
SIEBEL eSCRIPT LANGUAGE
REFERENCE
VERSION 7.5, REV. B

MARCH 2003

12-FAUN9W

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Introduction
Typographic Conventions . 16

Revision History . 17

Chapter 1. Quick Reference: Methods and Properties
Array Methods . 20

Buffer Methods . 21

Character Classification Methods . 22

Conversion or Casting Methods . 23

Data Handling Methods . 24

Date and Time Functions . 25

Disk and File Functions . 28

Disk and Directory Functions . 28

File Control Functions . 28

File-Manipulation Functions . 29

Error Handling Methods . 30

Math Methods . 31

Numeric Functions . 31

Trigonometric Functions . 32

Math Properties . 32

Operating System Interaction Methods . 34

String and Byte-Array Methods . 35

Miscellaneous Methods . 37
Version 7.5, Rev. B Siebel eScript Language Reference 3

Contents
Chapter 2. Siebel eScript Language Overview
Siebel eScript Programming Guidelines . 40

Basic Siebel eScript Concepts . 42

Case Sensitivity . 42

White-Space Characters . 43

Comments . 44

Expressions, Statements, and Blocks . 45

Identifiers . 46

Variables . 47

Data Types . 50

Primitive Data Types . 51

Composite Data Types . 54

Special Data Types . 56

Number Constants . 57

Automatic Type Conversion . 57

Properties and Methods of Basic Data Types . 58

Expressions . 60

Operators .61

Mathematical Operators . 61

Bit Operators . 63

Logical Operators and Conditional Expressions . 64

Typeof Operator . 66

Conditional Operator . 67

String Concatenation Operator . 67

Functions . 69

Function Scope . 70

Passing Variables to Functions . 70

The Function Arguments[] Property . 71

Function Recursion . 71
Error Checking for Functions . 73
4 Siebel eScript Language Reference Version 7.5, Rev. B

Contents
eScript Statements . 74

break Statement . 74

continue Statement . 75

do...while Statement . 76

for Statement . 77

for...in Statement . 78

goto Statement . 79

if Statement . 80

switch Statement . 83

throw Statement . 84

try Statement . 85

while Statement . 88

with Statement . 89

Chapter 3. Siebel eScript Commands
Applet Objects . 92

The Application Object . 94

Array Objects . 97

The Array Constructor . 98

join() Method . 99

length Property . 99

reverse() Method . 100

sort() Method . 101

BLOB Objects .103

The blobDescriptor Object . 103

Blob.get() Method . 105

Blob.put() Method . 105

Blob.size() Method . 107

Buffer Objects .109

The Buffer Constructor . 110

Properties . 111
Version 7.5, Rev. B Siebel eScript Language Reference 5

Contents
Methods . 112

bigEndian Property . 112

cursor Property . 113

data Property . 113

getString() Method . 114

getValue() Method . 114

offset[] Method . 115

putString() Method . 116

putValue() Method . 117

size Property . 119

subBuffer() Method . 120

toString() Method . 120

unicode Property . 121

Business Component Objects . 122

Business Object Objects . 128

Business Service Objects . 129

The Clib Object . 131

Redundant Functions in the Clib Object . 131

File I/O Functions . 133

The Time Object . 135

Time Functions . 136

Character Classification . 136

Formatting Data . 137

Clib.asctime() Method . 141

Clib.bsearch() Method . 141

Clib.chdir() Method . 143

Clib.clearerr() Method . 144

Clib.clock() Method . 144

Clib.cosh() Method . 144

Clib.ctime() Method . 145

Clib.difftime() Method . 146
6 Siebel eScript Language Reference Version 7.5, Rev. B

Contents
Clib.div() Method and Clib.ldiv() Method . 146

Clib.errno Property . 147

Clib.fclose() Method . 148

Clib.feof() Method . 148

Clib.ferror() Method . 149

Clib.fflush() Method . 149

Clib.fgetc() Method and Clib.getc() Method . 150

Clib.fgetpos() Method . 151

Clib.fgets() Method . 152

Clib.flock() Method . 153

Clib.fopen() Method . 154

Clib.fprintf() Method . 157

Clib.fputc() Method and Clib.putc() Method . 157

Clib.fputs() Method . 158

Clib.fread() Method . 158

Clib.freopen() Method . 160

Clib.frexp() Method . 161

Clib.fscanf() Method . 162

Clib.fseek() Method . 163

Clib.fsetpos() Method . 163

Clib.ftell() Method . 164

Clib.fwrite() Method . 164

Clib.getcwd() Method . 166

Clib.getenv() Method . 167

Clib.gmtime() Method . 168

Clib.isalnum() Method . 169

Clib.isalpha() Method . 169

Clib.isascii() Method . 170

Clib.iscntrl() Method . 170

Clib.isdigit() Method . 170

Clib.isgraph() Method . 171
Version 7.5, Rev. B Siebel eScript Language Reference 7

Contents
Clib.islower() Method . 171

Clib.isprint() Method . 172

Clib.ispunct() Method . 173

Clib.isspace() Method . 173

Clib.isupper() Method . 174

Clib.isxdigit() Method . 174

Clib.ldexp() Method . 175

Clib.localtime() Method . 175

Clib.memchr() Method . 176

Clib.memcmp() Method . 177

Clib.memcpy() Method and Clib.memmove() Method 177

Clib.memset() Method . 178

Clib.mkdir() Method . 178

Clib.mktime() Method . 179

Clib.modf() Method . 179

Clib.perror() Method . 180

Clib.putenv() Method . 181

Clib.qsort() Method . 182

quot Method . 183

Clib.rand() Method . 183

rem Method . 184

Clib.remove() Method . 185

Clib.rename() Method . 185

Clib.rewind() Method . 186

Clib.rmdir() Method . 186

Clib.rsprintf() Method . 187

Clib.sinh() Method . 188

Clib.sprintf() Method . 188

Clib.srand() Method . 189

Clib.sscanf() Method . 190

Clib.strchr() Method . 191
8 Siebel eScript Language Reference Version 7.5, Rev. B

Contents
Clib.stricmp() Method and Clib.strcmpi() Method 192

Clib.strcspn() Method . 192

Clib.strerror() Method . 194

Clib.strftime() Method . 195

Clib.strlwr() Method . 196

Clib.strncat() Method . 197

Clib.strncmp() Method . 198

Clib.strncmpi() Method and Clib.strnicmp() Method 198

Clib.strncpy() Method . 199

Clib.strpbrk() Method . 200

Clib.strrchr() Method . 201

Clib.strspn() Method . 202

Clib.strstr() Method . 203

Clib.strstri() Method . 204

Clib.system() Method . 205

Clib.tanh() Method . 206

Clib.time() Method . 206

Clib.tmpfile() Method . 207

Clib.tmpnam() Method . 208

Clib.toascii() Method . 208

Clib.ungetc()Method . 209

The Date Object . 210

The Date Constructor . 210

Universal Time Functions . 212

GetDate() Method . 212

Date.fromSystem() Static Method . 213

getDay() Method . 214

getFullYear() Method . 215

getHours() Method . 216

getMilliseconds() Method . 216

getMinutes() Method . 217
Version 7.5, Rev. B Siebel eScript Language Reference 9

Contents
getMonth() Method . 218

getSeconds() Method . 218

getTime() Method . 219

getTimezoneOffset() Method . 220

getUTCDate() Method . 221

getUTCDay() Method . 221

getUTCFullYear() Method . 222

getUTCHours() Method . 223

getUTCMilliseconds() Method . 224

getUTCMinutes() Method . 224

getUTCMonth() Method . 225

getUTCSeconds() Method . 226

getYear() Method . 226

Date.parse() Static Method . 226

setDate() Method . 227

setFullYear() Method . 228

setHours() Method . 229

setMilliseconds() Method . 229

setMinutes() Method . 231

setMonth() Method . 231

setSeconds() Method . 232

setTime() Method . 232

setUTCDate() Method . 234

setUTCFullYear() Method . 234

setUTCHours() Method . 235

setUTCMilliseconds() Method . 236

setUTCMinutes() Method . 237

setUTCMonth() Method . 238

setUTCSeconds() Method . 239

setYear() Method . 239

toGMTString() Method . 240
10 Siebel eScript Language Reference Version 7.5, Rev. B

Contents
toLocaleString() Method and toString() Method . 241

Date.toSystem() Method . 242

toUTCString() Method . 242

Date.UTC() Static Method . 243

The Exception Object . 245

Function Objects . 246

The Global Object . 249

Global Functions Unique to Siebel eScript . 249

Conversion or Casting Functions . 250

COMCreateObject() Method . 251

CORBACreateObject() Method . 252

defined() Method . 255

escape() Method . 256

eval() Method . 257

getArrayLength() Method . 258

isNaN() Method . 259

isFinite() Method . 259

parseFloat() Method . 260

parseInt() Method . 261

setArrayLength() Method . 261

ToBoolean() Method . 262

ToBuffer() Method . 263

ToBytes() Method . 264

ToInt32() Method . 265

ToInteger() Method . 266

ToNumber() Method . 267

ToObject() Method . 268

ToString() Method . 268

ToUint16() Method . 269

ToUint32() Method . 270

undefine() Method . 271
Version 7.5, Rev. B Siebel eScript Language Reference 11

Contents
unescape(string) Method . 272

The Math Object . 274

Math.abs() Method . 275

Math.acos() Method . 275

Math.asin() Method . 276

Math.atan() Method . 277

Math.atan2() Method . 278

Math.ceil() Method . 279

Math.cos() Method . 280

Math.E Property . 281

Math.exp() Method . 281

Math.floor() Method . 282

Math.LN10 Property . 282

Math.LN2 Property . 283

Math.log() Method . 284

Math.LOG2E Property . 284

Math.LOG10E Property . 285

Math.max() Method . 286

Math.min() Method . 286

Math.PI Property . 287

Math.pow() Method . 287

Math.random() Method . 288

Math.round() Method . 289

Math.sin() Method . 290

Math.sqrt() Method . 290

Math.SQRT1_2 Property . 291

Math.SQRT2 Property . 291

Math.tan() Method . 292

User-Defined Objects . 293

Predefining Objects with Constructor Functions . 293

Assigning Functions to Objects . 294
12 Siebel eScript Language Reference Version 7.5, Rev. B

Contents
Object Prototypes . 295

Property Set Objects . 298

The SElib Object . 300

String Objects . 303

The String as Data Type . 303

Escape Sequences for Characters . 303

Single Quote Strings . 304

Back-Quote Strings . 304

The String as Object . 305

charAt() Method . 305

String.fromCharCode() Static Method . 306

indexOf() Method . 306

lastIndexOf() Method . 307

length Property . 308

split() Method . 309

string.replace() Method . 311

substring() Method . 312

toLowerCase() Method . 313

toUpperCase() Method . 314

Index
Version 7.5, Rev. B Siebel eScript Language Reference 13

Contents
14 Siebel eScript Language Reference Version 7.5, Rev. B

Introduction
Siebel eScript is an enhanced configuration environment that includes:

■ A fully functional procedural programming language

■ An editing environment to create and maintain custom Siebel eScript routines

■ A debugger to assist in detecting errors in Siebel eScript routines

■ A compiler for the custom Siebel eScript routines

■ A run-time engine (similar to a JavaScript interpreter) to process the custom
Siebel eScript routines

The topics in this guide explain the Siebel eScript programming language, which is
embedded in Siebel Tools. You can use Siebel eScript to create scripts that automate
a variety of daily tasks.

This book will be useful primarily to people whose title or job description matches
the following:

Programmers with experience in other languages can use this and the related
volumes to become proficient in Siebel eScript. Those with no programming
experience should turn to other sources for basic information about programming.

Siebel Application
Developers

Persons who plan, implement, and configure Siebel applications,
possibly adding new functionality.
Version 7.5, Rev. B Siebel eScript Language Reference 15

Introduction

Typographic Conventions
Typographic Conventions
Because Siebel eScript is a case-sensitive language, the language’s capitalization
conventions are followed; however, the syntax diagrams use the conventions shown
in Table 1.

Table 1. Typographic Conventions

To Represent Help Syntax Is

Instantiated objects Lowercase italics; an internal capital may be used
to indicate multiple English words:

stringVar, blobVar, dateVar

Arguments to statements or functions Lowercase, italics; an internal capital may be
used to indicate multiple English words:

variable, number, intVar

Optional arguments or characters Arguments or characters in brackets:

[, caption], [type], [arg1, arg2, …, argn]
16 Siebel eScript Language Reference Version 7.5, Rev. B

Introduction

Revision History
Revision History
Siebel eScript Language Reference, Version 7.5, Rev. B

March 2003 Bookshelf

Additional Changes:

■ Revised examples to correct syntax errors.

November 2002 Bookshelf

Table 2. Changes Made in Rev. B for March 2003 Bookshelf

Topic Revision

“CORBACreateObject() Method” on
page 252

Added note about support for methods with
out or in/out parameters.

“parseInt() Method” on page 261 Added information on the parseInt method.

“The Buffer Constructor” on page 110 Added an additional syntax.

Table 3. Changes Made in Rev. A for November 2002 Bookshelf

Topic Revision

“Clib.bsearch() Method” on page 141 Repaired syntax error in the example.
Version 7.5, Rev. B Siebel eScript Language Reference 17

Introduction

Revision History
18 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties 1
The links that follow provide access to a list of Siebel eScript functions, methods,
and properties by functional group, rather than by object. Properties can be
distinguished from methods by the fact that they do not end with a pair of
parentheses.

■ “Array Methods” on page 20

■ “Buffer Methods” on page 21

■ “Character Classification Methods” on page 22

■ “Conversion or Casting Methods” on page 23

■ “Data Handling Methods” on page 24

■ “Date and Time Functions” on page 25

■ “Disk and File Functions” on page 28

■ “Error Handling Methods” on page 30

■ “Math Methods” on page 31

■ “Operating System Interaction Methods” on page 34

■ “String and Byte-Array Methods” on page 35

■ “Miscellaneous Methods” on page 37
Version 7.5, Rev. B Siebel eScript Language Reference 19

Quick Reference: Methods and Properties

Array Methods
Array Methods
The following is a list of array methods.

Method or Property Function

getArrayLength() Determines size of an array

Array.join() Creates a string from array elements

Array.length Returns the length of an array

setArrayLength() Sets the size of an array

Array.sort() Sorts array elements

Array.reverse() Reverses the order of elements of an array
20 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Buffer Methods
Buffer Methods
The following is a list of buffer methods.

Method or Property Function

bufferVar.bigEndian Stores a Boolean flag for bigEndian byte ordering

bufferVar.cursor Stores the current position of the buffer cursor

bufferVar.data Refers to the internal data of a buffer

bufferVar.getString() Returns a string starting from the current cursor position

bufferVar.getValue() Returns a value from a specified position

bufferVar.putString() Puts a string into a buffer

bufferVar.putValue() Puts a specified value into a buffer

bufferVar.size Stores the size of a buffer object

bufferVar.subBuffer() Returns a section of a buffer

bufferVar.toString() Returns a string equivalent of the current state of a buffer

bufferVar.unicode Stores a Boolean flag for the use of unicode strings
Version 7.5, Rev. B Siebel eScript Language Reference 21

Quick Reference: Methods and Properties

Character Classification Methods
Character Classification Methods
The following is a list of character classification methods.

Method Function

Clib.isalnum() Tests for an alphanumeric character

Clib.isalpha() Tests for an alphabetic character

Clib.isascii() Tests for an ASCII-coded character

Clib.iscntrl() Tests for any control character

Clib.isdigit() Tests for any decimal-digit character

Clib.isgraph() Tests for any printing character except space

Clib.islower() Tests for a lowercase alphabetic letter

Clib.isprint() Tests for any printing character

Clib.ispunct() Tests for a punctuation character

Clib.isspace() Tests for a white-space character

Clib.isupper() Tests for an uppercase alphabetic character

Clib.isxdigit() Tests for a hexadecimal-digit character
22 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Conversion or Casting Methods
Conversion or Casting Methods
The following is a list of conversion or casting methods.

Method Function

escape() Escapes special characters in a string

parseFloat() Converts a string to a float

parseInt() Converts a string to an integer

ToBoolean() Converts a value to a Boolean

ToBuffer() Converts a value to a buffer

ToBytes() Converts a value to a buffer (raw transfer)

ToInt32() Converts a value to a large integer

ToInteger() Converts a value to an integer

ToNumber() Converts a value to a number

ToObject() Converts a value to an object

ToPrimitive() Converts a value to a primitive

ToString() Converts a value to a string

ToUint16() Converts a value to an unsigned integer

ToUint32() Converts a value to an unsigned large integer

unescape() Removes escape sequences in a string
Version 7.5, Rev. B Siebel eScript Language Reference 23

Quick Reference: Methods and Properties

Data Handling Methods
Data Handling Methods
The following is a list of data handling methods.

Method Function

Blob.get() Reads data from a specified location in a BLOB

Blob.put() Writes data into a specified location in a BLOB

Blob.size() Determines the size of a BLOB

defined() Tests if a variable has been defined

isFinite() Determines whether a value is finite

isNaN() Determines whether a value is Not a Number (NaN)

toString() Converts any variable to a string representation

undefine() Makes a variable undefined
24 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Date and Time Functions
Date and Time Functions
The following is a list of date and time functions.

Method Function

Clib.asctime() Converts a date-time to an ASCII string

Clib.clock() Gets the processor time

Clib.ctime() Converts a date-time to an ASCII string

Clib.difftime() Computes the difference between two times

dateVar.getDate() Returns the day of the month

dateVar.getDay() Returns the day of the week

dateVar.getFullYear() Returns the year as a four-digit number

dateVar.getHours() Returns the hour

dateVar.getMilliseconds() Returns the millisecond

dateVar.getMinutes() Returns the minute

dateVar.getMonth() Returns the month

dateVar.getSeconds() Returns the second

dateVar.getTime() Returns the date-time, in milliseconds, of a Date object

dateVar.getTimezoneOffset() Returns the difference, in minutes, from GMT

dateVar.getUTCDate() Returns the UTC day of the month

dateVar.getUTCDay() Returns the UTC day of the week

dateVar.getUTCFullYear() Returns the UTC year as a four-digit number

dateVar.getUTCHours() Returns the UTC hour

dateVar.getUTCMilliseconds() Returns the UTC millisecond

dateVar.getUTCMinutes() Returns the UTC minute

Clib.gmtime() Converts a date-time to GMT

Clib.localtime() Converts a date-time to a structure
Version 7.5, Rev. B Siebel eScript Language Reference 25

Quick Reference: Methods and Properties

Date and Time Functions
Clib.mktime() Converts a time structure to calendar time

Clib.strftime() Writes a formatted date-time to a string

Clib.time() Gets the current time

dateVar.getUTCMonth() Returns the UTC month

dateVar.getUTCSeconds() Returns the UTC second

dateVar.getYear() Returns the year as a two-digit number

dateVar.setDate() Sets the day of the month

dateVar.setFullYear() Sets the year as a four-digit number

dateVar.setHours() Sets the hour

dateVar.setMilliseconds() Sets the millisecond

dateVar.setMinutes() Sets the minute

dateVar.setMonth() Sets the month

dateVar.setSeconds() Sets the second

dateVar.setTime() Sets the date-time in a Date object, in milliseconds

dateVar.setUTCDate() Sets the UTC day of the month

dateVar.setUTCFullYear() Sets the UTC year as a four-digit number

dateVar.setUTCHours() Sets the UTC hour

dateVar.setUTCMilliseconds() Sets the UTC millisecond

dateVar.setUTCMinutes() Sets the UTC minute

dateVar.setUTCMonth() Sets the UTC month

dateVar.setUTCSeconds() Sets the UTC second

dateVar.setYear() Sets the year as a two-digit number

dateVar.toGMTString() Converts a Date object to a string

dateVar.toLocaleString() Returns a string for local date and time

Date.toSystem() Converts a Date object to a system time

Method Function
26 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Date and Time Functions
dateVar.toUTCString() Returns a string that represents the UTC date

Date.fromSystem() Converts system time to Date object time

Date.parse() Converts a Date string to a Date object

dateVar.UTC() Returns the date-time, in milliseconds from January 1,
1970, of its parameters

Method Function
Version 7.5, Rev. B Siebel eScript Language Reference 27

Quick Reference: Methods and Properties

Disk and File Functions
Disk and File Functions
The eScript language provides the following disk and file functions.

■ “Disk and Directory Functions” on page 28

■ “File Control Functions” on page 28

■ “File-Manipulation Functions” on page 29

Disk and Directory Functions
The following is a list of disk and directory functions.

File Control Functions
The following is a list of file control controls.

Method Function

Clib.chdir() Changes directory

Clib.flock() Handles file locking and unlocking

Clib.getcwd() Gets the current working directory

Clib.mkdir() Creates a directory

Clib.rmdir() Removes a directory

Method Function

Clib.fclose() Closes an open file

Clib.fopen() Opens a file

Clib.freopen() Assigns a new file spec to a file handle

Clib.remove() Deletes a file

Clib.rename() Renames a file
28 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Disk and File Functions
File-Manipulation Functions
The following is a list of file manipulation functions.

Clib.tmpfile() Creates a temporary binary file

Clib.tmpnam() Gets a temporary filename

Method Function

Method Function

Clib.feof() Tests whether at the end of a file stream

Clib.fflush() Flushes the stream of one or more open files

Clib.fgetc() Gets a character from a file stream

Clib.fgetpos() Gets the current file cursor position in a file stream

Clib.fgets() Gets a string from an input stream

Clib.fprintf() Writes formatted output to a file stream

Clib.fputc() Writes a character to a file stream

Clib.fputs() Writes a string to a file stream

Clib.fscanf() Gets formatted input from a file stream

Clib.fread() Reads data from a file

Clib.fseek() Sets the file cursor position in an open file stream

Clib.fsetpos() Sets the file cursor position in a file stream

Clib.ftell() Gets the current value of the file cursor

Clib.fwrite() Writes data to a file

Clib.getc() Gets a character from a file stream

Clib.putc() Writes a character to a file stream

Clib.rewind() Resets the file cursor to the beginning of a file

Clib.ungetc() Pushes a character back to the input stream
Version 7.5, Rev. B Siebel eScript Language Reference 29

Quick Reference: Methods and Properties

Error Handling Methods
Error Handling Methods
The following is a list of error handling methods.

Method Function

Clib.clearerr() Clears end-of-file and error status of a file

Clib.errno() Returns the value of an error condition

Clib.ferror() Tests for an error on a file stream

Clib.perror() Prints a message describing an error number

Clib.strerror() Gets a string describing an error number
30 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Math Methods
Math Methods
The eScript language provides the following math methods.

■ “Numeric Functions” on page 31

■ “Trigonometric Functions” on page 32

■ “Math Properties” on page 32

Numeric Functions
The following is a list of numeric functions.

Method Function

Math.abs() Returns the absolute value of an integer

Math.ceil() Rounds up

Clib.div() Integer division, returns quotient and remainder

Math.exp() Computes the exponential function

Math.floor() Rounds down

Clib.frexp() Breaks into a mantissa and an exponential power of 2

Clib.ldexp() Calculates mantissa * 2 ^ exp

Clib.ldiv() Integer division, returns quotient and remainder

Math.log() Calculates the natural logarithm

Math.max() Returns the largest of one or more values

Math.min() Returns the smallest of one or more values

Clib.modf() Splits a value into integer and fractional parts

Math.pow() Calculates x to the power of y

Clib.rand() Generates a random number

Math.random() Returns a random number
Version 7.5, Rev. B Siebel eScript Language Reference 31

Quick Reference: Methods and Properties

Math Methods
Trigonometric Functions
The following is a list of trigonometric functions.

Math Properties
The following is a list of math properties.

Math.round() Rounds a value up or down

Math.sqrt() Calculates the square root

Clib.srand() Seeds the random number generator

Method Function

Method Function

Math.acos() Calculates the arc cosine

Math.asin() Calculates the arc sine

Math.atan() Calculates the arc tangent

Math.atan2() Calculates the arc tangent of a fraction

Math.cos() Calculates the cosine

Clib.cosh() Calculates the hyperbolic cosine

Math.sin() Calculates the sine

Clib.sinh() Calculates the hyperbolic sine

Math.tan() Calculates the tangent

Clib.tanh() Calculates the hyperbolic tangent

Property Value

Math.E Value of e, the base for natural logarithms

Math.LN10 Value of the natural logarithm of 10
32 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Math Methods
Math.LN2 Value of the natural logarithm of 2

Math.LOG2E Value of the base 2 logarithm of e

Math.LOG10E Value of the base 10 logarithm of e

Math.PI Value of pi

Math.SQRT1_2 Value of the square root of ½

Math.SQRT2 Value of the square root of 2

Property Value
Version 7.5, Rev. B Siebel eScript Language Reference 33

Quick Reference: Methods and Properties

Operating System Interaction Methods
Operating System Interaction Methods
The following is a list of operating system interaction methods.

Method Function

Clib.getenv() Gets the value of an environment string

Clib.putenv() Creates an environment string and assigns a value to it

Clib.system() Passes a command to the command processor
34 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

String and Byte-Array Methods
String and Byte-Array Methods
The following is a list of string and byte-array methods.

Method Function

stringVar.charAt() Returns a character in a string

stringVar.charCodeAt() Returns a unicode character in a string

String.fromCharCode() Creates a string from character codes

stringVar.indexOf() Returns the index of the first substring in a string

stringVar.lastIndexOf() Returns the index of the last substring in a string

Clib.memchr() Searches a byte array

Clib.memcmp() Compares two byte arrays

Clib.memcpy() Copies from one byte array to another

Clib.memmove() Moves from one byte array to another

Clib.memset() Copies from one byte array to another

Clib.rsprintf() Returns a formatted string

stringVar.split() Splits a string into an array of strings

Clib.sprintf() Writes formatted output to a string

Clib.sscanf() Reads and formats input from a string

Clib.strcat() Concatenates strings

Clib.strchr() Searches a string for a character

Clib.strcmp() Makes a case-sensitive comparison of two strings

Clib.strcmpi() Makes a case-insensitive comparison of two strings

Clib.strcpy() Copies one string to another

Clib.strcspn() Searches a string for the first character in a set of characters

Clib.stricmp() Makes a case-insensitive comparison of two strings

Clib.strlen() Gets the length of a string
Version 7.5, Rev. B Siebel eScript Language Reference 35

Quick Reference: Methods and Properties

String and Byte-Array Methods
Clib.strlwr() Converts a string to lowercase

Clib.strncat() Concatenates a portion of one string to another

Clib.strncmp() Makes a case-sensitive comparison of parts of two strings

Clib.strncmpi() Makes a case-insensitive comparison of parts of two strings

Clib.strncpy() Copies a portion of one string to another

Clib.strnicmp() Makes a case-insensitive comparison of parts of two strings

Clib.strpbrk() Searches string for a character from a set of characters

Clib.strrchr() Searches a string for the last occurrence of a character

Clib.strspn() Searches a string for a character not in a set of characters

Clib.strstr() Searches a string for a substring (case-sensitive)

Clib.strstri() Searches a string for a substring (case-insensitive)

stringVar.substring() Retrieves a section of a string

Clib.toascii() Converts to ASCII

Clib.tolower() Converts to lowercase

stringVar.toLowerCase() Converts a string to lowercase

stringVar.toUpperCase() Converts a string to uppercase

Method Function
36 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Miscellaneous Methods
Miscellaneous Methods
The following is a list of miscellaneous methods.

Method Function

Clib.atexit() Sets a function to be called at program exit

Clib.bsearch() Does a binary search for a member of a sorted array

Clib.qsort() Sorts an array; may use comparison function
Version 7.5, Rev. B Siebel eScript Language Reference 37

Quick Reference: Methods and Properties

Miscellaneous Methods
38 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview 2
Siebel eScript is a scripting or programming language that application developers
use to write simple scripts to extend Siebel applications. JavaScript, a popular
scripting language used primarily on Web sites, is its core language.

Siebel eScript is ECMAScript compliant. ECMAScript is the standard
implementation of JavaScript as defined by the ECMA-262 standard.

Siebel eScript provides access to local system calls through two objects, Clib and
SElib, so you can use C-style programming calls to certain parts of the local
operating system. This allows programmers to write files to the local hard disk and
perform other tasks that standard JavaScript cannot.

“Siebel eScript Programming Guidelines” on page 40

“Basic Siebel eScript Concepts” on page 42

“Data Types” on page 50

“Expressions” on page 60

“Operators” on page 61

“Functions” on page 69

“eScript Statements” on page 74
Version 7.5, Rev. B Siebel eScript Language Reference 39

Siebel eScript Language Overview

Siebel eScript Programming Guidelines
Siebel eScript Programming Guidelines
If you have never programmed in JavaScript before, you should start with a general-
purpose JavaScript reference manual. You need to understand how JavaScript
handles objects before you can program using the Siebel eScript.

Declare your variables. Standard ECMAScript does not require that you declare
variables. Variables are declared implicitly as soon as they are used. However, Siebel
eScript requires you to declare variables with the var keyword. Declare variables
used in a module before you use them, because this makes it easier for others to
understand your code and for you to debug the code. The only exception to this
standard is declaring a variable inside a loop controller, which restricts the scope of
that reference to the loop. This prevents the accumulation of unwanted values.

Pay attention to case. Be aware that Siebel eScript is case-sensitive. Therefore, if you
instantiate an object using the variable name SiebelApp, for example, eScript does
not find that object if the code references it as siebelapp or SIEBELAPP instead of
SiebelApp. Case sensitivity also applies to method names and other parts of Siebel
eScript.

Use parentheses () with functions. Siebel eScript functions, like those in standard
JavaScript, require trailing parentheses () even when they have no parameters.

Use four-digit years in dates. Siebel applications and the ECMA-262 Standard handle
two-digit years differently. Siebel applications assume that a two-digit year refers to
the appropriate year between 1950 and 2049. The ECMA-262 Standard assumes that
a two-digit year refers to a year between 1900 and 1999, inclusive. If your scripts do
not enforce four-digit date entry and use four-digit dates, your users may
unintentionally enter the wrong century when performing a query or creating or
updating a record.

(BusComp) methods GetFormattedFieldValue() and SetFormattedFieldValue() are
examples of Y2K sensitivities in Siebel eScript that use two-digit dates. If you use
these methods in a script, users requesting orders for the years from 00 to 02 may
find that they have retrieved orders for the years 1900–1902 (probably an empty
list), instead of 2000–2002, which was what they wanted.
40 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Siebel eScript Programming Guidelines
If you use only four-digit dates in your programs, you will not have Y2K problems
with your scripts. With the preceding example, you could use GetFieldValue() and
SetFieldValue(), which require dates to be specified using the canonical Siebel
format (MM/DD/YYYY), instead of GetFormattedFieldValue() and
SetFormattedFieldValue().

The this object reference. The special object reference this is eScript shorthand for
“the current object.” You should use this in place of references to active business
objects and components. For example, in a business component event handler, you
should use this in place of ActiveBusComp, as shown in the following example:

function BusComp_PreQuery ()
{

this.ActivateField("Account");
this.ActivateField("Account Location");
this.ClearToQuery();
this.SetSortSpec("Account(DESCENDING)," +

" Account Location(DESCENDING)");
this.ExecuteQuery();

return (ContinueOperation);
}

Make effective use of the Switch construct. The Switch construct directs the program
to choose among any number of alternatives you require, based on the value of a
single variable. This is greatly preferable to a series of nested If statements because
it simplifies code maintenance. It also improves performance, because the variable
must be evaluated only once.
Version 7.5, Rev. B Siebel eScript Language Reference 41

Siebel eScript Language Overview

Basic Siebel eScript Concepts
Basic Siebel eScript Concepts
Standard JavaScript, or ECMAScript, is usually part of Web browsers and is
therefore used while users are connected to the Internet. Most people are unaware
that JavaScript is being executed on their computers when they are connected to
various Internet sites.

Siebel eScript is implemented as part of Siebel applications. You do not need a Web
browser to use it. It also contains a number of functions that do not exist in
ECMAScript. These functions give you access to the hard disk and other parts of the
Siebel client workstation or server.

“Case Sensitivity” on page 42

“White-Space Characters” on page 43

“Comments” on page 44

“Expressions, Statements, and Blocks” on page 45

“Identifiers” on page 46

“Variables” on page 47

Case Sensitivity
Siebel eScript is case-sensitive. A variable named testvar is a different variable
than one named TestVar, and both of them can exist in a script at the same time.
Thus, the following code fragment defines two separate variables:

var testvar = 5
var TestVar = "five"

Identifiers in Siebel eScript are case-sensitive. For example, to raise an error from
the server, the TheApplication().RaiseErrorText method could be used:

TheApplication().RaiseErrorText("an error has occurred")

If you change the capitalization to

TheApplication().raiseerrortext("an error has occurred")

the Siebel eScript interpreter generates an error message.
42 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Basic Siebel eScript Concepts
Control statements are also case-sensitive. For example, the statement while is
valid, but the statement While is not.

White-Space Characters
White-space characters (space, tab, carriage-return, and newline) govern the
spacing and placement of text. White space makes code more readable for the users,
but the Siebel eScript interpreter ignores it.

Lines of script end with a carriage-return character, and each line is usually a
separate statement. (Technically, in many editors, lines end with a carriage-return
and linefeed pair, "\r\n".) Because the Siebel eScript interpreter usually sees one
or more white-space characters between identifiers as simply white space, the
following Siebel eScript statements are equivalent to one another:

var x=a+b
var x = a + b
var x = a + b
var x = a+

b

White space separates identifiers into separate entities. For example, ab is one
variable name, and a b is two. Thus, the fragment

var ab = 2

is valid, but

var a b = 2

is not.
Version 7.5, Rev. B Siebel eScript Language Reference 43

Siebel eScript Language Overview

Basic Siebel eScript Concepts
Many programmers use spaces and not tabs, because tab size settings vary from
editor to editor and programmer to programmer. If programmers use only spaces,
the format of a script appears the same on every editor.

CAUTION: Siebel eScript treats white space in string literals differently from other
white space. In particular, placing a line break within a string causes the Siebel
eScript interpreter to treat the two lines as separate statements, both of which
contain errors because they are incomplete. To avoid this problem, either keep
string literals on a single line or create separate strings and associate them with the
string concatenation operator.

For example:

var Gettysburg = "Fourscore and seven years ago, " +
"our fathers brought forth on this continent a " +
"new nation."

For more information about string concatenation, read “String Concatenation
Operator” on page 67.

Comments
A comment is text in a script to be read by users and not by the Siebel eScript
interpreter, which skips over comments. Comments that explain lines of code help
users understand the purpose and program flow of a program, making it easier to
alter code.

There are two formats for comments, end of line comments and block comments.
End of line comments begin with two slash characters, “//”. Any text after two
consecutive slash characters is ignored to the end of the current line. The Siebel
eScript interpreter begins interpreting text as code on the next line.

Block comments are enclosed within a beginning block comment, “/*”, and an end
of block comment, “*/”. Any text between these markers is a comment, even if the
comment extends over multiple lines. Block comments may not be nested within
block comments, but end of line comments can exist within block comments.

The following code fragments are examples of valid comments:
44 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Basic Siebel eScript Concepts
// this is an end of line comment

/* this is a block comment.
This is one big comment block.
// this comment is okay inside the block.
The interpreter ignores it.
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "This line is not a comment.";

Expressions, Statements, and Blocks
An expression or statement is any sequence of code that performs a computation or
an action, such as the code var TestSum = 4 + 3, which computes a sum and
assigns it to a variable. Siebel eScript code is executed one statement at a time in
the order in which it is read.

Many programmers put semicolons at the end of statements, although they are not
required. Each statement is usually written on a separate line, with or without
semicolons, to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, ({}), which
indicate that the enclosed individual statements are a group and are to be treated
as one statement. A block can be used anywhere that a single statement can.

A while statement causes the statement after it to be executed in a loop. If multiple
statements are enclosed within curly braces, they are treated as one statement and
are executed in the while loop. The following fragment illustrates:

while(ThereAreUncalledNamesOnTheList() == True)
{

var name = GetNameFromTheList();
CallthePerson(name);
LeaveTheMessage();

}

The three lines after the while statement are treated as a unit. If the braces were
omitted, the while loop would apply only to the first line. With the braces, the script
goes through the lines until everyone on the list has been called. Without the
braces, the script goes through the names on the list, but only the last one is called.
Version 7.5, Rev. B Siebel eScript Language Reference 45

Siebel eScript Language Overview

Basic Siebel eScript Concepts
Statements within blocks are often indented for easier reading.

Identifiers
Identifiers are merely names for variables and functions. Programmers must know
the names of built-in variables and functions to use them in scripts and must know
some rules about identifiers to define their own variables and functions.

Rules for Identifiers
Siebel eScript identifiers follow these rules:

■ Identifiers may use only uppercase or lowercase ASCII letters, digits, the
underscore (_), and the dollar sign ($). They may use only characters from the
following sets:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
_$

■ Identifiers may not use any of the following characters:

+<>&|=!*/%^~?:{};()[].‘"'#,

■ Identifiers must begin with a letter, underscore, or dollar sign, but they may have
digits anywhere else.

■ Identifiers may not have white space in them, because white space separates
identifiers for the Siebel eScript interpreter.

■ Identifiers have no built-in length restrictions, so you can make them as long as
necessary.

The following identifiers, variables, and functions are valid:

George
Martha7436
annualReport
George_and_Martha_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
_Divide$All()
46 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Basic Siebel eScript Concepts
The following identifiers, variables, and functions are not valid:

1george
2nancy
this&that
Martha and Nancy
ratsAndCats?
=Total()
(Minus)()
Add Both Figures()

Prohibited Identifiers
The following words have special meaning for the Siebel eScript interpreter and
cannot be used as identifiers:

Variables
A variable is an identifier to which data may be assigned. Variables are used to store
and represent information in a script.

Variables may change their values, but literals may not. For example, if you want to
display a name literally, you must use something like the following fragment
multiple times:

TheApplication().RaiseErrorText("Aloysius Gloucestershire
Merkowitzky")

But you could use a variable to make this task easier, as in the following:

var Name = "Aloysius Gloucestershire Merkowitzy"
TheApplication().RaiseErrorText(Name)

The preceding method allows you to use shorter lines of code for display and to use
the same lines of code repeatedly by changing the contents of the variable Name.

break case catch class const continue debugger

default delete do else enum export extends

false finally for function if import in

new null return super switch this throw

true try typeof while with var void
Version 7.5, Rev. B Siebel eScript Language Reference 47

Siebel eScript Language Overview

Basic Siebel eScript Concepts
Variable Scope
Variables in Siebel eScript may be either global or local. Global variables can be
accessed and modified from any function associated with the Siebel object for
which the variables have been declared. Local variables can be accessed only
within the functions in which they are created, because their scope is local to that
function.

Variables can also be shared across modules. A variable declared outside a function
has scope global to the module. If you declare a local variable with the same name
as a module variable, the module variable is not accessible.

NOTE: Siebel eScript variables declared outside of a particular function are global
only to their object (the module in which they are declared), not across every object
in the application.

There are no absolute rules that indicate when global or local variables should be
used. It is generally easier to understand how local variables are used in a single
function than how global variables are used throughout an entire module.
Therefore, local variables facilitate modular code that is easier to debug and to alter
and develop over time. Local variables also use fewer resources.

Variable Declaration
To declare a variable, use the var keyword. To make it local, declare it in a function.

var perfectNumber;

A value may be assigned to a variable when it is declared:

var perfectNumber = 28;

In the following example, a is global to its object because it was declared outside of
a function. The variables b, c, and d are local because they are defined within
functions.

var a = 1;
function myFunction()
{

var b = 1;
var d = 3;
someFunction(d);
48 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Basic Siebel eScript Concepts
}

function someFunction(e)
{

var c = 2
...

}

The variable c may not be used in the myFunction() function, because it is has
not been defined within the scope of that function. The variable d is used in the
myFunction() function and is explicitly passed as an argument to
someFunction() as the parameter e.

The following lines show which variables are available to the two functions:

myfunction(): a, b, d
someFunction(): a, c, e
Version 7.5, Rev. B Siebel eScript Language Reference 49

Siebel eScript Language Overview

Data Types
Data Types
Data types in Siebel eScript can be classified into three groupings: primitive,
composite, and special. In a script, data can be represented by literals or variables.
The following lines illustrate variables and literals:

var TestVar = 14;
var aString = "test string";

The variable TestVar is assigned the literal 14, and the variable aString is assigned
the literal test string. After these assignments of literal values to variables, the
variables can be used anywhere in a script where the literal values can be used.

Data types need to be understood in terms of their literal representations in a script
and of their characteristics as variables.

Data, in literal or variable form, is assigned to a variable with an assignment
operator, which is often merely an equal sign, “=”, as the following lines illustrate:

var happyVariable = 7;
var joyfulVariable = "free chocolate";
var theWorldIsFlat = True;
var happyToo = happyVariable;

The first time a variable is used, its type is determined by the Siebel eScript
interpreter, and the type remains until a later assignment changes the type
automatically. The preceding example creates three different types of variables. The
first is a number, the second is a string, and the third is a Boolean variable.

Because Siebel eScript automatically converts variables from one type to another
when needed, programmers normally do not have to worry about type conversions
as they do in strongly typed languages, such as C.

■ “Primitive Data Types” on page 51

■ “Composite Data Types” on page 54

■ “Special Data Types” on page 56

■ “Number Constants” on page 57

■ “Automatic Type Conversion” on page 57

■ “Properties and Methods of Basic Data Types” on page 58
50 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Data Types
Primitive Data Types
Variables that have primitive data types pass their data by value. If an argument is
passed by value, the variable used for that argument retains its value when the
subroutine or function returns to the routine that called it (the caller). The following
fragment illustrates:

var a = "abc";
var b = ReturnValue(a);

function ReturnValue(c)
{

return c;
}

After "abc" is assigned to variable a, two copies of the string "abc" exist, the
original literal and the copy in the variable a. While the function ReturnValue is
active, the parameter or variable c has a copy, and three copies of the string "abc"
exist. If c were to be changed in such a function, variable a, which was passed as
an argument to the function, would remain unchanged.

After the function ReturnValue is finished, a copy of "abc" is in the variable b, but
the copy in the variable c in the function is gone because the function is finished.
During the execution of the fragment, as many as three copies of "abc" exist in
memory at one time.

The primitive data types are number, Boolean, and string.

Number
The number data type includes integers and floating-point numbers, which can be
represented in one of several ways.

NOTE: Numbers that contain characters other than a decimal point are treated as
string values. For example, eScript treats the number 100,000 (notice the comma)
as a string.
Version 7.5, Rev. B Siebel eScript Language Reference 51

Siebel eScript Language Overview

Data Types
Integer
Integers are whole numbers. Integer constants and literals can be expressed in
decimal, hexadecimal, or octal notation. Decimal constants and literals are
expressed by using the decimal representation. See the following two sections to
learn how to express hexadecimal and octal integers.

Hexadecimal
Hexadecimal notation uses base 16 digits from the sets of 0–9 and A–F or a–f. These
digits are preceded by 0x. Case sensitivity does not apply to hexadecimal notation
in Siebel eScript. Examples are:

0x1, 0x01, 0x100, 0x1F, 0x1f, 0xABCD
var a = 0x1b2E;

The decimal equivalents are:

1, 1, 256, 31, 31, 43981
var a = 6958

Octal
Octal notation uses base 8 digits from the set of 0-7. These digits are preceded by a
zero. Examples are:

00, 05, 077
var a = 0143;

The decimal equivalents are:

0, 5, 63
var a = 99

Floating Point
Floating-point numbers are numbers with fractional parts that are indicated by
decimal notation, such as 10.33. Floating-point numbers are often referred to as
floats.

Decimal
Decimal floats use the same digits as decimal integers but use a period to indicate
a fractional part. Examples are:

0.32, 1.44, 99.44
var a = 100.55 + .45;
52 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Data Types
Scientific
Scientists often use scientific notation to express very large or small numbers. It
uses the decimal digits in conjunction with exponential notation, represented by e
or E. Scientific notation is also referred to as exponential notation. Examples are:

4.087e2, 4.087E2, 4.087e+2, 4.087E-2
var a = 5.321e33 + 9.333e-2;

The decimal equivalents are:

408.7, 408.7, 408.7, 0.04087
var a = 53210000000000000000000000000000 + 0.09333

Boolean
Boolean variables evaluate to either false or true. Because Siebel eScript
automatically converts values when appropriate, when a Boolean variable is used
in a numeric context, its value is converted to 0 if it is false, or 1 if it is true. A script
is more precise when it uses the actual Siebel eScript values, false and true, but it
works using the concepts of zero and nonzero.

String
A string is a series of characters linked together. A string is written using a pair of
either double or single quotation marks, for example:

"I am a string"
'so am I'
'me too'
"344"

The string "344" is different from the number 344. The first is an array of
characters, and the second is a value that may be used in numerical calculations.

Siebel eScript automatically converts strings to numbers and numbers to strings,
depending on the context. If a number is used in a string context, it is converted to
a string. If a string is used in a number context, it is converted to a numeric value.
Automatic type conversion is discussed more fully in “Automatic Type Conversion”
on page 57.
Version 7.5, Rev. B Siebel eScript Language Reference 53

Siebel eScript Language Overview

Data Types
Although strings are classified as a primitive data type, they are actually a hybrid
type that shares characteristics of primitive and composite data types. A string may
be thought of as an array (a composite data type) of characters, each element of
which contains one character. For an explanation of arrays, read “Array” on
page 55.

Composite Data Types
Although primitive data types are passed by value, composite types are passed by
reference. If an argument is passed by reference, the variable’s value may be
changed for the calling procedure. When a composite type is assigned to a variable
or passed to a parameter, only a reference that points to its data is passed, as in the
following fragment:

var AnObj = new Object;
AnObj.name = "Joe";
AnObj.old = ReturnName(AnObj)

function ReturnName(CurObj)
{
return CurObj.name
}

After the object AnObj is created, the string "Joe" is assigned to the property
AnObj.name. The string is assigned by value because a property is a variable within
an object. Two copies of the string "Joe" exist.

When AnObj is passed to the function ReturnName(), it is passed by reference.
CurObj receives a reference to the object, but does not receive a copy of the object.

With this reference, CurObj can access every property and method of AnObj, which
was passed to it. If CurObj.name were to be changed while the function was
executing, then AnObj.name would be changed at the same time. When AnObj.old
receives the return from the function, the return is assigned by value, and a copy of
the string "Joe" is transferred to the property.

Thus, AnObj holds two copies of the string "Joe": one in the property .name and
one in the .old property. Three total copies of "Joe" exist, including the original
string literal.

Two commonly used composite data types are Object and Array.
54 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Data Types
Object
An object is a compound data type that consists of one or more pieces of data of
any type grouped together in an object. Data that are part of an object are called
properties of the object.

The object data type is similar to the object data type in Visual Basic and the
structure data type in C. The object data type also allows functions, called methods,
to be used as object properties.

In Siebel eScript, functions are considered as variables. It is best to think of objects
as having methods, which are functions, and properties, which are variables and
constants.

Array
An array is a series of data stored in a variable that is accessed using index numbers
that indicate particular data. The following fragments illustrate the storage of the
data in separate variables or in one array variable:

var Test0 = "one";
var Test1 = "two";
var Test2 = "three";

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

After either fragment is executed, the three strings are stored for later use. In the
first fragment, three separate variables contain the three separate strings. These
variables must be used separately.

In the second fragment, one variable holds the three strings. This array variable can
be used as one unit, and the strings can also be accessed individually, by specifying
the array subscript of the element containing the string to be used.

Arrays and objects use grouping similarly. Both are objects in Siebel eScript, but
they have different notations for accessing properties. While arrays use subscripts,
objects use property names or methods. In practice, arrays should be regarded as a
unique data type.
Version 7.5, Rev. B Siebel eScript Language Reference 55

Siebel eScript Language Overview

Data Types
Arrays and their characteristics are discussed more fully in “Array Objects” on
page 97.

Special Data Types
This section discusses the undefined, null, and NaN (not a number) data types.

Undefined
If a variable is created or accessed with nothing assigned to it, it is of type
undefined. An undefined variable merely occupies space until a value is assigned
to it. When a variable is assigned a value, it is assigned a type according to the value
assigned.

Although variables may be of type undefined, there is no literal representation for
undefined. Consider the following invalid fragment:

var test;
if (typeof test == "undefined")
TheApplication().RaiseErrorText("test is undefined");

After var test is declared, it is undefined because no value has been assigned to it.
However the test, test == undefined, is invalid because there is no way to
represent undefined literally.

Null
Null is a special data type that indicates that a variable is empty, and this condition
is different from undefined. A null variable holds no value, although it might have
previously held one.

The null type is represented literally by the identifier, null. Because Siebel eScript
automatically converts data types, null is both useful and versatile.

Because null has a literal representation, an assignment such as the following is
valid:

var test = null;

Any variable that has been assigned a value of null can be compared to the null
literal.
56 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Data Types
NaN
The NaN type means “not a number,” and NaN is an abbreviation for the phrase.
However, NaN does not have a literal representation. To test for NaN, the function,
isNaN(), must be used, as illustrated in the following fragment:

var Test = "a string";
if (isNaN(parseInt(Test)))
TheApplication().RaiseErrorText("Test is Not a Number");

When the parseInt() function tries to parse the string "a string" into an integer,
it returns NaN, because "a string" does not represent a number as the string "22"
does.

Number Constants
Several numeric constants can be accessed as properties of the Number object,
though they do not have a literal representation.

Automatic Type Conversion
Conversion occurs automatically during concatenation involving both strings and
numbers, and is subject to the following rules:

■ Subtracting a string from a number or a number from a string converts the string
to a number and performs subtraction on the two values.

Constant Value Description

Number.MAX_VALUE 1.7976931348623157e+308 Largest number
(positive)

Number.MIN_VALUE 2.2250738585072014e-308 Smallest positive
nonzero value

Number.NaN NaN Not a number

Number.POSITIVE_INFINITY Infinity Number greater than
MAX_VALUE

Number.NEGATIVE_INFINITY -Infinity Number less than
MIN_VALUE
Version 7.5, Rev. B Siebel eScript Language Reference 57

Siebel eScript Language Overview

Data Types
■ Adding a string to a number converts the number to a string and concatenates
the two strings.

■ Strings always convert to a base 10 number and must not contain any characters
other than digits. The string "110n" does not convert to a number because the
n character is meaningless as part of a number in Siebel eScript.

The following examples illustrate these automatic conversions:

"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4 " // a number is converted to a string
4 + "4" == "44 "// a number is converted to a string
4 + 4 == 8 // two numbers are added
23 - "17" == 6 // a string is converted to a number

However, to make sure that your code does not break if the conversion is not
performed, use one of the casting functions to perform the appropriate conversion.
(For details on these functions, read “Conversion or Casting Functions” on
page 250.) The following example accepts string input and converts it to numeric
to perform arithmetic:

var n = "55";
var d = "11";
divide it by:");
var division = Clib.div(ToNumber(n), ToNumber(d));

To specify more stringent conversions, use the parseFloat() Method of the global
object. Siebel eScript has many global functions to cast data as a specific type. Some
of these are not part of the ECMAScript standard. Read “parseFloat() Method” on
page 260.

NOTE: There are circumstances under which conversion is not performed
automatically. If you encounter such a circumstance, you must use one of the
casting functions to get the desired result. For an explanation of casting functions,
read “Conversion or Casting Functions” on page 250.

Properties and Methods of Basic Data Types
The basic data types, such as number and string, have properties and methods that
may be used with any variable of that type. Any string variable may use any string
method.
58 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Data Types
The properties and methods of the basic data types are retrieved in the same way
as objects. They are commonly used internally by the Siebel eScript interpreter, but
you may use them if you choose. If you have a numeric variable called number and
you want to convert it to a string, you can use the .toString() method, as illustrated
in the following fragment:

var number = 5
var s = number.toString()

After this fragment executes, the variable number contains the number 5 and the
variable s contains the string "5".

The following two methods are common to variables.

toString()
This method returns the value of a variable expressed as a string.

valueOf()
This method returns the value of a variable.
Version 7.5, Rev. B Siebel eScript Language Reference 59

Siebel eScript Language Overview

Expressions
Expressions
An expression is a collection of two or more terms that perform a mathematical or
logical operation. The terms are usually either variables or functions that are
combined with an operator to evaluate to a string or numeric result. You use
expressions to perform calculations, manipulate variables, or concatenate strings.

Expressions are evaluated according to order of precedence. Use parentheses to
override the default order of precedence.

The order of precedence (from high to low) for the operators is:

■ Arithmetic operators

■ Comparison operators

■ Logical operators
60 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Operators
Operators
■ “Mathematical Operators” on page 61

■ “Bit Operators” on page 63

■ “Logical Operators and Conditional Expressions” on page 64

■ “Typeof Operator” on page 66

■ “Conditional Operator” on page 67

■ “String Concatenation Operator” on page 67

Mathematical Operators
Mathematical operators are used to make calculations using mathematical data. The
following sections illustrate the mathematical operators in Siebel eScript.

Basic Arithmetic
The arithmetic operators in Siebel eScript are standard.

The following examples use variables and arithmetic operators:

var i;
i = 2; //i is now 2
i = i + 3; //i is now 5, (2 + 3)
i = i - 3; //i is now 2, (5 - 3)
i = i * 5; //i is now 10, (2 * 5)
i = i / 3; //i is now 3, (10 / 3) (the remainder is ignored)
i = 10; //i is now 10
i = i % 3; //i is now 1, (10 mod 3)

= assignment assigns a value to a variable

+ addition adds two numbers

- subtraction subtracts a number from another

* multiplication multiplies two numbers

/ division divides a number by another

% modulo returns a remainder after division
Version 7.5, Rev. B Siebel eScript Language Reference 61

Siebel eScript Language Overview

Operators
Expressions may be grouped to affect the sequence of processing. Multiplications
and divisions are calculated for an expression before additions and subtractions
unless parentheses are used to override the normal order. Expressions inside
parentheses are processed before other calculations.

In the following examples, the information in the remarks represents intermediate
forms of the example calculations.

Notice that, because of the order of precedence,

4 * 7 - 5 * 3; //28 - 15 = 13

has the same meaning as

(4 * 7) - (5 * 3); //28 - 15 = 13/

but has a different meaning from

4 * (7 - 5) * 3; //4 * 2 * 3 = 24

which is also different from

4 * (7 - (5 * 3)); //4 * -8 = -32

The use of parentheses is recommended whenever there may be confusion about
how the expression is to be evaluated, even when parentheses are not required.

Assignment Arithmetic
Each of the operators shown in the previous section can be combined with the
assignment operator, =, as a shortcut for performing operations. Such assignments
use the value to the right of the assignment operator to perform an operation on the
value to the left. The result of the operation is then assigned to the value on the left.

= assignment assigns a value to a variable

+= assign addition adds a value to a variable

-= assign subtraction subtracts a value from a variable

*= assign multiplication multiplies a variable by a value

/= assign division divides a variable by a value

%= assign remainder returns a remainder after division
62 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Operators
The following lines are examples using assignment arithmetic:

var i;
i = 2; //i is now 2
i += 3; //i is now 5 (2 + 3), same as i = i + 3
i -= 3; //i is now 2 (5 - 3), same as i = i _ 3
i *= 5; //i is now 10 (2 * 5), same as i = i * 5
i /= 3; //i is now 3 (10 / 3), same as i = i / 3
i = 10; //i is now 10
i %= 3; //i is now 1, (10 mod 3), same as i = i % 3

Auto-Increment (++) and Auto-Decrement (--)
To add 1 to a variable, use the auto-increment operator, ++. To subtract 1, use the
auto-decrement, operator, --. These operators add or subtract 1 from the value to
which they are applied. Thus, i++ is shorthand for i += 1, which is shorthand for
i = i + 1.

The auto-increment and auto-decrement operators can be used before their
variables, as a prefix operator, or after, as a suffix operator. If they are used before
a variable, the variable is altered before it is used in a statement, and if used after,
the variable is altered after it is used in the statement.

The following lines demonstrate prefix and postfix operations:

Bit Operators
Siebel eScript contains many operators for operating directly on the bits in a byte or
an integer. Bit operations require knowledge of bits, bytes, integers, binary
numbers, and hexadecimal numbers. Not every programmer needs to use bit
operators.

i = 4; //i is 4

j = ++i; //j is 5, i is 5 (i was incremented before use)

j = i++; //j is 5, i is 6 (i was incremented after use)

j = --i; //j is 5, i is 5 (i was decremented before use)

j = i--; //j is 5, i is 4 (i was decremented after use)

i++; //i is 5 (i was incremented)
Version 7.5, Rev. B Siebel eScript Language Reference 63

Siebel eScript Language Overview

Operators
Bit operators available in Siebel eScript are:

Logical Operators and Conditional Expressions
Logical operators compare two values and evaluate whether the resulting
expression is false or true. A variable or any other expression may be false or true.
An expression that performs a comparison is called a conditional expression.

Logical operators are used to make decisions about which statements in a script are
executed, based on how a conditional expression evaluates.

<< shift left i = i << 2

<<= assignment shift left i <<= 2

>> shift right i = i >> 2

>>= assignment shift right i >>= 2

>>> shift left with zeros i = i >>> 2

>>>= assignment shift left with zeros i >>>= 2

& bitwise and i = i & 1

&= assignment bitwise and i &= 1

| bitwise or i = i | 1

|= assignment bitwise or i |= 1

^ bitwise xor, exclusive or i = i ^ 1

^= assignment bitwise xor, exclusive or i ^= 1

~ Bitwise not, complement i = ~i
64 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Operators
The logical operators available in Siebel eScript are:

For example, if you were designing a simple guessing game, you might instruct the
computer to select a number between 1 and 100, and you would try to guess what
it is. The computer tells you whether you are right and whether your guess is higher
or lower than the target number.

! not Reverse of an expression. If (a+b) is true, then
!(a+b) is false.

&& and True if, and only if, both expressions are true.
Because both expressions must be true for the
statement as a whole to be true, if the first
expression is false, there is no need to evaluate
the second expression, because the whole
expression is false.

|| or True if either expression is true. Because only
one of the expressions in the or statement needs
to be true for the expression to evaluate as true,
if the first expression evaluates as true, the Siebel
eScript interpreter returns true and does not
evaluate the second.

== equality True if the values are equal, otherwise false. Do
not confuse the equality operator, ==, with the
assignment operator, =.

!= inequality True if the values are not equal, otherwise false.

< less than The expression a < b is true if a is less than b.

> greater than The expression a > b is true if a is greater
than b.

<= less than or equal to The expression a <= b is true if a is less than or
equal to b.

>= greater than or equal to The expression a >= b is true if a is greater
than b.
Version 7.5, Rev. B Siebel eScript Language Reference 65

Siebel eScript Language Overview

Operators
This procedure uses the if statement, which is introduced in the next section. If the
conditional expression in the parenthesis following an if statement is true, the
statement block following the if statement is executed. If the conditional
expression is false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block.

The script implementing this game might have a structure similar to the one that
follows, in which GetTheGuess() is a function that obtains your guess.

var guess = GetTheGuess(); //get the user input
target_number = 37;
if (guess > target_number)
{

TheApplication().RaiseErrorText('Guess is too high.');
}
if (guess < target_number)
{

TheApplication().RaiseErrorText('guess is too low.');
}
if (guess == target_number);
{

TheApplication().RaiseErrorText('You guessed the number!');
}

This example is simple, but it illustrates how logical operators can be used to make
decisions in Siebel eScript.

CAUTION: Remember that the assignment operator, =, is different from the equality
operator, ==. If you use the assignment operator when you want to test for
equality, your script fails because the Siebel eScript interpreter cannot differentiate
between operators by context. This is a common mistake, even among experienced
programmers.

Typeof Operator
The typeof operator provides a way to determine and to test the data type of a
variable and may use either of the following notations (with or without
parentheses):

var result = typeof variable
var result = typeof(variable)
66 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Operators
After either line, the variable result is set to a string that represents the variable's
type: "undefined", "boolean", "string", "object", "number", "function",
or "buffer".

Conditional Operator
The conditional operator, a question mark, provides a shorthand method for writing
else statements. Statements using the conditional operator are more difficult to
read than conventional if statements, and so they are used when the expressions
in the if statements are brief.

The syntax is:

test_expression ? expression_if_true : expression_if_false

First, test_expression is evaluated. If test_expression is true, then expression_if_true
is evaluated, and the value of the entire expression is replaced by the value of
expression_if_true. If test_expression is false, then expression_if_false is evaluated,
and the value of the entire expression is that of expression_if_false.

The following fragments illustrate the use of the conditional operator:

foo = (5 < 6) ? 100 : 200; \

In the previous statement foo is set to 100, because the expression is true.

TheApplication().RaiseErrorText("Name is " + ((null==name) ?
"unknown" : name));

In the previous statement, the message box displays "Name is unknown" if the
name variable has a null value. If it does not have a null value, the message box
displays "Name is " plus the contents of the variable.

String Concatenation Operator
You can use the + operator to join strings together, or concatenate them. The
following line:

var proverb = "A rolling stone " + "gathers no moss."
Version 7.5, Rev. B Siebel eScript Language Reference 67

Siebel eScript Language Overview

Operators
creates the variable proverb and assigns it the string "A rolling stone gathers
no moss." If you concatenate a string with a number, the number is converted to
a string.

var newstring = 4 + "get it";

This bit of code creates newstring as a string variable and assigns it the string
"4get it".
68 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Functions
Functions
A function is an independent section of code that receives information from a
program and performs some action with it. Functions are named using the same
conventions as variables.

Once a function has been written, you do not have to think again about how to
perform the operations in it. When you call the function, it handles the work for
you. You only need to know what information the function needs to receive—the
parameters—and whether it returns a value to the statement that called it.

TheApplication().RaiseErrorText is an example of a function that provides a way to
display formatted text in the event of an error. It receives a string from the function
that called it, displays the string in an alert box on the screen, and terminates the
script. TheApplication().RaiseErrorText is a void function, which means that it has
no return value.

In Siebel eScript, functions are considered a data type. They evaluate the function’s
return value. You can use a function anywhere you can use a variable. You can use
any valid variable name as a function name. Use descriptive function names that
help you keep track of what the functions do.

Two rules set functions apart from the other variable types. Instead of being
declared with the var keyword, functions are declared with the function keyword,
and functions have the function operator, a pair of parentheses, following their
names. Data to be passed to a function is enclosed within these parentheses.

Several sets of built-in functions are included as part of the Siebel eScript
interpreter. These functions are described in this manual. They are internal to the
interpreter and may be used at any time.

■ “Function Scope” on page 70

■ “Passing Variables to Functions” on page 70

■ “The Function Arguments[] Property” on page 71

■ “Function Recursion” on page 71

■ “Error Checking for Functions” on page 73
Version 7.5, Rev. B Siebel eScript Language Reference 69

Siebel eScript Language Overview

Functions
Function Scope
Functions are global in scope and can be called from anywhere in a script. Think of
functions as methods of the global object. A function may not be declared within
another function so that its scope is merely within a certain function or section of
a script.

The following two code fragments perform the same function. The first calls a
function, SumTwo(), as a function, and the second calls SumTwo() as a method of
the global object.

// fragment one
function SumTwo(a, b)
{

return a + b
}

TheApplication().RaiseErrorText(SumTwo(3, 4))

// fragment two
function SumTwo(a, b)
{

return a + b
}

TheApplication().RaiseErrorText(global.SumTwo(3, 4))

In the fragment that defines and uses the function SumTwo(), the literals, 3 and 4,
are passed as arguments to the function SumTwo() which has corresponding
parameters, a and b. The parameters, a and b, are variables for the function that
hold the literal values that were passed to the function.

Passing Variables to Functions
Siebel eScript uses different methods to pass variables to functions, depending on
the type of variable being passed. Such distinctions make sure that information gets
to functions in the most logical way.

Primitive types such as strings, numbers, and Booleans are passed by value. The
values of these variables are passed to a function. If a function changes one of these
variables, the changes are not visible outside of the function in which the change
took place.
70 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Functions
Composite types such as objects and arrays are passed by reference. Instead of
passing the value of the object or the values of each property, a reference to the
object is passed. The reference indicates where the values of an object's properties
are stored in a computer's memory. If you make a change in a property of an object
passed by reference, that change is reflected throughout the calling routine.

The return statement passes a value back to the function that called it. Any code in
a function following the execution of a return statement is not executed. For details,
read “return Statement” on page 247.

The Function Arguments[] Property
The arguments[] property is an array of the arguments passed to a function. The
first variable passed to a function is referred to as arguments[0], the second as
arguments[1], and so forth.

This property allows you to have functions with an indefinite number of
parameters. Here is an example of a function that takes a variable number of
arguments and returns the sum:

function SumAll()
{

var total = 0;
for (var ssk = 0; ssk < SumAll.arguments.length; ssk++)

{
total += SumAll.arguments[ssk];

}
return total;

}

NOTE: The arguments[] property for a particular function can be accessed only from
within that function.

Function Recursion
A recursive function is a function that calls itself or that calls another function that
calls the first function. Recursion is permitted in Siebel eScript. Each call to a
function is independent of any other call to that function. However, recursion has
limits. If a function calls itself too many times, a script runs out of memory and
aborts.
Version 7.5, Rev. B Siebel eScript Language Reference 71

Siebel eScript Language Overview

Functions
Remember that a function can call itself if necessary. For example, the following
function, factor(), factors a number. Factoring is a good candidate for recursion
because it is a repetitive process where the result of one factor is then itself factored
according to the same rules.

function factor(i) //recursive function to print factors of i,
{// and return the number of factors in i

if (2 <= i)
{

for (var test = 2; test <= i; test++)
{

if (0 == (i % test))
{
// found a factor, so print this factor then call
// factor() recursively to find the next factor

return(1 + factor(i/test));
}
}
}
// if this point was reached, then factor not found

return(0);
}

72 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Functions
Error Checking for Functions
Some functions return a special value if they fail to do what they are supposed to
do. For example, the Clib.fopen() method opens or creates a file for a script to read
from or write to. If the computer is unable to open a file, the Clib.fopen() method
returns null.

If you try to read from or write to a file that was not properly opened, you receive
errors. To prevent these errors, make sure that Clib.fopen() does not return null
when it tries to open a file. Instead of calling Clib.fopen() as follows:

var fp = Clib.fopen("myfile.txt", "r");

check to make sure that null is not returned:

var fp = Clib.fopen("myfile.txt", "r");

if (null == fp)
{

TheApplication().RaiseErrorText("Clib.fopen returned null");
}

You may abort a script in such a case, but you then know why the script failed. Read
“The Clib Object” on page 131.
Version 7.5, Rev. B Siebel eScript Language Reference 73

Siebel eScript Language Overview

eScript Statements
eScript Statements
This section describes statements that allow your program to make decisions and
to direct the flow based on those decisions.

■ “break Statement” on page 74

■ “continue Statement” on page 75

■ “do...while Statement” on page 76

■ “for Statement” on page 77

■ “for...in Statement” on page 78

■ “goto Statement” on page 79

■ “if Statement” on page 80

■ “switch Statement” on page 83

■ “throw Statement” on page 84

■ “try Statement” on page 85

■ “while Statement” on page 88

■ “with Statement” on page 89

break Statement
The break statement terminates the innermost loop of for, while, or do statements.
It is also used to control the flow within switch statements.

Syntax A break;

Syntax B break label;

Placeholder Description

label The name of the label indicating where execution is to resume
74 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
Returns Not applicable

Usage The break statement is legal only in loops or switch statements. In a loop, it is used
to terminate the loop prematurely when the flow of the program eliminates the need
to continue the loop. In the switch statement, it is used to prevent execution of cases
following the selected case and to exit from the switch block.

When used within nested loops, break terminates execution only of the innermost
loop in which it appears.

A label may be used to indicate the beginning of a specific loop when the break
statement appears within a nested loop to terminate execution of a loop other than
the innermost loop. A label consists of a legal identifier, followed by a colon, placed
at the left margin of the work area.

Example For an example, read “switch Statement” on page 83.

See Also “do...while Statement” on page 76, “for Statement” on page 77, “if Statement” on
page 80, and “while Statement” on page 88

continue Statement
The continue statement starts a new iteration of a loop.

Syntax A continue;

Syntax B continue label;

Returns Not applicable

Usage The continue statement ends the current iteration of a loop and begins the next. Any
conditional expressions are reevaluated before the loop reiterates.

Placeholder Description

label The name of the label indicating where execution is to resume
Version 7.5, Rev. B Siebel eScript Language Reference 75

Siebel eScript Language Overview

eScript Statements
A label may be used to indicate the point at which execution should continue. A
label consists of a legal identifier, followed by a colon, placed at the left margin of
the work area.

See Also “do...while Statement” on page 76, “for Statement” on page 77, “goto Statement”
on page 79, and “while Statement” on page 88

do...while Statement
The do...while statement processes a block of statements until a specified condition
is met.

Syntax do

{

statement_block;

} while (condition)

Returns Not applicable

Usage The do statement processes the statement_block repeatedly until condition is met.
Because condition appears at the end of the loop, condition is tested for only after
the loop executes. For this reason, a do...while loop is always executed at least once
before condition is checked.

Example This example increments a value and prints the new value to the screen until the
value reaches 100.

var value = 0;
do
{

Placeholder Description

statement_block One or more statements to be executed within the loop

condition An expression indicating the circumstances under which the loop
should be repeated
76 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
value++;
Clib.sprintf(value);

} while(value < 100);

See Also “for Statement” on page 77 and “while Statement” on page 88

for Statement
The for statement repeats a series of statements a fixed number of times.

Syntax for ([var] counter = start; condition; increment)

{

statement_block;

}

Returns Not applicable

Usage The counter variable must be declared with var if it has not already been declared.
If it is declared in the for statement, its scope is local to the loop.

First, the expression counter = start is evaluated. Then condition is evaluated.
If condition is true or if there is no conditional expression, the statement is executed.
Then the increment is executed and condition is reevaluated, which begins the loop
again. If the expression is false, the statement is not executed, and the program
continues with the next line of code after the statement.

Placeholder Description

counter A numeric variable for the loop counter

start The initial value of the counter

condition The condition at which the loop should end

increment The amount by which the counter is changed each time the loop is run

statement_bloc
k

The statements or methods to be executed
Version 7.5, Rev. B Siebel eScript Language Reference 77

Siebel eScript Language Overview

eScript Statements
Within the loop, the value of counter should not be changed, because changing the
counter makes your script difficult to maintain and debug.

A for statement can control multiple nested loops. The various counter variables
and their increments must be separated by commas. For example:

for (var i = 1, var j = 3; i < 10; i++, j++)
var result = i * j;

Example For an example of the for statement, read “eval() Method” on page 257.

See Also “do...while Statement” on page 76 and “while Statement” on page 88

for...in Statement
The for...in statement loops through the properties of an object.

Syntax for (propertyVar in object)

{

statement_block;

}

Returns Not applicable

Usage NOTE: An object must have at least one defined property or it cannot be used in a
for...in statement.

Placeholder Description

object An object previously defined in the script

propertyVar A variable that iterates over every property of the object
78 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
When using the for … in statement in this way, the statement block executes one
time for every property of the object. For each iteration of the loop, the variable
propertyVar contains the name of one of the properties of object and may be
accessed with a statement of the form object[propertyVar].

NOTE: Properties that have been marked with the DONT_ENUM attribute are not
accessible to a for...in statement.

Example This example creates an object called obj, and then uses the for...in statement to
read the object’s properties. The result appears in the accompanying illustration.

function PropBtn_Click ()
{

var obj = new Object;
var propName;
var msgtext = "";

obj.number = 32767;
obj.string = "Welcome to my world.";
obj.date = "April 25, 1945";

for (propName in obj)
{

msgtext = msgtext + "The value of obj." + propName +
" is " + obj[propName] + ".\n";

}
TheApplication().RaiseErrorText(msgtext);

}

goto Statement
The goto statement redirects execution to a specific point in a function.
Version 7.5, Rev. B Siebel eScript Language Reference 79

Siebel eScript Language Overview

eScript Statements
Syntax goto label;

Returns Not applicable

Usage You can jump to any location within a function by using the goto statement. To do
so, you must create a label—an identifier followed by a colon—at the point at which
execution should continue. As a rule, goto statements should be used sparingly
because they make it difficult to track program flow.

Example The following example uses a label to loop continuously until a number greater
than 0 is entered:

function clickme_Click ()
{
restart:

var number = 10;
if (number <= 0)

goto restart;
var factorial = 1;
for (var x = number; x >= 2; x--)

factorial = (factorial * x);
TheApplication().RaiseErrorText("The factorial of " +

number + " is " + factorial + ".");
}

if Statement
The if statement tests a condition and proceeds depending on the result.

Syntax A if (condition)

statement;

Syntax B if (condition)

{

Placeholder Description

label A marker, followed by a colon, for a line of code at which execution
should continue
80 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
statement_block;

}

[else [if (condition)

{

statement_block;

}]

[else

{

statement_block;]

}]

Returns Not applicable

Usage The if statement is the most commonly used mechanism for making decisions in a
program. When multiple statements are required, use the block version (Syntax B)
of the if statement. When expression is true, the statement or statement_block
following it is executed. Otherwise, it is skipped.

The following fragment is an example of an if statement:

if (i < 10)
{

TheApplication().RaiseErrorText("i is smaller than 10.");
}

Note that the brackets are not required if only a single statement is to be executed
if condition is true. You may use them for clarity.

Placeholder Description

condition An expression that evaluates to true or false

statement_bloc
k

One or more statements or methods to be executed if expression is true
Version 7.5, Rev. B Siebel eScript Language Reference 81

Siebel eScript Language Overview

eScript Statements
The else statement is an extension of the if statement. It allows you to tell your
program to do something else if the condition in the if statement was found to be
false.

In Siebel eScript code, the else statement looks like this, if only one action is to be
taken in either circumstance:

if (i < 10)
TheApplication().RaiseErrorText("i is smaller than 10.");

else
TheApplication().RaiseErrorText("i is not smaller than 10.");

If you want more than one statement to be executed for any of the alternatives, you
must group the statements with brackets, like this:

if (i < 10)
{

TheApplication().RaiseErrorText("i is smaller than 10.");
i += 10;

}
else
{

i -= 5;
TheApplication().RaiseErrorText("i is not smaller than 10.");

}

To make more complex decisions, an else clause can be combined with an if
statement to match one of a number of possible conditions.

Example The following fragment illustrates using else with if. For another example, read
“setTime() Method” on page 232.

if (i < 10)
{

//check to see if I is less than or greater than 0
if (i < 0)

{
TheApplication().RaiseErrorText("i is negative; so it's " +

"less than 10.");
}

else if (i > 10)
{

TheApplication().RaiseErrorText("i is greater than 10.");
}

82 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
else
{

TheApplication().RaiseErrorText("i is 10.");
}

See Also “switch Statement” on page 83

switch Statement
The switch statement makes a decision based on the value of a variable or
statement.

Syntax switch(switch_variable)
{

case value1:
statement_block
break;

case value2:
statement_block
break;

.

.

.
[default:

statement_block;]
}

Returns Not applicable

Usage The switch statement is a way of choosing among alternatives when each choice
depends upon the value of a single variable.

Placeholder Description

switch_variable The variable upon whose value the course of action depends

value1, value2 Various values of switch_variable, which are followed by a colon

statement_block One or more statements to be executed if the value of switch_variable
is the value listed in the case statement
Version 7.5, Rev. B Siebel eScript Language Reference 83

Siebel eScript Language Overview

eScript Statements
The variable switch_variable is evaluated, and then it is compared to the values in
the case statements (value1, value2, …, default) until a match is found. The
statement block following the matched case is executed until the end of the switch
block is reached or until a break statement exits the switch block.

If no match is found and a default statement exists, the default statement is
executed.

Make sure to use a break statement to end each case. In the following example, if
the break statement after the “I=I+2;” statement were omitted, the computer
would execute both “I=I+2;” and “I=I+3;”, because the Siebel eScript interpreter
executes commands in the switch block until it encounters a break statement.

Example Suppose that you had a series of account numbers, each beginning with a letter that
indicates the type of account. You could use a switch statement to carry out actions
depending on the account type, as in the following example:

switch (key[0])
{
case 'A':

I=I+1;
break;

case 'B':;
I=I+2
break;

case 'C':
I=I+3;
break;

default:
I=I+4;
break;

}

See Also “if Statement” on page 80

throw Statement
The throw statement is used to make sure that script execution is halted when an
error occurs.
84 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
Syntax throw exception

Returns Not applicable

Usage Throw can be used to make sure that a script stops executing when an error is
encountered, regardless of what other measures may be taken to handle the error.
In the following code, the throw statement is used to stop the script after the error
message is displayed.

try
{

do_something;
}
catch(e)
{

TheApplication().Trace (e.toString()));

throw e;
}

See Also “try Statement” on page 85 and “CORBACreateObject() Method” on page 252

try Statement
The try statement is used to process exceptions that occur during script execution.

Syntax try
{

statement_block
}
catch
{

exception_handling_block
[throw exception]

}
finally

Parameter Description

exception An object in a named error class
Version 7.5, Rev. B Siebel eScript Language Reference 85

Siebel eScript Language Overview

eScript Statements
{
statement_block_2

}

Returns Not applicable

Usage The try statement is used to handle functions that may raise exceptions, which are
error conditions that cause the script to branch to a different routine. A try
statement generally includes a catch clause or a finally clause, and may include
both. The catch clause is used to handle the exception. To raise an exception, use
the throw statement (see “throw Statement” on page 84).

When you want to trap potential errors generated by a block of code, place that code
in a try statement, and follow the try statement with a catch statement. The catch
statement is used to process the exceptions that may occur in the manner you
specify in the exception_handling_block.

The following example demonstrates the general form of the try statement with the
catch clause. In this example, the script continues executing after the error message
is displayed:

try
{

do_something;
}
catch(e)
{

TheApplication().RaiseErrorText(Clib.rsprintf(
"Something bad happened: %s\n",e.toString()));

}

Placeholder Description

statement_block A block of code that may generate an error

exception_handling_block A block of code to process the error

exception An error of a named type

statement_block_2 A block of code that is always executed, unless that block
transfers control to elsewhere in the script
86 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
The finally clause is used for code that should always be executed before exiting the
try statement, regardless of whether the catch clause halts the execution of the
script. Statements in the finally clause are skipped only if the finally clause redirects
the flow of control to another part of the script. The finally statement can be exited
by a goto, throw, or return statement.

Here is an example:

try
{

return 10;
}
finally
{

goto no_way;
}

no_way: statement_block

Execution continues with the code after the label, so the return statement is
ignored.

You can use the try statement to process the exceptions thrown by CORBA objects,
and to access their data members and exception names. If the exception contains
nested objects or CORBA structures, they are skipped. For more information on
creating and using CORBA objects in eScript, read “CORBACreateObject() Method”
on page 252.

Example The following example processes a CORBA exception. It assumes that the user is
running the Account server and calling the function clear_balance(-1) on it. This
raises the exception AccountFrozen, which is described in the CORBA IDL file as
follows:

exception AccountFrozen {
float mmx;
long minimum;

};

This server assigns the value 7777.5555 to the variable mmx, and assigns 50 to the
variable minimum, and then throws the AccountFrozen exception object. The
eScript code might resemble the following:
Version 7.5, Rev. B Siebel eScript Language Reference 87

Siebel eScript Language Overview

eScript Statements
try
{

var cObj = CORBACreateObject("Account");
var d1 = cObj.clear_balance(-1);

}
catch(obj)
{

TheApplication().RaiseErrorText(obj.name + "\n" + obj.mmx +
"\n" + obj.minimum);
}

See Also “throw Statement” on page 84

while Statement
The while statement executes a particular section of code repeatedly until an
expression evaluates to false.

Syntax while (condition)
{

statement_block;
}

Returns Not applicable

Usage The condition must be enclosed in parentheses. If expression is true, the Siebel
eScript interpreter executes the statement_block following it. Then the interpreter
tests the expression again. A while loop repeats until condition evaluates to false,
and the program continues after the code associated with the while statement.

Example The following fragment illustrates a while statement with two lines of code in a
statement block:

Placeholder Description

condition The condition whose falsehood is used to determine when to stop
executing the loop

statement_block One or more statements to be executed while condition is true
88 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements
while(ThereAreUncalledNamesOnTheList() != false)
{

var name = GetNameFromTheList();
SendEmail(name);

}

with Statement
The with statement assigns a default object to a statement block, so you need to use
the object name with its properties and methods.

Syntax with (object)
{

method1;
method2;
.
.
.
methodn;

}

Returns Not applicable

Usage The with statement is used to save time when working with objects. It prepends the
object name and a period to each method used.

If you were to jump from within a with statement to another part of a script, the
with statement would no longer apply. The with statement only applies to the code
within its own block, regardless of how the Siebel eScript interpreter accesses or
leaves the block.

You may not use a goto statement or label to jump into or out of the middle of a
with statement block.

Example The following fragment illustrates the use of the with statement:

Placeholder Description

object An object with which you wish to use multiple methods

method1, method2, methodn Methods to be executed with the object
Version 7.5, Rev. B Siebel eScript Language Reference 89

Siebel eScript Language Overview

eScript Statements
var bcOppty;
var boBusObj;
boBusObj = TheApplication().GetBusObject("Opportunity");
bcOppty = boBusObj.GetBusComp("Opportunity");
var srowid = bcOppty.GetFieldValue("Id");

with (bcOppty)
{

SetViewMode(SalesRepView);
ActivateField("Sales Stage");
SetSearchSpec("Id", srowid);
ExecuteQuery(ForwardOnly);

}
bcOppty = null;
boBusObj = null;

The portion in the with block is equivalent to:

bcOppty.SetViewMode(SalesRepView);
bcOppty.ActivateField("Sales Stage");
bcOppty.SetSearchSpec("Id", srowid);
bcOppty.ExecuteQuery(ForwardOnly);
90 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands 3
This chapter presents the eScript commands sorted alphabetically by object type
and then by command name. The following list shows the object types.

■ “Applet Objects” on page 92

■ “The Application Object” on page 94

■ “Array Objects” on page 97

■ “BLOB Objects” on page 103

■ “Buffer Objects” on page 109

■ “Business Component Objects” on page 122

■ “Business Object Objects” on page 128

■ “Business Service Objects” on page 129

■ “The Clib Object” on page 131

■ “The Date Object” on page 210

■ “The Exception Object” on page 245

■ “Function Objects” on page 246

■ “The Global Object” on page 249

■ “The Math Object” on page 274

■ “User-Defined Objects” on page 293

■ “Property Set Objects” on page 298

■ “The SElib Object” on page 300

■ “String Objects” on page 303
Version 7.5, Rev. B Siebel eScript Language Reference 91

Siebel eScript Commands

Applet Objects
Applet Objects
Within a Siebel application, an applet serves as a container for the collection of user
interface objects that together represent the visible representation of one business
component (BusComp) object. Applets are combined to form views. Views
constitute the display portions of a Siebel application. Applet objects are available
in Browser Script. Methods of applet objects are documented in the Siebel Object
Interfaces Reference.

A Web applet represents an applet that is rendered by the Siebel Web Engine. It
exists only as a scriptable object in Server Script and is accessed by using the Edit
Server Script command on the selected applet. Because applet events and methods
are not supported in the Siebel Web Engine, the Web applet interfaces are available
in their place.

Method or Event Description

ActiveMode() Method ActiveMode returns a string containing the
name of the current Web Template mode.

Applet_ChangeFieldValue() Event The ChangeFieldValue event is fired when the
data in a field changes.

Applet_ChangeRecord() Event The ChangeRecord event is called when the
user moves to a different row or view.

Applet_InvokeMethod() Event The InvokeMethod event is triggered by a call
to applet.InvokeMethod, a call to a
specialized method, or by a user-defined
menu.

Applet_Load() Event The Load event is triggered after an applet has
loaded and after data is displayed.

Applet_PreInvokeMethod() Event The PreInvokeMethod event is called before a
specialized method is invoked by the system,
by a user-defined applet menu, or by calling
InvokeMethod on an applet.

BusComp() Method BusComp() returns the business component
that is associated with the applet.

BusObject() Method BusObject() returns the business object for
the business component for the applet.
92 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Applet Objects
FindActiveXControl() Method FindActiveXControl returns a reference to a
DOM element based upon the name specified
in the name argument.

FindControl() Method FindControl returns the control whose name
is specified in the argument. This applet must
be part of the displayed view.

InvokeMethod() Method The InvokeMethod() method calls an
argument-specified specialized method.

Name() Method The Name() method returns the name of the
applet.

WebApplet_InvokeMethod() Event The InvokeMethod() event is called after a
specialized method or a user-defined method
on the Web applet has been executed.

WebApplet_Load() Event The WebApplet_Load() event is triggered just
after an applet is loaded.

WebApplet_PreCanInvokeMethod() Event The PreCanInvokeMethod() event is called
before the PreInvokeMethod, allowing the
developer to determine whether or not the
user has the authority to invoke a specified
WebApplet method.

WebApplet_PreInvokeMethod() Event The PreInvokeMethod() event is called before
a specialized method for the Web applet is
invoked by the system, or a user-defined
method is invoked through
oWebAppVar.InvokeMethod.

WebApplet_ShowControl() Event This event allows scripts to modify the HTML
generated by the Siebel Web Engine to render
a control on a Web page in a customer or
partner application.

WebApplet_ShowListColumn() Event This event allows scripts to modify the HTML
generated by the Siebel Web Engine to render
a list column on a Web page in a customer or
partner application.

Method or Event Description
Version 7.5, Rev. B Siebel eScript Language Reference 93

Siebel eScript Commands

The Application Object
The Application Object
The application object represents the Siebel application that is currently active and
is an instance of the Application object type. An application object is created when
a Siebel software application is started. This object contains the properties and
events that interact with Siebel software as a whole. An instance of a Siebel
application always has exactly one application object. Methods of the application
object are documented in the Siebel Object Interfaces Reference.

Method or Event Description

ActiveBusObject() Method ActiveBusObject() returns the business object for the
business component for the active applet.

ActiveViewName() Method ActiveViewName() returns the name of the active view.

Application_Close() Event The Close() event is called before the application exits. This
allows Basic scripts to perform last-minute cleanup (such as
cleaning up a connection to a COM server). It is called when
the application is notified by Windows that it should close,
but not if the process is terminated directly.

Application_InvokeMethod() Event The Application_InvokeMethod() event is called after a
specialized method is invoked.

Application_Navigate() Event The Navigate() event is called after the client has navigated
to a view.

Application_PreInvokeMethod() Event The PreInvokeMethod() event is called before a specialized
method is invoked by a user-defined applet menu or by
calling InvokeMethod on the application.

Application_PreNavigate() Event The PreNavigate() event is called before the client has
navigated from one view to the next.

Application_Start() Event The Start() event is called when the client starts and the user
interface is first displayed.

CurrencyCode() Method CurrencyCode() returns the operating currency code
associated with the division to which the user’s position has
been assigned.

GetProfileAttr() Method GetProfileAttr() returns the value of an attribute in a user
profile.
94 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Application Object
GetService() Method The GetService() method returns a specified business
service. If the service is not already running, it is
constructed.

GetSharedGlobal() Method The GetSharedGlobal() method gets the shared user-defined
global variables.

GotoView() Method GotoView() activates the named view and its BusObject. As
a side effect, this method activates the view’s primary
applet, its BusComp, and its first tab sequence control.
Further, this method deactivates any BusObject, BusComp,
applet, or control objects that were active prior to this
method call.

InvokeMethod() Method InvokeMethod() calls a specialized or user-created method
specified by its argument.

LoginId() Method The LoginId() method returns the login ID of the user who
started the Siebel application.

LoginName() Method The LoginName() method returns the login name of the user
who started the Siebel application (the name typed in the
login dialog box).

LookupMessage() Method The LookupMessage method returns the translated string for
the specified key, in the current language, from the specified
category.

NewPropertySet() Method The NewPropertySet() method constructs a new property set
object.

PositionId() Method The PositionId() method returns the position ID (ROW_ID
from S_POSTN) of the user’s current position. This is set by
default when the Siebel application is started and may be
changed (using Edit > Change Position) if the user belongs
to more than one position.

PositionName() Method The PositionName() method returns the position name of the
user’s current position. This is set by default when the Siebel
application is started and may be changed (using Edit >
Change Position) if the user belongs to more than one
position.

RaiseError() Method The RaiseError method raises a scripting error message to
the browser. The error code is a canonical number.

Method or Event Description
Version 7.5, Rev. B Siebel eScript Language Reference 95

Siebel eScript Commands

The Application Object
RaiseErrorText() Method The RaiseErrorText method raises a scripting error message
to the browser. The error text is the specified literal string.

SetPositionId() Method SetPositionId() changes the position of the current user to
the value specified in the input argument. For SetPositionId()
to succeed, the user must be assigned to the position to
which they are changing.

SetPositionName() Method SetPositionName() changes the position of the current user
to the value specified in the input argument. For
SetPositionName() to succeed, the user must be assigned to
the position to which they are changing.

SetProfileAttr() Method SetProfileAttr() is used in personalization to assign values to
attributes in a user profile.

SetSharedGlobal() Method The SetSharedGlobal() method sets a shared user-defined
global variable, which may be accessed using
GetSharedGlobal.

Trace() Method The Trace() method appends a message to the trace file.
Trace is useful for debugging the SQL query execution.

TraceOff() Method TraceOff() turns off the tracing started by the TraceOn
method.

TraceOn() Method TraceOn() turns on the tracking of allocations and
deallocations of Siebel objects, and SQL statements
generated by the Siebel application.

Method or Event Description
96 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Array Objects
Array Objects
An array is a special class of object that holds several values rather than one. You
refer to a single value in an array by using an index number or string assigned to
that value.

The values contained within an array object are called elements of the array. The
index number used to identify an element follows its array name in brackets. Array
indices must be either numbers or strings.

Array elements can be of any data type. The elements in an array do not need to be
of the same type, and there is no limit to the number of elements an array may have.

The following statements demonstrate how to assign values to an array:

var array = new Array;
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[foo] = "creeping things"
array[goo + 1] = "and so on."

The variables foo and goo must be either numbers or strings.

Because arrays use a number to identify the data they contain, they provide an easy
way to work with sequential data. For example, suppose you want to keep track of
how many jellybeans you ate each day, so you could graph your jellybean
consumption at the end of the month. Arrays provide an ideal solution for storing
such data.

var April = new Array;
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

Now you have your data stored in one variable. You can find out how many
jellybeans you ate on day x by checking the value of April[x]:

for(var x = 1; x < 32; x++)
TheApplication().Trace("On April " + x + " I ate " + April[x] +

" jellybeans.\n");
Version 7.5, Rev. B Siebel eScript Language Reference 97

Siebel eScript Commands

Array Objects
Arrays usually start at index [0], not index [1].

NOTE: Arrays do not have to be continuous. You can have an array with elements at
indices 0 and 2 but none at 1.

See Also “The Array Constructor” on page 98, “join() Method” on page 99, “length
Property” on page 99, “reverse() Method” on page 100, “sort() Method” on
page 101

The Array Constructor
Like other objects, arrays are created using the new operator and the Array
constructor function. There are three possible ways to use this function to create an
array. The simplest is to call the function with no parameters:

var a = new Array();

This line initializes variable a as an array with no elements. The parentheses are
optional when creating a new array if there are no arguments. If you wish to create
an array of a predefined number of elements, declare the array using the number of
elements as a parameter of the Array() function. The following line creates an array
with 31 elements:

var b = new Array(31);

Finally, you can pass a number of elements to the Array() function, which creates
an array containing the parameters passed. The following example creates an array
with six elements. c[0] is set to 5, c[1] is set to 4, and so on up to c[5], which is
set to the string "blast off". Note that the first element of the array is c[0], not
c[1].

var c = new Array(5, 4, 3, 2, 1, "blast off");

You can also create arrays dynamically. If you refer to a variable with an index in
brackets, the variable becomes an array. Arrays created in this manner cannot use
the methods and properties described in the next section, so use the Array()
constructor function to create arrays.
98 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Array Objects
join() Method
The join() method creates a string of array elements.

Syntax arrayName.join([separatorString])

Returns A string containing the elements of the specified array, separated either by commas
or by instances of separatorString.

Usage By default, the array elements are separated by commas. The order in the array is
the order used for the join() method. The following fragment sets the value of string
to "3,5,6,3". You can use another string to separate the array elements by passing
it as an optional parameter to the join method.

var a = new Array(3, 5, 6, 3);
var string = a.join();

Example This example creates the string "3*/*5*/*6*/*3":

var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

length Property
The length property returns a number representing the largest index of an array,
plus 1.

Syntax arrayName.length

Returns The number of the largest index of the array, plus 1.

NOTE: This value does not necessarily represent the actual number of elements in an
array, because elements do not have to be contiguous.

Parameter Description

separatorString A string of characters to be placed between consecutive elements of
the array; if not specified, a comma is used
Version 7.5, Rev. B Siebel eScript Language Reference 99

Siebel eScript Commands

Array Objects
Usage For example, suppose you had two arrays, ant and bee, with the following
elements:

var ant = new Array; var bee = new Array;
ant[0] = 3 bee[0] = 88
ant[1] = 4 bee[3] = 99
ant[2] = 5
ant[3] = 6

The length property of both ant and bee is equal to 4, even though ant has twice as
many actual elements as bee does.

By changing the value of the length property, you can remove array elements. For
example, if you change ant.length to 2, ant loses elements after the first two, and
the values stored at the other indices are lost. If you set bee.length to 2, then bee
consists of two members: bee[0], with a value of 88, and bee[1], with an undefined
value.

reverse() Method
The reverse() method switches the order of the elements of an array, so that the last
element becomes the first.

Syntax arrayName.reverse()

Returns arrayName with the elements in reverse order.

Usage The reverse() method sorts the existing array, rather than returning a new array. In
any references to the array after the reverse() method is used, the new order is used.

Example The following code:

Parameter Description

Not applicable
100 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Array Objects
var communalInsect = new Array;
communalInsect[0] = "ant";
communalInsect[1] = "bee";
communalInsect[2] = "wasp";
communalInsect.reverse();

produces the following array:

communalInsect[0] == "wasp"
communalInsect[1] == "bee"
communalInsect[2] == "ant"

sort() Method
The sort() method sorts the elements of an array into the order specified by the
compareFunction.

Syntax arrayName.sort([compareFunction])

Returns arrayName with its elements sorted into the order specified.

Usage If no compareFunction is supplied, then elements are converted to strings before
sorting. When numbers are sorted into ASCII order, they are compared left-to-right,
so that, for example, 32 comes before 4. This may not be the result you want.
However, the compareFunction enables you to specify a different way to sort the
array elements. The name of the function you want to use to compare values is
passed as the only parameter to sort().

If a compare function is supplied, the array elements are sorted according to the
return value of the compare function.

Example The following example demonstrates the use of the sort() method with and without
a compare function. It first displays the results of a sort without the function and
then uses a user-defined function, compareNumbers(a, b), to sort the numbers
properly. In this function, if a and b are two elements being compared, then:

Parameter Description

compareFunction A user-defined function that can affect the sort order
Version 7.5, Rev. B Siebel eScript Language Reference 101

Siebel eScript Commands

Array Objects
■ If compareNumbers(a, b) is less than zero, b is given a lower index than a.

■ If compareNumbers(a, b) returns zero, the order of a and b is unchanged.

■ If compareNumbers(a, b) is greater than zero, b is given a higher index
than a.
102 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

BLOB Objects
BLOB Objects
The following topics describe binary large objects (BLOBs).

■ “The blobDescriptor Object” on page 103

■ “Blob.get() Method” on page 105

■ “Blob.put() Method” on page 105

■ “Blob.size() Method” on page 107

The blobDescriptor Object
The blobDescriptor Object describes the structure of the BLOB. When an object
needs to be sent to a process other than the Siebel eScript interpreter, such as to a
Windows API function, a blobDescriptor object must be created that describes the
order and type of data in the object. This description tells how the properties of the
object are stored in memory and is used with functions like Clib.fread() and
SElib.dynamicLink().

A blobDescriptor has the same data properties as the object it describes. Each
property must be assigned a value that specifies how much memory is required for
the data held by that property. The keyword "this" is used to refer to the parameters
passed to the constructor function and can be conceptually thought of as "this
object." Consider the following object:

Rectangle(width, height)
{

this.width = width;
this.height = height;

}

The following code creates a blobDescriptor object that describes the Rectangle
object:

var bd = new blobDescriptor();

bd.width = UWORD32;
bd.height = UWORD32;
Version 7.5, Rev. B Siebel eScript Language Reference 103

Siebel eScript Commands

BLOB Objects
You can now pass bd as a blobDescriptor parameter to functions that require one.
The values assigned to the properties depend on what the receiving function
expects. In the preceding example, the function that is called expects to receive an
object that contains two 32-bit words or data values. If you write a blobDescriptor
for a function that expects to receive an object containing two 16-bit words, assign
the two properties a value of UWORD16.

One of the following values must be used with blobDescriptor object properties to
indicate the number of bytes needed to store the property:

If the blobDescriptor describes an object property that is a string, the corresponding
property should be assigned a numeric value that is larger than the length of the
longest string the property may hold. Object methods usually may be omitted from
a blobDescriptor.

BlobDescriptors are used primarily for passing eScript’s JavaScript-like data
structures to C or C++ programs and to the Clib methods, which expect a very
rigid and precise description of the values being passed.

WCHAR Handled as a native UNICODE string

UWORD8 Stored as an unsigned byte

SWORD8 Stored as an integer

UWORD16 Stored as an unsigned, 16-bit integer

SWORD16 Stored as a signed 16-bit integer

UWORD24 Stored as an unsigned 24-bit integer

SWORD24 Stored as a signed 24-bit integer

UWORD32 Stored as an unsigned 32-bit integer

SWORD32 Stored as a signed 32-bit integer

FLOAT32 Stored as a floating-point number

FLOAT64 Stored as a double-precision floating-point number

STRINGHOLDER Used to indicate a value that is assigned a string by the
function to which it is passed. (It allocates 10,000 bytes to
contain the string, then truncates this length to the appropriate
size, removes any terminating null characters, and initializes
the properties of the string.)
104 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

BLOB Objects
Blob.get() Method
This method reads data from a binary large object.

Syntax A Blob.get(blobVar, offset, dataType)

Syntax B Blob.get(blobVar, offset, bufferLen)

Syntax C Blob.get(blobVar, offset, blobDescriptor dataDefinition)

Returns The data read from the BLOB.

This method reads data from a specified location of a binary large object (BLOB),
and is the companion function to Blob.put().

Use Syntax A for byte, integer, and float data. Use Syntax B for byte[] data. Use
Syntax C for object data.

dataType must have one of the values listed for blobDescriptors in “The
blobDescriptor Object” on page 103.

See Also “The blobDescriptor Object” on page 103 and “Blob.put() Method” on page 105

Blob.put() Method
The Blob.put method puts data into a specified location within a binary large object.

Argument Description

blobVar The name of the binary large object to use

offset The position in the BLOB from which to read the data

dataType An integer value indicating the format of the data in the
BLOB

bufferLen An integer indicating the size of the buffer in bytes

blobDescriptor dataDefinition A blobDescriptor object indicating the form of the data in
the BLOB
Version 7.5, Rev. B Siebel eScript Language Reference 105

Siebel eScript Commands

BLOB Objects
Syntax A Blob.put(blobVar[, offset], data, dataType)

Syntax B Blob.put(blobVar[, offset], buffer, bufferLen)

Syntax C Blob.put(blobVar[, offset], srcStruct, blobDescriptor
dataDefinition)

Returns An integer representing the byte offset for the byte after the end of the data just
written. If the data is put at the end of the BLOB, the size of the BLOB.

Usage This method puts data into a specified location of a binary large object (BLOB) and,
along with Blob.get(), allows for direct access to memory within a BLOB variable.
Data can be placed at any location within a BLOB. The contents of such a variable
may be viewed as a packed structure, that is, a structure that does not pad each
member with enough nulls to make every member a uniform length. (The exact
length depends on the CPU, although 32 bytes is common.)

Syntax C is used to pass the contents of an existing BLOB (srcStruct) to the blobVar.

If a value for offset is not supplied, then the data is put at the end of the BLOB, or
at offset 0 if the BLOB is not yet defined.

The data is converted to the specified dataType and then copied into the bytes
specified by offset.

Argument Description

blobVar The name of the binary large object to use

offset The position in the BLOB at which to write the data

data The data to be written

dataType The format of the data in the BLOB

buffer A variable containing a buffer

bufferLen An integer representing the length of buffer

srcStruct A BLOB containing the data to be written

blobDescriptor dataDefinition A blobDescriptor object indicating the form of the data in
the BLOB
106 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

BLOB Objects
If dataType is not the length of a byte buffer, then it must have one of the values
listed for blobDescriptors in “The blobDescriptor Object” on page 103.

Example If you were sending a pointer to data in an external C library and knew that the
library expected the data in a packed C structure of the form:

struct foo
{

signed char a;
unsigned int b;
double c;

};

and if you were building this structure from three corresponding variables, then
such a building function might look like the following, which returns the offset of
the next available byte:

function BuildFooBlob(a, b, c)
{

var offset = Blob.put(foo, 0, a, SWORD8);
offset = Blob.put(foo, offset, b, UWORD16);
Blob.put(foo, offset, c, FLOAT64);
return foo;

}

or, if an offset were not supplied:

functionBuildFooBlob(a, b, c)
{

Blob.put(foo, a, SWORD8);
Blob.put(foo, b, UWORD16);
Blob.put(foo, c, FLOAT64);
return foo;

}

See Also “The blobDescriptor Object” on page 103 and “Blob.get() Method” on page 105

Blob.size() Method
This method determines the size of a binary large object (BLOB).

Syntax A Blob.size(blobVar[, SetSize])
Version 7.5, Rev. B Siebel eScript Language Reference 107

Siebel eScript Commands

BLOB Objects
Syntax B Blob.size(dataType)

Syntax C Blob.size(bufferLen)

Syntax D Blob.size(blobDescriptor dataDefinition)

Returns The number of bytes in blobVar; if setSize is provided, returns setSize.

Usage The parameter blobVar specifies the blob to use. If SetSize is provided, then the blob
blobVar is altered to this size or created with this size.

If dataType, bufferLen, or dataDefinition are used, these parameters specify the type
to be used for converting Siebel eScript data to and from a BLOB.

The dataType argument must have one of the values listed for blobDescriptors in
“The blobDescriptor Object” on page 103.

See Also “The blobDescriptor Object” on page 103

Argument Description

blobVar The name of the binary large object to use

setSize An integer that determines the size of the BLOB

dataType An integer value indicating the format of the data in the
BLOB

bufferLen An integer indicating the number of bytes in the buffer

blobDescriptor dataDefinition A blobDescriptor object indicating the form of the data in
the BLOB
108 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects
Buffer Objects
Buffer objects provide a way to manipulate data at a very basic level. A Buffer object
is needed whenever the relative location of data in memory is important. Any type
of data may be stored in a Buffer object.

A new Buffer object may be created from scratch or from a string, buffer, or Buffer
object, in which case the contents of the string or buffer is copied into the newly
created Buffer object.

In the examples that follow, bufferVar is a generic variable name to which a Buffer
object is assigned.

■ “The Buffer Constructor” on page 110

■ “Properties” on page 111

■ “Methods” on page 112

■ “bigEndian Property” on page 112

■ “cursor Property” on page 113

■ “data Property” on page 113

■ “getString() Method” on page 114

■ “getValue() Method” on page 114

■ “offset[] Method” on page 115

■ “putString() Method” on page 116

■ “putValue() Method” on page 117

■ “size Property” on page 119

■ “subBuffer() Method” on page 120

■ “toString() Method” on page 120

■ “unicode Property” on page 121
Version 7.5, Rev. B Siebel eScript Language Reference 109

Siebel eScript Commands

Buffer Objects
The Buffer Constructor
To create a Buffer object, use one of the following syntax forms.

Syntax A new Buffer([size] [, unicode] [, bigEndian]);

Usage If size is specified, then the new buffer is created with the specified size and filled
with null bytes. If no size is specified, then the buffer is created with a size of 0,
although it can be extended dynamically later.

The unicode parameter is an optional Boolean flag describing the initial state of the
Unicode flag of the object. Similarly, bigEndian describes the initial state of the
bigEndian parameter of the buffer.

Syntax B new Buffer(string [, unicode] [, bigEndian]);

Usage This syntax creates a new Buffer object from the string provided. If the string
parameter is a Unicode string (if Unicode is enabled within the application), then
the buffer is created as a Unicode string.

This behavior can be overridden by specifying true or false with the optional
Boolean Unicode parameter. If this parameter is set to false, then the buffer is
created as an ASCII string, regardless of whether the original string was in Unicode
or not.

Similarly, specifying true makes sure that the buffer is created as a Unicode string.
The size of the buffer is the length of the string (twice the length if it is Unicode).
This constructor does not add a terminating null byte at the end of the string.

Argument Description

size The size of the new buffer to be created

unicode True if the buffer is to be created as a Unicode string, otherwise, false; default
is false

bigEndian True if the largest data values are stored in the most significant byte; false if
the largest data values are stored in the least significant byte; default
is true
110 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects
Syntax C new Buffer(buffer [, unicode] [, bigEndian]);

Usage A line of code following this syntax creates a new buffer object from the buffer
provided. The contents of the buffer are copied as-is into the new buffer object. The
unicode and bigEndian parameters do not affect this conversion, although they do
set the relevant flags for future use.

Syntax D new Buffer(bufferobject);

Usage A line of code following this syntax creates a new Buffer object from another Buffer
object. Everything is duplicated exactly from the other bufferObject, including the
cursor location, size, and data.

Properties

Argument Description

buffer The buffer object from which the new buffer is to be created

unicode True if the buffer is to be created as a Unicode string, otherwise, false;
default is the Unicode status of the underlying Siebel eScript engine

bigEndian True if the largest data values are stored in the most significant byte;
false if the largest data values are stored in the least significant byte;
default is true

Argument Description

bufferobject The buffer object from which the new buffer is to be created

■ “bigEndian Property” on page 112

■ “cursor Property” on page 113

■ “data Property” on page 113

■ “size Property” on page 119

■ “unicode Property” on page 121
Version 7.5, Rev. B Siebel eScript Language Reference 111

Siebel eScript Commands

Buffer Objects
Methods
The following is a list of buffer object methods.

bigEndian Property
This property is a Boolean flag specifying whether to use bigEndian byte ordering
when calling getValue() and putValue().

Syntax bufferVar.bigEndian

Returns Not applicable

Usage When a data value consists of more than one byte, the byte containing the smallest
units of the value is called the least significant byte; the byte containing the biggest
units of the value is called the most significant byte. When the bigEndian property
is true, the bytes are stored in descending order of significance. When false, they are
stored in ascending order of significance.

This value is set when a buffer is created, but may be changed at any time. This
property defaults to the state of the underlying operating system and processor.

■ “getString() Method” on page 114

■ “getValue() Method” on page 114

■ “offset[] Method” on page 115

■ “putValue() Method” on page 117

■ “size Property” on page 119

■ “subBuffer() Method” on page 120

■ “toString() Method” on page 120

Parameter Description

Not applicable
112 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects
cursor Property
The current position within a buffer.

Syntax bufferVar.cursor

Returns Not applicable

Usage The value of cursor is always between 0 and the value set in the size property. A
value can be assigned to this property.

If the cursor is set beyond the end of a buffer, the buffer is extended to
accommodate the new position and filled with null bytes. Setting the cursor to a
value less than 0 places the cursor at the beginning of the buffer, position 0.

Example For examples, read “getString() Method” on page 114 and “size Property” on
page 119.

See Also “size Property” on page 119

data Property
This property is a reference to the internal data of a buffer.

Syntax bufferVar.data

Returns Not applicable

Parameter Description

Not applicable

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 113

Siebel eScript Commands

Buffer Objects
Usage This property is used as a temporary value to allow passing of buffer data to
functions that do not recognize buffer objects.

getString() Method
This method returns a string of a specified length, starting from the current cursor
location.

Syntax bufferVar.getString([length])

Returns A string of length characters, starting at the current cursor location in the buffer.

Usage This method returns a string starting from the current cursor location and
continuing for length bytes.

If no length is specified, the method reads until a null byte is encountered or the
end of the buffer is reached. The string is read according to the value of the unicode
flag of the buffer. A terminating null byte is not added, even if a length parameter
is not provided.

See Also “getValue() Method” on page 114, “offset[] Method” on page 115, and “size
Property” on page 119

getValue() Method
This method returns a value from the current cursor position in a Buffer object.

Parameter Description

length The length of the string to return, in bytes
114 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects
Syntax bufferVar.getValue([valueSize][, valueType])

Returns The value at the current position in a Buffer object.

Usage To determine where to read from the buffer, use the bufferVar.cursor() method.

Acceptable values for valueSize are 1, 2, 3, 4, 8, and 10, providing that valueSize
does not conflict with the optional valueType flag. The following list describes the
acceptable combinations of valueSize and valueType:

The combination of valueSize and valueType must match the data to be read.

See Also “putValue() Method” on page 117

offset[] Method
This method provides array-style access to individual bytes in the buffer.

Parameter Description

valueSize A positive number indicating the number of bytes to be read; default is 1

valueType The type of data to be read, expressed as one of the following:

■ signed (the default)

■ unsigned

■ float

valueSize valueType

1 signed, unsigned

2 signed, unsigned

3 signed, unsigned

4 signed, unsigned, float

8 float
Version 7.5, Rev. B Siebel eScript Language Reference 115

Siebel eScript Commands

Buffer Objects
Syntax bufferVar[offset]

Returns Not applicable

Usage This is an array-like version of the getValue() and putValue() methods that works
only with bytes. You may either get or set these values. The following line assigns
the byte at offset 5 in the buffer to the variable goo:

goo = foo[5]

The following line places the value of goo (assuming that value is a single byte) to
position 5 in the buffer foo:

foo[5] = goo

Every get or put operation uses byte types, that is, eight-bit signed words
(SWORD8). If offset is less than 0, then 0 is used. If offset is greater than the length
of the buffer, the size of the buffer is extended with null bytes to accommodate it.
If you need to work with character values, you have to convert them to their ANSI
or Unicode equivalents.

See Also “getValue() Method” on page 114 and “putValue() Method” on page 117

putString() Method
This method puts a string into a buffer object at the current cursor position.

Syntax bufferVar.putString(string)

Argument Description

offset A number indicating a position in bufferVar at which a byte is to be placed
in, or read from, a buffer

Parameter Description

string The string literal to be placed into the buffer object, or the string variable
whose value is to be placed into the buffer object
116 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects
Returns Not applicable

Usage If the unicode flag is set within the buffer object, then the string is put into the
buffer object as a Unicode string; otherwise, it is put into the buffer object as an
ASCII string. The cursor is incremented by the length of the string, or twice the
length if it is put as a Unicode string.

A terminating null byte is not added at end of the string.

To put a null terminated string into the buffer object, do the following:

buf1.putString("Hello"); // Put the string into the buffer
buf1.putValue(0); // Add terminating null byte

Example The following example places the string language in the buffer exclamation and
displays the modified contents of explanation, which is the string, "I love
coding with Siebel eScript".

function eScript_Click ()
{

var exclamation = new Buffer("I love coding with . . .");
var language = "Siebel eScript";
exclamation.cursor = 19;
exclamation.putString(language);
TheApplication().RaiseErrorText(exclamation);

}

See Also “getString() Method” on page 114

putValue() Method
This method puts the specified value into a buffer at the current file cursor position.

Syntax bufferVar.putValue(value[, valueSize][, valueType])

Parameter Description

value A number
Version 7.5, Rev. B Siebel eScript Language Reference 117

Siebel eScript Commands

Buffer Objects
Returns Not applicable

Usage This method puts a specific value into a buffer. Acceptable values for valueSize are
1, 2, 3, 4, 8, and 10, providing that this value does not conflict with the optional
valueType flag.

Combined with valueSize, any type of data can be put into a buffer. The following
list describes the acceptable combinations of valueSize and valueType:

Any other combination causes an error. The value is put into the buffer at the
current cursor position, and the cursor value is automatically incremented by the
size of the value to reflect this addition. To explicitly put a value at a specific
location while preserving the cursor location, do something similar to the following.

var oldCursor = bufferItem.cursor; // Save the cursor location
bufferItem.cursor = 20; // Set to new location
bufferItem.putValue(foo); // Put bufferItem at offset 20
bufferItem.cursor = oldCursor // Restore cursor location

valueSize A positive number indicating the number of bytes to be used; default is 1

valueType The type of data to be read, expressed as one of the following:

■ signed (the default)

■ unsigned

■ float

Parameter Description

valueSize valueType

1 signed, unsigned

2 signed, unsigned

3 signed, unsigned

4 signed, unsigned, float

8 float
118 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects
The value is put into the buffer with byte-ordering according to the current setting
of the bigEndian flag. Note that when putting float values as a smaller size, such as
4, some significant figures are lost. A value such as 1.4 is converted to something
like 1.39999974. This is sufficiently insignificant to ignore, but note that the
following does not hold true:

bufferItem.putValue(1.4,4,"float");
bufferItem.cursor -= 4;
if(bufferItem.getValue(4,"float") != 1.4)
// This is not necessarily true due to significant digit loss.

This situation can be prevented by using 8 as a valueSize instead of 4. A valueSize
of 4 may still be used for floating-point values, but be aware that some loss of
significant figures may occur, although it may not be enough to affect most
calculations.

See Also “getValue() Method” on page 114

size Property
The size of the Buffer object.

Syntax bufferVar.size

Returns Not applicable

Usage A value may be assigned to this property; for example,

inBuffer.size = 5

If a buffer is increased beyond its present size, the additional spaces are filled with
null bytes. If the buffer size is reduced such that the cursor is beyond the end of the
buffer, the cursor is moved to the end of the modified buffer.

See Also “cursor Property” on page 113

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 119

Siebel eScript Commands

Buffer Objects
subBuffer() Method
This method returns a new Buffer object consisting of the data between two
specified positions.

Syntax bufferVar.subBuffer(beginning, end)

Returns A new Buffer object consisting of the data in bufferVar between the beginning and
end positions.

Usage If beginning is less than 0, then it is treated as 0, the start of the buffer.

If end is beyond the end of the buffer, then the new subbuffer is extended with null
bytes, but the original buffer is not altered. The unicode and bigEndian flags are
duplicated in the new buffer.

The length of the new buffer is set to end - beginning. If the cursor in the old buffer
is between beginning and end, then it is converted to a new relative position in the
new buffer. If the cursor was before beginning, it is set to 0 in the new buffer; if it
was past end, it is set to the end of the new buffer.

Example This code fragment creates the new buffer language and displays its contents—the
string "Siebel eScript".

var loveIt= new Buffer("I love coding with Siebel eScript!");
var language = loveIt.subBuffer(19, (loveIt.size - 1))
TheApplication().RaiseErrorText(language);

See Also “getString() Method” on page 114

toString() Method
This method returns a string containing the same data as the buffer.

Parameter Description

beginning The cursor position at which the new Buffer object should begin

end The cursor position at which the new Buffer object should end
120 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects
Syntax bufferVar.toString()

Returns A string object that contains the same data as the buffer object.

Usage This method returns a string whose contents are the same as that of bufferVar. Any
conversion to or from Unicode is done according to the unicode flag of the object.

unicode Property
This property is a Boolean flag specifying whether to use Unicode strings when
calling getString() and putString().

Syntax bufferVar.unicode

Returns Not applicable

Usage This value is set when the buffer is created, but may be changed at any time. This
property defaults to false for Siebel eScript.

Example The following lines of code set the unicode property of a new buffer to true:

var aBuffer = new Buffer();
aBuffer.unicode = true;

Parameter Description

Not applicable

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 121

Siebel eScript Commands

Business Component Objects
Business Component Objects
A business component defines the structure, the behavior, and the information
displayed by a particular subject, such as a product, contact, or account. Siebel
business components are logical abstractions of one or more database tables. The
information stored in a business component is usually specific to a particular
subject and is typically not dependent on other business components. Business
components can be used in one or more business objects.

Business component objects have associated data structured as records, they have
properties, and they contain data units called fields. In Siebel eScript, fields are
accessed through business components. The business component object supports
getting and setting field values, moving backward and forward through data in a
business component object, and filtering changes to data it manages.

Methods of business component objects are documented in the Siebel Object
Interfaces Reference.

Method or Event Description

ActivateField() Method ActivateField() allows queries to retrieve data for
the field specified in its argument.

ActivateMultipleFields() Method ActivateMultipleFields() allows users to activate
the fields specified in the property set input
argument.

Associate() Method The Associate() method creates a new many-to-
many relationship for the parent object through an
association business component (read
“GetAssocBusComp() Method” on page 125).

BusComp_Associate() Event The Associate() event is called after a record is
added to a business component to create an
association.

BusComp_ChangeRecord() Event The ChangeRecord() event is called after a record
becomes the current row in the business
component.

BusComp_CopyRecord() Event The CopyRecord() event is called after a row has
been copied in the business component and that
row has been made active.
122 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Business Component Objects
BusComp_DeleteRecord() Event The DeleteRecord() event is called after a row is
deleted. The current context is a different row (the
Fields of the just-deleted row are no longer
available).

BusComp_InvokeMethod() Event The InvokeMethod() event is called when the
InvokeMethod method is called on a business
component.

BusComp_NewRecord() Event The NewRecord() event is called after a new row
has been created in the business component and
that row has been made active. The event may be
used to set up default values for Fields.

BusComp_PreAssociate() Event The PreAssociate() event is called before a record
is added to a business component to create an
association. The semantics are the same as
BusComp_PreNewRecord.

BusComp_PreCopyRecord() Event The PreCopyRecord() event is called before a new
row is copied in the business component. The
event may be used to perform precopy validation.

BusComp_PreDeleteRecord() Event The PreDeleteRecord event is called before a row is
deleted in the business component. The event may
be used to prevent the deletion or to perform any
actions in which you need access to the record that
is to be deleted.

BusComp_PreGetFieldValue() Event The PreGetFieldValue() event is called when the
value of a business component field is accessed.

BusComp_PreInvokeMethod() Event The PreInvokeMethod() event is called before a
specialized method is invoked on the business
component.

BusComp_PreNewRecord() Event The PreNewRecord event is called before a new
row is created in the business component. The
event may be used to perform preinsert validation.

BusComp_PreQuery() Event The PreQuery() event is called before query
execution.

Method or Event Description
Version 7.5, Rev. B Siebel eScript Language Reference 123

Siebel eScript Commands

Business Component Objects
BusComp_PreSetFieldValue() Event The PreSetFieldValue() event is called before a
value is pushed down into the business component
from the user interface or through a call to
SetFieldValue.

BusComp_PreWriteRecord() Event The PreWriteRecord() event is called before a row
is written out to the database. The event may
perform any final validation necessary before the
actual save occurs.

BusComp_Query() Event The Query() event is called just after the query is
completed and the rows have been retrieved but
before the rows are actually displayed.

BusComp_SetFieldValue() Event The SetFieldValue() event is called when a value is
pushed down into the business component from
the user interface or through a call to
SetFieldValue.

BusComp_WriteRecord() Event The WriteRecord event is called after a row is
written out to the database.

BusObject() Method The BusObject() method returns the business
object that contains the business component.

ClearToQuery() Method The ClearToQuery() method clears the current
query and sort specifications on the business
component.

DeactivateFields() Method DeactivateFields deactivates the fields that are
currently active from a business component SQL
query statement.

DeleteRecord() Method DeleteRecord() removes the current record from
the business component.

ExecuteQuery() Method ExecuteQuery() returns a set of business
component records using the criteria established
with methods such as SetSearchSpec.

ExecuteQuery2() Method ExecuteQuery2() returns a set of business
component records using the criteria established
with methods such as SetSearchSpec.

Method or Event Description
124 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Business Component Objects
FirstRecord() Method FirstRecord() moves the record pointer to the first
record in a business component, making that
record current and invoking any associated script
events.

GetAssocBusComp() Method GetAssocBusComp() returns the association
business component. The association business
component can be used to operate on the
association using the normal business component
mechanisms.

GetFieldValue() Method GetFieldValue() returns the value for the field
specified in its argument for the current record of
the business component. Use this method to
access a field value.

GetFormattedFieldValue() Method GetFormattedFieldValue returns the value for the
field specified in its argument in the current local
format; that is, it returns values in the format in
which they appear in the Siebel user interface.

GetMultipleFieldValues() Method GetMultipleFieldValues() allows users to retrieve
the field values for a particular record as specified
in the property set input argument.

GetMVGBusComp() Method GetMVGBusComp() returns the MVG business
component associated with the business
component field specified by FieldName. This
business component can be used to operate on the
Multi-Value Group using the normal business
component mechanisms.

GetNamedSearch() Method GetNamedSearch() returns the named search
specification specified by searchName.

GetPicklistBusComp() Method GetPicklistBusComp() returns the pick business
component associated with the specified field in
the current business component.

GetSearchExpr() Method GetSearchExpr() returns the current search
expression for the business component.

GetSearchSpec() Method GetSearchSpec() returns the search specification
for the field specified by the fieldName argument.

Method or Event Description
Version 7.5, Rev. B Siebel eScript Language Reference 125

Siebel eScript Commands

Business Component Objects
GetUserProperty() Method GetUserProperty() returns the value of a named
UserProperty.

GetViewMode() Method GetViewMode() returns the current visibility mode
for the business component. This affects which
records are returned by queries according to the
visibility rules.

InvokeMethod() Method InvokeMethod calls the specialized method or
user-created method named in its argument.

LastRecord() Method LastRecord() moves to the last record in the
business component.

Name() Method The Name() method returns the name of the
business component.

NewRecord() Method NewRecord() adds a new record (row) to the
business component.

NextRecord() Method NextRecord() moves the record pointer to the next
record in the business component, making that the
current record and invoking any associated script
events.

ParentBusComp() Method ParentBusComp() returns the parent (master)
business component when given the child (detail)
business component of a link.

Pick() Method The Pick() method picks the currently selected
record in a picklist business component (read
“GetPicklistBusComp() Method” on page 125) into
the appropriate Fields of the parent business
component.

PreviousRecord() Method PreviousRecord() moves to the previous record in
the business component, invoking any associated
script events.

RefineQuery() Method This method refines a query after the query has
been executed.

SetFieldValue() Method SetFieldValue() assigns the new value to the
named field for the current row of the business
component.

Method or Event Description
126 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Business Component Objects
SetFormattedFieldValue() Method SetFormattedFieldValue() assigns the new value to
the named field for the current row of the business
component. SetFormattedFieldValue accepts the
field value in the current local format.

SetMultipleFieldValues() Method SetMultipleFieldValues() allows users to set the
field values for a particular record as specified in
the property set input argument.

SetNamedSearch() Method SetNamedSearch() sets a named search
specification on the business component. A named
search specification is identified by the
searchName argument.

SetSearchExpr() Method SetSearchExpr() sets an entire search expression
on the business component, rather than setting
one search specification for each field. Syntax is
similar to that on the Predefined Queries screen.

SetSearchSpec() Method SetSearchSpec() sets the search specification for a
particular field. This method must be called before
ExecuteQuery.

SetSortSpec() Method SetSortSpec() sets the sorting specification for a
query.

SetUserProperty() Method SetUserProperty() sets the value of a named
business component UserProperty. The User
Properties are similar to instance variables of a
BusComp.

SetViewMode() Method SetViewMode() sets the visibility type for the
business component.

UndoRecord() Method UndoRecord() reverses any changes made to the
record that are not committed. This includes
reversing uncommitted modifications to any fields,
as well as deleting an active record that has not yet
been committed to the database.

WriteRecord() Method WriteRecord() commits to the database any
changes made to the current record.

Method or Event Description
Version 7.5, Rev. B Siebel eScript Language Reference 127

Siebel eScript Commands

Business Object Objects
Business Object Objects
Business objects are highly customizable, object-oriented building blocks of Siebel
applications. Business objects define the relationships between different business
component objects (BusComps) and contain semantic information about, for
example, sales, marketing, and service-related entities. A Siebel business object
groups one or more business components into a logical unit of information.
Methods of business object objects are documented in the Siebel Object Interfaces
Reference.

Method Description

GetBusComp() Method The GetBusComp() method returns the specified business
component.

Name() Method The Name() method retrieves the name of the business object.
128 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Business Service Objects
Business Service Objects
Business service objects are objects that can be used to implement reusable
business logic within the Object Manager. They include both built-in business
services, which may be scripted but not modified, and user-defined objects. Using
business services, you can configure standalone objects or modules with both
properties and scripts. Business services may be used for generic code libraries that
can be called from any other scripts. The code attached to a menu item or a toolbar
button may be implemented as a business service. Methods of business service
objects are documented in the Siebel Object Interfaces Reference.

Method or Event Description

GetFirstProperty() Method GetFirstProperty() retrieves the name of the first
property of a business service.

GetNextProperty() Method Once the name of the first property has been
retrieved, the GetNext Property() method
retrieves the name of the next property of a
business service.

GetProperty() Method The GetProperty() method returns the value of
the property whose name is specified in its
argument.

InvokeMethod() Method The InvokeMethod() method calls a specialized
method or a user-created method.

Name() Method The Name() method returns the name of the
service.

PropertyExists() Method PropertyExists() returns a Boolean value
indicating whether a specified property exists.

RemoveProperty() Method RemoveProperty() removes a property from a
business service.

Service_InvokeMethod() Event The InvokeMethod() event is called after the
InvokeMethod method is called on a business
service.

Service_PreInvokeMethod() Event The PreInvokeMethod() event is called before a
specialized method is invoked on the business
service.
Version 7.5, Rev. B Siebel eScript Language Reference 129

Siebel eScript Commands

Business Service Objects
Service_PreCanInvokeMethod() Event The PreInvokeMethod() event is called before the
PreInvokeMethod, allowing the developer to
determine whether or not the user has the
authority to invoke the business service method.

SetProperty() Method This method assigns a value to a property of a
business service.

Method or Event Description
130 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
The Clib Object
The Clib object contains functions that are a part of the standard C library. Methods
to access files, directories, strings, the environment, memory, and characters are
part of the Clib object. The Clib object also contains time functions, error functions,
sorting functions, and math functions.

Some methods, shown in Table 4, may be considered redundant because their
functionality already exists in JavaScript. Where possible, you should use standard
ECMAScript methods instead of the equivalent Clib functions.

NOTE: The Clib object is essentially a wrapper for calling functions in the standard
C library as implemented for the specific operating system. Therefore these methods
may behave differently on different operating systems.

See Also “Redundant Functions in the Clib Object” on page 131, “File I/O Functions” on
page 133, “The Time Object” on page 135, “Time Functions” on page 136,
“Character Classification” on page 136, “Formatting Data” on page 137

Redundant Functions in the Clib Object
The Clib object includes the functions from the C standard library. As a result, some
of the methods in the Clib object overlap methods in JavaScript. In most cases, the
newer JavaScript methods should be preferred over the older C functions. However,
there are times, such as when working with string routines that expect null
terminated strings, that the Clib methods make more sense and are more consistent
in a section of a script.
Version 7.5, Rev. B Siebel eScript Language Reference 131

Siebel eScript Commands

The Clib Object
The Clib methods list in Table 4 is paired with the equivalent methods in
ECMAScript. Because Siebel eScript and the ECMAScript standard are developing
and growing, the ECMAScript methods are always to be preferred over equivalent
methods in the Clib object.

Table 4. Correspondence Between Clib and ECMAScript Methods

Clib Method Description ECMAScript Method

abs() Calculates absolute value Math.abs()

acos() Calculates the arc cosine Math.acos()

asin() Calculates the arc sine Math.asin()

atan() Calculates the arc tangent Math.atan()

atan2() Calculates the arc tangent of a fraction Math.atan2()

atof() Converts a string to a floating-point number Automatic conversion

atoi() Converts a string to an integer Automatic conversion

atol() Converts a string to a long integer Automatic conversion

ceil() Rounds a number up to the nearest integer Math.ceil()

cos() Calculates the cosine Math.cos()

exp() Computes the exponential function Math.exp()

fabs() Computes the absolute value of a floating-point number Math.abs()

floor() Rounds a number down to the nearest integer Math.floor()

fmod() Calculates the remainder % operator, modulo

labs() Returns the absolute value of a long Math.abs()

log() Calculates the natural logarithm Math.log()

max() Returns the largest of one or more values Math.max()

min() Returns the smallest of one or more values Math.min()

pow() Calculates x to the power of y Math.pow()

sin() Calculates the sine Math.sin()
132 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
File I/O Functions
Siebel eScript handles file I/O in a manner similar to C and C++. In these
languages, files are never read from, or written to, directly. Rather, you must first
open a file, most commonly by passing its name to the Clib.fopen() function. (You
can also open a file using Clib.tmpfile().) These functions read the file into a buffer
in memory and return a file pointer—a pointer to the beginning of the buffer. The
data in the buffer is often referred to as a file stream, or simply a stream. Reading
and writing occurs relative to the buffer, which is not written to disk unless you
explicitly flush the buffer with Clib.fflush() or close the file with Clib.fclose().

Clib supports the following file I/O functions:

■ “Clib.fclose() Method” on page 148

■ “Clib.feof() Method” on page 148

■ “Clib.fflush() Method” on page 149

sqrt() Calculates the square root Math.sqrt()

strcat() Appends one string to another + operator

strcmp() Compares two strings == operator

strcpy() Copies a string = operator

strlen() Gets the length of a string string.length

strlwr() Converts a string to lowercase string.toLowerCase

strtod() Converts a string to decimal Automatic conversion

strtol() Converts a string to long Automatic conversion

strupr() Converts a string to uppercase string.toUpperCase

tan() Calculates the tangent Math.tan()

tolower() Converts a character to lowercase string.toLowerCase

toupper() Converts a character to uppercase string.toUpperCase

Table 4. Correspondence Between Clib and ECMAScript Methods

Clib Method Description ECMAScript Method
Version 7.5, Rev. B Siebel eScript Language Reference 133

Siebel eScript Commands

The Clib Object
■ “Clib.fgetc() Method and Clib.getc() Method” on page 150

■ “Clib.fgetc() Method and Clib.getc() Method” on page 150

■ “Clib.fgetpos() Method” on page 151

■ “Clib.fgets() Method” on page 152

■ “Clib.fopen() Method” on page 154

■ “Clib.fprintf() Method” on page 157

■ “Clib.fputc() Method and Clib.putc() Method” on page 157

■ “Clib.fputs() Method” on page 158

■ “Clib.fread() Method” on page 158

■ “Clib.freopen() Method” on page 160

■ “Clib.fscanf() Method” on page 162

■ “Clib.fseek() Method” on page 163

■ “Clib.fsetpos() Method” on page 163

■ “Clib.ftell() Method” on page 164

■ “Clib.fwrite() Method” on page 164

■ “Clib.fgetc() Method and Clib.getc() Method” on page 150

■ “Clib.fputc() Method and Clib.putc() Method” on page 157

■ “Clib.remove() Method” on page 185

■ “Clib.rename() Method” on page 185

■ “Clib.rewind() Method” on page 186

■ “Clib.tmpfile() Method” on page 207
134 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
■ “Clib.ungetc()Method” on page 209

NOTE: Siebel applications use UTF-16 encoding when writing to a file in Unicode.
The first two bytes of the file are always the BOM (Byte Order Mark). When
Clib.rewind is called on such a file, it is pointing to the BOM (-257) and not the first
valid character. The user can call Clib.fgetc/getc once to skip the BOM.

The Time Object
The Clib object (like the Date object) represents time in two distinct ways: as an
integral value (the number of seconds passed since January 1, 1970) and as a Time
object with properties for the day, month, year, and so on. This Time object is
distinct from the standard JavaScript Date object. You cannot use Date object
properties with a Time object or vice versa.

Note that the Time object differs from the Date object, although they contain similar
data. The Time object is for use with the other date and time functions in the Clib
object. It has the integer properties listed in Table 5.

Table 5. Integer Properties of the Time Object

Value for timeInt Integer Property

tm_sec Second after the minute (from 0)

tm_min Minutes after the hour (from 0)

tm_hour Hour of the day (from 0)

tm_mday Day of the month (from 1)

tm_mon Month of the year (from 0)

tm_year Years since 1900 (from 0)

tm_wday Days since Sunday (from 0)

tm_yday Day of the year (from 0)

tm_isdst Daylight Savings Time flag
Version 7.5, Rev. B Siebel eScript Language Reference 135

Siebel eScript Commands

The Clib Object
Time Functions
In the methods listed in Table 6, Time represents a variable in the Time object
format, while timeInt represents an integer time value.

The Clib object supports the following time functions.

Character Classification
The eScript language does not have a true character type. For the character
classification routines, a char is actually a one-character string. Thus, actual
programming usage is very much like C. For example, in the following fragment,
both .isalnum() statements work properly.

var t = Clib.isalnum('a');

var s = 'a';
var t = Clib.isalnum(s);

This fragment displays the following:

Table 6. Time Functions and the Objects They Return

Function Object Returned

“Clib.asctime() Method” on page 141 Time

“Clib.clock() Method” on page 144 CPU tick count

“Clib.ctime() Method” on page 145 timeInt

“Clib.difftime() Method” on page 146 timeInt

“Clib.gmtime() Method” on page 168 timeInt

“Clib.localtime() Method” on page 175 timeInt

“Clib.mktime() Method” on page 179 Time

“Clib.strftime() Method” on page 195 Time

“Clib.time() Method” on page 206 timeInt
136 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
true
true

In the following fragment, both Clib.isalnum() statements cause errors because the
arguments to them are strings with more than one character:

var t = Clib.isalnum('ab');

var s = 'ab';
var t = Clib.isalnum(s);

The character classification methods return Booleans: true or false. The following
character classification methods are supported in the Clib object:

Formatting Data
The print family of functions and scan family of functions both use format strings
to format the data written and read, respectively.

■ “Clib.isalnum() Method” on page 169

■ “Clib.isalpha() Method” on page 169

■ “Clib.isascii() Method” on page 170

■ “Clib.iscntrl() Method” on page 170

■ “Clib.isdigit() Method” on page 170

■ “Clib.isgraph() Method” on page 171

■ “Clib.islower() Method” on page 171

■ “Clib.isprint() Method” on page 172

■ “Clib.ispunct() Method” on page 173

■ “Clib.isspace() Method” on page 173

■ “Clib.isupper() Method” on page 174

■ “Clib.isxdigit() Method” on page 174
Version 7.5, Rev. B Siebel eScript Language Reference 137

Siebel eScript Commands

The Clib Object
Formatting Output
Table 7 lists the format strings for use with the print family of functions: fprintf(),
rsprintf(), and sprintf(). In these functions, characters are printed as read to
standard output until a percent character (%) is reached. The percent symbol (%)
indicates that a value is to be printed from the parameters following the format
string. The form of the format string is as follows:

%[flags][width][.precision]type

To include the % character as a character in the format string, use two % characters
together (%%).

Table 7. Format Strings for the Print Family of Functions

Formatting Character Effect

Flag Values

- Left justification in the field with space padding, or right justification with zero or
space padding

+ Force numbers to begin with a plus (+) or minus (-)

space Negative values begin with a minus (-); positive values begin with a space

Append one of the following symbols to the # character to display the output in the
indicated form:

■ o to prepend a zero to nonzero output

■ x or X to prepend 0x or 0X to the output, signifying hexadecimal

■ f to include a decimal point even if no digits follow the decimal point

■ e or E to include a decimal point even if no digits follow the decimal point,
display the output in scientific notation, and remove trailing zeros

■ g or G to include a decimal point even if no digits follow the decimal point,
display the output in scientific notation, and leave trailing zeros in place
138 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Width Values

n At least n characters are output; if the value is fewer than n characters, the output
is padded with spaces

0n At least n characters are output, padded on the left with zeros

* The next value in the argument list is an integer specifying the output width

Precision Values

If precision is specified, then it must begin with a period (.) and must take one of the following forms:

.0 For floating-point type, no decimal point is output

.n Output is n characters, or n decimal places if the value is a floating-point number

.* The next value in the argument list is an integer specifying the precision width

Type Values

d,i Signed integer

u Unsigned integer

o Octal integer

x Hexadecimal integer using 0 through 9 and a, b, c, d, e, f

X Hexadecimal integer using 0 through 9 and A, B, C, D, E, F

f Floating-point of the form [-]dddd.dddd

e Floating-point of the form [-]d.ddde+dd or [-]d.ddde-dd

E Floating-point of the form [-]d.dddE+dd or [-]d.dddE-dd

g Floating-point number of f or e type, depending on precision

G Floating-point number of F or E type, depending on precision

c Character; for example, 'a', 'b', '8'

s String

Table 7. Format Strings for the Print Family of Functions

Formatting Character Effect
Version 7.5, Rev. B Siebel eScript Language Reference 139

Siebel eScript Commands

The Clib Object
Formatting Input
Format strings are also used with the scan family of functions: fscanf(), sscanf(),
and vfscanf(). The format string contains character combinations that specify the
type of data expected. The format string specifies the admissible input sequences
and how the input is to be converted to be assigned to the variable number of
arguments passed to the function. Characters are matched against the input as read
and as it matches a portion of the format string until a percent character (%) is
reached. The percent character indicates that a value is to be read and stored to
subsequent parameters following the format string.

Each subsequent parameter after the format string gets the next parsed value taken
from the next parameter in the list following the format string. A parameter
specification takes this form:

%[*][width]type

The *, width, and type values may be one of the following:

If width is specified, the input is an array of characters of the specified length.

Table 8 lists the characters that define the type.

* Suppresses assigning this value to any parameter

width Sets the maximum number of characters to read; fewer are read if a
white-space or nonconvertible character is encountered

Table 8. Type Values for the Scan Family of Functions

Type Value Effect

d,D,i,I Signed integer

u,U Unsigned integer

o,O Octal integer

x,X Hexadecimal integer

f,e,E,g,G Floating-point number

s String
140 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.asctime() Method
This method returns a string representing the date and time extracted from a Time
object.

Syntax Clib.asctime(Time)

Returns A string representing the date and time extracted from a Time object.

Usage For details on the Time object, read “The Time Object” on page 135. The returned
string has the format Day Mon dd hh:mm:ss yyyy; for example, Mon Jul 10
13:21:56 2000.

See Also “Clib.ctime() Method” on page 145, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getTime() Method” on page 219, and
“getUTCDate() Method” on page 221

Clib.bsearch() Method
This method looks for an array variable that matches a specified item.

[abc] String consisting of the characters within brackets, where A–Z represents the
range A to Z

[^abc] String consisting of the character not within brackets

Table 8. Type Values for the Scan Family of Functions

Type Value Effect

Parameter Description

Time A Time object
Version 7.5, Rev. B Siebel eScript Language Reference 141

Siebel eScript Commands

The Clib Object
Syntax Clib.bsearch(key, arrayToSort, [elementCount,] compareFunction)

Returns An array variable that matches key, returning the variable if found, null if not.

Usage Clib.bsearch() searches only through array elements with a positive index; array
elements with negative indices are ignored.

The compareFunction value must receive the key variable as its first argument and
a variable from the array as its second argument. If elementCount is not supplied,
then the function searches the entire array.

Example The following example demonstrates the use of Clib.qsort() and Clib.bsearch() to
locate a name and related item in a list:

(general) (ListCompareFunction)

function ListCompareFunction(Item1, Item2)
{

return Clib.strcmpi(Item1[0], Item2[0]);
}

(general) (DoListSearch)

function DoListSearch()

// create array of names and favorite food
var list =
{

{“Brent”, “salad”},
{"Laura", "cheese" },
{ "Alby", "sugar" },
{ "Jonathan","pad thai" },
{ "Zaza", "grapefruit" },

Parameter Description

key The value to search for

arrayToSort The name of the array to sort

elementCount The number of array elements to search; if omitted, the entire array
is searched

compareFunction A user-defined function that can affect the sort order
142 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
{ "Jordan", "pizza" }
};

// sort the list
Clib.qsort(list, ListCompareFunction);
var Key = "brent";
// search for the name Brent in the list
var Found = Clib.bsearch(Key, list, ListCompareFunction);
// display name, or not found
if (Found != null)

TheApplication().RaiseErrorText(Clib.rsprintf
("%s's favorite food is %s\n", Found[0][0],Found[0][1]));

else
TheApplication().RaiseErrorText("Could not find name in

list.");
}

See Also “Clib.qsort() Method” on page 182

Clib.chdir() Method
This method changes the current directory for the Siebel application.

Syntax Clib.chdir(dirPath)

Returns 0 if successful; otherwise, -1.

Usage This method changes the current directory for the Siebel application. The default
directory for a Siebel application in a Windows environment is always
c:\siebel\bin. When the script finishes, this directory again becomes the default
directory.

dirPath can be an absolute or relative path specification.

Example For an example, read “Clib.getcwd() Method” on page 166.

Parameter Description

dirpath The path to the directory to make current
Version 7.5, Rev. B Siebel eScript Language Reference 143

Siebel eScript Commands

The Clib Object
See Also “Clib.getcwd() Method” on page 166, “Clib.mkdir() Method” on page 178, and
“Clib.rmdir() Method” on page 186

Clib.clearerr() Method
This method clears the error status and resets the end-of-file flag for a specified file.

Syntax Clib.clearerr(filePointer)

Returns Not applicable

Usage This method clears the error status and resets the end-of-file (EOF) flag for the file
indicated by filePointer.

Clib.clock() Method
This method returns the current processor tick count.

Syntax Clib.clock()

Returns The current processor tick count.

Usage The count starts at 0 when the Siebel application starts running and is incremented
the number of times per second determined by the operating system.

Clib.cosh() Method
This method returns the hyperbolic cosine of x.

Parameter Description

filePointer A pointer to the file to be cleared and reset

Parameter Description

Not applicable
144 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax Clib.cosh(number)

Returns The hyperbolic cosine of x.

See Also “Clib.sinh() Method” on page 188, “Clib.tanh() Method” on page 206, and
“Math.cos() Method” on page 280

Clib.ctime() Method
This method returns a date-time value.

Syntax Clib.ctime(timeInt)

Returns A string representing date-time value, adjusted for the local time zone.

Usage This method returns a string representing a date-time value, adjusted for the local
time zone. It is equivalent to:

Clib.asctime(Clib.localtime(timeInt));

where timeInt is a date-time value as returned by the Clib.time() function.

Example The following line of code returns the current date and time as a string of the form
Day Mon dd hh:mm:ss yyyy:

TheApplication().RaiseErrorText(Clib.ctime(Clib.time()));

See Also “Clib.asctime() Method” on page 141, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “Clib.time() Method” on page 206, and
“toLocaleString() Method and toString() Method” on page 241

Parameter Description

number The number whose hyperbolic cosine is to be found

Parameter Description

timeInt A date-time value as returned by the Clib.time() function
Version 7.5, Rev. B Siebel eScript Language Reference 145

Siebel eScript Commands

The Clib Object
Clib.difftime() Method
This method returns the difference in seconds between two times.

Syntax Clib.difftime(timeInt1, timeInt0)

Returns The difference in seconds between timeInt0 and timeInt1.

Example This example displays the difference in time, in seconds, between two times:

function difftime_Click ()
{

var first = Clib.time();
var second = Clib.time();

TheApplication().RaiseErrorText("Elapsed time is " +
Clib.difftime(second, first) + " seconds.");

}

See Also “Clib.time() Method” on page 206, “Date.toSystem() Method” on page 242

Clib.div() Method and Clib.ldiv() Method
These methods perform integer division and return a quotient and remainder in a
structure.

Syntax Clib.div(numerator, denominator)
Clib.ldiv(numerator, denominator)

Parameter Description

timeInt0 An integer time value as returned by the Clib.time() function

timInt1 An integer time value as returned by the Clib.time() function

Parameter Description

numerator The number to be divided

denominator The number by which numerator is to be divided
146 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Returns A structure with the following elements, which are the result of dividing numerator
by denominator:

Usage Because Siebel eScript does not distinguish between integers and long integers, the
Clib.div() and Clib.ldiv() methods are identical.

Example The following example accepts two numbers as input from the user, divides the first
by the second, and displays the result:

var division = Clib.div(ToNumber(n), ToNumber(d));
TheApplication().RaiseErrorText("The quotient is " +

division.quot + ".\n\n" + "The remainder is " + division.rem +
".");

Clib.errno Property
The errno property stores diagnostic message information when a function fails to
execute correctly.

Syntax Clib.errno

Returns Not applicable

Usage Many functions in the Clib and SElib objects set errno to nonzero when an error
occurs, to provide more specific information about the error. Siebel eScript
implements errno as a macro to the internal function _errno(). This property can be
accessed with Clib.strerror().

The errno property cannot be modified through eScript code. It is available only for
read-only access.

.quot quotient

.rem remainder

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 147

Siebel eScript Commands

The Clib Object
Clib.fclose() Method
This method writes a file’s data to disk and closes the file.

Syntax Clib.fclose(filePointer)

Returns Zero if successful; otherwise, returns EOF.

Usage This method flushes the file’s buffers (that is, writes its data to disk) and closes the
file. The file pointer ceases to be valid after this call.

Example This example creates and writes to a text file and closes the file, testing for an error
condition at the same time. If an error occurs, a message is displayed and the buffer
is flushed.

function Test_Click ()
{

var fp = Clib.fopen('c:\\temp000.txt', 'wt');
Clib.fputs('abcdefg\nABCDEFG\n', fp);
if (Clib.fclose(fp) != 0)
{

TheApplication().RaiseErrorText('Unable to close file.' +
'\nContents are lost.');

}
else

Clib.remove('c:\\temp000.txt');
}

See Also “Clib.fflush() Method” on page 149

Clib.feof() Method
This function determines whether a file cursor is at the end of a file.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
148 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax Clib.feof(filePointer)

Returns A nonzero integer if the file cursor is at the end of the file; 0 if it is not at the end
of the file.

Usage This method determines whether the file cursor is at the end of the file indicated by
filePointer. It returns a nonzero integer (usually 1) if true, 0 if not.

Clib.ferror() Method
This method tests and returns the error indicator for a file.

Syntax Clib.ferror(filePointer)

Returns 0 if no error; otherwise, the error number.

Usage This method checks whether an error has occurred for a buffer into which a file has
been read. If an error occurs, it returns the error number.

See Also “Clib.errno Property” on page 147

Clib.fflush() Method
This function writes the data in a file buffer to disk.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
Version 7.5, Rev. B Siebel eScript Language Reference 149

Siebel eScript Commands

The Clib Object
Syntax Clib.fflush(filePointer)

Returns 0 if successful; otherwise, EOF.

Usage This method causes any unwritten buffered data to be written to the file indicated
by filePointer. If filePointer is null, this method flushes buffers in open files.

Example For an example, read “Clib.fclose() Method” on page 148.

See Also “Clib.fclose() Method” on page 148

Clib.fgetc() Method and Clib.getc() Method
These methods return the next character in a file stream.

Syntax Clib.fgetc(filePointer)
Clib.getc(filePointer)

Returns The next character in the file indicated by filePointer as a byte converted to an
integer.

Usage These methods return the next character in a file stream—a buffer into which a file
has been read. If there is a read error or the file cursor is at the end of the file, EOF
is returned. If there is a read error, Clib.ferror() indicates the error condition.

See Also “Clib.fgets() Method” on page 152 and “Clib.qsort() Method” on page 182

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
150 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.fgetpos() Method
This method stores the current position of the pointer in a file.

Syntax Clib.fgetpos(filePointer, position)

Returns 0 if successful; otherwise, nonzero, in which case an error value is stored in the
errno property.

Usage This method stores the current position of the file cursor in the file indicated by
filePointer for future restoration using fsetpos(). The file position is stored in the
variable position; use it with fsetpos() to restore the cursor to its position.

Example This example writes two strings to a temporary text file, using Clib.fgetpos() to save
the position where the second string begins. The program then uses Clib.fsetpos()
to set the file cursor to the saved position so as to display the second string, as
shown in the illustration.

function Test_Click ()
{

var position;
var fp = Clib.tmpfile();
Clib.fputs("Melody\n”, fp);
Clib.fgetpos(fp, position)
Clib.fputs("Lingers\n", fp);
Clib.fsetpos(fp, position);
TheApplication().RaiseErrorText(Clib.fgets(fp));
Clib.fclose(fp);

}

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

position The current position of filePointer
Version 7.5, Rev. B Siebel eScript Language Reference 151

Siebel eScript Commands

The Clib Object
See Also “Clib.feof() Method” on page 148, “Clib.fsetpos() Method” on page 163, and
“Clib.ftell() Method” on page 164

Clib.fgets() Method
This method returns a string consisting of the characters in a file from the current
file cursor to the next newline character.

Syntax Clib.fgets([maxLen,] filePointer)

Returns A string consisting of the characters in a file from the current file cursor to the next
newline character. If an error occurs, or if the end of the file is reached, null is
returned.

Usage This method returns a string consisting of the characters in a file from the current
file cursor to the next newline character. The newline is returned as part of the
string.

Example This example writes a string containing an embedded newline character to a
temporary file. It then reads from the file twice to retrieve the output and display it,
as shown in the illustration following the example.

function Test_Click ()
{

var x = Clib.tmpfile();
Clib.fputs("abcdefg\nABCDEFG\n", x);
Clib.rewind(x);
TheApplication().RaiseErrorText(Clib.fgets(x) + " " +

Parameter Description

maxLen The maximum length of the string to be returned if no newline character
is encountered; if the File Mode is Unicode, the length argument is the
length in Unicode characters.

filePointer A file pointer as returned by Clib.fopen()
152 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.fgets(x));
Clib.fclose(x);

}

See Also “Clib.fputs() Method” on page 158

Clib.flock() Method
This method locks or unlocks a file for simultaneous use by multiple processes.

Syntax Clib.flock(filePointer, mode)

Returns 0 if successful; otherwise, a nonzero integer.

Usage The flock() function applies or removes an advisory lock on the file identified by
filePointer. Advisory locks allow cooperating processes to perform consistent
operations on files. However, other processes may still access the files, which can
cause inconsistencies.

Parameter Description

filePointer A file pointer as returned by Clib.fopen() or Clib.tmpfile()

mode One of the following:

■ LOCK_EX (lock for exclusive use)

■ LOCK_SH (lock for shared use)

■ LOCK_UN (unlock)

■ LOCK_NB (non-blocking)
Version 7.5, Rev. B Siebel eScript Language Reference 153

Siebel eScript Commands

The Clib Object
The locking mechanism allows two types of locks: shared and exclusive. Multiple
processes can have shared locks on a file at the same time; however, there cannot
be multiple exclusive locks, or shared locks and an exclusive lock, on one file at the
same time.

Read permission is required on a file to obtain a shared lock, and write permission
is required to obtain an exclusive lock. Locking a segment that is already locked by
the calling process causes the old lock type to be removed and the new lock type
to take effect.

If a process requests a lock on an object that is already locked, the request is locked
until the file is freed, unless LOCK_NB is used. If LOCK_NB is used, the call fails
and the error EWOULDBLOCK is returned.

NOTE: Clib.flock() is not supported in Unicode builds. It always returns 0.

Clib.fopen() Method
This method opens a specified file in a specified mode.

Syntax Clib.fopen(filename, mode)

Returns A file pointer to the file opened; null if the function fails.

Parameter Description

filename Any valid filename that does not include wildcard characters

mode One of the following characters specifying a file mode, optionally followed by
one of the characters listed in Table 9.
154 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Usage This function opens the file filename, in mode mode. The mode parameter is a string
composed of “r”, “w”, or “a” followed by other characters as follows:

When a file is successfully opened, its error status is cleared and a buffer is
initialized for automatic buffering of reads and writes to the file.

Example The following code fragment opens the text file ReadMe for text-mode reading and
displays each line in that file:

var fp = Clib.fopen("ReadMe","rt");
if (fp == null)

TheApplication().RaiseErrorText("\aError opening file for
reading.\n")
else
{

while (null != (line=Clib.fgets(fp)))
{

Clib.fputs(line, stdout)
}

}
Clib.fclose(fp);

Table 9. File Mode Characters

Character Mode

r Opens the file for reading; the file must already exist

w Opens the file for writing; the file must already exist

a Opens the file in append mode

Optional Characters

b Opens the file in binary mode; if b is not specified, the file is opened in text
mode (end-of-line translation is performed)

t Opens the file in text mode

u Opens the file in Unicode mode; for example, Clib.fopen(“filename.txt”,
“rwu”)

+ Opens the file for update (reading and writing)
Version 7.5, Rev. B Siebel eScript Language Reference 155

Siebel eScript Commands

The Clib Object
Here is an example which opens a file and reads and writes a string, using the
default codepage:

var oFile = Clib.fopen("myfile","rw");
if (null != oFile)
{

var sHello = "Hello";
var nLen = sHello.length;
Clib.fputs(sHello, oFile);
Clib.rewind(oFile);
Clib.fgets (nLen, sHello);

}

Here is an example which opens a file and reads and writes a string in Unicode
mode:

var oFile = Clib.fopen("myfile","rwu");
if (null != oFile)
{

var sHello = "Hello";
var nLen = sHello.length;
Clib.fputs(sHello, oFile);
Clib.rewind(oFile);
Clib.fgets (nLen, sHello);

}

The following example specifies a file path:

function WebApplet_ShowControl (ControlName, Property, Mode,
&HTML)
{
if (ControlName == "GotoUrl")

{
var fp = Clib.fopen("c:\\test.txt","wt+");
Clib.fputs("property = " + Property + "\n", fp);
Clib.fputs("mode = " + Mode + "\n",fp);
Clib.fputs("ORG HTML = " + HTML + "\n",fp);
Clib.fclose(fp);
HTML = "<td>New HTML code</td>";

}
return(ContinueOperation);

See Also “Clib.fclose() Method” on page 148 and “Clib.tmpfile() Method” on page 207
156 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.fprintf() Method
This function writes a formatted string to a specified file.

Syntax Clib.fprintf(filePointer, formatString)

Returns Not applicable

Usage This method writes a formatted string to the file indicated by filePointer. For
information on format strings used with Clib.fprintf(), see Table 7 on page 138.

See Also “Clib.rsprintf() Method” on page 187 and “Clib.sprintf() Method” on page 188

Clib.fputc() Method and Clib.putc() Method
These methods write a character, converted to a byte, to the specified file.

Syntax Clib.fputc(char, filePointer)
Clib.putc(char, filePointer)

Returns If successful, char; otherwise, EOF.

Usage These methods write a single character to the file indicated by filePointer. If char is
a string, the first character of the string is written to the file indicated by filePointer.
If char is a number, the character corresponding to its Unicode value is written to
the file.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

formatString A string containing formatting instructions for each data item to be written

Parameter Description

char A one-character string or a variable holding a single character

filePointer A file pointer as returned by Clib.fopen()
Version 7.5, Rev. B Siebel eScript Language Reference 157

Siebel eScript Commands

The Clib Object
See Also “Clib.fgetc() Method and Clib.getc() Method” on page 150 and “Clib.fputs()
Method” on page 158

Clib.fputs() Method
This method writes a string to a specified file.

Syntax Clib.fputs(string, filePointer)

Returns EOF if a write error occurs; otherwise, a non-negative value.

Usage This method writes the value of string to the file indicated by filePointer.

Example For an example, read “Clib.fgets() Method” on page 152.

See Also “Clib.fgets() Method” on page 152 and “Clib.fputc() Method and Clib.putc()
Method” on page 157

Clib.fread() Method
This method reads data from an open file and stores it in a variable.

Syntax A Clib.fread(destBuffer, bytelength, filePointer)

Syntax B Clib.fread(destVar, varDescription, filePointer)

Parameter Description

string A string literal or a variable containing a string

filePointer A file pointer as returned by Clib.fopen()
158 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax C Clib.fread(blobVar, blobDescriptor, filePointer)

Returns The number of elements read. For destBuffer, the number of bytes read, up to
bytelength. For varDescription, 1 if the data is read, or 0 if there is a read error or
EOF is encountered.

Usage This method reads data from the open file filePointer and stores it in the specified
variable. If it does not yet exist, the variable, buffer, or BLOB is created. The
varDescription value is a variable that describes how and how much data is to be
read: if destVar is to hold a single datum, then varDescription must be one of the
following:

Parameter Description

destBuffer A variable indicating the buffer to contain the data read from the file

bytelength The number of bytes to read

filePointer A file pointer as returned by Clib.fopen()

destVar A variable to contain the data read from the file

varDescription A variable that describes how much data is to be read; must be one of
the values in the list in the “Usage” section

blobVar A variable indicating the BLOB to contain the data read from the file

blobDescriptor The blobDescriptor for blobVar

UWORD8 Stored as an unsigned byte

SWORD8 Stored as a signed byte

UWORD16 Stored as an unsigned 16-bit integer

SWORD16 Stored as a signed 16-bit integer

UWORD24 Stored as an unsigned 24-bit integer

SWORD24 Stored as a signed 24-bit integer

UWORD32 Stored as an unsigned 32-bit integer

SWORD32 Stored as a signed 32-bit integer

FLOAT32 Stored as a floating-point number
Version 7.5, Rev. B Siebel eScript Language Reference 159

Siebel eScript Commands

The Clib Object
For example, the definition of a structure might be:

ClientDef = new blobDescriptor();
ClientDef.Sex = UWORD8;
ClientDef.MaritalStatus = UWORD8;
ClientDef._Unused1 = UWORD16;
ClientDef.FirstName = 30; ClientDef.LastName = 40;
ClientDef.Initial = UWORD8;

The Siebel eScript version of fread() differs from the standard C version in that the
standard C library is set up for reading arrays of numeric values or structures into
consecutive bytes in memory. In JavaScript, this is not necessarily the case.

Data types are read from the file in a byte-order described by the current value of
the BigEndianMode global variable.

Example To read the 16-bit integer i, the 32-bit float f, and then the 10-byte buffer buf from
the open file fp, use code like this:

if (!Clib.fread(i, SWORD16, fp) || !Clib.fread(f, FLOAT32, fp)
|| 10 != Clib.fread(buf, 10, fp))

TheApplication().RaiseErrorText("Error reading from
file.\n");
}

See Also “Clib.fwrite() Method” on page 164

Clib.freopen() Method
This method closes the file associated with a file pointer and then opens a file and
associates it with the file pointer of the file that has been closed.

Syntax Clib.freopen(filename, mode, oldFilePointer)

FLOAT64 Stored as a double-precision floating-point number

Parameter Description

filename The name of a file to be opened
160 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Returns A copy of the old file pointer after reassignment, or null if the function fails.

Usage This method closes the file associated with oldFilePointer (ignoring any close errors)
and then opens filename according to mode (as in Clib.fopen()) and reassociates
oldFilePointer to this new file specification. It is commonly used to redirect one of
the predefined file handles (stdout, stderr, stdin) to or from a file.

See Also “Clib.fclose() Method” on page 148 and “Clib.fopen() Method” on page 154

Clib.frexp() Method
This method breaks a number into a normalized mantissa between 0.5 and 1.0 and
calculates an integer exponent of 2 such that the number is equivalent to the
mantissa * 2 ^ exponent.

Syntax Clib.frexp(number, exponent)

Returns A normalized mantissa between 0.5 and 1.0; otherwise, 0.

Usage This method breaks number into a normalized mantissa between 0.5 and 1.0 and
calculates an integer exponent of 2 such that number == mantissa * 2 ̂ exponent.
A mantissa is the decimal part of a natural logarithm.

mode One of the file modes specified in the Clib.fopen() function; for Unicode,
the same “u” flag as in Clib.fopen can be used

oldFilePointer The file pointer to a file to be closed, and to which filename is to be
associated

Parameter Description

Parameter Description

number The number to be operated on

exponent The exponent to use
Version 7.5, Rev. B Siebel eScript Language Reference 161

Siebel eScript Commands

The Clib Object
Clib.fscanf() Method
This function reads data from a specified file and stores the data items in a series of
parameters.

Syntax Clib.fscanf(filePointer, formatString, var1, var2, ..., varn)

Returns The number of input items assigned. This number may be fewer than the number
of parameters requested if there was a matching failure. If there is an input failure
(before the conversion occurs), this function returns EOF.

Usage This function reads input from the file indicated by filePointer and stores that input
in the var1, var2, ..., varn parameters following the formatString value according to
the character combinations in the format string, which indicate how the file data is
to be read and stored. The file must be open, with read access.

Characters from input are matched against the formatting instruction characters of
formatString until a percent character (%) is reached. The % character indicates
that a value is to be read and stored to subsequent parameters following
formatString. Each subsequent parameter after formatString gets the next parsed
value taken from the next parameter in the list following formatString.

A parameter specification takes this form:

%[*][width]type

For values for these items, read “Formatting Input” on page 140.

See Also “Clib.sinh() Method” on page 188 and “Clib.sscanf() Method” on page 190

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

formatString A string containing formatting instructions for each data item to
be read

var1, var2, ..., varn Variables holding the values to be formatted
162 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.fseek() Method
This method sets the position of the file cursor of an open file.

Syntax Clib.fseek(filePointer, offset[, mode])

Returns 0 if successful, or nonzero if it cannot set the file cursor to the indicated position.

Usage This method sets the position of the file cursor in the file indicated by filePointer. If
mode is not supplied, then the absolute offset from the beginning of the file
(SEEK_SET) is assumed. For text files (that is, files not opened in binary mode), the
file position may not correspond exactly to the byte offset in the file.

See Also “Clib.fgetpos() Method” on page 151, “Clib.ftell() Method” on page 164, and
“Clib.rewind() Method” on page 186

Clib.fsetpos() Method
This method sets the current file cursor to a specified position.

Syntax Clib.fsetpos(filePointer, position)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

offset The number of bytes to move the file cursor beyond mode

mode One of the following values:

SEEK_CUR: seek is relative to the current position of the file cursor

SEEK_END: seek is relative to the end of the file

SEEK_SET: seek is relative to the beginning of the file

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

position The value returned by Clib.fgetpos(filePointer, position)
Version 7.5, Rev. B Siebel eScript Language Reference 163

Siebel eScript Commands

The Clib Object
Returns 0 if successful; otherwise, nonzero, in which case an error value is stored in errno.

Usage This method sets the current file cursor to a specified position in the file indicated
by filePointer. It is used to restore the file cursor to a position that has previously
been retrieved by Clib.fgetpos() and stored in the position variable used by that
method.

Example For an example, read “Clib.fgetpos() Method” on page 151.

See Also “Clib.fgetpos() Method” on page 151 and “Clib.ftell() Method” on page 164

Clib.ftell() Method
This method sets the position offset of the file cursor of an open file relative to the
beginning of the file.

Syntax Clib.ftell(filePointer)

Returns The current location of the file cursor, or -1 if there is an error, in which case an
error value is stored in Clib.errno.

Usage This method sets the position offset of the file cursor of the open file indicated by
filePointer relative to the beginning of the file. For text files (that is, files not opened
in binary mode), the file position may not correspond exactly to the byte offset in
the file.

See Also “Clib.fseek() Method” on page 163 and “Clib.fsetpos() Method” on page 163

Clib.fwrite() Method
This method writes the data in a specified variable to a specified file and returns the
number of elements written.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
164 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax A Clib.fwrite(sourceVar, varDescription, filePointer)

Syntax B Clib.fwrite(sourceVar, bytelength, filePointer)

Returns 0 if a write error occurs; use Clib.ferror() to get more information about the error.

Usage This method writes the data in sourceVar to the file indicated by filePointer and
returns the number of elements written.

The varDescription variable describes how much data is to be read from the object
indicated by sourceVar:

The Siebel eScript version of fwrite() differs from the standard C version in that the
standard C library is set up for writing arrays of numeric values or structures from
consecutive bytes in memory. This is not necessarily the case in eScript.

Example To write the 16-bit integer i, the 32-bit float f, and the 10-byte buffer buf into open
file fp, use the following code:

Parameter Description

bytelength Number of bytes to write

sourceVar A variable indicating the source from which data is to be written

varDescription A value depending on the type of object indicated by sourceVar

filePointer A file pointer as returned by Clib.fopen()

If sourceVar Is Value of varDescription Is

Buffer Length of the buffer

Object Object descriptor

A single datum One of the values listed in “Clib.fread() Method” on page 158
Version 7.5, Rev. B Siebel eScript Language Reference 165

Siebel eScript Commands

The Clib Object
if (!Clib.fwrite(i, SWORD16, fp) || !Clib.fwrite(f, FLOAT32, fp)
|| 10 != fwrite(buf, 10, fp))

{
TheApplication().RaiseErrorText("Error writing to file.\n");

}

See Also “Clib.fread() Method” on page 158

Clib.getcwd() Method
This method returns the entire path of the current working directory for a script.

Syntax Clib.getcwd()

Returns The entire path of the current working directory for a script.

Usage In a Siebel application, the default (current working) directory in a Windows
environment is always C:\Siebel\bin. When a script finishes running, the default
directory returns to C:\Siebel\bin, even if the script changes the current working
directory.

Example In this example, the current directory is displayed in a message box. The script then
makes the root the current directory, creates a new directory, removes that directory,
and then attempts to make the removed directory current.

function Button_Click ()

{

var currDir = Clib.getcwd();
TheApplication().Trace("Current directory is " + Clib.getcwd());
var msg = Clib.mkdir('C:\\Clib test');
// Display the error flag created by creating directory;
// Should be 0, indicating no error.
TheApplication().Trace(msg);
// Change the current directory to the new 'Clib test'
Clib.chdir("C:\\Clib test");

Parameter Description

Not applicable
166 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
TheApplication().Trace("Current directory is " + Clib.getcwd());
// Delete 'Clib test'
Clib.chdir("C:\\");
// Attempting to make a removed directory current yields error

 flag
Clib.rmdir("Clib test");
msg = Clib.chdir("C:\\Clib.test");
TheApplication().Trace(msg);

}

The output displayed in the message boxes is as follows:

Current directory is C:\SIEBEL\BIN
0
Current directory is C:\Clib test
-1

See Also “Clib.chdir() Method” on page 143, “Clib.mkdir() Method” on page 178, and
“Clib.rmdir() Method” on page 186

Clib.getenv() Method
This method returns a specified environment-variable string.

Syntax Clib.getenv(varName)

Returns The value of the named environment variable.

Usage This method returns the value of an environment variable when given its name.

Example The following line of code displays the current path:

TheApplication().RaiseErrorText(Clib.getenv("PATH=" + "PATH"));

See Also “Clib.putenv() Method” on page 181

Parameter Description

varName The name of an environment variable
Version 7.5, Rev. B Siebel eScript Language Reference 167

Siebel eScript Commands

The Clib Object
Clib.gmtime() Method
This method converts an integer as returned by the Clib.time() function to a Time
object representing the current date and time expressed as Greenwich Mean Time
(GMT).

Syntax Clib.gmtime(timeInt)

Returns A Time object representing the current date and time expressed as Greenwich Mean
Time.

Usage This method converts an integer as returned by the Clib.time() function to a Time
object representing the current date and time expressed as Greenwich Mean Time
(GMT). For details on the Time object, read “The Time Object” on page 135.

NOTE: The line of code
var now = Clib.asctime(Clib.gmtime(Clib.time())) + "GMT";

is exactly equivalent to the standard JavaScript construction
var aDate = new Date;
var now = aDate.toGMTString()

Wherever possible, the second form should be used.

Example The following line of code returns the current GMT date and time as a string in the
form Day Mon dd hh:mm:ss yyyy.

TheApplication().RaiseErrorText(Clib.asctime(Clib.gmtime(Clib.ti
me())));

See Also “Clib.asctime() Method” on page 141, “Clib.ctime() Method” on page 145,
“Clib.localtime() Method” on page 175, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getTime() Method” on page 219, “getUTCDate()
Method” on page 221, and “toGMTString() Method” on page 240

Parameter Description

timeInt A date-time value as returned by the Clib.time() function
168 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.isalnum() Method
This function returns true if a specified character is alphanumeric.

Syntax Clib.isalnum(char)

Returns True if char is an alphabetic character from A through Z or a through z, or is a digit
from 0 through 9; otherwise, false.

Usage This function returns true if char is alphanumeric. Otherwise, it returns false.

See Also “Clib.isalpha() Method” on page 169, “Clib.islower() Method” on page 171,
“Clib.isprint() Method” on page 172, “Clib.isupper() Method” on page 174, and
“Clib.isdigit() Method” on page 170

Clib.isalpha() Method
This function returns true if a specified character is alphabetic.

Syntax Clib.isalpha(char)

Returns True if char is an alphabetic character from A to Z or a to z; otherwise, false.

Usage This function returns true if char is alphabetic; otherwise, it returns false.

See Also “Clib.isdigit() Method” on page 170, “Clib.isalnum() Method” on page 169,
“Clib.islower() Method” on page 171, “Clib.isprint() Method” on page 172, and
“Clib.isupper() Method” on page 174

Parameter Description

char A single character, or a variable containing a single character

Parameter Description

char A single character or a variable containing a single character
Version 7.5, Rev. B Siebel eScript Language Reference 169

Siebel eScript Commands

The Clib Object
Clib.isascii() Method
This function returns true if a specified character has an ASCII code from 0 to 127.

Syntax Clib.isascii(char)

Returns True if char is has an ASCII code from 0 through 127; otherwise, false.

Usage This function returns true if char is a character in the standard ASCII character set,
with codes from 0 through 127; otherwise, it returns false.

See Also “Clib.iscntrl() Method” on page 170 and “Clib.isprint() Method” on page 172

Clib.iscntrl() Method
This function returns true if a specified character is a control character.

Syntax Clib.iscntrl(char)

Returns True if char is a control character; otherwise, false.

Usage This function returns true if char is a control character, that is, one having an ASCII
code from 0 through 31; otherwise, it returns false.

See Also “Clib.isascii() Method” on page 170

Clib.isdigit() Method
This function returns true if a specified character is a decimal digit.

Parameter Description

char A single character or a variable containing a single character

Parameter Description

char A single character or a variable containing a single character
170 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax Clib.isdigit(char)

Returns True if char is a decimal digit from 0 through 9; otherwise, false.

Usage This function returns true if char is a decimal digit from 0 through 9; otherwise, it
returns false.

See Also “Clib.isalnum() Method” on page 169, “Clib.isalpha() Method” on page 169, and
“Clib.isupper() Method” on page 174

Clib.isgraph() Method
This function returns true if a specified character is a printable character other than
a space.

Syntax Clib.isgraph(char)

Returns True if char is a printable character other than the space character; otherwise, false.

Usage This function returns true if char is a printable character other than the space
character (ASCII code 32); otherwise, it returns false.

See Also “Clib.isprint() Method” on page 172, “Clib.ispunct() Method” on page 173, and
“Clib.isspace() Method” on page 173

Clib.islower() Method
This function returns true if a specified character is a lowercase alphabetic
character.

Parameter Description

char A single character or a variable containing a single character

Parameter Description

char A single character or a variable containing a single character
Version 7.5, Rev. B Siebel eScript Language Reference 171

Siebel eScript Commands

The Clib Object
Syntax Clib.islower(char)

Returns True if char is a lowercase alphabetic character; otherwise, false.

Usage This function returns true if char is a lowercase alphabetic character from a through
z; otherwise, it returns false.

See Also “Clib.isalnum() Method” on page 169, “Clib.isalpha() Method” on page 169, and
“Clib.isupper() Method” on page 174

Clib.isprint() Method
This function returns true if a specified character is printable.

Syntax Clib.isprint(char)

Returns True if char is a printable character that can be typed from the keyboard; otherwise,
false.

Usage This function returns true if char is a printable character that can be typed from the
keyboard (ASCII codes 32 through 126); otherwise, it returns false.

See Also “Clib.isalnum() Method” on page 169, “Clib.isascii() Method” on page 170,
“Clib.isgraph() Method” on page 171, “Clib.ispunct() Method” on page 173, and
“Clib.isspace() Method” on page 173

Parameter Description

char A single character or a variable containing a single character

Parameter Description

char A single character or a variable containing a single character
172 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.ispunct() Method
This function returns true if a specified character is a punctuation mark that can be
entered from the keyboard.

Syntax Clib.ispunct(char)

Returns True if char is a punctuation mark that can be entered from the keyboard (ASCII
codes 33 through 47, 58 through 63, 91 through 96, or 123 through 126); otherwise,
it returns false.

See Also “Clib.isgraph() Method” on page 171, “Clib.isprint() Method” on page 172, and
“Clib.isspace() Method” on page 173

Clib.isspace() Method
This function returns true if a specified character is a white-space character.

Syntax Clib.isspace(char)

Returns True if char is a white-space character; otherwise, false.

Usage This function returns true if char is a horizontal tab, newline, vertical tab, form feed,
carriage return, or space character (that is, one having an ASCII code of 9, 10, 11,
12, 13, or 32); otherwise, it returns false.

See Also “Clib.isascii() Method” on page 170 and “Clib.isprint() Method” on page 172

Parameter Description

char A single character or a variable containing a single character

Parameter Description

char A single character or a variable containing a single character
Version 7.5, Rev. B Siebel eScript Language Reference 173

Siebel eScript Commands

The Clib Object
Clib.isupper() Method
This function returns true if a specified character is an uppercase alphabetic
character.

Syntax Clib.isupper(char)

Returns True if char is an uppercase alphabetic character; otherwise, false.

Usage This function returns true if char is an uppercase alphabetic character from A
through Z; otherwise, it returns false.

See Also “Clib.isalpha() Method” on page 169 and “Clib.islower() Method” on page 171

Clib.isxdigit() Method
This function returns true if a specified character is a hexadecimal digit.

Syntax Clib.isxdigit(char)

Returns True if char is a hexadecimal digit; otherwise, false.

Usage This function evaluates a single character, returning true if the character is a valid
hexadecimal character (that is, a number from 0 through 9 or an alphabetic
character from a through f or A through F). If the character is not in one of the legal
ranges, it returns false.

See Also “Clib.isdigit() Method” on page 170

Parameter Description

char A single character or a variable containing a single character

Parameter Description

char A single character or a variable containing a single character
174 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.ldexp() Method
This method calculates a floating-point number given a mantissa and exponent.

Syntax Clib.ldexp(mantissa, exponent)

Returns The result of the calculation.

Usage This method is the inverse of .frexp() and calculates a floating-point number from
the following equation:

mantissa * 2 ^ exponent

A mantissa is the decimal part of a natural logarithm.

See Also “Clib.frexp() Method” on page 161

Clib.localtime() Method
This method returns a value as a Time object.

Syntax Clib.localtime(timeInt)

Returns The value of timeInt (as returned by the time() function) as a Time object.

Parameter Description

mantissa The number to be operated on

exponent The exponent to use

Parameter Description

timeInt A date-time value as returned by the Clib.time() function
Version 7.5, Rev. B Siebel eScript Language Reference 175

Siebel eScript Commands

The Clib Object
Usage This method returns the value timeInt (as returned by the time() function) as a
Time object. For details on the Time object, read “The Time Object” on page 135.

NOTE: The line of code
var now = Clib.asctime(Clib.localtime(Clib.time()));

is exactly equivalent to the standard JavaScript construction
var aDate = new Date;
var now = aDate.toLocaleString()

Wherever possible, use the second form.

See Also “Clib.asctime() Method” on page 141, “Clib.ctime() Method” on page 145,
“Clib.gmtime() Method” on page 168, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getTime() Method” on page 219, “getUTCDate()
Method” on page 221, and “toLocaleString() Method and toString() Method” on
page 241

Clib.memchr() Method
This method searches a buffer and returns the first occurrence of a specified
character.

Syntax Clib.memchr(bufferVar, char[, size])

Returns Null if char is not found in bufferVar; otherwise, a buffer that begins at the first
instance of char in bufferVar.

Usage This method searches bufferVar and returns the first occurrence of char. If size is
not specified, the method searches the entire buffer from element 0.

Parameter Description

bufferVar A buffer, or a variable pointing to a buffer

char The character to find

size The amount of the buffer to search, in bytes
176 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.memcmp() Method
This method compares the contents of two buffers or the length of two buffers.

Syntax Clib.memcmp(buf1, buf2[, length])

Returns A negative number if buf1 is less than buf2, 0 if buf1 is the same as buf2 for length
bytes, a positive number if buf1 is greater than buf2.

Usage If length is not specified, Clib.memcmp() compares the length of the two buffers. It
then compares the contents up to the length of the shorter buffer. If length is
specified and one of the buffers is shorter than length, comparison proceeds up to
the length of the shorter buffer.

Clib.memcpy() Method and Clib.memmove() Method
These methods copy a specified number of bytes from one buffer to another.

Syntax Clib.memcpy(destBuf, srcBuf[, length])

Clib.memmove(destBuf, srcBuf[, length])

Returns Not applicable

Parameter Description

buf1 A variable containing the name of the first buffer to be compared

buf2 A variable containing the name of the second buffer to be compared

length The number of bytes to compare

Parameter Description

destBuf The buffer to copy to

srcBuf The buffer to copy from

length The number of bytes to copy
Version 7.5, Rev. B Siebel eScript Language Reference 177

Siebel eScript Commands

The Clib Object
Usage These methods copy the number of bytes specified by length from srcBuf to destBuf.
If destBuf has not already been defined, it is created as a buffer. If the length is not
supplied, the entire contents of srcBuf are copied to destBuf.

Siebel eScript protects data from being overwritten; therefore, in Siebel eScript
Clib.memcpy() method is the same as Clib.memmove().

Clib.memset() Method
This method fills a specified number of bytes in a buffer with a specified character.

Syntax Clib.memset(bufferVar, char[, length])

Returns Not applicable

Usage This method fills a buffer with length bytes of char. If the buffer has not already
been defined, it is created as a buffer of length bytes. If bufferVar is shorter than
length, its size is increased to length. If length is not supplied, it defaults to the size
of bufferVar, starting at index 0.

Clib.mkdir() Method
This method creates a directory.

Syntax Clib.mkdir(dirpath)

Parameter Description

bufferVar A buffer or a variable containing a buffer

char The character to fill the buffer with

length The number of bytes in which char is to be written

Parameter Description

dirpath A string containing a valid directory path
178 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Returns 0 if successful; otherwise, -1.

Usage This method creates a directory. If no path is specified, the directory is created in
C:\siebel\bin. The specified directory may be an absolute or relative path
specification.

Example For an example, read “Clib.getcwd() Method” on page 166.

See Also “Clib.chdir() Method” on page 143, “Clib.getcwd() Method” on page 166, and
“Clib.rmdir() Method” on page 186

Clib.mktime() Method
This method converts a Time object to the time format returned by Clib.time().

Syntax Clib.mktime(Time)

Returns An integer representation of the value stored in Time, or -1 if Time cannot be
converted or represented.

Usage Undefined elements of Time are set to 0 before the conversion. This function is the
inverse of Clib.localtime(), which converts from a time integer to a Time object. For
details on the Time object, read “The Time Object” on page 135.

See Also “Clib.asctime() Method” on page 141, “Clib.ctime() Method” on page 145,
“Clib.gmtime() Method” on page 168, “Clib.localtime() Method” on page 175,
“GetDate() Method” on page 212, “getTime() Method” on page 219, and
“getUTCDate() Method” on page 221

Clib.modf() Method
This method returns the integer part of a decimal number.

Parameter Description

Time A Time object
Version 7.5, Rev. B Siebel eScript Language Reference 179

Siebel eScript Commands

The Clib Object
Syntax Clib.modf(number, var intVar)

Returns The integer part of number, stored in intVar.

Usage This method returns the integer part of a decimal number. Its effect is identical to
that of ToInteger(number).

Example This example passes the same value to Clib.modf() and ToInteger(). As the
illustration shows, the result is the same:

function eScript_Click ()
{

Clib.modf(32.154, var x);
var y = ToInteger(32.154);
TheApplication().RaiseErrorText("modf yields " + x +

".\nToInteger yields " + y + ".");
}

See Also “ToInteger() Method” on page 266

Clib.perror() Method
This method prints and returns an error message that describes the error defined by
Clib.errno.

Parameter Description

number The floating-point number to be split

intVar A variable to hold the integer part of number
180 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax Clib.perror([errmsg])

Returns A string containing an error message that describes the error indicated by
Clib.errno.

Usage This method is identical to calling Clib.strerror(Clib.errno). If a string variable is
supplied, it is set to the string returned.

Clib.putenv() Method
This method creates an environment variable, sets the value of an existing
environment variable, or removes an environment variable.

Syntax Clib.putenv(varName, stringValue)

Returns 0 if successful; otherwise, -1.

Usage This method sets the environment variable varName to the value of stringValue. If
stringValue is null, then varName is removed from the environment.

The environment variable change persists only while the Siebel eScript code and its
child processes are executing. After execution, the variable is destroyed
automatically.

See Also “Clib.getenv() Method” on page 167

Parameter Description

errmsg A message to describe an error condition

Parameter Description

varName The name of an environment variable

stringValue The value to be assigned to the environment variable
Version 7.5, Rev. B Siebel eScript Language Reference 181

Siebel eScript Commands

The Clib Object
Clib.qsort() Method
This method sorts elements in an array.

Syntax Clib.qsort(array, [elementCount,]compareFunction)

Returns Not applicable

Usage This method sorts elements in an array, starting from index 0 to elementCount-1. If
elementCount is not supplied, the method sorts the entire array. This method differs
from the Array.sort() method in that it can sort dynamically created arrays, whereas
Array.sort() works only with arrays explicitly created with a new Array statement.

Example The following example prints a list of colors sorted in reverse alphabetical order,
ignoring case:

// initialize an array of colors
var colors = { "yellow", "Blue", "GREEN", "purple", "RED",
"BLACK", "white", "orange" };
// sort the list using qsort and our ColorSorter routine
Clib.qsort(colors,"ReverseColorSorter");
// display the sorted colors
for (var i = 0; i <= getArrayLength(colors); i++)

Clib.puts(colors[i]);

function ReverseColorSorter(color1, color2)
// do a simple case insensitive string
// comparison, and reverse the results too
{

var CompareResult = Clib.stricmp(color1,color2)
return(_CompareResult);

}

The output of the preceding code would be:

Parameter Description

array An array to sort

elementCount The number of elements in the array, up to 65,536

compareFunction A user-defined function that can affect the sort order
182 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
yellow
white
RED
purple
orange
GREEN
Blue
BLACK

See Also “sort() Method” on page 101

quot Method
This method is used to find the quotient after a division operation.

Syntax intVar.quot

Returns The quotient part of a division operation performed by Clib.div() or Clib.ldiv().

Usage This method is used in conjunction with the Clib.div() or Clib.ldiv() functions. For
details, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

Example For an example, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

See Also “Clib.div() Method and Clib.ldiv() Method” on page 146 and “rem Method” on
page 184

Clib.rand() Method
This method generates a random number between 0 and RAND_MAX, inclusive.

Placeholder Description

intVar Any variable containing an integer
Version 7.5, Rev. B Siebel eScript Language Reference 183

Siebel eScript Commands

The Clib Object
Syntax Clib.rand()

Returns A pseudo-random number between 0 and RAND_MAX, inclusive. The value of
RAND_MAX depends upon the operating system, but is typically 32,768.

Usage The sequence of pseudo-random numbers is affected by the initial generator seed
and by earlier calls to Clib.rand(). For information about the initial generator seed,
read “Clib.srand() Method” on page 189.

See Also “Clib.srand() Method” on page 189 and “Math.random() Method” on page 288

rem Method
This method is used to find the remainder after a division operation.

Syntax intVar.rem

Returns The remainder part of the result of a division operation performed by Clib.div() or
Clib.ldiv().

Usage This method is used in conjunction with the Clib.div() or Clib.ldiv() function. For
details, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

Example For an example, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

See Also “Clib.div() Method and Clib.ldiv() Method” on page 146 and “quot Method” on
page 183

Parameter Description

Not applicable

Placeholder Description

intVar Any variable containing an integer
184 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.remove() Method
This method deletes a specified file.

Syntax Clib.remove(filename)

Returns 0 if successful; otherwise, -1.

Usage The filename parameter may be either an absolute or a relative filename.

Example For an example, read “Clib.fclose() Method” on page 148.

See Also “Clib.fopen() Method” on page 154

Clib.rename() Method
This method renames a file.

Syntax Clib.rename(oldName, newName)

Returns 0 if successful; otherwise, -1.

Usage This method renames a file. The oldName parameter may be either an absolute or
a relative filename.

Parameter Description

filename A string or string variable containing the name of the file to be deleted

Parameter Description

oldName A string representing the name of the file to be renamed

newName A string representing the new name to give the file
Version 7.5, Rev. B Siebel eScript Language Reference 185

Siebel eScript Commands

The Clib Object
Clib.rewind() Method
This method sets the file cursor to the beginning of a file.

Syntax Clib.rewind(filePointer)

Returns Not applicable

Usage This call is identical to Clib.fseek(filePointer, 0, SEEK_SET) except that it also clears
the error indicator for the file indicated by filePointer.

NOTE: Siebel applications use UTF-16 encoding when writing to a file in Unicode.
The first two bytes of the file are always the BOM (Byte Order Mark). When
Clib.rewind is called on such a file, it is pointing to the BOM (-257) and not the first
valid character. The user can call Clib.fgetc/getc once to skip the BOM.

Example For an example, read “Clib.fgets() Method” on page 152.

See Also “Clib.fseek() Method” on page 163

Clib.rmdir() Method
This method removes a specified directory.

Syntax Clib.rmdir(dirpath)

Returns 0 if successful; otherwise, -1.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Parameter Description

dirpath The directory to be removed
186 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Usage The dirpath parameter may be an absolute or relative path specification.

Example For an example, read “Clib.getcwd() Method” on page 166.

See Also “Clib.chdir() Method” on page 143, “Clib.getcwd() Method” on page 166, and
“Clib.mkdir() Method” on page 178

Clib.rsprintf() Method
This method returns a formatted string.

Syntax Clib.rsprintf([formatString] [,var1, var2, ..., varn])

Returns A string formatted according to formatString.

Usage Clib.rsprintf() can return string or numeric literals that appear as parameters.

The format string contains character combinations indicating how following
parameters are to be treated. For information on format strings used with
Clib.rsprintf(), see Table 7 on page 138 in the section “Formatting Data” on
page 137. If there are variable parameters, the number of formatting sequences
must match the number of variables.

Characters are returned as read until a percent character (%) is reached. The
percent character indicates that a value is to be printed from the parameters
following the format string.

Example Each of the following lines shows an rsprintf example followed by the resulting
string:

Parameter Description

formatString A string indicating how variable or literal parameters are to be
treated

var1, var2, ..., varn Variables to be printed using the formatString
Version 7.5, Rev. B Siebel eScript Language Reference 187

Siebel eScript Commands

The Clib Object
Clib.rsprintf("I count: %d %d %d.",1,2,3) //"I count: 1 2 3"
var a = 1;
var b = 2;
Clib.rsprintf("%d %d %d",a, b, a+b) //"1 2 3"

See Also “Clib.sprintf() Method” on page 188

Clib.sinh() Method
This method returns the hyperbolic sine of a floating-point number.

Syntax Clib.sinh(floatNum)

Returns The hyperbolic sine of floatNum.

See Also “Clib.cosh() Method” on page 144 and “Clib.tanh() Method” on page 206

Clib.sprintf() Method
This method writes output to a string variable according to a prescribed format.

Syntax Clib.sprintf(stringVar, formatString, var1, var2, ..., varn)

Returns The number of characters written into buffer if successful; otherwise, EOF.

Parameter Description

floatNum A floating-point number, or a variable containing a floating-point number,
whose hyperbolic sine is to be found

Parameter Description

stringVar The string variable to which the output is assigned

formatString A string indicating how variable or literal parameters are to be
treated

 var1, var2, ..., varn Variables to be formatted using the formatString
188 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Usage This method formats the values in the variables according to formatString and
assigns the result to stringVar. The formatString contains character combinations
indicating how following parameters are to be treated. For information on format
strings used with Clib.sprintf(), see Table 7 on page 138 in the section “Formatting
Data” on page 137. The string value need not be previously defined; it is created
large enough to hold the result. Characters are printed as read to standard output
until a percent character (%) is reached. The percent character indicates that a
value is to be printed from the parameters following the format string.

Example Each of the following lines shows an sprintf example followed by the resulting
string:

var testString;
Clib.sprintf(testString, "I count: %d %d %d.",1,2,3)
//"I count: 1 2 3"
var a = 1;
var b = 2;
Clib.sprintf(testString, "%d %d %d",a, b, a+b) //"1 2 3"

See Also “Clib.rsprintf() Method” on page 187

Clib.srand() Method
This method initializes a random number generator.

Syntax Clib.srand(seed)

Returns Not applicable

Usage If seed is not supplied, then a random seed is generated in a manner that is specific
to the operating system in use.

See Also “Clib.rand() Method” on page 183 and “Math.random() Method” on page 288

Parameter Description

seed A number for the random number generator to start with
Version 7.5, Rev. B Siebel eScript Language Reference 189

Siebel eScript Commands

The Clib Object
Clib.sscanf() Method
This method reads input from the standard input device and stores the data in
variables provided as parameters.

Syntax Clib.sscanf([formatString] [,var1, var2, ..., varn])

Returns EOF if input failure occurs before any conversion occurs; otherwise, the number of
variables assigned data.

Usage This method reads input from the standard input stream (the keyboard unless some
other file has been redirected as stdin by the Clib.freopen() function) and stores the
data read in the variables provided as parameters following formatString. The data
is stored according to the character combinations in formatString which indicate
how the input data is to be read and stored.

This method is identical to calling fscanf() with stdin as the first parameter. It
returns the number of input items assigned; this number may be fewer than the
number of parameters requested if there is a matching failure. If there is a
conversion failure, EOF is returned.

The formatString value specifies the admissible input sequences, and how the input
is to be converted to be assigned to the variable number of arguments passed to this
function. The input is not read until the ENTER key is pressed.

Characters from input are matched against the characters of the formatString until
a percent character (%) is reached. The percent character indicates that a value is
to be read and stored to subsequent parameters following formatString. Each
subsequent parameter after formatString gets the next parsed value taken from the
next parameter in the list following formatString.

A parameter specification takes this form:

Parameter Description

formatString A string indicating how variable or literal parameters are to be
treated

var1, var2, ..., varn Variables in which to store the input
190 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
%[*][width]type

For values for these items, read “Formatting Input” on page 140.

See Also “Formatting Data” on page 137, “Clib.fscanf() Method” on page 162, and
“Clib.sinh() Method” on page 188

Clib.strchr() Method
This method searches a string for a specified character.

Syntax Clib.strchr(string, char)

Returns The offset from the beginning of string of the first occurrence of char in string;
otherwise, null if char is not found in string.

Usage This method searches the parameter string for the character char. When possible,
you should use the standard JavaScript method substring() (read “string.replace()
Method” on page 311).

Example The following code fragment:

var str = "I can't stand soggy cereal."
var substr = Clib.strchr(str, 's');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +
substr);

results in the following output.

Parameter Description

string A string literal, or string variable, containing the character to be searched for

char The character to search for
Version 7.5, Rev. B Siebel eScript Language Reference 191

Siebel eScript Commands

The Clib Object
See Also “Clib.strcspn() Method” on page 192, “Clib.strpbrk() Method” on page 200,
“Clib.strrchr() Method” on page 201, and “string.replace() Method” on page 311

Clib.stricmp() Method and Clib.strcmpi() Method
These methods make a case-insensitive comparison of two strings.

Syntax Clib.stricmp(string1, string2)
Clib.strcmpi(string1, string2)

Returns The result of the comparison, which is 0 if the strings are identical, a negative
number if the ASCII code of the first unmatched character in string1 is less than that
of the first unmatched character in string2, or a positive number if the ASCII code
of the first unmatched character in string1 is greater than that of the first unmatched
character in string2.

Usage These methods continue to make a case-insensitive comparison, one byte at a time,
of string1 and string2 until there is a mismatch or the terminating null byte is
reached.

See Also “Clib.strncmp() Method” on page 198 and “Clib.strncmpi() Method and
Clib.strnicmp() Method” on page 198

Clib.strcspn() Method
This method searches a string for any of a group of specified characters.

Parameter Description

string1 A string, or a variable containing a string, to be compared with string2

string2 A string, or a variable containing a string, to be compared with string1
192 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax Clib.strcspn(string, charSet)

Returns If no matching characters are found, the length of the string; otherwise, the offset
of the first matching character from the beginning of string.

Usage This method searches the parameter string for any of the characters in the string
charSet, and returns the offset of that character. This method is similar to
Clib.strpbrk(), except that Clib.strpbrk() returns the string beginning at the first
character found, while Clib.strcspn() returns the offset number for that character.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

Example The following fragment demonstrates the difference between Clib.strcspn() and
Clib.strpbrk():

var string = "There's more than one way to skin a cat.";
var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
TheApplication().RaiseErrorText("The string is: " + string +

"\nstrpbrk returns a string: " + rStrpbrk +
"\nstrcspn returns an integer: " + rStrcspn);

Parameter Description

string A literal string, or a variable containing a string, to be searched

charSet A literal string, or a variable containing a string, which contains the set of
characters to search for
Version 7.5, Rev. B Siebel eScript Language Reference 193

Siebel eScript Commands

The Clib Object
This code results in the following output:

See Also “Clib.strchr() Method” on page 191, “Clib.strpbrk() Method” on page 200, and
“string.replace() Method” on page 311

Clib.strerror() Method
This method returns the error message associated with a Clib-defined error number.

Syntax Clib.strerror(errno)

Returns The descriptive error message associated with an error number returned by
Clib.errno.

Usage When some functions fail to execute properly, they store a number in the Clib.errno
property. The number corresponds to the type of error encountered. This method
converts the error number to a descriptive string and returns it.

See Also “Clib.errno Property” on page 147

Parameter Description

errno The error number returned by Clib.errno
194 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.strftime() Method
This method creates a string that describes the date or the time or both, and stores
it in a variable.

Syntax Clib.strftime(stringVar, formatString, Time)

Returns A formatted string as described by formatString.

Usage For details on the Time object, read “The Time Object” on page 135. The following
conversion characters are used with Clib.strftime() to indicate time and date output:

Parameter Description

stringVar A variable to hold the string representation of the time

formatString A string that describes how the value stored in stringVar is formatted, using
the conversion characters listed in the Usage topic

Time A time object as returned by Clib.localtime()

%a Abbreviated weekday name (Sun)

%A Full weekday name (Sunday)

%b Abbreviated month name (Dec)

%B Full month name (December)

%c Date and time (Dec 2 06:55:15 1979)

%d Two-digit day of the month (02)

%H Two-digit hour of the 24-hour day (06)

%I Two-digit hour of the 12-hour day (06)

%j Three-digit day of the year from 001 (335)

%m Two-digit month of the year from 01 (12)

%M Two-digit minute of the hour (55)

%p AM or PM (AM)

%S Two-digit seconds of the minute (15)

%U Two-digit week of the year where Sunday is the first day of the week (48)
Version 7.5, Rev. B Siebel eScript Language Reference 195

Siebel eScript Commands

The Clib Object
Example The following example displays the full day name and month name of the current
day:

var TimeBuf;
Clib.strftime(TimeBuf,"Today is %A, and the month is %B",

Clib.localtime(Clib.time()));
TheApplication().RaiseErrorText(TimeBuf);

See Also “Clib.asctime() Method” on page 141 and “Clib.localtime() Method” on page 175

Clib.strlwr() Method
This method converts a string to lowercase.

Syntax Clib.strlwr(str)

Returns String - the value of str after conversion of case.

Usage This method converts uppercase letters in str to lowercase, starting at str[0] and
ending before the terminating null byte. The return is the value of str, which is a
variable pointing to the start of str at str[0].

%w Day of the week where Sunday is 0 (0)

%W Two-digit week of the year where Monday is the first day of the week (47)

%x The date (Dec 2 1979)

%X The time (06:55:15)

%y Two-digit year of the century (79)

%Y The year (1979)

%Z The name of the time zone, if known (EST)

%% The percent character (%)

Parameter Description

str The string in which to change case of characters to lowercase.
196 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Clib.strncat() Method
This method appends a specified number of characters from one string to another
string.

Syntax Clib.strncat(destString, sourceString, maxLen)

Returns The string in destString after the characters have been appended.

Usage This method appends up to maxLen characters of sourceString onto the end of
destString. Characters following a null byte in sourceString are not copied. The
length of destString is the lesser of maxLen and the length of sourceString.

Example This example returns the string "I love to ride hang-gliders":

var string1 = "I love to ";
var string2 = "ride hang-gliders and motor scooters.";
Clib.strncat(string1, string2, 17);
TheApplication().RaiseErrorText(string1);

See Also “Clib.strncpy() Method” on page 199

Parameter Description

destString The string to which characters are to be added

sourceString The string from which characters are to be added

maxLen The maximum number of characters to add
Version 7.5, Rev. B Siebel eScript Language Reference 197

Siebel eScript Commands

The Clib Object
Clib.strncmp() Method
This method makes a case-sensitive comparison of two strings up to a specified
number of bytes until there is a mismatch or it reaches the end of a string.

Syntax Clib.strncmp(string1, string2, maxLen)

Returns The result of the comparison, which is 0 if the strings are identical, a negative
number if the ASCII code of the first unmatched character in string1 is less than that
of the first unmatched character in string2, or a positive number if the ASCII code
of the first unmatched character in string1 is greater than that of the first unmatched
character in string2.

Usage This method compares up to maxLen bytes of string1 against string2 until there is
a mismatch or it reaches the end of a string. The comparison is case-sensitive. The
comparison ends when maxLen bytes have been compared or when a terminating
null byte has been reached, whichever comes first.

See Also “Clib.stricmp() Method and Clib.strcmpi() Method” on page 192 and
“Clib.strncmpi() Method and Clib.strnicmp() Method” on page 198

Clib.strncmpi() Method and Clib.strnicmp() Method
These methods make a case-insensitive comparison between two strings, up to a
specified number of bytes.

Parameter Description

string1 A string, or a variable containing a string, to be compared with string2

string2 A string, or a variable containing a string, to be compared with string1

maxLen The number of bytes to compare
198 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax Clib.strncmpi(string1, string2, maxLen)
Clib.strncmpi(string1, string2, maxLen)

Returns The result of the comparison, which is 0 if the strings are identical, a negative
number if the ASCII code of the first unmatched character in string1 is less than that
of the first unmatched character in string2, or a positive number if the ASCII code
of the first unmatched character in string1 is greater than that of the first unmatched
character in string2.

Usage This method compares up to maxLen bytes of string1 against string2 until there is
a mismatch or it reaches the end of a string. This method does a case-insensitive
comparison, so that A and a are considered to be the same. The comparison ends
when maxLen bytes have been compared or when an end of string has been
reached, whichever comes first.

See Also “Clib.stricmp() Method and Clib.strcmpi() Method” on page 192 and
“Clib.strncmp() Method” on page 198

Clib.strncpy() Method
This method copies a specified number of characters from one string to another.

Syntax Clib.strncpy(destString, sourceString, maxLen)

Parameter Description

string1 A string, or a variable containing a string, to be compared with string2

string2 A string, or a variable containing a string, to be compared with string1

maxLen The number of bytes to compare

Parameter Description

destString The string to which characters are to be added

sourceString The string from which characters are to be added

maxLen The maximum number of characters to add
Version 7.5, Rev. B Siebel eScript Language Reference 199

Siebel eScript Commands

The Clib Object
Returns The ASCII code of the first character of destString.

Usage This method copies characters from sourceString to destString. The number of
characters copied is the lesser of maxLen and the length of sourceString. If MaxLen
is greater than the length of sourceString, the remainder of destString is filled with
null bytes. A null byte is appended to destString if MaxLen bytes are copied. If
destString is not already defined, the function defines it. It is safe to copy from one
part of a string to another part of the same string.

See Also “Clib.strncat() Method” on page 197

Clib.strpbrk() Method
This method searches a string for any of several specified characters and returns the
string beginning at the first instance of one of the specified characters.

Syntax Clib.strpbrk(string, charSet)

Returns The string beginning at the first instance of one of the specified characters in the
charSet parameter; otherwise, null, if none is found.

Usage This method searches string for any of the characters specified in charSet.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

Example For an example using this function, read “Clib.strcspn() Method” on page 192. To
accomplish the same result using standard JavaScript methods, read
“string.replace() Method” on page 311.

Parameter Description

string A string variable or literal containing the string from which the substring is to
be extracted

charSet A string variable or literal containing a group of characters, any one of which
may be the starting character for the substring
200 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
See Also “Clib.strchr() Method” on page 191, “Clib.strcspn() Method” on page 192, and
“string.replace() Method” on page 311

Clib.strrchr() Method
This method searches a string for the last occurrence of a character in a given string.

Syntax Clib.strrchr(string, char)

Returns The offset from the beginning of string of the first occurrence of char in string;
otherwise, null, if char is not found in string.

Usage This method searches the parameter string for the character char. The search is in
the reverse direction, from the right, for char in string.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

Example The following code fragment:

var str = "I can't stand soggy cereal."
var substr = Clib.strrchr(str, 'o');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +
substr);

results in the following output:

Parameter Description

string A string literal, or string variable, containing the character to be
searched for

char The character to search for
Version 7.5, Rev. B Siebel eScript Language Reference 201

Siebel eScript Commands

The Clib Object
See Also “Clib.strchr() Method” on page 191, “Clib.strcspn() Method” on page 192,
“Clib.strpbrk() Method” on page 200, and “string.replace() Method” on page 311

Clib.strspn() Method
This method searches a string for characters that are not among a group of specified
characters.

Syntax Clib.strspn(string, charSet)

Returns If all matching characters are found, the length of the string; otherwise, the offset
of the first matching character from the beginning of string.

Usage This method searches the parameter string for any of the characters in the string
charSet, and returns the offset of that character. The search is case-sensitive, so you
may have to include both uppercase and lowercase instances of the characters to
search for.

This method is similar to Clib.strpbrk(), except that Clib.strpbrk() returns the string
beginning at the first character found, while Clib.strcspn() returns the offset
number for that character.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

Example The following fragment demonstrates Clib.strcspn(). When searching string, it
returns the position of the w, counting from 0.

var string = "There is more than one way to skin a cat.";
var rStrspn = Clib.strspn(string, " aeiouTthrsmn");
TheApplication().RaiseErrorText("strspn returns an integer: ");

Parameter Description

string A literal string, or a variable containing a string, to be searched

charSet A literal string, or a variable containing a string, which contains the set of
characters to search for
202 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
This results in the following output:

See Also “Clib.strchr() Method” on page 191, “Clib.strcspn() Method” on page 192,
“Clib.strpbrk() Method” on page 200, and “string.replace() Method” on page 311

Clib.strstr() Method
This method searches a string for the first occurrence of a second string.

Syntax Clib.strstr(sourceString, findString)

Returns The string beginning at the first occurrence of findString in sourceString, continuing
to the end of sourceString; otherwise, null, if findString is not found.

Usage This method searches sourceString, from its beginning, for the first occurrence of
findString. The search is case-sensitive. If the desired result can be accomplished
with the standard JavaScript substring() method, that method is preferred.

Example The following code:

function Test1_Click ()
{

var str = "We have to go to Haverford."
var substr = Clib.strstr(str, 'H');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = "

+substr);
}

Parameter Description

sourceString The string within which to search

findString The string to find
Version 7.5, Rev. B Siebel eScript Language Reference 203

Siebel eScript Commands

The Clib Object
results in the following output:

See Also “Clib.strstri() Method” on page 204 and “string.replace() Method” on page 311

Clib.strstri() Method
This method performs a case-insensitive search in a string for the first occurrence
of a specified substring.

Syntax Clib.strstri(sourceString, findString)

Returns The string beginning at the first occurrence of findString in sourceString, continuing
to the end of sourceString; otherwise, null if findString is not found.

Usage This is a case-insensitive version of the substring() method. Compare the result with
that shown in the “Clib.strstr() Method” on page 203.

Example The following code:

function Test_Click ()
{

var str = "We have to go to Haverford."
var substr = Clib.strstri(str, 'H');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = "

+substr);
}

Parameter Description

sourceString The string within which to search

findString The string to find
204 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
results in the following output:

See Also “Clib.strstr() Method” on page 203 and “string.replace() Method” on page 311

Clib.system() Method
This method passes a command to the command processor.

Syntax Clib.system(commandString)

Returns The value returned by the command processor.

Usage This command passes a command to the operating system command processor and
opens an operating system window in which it executes. Upon completion of the
command, the window closes.

The commandString value may be a formatted string followed by variables
according to the rules defined in Table 7 on page 138 in the section “Formatting
Data.”

Example The following code displays a directory in a DOS window, as shown:

Parameter Description

commandString A valid operating system command
Version 7.5, Rev. B Siebel eScript Language Reference 205

Siebel eScript Commands

The Clib Object
Clib.system("dir /p C:\\Backup");

Clib.tanh() Method
This method calculates and returns the hyperbolic tangent of a floating-point
number.

Syntax Clib.tanh(floatNum)

Returns The hyperbolic tangent of floatNum.

See Also “Clib.cosh() Method” on page 144 and “Clib.sinh() Method” on page 188

Clib.time() Method
This method returns an integer representation of the current time.

Parameter Description

floatNum A floating-point number, or a variable containing a floating-point number,
whose hyperbolic tangent is to be found
206 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Syntax Clib.time([[var] timeInt])

Returns An integer representation of the current time.

Usage The format of the time is not specifically defined except that it represents the current
time, to the operating system's best approximation, and can be used in many other
time-related functions. If timeInt is supplied, it is set to equal the returned value.

Clib.time(timeInt) and timeInt = Clib.time() assign the current local time
to timeInt.

Example For examples, read “Clib.ctime() Method” on page 145, “Clib.difftime() Method” on
page 146, “Clib.gmtime() Method” on page 168, “Clib.localtime() Method” on
page 175, and “Clib.strftime() Method” on page 195.

See Also “GetDate() Method” on page 212, “Date.fromSystem() Static Method” on page 213,
and “Date.toSystem() Method” on page 242

Clib.tmpfile() Method
This method creates a temporary binary file and returns its file pointer.

Syntax Clib.tmpfile()

Returns The file pointer of the file created; null if the function fails.

Parameter Description

timeInt A variable to hold the returned value, which must be declared if it has not
already been declared

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 207

Siebel eScript Commands

The Clib Object
Usage Clib.tmpfile() creates and opens a temporary binary file and returns its file pointer.
The file pointer, and the temporary file, are automatically removed when the file is
closed or when the program exits. The location of the temporary file depends on the
implementation of Clib on the operating system in use.

Example For an example, read “Clib.fgets() Method” on page 152.

See Also “Clib.fopen() Method” on page 154

Clib.tmpnam() Method
This method creates a string that has a valid file name and is unique among existing
files and among filenames returned by this function.

Syntax Clib.tmpnam([str])

Returns String - a valid and unique filename

Usage This method creates a string that has a valid file name. This string is not the same
as the name of any existing file, nor the same as any filename returned by this
function during execution of this program. If str is supplied, it is set to the string
returned by this function.

Clib.toascii() Method
This method translates a character into a seven-bit ASCII representation of the
character.

Syntax Clib.toascii(char)

Parameter Description

str A variable to hold the name of a temporary file.

Parameter Description

char A character literal, or a variable containing a character, to be translated
208 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object
Returns A seven-bit ASCII representation of char.

Usage This method translates a character into a seven-bit ASCII representation of char. The
translation is done by clearing every bit except for the lowest seven bits. If char is
already a seven-bit ASCII character, it returns the character.

Example The following line of code returns the close-parenthesis character:

TheApplication().RaiseErrorText(Clib.toascii("©"));

See Also “Clib.isascii() Method” on page 170

Clib.ungetc()Method
This method pushes a character back into a file.

Syntax Clib.ungetc(char, filePointer)

Returns The value of char if successful, EOF if unsuccessful.

Usage When char is put back, it is converted to a byte and is again in the file for
subsequent retrieval. Only one character is pushed back. You might want to use this
function to read up to, but not including, a newline character. You would then use
Clib.ungetc to push the newline character back into the file buffer.

See Also “Clib.fgetc() Method and Clib.getc() Method” on page 150, “Clib.fputc() Method
and Clib.putc() Method” on page 157, and “Clib.putenv() Method” on page 181

Parameter Description

char The character to push back

filePointer A file pointer as returned by Clb.fopen()
Version 7.5, Rev. B Siebel eScript Language Reference 209

Siebel eScript Commands

The Date Object
The Date Object
Siebel eScript provides two different systems for working with dates. One is the
standard Date object of JavaScript; the other is part of the Clib object, which
implements powerful routines from C. Two methods, Date.fromSystem() and
Date.toSystem(), convert dates in the format of one system to the format of the
other. The standard JavaScript Date object is described in this section.

CAUTION: To prevent Y2K problems, avoid using two-digit dates in your eScript code.
Siebel eScript follows the ECMAScript standard for two-digit dates, which may be
different from the conventions used by other programs, including Siebel
applications.

A specific instance of a variable followed by a period should precede the method
name to call a method. For example, if you had created the Date object aDate, the
call to the .getDate() method would be aDate.getDate(). Static methods have
"Date." at their beginnings because these methods are called with a literal call, such
as Date.parse(). These methods are part of the Date object itself instead of instances
of the Date object.

In the examples that follow, dateVar stands for the name of a variable that you
create to hold a date value.

See Also “The Date Constructor” on page 210

“Universal Time Functions” on page 212

The Date Constructor
The Date constructor instantiates a new Date object.

To create a Date object that is set to the current date and time, use the new operator,
as you would with any object.

Syntax A var dateVar = new Date;

There are several ways to create a Date object that is set to a date and time. The
following lines each demonstrate ways to get and set dates and times.
210 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Syntax B var dateVar = new Date(milliseconds);

Syntax C var dateVar = new Date(dateString);

Syntax D var dateVar = new Date(year, month, day);

Syntax E var dateVar = new Date(year, month, day, hours, minutes, seconds);

Returns If a parameter is specified, a Date object representing the date specified by the
parameter.

Usage Syntax B returns a date and time represented by the number of milliseconds since
midnight, January 1, 1970. This representation by milliseconds is a standard way of
representing dates and times that makes it easy to calculate the amount of time
between one date and another. However, the recommended technique is to convert
dates to milliseconds format before doing calculations.

Syntax C accepts a string representing a date and optional time. The format of such
a string contains one or more of the following fields, in any order:

Parameter Description

milliseconds The number of milliseconds since January 1, 1970.

dateString A string representing a date and optional time.

year A year. If the year is between 1950 and 2050, you may supply only the final
two digits. Otherwise, four digits must be supplied. However, it’s safest to
always use four digits to minimize the risk of Y2K problems.

month A month, specified as a number from 0 to 11. January is 0, and December
is 11.

day A day of the month, specified as a number from 1 to 31. The first day of a
month is 1; the last is 28, 29, 30, or 31.

hours An hour, specified as a number from 0 to 23. Midnight is 0; 11 PM is 23.

minutes A minute, specified as a number from 0 to 59. The first minute of an hour
is 0; the last is 59.

seconds A second, specified as a number from 0 to 59. The first second of a minute
is 0; the last is 59.
Version 7.5, Rev. B Siebel eScript Language Reference 211

Siebel eScript Commands

The Date Object
month day, year hours:minutes:seconds

For example, the following string:

"October 13, 1995 13:13:15"

specifies the date, October 13, 1995, and the time, one thirteen and 15 seconds PM,
which, expressed in 24-hour time, is 13:13 hours and 15 seconds. The time
specification is optional; if it is included, the seconds specification is optional.

Syntax forms D and E are self-explanatory. Parameters passed to them are integers.

Example The following line of code:

var aDate = new Date(1776, 6, 4)

creates a Date object containing the date July 4, 1776.

Universal Time Functions
Universal Coordinated Time (abbreviated as UTC) is what used to be called
Greenwich Mean Time (abbreviated GMT). It is also known as World Time and
Universal Time. It is a time standard used everywhere in the world. UTC nominally
reflects the mean solar time along the Earth's prime meridian (0 degrees longitude,
which runs through the Greenwich Observatory outside of London). Siebel eScript
includes a selection of Date functions that allow you to work with UTC values:

GetDate() Method
This method returns the day of the month of a Date object.

getUTCDay() getUTCFullYear() getUTCHours()

getUTCMilliseconds() getUTCMinutes() getUTCMonth()

getUTCSeconds() setUTCDate() setUTCFullYear()

setUTCHours() setUTCMilliseconds setUTCMinutes()

setUTCMonth() Date.UTC()
212 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Syntax dateVar.getDate()

Returns The day of the month of dateVar as an integer from 1 to 31.

Usage This method returns the day of the month of the Date object specified by dateVar,
as an integer from 1 to 31. The first day of a month is 1; the last is 28, 29, 30, or 31.

Example This example returns 14, the month part of the constructed Date object:

function Button2_Click ()
{

var valentinesDay = new Date("2001", "1", "14");
TheApplication().RaiseErrorText("Valentine’s Day is on day " +

valentinesDay.getDate() + ".");
}

See Also “getDay() Method” on page 214, “getFullYear() Method” on page 215, “getHours()
Method” on page 216, “getMinutes() Method” on page 217, “getMonth() Method”
on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, “getYear() Method” on page 226, and “setDate() Method” on page 227

Date.fromSystem() Static Method
This method converts a time in the format returned by the Clib.time() method to a
standard JavaScript Date object.

Syntax Date.fromSystem(time)

Returns Not applicable

Parameter Description

Not applicable

Parameter Description

time A variable holding a system date
Version 7.5, Rev. B Siebel eScript Language Reference 213

Siebel eScript Commands

The Date Object
Usage Date.fromSystem() is a static method, invoked using the Date constructor rather
than a variable.

Example To create a Date object from date information obtained using Clib, use code similar
to:

var SysDate = Clib.time();
var ObjDate = Date.fromSystem(SysDate);

See Also “The Time Object” on page 135, “Clib.time() Method” on page 206, “The Date
Constructor” on page 210, and “Date.toSystem() Method” on page 242

getDay() Method
This method returns the day of the week of a Date object.

Syntax dateVar.getDay()

Returns The day of the week of dateVar as a number from 0 to 6.

Usage This method returns the day of the week of dateVar. Sunday is 0, and Saturday is 6.
To get the name of the corresponding weekday, create an array holding the names
of the days of the week and compare the return value to the array index, as shown
in the following example.

Example This example gets the day of the week on which Valentine’s Day occurs and displays
the result in a message box, shown in the illustration.

function Button1_Click ()
{

var weekDay = new Array("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday");

var valentinesDay = new Date("2001", "1", "14");
var theYear = valentinesDay.getFullYear()
var i = 0;
while (i < valentinesDay.getDay())

Parameter Description

Not applicable
214 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
{
i++;
var result = weekDay[i];

}
TheApplication().RaiseErrorText("Valentine’s Day falls on " +

result + " in " + theYear + ".");
}

See Also “GetDate() Method” on page 212, “getFullYear() Method” on page 215, “getHours()
Method” on page 216, “getMinutes() Method” on page 217, “getMonth() Method”
on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, and “getYear() Method” on page 226

getFullYear() Method
This method returns the year of a Date object as a number with four digits.

Syntax dateVar.getFullYear()

Returns The year as a four-digit number, of the Date object specified by dateVar.

Example For examples, read “getDay() Method” on page 214, “setMilliseconds() Method” on
page 229, and “setTime() Method” on page 232.

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getHours()
Method” on page 216, “getMinutes() Method” on page 217, “getMonth() Method”
on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, “getYear() Method” on page 226, and “setFullYear() Method” on page 228

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 215

Siebel eScript Commands

The Date Object
getHours() Method
This method returns the hour of a Date object.

Syntax dateVar.getHours()

Returns The hour portion of dateVar, as a number from 0 to 23.

Usage This method returns the hour portion of dateVar as a number from 0 to 23. Midnight
is 0, and 11 PM is 23.

Example This code fragment returns the number 12, the hours portion of the specified time.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getHours());

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getMinutes() Method” on page 217, “getMonth() Method”
on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, and “getYear() Method” on page 226

getMilliseconds() Method
This method returns the millisecond of a Date object.

Syntax dateVar.getMilliseconds()

Returns The millisecond of dateVar as a number from 0 to 999.

Parameter Description

Not applicable

Parameter Description

Not applicable
216 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Usage This method sets the millisecond of dateVar to millisecond. When given a date in
millisecond form, this method returns the last three digits of the millisecond date;
or, if negative, the result of the last three digits subtracted from 1000.

Example This code fragment displays the time on the system clock. The number of
milliseconds past the beginning of the second appears at the end of the message.

var aDate = new Date;
TheApplication().RaiseErrorText(aDate.toString() + " " +

aDate.getMilliseconds());

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getMonth() Method” on page 218, “getSeconds() Method” on
page 218, “getTime() Method” on page 219, and “getYear() Method” on page 226

getMinutes() Method
This method returns the minutes portion of a Date object.

Syntax dateVar.getMinutes()

Returns The minutes portion of dateVar as a number from 0 to 59.

Usage This method returns the minutes portion of dateVar as a number from 0 to 59. The
first minute of an hour is 0, and the last is 59.

Example This code fragment returns the number 13, the minutes portion of the specified
time.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMinutes());

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 217

Siebel eScript Commands

The Date Object
See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMonth() Method” on
page 218, “getSeconds() Method” on page 218, “getTime() Method” on page 219,
and “getYear() Method” on page 226

getMonth() Method
This method returns the month of a Date object.

Syntax dateVar.getMonth()

Returns The month portion of dateVar as a number from 0 to 11.

Usage This method returns the month, as a number from 0 to 11, of dateVar. January is 0,
and December is 11.

Example This code fragment returns the number 10, the result of adding 1 to the month
portion of the specified date.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMonth() + 1);

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, and “getYear() Method” on page 226

getSeconds() Method
This method returns the seconds portion of a Date object.

Parameter Description

Not applicable
218 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Syntax dateVar.getSeconds()

Returns The seconds portion of dateVar as a number from 0 to 59.

Usage This method returns the seconds portion of dateVar. The first second of a minute is
0, and the last is 59.

Example This code fragment returns the number 14, the seconds portion of the specified
date.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getSeconds() + 1);

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getMonth() Method” on page 218, “getTime() Method” on page 219,
and “getYear() Method” on page 226

getTime() Method
This method returns the milliseconds representation of a Date object, in the form of
an integer representing the number of seconds between midnight on January 1,
1970, GMT, and the date and time specified by a Date object.

Syntax dateVar.getTime()

Returns The milliseconds representation of dateVar.

Parameter Description

Not applicable

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 219

Siebel eScript Commands

The Date Object
Usage This method returns the milliseconds representation of a Date object, in the form of
an integer representing the number of seconds between midnight on January 1,
1970, GMT, and the date and time specified by dateVar.

Example This code fragment returns the value 245594000. To convert this value to
something more readily interpreted, use the toLocaleString() method or the
toGMTString() method.

var aDate = new Date("January 3, 1970 12:13:14");
TheApplication().RaiseErrorText(aDate.getTime());

See Also “Clib.asctime() Method” on page 141, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getMonth() Method” on page 218, “getSeconds() Method” on
page 218, and “getYear() Method” on page 226

getTimezoneOffset() Method
This method returns the difference, in minutes, between Greenwich Mean Time and
local time.

Syntax dateVar.getTimezoneOffset()

Returns The difference, in minutes, between Greenwich Mean Time (GMT) and local time.

Example This example calculates the difference from Greenwich Mean Time in hours, of your
location, based on the setting in the Windows Control Panel.

var aDate = new Date();
var hourDifference = Math.round(aDate.getTimezoneOffset() / 60);
TheApplication().RaiseErrorText("Your time zone is " +

hourDifference + " hours from GMT.");

Parameter Description

Not applicable
220 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getMonth() Method” on page 218, “getSeconds() Method” on
page 218, “getTime() Method” on page 219, and “getYear() Method” on page 226

getUTCDate() Method
This method returns the UTC day of the month of a Date object.

Syntax dateVar.getUTCDate()

Returns The UTC day of the month of dateVar.

Usage This method returns the UTC day of the month of dateVar as a number from 1 to
31. The first day of a month is 1; the last is 28, 29, 30, or 31.

Example This code fragment displays 1, the hour portion of the date, followed by the GMT
equivalent, which may be the same.

var aDate = new Date("May 1, 2001 13:24:35");
TheApplication().RaiseErrorText("Local day of the month is " +

aDate.getHours() +"\nGMT day of the month is " +
aDate.getUTCHours());

See Also “GetDate() Method” on page 212 and “setUTCDate() Method” on page 234

getUTCDay() Method
This method returns the UTC day of the week of a Date object.

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 221

Siebel eScript Commands

The Date Object
Syntax dateVar.getUTCDay()

Returns The UTC day of the week of dateVar as a number from 0 to 6.

Usage This method returns the UTC day of the week of dateVar as a number from 0 to 6.
Sunday is 0, and Saturday is 6.

Example This function displays the day of the week of May 1, 2001, both locally and in
universal time.

function Button2_Click ()
{

var localDay;
var UTCDay;
var MayDay = new Date("May 1, 2001 13:30:35");
var weekDay = new Array("Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday", "Saturday");

for (var i = 0; i <= MayDay.getDay();i++)
localDay = weekDay[i];

var msgtext = "May 1, 2001, 1:30 PM falls on " + localDay;

for (var j = 0; j <= MayDay.getUTCDay(); j++)
UTCDay = weekDay[j];

msgtext = msgtext + " locally, \nand on " + UTCDay + " GMT.";

TheApplication().RaiseErrorText(msgtext);
}

See Also “getDay() Method” on page 214

getUTCFullYear() Method
This method returns the UTC year of a Date object.

Parameter Description

Not applicable
222 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Syntax dateVar.getUTCFullYear()

Returns The UTC year of dateVar as a four-digit number.

Example This code fragment displays 2001, the year portion of the date, followed by the GMT
equivalent, which may be the same.

var aDate = new Date("January 1, 2001 13:24:35");
TheApplication().RaiseErrorText("Local year is " +
aDate.getYear() +

"\nGMT year is " + aDate.getUTCFullYear());

See Also “getFullYear() Method”, “setFullYear() Method” on page 228, and
“setUTCFullYear() Method” on page 234

getUTCHours() Method
This method returns the UTC hour of a Date object.

Syntax dateVar.getUTCHours()

Returns The UTC hour of dateVar as a number from 0 to 23.

Usage This method returns the UTC hour of dateVar as a number from 0 through 23.
Midnight is 0, and 11 PM is 23.

Example This code fragment displays 13, the hour portion of the date, followed by the GMT
equivalent.

Parameter Description

Not applicable

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 223

Siebel eScript Commands

The Date Object
var aDate = new Date("May 1, 2001 13:24:35");
TheApplication().RaiseErrorText("Local hour is “ +
aDate.getHours() +

"\nGMT hour is " + aDate.getUTCHours());

See Also “getHours() Method” on page 216 and “setUTCHours() Method” on page 235

getUTCMilliseconds() Method
This method returns the UTC millisecond of a Date object.

Syntax dateVar.getUTCMilliseconds()

Returns The UTC millisecond of dateVar as a number from 0 to 999.

Usage This method returns the UTC millisecond of dateVar as a number from 0 through
999. The first millisecond in a second is 0; the last is 999.

See Also “getMilliseconds() Method” on page 216 and “setUTCMilliseconds() Method” on
page 236

getUTCMinutes() Method
This method returns the UTC minute of a Date object.

Syntax dateVar.getUTCMinutes()

Returns The UTC minute of dateVar as a number from 0 to 59.

Parameter Description

Not applicable

Parameter Description

Not applicable
224 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Usage This method returns the UTC minute of dateVar as a number from 0 through 59.
The first minute of an hour is 0; the last is 59.

Example This code fragment displays 24, the minutes portion of the date, followed by the
GMT equivalent, which is probably the same.

var aDate = new Date("May 1, 2001 13:24:35");
TheApplication().RaiseErrorText("Local minutes: " +
aDate.getMinutes() +

"\nGMT minutes: " + aDate.getUTCMinutes());

See Also “getMinutes() Method” on page 217 and “setUTCMinutes() Method” on page 237

getUTCMonth() Method
This method returns the UTC month of a Date object.

Syntax dateVar.getUTCMonth()

Returns The UTC month of dateVar as a number from 0 to 11.

Usage This method returns the UTC month of dateVar as a number from 0 through 11.
January is 0, and December is 11.

Example This code fragment displays 5, the month portion of the date (determined by adding
1 to the value returned by getMonth), followed by the GMT equivalent (determined
by adding 1 to the value returned by getUTCMonth), which is probably the same.

var aDate = new Date("May 1, 2001 13:24:35");
var locMo = aDate.getMonth() + 1;
var GMTMo = aDate.getUTCMonth() + 1
TheApplication().RaiseErrorText("Local month: " + locMo +"\nGMT
month: "

+ GMTMo);

See Also “getMonth() Method” on page 218 and “setUTCMonth() Method” on page 238

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 225

Siebel eScript Commands

The Date Object
getUTCSeconds() Method
This method returns the UTC second of a Date object.

Syntax dateVar.getUTCSeconds()

Returns The UTC second of dateVar as number from 0 to 59.

Usage This method returns the UTC second of dateVar as a number from 0 through 59.
The first second of a minute is 0, and the last is 59.

See Also “getSeconds() Method” on page 218 and “setUTCSeconds() Method” on page 239

getYear() Method
This method returns the year portion of a Date object.

Syntax dateVar.getYear()

Returns The year of the dateVar as a three-digit number.

Usage This method returns the year portion of dateVar as a three-digit number.

See Also “getFullYear() Method” on page 215, “getUTCFullYear() Method” on page 222, and
“setYear() Method” on page 239

Date.parse() Static Method
This method converts a date string to a Date object.

Parameter Description

Not applicable

Parameter Description

Not applicable
226 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Syntax Date.parse(dateString)

Returns A Date object representing the date in dateString.

Usage Date.parse() is a static method, invoked using the Date constructor rather than a
variable. The string must be in the following format:

Friday, October 31, 1998 15:30:00 -0800

where the last number is the offset from Greenwich Mean Time. This format is used
by the dateVar.toGMTString() method and by email and Internet applications. The
day of the week, time zone, time specification, or seconds field may be omitted. The
statement:

var aDate = Date.parse(dateString);

is equivalent to:

var aDate = new Date(dateString);

Example The following code fragment yields the result 9098766000:

var aDate = Date.parse("Friday, October 31, 1998 15:30:00 -0220");
TheApplication().RaiseErrorText(aDate);

See Also “The Date Constructor” on page 210

setDate() Method
This method sets the day of a Date object to a specified day of the month.

Parameter Description

dateString A string of the form ddd, Month dd, yyyy hh:mm:ss
Version 7.5, Rev. B Siebel eScript Language Reference 227

Siebel eScript Commands

The Date Object
Syntax dateVar.setDate(dayOfMonth)

Returns Not applicable

Usage This method sets the day of dateVar to dayOfMonth as a number from 1 to 31. The
first day of a month is 1; the last is 28, 29, 30, or 31.

See Also “GetDate() Method” on page 212 and “setUTCDate() Method” on page 234

setFullYear() Method
This method sets the year of a Date object to a specified four-digit year.

Syntax dateVar.setFullYear(year[, month[, date]])

Returns Not applicable

Usage This method sets the year of dateVar to year. Optionally, it can set the month of year
to month, and the date of month to date. The year must be expressed in four digits.

See Also “getFullYear() Method” on page 215, “setDate() Method” on page 227, “setMonth()
Method” on page 231, “setUTCFullYear() Method” on page 234, and “setYear()
Method” on page 239

Parameter Description

dayOfMonth The day of the month to which to set dateVar as an integer from 1
through 31

Parameter Description

year The year to which to set dateVar as a four-digit integer

month The month to which to set year as an integer from 0 to 11

date The date of month to which to set dateVar as an integer from 1 to 31
228 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
setHours() Method
This method sets the hour of a Date object to a specific hour of a 24-hour clock.

Syntax dateVar.setHours(hour[, minute[, second[, millisecond]]])

Returns Not applicable

Usage This method sets the hour of dateVar to hour, expressed as a number from 0 to 23.
It can optionally also set the UTC minute, second, and millisecond. Midnight is
expressed as 0, and 11 PM as 23.

See Also “getHours() Method” on page 216, “setMilliseconds() Method” on page 229,
“setMinutes() Method” on page 231, “setSeconds() Method” on page 232, and
“setUTCHours() Method” on page 235

setMilliseconds() Method
This method sets the millisecond of a Date object to a date expressed in
milliseconds relative to the system time.

Syntax dateVar.setMilliseconds(millisecond)

Parameter Description

hour The hour to which to set dateVar as an integer from 0 through 23

minute The minute of hour to which to set dateVar as an integer from 0
through 59

second The second of minute to which to set dateVar as an integer from
0 through 59

millisecond The millisecond of second to which to set dateVar as an integer
from 0 through 999

Parameter Description

millisecond The millisecond to which dateVar should be set as a positive or
negative integer
Version 7.5, Rev. B Siebel eScript Language Reference 229

Siebel eScript Commands

The Date Object
Returns Not applicable

Usage This method sets the millisecond of dateVar to millisecond. The value of dateVar
becomes equivalent to the number of milliseconds from the time on the system
clock. Use a positive number for later times, a negative number for earlier times.

Example This example accepts a number of milliseconds as input and converts it to the date
relative to the date and time on the system clock. The illustration shows the result
of entering 0 on November 22, 1999.

function test2_Click ()
{

var aDate = new Date;
var milli = 20000000;
aDate.setMilliseconds(milli);
var aYear = aDate.getFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getDate();
var anHour = aDate.getHours();

switch(anHour)
{

case 0:
anHour = " 12 midnight.";
break;

case 12:
anHour = " 12 noon.";
break;

default:
if (anHour > 11)

anHour = (anHour - 12) + " P.M.";
else

anHour = anHour + " A.M.";
}

TheApplication().RaiseErrorText("The specified date is " +
aMonth + "/" + aDay + "/" + aYear + " at " + anHour);
}

230 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
See Also “getMilliseconds() Method” on page 216, “setTime() Method” on page 232, and
“setUTCMilliseconds() Method” on page 236

setMinutes() Method
This method sets the minute of a Date object to a specified minute.

Syntax dateVar.setMinutes(minute[, second[, millisecond]])

Returns Not applicable

Usage This method sets the minute of dateVar to minute and optionally sets minute to a
specific second and millisecond. The first minute of an hour is 0, and the last is 59.

See Also “getMinutes() Method” on page 217, “setMilliseconds() Method” on page 229,
“setSeconds() Method” on page 232, and “setUTCMinutes() Method” on page 237

setMonth() Method
This method sets the month of a Date object to a specific month.

Syntax dateVar.setMonth(month[, date])

Returns Not applicable

Parameter Description

minute The minute to which to set dateVar as an integer from 0 through 59

second The second to which to set minute as an integer from 0 through 59

millisecond The millisecond to which to set second as an integer from 0 through 999

Parameter Description

month The month to which to set dateVar as an integer from 0 to 11

date The date of month to which to set dateVar as an integer from 1 to 31
Version 7.5, Rev. B Siebel eScript Language Reference 231

Siebel eScript Commands

The Date Object
Usage This method sets the month of dateVar to month as a number from 0 to 11 and
optionally sets the day of month to date. January is represented by 0, and December
by 11.

See Also “getMonth() Method” on page 218, “setDate() Method” on page 227, and
“setUTCMonth() Method” on page 238

setSeconds() Method
This method sets the second in a Date object.

Syntax dateVar.setSeconds(second[, millisecond])

Returns Not applicable

Usage This method sets the second of dateVar to second and optionally sets second to a
specific millisecond. The first second of a minute is 0, and the last is 59.

See Also “getSeconds() Method” on page 218, “setMilliseconds() Method” on page 229, and
“setUTCSeconds() Method” on page 239

setTime() Method
This method sets a Date object to a date and time specified by the number of
milliseconds before or after January 1, 1970.

Syntax dateVar.setTime(milliseconds)

Parameter Description

second The minute to which to set dateVar as an integer from 0 through 59

millisecond The millisecond to which to set second as an integer from 0 through 999

Parameter Description

milliseconds The number of milliseconds from midnight on January 1, 1970, GMT
232 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Returns Not applicable

Usage This method sets dateVar to a date that is milliseconds milliseconds from January 1,
1970, GMT. To set a date earlier than that date, use a negative number.

Example This example accepts a number of milliseconds as input and converts it to a date
and hour. To get the result shown in the illustration, a value of -345650 was entered.

function dateBtn_Click ()
{

var aDate = new Date;
var milli = -4000;
aDate.setTime(milli);
var aYear = aDate.getFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getDate();
var anHour = aDate.getHours();

switch(anHour)
{

case 0:
anHour = " 12 midnight.";
break;

case 12:
anHour = " 12 noon.";
break;

default:
if (anHour > 11)

anHour = (anHour - 12) + " P.M.";
else

anHour = anHour + " A.M.";
}

TheApplication().RaiseErrorText("The specified date is " +
aMonth + "/" + aDay + "/" + aYear + " at " + anHour);

}

See Also “getTime() Method” on page 219
Version 7.5, Rev. B Siebel eScript Language Reference 233

Siebel eScript Commands

The Date Object
setUTCDate() Method
This method sets the UTC day of a Date object to the specified day of a UTC month.

Syntax dateVar.setUTCDate(dayOfMonth)

Returns Not applicable

Usage This method sets the UTC day of dateVar to dayOfMonth as a number from 1 to 31.
The first day of a month is 1; the last is 28, 29, 30, or 31.

See Also “Universal Time Functions” on page 212, “getUTCDate() Method” on page 221, and
“setDate() Method” on page 227

setUTCFullYear() Method
This method sets the UTC year of a Date object to a specified four-digit year.

Syntax dateVar.setUTCFullYear(year[, month[, date]])

Returns Not applicable

Usage This method sets the UTC year of dateVar to year. Optionally, it can set the UTC
month of year to month, and the UTC date of month to date. The year must be
expressed in four digits.

Parameter Description

dayOfMonth The day of the UTC month to which to set dateVar as an integer from 1
through 31

Parameter Description

year The UTC year to which to set dateVar as a four-digit integer

month The UTC month to which to set year as an integer from 0 to 11

date The UTC date of month to which to set dateVar as an integer from 1 to 31
234 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Example The following example uses the setUTCFullYear method to assign the date of the
2000 summer solstice and the setUTCHours method to assign its time to a Date
object. Then it determines the local date and displays it as shown in the illustration
following the example.

function dateBtn_Click ()
{

var Mstring = " A.M., Standard Time.";
var solstice2K = new Date;
solstice2K.setUTCFullYear(2000, 5, 21);
solstice2K.setUTCHours(01, 48);
var localDate = solstice2K.toLocaleString();
var pos = localDate.indexOf("2000")
var localDay = localDate.substring(0, pos - 10);

var localHr = solstice2K.getHours();
if (localHr > 11)
{

localHr = (localHr - 12);
Mstring = " P.M., Standard Time.";

}
var localMin = solstice2K.getMinutes();

var msg = "In your location, the solstice is on " + localDay +
", at " + localHr + ":" + localMin + Mstring;

TheApplication().RaiseErrorText(msg);
}

See Also “Universal Time Functions” on page 212, “getUTCFullYear() Method” on page 222,
“setFullYear() Method” on page 228, and “setYear() Method” on page 239

setUTCHours() Method
This method sets the UTC hour of a Date object to a specific hour of a 24-hour clock.
Version 7.5, Rev. B Siebel eScript Language Reference 235

Siebel eScript Commands

The Date Object
Syntax dateVar.setUTCHours(hour[, minute[, second[, millisecond]]])

Returns Not applicable

Usage This method sets the UTC hour of dateVar to hour as a number from 0 to 23.
Midnight is expressed as 0, and 11 PM as 23. It can optionally also set the UTC
minute, second, and millisecond.

Example For an example, read “setUTCFullYear() Method” on page 234.

See Also “Universal Time Functions” on page 212, “getUTCHours() Method” on page 223,
and “setHours() Method” on page 229

setUTCMilliseconds() Method
This method sets the UTC millisecond of a Date object to a date expressed in
milliseconds relative to the UTC equivalent of the system time.

Syntax dateVar.setUTCMilliseconds(millisecond)

Returns Not applicable

Parameter Description

hour The UTC hour to which to set dateVar as an integer from 0 through 23

minute The UTC minute of hour to which to set dateVar as an integer from 0 through
59

second The UTC second of minute to which to set dateVar as an integer from 0
through 59

millisecond The UTC millisecond of second to which to set dateVar as an integer from 0
through 999

Parameter Description

millisecond The UTC millisecond to which dateVar should be set as a positive or negative
integer
236 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Usage This method sets the UTC millisecond of dateVar to millisecond. The value of
dateVar becomes equivalent to the number of milliseconds from the UTC equivalent
of time on the system clock. Use a positive number for later times, and a negative
number for earlier times.

Example The following example gets a number of milliseconds as input and converts it to a
UTC date and time. When run at 5:36 p.m., Pacific Time, on November 22, 1999, it
produced the result shown in the illustration.

function dateBtn_Click ()
{

var aDate = new Date;
var milli = 20000;
aDate.setUTCMilliseconds(milli);
var aYear = aDate.getUTCFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getUTCDate();
var anHour = aDate.getUTCHours();
var aMinute = aDate.getUTCMinutes();
TheApplication().RaiseErrorText("The specified date is " +

aMonth +
"/" + aDay + "/" + aYear + " at " + anHour + ":" +
aMinute + ", UTC time.");

}

See Also “Universal Time Functions” on page 212, “getUTCMilliseconds() Method” on
page 224, and “setMilliseconds() Method” on page 229

setUTCMinutes() Method
This method sets the UTC minute of a Date object to a specified minute.
Version 7.5, Rev. B Siebel eScript Language Reference 237

Siebel eScript Commands

The Date Object
Syntax dateVar.setUTCMinutes(minute[, second[, millisecond]])

Returns Not applicable

Usage This method sets the UTC minute of dateVar to minute and optionally sets minute
to a specific UTC second and UTC millisecond. The first minute of an hour is 0, and
the last is 59.

See Also “Universal Time Functions” on page 212, “getUTCMinutes() Method” on page 224,
and “setMinutes() Method” on page 231

setUTCMonth() Method
This method sets the UTC month of a Date object to a specific month.

Syntax dateVar.setUTCMonth(month[, date])

Returns Not applicable

Usage This method sets the UTC month of dateVar to month as a number from 0 to 11 and
optionally sets the UTC day of month to date. January is represented by 0, and
December by 11.

Parameter Description

minute The UTC minute to which to set dateVar as an integer from 0 through 59

second The UTC second to which to set minute as an integer from 0 through 59

millisecond The UTC millisecond to which to set second as an integer from 0 through 999

Parameter Description

month The UTC month to which to set dateVar as an integer from 0 to 11

date The UTC date of month to which to set dateVar as an integer from 1 to 31
238 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
See Also “Universal Time Functions” on page 212, “getUTCMonth() Method” on page 225,
and “setMonth() Method” on page 231

setUTCSeconds() Method
This method sets the UTC second of the minute of a Date object to a specified
second and optionally sets the millisecond within the second.

Syntax dateVar.setUTCSeconds(second[, millisecond])

Returns Not applicable

Usage This method sets the UTC second of dateVar to second and optionally sets second
to a specific UTC millisecond. The first second of a minute is 0, and the last is 59.
The first millisecond is 0, and the last is 999.

See Also “Universal Time Functions” on page 212, “getUTCSeconds() Method” on page 226,
and “setSeconds() Method” on page 232

setYear() Method
This method sets the year of a Date object as a specified two-digit or four-digit year.

Syntax dateVar.setYear(year)

Parameter Description

second The UTC minute to which to set dateVar as an integer from 0
through 59

millisecond The UTC millisecond to which to set second as an integer from 0
through 999

Parameter Description

year The year to which to set dateVar as a two-digit integer for twentieth-century
years, otherwise as a four-digit integer
Version 7.5, Rev. B Siebel eScript Language Reference 239

Siebel eScript Commands

The Date Object
Returns Not applicable

Usage The parameter year may be expressed with two digits for a year in the twentieth
century, the 1900s. Four digits are necessary for any other century.

See Also “getFullYear() Method” on page 215, “getYear() Method” on page 226,
“setFullYear() Method” on page 228, and “setUTCFullYear() Method” on page 234

toGMTString() Method
This method converts a Date object to a string, based on Greenwich Mean Time.

Syntax dateVar.toGMTString()

Returns The date to which dateVar is set as a string of the form Day Mon dd hh:mm:ss yyyy
GMT.

Example This example accepts a number of milliseconds as input and converts it to the GMT
time represented by the number of milliseconds before or after the time on the
system clock.

function clickme_Click ()
{

var aDate = new Date;
var milli = 200000;
aDate.setUTCMilliseconds(milli);
TheApplication().RaiseErrorText(aDate.toGMTString());

}

Parameter Description

Not applicable
240 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
See Also “Clib.asctime() Method” on page 141, “toLocaleString() Method and toString()
Method” on page 241, and “toUTCString() Method” on page 242

toLocaleString() Method and toString() Method
These methods return a string representing the date and time of a Date object based
on the time zone of the user.

Syntax dateVar.toLocaleString()
dateVar.toString()

Returns A string representing the date and time of dateVar based on the time zone of the
user, in the form Day Mon dd hh:mm:ss yyyy.

Usage These methods return a string representing the date and time of a Date object based
on the local time zone of the user.

Example This example displays the local time from your computer’s clock, the UTC time, and
the Greenwich Mean Time. The result appears in the message box that follows the
code.

var aDate = new Date();
var local = aDate.toLocaleString();
var universal = aDate.toUTCString();
var greenwich = aDate.toGMTString();
TheApplication().RaiseErrorText("Local date is " + local +

"\nUTC date is " + universal +
"\nGMT date is " + greenwich);

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 241

Siebel eScript Commands

The Date Object
See Also “Clib.asctime() Method” on page 141, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “toGMTString() Method” on page 240, and
“toUTCString() Method” on page 242

Date.toSystem() Method
This method converts a Date object to a system time format that is the same as that
returned by the Clib.time() method.

Syntax Date.toSystem()

Returns A date value in the time format returned by the Clib.time() method.

Usage To create a Date object from a variable in system time format, read
“Date.fromSystem() Static Method” on page 213.

Example To convert a Date object to a system format that can be used by the methods of the
Clib object, use code similar to:

var SysDate = objDate.toSystem();

See Also “Date.fromSystem() Static Method” on page 213

toUTCString() Method
This method returns a string that represents the UTC date in a convenient and
human-readable form.

Syntax dateVar.toUTCString()

Parameter Description

Not applicable

Parameter Description

Not applicable
242 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object
Returns A string that represents the UTC date of dateVar.

Usage This method returns a string that represents the UTC date in a convenient and
human-readable form. The string takes the form Day Mon dd hh:mm:ss yyyy.

Example For an example, read “toLocaleString() Method and toString() Method” on
page 241.

See Also “Clib.asctime() Method” on page 141, “toGMTString() Method” on page 240, and
“toLocaleString() Method and toString() Method” on page 241

Date.UTC() Static Method
This method interprets its parameters as a date and returns the number of
milliseconds between midnight, January 1, 1970, and the date and time specified.

Syntax Date.UTC(year, month, days, [, hours[, minutes[, seconds]]])

Returns An integer representing the number of milliseconds before or after midnight
January 1, 1970, of the specified date and time.

Usage Date.UTC is a static method, invoked using the Date constructor rather than a
variable. The parameters are interpreted as referring to Greenwich Mean Time
(GMT).

Parameter Description

year An integer representing the year (two digits may be used to represent years in
the twentieth century; however, use four digits to avoid Y2K problems)

month An integer from 0 through 11 representing the month

day An integer from 1 through 31 representing the day of the month

hours An integer from 0 through 23 representing the hour on a 24-hour clock

minutes An integer from 0 through 59 representing the minute of hours

seconds An integer from 0 through 59 representing the second of minutes
Version 7.5, Rev. B Siebel eScript Language Reference 243

Siebel eScript Commands

The Date Object
Example This example shows the proper construction of a Date.UTC declaration and
demonstrates that the function behaves as specified.

function clickme_Click ()
{

var aDate = new Date(Date.UTC(2001, 1, 22, 10, 11, 12));
TheApplication().RaiseErrorText("The specified date is " +

aDate.toUTCString());
}

See Also “The Date Constructor” on page 210
244 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Exception Object
The Exception Object
The Exception object contains exceptions being thrown in the case of a failed
operation.

Properties
errCode (This property contains the error number.)

errText (This property contains a textual description of the error.)

Methods
“toLocaleString() Method and toString() Method” on page 241

Here is an example of the Exception object:

try
}

var oBO = TheApplication().GetService(“Incorrect name”);
}
catch (e)
}

var sText = e.errText;
var nCode = e.errCode;

}

Version 7.5, Rev. B Siebel eScript Language Reference 245

Siebel eScript Commands

Function Objects
Function Objects
A Function object holds the definition of a function defined in eScript. Note that in
eScript, procedures are functions.

Syntax A function funcName([arg1 [, ..., argn]])
{

body
}

Syntax B var funcName = new Function([arg1 [, ..., argn,]] body);

Returns Whatever its code is set up to return. For more information, read “return Statement”
on page 247.

Usage Syntax A is the standard method for defining a function. Syntax B is an alternative
way to create a function and is used to create Function objects explicitly.

Note the difference in case of the keyword Function between Syntax A and
Syntax B. Function objects created with Syntax B (that is, the Function constructor)
are evaluated each time they are used. This is less efficient than Syntax A—
declaring a function and calling it within your code—because declared functions
are compiled instead of interpreted.

Example The following fragment of code illustrates creating a function AddTwoNumbers
using a declaration:

function AddTwoNumbers (a, b)
{

return (a + b);
}

Parameter Description

funcName The name of the function to be created

arg1 [, …, argn] An optional list of arguments that the function accepts

body The lines of code that the function executes
246 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Function Objects
The following fragment illustrates creating the same function using the Function
constructor:

AddTwoNumbers = new Function ("a", "b", "return (a + b)");

The difference between the two is that when AddTwoNumbers is created using a
declaration, AddTwoNumbers is the name of a function, whereas when
AddTwoNumbers is created using the Function constructor, AddTwoNumbers is the
name of a variable whose current value is a reference to the function created using
the Function constructor.

length Property
The length property returns the number of arguments expected by the function.

Syntax funcName.length

Returns The number of arguments expected by funcName.

return Statement
The return statement passes a value back to the function that called it.

Syntax return value

Returns Not applicable

Usage The return statement passes a value back to the function that called it. Any code in
a function following the execution of a return statement is not executed.

Parameter Description

funcName The function whose length property is to be found

Parameter Description

value The result produced by the function
Version 7.5, Rev. B Siebel eScript Language Reference 247

Siebel eScript Commands

Function Objects
Example This function returns a value equal to the number passed to it multiplied by 2 and
divided by 5.

function DoubleAndDivideBy5(a)
{

return (a*2)/5
}

Here is an example of a script using the preceding function. This script calculates
the mathematical expression n = (10 * 2) / 5 + (20 * 2) / 5. It then displays
the value for n, which is 12.

function myFunction()
{

var a = DoubleAndDivideBy5(10);
var b = DoubleAndDivideBy5(20);
TheApplication().RaiseErrorText(a + b);

}

248 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
The Global Object
Global variables are members of the global object. To access global properties, you
do not need to use an object name. For example, to access the isNaN() method,
which tests to see whether a value is equal to the special value NaN, you can use
either of the following syntax forms.

Syntax A globalMethod(value);

Syntax B global.globalMethod(value);

Usage Syntax A treats globalMethod as a function; Syntax B treats it as a method of the
global object. You may not use Syntax A in a function that has a local variable with
the same name as a global variable. In such a case, you must use the global keyword
to reference the global variable.

See Also “Global Functions Unique to Siebel eScript” on page 249

“Conversion or Casting Functions” on page 250

Global Functions Unique to Siebel eScript
The global functions described in this section are unique to the Siebel eScript
implementation of JavaScript. In other words, they are not part of the ECMAScript
standard, but they are useful. Avoid using these functions in a script that may be
used with a JavaScript interpreter that does not support these unique functions.

Like other global items, the following functions are actually methods of the global
object and can be called with either function or method syntax:

Placeholder Description

globalMethod The method to be applied

value The value to which the method is to be applied

■ “COMCreateObject() Method” on page 251

■ “CORBACreateObject() Method” on page 252
Version 7.5, Rev. B Siebel eScript Language Reference 249

Siebel eScript Commands

The Global Object
Conversion or Casting Functions
Though Siebel eScript does well in automatic data conversion, there are times when
the types of variables or data must be specified and controlled. Each of the
following casting functions has one parameter, which is a variable or data item, to
be converted to or cast as the data type specified in the name of the function. For
example, the following fragment creates two variables:

var aString = ToString(123);
var aNumber = ToNumber("123");

The first variable, aString, is created as a string from the number 123 converted to
or cast as a string. The second variable, aNumber, is created as a number from the
string "123" converted to or cast as a number. Because aString had already been
created with the value "123", the second line could also have been:

var aNumber = ToNumber(aString);

Use the following eScript methods when casting or converting between data types:

■ “getArrayLength() Method” on page 258

■ “setArrayLength() Method” on page 261

■ “undefine() Method” on page 271

■ “ToBoolean() Method” on page 262

■ “ToBuffer() Method” on page 263

■ “ToBytes() Method” on page 264

■ “ToInt32() Method” on page 265

■ “ToInteger() Method” on page 266

■ “ToNumber() Method” on page 267

■ “ToObject() Method” on page 268

■ “ToString() Method” on page 268

■ “ToString() Method” on page 268

■ “ToUint16() Method” on page 269

■ “ToUint32() Method” on page 270
250 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
COMCreateObject() Method
COMCreateObject instantiates a COM object.

Syntax COMCreateObject(objectName)

Returns A COM object if successful; otherwise, undefined.

Usage You should be able to pass any type of variable to the COM object being called;
however, you must ascertain that the variable is of a valid type for the COM object.
Valid types are strings, numbers, and object pointers.

NOTE: DLLs instantiated by this method must be Thread-Safe.

Example This example instantiates Microsoft Excel as a COM object and makes it visible:

var ExcelApp = COMCreateObject("Excel.Application");
var bb = ExcelApp.visible = true;
//Make Excel visible through the Application object.

// Place some text in the first cell of the sheet
ExcelApp.ActiveSheet.Cells(1,1).Value = "Column A, Row 1";

// Save the sheet
var fileName = "C:\\demo.xls";
ExcelApp.SaveAs (fileName);

// Close Excel with the Quit method on the Application object
ExcelApp.Application.Quit();

// Clear the object from memory
ExcelApp = null;
}

See Also “CORBACreateObject() Method” on page 252

Parameter Description

objectName The name of the object to be created
Version 7.5, Rev. B Siebel eScript Language Reference 251

Siebel eScript Commands

The Global Object
CORBACreateObject() Method
CORBACreateObject binds a specified CORBA object and returns its object handle.

Syntax CORBACreateObject(instanceName[, objectName][, serverName])

Returns The object handle of the CORBA object.

Usage Only the instanceName parameter is required. The serverName parameter may be
specified either as an IP address in nnn.nnn.nnn.nnn form or as a fully qualified
network name for the host computer. Valid types are strings, numbers, and object
pointers.

NOTE: Objects instantiated with CORBACreateObject do not support methods with
out or in/out parameters.

The optional parameters, which are valid only with the Visibroker ORB, provide
greater specificity regarding the object to connect to. Thus, for example:

var cObj = CORBACreateObject("Account")

connects to the first account object found. Alternatively:

var cObj = CORBACreateObject("Account", "Bus_Server")

connects to the first object it finds named Bus_Server that contains an account
object. If no object named Bus_Server is found, the method fails.

var cObj = CORBACreateObject("Account","", 111.17.2.18)

looks for an account object on the server with the IP address 111.17.2.18. If that
server does not contain an account object, the method fails.

Parameter Description

instanceName The name of the interface as declared in the IDL file

objectName The name given to the CORBA object

serverName The fully qualified IP address of the server to connect to
252 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
If you are using the Visibroker ORB, you must have IREP (an interface repository
utility) running. IREP is part of the Visibroker ORB and must be running with the
necessary IDL files loaded to allow access to a particular CORBA interface.

If you are using the Orbix ORB, objects that are to be accessed must be registered
with the Orbix Naming Service. This requires that the appropriate server changes
be made such that the Server carries out the correct registration process.

Objects may be registered in the Naming Service within certain contexts. For
example, if you want to register one grid object in the grid.exe executable and this
grid object has the human readable name gridObject1 in the server, then it is
possible to register this object in the Naming Service under the context of

\Siebel Objects\Grids\gridObject1

To resolve the object denoted by the name gridObject1, navigate through the
appropriate context hierarchy to get the actual Object. Following this convention,
use the following to call CORBACreateObject to obtain a reference to the preceding
object:

var p_corb_gridObj = CORBACreateObject(“Siebel
Objects:Grids:gridObject1”)

Separate each of the Naming Context nodes with a colon (:). Note that Orbix ignores
the second and third parameters to CORBACreateObject.

NOTE: Siebel eScript has built-in exception support for CORBA objects. Use the try
Statement and the throw Statement to build exception handlers. Orbix does not
support built-in user exceptions for CORBA objects.

CORBACreateObject and any call to CORBA objects can throw CORBAObjException
in addition to exceptions declared in the IDL file.

Exceptions can be caught in the eScript engine using try catch clauses. Exception
objects always have a name and are accessible with name data member.

In general, if the exception occurs while executing a CORBA function, the name of
the exception object is CORBAObjException. If the error occurs in Siebel code, the
exception name is SiebelException.
Version 7.5, Rev. B Siebel eScript Language Reference 253

Siebel eScript Commands

The Global Object
User exceptions are not supported for Visibroker, where the exceptions declared in
the IDL file are mapped to the corresponding eScript objects. The exception name
is the one declared in the IDL.

For example, the user can declare a completed exception object in the IDL as
follows:

exception DataException {
string moduleId;
string messageText;
long schProcRtrnCd;
long appRtrnCd;
string addtnlText;

ErrorCode errCode;
string errDesc;
string fieldName;
long fieldOccurs;

long fldMsgCd;
string fldMsg;

ExpSource expSource;

};

Whenever this exception is thrown, the eScript catch clause can access this
particular object data member using this syntax:

if (obj.name == "DataException ")
{

TheApplication().MsgBox(obj.moduleId);
... any other data members...

return (CancelOpertaion);
}

Example This example instantiates a CORBA object and calls several methods on it.

var cObj = myCorbaOb.balance () ; //call a method
[check the return value…]

myCorbaOb.SetBalance (50000); //call another method
var acctNum = myCorbaOb.accountNumber ; // get the property

value
254 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
myCorbaOb.accountNumber = accNum ; //set it.

For more information on configuring the Siebel Client with the
CORBACreateObject() Method, refer to the section on the JSECorbaConnector
parameter in Siebel Web Client Administration Guide.

defined() Method
This function tests whether a variable or object property has been defined.

Syntax defined(var)

Returns True if the item has been defined; otherwise, false.

Usage This function tests whether a variable or object property has been defined,
returning true if it has or false if it has not.

CAUTION: The defined() function is unique to Siebel eScript. Avoid using it in a script
that may be used with a JavaScript interpreter that does not support it.

Example The following fragment illustrates two uses of the defined() method. The first use
checks a variable, t. The second use checks an object t.t.

var t = 1;
if (defined(t))

TheApplication().Trace("t is defined");
else

TheApplication().Trace("t is not defined");

if (!defined(t.t))
TheApplication().Trace("t.t is not defined"):

else
TheApplication().Trace("t.t is defined");

Parameter Description

var The variable or object property you wish to query
Version 7.5, Rev. B Siebel eScript Language Reference 255

Siebel eScript Commands

The Global Object
See Also “undefine() Method” on page 271

escape() Method
The escape() method receives a string and replaces special characters with escape
sequences.

Syntax escape(string)

Returns A string with special characters replaced by Unicode sequences.

Usage The escape() method receives a string and replaces special characters with escape
sequences, so that the string may be used with a URL. The escape sequences are
Unicode values. For characters in the standard ASCII set (values 0 through 127
decimal), these are the hexadecimal ASCII codes of the characters preceded by
percent signs.

Uppercase and lowercase letters, numbers, and the special symbols @ * + _ . /
remain in the string. Other characters are replaced by their respective Unicode
sequences.

Example The following code provides an example of what occurs once a string has been
encoded. Note that the @ and * characters have not been replaced.

var str = "@#$*96!";

Would result in the following string: "@#$*%!"

var encodeStr = encode("@#$*%!");

Would result in the following string: "@%23%24*%25%21"

See Also “unescape(string) Method” on page 272

Parameter Description

string The string containing characters to be replaced
256 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
eval() Method
This method returns the value of its parameter, which is an expression.

Syntax eval(expression)

Returns The value of expression.

Usage This method evaluates whatever is represented by expression. If expression is a
string, the interpreter tries to interpret the string as if it were JavaScript code. If
successful, the method returns the value of expression. If not successful, it returns
the special value undefined.

If the expression is not a string, expression is returned. For example, calling eval(5)
returns the value 5.

Example This example shows the result of using the eval() method on several types of
expressions. Note that the string expression in the test[0] variable is evaluated
because it can be interpreted as a JavaScript statement, but the string expressions
in test[1] and test[3] are undefined.

function clickme_Click ()
{

var msgtext = "";
var a = 7;
var b = 9;
var test = new Array(4);
var test[0] = "a * b";
var test[1] = toString(a * b);
var test[2] = a + b;
var test[3] = "Strings are undefined.";
var test[4] = test[1] + test[2];

for (var i = 0; i < 5; i++)
msgtext = msgtext + i + ": " + eval(test[i]) + "\n";

TheApplication().RaiseErrorText(msgtext);

Parameter Description

expression The expression to be evaluated
Version 7.5, Rev. B Siebel eScript Language Reference 257

Siebel eScript Commands

The Global Object
Running this code produces the following result.

getArrayLength() Method
This function returns the length of a dynamically created array.

Syntax getArrayLength(array[, minIndex])

Returns The length of a dynamic array, which is one more than the highest index of an array.

Usage Most commonly, the first element of an array is at index 0. If minIndex is supplied,
then it is used to set to the minimum index, which is zero or less.

This function should be used with dynamically created arrays, that is, with arrays
that were not created using the Array() constructor and the new operator. The
length property is not available for dynamically created arrays. Dynamically created
arrays must use the getArrayLength() and setArrayLength() functions when
working with array lengths.

When working with arrays created using the Array() constructor and the new
operator, use the length property of the arrays.

CAUTION: The getArrayLength() function is unique to Siebel eScript. Avoid using it
in a script that may be used with a JavaScript interpreter that does not support it.

Parameter Description

array The name of the array whose length you wish to find

minIndex The index of the lowest element at which to start counting
258 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
See Also “The Array Constructor” on page 98, “length Property” on page 99, and
“setArrayLength() Method” on page 261

isNaN() Method
The isNaN() method determines whether its parameter is or is not a number.

Syntax isNaN(value)

Returns True if value is not a number; otherwise, false.

Usage The isNaN() method determines whether value is or is not a number, returning true
if it is not or false if it is. Value must be in italics.

If value is an object reference, IsNan() always returns true, because object
references are not numbers.

Example IsNaN("123abc") returns true.

IsNaN("123") returns false.

IsNaN("999888777123") returns false.

IsNaN("The answer is 42") returns true.

See Also “isFinite() Method” on page 259

isFinite() Method
This method determines whether its parameter is a finite number.

Parameter Description

value The variable or expression to be evaluated
Version 7.5, Rev. B Siebel eScript Language Reference 259

Siebel eScript Commands

The Global Object
Syntax isFinite(value)

Returns True if value is or can be converted to a number; false if value evaluates to NaN,
POSITIVE_INFINITY, or NEGATIVE_INFINITY.

Usage The isFinite() method returns true if number is or can be converted to a number. If
the parameter evaluates to NaN, number.POSITIVE_INFINITY, or
number.NEGATIVE_INFINITY, the method returns false. For details on the number
object, read “Number Constants” on page 57.

See Also “isNaN() Method” on page 259

parseFloat() Method
This method converts an alphanumeric string to a floating-point decimal number.

Syntax parseFloat(string)

Returns A floating-point decimal number; if string cannot be converted to a number, the
special value NaN is returned.

Usage Whitespace characters at the beginning of the string are ignored. The first non-
white-space character must be either a digit or a minus sign (-). Numeric characters
in string are read. The first period (.) in string is treated as a decimal point and any
following digits as the fractional part of the number. Reading stops at the first non-
numeric character after the decimal point. The result is converted into a number.
Characters including and following the first non-numeric character are ignored.

Example The following code fragment returns the result -234.37:

Parameter Description

value The variable or expression to be evaluated

Parameter Description

string The string to be converted
260 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
var num = parseFloat(" -234.37 profit");

parseInt() Method
This method converts an alphanumeric string to an integer number.

Syntax parseInt(string)

Returns An integer number; if string cannot be converted to a number, the special value
NaN is returned.

Usage Whitespace characters at the beginning of the string are ignored. The first non-
white-space character must be either a digit or a minus sign (-). Numeric characters
in string are read. Reading stops at the first non-numeric character. The result is
converted into an integer number. Characters including and following the first non-
numeric character are ignored.

Example The following code fragment returns the result -234:

var num = parseInt(" -234.37 profit");

setArrayLength() Method
This function sets the first index and length of an array.

Syntax setArrayLength(array[, minIndex], length])

Parameter Description

string The string to be converted

Parameter Description

array The name of the array whose length you wish to find

minIndex The index of the lowest element at which to start counting; must be 0 or less

length The length of the array
Version 7.5, Rev. B Siebel eScript Language Reference 261

Siebel eScript Commands

The Global Object
Returns Not applicable

Usage This function sets the length of array to a range bounded by minIndex and length.
If three arguments are supplied, minIndex, which must be 0 or less, is the minimum
index of the newly sized array, and length is the length. Any elements outside the
bounds set by minIndex and length become undefined. If only two arguments are
passed to setArrayLength(), the second argument is length and the minimum index
of the newly sized array is 0.

CAUTION: The setArrayLength() function is unique to Siebel eScript. Avoid using it in
a script that may be used with a JavaScript interpreter that does not support it.

See Also “length Property” on page 99 and “getArrayLength() Method” on page 258

ToBoolean() Method
This method converts a value to the Boolean data type.

Syntax ToBoolean(value)

Returns A value that depends on value’s original data type, according to the following table:

Parameter Description

value The value to be converted to a Boolean value

Data Type Returns

Boolean value

buffer False if an empty buffer; otherwise, true

null False

number False if value is 0, +0, -0, or NaN; otherwise, true

object True
262 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
Usage This method converts value to the Boolean data type. The result depends on the
original data type of value.

CAUTION: The ToBoolean() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToBuffer() Method” on page 263, “ToObject() Method” on page 268, and
“ToString() Method” on page 268

ToBuffer() Method
This function converts its parameter to a buffer.

Syntax ToBuffer(value)

Returns A sequence of ASCII bytes that depends on value’s original data type, according to
the following table:

string False if an empty string, ""; otherwise, true

undefined False

Parameter Description

value The value to be converted to a buffer

Data Type Returns

Boolean The string "false" if value is false; otherwise, "true"

null The string "null"

number If value is NaN, "NaN". If value is +0 or -0, "0"; if value is
POSITIVE_INFINITY or NEGATIVE_INFINITY, "Infinity"; if value is a
number, a string representing the number

object The string "[object Object]"
Version 7.5, Rev. B Siebel eScript Language Reference 263

Siebel eScript Commands

The Global Object
Usage This function converts value to a buffer; what is placed in the buffer is a character
array of ASCII bytes.

CAUTION: The ToBuffer() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToBytes() Method” on page 264 and “ToString() Method” on page 268

ToBytes() Method
This function places its parameter in a buffer.

Syntax ToBytes(value)

Returns Not applicable

Usage This function transfers the raw data represented by value to a buffer. The raw
transfer does not convert Unicode values to corresponding ASCII values. Thus, for
example, the Unicode string Hit would be stored as \OH\Oi\Ot, that is, as the
hexadecimal sequence 00 48 00 69 00 74.

CAUTION: The ToBytes() function is unique to Siebel eScript. Avoid using it in a script
that may be used with a JavaScript interpreter that does not support it.

string The text of the string

undefined The string "undefined"

Parameter Description

value The value to be placed in a buffer
264 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
See Also “ToBuffer() Method” on page 263 and “ToString() Method” on page 268

ToInt32() Method
This function converts its parameter to an integer in the range of -231 through 231 - 1.

Syntax ToInt32(value)

Returns If the result is NaN, +0. If the result is +0 or -0, 0. If the result is
POSITIVE_INFINITY, or NEGATIVE_INFINITY, Infinity. Otherwise, the integer
part of the number, rounded toward 0.

Usage This function converts value to an integer in the range of -231 through 231 - 1 (that
is, -2,147,483,648 to 2,147,483,647). To use it without error, first pass value to
isNaN() or to ToNumber().

To use isNan(), use a statement in the form

if (isNaN(value))
.
. [error-handling statements];
.
else

ToInt32(value);

Because ToInt32() truncates rather than rounds the value it is given, numbers are
rounded toward 0. That is, -12.88 becomes -12; 12.88 becomes 12.

CAUTION: The ToInt32() function is unique to Siebel eScript. Avoid using it in a script
that may be used with a JavaScript interpreter that does not support it.

See Also “ToInteger() Method” on page 266, “ToNumber() Method” on page 267,
“ToUint16() Method” on page 269, and “ToUint32() Method” on page 270

Parameter Description

value The value to be converted to an integer
Version 7.5, Rev. B Siebel eScript Language Reference 265

Siebel eScript Commands

The Global Object
ToInteger() Method
This function converts its parameter to an integer in the range of -215 to 215 - 1.

Syntax ToInteger(value)

Returns If the result is NaN, +0. If the result is +0, -0, POSITIVE_INFINITY, or
NEGATIVE_INFINITY, the result. Otherwise, the integer part of the number,
rounded toward 0.

Usage This function converts value to an integer in the range of -215 to 215 - 1 (that is, -
32,768 to 32,767). To use it without error, first pass value to isNaN() or to
ToNumber().

To use toNumber(), use a statement of the form

var x;
x = toNumber(value);
(if x == 'NaN')
.
. [error -handling statements];
.
else

ToInteger(value);

Because ToInteger() truncates rather than rounds the value it is given, numbers are
rounded toward 0. That is, -12.88 becomes -12; 12.88 becomes 12.

CAUTION: The ToInteger() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToInt32() Method” on page 265, “ToNumber() Method” on page 267, “ToString()
Method” on page 268, “ToUint16() Method” on page 269, “ToUint32() Method” on
page 270, and “Math.round() Method” on page 289

Parameter Description

value The value to be converted to an integer
266 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
ToNumber() Method
This function converts its parameter to a number.

Syntax ToNumber(value)

Returns A value that depends on value’s original data type, according to the following table:

Usage This function converts its parameter to a number.

CAUTION: The ToNumber() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToInt32() Method” on page 265, “ToInteger() Method” on page 266, “ToString()
Method” on page 268, “ToUint16() Method” on page 269, “ToUint32() Method” on
page 270, and “Math.round() Method” on page 289

Parameter Description

value The value to be converted to a number

Data Type Returns

Boolean +0 if value is false, 1 if value is true

buffer value if successful; otherwise, NaN

null 0

number value

object NaN

string value if successful; otherwise, NaN

undefined NaN
Version 7.5, Rev. B Siebel eScript Language Reference 267

Siebel eScript Commands

The Global Object
ToObject() Method
This function converts its parameter to an object.

Syntax ToObject(value)

Returns A value that depends on value’s original data type, according to the following table:

Usage This function converts its parameter to an object.

CAUTION: The ToObject() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToString() Method” on page 268

ToString() Method
This method converts its parameter to a string.

Parameter Description

value The value to be converted to an object

Data Type Returns

Boolean A new Boolean object having the value value

null (Generates a run-time error)

number A new Number object having the value value

object value

string A new string object having the value value

undefined (Generates a run-time error)
268 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
Syntax ToString(value)

Returns A value in the form of a Unicode string, the contents of which depends on value’s
original data type, according to the following table:

Usage This method converts its parameter to a Unicode string, the contents of which
depend on value’s original data type.

CAUTION: The ToString() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

Example For an example, read “eval() Method” on page 257.

See Also “ToBuffer() Method” on page 263 and “ToBytes() Method” on page 264

ToUint16() Method
This function converts its parameter to an integer in the range of 0 through 216 -1.

Parameter Description

value The value to be converted to a string

Data Type Returns

Boolean "false" if value is false; otherwise, "true"

null The string "null"

number If value is NaN, "NaN". If value is +0 or -0, "0"; if Infinity, "Infinity"; if
a number, a string representing the number

object The string "[object Object]"

string value

undefined The string "undefined"
Version 7.5, Rev. B Siebel eScript Language Reference 269

Siebel eScript Commands

The Global Object
Syntax ToUint16(value)

Returns If the result is NaN, +0. If the result is +0 , 0. If the result is POSITIVE_INFINITY,
it returns Infinity. Otherwise, it returns the unsigned (that is, absolute value of)
integer part of the number, rounded toward 0.

Usage This function converts value to an integer in the range of 0 to 216 - 1 (65,535). To
use it without error, first pass value to isNaN() or to ToNumber().

To use toNumber(), use a statement of the form

var x;i
x = toNumber(value);
(if x == 'NaN')
.
. [error -handling statements];
.
else

ToUint16(value);

Because ToUint16() truncates rather than rounds the value it is given, numbers are
rounded toward 0. Therefore, 12.88 becomes 12.

CAUTION: The ToUint16() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToInt32() Method” on page 265, “ToInteger() Method” on page 266, “ToNumber()
Method” on page 267, “ToUint32() Method” on page 270, and “Math.round()
Method” on page 289

ToUint32() Method
This function converts its parameter to an integer in the range of 0 to 232 -1.

Parameter Description

value The value to be converted
270 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
Syntax ToUint32(value)

Returns If the result is NaN, +0. If the result is +0 , 0. If the result is POSITIVE_INFINITY,
it returns Infinity. Otherwise, it returns the unsigned (that is, absolute value of)
integer part of the number, rounded toward 0.

Usage This function converts value to an unsigned integer part of value in the range of 0
through 232 - 1 (4,294,967,296). To use it without error, first pass value to isNaN()
or to ToNumber().

To use isNan() without error, use a statement of the form

if (isNaN(value))
.
. [error-handling statements];
.
else

ToUint32(value);

Because ToUint32() truncates rather than rounds the value it is given, numbers are
rounded toward 0. Therefore, 12.88 becomes 12.

CAUTION: The ToUint32() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToInt32() Method” on page 265, “ToInteger() Method” on page 266, “ToNumber()
Method” on page 267, “ToUint16() Method” on page 269, and “Math.round()
Method” on page 289

undefine() Method
This function undefines a variable, Object property, or value.

Parameter Description

value The value to be converted
Version 7.5, Rev. B Siebel eScript Language Reference 271

Siebel eScript Commands

The Global Object
Syntax undefine(value)

Returns Not applicable

Usage If a value was previously defined so that its use with the defined() method returns
true, then after using undefine() with the value, defined() returns false. Undefining
a value is not the same as setting a value to null. In the following fragment, the
variable n is defined with the number value of 2, and then undefined.

var n = 2;
undefine(n);

CAUTION: The undefine() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

Example In the following fragment an object o is created, and a property o.one is defined.
The property is then undefined, but the object o remains defined.

var o = new Object;
o.one = 1;
undefine(o.one);

See Also “CORBACreateObject() Method” on page 252

unescape(string) Method
The unescape() method removes escape sequences from a string and replaces them
with the relevant characters.

Parameter Description

value The variable or object property to be undefined
272 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object
Syntax unescape(string)

Returns A string with Unicode sequences replaced by the equivalent ASCII characters.

Usage The unescape() method is the reverse of the escape() method; it removes escape
sequences from a string and replaces them with the relevant characters.

Example The following line of code displays the string in its parameter with the escape
sequence replaced by printable characters. Note that %20 is the Unicode
representation of the space character. Note also that this example would normally
appear on a single line, as strings cannot be broken by a newline.

TheApplication().RaiseErrorText(unescape("http://obscushop.com/
texis/%20%20showcat.html?catid=%232029&rg=r133"));

See Also “escape() Method” on page 256

Parameter Description

string A string literal or string variable from which escape sequences are to be
removed
Version 7.5, Rev. B Siebel eScript Language Reference 273

Siebel eScript Commands

The Math Object
The Math Object
The Math object in Siebel eScript has a full and powerful set of methods and
properties for mathematical operations. A programmer has a rich set of
mathematical tools for the task of doing mathematical calculations in a script.

Properties
■ “Math.E Property” on page 281

■ “Math.LN10 Property” on page 282

■ “Math.LN2 Property” on page 283

■ “Math.LOG2E Property” on page 284

■ “Math.PI Property” on page 287

■ “Math.LOG10E Property” on page 285

■ “Math.SQRT2 Property” on page 291

■ “Math.SQRT1_2 Property” on page 291

Methods
■ “Math.abs() Method” on page 275

■ “Math.acos() Method” on page 275

■ “Math.asin() Method” on page 276

■ “Math.atan() Method” on page 277

■ “Math.atan2() Method” on page 278

■ “Math.ceil() Method” on page 279

■ “Math.cos() Method” on page 280

■ “Math.exp() Method” on page 281

■ “Math.floor() Method” on page 282

■ “Math.log() Method” on page 284
274 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
■ “Math.max() Method” on page 286

■ “Math.min() Method” on page 286

■ “Math.pow() Method” on page 287

■ “Math.random() Method” on page 288

■ “Math.round() Method” on page 289

■ “Math.sin() Method” on page 290

■ “Math.sqrt() Method” on page 290

■ “Math.tan() Method” on page 292

Math.abs() Method
This method returns the absolute value of its parameter; it returns NaN if the
parameter cannot be converted to a number.

Syntax Math.abs(number)

Returns The absolute value of number; or NaN if number cannot be converted to a number.

Usage This method returns the absolute value of number. If number cannot be converted
to a number, it returns NaN.

Math.acos() Method
This method returns the arc cosine of its parameter, expressed in radians.

Parameter Description

number A numeric literal or numeric variable
Version 7.5, Rev. B Siebel eScript Language Reference 275

Siebel eScript Commands

The Math Object
Syntax Math.acos(number)

Returns The arc cosine of number, expressed in radians from 0 to pi, or NaN if number
cannot be converted to a number or is greater than 1 or less than -1.

Usage This method returns the arc cosine of number. The return value is expressed in
radians and ranges from 0 to pi. It returns NaN if x cannot be converted to a
number, is greater than 1, or is less than -1.

To convert radians to degrees, multiply by 180/Math.PI.

See Also “Math.asin() Method” on page 276, “Math.atan() Method” on page 277,
“Math.cos() Method” on page 280, and “Math.sin() Method” on page 290

Math.asin() Method
This method returns an implementation-dependent approximation of the arcsine of
its parameter.

Syntax Math.asin(number)

Returns An implementation-dependent approximation of the arcsine of number, expressed
in radians and ranging from - pi/2 to +pi/2.

Usage This method returns an implementation-dependent approximation of the arcsine of
number. The return value is expressed in radians and ranges from -pi/2 to +pi/2.
It returns NaN if number cannot be converted to a number, is greater than 1, or is
less than -1.

Parameter Description

number A numeric literal or numeric variable

Parameter Description

number A numeric literal or numeric variable
276 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
To convert radians to degrees, multiply by 180/Math.PI.

See Also “Math.acos() Method” on page 275, “Math.atan() Method” on page 277,
“Math.atan2() Method” on page 278, “Math.cos() Method” on page 280,
“Math.sin() Method” on page 290, and “Math.tan() Method” on page 292

Math.atan() Method
This method returns an implementation-dependent approximation of the arctangent
of the argument.

Syntax Math.atan(number)

Returns An implementation-dependent approximation of the arctangent of number,
expressed in radians.

Usage The Math.atan() function returns an implementation-dependent approximation of
the arctangent of the argument. The return value is expressed in radians and ranges
from -pi/2 to +pi/2.

The function assumes number is the ratio of two sides of a right triangle: the side
opposite the angle to find and the side adjacent to the angle. The function returns
a value for the ratio.

To convert radians to degrees, multiply by 180/Math.PI.

Example This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16-foot span from the outside wall to the center of the
house. The Math.atan() function returns the angle in radians; it is multiplied by
180/PI to convert it to degrees. Compare the example in the discussion of
“Math.atan2() Method” on page 278 to understand how the two arctangent
functions differ. Both examples return the same value.

Parameter Description

number A numeric literal or numeric variable
Version 7.5, Rev. B Siebel eScript Language Reference 277

Siebel eScript Commands

The Math Object
function RoofBtn_Click ()
{

var height = 8;
var span = 16;
var angle = Math.atan(height/span)*(180/Math.PI);

TheApplication().RaiseErrorText("The angle is " +
Clib.rsprintf("%5.2f", angle) + " degrees.")

}

See Also “Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan2() Method” on page 278, “Math.cos() Method” on page 280,
“Math.sin() Method” on page 290, and “Math.tan() Method” on page 292

Math.atan2() Method
This function returns an implementation-dependent approximation to the
arctangent of the quotient of its arguments.

Syntax Math.atan2(y, x)

Returns An implementation-dependent approximation of the arctangent of y/x, in radians.

Usage This function returns an implementation-dependent approximation to the
arctangent of the quotient, y/x, of the arguments y and x, where the signs of the
arguments are used to determine the quadrant of the result. It is intentional and
traditional for the two-argument arctangent function that the argument named y be
first and the argument named x be second. The return value is expressed in radians
and ranges from -pi to +pi.

Parameter Description

y The value on the y axis

x The value on the x axis
278 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
Example This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16-foot span from the outside wall to the center of the
house. The Math.atan2() function returns the angle in radians; it is multiplied by
180/PI to convert it to degrees. Compare the example in the discussion of
“Math.atan() Method” on page 277 to understand how the two arctangent functions
differ. Both examples return the same value.

function RoofBtn2_Click ()
{

var height = 8;
var span = 16;
var angle = Math.atan2(span, height)*(180/Math.PI);

TheApplication().RaiseErrorText("The angle is " +
Clib.rsprintf("%5.2f", angle) + " degrees.")

}

See Also “Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan() Method” on page 277, “Math.cos() Method” on page 280, “Math.sin()
Method” on page 290, and “Math.tan() Method” on page 292

Math.ceil() Method
This method returns the smallest integer that is not less than its parameter.

Syntax Math.ceil(number)

Returns The smallest integer that is not less than number; if number is an integer, number.

Usage This method returns the smallest integer that is not less than number. If the
argument is already an integer, the result is the argument itself. It returns NaN if
number cannot be converted to a number.

Example The following code fragment generates a random number between 0 and 100 and
displays the integer range in which the number falls. Each run of this code produces
a different result.

Parameter Description

number A numeric literal or numeric variable
Version 7.5, Rev. B Siebel eScript Language Reference 279

Siebel eScript Commands

The Math Object
var x = Math.random() * 100;
TheApplication().RaiseErrorText("The number is between " +

Math.floor(x) + " and " + Math.ceil(x) + ".");

See Also “Math.floor() Method” on page 282

Math.cos() Method
This method returns an implementation-dependent approximation of the cosine of
the argument. The argument is expressed in radians.

Syntax Math.cos(number)

Returns An implementation-dependent approximation of the cosine of number.

Usage The return value is between -1 and 1. NaN is returned if number cannot be
converted to a number.

The angle can be either positive or negative. To convert degrees to radians, multiply
by Math.PI/180.

Example This example finds the length of a roof, given its pitch and the distance of the house
from its center to the outside wall.

function RoofBtn3_Click ()
{

var pitch;
var width;
var roof;

pitch = 35;
pitch = Math.cos(pitch*(Math.PI/180));
width = 75;
width = width / 2;
roof = width/pitch;

Parameter Description

number A numeric literal or numeric variable representing an angle in radians
280 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
TheApplication().RaiseErrorText("The length of the roof is " +
Clib.rsprintf("%5.2f", roof) + " feet.");

}

See Also “Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan() Method” on page 277, “Math.atan2() Method” on page 278,
“Math.sin() Method” on page 290, and “Math.tan() Method” on page 292

Math.E Property
This property stores the number value for e, the base of natural logarithms.

Syntax Math.E

Returns Not applicable

Usage The value of e is represented internally as approximately 2.7182818284590452354.

See Also “Math.exp() Method” on page 281, “Math.LN10 Property” on page 282, “Math.LN2
Property” on page 283, “Math.log() Method” on page 284, “Math.LOG2E Property”
on page 284, and “Math.LOG10E Property” on page 285

Math.exp() Method
This method returns an implementation-dependent approximation of the
exponential function of its parameter.

Syntax Math.exp(number)

Parameter Description

Not applicable

Parameter Description

number The exponent value of e
Version 7.5, Rev. B Siebel eScript Language Reference 281

Siebel eScript Commands

The Math Object
Returns The value of e raised to the power number.

Usage This method returns an implementation-dependent approximation of the
exponential function of its parameter. The argument, that is, returns e raised to the
power of the x, where e is the base of the natural logarithms. NaN is returned if
number cannot be converted to a number. The value of e is represented internally
as approximately 2.7182818284590452354.

See Also “Math.E Property” on page 281, “Math.LN10 Property” on page 282, “Math.LN2
Property” on page 283, “Math.log() Method” on page 284, “Math.LOG2E Property”
on page 284, and “Math.LOG10E Property” on page 285

Math.floor() Method
This method returns the greatest integer that is not greater than its parameter.

Syntax Math.floor(number)

Returns The greatest integer that is not greater than number; if number is an integer,
number.

Usage This method returns the greatest integer that is not greater than number. If the
argument is already an integer, the result is the argument itself. It returns NaN if
number cannot be converted to a number.

Example For an example, read “Math.ceil() Method” on page 279.

See Also “Math.ceil() Method” on page 279

Math.LN10 Property
This property stores the number value for the natural logarithm of 10.

Parameter Description

number A numeric literal or numeric variable
282 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
Syntax Math.LN10

Returns Not applicable

Usage The value of the natural logarithm of 10 is represented internally as approximately
2.302585092994046.

See Also “Math.exp() Method” on page 281, “Math.LN2 Property” on page 283, “Math.log()
Method” on page 284, “Math.LOG2E Property” on page 284, and “Math.LOG10E
Property” on page 285

Math.LN2 Property
This property stores the number value for the natural logarithm of 2.

Syntax Math.LN2

Returns Not applicable

Usage The value of the natural logarithm of 2 is represented internally as approximately
0.6931471805599453.

See Also “Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.log() Method” on page 284, “Math.LOG2E Property”
on page 284, and “Math.LOG10E Property” on page 285

Parameter Description

Not applicable

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 283

Siebel eScript Commands

The Math Object
Math.log() Method
This function returns an implementation-dependent approximation of the natural
logarithm of its parameter.

Syntax Math.log(number)

Returns An implementation-dependent approximation of the natural logarithm of number.

Example This example uses the Math.log() function to determine which number is larger:
999^1000 (999 to the 1000th power) or 1000^999 (1000 to the 999th power). Note
that if you attempt to use the Math.pow() function instead of the Math.log()
function with numbers this large, the result returned would be Infinity.

function Test_Click ()
{

var x = 999;
var y = 1000;
var a = y*(Math.log(x));
var b = x*(Math.log(y))
if (a > b)

TheApplication().
RaiseErrorText("999^1000 is greater than 1000^999.");

else
TheApplication().

RaiseErrorText("1000^999 is greater than 999^1000.");
}

See Also “Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.LN2 Property” on page 283, “Math.LOG2E Property”
on page 284, “Math.LOG10E Property” on page 285, and “Math.pow() Method” on
page 287

Math.LOG2E Property
This property stores the number value for the base 2 logarithm of e, the base of the
natural logarithms.

Parameter Description

number A numeric literal or numeric variable
284 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
Syntax Math.LOG2E

Returns Not applicable

Usage The value of the base 2 logarithm of e is represented internally as approximately
1.4426950408889634. The value of Math.LOG2E is approximately the reciprocal of
the value of Math.LN2.

See Also “Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.LN2 Property” on page 283, “Math.log() Method” on
page 284, and “Math.LOG10E Property” on page 285

Math.LOG10E Property
The number value for the base 10 logarithm of e, the base of the natural logarithms.

Syntax Math.LOG10E

Returns Not applicable

Usage The value of the base 10 logarithm of e is represented internally as approximately
0.4342944819032518. The value of Math.LOG10E is approximately the reciprocal of
the value of Math.LN10.

See Also “Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.LN2 Property” on page 283, “Math.log() Method” on
page 284, and “Math.LOG2E Property” on page 284

Parameter Description

Not applicable

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 285

Siebel eScript Commands

The Math Object
Math.max() Method
This function returns the larger of its parameters.

Syntax Math.max(x, y)

Returns The larger of x and y.

Usage This function returns the larger of x and y, or NaN if either parameter cannot be
converted to a number.

See Also “Math.min() Method” on page 286

Math.min() Method
This function returns the smaller of its parameters.

Syntax Math.min(x, y)

Returns The smaller of x and y.

Usage This function returns the smaller of x and y, or NaN if either parameter cannot be
converted to a number.

See Also “Math.max() Method” on page 286

Parameter Description

x A numeric literal or numeric variable

y A numeric literal or numeric variable

Parameter Description

x A numeric literal or numeric variable

y A numeric literal or numeric variable
286 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
Math.PI Property
This property holds the number value for pi.

Syntax Math.PI

Returns Not applicable

Usage This property holds the value of pi, which is the ratio of the circumference of a circle
to its diameter. This value is represented internally as approximately
3.14159265358979323846.

Example For examples, read “Math.atan() Method” on page 277, “Math.atan2() Method” on
page 278, and “Math.cos() Method” on page 280.

Math.pow() Method
This function returns the value of its first parameter raised to the power of its
second parameter.

Syntax Math.pow(x, y)

Returns The value of x to the power of y.

Usage This function returns the value of x raised to the power of y.

Parameter Description

Not applicable

Parameter Description

x The number to be raised to a power

y The power to which to raise x
Version 7.5, Rev. B Siebel eScript Language Reference 287

Siebel eScript Commands

The Math Object
Example This example uses the Math.pow() function to determine which number is larger:
99^100 (99 to the 100th power) or 100^99 (100 to the 99th power). Note that if you
attempt to use the Math.pow() method with numbers as large as those used in the
example in “Math.log() Method” on page 284, the result returned is Infinity.

function Test_Click ()
{

var a = Math.pow(99, 100);
var b = Math.pow(100, 99);
if (a > b)

TheApplication().RaiseErrorText("99^100 is greater than
100^99.");

else
TheApplication().RaiseErrorText("100^99 is greater than

99^100.");
}

See Also “Math.exp() Method” on page 281, “Math.log() Method” on page 284, and
“Math.sqrt() Method” on page 290

Math.random() Method
This function returns a pseudo-random number between 0 and 1.

Syntax Math.random()

Returns A pseudo-random number between 0 and 1.

Usage This function generates a pseudo-random number between 0 and 1. It takes no
arguments. Where possible, it should be used in place of the Clib.rand() method.
The Clib.rand() method is to be preferred only when it is necessary to use
Clib.srand() to seed the Clib random number generator with a specific value.

Example This example generates a random string of characters within a range. The
Math.random() function is used to set the range between lowercase a and z.

Parameter Description

Not applicable
288 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
function Test_Click ()
{

var str1 = "";
var letter;
var randomvalue;
var upper = "z";
var lower = "a";

upper = upper.charCodeAt(0);
lower = lower.charCodeAt(0);

for (var x = 1; x < 26; x++)
{

randomvalue = Math.round(((upper - (lower + 1)) *
Math.random()) + lower);

letter = String.fromCharCode(randomvalue);
str1 = str1 + letter;

}

TheApplication().RaiseErrorText(str1);
}

See Also “Clib.rand() Method” on page 183 and “Clib.srand() Method” on page 189

Math.round() Method
This method rounds a number to its nearest integer.

Syntax Math.round(number)

Returns The integer closest in value to number.

Usage The number parameter is rounded up if its fractional part is equal to or greater than
0.5 and is rounded down if less than 0.5. Both positive and negative numbers are
rounded to the nearest integer.

Example This code fragment yields the values 124 and -124.

Parameter Description

number A numeric literal or numeric variable
Version 7.5, Rev. B Siebel eScript Language Reference 289

Siebel eScript Commands

The Math Object
var a = Math.round(123.6);
var b = Math.round(-123.6)
TheApplication().RaiseErrorText(a + "\n" + b)

See Also “Clib.modf() Method” on page 179, “ToInt32() Method” on page 265, “ToInteger()
Method” on page 266, “ToUint16() Method” on page 269, and “ToUint32() Method”
on page 270

Math.sin() Method
This method returns the sine of an angle expressed in radians.

Syntax Math.sin(number)

Returns The sine of number, or NaN if number cannot be converted to a number.

Usage The return value is between -1 and 1. The angle is specified in radians and can be
either positive or negative.

To convert degrees to radians, multiply by Math.PI/180.

See Also “Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan() Method” on page 277, “Math.atan2() Method” on page 278,
“Math.cos() Method” on page 280, and “Math.tan() Method” on page 292

Math.sqrt() Method
This method returns the square root of its parameter; it returns NaN if x is a
negative number or cannot be converted to a number.

Parameter Description

number A numeric expression containing a number representing the size of an
angle in radians
290 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object
Syntax Math.sqrt()

Returns The square root of number, or NaN if number is negative or cannot be converted to
a number.

Usage This method returns the square root of number, or Nan if number is negative or
cannot be converted to a number.

See Also “Math.exp() Method” on page 281, “Math.log() Method” on page 284, and
“Math.pow() Method” on page 287

Math.SQRT1_2 Property
This property stores the number value for the square root of ½.

Syntax Math.SQRT1_2

Returns Not applicable

Usage This property stores the number value for the square root of ½, which is
represented internally as approximately 0.7071067811865476. The value of
Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

See Also “Math.sqrt() Method” on page 290 and “Math.SQRT2 Property” on page 291

Math.SQRT2 Property
This property stores the number value for the square root of 2.

Parameter Description

number A numeric literal or numeric variable

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 291

Siebel eScript Commands

The Math Object
Syntax Math.SQRT2

Returns Not applicable

Usage This property stores the number value for the square root of 2, which is represented
internally as approximately 1.4142135623730951.

See Also “Math.sqrt() Method” on page 290 and “Math.SQRT1_2 Property” on page 291

Math.tan() Method
This method returns the tangent of its parameter.

Syntax Math.tan(number)

Returns The tangent of number, or NaN if number cannot be converted to a number.

Usage This method returns the tangent of number, expressed in radians, or NaN if number
cannot be converted to a number. To convert degrees to radians, multiply by
Math.PI/180.

See Also “Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan() Method” on page 277, “Math.atan2() Method” on page 278,
“Math.cos() Method” on page 280, and “Math.sin() Method” on page 290

Parameter Description

Not applicable

Parameter Description

number A numeric expression containing the number of radians in the angle whose
tangent is to be returned
292 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

User-Defined Objects
User-Defined Objects
Variables and functions may be grouped together in one variable and referenced as
a group. A compound variable of this sort is called an object in which each
individual item of the object is called a property.

In general, it is adequate to think of object properties, which are variables or
constants, and of object methods, which are functions.

To refer to a property of an object, use both the name of the object and the name of
the property, separated by a period. Any valid variable name may be used as a
property name. For example, the code fragment that follows assigns values to the
width and height properties of a rectangle object, calculates the area of a rectangle,
and displays the result:

var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

TheApplication().RaiseErrorText(Rectangle.height *
Rectangle.width);

The main advantage of objects occurs with data that naturally occurs in groups. An
object forms a template that can be used to work with data groups in a consistent
way. Instead of having a single object called Rectangle, you can have a number of
Rectangle objects, each with its own values for width and height.

See Also “Predefining Objects with Constructor Functions” on page 293, “Assigning
Functions to Objects” on page 294, and “Object Prototypes” on page 295

Predefining Objects with Constructor Functions
A constructor function creates an object template. For example, a constructor
function to create Rectangle objects might be defined like the following:

function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

Version 7.5, Rev. B Siebel eScript Language Reference 293

Siebel eScript Commands

User-Defined Objects
The keyword this is used to refer to the parameters passed to the constructor
function and can be conceptually thought of as "this object." To create a Rectangle
object, call the constructor function with the "new" operator:

var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

This code fragment creates two rectangle objects: one named joe, with a width of 3
and a height of 4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object
created by a constructor function is called an instance of that class. The preceding
example creates a Rectangle class and two instances of it. Instances of a class share
the same properties, although a particular instance of the class may have additional
properties unique to it. For example, if you add the following line:

joe.motto = "Be prepared!";

you add a motto property to the rectangle joe. But the rectangle sally has no motto
property.

Assigning Functions to Objects
Objects may contain functions as well as variables. A function assigned to an object
is called a method of that object.

Like a constructor function, a method refers to its variables with the "this" operator.
The following fragment is an example of a method that computes the area of a
rectangle:

function rectangle_area()
{

return this.width * this.height;
}

Because there are no parameters passed to it, this function is meaningless unless it
is called from an object. It needs to have an object to provide values for this.width
and this.height:

A method is assigned to an object as the following line illustrates:

joe.area = rectangle_area;
294 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

User-Defined Objects
The function now uses the values for height and width that were defined when you
created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this
keyword. For example, the following code:

function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
this.height = height;
this.area = rectangle_area;

}

creates an object class Rectangle with the rectangle_area method included as one of
its properties. The method is available to any instance of the class:

var joe = Rectangle(3,4);
var sally = Rectangle(5,3);

var area1 = joe.area();
var area2 = sally.area();

This code sets the value of area1 to 12 and the value of area2 to 15.

Object Prototypes
An object prototype lets you specify a set of default values for an object. When an
object property that has not been assigned a value is accessed, the prototype is
consulted. If such a property exists in the prototype, its value is used for the object
property.
Version 7.5, Rev. B Siebel eScript Language Reference 295

Siebel eScript Commands

User-Defined Objects
Object prototypes are useful for two reasons: they make sure that every instance of
an object use the same default values, and they conserve the amount of memory
needed to run a script. When the two rectangles, joe and sally, were created in the
previous section, they were each assigned an area method. Memory was allocated
for this function twice, even though the method is exactly the same in each
instance. This redundant memory can be avoided by putting the shared function or
property in an object's prototype. Then every instance of the object use the same
function instead of each using its own copy of it.

The following fragment shows how to create a Rectangle object with an area
method in a prototype:

function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

Rectangle.prototype.area = rectangle_area;

The rectangle_area method can now be accessed as a method of any Rectangle
object, as shown in the following:

var area1 = joe.area();
var area2 = sally.area();

You can add methods and data to an object prototype at any time. The object class
must be defined, but you do not have to create an instance of the object before
assigning it prototype values. If you assign a method or data to an object prototype,
every instance of that object is updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new
variable is created for the newly assigned value. This value is used for the value of
this instance of the object's property. Other instances of the object still refer to the
prototype for their values. If you assume that joe is a special rectangle, whose area
is equal to three times its width plus half its height, you can modify joe as follows:
296 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

User-Defined Objects
function joe_area()
{

return (this.width * 3) + (this.height/2);
}
joe.area = joe_area;

This fragment creates a value, which in this case is a function, for joe.area that
supersedes the prototype value. The property sally.area is still the default value
defined by the prototype. The instance joe uses the new definition for its area
method.

NOTE: Prototypes cannot be declared inside a function scope.
Version 7.5, Rev. B Siebel eScript Language Reference 297

Siebel eScript Commands

Property Set Objects
Property Set Objects
Property set objects are collections of properties that can be used for storing data.
They may have child property sets assigned to them. Property sets are used
primarily for inputs and outputs to business services. You can assign child property
sets to a property set to form a hierarchical data structure. Methods of property set
objects are documented in the Siebel Object Interfaces Reference.

Method Description

AddChild() Method The AddChild() method is used to add subsidiary property
sets to a property set, in order to form tree-structured data
structures.

Copy() Method Copy() returns a copy of a property set.

GetChild() Method GetChild() returns a specified child property set of a
property set.

GetChildCount() Method GetChildCount() returns the number of child property sets
attached to a parent property set.

GetFirstProperty() Method GetFirstProperty() returns the name of the first property in
a property set.

GetNextProperty() Method GetNextProperty() returns the name of the next property in
a property set.

GetProperty() Method GetProperty() returns the value of a property, when given
the property name.

GetPropertyCount() Method GetPropertyCount() returns the number of properties
associated with a property set.

GetType() Method GetType() retrieves the data value stored in the type
attribute of a property set.

GetValue() Method GetValue() retrieves the data value stored in the value
attribute of a property set.

InsertChildAt() Method InsertChildAt() inserts a child property set into a parent
property set at a specific location.

PropertyExists() Method PropertyExists() returns a Boolean value indicating
whether a specified property exists in a property set.
298 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Property Set Objects
RemoveChild() Method RemoveChild() removes a child property set from a parent
property set.

RemoveProperty() Method RemoveProperty() removes a property from a property set.

Reset() Method This method removes every property and child property set
from a property set.

SetProperty() Method SetProperty() assigns a data value to a property in a
property set.

SetType() Method SetType() assigns a data value to a type member of a
property set.

SetValue() Method SetValue() assigns a data value to a value member of a
property set.

Method Description
Version 7.5, Rev. B Siebel eScript Language Reference 299

Siebel eScript Commands

The SElib Object
The SElib Object
In Siebel eScript, the SElib object allows calling out to external libraries.

SElib.dynamicLink() Method

Windows
Syntax

SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1,
arg2, arg3, ..., argn])

UNIX
Syntax

SElib.dynamicLink(Library, Procedure[, arg1, arg2, arg3, ...argn])

Returns Not applicable

Usage The calling convention must be one of the following:

Values are passed as 32-bit values. If a parameter is undefined when
SElib.dynamicLink() is called, then it is assumed that the parameter is a 32-bit value
to be filled in; that is, the address of a 32-bit data element is passed to the function,
and that function sets the value.

Parameter Description

Library Under Windows, the name of the DLL containing the
procedure; under UNIX, the name of a shared object; can be
specified by fully qualified path name

Procedure The name or ordinal number of the procedure in the Library
dynamic link library

Convention The calling convention

desc Used to pass a Unicode string; for example, WCHAR

arg1, arg2, arg3, ..., argn Arguments to the procedure

CDECL Push right parameter first; the caller pops parameters

STDCALL Push right parameter first; the caller pops parameters (this is almost
always the option used in Win32)

PASCAL Push left parameter first; the callee pops parameters
300 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The SElib Object
If any parameter is a structure, then it must be a structure that defines the binary
data types in memory to represent the following variable. Before calling the
function, the structure is copied to a binary buffer as described in “Blob.put()
Method” on page 105 and “Clib.fwrite() Method” on page 164.

After calling the function, the binary data are converted back into the data structure
according to the rules defined in Blob.get() and Clib.fread(). Data conversion is
performed according to the current BigEndianMode setting. The function returns an
integer.

Example The following code example shows a proxy DLL that takes denormalized input
values, creates the structure, and invokes a method in the destination DLL. In the
process, it calls the SElib dynamicLink.

#include <windows.h>
_declspec(dllexport) int __cdecl
score (

double AGE,
double AVGCHECKBALANCE,
double AVGSAVINGSBALANCE,
double CHURN_SCORE,
double CONTACT_LENGTH,
double HOMEOWNER,
double *P_CHURN_SCORE,
double *R_CHURN_SCORE,
char _WARN_[5])

{
*P_CHURN_SCORE = AGE + AVGCHECKBALANCE + AVGSAVINGSBALANCE;
*R_CHURN_SCORE = CHURN_SCORE + CONTACT_LENGTH + HOMEOWNER;
strcpy(_WARN_, "SFD");
return(1);

}

The following example shows the eScript code required to invoke a DLL. In this
code, the Buffer is used for pointers and characters.

function TestDLLCall3()
{

var AGE = 10;
var AVGCHECKBALANCE = 20;
var AVGSAVINGSBALANCE = 30;
var CHURN_SCORE = 40;
var CONTACT_LENGTH = 50;
var HOMEOWNER = 60;
Version 7.5, Rev. B Siebel eScript Language Reference 301

Siebel eScript Commands

The SElib Object
var P_CHURN_SCORE = Buffer(8);
var R_CHURN_SCORE = Buffer(8);
var _WARN_ = Buffer(5);

SElib.dynamicLink("jddll.dll", "score", CDECL,
FLOAT64, AGE,
FLOAT64, AVGCHECKBALANCE,
FLOAT64, AVGSAVINGSBALANCE,
FLOAT64, CHURN_SCORE,
FLOAT64, CONTACT_LENGTH,
FLOAT64, HOMEOWNER,
P_CHURN_SCORE,
R_CHURN_SCORE,
WARN);

var r_churn_score = R_CHURN_SCORE.getValue(8, "float");
var p_churn_score = P_CHURN_SCORE.getValue(8, "float");
var nReturns = r_churn_score + p_churn_score;
return(nReturns);
}

The following code calls a DLL function in the default codepage.

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, sHello);

The following code calls a DLL function that passes Unicode strings.

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello);

The following code calls a DLL function that passes both Unicode and non-Unicode
strings.

var sHello = "Hello";
var sWorld = "world";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello,
sWorld);
302 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects
String Objects
The string data type is a hybrid that shares characteristics of primitive data types,
Boolean and Number, and of composite data types, Object and Array. The string
data type is presented in this section under two main headings in which the first
describes its characteristics as a primitive data type and the second describes its
characteristics as an object.

See Also “The String as Data Type” on page 303, “Escape Sequences for Characters” on
page 303, “Single Quote Strings” on page 304, “Back-Quote Strings” on page 304,
“The String as Object” on page 305, “charAt() Method” on page 305,
“String.fromCharCode() Static Method” on page 306, “indexOf() Method” on
page 306, “lastIndexOf() Method” on page 307, “length Property” on page 308,
“split() Method” on page 309, “string.replace() Method” on page 311, “substring()
Method” on page 312, “toLowerCase() Method” on page 313, and “toUpperCase()
Method” on page 314

The String as Data Type
A string is an ordered series of characters. The most common use for strings is to
represent text. To indicate that text is a string, it is enclosed in quotation marks. For
example, the first statement puts the string "hello" into the variable word. The
second sets the variable word to have the same value as a previous variable hello.

var word = "hello";
word = hello;

Escape Sequences for Characters
Some characters, such as a quotation mark, have special meaning to the Siebel
eScript interpreter and must be indicated with special character combinations when
used in strings. This allows the Siebel eScript interpreter to distinguish between, for
example, a quotation mark that is part of a string and a quotation mark that
indicates the end of the string. The following is a list of the characters indicated by
escape sequences:

\a Audible bell

\b Backspace
Version 7.5, Rev. B Siebel eScript Language Reference 303

Siebel eScript Commands

String Objects
Note that these escape sequences cannot be used within strings enclosed by back
quotes, which are explained in “Back-Quote Strings” on page 304.

Single Quote Strings
You can declare a string with single quotes instead of double quotes. There is no
difference between the two in eScript.

Back-Quote Strings
Siebel eScript provides the back quote "`", also known as the back-tick or grave
accent, as an alternative quote character to indicate that escape sequences are not
to be translated. Special characters represented by a backslash followed by a letter,
such as \n, cannot be used in back-quote strings.

For example, the following lines show different ways to describe a single file name:

"c:\\autoexec.bat" // traditional C method
'c:\\autoexec.bat' // traditional C method
`c:\autoexec.bat' // alternative Siebel eScript method

Back-quote strings are not supported in most versions of JavaScript. Therefore, if
you plan to port your script to some other JavaScript interpreter, do not use them.

\f Form feed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\’ Single quote

\” Double quote

\\ Backslash character

\0### Octal number (example: '\033' is the escape character)

\x## Hex number (example: '\x1B' is the escape character)

\0 Null character (example: '\0' is the null character)

\u#### Unicode number (example: '\u001B' is the escape character)
304 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects
The String as Object
Strings have both properties and methods, and they are listed in this section. These
properties and methods are discussed as if strings were pure objects. Although
strings are true objects, they do have instance properties and methods.

In the following pages, stringVar indicates any string variable. A specific instance
of a variable should precede the period to use a property or call a method. The
exception to this usage is a static method that actually uses the identifier String
instead of a variable created as an instance of a string object.

charAt() Method
This method returns a character at a certain place in a string.

Syntax stringVar.charAt(position)

Returns A string of length 1 representing the character at position.

Usage The character count starts at 0. To get the first character in a string, use index 0, as
follows:

var string1 = "a string";
string1.charAt(0);

To get the last character in a string, use:

string1.charAt(string1.length - 1);

If position does not fall between 0 and stringVar.length - 1, stringVar.charAt()
returns an empty string.

See Also “String.fromCharCode() Static Method” on page 306, “indexOf() Method” on
page 306, and “lastIndexOf() Method” on page 307

Parameter Description

position An integer indicating the position in the string of the character to be
returned
Version 7.5, Rev. B Siebel eScript Language Reference 305

Siebel eScript Commands

String Objects
String.fromCharCode() Static Method
This method returns a string created from the character codes that are passed to it
as parameters.

Syntax String.fromCharCode(code1, code2, ... coden)

Returns A new string containing the characters specified by the codes.

Usage This static method allows you to create a string by specifying the individual Unicode
values of the characters in it. The identifier String is used with this static method,
instead of a variable name as with instance methods because it is a property of the
String constructor. The arguments passed to this method are assumed to be Unicode
values. The following line:

var string1 = String.fromCharCode(0x0041,0x0042);

sets the variable string1 to "AB".

Example The following example uses the decimal Unicode values of the characters to create
the string "Siebel". For another example, read “offset[] Method” on page 115.

var seblStr = String.fromCharCode(83, 105, 101, 98, 101, 108);

See Also “Clib.toascii() Method” on page 208

indexOf() Method
This method returns the position of the first occurrence of a substring in a string.

Parameter Description

code1, code2, ... coden Integers representing Unicode character codes
306 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects
stringVar.indexOf(substring [, offset])

Returns The position of the first occurrence of a substring in a string variable.

Usage stringVar.indexOf() searches the entire substring in a string variable. The substring
parameter may be a single character. If offset is not given, searching starts at
position 0. If it is given, searching starts at the specified position.

For example,

var string = "what a string";
string.indexOf("a")

returns the position of the first a appearing in the string, which in this example is 2.
Similarly,

var magicWord = "abracadabra";
var secondA = magicWord.indexOf("a", 1);

returns 3, the index of the first a to be found in the string when starting from the
second character of the string.

NOTE: The indexOf() method is case-sensitive.

See Also “Clib.strchr() Method” on page 191, “Clib.strpbrk() Method” on page 200,
“charAt() Method” on page 305, “lastIndexOf() Method” on page 307, and
“string.replace() Method” on page 311

lastIndexOf() Method
This method finds the position of the last occurrence of a substring in a string.

Parameter Description

substring One or more characters to search for

offset The position in the string at which to start searching, where 0 represents the
first character
Version 7.5, Rev. B Siebel eScript Language Reference 307

Siebel eScript Commands

String Objects
Syntax stringVar.indexOf(substring [, offset])

Returns The position of the last occurrence of a substring in a string variable.

Usage The stringVar.lastIndexOf() function searches the entire substring in a string
variable. The substring parameter may be a single character. If offset is given,
searching starts at the indicated position. If it is not given, searching starts at the
end of the string.

For example:

var string = "what a string";
string.lastIndexOf("a")

returns the position of the last a appearing in the string, which in this example is
5. Similarly,

var magicWord = "abracadabra";
var firstB = magicWord.lastIndexOf("b", 7);

returns 1, the index of the first b to be found in the string when starting backward
from the eighth character of the string.

See Also “Clib.strchr() Method” on page 191, “Clib.strpbrk() Method” on page 200,
“charAt() Method” on page 305, “indexOf() Method” on page 306, and
“string.replace() Method” on page 311

length Property
The length property stores an integer indicating the length of the string.

Parameter Description

substring One or more characters to search for

offset The position in the string at which to start searching, where 0 represents the
first character
308 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects
Syntax stringVar.length

Returns Not applicable

Usage The length of a string can be obtained by using the length property. For example:

var string1 = "No, thank you.";
TheApplication().RaiseErrorText(string1.length);

displays the number 14, the number of characters in the string. Note that the index
of the last character in the string is equivalent to stringVar.length -1, because
the index begins at 0, not at 1.

Example This code fragment returns the length of a name entered by the user (including
spaces).

var userName = "Christopher J. Smith";
TheApplication().RaiseErrorText("Your name has " +

userName.length + " characters.");

split() Method
This method splits a string into an array of strings based on the delimiters in the
parameter substring.

Syntax stringVar.split([delimiter])

Returns An array of strings, creating by splitting stringVar into substrings, each of which
begins at an instance of the delimiter character.

Parameter Description

Not applicable

Parameter Description

delimiter The character at which the value stored in stringVar is to be split
Version 7.5, Rev. B Siebel eScript Language Reference 309

Siebel eScript Commands

String Objects
Usage This method splits a string into an array of substrings such that each substring
begins at an instance of delimiter. The delimiter is not included in any of the strings.
If delimiter is omitted or is an empty string (""), the method returns an array of one
element, which contains the original string.

This method is the inverse of arrayVar.join().

Example The following example splits a typical Siebel command line into its elements by
creating a separate array element at each space character. Note that the string has
to be modified with escape characters to be comprehensible to Siebel eScript. Note
also that the cmdLine variable must appear on a single line, which space does not
permit in this volume. The result appears in the illustration following the example.

function Button3_Click ()
{

var msgText = "The following items appear in the array:\n\n";
var cmdLine = "C:\\Siebel\\bin\\siebel.exe /c

\'c:\\siebel\\bin\\siebel.cfg\' /u SADMIN /p SADMIN /d Sample"
var cmdArray = cmdLine.split(" ");
for (var i = 0; i < cmdArray.length; i++)

msgText = msgText + cmdArray[i] + "\n";
TheApplication().RaiseErrorText(msgText);

}

Running this code produces the following result.

See Also “join() Method” on page 99
310 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects
string.replace() Method
This method searches a string using the regular expression pattern defined by
pattern. If a match is found, it is replaced by the substring defined by replexp.

Syntax string.replace(pattern, replexp)

Returns The original string with replacements according to pattern and replexp.

Usage The string is searched using the regular expression pattern defined by pattern. If a
match is found, it is replaced by the substring defined by replexp. The parameter
replexp may be:

■ A simple string

■ A string containing special regular expression replacement elements

■ A function that returns a value that may be converted into a string

If any replacements are made, appropriate RegExp object static properties such as
RegExp.leftContext, RegExp.rightContext, and RegExp.$n are set. These properties
provide more information about the replacements.

The following table shows the special characters that may occur in a replacement
expression.

Parameter Description

pattern Regular expression pattern to find or match in string.

replexp Replacement expression which may be a string, a string with regular
expression elements, or a function.

Character Description

$1, $2 … $9 The text matched by regular expression patterns inside of
parentheses. For example, $1 puts the text matched in the first
parenthesized group in a regular expression pattern.

$+ The text matched by the last regular expression pattern inside of the
last parentheses, that is, the last group.
Version 7.5, Rev. B Siebel eScript Language Reference 311

Siebel eScript Commands

String Objects
Example var rtn;
var str = "one two three two one";
var pat = /(two)/g;

// rtn == "one zzz three zzz one"
rtn = str.replace(pat, "zzz");

// rtn == "one twozzz three twozzz one";
rtn = str.replace(pat, "$1zzz");

// rtn == "one 5 three 5 one"
rtn = str.replace(pat, five());

// rtn == "one twotwo three twotwo one";
rtn = str.replace(pat, "$&$&);

function five() {
return 5;

}

See Also “Typographic Conventions” on page 16

substring() Method
This method retrieves a section of a string.

$& The text matched by a regular expression pattern.

$` The text to the left of the text matched by a regular expression
pattern.

$' The text to the right of the text matched by a regular expression
pattern.

\$ The dollar sign character.

Character Description
312 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects
Syntax stringVar.substring(start[, end])

Returns A new string, of length end - start, containing the characters that appeared in the
positions from start to end - 1 of stringVar.

Usage This method returns a portion of stringVar, comprising the characters in stringVar
at the positions start through end - 1. The character at the end position is not
included in the returned string. If the end parameter is not used,
stringVar.substring() returns the characters from start to the end of stringVar.

Example For an example, read “indexOf() Method” on page 306.

See Also “charAt() Method” on page 305, “indexOf() Method” on page 306, and
“lastIndexOf() Method” on page 307

toLowerCase() Method
This method returns a copy of a string with the letters changed to lower case.

Syntax stringVar.toLowerCase()

Returns A copy of stringVar in lowercase characters.

Usage This method returns a copy of stringVar with uppercase letters replaced by their
lowercase equivalents.

Parameter Description

start An integer specifying the location of the beginning of the substring to be
returned

end An integer one greater than the location of the last character of the substring
to be returned

Parameter Description

Not applicable
Version 7.5, Rev. B Siebel eScript Language Reference 313

Siebel eScript Commands

String Objects
Example The following code fragment assigns the value "e. e. cummings" to the variable
poet:

var poet = "E. E. Cummings";
poet = poet.toLowerCase();

See Also “toUpperCase() Method” on page 314

toUpperCase() Method
This method returns a copy of a string with the letters changed to uppercase.

Syntax stringVar.toUpperCase()

Returns A copy of stringVar in uppercase characters.

Usage This method returns a copy of stringVar, with lowercase letters replaced by their
uppercase equivalents.

Example The following fragment accepts a filename as input and displays it in uppercase:

var filename = "c:\\temp\\trace.txt";;
TheApplication().RaiseErrorText("The filename in uppercase is

" +filename.toUpperCase());

See Also “toLowerCase() Method” on page 313

Parameter Description

Not applicable
314 Siebel eScript Language Reference Version 7.5, Rev. B

Index
Symbols
; (semicolon) 45
? (question mark) 67

A
absolute value 275
applet object methods 92
application object methods 94
arc cosine 275
arcsine 276
arctangent 277, 278
arguments

number expected by the function 247
syntax 16

arguments[] property 71
array

constructor 98
element order 100
elements, sorting 182
first index and length 261
join() method 99
length 258
length property 99
methods, list 20
objects, described 97
reverse() method 100
sort() method 101
sorting into ASCII order 101

array data type 55
ASCII, seven bit representation of a

character 208
assignment operator 62

B
back quotes 304

bigEndian byte, using 112
binary large object

data to a specified location 105
data, reading 105

BLOB
Blob.get() method 105
Blob.put method 105
Blob.size() method 107
blobDescriptor 103
described 103

block comments 44
blocks 45
Boolean data type 50, 53, 70, 303
Boolean variables

converting from a value 262
described 53

break statement 74
buffer

bigEndian property 112
buffer constructor 109
comparing lengths and contents of

two 177
copying bytes from one to another 177
cursor property 113
data property 113
file, writing to disk 149
filling bytes with a character 178
getString() method 114
getValue() method 114
internal data 113
methods 112
methods, list 21
offset[] method 115
properties 111
putString() method 116
Version 7.5, Rev. B Siebel eScript Language Reference 315

putValue() method 117
size property 119
subBuffer() method 120
toString() method 120
unicode property 121

business component object methods 122
business object object methods 128
business service object methods 129
byte-array methods, list 35

C
case-insensitivity

comparing strings 192, 198
searching strings for substrings 204

case-sensitivity
comparing two strings 198
described 42
programming guidelines 40

casting methods
list 23
when to use 58

character
alphabetic 169
alphanumeric 169
ASCII 170
characters from current file cursor 152
classification methods, list 22
control 170
decimal digit 170
first occurrence in a buffer 176
hexadecimal digit 174
last occurrence 201
lowercase alphabetic 171
next in a file stream 150
printable 171, 172
punctuation mark 173
pushing back into a file 209
seven-bit ASCII representation 208
uppercase alphabetic 174
white-space 173
writing to a specified file 157

charAt() method 305
Clib object

Clib compared to ECMAScript
methods 132

data, formatting 138
file I/O functions 133
format strings 138
formatting data 138
redundant functions 131
time functions 136
Time object 135

Clib.asctime() method 141
Clib.bsearch() method 141
Clib.chdir() method 143
Clib.clearerr() method 144
Clib.clock() method 144
Clib.cosh() method 144
Clib.ctime() method 145
Clib.difftime() method 146
Clib.div() method 146
Clib.errno property 147
Clib.fclose() method 148
Clib.feof() method 148
Clib.ferror() method 149
Clib.fflush() method 149
Clib.fgetc() method 150
Clib.fgetpos() method 151
Clib.fgets() method 152
Clib.flock() method 153
Clib.fopen() method 154
Clib.fprintf() method 157
Clib.fputc() method 157
Clib.fputs() method 158
Clib.fread() method 158
Clib.freopen() method 160
Clib.frexp() method 161
Clib.fscanf() method 162
Clib.fseek() method 163
Clib.fsetpos() method 163
Clib.ftell() method 164
Clib.fwrite() method 164
Clib.getc() method 150
Clib.getcwd() method 166
Clib.getenv() method 167
Clib.gmtime() method 168
316 Siebel eScript Language Reference Version 7.5, Rev. B

Clib.Idexp() method 175
Clib.Idiv() method 146
Clib.isalnum() method 169
Clib.isalpha() method 169
Clib.isascii() method 170
Clib.iscntrl() method 170
Clib.isdigit() method 170
Clib.isgraph() method 171
Clib.islower() method 171
Clib.isprint() method 172
Clib.ispunct() method 173
Clib.isspace() method 173
Clib.isupper() method 174
Clib.isxdigit() method 174
Clib.localtime() method 175
Clib.memchr() method 176
Clib.memcmp() method 177
Clib.memcpy() method 177
Clib.memmove() method 177
Clib.memset() method 178
Clib.mkdir() method 178
Clib.mktime() method 179
Clib.modf() method 179, 180
Clib.putc() method 157
Clib.putenv() method 181
Clib.qsort() method 182
Clib.rand() method 183
Clib.remove() method 185
Clib.rename() method 185
Clib.rewind() method 186
Clib.rmdir() method 186
Clib.rsprintf() method 187
Clib.sinh() method 188
Clib.sprintf() method 188
Clib.srand() method 189
Clib.sscanf() method 190
Clib.strchr() method 191
Clib.strcmpi() method 192
Clib.strcspn() method 192
Clib.strerror() method 194
Clib.strftime() method 195
Clib.stricmp() method 192
Clib.strncat() method 197

Clib.strncmp() method 198
Clib.strncmpi() method 198
Clib.strncpy() method 199
Clib.strnicmp() method 198
Clib.strpbrk() method 200
Clib.strrchr() method 201
Clib.strspn() method 202
Clib.strstr() method 196, 203
Clib.strstri() method 204
Clib.system() method 205
Clib.tanh() method 206
Clib.time() method 206
Clib.tmpfile() method 207, 208
Clib.toascii() method 208
Clib.ungetc() method 209
COMCreateObject() method 251
commands, passing to the command

processor 205
comments 44
comparing values 64
conditional expressions 64
constants, numeric 57
continue statement 75
control character 170
conventions, typographic 16
conversion methods

alphanumeric string to a floating-point
decimal number 260, 261

list 23
parameter to a buffer 263
parameter to a number 267
parameter to a string 268
parameter to an integer 265, 266, 269,

270
parameter to an object 268
value to the Boolean data type 262

copying characters between strings 199
CORBA objects

exception handling 87
CORBA objects, binding 252
CORBACreateObject() method 252
cosine 280
cursor. See file cursor
Version 7.5, Rev. B Siebel eScript Language Reference 317

D
data

file, writing to disk 148
formatting 137
handling methods, list 24
storing in a series of parameters 162
storing in variables 158
writing data in a specified variable to a

specified file 164
data types

array 55
Boolean, converting value to 262
composite 54
decimal floats 52
described 50
floating-point numbers 52
hexadecimal notation 52
integers 51
NaN 57
null 56
object 55
octal notation 52
primitive 51
properties and methods 58
special 56
string 53, 303
undefined 56

date
extracted from a Time object 141
functions, list 25
stored in variables 195

Date object
about 210
Date constructor 210
universal time functions 212

Date.fromSystem() 210
Date.fromSystem() static method 213
Date.pars() static method 226
Date.toSystem() 210
Date.toSystem() method 242
Date.UTC() static method 243

date-time value 145
decimal digit 170
decimal floats 52
decimal number, integer part 179
defined() method 255
diagnostic messages 147
directory

changing current 143
creating 178
current working, path of 166
functions, list 28
removing 186

disk functions, list 28
division 183, 184
do...while statement 76

E
e

base 10 logarithm 285
base 2 logarithm 284
number value of 281

ECMAScript 42
end of line comments 44
end-of-file flag, resetting 144
environment variable

creating 181
strings 167

error indicator 149
error messages

associated with an error number 194
error status 144
error-handling methods, list 30
escape sequences

back quotes and 304
list 303
removing from a string 272
replacing special characters with 256

escape() method 256
eval() method 257
exponential function 281
expressions 45, 60
318 Siebel eScript Language Reference Version 7.5, Rev. B

F
file

deleting a specified 185
functions, list 28
input/output functions, list 29
opening in a specified mode 154
renaming 185
temporary binary 207

file buffer, data 149
file cursor

current, setting to a position 163
locating 148
position offset, setting 164
position, current 113
position, setting 163
setting to the beginning 186

file mode characters 155
file pointers, associating with other

files 160
file-control functions, list 28
floating-point numbers

converting from alphanumeric 260
described 52
hyperbolic sine 188
hyperbolic tangent 206
mantissa and exponent as givens 175
representations of 51

for statement 77
for...in statement 78
formatting data 137
Function objects

creating 246
length property 247
return statement 247

functions
arguments[] property 71
described 69
error checking 73
passing variables to 70
recursive 71
scope 70
specific location within 79

G
get method, BLOB object 105
getArrayLength() method 258
getDate() method 212
getDay() method 214
getFullYear() method 215
getHours() method 216
getMilliseconds() method 216
getMinutes() method 217
getMonth() method 217, 218
getSeconds() method 218
getTIme() method 219
getTimezoneOffset() method 220
getUTCDate() method 221
getUTCDay() method 221
getUTCFullYear() method 222
getUTCHours() method 223
getUTCMilliseconds() method 224
getUTCMinutes() method 224
getUTCMonth() method 225
getUTCSeconds() method 226
getYear() method 226
Global object

conversion or casting functions 250
functions 249

global variables 48
goto statement 79
Greenwich Mean Time (GMT) 212

H
hexadecimal digit 174
hexadecimal notation 52
hyperbolic cosine of x 144
hyperbolic sine 188
hyperbolic tangent 206

I
identifiers

prohibited 47
rules 46
See also variables 47

if statement 80
Version 7.5, Rev. B Siebel eScript Language Reference 319

indexOf() method 306
instantiated objects, syntax 16
instantiating 294
integer

converting to a Time object 168
described 52
division 146
greatest 282
smallest 279

integer numbers
converting from alphanumeric 261

isFinite() method 259
isNaN() method 259

J
JavaScript

common usage 42
and eScript 39

L
lastIndexOf() method 307
length property

Array object 99
Function object 247
String object 308

line breaks in strings 44
local variables 48
locking files for multiple processes 153
logarithm

base 10 of e 285
base 2 of e 284
natural 284
number value for e 281
of 10 282
of 2 283

loops
continue statement 75
do...while statement 76
for...in statement 78
new iteration, starting 75
repeating 88
terminating 74

M
Math object 274
math properties, list 32
Math.abs() method 275
Math.acos() method 275
Math.asin() method 276
Math.atan() method 277
Math.atan2() method 278
Math.ceil() method 279
Math.cos() method 280
Math.E property 281
Math.exp() method 281
Math.floor() method 282
Math.LN10 property 282
Math.LN2 property 283
Math.log() method 284
Math.LOG10E property 285
Math.LOG2E property 284
Math.max() method 286
Math.min() method 286
Math.PI property 287
Math.pow() method 287
Math.random() method 288
Math.round() method 289
Math.sin() method 290
Math.sqrt() method 290
Math.SQRT1_2 property 291
Math.SQRT2 property 291
Math.tan() method 292
MAX_VALUE constant 57
MIN_VALUE constant 57
miscellaneous methods, list 37

N
NaN constant 57
NaN data type 57
NEGATIVE_INFINITY constant 57
null data type 56
number constants 57
numbers

calculating integer exponent of 2 161
pseudo-random 288
320 Siebel eScript Language Reference Version 7.5, Rev. B

random 183
random, generating 189
rounding 289

numeric functions, list 31

O
object data type 55
Object object 293
object property

testing 255
undefining 271

object prototypes 295
objects

assigning functions 294
instantiated, syntax 16
looping through properties 78
templates, creating 293

octal notation 52
operating system interaction methods,

list 34
operators

assignment arithmetic 62
auto-decrement 63
auto-increment 63
basic arithmetic 61
bit 64
conditional 67
conditional expressions 64
logical 64
mathematical 61
order of precedence 60
string concatenation 67
typeof 66

output
writing to a string variable 188

P
parameter

converting to a buffer 263
converting to a number 267
converting to a string 268

converting to an integer 265, 266, 269,
270

converting to an object 268
determining if it is a finite number 259
determining if it is a number 259
placing in a buffer 264
raising to a power 287
value, returning 257

parseFloat() method 260, 261
pi, number value 287
point 188
pointer, current position 151
POSITIVE_INFINITY constant 57
printing

format strings 138
processor tick count, current 144
program flow, directing 80, 83
properties, described 293
property set object methods 298
punctuation marks 173
put method, BLOB object 105

Q
question mark (?) 67
quot method 183
quotient, finding 183

R
random number generator 189
random numbers 183
recursive functions 72
rem method 184
return statement 247

S
scientific notation 53
searching in arrays 141
searching in strings

characters not among a group 202
first occurrence of a second string 203
first occurrence of a specified

substring 204
Version 7.5, Rev. B Siebel eScript Language Reference 321

group of specified characters 192
several characters 200
specified character 191

SEEK_CUR 163
SEEK_END 163
SEEK_SET 163
SElib object 300
SElib.dynamicLink() method 300
semicolon (;) 45
sequential data 97
setArrayLength() method 261
setDate() method 227
setFullYear() method 228
setHours() method 229
setMilliseconds() method 229
setMinutes() method 231
setMonth() method 231
setSeconds() method 232
setTime() method 232
setUTCDate() method 234
setUTCFullYear() method 234
setUTCHours() method 235
setUTCMilliseconds() method 236
setUTCMinutes() method 237
setUTCMonth() method 238
setUTCSeconds() method 239
setYear() method 239
Siebel eScript

basic concepts 42
and JavaScript 42
programming guidelines 40
this object reference 41

sine 290
size method, BLOB object 107
special characters 303, 304
special data types 56
split() method 309, 311
square root

of 1/2 291
of 2 291
parameter 290

statement blocks
assigning a default object 89

described 45
statements

described 45
repeating a series 77

string concatenation 67
string data type 53
string objects 303
String.fromcharCode() static method 306
strings

appending a specified number of
characters 197

back-quote 304
from character codes 306
converting alphanumeric to a floating-

point decimal number 260, 261
copying characters between 199
copying to lowercase 313
copying to uppercase 314
creating strings of array elements 99
declaring 304
described 53
escape sequences 303
formatted 187
formatted, writing to a file 157
length stored as an integer 308
methods, list 35
as objects 305
searching for a group of characters 192
searching for characters 191, 200, 202
searching for first occurrence of a second

string 203
searching for last occurrence of a

character 201
section, retrieving 312
special characters 303
specific place in 305
splitting into arrays 309
substring, first occurrence 306
substring, last occurrence 307
substrings, searching for 204
usage 303
writing to a specified file 158

substring() method 312
322 Siebel eScript Language Reference Version 7.5, Rev. B

switch statement
controlling the flow 74
described 83

T
tangent 292
this object reference 294
this object reference in Siebel eScript 41
time

difference between two times 146
extracted from a Time object 141
functions, list 25
integer representation 206
stored in variables 195

Time object
converting 179
described 135

ToBoolean() method 262
ToBuffer() method 263
ToBytes() method 264
toGMTString() method 240
ToInt32() method 265
ToInteger() method 266
toLocaleString() method 241
toLowerCase() method 313
ToNumber() method 267
ToObjec() method 268
ToString() method 268
toString() method 59, 241
ToUnit16() method 269
ToUnit32() method 270
toUTCString() method 242
trailing parentheses () 40
trigonometric functions, list 32
try statement 86
type conversion, automatic 57

U
undefine() method 271
undefined data type 56
unescape() method 272
Universal Coordinated Time (UTC) 212
unlocking files for multiple processes 153

V
value

passing back to the function 247
specifying with object prototypes 295
undefining 271

valueOf() method 59
variables

about 47
array, matching 141
Boolean 53
compound 293
data in, writing to a specified file 164
declaring 40, 48
passing by reference 54
passing by value 51, 70
passing to the COM object 251
scope 48
Siebel eScript 48
storing data in 190
testing 255
undefining 271

W
web applet object methods 92
while statement 45, 88
white-space character 43, 173
with statement 89

Y
Y2K sensitivities 40, 210
Version 7.5, Rev. B Siebel eScript Language Reference 323

324 Siebel eScript Language Reference Version 7.5, Rev. B

	Contents
	Introduction
	Typographic Conventions
	Revision History
	March 2003 Bookshelf
	November 2002 Bookshelf

	Quick Reference: Methods and Properties
	Array Methods
	Buffer Methods
	Character Classification Methods
	Conversion or Casting Methods
	Data Handling Methods
	Date and Time Functions
	Disk and File Functions
	Disk and Directory Functions
	File Control Functions
	File-Manipulation Functions

	Error Handling Methods
	Math Methods
	Numeric Functions
	Trigonometric Functions
	Math Properties

	Operating System Interaction Methods
	String and Byte-Array Methods
	Miscellaneous Methods

	Siebel eScript Language Overview
	Siebel eScript Programming Guidelines
	Basic Siebel eScript Concepts
	Case Sensitivity
	White-Space Characters
	Comments
	Expressions, Statements, and Blocks
	Identifiers
	Rules for Identifiers
	Prohibited Identifiers

	Variables
	Variable Scope
	Variable Declaration

	Data Types
	Primitive Data Types
	Number
	Integer
	Hexadecimal
	Octal
	Floating Point
	Decimal
	Scientific

	Boolean
	String

	Composite Data Types
	Object
	Array

	Special Data Types
	Undefined
	Null
	NaN

	Number Constants
	Automatic Type Conversion
	Properties and Methods of Basic Data Types
	toString()
	valueOf()

	Expressions
	Operators
	Mathematical Operators
	Basic Arithmetic
	Assignment Arithmetic
	Auto-Increment (++) and Auto-Decrement (--)

	Bit Operators
	Logical Operators and Conditional Expressions
	Typeof Operator
	Conditional Operator
	String Concatenation Operator

	Functions
	Function Scope
	Passing Variables to Functions
	The Function Arguments[] Property
	Function Recursion
	Error Checking for Functions

	eScript Statements
	break Statement
	continue Statement
	do...while Statement
	for Statement
	for...in Statement
	goto Statement
	if Statement
	switch Statement
	throw Statement
	try Statement
	while Statement
	with Statement

	Siebel eScript Commands
	Applet Objects
	The Application Object
	Array Objects
	The Array Constructor
	join() Method
	length Property
	reverse() Method
	sort() Method

	BLOB Objects
	The blobDescriptor Object
	Blob.get() Method
	Blob.put() Method
	Blob.size() Method

	Buffer Objects
	The Buffer Constructor
	Properties
	Methods
	bigEndian Property
	cursor Property
	data Property
	getString() Method
	getValue() Method
	offset[] Method
	putString() Method
	putValue() Method
	size Property
	subBuffer() Method
	toString() Method
	unicode Property

	Business Component Objects
	Business Object Objects
	Business Service Objects
	The Clib Object
	Redundant Functions in the Clib Object
	File I/O Functions
	The Time Object
	Time Functions
	Character Classification
	Formatting Data
	Formatting Output
	Formatting Input

	Clib.asctime() Method
	Clib.bsearch() Method
	Clib.chdir() Method
	Clib.clearerr() Method
	Clib.clock() Method
	Clib.cosh() Method
	Clib.ctime() Method
	Clib.difftime() Method
	Clib.div() Method and Clib.ldiv() Method
	Clib.errno Property
	Clib.fclose() Method
	Clib.feof() Method
	Clib.ferror() Method
	Clib.fflush() Method
	Clib.fgetc() Method and Clib.getc() Method
	Clib.fgetpos() Method
	Clib.fgets() Method
	Clib.flock() Method
	Clib.fopen() Method
	Clib.fprintf() Method
	Clib.fputc() Method and Clib.putc() Method
	Clib.fputs() Method
	Clib.fread() Method
	Clib.freopen() Method
	Clib.frexp() Method
	Clib.fscanf() Method
	Clib.fseek() Method
	Clib.fsetpos() Method
	Clib.ftell() Method
	Clib.fwrite() Method
	Clib.getcwd() Method
	Clib.getenv() Method
	Clib.gmtime() Method
	Clib.isalnum() Method
	Clib.isalpha() Method
	Clib.isascii() Method
	Clib.iscntrl() Method
	Clib.isdigit() Method
	Clib.isgraph() Method
	Clib.islower() Method
	Clib.isprint() Method
	Clib.ispunct() Method
	Clib.isspace() Method
	Clib.isupper() Method
	Clib.isxdigit() Method
	Clib.ldexp() Method
	Clib.localtime() Method
	Clib.memchr() Method
	Clib.memcmp() Method
	Clib.memcpy() Method and Clib.memmove() Method
	Clib.memset() Method
	Clib.mkdir() Method
	Clib.mktime() Method
	Clib.modf() Method
	Clib.perror() Method
	Clib.putenv() Method
	Clib.qsort() Method
	quot Method
	Clib.rand() Method
	rem Method
	Clib.remove() Method
	Clib.rename() Method
	Clib.rewind() Method
	Clib.rmdir() Method
	Clib.rsprintf() Method
	Clib.sinh() Method
	Clib.sprintf() Method
	Clib.srand() Method
	Clib.sscanf() Method
	Clib.strchr() Method
	Clib.stricmp() Method and Clib.strcmpi() Method
	Clib.strcspn() Method
	Clib.strerror() Method
	Clib.strftime() Method
	Clib.strlwr() Method
	Clib.strncat() Method
	Clib.strncmp() Method
	Clib.strncmpi() Method and Clib.strnicmp() Method
	Clib.strncpy() Method
	Clib.strpbrk() Method
	Clib.strrchr() Method
	Clib.strspn() Method
	Clib.strstr() Method
	Clib.strstri() Method
	Clib.system() Method
	Clib.tanh() Method
	Clib.time() Method
	Clib.tmpfile() Method
	Clib.tmpnam() Method
	Clib.toascii() Method
	Clib.ungetc()Method

	The Date Object
	The Date Constructor
	Universal Time Functions
	GetDate() Method
	Date.fromSystem() Static Method
	getDay() Method
	getFullYear() Method
	getHours() Method
	getMilliseconds() Method
	getMinutes() Method
	getMonth() Method
	getSeconds() Method
	getTime() Method
	getTimezoneOffset() Method
	getUTCDate() Method
	getUTCDay() Method
	getUTCFullYear() Method
	getUTCHours() Method
	getUTCMilliseconds() Method
	getUTCMinutes() Method
	getUTCMonth() Method
	getUTCSeconds() Method
	getYear() Method
	Date.parse() Static Method
	setDate() Method
	setFullYear() Method
	setHours() Method
	setMilliseconds() Method
	setMinutes() Method
	setMonth() Method
	setSeconds() Method
	setTime() Method
	setUTCDate() Method
	setUTCFullYear() Method
	setUTCHours() Method
	setUTCMilliseconds() Method
	setUTCMinutes() Method
	setUTCMonth() Method
	setUTCSeconds() Method
	setYear() Method
	toGMTString() Method
	toLocaleString() Method and toString() Method
	Date.toSystem() Method
	toUTCString() Method
	Date.UTC() Static Method

	The Exception Object
	Properties
	Methods

	Function Objects
	length Property
	return Statement

	The Global Object
	Global Functions Unique to Siebel eScript
	Conversion or Casting Functions
	COMCreateObject() Method
	CORBACreateObject() Method
	defined() Method
	escape() Method
	eval() Method
	getArrayLength() Method
	isNaN() Method
	isFinite() Method
	parseFloat() Method
	parseInt() Method
	setArrayLength() Method
	ToBoolean() Method
	ToBuffer() Method
	ToBytes() Method
	ToInt32() Method
	ToInteger() Method
	ToNumber() Method
	ToObject() Method
	ToString() Method
	ToUint16() Method
	ToUint32() Method
	undefine() Method
	unescape(string) Method

	The Math Object
	Properties
	Methods
	Math.abs() Method
	Math.acos() Method
	Math.asin() Method
	Math.atan() Method
	Math.atan2() Method
	Math.ceil() Method
	Math.cos() Method
	Math.E Property
	Math.exp() Method
	Math.floor() Method
	Math.LN10 Property
	Math.LN2 Property
	Math.log() Method
	Math.LOG2E Property
	Math.LOG10E Property
	Math.max() Method
	Math.min() Method
	Math.PI Property
	Math.pow() Method
	Math.random() Method
	Math.round() Method
	Math.sin() Method
	Math.sqrt() Method
	Math.SQRT1_2 Property
	Math.SQRT2 Property
	Math.tan() Method

	User-Defined Objects
	Predefining Objects with Constructor Functions
	Assigning Functions to Objects
	Object Prototypes

	Property Set Objects
	The SElib Object
	SElib.dynamicLink() Method

	String Objects
	The String as Data Type
	Escape Sequences for Characters
	Single Quote Strings
	Back-Quote Strings
	The String as Object
	charAt() Method
	String.fromCharCode() Static Method
	indexOf() Method
	lastIndexOf() Method
	length Property
	split() Method
	string.replace() Method
	substring() Method
	toLowerCase() Method
	toUpperCase() Method

	Index

