp001, renames the file to
c:\temp002, then deletes them both. It calls the subprogram CreateFile to create
the c:\temp001 file.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 1-10 into a file
Dim x as Integer
Dim y()
Dim startletter

Argument Description

path1\ A string expression containing the path to the current location of the file
(must be entered if the file is not in the current folder of the current
drive)

oldfilename A string expression containing the name of the file to be renamed

path2\ A string expression containing the path to the location where the
renamed file should appear; if a path is not given, the file goes in the
current folder of the current drive

newfilename A string expression containing the new name for the file
Version 7.5, Rev. C Siebel VB Language Reference 323

Siebel VB Language Reference

Name Statement
Open "C:\TEMP001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Call CreateFile
On Error Resume Next
Name "C:\TEMP001" As "C:\TEMP002"
Kill "TEMP001"

Kill "TEMP002"
End Sub

See Also “FileAttr Function” on page 190
“FileCopy Statement” on page 192
“GetAttr Function” on page 222
“Kill Statement” on page 284
324 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

New Operator
New Operator
The New operator allocates and initializes a new COM object of the named class.

Syntax Set objectVar = New className

Dim objectVar As New className

Returns Not applicable

Usage In the Dim statement, New marks objectVar so that a new object is allocated and
initialized when objectVar is first used. If objectVar is not referenced, then no new
object is allocated.

NOTE: An object variable that was declared with New allocates a second object if
objectVar is Set to Nothing and referenced again.

See Also “CreateObject Function” on page 134
“Dim Statement” on page 161
“Global Statement” on page 249
“Service_InvokeMethod Event” on page 409
“Static Statement” on page 460

Argument Description

objectVar The COM object to allocate and initialize

className The class to assign to the object
Version 7.5, Rev. C Siebel VB Language Reference 325

Siebel VB Language Reference

NewPropertySet Method
NewPropertySet Method
The NewPropertySet method constructs a new property set object. For details, read
Siebel Object Interfaces Reference.
326 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

NewRecord Method
NewRecord Method
NewRecord adds a new record (row) to a Siebel business component. This method
is used with business component objects. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 327

Siebel VB Language Reference

NextRecord Method
NextRecord Method
NextRecord moves the current record to the next record in a Siebel business
component, invoking any associated Basic events. This method is used with
business component objects. For details, read Siebel Object Interfaces Reference.
328 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Nothing Function
Nothing Function
This standard VB function removes an instantiated object from memory.

Syntax Set objectName = Nothing

Returns Not applicable

Usage Nothing is the value object variables have when they do not refer to an object, either
because they have not been initialized yet or because they were explicitly set to
Nothing. For example:

If Not objectVar Is Nothing then
objectVar.Close

Set objectVar = Nothing
End If

Use the Nothing function to remove an object that you have instantiated from
memory.

Example This example adds an activity record indicating that a contact has been added when
a new contact is added in the Siebel application. It presumes that Contact is the
parent business component and instantiates the Action business component,
destroying it using the Nothing statement after the job is done. For other examples
of the Nothing function, read “CreateObject Function” on page 134 and “GetObject
Function” on page 234.

Sub BusComp_WriteRecord

Dim oBCact as BusComp
Set oBCact =

theApplication.ActiveBusObject.GetBusComp("Action")

With oBCact
.NewRecord NewAfter
.SetFieldValue "Type", "Event"
.SetFieldValue "Description", "ADDED THRU SVB"

Argument Description

objectName The name of the object variable to set to Nothing
Version 7.5, Rev. C Siebel VB Language Reference 329

Siebel VB Language Reference

Nothing Function
.SetFieldValue "Done", Format(Now(),"mm/dd/yyyy hh:mm:ss")

.SetFieldValue "Status", "Done"

.WriteRecord
End With

set oBCact = Nothing
End Sub

See Also “Is Operator” on page 275
“New Operator” on page 325
330 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Now Function
Now Function
This standard VB function returns the current date and time.

Syntax Now()

Returns The current date and time as indicated by the clock of the server that is executing
the code.

Usage The Now function returns a variant of vartype 7 (date) that represents the current
date and time according to the setting of the computer’s date and time. Use the
Format function to specify the format in which the date and time should appear.

Example This example finds the month (1–12) and day (1–31) values for this Thursday. For
another example, read “Format Function” on page 202.

Sub Button_Click
Dim x As Integer, today As Variant
Dim msgtext As String
Today = DateValue(Now)
Let x = 0
Do While Weekday(Today + x) <> 5

x = x + 1
Loop
msgtext = "This Thursday is: " & Month(Today + x) & "/" & _

Day(Today + x)
End Sub

Argument Description

Not applicable
Version 7.5, Rev. C Siebel VB Language Reference 331

Siebel VB Language Reference

Now Function
See Also “Date Function” on page 146
“Date Statement” on page 147
“Day Function” on page 153
“Hour Function” on page 257
“Minute Function” on page 316
“Second Function” on page 397
“Time Function” on page 473
“Time Statement” on page 475
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515
332 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

NPV Function
NPV Function
This standard VB function returns the net present value of an investment based on
a stream of periodic cash flows and a constant interest rate.

Syntax NPV(rate, valuearray())

Returns The net present value of cash flows in valuarray() based on the rate.

Usage Valuearray() must have at least one positive value (representing a receipt) and one
negative value (representing a payment). Payments and receipts must be
represented in the exact sequence. The value returned by NPV varies with the
change in the sequence of cash flows.

If the discount rate is 12% per period, rate is the decimal equivalent, that is, 0.12.

NPV uses future cash flows as the basis for the net present value calculation. If the
first cash flow occurs at the beginning of the first period, its value should be added
to the result returned by NPV and must not be included in valuearray().

Example This example finds the net present value of an investment, given a range of cash
flows by the user.

See Also “FV Function” on page 216
“IPmt Function” on page 271
“IRR Function” on page 273
“Pmt Function” on page 356
“PPmt Function” on page 361
“PV Function” on page 369
“Rate Function” on page 375

Argument Description

rate The discount rate per period

valuearray() An array containing cash-flow values
Version 7.5, Rev. C Siebel VB Language Reference 333

Siebel VB Language Reference

Null Function
Null Function
This standard VB function sets a variant variable to the Null value.

Syntax Null

Returns A variant value set to NULL.

Usage Null is used to set a variant variable to the Null value explicitly, as follows:

variableName = Null

Note that variants are initialized by Basic to the empty value, which is different from
the Null value.

Example This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total count of
scores (originally 10) to just those with positive values before calculating the
average.

Sub Button_Click
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count = 10
total = 0
For x = 1 to count

tscore = 88
If tscore < 0 then

arrayvar(x) = Null
Else

arrayvar(x) = tscore
total = total + arrayvar(x)

End If
Next x

Argument Description

Not applicable
334 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Null Function
Do While x <> 0
x = x - 1
If IsNull(arrayvar(x)) = -1 then

count = count - 1
End If

Loop
msgtext = " The average (excluding negative values) is: "

msgtext = msgtext & Chr(10) & Format (total/count, "##.##")
End Sub

See Also “IsEmpty Function” on page 277
“IsNull Function” on page 281
“VarType Function” on page 497
Version 7.5, Rev. C Siebel VB Language Reference 335

Siebel VB Language Reference

Object Class
Object Class
Object is a class that provides access to COM automation objects.

Syntax Dim variableName As Object

Returns Not applicable

Usage To create a new object, first dimension a variable, using the Dim statement, then set
the variable to the return value of CreateObject or GetObject, as follows:

Dim COM As Object

Set COM = CreateObject("spoly.cpoly")

To refer to a method or property of the newly created object, use the syntax
objectvar.property or objectvar.method, as follows:

COM.reset

Example This example uses the special Siebel object class BusComp to declare the variables
used for accessing the Account Contacts view within the Siebel application.

Sub Button1_Click
Dim i as integer
Dim icount as integer
Dim oBC as BusComp

' BusObject returns the business object associated with a
' control or applet.
' GetBusComp returns a reference to a Siebel
' business component that is in the UI context

set oBC = me.BusObject.GetBusComp("Contact")

i = oBC.FirstRecord ' returns 0 if fails, 1 if succeeds
if i <> 1 then

TheRaiseErrorText "Error accessing contact records for the

Placeholder Description

variableName The name of the object variable to declare
336 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Object Class
account."
else

icount = 0
' NextRecord returns 1 if it successfully
' moved to the next record in the BC
While i = 1

icount = icount + 1
i = oBC.NextRecord ' returns 1 if successful

wend
oBC.FirstRecord
end if

End Sub

See Also “CreateObject Function” on page 134
“GetObject Function” on page 234
“New Operator” on page 325
“Nothing Function” on page 329
“Typeof Function” on page 489
Version 7.5, Rev. C Siebel VB Language Reference 337

Siebel VB Language Reference

Oct Function
Oct Function
This standard VB function converts a number to an octal (base 8) number.

Syntax Oct[$](number)

Returns The octal representation of a number, as a string.

Usage If the numeric expression has a data type of integer, the string contains up to six
octal digits; otherwise, the expression is converted to a data type of long, and the
string can contain up to 11 octal digits.

The dollar sign ($) in the function name is optional. If it is included, the return data
type is string. Otherwise the function returns a variant of vartype 8 (string).

NOTE: To represent an octal number directly, precede the octal value with &O. For
example, &O10 equals decimal 8 in octal notation.

Example This example prints the octal values for the numbers from 1 to 15.

Sub Button_Click
Dim x As Integer, y As Integer
Dim msgtext As String
Dim nofspaces As Integer
msgtext = "Octal numbers from 1 to 15:" & Chr(10)
For x = 1 to 15

nofspaces = 10
y = Oct(x)
If Len(x) = 2 then

nofspaces = nofspaces - 2
End If
msgtext = msgtext & Chr(10) & x & Space(nofspaces) & y
Next x

End Sub

Argument Description

number Any numeric expression
338 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Oct Function
See Also “Hex Function” on page 256
Version 7.5, Rev. C Siebel VB Language Reference 339

Siebel VB Language Reference

On...GoTo Statement
On...GoTo Statement
This standard VB programming control structure causes execution to branch to a
label in the current procedure based on the value of a numeric expression.

Syntax On number GoTo label1[, label2, ...]

Returns Not applicable

Usage If number evaluates to 0 or to a number greater than the number of labels following
GoTo, the program continues at the next statement. If number evaluates to a
number less than 0 or greater than 255, an “Illegal function call” error is issued.

See Also “GoTo Statement” on page 253
“Select Case Statement” on page 403

Argument Description

number Any numeric expression that evaluates to a positive number

label1, label2, ... A label in the current procedure to branch to if number evaluates to
1, 2, and so on
340 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

On Error Statement
On Error Statement
This standard VB statement specifies the location of an error-handling routine
within the current procedure.

Syntax On Error {GoTo label | Resume Next | GoTo 0}

Returns Not applicable

Usage On Error is used to provide routines to handle specific errors. On Error can also be
used to disable an error-handling routine. Unless an On Error statement is used, any
run-time error is fatal; that is, Siebel VB terminates the execution of the program.

An On Error statement includes one of the following parts:

When it is referenced by an On Error GoTo label statement, an error handler is
enabled. When this enabling occurs, a run-time error results in program control
switching to the error-handling routine and “activating” the error handler. The error
handler remains active from the time the run-time error has been trapped until a
Resume statement is executed in the error handler.

Part Definition

GoTo label Enables the error-handling routine that starts at label. If the designated
label is not in the same procedure as the On Error statement, Siebel VB
generates an error message.

Resume Next Designates that error-handling code is handled by the statement that
immediately follows the statement that caused an error. At this point,
use the Err function to retrieve the error code of the run-time error.

GoTo 0 Disables any error handler that has been enabled.
Version 7.5, Rev. C Siebel VB Language Reference 341

Siebel VB Language Reference

On Error Statement
If another error occurs while the error handler is active, Siebel VB searches for an
error handler in the procedure that called the current procedure (if this fails, Siebel
VB looks for a handler belonging to the caller’s caller, and so on). If a handler is
found, the current procedure terminates, and the error handler in the calling
procedure is activated.

NOTE: Because Siebel VB searches in the caller for an error handler, any additional
On Error statements in the original error handler are ignored.

Executing an End Sub or End Function statement while an error handler is active is
an error (No Resume). The Exit Sub or Exit Function statement can be used to end
the error condition and exit the current procedure.

Example This example prompts the user for a drive and folder name and uses On Error to
trap invalid entries.

Sub Button_Click
Dim userdrive, userdir, msgtext

in1:
userdrive = "c:"
On Error Resume Next
ChDrive userdrive
If Err = 68 then

Goto in1
End If

in2:
On Error Goto Errhdlr1
userdir = "temp"
ChDir userdrive & userdir
userdir
Exit Sub

Errhdlr1:
Select Case Err

Case 75
msgtext = "Path is invalid."

Case 76
msgtext = "Path not found."

Case 70
msgtext = "Permission denied."

Case Else
msgtext = "Error " & Err & ": " & Error$ & "occurred."
342 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

On Error Statement
End Select
Resume in2

End Sub

See Also “Erl Function” on page 177
“Err Function” on page 179
“Err Statement” on page 180
“Error Function” on page 182
“Error Statement” on page 184
“Resume Statement” on page 387
Version 7.5, Rev. C Siebel VB Language Reference 343

Siebel VB Language Reference

Open Statement
Open Statement
This standard VB statement opens a file for input or output.

Syntax Open filename [For mode] [Access access] [lock] As [#]filenumber [Len = reclen]

Returns A file opened in the specified manner.

NOTE: The file opens in the default code page of the local operating system. File I/O
does not support Unicode.

Usage The following keywords are used for mode, access, and lock:

Argument Description

filename A string or string expression representing the name of the file to open

mode A keyword indicating the purpose for which the file is opened

access A keyword indicating the method of access to the file

lock A keyword designating the access method allowed to the file by other
processes

filenumber An integer used to identify the file while it is open

reclen In a Random or Binary file, the length of the records

Keyword Consequences

Mode Keywords

Input Reads data from the file sequentially

Output Puts data into the file sequentially

Append Adds data to the file sequentially

Random Gets data from the file by random access

Binary Gets binary data from the file
344 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Open Statement
A file must be opened before any input/output operation can be performed on it.

If filename does not exist, it is created when opened in append, binary, output, or
random modes.

If mode is not specified, it defaults to random.

If access is not specified for random or binary modes, access is attempted in the
following order: Read Write, Write, Read.

If lock is not specified, filename can be opened by other processes that do not
specify a lock, although that process cannot perform any file operations on the file
while the original process still has the file open.

Use the FreeFile function to find the next available value for filenumber.

The reclen parameter is ignored for Input, Output, and Append modes.

Example This example opens a file for random access, gets the contents of the file, and closes
the file again. The second subprogram, CreateFile, creates the file c:\temp001
used by the main subprogram.

Access Keywords

Read Reads data from the file only

Write Writes data to the file only

Read Write Reads or writes data to the file

Lock Keywords

Shared Read or write is available on the file

Lock Read Only read is available

Lock Write Only write is available

Lock Read Write No read or write is available

Keyword Consequences
Version 7.5, Rev. C Siebel VB Language Reference 345

Siebel VB Language Reference

Open Statement
(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
' Put the numbers 1-10 into a file

Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 1 to 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim acctno as String * 3
Dim recno as Long
Dim msgtext as String
Call CreateFile
recno = 1
newline = Chr(10)
Open "c:\temp001" For Random As #1 Len = 3
msgtext = "The account numbers are:" & newline
Do Until recno = 11

Get #1,recno,acctno
msgtext = msgtext & acctno
recno = recno + 1

Loop
Close #1

Kill "c:\temp001"
End Sub

See Also “Close Statement” on page 129
“FreeFile Function” on page 212
346 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Option Base Statement
Option Base Statement
This standard VB statement specifies the default lower bound to use for array
subscripts.

Syntax Option Base lowerBound

Returns Not applicable

Usage If no Option Base statement is specified, the default lower bound for array
subscripts is 0.

Placeholder Description

lowerBound Either 0 or 1 or an expression that evaluates to one of these values
Version 7.5, Rev. C Siebel VB Language Reference 347

Siebel VB Language Reference

Option Base Statement
The Option Base statement is not allowed inside a procedure and must precede any
use of arrays in the module. Only one Option Base statement is allowed per module.
It must be placed in the (general) (declarations) section in the Siebel VB Editor, as
shown in Figure 1.

Example This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and ReDim
to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1
Sub Button_Click

Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total = 0
x = 1
count = 2
ReDim arrayvar(count)

start:
Do until x = count + 1

arrayvar(x) = 87

Figure 1. Placing Declarations in the (general) (declarations) Section
348 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Option Base Statement
x = x + 1
Loop
x = LBound(arrayvar,1)
count = UBound(arrayvar,1)
For y = x to count

total = total + arrayvar(y)
Next y

End Sub

See Also “Dim Statement” on page 161
“Global Statement” on page 249
“LBound Function” on page 287
“ReDim Statement” on page 377
“Static Statement” on page 460
Version 7.5, Rev. C Siebel VB Language Reference 349

Siebel VB Language Reference

Option Compare Statement
Option Compare Statement
This standard VB statement specifies the default method for string comparisons:
either case-sensitive or case-insensitive.

Syntax Option Compare { Binary | Text }

Returns Not applicable

Usage The Option Compare statement must be placed in the (general) (declarations)
section in the Siebel VB Editor, as shown in Figure 1 on page 348.

Binary comparisons are case-sensitive (that is, lowercase and uppercase letters are
different). Text comparisons are not case-sensitive.

Binary comparisons compare strings based upon the ANSI character set. Text
comparisons are based upon the relative order of characters as determined by the
country code setting for your computer.

Example This example compares two strings: JANE SMITH and jane smith. When Option
Compare is Text, the strings are considered the same. If Option Compare is Binary,
they are not the same. Binary is the default. To see the difference, run the example,
and then comment out the Option Compare statement and run it again.

Option Compare Text
Sub Button_Click

Dim strg1 as String
Dim strg2 as String
Dim retvalue as Integer
strg1 = "JANE SMITH"
strg2 = "jane smith"

i:
retvalue = StrComp(strg1,strg2)
If retvalue = 0 then

‘The strings are identical
Else

Argument Description

Not applicable
350 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Option Compare Statement
‘The strings are not identical
Exit Sub
End If

End Sub

See Also “InStr Function” on page 265
“StrComp Function” on page 463
Version 7.5, Rev. C Siebel VB Language Reference 351

Siebel VB Language Reference

Option Explicit Statement
Option Explicit Statement
This standard VB statement specifies that every variable in a module must be
explicitly declared.

Syntax Option Explicit

Returns Not applicable

Usage By default, Basic declares any variables that do not appear in a Dim, Global, ReDim,
or Static statement. Option Explicit causes such variables to produce a “Variable Not
Declared” error.

Using the Option Explicit statement makes debugging code easier, because it forces
you to declare variables before use. Good programming practice is to declare
variables at the beginning of the unit within which they have scope (that is, at the
beginning of the project, module, or procedure). Declaring variables in this manner
simplifies finding their definitions when reading through code.

The Option Explicit statement must be placed in the (general) (declarations) section
in the Siebel VB Editor, as shown in Figure 1 on page 348.

Example This example specifies that variables must be explicitly declared, thus preventing
any mistyped variable names.

Option Explicit
Sub Button_Click

Dim counter As Integer
Dim fixedstring As String * 25
Dim varstring As String
'...(code here)...

End Sub

Argument Description

Not applicable
352 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Option Explicit Statement
See Also “Const Statement” on page 131
“Deftype Statement” on page 158
“Dim Statement” on page 161
“Function...End Function Statement” on page 213
“Global Statement” on page 249
“ReDim Statement” on page 377
“Static Statement” on page 460
“Sub...End Sub Statement” on page 467
Version 7.5, Rev. C Siebel VB Language Reference 353

Siebel VB Language Reference

ParentBusComp Method
ParentBusComp Method
ParentBusComp returns the parent (master) Siebel business component given the
child (detail) business component of a Link. This method is used with business
component objects. For details, read Siebel Object Interfaces Reference.
354 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Pick Method
Pick Method
The Pick method picks the currently selected record in a picklist business
component (read “GetPicklistBusComp Method” on page 237) into the appropriate
Fields of the parent business component. This method is used with business
component objects. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 355

Siebel VB Language Reference

Pmt Function
Pmt Function
This standard VB function returns a constant periodic payment amount for an
annuity or a loan.

Syntax Pmt(rate, nper, pv, fv, due)

Returns The constant periodic payment amount.

Usage Rate is assumed to be constant over the life of the loan or annuity. If payments are
on a monthly schedule, then rate is 0.0075 if the annual percentage rate on the
annuity or loan is 9%.

Example This example finds the monthly payment on a given loan.

Sub Button_Click
Dim aprate, totalpay
Dim loanpv, loanfv
Dim due, monthlypay
Dim yearlypay, msgtext
loanpv = 25000
aprate = 7.25
If aprate >1 then

aprate = aprate/100
End If
totalpay = 60
loanfv = 0

Argument Description

rate The interest rate per period

nper The total number of payment periods

pv The present value of the initial lump sum amount paid (as with an annuity)
or received (as with a loan)

fv The future value of the final lump sum amount required (as with a savings
plan) or paid (0 as with a loan)

due 0 if due at the end of each period

1 if due at the beginning of each period
356 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Pmt Function
'Assume payments are made at end of month
due = 0
monthlypay = Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
msgtext = "The monthly payment is: "

Format(monthlypay, "Currency")
End Sub

See Also “FV Function” on page 216
“IPmt Function” on page 271
“IRR Function” on page 273
“NPV Function” on page 333
“PPmt Function” on page 361
“PV Function” on page 369
“Rate Function” on page 375
Version 7.5, Rev. C Siebel VB Language Reference 357

Siebel VB Language Reference

PositionId Method
PositionId Method
The PositionId property returns the position ID (ROW_ID from S_POSTN) of the
user’s current position. This is set by default when the Siebel application is started
and may be changed (using Edit: Change Position) if the user belongs to more than
one position. This method is used with the application object. For details, read
Siebel Object Interfaces Reference.
358 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

PositionName Method
PositionName Method
The PositionName property returns the position name of the user’s current position.
This is set by default when the Siebel application is started and may be changed
(using Edit: Change Position) if the user belongs to more than one position. This
method is used with the application object. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 359

Siebel VB Language Reference

PostChanges Method
PostChanges Method
PostChanges posts changes that are made in an applet. This method is used with
applet objects. For details, read Siebel Object Interfaces Reference.
360 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

PPmt Function
PPmt Function
This standard VB function returns the principal portion of the payment for a given
period of an annuity.

Syntax PPmt(rate, per, nper, pv, fv, due)

Returns The principal portion of the payment for a given period.

Usage Rate is assumed to be constant over the life of the loan or annuity. If payments are
on a monthly schedule, then rate is 0.0075 if the annual percentage rate on the
annuity or loan is 9%.

Example This example finds the principal portion of a loan payment amount for payments
made in the last month of the first year. The loan is for $25,000 to be paid back over
5 years at 9.5% interest.

Sub Button_Click
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, principal
Dim msgtext
aprate = 9.5/100
payperiod = 12

Argument Description

rate The interest rate per period

per The payment period, in the range from 1 to nper

nper The total number of payment periods

pv The present value of the initial lump sum amount paid (as with an annuity)
or received (as with a loan)

fv The future value of the final lump sum amount required (as with a savings
plan) or paid (0 as with a loan)

due 0 if due at the end of each period

1 if due at the beginning of each period
Version 7.5, Rev. C Siebel VB Language Reference 361

Siebel VB Language Reference

PPmt Function
periods = 120
loanpv = 25000
loanfv = 0

' Assume payments are made at end of month
due = 0
principal = PPmt(aprate/12,payperiod,periods, _
-loanpv,loanfv,due)
msgtext = "Given a loan of $25,000 @ 9.5% for 10 years,"

msgtext = msgtext & Chr(10) & "the principal paid in month
12 is: "
End Sub

See Also “FV Function” on page 216
“IPmt Function” on page 271
“IRR Function” on page 273
“NPV Function” on page 333
“PPmt Function” on page 361
“PV Function” on page 369
“Rate Function” on page 375
362 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

PreviousRecord Method
PreviousRecord Method
PreviousRecord moves to the previous record in a Siebel business component,
invoking any associated Basic events. This method is used with business
component objects. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 363

Siebel VB Language Reference

Print Statement
Print Statement
This standard VB method prints data to an open file.

Syntax Print [#][filenumber,] expressionList [{;|, }]

Returns Not applicable

Usage The Print statement outputs data to the specified filenumber. Filenumber is the
number assigned to the file when it was opened. For more information, read “Open
Statement” on page 344.

If the expressionList is omitted, a blank line is written to the file.

The values in expressionList may be separated by either a semicolon or a comma.
A semicolon indicates that the next value should appear immediately after the
preceding one without intervening white space. A comma indicates that the next
value should be positioned at the next print zone. Print zones begin every 14 spaces.

The optional [{;|, }] argument at the end of the Print statement determines where
output for the next Print statement to the same output file should begin. A
semicolon places output immediately after the output from this Print statement on
the current line; a comma starts output at the next print zone on the current line. If
neither separator is specified, a CR-LF pair is generated and the next Print statement
prints to the next line.

The Spc and Tab functions can be used inside a Print statement to insert a given
number of spaces and to move the print position to a desired column, respectively.

The Print statement supports only elementary Basic data types. For more
information on parsing this statement, read “Input Function” on page 261.

Argument Description

filenumber The number of the open file to print to

expressionList A list of values to be printed, in the form of literals or expressions
364 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Print Statement
See Also “Open Statement” on page 344
“Spc Function” on page 435
“Tab Function” on page 469
“Write Statement” on page 512
Version 7.5, Rev. C Siebel VB Language Reference 365

Siebel VB Language Reference

PropertyExists Method
PropertyExists Method
PropertyExists returns a Boolean value indicating whether a specified property
exists in a property set. For details, read Siebel Object Interfaces Reference.
366 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Put Statement
Put Statement
This standard VB statement writes a variable to a file opened in random or binary
mode.

Syntax Put [#]filenumber, [recnumber], varName

Returns Not applicable

Usage Filenumber is the number assigned to the file when it was opened. For more
information, read “Open Statement” on page 344.

Recnumber is in the range 1 to 2,147,483,647. If recnumber is omitted, the next
record or byte is written.

NOTE: The commas before and after recnumber are required, even if no recnumber is
specified.

VarName can be any variable type except object, application data type, or array
variables (single array elements can be used).

For random mode, the following conditions apply:

■ Blocks of data are written to the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement. If the size of varName is
smaller than the record length, the record is padded to the correct record size. If
the size of the variable is larger than the record length, an error occurs.

■ For variable length string variables, Put writes two bytes of data that indicate the
length of the string and then writes the string data.

Argument Description

filenumber The file number used in the Open statement to open the file

recnumber An expression of type long containing the record number or the byte offset
at which to start writing

varName The name of the variable containing the data to write
Version 7.5, Rev. C Siebel VB Language Reference 367

Siebel VB Language Reference

Put Statement
■ For variant variables, Put writes two bytes of data that indicate the type of the
variant; then it writes the body of the variant into the variable. Note that variants
containing strings contain two bytes of type information, followed by two bytes
of length, followed by the body of the string.

■ User-defined types are written as if each member were written separately, except
no padding occurs between elements.

Files opened in binary mode behave similarly to those opened in random mode
except:

■ Put writes variables to the disk without record padding.

■ Variable-length Strings that are not part of user-defined types are not preceded
by the two-byte string length.

NOTE: The Put statement uses the default code page of the local operating system. It
does not write to the file in Unicode format.

Example This example opens a file for Random access, puts the values 1 through 10 in it,
prints the contents, and closes the file again.

Sub Button_Click
' Put the numbers 1-10 into a file

Dim x As Integer, y As Integer
Open "C:\TEMP001" as #1
For x = 1 to 10

Put #1,x, x
Next x
msgtext = "The contents of the file is:" & Chr(10)
For x = 1 to 10

Get #1,x, y
msgtext = msgtext & y & Chr(10)

Next x
Close #1

Kill "C:\TEMP001"
End Sub

See Also “Close Statement” on page 129
“Get Statement” on page 218
“Open Statement” on page 344
“Write Statement” on page 512
368 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

PV Function
PV Function
This standard VB function returns the present value of a constant periodic stream
of cash flows as in an annuity or a loan.

Syntax PV(rate, nper, pmt, fv, due)

Returns The present value of a constant periodic stream of cash flows.

Usage Rate is assumed constant over the life of the annuity. If payments are on a monthly
schedule, then rate is 0.0075 if the annual percentage rate on the annuity or loan is
9%.

Example This example finds the present value of a 10-year $25,000 annuity that pays $1,000
a year at 9.5%.

Sub Button_Click
Dim aprate As Integer, periods As Integer
Dim payment As Double, annuityfv As Double
Dim due As Integer, presentvalue As Double
Dim msgtext
aprate = 9.5
periods = 120
payment = 1000
annuityfv = 25000

' Assume payments are made at end of month
due = 0
presentvalue = PV(aprate/12,periods,-payment, annuityfv,due)

Argument Description

rate The interest rate per period

nper The total number of payment periods

pmt The constant periodic payment per period

fv The future value of the final lump sum amount required (as with a savings
plan) or paid (0 as with a loan)

due 0 if due at the end of each period

1 if due at the beginning of each period
Version 7.5, Rev. C Siebel VB Language Reference 369

Siebel VB Language Reference

PV Function
msgtext = "The present value for a 10-year $25,000 annuity @ 9.5%"
msgtext = msgtext & " with a periodic payment of $1,000 is: "

msgtext = msgtext & Format(presentvalue, "Currency")
End Sub

See Also “FV Function” on page 216
“IPmt Function” on page 271
“IRR Function” on page 273
“NPV Function” on page 333
“Pmt Function” on page 356
“PPmt Function” on page 361
“Rate Function” on page 375
370 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

RaiseError Method
RaiseError Method
The RaiseError method raises a scripting error message to the browser. The error
code is a canonical number. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 371

Siebel VB Language Reference

RaiseErrorText Method
RaiseErrorText Method
The RaiseErrorText method raises a scripting error message to the browser. The
error text is the specified literal string. For details, read Siebel Object Interfaces
Reference.
372 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Randomize Statement
Randomize Statement
This standard VB statement seeds the random number generator.

Syntax Randomize [number]

Returns Not applicable

Usage If no number argument is given, Siebel VB uses the Timer function to initialize the
random number generator.

Example This example generates a random string of characters using the Randomize
statement and Rnd function. The second For...Next loop is to slow down processing
in the first For...Next loop so that Randomize can be seeded with a new value each
time from the Timer function.

Sub Button_Click
Dim x As Integer, y As Integer
Dim str1 As String, str2 As String
Dim letter As String
Dim randomvalue
Dim upper, lower
Dim msgtext
upper = Asc("z")
lower = Asc("a")
newline = Chr(10)
For x = 1 to 26

Randomize
randomvalue = Int(((upper - (lower + 1)) * Rnd) + lower)
letter = Chr(randomvalue)
str1 = str1 & letter
For y = 1 to 1500
Next y

Next x
msgtext = str1

End Sub

Argument Description

number An integer value between -32768 and 32767
Version 7.5, Rev. C Siebel VB Language Reference 373

Siebel VB Language Reference

Randomize Statement
See Also “Rnd Function” on page 392
“Timer Function” on page 477
374 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Rate Function
Rate Function
This standard VB function returns the interest rate per period for an annuity or a
loan.

Syntax Rate(nper, pmt, pv, fv, due, guess)

Returns The interest rate per period.

Usage In general, a guess of between 0.1 (10 percent) and 0.15 (15 percent) would be a
reasonable value for guess.

Rate is an iterative function: It improves the given value of guess over several
iterations until the result is within 0.00001 percent. If it does not converge to a result
within 20 iterations, it signals failure.

Example This example finds the interest rate on a 10-year $25,000 annuity that pays $100 per
month.

Sub Button_Click
Dim aprate
Dim periods
Dim payment, annuitypv
Dim annuityfv, due
Dim guess

Argument Description

nper The total number of payment periods

pmt The constant periodic payment per period

pv The present value of the initial lump sum amount paid (as with an
annuity) or received (as with a loan)

fv The future value of the final lump sum amount required (as with a savings
plan) or paid (0 as with a loan)

due 0 if due at the end of each period

1 if due at the beginning of each period

guess An estimate for the rate returned
Version 7.5, Rev. C Siebel VB Language Reference 375

Siebel VB Language Reference

Rate Function
Dim msgtext as String
periods = 120
payment = 100
annuitypv = 0
annuityfv = 25000
guess = .1
' Assume payments are made at end of month
due = 0
aprate = Rate(periods,-payment,annuitypv,annuityfv, _
due, guess)
aprate = (aprate * 12)
msgtext = "The percentage rate for a 10-year $25,000 _
annuity"
msgtext = msgtext & "that pays $100/month has "
msgtext = msgtext & "a rate of: " & Format(aprate, _

"Percent")
End Sub

See Also “FV Function” on page 216
“IPmt Function” on page 271
“IRR Function” on page 273
“NPV Function” on page 333
“Pmt Function” on page 356
“PPmt Function” on page 361
“PV Function” on page 369
376 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

ReDim Statement
ReDim Statement
This standard VB statement changes the upper and lower bounds of a dynamic
array’s dimensions.

Syntax ReDim [Preserve] arrayName (lower To upper) [As [New] type], …

Returns Not applicable

Usage ReDim reallocates memory for the dynamic array to support the specified
dimensions, and can optionally re-initialize the array elements. ReDim cannot be
used at the module level; it must be used inside of a procedure.

The Preserve option is used to change the last dimension in the array while
maintaining its contents. If Preserve is not specified, the contents of the array are
reinitialized. Numbers are set to zero (0). Strings and variants are set to empty ("").

If lower is not specified, 0 is used as the default. The Option Base statement can be
used to change the default.

A dynamic array is normally created by using Dim to declare an array without a
specified size. The maximum number of dimensions for a dynamic array created in
this fashion is 8. If you need more than 8 dimensions, you can use the ReDim
statement inside of a procedure to declare an array that has not previously been
declared using Dim or Global. In this case, the maximum number of dimensions
allowed is 60.

The available data types for arrays are numbers, strings, variants, records, and
objects. Arrays of arrays, dialog box records, and objects are not supported.

Argument Description

arrayName The name of the array to redimension

lower The new lower bound for the array

upper The new upper bound for the array

type The data type for the array elements
Version 7.5, Rev. C Siebel VB Language Reference 377

Siebel VB Language Reference

ReDim Statement
If the As clause is not used, the type of the variable can be specified by using a type
character as a suffix to the name. The two different type-specification methods can
be intermixed in a single ReDim statement (although not on the same variable).

The ReDim statement cannot be used to change the number of dimensions of a
dynamic array when the array has been given dimensions. It can change only the
upper and lower bounds of the dimensions of the array. The LBound and UBound
functions can be used to query the current bounds of an array variable’s
dimensions.

Care should be taken to avoid redimensioning an array in a procedure that has
received a reference to an element in the array in an argument; the result is
unpredictable.

Example This example finds the net present value for a series of cash flows. The array
variable that holds the cash flow amounts is initially a dynamic array that is
redimensioned after the user enters the number of cash flow periods.

Sub Button_Click
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim x as Integer
Dim netpv as Double
Dim msgtext as string
cflowper = 2
ReDim varray(cflowper)
For x = 1 to cflowper

varray(x) = 4583
Next x
msgtext = "Enter discount rate:"
aprate = 3.25
If aprate > 1 then

aprate = aprate / 100
End If
netpv = NPV(aprate,varray())

msgtext = "The Net Present Value is: " (netpv, "Currency")
End Sub

See Also “Dim Statement” on page 161
“Global Statement” on page 249
“Option Base Statement” on page 347
“Static Statement” on page 460
378 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

RefineQuery Method
RefineQuery Method
This method refines a query on a Siebel business component after the query has
been executed. This method is used with business component objects. For details,
read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 379

Siebel VB Language Reference

Rem Statement
Rem Statement
This standard VB statement identifies a line of code as a comment in a Basic
program.

Syntax Rem comment

Returns Not applicable

Usage Everything from Rem to the end of the line is ignored when the program is executed.

The single quote (') can also be used to initiate a comment.

Example This program is attached to a button on the Account Form applet that counts the
number of corresponding child Contact records.

Sub Button1_Click

Dim i as Integer
Dim icount as Integer
Dim oBC as BusComp

Rem Test this from the Account Contacts View
Rem This code presumes that Account is the parent BusComp
Rem BusObject returns the business object
Rem associated with a control or applet.

Rem GetBusComp here returns a reference
Rem to the BC that is in the UI context.

set oBC = me.BusObject.GetBusComp("Contact")

Rem FirstRecord positions you at the
Rem first record in the business component.
Rem FirstRecord, NextRecord, and so on, do not return Booleans.
Rem Siebel VB does not have a Boolean data type.

i = oBC.FirstRecord Rem Returns 0 if fails, 1 if succeeds
if i <> 1 then
380 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Rem Statement
else
icount = 0
Rem This is a sample of using a while statement to loop.
Rem NextRecord returns 1 if it succesfully
Rem moved to the next record in the BC

While i = 1
icount = icount + 1
i = oBC.NextRecord Rem Returns 1 if successful

wend
oBC.FirstRecord
end if

End Sub
Version 7.5, Rev. C Siebel VB Language Reference 381

Siebel VB Language Reference

RemoveChild() Method
RemoveChild() Method
RemoveChild removes a child property set from a parent property set. For details,
read Siebel Object Interfaces Reference.
382 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

RemoveProperty Method
RemoveProperty Method
RemoveProperty removes a property from a business service or a property set. For
details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 383

Siebel VB Language Reference

Reset Method
Reset Method
This method removes properties and child property sets from a property set. For
details, read Siebel Object Interfaces Reference.
384 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Reset Statement
Reset Statement
This standard VB statement closes every open disk file and writes to disk any data
in the operating system buffers.

Syntax Reset

Returns Not applicable

Example This example creates a file, puts the numbers 1 through 10 in it, and then attempts
to get past the end of the file. The On Error statement traps the error, and execution
goes to the Debugger code, which uses Reset to close the file before exiting.

Sub Button_Click
' Put the numbers 1-10 into a file

Dim x as Integer
Dim y as Integer
On Error Goto Debugger
Open "c:\temp001" as #1 Len = 2
For x = 1 to 10

Put #1,x, x
Next x
Close #1
msgtext = "The contents of the file is:" & Chr(10)
Open "C:\TEMP001" as #1 Len = 2
For x = 1 to 10

Get #1,x, y
msgtext = msgtext & Chr(10) & y

Next x
done:

Close #1
Kill "c:\temp001"
Exit Sub

Debugger:
TheApplication.RaiseErrorText "Error " & Err & " occurred.

Closing open file."

Argument Description

Not applicable
Version 7.5, Rev. C Siebel VB Language Reference 385

Siebel VB Language Reference

Reset Statement
Reset
Resume done

End Sub

See Also “Close Statement” on page 129
386 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Resume Statement
Resume Statement
This standard VB statement halts an error-handling routine.

Syntax A Resume Next

Syntax B Resume label

Syntax C Resume [0]

Returns Not applicable

Usage When the Resume Next statement is used, control is passed to the statement that
immediately follows the statement in which the error occurred.

When the Resume [0] statement is used, control is passed to the statement in which
the error occurred.

The location of the error handler that has caught the error determines where
execution resumes. If an error is trapped in the same procedure as the error handler,
program execution resumes with the statement that caused the error. If an error is
located in a different procedure from the error handler, program control reverts to
the statement that last called out the procedure containing the error handler.

See Also “Erl Function” on page 177
“Err Function” on page 179
“Err Statement” on page 180
“Error Function” on page 182
“Error Statement” on page 184
“On Error Statement” on page 341
“Trappable Errors” on page 523

Argument Description

label The label that identifies the program line to go to after handling an error
Version 7.5, Rev. C Siebel VB Language Reference 387

Siebel VB Language Reference

Right Function
Right Function
This standard VB function returns a portion of a string beginning at the end of the
string.

Syntax Right[$](string, length)

Returns A string of length length copied from the end of string.

Usage If length is greater than the length of string, Right returns the whole string.

Right accepts any type of string, including numeric values, and converts the input
value to a string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string). If the value
of string is NULL, a variant of vartype 1 (Null) is returned.

Example This example checks for the extension .bmp in a filename entered by a user and
activates the Paintbrush application if the file is found. Note that this uses the
Option Compare Text statement to accept either uppercase or lowercase letters for
the filename extension.

Option Compare Text
Sub Button_Click

Dim filename as String
Dim x
filename ="d:\temp\picture.BMP"
extension = Right(filename,3)
If extension = "BMP" then

x = Shell("PBRUSH.EXE",1)
Sendkeys "%FO" & filename & "{Enter}", 1

Else

Argument Description

string A string or string expression containing the characters to copy

length The number of characters to copy
388 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Right Function
End If
End Sub

See Also “InStr Function” on page 265
“Left Function” on page 290
“Len Function” on page 292
“LTrim Function” on page 309
“Mid Function” on page 312
“Mid Function” on page 312
“RTrim Function” on page 396
“Trim Function” on page 486
Version 7.5, Rev. C Siebel VB Language Reference 389

Siebel VB Language Reference

RmDir Statement
RmDir Statement
This standard VB statement removes a folder.

Syntax RmDir [drive:][\folder\]folder

Returns Not applicable

Usage The folder to be removed must be empty, except for the working (.) and parent
(..) folders.

The default folder cannot be removed. To remove the default folder, you must first
make another folder current on the drive on which the folder to be removed resides.

Example This example makes a new temporary folder in C:\ and then deletes it.

Sub Button_Click
Dim path as String
On Error Resume Next
path = CurDir(C)
If path <> "C:\" then

ChDir "C:\"
End If
MkDir "C:\TEMP01"
If Err = 75 then
Else

RmDir "C:\TEMP01"
End If

End Sub

Argument Description

drive: (Optional) The name of the drive from which the folder is to be
removed, as a letter, or a string expression representing the drive name

\folder\ If the folder is to be removed from a folder other than the default folder
of the specified drive (or the default drive if none is specified), the path
to the folder to be removed

folder The name of the folder to be removed
390 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

RmDir Statement
See Also “ChDir Statement” on page 118
“ChDrive Statement” on page 120
“CurDir Function” on page 141
“Dir Function” on page 167
“MkDir Statement” on page 318
Version 7.5, Rev. C Siebel VB Language Reference 391

Siebel VB Language Reference

Rnd Function
Rnd Function
This standard VB function returns a single-precision random number between 0
and 1.

Syntax Rnd[(number)]

Returns A single-precision pseudo-random number between 0 and 1.

Usage If number is less than zero, the specified number is used as the seed for a pseudo-
random number, which is generated every time the Rnd function is executed. If
number is greater than zero, or is omitted, Rnd generates a sequence of pseudo-
random numbers, in which each execution of the Rnd function uses the next
number in the sequence. If number is equal to zero, Rnd uses the number most
recently generated.

The same sequence of random numbers is generated whenever Rnd is run, unless
the random number generator is re-initialized by the Randomize statement.

Example This example generates a random string of characters within a range. The Rnd
function is used to set the range between lowercase a and z. The second For...Next
loop is to slow down processing in the first For...Next loop so that Randomize can
be seeded with a new value each time from the Timer function.

Sub Button_Click
Dim x as Integer
Dim y
Dim str1 as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim msgtext
upper = Asc("z")
lower = Asc("a")
newline = Chr(10)

Argument Description

number A numeric expression indicating how the random number is to be generated
392 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Rnd Function
For x = 1 to 26
Randomize
randomvalue = Int(((upper - (lower + 1)) * Rnd) + lower)
letter = Chr(randomvalue)
str1 = str1 & letter
For y = 1 to 1500
Next y

Next x
msgtext = str1

End Sub

See Also “Exp Function” on page 188
“Fix Function” on page 197
“Int Function” on page 268
“Log Function” on page 303
“Randomize Statement” on page 373
“Sgn Function” on page 430
“Sqr Function” on page 459
Version 7.5, Rev. C Siebel VB Language Reference 393

Siebel VB Language Reference

Rset Statement
Rset Statement
This standard VB function right-aligns one string inside another string.

Syntax Rset string = string-expression

Returns Not applicable

Usage If string is longer than string-expression, the leftmost characters of string are
replaced with spaces.

If string is shorter than string-expression, only the leftmost characters of string-
expression are copied.

Rset cannot be used to assign variables of different user-defined types.

Example This example uses Rset to right-align an amount entered by the user in a field that
is 15 characters long. It then pads the extra spaces with asterisks (*) and adds a
dollar sign ($) and decimal places (if necessary).

Sub Button_Click

Dim amount as String * 15
Dim x as Integer
Dim msgtext as String
Dim replacement as String
Dim position as Integer

replacement = "*"
amount = 234.56
position = InStr(amount,".")
If position = 0 then

amount = Rtrim(amount) & ".00"
End If
Rset amount = "$" & Rtrim(amount)
length = 15-Len(Ltrim(amount))

Placeholder Description

string The string to receive the right-aligned characters

string-expression The string containing the characters to put into string
394 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Rset Statement
For x = 1 to length
Mid(amount,x) = replacement
Next x

End Sub

See Also “Lset Statement” on page 307
Version 7.5, Rev. C Siebel VB Language Reference 395

Siebel VB Language Reference

RTrim Function
RTrim Function
This standard VB statement copies a string and removes any trailing spaces.

Syntax RTrim[$](string)

Returns A string with any trailing spaces removed.

Usage RTrim accepts any type of string, including numeric values, and converts the input
value to a string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string). If the value
of string is NULL, a variant of vartype 1 (Null) is returned.

Example For an example, read “Rset Statement” on page 394.

See Also “Left Function” on page 290
“Len Function” on page 292
“LTrim Function” on page 309
“Mid Function” on page 312
“Mid Statement” on page 314
“Right Function” on page 388
“Trim Function” on page 486

Argument Description

string A string or string expression
396 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Second Function
Second Function
This standard VB function returns the second component (0 to 59) of a date-time
value.

Syntax Second(time)

Returns If the expression evaluates to a date-time or time value, the second component of
that value; otherwise 0.

Usage Time can be of any type, including strings, and the Second function attempts to
convert the input value to a date-time value.

For Second to function without an error, the values passed to it must be in some
form that can be interpreted as a time or date-time value. Thus, 13:26:39 or
1:45:12 PM returns valid results, but 1326 returns a 0.

The return value is a variant of vartype 2 (integer). If the value of time is NULL, a
variant of vartype 1 (Null) is returned.

Example This example displays the last saved date and time for a file whose name is entered
by the user.

Sub Button_Click
Dim filename as String
Dim ftime
Dim hr, min
Dim sec
Dim msgtext as String

i: msgtext = "Enter a filename:"
filename = "d:\temp\trace.txt"
If filename = "" then

Exit Sub
End If
On Error Resume Next
ftime = FileDateTime(filename)

Argument Description

time Any numeric or string expression that can evaluate to a date-time or
time value
Version 7.5, Rev. C Siebel VB Language Reference 397

Siebel VB Language Reference

Second Function
If Err <> 0 then
Goto i:

End If
hr = Hour(ftime)
min = Minute(ftime)

sec = Second(ftime)
End Sub

See Also “Date Statement” on page 147
“DateSerial Function” on page 149
“DateValue Function” on page 151
“Day Function” on page 153
“Hour Function” on page 257
“Minute Function” on page 316
“Month Function” on page 320
“Now Function” on page 331
“Time Statement” on page 475
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
“WebApplet_InvokeMethod Event” on page 499
“Year Function” on page 515
398 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Seek Function
Seek Function
This standard VB function returns the current file position for an open file.

Syntax Seek(filenumber)

Returns The position in the file for the next operation.

Usage For files opened in random mode, Seek returns the number of the next record to be
read or written. For other modes, Seek returns the file offset for the next operation.
The first byte in the file is at offset 1, the second byte is at offset 2, and so on. The
return value is a long.

Example This example reads the contents of a sequential file line by line (to a carriage return)
and displays the results. The second subprogram, CreateFile, creates the file
c:\temp001 used by the main subprogram.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 10 to 100 step 10

Write #1, x
Next x
Close #1

End Sub

Sub Button_Click
Dim testscore as String
Dim x
Dim y
Dim newline
Call CreateFile

Argument Description

filenumber The number assigned to the file to be queried in the Open statement
Version 7.5, Rev. C Siebel VB Language Reference 399

Siebel VB Language Reference

Seek Function
Open "c:\temp001" for Input as #1
x = 1
newline = Chr(10)
msgtext = "The test scores are: " & newline
Do Until x = Lof(1)

Line Input #1, testscore
x = x + 1
y = Seek(1)
If y>Lof(1) then

x = Lof(1)
Else

Seek 1,y
End If
msgtext = msgtext & newline & testscore

Loop
Close #1

Kill "c:\temp001"
End Sub

See Also “Get Statement” on page 218
“Open Statement” on page 344
“Put Statement” on page 367
“Seek Statement” on page 401
400 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Seek Statement
Seek Statement
Seek sets the position within an open file for the next read or write operation.

Syntax Seek [#]filenumber, position

Returns Not applicable

Usage If you write to a file after seeking beyond the end of the file, the file’s length is
extended. Basic returns an error message if a Seek operation is attempted that
specifies a negative or zero position.

For files opened in Random mode, position is a record number; for other modes,
position is a byte offset. Position is in the range 1 to 2,147,483,647. The first byte or
record in the file is at position 1, the second is at position 2, and so on.

Example This example reads the contents of a sequential file line by line (to a carriage return)
and displays the results. The second subprogram, CreateFile, creates the file
C:\temp001 used by the main subprogram.

(general) (declarations)
Option Explicit
Declare Sub CreateFile

Sub CreateFile
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "c:\temp001" for Output as #1
For x = 10 to 100 step 10

Write #1, x
Next x
Close #1

End Sub

Argument Description

filenumber The number assigned in the Open statement to the file to be queried

position An expression of type long representing the starting position of the next
record number for a random read or write operation, or the byte offset
from the beginning of the file
Version 7.5, Rev. C Siebel VB Language Reference 401

Siebel VB Language Reference

Seek Statement
Sub Button_Click
Dim testscore as String
Dim x
Dim y
Dim newline
Call CreateFile
Open "c:\temp001" for Input as #1
x = 1
newline = Chr(10)
msgtext = "The test scores are: " & newline
Do Until x = Lof(1)

Line Input #1, testscore
x = x + 1
y = Seek(1)
If y>Lof(1) then

x = Lof(1)
Else

Seek 1,y
End If
msgtext = msgtext & newline & testscore

Loop
Close #1

Kill "c:\temp001"
End Sub

See Also “Get Statement” on page 218
“Open Statement” on page 344
“Put Statement” on page 367
“Seek Function” on page 399
402 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Select Case Statement
Select Case Statement
This standard VB control structure executes one or more statements, depending on
the value of an expression.

Syntax Select Case testexpression

Case expressionList

[statement_block]

[Case expressionList

[statement_block]]

.

.

[Case Else

[statement_block]

End Select

Returns Not applicable

Usage When there is a match between testexpression and one of the values in
expressionList, the statement_block following the Case clause is executed. When the
next Case clause is reached, execution control goes to the statement following the
End Select statement.

Placeholder Description

testexpression Any expression containing a variable to test

expressionList One or more expressions that contain a possible value for
testexpression

statement_block One or more lines of code to execute if testexpression equals a value
in expressionList
Version 7.5, Rev. C Siebel VB Language Reference 403

Siebel VB Language Reference

Select Case Statement
The expressionList(s) can be a comma-separated list of expressions of the following
forms:

expression

expression To expression

Is comparison_operator expression

The type of each expression must be compatible with the type of testexpression.

Each statement_block can contain any number of statements on any number of
lines.

NOTE: When the To keyword is used to specify a range of values, the smaller value
must appear first. The comparison_operator used with the Is keyword is one of the
following: <, >, = , < = , > = , <> . You must also use the Is operator when
the Case is one end of a range, for example, Case Is < 100.

See Also “If...Then...Else Statement” on page 259
“On...GoTo Statement” on page 340
“Option Compare Statement” on page 350
404 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SendKeys Statement
SendKeys Statement
This standard VB statement sends keystrokes to an active Windows application.

Syntax SendKeys string[, wait]

Returns Not applicable

Usage The keystrokes are represented by characters of string.

The default value for wait is 0 (FALSE).

To specify an alphanumeric character, enter it in string. For example, to send the
character a, use a as string. Several characters can be combined in one string: If
string is abc, then a, b, and c are sent to the application.

To specify that the SHIFT, ALT, or CTRL key should be pressed simultaneously with
a character, prefix the character with

Parentheses can be used to specify that the SHIFT, ALT, or CTRL key should be
pressed with a group of characters. For example, %(abc)is equivalent to %a%b%c.

Argument Description

string A string or string expression containing the characters to send

wait An integer expression specifying whether to wait until every key is
processed before continuing program execution, where:

■ -1 = wait

■ 0 = don’t wait

+ to specify SHIFT

% to specify ALT

^ to specify CTRL
Version 7.5, Rev. C Siebel VB Language Reference 405

Siebel VB Language Reference

SendKeys Statement
The following characters must be enclosed in braces if they are to be understood as
literal characters by SendKeys; otherwise they have specific meanings as follows:

For example, a string equal to {%} specifies a literal percent character, %.

Use {{} to send a left brace and {}} to send a right brace.

To send the same key several times, enclose the character in braces and specify the
number of keys sent after a space. For example, use {X 20} to send 20 X characters.

To send one of the nonprintable keys, use a special keyword inside braces:

+ SHIFT key

% ALT key

^ CTRL key

() Apply a shift state to the enclosed characters

~ Newline. Use “~” for the ENTER key on the alphanumeric keyboard, and
use “{Enter}” for the ENTER key on the numeric keypad

{ } Used to make the enclosed characters literals

[] No special meaning for SendKeys, but may have special meaning in other
applications

Key Keyword

BACKSPACE {BACKSPACE} or {BKSP} or {BS}

BREAK {BREAK}

CAPS LOCK {CAPSLOCK}

CLEAR {CLEAR}

DELETE {DELETE} or {DEL}

DOWN ARROW {DOWN}

END {END}

ENTER (on numeric
keypad)

{ENTER}
406 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SendKeys Statement
To send one of the function keys (F1 to F15), simply enclose the name of the key
inside braces. For example, to send F5, use {F5}.

Note that special keywords can be used in combination with +, %, and ^. For
example, %{TAB} means ALT+TAB. Also, you can send several special keys in the
same way as you would send several normal keys: {UP 25} sends 25 up arrows.

SendKeys can send keystrokes only to the currently active application. Therefore,
you have to use the AppActivate statement to activate an application before sending
keys (unless it is already active).

SendKeys cannot be used to send keys to an application that was not designed to
run under Windows.

Example This example starts the Windows Phone Dialer application and dials a phone
number entered by the user.

ESC {ESCAPE} or {ESC}

HELP {HELP}

HOME {HOME}

INSERT {INSERT}

LEFT ARROW {LEFT}

NUM LOCK {NUMLOCK}

PAGE DOWN {PGDN}

PAGE UP {PGUP}

RIGHT ARROW {RIGHT}

SCROLL LOCK {SCROLLLOCK}

TAB {TAB}

UP ARROW {UP}

Key Keyword
Version 7.5, Rev. C Siebel VB Language Reference 407

Siebel VB Language Reference

SendKeys Statement
Sub Button_Click
Dim phonenumber, msgtext
Dim x
phonenumber = 650-555-1212
x = Shell ("Terminal.exe",-1)
SendKeys "%N" & phonenumber & "{Enter}", -1

End Sub

See Also “Shell Function” on page 432
408 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Service_InvokeMethod Event
Service_InvokeMethod Event
The InvokeMethod event is called after the InvokeMethod method is called on a
business service. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 409

Siebel VB Language Reference

Service_PreInvokeMethod Event
Service_PreInvokeMethod Event
The PreInvokeMethod event is called before a specialized method is invoked on the
business service. For details, read Siebel Object Interfaces Reference.
410 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Set Statement
Set Statement
This standard VB statement assigns a COM object, such as an application, to a
variable. Within Siebel Tools, it is used to create an instance of a Siebel object.

Syntax Set variableName = objectExpression

Returns Not applicable

Usage The following example shows how to use the Set statement:

Dim COMObject As Object
Set COMObject = CreateObject("spoly.cpoly")
COMObject.reset

NOTE: If you omit the keyword Set when assigning an object variable, Siebel VB tries
to copy the default member of one object to the default member of another. This
usually results in a run-time error:

' Incorrect code - tries to copy default member!
COMObject = GetObject("","spoly.cpoly")

Set differs from Let in that Let assigns an expression to a Siebel VB variable. For
example,

Argument Description

variableName An object variable or variant variable

objectExpression An expression that evaluates to an object—typically a function, an
object member, or Nothing

Set o1 = o2 sets the object reference

Let o1 = o2 sets the value of the default member
Version 7.5, Rev. C Siebel VB Language Reference 411

Siebel VB Language Reference

Set Statement
Example This example creates an Opportunity Siebel business component outside the
context of the user interface. The program prevents the user from deleting an
account if there are opportunities associated with it. For details on the Siebel VB
methods and objects used in this example, read Siebel Object Interfaces Reference.

Function BusComp_PreDeleteRecord As Integer

Dim iReturn as integer
Dim oBC as BusComp
Dim oBO as BusObject
Dim sAcctRowId as string
iReturn = ContinueOperation
sAcctRowId = me.GetFieldValue("Id")

set oBO = theApplication.GetBusObject("Opportunity")
set oBC = oBO.GetBusComp("Opportunity")

With oBC
.SetViewMode AllView
.ActivateField "Account Id"
.ClearToQuery
.SetSearchSpec "Account Id", sAcctRowId
.ExecuteQuery ForwardOnly
if (.FirstRecord) = 1 then

‘Opportunities exist for the Account - Delete is not
allowed

iReturn = CancelOperation
end if

End With

BusComp_PreDeleteRecord = iReturn
Set oBC = Nothing

Set oBO = Nothing

End Function

See Also “CreateObject Function” on page 134
“Is Operator” on page 275
“Me” on page 311
“New Operator” on page 325
“Nothing Function” on page 329
“Object Class” on page 336
“Typeof Function” on page 489
412 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetAttr Statement
SetAttr Statement
This standard VB statement sets the file attributes for a specified file.

Syntax SetAttr pathname, attributes

Returns Not applicable

Usage Wildcards are not allowed in pathname. If the file is open, you can modify its
attributes, but only if it is opened for Read access. Here is a description of attributes
that can be modified:

Example For an example, read “Select Case Statement” on page 403.

See Also “FileAttr Function” on page 190
“GetAttr Function” on page 222

Argument Description

pathname A string or string expression evaluating to the name of the file to modify

attributes An integer expression containing the new attributes for the file

Value Meaning

0 Normal file

1 Read-only file

2 Hidden file

4 System file

32 Archive—file has changed since last backup
Version 7.5, Rev. C Siebel VB Language Reference 413

Siebel VB Language Reference

SetFieldValue Method
SetFieldValue Method
SetFieldValue assigns the new value to the named field for the current row of a
Siebel business component. This method is used with business component objects.
For details, read Siebel Object Interfaces Reference.
414 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetFormattedFieldValue Method
SetFormattedFieldValue Method
SetFormattedFieldValue assigns the new value to the named field for the current
row of a Siebel business component. SetFormattedFieldValue accepts the field value
in the current local format. This method is used with business component objects.
For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 415

Siebel VB Language Reference

SetMultipleFieldValues Method
SetMultipleFieldValues Method
SetMultipleFieldValues() allows users to set the field values for a particular record
as specified in the property set input argument. For details, read Siebel Object
Interfaces Reference.
416 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetNamedSearch Method
SetNamedSearch Method
SetNamedSearch sets a named search specification on a Siebel business
component. A named search specification is identified by the searchName
argument. This method is used with business component objects. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 417

Siebel VB Language Reference

SetPositionId Method
SetPositionId Method
SetPositionId() changes the position of the current user to the value specified in the
input argument. For SetPositionId() to succeed, the user must be assigned to the
position to which the user is changing. For details, Siebel Object Interfaces Reference.
418 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetPositionName Method
SetPositionName Method
SetPositionName() changes the position of the current user to the value specified in
the input argument. For SetPositionName() to succeed, the user must be assigned
to the position to which the user is changing. For details, read Siebel Object
Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 419

Siebel VB Language Reference

SetProfileAttr Method
SetProfileAttr Method
SetProfileAttr is used in personalization to assign values to attributes in a user
profile. For details, read Siebel Object Interfaces Reference.
420 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetProperty Method
SetProperty Method
This method assigns a value to a property of a business service, property set, or
control. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 421

Siebel VB Language Reference

SetSearchExpr Method
SetSearchExpr Method
SetSearchExpr sets an entire search expression on a Siebel business component,
rather than setting one search specification per field. Syntax is similar to that on the
Predefined Queries screen. This method is used with business component objects.
For details, read Siebel Object Interfaces Reference.
422 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetSearchSpec Method
SetSearchSpec Method
SetSearchSpec sets the search specification for a particular field in a Siebel business
component. This method must be called before ExecuteQuery. It is used with
business component objects. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 423

Siebel VB Language Reference

SetSharedGlobal Method
SetSharedGlobal Method
The SetSharedGlobal property sets a shared user-defined global variable, which
may be accessed using GetSharedGlobal. This method is used with the application
object. For details, read Siebel Object Interfaces Reference.
424 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetSortSpec Method
SetSortSpec Method
SetSortSpec sets the sorting specification for a query on a Siebel business
component. This method is used with business component objects. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 425

Siebel VB Language Reference

SetType Method
SetType Method
SetType assigns a data value to a type member of a property set. For details, read
Siebel Object Interfaces Reference.
426 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetUserProperty Method
SetUserProperty Method
SetUserProperty sets the value of a named Siebel business component user
property. The user properties are similar to instance variables of a business
component. This method is used with business component objects. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 427

Siebel VB Language Reference

SetValue Method
SetValue Method
The SetValue method sets the contents of a specified control on a Siebel applet to
the value indicated. It is also used to assign a data value to a value member of a
property set. This method is used with control objects and property sets. For details,
read Siebel Object Interfaces Reference.
428 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SetViewMode Method
SetViewMode Method
SetViewMode sets the visibility type for a Siebel business component. This method
is used with business component objects. For details, read Siebel Object Interfaces
Reference.
Version 7.5, Rev. C Siebel VB Language Reference 429

Siebel VB Language Reference

Sgn Function
Sgn Function
This standard VB function returns a value indicating the sign of a number.

Syntax Sgn(number)

Returns If number is less than zero, -1.

If number is equal to zero, 0.

If number is greater than zero, 1.

Example This example tests the value of the variable profit and displays 0 for profit if it is a
negative number. The subroutine uses Sgn to determine whether profit is positive,
negative, or zero.

Sub Button_Click
Dim profit as Single
Dim expenses
Dim sales
expenses = 100000
sales = 200000
profit = Val(sales)-Val(expenses)
If Sgn(profit) = 1 then

‘Yeah! We turned a profit!
ElseIf Sgn(profit) = 0 then

‘Okay. We broke even.
Else

‘Uh, oh. We lost money.
End If

End Sub

Argument Description

number A numeric expression for which the sign is to be determined
430 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Sgn Function
See Also “Exp Function” on page 188
“Fix Function” on page 197
“Int Function” on page 268
“Log Function” on page 303
“Rnd Function” on page 392
“Sqr Function” on page 459
Version 7.5, Rev. C Siebel VB Language Reference 431

Siebel VB Language Reference

Shell Function
Shell Function
This standard VB function starts a Windows application and returns its task ID.

Syntax Shell(pathname, [windowStyle])

Returns The task ID for the program, a unique number that identifies the running program.

Usage Shell runs an executable program. Pathname can be the name of any valid .COM,
.EXE, .BAT, or .PIF file. Arguments and command line switches can be included. If
pathname is not a valid executable file name, or if Shell cannot start the program,
an error message occurs.

If windowStyle is not specified, the default of windowStyle is 1 (normal window
with focus).

Example This example opens Microsoft Excel upon the click of a button. For other examples,
read “Right Function” on page 388 and “SendKeys Statement” on page 405.

Sub Button1_Click
Dim i as long
i = Shell("C:\Program Files\Microsoft
Office\Office\EXCEL.EXE",1)

End Sub

See Also “SendKeys Statement” on page 405

Argument Description

pathname A string or string expression evaluating to the name of the program to
execute

windowStyle An integer indicating how the program’s window is to be displayed:

■ 1 if a normal window with focus

■ 2 if a minimized window with focus

■ 3 if a maximized window with focus

■ 4 if a normal window without focus

■ 7 if a minimized window without focus
432 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Sin Function
Sin Function
This standard VB function returns the sine of an angle specified in radians.

Syntax Sin(number)

Returns The sine of number.

Usage The return value is between -1 and 1. The return value is single precision if the
angle is an integer, currency, or single-precision value; double precision for a long,
variant, or double-precision value. The angle is specified in radians and can be
either positive or negative.

To convert degrees to radians, multiply by (PI/180). The value of PI is 3.14159.

Example This example finds the height of a building, given the length of the roof and the roof
pitch.

Sub Button_Click
Dim height, rooflength, pitch, msgtext As String
Const PI = 3.14159
Const conversion = PI/180
pitch = 35
pitch = pitch * conversion
rooflength = 75
height = Sin(pitch) * rooflength
msgtext = "The height of the building is "
msgtext = msgtext & Format(height, "##.##") & " feet."

End Sub

See Also “Atn Function” on page 90
“Cos Function” on page 133
“Tan Function” on page 471
“Derived Trigonometric Functions” on page 527

Argument Description

number A numeric expression containing a number representing the size of an
angle in radians
Version 7.5, Rev. C Siebel VB Language Reference 433

Siebel VB Language Reference

Space Function
Space Function
This standard VB function returns a string of spaces.

Syntax Space[$](number)

Returns A string of number spaces.

Usage Number can be any numeric data type, but is rounded to an integer. Number must
be between 0 and 32,767.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

Example For an example, read “Oct Function” on page 338.

See Also “Spc Function” on page 435
“String Function” on page 465

Argument Description

number A numeric expression indicating the number of spaces to return
434 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Spc Function
Spc Function
This standard VB function prints a specified number of spaces.

Syntax Spc(number)

Returns A string of spaces in the target of a Print statement.

Usage The Spc function can be used only inside a Print statement.

When the Print statement is used, the Spc function uses the following rules for
determining the number of spaces to output:

■ If number is less than the total line width, Spc outputs number spaces.

■ If number is greater than the total line width, Spc outputs number Mod width
spaces.

■ If the difference between the current print position and the output line width
(call this difference x) is less than number or number Mod width, then Spc skips
to the next line and outputs number - x spaces.

To set the width of a print line, use the Width statement.

Example This example outputs five spaces and the string ABCD to a file. The five spaces are
derived by taking 15 Mod 10, or the remainder of dividing 15 by 10.

Sub Button_Click
Dim str1 as String
Dim x as String * 10
str1 = "ABCD"
Open "C:\temp001" For Output As #1
Width #1, 10
Print #1, Spc(15); str1
Close #1
Open "C:\TEMP001" as #1 Len = 12
Get #1, 1,x

Argument Description

number An integer or integer expression indicating the number of spaces to print
Version 7.5, Rev. C Siebel VB Language Reference 435

Siebel VB Language Reference

Spc Function
Close #1
Kill "C:\temp001"

End Sub

See Also “Print Statement” on page 364
“Space Function” on page 434
“Tab Function” on page 469
“Width Statement” on page 509
436 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLClose Function
SQLClose Function
This custom VB function disconnects from an ODBC data source connection that
was established by SQLOpen.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLClose(connection)

Returns A variant having one of the following values:

Usage For information about named arguments, read “Named Arguments” on page 52 and
“Call Statement” on page 112.

If you invoke the ODBC function “SQLClose” with an invalid parameter (for
example, SQLClose(0) or a variable parameter without an initialized value), the
function responds with the undocumented return code of -2, which indicates an
invalid data source connection.

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Argument Description

connection A named argument that must be a long integer, returned by SQLOpen

Value Meaning

0 Successful disconnection

-1 Connection is not valid
Version 7.5, Rev. C Siebel VB Language Reference 437

Siebel VB Language Reference

SQLClose Function
Example This example opens the data source named SblTest, gets the names in the ODBC
data sources, and closes the connection.

Sub Button_Click
' Declarations

 Dim outputStr As String
 Dim connection As Long
 Dim prompt As Integer
 Dim datasources(1 To 50) As Variant
 Dim retcode As Variant

 prompt = 5

' Open the data source "SblTest"
 connection = SQLOpen("DSN = SblTest", outputStr, prompt: = 4)

 action1 = 1 ' Get the names of the ODBC data sources
retcode = SQLGetSchema(connection: = connection,action: _
 = 1,qualifier: = qualifier, ref: = datasources())

' Close the data source connection
 retcode = SQLClose(connection)

End Sub

See Also “SQLError Function” on page 439
“SQLExecQuery Function” on page 442
“SQLGetSchema Function” on page 445
“SQLOpen Function” on page 448
“SQLRequest Function” on page 451
“SQLRetrieve Function” on page 454
“SQLRetrieveToFile Function” on page 457
438 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLError Function
SQLError Function
This custom VB function can be used to retrieve detailed information about errors
that might have occurred when making an ODBC function call. It returns errors for
the last ODBC function and the last connection.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLError(destination())

Returns Not applicable

Usage Detailed information for each detected error is returned to the caller in the
destination array. Each row of the destination array is filled with information for one
error. The elements of each row are filled with the following data:

Note that information for more than one error may be returned in the destination
array. A 0 in the first element of a row indicates the end of error information in the
destination array.

Argument Description

destination A two-dimensional array of type variant, in which each row contains
one error

Element 1: A character string indicating the ODBC error class/subclass

Element 2: A numeric value indicating the data source native error code

Element 3: A text message describing the error
Version 7.5, Rev. C Siebel VB Language Reference 439

Siebel VB Language Reference

SQLError Function
If there are no errors from a previous ODBC function call, then a 0 is returned in the
caller’s array at (1,1). If the array is not two dimensional or does not provide for the
return of the preceding three elements, then an error message is returned in the
caller’s array at (1,1).

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Example This example forces an error to test the SQLError function.

Sub Button_Click
' Declarations

Dim connection As long
Dim prompt as integer
Dim retcode as long
Dim errors(1 To 10, 1 To 3) as Variant

' Open the data source
connection = SQLOpen("DSN = SVBTESTW;UID=DBA;PWD=SQL"

,outputStr, prompt: = 3)

' force an error to test SQLError select a nonexistent table
retcode = SQLExecQuery(connection: = connection, query: =

"select * from notable ")

' Retrieve the detailed error message information into the
' errors array
SQLError destination: = errors
errCounter = 1
while errors(errCounter,1) <>0

errCounter = errCounter + 1
wend

retcode = SQLClose(connection)

end sub
440 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLError Function
See Also “SQLClose Function” on page 437
“SQLExecQuery Function” on page 442
“SQLGetSchema Function” on page 445
“SQLOpen Function” on page 448
“SQLRequest Function” on page 451
“SQLRetrieve Function” on page 454
“SQLRetrieveToFile Function” on page 457
Version 7.5, Rev. C Siebel VB Language Reference 441

Siebel VB Language Reference

SQLExecQuery Function
SQLExecQuery Function
This custom VB function executes a SQL statement on a connection established by
SQLOpen.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLExecQuery(connection, query)

Returns The number of columns in the result set for SQL SELECT statements as a variant.

Usage If the function is unable to execute the query on the specified data source, or if the
connection is invalid, a negative error code is returned.

Argument Description

connection A long integer returned by SQLOpen

query A string containing a valid SQL statement

Select Statement Return Value

UPDATE The number of rows affected by the statement

INSERT The number of rows affected by the statement

DELETE The number of rows affected by the statement

Other SQL
statements

0

442 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLExecQuery Function
If SQLExecQuery is called and there are any pending results on that connection, the
pending results are replaced by the new results.

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Example This example performs a query on the data source.

Sub Button_Click
' Declarations

 Dim connection As Long
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim retcode As long

 ' open the connection
 connection = SQLOpen("DSN = SblTest",outputStr,prompt: = 3)

 ' Execute the query
 query = "select * from customer"
 retcode = SQLExecQuery(connection,query)

 ' retrieve the first 50 rows with the first 6 columns of
 ' each row into the array destination, omit row numbers and
 ' put column names in the first row of the array

retcode = SQLRetrieve(connection: = connection, _
destination: = destination, columnNames: = 1,rowNumbers: _
= 0,maxRows: = 50, maxColumns: = 6,fetchFirst: = 0)

 ' Get the next 50 rows of from the result set
 retcode = SQLRetrieve(connection: = connection, _

destination: = destination, columnNames: = 1,rowNumbers: _
= 0,maxRows: = 50, maxColumns: = 6)

 ' Close the connection
 retcode = SQLClose(connection)

End Sub
Version 7.5, Rev. C Siebel VB Language Reference 443

Siebel VB Language Reference

SQLExecQuery Function
See Also “SQLClose Function” on page 437
“SQLError Function” on page 439
“SQLGetSchema Function” on page 445
“SQLOpen Function” on page 448
“SQLRequest Function” on page 451
“SQLRetrieve Function” on page 454
“SQLRetrieveToFile Function” on page 457
444 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLGetSchema Function
SQLGetSchema Function
This custom VB function returns a variety of information, including information on
the data sources available, current user ID, names of tables, names and types of
table columns, and other data source/database related information.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLGetSchema connection, action, qualifier, ref()

Returns A variant whose value depends on the action requested, as determined by the
values in Table 8. A negative return value indicates an error. A -1 is returned if the
requested information cannot be found or if the connection is not valid.

Argument Description

connection A long integer returned by SQLOpen

action An integer value from the following table, specifying what is to be returned
to ref()

qualifier A string

ref() An array of type variant for the results appropriate to the action requested;
it must be an array even if it has only one dimension with one element

Table 8. Values for Action

Action
Value Returns

1 List of available data sources (dimension of ref() is 1)

2 List of databases on the current connection (not supported)

3 List of owners in a database on the current connection (not supported)

4 List of tables on the specified connection

5 List of columns in the table specified by qualifier (ref() must be two
dimensions); returns the column name and SQL data type
Version 7.5, Rev. C Siebel VB Language Reference 445

Siebel VB Language Reference

SQLGetSchema Function
Usage The destination array must be properly dimensioned to support the action, or an
error is returned. Actions 2 and 3 are not currently supported. Action 4 returns every
table and does not support the use of the qualifier. Not every database product and
ODBC driver support every action.

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Example This example opens the data source named SblTest, gets the names in the ODBC
data sources, and closes the connection.

Sub Button_Click
'Declarations

 Dim outputStr As String
 Dim connection As Long
 Dim prompt As Integer
 Dim datasources(1 To 50) As Variant

6 The user ID of the current connection user

7 The name of the current database

8 The name of the data source for the current connection

9 The name of the DBMS the data source uses (for example, DB2)

10 The server name for the data source

11 The terminology used by the data source to refer to owners

12 The terminology used by the data source to refer to a table

13 The terminology used by the data source to refer to a qualifier

14 The terminology used by the data source to refer to a procedure

Table 8. Values for Action

Action
Value Returns
446 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLGetSchema Function
 Dim retcode As Variant

 prompt = 5
'Open the data source "SblTest"
 connection = SQLOpen("DSN=SblTest; UID=SADMIN;

PWD=SADMIN", outputStr,prompt:=4)

 action1 = 1 ' Get the names of the ODBC data sources
 retcode = SQLGetSchema(connection:= connection,action:=

1,qualifier:= qualifier, ref:= datasources())

'Close the data source connection
 retcode = SQLClose(connection)

End Sub

See Also “SQLClose Function” on page 437
“SQLError Function” on page 439
“SQLExecQuery Function” on page 442
“SQLOpen Function” on page 448
“SQLRequest Function” on page 451
“SQLRetrieve Function” on page 454
“SQLRetrieveToFile Function” on page 457
Version 7.5, Rev. C Siebel VB Language Reference 447

Siebel VB Language Reference

SQLOpen Function
SQLOpen Function
This custom VB function establishes a connection to an ODBC data source.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLOpen(connectString, [outputString][, prompt])

The following table lists the values for prompt. When prompt is omitted, 2 is
assumed.

Argument Description

connectString A string or string variable supplying the information required to
connect to a data source, including the data source name, user ID, and
password, and any other information required by the driver to make
the connection

outputString A string variable to hold the completed connection string if the
connection is successful

prompt An integer specifying when the driver dialog box is displayed

Prompt Value Meaning

1 Driver dialog box is always displayed

2 Driver dialog box is displayed only when the specification is not
sufficient to make the connection

3 The same as 2, except that dialog boxes that are not required are
unavailable and cannot be modified

4 Driver dialog box is not displayed; if the connection is not successful,
an error is returned
448 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLOpen Function
Returns A long integer representing a unique connection ID, which can be used with other
ODBC functions. The completed connection string is returned in outputString if this
argument is used. If the connection cannot be established, then an ODBC error with
a negative numeric value is returned. Test this value using the instructions in
“SQLError Function” on page 439.

Usage The connectString variable generally takes the following form; however, it must
follow the format dictated by the ODBC driver you are using.

“DSN=dataSourceName;UID=loginID;PWD=password”

As the example that follows shows, some parts of this string may not be required;
you must supply whatever information is required by the ODBC driver to make the
connection. For details on the connect string used to access a Siebel application,
read Siebel Technical Note #206.

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Example This example opens the data source named SblTest, gets the names in the ODBC
data sources, and closes the connection.

Sub Button_Click
Dim outputStr As String
Dim connection As Long
Dim prompt As Integer
Dim action As Integer
Dim qualifier As String
Dim datasources(1 To 50) As Variant
Dim retcode As Variant

prompt = 4
Set ret = TheApplication.NewPropertySet()

' Open the datasource "SblTest" with a user name of sa, _
password of sa
connection = _
SQLOpen("DSN=SblTest;UID=sa;PWD=sa",outputStr,prompt:=4)
action = 1 ' Get the names of the ODBC data sources
Version 7.5, Rev. C Siebel VB Language Reference 449

Siebel VB Language Reference

SQLOpen Function
retcode = SQLGetSchema(connection:=connection, _
action:=1, _

 qualifier:=qualifier, _
ref:=datasources())

’ Close the data source connection
retcode = SQLClose(connection)

End Sub

See Also “SQLClose Function” on page 437
“SQLError Function” on page 439
“SQLExecQuery Function” on page 442
“SQLGetSchema Function” on page 445
“SQLRequest Function” on page 451
“SQLRetrieve Function” on page 454
“SQLRetrieveToFile Function” on page 457
450 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLRequest Function
SQLRequest Function
This custom VB function establishes a connection to a data source, executes a SQL
statement contained in query$, returns the results of the request in the ref() array,
and closes the connection.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLRequest(connectString, query, outputString[, prompt][, columnNames], ref())

Returns A variant containing a negative-numbered error code if the connection cannot be
made, the query is invalid, or another error condition occurs. If the request is
successful, returns a positive number representing the number of results returned
or rows affected. Other SQL statements return 0.

Argument Description

connectString A string or string variable specifying the data source to connect to. For
details on the connect string, read “SQLOpen Function” on page 448.

query A SQL query

outputString A string variable to hold the completed connection string if the
connection is successful

prompt An integer that specifies when driver dialog boxes are displayed. For a
table of values for prompt, read “SQLOpen Function” on page 448.

columnNames An integer with a value of 0 or nonzero. When columnNames is
nonzero, column names are returned as the first row of the ref() array.
If columnNames is omitted, the default is 0.

ref() An array of type variant for the results appropriate to the action
requested; it must be an array even if only one dimension with one
element
Version 7.5, Rev. C Siebel VB Language Reference 451

Siebel VB Language Reference

SQLRequest Function
Usage The SQLRequest function establishes a connection to the data source specified in
connectString, executes the SQL statement contained in query, returns the results of
the request in the ref() array, and closes the connection.

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Example Function WebApplet_PreInvokeMethod (MethodName As String) As Integer
If MethodName = "queryExtSys" Then

' The following opens the datasource SVBTESTW and
' executes the query specified by query and returns the
' results in destination.

Dim errors(1 To 10, 1 To 3) As Variant
Dim destination(1 To 50, 1 To 125) As Variant
Dim prompt As Integer
Dim outputStr As String
Dim retCode As Integer

' In the event of a connection error, do not display a
' dialog box, return an error
prompt = 4

' SQL Statement to submit. In this example we'll perform a
' simple select
query = "SELECT * FROM authors"

' Invoke the SQLRequest function to submit the SQL, execute the
' query and return a result set.
retCode = SQLRequest("DSN=SVBTESTW;UID=sa;PWD=sa", _

query, outputStr, prompt, 0, destination())

' If retCode < 0, an error has occurred. Retrieve the first
’ error returned in the array and display to the user.
If retCode < 0 Then

SQLError destination := errors
errCounter = 1
452 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLRequest Function
While errors(errCounter,1) <> 0
TheApplication.RaiseErrorText "Error " & _
" ODBC error: " & destination(errCounter,1) & _
" Numeric code = " & destination(errCounter,2) & _
" Error Text = " & destination(errCounter,3)

errCounter = errCounter + 1
Wend

Else
' do some processing of the results

End If

WebApplet_PreInvokeMethod = CancelOperation
Else

WebApplet_PreInvokeMethod = ContinueOperation
End If

End Function

See Also “SQLClose Function” on page 437
“SQLError Function” on page 439
“SQLExecQuery Function” on page 442
“SQLGetSchema Function” on page 445
“SQLOpen Function” on page 448
“SQLRetrieve Function” on page 454
“SQLRetrieveToFile Function” on page 457
Version 7.5, Rev. C Siebel VB Language Reference 453

Siebel VB Language Reference

SQLRetrieve Function
SQLRetrieve Function
This custom VB function fetches the results of a pending query on the connection
specified by connection and returns the results in the destination() array.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLRetrieve(connection, destination()[, maxColumns][, maxRows]
[, columnNames][, rowNumbers][, fetchFirst])

Argument Description

connection The long integer returned by the SQLOpen function

destination() A two-dimensional array of type variant. The first index of the array
cannot exceed 100.

maxColumns The number of columns to be retrieved in the request; defaults to 0 if
this parameter is not used

maxRows The number of rows to be retrieved in the request; if this argument is
not supplied, 0 is assumed

columnNames An integer with a value of 0 or nonzero. When columnNames is
nonzero, column names are returned as the first row of the ref() array.
If columnNames is omitted, the default is 0.

rowNumbers An integer with a value of 0 or nonzero. When rowNumbers is
nonzero, row numbers are returned as the first row of the ref() array.
If rowNumbers is omitted, the default is 0.

fetchFirst A positive integer value that causes the result set to be repositioned to
the first row of the database, if the database supports this action;
returns -1 if this cannot be accomplished
454 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLRetrieve Function
Returns A variant containing the following values:

Usage If maxColumns or maxRows is omitted, the array size is used to determine the
maximum number of columns and rows retrieved, and an attempt is made to return
the entire result set. Extra rows can be retrieved by using SQLRetrieve again and by
setting fetchFirst to 0. If maxColumns specifies fewer columns than are available in
the result, SQLRetrieve discards the rightmost result columns until the results fit the
specified size.

When columnNames is nonzero, the first row of the array is set to the column
names as they are specified by the database schema. When rowNumbers is nonzero,
row numbers are returned in the first column of destination(). SQLRetrieve clears
the user’s array prior to fetching the results.

When fetchFirst is nonzero, it causes the result set to be repositioned to the first row
if the database supports the function. If the database does not support
repositioning, the result set -1 error is returned.

If there are more rows in the result set than can be contained in the destination()
array or than have been requested using maxRows, the user can make repeated calls
to SQLRetrieve until the return value is 0.

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Example This example retrieves information from a data source.

Result Returns

Success The number of rows in the result set or the maxRows
requested

Unable to retrieve results, or no
results pending

-1

No data found by the query 0
Version 7.5, Rev. C Siebel VB Language Reference 455

Siebel VB Language Reference

SQLRetrieve Function
Sub Button_Click
' Declarations

 Dim connection As Long
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim retcode As long

' open the connection
connection = SQLOpen("DSN = SblTest",outputStr,prompt: = 3)

' Execute the query
query = "select * from customer"
retcode = SQLExecQuery(connection,query)

' retrieve the first 50 rows with the first 6 columns of
' each row into the array destination, omit row numbers and
' put column names in the first row of the array

retcode = SQLRetrieve(connection: = connection, _
destination: = destination, columnNames: = 1, _
rowNumbers: = 0, maxRows: = 50, maxColumns: = 6, _
fetchFirst: = 0)

' Get the next 50 rows of from the result set
retcode = SQLRetrieve(connection: = connection, _

destination: = destination, columnNames: = 1, _
rowNumbers: = 0, maxRows: = 50, maxColumns: = 6)

' Close the connection
retcode = SQLClose(connection)

End Sub

See Also “SQLClose Function” on page 437
“SQLError Function” on page 439
“SQLExecQuery Function” on page 442
“SQLGetSchema Function” on page 445
“SQLOpen Function” on page 448
“SQLRequest Function” on page 451
“SQLRetrieveToFile Function” on page 457
456 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

SQLRetrieveToFile Function
SQLRetrieveToFile Function
This custom VB function fetches the results of a pending query on the connection
specified by connection and stores them in the file specified by destination.

NOTE: Siebel VB SQLxxxx functions are supported for non-Unicode databases only.

Syntax SQLRetrieveToFile(connection, destination[, columnNames][, columnDelimiter])

Returns If successful, a variant containing the number of rows in the result set; if
unsuccessful, -1.

Usage The arguments must be named arguments. For information about named
arguments, read “Named Arguments” on page 52 and “Call Statement” on
page 112.

CAUTION: This function, as well as the other SQL functions available in Siebel VB,
should not be used to query the underlying database. Use the Siebel Object
Interfaces to query Siebel data. Use the SQL functions only to query non-Siebel
data.

Argument Description

connection The number returned by the SQLOpen function

destination A string or string variable containing the filename and path to be used
for storing the results

columnNames One of the following values:

■ nonzero = The first row contains the column headers as specified
by the database schema

■ 0 = The column headers are not retrieved

The default is 0.

columnDelimiter The string to be used to delimit the fields in a row; if omitted, a Tab
character is used
Version 7.5, Rev. C Siebel VB Language Reference 457

Siebel VB Language Reference

SQLRetrieveToFile Function
Example This example opens a connection to a data source and retrieves information to a file.

Sub Button_Click
'Declarations

Dim connection As Long
Dim destination(1 To 50, 1 To 125) As Variant
Dim retcode As long

'open the connection

connection = SQLOpen("DSN = SblTest",outputStr,prompt: = 3)

' Execute the query

query = "select * from customer"
retcode = SQLExecQuery(connection,query)

'Place the results of the previous query in the file
'named by filename and put the column names in the file
'as the first row.
'The field delimiter is %

filename = "c:\myfile.txt"
columnDelimiter = "%"
retcode = SQLRetrieveToFile(connection: = connection, _
destination: = filename, columnNames: = 1, _
columnDelimiter: = columnDelimiter)

retcode = SQLClose(connection)

End Sub

See Also “SQLClose Function” on page 437
“SQLError Function” on page 439
“SQLExecQuery Function” on page 442
“SQLGetSchema Function” on page 445
“SQLOpen Function” on page 448
“SQLRequest Function” on page 451
“SQLRetrieve Function” on page 454
458 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Sqr Function
Sqr Function
This standard VB function returns the square root of a number.

Syntax Sqr(number)

Returns The square root of number.

Usage The return value is single precision for an integer, currency, or single-precision
numeric expression; double precision for a long, variant, or double-precision
numeric expression.

Example For an example that calculates the square root of 2 as a double-precision floating-
point value and displays it in scientific notation, read “Format Function” on
page 202.

See Also “Exp Function” on page 188
“Fix Function” on page 197
“Int Function” on page 268
“Log Function” on page 303
“Rnd Function” on page 392
“Sgn Function” on page 430

Argument Description

number An expression containing the number whose square root is to be found
Version 7.5, Rev. C Siebel VB Language Reference 459

Siebel VB Language Reference

Static Statement
Static Statement
This standard VB statement declares variables and allocates storage space.

Syntax Static variableName [As type] [,variableName [As type]] …

Returns Not applicable

Usage Variables declared with the Static statement retain their value as long as the
program is running. The syntax of Static is exactly the same as the syntax of the
Dim statement.

Variables of a procedure can be made static by using the Static keyword in a
definition of that procedure. For more information, read “Function...End Function
Statement” on page 213 and “Sub...End Sub Statement” on page 467.

See Also “Dim Statement” on page 161
“Function...End Function Statement” on page 213
“Global Statement” on page 249
“Option Base Statement” on page 347
“ReDim Statement” on page 377
“Sub...End Sub Statement” on page 467

Argument Description

variableName The name of the variable to declare as static

type The data type of the variable; if not specified, the type is variant
460 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Stop Statement
Stop Statement
This standard VB statement halts program execution.

Syntax Stop

Returns Not applicable

Usage Stop statements can be placed anywhere in a program to suspend its execution.
Although the Stop statement halts program execution, it does not close files or clear
variables.

Example This example stops program execution at the user’s request.

Sub Button_Click
Dim str1
str1 = Y
If str1 = "Y" or str1 = "y" then

Stop
End If

End Sub

Argument Description

Not applicable
Version 7.5, Rev. C Siebel VB Language Reference 461

Siebel VB Language Reference

Str Function
Str Function
This standard VB function returns a string representation of a number.

Syntax Str[$](number)

Returns A string representation of number.

Usage The precision in the returned string is single precision for an integer or single-
precision numeric expression; double precision for a long or double-precision
numeric expression, and currency precision for currency. Variants return the
precision of their underlying vartype.

The dollar sign ($) in the function name is optional. If it is specified, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

Example This example prompts for two numbers, adds them, and then shows them as a
concatenated string.

Sub Button_Click
Dim x as Integer
Dim y as Integer
Dim str1 as String
Dim value1 as Integer
x = 1
y = 2
str1 = "The sum of these numbers is: " & x+y
str1 = Str(x) & Str(y)

End Sub

See Also “Format Function” on page 202
“Val Function” on page 495

Argument Description

number The number to be represented as a string
462 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

StrComp Function
StrComp Function
This standard VB function compares two strings and returns an integer specifying
the result of the comparison.

Syntax StrComp(string1, string2[, compare])

Returns One of the following values:

Usage If compare is 0, a case-sensitive comparison based on the ANSI character set
sequence is performed. If compare is 1, a case-insensitive comparison is done based
upon the relative order of characters as determined by the country code setting for
your computer. If this argument is omitted, the module-level default, as specified
with Option Compare, is used.

The string1 and string2 arguments are both passed as variants. Therefore, any type
of expression is supported. Numbers are automatically converted to strings.

Example This example compares a user-entered string to the string Smith.

Argument Description

string1 An expression containing the first string to compare

string2 An expression containing the second string to compare

compare An integer indicating the method of comparison, where:

0 = case-sensitive

1 = case-insensitive

Value Meaning

-1 string1 < string2

0 string1 = string2

>1 string1 > string2

Null string1 = Null or string2 = Null
Version 7.5, Rev. C Siebel VB Language Reference 463

Siebel VB Language Reference

StrComp Function
Option Compare Text
Sub Button_Click

Dim lastname as String
Dim smith as String
Dim x as Integer
smith = "Smith"
lastname = "smith"
x = StrComp(lastname,smith,1)
If x = 0 then

‘You typed Smith or smith
End If

End Sub

See Also “InStr Function” on page 265
“Option Compare Statement” on page 350
464 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

String Function
String Function
This standard VB function returns a string consisting of a repeated character.

Syntax A String[$](number, character)

Syntax B String[$] (number, stringExpression)

Returns A string containing number repetitions of the specified character.

Usage Number must be between 0 and 32,767.

Character must evaluate to an integer between 0 and 255.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

Example This example places asterisks (*) in front of a string that is printed as a payment
amount.

Sub Button_Click
Dim str1 as String
Dim size as Integer

i: str1 = 666655.23
If Instr(str1,".") = 0 then

str1 = str1 + ".00"
End If
If Len(str1)>10 then

Goto i
End If
size = 10-Len(str1)

Argument Description

number The length of the string to be returned

character An integer or integer expression containing the ANSI code of the
character to use

stringExpression A string argument, the first character of which becomes the
repeated character
Version 7.5, Rev. C Siebel VB Language Reference 465

Siebel VB Language Reference

String Function
'Print amount in a space on a check allotted for 10 characters
str1 = String(size,Asc("*")) & str1

End Sub

See Also “Space Function” on page 434
“Str Function” on page 462
466 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Sub...End Sub Statement
Sub...End Sub Statement
This standard VB construct defines a subprogram procedure.

Syntax [Static] [Private] Sub name [([Optional] parameter [As type] , ...)]
End Sub

Returns Not applicable

Usage A call to a subprogram stands alone as a separate statement (read “Call Statement”
on page 112). Recursion is supported.

The data type of a parameter can be specified by using a type character or by using
the As clause. Record parameters are declared by using an As clause and a type that
has previously been defined using the Type statement. Array parameters are
indicated by using empty parentheses after the parameter. The array dimensions are
not specified in the Sub statement. Every reference to an array within the body of
the subprogram must have a consistent number of dimensions.

If a parameter is declared as optional, its value can be omitted when the function is
called. Only variant parameters can be declared as optional, and optional
parameters must appear after the required parameters in the Sub statement. To
check whether an optional parameter was omitted by the user, use the IsMissing
function (read “IsMissing Function” on page 279). For more information on using
named parameters, read “Named Arguments” on page 52 and “Call Statement” on
page 112.

The procedure returns to the caller when the End Sub statement is reached or when
an Exit Sub statement is executed.

Argument Description

name The name of the subprogram

parameter A list of parameter names, separated by commas

type The data type for parameter
Version 7.5, Rev. C Siebel VB Language Reference 467

Siebel VB Language Reference

Sub...End Sub Statement
The Static keyword specifies that the variables declared within the subprogram
retains their values as long as the program is running, regardless of the way the
variables are declared.

The Private keyword specifies that the procedures are not accessible to functions
and subprograms from other modules. Only procedures defined in the same module
have access to a Private subprogram.

Basic procedures use the call by reference convention. This means that if a
procedure assigns a value to a parameter, it modifies the variable passed by the
caller.

Use Function rather than Sub (read “Function...End Function Statement” on
page 213) to define a procedure that has a return value.

CAUTION: You cannot write your own functions or subprograms directly in the
methods and events exposed in Siebel Tools. You can write functions and
subprograms in the (general) (declarations) section of a given method script.
However, if you want your routines to be available throughout the program, you can
use the Application_PreInvokeMethod or an external DLL file as a central place to
write them. For details, read Siebel Technical Notes #207 and #217.

If you create more than one function or subprogram in the (general) (declarations)
section, be sure that any function or subprogram that may be called by other user-
defined functions and subprograms appears before the procedure that calls it.
Otherwise, you can not compile your procedures.

Example This example is a subroutine that uses the Sub...End Sub statement.

Sub Button1_Click
‘Hello, World.

End Sub

See Also “BusComp Method” on page 92
“Dim Statement” on page 161
“Function...End Function Statement” on page 213
“Global Statement” on page 249
“Option Explicit Statement” on page 352
“Static Statement” on page 460
468 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Tab Function
Tab Function
This standard VB function moves the current print position to the column specified.

Syntax Tab(position)

Returns Not applicable

Usage The Tab function can be used only inside a Print statement. The leftmost print
position is position number 1.

When the Print statement is used, the Tab function uses the following rules for
determining the next print position:

■ If position is less than the total line width, the new print position is position.

■ If position is greater than the total line width, the new print position is n Mod
width.

■ If the current print position is greater than position or position Mod width, Tab
skips to the next line and sets the print position to position or position Mod
width.

To set the width of a print line, use the Width statement.

Example This example prints the octal values for the numbers from 1 to 25. It uses Tab to put
five character spaces between the values.

Sub Button_Click
Dim x As Integer
Dim y As String
For x = 1 to 25

y = Oct$(x)
Print x Tab(10) y

Next x
End Sub

Argument Description

position The position at which printing is to occur
Version 7.5, Rev. C Siebel VB Language Reference 469

Siebel VB Language Reference

Tab Function
See Also “Print Statement” on page 364
“Space Function” on page 434
“Spc Function” on page 435
“Width Statement” on page 509
470 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Tan Function
Tan Function
This standard VB function returns the tangent of an angle in radians.

Syntax Tan(number)

Returns The tangent of number.

Usage Number is specified in radians and can be either positive or negative.

The return value is single precision if the angle is an integer, currency, or single-
precision value; double precision for a long, variant, or double-precision value.

To convert degrees to radians, multiply by PI/180. The value of PI is 3.14159.

Example This example finds the height of the exterior wall of a building, given its roof pitch
and the length of the building.

Sub Button_Click
Dim bldglen, wallht
Dim pitch
Dim msgtext
Const PI = 3.14159
Const conversion = PI/180
On Error Resume Next
pitch = 35
pitch = pitch * conversion
bldglen = 150
wallht = Tan(pitch) * (bldglen/2)

End Sub

See Also “Atn Function” on page 90
“Cos Function” on page 133
“Sin Function” on page 433
“Derived Trigonometric Functions” on page 527

Argument Description

number A numeric expression containing the number of radians in the angle
whose tangent is to be returned
Version 7.5, Rev. C Siebel VB Language Reference 471

Siebel VB Language Reference

TheApplication Method
TheApplication Method
TheApplication is a global Siebel method that returns the unique object of type
Application. This is the root of every object within the Siebel Applications object
hierarchy. Use this method to determine the object reference of the application,
which is later used to find other objects, or to invoke methods on the application
object. For details, read Siebel Object Interfaces Reference.
472 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Time Function
Time Function
This standard VB function returns a string representing the current time.

Syntax Time[$]

Returns An eight-character string of the format hh:mm:ss, where hh is the hour, mm is the
minutes, and ss is the seconds. The hour is specified in military style and ranges
from 0 to 23.

Usage The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function returns a variant of vartype 8 (string).

Example This example writes data to a file if it has not been saved within the last two
minutes.

Sub Button_Click
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dim x, I
tempfile = "c:\temp001"
Open tempfile For Output As #1
filetime = FileDateTime(tempfile)
x = 1
I = 1
acctno(x) = 0
Do

curtime = Time
acctno(x) = 44
If acctno(x) = 99 then

For I = 1 to x -1
Write #1, acctno(I)

Next I
Exit Do

ElseIf (Minute(filetime) + 2)< = Minute(curtime) then

Argument Description

Not applicable
Version 7.5, Rev. C Siebel VB Language Reference 473

Siebel VB Language Reference

Time Function
For I = I to x
Write #1, acctno(I)

Next I
End If
x = x + 1

Loop
Close #1
x = 1
msgtext = "Contents of c:\temp001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1) <> -1

Input #1, acctno(x)
msgtext = msgtext & Chr(10) & acctno(x)
x = x + 1

Loop
Close #1

Kill "c:\temp001"
End Sub

See Also “Date Function” on page 146
“Date Statement” on page 147
“Time Statement” on page 475
“Timer Function” on page 477
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
474 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Time Statement
Time Statement
This standard VB statement sets the computer’s time.

Syntax Time[$] = expression

Returns Not applicable

Usage When Time (with the dollar sign, $) is used, expression must evaluate to a string of
one of the following forms:

Time uses a 24-hour clock. Thus, 6:00 P.M. must be entered as 18:00:00.

If the dollar sign ($) is omitted, expression can be a string containing a valid date,
or a variant of vartype 7 (date) or 8 (string).

If expression is not already a variant of vartype 7 (date), Time attempts to convert
it to a valid time. It recognizes time separator characters defined in the International
section of the Windows Control Panel. Time (without the $) accepts both 12- and
24-hour clocks.

Example This example changes the time on the computer’s clock.

Sub Button_Click
Dim newtime As String
Dim answer As String
On Error Resume Next

i:
newtime = "5:30"
answer = PM
If answer = "PM" or answer = "pm" then

Placeholder Meaning

expression An expression that evaluates to a valid time

hh Sets the time to hh hours 0 minutes and 0 seconds.

hh:mm Sets the time to hh hours mm minutes and 0 seconds.

hh:mm:ss Sets the time to hh hours mm minutes and ss seconds.
Version 7.5, Rev. C Siebel VB Language Reference 475

Siebel VB Language Reference

Time Statement
newtime = newtime &"PM"
End If
Time = newtime
If Err <> 0 then

Err = 0
Goto i
End If

End Sub

See Also “Date Function” on page 146
“Date Statement” on page 147
“Time Function” on page 473
“TimeSerial Function” on page 479
“TimeValue Function” on page 481
476 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Timer Function
Timer Function
This standard VB function returns the number of seconds that have elapsed since
midnight.

Syntax Timer

Returns The number of seconds that have elapsed since midnight.

Usage The Timer function can be used in conjunction with the Randomize statement to
seed the random number generator.

Example This example uses the Timer to find Megabucks numbers.

Sub Button_Click
Dim msgtext As String
Dim value(9) As Single
Dim nextvalue As Integer
Dim x As Integer
Dim y As Integer

msgtext = "Your Megabucks numbers are: "
For x = 1 to 8

Do
value(x) = Timer
value(x) = value(x) * 100
value(x) = Str(value(x))
value(x) = Val(Right(value(x),2))

Loop Until value(x)>1 and value(x)<36
For y = 1 to 1500
Next y

Next x

For y = 1 to 8
For x = 1 to 8

If y <> x then
If value(y) = value(x) then

value(x) = value(x) + 1

Argument Description

Not applicable
Version 7.5, Rev. C Siebel VB Language Reference 477

Siebel VB Language Reference

Timer Function
End If
End If

Next x
Next y
For x = 1 to 8

msgtext = msgtext & value(x) & " "
Next x

End Sub

See Also “Randomize Statement” on page 373
478 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

TimeSerial Function
TimeSerial Function
This standard VB function returns a time as a variant of type 7 (date/time) for a
specific hour, minute, and second.

Syntax TimeSerial(hour, minute, second)

Returns A time as a specific hour, minute, and second.

Usage You also can specify relative times for each argument by using a numeric expression
representing the number of hours, minutes, or seconds before or after a certain
time.

Example This example displays the current time using TimeSerial.

Sub Button_Click
Dim y As Variant
Dim msgtext As String
Dim nowhr As Integer
Dim nowmin As Integer
Dim nowsec As Integer
nowhr = Hour(Now)
nowmin = Minute(Now)
nowsec = Second(Now)
y = TimeSerial(nowhr,nowmin,nowsec)
msgtext = "The time is: " & y

End Sub

Argument Description

hour A numeric expression containing a value from 0 to 23 representing an hour

minute A numeric expression containing a value from 0 to 59 representing a minute

second A numeric expression containing a value from 0 to 59 representing a second
Version 7.5, Rev. C Siebel VB Language Reference 479

Siebel VB Language Reference

TimeSerial Function
See Also “DateSerial Function” on page 149
“DateValue Function” on page 151
“Hour Function” on page 257
“Minute Function” on page 316
“Now Function” on page 331
“Second Function” on page 397
“TimeValue Function” on page 481
480 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

TimeValue Function
TimeValue Function
This standard VB function returns a time value for a specified string.

Syntax TimeValue(time)

Returns A date/time value for the time represented by time.

Usage The TimeValue function returns a variant of vartype 7 (date/time) that represents a
time between 0:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59 P.M., inclusive.

Example This example writes a variable to a disk file based on a comparison of its last saved
time and the current time. Note that the variables used for the TimeValue function
are dimensioned as double, so that calculations based on their values work
properly.

Sub Button_Click
Dim tempfile As String
Dim ftime As Variant
Dim filetime as Double
Dim curtime as Double
Dim minutes as Double
Dim acctno(100) as Integer
Dim x, I
tempfile = "C:\TEMP001"
Open tempfile For Output As 1
ftime = FileDateTime(tempfile)
filetime = TimeValue(ftime)
minutes = TimeValue("00:02:00")
x = 1
I = 1
acctno(x) = 0
Do

curtime = TimeValue(Time)
acctno(x) = 46
If acctno(x) = 99 then

For I = I to x-1

Argument Description

time A string representing a valid date-time value
Version 7.5, Rev. C Siebel VB Language Reference 481

Siebel VB Language Reference

TimeValue Function
Write #1, acctno(I)
Next I
Exit Do

ElseIf filetime + minutes< = curtime then
For I = I to x

Write #1, acctno(I)
Next I

End If
x = x + 1

Loop
Close #1
x = 1
msgtext = "You entered:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1) <> -1

Input #1, acctno(x)
msgtext = msgtext & Chr(10) & acctno(x)
x = x + 1

Loop
Close #1

Kill "C:\TEMP001"
End Sub

See Also “DateSerial Function” on page 149
“DateValue Function” on page 151
“Hour Function” on page 257
“Minute Function” on page 316
“Now Function” on page 331
“Second Function” on page 397
“TimeSerial Function” on page 479
482 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Trace Method
Trace Method
The Trace method appends a message to the trace file. Trace is useful for debugging
SQL query execution. It is used with the application object. For details, read Siebel
Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 483

Siebel VB Language Reference

TraceOff Method
TraceOff Method
TraceOff turns off the tracing started by the TraceOn method. It is used with the
application object. For details, read Siebel Object Interfaces Reference.
484 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

TraceOn Method
TraceOn Method
TraceOn turns on the tracking of allocations and de-allocations of Siebel objects and
SQL statements generated by the Siebel application. It is used with the application
object. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 485

Siebel VB Language Reference

Trim Function
Trim Function
This standard VB function returns a copy of a string after removing leading and
trailing spaces.

Syntax Trim[$](string)

Returns A copy of string with leading and trailing spaces removed.

Usage Trim accepts expressions of type string. Trim accepts any type of string, including
numeric values, and converts the input value to a string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function typically returns a variant of vartype 8 (string). If
the value of string is NULL, a variant of vartype 1 (Null) is returned.

See Also “Left Function” on page 290
“Len Function” on page 292
“LTrim Function” on page 309
“Mid Function” on page 312
“Mid Statement” on page 314
“Right Function” on page 388
“RTrim Function” on page 396

Argument Description

string A literal or expression from which leading and trailing spaces are to be
removed
486 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Type Statement
Type Statement
This standard VB statement declares a user-defined type.

Syntax Type userType

field1 As type1

field2 As type2

...
End Type

Returns Not applicable

Usage The user-defined type declared by Type can be used in a Dim statement to declare
a record variable. A user defined type is sometimes referred to as a record type or a
structure type.

Field cannot be an array. However, arrays of records are allowed.

The Type statement is not valid inside a procedure definition. It must be placed in
the (general) (declarations) section, shown in Figure 1 on page 348. User defined
Types cannot be passed to COM Object functions or subroutines.

To access the fields of a record, use syntax of the form:

recordName.fieldName

To access the fields of an array of records, use syntax of the form:

arrayName(index).fieldName

Argument Description

userType The name of the user-defined type

field1, field2 The names of fields in the user-defined type

type1, type2 The data types of the respective fields
Version 7.5, Rev. C Siebel VB Language Reference 487

Siebel VB Language Reference

Type Statement
No memory is allocated when a type is defined. Memory is allocated when a
variable of the user defined type is declared with a Dim statement. Declaring a
variable of a user defined type is called instantiating, or declaring an instance of,
the type.

Example This example shows a Type and Dim statement for a record. You must define a
record type before you can declare a record variable. The subroutine then references
a field within the record.

Type Testrecord
Custno As Integer
Custname As String

End Type

Sub Button_Click
Dim myrecord As Testrecord
Dim msgText As String

i:
myrecord.custname = "Chris Smith"
If myrecord.custname = "" then

Exit Sub
End If

End Sub

See Also “Deftype Statement” on page 158
“Dim Statement” on page 161
488 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Typeof Function
Typeof Function
This standard VB function returns a value indicating whether an object is of a given
class.

Syntax If Typeof objectVariable Is className Then...

Returns The Typeof function returns -1 if the object is of the specified type, 0 if it is not.

Usage Typeof can be used only in an If statement and cannot be combined with other
Boolean operators. That is, Typeof can be used only exactly as shown in the syntax
line.

To test whether an object does not belong to a class, use the following code
structure:

If Typeof objectVariable Is className Then

[Perform some action.]
Else

[Perform some action.]
End If

See Also “CreateObject Function” on page 134
“GetObject Function” on page 234
“Is Operator” on page 275
“Me” on page 311
“New Operator” on page 325
“Nothing Function” on page 329
“Object Class” on page 336

Placeholder Meaning

objectVariable The object to be tested

className The class to which the object is to be compared
Version 7.5, Rev. C Siebel VB Language Reference 489

Siebel VB Language Reference

UBound Function
UBound Function
This standard VB function returns the upper bound of the subscript range for the
specified array.

Syntax UBound(arrayName[, dimension])

Returns The upper bound of the subscript range for the specified dimension of the specified
array.

Usage The dimensions of an array are numbered starting with 1. If dimension is not
specified, 1 is used as a default.

LBound can be used with UBound to determine the length of an array.

Example This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and ReDim
to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1

Sub Button_Click
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total = 0
x = 1
count = 2
ReDim arrayvar(count)

start:
Do until x = count + 1

arrayvar(x) = 88
x = x + 1

Argument Description

arrayName The variable name of the array to be tested

dimension The array dimension whose upper bound is to be returned
490 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

UBound Function
Loop
x = LBound(arrayvar,1)

count = UBound(arrayvar,1)
For y = x to count

total = total + arrayvar(y)
Next y

End Sub

See Also “Dim Statement” on page 161
“Global Statement” on page 249
“LBound Function” on page 287
“Option Base Statement” on page 347
“ReDim Statement” on page 377
“Static Statement” on page 460
Version 7.5, Rev. C Siebel VB Language Reference 491

Siebel VB Language Reference

UCase Function
UCase Function
This standard VB function returns a copy of a string after converting lowercase
letters to uppercase.

Syntax UCase[$](string)

Returns A copy of string with lowercase letters replaced by uppercase letters.

Usage The translation is based on the country specified in the Windows Control Panel.

UCase accepts any type of argument and converts the input value to a string.

The dollar sign ($) in the function name is optional. If it is included, the return type
is string. Otherwise the function typically returns a variant of vartype 8 (string). If
the value of string is NULL, a variant of vartype 1 (Null) is returned.

Example This example converts a filename entered by a user to uppercase letters.

Option Base 1
Sub Button_Click

Dim filename as String
filename = "c:\temp\trace.txt"
filename = UCase(filename)

End Sub

See Also “Asc Function” on page 88
“LCase Function” on page 289

Argument Description

string A string or string expression
492 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

UndoRecord Method
UndoRecord Method
UndoRecord deletes an active record created by NewRecord in a Siebel business
component. This method is used with business component objects. For details, read
Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 493

Siebel VB Language Reference

Unlock Statement
Unlock Statement
This standard VB statement controls access to an open file.

Syntax Unlock [#]filenumber[, { record | [start] To end }]

Returns Not applicable

Usage For Binary mode, start and end are byte offsets. For random mode, start and end are
record numbers. If start is specified without end, then only the record or byte at start
is locked. If end is specified without start, then the records or bytes from record
number or offset 1 to end are locked.

For input, output, and append modes, start and end are ignored and the whole file
is locked.

Lock and Unlock always occur in pairs with identical parameters. Locks on open
files must be removed before closing the file, or unpredictable results may occur.

Example For an example of the Unlock statement, read “Lock Statement” on page 300.

See Also “Lock Statement” on page 300
“Open Statement” on page 344

Argument Description

filenumber The file number used in the Open statement to open the file

record An integer indicating the first record to unlock

start A long integer indicating the first record or byte offset to unlock

end A long integer indicating the last record or byte offset to unlock
494 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Val Function
Val Function
This standard VB function returns the numeric value of the first number found in a
string.

Syntax Val(string)

Returns The value of the first number in string. If no number is found, Val returns 0.

Usage Spaces in the source string are ignored.

Example This example tests the value of the variable profit and displays 0 for profit if it is a
negative number. The subroutine uses Sgn to determine whether profit is positive,
negative, or zero.

Sub Button_Click
Dim profit as Single
Dim expenses
Dim sales
expenses = 100000
sales = 20000
profit = Val(sales)-Val(expenses)
If Sgn(profit) = 1 then

‘Yeah! We turned a profit!
ElseIf Sgn(profit) = 0 then

‘Okay. We broke even.
Else

‘Uh, oh. We lost money.
End If

End Sub

Argument Description

string A string or string expression containing a number
Version 7.5, Rev. C Siebel VB Language Reference 495

Siebel VB Language Reference

Val Function
See Also “CCur Function” on page 115
“CDbl Function” on page 117
“CInt Function” on page 123
“CLng Function” on page 128
“CSng Function” on page 137
“CStr Function” on page 139
“CVar Function” on page 143
“CVDate Function” on page 144
“Format Function” on page 202
“Str Function” on page 462
496 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

VarType Function
VarType Function
This standard VB function returns the variant type of the specified variant variable.

Syntax VarType(varName)

Returns The value returned by VarType is one of the following:

Example This example returns the type of a variant.

Sub Button_Click
Dim x
Dim myarray(8)
Dim retval
Dim retstr
myarray(1) = Null
myarray(2) = 0

Argument Description

varName The name of the variant variable to query

Ordinal Representation

0 (Empty)

1 Null

2 Integer

3 Long

4 Single

5 Double

6 Currency

7 Date

8 String

9 Object
Version 7.5, Rev. C Siebel VB Language Reference 497

Siebel VB Language Reference

VarType Function
myarray(3) = 39000
myarray(4) = CSng(10^20)
myarray(5) = 10^300
myarray(6) = CCur(10.25)
myarray(7) = Now
myarray(8) = "Five"
For x = 0 to 8

retval = Vartype(myarray(x))
Select Case retval

Case 0
retstr = " (Empty)"

Case 1
retstr = " (Null)"

Case 2
retstr = " (Integer)"

Case 3
retstr = " (Long)"

Case 4
retstr = " (Single)"

Case 5
retstr = " (Double)"

Case 6
retstr = " (Currency)"

Case 7
retstr = " (Date)"

Case 8
retstr = " (String)"

End Select
If retval = 1 then

myarray(x) = "[null]"
ElseIf retval = 0 then

myarray(x) = "[empty]"
End If
Next x

End Sub

See Also “IsDate Function” on page 276
“IsEmpty Function” on page 277
“IsNull Function” on page 281
“IsNumeric Function” on page 283
498 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

WebApplet_InvokeMethod Event
WebApplet_InvokeMethod Event
The InvokeMethod event is triggered by a call to WebApplet.InvokeMethod or a
specialized method, or by a user defined menu. For details, read Siebel Object
Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 499

Siebel VB Language Reference

Web_Applet_Load Event
Web_Applet_Load Event
The Load event is triggered when an applet is loaded. For details, read Siebel Object
Interfaces Reference.
500 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Web_Applet_PreCanInvoke Event
Web_Applet_PreCanInvoke Event
The PreCanInvokeMethod() event is called before the PreInvokeMethod, allowing
the developer to determine whether or not the user has the authority to invoke a
specified WebApplet method. For details, read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 501

Siebel VB Language Reference

WebApplet_PreInvokeMethod Event
WebApplet_PreInvokeMethod Event
The PreInvokeMethod event is called before a specialized method is invoked by the
operating system, by a user defined applet menu, or by calling InvokeMethod on a
web applet. For details, read Siebel Object Interfaces Reference.
502 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

WebApplet_ShowControl Event
WebApplet_ShowControl Event
This event allows scripts to modify the HTML generated by the Siebel Web Engine
to render a control on a web page in a customer or partner application. For details,
read Siebel Object Interfaces Reference.
Version 7.5, Rev. C Siebel VB Language Reference 503

Siebel VB Language Reference

WebApplet_ShowListColumn Event
WebApplet_ShowListColumn Event
This event allows scripts to modify the HTML generated by the Siebel Web Engine
to render a list column on a web page. For details, read Siebel Object Interfaces
Reference.
504 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Weekday Function
Weekday Function
This standard VB function returns the day of the week for a specified date-time
value.

Syntax Weekday(date)

Returns An integer between 1 and 7, inclusive, representing a day of the week, where 1 =
Sunday and 7 = Saturday.

Usage Weekday accepts any expression, including strings, and attempts to convert the
input value to a date value.

The return value is a variant of vartype 2 (integer). If the value of date is NULL, a
variant of vartype 1 (Null) is returned.

Example This example finds the day of the week on which November 7 occurs in the year
2009.

Sub Button_Click
Dim checkdate
Dim daynumber
Dim msgtext
Dim checkday as Variant
Const checkyear = 2009
Const checkmonth = 11
Let checkday = 7
checkdate = DateSerial(checkyear,checkmonth,checkday)
daynumber = Weekday(checkdate)
msgtext = "November 7, 2009 falls on a " & _
Format(daynumber, "dddd")

End Sub

Argument Description

date An expression containing a date/time value
Version 7.5, Rev. C Siebel VB Language Reference 505

Siebel VB Language Reference

Weekday Function
See Also “Date Function” on page 146
“Date Statement” on page 147
“Day Function” on page 153
“Hour Function” on page 257
“Minute Function” on page 316
“Month Function” on page 320
“Now Function” on page 331
“Second Function” on page 397
“Year Function” on page 515
506 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

While...Wend Statement
While...Wend Statement
This standard VB control structure controls a repetitive action.

Syntax While condition

statement_block

Wend

Returns Not applicable

Usage The While statement is included in Siebel VB for compatibility with older versions
of Basic. The Do...Loop statement is a more general and powerful flow control
statement.

Example This example opens a series of customer files and checks for the string *Overdue*
in each file. It uses While...Wend to loop through the c:\temP00? files. These files
are created by the subroutine CreateFiles.

(general) (declarations)
Option Explicit
Declare Sub CreateFiles

Sub CreateFiles
Dim odue as String
Dim ontime as String
Dim x
Open "c:\temp001" for OUTPUT as #1
odue = "*Overdue*"
ontime = "*On-Time*"
For x = 1 to 3

Write #1, odue
Next x

Placeholder Meaning

condition A condition under which to execute the statements in
statement_block

statement_block A series of statements to execute while condition is TRUE
Version 7.5, Rev. C Siebel VB Language Reference 507

Siebel VB Language Reference

While...Wend Statement
For x = 4 to 6
Write #1, ontime

Next x
Close #1
Open "c:\temp002" for Output as #1
Write #1, odue
Close #1

End Sub

Sub Button_Click
Dim custfile as String
Dim aline as String
Dim pattern as String
Dim count as Integer
Call CreateFiles
Chdir "c:\"
custfile = Dir$("temP00?")
pattern = "*" + "Overdue" + "*"
While custfile <> ""

Open custfile for input as #1
On Error goto atEOF
Do

 Line Input #1, aline
 If aline Like pattern Then

 count = count + 1
 End If

Loop
nxtfile:

On Error GoTo 0
Close #1
custfile = Dir$

Wend
Kill "c:\temp001"
Kill "c:\temp002"
Exit Sub

atEOF:
Resume nxtfile

End Sub

See Also “Do...Loop Statement” on page 169
508 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Width Statement
Width Statement
This standard VB statement sets the output line width for an open file.

Syntax Width [#]filenumber, width

Returns Not applicable

Usage A value of zero (0) for width indicates there is no line length limit. The default width
for a file is zero (0).

Example This example puts five spaces and the string ABCD into a file. The five spaces are
derived by taking 15 Mod 10, or the remainder of dividing 15 by 10.

Sub Button_Click
Dim str1 as String
Dim x as String * 10
str1 = "ABCD"
Open "C:\TEMP001" For Output As #1
Width #1, 10
Print #1, Spc(15); str1
Close #1
Open "c:\temp001" as #1 Len = 12
Get #1, 1,x
Close #1
Kill "c:\temp001"

End Sub

See Also “Open Statement” on page 344
“Print Statement” on page 364

Argument Description

filenumber The file number used in the Open statement to open the file

width An integer expression indicating the width of the output line
Version 7.5, Rev. C Siebel VB Language Reference 509

Siebel VB Language Reference

With Statement
With Statement
This standard VB construct executes a series of statements on a specified variable.

Syntax With variable

statement_block

End With

Returns Not applicable

Usage Variable can be an object or a user defined type. The With statements can be nested.

Example This example uses a Siebel VB method to change values in an object when a specific
field is successfully changed. With is used to refer to the object in which the values
are changed. For another example, read “Nothing Function” on page 329.

Sub BusComp_SetFieldValue(FieldName As String)

Select Case FieldName
Case "Account Status"
If Me.GetFieldValue(FieldName) = "Inactive" Then

Dim oBCact as BusComp
Dim sMessage as String
Set oBCact = me.BusObject.GetBusComp("Action")
sMessage = “ADDED THRU SVB: Account Status made Inactive"

With oBCact
.NewRecord NewAfter
.SetFieldValue "Type", "Event"
.SetFieldValue "Description", sMessage
.SetFieldValue "Done", _

Format(Now(),"mm/dd/yyyy hh:mm:ss")

Placeholder Meaning

variable The variable to be changed by the statements in statement_block

statement_block The statements to execute on the variable
510 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

With Statement
.SetFieldValue "Status", "Done"

.WriteRecord
End With

set oBCact = Nothing
End If
End Select

End Sub

See Also “Type Statement” on page 487
Version 7.5, Rev. C Siebel VB Language Reference 511

Siebel VB Language Reference

Write Statement
Write Statement
This standard VB statement writes data to an open sequential file.

Syntax Write [#]filenumber[, expressionList]

Returns Not applicable

Usage The file must be opened in output or append mode. If expressionList is omitted, the
Write statement writes a blank line to the file. For more information, read “Input
Statement” on page 262.

NOTE: The Write statement results in quotes around the string that is written to the
file.

Example This example writes a variable to a disk file based on a comparison of its last saved
time and the current time.

Sub Button_Click
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dim x, I
tempfile = "C:\TEMP001"
Open tempfile For Output As #1
filetime = FileDateTime(tempfile)
x = 1
I = 1
acctno(x) = 0
Do

curtime = Time
acctno(x) = 88

Argument Description

filenumber The file number used in the Open statement to open the file

expressionList One or more values to write to the file
512 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Write Statement
If acctno(x) = 99 then
If x = 1 then Exit Sub
For I = 1 to x-1

Write #1, acctno(I)
Next I
Exit Do

ElseIf (Minute(filetime) + 2)< = Minute(curtime) then
For I = I to x-1

Write #1, acctno(I)
Next I

End If
x = x + 1

Loop
Close #1
x = 1
msgtext = "Contents of C:\TEMP001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1) <> -1

Input #1, acctno(x)
msgtext = msgtext & Chr(10) & acctno(x)
x = x + 1

Loop
Close #1

Kill "C:\TEMP001"
End Sub

See Also “Close Statement” on page 129
“Open Statement” on page 344
“Print Statement” on page 364
“Put Statement” on page 367
Version 7.5, Rev. C Siebel VB Language Reference 513

Siebel VB Language Reference

WriteRecord Method
WriteRecord Method
WriteRecord commits to the database any changes made to the current record in a
Siebel business component. For details, read Siebel Object Interfaces Reference.
514 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Language Reference

Year Function
Year Function
This standard VB function returns the year component of a date-time value.

Syntax Year(date)

Returns An integer between 100 and 9999, inclusive.

Usage Year accepts any type of date, including strings, and attempts to convert the input
value to a date value.

The return value is a variant of vartype 2 (integer). If the value of date is NULL, a
variant of vartype 1 (Null) is returned.

Example This example returns the year for today.

Sub Button_Click
Dim nowyear
nowyear = Year(Now)

End Sub

See Also “Date Function” on page 146
“Date Statement” on page 147
“Hour Function” on page 257
“Minute Function” on page 316
“Month Function” on page 320
“Now Function” on page 331
“Second Function” on page 397
“Time Function” on page 473
“WebApplet_InvokeMethod Event” on page 499

Argument Description

date An expression that can evaluate to a date/time value
Version 7.5, Rev. C Siebel VB Language Reference 515

Siebel VB Language Reference

Year Function
516 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Compared to Other Basic Products A
This comparison covers the differences between Siebel VB and other Basic
languages.

■ “Differences Between Siebel VB and Earlier Versions of Basic” on page 518

■ “Differences Between Siebel VB and Visual Basic” on page 521
Version 7.5, Rev. C Siebel VB Language Reference 517

Siebel VB Compared to Other Basic Products

Differences Between Siebel VB and Earlier Versions of Basic
Differences Between Siebel VB and Earlier Versions of
Basic

If you are familiar with versions of Basic that predate Windows, you may notice that
Siebel VB includes many new features and changes from the language you have
learned. Siebel VB more closely resembles other higher level languages popular
today, such as C and Pascal.

The topics that follow describe some of the differences you may notice between the
older versions of Basic and Siebel VB.

■ “Line Numbers and Labels” on page 518

■ “Subroutines and Modularity of the Language” on page 519

■ “Variable Scope” on page 519

■ “Data Types” on page 519

■ “Financial Functions” on page 519

■ “Date and Time Functions” on page 520

■ “Object Handling” on page 520

■ “Environment Control” on page 520

Line Numbers and Labels
Older versions of Basic require numbers at the beginning of every line. More recent
versions do not support or require line numbers. Use of line numbers causes error
messages.

Use a label to refer to a line of code. A label can be any combination of text and
numbers. Usually it is a single word followed by a colon, placed at the beginning of
a line of code. The Goto statement uses these labels.
518 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Compared to Other Basic Products

Differences Between Siebel VB and Earlier Versions of Basic
Subroutines and Modularity of the Language
Because Siebel VB is a modular language, code is divided into subroutines and
functions. The subprograms and functions you write use the Siebel VB statements
and functions to perform actions.

Variable Scope
The placement of variable declarations determines their scope:

Data Types
Modern Basic is now a typed language. Siebel VB includes variants and objects, in
addition to the standard data types of string, numeric, array, and record.

Variables that are defined as variants can store any type of data. For example, the
same variable can hold integers or strings, depending on the procedure.

Objects give you the ability to manipulate complex data supplied by an application,
such as windows, forms, or COM objects.

Financial Functions
Siebel VB includes a list of financial functions for calculating such things as loan
payments, internal rates of return, or future values based on a company’s cash
flows.

Scope Definition

Local Dimensioned inside a subprogram or function. The variable is accessible only
to the subprogram or function that dimensioned it.

Module Dimensioned in the (general) (declarations) section. The variable is accessible
to any subprogram, function, or event attached to the object in whose Script
window it appears.

Global Dimensioned in the Application_Start event or Application.PreInvokeMethod
method. The variable is accessible throughout the Siebel application. For more
information, read Siebel Technical Note #217.
Version 7.5, Rev. C Siebel VB Language Reference 519

Siebel VB Compared to Other Basic Products

Differences Between Siebel VB and Earlier Versions of Basic
Date and Time Functions
The date and time functions have been expanded to make it easier to compare a
file’s date to today’s date, set the current date and time, time events, and perform
scheduling-type functions.

Object Handling
Windows uses the Common Object Model (COM) standard for allowing supported
applications to access one another’s functionality. An object is the end product of a
software application, such as a document from a word processing application.
Therefore, the Object data type permits your Siebel VB code to access another
software application through its objects and change those objects.

Environment Control
Siebel VB includes the ability to call another software application (AppActivate) and
send the application keystrokes (SendKeys). Other environment control features
include the ability to run an executable program (Shell), and return values in the
operating system environment table (Environ).
520 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB Compared to Other Basic Products

Differences Between Siebel VB and Visual Basic
Differences Between Siebel VB and Visual Basic
You may be familiar with any of several versions of Basic. The most common
versions are Visual Basic and Visual Basic for Applications (VBA). Siebel VB shares
a substantial common core of functions and statements with these versions, but
each one has unique capabilities.

Siebel VB is very similar to Microsoft’s Visual Basic, but there are some differences.

■ “User Interface and Control-Based Objects” on page 521

■ “Data Types” on page 521

User Interface and Control-Based Objects
Siebel VB does not provide for the inclusion of any Visual Basic user interface
control objects, such as a Button Control. As a result, a VB property such as
BorderStyle is not an intrinsic part of Siebel VB. Siebel VB allows you to reference
the Siebel user interface controls and to set and retrieve their values. The Siebel user
interface is managed with the Siebel Applet Designer. In keeping with this, the
Visual Basic Input statement should not be used to acquire keyboard input.

Data Types
Siebel VB does not include a Boolean data type. You can simulate a Boolean data
type by using an integer variable and regarding 1 (or any non-zero number) as
TRUE and 0 as FALSE.

NOTE: If you need to call a field of DTYPE_BOOL in a script, you should declare it as
a string.
Version 7.5, Rev. C Siebel VB Language Reference 521

Siebel VB Compared to Other Basic Products

Differences Between Siebel VB and Visual Basic
522 Siebel VB Language Reference Version 7.5, Rev. C

Trappable Errors B
The following table (Table 9) lists the run-time errors that Siebel VB returns. These
errors can be trapped by On Error. The Err function can be used to query the error
code, and the Error function can be used to query the error text.

Table 9. Error Numbers and Strings

Error Code Error Text

5 Illegal function call

6 Overflow

7 Out of memory

9 Subscript out of range

10 Duplicate definition

11 Division by zero

13 Type Mismatch

14 Out of string space

19 No Resume

20 Resume without error

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

52 Bad file name or number

53 File not found

54 Bad file mode
Version 7.5, Rev. C Siebel VB Language Reference 523

Trappable Errors
55 File already open

58 File already exists

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable set to Nothing

93 Invalid pattern

94 Illegal use of NULL

102 Command failed

429 Object creation failed

438 No such property or method

439 Argument type mismatch

440 Object error

901 Input buffer would be larger than 64K

902 Operating system error

903 External procedure not found

904 Global variable type mismatch

Table 9. Error Numbers and Strings

Error Code Error Text
524 Siebel VB Language Reference Version 7.5, Rev. C

Trappable Errors
905 User-defined type mismatch

906 External procedure interface mismatch

907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

Table 9. Error Numbers and Strings

Error Code Error Text
Version 7.5, Rev. C Siebel VB Language Reference 525

Trappable Errors
526 Siebel VB Language Reference Version 7.5, Rev. C

Derived Trigonometric Functions C
Table 10 lists the trigonometric functions available in Siebel VB.

Table 10. Derived Trigonometric Functions

Function Computed By

ArcCoSecant ArcCoSec(x) = Atn(x/Sqr(x*x-1))+(Sgn(x)-1)*1.5708

ArcCosine ArcCos(x) = Atn(-x/Sqr(-x*x+1))+1.5708

ArcCoTangent ArcTan(x) = Atn(x)+1.5708

ArcSecant ArcSec(x) = Atn(x/Sqr(x*x-1))+Sgn(x-1)*1.5708

ArcSine ArcSin(x) = Atn(x/Sqr(-x*x+1))

CoSecant CoSec(x) = 1/Sin(x)

CoTangent CoTan(x) = 1/Tan(x)

Hyperbolic ArcCoSecant HArcCoSec(x) = Log((Sgn(x)*Sqr(x*x+1)+1)/x)

Hyperbolic ArcCosine HArcCos(x) = Log(x+Sqr(x*x-1))

Hyperbolic ArcCoTangent HArcCoTan(x) = Log((x+1)/(x-1))/2

Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/x)

Hyperbolic ArcSine HArcSin(x) = Log(x+Sqr(x*x+1))

Hyperbolic ArcTangent HArcTan(x) = Log((1+x)/(1-x))/2

Hyperbolic CoSecant HCoSec(x) = 2/(Exp(x)-Exp(-x))

Hyperbolic Cosine HCos(x) = (Exp(x)+Exp(-x))/2

Hyperbolic Cotangent HCotan(x) = (Exp(x)+Exp(-x))/ (Exp(x)-Exp(-x))

Hyperbolic Secant HSec(x) = 2/(Exp(x)+Exp(-x))

Hyperbolic Sine HSin(x) = (Exp(x)-Exp(-x))/2
Version 7.5, Rev. C Siebel VB Language Reference 527

Derived Trigonometric Functions
Hyperbolic Tangent HTan(x) = (Exp(x)-Exp(-x))/(Exp(x)+Exp(-x))

Secant Sec(x) = 1/Cos(x)

Table 10. Derived Trigonometric Functions

Function Computed By
528 Siebel VB Language Reference Version 7.5, Rev. C

Glossary
call by
reference

Arguments passed by reference to a procedure can be modified by the procedure.
Procedures written in Basic are defined to receive their arguments by reference. If
you call such a procedure and pass it a variable, and if the procedure modifies its
corresponding formal parameter, it modifies the variable. Passing an expression by
reference is legal in Basic; if the called procedure modifies its corresponding
parameter, a temporary value is modified, with no apparent effect on the caller.

call by value When an argument is passed by value to a procedure, the called procedure receives
a copy of the argument. If the called procedure modifies its corresponding formal
parameter, it has no effect on the caller. Procedures written in other languages, such
as C, can receive their arguments by value.

comment A comment is text that documents a program. Comments have no effect on the
program (except for metacommands). In Basic, a comment begins with a single
quote and continues to the end of the line. If the first character in a comment is a
dollar sign ($), the comment is interpreted as a metacommand. Lines beginning
with the keyword Rem are also interpreted as comments.

control ID This can be either a text string, in which case it is the name of the control, or it can
be a numeric ID. Note that control IDs are case-sensitive and do not include the dot
that appears before the ID. Numeric IDs depend on the order in which dialog box
controls are defined. You can find the numeric ID using the DlgControlID function.

function A procedure that returns a value. In Basic, the return value is specified by assigning
a value to the name of the function, as if the function were a variable.

label A label identifies a position in the program at which to continue execution, usually
as a result of executing a GoTo statement. To be recognized as a label, a name must
begin in the first column and must be immediately followed by a colon (":").
Reserved words are not valid labels.

metacommand A metacommand is a command that gives the compiler instructions on how to build
the program. In Basic, metacommands are specified in comments that begin with a
dollar sign ($).
Version 7.5, Rev. C Siebel VB Language Reference 529

Glossary
name A Basic name must start with a letter (A through Z). The remaining part of a name
can also contain numeric digits (0 through 9) or an underscore character (_). A
name cannot be more than 40 characters in length. Type characters are not
considered part of a name.

precedence
order

Siebel VB’s method to determine which operators in an expression to evaluate first,
second, and so on. Operators with a higher precedence are evaluated before those
with lower precedence. Operators with equal precedence are evaluated from left to
right. The default precedence order (from high to low) is numeric, string,
comparison, logical.

procedure A series of Siebel VB statements and functions executed as a unit. Both
subprograms (Sub) and functions (Function) are called procedures.

subprogram A procedure that does not return a value.

vartype The internal tag used to identify the type of value currently assigned to a variant.
This tag is one of the following:

Empty: 0
Null: 1
Integer: 2
Long: 3
Single: 4
Double: 5
Currency: 6
Date: 7
String: 8
Object: 9
530 Siebel VB Language Reference Version 7.5, Rev. C

Index
A
Abs function, syntax, returns, usage, and

example 76
absolute value of a number, about using Abs

function to calculate 76
ActivateField method, about using 77
ActivateMultipleFields, about 78
ActiveBusObject, about 79
ActiveViewName method, about 80
AddChild method, about 81
AND operator, about 65
angles

cosine, calculating 133
sine, calculating 433
Tan function, about using to calculate

tangent 471
ANSI code

Asc function, using to find 88
string characters, changing to 88

AppActivate, about 520
applet

Postchanges, about using to post applet
changes 360

SetValue method, about using to set
control contents 428

Application object type, about using 472
Application_Close event, about using 82
Application_InvokeMethod event, about

using 83
Application_Navigate event, about

using 84
Application_PreInvokeMethod

event, about 85

write routines, about using to 214
Application_PreNavigate event, about

using 86
Application_Start event, about using 87
arctangent angle, calculating 90
arguments

See also named arguments
Help syntax 20
IsMissing function, about using to query

callers for a procedure 279
programming conventions, about and

examples 51
array data types, about and using ReDim

statement 54
arrays

dynamic, about 59
LBound function, about using to return

lower bound of subscript range 287
resizing when full of data 348
statements, table of 24
UBound function, about using to return

upper bound subscript range 490
upper bound of the subscript range 490

Asc function, syntax, returns, usage, and
example 88

Associate method, about using 89
Associate Siebel VB event, about using 93
association, about using PreAssociate Siebel

VB event to create 99
Atn function, syntax, returns, usage, and

example 90
Version 7.5, Rev. C Siebel VB Language Reference 531

B
Basic scripts, about using Application_Close

event to cleanup 82
Boolean data type, simulating 521
BusCom_NewRecord event, about

using 98
BusCom_PreCopyRecord event, about

using 100
BusComp Siebel VB method, about 92
BusComp_Associate event, about using 93
BusComp_ChangeRecord event, about

using 94
BusComp_CopyRecord event, about

using 95
BusComp_DeleteRecord event, about

using 96
BusComp_InvokeMethod event, about

using 97
BusComp_PreAssociate event, about

using 99
BusComp_PreDeleteRecord event, about

using 101
BusComp_PreGetField Value event, about

using 102
BusComp_PreInvokeMethod event, about

using 103
BusComp_PreNewRecord event, about

using 104
BusComp_PreQuery event, about

using 105
BusComp_PreSetFieldValue event, about

using 106
BusComp_PreWriteRecord event, about

using 107
BusComp_Query event, about using 108
BusComp_SetFieldValue event, about

using 109
BusComp_WriteRecord event, about

using 110
business component

GetPicklistBusComp, about using to
return pick business component 237

LastRecord method, about using to return
last record 286

business service
GetService method, about using 243
RemoveProperty method, about using to

remove property 383
SetProperty method, about using to

assign value to 421
BusObject method, about using 111

C
Call statement

arguments, used in procedures 113
example 113
syntax, returns, usage 112

calling procedure, transferring control
to 187

case-sensitivity, about specifying default
method for 350

cash flows, constant periodic stream 369
CCur function, syntax, returns, usage, and

example 115
CDbl function, syntax, returns, usage, and

example 117
ChangeRecord Siebel VB event, about

using 94
ChDir statement, syntax, returns, usage,

and example 118
ChDrive statement, syntax, returns, usage,

and example 120
child property sets, about using

GetChildCount method 226
Chr function, syntax, returns, usage, and

example 121
CInt function, syntax, returns, usage, and

example 123
ClearToQuery method, about using 125
Clipboard methods, syntax, returns, usage,

and example 126
CLng function, syntax, returns, usage, and

example 128
Close Siebel VB event handler, about

calling 82
532 Siebel VB Language Reference Version 7.5, Rev. C

Close statement, syntax, returns, usage, and
example 129

code, identifying as a comment 380
COM automation objects

creating 134
Object class, about using to provide

access to 336
COM objects

file or application, associated with 234
new object, about using to initialize 325
Set statement, about assigning to a

variable 411
COM-compliant objects, about

accessing 67
comments, programming conventions,

about and examples 53
Common Object Model (COM) standard,

and object handling 520
comparison operators, numeric and string

(table) 64
compiler directives, table of 25
computer, about using Time

statement 475
connections

queries on 454
storing queries in a file 457

Const statement, syntax, returns, usage, and
example 131

control
SetProperty method, about using to

assign value to 421
subprogram or function, transferring

to 112
web page, rendering on 503

control flow, statements (table) 26
control-based objects, differences between

Siebel VB and Visual Basic 521
conventions

See also programming conventions
typographic, table of 20

conversions, list of 58
Copy method, about using 132

CopyRecord Siebel VB event, about
using 95

Cos function, syntax. returns, usage, and
example 133

CreateObject function
example 134
syntax, returns, usage, and example 134

CSng function, syntax, returns, usage, and
example 137

CStr function, syntax. returns, and
example 139

CurDir function, syntax, returns, usage, and
example 141

currency data type, converting to 115
CurrencyCode method, about using 142
current date, about using Date function to

return string representing 146
current user ID, returning 445
CVar function, syntax, returns, usage, and

example 143
CVDate function, syntax, returns, usage,

and example 144

D
data source

SQLGetSchema function, about using to
return information 445

SQLRequest function, about using to
connect to 451

data types
about 54
arrays, about and using ReDim

statement 54
arrays, declaring for 163
conversions, list of 58
currency, about using CCur function to

convert expression 115
default, about specifying for one or more

variables 158
double, about using CDbl function to

convert expression 117
five numeric types (table) 55
Version 7.5, Rev. C Siebel VB Language Reference 533

integer, about using Cln function to
convert expression 123

long, about using CLng function to
convert expression 128

record, about and example 56
Siebel VB and previous Basic versions,

differences between 519
Siebel VB and Visual Basic, differences

between 521
single, about using CSng function to

convert expression 137
string, about fixed and dynamic 56
string, about using CStr function, about

using to convert expression 139
type characters, about and table of suffix

characters 57
variant of type, about using CVDate

function to convert expression 144
variant, about using CVar function to

convert expression 143
variant, table of 61

databases, query warning 446
data-time value, about using Year function

to return year component 515
Date function, syntax, returns, usage, and

example 146
Date statement

example 148
syntax, returns, and usage 147

date variables, about working with 49
dates

Date statement, about using to set
computer date 147

formatting 206
IsDate function, about using to

confirm 276
Now function, about using to return

current date and time 331
Siebel VB and previous Basic versions,

differences between 520
statements, table of 28

DateSerial function, syntax, returns, usage,
and example 149

date-time value
month component, about 320
Weekday function, about using to return

day of the week 505
year component 515

DateValue function, syntax, returns, usage,
and example 151

Day function, syntax, usage, and
example 153

day, about using Weekday function to return
day of the week 505

DeactivateFields method, about using 154
debugging, about using Option Explicit

statement 352
declarations, statements (table) 30
Declare statement

example 157
syntax. returns, and usage 155

declaring variables, about using Option
Explicit statement 352

default drive
changing 120
returning 141

default folder
changing 118
returning 141

Deftype statement, syntax. returns, usage,
and example 158

DeleteRecord
method, about using 160
Siebel VB event, about using 96

Dim statement
arrays, about declaring 163
dynamic array, using to declare 59
fixed-length and dynamic strings 164
numeric variables, about declaring 163
object variable, about creating to access

the object 67
object variables, about 164
record variables, about declaring 164
syntax, returns, and usage 161
variable, about using to declare type 54
variant example for each data type 165
534 Siebel VB Language Reference Version 7.5, Rev. C

variants, about declaring variables
as 165

Dir function
syntax and returns 167
usage and example 168

directories
See also folders

disk control, statements (table) 34
DLL (dynamic link library)

C procedures, calling 112
passed-in value 156
procedures, declaring 155
procedures, external 156
writing your own functions 214, 468

Do...Loop statement
Exit Do, about using inside

statement 187
syntax, returns, usage, and example 169

double data type, converting to 117
DTYPE_BOOL field, about calling in a

script 521
dynamic arrays

about 59
bounds, changing 377
freeing the storage 175

dynamic link library
See DLL (dynamic link library)

dynamic strings
about and example 56
variable types 164

E
elapsed time, about using Timer function to

return elapsed time 477
Environ function, syntax, returns, usage,

and example 171
environmental control

Siebel VB and previous Basic
differences 520

statements, table of 32
Eof function, syntax, returns, usage, and

example 173
EQV operator, about 65

Erase statement, syntax, returns. usage, and
example 175

Erl function, syntax, returns, usage, and
example 177

Err function, syntax, returns, usage, and
example 179

Err statement, syntax. returns, usage, and
example 180

Error function, syntax, returns, usage, and
example 182

error handling
about 68
error message, returning 182
error statements, table of 33
routine, halting 387
routine, location 341
statements and functions, about 68
trappable errors, table of 523

error message
See also errors; trapping errors
RaiseError method, about using to raise

message to browser 371
RaiseErrorText method, about raising

scripting message to browser 372
Error statement, syntax and usage 184
errors

See also error message
ODBC function call, derived from 439
trappable errors, table of 523

ExecuteQuery method, about using 185
ExecuteQuery2 method, about using 186
Exit statement, syntax, returns, usage, and

example 187
Exp function, syntax, returns, usage, and

example 188
expressions

about 63
comparison operators, numeric and string

(table) 64
formatted string, converting to 202
Is operator, about using to compare

expressions 275
Version 7.5, Rev. C Siebel VB Language Reference 535

Let statement, about assigning to a Basic
variable 293

Like operator, about using to compare
contents 295

logical operators, table of 65
numeric operators, table of 63
string operators, table of 64

External DLL procedures 156

F
field value. about using GetFieldValue

method to access 227
file control statements (table) 35
file input/output statements, table of 36
file mode, returning 190
file number, lowest unused 212
FileAttr function, syntax, returns, usage,

and example 190
FileCopy statement, syntax, returns, usage,

and example 192
FileDateTime function, syntax, returns, and

usage 194
FileLen function, syntax, returns, usage,

and example 195
filename, returning 167
files

attributes, returning 222
closing after input/output 129
closing an open file 190
copying 192
disk and folder control, table of 34
end, determining 173
file control, table of 35
input/output statements, table of 36
Kill statement, about using to delete files

from a hard disk or floppy 284
length, returning 195
Lock statement, about using to control

file access 300
locking 300
Lof function, about using to return

length 302
modification date and time 194

Name statement, about using to rename
or copy file 323

Open statement, about using for input or
output 344

Print statement, about printing data to
open file 364

Reset statement, about using to close
open files and writes data 385

Seek position, about using to return
current file position for open file 399

Seek statement, about using to set
position within an open file 401

SetAttr statement, about using to set
attributes 413

Unlock statement, about using to control
access to open file 494

financial functions
Siebel VB and previous Basic version,

differences between 519
statements (table) 38

FirstRecord method, about using 196
Fix function, syntax, returns, usage, and

example 197
fixed array, reinitializing the contents 175
fixed strings, about and example 56
fixed-length string variables, declaring 164
floppy drive, about using Kill statement to

delete files 284
folder control, statements (table) 34
folders

attributes, returning 222
MkDir statement, about using to create

new folder 318
removing 390
RmDir statement, about using to remove

a folder 390
For...Next statement

example 200
Exit Do, using inside statement 187
syntax, returns, and usage 199
536 Siebel VB Language Reference Version 7.5, Rev. C

Format function
dates and times, formatting 206
examples 210
formatting strings 210
predefined numeric formats, table

of 202
scaling numbers 204
syntax, returns, and usage 202
user-defined numeric format,

creating 203
formatting

dates and times 206
numbers 202
strings 210

FreeFile function, syntax. returns, usage,
and example 212

function procedure, defining 213
Function...End Function statement

example 215
syntax, returns, and usage 213

functions
Help syntax 20
Siebel VB and previous Basic version,

differences between 521
FV function, syntax, returns, usage, and

example 216

G
Get statement

example 219
syntax, returns, and usage 218

GetAssocBusComp method, about
using 221

GetAttr function syntax, returns, and
usage 222

GetBusComp method, about using 223
GetBusObject method, about using 224
GetChild method, about using 225
GetChildCount method, about using 226
GetFieldValue method, about using 227
GetFirstProperty method, about using 228
GetFormattedFieldValue method, about

using 229

GetLastErrText method, availability of 73
GetMultipleFieldValues() method, about

using 230
GetMVGBusComp method, about

using 231
GetNamedSearch method, about

using 232
GetNextProperty method, about using 233
GetObject function

example 235
syntax, returns, and usage 234

GetPicklistBusComp method, about
using 237

GetProfileAttr method, about using 238
GetProperty method, about using 239
GetPropertyCount() method, about

using 240
GetSearchExpr method, about using 241
GetSearchSpec method, about using 242
GetService method, about using 243
GetSharedGlobal method, about using 244
GetType method, about using 245
GetUserProperty method, about using 246
GetValue method, about using 247
GetViewMode method, about using 248
Global statement

arrays, declaring 250
dynamic string variables, declaring 251
example 251
fixed-length string variables,

declaring 251
numeric variables, declaring 250
record variables, declaring 250
syntax, returns, and usage 249
variants, declaring 251

global variables
GetSharedGlobal method, about using to

get shared user-defined 244
Global statement, about declaring 249
SetSharedGlobal method, about using to

set shared user-defined variable 424
glossary 529
Version 7.5, Rev. C Siebel VB Language Reference 537

GoTo statement
good practice, and about using 254
syntax, returns, usage, and example 253

GotoView method, about using 255
guide

organization of 19
revision history 21
typographical conventions, table of 20

H
hard disk, about using kill statement to

delete files 284
hexadecimals, about using Hex

function 256
history of revisions 21
Hour function, syntax, returns, and

usage 257
HTML, about using

WebApplet_ShowControl event to
modify 503

I
If...Then...Else statement, syntax, returns,

usage, and example 259
IMP operator, about 65
input argument

SetPositiionId method, about using to
change position to input argument
value 418

SetPositionName method, about using to
change position to input argument
value 419

Input function, syntax, returns, usage 261
Input statement, syntax, returns, usage, and

example 262
input/output, concluding 129
InsertChildAt method, about using 264
InStr function

example 266
syntax, returns, usage 265

Int function, syntax, returns, usage, and
example 268

integer
data type, converting to 123
Int function, about returning part of a

number 268
interest payments, about using IPmt

function to calculate 271
interest rates, about using Rate function to

calculate 375
investment, about using NPV function to

return present value 333
InvokeMethod

about using 270
Service_InvokeMethod event, about

using 409
WebApplet_InvokeMethod event, about

using 499
InvokeMethod Siebel VB event

Application_InvokeMethod event, about
using 83

BusComp_InvokeMethod event, about
using 97

IPmt function, syntax, returns, usage, and
example 271

IRR function, syntax, returns, usage, and
example 273

Is operator, syntax, returns, usage, and
example 275

IsDate function, syntax, returns, usage, and
example 276

IsEmpty function
syntax, returns, usage, and example 277
variant is empty, using to test 61

IsMissing function, syntax, returns, usage,
and example 279

IsNull function, syntax, returns, usage, and
example 281

IsNumeric function, syntax, returns, and
usage 283
538 Siebel VB Language Reference Version 7.5, Rev. C

K
keystrokes, using SendKeys statement to

send keystrokes to Windows
application 405

Kill statement, syntax, returns, usage, and
example 284

L
labels, Siebel VB and previous Basic

versions, differences between 518
language, about modularity 519
LastRecord method, about using 286
LBound function, syntax, returns, usage,

and example 287
LCase function, syntax, returns, usage, and

example 289
Left function, syntax, returns, usage, and

example 290
legal date, about using IsDate function to

confirm 276
Len function, syntax, returns, usage, and

example 292
Let (Assignment statement), syntax,

returns, usage, and example 293
Like operator

example 296
syntax, returns, and usage 295

Line Input statement, syntax, returns,
usage, and example 296, 297

line numbers, Siebel VB and previous Basic
versions, differences between 518

list columns, rendering on Web page 504
Load event, about triggering 500
loan payments, converting to a currency

value 115
Loc function, syntax, returns, and

example 299
Lock statement, syntax, returns, usage, and

example 300
Lof function, syntax, returns, usage, and

example 302

Log function, syntax, returns, usage, and
example 303

logarithms, about using Log function to
return logarithm 303

logical operators, table of 65
LoginId method, about using 304
LoginName method, about using 305
long data type, converting to 128
LookupMessage method, about using 306
looping

Do...Loop statement 169
Do...Loop statement, about using an Exit

statement 187
For...Next statement 199
For...Next statement, about using an Exit

statement 187
loop statements, terminating 187
While...Wend statement 507

lower bound, specifying default 347
Lset statement, syntax, returns, usage, and

example 307
LTrim function, syntax, returns, usage, and

example 309

M
math functions

financial functions, table of 38
numeric functions, table of 39
trigonometric functions, table of 40

Me
object reference, about and example 48
syntax, returns, usage, and example 311

methods
accessing syntax 67
Application_PreInvokeMethodf event,

about using 85
InvokeMethod method, about using to

call specialized method 270
InvokeMethod Siebel VB event handler,

about calling 83
InvokeMethod Siebel VB event, about

calling 97
object, about causing action on 66
Version 7.5, Rev. C Siebel VB Language Reference 539

PreInvokeMethod event, about
using 502

Microsoft Visual Basic, compared to Siebel
VB 521

Mid function, syntax, returns, usage, and
example 312

Mid statement, syntax, returns, usage, and
example 314

minute component, about Minute function
to return date value 316

Minute function, syntax, returns, usage, and
example 316

MkDir statement, syntax, returns, usage,
and example 318

Month function, syntax, returns, usage, and
example 320

MVG business component, about using
GetMVGBusComp method to return
value 231

N
Name method, about using 322
Name statement, syntax, returns, usage,

and example 323
named arguments

in Call statements 112
programming conventions, about and

examples 52
naming conventions for code, table of

examples 47
Navigate event, about using 84
negative numbers, about using Sgn function

to return value 430
New operator, syntax, returns, and

usage 325
NewPropertySet method, about using 326
NewRecord

method, about using 327
Siebel VB event, about using 98

NextRecord method, about using 328
non-Siebel VB errors, trapping user-defined

errors 71
NOT operator, about 65

Nothing function, syntax, returns, usage,
and example 329

Now function, syntax, returns, usage, and
example 331

NPV function, syntax, returns, usage, and
example 333

Null function, syntax, returns, usage, and
example 334

null variants, about and testing 61
numbers

Sgn function, about using to indicate
negative/positive 430

Str function, about returning string
representation of number 462

numeric comparison operators, table of 64
numeric conversions, about 58
numeric data types, list 55
numeric expressions

formatting 202
integer part 197

numeric format, about creating user-defined
numeric format 203

numeric functions, statements (table) 39
numeric operators, table of 63
numeric value of first number 495
numeric variables, Dim statement 163

O
oBC object variable, about 67
Object class, syntax, returns, usage, and

example 336
object handling

accessing syntax 67
described 66
object variable, about creating to access

the object 67
Siebel VB and previous Basic versions,

differences between 520
object variables, about declaring 164
540 Siebel VB Language Reference Version 7.5, Rev. C

objects
COM-compliant, about accessing 67
defined 66
Me, about using to refer to current

object 311
Name method, about using to return

object name 322
Nothing function, about using to remove

instantiated object from
memory 329

Set Statement, about using to
instantiate 411

Siebel object types, syntax for
declaring 66

statements (table) 41
Typeof function, about using to return a

value 489
Oct function, syntax, returns, usage, and

example 338
octal (base 8) number, about using Oct

function to convert number 338
ODBC

data source, connecting to 448
data source, disconnecting from 437
function call, about using SQLError

function to retrieve data 439
statements, table of 42

On Error statement
body of code, trapping errors within 70
error handler, using 70
example 342
example using to trap run-time

errors 187
syntax, returns, and usage 341

On...Goto statement, syntax, returns, and
usage 340

one-character string, returning 121
Open statement

example 345
syntax, returns, and usage 344

operating system events, about processing
with Windows 333

Option Base statement

example 348
syntax, returns, and usage 347

Option Compare statement, syntax, returns,
usage, and example 350

Option Explicit statement
about using 47
syntax, returns, usage, and example 352

OR operator, about 65
organization of guide 19
output line, about using Width statement to

set output line width 509

P
parent property

InsertChildAt method, about using to
insert child property 264

RemoveChild method, about using to
remove a child property set 382

ParentBusComp method, about using 354
payments

Pmt function, about using to calculate
constant periodic 356

PPmt function, about using to return
principal portion of payment 361

Pick method, about using 355
Pmt function, syntax, returns, usage, and

example 356
position

PositionId, about using to return
ROW_ID 358

PositionName, about using to return
user’s current position 359

PositionId method, about using 358
PositionName method, about using 359
positive numbers, about using Sgn function

to return a value 430
PostChanges method. about using 360
PPmt function, about using 361
PreAssociate Siebel VB event, about

using 99
PreCanInvokeMethod() event, about

using 501
PreClose event, about calling 82
Version 7.5, Rev. C Siebel VB Language Reference 541

PreCopyRecord Siebel VB event, about
using 100

PreDeleteRecord Siebel VB event, about
using 101

PreGetFieldValue Siebel VB event, about
using 102

PreInvokeMethod event
Service_PreInvokeMethod event, about

using 410
WebApplet_PreInvokeMethod event,

about using 502
PreInvokeMethod Siebel VB event

Application_PreInvokeMethod event,
about using 85

Busomp_PreInvokeMethod event, about
using 103

PreNavigate() event, about using 86
PreNewRecord Siebel VB event, about

using 104
PreQuery Siebel VB event, about using 105
present value, calculating 369
PreSetFieldValue Siebel VB event, about

using 106
PreviousRecord method, about using 363
PreWriteRecord Siebel VB event, about

using 107
Print statement, syntax, returns, and

usage 364
printing

Print statement, about printing data to
open file 364

Spc function, about printing a specified
number of spaces 435

Tab function, about using to move print
position to a column 469

program execution, about using Stop
statement to halt 461

programming conventions
arguments, about and examples 51
comments, about and example 53
named arguments, about and

examples 52

properties
accessing syntax 67
objects, about handling 66

property
GetFirstProperty method, about

using 228
GetNextProperty method, about using to

retrieve next property 233
GetProperty method, about using to get

property value 239
PropertyExists, about whether property

exists in a property set 366
property set

AddChild method. about using to add
subsidiary property sets to 81

GetPropertyCount () method, about
using 240

GetType method, about using to retrieve
stored value 245

GetValue method, about using to return
control value 247

RemoveProperty set, about using to
remove property 383

Reset method, about using to remove
properties and child property
sets 384

SetProperty method, about using to
assign value to 421

SetType, about using to assign value 426
PropertyExists method, about using 366
Put statement

example 368
syntax, returns, and usage 367

PV function, syntax, returns, usage, and
example 369

Q
Query Siebel VB event, about using 108
542 Siebel VB Language Reference Version 7.5, Rev. C

R
RaiseError method, about using 371
RaiseErrorText method, about 372
random numbers

generator, about using Randomize
statement to seed 373

Rmd function to return number, about
using 392

Randomize statement, syntax, returns,
usage, and example 373

Rate function, syntax, usage, and
example 375

rate of return, about using IRR function to
calculate 273

record
data types, about and example 56
GetMultipleFieldValues () method, about

using to retrieve field values 230
Pick method, about picking record into

parent component 355
SetMultipleFieldValue method, about

using to set field values 416
record variable, about declaring 164
ReDim statement

example 378
redimensioning array, about 54
setting subscript range, about 59
syntax, returns, and usage 377

RefineQuery method, about using 379
Rem statement, syntax, returns, usage, and

example 380
RemoveChild method, about using 382
RemoveProperty method, about using 383
repetitive action, about using While...Wend

statement to control 507
Reset method, about using 384
Reset statement, syntax, returns, and

example 385
Resume Next parameter, using to trap

errors 70
Resume statement, syntax and returns 387
revision history 21

Right function, syntax. returns, usage, and
example 388

RmDir statement, syntax, returns, usage,
and example 390

Rnd function, syntax, returns, usage, and
example 392

Rset statement, syntax, returns, usage, and
example 394

RTrim function, syntax, returns, usage, and
example 396

run-time error
code, setting 180
error code, returning for last error

trapped 179
list of 523

S
search expression, about using

GetSearchExpr method 241
search specification, about using

GetSearchSpec method 242
searchName

GetNamedSearch method, about using to
return search specification 232

SetNamedSearch method, about setting
named search specification 417

Second function, syntax, returns, usage, and
example 397

Seek
function, syntax, returns, usage, and

example 399
statement, syntax, returns, usage, and

example 401
Select Case construct, about using 48
Select Case statement

example 407
syntax, returns, and usage 403

SendKeys statement, syntax, returns, and
usage 405

Service_InvokeMethod event, about
using 409

Service_PreInvokeMethod event, about
using 410
Version 7.5, Rev. C Siebel VB Language Reference 543

set input argument, ActivateMultipleField,
using to activate 78

Set statement, syntax, returns, and
usage 411

SetAttr statement, syntax, returns, usage,
and example 413

SetFieldValue
method, about using 414
Siebel VB event, about using 109

SetFormattedFieldValue method, about
using 415

SetMultipleFieldValues() method, about
using 416

SetNamedSearch method, about using 417
SetPositionId() method, about using 418
SetPositionName() method, about

using 419
SetProfileAttr method, about using 420
SetProperty Method, about using 421
SetSearchExpr method, about using 422
SetSearchSpec method, about using 423
SetSharedGlobal method, about using 424
SetSortSpec method, about using 425
SetType method, about using 426
SetUserProperty method, about using 427
SetValue method, about using 428
SetViewMode method, about using 429
Sgn function, syntax, returns, and

example 430
Shell function, syntax, returns, usage, and

example 432
Siebel applet

See also applet
GetValue method, about using to return

control value 247
Siebel business component

ActiveBusObject, using to return business
object for 79

CopyRecord Siebel VB event, using after
copying row 95

DeleteRecord Siebel VB event, about
using after deleting row 96

GetViewMode method, about using to
return current visibility mode 248

NewRecord method, about using to add
new record (row) 327

NewRecord Siebel VB event, using after
creating new row 98

NextRecord method, about using to move
record 328

ParentBusComp method, about returning
parent given child 354

PreCopyRecord Siebel VB event, about
using before copying row 100

PreDeleteRecord Siebel VB event, about
deleting a row 101

PreviousRecord method, about using to
move previous record 363

RefineQuery method, about using to
refine a query 379

SetFieldValue method, about using to
assign new value to field 414

SetFormattedFieldValue method, about
using to assign new value to
field 415

SetNamedSearch method, about setting
named search specification 417

SetSearchExpr, about using to set search
expression 422

SetSearchSpec, about using to set search
specification for a field 423

SetSortSpec, about using to set query sort
specification 425

SetUserProperty method, about using set
value 427

SetViewMode method, about using to set
visibility type 429

UndoRecord method, about using to
delete active record 493

Siebel objects, about using Set Statement to
instantiate 411

Siebel UI, about using
GetFormatedFieldValue method to
return value in local format 229
544 Siebel VB Language Reference Version 7.5, Rev. C

Siebel Visual Basic
Basic, difference between older

versions 518
Err function, about using to view

errors 179
error, simulating 184
Me object reference, about and

example 48
Microsoft Visual Basic, compared to 521
run-time errors, table of 523
supported uses 18
trapping errors generated by

methods 73
Visual Basic, user interface

differences 521
Siebel Web Engine

WebApple_ShowControl event, about
using to modify HTML 503

WebApplet_ShowList Column event,
about using to render list
column 504

Sin function, syntax, returns, usage, and
example 433

sine, about using Sin function to
calculate 433

single data type, converting to 137
Space function, syntax, returns, usage, and

example 434
spaces

LTrim function, about using to return
strings with spaces removed 309

Space function, about using to return
string of spaces 434

Spc function, about printing a specified
number of spaces 435

Spc function, syntax, returns, usage, and
example 435

SQL query execution, about using Trace
method for debugging 483

SQL statements, executing 442
SQLClose function

example 438
syntax, returns, and usage 437

SQLError function
example 440
syntax, returns, and usage 439

SQLExecQuery function
example 443
syntax, returns, and usage 442

SQLGetSchema function
example 446
syntax and returns 445
usage 446

SQLOpen function
example 449
syntax and returns 448
usage 449

SQLRequest function
example 452
syntax and returns 451
usage 452

SQLRetrieve function
example 455
syntax and returns 454
usage 455

SQLRetrieveToFile function
example 458
syntax, returns, and usage 457

Sqr function, syntax, returns, usage, and
example 459

statements
Help syntax 20
Select Case statement, about using to

execute one or more statements 403
With statement, about using to execute

series of statements 510
Static statement, syntax, returns, and

usage 460
Stop statement, syntax, returns, usage, and

example 461
Str function, syntax, returns, usage, and

example 462
StrComp function, syntax, returns, usage,

and example 463
string comparison operators, table of 64
Version 7.5, Rev. C Siebel VB Language Reference 545

string conversions
about 58
statements, table of 45

string function
syntax, returns, usage, and example 465
table of 43

string operators, table of 64
string variables

Line Input statement, about reading from
a sequential file 296, 297

Lset statement, about using to copy
string 307

strings
data types, converting to 139
end of string portion 388
LCase function, about using to return

lowercase copy of 289
Left function, about copying string from

another string 290
Len function, about using to return string

length 292
Like operator, about using to compare

contents 295
LookupMessage method, about using to

return translated string 306
LTrim function about using to return

string with spaces removed 309
Mid function, about using to identify a

portion of 312
Mid statement, about using to replace

string 314
numeric value of first number 495
Option Compare statement, about using

to specify default method for string
comparisons 350

Reset statement, about using to right-
align string 394

Right function, about using to return end
portion of string 388

RTrim function, about using to copy and
remove trailing spaces 396

Space function, about using to return
string of spaces 434

StrComp function, about using to
compare strings 463

string conversions, table of 45
String function, about to return string of

repeated character 465
string functions, table of 43
trailing spaces, removing 396
Trim function, about using to return copy

after copying 486
UCase function, about using to return a

copy after converting to lowercase to
uppercase 492

Val function, about using to return
numeric value of the first
number 495

Sub...End Sub statement
example 468
syntax, returns, and usage 467

subprogram procedure, about using
Sub...End Sub statement to
define 467

subroutines, Siebel VB and previous Basic
differences 519

symbolic constants, declaring 131

T
Tab function, syntax, returns, usage, and

example 469
table columns, returning information

about 445
table names, returning information

about 445
Tan function, syntax, returns, usage, and

example 471
tangent, about using Tan function to

calculate tangent 471
task ID, about using Shell function to return

from a Windows application 432
TheApplication method, about using 472
time

formatting, table 206
Now function, about returning current

date and time 331
546 Siebel VB Language Reference Version 7.5, Rev. C

Siebel VB and previous Basic, differences
between 520

system time, setting 475
Time function, about returning current

time 473
TimeSerial function, about returning time

as a variant 479
TimeValue function, about returning time

value for a string 481
Time function, syntax, returns, usage, and

example 473
Time statement, syntax, returns, usage, and

example 475
time value

hour component 257
Minute function, about using to return

minute component 316
Second function, about using to return

second component (0 to 59) 397
Timer function, syntax, returns, usage, and

example 477
times statements, table of 28
TimeSerial function, syntax, returns, usage,

and example 479
TimeValue function, syntax, returns, usage,

and example 481
To keyword, about using to specify a range

of values 404
Trace method, about using 483
TraceOff turns method, about using 484
TraceOn turns method, about using 485
trailing spaces, removing 396
trapping errors

See also errors
about 48
body of code, trapping errors within

(example) 70
code examples, about 69
error handler, using 70
line number, where error was

trapped 177

run-time error code 179
Siebel VB methods, generated by 73
Siebel VB, returned by 69
trappable errors, list of 523
user-defined errors 71

trigonometric functions
derived (table) 527
statements (table) 40

Trim function, syntax, returns, and
usage 486

type characters, about and table of suffix
characters 57

Type statement
example 488
syntax, returns, and usage 487

Typeof function, syntax, returns, and
usage 489

typographic conventions, table of 20

U
UBound function, syntax, returns, usage,

and example 490
UCase function, syntax, returns, usage, and

example 492
UndoRecord method, about using 493
Unicode, support of 74
Unlock statement, syntax, returns, usage,

and example 494
user interface, differences between Siebel

VB and Visual Basic 521
user profile, about using SetProfileAttr

method to assign values to
attributes 420

user’s current position
PositionId method, about using to return

ROW_ID 358
PositionName, about using to return

position name 359
user-defined error, simulating 184
UserProperty, about using GetUserProperty,

to return value 246
Version 7.5, Rev. C Siebel VB Language Reference 547

V
Val function, syntax, returns, usage, and

example 495
variable scope, placement of variable

declaration (table) 519
variables

Basic program, declaring for use in 161
declaring, hints 47
default data type, specifying 158
finding differences between 76
IsNumeric function, about using to

determine variable value 283
naming conventions for, table of

examples 47
Option Explicit statement, about

explicitly declaring variables in a
module 352

Put statement, about writing to a file
opened in random or binary
mode 367

Static statement, about using to declare
variable and allocate storage
space 460

variant data type
about, table of 61
expression, converting to 143
expression, converting to type date 144

variants
conversions, about 58
IsEmpty function, about using to

determine initialization 277
list, table of 46
Null value, determining 281
Null value, setting 334
ValType function, about returning

specified variant type 497
variables, declaring as 165

VarType function
examine variable tag, about using to

examine 61
syntax, returns, and example 497

view

ActiveViewName, using to return name of
active view 80

GoToView method, about using to
activate view 255

Visual Basic, Siebel Visual user interface
differences 521

volume labels, attributes 222

W
Web_Applet_Load Event, about using 500
Web_Applet_PreCanInvoke Event, about

using 501
WebApplet_InvokeMethod event, about

using 499
WebApplet_PreInvokeMethod Event, about

using 502
WebApplet_ShowControl Event, about

using 503
WebApplet_ShowListColumn Event, about

using 504
Weekday function, syntax, returns, usage,

and example 505
Width statement, syntax, returns, usage,

and example 509
Windows applications, about using Shell

function to start and task ID 432
With statement

shortcut, using as 48
syntax, returns, usage, and example 510

Write statement, syntax, returns, usage, and
example 512

WriteRecord
method, about using 514
Siebel VB event, about using 110

X
XOR operator, about 65

Y
Year function, syntax, returns, usage, and

example 515
548 Siebel VB Language Reference Version 7.5, Rev. C

	Contents
	Introduction
	Supported Uses of Siebel VB
	How This Guide Is Organized
	Typographic Conventions
	Revision History
	Version 7.5, Rev. C
	Version 7.5, Rev. B
	Version 7.5, Rev. A

	Quick Reference: Statements and Functions
	Arrays
	Compiler Directives
	Control Flow
	Dates and Times
	Declarations
	Environment Control
	Errors
	Files: Disk and Folder Control
	Files: File Control
	Files: File Input/Output
	Math Functions: Financial Functions
	Math Functions: Numeric Functions
	Math Functions: Trigonometric Functions
	Objects
	ODBC
	Strings: String Functions
	Strings: String Conversions
	Variants

	Language Overview
	Conventions
	Arguments
	Named Arguments
	Comments

	Data Types
	Arrays
	Numbers
	Records
	Strings
	Type Characters

	Data Type Conversions
	Dynamic Arrays
	Variant Data Type
	Expressions
	Numeric Operators
	String Operators
	Comparison Operators (Numeric and String)
	Logical Operators

	Object Handling
	Creating an Object Variable to Access the Object
	Using Methods and Properties to Act on Objects

	Error Handling
	Trapping Errors Returned by Siebel VB
	Option 1: Trap Errors Within Body of Code
	Option 2: Trap Errors Using an Error Handler

	Trapping User-Defined, Non-Siebel VB Errors
	Trapping Errors Generated by Siebel VB Methods
	Siebel VB and Unicode

	Siebel VB Language Reference
	Abs Function
	ActivateField Method
	ActivateMultipleFields Method
	ActiveBusObject Method
	ActiveViewName Method
	AddChild Method
	Application_Close Event
	Application_InvokeMethod Event
	Application_Navigate Event
	Application_PreInvokeMethod Event
	Application_PreNavigate Event
	Application_Start Event
	Asc Function
	Associate Method
	Atn Function
	BusComp Method
	BusComp_Associate Event
	BusComp_ChangeRecord Event
	BusComp_CopyRecord Event
	BusComp_DeleteRecord Event
	BusComp_InvokeMethod Event
	BusComp_NewRecord Event
	BusComp_PreAssociate Event
	BusComp_PreCopyRecord Event
	BusComp_PreDeleteRecord Event
	BusComp_PreGetFieldValue Event
	BusComp_PreInvokeMethod Event
	BusComp_PreNewRecord Event
	BusComp_PreQuery Event
	BusComp_PreSetFieldValue Event
	BusComp_PreWriteRecord Event
	BusComp_Query Event
	BusComp_SetFieldValue Event
	BusComp_WriteRecord Event
	BusObject Method
	Call Statement
	CCur Function
	CDbl Function
	ChDir Statement
	ChDrive Statement
	Chr Function
	CInt Function
	ClearToQuery Method
	Clipboard
	CLng Function
	Close Statement
	Const Statement
	Copy Method
	Cos Function
	CreateObject Function
	CSng Function
	CStr Function
	CurDir Function
	CurrencyCode Method
	CVar Function
	CVDate Function
	Date Function
	Date Statement
	DateSerial Function
	DateValue Function
	Day Function
	DeactivateFields Method
	Declare Statement
	Deftype Statement
	DeleteRecord Method
	Dim Statement
	Arrays
	Numbers
	Objects
	Records
	Strings
	Variants

	Dir Function
	Do...Loop Statement
	Environ Function
	Eof Function
	Erase Statement
	Erl Function
	Err Function
	Err Statement
	Error Function
	Error Statement
	ExecuteQuery Method
	ExecuteQuery2 Method
	Exit Statement
	Exp Function
	FileAttr Function
	FileCopy Statement
	FileDateTime Function
	FileLen Function
	FirstRecord Method
	Fix Function
	For...Next Statement
	Format Function
	Formatting Numbers
	Formatting Dates and Times
	Formatting Strings

	FreeFile Function
	Function...End Function Statement
	FV Function
	Get Statement
	GetAssocBusComp Method
	GetAttr Function
	GetBusComp Method
	GetBusObject Method
	GetChild Method
	GetChildCount Method
	GetFieldValue Method
	GetFirstProperty Method
	GetFormattedFieldValue Method
	GetMultipleFieldValues Method
	GetMVGBusComp Method
	GetNamedSearch Method
	GetNextProperty Method
	GetObject Function
	GetPicklistBusComp Method
	GetProfileAttr Method
	GetProperty Method
	GetPropertyCount Method
	GetSearchExpr Method
	GetSearchSpec Method
	GetService Method
	GetSharedGlobal Method
	GetType Method
	GetUserProperty Method
	GetValue Method
	GetViewMode Method
	Global Statement
	Arrays
	Numbers
	Records
	Strings
	Variants

	GoTo Statement
	GotoView Method
	Hex Function
	Hour Function
	If...Then...Else Statement
	Input Function
	Input Statement
	InsertChildAt Method
	InStr Function
	Int Function
	InvokeMethod Method
	IPmt Function
	IRR Function
	Is Operator
	IsDate Function
	IsEmpty Function
	IsMissing Function
	IsNull Function
	IsNumeric Function
	Kill Statement
	LastRecord Method
	LBound Function
	LCase Function
	Left Function
	Len Function
	Let (Assignment Statement)
	Like Operator
	Line Input Statement
	Loc Function
	Lock Statement
	Lof Function
	Log Function
	LoginId Method
	LoginName Method
	LookupMessage Method
	Lset Statement
	LTrim Function
	Me
	Mid Function
	Mid Statement
	Minute Function
	MkDir Statement
	Month Function
	Name Method
	Name Statement
	New Operator
	NewPropertySet Method
	NewRecord Method
	NextRecord Method
	Nothing Function
	Now Function
	NPV Function
	Null Function
	Object Class
	Oct Function
	On...GoTo Statement
	On Error Statement
	Open Statement
	Option Base Statement
	Option Compare Statement
	Option Explicit Statement
	ParentBusComp Method
	Pick Method
	Pmt Function
	PositionId Method
	PositionName Method
	PostChanges Method
	PPmt Function
	PreviousRecord Method
	Print Statement
	PropertyExists Method
	Put Statement
	PV Function
	RaiseError Method
	RaiseErrorText Method
	Randomize Statement
	Rate Function
	ReDim Statement
	RefineQuery Method
	Rem Statement
	RemoveChild() Method
	RemoveProperty Method
	Reset Method
	Reset Statement
	Resume Statement
	Right Function
	RmDir Statement
	Rnd Function
	Rset Statement
	RTrim Function
	Second Function
	Seek Function
	Seek Statement
	Select Case Statement
	SendKeys Statement
	Service_InvokeMethod Event
	Service_PreInvokeMethod Event
	Set Statement
	SetAttr Statement
	SetFieldValue Method
	SetFormattedFieldValue Method
	SetMultipleFieldValues Method
	SetNamedSearch Method
	SetPositionId Method
	SetPositionName Method
	SetProfileAttr Method
	SetProperty Method
	SetSearchExpr Method
	SetSearchSpec Method
	SetSharedGlobal Method
	SetSortSpec Method
	SetType Method
	SetUserProperty Method
	SetValue Method
	SetViewMode Method
	Sgn Function
	Shell Function
	Sin Function
	Space Function
	Spc Function
	SQLClose Function
	SQLError Function
	SQLExecQuery Function
	SQLGetSchema Function
	SQLOpen Function
	SQLRequest Function
	SQLRetrieve Function
	SQLRetrieveToFile Function
	Sqr Function
	Static Statement
	Stop Statement
	Str Function
	StrComp Function
	String Function
	Sub...End Sub Statement
	Tab Function
	Tan Function
	TheApplication Method
	Time Function
	Time Statement
	Timer Function
	TimeSerial Function
	TimeValue Function
	Trace Method
	TraceOff Method
	TraceOn Method
	Trim Function
	Type Statement
	Typeof Function
	UBound Function
	UCase Function
	UndoRecord Method
	Unlock Statement
	Val Function
	VarType Function
	WebApplet_InvokeMethod Event
	Web_Applet_Load Event
	Web_Applet_PreCanInvoke Event
	WebApplet_PreInvokeMethod Event
	WebApplet_ShowControl Event
	WebApplet_ShowListColumn Event
	Weekday Function
	While...Wend Statement
	Width Statement
	With Statement
	Write Statement
	WriteRecord Method
	Year Function

	Siebel VB Compared to Other Basic Products
	Differences Between Siebel VB and Earlier Versions of Basic
	Line Numbers and Labels
	Subroutines and Modularity of the Language
	Variable Scope
	Data Types
	Financial Functions
	Date and Time Functions
	Object Handling
	Environment Control

	Differences Between Siebel VB and Visual Basic
	User Interface and Control-Based Objects
	Data Types

	Trappable Errors
	Derived Trigonometric Functions
	Glossary
	Index

