SIEBEL./

eBusiness

SIEBEL eSCRIPT LANGUAGE
REFERENCE

VERSION 7.5, REV. B

12-FAUNOW

MARcH 2003

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or

FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents

Introduction
Typographic Conventionsttt neennn.. 16
Revision HiStoTy 17

Chapter 1. Quick Reference: Methods and Properties

Array Methods 20
Buffer Methods 21
Character Classification Methods 22
Conversion or Casting Methods 23
Data Handling Methods 24
Date and Time Functionst 25
Disk and File Functions 28
Disk and Directory Functions, 28
File Control Functions 28
File-Manipulation Functions 29
Error Handling Methods 30
Math Methods 31
Numeric Functions 31
Trigonometric Functions i 32
Math Properties e 32
Operating System Interaction Methods 34
String and Byte-Array Methods 35
Miscellaneous Methods 37

Version 7.5, Rev. B Siebel eScript Language Reference 3

‘ Contents

Chapter 2. Siebel eScript Language Overview

Siebel eScript Programming Guidelines 40
Basic Siebel eScript Concepts 42
Case SensSitivityt 42
White-Space Characters 43
COMIMENLSot e e e e e e e 44
Expressions, Statements, and Blocks 45
Identifiers 46
Variables 47
Data Types . . . oo e 50
Primitive Data TyPes o oo 51
Composite Data Types e 54
Special Data TyPES . . . o oot 56
Number Constantsttt 57
Automatic Type CONVersionttt 57
Properties and Methods of Basic Data Types 58
EXPressions it e 60
OPeIaloOrTS . . v ottt e e 61
Mathematical Operatorsttt 61
Bit Operatorso ittt 63
Logical Operators and Conditional Expressions 64
Typeof Operatort 66
Conditional Operatort 67
String Concatenation Operatort .. 67
Functions 69
Function Scope i 70
Passing Variables to Functions 70
The Function Arguments[] Property 71
Function Recursion 71
Error Checking for Functions iiiiinn... 73

4 Siebel eScript Language Reference Version 7.5, Rev. B

Contents ‘

eScript Statements e 74
break Statement 74
continue Statement e 75
do...while Statement 76
for Statement 77
for...in Statement 78
gOto Statement e 79
if Statement 80
switch Statement 83
throw Statement 84
Ty Statemento e e 85
while Statement 88
with Statement 89

Chapter 3. Siebel eScript Commands

Applet Objects 92
The Application Object e 94
Array Objects 97
The Array CONnStIUCIOT i it et e et et et e e 98
join() Method 99
length Property 99
reverse() Method 100
sort() Method 101
BLOB Objects e 103
The blobDescriptor Object 103
Blob.get() Method 105
Blob.put() Method 105
Blob.size() Method 107
Buffer Objects 109
The Buffer Constructor 110
PIOPeItieS . . .t m

Version 7.5, Rev. B Siebel eScript Language Reference 5

‘ Contents

Methods e 112
bigEndian Property 112
CUTISOT Property e e e 113
data Propertyo 113
getString() Method 114
getValue() Method 114
offset[] Method 115
putString() Method 116
putValue() Method 117
SiZE PTOPeItY . . oo e 119
subBuffer() Method 120
toString() Method 120
unicode Propertyot 121
Business Component Objects, 122
Business Object Objects 128
Business Service Objects 129
The Clib Object 131
Redundant Functions in the Clib Object 131
File I/O FUNCLONS i e e e e e 133
The Time Object oo e e 135
Time FUNCtions et e e 136
Character Classification 136
Formatting Data 137
Clib.asctime() Method 141
Clib.bsearch() Method @ 141
Clib.chdir() Method i 143
Clib.clearerr() Method 144
Clib.clock() Method i 144
Clib.cosh() Method e 144
Clib.ctime() Method 145
Clib.difftime() Method 146

6 Siebel eScript Language Reference Version 7.5, Rev. B

Contents

Version 7.5, Rev. B

Clib.div() Method and Clib.ldiv() Method 146
Clib.errno PIOPEItYottt e e e e e e e e e e 147
Clib.fclose() Method 148
Clib.feof() Method 148
Clib.ferror() Method 149
Clib.fflush() Method i 149
Clib.fgetc() Method and Clib.getc() Method 150
Clib.fgetpos() Method 151
Clib.fgets() Method i 152
Clib.flock() Method 153
Clib.fopen() Method 154
Clib.fprintf() Method i 157
Clib.fputc() Method and Clib.putc() Method 157
Clib.fputs() Method 158
Clib.fread() Method 158
Clib.freopen() Method 160
Clib.frexp() Method i 161
Clib.fscanf() Method e 162
Clib.fseek() Method 163
Clib.fsetpos() Method 163
Clib.ftell() Method e 164
Clib.fwrite() Method 164
Clib.getcwd() Method 166
Clib.getenv() Method 167
Clib.gmtime() Method 168
Clib.isalnum() Method 169
Clib.isalpha() Method 169
Clib.isascii() Method 170
Clib.iscntrl() Method 170
Clib.isdigit() Method 170
Clib.isgraph() Method 171

Siebel eScript Language Reference 7

‘ Contents

Clib.islower() Method i 171
Clib.isprint() Method i 172
Clibispunct() Method 173
Clib.isspace() Method 173
Clib.isupper() Method 174
Clib.isxdigit() Method 174
Clib.dexp() Method, 175
Clib.localtime() Method 175
Clib.memchr() Method i 176
Clib.memcmp() Method 177
Clib.memcpy() Method and Clib.memmove() Method 177
Clib.memset() Method 178
Clib.mkdir() Method 178
Clib.mktime() Method 179
Clib.modf() Method 179
Clib.perror() Method 180
Clib.putenv() Method 181
Clib.gsort() Method 182
quot Method 183
Clib.rand() Method 183
rem Method 184
Clib.remove() Method e 185
Clib.rename() Method 185
Clib.rewind() Method 186
Clib.rmdir() Method 186
Clib.rsprintf() Method e 187
Clib.sinh() Method e 188
Clib.sprintf() Method 188
Clib.srand() Method 189
Clib.sscanf() Method 190
Clib.strchr() Method 191

8 Siebel eScript Language Reference Version 7.5, Rev. B

Contents

Clib.stricmp() Method and Clib.strcmpi() Method 192
Clib.strcspn() Method 192
Clib.strerror() Method 194
Clib.strftime() Method 195
Clib.strlwr() Method 196
Clib.strncat() Method e 197
Clib.strncmp() Method 198
Clib.strncmpi() Method and Clib.strnicmp() Method 198
Clib.strncpy() Method 199
Clib.strpbrk() Method 200
Clib.strrchr() Method 201
Clib.strspn() Method 202
Clib.strstr() Method 203
Clib.strstri() Method 204
Clib.system() Method 205
Clib.tanh() Method 206
Clib.time() Method 206
Clib.tmpfile() Method 207
Clib.tmpnam() Method 208
Clib.toascii() Method 208
Clib.ungetcOMethod 209
The Date Object i e 210
The Date COnStIUCIOTottt e e e e e e et et e 210
Universal Time Functions 212
GetDate() Method 212
Date.fromSystem() Static Method 213
getDay() Methodt 214
getFullYear() Method 215
getHours() Method 216
getMilliseconds() Method 216
getMinutes() Method 217

Version 7.5, Rev. B

Siebel eScript Language Reference 9

‘ Contents

getMonth() Method 218
getSeconds() Method 218
getTime() Method 219
getTimezoneOffset() Method 220
getUTCDate() Method e 221
getUTCDay() Method 221
getUTCFullYear() Method 222
getUTCHours() Method 223
getUTCMilliseconds() Method 224
getUTCMinutes() Method 224
getUTCMonth() Method 225
getUTCSeconds() Method 226
getYear() Method 226
Date.parse() Static Method, 226
setDate() Method 227
setFullYear() Method 228
setHours() Method 229
setMilliseconds() Method 229
setMinutes() Method 231
setMonth() Method 231
setSeconds() Method 232
setTime() Method 232
setUTCDate() Method i 234
setUTCFullYear() Method 234
setUTCHours() Method 235
setUTCMilliseconds() Method 236
setUTCMinutes() Method 237
setUTCMonth() Method 238
setUTCSeconds() Method 239
setYear() Method 239
toGMTString() Methodt 240

10 Siebel eScript Language Reference Version 7.5, Rev. B

Contents

toLocaleString() Method and toString() Method 241
Date.toSystem() Method 242
toUTCString() Methodot 242
Date.UTC() Static Method 243
The Exception Object 245
Function Objects e 246
The Global Object 249
Global Functions Unique to Siebel eScript 249
Conversion or Casting Functions 250
COMCreateObject() Method 251
CORBACreateObject() Method 252
defined() Method e 255
escape() Method 256
eval() Method 257
getArrayLength() Method 258
isSNaN() Method 259
isFinite() Method e 259
parseFloat() Method 260
parselnt() Method 261
setArrayLength() Method L. 2601
ToBoolean() Method 262
ToBuffer() Method e 263
ToBytes() Method 264
ToInt32() Method e 265
Tolnteger() Method 266
ToNumber() Method 267
ToObject() Method 268
ToString() Method 268
ToUintl6() Method 269
ToUint32() Method e 270
undefine() Method e 271

Version 7.5, Rev. B

Siebel eScript Language Reference 11

‘ Contents

unescape(string) Method 272
The Math Object e 274
Math.abs() Method 275
Math.acos() Method 275
Math.asin() Method 276
Math.atan() Method 277
Math.atan2() Method 278
Math.ceil() Method e 279
Math.cos() Method 280
Math.E PTOPEItY . . . oottt e e e e e e 281
Math.exp() Method e 281
Math.floor() Method e 282
Math.LN10 Property e e 282
Math.LN2 PIOPeIty . . .ottt e e e e e e e e e e e 283
Math.log() Methodot 284
Math.LOG2E PIOPeIty oottt e e e e e e e e e 284
Math.LOGIOE Propertyottt et e e et e 285
Math.max() Method e 286
Math.min() Method 286
Math.PI PrOpertyot e e e e e 287
Math.pow() Method e 287
Math.random() Method 288
Math.round() Method 289
Math.sin() Method 290
Math.sqrt() Method 290
Math.SQRT1_2 PrOPertyottt et e e e e e e e e e 291
Math.SQRT2 Property e e 291
Math.tan() Method 292
User-Defined Objects i 293
Predefining Objects with Constructor Functions 293
Assigning Functions to Objects 294

12 Siebel eScript Language Reference Version 7.5, Rev. B

Contents ‘
ODbject Prototypeso vttt e e e 295
Property Set Objects 298
The SELib Object 300
String Objects 303
The String as Data Type 303
Escape Sequences for Characters 303
Single Quote SITNESottt 304
Back-Quote Strings« 304
The String as Object 305
charAt() Method e 305
String.fromCharCode() Static Method 306
indexOf() Method e 306
lastindexOf() Method 307
length Property 308
split() Method 309
string.replace() Method 311
substring() Method 312
toLowerCase() Method 313
toUpperCase() Method 314

Index

Version 7.5, Rev. B

Siebel eScript Language Reference 13

‘ Contents

14 Siebel eScript Language Reference Version 7.5, Rev. B

Introduction

Siebel eScript is an enhanced configuration environment that includes:

= A fully functional procedural programming language

= An editing environment to create and maintain custom Siebel eScript routines
= A debugger to assist in detecting errors in Siebel eScript routines

= A compiler for the custom Siebel eScript routines

= A run-time engine (similar to a JavaScript interpreter) to process the custom
Siebel eScript routines

The topics in this guide explain the Siebel eScript programming language, which is
embedded in Siebel Tools. You can use Siebel eScript to create scripts that automate
a variety of daily tasks.

This book will be useful primarily to people whose title or job description matches
the following:

Siebel Application Persons who plan, implement, and configure Siebel applications,
Developers possibly adding new functionality.

Programmers with experience in other languages can use this and the related
volumes to become proficient in Siebel eScript. Those with no programming
experience should turn to other sources for basic information about programming.

Version 7.5, Rev. B Siebel eScript Language Reference 15

‘ Introduction

Typographic Conventions

Typographic Conventions

Because Siebel eScript is a case-sensitive language, the language’s capitalization
conventions are followed; however, the syntax diagrams use the conventions shown
in Table 1.

Table 1. Typographic Conventions

To Represent Help Syntax Is

Instantiated objects Lowercase italics; an internal capital may be used
to indicate multiple English words:
stringVar, blobVar, dateVar

Arguments to statements or functions = Lowercase, italics; an internal capital may be
used to indicate multiple English words:

variable, number, intVar

Optional arguments or characters Arguments or characters in brackets:

[, caption], [type], [argl, arg2, ..., argn]

16 Siebel eScript Language Reference Version 7.5, Rev. B

Introduction

Revision History

Revision History

Siebel eScript Language Reference, Version 7.5, Rev. B

March 2003 Bookshelf
Table 2. Changes Made in Rev. B for March 2003 Bookshelf

Topic Revision

“CORBACreateObject() Method” on Added note about support for methods with
page 252 out or in/out parameters.

“parselnt() Method” on page 261 Added information on the parselnt method.
“The Buffer Constructor” on page 110 Added an additional syntax.

Additional Changes:

m Revised examples to correct syntax errors.

November 2002 Bookshelf
Table 3. Changes Made in Rev. A for November 2002 Bookshelf

Topic Revision

“Clib.bsearch() Method” on page 141 Repaired syntax error in the example.

Version 7.5, Rev. B Siebel eScript Language Reference 17

‘ Introduction

Revision History

18 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

1

The links that follow provide access to a list of Siebel eScript functions, methods,
and properties by functional group, rather than by object. Properties can be
distinguished from methods by the fact that they do not end with a pair of
parentheses.

Version 7.5, Rev. B

“Array Methods” on page 20

“Buffer Methods” on page 21

“Character Classification Methods” on page 22
“Conversion or Casting Methods” on page 23
“Data Handling Methods” on page 24

“Date and Time Functions” on page 25

“Disk and File Functions” on page 28

“Error Handling Methods” on page 30

“Math Methods” on page 31

“Operating System Interaction Methods” on page 34
“String and Byte-Array Methods” on page 35

“Miscellaneous Methods” on page 37

Siebel eScript Language Reference

19

‘ Quick Reference: Methods and Properties

Array Methods

Array Methods

The following is a list of array methods.

Method or Property Function

getArrayLength() Determines size of an array
Array.join() Creates a string from array elements
Array.length Returns the length of an array
setArrayLength() Sets the size of an array
Array.sort() Sorts array elements

Array.reverse() Reverses the order of elements of an array

20 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

Buffer Methods

Buffer Methods

The following is a list of buffer methods.

Method or Property Function

bufferVarbigEndian Stores a Boolean flag for bigEndian byte ordering
bufferVar.cursor Stores the current position of the buffer cursor
bufferVar.data Refers to the internal data of a buffer
bufferVar.getString() Returns a string starting from the current cursor position
bufferVar.getValue() Returns a value from a specified position
bufferVar.putString() Puts a string into a buffer

bufferVar.putValue() Puts a specified value into a buffer

bufferVar.size Stores the size of a buffer object

bufferVar.subBuffer() Returns a section of a buffer

bufferVar.toString() Returns a string equivalent of the current state of a buffer
bufferVar.unicode Stores a Boolean flag for the use of unicode strings

Version 7.5, Rev. B

Siebel eScript Language Reference 21

‘ Quick Reference: Methods and Properties

Character Classification Methods

Character Classification Methods

The following is a list of character classification methods.

Method

Function

Clib.isalnum()
Clib.isalpha()
Clib.isascii()
Clib.iscntrl()
Clib.isdigit()
Clib.isgraph()
Clib.islower()
Clib.isprint()
Clib.ispunct()
Clib.isspace()
Clib.isupper()
Clib.isxdigit()

Tests for an alphanumeric character

Tests for an alphabetic character

Tests for an ASCII-coded character

Tests for any control character

Tests for any decimal-digit character

Tests for any printing character except space
Tests for a lowercase alphabetic letter

Tests for any printing character

Tests for a punctuation character

Tests for a white-space character

Tests for an uppercase alphabetic character

Tests for a hexadecimal-digit character

22 Siebel eScript Language Reference

Version 7.5, Rev. B

Quick Reference: Methods and Properties ‘

Conversion or Casting Methods

Conversion or Casting Methods

The following is a list of conversion or casting methods.

Method Function

escape() Escapes special characters in a string
parseFloat() Converts a string to a float
parselnt() Converts a string to an integer

ToBoolean() Converts a value to a Boolean

ToBuffer() Converts a value to a buffer

ToBytes() Converts a value to a buffer (raw transfer)
Tolnt32() Converts a value to a large integer
Tolnteger() Converts a value to an integer

ToNumber() Converts a value to a number
ToObject() Converts a value to an object

ToPrimitive() Converts a value to a primitive

ToString() Converts a value to a string

ToUint16() Converts a value to an unsigned integer
ToUint32() Converts a value to an unsigned large integer
unescape() Removes escape sequences in a string

Version 7.5, Rev. B Siebel eScript Language Reference 23

‘ Quick Reference: Methods and Properties

Data Handling Methods

Data Handling Methods

The following is a list of data handling methods.

Method Function

Blob.get() Reads data from a specified location in a BLOB
Blob.put() Writes data into a specified location in a BLOB
Blob.size() Determines the size of a BLOB

defined() Tests if a variable has been defined

isFinite() Determines whether a value is finite

isNaN() Determines whether a value is Not a Number (NaN)
toString() Converts any variable to a string representation

undefine() Makes a variable undefined

24 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties ‘

Date and Time Functions

Date and Time Functions

The following is a list of date and time functions.

Method

Function

Clib.asctime()
Clib.clock()
Clib.ctime()
Clib.difftime()
dateVar.getDate()
dateVar.getDay ()
dateVar.getFullYear()
dateVar.getHours()
dateVar.getMilliseconds()
dateVar.getMinutes()
dateVar.getMonth()
dateVar.getSeconds()

dateVar.getTime()

dateVar.getTimezoneOffset()

dateVar.getUTCDate()
dateVar.getUTCDay ()
dateVar.getUTCFullYear()

dateVar.getUTCHours()

dateVar.getUTCMilliseconds()

dateVar.getUTCMinutes()
Clib.gmtime()

Clib.localtime()

Converts a date-time to an ASCII string
Gets the processor time

Converts a date-time to an ASCII string
Computes the difference between two times
Returns the day of the month

Returns the day of the week

Returns the year as a four-digit number
Returns the hour

Returns the millisecond

Returns the minute

Returns the month

Returns the second

Returns the date-time, in milliseconds, of a Date object

Returns the difference, in minutes, from GMT
Returns the UTC day of the month

Returns the UTC day of the week

Returns the UTC year as a four-digit number
Returns the UTC hour

Returns the UTC millisecond

Returns the UTC minute

Converts a date-time to GMT

Converts a date-time to a structure

Version 7.5, Rev. B

Siebel eScript Language Reference

25

‘ Quick Reference: Methods and Properties

Date and Time Functions

Method

Function

Clib.mktime()
Clib.strftime()

Clib.time()
dateVar.getUTCMonth()
dateVar.getUTCSeconds()
dateVar.getYear ()
dateVar.setDate()
dateVar.setFullYear()
dateVar.setHours()
dateVar.setMilliseconds()
dateVar.setMinutes()
dateVar.setMonth()
dateVar.setSeconds()
dateVar.setTime()
dateVar.setUTCDate()
dateVar.setUTCFullYear()

dateVar.setUTCHours()

dateVar.setUTCMilliseconds()

dateVar.setUTCMinutes|()
dateVar.setUTCMonth()
dateVar.setUTCSeconds()
dateVar.setYear()
dateVar.toGMTString()
dateVar.toLocaleString()

Date.toSystem ()

Converts a time structure to calendar time
Writes a formatted date-time to a string
Gets the current time

Returns the UTC month

Returns the UTC second

Returns the year as a two-digit number
Sets the day of the month

Sets the year as a four-digit number

Sets the hour

Sets the millisecond

Sets the minute

Sets the month

Sets the second

Sets the date-time in a Date object, in milliseconds
Sets the UTC day of the month

Sets the UTC year as a four-digit number
Sets the UTC hour

Sets the UTC millisecond

Sets the UTC minute

Sets the UTC month

Sets the UTC second

Sets the year as a two-digit number
Converts a Date object to a string
Returns a string for local date and time

Converts a Date object to a system time

26 Siebel eScript Language Reference

Version 7.5, Rev. B

Quick Reference: Methods and Properties ‘

Date and Time Functions

Method Function

dateVar.toUTCString() Returns a string that represents the UTC date
Date.fromSystem() Converts system time to Date object time

Date.parse() Converts a Date string to a Date object

dateVar.UTC() Returns the date-time, in milliseconds from January 1,

1970, of its parameters

Version 7.5, Rev. B Siebel eScript Language Reference 27

‘ Quick Reference: Methods and Properties

Disk and File Functions

Disk and File Functions

The eScript language provides the following disk and file functions.
s “Disk and Directory Functions” on page 28
= “File Control Functions” on page 28

= “File-Manipulation Functions” on page 29

Disk and Directory Functions

The following is a list of disk and directory functions.

Method Function

Clib.chdir() Changes directory
Clib.flock() Handles file locking and unlocking
Clib.getcwd() Gets the current working directory
Clib.mkdir() Creates a directory

Clib.rmdir() Removes a directory

File Control Functions

The following is a list of file control controls.

Method Function

Clib.fclose() Closes an open file

Clib.fopen() Opens a file

Clib.freopen() Assigns a new file spec to a file handle
Clib.remove() Deletes a file

Clib.rename() Renames a file

28 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties ‘

Method

Disk and File Functions

Function

Clib.tmpfile()

Clib.tmpnam/()

Creates a temporary binary file

Gets a temporary filename

File-Manipulation Functions

The following is a list of file manipulation functions.

Method

Function

Clib.feof()
Clib.fflush()
Clib.fgetc()
Clib.fgetpos()
Clib.fgets()
Clib.fprintf()
Clib.fputc()
Clib.fputs()
Clib.fscanf()
Clib.fread()
Clib.fseek()
Clib.fsetpos()
Clib.ftell()
Clib.fwrite()
Clib.getc()
Clib.putc()
Clib.rewind()
Clib.ungetc()

Tests whether at the end of a file stream

Flushes the stream of one or more open files

Gets a character from a file stream

Gets the current file cursor position in a file stream
Gets a string from an input stream

Writes formatted output to a file stream

Writes a character to a file stream

Writes a string to a file stream

Gets formatted input from a file stream

Reads data from a file

Sets the file cursor position in an open file stream
Sets the file cursor position in a file stream

Gets the current value of the file cursor

Writes data to a file

Gets a character from a file stream

Writes a character to a file stream

Resets the file cursor to the beginning of a file

Pushes a character back to the input stream

Version 7.5, Rev. B

Siebel eScript Language Reference

29

‘ Quick Reference: Methods and Properties

Error Handling Methods

Error Handling Methods

The following is a list of error handling methods.

Method Function

Clib.clearerr() Clears end-of-file and error status of a file
Clib.errno() Returns the value of an error condition
Clib.ferror() Tests for an error on a file stream
Clib.perror() Prints a message describing an error number
Clib.strerror() Gets a string describing an error number

30 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties ‘

Math Methods

Math Methods

The eScript language provides the following math methods.

s “Numeric Functions” on page 31

s “Trigonometric Functions” on page 32

= “Math Properties” on page 32

Numeric Functions

The following is a list of numeric functions.

Method

Function

Math.abs()
Math.ceil()
Clib.div()
Math.exp()
Math.floor()
Clib.frexp()
Clib.ldexp()
Clib.1div()
Math.log()
Math.max()
Math.min()
Clib.modf()
Math.pow()
Clib.rand()
Math.random()

Returns the absolute value of an integer

Rounds up

Integer division, returns quotient and remainder
Computes the exponential function

Rounds down

Breaks into a mantissa and an exponential power of 2
Calculates mantissa * 2 ~ exp

Integer division, returns quotient and remainder
Calculates the natural logarithm

Returns the largest of one or more values
Returns the smallest of one or more values
Splits a value into integer and fractional parts
Calculates x to the power of y

Generates a random number

Returns a random number

Version 7.5, Rev. B

Siebel eScript Language Reference

31

‘ Quick Reference: Methods and Properties

Math Methods

Method

Function

Math.round()
Math.sqrt()
Clib.srand()

Rounds a value up or down
Calculates the square root

Seeds the random number generator

Trigonometric Functions

The following is a list of trigonometric functions.

Method

Function

Math.acos()
Math.asin()
Math.atan()
Math.atan2()
Math.cos()
Clib.cosh()
Math.sin()
Clib.sinh()
Math.tan()
Clib.tanh()

Calculates the arc cosine

Calculates the arc sine

Calculates the arc tangent

Calculates the arc tangent of a fraction
Calculates the cosine

Calculates the hyperbolic cosine
Calculates the sine

Calculates the hyperbolic sine
Calculates the tangent

Calculates the hyperbolic tangent

Math Properties

The following is a list of math properties.

Property

Value

Math.E

Math.LN10

Value of e, the base for natural logarithms

Value of the natural logarithm of 10

32 Siebel eScript Language Reference

Version 7.5, Rev. B

Quick Reference: Methods and Properties ‘

Math Methods

Property Value

Math.LN2 Value of the natural logarithm of 2
Math.LOG2E Value of the base 2 logarithm of e

Math.LOGIOE Value of the base 10 logarithm of e
Math.PI Value of pi

Math.SQRT1_2 Value of the square root of %2

Math.SQRT2 Value of the square root of 2

Version 7.5, Rev. B Siebel eScript Language Reference 33

‘ Quick Reference: Methods and Properties

Operating System Interaction Methods

Operating System Interaction Methods

The following is a list of operating system interaction methods.

Method Function

Clib.getenv() Gets the value of an environment string
Clib.putenv() Creates an environment string and assigns a value to it

Clib.system() Passes a command to the command processor

34 Siebel eScript Language Reference Version 7.5, Rev. B

Quick Reference: Methods and Properties

String and Byte-Array Methods

String and Byte-Array Methods

The following is a list of string and byte-array methods.

Method

Function

stringVar.charAt()
stringVar.charCodeAt()
String.fromCharCode()
stringVar.indexOf()
stringVar.lastindexOf()
Clib.memchr()
Clib.memcmp()
Clib.memcpy()
Clib.memmove()
Clib.memset()
Clib.rsprintf()
stringVar.split()
Clib.sprintf()
Clib.sscanf()
Clib.strcat()
Clib.strchr()
Clib.strcmp()
Clib.strcmpi()
Clib.strcpy()
Clib.strcspn()
Clib.stricmp()
Clib.strlen()

Returns a character in a string

Returns a unicode character in a string

Creates a string from character codes

Returns the index of the first substring in a string
Returns the index of the last substring in a string
Searches a byte array

Compares two byte arrays

Copies from one byte array to another

Moves from one byte array to another

Copies from one byte array to another

Returns a formatted string

Splits a string into an array of strings

Writes formatted output to a string

Reads and formats input from a string
Concatenates strings

Searches a string for a character

Makes a case-sensitive comparison of two strings
Makes a case-insensitive comparison of two strings
Copies one string to another

Searches a string for the first character in a set of characters
Makes a case-insensitive comparison of two strings

Gets the length of a string

Version 7.5, Rev. B

Siebel eScript Language Reference 35

‘ Quick Reference: Methods and Properties

String and Byte-Array Methods

Method

Function

Clib.strlwr()
Clib.strncat()
Clib.strncmp()
Clib.strncmpi()
Clib.strncpy()
Clib.strnicmp()
Clib.strpbrk()
Clib.strrchr()
Clib.strspn()
Clib.strstr()
Clib.strstri()
stringVar.substring()
Clib.toascii()
Clib.tolower()
stringVar.toLowerCase()

stringVar.toUpperCase()

Converts a string to lowercase

Concatenates a portion of one string to another

Makes a case-sensitive comparison of parts of two strings
Makes a case-insensitive comparison of parts of two strings
Copies a portion of one string to another

Makes a case-insensitive comparison of parts of two strings
Searches string for a character from a set of characters
Searches a string for the last occurrence of a character
Searches a string for a character not in a set of characters
Searches a string for a substring (case-sensitive)

Searches a string for a substring (case-insensitive)
Retrieves a section of a string

Converts to ASCII

Converts to lowercase

Converts a string to lowercase

Converts a string to uppercase

36 Siebel eScript Language Reference

Version 7.5, Rev. B

Quick Reference: Methods and Properties ‘

Miscellaneous Methods

Miscellaneous Methods

The following is a list of miscellaneous methods.

Method Function

Clib.atexit() Sets a function to be called at program exit
Clib.bsearch() Does a binary search for a member of a sorted array
Clib.gsort() Sorts an array; may use comparison function

Version 7.5, Rev. B Siebel eScript Language Reference 37

‘ Quick Reference: Methods and Properties

Miscellaneous Methods

38 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview 2

Siebel eScript is a scripting or programming language that application developers
use to write simple scripts to extend Siebel applications. JavaScript, a popular
scripting language used primarily on Web sites, is its core language.

Siebel eScript is ECMAScript compliant. ECMAScript is the standard
implementation of JavaScript as defined by the ECMA-262 standard.

Siebel eScript provides access to local system calls through two objects, Clib and
SElib, so you can use C-style programming calls to certain parts of the local
operating system. This allows programmers to write files to the local hard disk and
perform other tasks that standard JavaScript cannot.

“Siebel eScript Programming Guidelines” on page 40
“Basic Siebel eScript Concepts” on page 42

“Data Types” on page 50

“Expressions” on page 60

“Operators” on page 61

“Functions” on page 69

“eScript Statements” on page 74

Version 7.5, Rev. B Siebel eScript Language Reference 39

‘ Siebel eScript Language Overview

Siebel eScript Programming Guidelines

Siebel eScript Programming Guidelines

If you have never programmed in JavaScript before, you should start with a general-
purpose JavaScript reference manual. You need to understand how JavaScript
handles objects before you can program using the Siebel eScript.

Declare your variables. Standard ECMAScript does not require that you declare
variables. Variables are declared implicitly as soon as they are used. However, Siebel
eScript requires you to declare variables with the var keyword. Declare variables
used in a module before you use them, because this makes it easier for others to
understand your code and for you to debug the code. The only exception to this
standard is declaring a variable inside a loop controller, which restricts the scope of
that reference to the loop. This prevents the accumulation of unwanted values.

Pay attention to case. Be aware that Siebel eScript is case-sensitive. Therefore, if you
instantiate an object using the variable name SiebelApp, for example, eScript does
not find that object if the code references it as siebelapp or SIEBELAPP instead of
SiebelApp. Case sensitivity also applies to method names and other parts of Siebel
eScript.

Use parentheses () with functions. Siebel eScript functions, like those in standard
JavaScript, require trailing parentheses () even when they have no parameters.

Use four-digit years in dates. Siebel applications and the ECMA-262 Standard handle
two-digit years differently. Siebel applications assume that a two-digit year refers to
the appropriate year between 1950 and 2049. The ECMA-262 Standard assumes that
a two-digit year refers to a year between 1900 and 1999, inclusive. If your scripts do
not enforce four-digit date entry and use four-digit dates, your users may
unintentionally enter the wrong century when performing a query or creating or
updating a record.

(BusComp) methods GetFormattedFieldValue() and SetFormattedFieldValue() are
examples of Y2K sensitivities in Siebel eScript that use two-digit dates. If you use
these methods in a script, users requesting orders for the years from 00 to 02 may
find that they have retrieved orders for the years 1900-1902 (probably an empty
list), instead of 2000-2002, which was what they wanted.

40 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Siebel eScript Programming Guidelines

If you use only four-digit dates in your programs, you will not have Y2K problems
with your scripts. With the preceding example, you could use GetFieldValue() and
SetFieldValue(), which require dates to be specified using the canonical Siebel
format (MM/DD/YYYY), instead of GetFormattedFieldValue() and
SetFormattedFieldValue().

The this object reference. The special object reference this is eScript shorthand for
“the current object.” You should use this in place of references to active business
objects and components. For example, in a business component event handler, you
should use this in place of ActiveBusComp, as shown in the following example:

function BusConp_PreQuery ()

{
this. ActivateFi el d("Account");

this. ActivateFi el d("Account Location");

this. Cl ear ToQuery();

t hi s. Set Sort Spec("Account (DESCENDI NG, " +
" Account Locati on(DESCENDI NG ") ;

t hi s. Execut eQuery();

return (Conti nueQperation);

}

Make effective use of the Switch construct. The Switch construct directs the program
to choose among any number of alternatives you require, based on the value of a
single variable. This is greatly preferable to a series of nested If statements because
it simplifies code maintenance. It also improves performance, because the variable
must be evaluated only once.

Version 7.5, Rev. B Siebel eScript Language Reference 41

‘ Siebel eScript Language Overview

Basic Siebel eScript Concepts

Basic Siebel eScript Concepts

Standard JavaScript, or ECMAScript, is usually part of Web browsers and is
therefore used while users are connected to the Internet. Most people are unaware
that JavaScript is being executed on their computers when they are connected to
various Internet sites.

Siebel eScript is implemented as part of Siebel applications. You do not need a Web
browser to use it. It also contains a number of functions that do not exist in
ECMAScript. These functions give you access to the hard disk and other parts of the
Siebel client workstation or server.

“Case Sensitivity” on page 42

“White-Space Characters” on page 43
“Comments” on page 44

“Expressions, Statements, and Blocks” on page 45
“Identifiers” on page 46

“Variables” on page 47

Case Sensitivity

Siebel eScript is case-sensitive. A variable named t est var is a different variable
than one named Test Var, and both of them can exist in a script at the same time.
Thus, the following code fragment defines two separate variables:

5
nf | veu

var testvar
var Test Var

Identifiers in Siebel eScript are case-sensitive. For example, to raise an error from
the server, the TheApplication().RaiseErrorText method could be used:

TheAppl i cation(). Rai seErrorText("an error has occurred")
If you change the capitalization to
TheApplication().raiseerrortext("an error has occurred")

the Siebel eScript interpreter generates an error message.

42 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Basic Siebel eScript Concepts

Control statements are also case-sensitive. For example, the statement whi | e is
valid, but the statement Wi | e is not.

White-Space Characters

White-space characters (space, tab, carriage-return, and newline) govern the
spacing and placement of text. White space makes code more readable for the users,
but the Siebel eScript interpreter ignores it.

Lines of script end with a carriage-return character, and each line is usually a
separate statement. (Technically, in many editors, lines end with a carriage-return
and linefeed pair, "\ r\ n".) Because the Siebel eScript interpreter usually sees one
or more white-space characters between identifiers as simply white space, the
following Siebel eScript statements are equivalent to one another:

var x=a+b
var x = a + b
var x = a + b
var x = a+
b

White space separates identifiers into separate entities. For example, ab is one
variable name, and a b is two. Thus, the fragment

var ab = 2
is valid, but
var a b = 2

is not.

Version 7.5, Rev. B Siebel eScript Language Reference 43

‘ Siebel eScript Language Overview

Basic Siebel eScript Concepts

Comments

Many programmers use spaces and not tabs, because tab size settings vary from
editor to editor and programmer to programmer. If programmers use only spaces,
the format of a script appears the same on every editor.

CAUTION: Siebel eScript treats white space in string literals differently from other
white space. In particular, placing a line break within a string causes the Siebel
eScript interpreter to treat the two lines as separate statements, both of which
contain errors because they are incomplete. To avoid this problem, either keep
string literals on a single line or create separate strings and associate them with the
string concatenation operator.

For example:

var Cettysburg = "Fourscore and seven years ago, " +
"our fathers brought forth on this continent a " +
"new nation."

For more information about string concatenation, read “String Concatenation
Operator” on page 67.

A comment is text in a script to be read by users and not by the Siebel eScript
interpreter, which skips over comments. Comments that explain lines of code help
users understand the purpose and program flow of a program, making it easier to
alter code.

There are two formats for comments, end of line comments and block comments.
End of line comments begin with two slash characters, “//”. Any text after two
consecutive slash characters is ignored to the end of the current line. The Siebel
eScript interpreter begins interpreting text as code on the next line.

Block comments are enclosed within a beginning block comment, “/*”, and an end
of block comment, “*/”. Any text between these markers is a comment, even if the
comment extends over multiple lines. Block comments may not be nested within
block comments, but end of line comments can exist within block comments.

The following code fragments are examples of valid comments:

44 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Basic Siebel eScript Concepts

/1l this is an end of |ine conment

/* this is a block comrent.

This is one big coment bl ock.

/1 this comment is okay inside the block.
The interpreter ignores it.

*/

var FavoriteAnimal = "dog"; // except for poodles

// This line is a coment but
var TestStr = "This line is not a comrent.";

Expressions, Statements, and Blocks

An expression or statement is any sequence of code that performs a computation or
an action, such as the code var Test Sum = 4 + 3, which computes a sum and
assigns it to a variable. Siebel eScript code is executed one statement at a time in
the order in which it is read.

Many programmers put semicolons at the end of statements, although they are not
required. Each statement is usually written on a separate line, with or without
semicolons, to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, ({}), which
indicate that the enclosed individual statements are a group and are to be treated
as one statement. A block can be used anywhere that a single statement can.

A whi | e statement causes the statement after it to be executed in a loop. If multiple
statements are enclosed within curly braces, they are treated as one statement and
are executed in the while loop. The following fragment illustrates:

whi | e(Ther eAreUncal | edNanesOnTheLi st () == True)

{
var name = Get NameFr omThelLi st () ;
Cal | t hePer son(nane) ;
LeaveTheMessage();

}

The three lines after the while statement are treated as a unit. If the braces were
omitted, the while loop would apply only to the first line. With the braces, the script
goes through the lines until everyone on the list has been called. Without the
braces, the script goes through the names on the list, but only the last one is called.

Version 7.5, Rev. B Siebel eScript Language Reference 45

‘ Siebel eScript Language Overview

Basic Siebel eScript Concepts

Identifiers

Statements within blocks are often indented for easier reading.

Identifiers are merely names for variables and functions. Programmers must know
the names of built-in variables and functions to use them in scripts and must know
some rules about identifiers to define their own variables and functions.

Rules for Identifiers
Siebel eScript identifiers follow these rules:

Identifiers may use only uppercase or lowercase ASCII letters, digits, the
underscore (_), and the dollar sign ($). They may use only characters from the
following sets:

ABCDEFGHI JKLMNOPQRSTUWKYZ
abcdef ghi j kl mopqr st uvwxyz
0123456789

$

Identifiers may not use any of the following characters:
+<>&| =1 *1 98 ~?: {}; O[]."""#,

Identifiers must begin with a letter, underscore, or dollar sign, but they may have
digits anywhere else.

Identifiers may not have white space in them, because white space separates
identifiers for the Siebel eScript interpreter.

Identifiers have no built-in length restrictions, so you can make them as long as
necessary.

The following identifiers, variables, and functions are valid:

Ceor ge

Mart ha7436

annual Report

Ceor ge_and_Mart ha_prepar ed_t he_annual Report
$alice

Cal cul ateTot al ()

$Subt r act Less()

_Divide$Al | ()

46 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Variables

Basic Siebel eScript Concepts

The following identifiers, variables, and functions are not valid:

lgeorge

2nancy

t hi s&t hat

Mart ha and Nancy
rat sAndCat s?
=Tot al ()

(M nus) ()

Add Both Figures()

Prohibited Identifiers

The following words have special meaning for the Siebel eScript interpreter and
cannot be used as identifiers:

br eak case catch cl ass const continue debugger
def aul t del ete do el se enum export ext ends
fal se finally for function if i mport in

new nul | return super switch this t hr ow
true try t ypeof whi | e with var voi d

A variable is an identifier to which data may be assigned. Variables are used to store
and represent information in a script.

Variables may change their values, but literals may not. For example, if you want to
display a name literally, you must use something like the following fragment
multiple times:

TheAppl i cation(). Rai seErrorText ("Al oysi us d oucestershire
Mer kowi t zky")

But you could use a variable to make this task easier, as in the following:

var Nanme = "Al oysius G oucestershire Merkow tzy"
TheAppl i cation(). Rai seError Text (Nane)

The preceding method allows you to use shorter lines of code for display and to use
the same lines of code repeatedly by changing the contents of the variable Name.

Version 7.5, Rev. B Siebel eScript Language Reference 47

‘ Siebel eScript Language Overview

Basic Siebel eScript Concepts

Variable Scope

Variables in Siebel eScript may be either global or local. Global variables can be
accessed and modified from any function associated with the Siebel object for
which the variables have been declared. Local variables can be accessed only
within the functions in which they are created, because their scope is local to that
function.

Variables can also be shared across modules. A variable declared outside a function
has scope global to the module. If you declare a local variable with the same name
as a module variable, the module variable is not accessible.

NOTE: Siebel eScript variables declared outside of a particular function are global
only to their object (the module in which they are declared), not across every object
in the application.

There are no absolute rules that indicate when global or local variables should be
used. It is generally easier to understand how local variables are used in a single
function than how global variables are used throughout an entire module.
Therefore, local variables facilitate modular code that is easier to debug and to alter
and develop over time. Local variables also use fewer resources.

Variable Declaration
To declare a variable, use the var keyword. To make it local, declare it in a function.

var perfectNunber;
A value may be assigned to a variable when it is declared:
var perfectNunber = 28;

In the following example, a is global to its object because it was declared outside of
a function. The variables b, c, and d are local because they are defined within
functions.

var a = 1;
function myFunction()
{

var b = 1;

var d = 3;

sonmeFunct | on(d);

48 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Basic Siebel eScript Concepts

}
function soneFunction(e)
{
var ¢ = 2
}

The variable ¢ may not be used in the myFuncti on() function, because it is has
not been defined within the scope of that function. The variable d is used in the
myFuncti on() function and is explicitly passed as an argument to
sonmeFunction() as the parameter e.

The following lines show which variables are available to the two functions:

nmyfunction(): a, b, d
soneFunction(): a, c, e

Version 7.5, Rev. B Siebel eScript Language Reference 49

‘ Siebel eScript Language Overview

Data Types

Data Types

Data types in Siebel eScript can be classified into three groupings: primitive,
composite, and special. In a script, data can be represented by literals or variables.
The following lines illustrate variables and literals:

var Test Var
var aString

14;
"test string";

The variable TestVar is assigned the literal 14, and the variable aString is assigned
the literal test string. After these assignments of literal values to variables, the
variables can be used anywhere in a script where the literal values can be used.

Data types need to be understood in terms of their literal representations in a script
and of their characteristics as variables.

Data, in literal or variable form, is assigned to a variable with an assignment
operator, which is often merely an equal sign, “ =", as the following lines illustrate:
var happyVariable = 7;
var joyful Variable = "free chocol ate";
var thewWrldlsFlat = True;
var happyToo = happyVari abl e;

The first time a variable is used, its type is determined by the Siebel eScript
interpreter, and the type remains until a later assignment changes the type
automatically. The preceding example creates three different types of variables. The
first is a number, the second is a string, and the third is a Boolean variable.

Because Siebel eScript automatically converts variables from one type to another
when needed, programmers normally do not have to worry about type conversions
as they do in strongly typed languages, such as C.

= “Primitive Data Types” on page 51

» “Composite Data Types” on page 54

m “Special Data Types” on page 56

= “Number Constants” on page 57

= “Automatic Type Conversion” on page 57

m “Properties and Methods of Basic Data Types” on page 58

50 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Data Types

Primitive Data Types

Variables that have primitive data types pass their data by value. If an argument is
passed by value, the variable used for that argument retains its value when the
subroutine or function returns to the routine that called it (the caller). The following
fragment illustrates:

var a
var b

"abc";
Ret ur nVal ue(a) ;

function ReturnVal ue(c)

{
}

After "abc" is assigned to variable a, two copies of the string "abc" exist, the
original literal and the copy in the variable a. While the function Ret ur nval ue is
active, the parameter or variable ¢ has a copy, and three copies of the string " abc"
exist. If ¢ were to be changed in such a function, variable a, which was passed as
an argument to the function, would remain unchanged.

return c;

After the function Ret ur nVal ue is finished, a copy of " abc" is in the variable b, but
the copy in the variable c in the function is gone because the function is finished.
During the execution of the fragment, as many as three copies of "abc" exist in
memory at one time.

The primitive data types are number, Boolean, and string.
Number

The number data type includes integers and floating-point numbers, which can be
represented in one of several ways.

NOTE: Numbers that contain characters other than a decimal point are treated as
string values. For example, eScript treats the number 100,000 (notice the comma)
as a string.

Version 7.5, Rev. B Siebel eScript Language Reference 51

‘ Siebel eScript Language Overview

Data Types

Integer

Integers are whole numbers. Integer constants and literals can be expressed in
decimal, hexadecimal, or octal notation. Decimal constants and literals are
expressed by using the decimal representation. See the following two sections to
learn how to express hexadecimal and octal integers.

Hexadecimal

Hexadecimal notation uses base 16 digits from the sets of 0-9 and A-F or a-f. These
digits are preceded by 0x. Case sensitivity does not apply to hexadecimal notation
in Siebel eScript. Examples are:

0Ox1, O0x01, 0x100, Ox1F, Ox1f, OxABCD
var a = 0x1b2E;

The decimal equivalents are:

1, 1, 256, 31, 31, 43981
var a = 6958

Octal
Octal notation uses base 8 digits from the set of 0-7. These digits are preceded by a
zero. Examples are:

00, 05, 077
var a = 0143;

The decimal equivalents are:

0, 5, 63
var a = 99

Floating Point

Floating-point numbers are numbers with fractional parts that are indicated by
decimal notation, such as 10.33. Floating-point numbers are often referred to as
floats.

Decimal
Decimal floats use the same digits as decimal integers but use a period to indicate
a fractional part. Examples are:

0.32, 1.44, 99.44
var a = 100.55 + . 45;

52 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Data Types

Scientific

Scientists often use scientific notation to express very large or small numbers. It
uses the decimal digits in conjunction with exponential notation, represented by e
or E. Scientific notation is also referred to as exponential notation. Examples are:

4.087e2, 4.087E2, 4.087e+2, 4.087E-2
var a = 5.321e33 + 9. 333e-2;

The decimal equivalents are:

408.7, 408.7, 408.7, 0.04087
var a = 53210000000000000000000000000000 + 0.09333

Boolean

Boolean variables evaluate to either false or true. Because Siebel eScript
automatically converts values when appropriate, when a Boolean variable is used
in a numeric context, its value is converted to 0 if it is false, or 1 if it is true. A script
is more precise when it uses the actual Siebel eScript values, false and true, but it
works using the concepts of zero and nonzero.

String
A string is a series of characters linked together. A string is written using a pair of
either double or single quotation marks, for example:

"I ama string"
'so am |’

'me too'

" 344"

The string " 344" is different from the number 344. The first is an array of
characters, and the second is a value that may be used in numerical calculations.

Siebel eScript automatically converts strings to numbers and numbers to strings,
depending on the context. If a number is used in a string context, it is converted to
a string. If a string is used in a number context, it is converted to a numeric value.
Automatic type conversion is discussed more fully in “Automatic Type Conversion”
on page 57.

Version 7.5, Rev. B Siebel eScript Language Reference 53

‘ Siebel eScript Language Overview

Data Types

Although strings are classified as a primitive data type, they are actually a hybrid
type that shares characteristics of primitive and composite data types. A string may
be thought of as an array (a composite data type) of characters, each element of
which contains one character. For an explanation of arrays, read “Array” on

page 55.

Composite Data Types

Although primitive data types are passed by value, composite types are passed by
reference. If an argument is passed by reference, the variable’s value may be
changed for the calling procedure. When a composite type is assigned to a variable
or passed to a parameter, only a reference that points to its data is passed, as in the
following fragment:

var AnGbj = new Obj ect;
AnQoj . nane = "Joe";
AnQbj . ol d = Ret ur nName(AnQbj)

function ReturnNanme(Cur Qbj)

return Cur Qbj. name

}

After the object AnQbj is created, the string " Joe" is assigned to the property
AnObj . nane. The string is assigned by value because a property is a variable within
an object. Two copies of the string " Joe" exist.

When AnQbj is passed to the function Ret ur nName(), it is passed by reference.
Cur Obj receives a reference to the object, but does not receive a copy of the object.

With this reference, Cur Qbj can access every property and method of AnQbj , which
was passed to it. If Cur Obj . nane were to be changed while the function was
executing, then AnObj . nane would be changed at the same time. When AnQbj . ol d
receives the return from the function, the return is assigned by value, and a copy of
the string " Joe" is transferred to the property.

Thus, AnQbj holds two copies of the string " Joe" : one in the property .name and
one in the .old property. Three total copies of " Joe" exist, including the original
string literal.

Two commonly used composite data types are Object and Array.

54 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Data Types

Object

An object is a compound data type that consists of one or more pieces of data of
any type grouped together in an object. Data that are part of an object are called
properties of the object.

The object data type is similar to the object data type in Visual Basic and the
structure data type in C. The object data type also allows functions, called methods,
to be used as object properties.

In Siebel eScript, functions are considered as variables. It is best to think of objects
as having methods, which are functions, and properties, which are variables and
constants.

Array

An array is a series of data stored in a variable that is accessed using index numbers
that indicate particular data. The following fragments illustrate the storage of the
data in separate variables or in one array variable:

var Test0O = "one";
var Testl = "two";
var Test2 = "three";

var Test = new Array,

Test[0] = "one";
Test[1l] = "two";
Test[2] = "three";

After either fragment is executed, the three strings are stored for later use. In the
first fragment, three separate variables contain the three separate strings. These
variables must be used separately.

In the second fragment, one variable holds the three strings. This array variable can
be used as one unit, and the strings can also be accessed individually, by specifying
the array subscript of the element containing the string to be used.

Arrays and objects use grouping similarly. Both are objects in Siebel eScript, but
they have different notations for accessing properties. While arrays use subscripts,
objects use property names or methods. In practice, arrays should be regarded as a
unique data type.

Version 7.5, Rev. B Siebel eScript Language Reference 55

‘ Siebel eScript Language Overview

Data Types

Arrays and their characteristics are discussed more fully in “Array Objects” on
page 97.

Special Data Types

This section discusses the undefined, null, and NaN (not a number) data types.

Undefined

If a variable is created or accessed with nothing assigned to it, it is of type
undefined. An undefined variable merely occupies space until a value is assigned
to it. When a variable is assigned a value, it is assigned a type according to the value
assigned.

Although variables may be of type undefined, there is no literal representation for
undefined. Consider the following invalid fragment:

var test;
if (typeof test == "undefined")
TheApplication(). Rai seErrorText("test is undefined");

After var t est is declared, it is undefined because no value has been assigned to it.
However the test, test == undefi ned, is invalid because there is no way to
represent undefined literally.

Null is a special data type that indicates that a variable is empty, and this condition
is different from undefined. A null variable holds no value, although it might have
previously held one.

The null type is represented literally by the identifier, null. Because Siebel eScript
automatically converts data types, null is both useful and versatile.

Because null has a literal representation, an assignment such as the following is
valid:

var test = null;

Any variable that has been assigned a value of null can be compared to the null
literal.

56 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

Data Types

The NaN type means “not a number,” and NaN is an abbreviation for the phrase.
However, NaN does not have a literal representation. To test for NaN, the function,
isNaN(), must be used, as illustrated in the following fragment:

var Test = "a string";
if (isNaN(parselnt(Test)))
TheApplication(). RaiseErrorText("Test is Not a Nunmber");

When the parselnt() function tries to parse the string "a string" into an integer,
it returns NaN, because "a stri ng" does not represent a number as the string " 22"
does.

Number Constants

Several numeric constants can be accessed as properties of the Number object,
though they do not have a literal representation.

Constant Value Description

Nurber . MAX_VALUE 1.7976931348623157e + 308 Largest number
(positive)

Nunber. M N_VALUE 2.2250738585072014e-308 Smallest positive
nonzero value

Nunber . NaN NaN Not a number

Nunber . PCSI TI VE_I NFI NI TY Infinity Number greater than
MAX_VALUE

Nunber . NEGATI VE_I NFI NI TY -Infinity Number less than
M N_VALUE

Automatic Type Conversion

Conversion occurs automatically during concatenation involving both strings and
numbers, and is subject to the following rules:

= Subtracting a string from a number or a number from a string converts the string
to a number and performs subtraction on the two values.

Version 7.5, Rev. B Siebel eScript Language Reference 57

‘ Siebel eScript Language Overview

Data Types

s Adding a string to a number converts the number to a string and concatenates
the two strings.

m Strings always convert to a base 10 number and must not contain any characters
other than digits. The string " 110n" does not convert to a number because the
n character is meaningless as part of a number in Siebel eScript.

The following examples illustrate these automatic conversions:

"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4 " /] a nunber is converted to a string
4 + "4" == "44 "/l a nunmber is converted to a string

4 + 4 ==8 /1 two numbers are added

23 - "17" == /1 a string is converted to a nunber

However, to make sure that your code does not break if the conversion is not
performed, use one of the casting functions to perform the appropriate conversion.
(For details on these functions, read “Conversion or Casting Functions” on

page 250.) The following example accepts string input and converts it to numeric
to perform arithmetic:

var n "55";

var d "11";

divide it by:");

var division = dib.div(ToNunber(n), ToNunber(d));

To specify more stringent conversions, use the parseFloat() Method of the global
object. Siebel eScript has many global functions to cast data as a specific type. Some
of these are not part of the ECMAScript standard. Read “parseFloat() Method” on
page 260.

NOTE: There are circumstances under which conversion is not performed
automatically. If you encounter such a circumstance, you must use one of the
casting functions to get the desired result. For an explanation of casting functions,
read “Conversion or Casting Functions” on page 250.

Properties and Methods of Basic Data Types

The basic data types, such as number and string, have properties and methods that
may be used with any variable of that type. Any string variable may use any string
method.

58 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Data Types

The properties and methods of the basic data types are retrieved in the same way
as objects. They are commonly used internally by the Siebel eScript interpreter, but
you may use them if you choose. If you have a numeric variable called nunber and
you want to convert it to a string, you can use the .toString() method, as illustrated
in the following fragment:

var number =5
var s = nunber.toString()

After this fragment executes, the variable nunber contains the number 5 and the
variable s contains the string " 5" .

The following two methods are common to variables.

toString()

This method returns the value of a variable expressed as a string.

valueOf()

This method returns the value of a variable.

Version 7.5, Rev. B Siebel eScript Language Reference 59

‘ Siebel eScript Language Overview

Expressions

Expressions

An expression is a collection of two or more terms that perform a mathematical or
logical operation. The terms are usually either variables or functions that are
combined with an operator to evaluate to a string or numeric result. You use
expressions to perform calculations, manipulate variables, or concatenate strings.

Expressions are evaluated according to order of precedence. Use parentheses to
override the default order of precedence.

The order of precedence (from high to low) for the operators is:
= Arithmetic operators
= Comparison operators

= Logical operators

60 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Operators

“Mathematical Operators” on page 61

“Bit Operators” on page 63

Operators

“Logical Operators and Conditional Expressions” on page 64

“Typeof Operator” on page 66
“Conditional Operator” on page 67

“String Concatenation Operator” on page 67

Mathematical Operators

Mathematical operators are used to make calculations using mathematical data. The
following sections illustrate the mathematical operators in Siebel eScript.

Basic Arithmetic
The arithmetic operators in Siebel eScript are standard.

/
%

assignment assigns a value to a variable
addition adds two numbers

subtraction subtracts a number from another
multiplication multiplies two numbers

division divides a number by another
modulo returns a remainder after division

The following examples use variables and arithmetic operators:

Version 7.5, Rev. B

var i;

i = 2; //i is now 2

i =i +3; //i isnowb5, (2 + 3)

i =i - 3; /i is now 2, (5 - 3)

i =i * 5, //i is now 10, (2 * 5)

i =i/ 3; /li is now 3,

i = 10; /li is now 10

i =i %3; //i is nowl1l, (10 nod 3)

Siebel eScript Language Reference

(10 / 3) (the renainder

i s ignored)

61

‘ Siebel eScript Language Overview

Operators

Expressions may be grouped to affect the sequence of processing. Multiplications
and divisions are calculated for an expression before additions and subtractions
unless parentheses are used to override the normal order. Expressions inside
parentheses are processed before other calculations.

In the following examples, the information in the remarks represents intermediate
forms of the example calculations.

Notice that, because of the order of precedence,
4 * 7 - 5*3; //28 - 15 = 13

has the same meaning as

(4% 7) - (5*3); //28 - 15 = 13/
but has a different meaning from
4% (7-5) * 3, [/4* 2% 3 =24

which is also different from
4% (7-(5*3)); //14* -8=-32

The use of parentheses is recommended whenever there may be confusion about
how the expression is to be evaluated, even when parentheses are not required.

Assignment Arithmetic

Each of the operators shown in the previous section can be combined with the
assignment operator, =, as a shortcut for performing operations. Such assignments
use the value to the right of the assignment operator to perform an operation on the
value to the left. The result of the operation is then assigned to the value on the left.

= assignment assigns a value to a variable
+ = assign addition adds a value to a variable
-= assign subtraction subtracts a value from a variable
*= assign multiplication multiplies a variable by a value
= assign division divides a variable by a value
% = assign remainder returns a remainder after division

62 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Operators

The following lines are examples using assignment arithmetic:

var i;

i =2; [li is now 2

i += 3; //i is nowb5 (2 + 3), sane as i =i + 3

i -=3; //i is now?2 (5 - 3), sane as i =i _ 3

i *=5; //i isnowl1l0 (2 * 5), sameasi =i * 5

i /[=3; //i isnow3 (10 / 3), sameasi =i / 3

i =10; //i is now 10

i % 3; //i isnowl, (10 nod 3), sane as i =i %3

Auto-Increment (++) and Auto-Decrement (--)

To add 1 to a variable, use the auto-increment operator, + +. To subtract 1, use the
auto-decrement, operator, --. These operators add or subtract 1 from the value to
which they are applied. Thus, i ++ is shorthand fori += 1, which is shorthand for
=i + 1.

The auto-increment and auto-decrement operators can be used before their
variables, as a prefix operator, or after, as a suffix operator. If they are used before
a variable, the variable is altered before it is used in a statement, and if used after,
the variable is altered after it is used in the statement.

The following lines demonstrate prefix and postfix operations:

i = 4 I1i is 4

jo= 4+ /lj is 5 i is b5 (i was increnmented before use)
jo= i+ /Ilj is 5, i is 6 (i was incremented after use)
jo=--i; /lj is 5 i is b5 (i was decrement ed before use)
jo=i--; Ilj is 5, i is 4 (i was decrenmented after use)
i ++; /Ili is 5 (i was increnented)

Bit Operators

Siebel eScript contains many operators for operating directly on the bits in a byte or
an integer. Bit operations require knowledge of bits, bytes, integers, binary
numbers, and hexadecimal numbers. Not every programmer needs to use bit
operators.

Version 7.5, Rev. B Siebel eScript Language Reference 63

‘ Siebel eScript Language Overview

Operators

Bit operators available in Siebel eScript are:

<< shift left i =i << 2
<<= assignment shift left i <<= 2

> > shift right =i > 2
> > = assignment shift right i >>= 2

> > > shift left with zeros =0 o>>> 2
>>>= assignment shift left with zeros i >>>= 2
& bitwise and i =i &1
&= assignment bitwise and i & 1

| bitwise or =i] 1
| = assignment bitwise or i =1

N bitwise xor, exclusive or i =i M1
N= assignment bitwise xor, exclusive or i =1

~ Bitwise not, complement =~

Logical Operators and Conditional Expressions

Logical operators compare two values and evaluate whether the resulting
expression is false or true. A variable or any other expression may be false or true.
An expression that performs a comparison is called a conditional expression.

Logical operators are used to make decisions about which statements in a script are
executed, based on how a conditional expression evaluates.

64 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Operators
The logical operators available in Siebel eScript are:
! not Reverse of an expression. If (a+b) is true, then
I (a+b) is false.
&& and True if, and only if, both expressions are true.

Because both expressions must be true for the
statement as a whole to be true, if the first
expression is false, there is no need to evaluate
the second expression, because the whole
expression is false.

[or True if either expression is true. Because only
one of the expressions in the or statement needs
to be true for the expression to evaluate as true,
if the first expression evaluates as true, the Siebel
eScript interpreter returns true and does not
evaluate the second.

== equality True if the values are equal, otherwise false. Do
not confuse the equality operator, = =, with the
assignment operator, =.

= inequality True if the values are not equal, otherwise false.

< less than The expression a < b is true if a is less than b.

> greater than The expression a > b is true if a is greater
than b.

<= less than or equal to The expression a <= b is true if a is less than or
equal to b.

\Y
Il

greater than or equal to The expression a >= b is true if a is greater
than b.

For example, if you were designing a simple guessing game, you might instruct the
computer to select a number between 1 and 100, and you would try to guess what
it is. The computer tells you whether you are right and whether your guess is higher
or lower than the target number.

Version 7.5, Rev. B Siebel eScript Language Reference 65

‘ Siebel eScript Language Overview

Operators

This procedure uses the if statement, which is introduced in the next section. If the
conditional expression in the parenthesis following an i f statement is true, the
statement block following the i f statement is executed. If the conditional
expression is false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block.

The script implementing this game might have a structure similar to the one that
follows, in which GetTheGuess() is a function that obtains your guess.

var guess = Get TheGuess(); //get the user input
target _nunmber = 37;
if (guess > target_nunber)
{
TheApplication(). Rai seErrorText (' Guess is too high.');
}
if (guess < target_nunber)
{
TheAppl i cation().Rai seErrorText('guess is too low.");
}
i f (guess == target_nunber);
{
TheAppl i cation(). Rai seError Text (' You guessed the nunber!');
}

This example is simple, but it illustrates how logical operators can be used to make
decisions in Siebel eScript.

CAUTION: Remember that the assignment operator, =, is different from the equality
operator, = =. If you use the assignment operator when you want to test for
equality, your script fails because the Siebel eScript interpreter cannot differentiate
between operators by context. This is a common mistake, even among experienced
programmers.

Typeof Operator

The typeof operator provides a way to determine and to test the data type of a
variable and may use either of the following notations (with or without
parentheses):

var result
var result

typeof variable
typeof (vari abl e)

66 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Operators

After either line, the variable result is set to a string that represents the variable's
type: "undefi ned", "bool ean", "string", "object", "nunber", "function",
or "buffer"”.

Conditional Operator

The conditional operator, a question mark, provides a shorthand method for writing
el se statements. Statements using the conditional operator are more difficult to
read than conventional i f statements, and so they are used when the expressions
in the i f statements are brief.

The syntax is:
test_expression ? expression_if_true : expression_if_false

First, test_expression is evaluated. If test_expression is true, then expression_if_true
is evaluated, and the value of the entire expression is replaced by the value of
expression_if_true. If test_expression is false, then expression_if_false is evaluated,
and the value of the entire expression is that of expression_if_false.

The following fragments illustrate the use of the conditional operator:
foo=(5<6) ? 100 : 200; \
In the previous statement foo is set to 100, because the expression is true.

TheApplication().RaiseErrorText("Name is " + ((null==nane) ?
"unknown" : name));

In the previous statement, the message box displays " Name i s unknown" if the
name variable has a null value. If it does not have a null value, the message box
displays "Name is " plus the contents of the variable.

String Concatenation Operator

You can use the + operator to join strings together, or concatenate them. The
following line:

var proverb = "Arolling stone " + "gathers no noss."

Version 7.5, Rev. B Siebel eScript Language Reference 67

‘ Siebel eScript Language Overview

Operators

creates the variable pr over b and assigns it the string" A rol | i ng st one gat hers
no noss. " If you concatenate a string with a number, the number is converted to
a string.

var newstring = 4 + "get it";

This bit of code creates newst ri ng as a string variable and assigns it the string
"4get it".

68 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Functions

Functions

A function is an independent section of code that receives information from a
program and performs some action with it. Functions are named using the same
conventions as variables.

Once a function has been written, you do not have to think again about how to
perform the operations in it. When you call the function, it handles the work for
you. You only need to know what information the function needs to receive—the
parameters—and whether it returns a value to the statement that called it.

TheApplication().RaiseErrorText is an example of a function that provides a way to
display formatted text in the event of an error. It receives a string from the function
that called it, displays the string in an alert box on the screen, and terminates the
script. TheApplication().RaiseErrorText is a void function, which means that it has
no return value.

In Siebel eScript, functions are considered a data type. They evaluate the function’s
return value. You can use a function anywhere you can use a variable. You can use
any valid variable name as a function name. Use descriptive function names that
help you keep track of what the functions do.

Two rules set functions apart from the other variable types. Instead of being
declared with the var keyword, functions are declared with the f unct i on keyword,
and functions have the function operator, a pair of parentheses, following their
names. Data to be passed to a function is enclosed within these parentheses.

Several sets of built-in functions are included as part of the Siebel eScript
interpreter. These functions are described in this manual. They are internal to the
interpreter and may be used at any time.

= “Function Scope” on page 70

= “Passing Variables to Functions” on page 70

m “The Function Arguments[] Property” on page 71
= “Function Recursion” on page 71

= “Error Checking for Functions” on page 73

Version 7.5, Rev. B Siebel eScript Language Reference 69

‘ Siebel eScript Language Overview

Functions

Function Scope

Functions are global in scope and can be called from anywhere in a script. Think of
functions as methods of the global object. A function may not be declared within
another function so that its scope is merely within a certain function or section of
a script.

The following two code fragments perform the same function. The first calls a
function, Sunmwo(), as a function, and the second calls Sunifwo() as a method of
the global object.

/1 fragment one
function Sumiwo(a, b)

{
}

TheAppl i cation(). Rai seError Text (SunTwo(3, 4))

return a + b

/1 fragment two
function Sumiwo(a, b)

{
}

TheAppl i cation(). Rai seError Text (gl obal . Sunwo(3, 4))

return a + b

In the fragment that defines and uses the function Sunifwo(), the literals, 3 and 4,
are passed as arguments to the function Sunifwo() which has corresponding
parameters, a and b. The parameters, a and b, are variables for the function that
hold the literal values that were passed to the function.

Passing Variables to Functions

Siebel eScript uses different methods to pass variables to functions, depending on
the type of variable being passed. Such distinctions make sure that information gets
to functions in the most logical way.

Primitive types such as strings, numbers, and Booleans are passed by value. The
values of these variables are passed to a function. If a function changes one of these
variables, the changes are not visible outside of the function in which the change
took place.

70 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Functions

Composite types such as objects and arrays are passed by reference. Instead of
passing the value of the object or the values of each property, a reference to the
object is passed. The reference indicates where the values of an object's properties
are stored in a computer's memory. If you make a change in a property of an object
passed by reference, that change is reflected throughout the calling routine.

The return statement passes a value back to the function that called it. Any code in
a function following the execution of a return statement is not executed. For details,
read “return Statement” on page 247.

The Function Arguments[] Property

The arguments[] property is an array of the arguments passed to a function. The
first variable passed to a function is referred to as arguments[0], the second as
arguments[1], and so forth.

This property allows you to have functions with an indefinite number of
parameters. Here is an example of a function that takes a variable number of
arguments and returns the sum:

function SumAll ()

{

var total = 0O;

for (var ssk = 0; ssk < SunmAl|l.argunents.|ength; ssk++)
{

total += SumAll.argunents[ssk];

}

return total;
}

NOTE: The arguments[] property for a particular function can be accessed only from
within that function.

Function Recursion

A recursive function is a function that calls itself or that calls another function that
calls the first function. Recursion is permitted in Siebel eScript. Each call to a
function is independent of any other call to that function. However, recursion has
limits. If a function calls itself too many times, a script runs out of memory and
aborts.

Version 7.5, Rev. B Siebel eScript Language Reference 71

‘ Siebel eScript Language Overview

Functions

Remember that a function can call itself if necessary. For example, the following
function, factor(), factors a number. Factoring is a good candidate for recursion
because it is a repetitive process where the result of one factor is then itself factored
according to the same rules.

function factor(i) //recursive function to print factors of i,
{/1 and return the nunber of factors in i

if (2<=1i)
{
for (var test = 2; test <= i; test++)
{
if (0==1(i %test))
{

/1 found a factor, so print this factor then call
/] factor() recursively to find the next factor
return(1 + factor(i/test));

/ if this point was reached, then factor not found
return(0);

72 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

Functions

Error Checking for Functions

Some functions return a special value if they fail to do what they are supposed to
do. For example, the Clib.fopen() method opens or creates a file for a script to read
from or write to. If the computer is unable to open a file, the Clib.fopen() method
returns null.

If you try to read from or write to a file that was not properly opened, you receive
errors. To prevent these errors, make sure that Clib.fopen() does not return null
when it tries to open a file. Instead of calling Clib.fopen() as follows:

var fp = Qib.fopen("nyfile. txt", "r");
check to make sure that null is not returned:
var fp = dib.fopen("nyfile.txt", "r"),
if (null == fp)
TheAppl i cation(). Rai seError Text ("Cib.fopen returned null");

You may abort a script in such a case, but you then know why the script failed. Read
“The Clib Object” on page 131.

Version 7.5, Rev. B Siebel eScript Language Reference 73

Siebel eScript Language Overview

eScript Statements

eScript Statements

This section describes statements that allow your program to make decisions and
to direct the flow based on those decisions.

m “break Statement” on page 74

= “continue Statement” on page 75
= “do...while Statement” on page 76
m “for Statement” on page 77

m “for...in Statement” on page 78

= “goto Statement” on page 79

= “if Statement” on page 80

= “switch Statement” on page 83

“throw Statement” on page 84

“try Statement” on page 85

“while Statement” on page 88

= “with Statement” on page 89

break Statement

The break statement terminates the innermost loop of for, while, or do statements.
It is also used to control the flow within switch statements.

Syntax A br eak;

Syntax B break | abel ;

Placeholder Description

label The name of the label indicating where execution is to resume

74 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

eScript Statements

Returns Not applicable

Usage The break statement is legal only in loops or switch statements. In a loop, it is used
to terminate the loop prematurely when the flow of the program eliminates the need
to continue the loop. In the switch statement, it is used to prevent execution of cases
following the selected case and to exit from the switch block.

When used within nested loops, break terminates execution only of the innermost
loop in which it appears.

A label may be used to indicate the beginning of a specific loop when the break
statement appears within a nested loop to terminate execution of a loop other than
the innermost loop. A label consists of a legal identifier, followed by a colon, placed
at the left margin of the work area.

Example For an example, read “switch Statement” on page 83.

See Also “do...while Statement” on page 76, “for Statement” on page 77, “if Statement” on
page 80, and “while Statement” on page 88

continue Statement

The continue statement starts a new iteration of a loop.

Syntax A cont i nue;

Syntax B conti nue | abel ;

Placeholder Description

label The name of the label indicating where execution is to resume

Returns Not applicable

Usage The continue statement ends the current iteration of a loop and begins the next. Any
conditional expressions are reevaluated before the loop reiterates.

Version 7.5, Rev. B Siebel eScript Language Reference 75

‘ Siebel eScript Language Overview

eScript Statements

See Also

A label may be used to indicate the point at which execution should continue. A
label consists of a legal identifier, followed by a colon, placed at the left margin of
the work area.

“do...while Statement” on page 76, “for Statement” on page 77, “goto Statement”
on page 79, and “while Statement” on page 88

do...while Statement

Syntax

Returns

Usage

Example

The do...while statement processes a block of statements until a specified condition
is met.

do
{

st at enent _bl ock;

} while (condition)

Placeholder Description

statement_block One or more statements to be executed within the loop

condition An expression indicating the circumstances under which the loop
should be repeated

Not applicable

The do statement processes the statement_block repeatedly until condition is met.
Because condition appears at the end of the loop, condition is tested for only after
the loop executes. For this reason, a do...while loop is always executed at least once
before condition is checked.

This example increments a value and prints the new value to the screen until the
value reaches 100.

var value = O;
do

{

76 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements

val ue++;
Cib.sprintf(value);
} while(value < 100);

See Also “for Statement” on page 77 and “while Statement” on page 88
for Statement
The for statement repeats a series of statements a fixed number of times.

Syntax for ([var] counter = start; condition; increnment)

{
st at enent _bl ock;
}
Placeholder Description
counter A numeric variable for the loop counter
start The initial value of the counter
condition The condition at which the loop should end
increment The amount by which the counter is changed each time the loop is run

statement_bloc The statements or methods to be executed
k

Returns Not applicable

Usage The counter variable must be declared with var if it has not already been declared.
If it is declared in the for statement, its scope is local to the loop.

First, the expression count er = start is evaluated. Then condition is evaluated.
If condition is true or if there is no conditional expression, the statement is executed.
Then the increment is executed and condition is reevaluated, which begins the loop
again. If the expression is false, the statement is not executed, and the program
continues with the next line of code after the statement.

Version 7.5, Rev. B Siebel eScript Language Reference 77

Siebel eScript Language Overview

eScript Statements

Within the loop, the value of counter should not be changed, because changing the
counter makes your script difficult to maintain and debug.

A for statement can control multiple nested loops. The various counter variables
and their increments must be separated by commas. For example:

for (var i =1, var j = 3; i < 10; i++, j++)
var result =i * j;

Example For an example of the for statement, read “eval() Method” on page 257.
See Also “do...while Statement” on page 76 and “while Statement” on page 88
for...in Statement
The for...in statement loops through the properties of an object.

Syntax for (propertyVar in object)

{
st at enent _bl ock;
}
Placeholder Description
object An object previously defined in the script
propertyVar A variable that iterates over every property of the object

Returns Not applicable

Usage NOTE: An object must have at least one defined property or it cannot be used in a
for...in statement.

78 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

eScript Statements

When using the for ... in statement in this way, the statement block executes one
time for every property of the object. For each iteration of the loop, the variable
propertyVar contains the name of one of the properties of object and may be
accessed with a statement of the form obj ect [propertyVar].

NOTE: Properties that have been marked with the DONT_ENUM attribute are not
accessible to a for...in statement.

Example This example creates an object called obj , and then uses the for...in statement to
read the object’s properties. The result appears in the accompanying illustration.

function PropBtn_dick ()

{

var obj = new (bject;

var propNane;

var nmsgtext = "";

obj . nunber = 32767,

obj.string = "Welcone to ny world.";

obj .date = "April 25, 1945";

for (propNane in obj)

{

nsgt ext = nsgtext + "The value of obj." + propNane +
" is " + obj[propNanme] + ".\n";

TheAppl i cation(). Rai seError Text (nmsgt ext);

}

The walue of obj.number iz 32767,
The walue of obj.string is Welcome to my world..
The walue of obj.date iz April 25, 1945,

goto Statement

The goto statement redirects execution to a specific point in a function.

Version 7.5, Rev. B Siebel eScript Language Reference 79

‘ Siebel eScript Language Overview

eScript Statements

Syntax goto | abel ;

Placeholder Description

label A marker, followed by a colon, for a line of code at which execution
should continue

Returns Not applicable

Usage You can jump to any location within a function by using the goto statement. To do
s0, you must create a label—an identifier followed by a colon—at the point at which
execution should continue. As a rule, goto statements should be used sparingly
because they make it difficult to track program flow.

Example The following example uses a label to loop continuously until a number greater
than 0 is entered:

function clicknme_Cick ()

{
restart:
var nunber = 10;
if (nunber <=0)
goto restart;
var factorial = 1;
for (var x = number; X >= 2; X--)
factorial = (factorial * x);
TheApplication(). Rai seErrorText("The factorial of " +
nunber + " is " + factorial + ".");
}

if Statement

The if statement tests a condition and proceeds depending on the result.

Syntax A if (condition)

st at enent ;

Syntax B if (condition)
{

80 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

eScript Statements

st at ement _bl ock;

}
[else [if (condition)
{
st at enent _bl ock;
1
[el se
{
st at enent _bl ock;]
1
Placeholder Description
condition An expression that evaluates to true or false

statement_bloc One or more statements or methods to be executed if expression is true
k

Returns Not applicable

Usage The if statement is the most commonly used mechanism for making decisions in a
program. When multiple statements are required, use the block version (Syntax B)
of the if statement. When expression is true, the statement or statement_block
following it is executed. Otherwise, it is skipped.

The following fragment is an example of an if statement:
if (i <10)
TheAppl i cation().Rai seErrorText("i is smaller than 10.");

Note that the brackets are not required if only a single statement is to be executed
if condition is true. You may use them for clarity.

Version 7.5, Rev. B Siebel eScript Language Reference 81

‘ Siebel eScript Language Overview

eScript Statements

The else statement is an extension of the if statement. It allows you to tell your
program to do something else if the condition in the if statement was found to be
false.

In Siebel eScript code, the else statement looks like this, if only one action is to be
taken in either circumstance:

if (i <10)
TheApplication().Rai seErrorText("i is smaller than 10.");
el se

TheAppl i cation().Rai seErrorText("i is not smaller than 10.");

If you want more than one statement to be executed for any of the alternatives, you
must group the statements with brackets, like this:

if (i <10)
TheAppl i cation().Rai seErrorText("i is smaller than 10.");
i += 10;
}
el se
-
i -=b5;
TheAppl i cation().Rai seErrorText("i is not smaller than 10.");
}

To make more complex decisions, an else clause can be combined with an if
statement to match one of a number of possible conditions.

Example The following fragment illustrates using else with if. For another example, read
“setTime() Method” on page 232.

if (i <10)

/lcheck to see if | is less than or greater than O
if (i <0)
{
TheApplication(). Rai seErrorText("i is negative; soit's "
"l ess than 10.");

+

elseif (i > 10)

TheAppl i cation(). RaiseErrorText("i is greater than 10.");

82 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

eScript Statements

el se

TheAppl i cation().Rai seErrorText("i is 10.");

See Also “switch Statement” on page 83

switch Statement

The switch statement makes a decision based on the value of a variable or
statement.

Syntax switch(switch_variable)

case val uel:
st at enent _bl ock
br eak;

case val ue2:
st at enent _bl ock

br eak;
t defaul t:
st at enent _bl ock;]
}
Placeholder Description

switch_variable The variable upon whose value the course of action depends
valuel, value2 Various values of switch_variable, which are followed by a colon

statement_block One or more statements to be executed if the value of switch_variable
is the value listed in the case statement

Returns Not applicable

Usage The switch statement is a way of choosing among alternatives when each choice
depends upon the value of a single variable.

Version 7.5, Rev. B Siebel eScript Language Reference 83

‘ Siebel eScript Language Overview

eScript Statements

Example

See Also

The variable switch_variable is evaluated, and then it is compared to the values in
the case statements (valuel, value2, ..., default) until a match is found. The
statement block following the matched case is executed until the end of the switch
block is reached or until a break statement exits the switch block.

If no match is found and a default statement exists, the default statement is
executed.

Make sure to use a break statement to end each case. In the following example, if
the break statement after the “I=1+2;” statement were omitted, the computer
would execute both “I=1+2;” and “I =1+ 3;”, because the Siebel eScript interpreter
executes commands in the switch block until it encounters a break statement.

Suppose that you had a series of account numbers, each beginning with a letter that
indicates the type of account. You could use a switch statement to carry out actions
depending on the account type, as in the following example:

switch (key[0])

{

case 'A:
| =l +1;
br eak;

case 'B :;
I =1 +2
br eak;

case 'C:
| =I +3;
br eak;

defaul t:
| =I +4;
br eak;

}

“if Statement” on page 80

throw Statement

The throw statement is used to make sure that script execution is halted when an
€rror occurs.

84 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements

Syntax t hrow exception

Parameter Description

exception An object in a named error class

Returns Not applicable

Usage Throw can be used to make sure that a script stops executing when an error is
encountered, regardless of what other measures may be taken to handle the error.
In the following code, the throw statement is used to stop the script after the error
message is displayed.

try
{

do_sonet hi ng;
catch(e)

TheApplication().Trace (e.toString()));

t hrow e;

}

See Also “try Statement” on page 85 and “CORBACreateObject() Method” on page 252

try Statement

The try statement is used to process exceptions that occur during script execution.

Syntax try
{
st at enent _bl ock
catch

{

excepti on_handl i ng_bl ock
[throw exception]

}
finally

Version 7.5, Rev. B Siebel eScript Language Reference 85

‘ Siebel eScript Language Overview

eScript Statements

Returns

Usage

{
st at enent _bl ock_2
}
Placeholder Description
statemment_block A block of code that may generate an error

exception_handling block A block of code to process the error
exception An error of a named type

statement_block_2 A block of code that is always executed, unless that block
transfers control to elsewhere in the script

Not applicable

The try statement is used to handle functions that may raise exceptions, which are
error conditions that cause the script to branch to a different routine. A try
statement generally includes a catch clause or a finally clause, and may include
both. The catch clause is used to handle the exception. To raise an exception, use
the throw statement (see “throw Statement” on page 84).

When you want to trap potential errors generated by a block of code, place that code
in a try statement, and follow the try statement with a catch statement. The catch
statement is used to process the exceptions that may occur in the manner you
specify in the exception_handling_block.

The following example demonstrates the general form of the try statement with the
catch clause. In this example, the script continues executing after the error message
is displayed:
try
{ .
do_sonet hi ng;
catch(e)

TheAppl i cation(). Rai seErrorText(Cib.rsprintf(
"Somet hi ng bad happened: %\n",e.toString()));

86 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview ‘

eScript Statements

The finally clause is used for code that should always be executed before exiting the
try statement, regardless of whether the catch clause halts the execution of the
script. Statements in the finally clause are skipped only if the finally clause redirects
the flow of control to another part of the script. The finally statement can be exited
by a goto, throw, or return statement.

Here is an example:

try
{
return 10;
}
finally
{

goto no_way;

}

no_way: statenent_bl ock

Execution continues with the code after the label, so the return statement is
ignored.

You can use the try statement to process the exceptions thrown by CORBA objects,
and to access their data members and exception names. If the exception contains
nested objects or CORBA structures, they are skipped. For more information on
creating and using CORBA objects in eScript, read “CORBACreateObject() Method”
on page 252.

Example The following example processes a CORBA exception. It assumes that the user is
running the Account server and calling the function clear_balance(-1) on it. This
raises the exception Account Frozen, which is described in the CORBA IDL file as
follows:

exception Account Frozen {
float mx;
I ong m ni num

s

This server assigns the value 7777. 5555 to the variable mmux, and assigns 50 to the
variable minimum, and then throws the AccountFrozen exception object. The
eScript code might resemble the following:

Version 7.5, Rev. B Siebel eScript Language Reference 87

‘ Siebel eScript Language Overview

eScript Statements

try

{
var cQbj
var dl

CORBACr eat ehj ect (" Account ") ;
cObj . cl ear _bal ance(-1);

}
catch(obj)
TheAppl i cation(). Rai seError Text (obj.nane + "\ n" + obj.nmmx +

"\'n" + obj.mninmnj;

}

See Also “throw Statement” on page 84

while Statement

The while statement executes a particular section of code repeatedly until an
expression evaluates to false.

Syntax while (condition)
{

st at enent _bl ock;

Placeholder Description

condition The condition whose falsehood is used to determine when to stop
executing the loop

statement_block One or more statements to be executed while condition is true

Returns Not applicable

Usage The condition must be enclosed in parentheses. If expression is true, the Siebel
eScript interpreter executes the statement_block following it. Then the interpreter
tests the expression again. A while loop repeats until condition evaluates to false,
and the program continues after the code associated with the while statement.

Example The following fragment illustrates a while statement with two lines of code in a
statement block:

88 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Language Overview

eScript Statements

whi | e(Ther eAreUncal | edNamesOnTheLi st () != fal se)
{

var name = Get NameFroniThelLi st ();
SendEnai | (nane) ;

with Statement

Syntax

Returns

Usage

Example

The with statement assigns a default object to a statement block, so you need to use
the object name with its properties and methods.

with (object)
{

met hod1l;
nmet hod2;
ﬁet hodn;
}
Placeholder Description
object An object with which you wish to use multiple methods

methodl, method2, methodn Methods to be executed with the object

Not applicable

The with statement is used to save time when working with objects. It prepends the
object name and a period to each method used.

If you were to jump from within a with statement to another part of a script, the
with statement would no longer apply. The with statement only applies to the code
within its own block, regardless of how the Siebel eScript interpreter accesses or
leaves the block.

You may not use a goto statement or label to jump into or out of the middle of a
with statement block.

The following fragment illustrates the use of the with statement:

Version 7.5, Rev. B Siebel eScript Language Reference 89

‘ Siebel eScript Language Overview

eScript Statements

var bcQppty;
var boBusQvj ;

boBusCbj = TheApplication().GetBusChject (" OCpportunity");

bcOppty = boBusOhj . Get BusConp(" Cpportunity");
var srowid = bcOppty. Get Fi el dval ue("1d");

with (bcOppty)
{

Set Vi ewlbde(Sal esRepVi ew) ;
ActivateField("Sal es Stage");
Set Sear chSpec("1d", srow d);
Execut eQuer y(ForwardOnl y) ;

bcOppty = nul | ;
boBusCbj = null;

The portion in the with block is equivalent to:

bcOppt y. Set Vi ewvbde(Sal esRepVi ew) ;
bcOppty. ActivateField("Sales Stage");
bcOppt y. Set Sear chSpec("1d", srow d);
bcOppt y. Execut eQuer y(Forwar dOnl y) ;

90 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands

3

This chapter presents the eScript commands sorted alphabetically by object type
and then by command name. The following list shows the object types.

Version 7.5, Rev. B

“Applet Objects” on page 92

“The Application Object” on page 94
“Array Objects” on page 97

“BLOB Objects” on page 103

“Buffer Objects” on page 109

“Business Component Objects” on page 122
“Business Object Objects” on page 128
“Business Service Objects” on page 129
“The Clib Object” on page 131

“The Date Object” on page 210

“The Exception Object” on page 245
“Function Objects” on page 246

“The Global Object” on page 249

“The Math Object” on page 274
“User-Defined Objects” on page 293
“Property Set Objects” on page 298
“The SElib Object” on page 300

“String Objects” on page 303

Siebel eScript Language Reference

91

‘ Siebel eScript Commands

Applet Objects

Applet Objects

Within a Siebel application, an applet serves as a container for the collection of user
interface objects that together represent the visible representation of one business
component (BusComp) object. Applets are combined to form views. Views
constitute the display portions of a Siebel application. Applet objects are available
in Browser Script. Methods of applet objects are documented in the Siebel Object
Interfaces Reference.

A Web applet represents an applet that is rendered by the Siebel Web Engine. It
exists only as a scriptable object in Server Script and is accessed by using the Edit
Server Script command on the selected applet. Because applet events and methods
are not supported in the Siebel Web Engine, the Web applet interfaces are available
in their place.

Method or Event Description

ActiveMode() Method ActiveMode returns a string containing the
name of the current Web Template mode.

Applet_ChangeFieldValue() Event The ChangeFieldValue event is fired when the
data in a field changes.

Applet_ChangeRecord() Event The ChangeRecord event is called when the
user moves to a different row or view.

Applet_InvokeMethod() Event The InvokeMethod event is triggered by a call
to applet.InvokeMethod, a call to a
specialized method, or by a user-defined
menu.

Applet_Load() Event The Load event is triggered after an applet has
loaded and after data is displayed.

Applet_PrelnvokeMethod() Event The PrelnvokeMethod event is called before a
specialized method is invoked by the system,
by a user-defined applet menu, or by calling
InvokeMethod on an applet.

BusComp() Method BusComp() returns the business component
that is associated with the applet.

BusObject() Method BusObject() returns the business object for
the business component for the applet.

92 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Method or Event

Applet Objects

Description

FindActiveXControl() Method

FindControl() Method

InvokeMethod() Method

Name() Method

WebApplet_InvokeMethod() Event

WebApplet_Load() Event

WebApplet_PreCanInvokeMethod() Event

WebApplet_PrelnvokeMethod() Event

WebApplet_ShowControl() Event

WebApplet_ShowListColumn() Event

FindActiveXControl returns a reference to a
DOM element based upon the name specified
in the name argument.

FindControl returns the control whose name
is specified in the argument. This applet must
be part of the displayed view.

The InvokeMethod() method calls an
argument-specified specialized method.

The Name() method returns the name of the
applet.

The InvokeMethod() event is called after a
specialized method or a user-defined method
on the Web applet has been executed.

The WebApplet_Load() event is triggered just
after an applet is loaded.

The PreCanInvokeMethod() event is called
before the PreInvokeMethod, allowing the
developer to determine whether or not the
user has the authority to invoke a specified
WebApplet method.

The PreInvokeMethod() event is called before
a specialized method for the Web applet is
invoked by the system, or a user-defined
method is invoked through
oWebAppVar.InvokeMethod.

This event allows scripts to modify the HTML
generated by the Siebel Web Engine to render
a control on a Web page in a customer or
partner application.

This event allows scripts to modify the HTML
generated by the Siebel Web Engine to render
a list column on a Web page in a customer or
partner application.

Version 7.5, Rev. B

Siebel eScript Language Reference 93

‘ Siebel eScript Commands

The Application Object

The Application Object

The application object represents the Siebel application that is currently active and
is an instance of the Application object type. An application object is created when
a Siebel software application is started. This object contains the properties and
events that interact with Siebel software as a whole. An instance of a Siebel
application always has exactly one application object. Methods of the application
object are documented in the Siebel Object Interfaces Reference.

Method or Event Description

ActiveBusObject() Method ActiveBusObject() returns the business object for the
business component for the active applet.

ActiveViewName() Method ActiveViewName() returns the name of the active view.

Application_Close() Event The Close() event is called before the application exits. This

allows Basic scripts to perform last-minute cleanup (such as
cleaning up a connection to a COM server). It is called when
the application is notified by Windows that it should close,
but not if the process is terminated directly.

Application_InvokeMethod() Event The Application_InvokeMethod() event is called after a
specialized method is invoked.

Application_Navigate() Event The Navigate() event is called after the client has navigated
to a view.

Application_PreInvokeMethod() Event The PreInvokeMethod() event is called before a specialized
method is invoked by a user-defined applet menu or by
calling InvokeMethod on the application.

Application_PreNavigate() Event The PreNavigate() event is called before the client has
navigated from one view to the next.

Application_Start() Event The Start() event is called when the client starts and the user
interface is first displayed.

CurrencyCode() Method CurrencyCode() returns the operating currency code
associated with the division to which the user’s position has
been assigned.

GetProfileAttr() Method GetProfileAttr() returns the value of an attribute in a user
profile.

94 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Method or Event

The Application Object

Description

GetService() Method

GetSharedGlobal() Method

GotoView() Method

InvokeMethod() Method

Loginld() Method

LoginName() Method

LookupMessage() Method

NewPropertySet() Method

PositionId() Method

PositionName() Method

RaiseError() Method

The GetService() method returns a specified business
service. If the service is not already running, it is
constructed.

The GetSharedGlobal() method gets the shared user-defined
global variables.

GotoView() activates the named view and its BusObject. As
a side effect, this method activates the view’s primary
applet, its BusComp, and its first tab sequence control.
Further, this method deactivates any BusObject, BusComp,
applet, or control objects that were active prior to this
method call.

InvokeMethod() calls a specialized or user-created method
specified by its argument.

The Loginld() method returns the login ID of the user who
started the Siebel application.

The LoginName() method returns the login name of the user
who started the Siebel application (the name typed in the
login dialog box).

The LookupMessage method returns the translated string for
the specified key, in the current language, from the specified
category.

The NewPropertySet() method constructs a new property set
object.

The PositionId() method returns the position ID (ROW_ID
from S_POSTN) of the user’s current position. This is set by
default when the Siebel application is started and may be
changed (using Edit > Change Position) if the user belongs
to more than one position.

The PositionName() method returns the position name of the
user’s current position. This is set by default when the Siebel
application is started and may be changed (using Edit >
Change Position) if the user belongs to more than one
position.

The RaiseError method raises a scripting error message to
the browser. The error code is a canonical number.

Version 7.5, Rev. B

Siebel eScript Language Reference

95

‘ Siebel eScript Commands

The Application Object

Method or Event Description

RaiseErrorText() Method The RaiseErrorText method raises a scripting error message
to the browser. The error text is the specified literal string.

SetPositionld () Method SetPositionld() changes the position of the current user to
the value specified in the input argument. For SetPositionId ()
to succeed, the user must be assigned to the position to
which they are changing.

SetPositionName() Method SetPositionName() changes the position of the current user
to the value specified in the input argument. For
SetPositionName() to succeed, the user must be assigned to
the position to which they are changing.

SetProfileAttr() Method SetProfileAttr() is used in personalization to assign values to
attributes in a user profile.

SetSharedGlobal() Method The SetSharedGlobal() method sets a shared user-defined
global variable, which may be accessed using
GetSharedGlobal.

Trace() Method The Trace() method appends a message to the trace file.
Trace is useful for debugging the SQL query execution.

TraceOff() Method TraceOff() turns off the tracing started by the TraceOn
method.

TraceOn() Method TraceOn() turns on the tracking of allocations and

deallocations of Siebel objects, and SQL statements
generated by the Siebel application.

96 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Array Objects

Array Objects

An array is a special class of object that holds several values rather than one. You
refer to a single value in an array by using an index number or string assigned to
that value.

The values contained within an array object are called elements of the array. The
index number used to identify an element follows its array name in brackets. Array
indices must be either numbers or strings.

Array elements can be of any data type. The elements in an array do not need to be
of the same type, and there is no limit to the number of elements an array may have.

The following statements demonstrate how to assign values to an array:

var array = new Array;

array[0] = "fish";

array[1] = "fow ";

array["joe"] = new Rectangl e(3,4);
array[foo] = "creeping things"
array[goo + 1] = "and so on."

The variables foo and goo must be either numbers or strings.

Because arrays use a number to identify the data they contain, they provide an easy
way to work with sequential data. For example, suppose you want to keep track of
how many jellybeans you ate each day, so you could graph your jellybean

consumption at the end of the month. Arrays provide an ideal solution for storing

such data.
var April = new Array;
April[1] = 233;
April [2] = 344;
April [3] = 155;
April[4] = 32,

Now you have your data stored in one variable. You can find out how many
jellybeans you ate on day x by checking the value of April[x]:

for(var x = 1; x < 32; Xx++)

TheApplication(). Trace("On April " + x + " | ate ™ + April[x] +
" jellybeans.\n");

Version 7.5, Rev. B Siebel eScript Language Reference 97

‘ Siebel eScript Commands

Array Objects

See Also

Arrays usually start at index [0], not index [1].

NOTE: Arrays do not have to be continuous. You can have an array with elements at
indices 0 and 2 but none at 1.

“The Array Constructor” on page 98, “join() Method” on page 99, “length
Property” on page 99, “reverse() Method” on page 100, “sort() Method” on
page 101

The Array Constructor

Like other objects, arrays are created using the new operator and the Array
constructor function. There are three possible ways to use this function to create an
array. The simplest is to call the function with no parameters:

var a = new Array();

This line initializes variable a as an array with no elements. The parentheses are
optional when creating a new array if there are no arguments. If you wish to create
an array of a predefined number of elements, declare the array using the number of
elements as a parameter of the Array() function. The following line creates an array
with 31 elements:

var b = new Array(31);

Finally, you can pass a number of elements to the Array() function, which creates
an array containing the parameters passed. The following example creates an array
with six elements. c[0] is set to 5, c[1] is set to 4, and so on up to c[5], which is
set to the string " bl ast of f". Note that the first element of the array is c[0] , not
c[1].

var ¢ = new Array(5, 4, 3, 2, 1, "blast off");

You can also create arrays dynamically. If you refer to a variable with an index in
brackets, the variable becomes an array. Arrays created in this manner cannot use
the methods and properties described in the next section, so use the Array|()
constructor function to create arrays.

98 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Array Objects
join() Method
The join() method creates a string of array elements.
Syntax arrayName. j oi n([separatorString])
Parameter Description
separatorString A string of characters to be placed between consecutive elements of

the array; if not specified, a comma is used

Returns A string containing the elements of the specified array, separated either by commas
or by instances of separatorString.

Usage By default, the array elements are separated by commas. The order in the array is
the order used for the join() method. The following fragment sets the value of string
to" 3,5, 6, 3". You can use another string to separate the array elements by passing
it as an optional parameter to the join method.

var a = new Array(3, 5, 6, 3);
var string = a.join();

Example This example creates the string " 3*/ *5*/ *6*/ *3":

var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

length Property

The length property returns a number representing the largest index of an array,
plus 1.

Syntax arrayNane. | ength

Returns The number of the largest index of the array, plus 1.

NOTE: This value does not necessarily represent the actual number of elements in an
array, because elements do not have to be contiguous.

Version 7.5, Rev. B Siebel eScript Language Reference 99

‘ Siebel eScript Commands

Array Objects

Usage

For example, suppose you had two arrays, ant and bee, with the following
elements:

var ant = new Array; var bee = new Array;
ant[0] =3 bee[0] = 88

ant[1] = 4 bee[3] = 99

ant[2] =5

ant[3] =6

The length property of both ant and bee is equal to 4, even though ant has twice as
many actual elements as bee does.

By changing the value of the length property, you can remove array elements. For
example, if you change ant.length to 2, ant loses elements after the first two, and
the values stored at the other indices are lost. If you set bee.length to 2, then bee
consists of two members: bee[0], with a value of 88, and bee[1], with an undefined
value.

reverse() Method

Syntax

Returns

Usage

Example

The reverse() method switches the order of the elements of an array, so that the last
element becomes the first.

arrayName. reverse()

Parameter Description

Not applicable

arrayName with the elements in reverse order.

The reverse() method sorts the existing array, rather than returning a new array. In
any references to the array after the reverse() method is used, the new order is used.

The following code:

100 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Array Objects

var communal I nsect = new Array;
conmunal | nsect [0] "ant";
conmunal | nsect [1] "bee";
conmunal I nsect[2] = "wasp";
conmunal | nsect. reverse();

produces the following array:

conmunal I nsect[0] == "wasp"
conmunal I nsect[1] == "bee"
conmmunal I nsect[2] == "ant"

sort() Method

The sort() method sorts the elements of an array into the order specified by the
compareFunction.

Syntax arrayNane. sort ([conpar eFuncti on])

Parameter Description

compareFunction A user-defined function that can affect the sort order

Returns arrayName with its elements sorted into the order specified.

Usage If no compareFunction is supplied, then elements are converted to strings before
sorting. When numbers are sorted into ASCII order, they are compared left-to-right,
so that, for example, 32 comes before 4. This may not be the result you want.
However, the compareFunction enables you to specify a different way to sort the
array elements. The name of the function you want to use to compare values is
passed as the only parameter to sort().

If a compare function is supplied, the array elements are sorted according to the
return value of the compare function.

Example The following example demonstrates the use of the sort() method with and without
a compare function. It first displays the results of a sort without the function and
then uses a user-defined function, conpar eNunber s(a, b), to sort the numbers
properly. In this function, if a and b are two elements being compared, then:

Version 7.5, Rev. B Siebel eScript Language Reference 101

‘ Siebel eScript Commands

Array Objects

m If conpareNunbers(a, b) isless than zero, b is given a lower index than a.
m If compar eNunber s(a, b) returns zero, the order of a and b is unchanged.

= If conpar eNunbers(a, b) is greater than zero, b is given a higher index
than a.

102 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

BLOB Objects

BLOB Objects

The following topics describe binary large objects (BLOBs).
s “The blobDescriptor Object” on page 103

= “Blob.get() Method” on page 105

= “Blob.put() Method” on page 105

= “Blob.size() Method” on page 107

The blobDescriptor Object

The blobDescriptor Object describes the structure of the BLOB. When an object
needs to be sent to a process other than the Siebel eScript interpreter, such as to a
Windows API function, a blobDescriptor object must be created that describes the
order and type of data in the object. This description tells how the properties of the
object are stored in memory and is used with functions like Clib.fread() and
SElib.dynamicLink().

A blobDescriptor has the same data properties as the object it describes. Each
property must be assigned a value that specifies how much memory is required for
the data held by that property. The keyword "this" is used to refer to the parameters
passed to the constructor function and can be conceptually thought of as "this
object.” Consider the following object:

Rect angl e(wi dt h, hei ght)
this.width = width;

t hi s. hei ght = height;
}

The following code creates a blobDescriptor object that describes the Rectangle
object:

var bd = new bl obDescriptor();

bd. wi dth
bd. hei ght

UWORD32;
UWORD32;

Version 7.5, Rev. B Siebel eScript Language Reference 103

‘ Siebel eScript Commands

BLOB Objects

You can now pass bd as a blobDescriptor parameter to functions that require one.
The values assigned to the properties depend on what the receiving function
expects. In the preceding example, the function that is called expects to receive an
object that contains two 32-bit words or data values. If you write a blobDescriptor
for a function that expects to receive an object containing two 16-bit words, assign
the two properties a value of UWORDI16.

One of the following values must be used with blobDescriptor object properties to
indicate the number of bytes needed to store the property:

WCHAR Handled as a native UNICODE string
UWORDS Stored as an unsigned byte

SWORDS Stored as an integer

UWORD16 Stored as an unsigned, 16-bit integer
SWORD16 Stored as a signed 16-bit integer
UWORD24 Stored as an unsigned 24-bit integer
SWORD24 Stored as a signed 24-bit integer
UWORD32 Stored as an unsigned 32-bit integer
SWORD32 Stored as a signed 32-bit integer
FLOAT32 Stored as a floating-point number
FLOAT64 Stored as a double-precision floating-point number

STRINGHOLDER Used to indicate a value that is assigned a string by the
function to which it is passed. (It allocates 10,000 bytes to
contain the string, then truncates this length to the appropriate
size, removes any terminating null characters, and initializes
the properties of the string.)

If the blobDescriptor describes an object property that is a string, the corresponding
property should be assigned a numeric value that is larger than the length of the
longest string the property may hold. Object methods usually may be omitted from
a blobDescriptor.

BlobDescriptors are used primarily for passing eScript’s JavaScript-like data
structures to C or C+ + programs and to the Clib methods, which expect a very
rigid and precise description of the values being passed.

104 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Blob.get() Method

BLOB Objects

This method reads data from a binary large object.

Syntax A Bl ob. get (bl obVvar, offset,
Syntax B Bl ob. get (bl obVvar, offset,

Syntax C Bl ob. get (bl obVvar, offset,

dat aType)
buf f er Len)

bl obDescri pt or dataDefi niti on)

Argument Description

blobVar The name of the binary large object to use

offset The position in the BLOB from which to read the data

dataType An integer value indicating the format of the data in the
BLOB

bufferLen An integer indicating the size of the buffer in bytes

blobDescriptor dataDefinition

A blobDescriptor object indicating the form of the data in
the BLOB

Returns The data read from the BLOB.

This method reads data from a specified location of a binary large object (BLOB),
and is the companion function to Blob.put().

Use Syntax A for byte, integer,

Syntax C for object data.

and float data. Use Syntax B for byte[] data. Use

dataType must have one of the values listed for blobDescriptors in “The
blobDescriptor Object” on page 103.

See Also “The blobDescriptor Object” on page 103 and “Blob.put() Method” on page 105

Blob.put() Method

The Blob.put method puts data into a specified location within a binary large object.

Version 7.5, Rev. B

Siebel eScript Language Reference 105

‘ Siebel eScript Commands

BLOB Objects

Syntax A Bl ob. put (bl obVar[, offset], data, dataType)

Syntax B Bl ob. put (bl obVar[, offset], buffer, bufferlLen)

Syntax C Bl ob. put (bl obVvar[, offset], srcStruct, blobDescriptor

dat aDefiniti on)

Argument Description

blobVar The name of the binary large object to use

offset The position in the BLOB at which to write the data
data The data to be written

dataType The format of the data in the BLOB

buffer A variable containing a buffer

bufferLen An integer representing the length of buffer
srcStruct A BLOB containing the data to be written

blobDescriptor dataDefinition

A blobDescriptor object indicating the form of the data in
the BLOB

Returns An integer representing the byte offset for the byte after the end of the data just
written. If the data is put at the end of the BLOB, the size of the BLOB.

Usage This method puts data into a specified location of a binary large object (BLOB) and,
along with Blob.get(), allows for direct access to memory within a BLOB variable.
Data can be placed at any location within a BLOB. The contents of such a variable
may be viewed as a packed structure, that is, a structure that does not pad each
member with enough nulls to make every member a uniform length. (The exact
length depends on the CPU, although 32 bytes is common.)

Syntax C is used to pass the contents of an existing BLOB (srcStruct) to the blobVar.

If a value for offset is not supplied, then the data is put at the end of the BLOB, or
at offset 0 if the BLOB is not yet defined.

The data is converted to the specified dataType and then copied into the bytes

specified by offset.

106 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands

BLOB Objects

If dataType is not the length of a byte buffer, then it must have one of the values
listed for blobDescriptors in “The blobDescriptor Object” on page 103.

Example If you were sending a pointer to data in an external C library and knew that the
library expected the data in a packed C structure of the form:

struct foo

{
signed char a;
unsi gned int b;
doubl e c;

b

and if you were building this structure from three corresponding variables, then
such a building function might look like the following, which returns the offset of
the next available byte:

function Buil dFooBl ob(a, b, c)

{
var offset = Blob.put(foo, 0, a, SWORDB);
of fset = Blob. put(foo, offset, b, UWNORDL6);
Bl ob. put (f oo, offset, c, FLOAT64);
return foo;

}

or, if an offset were not supplied:

functionBui |l dFooBl ob(a, b, c)

{
Bl ob. put (foo, a, SWORDS);
Bl ob. put (f oo, b, UWORDI1S6);
Bl ob. put (f oo, c, FLOAT64);
return foo;

}

See Also “The blobDescriptor Object” on page 103 and “Blob.get() Method” on page 105

Blob.size() Method

This method determines the size of a binary large object (BLOB).

Syntax A Bl ob. si ze(bl obVar[, SetSize])

Version 7.5, Rev. B Siebel eScript Language Reference 107

‘ Siebel eScript Commands

BLOB Objects

Syntax B Bl ob. si ze(dat aType)
Syntax C Bl ob. si ze(buf ferLen)

Syntax D Bl ob. si ze(bl obDescri pt or dataDefinition)

Argument Description

blobvar The name of the binary large object to use

setSize An integer that determines the size of the BLOB

dataType An integer value indicating the format of the data in the
BLOB

bufferLen An integer indicating the number of bytes in the buffer

blobDescriptor dataDefinition A blobDescriptor object indicating the form of the data in
the BLOB

Returns The number of bytes in blobVar; if setSize is provided, returns setSize.

Usage The parameter blobVar specifies the blob to use. If SetSize is provided, then the blob
blobVar is altered to this size or created with this size.

If dataType, bufferLen, or dataDefinition are used, these parameters specify the type
to be used for converting Siebel eScript data to and from a BLOB.

The dataType argument must have one of the values listed for blobDescriptors in
“The blobDescriptor Object” on page 103.

See Also “The blobDescriptor Object” on page 103

108 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Buffer Objects

Buffer Objects

Buffer objects provide a way to manipulate data at a very basic level. A Buffer object
is needed whenever the relative location of data in memory is important. Any type
of data may be stored in a Buffer object.

A new Buffer object may be created from scratch or from a string, buffer, or Buffer
object, in which case the contents of the string or buffer is copied into the newly
created Buffer object.

In the examples that follow, bufferVar is a generic variable name to which a Buffer
object is assigned.

s “The Buffer Constructor” on page 110

“Properties” on page 111

= “Methods” on page 112

» “bigEndian Property” on page 112
= “cursor Property” on page 113

= “data Property” on page 113

= “getString() Method” on page 114
m “getValue() Method” on page 114
= “offset[] Method” on page 115

= “putString() Method” on page 116
m “putValue() Method” on page 117
m “size Property” on page 119

= “subBuffer() Method” on page 120
= “toString() Method” on page 120

= “unicode Property” on page 121

Version 7.5, Rev. B Siebel eScript Language Reference 109

‘ Siebel eScript Commands

Buffer Objects

The Buffer Constructor

Syntax A

Usage

Syntax B

Usage

To create a Buffer object, use one of the following syntax forms.

new Buf fer([size] [, unicode] [, bigEndian]);

Argument Description

size The size of the new buffer to be created
unicode True if the buffer is to be created as a Unicode string, otherwise, false; default
is false

bigEndian True if the largest data values are stored in the most significant byte; false if
the largest data values are stored in the least significant byte; default
is true

If size is specified, then the new buffer is created with the specified size and filled
with null bytes. If no size is specified, then the buffer is created with a size of 0,
although it can be extended dynamically later.

The unicode parameter is an optional Boolean flag describing the initial state of the
Unicode flag of the object. Similarly, bigEndian describes the initial state of the
bigEndian parameter of the buffer.

new Buffer(string [, unicode] [, bigEndian]);

This syntax creates a new Buffer object from the string provided. If the string
parameter is a Unicode string (if Unicode is enabled within the application), then
the buffer is created as a Unicode string.

This behavior can be overridden by specifying true or false with the optional
Boolean Unicode parameter. If this parameter is set to false, then the buffer is
created as an ASCII string, regardless of whether the original string was in Unicode
or not.

Similarly, specifying true makes sure that the buffer is created as a Unicode string.
The size of the buffer is the length of the string (twice the length if it is Unicode).
This constructor does not add a terminating null byte at the end of the string.

110 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax C

Usage

Syntax D

Usage

Properties

Buffer Objects
new Buf fer(buffer [, unicode] [, bigEndian]);
Argument Description
buffer The buffer object from which the new buffer is to be created
unicode True if the buffer is to be created as a Unicode string, otherwise, false;

default is the Unicode status of the underlying Siebel eScript engine

bigEndian True if the largest data values are stored in the most significant byte;
false if the largest data values are stored in the least significant byte;
default is true

A line of code following this syntax creates a new buffer object from the buffer
provided. The contents of the buffer are copied as-is into the new buffer object. The
unicode and bigEndian parameters do not affect this conversion, although they do
set the relevant flags for future use.

new Buf f er (buf f er obj ect) ;

Argument Description

bufferobject The buffer object from which the new buffer is to be created

A line of code following this syntax creates a new Buffer object from another Buffer
object. Everything is duplicated exactly from the other bufferObject, including the
cursor location, size, and data.

s “bigEndian Property” on page 112

= “cursor Property” on page 113

“data Property” on page 113

“size Property” on page 119

= “unicode Property” on page 121

Version 7.5, Rev. B Siebel eScript Language Reference 111

‘ Siebel eScript Commands

Buffer Objects

Methods

The following is a list of buffer object methods.

= “getString() Method” on page 114
= “getValue() Method” on page 114
= “offset[] Method” on page 115

= “putValue() Method” on page 117
m “size Property” on page 119

= “subBuffer() Method” on page 120
= “toString() Method” on page 120

bigEndian Property

Syntax

Returns

Usage

This property is a Boolean flag specifying whether to use bigEndian byte ordering
when calling getValue() and putValue().

buf f er Var . bi gEndi an

Parameter Description

Not applicable

Not applicable

When a data value consists of more than one byte, the byte containing the smallest
units of the value is called the least significant byte; the byte containing the biggest
units of the value is called the most significant byte. When the bigEndian property
is true, the bytes are stored in descending order of significance. When false, they are
stored in ascending order of significance.

This value is set when a buffer is created, but may be changed at any time. This
property defaults to the state of the underlying operating system and processor.

112 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Buffer Objects

cursor Property

Syntax

Returns

Usage

Example

See Also

The current position within a buffer.

buf f er Var . cur sor

Parameter Description

Not applicable

Not applicable

The value of cursor is always between 0 and the value set in the size property. A
value can be assigned to this property.

If the cursor is set beyond the end of a buffer, the buffer is extended to
accommodate the new position and filled with null bytes. Setting the cursor to a
value less than 0 places the cursor at the beginning of the buffer, position 0.

For examples, read “getString() Method” on page 114 and “size Property” on
page 119.

“size Property” on page 119

data Property

Syntax

Returns

This property is a reference to the internal data of a buffer.

buf f er Var . dat a

Parameter Description

Not applicable

Not applicable

Version 7.5, Rev. B Siebel eScript Language Reference 113

‘ Siebel eScript Commands

Buffer Objects

Usage This property is used as a temporary value to allow passing of buffer data to
functions that do not recognize buffer objects.

getString() Method

This method returns a string of a specified length, starting from the current cursor
location.

Syntax bufferVar.getString([length])

Parameter Description

length The length of the string to return, in bytes

Returns A string of length characters, starting at the current cursor location in the buffer.

Usage This method returns a string starting from the current cursor location and
continuing for length bytes.

If no length is specified, the method reads until a null byte is encountered or the
end of the buffer is reached. The string is read according to the value of the unicode
flag of the buffer. A terminating null byte is not added, even if a length parameter
is not provided.

See Also “getValue() Method” on page 114, “offset[] Method” on page 115, and “size
Property” on page 119

getValue() Method

This method returns a value from the current cursor position in a Buffer object.

114 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Buffer Objects
Syntax buf f er Var . get Val ue([val ueSi ze] [, val ueType])
Parameter Description
valueSize A positive number indicating the number of bytes to be read; default is 1
valueType The type of data to be read, expressed as one of the following:

= signed (the default)
= unsigned

= float

Returns The value at the current position in a Buffer object.

Usage To determine where to read from the buffer, use the bufferVar.cursor() method.

Acceptable values for valueSize are 1, 2, 3, 4, 8, and 10, providing that valueSize
does not conflict with the optional valueType flag. The following list describes the
acceptable combinations of valueSize and valueType:

valueSize valueType

signed, unsigned
signed, unsigned
signed, unsigned
signed, unsigned, float
float

[0 T N O N S

The combination of valueSize and valueType must match the data to be read.

See Also “putValue() Method” on page 117

offset[] Method

This method provides array-style access to individual bytes in the buffer.

Version 7.5, Rev. B Siebel eScript Language Reference 115

‘ Siebel eScript Commands

Buffer Objects

Syntax

Returns

Usage

See Also

buf f er Var[of fset]

Argument Description

offset A number indicating a position in bufferVar at which a byte is to be placed
in, or read from, a buffer

Not applicable

This is an array-like version of the getValue() and putValue() methods that works
only with bytes. You may either get or set these values. The following line assigns
the byte at offset 5 in the buffer to the variable goo:

goo = foo[5]

The following line places the value of goo (assuming that value is a single byte) to
position 5 in the buffer f oo:

foo[5] = goo

Every get or put operation uses byte types, that is, eight-bit signed words
(SWORDS). If offset is less than 0, then 0 is used. If offset is greater than the length
of the buffer, the size of the buffer is extended with null bytes to accommodate it.
If you need to work with character values, you have to convert them to their ANSI
or Unicode equivalents.

“getValue() Method” on page 114 and “putValue() Method” on page 117

putString() Method

Syntax

This method puts a string into a buffer object at the current cursor position.

buf ferVar. put String(string)

Parameter Description

string The string literal to be placed into the buffer object, or the string variable
whose value is to be placed into the buffer object

116 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Buffer Objects

Returns Not applicable

Usage If the unicode flag is set within the buffer object, then the string is put into the
buffer object as a Unicode string; otherwise, it is put into the buffer object as an
ASCII string. The cursor is incremented by the length of the string, or twice the
length if it is put as a Unicode string.

A terminating null byte is not added at end of the string.
To put a null terminated string into the buffer object, do the following:

buf 1. put String("Hello"); /1 Put the string into the buffer
buf 1. put Val ue(0); /1 Add term nating null byte

Example The following example places the string | anguage in the buffer excl amat i on and
displays the modified contents of expl anati on, which is the string, "I | ove
coding with Siebel eScript".

function eScript_Cick ()

{
var exclamation = new Buffer("l love coding with . . .");
var | anguage = "Siebel eScript";
excl amation. cursor = 19;
excl amati on. put Stri ng(l anguage) ;
TheAppl i cation(). Rai seError Text (excl amation);
}

See Also “getString() Method” on page 114

putValue() Method

This method puts the specified value into a buffer at the current file cursor position.

Syntax bufferVar. put Val ue(val ue[, val ueSi ze][, val ueType])

Parameter Description

value A number

Version 7.5, Rev. B Siebel eScript Language Reference 117

‘ Siebel eScript Commands

Buffer Objects

Returns

Usage

Parameter Description

valueSize A positive number indicating the number of bytes to be used; default is 1
valueType The type of data to be read, expressed as one of the following:

» signed (the default)

= unsigned

» float

Not applicable

This method puts a specific value into a buffer. Acceptable values for valueSize are
1, 2, 3,4, 8, and 10, providing that this value does not conflict with the optional
valueType flag.

Combined with valueSize, any type of data can be put into a buffer. The following
list describes the acceptable combinations of valueSize and valueType:

valueSize valueType

1 signed, unsigned

2 signed, unsigned

3 signed, unsigned

4 signed, unsigned, float
8 float

Any other combination causes an error. The value is put into the buffer at the
current cursor position, and the cursor value is automatically incremented by the
size of the value to reflect this addition. To explicitly put a value at a specific
location while preserving the cursor location, do something similar to the following.

var ol dCursor = bufferltemcursor; // Save the cursor |ocation

bufferltem cursor = 20; // Set to new |l ocation
buf f erltem put Val ue(f o0o); /1 Put bufferltemat offset 20
bufferltem cursor = ol dCursor /!l Restore cursor |ocation

118 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

See Also

Buffer Objects

The value is put into the buffer with byte-ordering according to the current setting
of the bigEndian flag. Note that when putting float values as a smaller size, such as
4, some significant figures are lost. A value such as 1. 4 is converted to something
like 1. 39999974. This is sufficiently insignificant to ignore, but note that the
following does not hold true:

bufferltem putVal ue(1.4,4,"float");

bufferltem cursor -= 4;

if(bufferltemgetValue(4,"float") !=1.4)

/1 This is not necessarily true due to significant digit |oss.

This situation can be prevented by using 8 as a valueSize instead of 4. A valueSize
of 4 may still be used for floating-point values, but be aware that some loss of
significant figures may occur, although it may not be enough to affect most
calculations.

“getValue() Method” on page 114

size Property

Syntax

Returns

Usage

See Also

The size of the Buffer object.

buf ferVvar. size

Parameter Description

Not applicable

Not applicable

A value may be assigned to this property; for example,
inBuffer.size = 5

If a buffer is increased beyond its present size, the additional spaces are filled with
null bytes. If the buffer size is reduced such that the cursor is beyond the end of the
buffer, the cursor is moved to the end of the modified buffer.

“cursor Property” on page 113

Version 7.5, Rev. B Siebel eScript Language Reference 119

‘ Siebel eScript Commands

Buffer Objects

subBuffer() Method

This method returns a new Buffer object consisting of the data between two
specified positions.

Syntax buf f er Var . subBuf f er (begi nni ng, end)

Parameter Description
beginning The cursor position at which the new Buffer object should begin
end The cursor position at which the new Buffer object should end

Returns A new Buffer object consisting of the data in bufferVar between the beginning and
end positions.

Usage If beginning is less than 0, then it is treated as 0, the start of the buffer.

If end is beyond the end of the buffer, then the new subbuffer is extended with null
bytes, but the original buffer is not altered. The unicode and bigEndian flags are
duplicated in the new buffer.

The length of the new buffer is set to end - beginning. If the cursor in the old buffer
is between beginning and end, then it is converted to a new relative position in the
new buffer. If the cursor was before beginning, it is set to 0 in the new buffer; if it
was past end, it is set to the end of the new buffer.

Example This code fragment creates the new buffer | anguage and displays its contents—the
string " Si ebel eScript".

var |lovelt= new Buffer("l love coding with Siebel eScript!");
var | anguage = lovelt.subBuffer(19, (lovelt.size - 1))
TheAppl i cati on() . Rai seError Text (| anguage) ;

See Also “getString() Method” on page 114

toString() Method

This method returns a string containing the same data as the buffer.

120 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

Buffer Objects

buffervar.toString()

Parameter Description

Not applicable

A string object that contains the same data as the buffer object.

This method returns a string whose contents are the same as that of bufferVar. Any
conversion to or from Unicode is done according to the unicode flag of the object.

unicode Property

Syntax

Returns

Usage

Example

This property is a Boolean flag specifying whether to use Unicode strings when
calling getString() and putString().

buf f er Var . uni code

Parameter Description

Not applicable

Not applicable

This value is set when the buffer is created, but may be changed at any time. This
property defaults to false for Siebel eScript.

The following lines of code set the unicode property of a new buffer to true:

var aBuffer = new Buffer();
aBuf fer.uni code = true;

Version 7.5, Rev. B Siebel eScript Language Reference 121

‘ Siebel eScript Commands

Business Component Objects

Business Component Objects

A business component defines the structure, the behavior, and the information
displayed by a particular subject, such as a product, contact, or account. Siebel
business components are logical abstractions of one or more database tables. The
information stored in a business component is usually specific to a particular
subject and is typically not dependent on other business components. Business
components can be used in one or more business objects.

Business component objects have associated data structured as records, they have
properties, and they contain data units called fields. In Siebel eScript, fields are
accessed through business components. The business component object supports
getting and setting field values, moving backward and forward through data in a
business component object, and filtering changes to data it manages.

Methods of business component objects are documented in the Siebel Object

Interfaces Reference.

Method or Event

Description

ActivateField() Method

ActivateMultipleFields() Method

Associate() Method

BusComp_Associate() Event

BusComp_ChangeRecord() Event

BusComp_CopyRecord() Event

ActivateField() allows queries to retrieve data for
the field specified in its argument.

ActivateMultipleFields() allows users to activate
the fields specified in the property set input
argument.

The Associate() method creates a new many-to-
many relationship for the parent object through an
association business component (read
“GetAssocBusComp() Method” on page 125).

The Associate() event is called after a record is
added to a business component to create an
association.

The ChangeRecord() event is called after a record
becomes the current row in the business
component.

The CopyRecord() event is called after a row has
been copied in the business component and that
row has been made active.

122 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands ‘

Business Component Objects

Method or Event Description

BusComp_DeleteRecord() Event The DeleteRecord() event is called after a row is
deleted. The current context is a different row (the
Fields of the just-deleted row are no longer
available).

BusComp_InvokeMethod() Event The InvokeMethod() event is called when the
InvokeMethod method is called on a business
component.

BusComp_NewRecord() Event The NewRecord() event is called after a new row
has been created in the business component and
that row has been made active. The event may be
used to set up default values for Fields.

BusComp_PreAssociate() Event The PreAssociate() event is called before a record
is added to a business component to create an
association. The semantics are the same as
BusComp_PreNewRecord.

BusComp_PreCopyRecord() Event The PreCopyRecord() event is called before a new
row is copied in the business component. The
event may be used to perform precopy validation.

BusComp_PreDeleteRecord() Event The PreDeleteRecord event is called before a row is
deleted in the business component. The event may
be used to prevent the deletion or to perform any
actions in which you need access to the record that
is to be deleted.

BusComp_PreGetFieldValue() Event The PreGetFieldValue() event is called when the
value of a business component field is accessed.

BusComp_PrelnvokeMethod() Event The PrelnvokeMethod() event is called before a
specialized method is invoked on the business
component.

BusComp_PreNewRecord() Event The PreNewRecord event is called before a new
row is created in the business component. The
event may be used to perform preinsert validation.

BusComp_PreQuery() Event The PreQuery() event is called before query
execution.

Version 7.5, Rev. B Siebel eScript Language Reference 123

‘ Siebel eScript Commands

Business Component Objects

Method or Event

Description

BusComp_PreSetFieldValue() Event

BusComp_PreWriteRecord() Event

BusComp_Query() Event

BusComp_SetFieldValue() Event

BusComp_WriteRecord() Event

BusObject() Method

ClearToQuery() Method

DeactivateFields() Method

DeleteRecord() Method

ExecuteQuery() Method

ExecuteQuery2() Method

The PreSetFieldValue() event is called before a
value is pushed down into the business component
from the user interface or through a call to
SetFieldValue.

The PreWriteRecord() event is called before a row
is written out to the database. The event may
perform any final validation necessary before the
actual save occurs.

The Query() event is called just after the query is
completed and the rows have been retrieved but
before the rows are actually displayed.

The SetFieldValue() event is called when a value is
pushed down into the business component from
the user interface or through a call to
SetFieldValue.

The WriteRecord event is called after a row is
written out to the database.

The BusObject() method returns the business
object that contains the business component.

The ClearToQuery() method clears the current
query and sort specifications on the business
component.

DeactivateFields deactivates the fields that are
currently active from a business component SQL
query statement.

DeleteRecord() removes the current record from
the business component.

ExecuteQuery() returns a set of business
component records using the criteria established
with methods such as SetSearchSpec.

ExecuteQuery2() returns a set of business
component records using the criteria established
with methods such as SetSearchSpec.

124 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands

Method or Event

Business Component Objects

Description

FirstRecord() Method

GetAssocBusComp() Method

GetFieldValue() Method

GetFormattedFieldValue() Method

GetMultipleFieldValues() Method

GetMVGBusComp() Method

GetNamedSearch () Method

GetPicklistBusComp() Method

GetSearchExpr() Method

GetSearchSpec() Method

FirstRecord() moves the record pointer to the first
record in a business component, making that
record current and invoking any associated script
events.

GetAssocBusComp() returns the association
business component. The association business
component can be used to operate on the
association using the normal business component
mechanisms.

GetFieldValue() returns the value for the field
specified in its argument for the current record of
the business component. Use this method to
access a field value.

GetFormattedFieldValue returns the value for the
field specified in its argument in the current local
format; that is, it returns values in the format in
which they appear in the Siebel user interface.

GetMultipleFieldValues() allows users to retrieve
the field values for a particular record as specified
in the property set input argument.

GetMVGBusComp() returns the MVG business
component associated with the business
component field specified by FieldName. This
business component can be used to operate on the
Multi-Value Group using the normal business
component mechanisms.

GetNamedSearch() returns the named search
specification specified by searchName.

GetPicklistBusComp() returns the pick business
component associated with the specified field in
the current business component.

GetSearchExpr() returns the current search
expression for the business component.

GetSearchSpec() returns the search specification
for the field specified by the fieldName argument.

Version 7.5, Rev. B

Siebel eScript Language Reference 125

‘ Siebel eScript Commands

Business Component Objects

Method or Event

Description

GetUserProperty() Method

GetViewMode() Method

InvokeMethod () Method

LastRecord() Method

Name() Method

NewRecord() Method

NextRecord() Method

ParentBusComp () Method

Pick() Method

PreviousRecord() Method

RefineQuery() Method

SetFieldValue() Method

GetUserProperty() returns the value of a named
UserProperty.

GetViewMode() returns the current visibility mode
for the business component. This affects which
records are returned by queries according to the
visibility rules.

InvokeMethod calls the specialized method or
user-created method named in its argument.

LastRecord() moves to the last record in the
business component.

The Name() method returns the name of the
business component.

NewRecord() adds a new record (row) to the
business component.

NextRecord () moves the record pointer to the next
record in the business component, making that the
current record and invoking any associated script
events.

ParentBusComp() returns the parent (master)
business component when given the child (detail)
business component of a link.

The Pick() method picks the currently selected
record in a picklist business component (read
“GetPicklistBusComp() Method” on page 125) into
the appropriate Fields of the parent business
component.

PreviousRecord () moves to the previous record in
the business component, invoking any associated
script events.

This method refines a query after the query has
been executed.

SetFieldValue() assigns the new value to the
named field for the current row of the business
component.

126 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands ‘

Method or Event

Business Component Objects

Description

SetFormattedFieldValue() Method

SetMultipleFieldValues() Method

SetNamedSearch() Method

SetSearchExpr() Method

SetSearchSpec() Method

SetSortSpec() Method

SetUserProperty() Method

SetViewMode() Method

UndoRecord() Method

WriteRecord() Method

SetFormattedFieldValue() assigns the new value to
the named field for the current row of the business
component. SetFormattedFieldValue accepts the
field value in the current local format.

SetMultipleFieldValues() allows users to set the
field values for a particular record as specified in
the property set input argument.

SetNamedSearch() sets a named search
specification on the business component. A named
search specification is identified by the
searchName argument.

SetSearchExpr() sets an entire search expression
on the business component, rather than setting

one search specification for each field. Syntax is
similar to that on the Predefined Queries screen.

SetSearchSpec() sets the search specification for a
particular field. This method must be called before
ExecuteQuery.

SetSortSpec() sets the sorting specification for a
query.

SetUserProperty() sets the value of a named
business component UserProperty. The User
Properties are similar to instance variables of a
BusComp.

SetViewMode() sets the visibility type for the
business component.

UndoRecord() reverses any changes made to the
record that are not committed. This includes
reversing uncommitted modifications to any fields,
as well as deleting an active record that has not yet
been committed to the database.

WriteRecord() commits to the database any
changes made to the current record.

Version 7.5, Rev. B

Siebel eScript Language Reference 127

‘ Siebel eScript Commands

Business Object Objects

Business Object Objects

Business objects are highly customizable, object-oriented building blocks of Siebel
applications. Business objects define the relationships between different business
component objects (BusComps) and contain semantic information about, for
example, sales, marketing, and service-related entities. A Siebel business object
groups one or more business components into a logical unit of information.
Methods of business object objects are documented in the Siebel Object Interfaces

Reference.
Method Description
GetBusComp() Method The GetBusComp() method returns the specified business
component.
Name() Method The Name() method retrieves the name of the business object.

128 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Business Service Objects

Business Service Objects

Business service objects are objects that can be used to implement reusable
business logic within the Object Manager. They include both built-in business
services, which may be scripted but not modified, and user-defined objects. Using
business services, you can configure standalone objects or modules with both
properties and scripts. Business services may be used for generic code libraries that
can be called from any other scripts. The code attached to a menu item or a toolbar
button may be implemented as a business service. Methods of business service
objects are documented in the Siebel Object Interfaces Reference.

Method or Event

Description

GetFirstProperty() Method

GetNextProperty() Method

GetProperty() Method

InvokeMethod() Method

Name() Method

PropertyExists() Method

RemoveProperty() Method

Service_InvokeMethod() Event

Service_PrelnvokeMethod() Event

GetFirstProperty() retrieves the name of the first
property of a business service.

Once the name of the first property has been
retrieved, the GetNext Property() method
retrieves the name of the next property of a
business service.

The GetProperty() method returns the value of
the property whose name is specified in its
argument.

The InvokeMethod() method calls a specialized
method or a user-created method.

The Name() method returns the name of the
service.

PropertyExists() returns a Boolean value
indicating whether a specified property exists.

RemoveProperty() removes a property from a
business service.

The InvokeMethod() event is called after the
InvokeMethod method is called on a business
service.

The PrelnvokeMethod() event is called before a
specialized method is invoked on the business
service.

Version 7.5, Rev. B

Siebel eScript Language Reference 129

‘ Siebel eScript Commands

Business Service Objects

Method or Event Description

Service_PreCanInvokeMethod() Event The PreInvokeMethod() event is called before the
PreInvokeMethod, allowing the developer to
determine whether or not the user has the
authority to invoke the business service method.

SetProperty() Method This method assigns a value to a property of a
business service.

130 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

The Clib Object

See Also

The Clib object contains functions that are a part of the standard C library. Methods
to access files, directories, strings, the environment, memory, and characters are
part of the Clib object. The Clib object also contains time functions, error functions,
sorting functions, and math functions.

Some methods, shown in Table 4, may be considered redundant because their
functionality already exists in JavaScript. Where possible, you should use standard
ECMAScript methods instead of the equivalent Clib functions.

NOTE: The Clib object is essentially a wrapper for calling functions in the standard
C library as implemented for the specific operating system. Therefore these methods
may behave differently on different operating systems.

“Redundant Functions in the Clib Object” on page 131, “File I/0 Functions” on
page 133, “The Time Object” on page 135, “Time Functions” on page 136,
“Character Classification” on page 136, “Formatting Data” on page 137

Redundant Functions in the Clib Object

The Clib object includes the functions from the C standard library. As a result, some
of the methods in the Clib object overlap methods in JavaScript. In most cases, the
newer JavaScript methods should be preferred over the older C functions. However,
there are times, such as when working with string routines that expect null
terminated strings, that the Clib methods make more sense and are more consistent
in a section of a script.

Version 7.5, Rev. B Siebel eScript Language Reference 131

‘ Siebel eScript Commands

The Clib Object

The Clib methods list in Table 4 is paired with the equivalent methods in

ECMAScript. Because Siebel eScript and the ECMAScript standard are developing
and growing, the ECMAScript methods are always to be preferred over equivalent

methods in the Clib object.

Table 4. Correspondence Between Clib and ECMAScript Methods

Clib Method

abs()
acos()
asin()
atan()
atan2()
atof()
atoi()
atol()
ceil()
cos()
exp()
fabs()
floor()
fmod()
labs()
log()
max()
min()
pow ()

sin()

Description

Calculates absolute value

Calculates the arc cosine

Calculates the arc sine

Calculates the arc tangent

Calculates the arc tangent of a fraction
Converts a string to a floating-point number
Converts a string to an integer

Converts a string to a long integer

Rounds a number up to the nearest integer
Calculates the cosine

Computes the exponential function

Computes the absolute value of a floating-point number
Rounds a number down to the nearest integer
Calculates the remainder

Returns the absolute value of a long
Calculates the natural logarithm

Returns the largest of one or more values
Returns the smallest of one or more values
Calculates x to the power of y

Calculates the sine

132 Siebel eScript Language Reference

ECMAScript Method

Math.abs()
Math.acos()
Math.asin()
Math.atan()
Math.atan2()
Automatic conversion
Automatic conversion
Automatic conversion
Math.ceil()
Math.cos()
Math.exp()
Math.abs()
Math.floor()

% operator, modulo
Math.abs()
Math.log()
Math.max()
Math.min()
Math.pow()

Math.sin()

Version 7.5, Rev. B

Siebel eScript Commands

Table 4. Correspondence Between Clib and ECMAScript Methods

The Clib Object

Clib Method
sqrt()
strcat()
stremp ()
strepy ()
strlen()
strlwr()
strtod()
strtol()
strupr()
tan()
tolower()

toupper()

Description

Calculates the square root
Appends one string to another
Compares two strings

Copies a string

Gets the length of a string
Converts a string to lowercase
Converts a string to decimal
Converts a string to long
Converts a string to uppercase
Calculates the tangent
Converts a character to lowercase

Converts a character to uppercase

ECMAScript Method

Math.sqrt()

+ operator

= = operator

= operator
string.length
string.toLowerCase
Automatic conversion
Automatic conversion
string.toUpperCase
Math.tan()
string.toLowerCase

string.toUpperCase

File 1/0 Functions

Siebel eScript handles file I/O in a manner similar to C and C+ +. In these
languages, files are never read from, or written to, directly. Rather, you must first
open a file, most commonly by passing its name to the Clib.fopen() function. (You
can also open a file using Clib.tmpfile().) These functions read the file into a buffer
in memory and return a file pointer—a pointer to the beginning of the buffer. The
data in the buffer is often referred to as a file stream, or simply a stream. Reading
and writing occurs relative to the buffer, which is not written to disk unless you
explicitly flush the buffer with Clib.fflush() or close the file with Clib.fclose().

Version 7.5, Rev. B

Clib supports the following file I/O functions:
= “Clib.fclose() Method” on page 148

= “Clib.feof() Method” on page 148

n “Clib.fflush() Method” on page 149

Siebel eScript Language Reference 133

‘ Siebel eScript Commands

The Clib Object

“Clib.fgetc() Method and Clib.getc() Method” on page 150
“Clib.fgetc() Method and Clib.getc() Method” on page 150
“Clib.fgetpos() Method” on page 151

“Clib.fgets() Method” on page 152

“Clib.fopen() Method” on page 154

“Clib.fprintf() Method” on page 157

“Clib.fputc() Method and Clib.putc() Method” on page 157
“Clib.fputs() Method” on page 158

“Clib.fread () Method” on page 158

“Clib.freopen() Method” on page 160

“Clib.fscanf() Method” on page 162

“Clib.fseek() Method” on page 163

“Clib.fsetpos() Method” on page 163

“Clib.ftell() Method” on page 164

“Clib.fwrite() Method” on page 164

“Clib.fgetc() Method and Clib.getc() Method” on page 150
“Clib.fputc() Method and Clib.putc() Method” on page 157
“Clib.remove() Method” on page 185

“Clib.rename() Method” on page 185

“Clib.rewind() Method” on page 186

“Clib.tmpfile() Method” on page 207

134 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

s “Clib.ungetc()Method” on page 209

NOTE: Siebel applications use UTF-16 encoding when writing to a file in Unicode.
The first two bytes of the file are always the BOM (Byte Order Mark). When
Clib.rewind is called on such a file, it is pointing to the BOM (-257) and not the first
valid character. The user can call Clib.fgetc/getc once to skip the BOM.

The Time Object

The Clib object (like the Date object) represents time in two distinct ways: as an
integral value (the number of seconds passed since January 1, 1970) and as a Time
object with properties for the day, month, year, and so on. This Time object is
distinct from the standard JavaScript Date object. You cannot use Date object
properties with a Time object or vice versa.

Note that the Time object differs from the Date object, although they contain similar
data. The Time object is for use with the other date and time functions in the Clib
object. It has the integer properties listed in Table 5.

Table 5. Integer Properties of the Time Object

Value for timeilnt Integer Property

tm_sec Second after the minute (from 0)
tm_min Minutes after the hour (from 0)
tm_hour Hour of the day (from 0)
tm_mday Day of the month (from 1)
tm_mon Month of the year (from 0)
tm_year Years since 1900 (from 0)
tm_wday Days since Sunday (from 0)
tm_yday Day of the year (from 0)
tm_isdst Daylight Savings Time flag

Version 7.5, Rev. B Siebel eScript Language Reference 135

‘ Siebel eScript Commands

The Clib Object

Time Functions

In the methods listed in Table 6, Time represents a variable in the Time object
format, while timelnt represents an integer time value.

The Clib object supports the following time functions.

Table 6. Time Functions and the Objects They Return

Function Object Returned
“Clib.asctime() Method” on page 141 Time
“Clib.clock() Method” on page 144 CPU tick count
“Clib.ctime() Method” on page 145 timelnt

“Clib.difftime() Method” on page 146 timelnt
“Clib.gmtime() Method” on page 168 timelnt
“Clib.localtime() Method” on page 175 timelnt

“Clib.mktime() Method” on page 179 Time
“Clib.strftime() Method” on page 195 Time
“Clib.time() Method” on page 206 timelnt

Character Classification

The eScript language does not have a true character type. For the character
classification routines, a char is actually a one-character string. Thus, actual
programming usage is very much like C. For example, in the following fragment,
both .isalnum() statements work properly.

var t = dib.isalnun('a');

var s
var t

far
Cib.isal nums);

This fragment displays the following:

136 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

true
true

In the following fragment, both Clib.isalnum() statements cause errors because the
arguments to them are strings with more than one character:

var t = dib.isalnun('ab");

var s = 'ab';
var t = dib.isal nun(s);

The character classification methods return Booleans: true or false. The following
character classification methods are supported in the Clib object:

s “Clib.isalnum() Method” on page 169
= “Clib.isalpha() Method” on page 169
m “Clib.isascii() Method” on page 170
m “Clib.iscntrl() Method” on page 170
= “Clib.isdigit() Method” on page 170
» “Clib.isgraph() Method” on page 171
m “Clib.islower() Method” on page 171
s “Clib.isprint() Method” on page 172
» “Clib.ispunct() Method” on page 173
m “Clib.isspace() Method” on page 173
= “Clib.isupper() Method” on page 174
“Clib.isxdigit() Method” on page 174

Formatting Data

The print family of functions and scan family of functions both use format strings
to format the data written and read, respectively.

Version 7.5, Rev. B Siebel eScript Language Reference 137

‘ Siebel eScript Commands

The Clib Object

Formatting Output

Table 7 lists the format strings for use with the print family of functions: fprintf(),
rsprintf(), and sprintf(). In these functions, characters are printed as read to
standard output until a percent character (%) is reached. The percent symbol (%)
indicates that a value is to be printed from the parameters following the format
string. The form of the format string is as follows:

% flags][wi dth][.precision]type

To include the % character as a character in the format string, use two % characters
together (% %).

Table 7. Format Strings for the Print Family of Functions

Formatting Character Effect

Flag Values

- Left justification in the field with space padding, or right justification with zero or
space padding

+ Force numbers to begin with a plus (+) or minus (-)

space Negative values begin with a minus (-); positive values begin with a space

Append one of the following symbols to the # character to display the output in the

indicated form:

= 0to prepend a zero to nonzero output

= xor X to prepend 0x or 0X to the output, signifying hexadecimal

» ftoinclude a decimal point even if no digits follow the decimal point

» eorEtoinclude a decimal point even if no digits follow the decimal point,
display the output in scientific notation, and remove trailing zeros

» gorGtoinclude a decimal point even if no digits follow the decimal point,
display the output in scientific notation, and leave trailing zeros in place

138 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Table 7. Format Strings for the Print Family of Functions

Formatting Character

Width Values

n

on

*

Precision Values

Effect

At least n characters are output; if the value is fewer than n characters, the output
is padded with spaces

At least n characters are output, padded on the left with zeros

The next value in the argument list is an integer specifying the output width

If precision is specified, then it must begin with a period (.) and must take one of the following forms:

.0
.n
Type Values
d,i

u

For floating-point type, no decimal point is output
Output is n characters, or n decimal places if the value is a floating-point number

The next value in the argument list is an integer specifying the precision width

Signed integer

Unsigned integer

Octal integer

Hexadecimal integer using O through 9 anda, b, ¢, d, e, f
Hexadecimal integer using O through 9 and A, B, C, D, E, F
Floating-point of the form [-] dddd. dddd

Floating-point of the form [-] d. ddde+dd or [-] d. ddde- dd
Floating-point of the form [-] d. dddE+dd or [-] d. dddE- dd
Floating-point number of f or e type, depending on precision
Floating-point number of F or E type, depending on precision
Character; for example,'a', 'b', '8’

String

Version 7.5, Rev. B

Siebel eScript Language Reference 139

‘ Siebel eScript Commands

The Clib Object

Formatting Input

Format strings are also used with the scan family of functions: fscanf(), sscanf(),
and vfscanf(). The format string contains character combinations that specify the
type of data expected. The format string specifies the admissible input sequences
and how the input is to be converted to be assigned to the variable number of
arguments passed to the function. Characters are matched against the input as read
and as it matches a portion of the format string until a percent character (%) is
reached. The percent character indicates that a value is to be read and stored to
subsequent parameters following the format string.

Each subsequent parameter after the format string gets the next parsed value taken
from the next parameter in the list following the format string. A parameter
specification takes this form:

%*][width]type

The *, width, and type values may be one of the following:

* Suppresses assigning this value to any parameter

width Sets the maximum number of characters to read; fewer are read if a
white-space or nonconvertible character is encountered

If width is specified, the input is an array of characters of the specified length.

Table 8 lists the characters that define the type.

Table 8. Type Values for the Scan Family of Functions

Type Value Effect

d,D,i,I Signed integer

u,U Unsigned integer
0,0 Octal integer
x,X Hexadecimal integer

f,e,E,g,G = Floating-point number

S String

140 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Table 8. Type Values for the Scan Family of Functions

Type Value Effect

[abc] String consisting of the characters within brackets, where A-Z represents the
range A to Z
[~abc] String consisting of the character not within brackets

Clib.asctime() Method

Syntax

Returns

Usage

See Also

This method returns a string representing the date and time extracted from a Time
object.

Clib.asctinme(Tinme)

Parameter Description

Time A Time object

A string representing the date and time extracted from a Time object.

For details on the Time object, read “The Time Object” on page 135. The returned
string has the format Day Mon dd hh:mm:ss yyyy; for example, Mon Jul 10
13:21: 56 2000.

“Clib.ctime() Method” on page 145, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getTime() Method” on page 219, and
“getUTCDate() Method” on page 221

Clib.bsearch() Method

This method looks for an array variable that matches a specified item.

Version 7.5, Rev. B Siebel eScript Language Reference 141

‘ Siebel eScript Commands

The Clib Object

Syntax

Returns

Usage

Example

Cib. bsearch(key, arrayToSort, [elenentCount,]

conpar eFuncti on)

Parameter Description

key The value to search for

arrayToSort The name of the array to sort

elementCount The number of array elements to search; if omitted, the entire array

compareFunction

is searched

A user-defined function that can affect the sort order

An array variable that matches key, returning the variable if found, null if not.

Clib.bsearch() searches only through array elements with a positive index; array
elements with negative indices are ignored.

The compareFunction value must receive the key variable as its first argument and
a variable from the array as its second argument. If elementCount is not supplied,
then the function searches the entire array.

The following example demonstrates the use of Clib.gsort() and Clib.bsearch() to
locate a name and related item in a list:

(general) (ListConpareFunction)

function ListConpareFunction(lteml, |tenR)

{
}

return Cib.strcnpi (Iteml[0], Iten2[0]);

(general) (DoLi st Search)

function DoLi st Search()

/1 create array of names and favorite food
var list =

{

{“Brent”, “salad”},

{"Laura", "cheese" },

{ "Al by", "sugar" },

{ "Jonathan","pad thai" },

{ "Zzaza", "grapefruit" },

142 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands

See Also

The Clib Object

{ "Jordan", "pizza" }

}s

/1 sort the Iist
Clib.qgsort(list, ListConpareFunction);
var Key = "brent";
/1 search for the name Brent in the |ist
var Found = Cib. bsearch(Key, |ist, ListConpareFunction);
/1 display name, or not found
if (Found !'= null)
TheApplication(). RaiseErrorText(Cib.rsprintf
("%'s favorite food is %\n", Found[O0][O], Found[O][1]));

el se
TheAppl i cation(). Rai seErrorText("Could not find nane in
list.");

}

“Clib.gsort() Method” on page 182

Clib.chdir() Method

Syntax

Returns

Usage

Example

This method changes the current directory for the Siebel application.

d i b. chdi r (di r Pat h)

Parameter Description

dirpath The path to the directory to make current

0 if successful; otherwise, -1.

This method changes the current directory for the Siebel application. The default
directory for a Siebel application in a Windows environment is always

c: \'si ebel \ bi n. When the script finishes, this directory again becomes the default
directory.

dirPath can be an absolute or relative path specification.

For an example, read “Clib.getcwd() Method” on page 166.

Version 7.5, Rev. B Siebel eScript Language Reference 143

Siebel eScript Commands

The Clib Object

See Also “Clib.getcwd () Method” on page 166, “Clib.mkdir() Method” on page 178, and
“Clib.rmdir() Method” on page 186

Clib.clearerr() Method

This method clears the error status and resets the end-of-file flag for a specified file.

Syntax Cib.clearerr(filePointer)

Parameter Description

filePointer A pointer to the file to be cleared and reset

Returns Not applicable

Usage This method clears the error status and resets the end-of-file (EOF) flag for the file
indicated by filePointer.

Clib.clock() Method

This method returns the current processor tick count.

Syntax dib.clock()

Parameter Description

Not applicable

Returns The current processor tick count.

Usage The count starts at 0 when the Siebel application starts running and is incremented
the number of times per second determined by the operating system.

Clib.cosh() Method

This method returns the hyperbolic cosine of x.

144 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

See Also

The Clib Object

d i b. cosh(nunber)

Parameter Description

number The number whose hyperbolic cosine is to be found

The hyperbolic cosine of x.

“Clib.sinh() Method” on page 188, “Clib.tanh() Method” on page 206, and
“Math.cos() Method” on page 280

Clib.ctime() Method

Syntax

Returns

Usage

Example

See Also

This method returns a date-time value.

Cib.ctime(tinelnt)

Parameter Description

timelnt A date-time value as returned by the Clib.time() function

A string representing date-time value, adjusted for the local time zone.

This method returns a string representing a date-time value, adjusted for the local
time zone. It is equivalent to:

Clib.asctime(dib.localtine(tinelnt));

where timelnt is a date-time value as returned by the Clib.time() function.

The following line of code returns the current date and time as a string of the form
Day Mon dd hh:mm:ss yyyy:

TheApplication(). RaiseErrorText(Cib.ctime(dib.tinme()));

“Clib.asctime() Method” on page 141, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “Clib.time() Method” on page 206, and
“toLocaleString() Method and toString() Method” on page 241

Version 7.5, Rev. B Siebel eScript Language Reference 145

Siebel eScript Commands

The Clib Object

Clib.difftime() Method

This method returns the difference in seconds between two times.

Syntax Cib.difftime(tinelntl, tinelnt0)

Parameter Description
timeInt0 An integer time value as returned by the Clib.time() function
timIntl An integer time value as returned by the Clib.time() function

Returns The difference in seconds between timelntO and timelnt]1.

Example This example displays the difference in time, in seconds, between two times:

function difftime_dick ()
{

var first = dib.tine();
var second = dib.tinme();
TheApplication(). Rai seErrorText ("El apsed tinme is " +
Clib.difftinme(second, first) + " seconds.");
}

See Also “Clib.time() Method” on page 206, “Date.toSystem() Method” on page 242

Clib.div() Method and Clib.ldiv() Method

These methods perform integer division and return a quotient and remainder in a
structure.

Syntax Cib.div(nunmerator, denom nator)
Cib.ldiv(numerator, denom nator)

Parameter Description
numerator The number to be divided
denominator The number by which numerator is to be divided

146 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

Returns A structure with the following elements, which are the result of dividing numerator
by denominator:

.quot quotient
.rem remainder

Usage Because Siebel eScript does not distinguish between integers and long integers, the
Clib.div() and Clib.ldiv() methods are identical.

Example The following example accepts two numbers as input from the user, divides the first
by the second, and displays the result:

var division = dib.div(ToNunber(n), ToNunber(d));

TheAppl i cation(). Rai seError Text (" The quotient is " +
division.quot + ".\n\n" + "The remainder is " + division.rem+

E

Clib.errno Property

The errno property stores diagnostic message information when a function fails to
execute correctly.

Syntax Clib.errno

Parameter Description

Not applicable

Returns Not applicable

Usage Many functions in the Clib and SElib objects set errno to nonzero when an error
occurs, to provide more specific information about the error. Siebel eScript
implements errno as a macro to the internal function _errno(). This property can be
accessed with Clib.strerror().

The errno property cannot be modified through eScript code. It is available only for
read-only access.

Version 7.5, Rev. B Siebel eScript Language Reference 147

‘ Siebel eScript Commands

The Clib Object

Clib.fclose() Method

This method writes a file’s data to disk and closes the file.

Syntax Cib.fclose(filePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Returns Zero if successful; otherwise, returns EOF.

Usage This method flushes the file’s buffers (that is, writes its data to disk) and closes the
file. The file pointer ceases to be valid after this call.

Example This example creates and writes to a text file and closes the file, testing for an error
condition at the same time. If an error occurs, a message is displayed and the buffer

is flushed.
function Test_Qick ()
{
var fp = dib.fopen('c:\\temp00O0.txt', "wt"');
Clib. fputs(' abcdef g\ nABCDEFG n', fp);
if (Aib.fclose(fp) !'=0)
TheAppl i cation(). Rai seErrorText (' Unable to close file.' +
"\ nContents are lost.");
}
el se
Cib.remove(' c:\\tenp000.txt"');
}

See Also “Clib.fflush() Method” on page 149

Clib.feof() Method

This function determines whether a file cursor is at the end of a file.

148 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Syntax

Returns

Usage

The Clib Object

Cib.feof (fil ePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

A nonzero integer if the file cursor is at the end of the file; 0 if it is not at the end
of the file.

This method determines whether the file cursor is at the end of the file indicated by
filePointer. It returns a nonzero integer (usually 1) if true, 0 if not.

Clib.ferror() Method

Syntax

Returns

Usage

See Also

This method tests and returns the error indicator for a file.

Clib.ferror(filePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

0 if no error; otherwise, the error number.

This method checks whether an error has occurred for a buffer into which a file has
been read. If an error occurs, it returns the error number.

“Clib.errno Property” on page 147

Clib.fflush() Method

This function writes the data in a file buffer to disk.

Version 7.5, Rev. B Siebel eScript Language Reference 149

‘ Siebel eScript Commands

The Clib Object

Syntax

Returns

Usage

Example

See Also

Clib.fgetc()

Syntax

Returns

Usage

See Also

Cib.fflush(filePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

0 if successful; otherwise, EOF.

This method causes any unwritten buffered data to be written to the file indicated
by filePointer. If filePointer is null, this method flushes buffers in open files.

For an example, read “Clib.fclose() Method” on page 148.
“Clib.fclose() Method” on page 148

Method and Clib.getc() Method

These methods return the next character in a file stream.

Clib.fgetc(filePointer)
Cib.getc(filePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

The next character in the file indicated by filePointer as a byte converted to an
integer.

These methods return the next character in a file stream—a buffer into which a file
has been read. If there is a read error or the file cursor is at the end of the file, EOF

is returned. If there is a read error, Clib.ferror() indicates the error condition.

“Clib.fgets() Method” on page 152 and “Clib.qsort() Method” on page 182

150 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.fgetpos() Method

Syntax

Returns

Usage

Example

This method stores the current position of the pointer in a file.

Clib.fgetpos(filePointer, position)

Parameter Description
filePointer A file pointer as returned by Clib.fopen()
position The current position of filePointer

0 if successful; otherwise, nonzero, in which case an error value is stored in the
€rrno property.

This method stores the current position of the file cursor in the file indicated by
filePointer for future restoration using fsetpos(). The file position is stored in the
variable position; use it with fsetpos() to restore the cursor to its position.

This example writes two strings to a temporary text file, using Clib.fgetpos() to save
the position where the second string begins. The program then uses Clib.fsetpos()
to set the file cursor to the saved position so as to display the second string, as
shown in the illustration.

function Test_Click ()
{
var position;
var fp = dib.tnpfile();
Cib.fputs("Melody\n", fp);
Clib.fgetpos(fp, position)
Clib. fputs("Lingers\n", fp);
Cib.fsetpos(fp, position);
TheAppl i cation(). Rai seErrorText(Cib.fgets(fp));
Cib.fclose(fp);

Output from Temp File [E3

Lingers

Version 7.5, Rev. B Siebel eScript Language Reference 151

‘ Siebel eScript Commands

The Clib Object

See Also

Clib.fgets()

Syntax

Returns

Usage

Example

“Clib.feof() Method” on page 148, “Clib.fsetpos() Method” on page 163, and
“Clib.ftell() Method” on page 164

Method

This method returns a string consisting of the characters in a file from the current
file cursor to the next newline character.

Clib.fgets([maxLen,] filePointer)

Parameter Description

maxLen The maximum length of the string to be returned if no newline character
is encountered; if the File Mode is Unicode, the length argument is the
length in Unicode characters.

filePointer A file pointer as returned by Clib.fopen()

A string consisting of the characters in a file from the current file cursor to the next
newline character. If an error occurs, or if the end of the file is reached, null is
returned.

This method returns a string consisting of the characters in a file from the current
file cursor to the next newline character. The newline is returned as part of the
string.

This example writes a string containing an embedded newline character to a
temporary file. It then reads from the file twice to retrieve the output and display it,
as shown in the illustration following the example.

function Test_Cick ()
{
var x = Cib.tnpfile();
Cib. f puts("abcdef g\ NABCDEFG n", X);
Cib.rew nd(x);
TheApplication().RaiseErrorText(Cib.fgets(x) + " " +

152 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

Clib.fgets(x));
Cib.fclose(x);
}

Output from Temp File [E3

abcdefg
ABCDEFG

See Also “Clib.fputs() Method” on page 158

Clib.flock() Method

This method locks or unlocks a file for simultaneous use by multiple processes.

Syntax Cib.flock(filePointer, node)

Parameter Description

filePointer A file pointer as returned by Clib.fopen() or Clib.tmpfile()
mode One of the following:

s LOCK_EX (lock for exclusive use)

s LOCK_SH (lock for shared use)

= LOCK_UN (unlock)

= LOCK_NB (non-blocking)

Returns 0 if successful; otherwise, a nonzero integer.

Usage The flock() function applies or removes an advisory lock on the file identified by
filePointer. Advisory locks allow cooperating processes to perform consistent
operations on files. However, other processes may still access the files, which can
cause inconsistencies.

Version 7.5, Rev. B Siebel eScript Language Reference 153

‘ Siebel eScript Commands

The Clib Object

The locking mechanism allows two types of locks: shared and exclusive. Multiple
processes can have shared locks on a file at the same time; however, there cannot
be multiple exclusive locks, or shared locks and an exclusive lock, on one file at the
same time.

Read permission is required on a file to obtain a shared lock, and write permission
is required to obtain an exclusive lock. Locking a segment that is already locked by
the calling process causes the old lock type to be removed and the new lock type
to take effect.

If a process requests a lock on an object that is already locked, the request is locked
until the file is freed, unless LOCK_NB is used. If LOCK_NB is used, the call fails
and the error EWOULDBLOCK is returned.

NOTE: Clib.flock() is not supported in Unicode builds. It always returns 0.

Clib.fopen() Method

This method opens a specified file in a specified mode.

Syntax Cib.fopen(filenane, node)

Parameter Description

filename Any valid filename that does not include wildcard characters

mode One of the following characters specifying a file mode, optionally followed by
one of the characters listed in Table 9.

Returns A file pointer to the file opened; null if the function fails.

154 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Usage This function opens the file filename, in mode mode. The mode parameter is a string

composed of

€ » o«
T

w”, or “a” followed by other characters as follows:

Table 9. File Mode Characters

Character Mode

r

w

a

Opens the file for reading; the file must already exist
Opens the file for writing; the file must already exist

Opens the file in append mode

Optional Characters

b

Opens the file in binary mode; if b is not specified, the file is opened in text
mode (end-of-line translation is performed)

Opens the file in text mode

Opens the file in Unicode mode; for example, Clib.fopen(“filename.txt”,
“rwu’”)

Opens the file for update (reading and writing)

When a file is successfully opened, its error status is cleared and a buffer is
initialized for automatic buffering of reads and writes to the file.

Example The following code fragment opens the text file ReadMe for text-mode reading and
displays each line in that file:

Version 7.5, Rev. B

var fp = Cdib.fopen("ReadMe","rt");
if (fp == null)

TheAppl i cation(). Rai seError Text("\aError opening file for
readi ng.\n")

el se
while (null !'= (line=dib.fgets(fp)))
Clib.fputs(line, stdout)
}

}
Cib.fclose(fp);

Siebel eScript Language Reference 155

‘ Siebel eScript Commands

The Clib Object

Here is an example which opens a file and reads and writes a string, using the
default codepage:

var oFile = Cib.fopen("nmyfile","rw");
if (null '= oFile)
{
var sHello = "Hell o";
var nLen = sHello.|ength;
Cib.fputs(sHello, oFile);
Cib.rew nd(oFile);
Cib.fgets (nLen, sHello);
}

Here is an example which opens a file and reads and writes a string in Unicode
mode:

var oFile = Cib.fopen("nmyfile","rw");
if (null '= oFile)
{
var sHello = "Hell o";
var nLen = sHello. | ength;
Cib.fputs(sHello, oFile);
Cib.rew nd(oFile);
Cib.fgets (nLen, sHello);
}

The following example specifies a file path:

function WebAppl et _ShowControl (Control Nane, Property, Mbde,
&HTM.)

{
if (Control Nane == "CotoUrl")
{

var fp = Cib.fopen("c:\\test.txt","w+");
Cib.fputs("property =" + Property + "\n", fp);
Cib.fputs("node =" + Mdde + "\n", fp);
Cib.fputs("ORG HTM. = " + HTML + "\n",fp);
Cib.fclose(fp);
HTML = "<td>New HTM. code</td>";

return(Conti nueCperation);

See Also “Clib.fclose() Method” on page 148 and “Clib.tmpfile() Method” on page 207

156 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.fprintf() Method

Syntax

Returns

Usage

See Also

This function writes a formatted string to a specified file.

Cib.fprintf(filePointer, formatString)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

formatString A string containing formatting instructions for each data item to be written

Not applicable

This method writes a formatted string to the file indicated by filePointer. For
information on format strings used with Clib.fprintf(), see Table 7 on page 138.

“Clib.rsprintf() Method” on page 187 and “Clib.sprintf() Method” on page 188

Clib.fputc() Method and Clib.putc() Method

Syntax

Returns

Usage

These methods write a character, converted to a byte, to the specified file.

Cib.fputc(char, filePointer)
Clib.putc(char, filePointer)

Parameter Description
char A one-character string or a variable holding a single character
filePointer A file pointer as returned by Clib.fopen()

If successful, char; otherwise, EOF.

These methods write a single character to the file indicated by filePointer. If char is
a string, the first character of the string is written to the file indicated by filePointer.
If char is a number, the character corresponding to its Unicode value is written to
the file.

Version 7.5, Rev. B Siebel eScript Language Reference 157

Siebel eScript Commands

The Clib Object

See Also “Clib.fgetc() Method and Clib.getc() Method” on page 150 and “Clib.fputs()
Method” on page 158

Clib.fputs() Method

This method writes a string to a specified file.

Syntax Cib.fputs(string, filePointer)

Parameter Description
string A string literal or a variable containing a string
filePointer A file pointer as returned by Clib.fopen()

Returns EOF if a write error occurs; otherwise, a non-negative value.
Usage This method writes the value of string to the file indicated by filePointer.
Example For an example, read “Clib.fgets() Method” on page 152.

See Also “Clib.fgets() Method” on page 152 and “Clib.fputc() Method and Clib.putc()
Method” on page 157

Clib.fread() Method
This method reads data from an open file and stores it in a variable.

Syntax A dib.fread(destBuffer, bytelength, filePointer)

Syntax B Clib.fread(destVar, varDescription, filePointer)

158 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

Syntax C Clib.fread(bl obVar, bl obDescriptor, filePointer)

Parameter

Description

destBuffer
bytelength
filePointer
destVar

varDescription

blobVar

blobDescriptor

A variable indicating the buffer to contain the data read from the file
The number of bytes to read

A file pointer as returned by Clib.fopen()

A variable to contain the data read from the file

A variable that describes how much data is to be read; must be one of
the values in the list in the “Usage” section

A variable indicating the BLOB to contain the data read from the file

The blobDescriptor for blobVar

Returns The number of elements read. For destBuffer, the number of bytes read, up to
bytelength. For varDescription, 1 if the data is read, or 0 if there is a read error or
EOF is encountered.

Usage This method reads data from the open file filePointer and stores it in the specified
variable. If it does not yet exist, the variable, buffer, or BLOB is created. The
varDescription value is a variable that describes how and how much data is to be
read: if destVar is to hold a single datum, then varDescription must be one of the

following:

UWORDS
SWORDS
UWORD16
SWORDI16
UWORD24
SWORD24
UWORD32
SWORD32
FLOAT32

Version 7.5, Rev. B

Stored as an unsigned byte

Stored as a signed byte

Stored as an unsigned 16-bit integer
Stored as a signed 16-bit integer
Stored as an unsigned 24-bit integer
Stored as a signed 24-bit integer
Stored as an unsigned 32-bit integer
Stored as a signed 32-bit integer

Stored as a floating-point number

Siebel eScript Language Reference 159

Siebel eScript Commands

The Clib Object

FLOAT64 Stored as a double-precision floating-point number
For example, the definition of a structure might be:

ClientDef = new bl obDescriptor();

Cli ent Def. Sex = UWORDS;

ClientDef.Mrital Status = UWORDS;

Client Def._Unusedl = UWORDL16;

ClientDef.FirstName = 30; dientDef.Last Nane = 40;
ClientDef.Initial = UWNRDS;

The Siebel eScript version of fread() differs from the standard C version in that the
standard C library is set up for reading arrays of numeric values or structures into
consecutive bytes in memory. In JavaScript, this is not necessarily the case.

Data types are read from the file in a byte-order described by the current value of
the BigEndianMode global variable.

Example To read the 16-bit integer i , the 32-bit float f , and then the 10-byte buffer buf from
the open file f p, use code like this:
if (!dib.fread(i, SWORD16, fp) || !Cib.fread(f, FLOAT32, fp)
[| 10 !'= dib.fread(buf, 10, fp))
TheAppl i cation(). RaiseErrorText("Error reading from
file.\n");
}

See Also “Clib.fwrite() Method” on page 164

Clib.freopen() Method

This method closes the file associated with a file pointer and then opens a file and
associates it with the file pointer of the file that has been closed.

Syntax Cib.freopen(filename, node, ol dFil ePointer)

Parameter Description

filename The name of a file to be opened

160 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Returns

Usage

See Also

The Clib Object

Parameter Description

mode One of the file modes specified in the Clib.fopen() function; for Unicode,
the same “u” flag as in Clib.fopen can be used

oldFilePointer The file pointer to a file to be closed, and to which filename is to be
associated

A copy of the old file pointer after reassignment, or nul | if the function fails.

This method closes the file associated with oldFilePointer (ignoring any close errors)
and then opens filename according to mode (as in Clib.fopen()) and reassociates
oldFilePointer to this new file specification. It is commonly used to redirect one of
the predefined file handles (stdout, stderr, stdin) to or from a file.

“Clib.fclose() Method” on page 148 and “Clib.fopen() Method” on page 154

Clib.frexp() Method

Syntax

Returns

Usage

This method breaks a number into a normalized mantissa between 0.5 and 1.0 and
calculates an integer exponent of 2 such that the number is equivalent to the
mantissa * 2 A exponent.

Cib. frexp(nunber, exponent)

Parameter Description
number The number to be operated on
exponent The exponent to use

A normalized mantissa between 0.5 and 1.0; otherwise, 0.

This method breaks number into a normalized mantissa between 0.5 and 1.0 and
calculates an integer exponent of 2 such that number = = mantissa * 2 exponent.
A mantissa is the decimal part of a natural logarithm.

Version 7.5, Rev. B Siebel eScript Language Reference 161

Siebel eScript Commands

The Clib Object

Clib.fscanf() Method

This function reads data from a specified file and stores the data items in a series of

parameters.
Syntax Cib.fscanf(filePointer, formatString, varl, var2, ..., varn)
Parameter Description
filePointer A file pointer as returned by Clib.fopen()
formatString A string containing formatting instructions for each data item to
be read
varl, var2, ..., varn Variables holding the values to be formatted

Returns The number of input items assigned. This number may be fewer than the number
of parameters requested if there was a matching failure. If there is an input failure
(before the conversion occurs), this function returns EOF.

Usage This function reads input from the file indicated by filePointer and stores that input
in the varl, var2, ..., varn parameters following the formatString value according to
the character combinations in the format string, which indicate how the file data is
to be read and stored. The file must be open, with read access.

Characters from input are matched against the formatting instruction characters of
formatString until a percent character (%) is reached. The % character indicates
that a value is to be read and stored to subsequent parameters following
formatString. Each subsequent parameter after formatString gets the next parsed
value taken from the next parameter in the list following formatString.

A parameter specification takes this form:

% *][w dth]type

For values for these items, read “Formatting Input” on page 140.

See Also “Clib.sinh() Method” on page 188 and “Clib.sscanf() Method” on page 190

162 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.fseek() Method

Syntax

Returns

Usage

See Also

This method sets the position of the file cursor of an open file.

Clib.fseek(filePointer, offset[, npde])

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

offset The number of bytes to move the file cursor beyond mode
mode One of the following values:

SEEK_CUR: seek is relative to the current position of the file cursor
SEEK_END: seek is relative to the end of the file
SEEK_SET: seek is relative to the beginning of the file

0 if successful, or nonzero if it cannot set the file cursor to the indicated position.

This method sets the position of the file cursor in the file indicated by filePointer. If
mode is not supplied, then the absolute offset from the beginning of the file
(SEEK_SET) is assumed. For text files (that is, files not opened in binary mode), the
file position may not correspond exactly to the byte offset in the file.

“Clib.fgetpos() Method” on page 151, “Clib.ftell() Method” on page 164, and
“Clib.rewind() Method” on page 186

Clib.fsetpos() Method

Syntax

This method sets the current file cursor to a specified position.

Clib.fsetpos(filePointer, position)

Parameter Description
filePointer A file pointer as returned by Clib.fopen()
position The value returned by Clib.fgetpos(filePointer, position)

Version 7.5, Rev. B Siebel eScript Language Reference 163

‘ Siebel eScript Commands

The Clib Object

Returns

Usage

Example

See Also

0 if successful; otherwise, nonzero, in which case an error value is stored in errno.
This method sets the current file cursor to a specified position in the file indicated
by filePointer. It is used to restore the file cursor to a position that has previously
been retrieved by Clib.fgetpos() and stored in the position variable used by that
method.

For an example, read “Clib.fgetpos() Method” on page 151.

“Clib.fgetpos() Method” on page 151 and “Clib.ftell() Method” on page 164

Clib.ftell() Method

Syntax

Returns

Usage

See Also

This method sets the position offset of the file cursor of an open file relative to the
beginning of the file.

Cib.ftell (filePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

The current location of the file cursor, or -1 if there is an error, in which case an
error value is stored in Clib.errno.

This method sets the position offset of the file cursor of the open file indicated by
filePointer relative to the beginning of the file. For text files (that is, files not opened
in binary mode), the file position may not correspond exactly to the byte offset in
the file.

“Clib.fseek() Method” on page 163 and “Clib.fsetpos() Method” on page 163

Clib.fwrite() Method

This method writes the data in a specified variable to a specified file and returns the
number of elements written.

164 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

Syntax A Cib.fwite(sourceVar, varDescription, filePointer)

Syntax B Cib.fwite(sourceVar, bytelength, filePointer)

Parameter Description

bytelength Number of bytes to write

sourceVar A variable indicating the source from which data is to be written
varDescription A value depending on the type of object indicated by sourceVar
filePointer A file pointer as returned by Clib.fopen()

Returns 0 if a write error occurs; use Clib.ferror() to get more information about the error.

Usage This method writes the data in sourceVar to the file indicated by filePointer and
returns the number of elements written.

The varDescription variable describes how much data is to be read from the object
indicated by sourceVar:

If sourceVar Is Value of varDescription Is

Buffer Length of the buffer
Object Object descriptor

A single datum One of the values listed in “Clib.fread() Method” on page 158

The Siebel eScript version of fwrite() differs from the standard C version in that the
standard C library is set up for writing arrays of numeric values or structures from
consecutive bytes in memory. This is not necessarily the case in eScript.

Example To write the 16-bit integer i , the 32-bit float f, and the 10-byte buffer buf into open
file f p, use the following code:

Version 7.5, Rev. B Siebel eScript Language Reference 165

Siebel eScript Commands

The Clib Object

if (!'Aib.fwite(i, SWORD16, fp) || !AAib.fwite(f, FLOAT32, fp)
|| 10 !'= fwite(buf, 10, fp))

TheAppl i cation(). Rai seErrorText("Error witing to file.\n");

See Also “Clib.fread () Method” on page 158

Clib.getcwd() Method

This method returns the entire path of the current working directory for a script.

Syntax Clib. getcwd()

Parameter Description

Not applicable

Returns The entire path of the current working directory for a script.

Usage In a Siebel application, the default (current working) directory in a Windows
environment is always C: \ Si ebel \ bi n. When a script finishes running, the default
directory returns to C: \ Si ebel \ bi n, even if the script changes the current working
directory.

Example In this example, the current directory is displayed in a message box. The script then
makes the root the current directory, creates a new directory, removes that directory,
and then attempts to make the removed directory current.

function Button_Click ()

{

var currDir = dib.getcwd();

TheApplication(). Trace("Current directory is " + Cib.getcwd());
var neg = Cib.nkdir("C\\dib test');

/1 Display the error flag created by creating directory;

/1 Should be 0, indicating no error.

TheApplication(). Trace(nsg);

/1 Change the current directory to the new 'dib test'
Cib.chdir("C\\dib test");

166 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

See Also

The Clib Object

TheApplication().Trace("Current directory is " + Cib.getcwd());
/Il Delete "Cib test'
Cib.chdir("C\\");
/1 Attenpting to nmake a renoved directory current yields error
flag
Cib.rmdir("Cib test");
msg = Cib.chdir("C\\Cib.test");
TheApplication(). Trace(nsg);
}

The output displayed in the message boxes is as follows:

Current directory is C\SIEBEL\BIN
0

Current directory is C\dib test
-1

“Clib.chdir() Method” on page 143, “Clib.mkdir() Method” on page 178, and
“Clib.rmdir() Method” on page 186

Clib.getenv() Method

Syntax

Returns
Usage

Example

See Also

This method returns a specified environment-variable string.

Qi b. get env(var Nane)

Parameter Description

varName The name of an environment variable

The value of the named environment variable.
This method returns the value of an environment variable when given its name.

The following line of code displays the current path:

TheApplication().RaiseErrorText(dib. getenv("PATH=" + "PATH"));

“Clib.putenv() Method” on page 181

Version 7.5, Rev. B Siebel eScript Language Reference 167

‘ Siebel eScript Commands

The Clib Object

Clib.gmtime() Method

This method converts an integer as returned by the Clib.time() function to a Time
object representing the current date and time expressed as Greenwich Mean Time
(GMT).

Syntax dib.gntinme(tinelnt)

Parameter Description

timelnt A date-time value as returned by the Clib.time() function

Returns A Time object representing the current date and time expressed as Greenwich Mean
Time.

Usage This method converts an integer as returned by the Clib.time() function to a Time
object representing the current date and time expressed as Greenwich Mean Time
(GMT). For details on the Time object, read “The Time Object” on page 135.

NOTE: The line of code

var now = Cib.asctime(dib.gmime(dib.time())) + "GvIr";
is exactly equivalent to the standard JavaScript construction

var aDate = new Dat e;

var now = aDate.toGMIString()
Wherever possible, the second form should be used.

Example The following line of code returns the current GMT date and time as a string in the
form Day Mon dd hh:mm:ss yyyy.

TheApplication().RaiseErrorText(Cib.asctine(dib.gnmime(dib.ti
me())));

See Also “Clib.asctime() Method” on page 141, “Clib.ctime() Method” on page 145,
“Clib.localtime() Method” on page 175, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getTime() Method” on page 219, “getUTCDate()
Method” on page 221, and “toGMTString() Method” on page 240

168 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

Clib.isalnum() Method

Syntax

Returns

Usage

See Also

This function returns true if a specified character is alphanumeric.

Clib.isal numchar)

Parameter Description

char A single character, or a variable containing a single character

True if char is an alphabetic character from A through Z or a through z, or is a digit
from 0 through 9; otherwise, false.

This function returns true if char is alphanumeric. Otherwise, it returns false.
“Clib.isalpha() Method” on page 169, “Clib.islower() Method” on page 171,

“Clib.isprint() Method” on page 172, “Clib.isupper() Method” on page 174, and
“Clib.isdigit() Method” on page 170

Clib.isalpha() Method

Syntax

Returns
Usage

See Also

This function returns true if a specified character is alphabetic.

Cib.isal pha(char)

Parameter Description

char A single character or a variable containing a single character

True if char is an alphabetic character from A to Z or a to z; otherwise, false.
This function returns true if char is alphabetic; otherwise, it returns false.
“Clib.isdigit() Method” on page 170, “Clib.isalnum() Method” on page 169,

“Clib.islower() Method” on page 171, “Clib.isprint() Method” on page 172, and
“Clib.isupper() Method” on page 174

Version 7.5, Rev. B Siebel eScript Language Reference 169

‘ Siebel eScript Commands

The Clib Object

Clib.isascii() Method

This function returns true if a specified character has an ASCII code from 0 to 127.

Syntax Cdib.isascii(char)

Parameter Description

char A single character or a variable containing a single character

Returns True if char is has an ASCII code from 0 through 127; otherwise, false.

Usage This function returns true if char is a character in the standard ASCII character set,
with codes from 0 through 127; otherwise, it returns false.

See Also “Clib.iscntrl() Method” on page 170 and “Clib.isprint() Method” on page 172

Clib.iscntrl() Method

This function returns true if a specified character is a control character.

Syntax Clib.iscntrl(char)

Parameter Description

char A single character or a variable containing a single character

Returns True if char is a control character; otherwise, false.

Usage This function returns true if char is a control character, that is, one having an ASCII
code from 0 through 31; otherwise, it returns false.

See Also “Clib.isascii() Method” on page 170

Clib.isdigit() Method

This function returns true if a specified character is a decimal digit.

170 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

See Also

The Clib Object

Cib.isdigit(char)

Parameter Description

char A single character or a variable containing a single character

True if char is a decimal digit from 0 through 9; otherwise, false.

This function returns true if char is a decimal digit from 0 through 9; otherwise, it
returns false.

“Clib.isalnum() Method” on page 169, “Clib.isalpha() Method” on page 169, and
“Clib.isupper() Method” on page 174

Clib.isgraph() Method

Syntax

Returns

Usage

See Also

This function returns true if a specified character is a printable character other than
a space.

Cib.isgraph(char)

Parameter Description

char A single character or a variable containing a single character

True if char is a printable character other than the space character; otherwise, false.

This function returns true if char is a printable character other than the space
character (ASCII code 32); otherwise, it returns false.

“Clib.isprint() Method” on page 172, “Clib.ispunct() Method” on page 173, and
“Clib.isspace() Method” on page 173

Clib.islower() Method

This function returns true if a specified character is a lowercase alphabetic
character.

Version 7.5, Rev. B Siebel eScript Language Reference 171

‘ Siebel eScript Commands

The Clib Object

Syntax Clib.islower(char)

Parameter Description

char A single character or a variable containing a single character

Returns True if char is a lowercase alphabetic character; otherwise, false.

Usage This function returns true if char is a lowercase alphabetic character from a through
z; otherwise, it returns false.

See Also “Clib.isalnum() Method” on page 169, “Clib.isalpha() Method” on page 169, and
“Clib.isupper() Method” on page 174

Clib.isprint() Method

This function returns true if a specified character is printable.

Syntax Clib.isprint(char)

Parameter Description

char A single character or a variable containing a single character

Returns True if char is a printable character that can be typed from the keyboard; otherwise,
false.

Usage This function returns true if char is a printable character that can be typed from the
keyboard (ASCII codes 32 through 126); otherwise, it returns false.

See Also “Clib.isalnum() Method” on page 169, “Clib.isascii() Method” on page 170,

“Clib.isgraph() Method” on page 171, “Clib.ispunct() Method” on page 173, and
“Clib.isspace() Method” on page 173

172 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.ispunct() Method

Syntax

Returns

See Also

This function returns true if a specified character is a punctuation mark that can be
entered from the keyboard.

Clib.ispunct(char)

Parameter Description

char A single character or a variable containing a single character

True if char is a punctuation mark that can be entered from the keyboard (ASCII
codes 33 through 47, 58 through 63, 91 through 96, or 123 through 126); otherwise,
it returns false.

“Clib.isgraph() Method” on page 171, “Clib.isprint() Method” on page 172, and
“Clib.isspace() Method” on page 173

Clib.isspace() Method

Syntax

Returns

Usage

See Also

This function returns true if a specified character is a white-space character.

Clib.isspace(char)

Parameter Description

char A single character or a variable containing a single character

True if char is a white-space character; otherwise, false.
This function returns true if charis a horizontal tab, newline, vertical tab, form feed,
carriage return, or space character (that is, one having an ASCII code of 9, 10, 11,

12, 13, or 32); otherwise, it returns false.

“Clib.isascii() Method” on page 170 and “Clib.isprint() Method” on page 172

Version 7.5, Rev. B Siebel eScript Language Reference 173

‘ Siebel eScript Commands

The Clib Object

Clib.isupper() Method

Syntax

Returns

Usage

See Also

This function returns true if a specified character is an uppercase alphabetic
character.

Clib.isupper(char)

Parameter Description

char A single character or a variable containing a single character

True if char is an uppercase alphabetic character; otherwise, false.

This function returns true if char is an uppercase alphabetic character from A
through Z; otherwise, it returns false.

“Clib.isalpha() Method” on page 169 and “Clib.islower() Method” on page 171

Clib.isxdigit() Method

Syntax

Returns

Usage

See Also

This function returns true if a specified character is a hexadecimal digit.

Clib.isxdigit(char)

Parameter Description

char A single character or a variable containing a single character

True if char is a hexadecimal digit; otherwise, false.

This function evaluates a single character, returning true if the character is a valid
hexadecimal character (that is, a number from 0 through 9 or an alphabetic
character from a through f or A through F). If the character is not in one of the legal
ranges, it returns false.

“Clib.isdigit() Method” on page 170

174 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

Clib.ldexp() Method

Syntax

Returns

Usage

See Also

This method calculates a floating-point number given a mantissa and exponent.

Clib.ldexp(mantissa, exponent)

Parameter Description
mantissa The number to be operated on
exponent The exponent to use

The result of the calculation.

This method is the inverse of .frexp() and calculates a floating-point number from
the following equation:

manti ssa * 2 A exponent

A mantissa is the decimal part of a natural logarithm.

“Clib.frexp() Method” on page 161

Clib.localtime() Method

Syntax

Returns

This method returns a value as a Time object.

Clib.localtime(tinelnt)

Parameter Description

timelnt A date-time value as returned by the Clib.time() function

The value of timelnt (as returned by the time() function) as a Time object.

Version 7.5, Rev. B Siebel eScript Language Reference 175

‘ Siebel eScript Commands

The Clib Object

Usage

See Also

This method returns the value timelnt (as returned by the time() function) as a
Time object. For details on the Time object, read “The Time Object” on page 135.

NOTE: The line of code

var now = Cib.asctimne(dib.localtime(dib.tine()));
is exactly equivalent to the standard JavaScript construction

var aDate = new Dat e;

var now = aDate.tolLocal eString()
Wherever possible, use the second form.

“Clib.asctime() Method” on page 141, “Clib.ctime() Method” on page 145,
“Clib.gmtime() Method” on page 168, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getTime() Method” on page 219, “getUTCDate()
Method” on page 221, and “toLocaleString() Method and toString() Method” on
page 241

Clib.memchr() Method

Syntax

Returns

Usage

This method searches a buffer and returns the first occurrence of a specified
character.

Cdib.nmenchr (bufferVar, char[, size])

Parameter Description

bufferVar A buffer, or a variable pointing to a buffer
char The character to find

size The amount of the buffer to search, in bytes

Null if char is not found in bufferVar; otherwise, a buffer that begins at the first
instance of char in bufferVar.

This method searches bufferVar and returns the first occurrence of char. If size is
not specified, the method searches the entire buffer from element 0.

176 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.memcmp() Method

This method compares the contents of two buffers or the length of two buffers.

Syntax Cib.menmcnp(bufl, buf2[, |ength])

Parameter Description

bufl A variable containing the name of the first buffer to be compared
buf2 A variable containing the name of the second buffer to be compared
length The number of bytes to compare

Returns A negative number if bufl is less than buf2, 0 if bufl is the same as buf2 for length
bytes, a positive number if bufl is greater than buf2.

Usage If length is not specified, Clib.memcmp() compares the length of the two buffers. It
then compares the contents up to the length of the shorter buffer. If length is
specified and one of the buffers is shorter than length, comparison proceeds up to
the length of the shorter buffer.

Clib.memcpy() Method and Clib.memmove() Method

These methods copy a specified number of bytes from one buffer to another.

Syntax Clib. mencpy(destBuf, srcBuf[, |ength])

Clib. mermove(dest Buf, srcBuf[, |ength])

Parameter Description

destBuf The buffer to copy to

srcBuf The buffer to copy from
length The number of bytes to copy

Returns Not applicable

Version 7.5, Rev. B Siebel eScript Language Reference 177

Siebel eScript Commands

The Clib Object

Usage These methods copy the number of bytes specified by length from srcBuf to destBuf.
If destBuf has not already been defined, it is created as a buffer. If the length is not
supplied, the entire contents of srcBuf are copied to destBuf.

Siebel eScript protects data from being overwritten; therefore, in Siebel eScript
Clib.memcpy() method is the same as Clib.memmove().

Clib.memset() Method

This method fills a specified number of bytes in a buffer with a specified character.

Syntax Cib.nenset (bufferVar, char[, length])

Parameter Description

bufferVar A buffer or a variable containing a buffer

char The character to fill the buffer with

length The number of bytes in which char is to be written

Returns Not applicable
Usage This method fills a buffer with length bytes of char. If the buffer has not already
been defined, it is created as a buffer of length bytes. If bufferVar is shorter than

length, its size is increased to length. If length is not supplied, it defaults to the size
of bufferVar, starting at index 0.

Clib.mkdir() Method

This method creates a directory.

Syntax Clib. mkdi r (di r pat h)

Parameter Description

dirpath A string containing a valid directory path

178 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Returns

Usage

Example

See Also

The Clib Object

0 if successful; otherwise, -1.

This method creates a directory. If no path is specified, the directory is created in
C:\'si ebel \ bi n. The specified directory may be an absolute or relative path
specification.

For an example, read “Clib.getcwd() Method” on page 166.

“Clib.chdir() Method” on page 143, “Clib.getcwd() Method” on page 166, and
“Clib.rmdir() Method” on page 186

Clib.mktime() Method

Syntax

Returns

Usage

See Also

Clib.modf()

This method converts a Time object to the time format returned by Clib.time().

dib. nktime(Ti ne)

Parameter Description

Time A Time object

An integer representation of the value stored in Time, or -1 if Time cannot be
converted or represented.

Undefined elements of Time are set to 0 before the conversion. This function is the
inverse of Clib.localtime(), which converts from a time integer to a Time object. For
details on the Time object, read “The Time Object” on page 135.

“Clib.asctime() Method” on page 141, “Clib.ctime() Method” on page 145,
“Clib.gmtime() Method” on page 168, “Clib.localtime() Method” on page 175,
“GetDate() Method” on page 212, “getTime() Method” on page 219, and
“getUTCDate() Method” on page 221

Method

This method returns the integer part of a decimal number.

Version 7.5, Rev. B Siebel eScript Language Reference 179

Siebel eScript Commands

The Clib Object

Syntax C i b. nodf (nunber, var intVar)

Parameter Description
number The floating-point number to be split
intVar A variable to hold the integer part of number

Returns The integer part of number, stored in intVar.

Usage This method returns the integer part of a decimal number. Its effect is identical to
that of Tolnteger(number).

Example This example passes the same value to Clib.modf() and Tolnteger(). As the
illustration shows, the result is the same:

function eScript_Cick ()
Cib. nodf (32. 154, var Xx);
var y = Tol nteger(32.154);

TheAppl i cation(). Rai seError Text ("nodf yields " + x +
".\nTolnteger yields " +y + ".");

Integer Part E

modf yields 32,
Tolnteger yields 32

See Also “Tolnteger() Method” on page 266

Clib.perror() Method

This method prints and returns an error message that describes the error defined by
Clib.errno.

180 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Syntax Clib.perror([errnsg])

Parameter Description

eIrmsg A message to describe an error condition

Returns A string containing an error message that describes the error indicated by
Clib.errno.

Usage This method is identical to calling Clib.strerror(Clib.errno). If a string variable is
supplied, it is set to the string returned.

Clib.putenv() Method

This method creates an environment variable, sets the value of an existing
environment variable, or removes an environment variable.

Syntax Cib. putenv(var Nane, stringVal ue)

Parameter Description
varName The name of an environment variable
stringValue The value to be assigned to the environment variable

Returns 0 if successful; otherwise, -1.

Usage This method sets the environment variable varName to the value of stringValue. If
stringValue is null, then varName is removed from the environment.

The environment variable change persists only while the Siebel eScript code and its
child processes are executing. After execution, the variable is destroyed
automatically.

See Also “Clib.getenv() Method” on page 167

Version 7.5, Rev. B Siebel eScript Language Reference 181

‘ Siebel eScript Commands

The Clib Object

Clib.gsort() Method

This method sorts elements in an array.

Syntax Clib.qgsort(array, [elementCount,]conpareFunction)

Parameter Description
array An array to sort
elementCount The number of elements in the array, up to 65,536

compareFunction A user-defined function that can affect the sort order

Returns Not applicable

Usage This method sorts elements in an array, starting from index 0 to elementCount-1. If
elementCount is not supplied, the method sorts the entire array. This method differs
from the Array.sort() method in that it can sort dynamically created arrays, whereas
Array.sort() works only with arrays explicitly created with a new Array statement.

Example The following example prints a list of colors sorted in reverse alphabetical order,
ignoring case:

/1 initialize an array of colors

var colors = { "yellow', "Blue", "GREEN', "purple", "RED',

"BLACK", "white", "orange" };

/1 sort the list using gsort and our Col orSorter routine

Cib.qgsort(colors,"ReverseCol orSorter");

/1 display the sorted colors

for (var i = 0; i <= getArraylLength(colors); i++)
Cib.puts(colors[i]);

function ReverseCol orSorter(colorl, color?2)
/] do a sinple case insensitive string
/1 conparison, and reverse the results too

{
var ConpareResult = Cib.stricnp(colorl, color?2)
return(_ConpareResult);

}
The output of the preceding code would be:

182 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

See Also

The Clib Object

yel | ow
white
RED
purpl e
or ange
GREEN
Bl ue
BLACK

“sort() Method” on page 101

quot Method

Syntax

Returns

Usage

Example

See Also

This method is used to find the quotient after a division operation.

i ntVar. quot
Placeholder Description
intvar Any variable containing an integer

The quotient part of a division operation performed by Clib.div() or Clib.ldiv().

This method is used in conjunction with the Clib.div() or Clib.1div() functions. For
details, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

For an example, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

“Clib.div() Method and Clib.Idiv() Method” on page 146 and “rem Method” on
page 184

Clib.rand() Method

This method generates a random number between 0 and RAND_MAX, inclusive.

Version 7.5, Rev. B Siebel eScript Language Reference 183

‘ Siebel eScript Commands

The Clib Object

Syntax

Returns

Usage

See Also

rem Method

Syntax

Returns

Usage

Example

See Also

dib.rand()

Parameter Description

Not applicable

A pseudo-random number between 0 and RAND_MAX, inclusive. The value of
RAND_MAX depends upon the operating system, but is typically 32,768.

The sequence of pseudo-random numbers is affected by the initial generator seed
and by earlier calls to Clib.rand(). For information about the initial generator seed,

read “Clib.srand() Method” on page 189.

“Clib.srand () Method” on page 189 and “Math.random() Method” on page 288

This method is used to find the remainder after a division operation.
intVar.rem

Placeholder Description

intvar Any variable containing an integer

The remainder part of the result of a division operation performed by Clib.div() or
Clib.1div ().

This method is used in conjunction with the Clib.div() or Clib.ldiv() function. For
details, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

For an example, read “Clib.div() Method and Clib.ldiv() Method” on page 146.

“Clib.div() Method and Clib.Idiv() Method” on page 146 and “quot Method” on
page 183

184 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.remove() Method

Syntax

Returns
Usage
Example

See Also

This method deletes a specified file.

Cib.remove(fil enane)

Parameter Description

filename A string or string variable containing the name of the file to be deleted

0 if successful; otherwise, -1.
The filename parameter may be either an absolute or a relative filename.
For an example, read “Clib.fclose() Method” on page 148.

“Clib.fopen() Method” on page 154

Clib.rename() Method

Syntax

Returns

Usage

This method renames a file.

Cib. renane(ol dNane, newNane)

Parameter Description
oldName A string representing the name of the file to be renamed
newName A string representing the new name to give the file

0 if successful; otherwise, -1.

This method renames a file. The oldName parameter may be either an absolute or
a relative filename.

Version 7.5, Rev. B Siebel eScript Language Reference 185

‘ Siebel eScript Commands

The Clib Object

Clib.rewind() Method

This method sets the file cursor to the beginning of a file.

Syntax Cib.rew nd(filePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Returns Not applicable

Usage This call is identical to Clib.fseek(filePointer, 0, SEEK_SET) except that it also clears
the error indicator for the file indicated by filePointer.

NOTE: Siebel applications use UTF-16 encoding when writing to a file in Unicode.
The first two bytes of the file are always the BOM (Byte Order Mark). When
Clib.rewind is called on such a file, it is pointing to the BOM (-257) and not the first
valid character. The user can call Clib.fgetc/getc once to skip the BOM.

Example For an example, read “Clib.fgets() Method” on page 152.

See Also “Clib.fseek() Method” on page 163

Clib.rmdir() Method

This method removes a specified directory.

Syntax Cib. rndir(dirpath)

Parameter Description

dirpath The directory to be removed

Returns 0 if successful; otherwise, -1.

186 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Usage The dirpath parameter may be an absolute or relative path specification.
Example For an example, read “Clib.getcwd() Method” on page 166.

See Also “Clib.chdir() Method” on page 143, “Clib.getcwd() Method” on page 166, and
“Clib.mkdir() Method” on page 178

Clib.rsprintf() Method

This method returns a formatted string.

Syntax Cib.rsprintf([formatString] [,varl, var2, ..., varn])
Parameter Description
formatString A string indicating how variable or literal parameters are to be
treated

varl, var2, ..., varn Variables to be printed using the formatString

Returns A string formatted according to formatString.

Usage Clib.rsprintf() can return string or numeric literals that appear as parameters.

The format string contains character combinations indicating how following
parameters are to be treated. For information on format strings used with
Clib.rsprintf(), see Table 7 on page 138 in the section “Formatting Data” on
page 137. If there are variable parameters, the number of formatting sequences
must match the number of variables.

Characters are returned as read until a percent character (%) is reached. The
percent character indicates that a value is to be printed from the parameters
following the format string.

Example Each of the following lines shows an rsprintf example followed by the resulting
string:

Version 7.5, Rev. B Siebel eScript Language Reference 187

‘ Siebel eScript Commands

The Clib Object

Cib.rsprintf("l count: % % %.",1,2,3) //"l count: 1 2 3"

var a = 1;
var b = 2;
Cib.rsprintf("% %l %l",a, b, atb) /"1 2 3"

See Also “Clib.sprintf() Method” on page 188

Clib.sinh() Method

This method returns the hyperbolic sine of a floating-point number.

Syntax Clib.sinh(fl oat Num

Parameter Description

floatNum A floating-point number, or a variable containing a floating-point number,
whose hyperbolic sine is to be found

Returns The hyperbolic sine of floatNum.

See Also “Clib.cosh() Method” on page 144 and “Clib.tanh() Method” on page 206

Clib.sprintf() Method

This method writes output to a string variable according to a prescribed format.

Syntax Cib.sprintf(stringvar, formatString, varl, var2, ..., varn)
Parameter Description
stringVar The string variable to which the output is assigned
formatString A string indicating how variable or literal parameters are to be
treated
varl, var2, ..., varn Variables to be formatted using the formatString

Returns The number of characters written into buffer if successful; otherwise, EOF.

188 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Usage

Example

See Also

The Clib Object

This method formats the values in the variables according to formatString and
assigns the result to stringVar. The formatString contains character combinations
indicating how following parameters are to be treated. For information on format
strings used with Clib.sprintf(), see Table 7 on page 138 in the section “Formatting
Data” on page 137. The string value need not be previously defined; it is created
large enough to hold the result. Characters are printed as read to standard output
until a percent character (%) is reached. The percent character indicates that a
value is to be printed from the parameters following the format string.

Each of the following lines shows an sprintf example followed by the resulting
string:

var testString;

Clib.sprintf(testString, "I count: % % %.", 1, 2, 3)

//"l count: 1 2 3"

var a = 1;

var b = 2;

Cib.sprintf(testString, "% %l %l",a, b, a+b) /"1 2 3"

“Clib.rsprintf() Method” on page 187

Clib.srand() Method

Syntax

Returns

Usage

See Also

This method initializes a random number generator.

Clib. srand(seed)

Parameter Description

seed A number for the random number generator to start with

Not applicable

If seed is not supplied, then a random seed is generated in a manner that is specific
to the operating system in use.

“Clib.rand() Method” on page 183 and “Math.random() Method” on page 288

Version 7.5, Rev. B Siebel eScript Language Reference 189

‘ Siebel eScript Commands

The Clib Object

Clib.sscanf() Method

Syntax

Returns

Usage

This method reads input from the standard input device and stores the data in
variables provided as parameters.

Cib.sscanf([format String] [,varl, var2, ..., varn])
Parameter Description
formatString A string indicating how variable or literal parameters are to be
treated

varl, var2, ..., varn Variables in which to store the input

EOF if input failure occurs before any conversion occurs; otherwise, the number of
variables assigned data.

This method reads input from the standard input stream (the keyboard unless some
other file has been redirected as stdin by the Clib.freopen() function) and stores the
data read in the variables provided as parameters following formatString. The data
is stored according to the character combinations in formatString which indicate
how the input data is to be read and stored.

This method is identical to calling fscanf() with st di n as the first parameter. It
returns the number of input items assigned; this number may be fewer than the
number of parameters requested if there is a matching failure. If there is a
conversion failure, EOF is returned.

The formatString value specifies the admissible input sequences, and how the input
is to be converted to be assigned to the variable number of arguments passed to this
function. The input is not read until the ENTER Kkey is pressed.

Characters from input are matched against the characters of the formatString until
a percent character (%) is reached. The percent character indicates that a value is
to be read and stored to subsequent parameters following formatString. Each
subsequent parameter after formatString gets the next parsed value taken from the
next parameter in the list following formatString.

A parameter specification takes this form:

190 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

% *][wdth]type

For values for these items, read “Formatting Input” on page 140.

See Also “Formatting Data” on page 137, “Clib.fscanf() Method” on page 162, and
“Clib.sinh() Method” on page 188

Clib.strchr() Method

This method searches a string for a specified character.

Syntax dib.strchr(string, char)

Parameter Description
string A string literal, or string variable, containing the character to be searched for
char The character to search for

Returns The offset from the beginning of string of the first occurrence of char in string;
otherwise, null if char is not found in string.

Usage This method searches the parameter string for the character char. When possible,
you should use the standard JavaScript method substring() (read “string.replace()

Method” on page 311).

Example The following code fragment:

var str = "l can't stand soggy cereal ."

var substr = Cib.strchr(str, 's');
TheApplication().RaiseErrorText("str =" + str + "\nsubstr =" +
substr);

results in the following output.

Siebel Sales Enterprise [E3

str = | can't stand soggy cereal.
substr = stand soggy cereal.

Version 7.5, Rev. B Siebel eScript Language Reference 191

‘ Siebel eScript Commands

The Clib Object

See Also

“Clib.strcspn() Method” on page 192, “Clib.strpbrk() Method” on page 200,
“Clib.strrchr() Method” on page 201, and “string.replace() Method” on page 311

Clib.stricmp() Method and Clib.strcmpi() Method

Syntax

Returns

Usage

See Also

These methods make a case-insensitive comparison of two strings.

Clib.stricnp(stringl, string2)
Cib.strcnpi(stringl, string2)

Parameter Description

stringl A string, or a variable containing a string, to be compared with string2

string2 A string, or a variable containing a string, to be compared with string!

The result of the comparison, which is 0 if the strings are identical, a negative
number if the ASCII code of the first unmatched character in stringl is less than that
of the first unmatched character in string2, or a positive number if the ASCII code
of the first unmatched character in stringI is greater than that of the first unmatched
character in string2.

These methods continue to make a case-insensitive comparison, one byte at a time,
of stringl and string2 until there is a mismatch or the terminating null byte is
reached.

“Clib.strncmp() Method” on page 198 and “Clib.strncmpi() Method and
Clib.strnicmp() Method” on page 198

Clib.strcspn() Method

This method searches a string for any of a group of specified characters.

192 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Syntax Cib.strcspn(string, charSet)

Parameter Description

string A literal string, or a variable containing a string, to be searched

charSet A literal string, or a variable containing a string, which contains the set of
characters to search for

Returns If no matching characters are found, the length of the string; otherwise, the offset
of the first matching character from the beginning of string.

Usage This method searches the parameter string for any of the characters in the string
charSet, and returns the offset of that character. This method is similar to
Clib.strpbrk(), except that Clib.strpbrk() returns the string beginning at the first
character found, while Clib.strcspn() returns the offset number for that character.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

Example The following fragment demonstrates the difference between Clib.strcspn() and
Clib.strpbrk():

var string = "There's nore than one way to skin a cat.";
var rStrpbrk = dib.strpbrk(string, "dxb8wok!");
var rStrcspn = dib.strcspn(string, "dxb8wok!");
TheApplication(). RaiseErrorText("The string is: " + string +
"\nstrpbrk returns a string: " + rStrpbrk +
"\'nstrcspn returns an integer: " + rStrcspn);

Version 7.5, Rev. B Siebel eScript Language Reference 193

‘ Siebel eScript Commands

The Clib Object

This code results in the following output:

stipbrk & strespn |

The string is: There's more than one wap o zkin a cat.
strpbrk. returnz a string: wan to skin a cat.
gtrcepn returnz an integer: 22

See Also “Clib.strchr() Method” on page 191, “Clib.strpbrk() Method” on page 200, and
“string.replace() Method” on page 311

Clib.strerror() Method

This method returns the error message associated with a Clib-defined error number.

Syntax dib.strerror(errno)

Parameter Description

errno The error number returned by Clib.errno

Returns The descriptive error message associated with an error number returned by
Clib.errno.

Usage When some functions fail to execute properly, they store a number in the Clib.errno
property. The number corresponds to the type of error encountered. This method

converts the error number to a descriptive string and returns it.

See Also “Clib.errno Property” on page 147

194 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.strftime() Method

This method creates a string that describes the date or the time or both, and stores
it in a variable.

Syntax Cib.strftime(stringVar, formatString, Tine)

Parameter Description

stringVar A variable to hold the string representation of the time

formatString A string that describes how the value stored in stringVar is formatted, using

Time

the conversion characters listed in the Usage topic

A time object as returned by Clib.localtime()

Returns A formatted string as described by formatString.

Usage For details on the Time object, read “The Time Object” on page 135. The following
conversion characters are used with Clib.strftime() to indicate time and date output:

%a
%A
%b
%B
%c
%d
%H
%1
%]
% m
%M
%P
%S
%U

Version 7.5, Rev. B

Abbreviated weekday name (Sun)

Full weekday name (Sunday)
Abbreviated month name (Dec)

Full month name (December)

Date and time (Dec 2 06:55:15 1979)
Two-digit day of the month (02)
Two-digit hour of the 24-hour day (06)
Two-digit hour of the 12-hour day (06)
Three-digit day of the year from 001 (335)
Two-digit month of the year from 01 (12)
Two-digit minute of the hour (55)

AM or PM (AM)

Two-digit seconds of the minute (15)
Two-digit week of the year where Sunday is the first day of the week (48)

Siebel eScript Language Reference 195

Siebel eScript Commands

The Clib Object

Example

See Also

%w Day of the week where Sunday is 0 (0)

%W Two-digit week of the year where Monday is the first day of the week (47)
%x The date (Dec 2 1979)

%X The time (06:55:15)

%y Two-digit year of the century (79)

%Y The year (1979)

%Z The name of the time zone, if known (EST)

% % The percent character (%)

The following example displays the full day name and month name of the current
day:

var Ti meBuf;

Clib.strftime(TineBuf,"Today is %\, and the nonth is 98",

Clib.localtime(Cib.time()));
TheAppl i cati on() . Rai seError Text (Ti neBuf);

“Clib.asctime() Method” on page 141 and “Clib.localtime() Method” on page 175

Clib.strlwr() Method

Syntax

Returns

Usage

This method converts a string to lowercase.

Cib.strliw(str)

Parameter Description

str The string in which to change case of characters to lowercase.

String - the value of str after conversion of case.

This method converts uppercase letters in str to lowercase, starting at str[0] and
ending before the terminating null byte. The return is the value of str, which is a
variable pointing to the start of str at str[0].

196 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Clib.strncat() Method

Syntax

Returns

Usage

Example

See Also

This method appends a specified number of characters from one string to another
string.

Clib.strncat(destString, sourceString, maxLen)

Parameter Description

destString The string to which characters are to be added
sourceString The string from which characters are to be added
maxLen The maximum number of characters to add

The string in destString after the characters have been appended.

This method appends up to maxLen characters of sourceString onto the end of
destString. Characters following a null byte in sourceString are not copied. The
length of destString is the lesser of maxLen and the length of sourceString.

This example returns the string "I | ove to ride hang-gliders":
var stringl = "I love to "
var string2 = "ride hang-gliders and notor scooters.";

Cib.strncat(stringl, string2, 17);
TheAppl i cation(). Rai seErrorText(stringl);

A Longer String [%]

| love to ride hang-gliders

“Clib.strncpy() Method” on page 199

Version 7.5, Rev. B Siebel eScript Language Reference 197

‘ Siebel eScript Commands

The Clib Object

Clib.strncmp() Method

Syntax

Returns

Usage

See Also

This method makes a case-sensitive comparison of two strings up to a specified
number of bytes until there is a mismatch or it reaches the end of a string.

Cib.strncnp(stringl, string2, naxLen)

Parameter Description

stringl A string, or a variable containing a string, to be compared with string2
string2 A string, or a variable containing a string, to be compared with stringl
maxLen The number of bytes to compare

The result of the comparison, which is 0 if the strings are identical, a negative
number if the ASCII code of the first unmatched character in string1I is less than that
of the first unmatched character in string2, or a positive number if the ASCII code
of the first unmatched character in stringI is greater than that of the first unmatched
character in string2.

This method compares up to maxLen bytes of stringl against string2 until there is
a mismatch or it reaches the end of a string. The comparison is case-sensitive. The
comparison ends when maxLen bytes have been compared or when a terminating
null byte has been reached, whichever comes first.

“Clib.stricmp() Method and Clib.strcmpi() Method” on page 192 and
“Clib.strncmpi() Method and Clib.strnicmp() Method” on page 198

Clib.strncmpi() Method and Clib.strnicmp() Method

These methods make a case-insensitive comparison between two strings, up to a
specified number of bytes.

198 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

Syntax Cib.strncnpi (stringl, string2, naxLen)
Clib.strncnpi (stringl, string2, naxLen)

Parameter Description

stringl A string, or a variable containing a string, to be compared with string2
string?2 A string, or a variable containing a string, to be compared with string!
maxLen The number of bytes to compare

Returns The result of the comparison, which is 0 if the strings are identical, a negative
number if the ASCII code of the first unmatched character in string1I is less than that
of the first unmatched character in string2, or a positive number if the ASCII code
of the first unmatched character in stringI is greater than that of the first unmatched
character in string2.

Usage This method compares up to maxLen bytes of stringl against string2 until there is
a mismatch or it reaches the end of a string. This method does a case-insensitive
comparison, so that A and a are considered to be the same. The comparison ends
when maxLen bytes have been compared or when an end of string has been
reached, whichever comes first.

See Also “Clib.stricmp() Method and Clib.strcmpi() Method” on page 192 and
“Clib.strncmp() Method” on page 198

Clib.strncpy() Method

This method copies a specified number of characters from one string to another.

Syntax Cib.strncpy(destString, sourceString, naxLen)

Parameter Description

destString The string to which characters are to be added
sourceString The string from which characters are to be added
maxLen The maximum number of characters to add

Version 7.5, Rev. B Siebel eScript Language Reference 199

‘ Siebel eScript Commands

The Clib Object

Returns

Usage

See Also

The ASCII code of the first character of destString.

This method copies characters from sourceString to destString. The number of
characters copied is the lesser of maxLen and the length of sourceString. If MaxLen
is greater than the length of sourceString, the remainder of destString is filled with
null bytes. A null byte is appended to destString if MaxLen bytes are copied. If
destString is not already defined, the function defines it. It is safe to copy from one
part of a string to another part of the same string.

“Clib.strncat() Method” on page 197

Clib.strpbrk() Method

Syntax

Returns

Usage

Example

This method searches a string for any of several specified characters and returns the
string beginning at the first instance of one of the specified characters.

Clib.strpbrk(string, charSet)

Parameter Description

string A string variable or literal containing the string from which the substring is to
be extracted

charSet A string variable or literal containing a group of characters, any one of which
may be the starting character for the substring

The string beginning at the first instance of one of the specified characters in the
charSet parameter; otherwise, null, if none is found.

This method searches string for any of the characters specified in charSet.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

For an example using this function, read “Clib.strcspn() Method” on page 192. To
accomplish the same result using standard JavaScript methods, read
“string.replace() Method” on page 311.

200 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

See Also “Clib.strchr() Method” on page 191, “Clib.strcspn() Method” on page 192, and
“string.replace() Method” on page 311

Clib.strrchr() Method

This method searches a string for the last occurrence of a character in a given string.

Syntax Cib.strrchr(string, char)

Parameter Description

string A string literal, or string variable, containing the character to be
searched for

char The character to search for

Returns The offset from the beginning of string of the first occurrence of char in string;
otherwise, null, if char is not found in string.

Usage This method searches the parameter string for the character char. The search is in
the reverse direction, from the right, for char in string.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

Example The following code fragment:

var str = "l can't stand soggy cereal ."

var substr = Cib.strrchr(str, '0');
TheApplication().RaiseErrorText("str =" + str + "\nsubstr =" +
substr);

results in the following output:

Siebel Sales Enterprise [E3

str = | can't stand soggy cereal.
substr = oggy cereal.

Version 7.5, Rev. B Siebel eScript Language Reference 201

Siebel eScript Commands

The Clib Object

See Also “Clib.strchr() Method” on page 191, “Clib.strcspn() Method” on page 192,
“Clib.strpbrk() Method” on page 200, and “string.replace() Method” on page 311

Clib.strspn() Method

This method searches a string for characters that are not among a group of specified
characters.

Syntax Clib.strspn(string, charSet)

Parameter Description
string A literal string, or a variable containing a string, to be searched
charSet A literal string, or a variable containing a string, which contains the set of

characters to search for

Returns If all matching characters are found, the length of the string; otherwise, the offset
of the first matching character from the beginning of string.

Usage This method searches the parameter string for any of the characters in the string
charSet, and returns the offset of that character. The search is case-sensitive, so you
may have to include both uppercase and lowercase instances of the characters to
search for.

This method is similar to Clib.strpbrk(), except that Clib.strpbrk() returns the string
beginning at the first character found, while Clib.strcspn() returns the offset
number for that character.

When possible, you should use the standard JavaScript method substring() (read
“string.replace() Method” on page 311).

Example The following fragment demonstrates Clib.strcspn(). When searching st ri ng, it
returns the position of the w, counting from 0.

var string = "There is nore than one way to skin a cat.";

var rStrspn = dib.strspn(string, " aeiouTthrsm");
TheApplication().RaiseErrorText("strspn returns an integer: ");

202 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

This results in the following output:

strzpn returng an integer: 23

See Also “Clib.strchr() Method” on page 191, “Clib.strcspn() Method” on page 192,
“Clib.strpbrk() Method” on page 200, and “string.replace() Method” on page 311

Clib.strstr() Method

This method searches a string for the first occurrence of a second string.

Syntax Cib.strstr(sourceString, findString)

Parameter Description
sourceString The string within which to search
findString The string to find

Returns The string beginning at the first occurrence of findString in sourceString, continuing
to the end of sourceString; otherwise, null, if findString is not found.

Usage This method searches sourceString, from its beginning, for the first occurrence of
findString. The search is case-sensitive. If the desired result can be accomplished
with the standard JavaScript substring() method, that method is preferred.

Example The following code:

function Test1l dick ()

{

var str = "W have to go to Haverford."

var substr = dib.strstr(str, 'H);

TheApplication().Rai seErrorText("str =" + str + "\ nsubstr ="
+substr);
}

Version 7.5, Rev. B Siebel eScript Language Reference 203

Siebel eScript Commands

The Clib Object

results in the following output:

strstr Example [%]

str ="W'e have to go to Haverford,
substr = Haverford.

See Also “Clib.strstri() Method” on page 204 and “string.replace() Method” on page 311

Clib.strstri() Method

This method performs a case-insensitive search in a string for the first occurrence
of a specified substring.

Syntax Cdib.strstri(sourceString, findString)

Parameter Description
sourceString The string within which to search
findString The string to find

Returns The string beginning at the first occurrence of findString in sourceString, continuing
to the end of sourceString; otherwise, null if findString is not found.

Usage This is a case-insensitive version of the substring() method. Compare the result with
that shown in the “Clib.strstr() Method” on page 203.

Example The following code:

function Test_dick ()

{

var str = "W have to go to Haverford."

var substr = Qib.strstri(str, "H);

TheApplication().Rai seErrorText("str =" + str + "\ nsubstr ="
+substr);
}

204 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Clib Object

results in the following output:

strstri Example [%]

str ="W'e have to go to Haverford,
substr = have to go to Haverford.

See Also “Clib.strstr() Method” on page 203 and “string.replace() Method” on page 311

Clib.system() Method

This method passes a command to the command processor.

Syntax Cib. systen(commandString)

Parameter Description

commandString A valid operating system command

Returns The value returned by the command processor.

Usage This command passes a command to the operating system command processor and
opens an operating system window in which it executes. Upon completion of the
command, the window closes.

The commandString value may be a formatted string followed by variables
according to the rules defined in Table 7 on page 138 in the section “Formatting
Data.”

Example The following code displays a directory in a DOS window, as shown:

Version 7.5, Rev. B Siebel eScript Language Reference 205

‘ Siebel eScript Commands

The Clib Object

Cib.system("dir /p C\\Backup");

\WINHTAsystem32\icmd_exe

Uolume in drive C iz Speed Demon
Uolume Serial Mumber is 28B4-89EA

Directory of C::Backup

11,1899 H <DIR>

11,1899 H <DIR>

18,8799

18,8799 im
182299 H maker.BAK

111699 H 654 guestions.BAK
18,2599 H QUOTES .BAK
18,2899 H siehel.BAK
11,1899 H temp
18,2899 H test.BAK
118199 H A testl.BAK
118199 H test2 . BAK
118199 H test3.BAK
11,8899 H test5h.BAK
11,8899 H testh .BAK
18,2899 H tools .BAK
18,8799 H 285 var.BAK
A2.-28,97 H 7.619 WORDFILE.BAK
18 File<{s> 67.259 hytes
Press an to continue . . .

Clib.tanh() Method

This method calculates and returns the hyperbolic tangent of a floating-point
number.

Syntax Clib.tanh(fl oat Num

Parameter Description

floatNum A floating-point number, or a variable containing a floating-point number,
whose hyperbolic tangent is to be found

Returns The hyperbolic tangent of floatNum.

See Also “Clib.cosh() Method” on page 144 and “Clib.sinh() Method” on page 188

Clib.time() Method

This method returns an integer representation of the current time.

206 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

Example

See Also

The Clib Object

Cib. time([[var] tinmelnt])

Parameter Description

timelnt A variable to hold the returned value, which must be declared if it has not
already been declared

An integer representation of the current time.

The format of the time is not specifically defined except that it represents the current
time, to the operating system's best approximation, and can be used in many other
time-related functions. If timelnt is supplied, it is set to equal the returned value.

Cib.time(tinmelnt) and tinmelnt = Cib.tinme() assign the current local time
totimelnt.

For examples, read “Clib.ctime() Method” on page 145, “Clib.difftime() Method” on
page 146, “Clib.gmtime() Method” on page 168, “Clib.localtime() Method” on
page 175, and “Clib.strftime() Method” on page 195.

“GetDate() Method” on page 212, “Date.fromSystem() Static Method” on page 213,
and “Date.toSystem() Method” on page 242

Clib.tmpfile() Method

Syntax

Returns

This method creates a temporary binary file and returns its file pointer.

dib.tnpfile()

Parameter Description

Not applicable

The file pointer of the file created; null if the function fails.

Version 7.5, Rev. B Siebel eScript Language Reference 207

‘ Siebel eScript Commands

The Clib Object

Usage

Example

See Also

Clib.tmpfile() creates and opens a temporary binary file and returns its file pointer.
The file pointer, and the temporary file, are automatically removed when the file is
closed or when the program exits. The location of the temporary file depends on the
implementation of Clib on the operating system in use.

For an example, read “Clib.fgets() Method” on page 152.

“Clib.fopen() Method” on page 154

Clib.tmpnam() Method

Syntax

Returns

Usage

This method creates a string that has a valid file name and is unique among existing
files and among filenames returned by this function.

Cib.tnpnanm([str])

Parameter Description

str A variable to hold the name of a temporary file.

String - a valid and unique filename

This method creates a string that has a valid file name. This string is not the same
as the name of any existing file, nor the same as any filename returned by this
function during execution of this program. If str is supplied, it is set to the string
returned by this function.

Clib.toascii() Method

Syntax

This method translates a character into a seven-bit ASCII representation of the
character.

Clib.toascii(char)

Parameter Description

char A character literal, or a variable containing a character, to be translated

208 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Clib Object

Returns A seven-bit ASCII representation of char.

Usage This method translates a character into a seven-bit ASCII representation of char. The
translation is done by clearing every bit except for the lowest seven bits. If char is
already a seven-bit ASCII character, it returns the character.

Example The following line of code returns the close-parenthesis character:
TheApplication(). RaiseErrorText(Cdib.toascii("@"));
See Also “Clib.isascii() Method” on page 170
Clib.ungetc()Method
This method pushes a character back into a file.
Syntax Cib.ungetc(char, filePointer)
Parameter Description
char The character to push back
filePointer A file pointer as returned by Clb.fopen()
Returns The value of char if successful, EOF if unsuccessful.

Usage When char is put back, it is converted to a byte and is again in the file for
subsequent retrieval. Only one character is pushed back. You might want to use this
function to read up to, but not including, a newline character. You would then use
Clib.ungetc to push the newline character back into the file buffer.

See Also “Clib.fgetc() Method and Clib.getc() Method” on page 150, “Clib.fputc() Method

and Clib.putc() Method” on page 157, and “Clib.putenv() Method” on page 181

Version 7.5, Rev. B Siebel eScript Language Reference 209

‘ Siebel eScript Commands

The Date Object

The Date Object

See Also

Siebel eScript provides two different systems for working with dates. One is the
standard Date object of JavaScript; the other is part of the Clib object, which
implements powerful routines from C. Two methods, Date.fromSystem() and
Date.toSystem(), convert dates in the format of one system to the format of the
other. The standard JavaScript Date object is described in this section.

CAUTION: To prevent Y2K problems, avoid using two-digit dates in your eScript code.
Siebel eScript follows the ECMAScript standard for two-digit dates, which may be
different from the conventions used by other programs, including Siebel
applications.

A specific instance of a variable followed by a period should precede the method
name to call a method. For example, if you had created the Date object aDate, the
call to the .getDate() method would be aDat e. get Dat e() . Static methods have
"Date." at their beginnings because these methods are called with a literal call, such
as Date.parse(). These methods are part of the Date object itself instead of instances
of the Date object.

In the examples that follow, dateVar stands for the name of a variable that you
create to hold a date value.

“The Date Constructor” on page 210

“Universal Time Functions” on page 212

The Date Constructor

Syntax A

The Date constructor instantiates a new Date object.

To create a Date object that is set to the current date and time, use the new operator,
as you would with any object.

var dateVar = new Dat e;

There are several ways to create a Date object that is set to a date and time. The
following lines each demonstrate ways to get and set dates and times.

210 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Syntax B
Syntax C
Syntax D

Syntax E

Returns

Usage

The Date Object

var dateVar = new Date(m | liseconds);
var dateVar = new Date(dateString);
var dateVar = new Date(year, nonth, day);

var dateVar = new Date(year, nonth, day, hours, mnutes, seconds);

Parameter Description

milliseconds The number of milliseconds since January 1, 1970.
dateString A string representing a date and optional time.

year A year. If the year is between 1950 and 2050, you may supply only the final
two digits. Otherwise, four digits must be supplied. However, it’s safest to
always use four digits to minimize the risk of Y2K problems.

month A month, specified as a number from 0 to 11. January is 0, and December
is 11.

day A day of the month, specified as a number from 1 to 31. The first day of a
month is 1; the last is 28, 29, 30, or 31.

hours An hour, specified as a number from 0 to 23. Midnight is 0; 11 PM is 23.

minutes A minute, specified as a number from 0 to 59. The first minute of an hour

is 0; the last is 59.

seconds A second, specified as a number from 0 to 59. The first second of a minute
is 0; the last is 59.

If a parameter is specified, a Date object representing the date specified by the
parameter.

Syntax B returns a date and time represented by the number of milliseconds since
midnight, January 1, 1970. This representation by milliseconds is a standard way of
representing dates and times that makes it easy to calculate the amount of time
between one date and another. However, the recommended technique is to convert
dates to milliseconds format before doing calculations.

Syntax C accepts a string representing a date and optional time. The format of such
a string contains one or more of the following fields, in any order:

Version 7.5, Rev. B Siebel eScript Language Reference 211

‘ Siebel eScript Commands

The Date Object

Example

nmont h day, year hours: m nutes: seconds
For example, the following string:
"Cctober 13, 1995 13:13:15"

specifies the date, October 13, 1995, and the time, one thirteen and 15 seconds PM,
which, expressed in 24-hour time, is 13:13 hours and 15 seconds. The time
specification is optional; if it is included, the seconds specification is optional.

Syntax forms D and E are self-explanatory. Parameters passed to them are integers.

The following line of code:
var aDate = new Date(1776, 6, 4)

creates a Date object containing the date July 4, 1776.

Universal Time Functions

Universal Coordinated Time (abbreviated as UTC) is what used to be called
Greenwich Mean Time (abbreviated GMT). It is also known as World Time and
Universal Time. It is a time standard used everywhere in the world. UTC nominally
reflects the mean solar time along the Earth's prime meridian (0 degrees longitude,
which runs through the Greenwich Observatory outside of London). Siebel eScript
includes a selection of Date functions that allow you to work with UTC values:

getUTCDay() getUTCFullYear() getUTCHours()
getUTCMilliseconds|() getUTCMinutes() getUTCMonth()
getUTCSeconds() setUTCDate() setUTCFullYear ()
setUTCHours() setUTCMilliseconds setUTCMinutes()
setUTCMonth() Date.UTC()

GetDate() Method

This method returns the day of the month of a Date object.

212 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

Syntax dat eVvar . get Dat e()

Parameter Description

Not applicable

Returns The day of the month of dateVar as an integer from 1 to 31.

Usage This method returns the day of the month of the Date object specified by dateVar,
as an integer from 1 to 31. The first day of a month is 1; the last is 28, 29, 30, or 31.

Example This example returns 14, the month part of the constructed Date object:

function Button2_Cick ()

{
var val enti nesDay = new Date("2001", "1", "14");
TheAppl i cation(). Rai seErrorText("Valentine's Day is on day " +
val enti nesDay.getDate() + ".");
}

See Also “getDay() Method” on page 214, “getFullYear() Method” on page 215, “getHours()
Method” on page 216, “getMinutes() Method” on page 217, “getMonth() Method”
on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, “getYear() Method” on page 226, and “setDate() Method” on page 227

Date.fromSystem() Static Method

This method converts a time in the format returned by the Clib.time() method to a
standard JavaScript Date object.

Syntax Dat e. fronSyst en(ti ne)

Parameter Description

time A variable holding a system date

Returns Not applicable

Version 7.5, Rev. B Siebel eScript Language Reference 213

‘ Siebel eScript Commands

The Date Object

Usage Date.fromSystem() is a static method, invoked using the Date constructor rather
than a variable.

Example To create a Date object from date information obtained using Clib, use code similar
to:

var SysDate
var Cbj Date

dib.tinme();
Dat e. fronSyst en{ SysDat e) ;

See Also “The Time Object” on page 135, “Clib.time() Method” on page 206, “The Date
Constructor” on page 210, and “Date.toSystem() Method” on page 242

getDay() Method

This method returns the day of the week of a Date object.

Syntax dateVar. get Day()

Parameter Description

Not applicable

Returns The day of the week of dateVar as a number from 0 to 6.

Usage This method returns the day of the week of dateVar. Sunday is 0, and Saturday is 6.
To get the name of the corresponding weekday, create an array holding the names
of the days of the week and compare the return value to the array index, as shown
in the following example.

Example This example gets the day of the week on which Valentine’s Day occurs and displays
the result in a message box, shown in the illustration.

function Buttonl_Click ()
{
var weekDay = new Array("Sunday", "Mnday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday");
var val enti nesbDay = new Date("2001", "1", "14");
var theYear = val entinesDay. getFull Year ()
var i = 0;
while (i < valentinesDay. getDay())

214 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

t
i ++;
var result = weekDay[i];

}
TheAppl i cation().Rai seErrorText("Valentine's Day falls on " +

result + " in " + theYear + ".");

@ Walentine"s Day fallz on Wednesday in 2001,

See Also “GetDate() Method” on page 212, “getFullYear() Method” on page 215, “getHours()
Method” on page 216, “getMinutes() Method” on page 217, “getMonth() Method”
on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, and “getYear() Method” on page 226

getFullYear() Method

This method returns the year of a Date object as a number with four digits.

Syntax dat eVar. get Ful | Year ()

Parameter Description

Not applicable

Returns The year as a four-digit number, of the Date object specified by dateVar.

Example For examples, read “getDay() Method” on page 214, “setMilliseconds() Method” on
page 229, and “setTime() Method” on page 232.

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getHours()
Method” on page 216, “getMinutes() Method” on page 217, “getMonth() Method”
on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, “getYear() Method” on page 226, and “setFullYear() Method” on page 228

Version 7.5, Rev. B Siebel eScript Language Reference 215

Siebel eScript Commands

The Date Object

getHours() Method

This method returns the hour of a Date object.

Syntax dateVar. get Hours()

Parameter Description

Not applicable

Returns The hour portion of dateVar, as a number from 0 to 23.

Usage This method returns the hour portion of dateVar as a number from 0 to 23. Midnight
is 0, and 11 PM is 23.

Example This code fragment returns the number 12, the hours portion of the specified time.

var aDate = new Date("Cctober 31, 1986 12:13:14");
TheAppl i cation(). Rai seError Text (abat e. get Hours());

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getMinutes() Method” on page 217, “getMonth() Method”

on page 218, “getSeconds() Method” on page 218, “getTime() Method” on
page 219, and “getYear() Method” on page 226

getMilliseconds() Method

This method returns the millisecond of a Date object.

Syntax dateVar.getM | 1iseconds()

Parameter Description

Not applicable

Returns The millisecond of dateVar as a number from 0 to 999.

216 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

Usage This method sets the millisecond of dateVar to millisecond. When given a date in
millisecond form, this method returns the last three digits of the millisecond date;
or, if negative, the result of the last three digits subtracted from 1000.

Example This code fragment displays the time on the system clock. The number of
milliseconds past the beginning of the second appears at the end of the message.

var aDate = new Date;

TheApplication().Rai seErrorText(aDate.toString() + " " +
aDate.getM I liseconds());

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”

on page 217, “getMonth() Method” on page 218, “getSeconds() Method” on
page 218, “getTime() Method” on page 219, and “getYear() Method” on page 226

getMinutes() Method

This method returns the minutes portion of a Date object.

Syntax dat eVar. get M nut es()

Parameter Description

Not applicable

Returns The minutes portion of dateVar as a number from 0 to 59.

Usage This method returns the minutes portion of dateVar as a number from 0 to 59. The
first minute of an hour is 0, and the last is 59.

Example This code fragment returns the number 13, the minutes portion of the specified
time.

var aDate = new Date("Cctober 31, 1986 12:13:14");
TheAppl i cation(). Rai seError Text (aDate. getM nutes());

Version 7.5, Rev. B Siebel eScript Language Reference 217

‘ Siebel eScript Commands

The Date Object

See Also

“GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMonth() Method” on
page 218, “getSeconds() Method” on page 218, “getTime() Method” on page 219,
and “getYear() Method” on page 226

getMonth() Method

Syntax

Returns

Usage

Example

See Also

This method returns the month of a Date object.

dat eVar . get Mont h()

Parameter Description

Not applicable

The month portion of dateVar as a number from 0 to 11.

This method returns the month, as a number from 0 to 11, of dateVar. January is 0,
and December is 11.

This code fragment returns the number 10, the result of adding 1 to the month
portion of the specified date.

var aDate = new Date("Cctober 31, 1986 12:13:14");
TheAppl i cati on(). Rai seError Text (aDate. get Month() + 1);

“GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getSeconds() Method” on page 218, “getTime() Method” on

page 219, and “getYear() Method” on page 226

getSeconds() Method

This method returns the seconds portion of a Date object.

218 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

Example

See Also

The Date Object

dat eVar . get Seconds()

Parameter Description

Not applicable

The seconds portion of dateVar as a number from 0 to 59.

This method returns the seconds portion of dateVar. The first second of a minute is
0, and the last is 59.

This code fragment returns the number 14, the seconds portion of the specified
date.

var aDate = new Date("Cctober 31, 1986 12:13:14");
TheAppl i cation(). Rai seError Text (aDat e. get Seconds() + 1);

“GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getMonth() Method” on page 218, “getTime() Method” on page 219,
and “getYear() Method” on page 226

getTime() Method

Syntax

Returns

This method returns the milliseconds representation of a Date object, in the form of
an integer representing the number of seconds between midnight on January 1,
1970, GMT, and the date and time specified by a Date object.

dat eVar . get Ti ne()

Parameter Description

Not applicable

The milliseconds representation of dateVar.

Version 7.5, Rev. B Siebel eScript Language Reference 219

Siebel eScript Commands

The Date Object

Usage This method returns the milliseconds representation of a Date object, in the form of
an integer representing the number of seconds between midnight on January 1,
1970, GMT, and the date and time specified by dateVar.

Example This code fragment returns the value 245594000. To convert this value to
something more readily interpreted, use the toLocaleString() method or the
toGMTString() method.

var aDate = new Date("January 3, 1970 12:13:14");
TheAppl i cation(). Rai seError Text (abDate.getTinme());

See Also “Clib.asctime() Method” on page 141, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “Clib.mktime() Method” on page 179,
“GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getMonth() Method” on page 218, “getSeconds() Method” on
page 218, and “getYear() Method” on page 226

getTimezoneOffset() Method

This method returns the difference, in minutes, between Greenwich Mean Time and
local time.

Syntax dat eVar . get Ti nezoneOf f set ()

Parameter Description

Not applicable

Returns The difference, in minutes, between Greenwich Mean Time (GMT) and local time.

Example This example calculates the difference from Greenwich Mean Time in hours, of your
location, based on the setting in the Windows Control Panel.

var aDate = new Date();
var hourDi fference = Math. round(abDate. get Ti mezoneOffset() / 60);
TheApplication(). Rai seErrorText("Your time zone is " +

hourDi fference + " hours from GVTI.");

220 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

See Also “GetDate() Method” on page 212, “getDay() Method” on page 214, “getFullYear()
Method” on page 215, “getHours() Method” on page 216, “getMinutes() Method”
on page 217, “getMonth() Method” on page 218, “getSeconds() Method” on
page 218, “getTime() Method” on page 219, and “getYear() Method” on page 226

getUTCDate() Method

This method returns the UTC day of the month of a Date object.

Syntax dat eVar. get UTCDat e()

Parameter Description

Not applicable

Returns The UTC day of the month of dateVar.

Usage This method returns the UTC day of the month of dateVar as a number from 1 to
31. The first day of a month is 1; the last is 28, 29, 30, or 31.

Example This code fragment displays 1, the hour portion of the date, followed by the GMT
equivalent, which may be the same.
var aDate = new Date("Muy 1, 2001 13:24:35");
TheApplication(). Rai seErrorText ("Local day of the month is " +

aDat e. get Hours() +"\nGMI' day of the nonth is " +
abat e. get UTCHour s()) ;

See Also “GetDate() Method” on page 212 and “setUTCDate() Method” on page 234

getUTCDay() Method

This method returns the UTC day of the week of a Date object.

Version 7.5, Rev. B Siebel eScript Language Reference 221

‘ Siebel eScript Commands

The Date Object

Syntax dat eVar . get UTCDay/()

Parameter Description

Not applicable

Returns The UTC day of the week of dateVar as a number from 0 to 6.

Usage This method returns the UTC day of the week of dateVar as a number from 0 to 6.
Sunday is 0, and Saturday is 6.

Example This function displays the day of the week of May 1, 2001, both locally and in
universal time.

function Button2_Cick ()

{
var | ocal Day;
var UTCDay;
var MayDay = new Date("May 1, 2001 13:30:35");
var weekDay = new Array("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday");
for (var i = 0; i <= MayDay.getDay();i++)
| ocal Day = weekDay[i];
var nsgtext = "May 1, 2001, 1:30 PMfalls on " + | ocal Day;
for (var j = 0; j <= MayDay.get UTCDay(); j++)
UTCDay = weekDay[]j];
msgtext = nsgtext + " locally, \nand on " + UTCDay + " GW.";
TheAppl i cation() . Rai seError Text (nmsgt ext);
}

See Also “getDay() Method” on page 214

getUTCFullYear() Method

This method returns the UTC year of a Date object.

222 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Syntax

Returns

Example

See Also

The Date Object

dat eVar . get UTCFul | Year ()

Parameter Description

Not applicable

The UTC year of dateVar as a four-digit number.

This code fragment displays 2001, the year portion of the date, followed by the GMT
equivalent, which may be the same.

var aDate = new Date("January 1, 2001 13:24:35");
TheApplication(). Rai seErrorText("Local year is " +
aDat e. get Year () +

"\nGMI' year is " + aDate.getUTCFull Year());

“getFullYear() Method”, “setFullYear() Method” on page 228, and
“setUTCFullYear() Method” on page 234

getUTCHours() Method

Syntax

Returns

Usage

Example

This method returns the UTC hour of a Date object.

dat eVar . get UTCHour s()

Parameter Description

Not applicable

The UTC hour of dateVar as a number from 0 to 23.

This method returns the UTC hour of dateVar as a number from 0 through 23.
Midnight is 0, and 11 PM is 23.

This code fragment displays 13, the hour portion of the date, followed by the GMT
equivalent.

Version 7.5, Rev. B Siebel eScript Language Reference 223

‘ Siebel eScript Commands

The Date Object

See Also

var aDate = new Date("Muy 1, 2001 13:24:35");
TheAppl i cation(). Rai seErrorText ("Local hour is
aDat e. get Hours() +

"\ nGMI' hour is " + aDate.getUTCHours());

“ o4

“getHours() Method” on page 216 and “setUTCHours() Method” on page 235

getUTCMilliseconds() Method

Syntax

Returns

Usage

See Also

This method returns the UTC millisecond of a Date object.

dateVar. get UTCM | | i seconds()

Parameter Description

Not applicable

The UTC millisecond of dateVar as a number from 0 to 999.

This method returns the UTC millisecond of dateVar as a number from 0 through
999. The first millisecond in a second is 0; the last is 999.

“getMilliseconds() Method” on page 216 and “setUTCMilliseconds() Method” on
page 236

getUTCMinutes() Method

Syntax

Returns

This method returns the UTC minute of a Date object.

dat eVar . get UTCM nut es()

Parameter Description

Not applicable

The UTC minute of dateVar as a number from 0 to 59.

224 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

Usage This method returns the UTC minute of dateVar as a number from 0 through 59.
The first minute of an hour is 0; the last is 59.

Example This code fragment displays 24, the minutes portion of the date, followed by the
GMT equivalent, which is probably the same.

var aDate = new Date("Muy 1, 2001 13:24:35");
TheAppl i cation(). Rai seErrorText ("Local mnutes: " +
aDate.getM nutes() +

"\nGMI' m nutes: " + aDate.get UTCM nutes());

See Also “getMinutes() Method” on page 217 and “setUTCMinutes() Method” on page 237

getUTCMonth() Method

This method returns the UTC month of a Date object.

Syntax dat eVvar . get UTCMont h()

Parameter Description

Not applicable

Returns The UTC month of dateVar as a number from 0 to 11.

Usage This method returns the UTC month of dateVar as a number from 0 through 11.
January is 0, and December is 11.

Example This code fragment displays 5, the month portion of the date (determined by adding
1 to the value returned by getMonth), followed by the GMT equivalent (determined
by adding 1 to the value returned by getUTCMonth), which is probably the same.

var aDate = new Date("Muy 1, 2001 13:24:35");
var |ocM = aDate.getMnth() + 1;
var GMIMb = aDate.get UTCMonth() + 1
TheAppl i cation(). Rai seError Text("Local month: " + | ocMd +"\nGVIl
nont h:

+ GMI'Mb) ;

See Also “getMonth() Method” on page 218 and “setUTCMonth() Method” on page 238

Version 7.5, Rev. B Siebel eScript Language Reference 225

‘ Siebel eScript Commands

The Date Object

getUTCSeconds() Method

This method returns the UTC second of a Date object.

Syntax dat eVar . get UTCSeconds()

Parameter Description

Not applicable

Returns The UTC second of dateVar as number from 0 to 59.

Usage This method returns the UTC second of dateVar as a number from 0 through 59.
The first second of a minute is 0, and the last is 59.

See Also “getSeconds() Method” on page 218 and “setUTCSeconds() Method” on page 239

getYear() Method

This method returns the year portion of a Date object.

Syntax dat eVar . get Year ()

Parameter Description

Not applicable

Returns The year of the dateVar as a three-digit number.
Usage This method returns the year portion of dateVar as a three-digit number.

See Also “getFullYear() Method” on page 215, “getUTCFullYear() Method” on page 222, and
“setYear() Method” on page 239

Date.parse() Static Method

This method converts a date string to a Date object.

226 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Syntax

Returns

Usage

Example

See Also

The Date Object

Dat e. parse(dateStri ng)

Parameter Description

dateString A string of the form ddd, Month dd, yyyy hh:mm:ss

A Date object representing the date in dateString.

Date.parse() is a static method, invoked using the Date constructor rather than a
variable. The string must be in the following format:

Friday, October 31, 1998 15:30: 00 -0800

where the last number is the offset from Greenwich Mean Time. This format is used
by the dateVar.toGMTString() method and by email and Internet applications. The
day of the week, time zone, time specification, or seconds field may be omitted. The
statement:

var aDate = Date. parse(dateString);
is equivalent to:

var aDate = new Date(dateString);

The following code fragment yields the result 9098766000:

var aDate = Date. parse("Friday, October 31, 1998 15:30: 00 - 0220");
TheAppl i cation(). Rai seError Text (aDate);

“The Date Constructor” on page 210

setDate() Method

This method sets the day of a Date object to a specified day of the month.

Version 7.5, Rev. B Siebel eScript Language Reference 227

‘ Siebel eScript Commands

The Date Object

Syntax dat eVar . set Dat e(dayOf Mont h)

Parameter Description

dayOfMonth The day of the month to which to set dateVar as an integer from 1
through 31

Returns Not applicable

Usage This method sets the day of dateVar to dayOfMonth as a number from 1 to 31. The
first day of a month is 1; the last is 28, 29, 30, or 31.

See Also “GetDate() Method” on page 212 and “setUTCDate() Method” on page 234

setFullYear() Method

This method sets the year of a Date object to a specified four-digit year.

Syntax dateVar. set Ful | Year (year[, nonth[, date]])

Parameter Description

year The year to which to set dateVar as a four-digit integer
month The month to which to set year as an integer from 0 to 11
date The date of month to which to set dateVar as an integer from 1 to 31

Returns Not applicable

Usage This method sets the year of dateVar to year. Optionally, it can set the month of year
to month, and the date of month to date. The year must be expressed in four digits.

See Also “getFullYear() Method” on page 215, “setDate() Method” on page 227, “setMonth()

Method” on page 231, “setUTCFullYear() Method” on page 234, and “setYear()
Method” on page 239

228 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

setHours() Method

This method sets the hour of a Date object to a specific hour of a 24-hour clock.

Syntax dat eVar. set Hours(hour[, mnute[, second[, millisecond]]])
Parameter Description
hour The hour to which to set dateVar as an integer from 0 through 23
minute The minute of hour to which to set dateVar as an integer from 0
through 59
second The second of minute to which to set dateVar as an integer from

0 through 59

millisecond The millisecond of second to which to set dateVar as an integer
from 0 through 999

Returns Not applicable

Usage This method sets the hour of dateVar to hour, expressed as a number from 0 to 23.
It can optionally also set the UTC minute, second, and millisecond. Midnight is
expressed as 0, and 11 PM as 23.

See Also “getHours() Method” on page 216, “setMilliseconds() Method” on page 229,

“setMinutes() Method” on page 231, “setSeconds() Method” on page 232, and
“setUTCHours() Method” on page 235

setMilliseconds() Method

This method sets the millisecond of a Date object to a date expressed in
milliseconds relative to the system time.

Syntax dateVar.setM | liseconds(mllisecond)

Parameter Description

millisecond The millisecond to which dateVar should be set as a positive or
negative integer

Version 7.5, Rev. B Siebel eScript Language Reference 229

‘ Siebel eScript Commands

The Date Object

Returns Not applicable

Usage This method sets the millisecond of dateVar to millisecond. The value of dateVar
becomes equivalent to the number of milliseconds from the time on the system
clock. Use a positive number for later times, a negative number for earlier times.

Example This example accepts a number of milliseconds as input and converts it to the date
relative to the date and time on the system clock. The illustration shows the result
of entering 0 on November 22, 1999.

function test2_Cick ()
{
var abDate new Dat e;
var mlli 20000000;
aDate.setM || iseconds(mlli);
var aYear = aDate.getFull Year();
var aMonth = aDate.getMnth() + 1;
var aDay = aDate.getDate();
var anHour = abDate. getHours();

swi t ch(anHour)

{
case O:
anHour =" 12 midnight.";
br eak;
case 12:
anHour = " 12 noon.";
br eak;
defaul t:
if (anHour > 11)
anHour = (anHour - 12) + " P.M";
el se
anHour = anHour + " A M";
}

TheAppl i cation(). Rai seError Text (" The specified date is " +
aMbnth + "/" + abDay + "/" + aYear + " at " + anHour);

}

Millizecond Test E

The specified date iz 11/22/1999 at 5 P.M.

230 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object

See Also “getMilliseconds() Method” on page 216, “setTime() Method” on page 232, and
“setUTCMilliseconds() Method” on page 236

setMinutes() Method

This method sets the minute of a Date object to a specified minute.

Syntax dat eVar.setM nutes(nminute[, second[, millisecond]])
Parameter Description
minute The minute to which to set dateVar as an integer from 0 through 59
second The second to which to set minute as an integer from 0 through 59
millisecond The millisecond to which to set second as an integer from 0 through 999

Returns Not applicable

Usage This method sets the minute of dateVar to minute and optionally sets minute to a
specific second and millisecond. The first minute of an hour is 0, and the last is 59.

See Also “getMinutes() Method” on page 217, “setMilliseconds() Method” on page 229,
“setSeconds() Method” on page 232, and “setUTCMinutes() Method” on page 237

setMonth() Method

This method sets the month of a Date object to a specific month.

Syntax dat eVar . set Mont h(nont h[, date])

Parameter Description

month The month to which to set dateVar as an integer from 0 to 11

date The date of month to which to set dateVar as an integer from 1 to 31

Returns Not applicable

Version 7.5, Rev. B Siebel eScript Language Reference 231

Siebel eScript Commands

The Date Object

Usage This method sets the month of dateVar to month as a number from 0 to 11 and
optionally sets the day of month to date. January is represented by 0, and December
by 11.

See Also “getMonth() Method” on page 218, “setDate() Method” on page 227, and
“setUTCMonth () Method” on page 238

setSeconds() Method

This method sets the second in a Date object.

Syntax dat eVar . set Seconds(second[, millisecond])
Parameter Description
second The minute to which to set dateVar as an integer from 0 through 59
millisecond The millisecond to which to set second as an integer from 0 through 999

Returns Not applicable

Usage This method sets the second of dateVar to second and optionally sets second to a
specific millisecond. The first second of a minute is 0, and the last is 59.

See Also “getSeconds() Method” on page 218, “setMilliseconds() Method” on page 229, and
“setUTCSeconds() Method” on page 239

setTime() Method

This method sets a Date object to a date and time specified by the number of
milliseconds before or after January 1, 1970.

Syntax dateVar.setTine(mlliseconds)

Parameter Description

milliseconds The number of milliseconds from midnight on January 1, 1970, GMT

232 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object

Returns Not applicable

Usage This method sets dateVar to a date that is milliseconds milliseconds from January 1,
1970, GMT. To set a date earlier than that date, use a negative number.

Example This example accepts a number of milliseconds as input and converts it to a date
and hour. To get the result shown in the illustration, a value of -345650 was entered.

function dateBtn_dick ()

{
var aDate = new Date;
var mlli = -4000;
aDate.setTime(mlli);
var aYear = aDate.getFull Year();
var aMonth = aDate.getMnth() + 1;
var aDay = aDate.getDate();
var anHour = abDate. getHours();

swi t ch(anHour)
{
case 0O:
anHour =" 12 midnight.";
br eak;
case 12:
anHour = " 12 noon.";
br eak;
defaul t:
if (anHour > 11)
anHour = (anHour - 12) + " P.M";
el se
anHour = anHour + " A M";

}

TheAppl i cation(). Rai seError Text (" The specified date is " +
aMonth + "/" + abDay + "/" + aYear + " at " + anHour);

Millizecond Test E

The specified date iz 12/31/1969 at 3 P.M.

See Also “getTime() Method” on page 219

Version 7.5, Rev. B Siebel eScript Language Reference 233

‘ Siebel eScript Commands

The Date Object

setUTCDate() Method

Syntax

Returns

Usage

See Also

This method sets the UTC day of a Date object to the specified day of a UTC month.

dat eVar . set UTCDat e(dayOf Mont h)

Parameter Description

dayOfMonth The day of the UTC month to which to set dateVar as an integer from 1
through 31

Not applicable

This method sets the UTC day of dateVar to dayOfMonth as a number from 1 to 31.
The first day of a month is 1; the last is 28, 29, 30, or 31.

“Universal Time Functions” on page 212, “getUTCDate() Method” on page 221, and
“setDate() Method” on page 227

setUTCFullYear() Method

Syntax

Returns

Usage

This method sets the UTC year of a Date object to a specified four-digit year.

dat eVar. set UTCFul | Year (year[, nmonth[, date]])

Parameter Description

year The UTC year to which to set dateVar as a four-digit integer

month The UTC month to which to set year as an integer from 0 to 11

date The UTC date of month to which to set dateVar as an integer from 1 to 31

Not applicable

This method sets the UTC year of dateVar to year. Optionally, it can set the UTC
month of year to month, and the UTC date of month to date. The year must be
expressed in four digits.

234 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

Example The following example uses the setUTCFullYear method to assign the date of the
2000 summer solstice and the setUTCHours method to assign its time to a Date
object. Then it determines the local date and displays it as shown in the illustration
following the example.

function dateBtn_Click ()
{
var Mstring =" A M, Standard Tine.";
var sol stice2K = new Date;
sol stice2K. set UTCFul | Year (2000, 5, 21);
sol stice2K. set UTCHour s(01, 48);
var | ocal Date = sol stice2K toLocal eString();
var pos = | ocal Dat e. i ndexOf ("2000")
var |l ocal Day = | ocal Date. substring(0, pos - 10);

var local Hr = sol stice2K get Hours();
if (localH > 11)

| ocal Hr
Mst ring

(local Hr - 12);
" P.M, Standard Tine.";

var local M n = sol stice2K. getM nutes();

var msg = "In your location, the solsticeis on" + |ocal Day +
", at " +localH + ":" + localMn + Mstring;
TheAppl i cation(). Rai seError Text (nsg);

Summer Solstice, 2000 [%]

I your location, the solstice iz on Tue Jun 20, at 6:48 P.M., Standard Time.

See Also “Universal Time Functions” on page 212, “getUTCFullYear() Method” on page 222,
“setFullYear() Method” on page 228, and “setYear() Method” on page 239

setUTCHours() Method

This method sets the UTC hour of a Date object to a specific hour of a 24-hour clock.

Version 7.5, Rev. B Siebel eScript Language Reference 235

Siebel eScript Commands

The Date Object

Syntax dat eVar. set UTCHour s(hour[, mnute[, second[, millisecond]]])

Parameter Description

hour The UTC hour to which to set dateVar as an integer from 0 through 23

minute The UTC minute of hour to which to set dateVar as an integer from 0 through
59

second The UTC second of minute to which to set dateVar as an integer from 0
through 59

millisecond The UTC millisecond of second to which to set dateVar as an integer from 0
through 999

Returns Not applicable
Usage This method sets the UTC hour of dateVar to hour as a number from 0 to 23.
Midnight is expressed as 0, and 11 PM as 23. It can optionally also set the UTC
minute, second, and millisecond.

Example For an example, read “setUTCFullYear() Method” on page 234.

See Also “Universal Time Functions” on page 212, “getUTCHours() Method” on page 223,
and “setHours() Method” on page 229

setUTCMilliseconds() Method

This method sets the UTC millisecond of a Date object to a date expressed in
milliseconds relative to the UTC equivalent of the system time.

Syntax dateVar.set UTCM | | i seconds(mi | |isecond)

Parameter Description

millisecond The UTC millisecond to which dateVar should be set as a positive or negative
integer

Returns Not applicable

236 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

Usage This method sets the UTC millisecond of dateVar to millisecond. The value of
dateVar becomes equivalent to the number of milliseconds from the UTC equivalent
of time on the system clock. Use a positive number for later times, and a negative
number for earlier times.

Example The following example gets a number of milliseconds as input and converts it to a
UTC date and time. When run at 5:36 p.m., Pacific Time, on November 22, 1999, it
produced the result shown in the illustration.

function dateBtn_dick ()
{
var aDate = new Date;
var mlli = 20000;
abDate.setUTCM | | i seconds(m I li);
var aYear = aDate. get UTCFul | Year ();
var aMonth = aDate.getMnth() + 1;
var aDay = aDate.get UTCDat e();
var anHour = aDate. get UTCHours();
var aM nute = aDate. get UTCM nut es() ;
TheAppl i cation(). Rai seError Text (" The specified date is " +
aMonth +
“/" + aDay + "/" + aYear + " at " + anHour + ":" +
aMnute + ", UTCtinme.");

UTC Millizecond Test E

The specified date iz 11/23/1939 at 1:36, UTC time.

See Also “Universal Time Functions” on page 212, “getUTCMilliseconds() Method” on
page 224, and “setMilliseconds() Method” on page 229

setUTCMinutes() Method

This method sets the UTC minute of a Date object to a specified minute.

Version 7.5, Rev. B Siebel eScript Language Reference 237

‘ Siebel eScript Commands

The Date Object

Syntax dat eVar. set UTCM nut es(mi nute[, second[, mllisecond]])

Parameter Description

minute The UTC minute to which to set dateVar as an integer from 0 through 59
second The UTC second to which to set minute as an integer from 0 through 59

millisecond The UTC millisecond to which to set second as an integer from 0 through 999

Returns Not applicable
Usage This method sets the UTC minute of dateVar to minute and optionally sets minute
to a specific UTC second and UTC millisecond. The first minute of an hour is 0, and
the last is 59.

See Also “Universal Time Functions” on page 212, “getUTCMinutes() Method” on page 224,
and “setMinutes() Method” on page 231

setUTCMonth() Method

This method sets the UTC month of a Date object to a specific month.

Syntax dat eVar. set UTCMont h(nont h[, date])

Parameter Description

month The UTC month to which to set dateVar as an integer from 0 to 11

date The UTC date of month to which to set dateVar as an integer from 1 to 31

Returns Not applicable
Usage This method sets the UTC month of dateVar to month as a number from 0 to 11 and

optionally sets the UTC day of month to date. January is represented by 0, and
December by 11.

238 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Date Object

See Also “Universal Time Functions” on page 212, “getUTCMonth() Method” on page 225,
and “setMonth() Method” on page 231

setUTCSeconds() Method

This method sets the UTC second of the minute of a Date object to a specified
second and optionally sets the millisecond within the second.

Syntax dat eVar . set UTCSeconds(second[, nillisecond])

Parameter Description
second The UTC minute to which to set dateVar as an integer from 0
through 59

millisecond The UTC millisecond to which to set second as an integer from 0
through 999

Returns Not applicable
Usage This method sets the UTC second of dateVar to second and optionally sets second
to a specific UTC millisecond. The first second of a minute is 0, and the last is 59.

The first millisecond is 0, and the last is 999.

See Also “Universal Time Functions” on page 212, “getUTCSeconds() Method” on page 226,
and “setSeconds() Method” on page 232

setYear() Method

This method sets the year of a Date object as a specified two-digit or four-digit year.

Syntax dat eVar . set Year (year)

Parameter Description

year The year to which to set dateVar as a two-digit integer for twentieth-century
years, otherwise as a four-digit integer

Version 7.5, Rev. B Siebel eScript Language Reference 239

Siebel eScript Commands

The Date Object

Returns Not applicable

Usage The parameter year may be expressed with two digits for a year in the twentieth
century, the 1900s. Four digits are necessary for any other century.

See Also “getFullYear() Method” on page 215, “getYear() Method” on page 226,
“setFullYear() Method” on page 228, and “setUTCFullYear() Method” on page 234

toGMTString() Method

This method converts a Date object to a string, based on Greenwich Mean Time.

Syntax dateVar.toGMIString()

Parameter Description

Not applicable

Returns The date to which dateVar is set as a string of the form Day Mon dd hh:mm:ss yyyy
GMT.

Example This example accepts a number of milliseconds as input and converts it to the GMT
time represented by the number of milliseconds before or after the time on the
system clock.

function clicknme_Cick ()

{

var aDate = new Date;

var mlli = 200000;

aDate.setUTCM | | i seconds(milli);

TheAppl i cation(). Rai seErrorText (aDate.toGMIString());
}

Tue Nov 23 20:11:37 1333 GMT

240 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object

See Also “Clib.asctime() Method” on page 141, “toLocaleString() Method and toString()
Method” on page 241, and “toUTCString() Method” on page 242

toLocaleString() Method and toString() Method

These methods return a string representing the date and time of a Date object based
on the time zone of the user.

Syntax dat eVar. toLocal eString()
dateVar.toString()

Parameter Description

Not applicable

Returns A string representing the date and time of dateVar based on the time zone of the
user, in the form Day Mon dd hh:mm:ss yyyy.

Usage These methods return a string representing the date and time of a Date object based
on the local time zone of the user.

Example This example displays the local time from your computer’s clock, the UTC time, and
the Greenwich Mean Time. The result appears in the message box that follows the
code.

var aDate = new Date();

var | ocal = aDate.tolLocal eString();

var universal = aDate.toUTCString();

var greenwi ch = aDate.toGWIString();

TheApplication(). Rai seErrorText("Local date is " + |local +
"\nUTC date is " + universal +
"\nGMI date is " + greenw ch);

Time Conversion E

Local date is Fri Mov 19 15:45:52 1933
UTC date iz Fri Mov 19 23:45:52 1339 GMT
GMT date is Fri Nov 19 23:45:52 1933 GMT

Version 7.5, Rev. B Siebel eScript Language Reference 241

Siebel eScript Commands

The Date Object

See Also “Clib.asctime() Method” on page 141, “Clib.gmtime() Method” on page 168,
“Clib.localtime() Method” on page 175, “toGMTString() Method” on page 240, and
“toUTCString() Method” on page 242

Date.toSystem() Method

This method converts a Date object to a system time format that is the same as that
returned by the Clib.time() method.

Syntax Dat e. t oSyst en()

Parameter Description

Not applicable

Returns A date value in the time format returned by the Clib.time() method.

Usage To create a Date object from a variable in system time format, read
“Date.fromSystem() Static Method” on page 213.

Example To convert a Date object to a system format that can be used by the methods of the
Clib object, use code similar to:

var SysDate = objDate.toSystem();
See Also “Date.fromSystem() Static Method” on page 213

toUTCString() Method

This method returns a string that represents the UTC date in a convenient and
human-readable form.

Syntax dat evar .t oUTCSt ri ng()

Parameter Description

Not applicable

242 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Date Object

Returns A string that represents the UTC date of dateVar.

Usage This method returns a string that represents the UTC date in a convenient and
human-readable form. The string takes the form Day Mon dd hh:mm:ss yyyy.

Example For an example, read “toLocaleString() Method and toString() Method” on
page 241.

See Also “Clib.asctime() Method” on page 141, “toGMTString() Method” on page 240, and
“toLocaleString() Method and toString() Method” on page 241

Date.UTC() Static Method

This method interprets its parameters as a date and returns the number of
milliseconds between midnight, January 1, 1970, and the date and time specified.

Syntax Dat e. UTC(year, nonth, days, [, hours[, minutes[, seconds]]])

Parameter Description

year An integer representing the year (two digits may be used to represent years in
the twentieth century; however, use four digits to avoid Y2K problems)

month An integer from 0 through 11 representing the month

day An integer from 1 through 31 representing the day of the month

hours An integer from 0 through 23 representing the hour on a 24-hour clock

minutes An integer from 0 through 59 representing the minute of hours

seconds An integer from 0 through 59 representing the second of minutes

Returns An integer representing the number of milliseconds before or after midnight
January 1, 1970, of the specified date and time.

Usage Date.UTC is a static method, invoked using the Date constructor rather than a
variable. The parameters are interpreted as referring to Greenwich Mean Time
(GMT).

Version 7.5, Rev. B Siebel eScript Language Reference 243

‘ Siebel eScript Commands

The Date Object

Example This example shows the proper construction of a Date.UTC declaration and
demonstrates that the function behaves as specified.

function clickme_dick ()

{
var aDate = new Date(Date. UTC(2001, 1, 22, 10, 11, 12));
TheAppl i cation(). Rai seError Text ("The specified date is " +
abDate.toUTCString());
}

The specified date iz Mon Jan 22 10:11:12 2001 GMT

See Also “The Date Constructor” on page 210

244 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Exception Object

The Exception Object

The Exception object contains exceptions being thrown in the case of a failed
operation.

Properties

errCode (This property contains the error number.)

errText (This property contains a textual description of the error.)
Methods

“toLocaleString() Method and toString() Method” on page 241

Here is an example of the Exception object:

try
} — .
var oBO = TheApplication(). GetService(“lncorrect name”);
catch (e)
var sText = e.errText;
var nCode = e. errCode;
}

Version 7.5, Rev. B Siebel eScript Language Reference 245

‘ Siebel eScript Commands

Function Objects

Function Objects

A Function object holds the definition of a function defined in eScript. Note that in
eScript, procedures are functions.

Syntax A function funcNane([argl [, ..., argn]])
body
}
Syntax B var funcNane = new Function([argl [, ..., argn,]] body);
Parameter Description
funcName The name of the function to be created
argl [, ..., argn] An optional list of arguments that the function accepts
body The lines of code that the function executes

Returns Whatever its code is set up to return. For more information, read “return Statement”
on page 247.

Usage Syntax A is the standard method for defining a function. Syntax B is an alternative
way to create a function and is used to create Function objects explicitly.

Note the difference in case of the keyword Function between Syntax A and
Syntax B. Function objects created with Syntax B (that is, the Function constructor)
are evaluated each time they are used. This is less efficient than Syntax A—
declaring a function and calling it within your code—Dbecause declared functions
are compiled instead of interpreted.

Example The following fragment of code illustrates creating a function AddTwoNumbers
using a declaration:

functi on AddTwoNunbers (a, b)
{

}

return (a + b);

246 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Function Objects

The following fragment illustrates creating the same function using the Function
constructor:

AddTwoNunbers = new Function ("a", "b", "return (a + b)");

The difference between the two is that when AddTwoNumbers is created using a
declaration, AddTwoNumbers is the name of a function, whereas when
AddTwoNumbers is created using the Function constructor, AddTwoNumbers is the
name of a variable whose current value is a reference to the function created using
the Function constructor.

length Property

The length property returns the number of arguments expected by the function.

Syntax funcName. | engt h

Parameter Description

funcName The function whose length property is to be found

Returns The number of arguments expected by funcName.

return Statement
The return statement passes a value back to the function that called it.

Syntax return val ue

Parameter Description

value The result produced by the function

Returns Not applicable

Usage The return statement passes a value back to the function that called it. Any code in
a function following the execution of a return statement is not executed.

Version 7.5, Rev. B Siebel eScript Language Reference 247

‘ Siebel eScript Commands

Function Objects

Example This function returns a value equal to the number passed to it multiplied by 2 and
divided by 5.

function Doubl eAndDi vi deBy5(a)

return (a*2)/5
}

Here is an example of a script using the preceding function. This script calculates
the mathematical expressionn = (10 * 2) / 5 + (20 * 2) / 5. Itthen displays
the value for n, which is 12.

function myFunction()

{
var a Doubl eAndDi vi deBy5(10) ;
var b Doubl eAndDi vi deBy5(20) ;
TheApplication(). Rai seErrorText(a + b);

248 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Global Object

The Global Object

Syntax A

Syntax B

Usage

See Also

Global variables are members of the global object. To access global properties, you
do not need to use an object name. For example, to access the isNaN() method,
which tests to see whether a value is equal to the special value NaN, you can use
either of the following syntax forms.

gl obal Met hod(val ue) ;

gl obal . gl obal Met hod(val ue) ;

Placeholder Description

globalMethod The method to be applied

value The value to which the method is to be applied

Syntax A treats globalMethod as a function; Syntax B treats it as a method of the
global object. You may not use Syntax A in a function that has a local variable with
the same name as a global variable. In such a case, you must use the global keyword
to reference the global variable.

“Global Functions Unique to Siebel eScript” on page 249

“Conversion or Casting Functions” on page 250

Global Functions Unique to Siebel eScript

The global functions described in this section are unique to the Siebel eScript
implementation of JavaScript. In other words, they are not part of the ECMAScript
standard, but they are useful. Avoid using these functions in a script that may be
used with a JavaScript interpreter that does not support these unique functions.

Like other global items, the following functions are actually methods of the global
object and can be called with either function or method syntax:

m “COMCreateObject() Method” on page 251
= “CORBACreateObject() Method” on page 252

Version 7.5, Rev. B Siebel eScript Language Reference 249

‘ Siebel eScript Commands

The Global Object

“getArrayLength() Method” on page 258
“setArrayLength() Method” on page 261

“undefine() Method” on page 271

Conversion or Casting Functions

Though Siebel eScript does well in automatic data conversion, there are times when
the types of variables or data must be specified and controlled. Each of the

following casting functions has one parameter, which is a variable or data item, to
be converted to or cast as the data type specified in the name of the function. For

example, the following fragment creates two variables:

The first variable,

var aString
var aNunber

ToString(123);

ToNunber (" 123");

aString, is created as a string from the number 123 converted to

or cast as a string. The second variable, aNumber, is created as a number from the
string " 123" converted to or cast as a number. Because aString had already been
created with the value " 123", the second line could also have been:

var aNunmber = ToNunber (aString);

Use the following eScript methods when casting or converting between data types:

“ToBoolean() Method” on page 262
“ToBuffer() Method” on page 263
“ToBytes() Method” on page 264
“Tolnt32() Method” on page 265
“Tolnteger() Method” on page 266
“ToNumber() Method” on page 267
“ToObject() Method” on page 268
“ToString() Method” on page 268
“ToString() Method” on page 268
“ToUint16() Method” on page 269
“ToUint32() Method” on page 270

250 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands

The Global Object

COMCreateObject() Method

Syntax

Returns

Usage

Example

See Also

COMCreateObject instantiates a COM object.

COMCr eat e(bj ect (obj ect Nane)

Parameter Description

objectName The name of the object to be created

A COM object if successful; otherwise, undefined.

You should be able to pass any type of variable to the COM object being called;
however, you must ascertain that the variable is of a valid type for the COM object.
Valid types are strings, numbers, and object pointers.

NOTE: DLLs instantiated by this method must be Thread-Safe.

This example instantiates Microsoft Excel as a COM object and makes it visible:

var Excel App = COMCr eat eObj ect (" Excel . Application");
var bb = Excel App.visible = true;
/1 Make Excel visible through the Application object.

/1 Place sone text in the first cell of the sheet
Excel App. ActiveSheet. Cel Il s(1,1).Value = "Colum A, Row 1";

/'l Save the sheet
var fileNane = "C:\\deno. x|l s";
Excel App. SaveAs (fil eNane);

/1 Close Excel with the Quit method on the Application object
Excel App. Application. Quit();

/1 Cear the object fromnmenory
Excel App = nul | ;
}

“CORBACreateObject() Method” on page 252

Version 7.5, Rev. B Siebel eScript Language Reference 251

‘ Siebel eScript Commands

The Global Object

CORBACreateObject() Method

Syntax

Returns

Usage

CORBACreateObject binds a specified CORBA object and returns its object handle.

CORBACr eat e(hj ect (i nst anceNane[, objectNane][, serverNane])

Parameter Description

instanceName The name of the interface as declared in the IDL file
objectName The name given to the CORBA object

serverName The fully qualified IP address of the server to connect to

The object handle of the CORBA object.

Only the instanceName parameter is required. The serverName parameter may be
specified either as an IP address in nnn.nnn.nnn.nnn form or as a fully qualified
network name for the host computer. Valid types are strings, numbers, and object
pointers.

NOTE: Objects instantiated with CORBACreateObject do not support methods with
out or in/out parameters.

The optional parameters, which are valid only with the Visibroker ORB, provide
greater specificity regarding the object to connect to. Thus, for example:

var cObj = CORBACreat eCbj ect (" Account ™)
connects to the first account object found. Alternatively:
var cObj = CORBACreat eCbj ect ("Account”, "Bus_Server")

connects to the first object it finds named Bus_Server that contains an account
object. If no object named Bus_Server is found, the method fails.

var cObj = CORBACreat eCbj ect ("Account™,"", 111.17.2.18)

looks for an account object on the server with the IP address 111. 17. 2. 18. If that
server does not contain an account object, the method fails.

252 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Global Object

If you are using the Visibroker ORB, you must have IREP (an interface repository
utility) running. IREP is part of the Visibroker ORB and must be running with the
necessary IDL files loaded to allow access to a particular CORBA interface.

If you are using the Orbix ORB, objects that are to be accessed must be registered
with the Orbix Naming Service. This requires that the appropriate server changes
be made such that the Server carries out the correct registration process.

Objects may be registered in the Naming Service within certain contexts. For
example, if you want to register one grid object in the grid.exe executable and this
grid object has the human readable name gridObjectl in the server, then it is
possible to register this object in the Naming Service under the context of

\ Si ebel Objects\Gids\gridObjectl

To resolve the object denoted by the name gridObject1, navigate through the
appropriate context hierarchy to get the actual Object. Following this convention,
use the following to call CORBACreateObject to obtain a reference to the preceding
object:

var p_corb_gri dObj = CORBACreat ebj ect (“Si ebel
hjects: Gids:gridnjectl”)

Separate each of the Naming Context nodes with a colon (:). Note that Orbix ignores
the second and third parameters to CORBACreateObject.

NOTE: Siebel eScript has built-in exception support for CORBA objects. Use the try
Statement and the throw Statement to build exception handlers. Orbix does not
support built-in user exceptions for CORBA obijects.

CORBACTreateObject and any call to CORBA objects can throw CORBAObjException
in addition to exceptions declared in the IDL file.

Exceptions can be caught in the eScript engine using try catch clauses. Exception
objects always have a name and are accessible with name data member.

In general, if the exception occurs while executing a CORBA function, the name of
the exception object is CORBAObjException. If the error occurs in Siebel code, the
exception name is SiebelException.

Version 7.5, Rev. B Siebel eScript Language Reference 253

‘ Siebel eScript Commands

The Global Object

User exceptions are not supported for Visibroker, where the exceptions declared in
the IDL file are mapped to the corresponding eScript objects. The exception name
is the one declared in the IDL.

For example, the user can declare a completed exception object in the IDL as
follows:

exception DataException {
string nodul el d;
string nessageText;
I ong schProcRtrnCd;
| ong appRtrnCd;
string addtnl Text;

Error Code err Code;
string errDesc;

string fiel dName;
long fieldQccurs;

I ong fldMsgCd;
string fldMsg;

ExpSour ce expSource;
}

Whenever this exception is thrown, the eScript catch clause can access this
particular object data member using this syntax:

if (obj.name == "DataException ")

TheAppl i cation(). MsgBox(obj.nodul el d);
any ot her data nenbers...

return (Cancel Opertaion);

}

Example This example instantiates a CORBA object and calls several methods on it.

var coj = nyCorbaQb. balance () ; //call a nethod
[check the return value.]

nyCor baCh. Set Bal ance (50000); //call another nethod

var acct Num = nyCor baCb. account Nunber ; // get the property
val ue

254 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Global Object

myCor baOb. account Nunber = accNum; //set it.

For more information on configuring the Siebel Client with the
CORBACreateObject() Method, refer to the section on the JSECorbaConnector
parameter in Siebel Web Client Administration Guide.

defined() Method

This function tests whether a variable or object property has been defined.

Syntax defined(var)

Parameter Description

var The variable or object property you wish to query

Returns True if the item has been defined; otherwise, false.

Usage This function tests whether a variable or object property has been defined,
returning true if it has or false if it has not.

CAUTION: The defined() function is unique to Siebel eScript. Avoid using it in a script
that may be used with a JavaScript interpreter that does not support it.

Example The following fragment illustrates two uses of the defined() method. The first use
checks a variable, t . The second use checks an objectt.t.

var t = 1;
if (defined(t))
TheApplication(). Trace("t is defined");
el se
TheApplication().Trace("t is not defined");

if (!defined(t.t))

TheApplication(). Trace("t.t is not defined"):
el se

TheApplication(). Trace("t.t is defined");

Version 7.5, Rev. B Siebel eScript Language Reference 255

‘ Siebel eScript Commands

The Global Object

See Also “undefine() Method” on page 271

escape() Method

The escape() method receives a string and replaces special characters with escape
sequences.

Syntax escape(string)

Parameter Description

string The string containing characters to be replaced

Returns A string with special characters replaced by Unicode sequences.

Usage The escape() method receives a string and replaces special characters with escape
sequences, so that the string may be used with a URL. The escape sequences are
Unicode values. For characters in the standard ASCII set (values 0 through 127
decimal), these are the hexadecimal ASCII codes of the characters preceded by
percent signs.

Uppercase and lowercase letters, numbers, and the special symbols @ * + _ ./
remain in the string. Other characters are replaced by their respective Unicode
sequences.

Example The following code provides an example of what occurs once a string has been
encoded. Note that the @ and * characters have not been replaced.

var str = "@$*96!";
Would result in the following string: " @$*% "
var encodeStr = encode(" @$*%");

Would result in the following string: " @23%24* %R5%21"

See Also “unescape(string) Method” on page 272

256 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Global Object

eval() Method

Syntax

Returns

Usage

Example

This method returns the value of its parameter, which is an expression.

eval (expression)

Parameter Description

expression The expression to be evaluated

The value of expression.

This method evaluates whatever is represented by expression. If expression is a
string, the interpreter tries to interpret the string as if it were JavaScript code. If
successful, the method returns the value of expression. If not successful, it returns

the special value undefi ned.

If the expression is not a string, expression is returned. For example, calling eval(5)

returns the value 5.

This example shows the result of using the eval() method on several types of

expressions. Note that the string expression in the t est [0] variable is evaluated
because it can be interpreted as a JavaScript statement, but the string expressions

intest[1] and test[3] are undefined.

function clickme_Cick ()

{
var nmsgtext = "";
var a = 7;
var b = 9;
var test = new Array(4);
var test[0] = "a * b";
var test[1l] = toString(a * b);
var test[2] = a + b;
var test[3] = "Strings are undefined.";
var test[4] = test[1] + test[2];
for (var i 0; i <5; i++)

megt ext

= negtext + i +

": " + eval (test[i]) + "\n";

TheAppl i cation(). Rai seError Text (nmsgt ext);

Version 7.5, Rev. B

Siebel eScript Language Reference 257

Siebel eScript Commands

The Global Object

Running this code produces the following result.

eval Test [E3

1: undefined
218

3: undefined
4: undefined

getArrayLength() Method

This function returns the length of a dynamically created array.

Syntax getArraylength(array[, ninlndex])

Parameter Description
array The name of the array whose length you wish to find
minlndex The index of the lowest element at which to start counting

Returns The length of a dynamic array, which is one more than the highest index of an array.

Usage Most commonly, the first element of an array is at index 0. If minIndex is supplied,
then it is used to set to the minimum index, which is zero or less.

This function should be used with dynamically created arrays, that is, with arrays
that were not created using the Array() constructor and the new operator. The
length property is not available for dynamically created arrays. Dynamically created
arrays must use the getArrayLength() and setArrayLength() functions when
working with array lengths.

When working with arrays created using the Array() constructor and the new
operator, use the length property of the arrays.

CAUTION: The getArrayLength() function is unique to Siebel eScript. Avoid using it
in a script that may be used with a JavaScript interpreter that does not support it.

258 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

See Also

The Global Object

“The Array Constructor” on page 98, “length Property” on page 99, and
“setArrayLength() Method” on page 261

isNaN() Method

Syntax

Returns

Usage

Example

See Also

The isNaN() method determines whether its parameter is or is not a number.

i sNaN(val ue)
Parameter Description
value The variable or expression to be evaluated

True if value is not a number; otherwise, false.

The isNaN() method determines whether value is or is not a number, returning true
if it is not or false if it is. Value must be in italics.

If value is an object reference, IsNan() always returns true, because object
references are not numbers.

IsNaN("123abc") returns true.
IsNaN("123") returns false.
IsNaN("999888777123") returns false.

IsNaN("The answer is 42") returns true.

“isFinite() Method” on page 259

isFinite() Method

This method determines whether its parameter is a finite number.

Version 7.5, Rev. B Siebel eScript Language Reference 259

‘ Siebel eScript Commands

The Global Object

Syntax i sFinite(val ue)
Parameter Description
value The variable or expression to be evaluated
Returns True if value is or can be converted to a number; false if value evaluates to NaN,
POSITIVE_INFINITY, or NEGATIVE_INFINITY.

Usage The isFinite() method returns true if number is or can be converted to a number. If
the parameter evaluates to NaN, number.POSITIVE_INFINITY, or
number. NEGATIVE_INFINITY, the method returns false. For details on the number
object, read “Number Constants” on page 57.

See Also “isNaN() Method” on page 259
parseFloat() Method
This method converts an alphanumeric string to a floating-point decimal number.
Syntax par seFl oat (string)
Parameter Description
string The string to be converted
Returns A floating-point decimal number; if string cannot be converted to a number, the
special value NaN is returned.

Usage Whitespace characters at the beginning of the string are ignored. The first non-
white-space character must be either a digit or a minus sign (-). Numeric characters
in string are read. The first period (.) in string is treated as a decimal point and any
following digits as the fractional part of the number. Reading stops at the first non-
numeric character after the decimal point. The result is converted into a number.
Characters including and following the first non-numeric character are ignored.

Example The following code fragment returns the result - 234. 37:

260 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object

var num = parseFl oat (" -234.37 profit");

parselnt() Method

Syntax

Returns

Usage

Example

This method converts an alphanumeric string to an integer number.

parsel nt (string)

Parameter Description

string The string to be converted

An integer numbers; if string cannot be converted to a number, the special value
NaN is returned.

Whitespace characters at the beginning of the string are ignored. The first non-
white-space character must be either a digit or a minus sign (-). Numeric characters
in string are read. Reading stops at the first non-numeric character. The result is
converted into an integer number. Characters including and following the first non-
numeric character are ignored.

The following code fragment returns the result - 234:

var num = parselnt(" -234.37 profit");

setArrayLength() Method

Syntax

This function sets the first index and length of an array.

set ArraylLengt h(array[, minlndex], |ength])

Parameter Description

array The name of the array whose length you wish to find
minlndex The index of the lowest element at which to start counting; must be 0 or less

length The length of the array

Version 7.5, Rev. B Siebel eScript Language Reference 261

‘ Siebel eScript Commands

The Global Object

Returns Not applicable

Usage This function sets the length of array to a range bounded by minIndex and length.
If three arguments are supplied, minlndex, which must be 0 or less, is the minimum
index of the newly sized array, and length is the length. Any elements outside the
bounds set by minindex and length become undefined. If only two arguments are
passed to setArrayLength(), the second argument is length and the minimum index
of the newly sized array is 0.

CAUTION: The setArrayLength() function is unique to Siebel eScript. Avoid using it in
a script that may be used with a JavaScript interpreter that does not support it.

See Also “length Property” on page 99 and “getArrayLength() Method” on page 258

ToBoolean() Method

This method converts a value to the Boolean data type.

Syntax ToBool ean(val ue)

Parameter Description

value The value to be converted to a Boolean value

Returns A value that depends on value’s original data type, according to the following table:

Data Type Returns

Boolean value

buffer False if an empty buffer; otherwise, true

null False

number False if value is 0, +0, -0, or NaN; otherwise, true
object True

262 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Usage

See Also

The Global Object

string False if an empty string, ""; otherwise, true

undefined False

This method converts value to the Boolean data type. The result depends on the
original data type of value.

CAUTION: The ToBoolean() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

“ToBuffer() Method” on page 263, “ToObject() Method” on page 268, and
“ToString() Method” on page 268

ToBuffer() Method

Syntax

Returns

This function converts its parameter to a buffer.

ToBuf f er (val ue)

Parameter Description

value The value to be converted to a buffer

A sequence of ASCII bytes that depends on value’s original data type, according to
the following table:

Data Type Returns

Boolean The string " f al se" if value is false; otherwise, "t r ue"
null The string " nul | "

number If value is NaN, " NaN'". If value is +0 or -0, " 0" ; if value is
POSITIVE_INFINITY or NEGATIVE_INFINITY, "I nfi ni ty"; if value is a
number, a string representing the number

object The string " [obj ect Cbj ect]"

Version 7.5, Rev. B Siebel eScript Language Reference 263

‘ Siebel eScript Commands

The Global Object

string The text of the string

undefined The string " undef i ned"

Usage This function converts value to a buffer; what is placed in the buffer is a character
array of ASCII bytes.

CAUTION: The ToBuffer() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToBytes() Method” on page 264 and “ToString() Method” on page 268

ToBytes() Method

This function places its parameter in a buffer.

Syntax ToByt es(val ue)

Parameter Description

value The value to be placed in a buffer

Returns Not applicable

Usage This function transfers the raw data represented by value to a buffer. The raw
transfer does not convert Unicode values to corresponding ASCII values. Thus, for
example, the Unicode string Hi t would be stored as \ OH\ G \ Ot, that is, as the
hexadecimal sequence 00 48 00 69 00 74.

CAUTION: The ToBytes() function is unique to Siebel eScript. Avoid using it in a script
that may be used with a JavaScript interpreter that does not support it.

264 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

See Also

The Global Object

“ToBuffer() Method” on page 263 and “ToString() Method” on page 268

Tolnt32() Method

Syntax

Returns

Usage

See Also

This function converts its parameter to an integer in the range of -23! through 23! - 1.

Tol nt 32(val ue)

Parameter Description

value The value to be converted to an integer

If the result is NaN, +0. If the result is +0 or -0, 0. If the result is
POSITIVE_INFINITY, or NEGATIVE_INFINITY, I nfi ni ty. Otherwise, the integer
part of the number, rounded toward O.

This function converts value to an integer in the range of -23! through 23! - 1 (that
is, -2,147,483,648 to 2,147,483,647). To use it without error, first pass value to
isNaN() or to ToNumber().

To use isNan(), use a statement in the form
i f (isNaN(val ue))
) [error-handling statenents];
él se
Tol nt 32(val ue);

Because ToInt32() truncates rather than rounds the value it is given, numbers are
rounded toward 0. That is, - 12. 88 becomes - 12; 12. 88 becomes 12.

CAUTION: The ToInt32() function is unique to Siebel eScript. Avoid using it in a script
that may be used with a JavaScript interpreter that does not support it.

“ToInteger() Method” on page 266, “ToNumber() Method” on page 267,
“ToUint16() Method” on page 269, and “ToUint32() Method” on page 270

Version 7.5, Rev. B Siebel eScript Language Reference 265

‘ Siebel eScript Commands

The Global Object

Tolnteger() Method

This function converts its parameter to an integer in the range of -215 to 215 - 1.

Syntax Tol nt eger (val ue)

Parameter Description

value The value to be converted to an integer

Returns If the result is NaN, + 0. If the result is + 0, -0, POSITIVE_INFINITY, or
NEGATIVE_INFINITY, the result. Otherwise, the integer part of the number,
rounded toward 0.

Usage This function converts value to an integer in the range of -215 to 215 - 1 (that is, -
32,768 to 32,767). To use it without error, first pass value to isNaN() or to
ToNumber().

To use toNumber(), use a statement of the form
var Xx;
X = toNunber (val ue);
(if x == "NaN)
) [error -handling statenents];
él se
Tol nt eger (val ue) ;

Because Tolnteger () truncates rather than rounds the value it is given, numbers are
rounded toward 0. That is, - 12. 88 becomes - 12; 12. 88 becomes 12.

CAUTION: The Tolnteger() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToInt32() Method” on page 265, “ToNumber() Method” on page 267, “ToString()
Method” on page 268, “ToUint16() Method” on page 269, “ToUint32() Method” on
page 270, and “Math.round() Method” on page 289

266 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Global Object

ToNumber() Method

This function converts its parameter to a number.

Syntax ToNumber (val ue)

Parameter Description

value The value to be converted to a number

Returns A value that depends on value’s original data type, according to the following table:

Data Type Returns

Boolean +0 if value is false, 1 if value is true
buffer value if successful; otherwise, NaN
null 0

number value

object NaN

string value if successful; otherwise, NaN

undefined NaN

Usage This function converts its parameter to a number.

CAUTION: The ToNumber() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToInt32() Method” on page 265, “Tolnteger() Method” on page 266, “ToString()
Method” on page 268, “ToUint16() Method” on page 269, “ToUint32() Method” on
page 270, and “Math.round() Method” on page 289

Version 7.5, Rev. B Siebel eScript Language Reference 267

Siebel eScript Commands

The Global Object

ToObject() Method

This function converts its parameter to an object.

Syntax ToQbj ect (val ue)

Parameter Description

value The value to be converted to an object

Returns A value that depends on value’s original data type, according to the following table:

Data Type Returns

Boolean A new Boolean object having the value value

null (Generates a run-time error)

number A new Number object having the value value
object value

string A new string object having the value value

undefined (Generates a run-time error)

Usage This function converts its parameter to an object.

CAUTION: The ToObject() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

See Also “ToString() Method” on page 268

ToString() Method

This method converts its parameter to a string.

268 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Syntax

Returns

Usage

Example

See Also

The Global Object

ToStri ng(val ue)

Parameter Description

value The value to be converted to a string

A value in the form of a Unicode string, the contents of which depends on value’s
original data type, according to the following table:

Data Type Returns

Boolean "fal se" if value is false; otherwise, "t r ue"
null The string "nul | "

number If value is NaN, " NaN" . If value is +0 or -0, " 0" ; if Infinity, " I nfi ni ty";if
a number, a string representing the number

object The string " [obj ect Cbj ect]”
string value

undefined The string " undef i ned"

This method converts its parameter to a Unicode string, the contents of which
depend on value’s original data type.

CAUTION: The ToString() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

For an example, read “eval() Method” on page 257.

“ToBuffer() Method” on page 263 and “ToBytes() Method” on page 264

ToUint16() Method

This function converts its parameter to an integer in the range of 0 through 216 -1.

Version 7.5, Rev. B Siebel eScript Language Reference 269

‘ Siebel eScript Commands

The Global Object

Syntax

Returns

Usage

See Also

ToUi nt 16(val ue)

Parameter Description

value The value to be converted

If the result is NaN, + 0. If the result is + 0, 0. If the result is POSITIVE_INFINITY,
it returns I nfi ni t y. Otherwise, it returns the unsigned (that is, absolute value of)
integer part of the number, rounded toward 0.

This function converts value to an integer in the range of 0 to 216 - 1 (65,535). To
use it without error, first pass value to isNaN() or to ToNumber().

To use toNumber(), use a statement of the form

var Xx;i
X = toNunber (val ue);

(if x == "NaN)
. [error -handling statenents];
él se

ToUi nt 16(val ue) ;

Because ToUint16() truncates rather than rounds the value it is given, numbers are
rounded toward 0. Therefore, 12. 88 becomes 12.

CAUTION: The ToUint16() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

“ToInt32() Method” on page 265, “Tolnteger() Method” on page 266, “ToNumber()
Method” on page 267, “ToUint32() Method” on page 270, and “Math.round()
Method” on page 289

ToUint32() Method

This function converts its parameter to an integer in the range of 0 to 232 -1.

270 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

See Also

The Global Object

ToUi nt 32(val ue)

Parameter Description

value The value to be converted

If the result is NaN, + 0. If the result is + 0, 0. If the result is POSITIVE_INFINITY,
it returns I nfi ni t y. Otherwise, it returns the unsigned (that is, absolute value of)
integer part of the number, rounded toward 0.

This function converts value to an unsigned integer part of value in the range of 0
through 232 - 1 (4,294,967,296). To use it without error, first pass value to isNaN()
or to ToNumber().

To use isNan() without error, use a statement of the form
i f (isNaN(val ue))
) [error-handling statenents];
él se
ToUi nt 32(val ue) ;

Because ToUint32() truncates rather than rounds the value it is given, numbers are
rounded toward 0. Therefore, 12. 88 becomes 12.

CAUTION: The ToUint32() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

“ToInt32() Method” on page 265, “Tolnteger() Method” on page 266, “ToNumber()
Method” on page 267, “ToUint16() Method” on page 269, and “Math.round()
Method” on page 289

undefine() Method

This function undefines a variable, Object property, or value.

Version 7.5, Rev. B Siebel eScript Language Reference 271

‘ Siebel eScript Commands

The Global Object

Syntax

Returns

Usage

Example

See Also

undefi ne(val ue)

Parameter Description

value The variable or object property to be undefined

Not applicable

If a value was previously defined so that its use with the defined() method returns
true, then after using undefine() with the value, defined() returns false. Undefining
a value is not the same as setting a value to null. In the following fragment, the
variable n is defined with the number value of 2, and then undefined.

var n = 2;
undefi ne(n);

CAUTION: The undefine() function is unique to Siebel eScript. Avoid using it in a
script that may be used with a JavaScript interpreter that does not support it.

In the following fragment an object o is created, and a property o.one is defined.
The property is then undefined, but the object o remains defined.

var o = new Obj ect;

0.one = 1;
undefi ne(o.one);

“CORBACreateObject() Method” on page 252

unescape(string) Method

The unescape() method removes escape sequences from a string and replaces them
with the relevant characters.

272 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Syntax

Returns

Usage

Example

See Also

The Global Object

unescape(string)

Parameter Description

string A string literal or string variable from which escape sequences are to be
removed

A string with Unicode sequences replaced by the equivalent ASCII characters.

The unescape() method is the reverse of the escape() method; it removes escape
sequences from a string and replaces them with the relevant characters.

The following line of code displays the string in its parameter with the escape
sequence replaced by printable characters. Note that %20 is the Unicode
representation of the space character. Note also that this example would normally
appear on a single line, as strings cannot be broken by a newline.

TheAppl i cation(). Rai seError Text (unescape("http://obscushop. cont
texi s/ %20%20showcat . ht m ?cat i d=%232029&r g=r 133"));

Siebel Sales [%]

http: ##obscushop. comdtexisd showeat html?catid=H2029%g=r133

“escape() Method” on page 256

Version 7.5, Rev. B Siebel eScript Language Reference 273

‘ Siebel eScript Commands

The Math Object

The Math Object

The Math object in Siebel eScript has a full and powerful set of methods and
properties for mathematical operations. A programmer has a rich set of
mathematical tools for the task of doing mathematical calculations in a script.

Properties

“Math.E Property” on page 281
“Math.LN10 Property” on page 282
“Math.LN2 Property” on page 283
“Math.LOG2E Property” on page 284
“Math.PI Property” on page 287
“Math.LOGI10E Property” on page 285
“Math.SQRT2 Property” on page 291
“Math.SQRT1_2 Property” on page 291

Methods

“Math.abs() Method” on page 275
“Math.acos() Method” on page 275
“Math.asin() Method” on page 276
“Math.atan() Method” on page 277
“Math.atan2() Method” on page 278
“Math.ceil() Method” on page 279
“Math.cos() Method” on page 280
“Math.exp() Method” on page 281
“Math.floor() Method” on page 282
“Math.log() Method” on page 284

274 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands ‘

The Math Object

“Math.max() Method” on page 286

» “Math.min() Method” on page 286

“Math.pow () Method” on page 287
s “Math.random() Method” on page 288

» “Math.round() Method” on page 289

“Math.sin() Method” on page 290

“Math.sqrt() Method” on page 290

“Math.tan() Method” on page 292

Math.abs() Method

This method returns the absolute value of its parameter; it returns NaN if the
parameter cannot be converted to a number.

Syntax Mat h. abs(nunber)

Parameter Description

number A numeric literal or numeric variable

Returns The absolute value of number; or NaN if number cannot be converted to a number.

Usage This method returns the absolute value of number. If number cannot be converted
to a number, it returns NaN.

Math.acos() Method

This method returns the arc cosine of its parameter, expressed in radians.

Version 7.5, Rev. B Siebel eScript Language Reference 275

‘ Siebel eScript Commands

The Math Object

Syntax Mat h. acos(nunber)

Parameter Description

number A numeric literal or numeric variable

Returns The arc cosine of number, expressed in radians from 0 to pi, or NaN if number
cannot be converted to a number or is greater than 1 or less than -1.

Usage This method returns the arc cosine of number. The return value is expressed in
radians and ranges from O to pi. It returns NaN if x cannot be converted to a
number, is greater than 1, or is less than -1.

To convert radians to degrees, multiply by 180/ Mat h. PI .

See Also “Math.asin() Method” on page 276, “Math.atan() Method” on page 277,
“Math.cos() Method” on page 280, and “Math.sin() Method” on page 290

Math.asin() Method

This method returns an implementation-dependent approximation of the arcsine of
its parameter.

Syntax Mat h. asi n(nunber)

Parameter Description

number A numeric literal or numeric variable

Returns An implementation-dependent approximation of the arcsine of number, expressed
in radians and ranging from - pi/2 to + pi/2.

Usage This method returns an implementation-dependent approximation of the arcsine of
number. The return value is expressed in radians and ranges from -pi/2 to + pi/2.
It returns NaN if number cannot be converted to a number, is greater than 1, or is
less than -1.

276 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

See Also

The Math Object

To convert radians to degrees, multiply by 180/ Mat h. PI .

“Math.acos() Method” on page 275, “Math.atan() Method” on page 277,
“Math.atan2() Method” on page 278, “Math.cos() Method” on page 280,
“Math.sin() Method” on page 290, and “Math.tan() Method” on page 292

Math.atan() Method

Syntax

Returns

Usage

Example

This method returns an implementation-dependent approximation of the arctangent
of the argument.

Mat h. at an(nunber)

Parameter Description

number A numeric literal or numeric variable

An implementation-dependent approximation of the arctangent of number,
expressed in radians.

The Math.atan() function returns an implementation-dependent approximation of
the arctangent of the argument. The return value is expressed in radians and ranges
from -pi/2 to +pi/2.

The function assumes number is the ratio of two sides of a right triangle: the side
opposite the angle to find and the side adjacent to the angle. The function returns
a value for the ratio.

To convert radians to degrees, multiply by 180/ Mat h. PI .

This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16-foot span from the outside wall to the center of the
house. The Math.atan() function returns the angle in radians; it is multiplied by
180/PI to convert it to degrees. Compare the example in the discussion of
“Math.atan2() Method” on page 278 to understand how the two arctangent
functions differ. Both examples return the same value.

Version 7.5, Rev. B Siebel eScript Language Reference 277

‘ Siebel eScript Commands

The Math Object

See Also

function Roof Btn_Click ()

{
var height = 8;
var span = 16;
var angl e = Math. atan(hei ght/span)*(180/ Math. Pl);
TheApplication(). Rai seErrorText("The angle is " +
Cib.rsprintf("%.2f", angle) + " degrees.")
}

“Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan2() Method” on page 278, “Math.cos() Method” on page 280,
“Math.sin() Method” on page 290, and “Math.tan() Method” on page 292

Math.atan2() Method

Syntax

Returns

Usage

This function returns an implementation-dependent approximation to the
arctangent of the quotient of its arguments.

Mat h. at an2(y, x)

Parameter Description

y The value on the y axis

X The value on the x axis

An implementation-dependent approximation of the arctangent of y/x, in radians.

This function returns an implementation-dependent approximation to the
arctangent of the quotient, y/x, of the arguments y and x, where the signs of the
arguments are used to determine the quadrant of the result. It is intentional and
traditional for the two-argument arctangent function that the argument named y be
first and the argument named x be second. The return value is expressed in radians
and ranges from -pi to + pi.

278 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Example

See Also

The Math Object

This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16-foot span from the outside wall to the center of the
house. The Math.atan2() function returns the angle in radians; it is multiplied by
180/PI to convert it to degrees. Compare the example in the discussion of
“Math.atan() Method” on page 277 to understand how the two arctangent functions
differ. Both examples return the same value.

function RoofBtn2_Cick ()

{
var height = 8;
var span = 16;
var angle = Math. atan2(span, height)*(180/ Math. Pl);
TheApplication().Rai seErrorText("The angle is " +
Cib.rsprintf("9%.2f", angle) + " degrees.")

}

“Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan() Method” on page 277, “Math.cos() Method” on page 280, “Math.sin()
Method” on page 290, and “Math.tan() Method” on page 292

Math.ceil() Method

Syntax

Returns

Usage

Example

This method returns the smallest integer that is not less than its parameter.

Mat h. cei | (nunber)

Parameter Description

number A numeric literal or numeric variable

The smallest integer that is not less than number; if number is an integer, number.

This method returns the smallest integer that is not less than number. If the
argument is already an integer, the result is the argument itself. It returns NaN if
number cannot be converted to a number.

The following code fragment generates a random number between 0 and 100 and
displays the integer range in which the number falls. Each run of this code produces
a different result.

Version 7.5, Rev. B Siebel eScript Language Reference 279

‘ Siebel eScript Commands

The Math Object

var x = Math.random() * 100;
TheAppl i cation(). Rai seError Text (" The nunber is between " +
Math. floor(x) + " and " + Math.ceil(x) + ".");

See Also “Math.floor() Method” on page 282

Math.cos() Method

This method returns an implementation-dependent approximation of the cosine of
the argument. The argument is expressed in radians.

Syntax Mat h. cos(number)

Parameter Description

number A numeric literal or numeric variable representing an angle in radians

Returns An implementation-dependent approximation of the cosine of number.

Usage The return value is between -1 and 1. NaN is returned if number cannot be
converted to a number.

The angle can be either positive or negative. To convert degrees to radians, multiply
by Mat h. PI / 180.

Example This example finds the length of a roof, given its pitch and the distance of the house
from its center to the outside wall.

function Roof Btn3_Cick ()

{
var pitch;
var w dth;
var roof;
pitch = 35;
pitch = Math. cos(pitch*(Math. Pl/180));
width = ;
width = width / 2;

roof = width/pitch;

280 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

See Also

The Math Object

TheAppl i cation(). Rai seError Text (" The | ength of the roof is " +
Cib.rsprintf("%.2f", roof) + " feet.");

}

“Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan() Method” on page 277, “Math.atan2() Method” on page 278,
“Math.sin() Method” on page 290, and “Math.tan() Method” on page 292

Math.E Property

Syntax

Returns
Usage

See Also

This property stores the number value for e, the base of natural logarithms.

Mat h. E

Parameter Description

Not applicable

Not applicable
The value of e is represented internally as approximately 2.7182818284590452354.
“Math.exp() Method” on page 281, “Math.LN10 Property” on page 282, “Math.LN2

Property” on page 283, “Math.log() Method” on page 284, “Math.LOG2E Property”
on page 284, and “Math.LOG10E Property” on page 285

Math.exp() Method

Syntax

This method returns an implementation-dependent approximation of the
exponential function of its parameter.

Mat h. exp(nunber)

Parameter Description

number The exponent value of e

Version 7.5, Rev. B Siebel eScript Language Reference 281

‘ Siebel eScript Commands

The Math Object

Returns The value of e raised to the power number.

Usage This method returns an implementation-dependent approximation of the
exponential function of its parameter. The argument, that is, returns e raised to the
power of the x, where e is the base of the natural logarithms. NaN is returned if
number cannot be converted to a number. The value of e is represented internally
as approximately 2.7182818284590452354.

See Also “Math.E Property” on page 281, “Math.LN10 Property” on page 282, “Math.LN2

Property” on page 283, “Math.log() Method” on page 284, “Math.LOG2E Property”
on page 284, and “Math.LOG10E Property” on page 285

Math.floor() Method

This method returns the greatest integer that is not greater than its parameter.

Syntax Mat h. f | oor (nunber)

Parameter Description

number A numeric literal or numeric variable

Returns The greatest integer that is not greater than number; if number is an integer,
number.

Usage This method returns the greatest integer that is not greater than number. If the
argument is already an integer, the result is the argument itself. It returns NaN if
number cannot be converted to a number.

Example For an example, read “Math.ceil() Method” on page 279.
See Also “Math.ceil() Method” on page 279

Math.LN10 Property

This property stores the number value for the natural logarithm of 10.

282 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

See Also

The Math Object

Mat h. LN10O

Parameter Description

Not applicable

Not applicable

The value of the natural logarithm of 10 is represented internally as approximately
2.302585092994046.

“Math.exp() Method” on page 281, “Math.LN2 Property” on page 283, “Math.log()
Method” on page 284, “Math.LOG2E Property” on page 284, and “Math.LOGI10E
Property” on page 285

Math.LN2 Property

Syntax

Returns

Usage

See Also

This property stores the number value for the natural logarithm of 2.

Mat h. LN2

Parameter Description

Not applicable

Not applicable

The value of the natural logarithm of 2 is represented internally as approximately
0.6931471805599453.

“Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.log() Method” on page 284, “Math.LOG2E Property”
on page 284, and “Math.LOGI10E Property” on page 285

Version 7.5, Rev. B Siebel eScript Language Reference 283

‘ Siebel eScript Commands

The Math Object

Math.log() Method

Syntax

Returns

Example

See Also

This function returns an implementation-dependent approximation of the natural
logarithm of its parameter.

Mat h. | og(nunber)

Parameter Description

number A numeric literal or numeric variable

An implementation-dependent approximation of the natural logarithm of number.

This example uses the Math.log() function to determine which number is larger:
99921000 (999 to the 1000th power) or 10002999 (1000 to the 999th power). Note
that if you attempt to use the Math.pow() function instead of the Math.log()
function with numbers this large, the result returned would be I nfinity.

function Test_Cdick ()

{
var x = 999;
var y = 1000;
var a = y*(Math.log(x));
var b = x*(Math.log(y))
if (a>b)
TheAppl i cation().
Rai seError Text ("99971000 is greater than 10007999.");
el se
TheAppl i cation().
Rai seError Text (" 10007999 is greater than 99971000.");
}

“Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.LN2 Property” on page 283, “Math.LOG2E Property”
on page 284, “Math.LOGI10E Property” on page 285, and “Math.pow() Method” on
page 287

Math.LOG2E Property

This property stores the number value for the base 2 logarithm of e, the base of the
natural logarithms.

284 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

Syntax

Returns

Usage

See Also

The Math Object

Mat h. LORE

Parameter Description

Not applicable

Not applicable

The value of the base 2 logarithm of e is represented internally as approximately
1.4426950408889634. The value of Math.LOG2E is approximately the reciprocal of
the value of Math.LN2.

“Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.LN2 Property” on page 283, “Math.log() Method” on
page 284, and “Math.LOG10E Property” on page 285

Math.LOG10E Property

Syntax

Returns

Usage

See Also

The number value for the base 10 logarithm of e, the base of the natural logarithms.

Mat h. LOGLOE

Parameter Description

Not applicable

Not applicable

The value of the base 10 logarithm of e is represented internally as approximately
0.4342944819032518. The value of Math.LOGI10E is approximately the reciprocal of
the value of Math.LN10.

“Math.E Property” on page 281, “Math.exp() Method” on page 281, “Math.LN10
Property” on page 282, “Math.LN2 Property” on page 283, “Math.log() Method” on
page 284, and “Math.LOG2E Property” on page 284

Version 7.5, Rev. B Siebel eScript Language Reference 285

‘ Siebel eScript Commands

The Math Object

Math.max() Method

Syntax

Returns

Usage

See Also

This function returns the larger of its parameters.

Mat h. max(x, Y)

Parameter Description

X A numeric literal or numeric variable

y A numeric literal or numeric variable

The larger of x and y.

This function returns the larger of x and y, or NaN if either parameter cannot be
converted to a number.

“Math.min() Method” on page 286

Math.min() Method

Syntax

Returns

Usage

See Also

This function returns the smaller of its parameters.

Mat h. m n(x, YY)

Parameter Description

X A numeric literal or numeric variable

y A numeric literal or numeric variable

The smaller of x and y.

This function returns the smaller of x and y, or NaN if either parameter cannot be
converted to a number.

“Math.max() Method” on page 286

286 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The Math Object

Math.PI Property

Syntax

Returns

Usage

Example

This property holds the number value for pi.

Mat h. P

Parameter Description

Not applicable

Not applicable

This property holds the value of pi, which is the ratio of the circumference of a circle
to its diameter. This value is represented internally as approximately
3.14159265358979323846.

For examples, read “Math.atan() Method” on page 277, “Math.atan2() Method” on
page 278, and “Math.cos() Method” on page 280.

Math.pow() Method

Syntax

Returns

Usage

This function returns the value of its first parameter raised to the power of its
second parameter.

Mat h. pow(X, V)

Parameter Description
X The number to be raised to a power
y The power to which to raise x

The value of x to the power of y.

This function returns the value of x raised to the power of y.

Version 7.5, Rev. B Siebel eScript Language Reference 287

Siebel eScript Commands

The Math Object

Example This example uses the Math.pow() function to determine which number is larger:
997100 (99 to the 100th power) or 100799 (100 to the 99th power). Note that if you
attempt to use the Math.pow() method with numbers as large as those used in the
example in “Math.log() Method” on page 284, the result returned is I nfini ty.

function Test_Cick ()

{
var a = Math. pow(99, 100);
var b = Math. pow(100, 99);
if (a>b)
TheAppl i cation(). Rai seError Text ("997100 is greater than
100799.");
el se
TheAppl i cation(). Rai seError Text ("100799 is greater than
997100.");
}

See Also “Math.exp() Method” on page 281, “Math.log() Method” on page 284, and
“Math.sqrt() Method” on page 290

Math.random() Method

This function returns a pseudo-random number between 0 and 1.

Syntax Mat h. randony()

Parameter Description

Not applicable

Returns A pseudo-random number between 0 and 1.

Usage This function generates a pseudo-random number between 0 and 1. It takes no
arguments. Where possible, it should be used in place of the Clib.rand() method.
The Clib.rand() method is to be preferred only when it is necessary to use
Clib.srand() to seed the Clib random number generator with a specific value.

Example This example generates a random string of characters within a range. The
Math.random() function is used to set the range between lowercase a and z.

288 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

The Math Object

function Test_Cdick ()
{

var strl ="";

var letter;

var randonval ue;

var upper = "z";
var lower = "a";
upper upper . char CodeAt (0) ;

| ower | ower . char CodeAt (0) ;

for (var x = 1; x < 26; X++)

{
randonval ue = Math. round(((upper - (lower + 1)) *
Mat h. random()) + | ower);
| etter = String.fronChar Code(randonval ue);
strl = strl + letter;
}

TheAppl i cation(). Rai seError Text(strl);

See Also “Clib.rand() Method” on page 183 and “Clib.srand() Method” on page 189

Math.round() Method

This method rounds a number to its nearest integer.

Syntax Mat h. r ound(nunber)

Parameter Description

number A numeric literal or numeric variable

Returns The integer closest in value to number.
Usage The number parameter is rounded up if its fractional part is equal to or greater than
0.5 and is rounded down if less than 0.5. Both positive and negative numbers are
rounded to the nearest integer.

Example This code fragment yields the values 124 and -124.

Version 7.5, Rev. B Siebel eScript Language Reference 289

‘ Siebel eScript Commands

The Math Object

var a Mat h. round(123. 6) ;
var b Mat h. r ound(- 123. 6)
TheApplication().RaiseErrorText(a + "\n" + b)

See Also “Clib.modf() Method” on page 179, “ToInt32() Method” on page 265, “Tolnteger()
Method” on page 266, “ToUint16() Method” on page 269, and “ToUint32() Method”
on page 270

Math.sin() Method

This method returns the sine of an angle expressed in radians.

Syntax Mat h. si n(number)

Parameter Description

number A numeric expression containing a number representing the size of an
angle in radians

Returns The sine of number, or NaN if number cannot be converted to a number.

Usage The return value is between -1 and 1. The angle is specified in radians and can be
either positive or negative.

To convert degrees to radians, multiply by Mat h. PI / 180.

See Also “Math.acos() Method” on page 275, “Math.asin() Method” on page 276,
“Math.atan() Method” on page 277, “Math.atan2() Method” on page 278,
“Math.cos() Method” on page 280, and “Math.tan() Method” on page 292

Math.sqrt() Method

This method returns the square root of its parameter; it returns NaN if x is a
negative number or cannot be converted to a number.

290 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

See Also

The Math Object

Mat h. sqrt ()
Parameter Description
number A numeric literal or numeric variable

The square root of number, or NaN if number is negative or cannot be converted to
a number.

This method returns the square root of number, or Nan if number is negative or
cannot be converted to a number.

“Math.exp() Method” on page 281, “Math.log() Method” on page 284, and
“Math.pow() Method” on page 287

Math.SQRT1_2 Property

Syntax

Returns

Usage

See Also

This property stores the number value for the square root of %.

Mat h. SQRT1_2

Parameter Description

Not applicable

Not applicable

This property stores the number value for the square root of %2, which is
represented internally as approximately 0.7071067811865476. The value of
Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT?2.

“Math.sqrt() Method” on page 290 and “Math.SQRT2 Property” on page 291

Math.SQRT2 Property

This property stores the number value for the square root of 2.

Version 7.5, Rev. B Siebel eScript Language Reference 291

‘ Siebel eScript Commands

The Math Object

Syntax Mat h. SQRT2

Parameter Description

Not applicable

Returns Not applicable

Usage This property stores the number value for the square root of 2, which is represented
internally as approximately 1.4142135623730951.

See Also “Math.sqrt() Method” on page 290 and “Math.SQRT1_2 Property” on page 291

Math.tan() Method

This method returns the tangent of its parameter.

Syntax Mat h. t an(nunber)

Parameter Description

number A numeric expression containing the number of radians in the angle whose
tangent is to be returned

Returns The tangent of number, or NaN if number cannot be converted to a number.

Usage This method returns the tangent of number, expressed in radians, or NaN if number
cannot be converted to a number. To convert degrees to radians, multiply by
Mat h. Pl /180.

See Also “Math.acos() Method” on page 275, “Math.asin() Method” on page 276,

“Math.atan() Method” on page 277, “Math.atan2() Method” on page 278,
“Math.cos() Method” on page 280, and “Math.sin() Method” on page 290

292 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

User-Defined Objects

User-Defined Objects

Variables and functions may be grouped together in one variable and referenced as
a group. A compound variable of this sort is called an object in which each
individual item of the object is called a property.

In general, it is adequate to think of object properties, which are variables or
constants, and of object methods, which are functions.

To refer to a property of an object, use both the name of the object and the name of
the property, separated by a period. Any valid variable name may be used as a
property name. For example, the code fragment that follows assigns values to the
width and height properties of a rectangle object, calculates the area of a rectangle,
and displays the result:

var Rectangl e;

Rect angl e. hei ght = 4,
Rect angl e. width = 6;

TheAppl i cation(). Rai seError Text (Rect angl e. hei ght *
Rect angl e. wi dt h) ;

The main advantage of objects occurs with data that naturally occurs in groups. An
object forms a template that can be used to work with data groups in a consistent
way. Instead of having a single object called Rectangle, you can have a number of
Rectangle objects, each with its own values for width and height.

See Also “Predefining Objects with Constructor Functions” on page 293, “Assigning
Functions to Objects” on page 294, and “Object Prototypes” on page 295

Predefining Objects with Constructor Functions

A constructor function creates an object template. For example, a constructor
function to create Rectangle objects might be defined like the following:

function Rectangl e(w dth, height)
this.width = width;

t hi s. hei ght = height;
}

Version 7.5, Rev. B Siebel eScript Language Reference 293

‘ Siebel eScript Commands

User-Defined Objects

The keyword this is used to refer to the parameters passed to the constructor
function and can be conceptually thought of as "this object.” To create a Rectangle
object, call the constructor function with the "new" operator:

var joe = new Rectangl e(3, 4)
var sally = new Rectangl e(5, 3);

This code fragment creates two rectangle objects: one named joe, with a width of 3
and a height of 4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object
created by a constructor function is called an instance of that class. The preceding
example creates a Rectangle class and two instances of it. Instances of a class share
the same properties, although a particular instance of the class may have additional
properties unique to it. For example, if you add the following line:

joe.notto = "Be prepared!"”;

you add a motto property to the rectangle joe. But the rectangle sally has no motto
property.

Assigning Functions to Objects

Objects may contain functions as well as variables. A function assigned to an object
is called a method of that object.

Like a constructor function, a method refers to its variables with the "this" operator.
The following fragment is an example of a method that computes the area of a
rectangle:

function rectangl e_area()

{
}

Because there are no parameters passed to it, this function is meaningless unless it
is called from an object. It needs to have an object to provide values for this.width
and this.height:

return this.width * this. height;

A method is assigned to an object as the following line illustrates:

joe.area = rectangl e_area;

294 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

User-Defined Objects

The function now uses the values for height and width that were defined when you
created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this
keyword. For example, the following code:

function rectangl e_area()

{
}

function Rectangl e(w dth, height)

return this.width * this. height;

this.width = wdth;
t hi s. hei ght = height;
this.area = rectangl e_area;

}

creates an object class Rectangle with the rectangle_area method included as one of
its properties. The method is available to any instance of the class:

var joe = Rectangle(3,4);
var sally = Rectangl e(5, 3);

var areal
var area?2

joe.area();
sally.area();

This code sets the value of areal to 12 and the value of area2 to 15.

Object Prototypes

An object prototype lets you specify a set of default values for an object. When an
object property that has not been assigned a value is accessed, the prototype is
consulted. If such a property exists in the prototype, its value is used for the object

property.

Version 7.5, Rev. B Siebel eScript Language Reference 295

‘ Siebel eScript Commands

User-Defined Objects

Object prototypes are useful for two reasons: they make sure that every instance of
an object use the same default values, and they conserve the amount of memory
needed to run a script. When the two rectangles, joe and sally, were created in the
previous section, they were each assigned an area method. Memory was allocated
for this function twice, even though the method is exactly the same in each
instance. This redundant memory can be avoided by putting the shared function or
property in an object's prototype. Then every instance of the object use the same
function instead of each using its own copy of it.

The following fragment shows how to create a Rectangle object with an area
method in a prototype:

function rectangl e_area()

{
}

function Rectangl e(w dth, height)

return this.width * this. height;

this.width = wdth;
t hi s. hei ght = height;
}

Rect angl e. prot ot ype. area = rectangl e_area;

The rectangle_area method can now be accessed as a method of any Rectangle
object, as shown in the following:

var areal
var area?2

joe.area();
sally.area();

You can add methods and data to an object prototype at any time. The object class
must be defined, but you do not have to create an instance of the object before
assigning it prototype values. If you assign a method or data to an object prototype,
every instance of that object is updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new

variable is created for the newly assigned value. This value is used for the value of
this instance of the object's property. Other instances of the object still refer to the
prototype for their values. If you assume that joe is a special rectangle, whose area
is equal to three times its width plus half its height, you can modify joe as follows:

296 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

User-Defined Objects

function joe_area()

return (this.width * 3) + (this.height/2);
}

joe.area = joe_area;

This fragment creates a value, which in this case is a function, for joe.area that
supersedes the prototype value. The property sally.area is still the default value
defined by the prototype. The instance joe uses the new definition for its area
method.

NOTE: Prototypes cannot be declared inside a function scope.

Version 7.5, Rev. B Siebel eScript Language Reference 297

‘ Siebel eScript Commands

Property Set Objects

Property Set Objects

Property set objects are collections of properties that can be used for storing data.
They may have child property sets assigned to them. Property sets are used
primarily for inputs and outputs to business services. You can assign child property
sets to a property set to form a hierarchical data structure. Methods of property set
objects are documented in the Siebel Object Interfaces Reference.

Method

Description

AddChild() Method

Copy() Method

GetChild() Method

GetChildCount() Method

GetFirstProperty() Method

GetNextProperty() Method

GetProperty() Method

GetPropertyCount() Method

GetType() Method

GetValue() Method

InsertChildAt() Method

PropertyExists() Method

The AddChild() method is used to add subsidiary property
sets to a property set, in order to form tree-structured data
structures.

Copy() returns a copy of a property set.

GetChild() returns a specified child property set of a
property set.

GetChildCount() returns the number of child property sets
attached to a parent property set.

GetFirstProperty() returns the name of the first property in
a property set.

GetNextProperty () returns the name of the next property in
a property set.

GetProperty() returns the value of a property, when given
the property name.

GetPropertyCount() returns the number of properties
associated with a property set.

GetType() retrieves the data value stored in the type
attribute of a property set.

GetValue() retrieves the data value stored in the value
attribute of a property set.

InsertChildAt() inserts a child property set into a parent
property set at a specific location.

PropertyExists() returns a Boolean value indicating
whether a specified property exists in a property set.

298 Siebel eScript Language Reference

Version 7.5, Rev. B

Siebel eScript Commands

Method

Property Set Objects

Description

RemoveChild() Method

RemoveProperty() Method

Reset() Method

SetProperty() Method

SetType() Method

SetValue() Method

RemoveChild() removes a child property set from a parent
property set.

RemoveProperty() removes a property from a property set.

This method removes every property and child property set
from a property set.

SetProperty() assigns a data value to a property in a
property set.

SetType() assigns a data value to a type member of a
property set.

SetValue() assigns a data value to a value member of a
property set.

Version 7.5, Rev. B

Siebel eScript Language Reference 299

‘ Siebel eScript Commands

The SElib Object

The SElib Object

Windows
Syntax

UNIX
Syntax

Returns

Usage

In Siebel eScript, the SElib object allows calling out to external libraries.

SElib.dynamicLink() Method

SEl'i b. dynami cLi nk(Li brary, Procedure, Convention[, [desc,] argl,
arg2, arg3, ..., argn])

SEl'i b. dynami cLi nk(Li brary, Procedure[, argl, arg2, arg3, ...argn])
Parameter Description
Library Under Windows, the name of the DLL containing the

procedure; under UNIX, the name of a shared object; can be
specified by fully qualified path name

Procedure The name or ordinal number of the procedure in the Library
dynamic link library

Convention The calling convention
desc Used to pass a Unicode string; for example, WCHAR

argl, arg2, arg3, ..., argn Arguments to the procedure

Not applicable

The calling convention must be one of the following:

CDECL Push right parameter first; the caller pops parameters

STDCALL Push right parameter first; the caller pops parameters (this is almost
always the option used in Win32)

PASCAL Push left parameter first; the callee pops parameters

Values are passed as 32-bit values. If a parameter is undefined when
SElib.dynamicLink() is called, then it is assumed that the parameter is a 32-bit value
to be filled in; that is, the address of a 32-bit data element is passed to the function,
and that function sets the value.

300 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands ‘

The SElib Object

If any parameter is a structure, then it must be a structure that defines the binary
data types in memory to represent the following variable. Before calling the
function, the structure is copied to a binary buffer as described in “Blob.put()
Method” on page 105 and “Clib.fwrite() Method” on page 164.

After calling the function, the binary data are converted back into the data structure
according to the rules defined in Blob.get() and Clib.fread(). Data conversion is
performed according to the current BigEndianMode setting. The function returns an
integer.

Example The following code example shows a proxy DLL that takes denormalized input
values, creates the structure, and invokes a method in the destination DLL. In the
process, it calls the SElib dynamicLink.

#i ncl ude <wi ndows. h>
_decl spec(dllexport) int _ cdecl
score (
doubl e AGE,
doubl e AVGCHECKBALANCE,
doubl e AVGSAVI NGSBALANCE,
doubl e CHURN_SCORE,
doubl e CONTACT_LENGTH,
doubl e HOVEOMNER,
doubl e *P_CHURN_SCORE,
doubl e *R_CHURN_SCORE,
char _WARN [5])

{
*P_CHURN_SCORE = AGE + AVGCHECKBALANCE + AVGSAVI NGSBALANCE;
*R_CHURN_SCORE = CHURN_SCORE + CONTACT_LENGTH + HOVEOMNER;
strcpy(_WARN_, "SFD");
return(l);

}

The following example shows the eScript code required to invoke a DLL. In this
code, the Buffer is used for pointers and characters.

function TestDLLCal | 3()

{
var AGE = 10;
var AVGCHECKBALANCE = 20;
var AVGSAVI NGSBALANCE = 30;
var CHURN_SCORE = 40;
var CONTACT_LENGTH = 50;
var HOVEONNER = 60;

Version 7.5, Rev. B Siebel eScript Language Reference 301

‘ Siebel eScript Commands

The SElib Object

var P_CHURN_SCORE = Buffer(8);
var R_CHURN_SCORE = Buffer(8);
var _WARN_ = Buffer(5);

SEl i b. dynami cLi nk("jddll.dl 1", "score", CDECL,
FLOAT64, AGE,
FLOAT64, AVGCHECKBALANCE,
FLOAT64, AVGSAVI NGSBALANCE,
FLOAT64, CHURN_SCORE,
FLOAT64, CONTACT_LENGTH,
FLOAT64, HOVEOWNER,
P_CHURN_SCORE,
R_CHURN_SCORE,
_WARN) ;

var r_churn_score R_CHURN_SCORE. get Val ue(8, "float")
var p_churn_score P_CHURN_SCORE. get Val ue(8, "float");
var nReturns = r_churn_score + p_churn_score;
return(nReturns);

}

The following code calls a DLL function in the default codepage.

var sHello = "Hell o";
Sel i b. dynami cLi nk("MLib.dl ", "MyFunc", CDECL, sHello);

The following code calls a DLL function that passes Unicode strings.

var sHello = "Hell o";

Seli b. dynami cLi nk("MLib.dl ", "MyFunc", CDECL, WCHAR, sHell0);
The following code calls a DLL function that passes both Unicode and non-Unicode
strings.

var sHello = "Hello";

var sWwrld = "worl d";

Sel i b. dynami cLi nk("MLib.dll", "MyFunc", CDECL, WCHAR, sHell o,

sWrl d);

302 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects

String Objects

See Also

The string data type is a hybrid that shares characteristics of primitive data types,
Boolean and Number, and of composite data types, Object and Array. The string
data type is presented in this section under two main headings in which the first
describes its characteristics as a primitive data type and the second describes its
characteristics as an object.

“The String as Data Type” on page 303, “Escape Sequences for Characters” on
page 303, “Single Quote Strings” on page 304, “Back-Quote Strings” on page 304,
“The String as Object” on page 305, “charAt() Method” on page 305,
“String.fromCharCode() Static Method” on page 3006, “indexOf() Method” on
page 306, “lastindexOf() Method” on page 307, “length Property” on page 308,
“split() Method” on page 309, “string.replace() Method” on page 311, “substring()
Method” on page 312, “toLowerCase() Method” on page 313, and “toUpperCase()
Method” on page 314

The String as Data Type

A string is an ordered series of characters. The most common use for strings is to
represent text. To indicate that text is a string, it is enclosed in quotation marks. For
example, the first statement puts the string "hello" into the variable word. The

second sets the variable word to have the same value as a previous variable hello.

var word = "hell o";
word = hell o;

Escape Sequences for Characters

Some characters, such as a quotation mark, have special meaning to the Siebel
eScript interpreter and must be indicated with special character combinations when
used in strings. This allows the Siebel eScript interpreter to distinguish between, for
example, a quotation mark that is part of a string and a quotation mark that
indicates the end of the string. The following is a list of the characters indicated by
escape sequences:

\a Audible bell
\b Backspace

Version 7.5, Rev. B Siebel eScript Language Reference 303

‘ Siebel eScript Commands

String Objects
\f Form feed
\n Newline
\r Carriage return
\t Tab
\Vv Vertical tab
’ Single quote
Double quote
\\ Backslash character
\O### Octal number (example: '\ 033" is the escape character)
\x## Hex number (example: ' \ x1B' is the escape character)
\0 Null character (example: '\ 0' is the null character)
\u###t# Unicode number (example: ' \ uO01B' is the escape character)
Note that these escape sequences cannot be used within strings enclosed by back
quotes, which are explained in “Back-Quote Strings” on page 304.
Single Quote Strings
You can declare a string with single quotes instead of double quotes. There is no
difference between the two in eScript.
Back-Quote Strings

nsn

Siebel eScript provides the back quote """, also known as the back-tick or grave
accent, as an alternative quote character to indicate that escape sequences are not
to be translated. Special characters represented by a backslash followed by a letter,
such as \ n, cannot be used in back-quote strings.

For example, the following lines show different ways to describe a single file name:
"c:\\autoexec.bat" // traditional C nethod
‘c:\\autoexec.bat' // traditional C nethod

“c:\aut oexec. bat' /1 alternative Siebel eScript nethod

Back-quote strings are not supported in most versions of JavaScript. Therefore, if
you plan to port your script to some other JavaScript interpreter, do not use them.

304 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects

The String as Object

Strings have both properties and methods, and they are listed in this section. These
properties and methods are discussed as if strings were pure objects. Although
strings are true objects, they do have instance properties and methods.

In the following pages, stringVar indicates any string variable. A specific instance
of a variable should precede the period to use a property or call a method. The
exception to this usage is a static method that actually uses the identifier String
instead of a variable created as an instance of a string object.

charAt() Method

Syntax

Returns

Usage

See Also

This method returns a character at a certain place in a string.

stringVar. char At (position)

Parameter Description
position An integer indicating the position in the string of the character to be
returned

A string of length 1 representing the character at position.

The character count starts at 0. To get the first character in a string, use index 0, as
follows:

var stringl = "a string";
stringl. charAt (0);

To get the last character in a string, use:
stringl.charAt(stringl.length - 1);

If position does not fall between 0 and stri ngVvar. | ength - 1, stringVar.charAt()
returns an empty string.

“String.fromCharCode() Static Method” on page 306, “indexOf() Method” on
page 306, and “lastindexOf() Method” on page 307

Version 7.5, Rev. B Siebel eScript Language Reference 305

‘ Siebel eScript Commands

String Objects

String.fromCharCode() Static Method

Syntax

Returns

Usage

Example

See Also

This method returns a string created from the character codes that are passed to it
as parameters.

String. fronChar Code(codel, code2, ... coden)
Parameter Description
codel, code2, ... coden Integers representing Unicode character codes

A new string containing the characters specified by the codes.

This static method allows you to create a string by specifying the individual Unicode
values of the characters in it. The identifier String is used with this static method,
instead of a variable name as with instance methods because it is a property of the
String constructor. The arguments passed to this method are assumed to be Unicode
values. The following line:

var stringl = String.fromChar Code(0x0041, 0x0042);

sets the variable stringl to " AB".

The following example uses the decimal Unicode values of the characters to create
the string " Si ebel " . For another example, read “offset[] Method” on page 115.

var sebl Str = String. fronChar Code(83, 105, 101, 98, 101, 108);

“Clib.toascii() Method” on page 208

indexOf() Method

This method returns the position of the first occurrence of a substring in a string.

306 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Returns

Usage

See Also

String Objects

stringVar.indexOf(substring [, offset])

Parameter Description

substring One or more characters to search for

offset The position in the string at which to start searching, where 0 represents the
first character

The position of the first occurrence of a substring in a string variable.

stringVar.indexOf() searches the entire substring in a string variable. The substring
parameter may be a single character. If offset is not given, searching starts at
position 0. If it is given, searching starts at the specified position.

For example,

var string = "what a string";
string.indexOf ("a")

returns the position of the first a appearing in the string, which in this example is 2.
Similarly,

var magi cWwrd = "abracadabra";
var secondA = magi cWrd.indexOF("a", 1);

returns 3, the index of the first a to be found in the string when starting from the
second character of the string.

NOTE: The indexOf() method is case-sensitive.

“Clib.strchr() Method” on page 191, “Clib.strpbrk() Method” on page 200,
“charAt() Method” on page 305, “lastindexOf() Method” on page 307, and
“string.replace() Method” on page 311

lastindex0f() Method

This method finds the position of the last occurrence of a substring in a string.

Version 7.5, Rev. B Siebel eScript Language Reference 307

‘ Siebel eScript Commands

String Objects

Syntax

Returns

Usage

See Also

stringVar.indexCf (substring [, offset])

Parameter Description

substring One or more characters to search for

offset The position in the string at which to start searching, where 0 represents the
first character

The position of the last occurrence of a substring in a string variable.

The stringVar.lastindexOf() function searches the entire substring in a string
variable. The substring parameter may be a single character. If offset is given,
searching starts at the indicated position. If it is not given, searching starts at the
end of the string.

For example:

var string = "what a string";
string.lastlndexCOF("a")

returns the position of the last a appearing in the string, which in this example is
5. Similarly,

var magi cWwrd = "abracadabra";
var firstB = magi cWrd. | astlndexO("b", 7);

returns 1, the index of the first b to be found in the string when starting backward
from the eighth character of the string.

“Clib.strchr() Method” on page 191, “Clib.strpbrk() Method” on page 200,
“charAt() Method” on page 305, “indexOf() Method” on page 306, and
“string.replace() Method” on page 311

length Property

The length property stores an integer indicating the length of the string.

308 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects

Syntax stringVar.!length

Parameter Description

Not applicable

Returns Not applicable

Usage The length of a string can be obtained by using the length property. For example:

var stringl = "No, thank you.";
TheAppl i cation(). Rai seErrorText(stringl.|ength);

displays the number 14, the number of characters in the string. Note that the index
of the last character in the string is equivalent to stri ngVar. | engt h -1, because
the index begins at 0, not at 1.

Example This code fragment returns the length of a name entered by the user (including
spaces).

var userName = "Christopher J. Smth";
TheAppl i cation(). Rai seErrorText("Your nane has " +
user Nane. |l ength + " characters.");

split() Method

This method splits a string into an array of strings based on the delimiters in the
parameter substring.

Syntax stringVar.split([delimter])

Parameter Description

delimiter The character at which the value stored in stringVar is to be split

Returns An array of strings, creating by splitting stringVar into substrings, each of which
begins at an instance of the delimiter character.

Version 7.5, Rev. B Siebel eScript Language Reference 309

‘ Siebel eScript Commands

String Objects

Usage This method splits a string into an array of substrings such that each substring
begins at an instance of delimiter. The delimiter is not included in any of the strings.
If delimiter is omitted or is an empty string (" "), the method returns an array of one
element, which contains the original string.

This method is the inverse of arrayVar.join().

Example The following example splits a typical Siebel command line into its elements by
creating a separate array element at each space character. Note that the string has
to be modified with escape characters to be comprehensible to Siebel eScript. Note
also that the cmdLine variable must appear on a single line, which space does not
permit in this volume. The result appears in the illustration following the example.

function Button3_Cick ()
{
var nsgText "The following itens appear in the array:\n\n";
var cndLi ne "C:\\Si ebel\\bin\\siebel .exe /c
\'"c:\\siebel\\bin\\siebel.cfg\' /u SADMN /p SADM N /d Sanpl e"
var cnmdArray = cndLine.split(" ");
for (var i = 0; i < cndArray.length; i++)
nsgText = nsgText + cndArray[i] + "\n";
TheAppl i cation(). Rai seError Text (nmsgText);

Running this code produces the following result.

.. N
The following items appear in the array:
C:ASiebel\bintsiebel exe
t\siebel\bin\siebel.c:fg'

SL.;DMIN

See Also “join() Method” on page 99

310 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

String Objects

string.replace() Method

Syntax

Returns

Usage

This method searches a string using the regular expression pattern defined by
pattern. If a match is found, it is replaced by the substring defined by replexp.

string.replace(pattern, replexp)

Parameter Description
pattern Regular expression pattern to find or match in string.
replexp Replacement expression which may be a string, a string with regular

expression elements, or a function.

The original string with replacements according to pattern and replexp.

The string is searched using the regular expression pattern defined by pattern. If a
match is found, it is replaced by the substring defined by replexp. The parameter
replexp may be:

= A simple string
= A string containing special regular expression replacement elements
= A function that returns a value that may be converted into a string

If any replacements are made, appropriate RegExp object static properties such as
RegExp.leftContext, RegExp.rightContext, and RegExp.$n are set. These properties
provide more information about the replacements.

The following table shows the special characters that may occur in a replacement
expression.

Character Description

$1,$2 ... $9 The text matched by regular expression patterns inside of
parentheses. For example, $1 puts the text matched in the first
parenthesized group in a regular expression pattern.

$+ The text matched by the last regular expression pattern inside of the
last parentheses, that is, the last group.

Version 7.5, Rev. B Siebel eScript Language Reference 311

‘ Siebel eScript Commands

String Objects
Character Description
$& The text matched by a regular expression pattern.
$ The text to the left of the text matched by a regular expression
pattern.
$' The text to the right of the text matched by a regular expression
pattern.
\$ The dollar sign character.
Example var rtn;
var str = "one two three two one";
var pat = /(tw)/g;
/[l rtn == "one zzz three zzz one"
rtn = str.replace(pat, "zzz");
// rtn == "one twozzz three twdzzz one";
rtn = str.replace(pat, "$1zzz");
[/ rtn == "one 5 three 5 one"
rtn = str.replace(pat, five());
/] rtn == "one twotwo three twotwo one";
rtn = str.replace(pat, "$&$8&);
function five() {
return 5;
}
See Also “Typographic Conventions” on page 16

substring() Method

This method retrieves a section of a string.

312 Siebel eScript Language Reference Version 7.5, Rev. B

Siebel eScript Commands

Syntax

Returns

Usage

Example

See Also

String Objects

stringVar.substring(start[, end])

Parameter Description

start An integer specifying the location of the beginning of the substring to be
returned
end An integer one greater than the location of the last character of the substring

to be returned

A new string, of length end - start, containing the characters that appeared in the
positions from start to end - 1 of stringVar.

This method returns a portion of stringVar, comprising the characters in stringVar
at the positions start through end - 1. The character at the end position is not
included in the returned string. If the end parameter is not used,
stringVar.substring() returns the characters from start to the end of stringVar.

For an example, read “indexOf() Method” on page 306.

“charAt() Method” on page 305, “indexOf() Method” on page 306, and
“lastIndexOf() Method” on page 307

toLowerCase() Method

Syntax

Returns

Usage

This method returns a copy of a string with the letters changed to lower case.

stringVar.tolLower Case()

Parameter Description

Not applicable

A copy of stringVar in lowercase characters.

This method returns a copy of stringVar with uppercase letters replaced by their
lowercase equivalents.

Version 7.5, Rev. B Siebel eScript Language Reference 313

‘ Siebel eScript Commands

String Objects

Example The following code fragment assigns the value "e. e. cunmmi ngs" to the variable
poet:

var poet = "E. E. Cunmi ngs";
poet = poet.tolLower Case();

See Also “toUpperCase() Method” on page 314

toUpperCase() Method

This method returns a copy of a string with the letters changed to uppercase.

Syntax stringVar.t oUpper Case()

Parameter Description

Not applicable

Returns A copy of stringVar in uppercase characters.

Usage This method returns a copy of stringVar, with lowercase letters replaced by their
uppercase equivalents.

Example The following fragment accepts a filename as input and displays it in uppercase:

var filename = "c:\\tenp\\trace.txt";;
TheAppl i cation(). Rai seError Text (" The fil enane i n uppercase is
' +fil enane. t oUpper Case());

See Also “toLowerCase() Method” on page 313

314 Siebel eScript Language Reference Version 7.5, Rev. B

Index

Symbols
; (semicolon) 45
? (question mark) 67

A

absolute value 275
applet object methods 92
application object methods 94
arc cosine 275
arcsine 276
arctangent 277, 278
arguments
number expected by the function 247
syntax 16
arguments[] property 71
array
constructor 98
element order 100
elements, sorting 182
first index and length 261
join() method 99
length 258
length property 99
methods, list 20
objects, described 97
reverse() method 100
sort() method 101
sorting into ASCII order 101
array data type 55
ASCII, seven bit representation of a
character 208
assignment operator 62

back quotes 304

Version 7.5, Rev. B

bigEndian byte, using 112

binary large object
data to a specified location 105
data, reading 105

BLOB
Blob.get() method 105
Blob.put method 105
Blob.size() method 107
blobDescriptor 103
described 103

block comments 44

blocks 45

Boolean data type 50, 53, 70, 303

Boolean variables
converting from a value 262
described 53

break statement 74

buffer
bigEndian property 112
buffer constructor 109
comparing lengths and contents of

two 177

copying bytes from one to another
cursor property 113
data property 113
file, writing to disk 149
filling bytes with a character
getString() method 114
getValue() method 114
internal data 113
methods 112
methods, list 21
offset[] method 115
properties 111
putString() method 116

178

Siebel eScript Language Reference

177

315

putValue() method 117

size property 119

subBuffer() method 120

toString() method 120

unicode property 121
business component object methods 122
business object object methods 128
business service object methods 129
byte-array methods, list 35

C
case-insensitivity
comparing strings 192, 198
searching strings for substrings 204
case-sensitivity
comparing two strings 198
described 42
programming guidelines 40
casting methods
list 23
when to use 58
character
alphabetic 169
alphanumeric 169
ASCII 170
characters from current file cursor 152
classification methods, list 22
control 170
decimal digit 170
first occurrence in a buffer 176
hexadecimal digit 174
last occurrence 201
lowercase alphabetic 171
next in a file stream 150
printable 171, 172
punctuation mark 173
pushing back into a file 209
seven-bit ASCII representation 208
uppercase alphabetic 174
white-space 173
writing to a specified file 157
charAt() method 305
Clib object

316 Siebel eScript Language Reference

Clib compared to ECMAScript
methods 132

data, formatting 138

file I/O functions 133

format strings 138

formatting data 138

redundant functions 131

time functions 136

Time object 135
Clib.asctime() method 141
Clib.bsearch() method 141
Clib.chdir() method 143
Clib.clearerr() method 144
Clib.clock() method 144
Clib.cosh() method 144
Clib.ctime() method 145
Clib.difftime() method 146
Clib.div() method 146
Clib.errno property 147
Clib.fclose() method 148
Clib.feof() method 148
Clib.ferror() method 149
Clib.fflush() method 149
Clib.fgetc() method 150
Clib.fgetpos() method 151
Clib.fgets() method 152
Clib.flock() method 153
Clib.fopen() method 154
Clib.fprintf() method 157
Clib.fputc() method 157
Clib.fputs() method 158
Clib.fread() method 158
Clib.freopen() method 160
Clib.frexp() method 161
Clib.fscanf() method 162
Clib.fseek() method 163
Clib.fsetpos() method 163
Clib.ftell() method 164
Clib.fwrite() method 164
Clib.getc() method 150
Clib.getcwd() method 166
Clib.getenv() method 167
Clib.gmtime() method 168

Version 7.5, Rev. B

Clib.Idexp() method 175
Clib.Idiv() method 146
Clib.isalnum() method 169
Clib.isalpha() method 169
Clib.isascii() method 170
Clib.iscntrl() method 170
Clib.isdigit() method 170
Clib.isgraph() method 171
Clib.islower() method 171
Clib.isprint() method 172
Clib.ispunct() method 173
Clib.isspace() method 173
Clib.isupper() method 174
Clib.isxdigit() method 174
Clib.localtime() method 175
Clib.memchr() method 176

Clib.memcmp() method 177

Clib.memcpy() method 177

Clib.memmove() method 177

Clib.memset() method 178
Clib.mkdir() method 178
Clib.mktime() method 179

Clib.modf() method 179, 180

Clib.putc() method 157
Clib.putenv() method 181
Clib.gsort() method 182
Clib.rand() method 183
Clib.remove() method 185
Clib.rename() method 185
Clib.rewind() method 186
Clib.rmdir() method 186
Clib.rsprintf() method 187
Clib.sinh() method 188
Clib.sprintf() method 188
Clib.srand() method 189
Clib.sscanf() method 190
Clib.strchr() method 191
Clib.strcmpi() method 192
Clib.strcspn() method 192
Clib.strerror() method 194
Clib.strftime() method 195
Clib.stricmp() method 192
Clib.strncat() method 197

Version 7.5, Rev. B

Clib.strncmp() method 198
Clib.strncmpi() method 198
Clib.strncpy() method 199
Clib.strnicmp() method 198
Clib.strpbrk() method 200
Clib.strrchr() method 201
Clib.strspn() method 202
Clib.strstr() method 196, 203
Clib.strstri() method 204
Clib.system() method 205
Clib.tanh() method 206
Clib.time() method 206
Clib.tmpfile() method 207, 208
Clib.toascii() method 208
Clib.ungetc() method 209
COMCreateObject() method 251
commands, passing to the command
processor 205

comments 44
comparing values 64
conditional expressions 64
constants, numeric 57
continue statement 75
control character 170
conventions, typographic 16
conversion methods

alphanumeric string to a floating-point

decimal number 260, 261

list 23

parameter to a buffer 263

parameter to a number 267

parameter to a string 268

parameter to an integer 265, 266, 269,

270

parameter to an object 268

value to the Boolean data type 262
copying characters between strings 199
CORBA objects

exception handling 87
CORBA objects, binding 252
CORBACTreateObject() method 252
cosine 280
cursor. See file cursor

Siebel eScript Language Reference 317

D date-time value 145

data decimal digit 170
file, writing to disk 148 decimal floats 52
formatting 137 decimal number, integer part 179
handling methods, list 24 defined() method 255
storing in a series of parameters 162 d%agnostic messages 147
storing in variables 158 directory
writing data in a specified variable to a changing current 143
specified file 164 creating 178
data types current working, path of 166
array 55 functions, list 28

removing 186

Boolean, converting value to 262
disk functions, list 28

composite 54

decimal floats 52 division 183, 184

described 50 do...while statement 76

floating-point numbers 52

hexadecimal notation 52 E

integers 51 e

NaN 57 base 10 logarithm 285

null 56 base 2 logarithm 284

object 55 number value of 281

octal notation 52 ECMAScript 42

primitive 51 end of line comments 44

properties and methods 58 end-of-file flag, resetting 144

special 56 environment variable

string 53, 303 creating 181

undefined 56 strings 167
date error indicator 149

extracted from a Time object 141 €ITor messages

functions, list 25 associated with an error number 194

stored in variables 195 error status 144
Date object error-handling methods, list 30

about 210 escape sequences

Date constructor 210 back quotes and 304

universal time functions 212 list 303
Date.fromSystem() 210 removing from a string 272
Date.fromSystem() static method 213 replacing special characters with 256
Date.pars() static method 226 escape() method 256
Date.toSystem() 210 eval() method 257
Date.toSystem() method 242 exponential function 281
Date.UTC() static method 243 expressions 45, 60

318 Siebel eScript Language Reference Version 7.5, Rev. B

F
file
deleting a specified 185
functions, list 28
input/output functions, list 29
opening in a specified mode 154
renaming 185
temporary binary 207
file buffer, data 149
file cursor
current, setting to a position 163
locating 148
position offset, setting 164
position, current 113
position, setting 163
setting to the beginning 186
file mode characters 155
file pointers, associating with other
files 160
file-control functions, list 28
floating-point numbers
converting from alphanumeric 260
described 52
hyperbolic sine 188
hyperbolic tangent 206
mantissa and exponent as givens 175
representations of 51
for statement 77
for...in statement 78
formatting data 137
Function objects
creating 246
length property 247
return statement 247
functions
arguments[] property 71
described 69
error checking 73
passing variables to 70
recursive 71
scope 70
specific location within 79

Version 7.5, Rev. B

G

get method, BLOB object 105
getArrayLength() method 258
getDate() method 212
getDay() method 214
getFullYear() method 215
getHours() method 216
getMilliseconds() method 216
getMinutes() method 217
getMonth() method 217, 218
getSeconds() method 218
getTIme() method 219
getTimezoneOffset() method 220
getUTCDate() method 221
getUTCDay() method 221
getUTCFullYear() method 222
getUTCHours() method 223
getUTCMilliseconds() method 224
getUTCMinutes() method 224
getUTCMonth() method 225
getUTCSeconds() method 226
getYear() method 226
Global object
conversion or casting functions 250
functions 249
global variables 48
goto statement 79
Greenwich Mean Time (GMT) 212

hexadecimal digit 174
hexadecimal notation 52
hyperbolic cosine of x 144
hyperbolic sine 188
hyperbolic tangent 206

|
identifiers

prohibited 47

rules 46

See also variables 47
if statement 80

Siebel eScript Language Reference 319

indexOf() method 306
instantiated objects, syntax 16
instantiating 294
integer
converting to a Time object 168
described 52
division 146
greatest 282
smallest 279
integer numbers
converting from alphanumeric 261
isFinite() method 259
isNaN() method 259

J

JavaScript
common usage 42
and eScript 39

L
lastindexOf() method 307
length property
Array object 99
Function object 247
String object 308
line breaks in strings 44
local variables 48
locking files for multiple processes 153
logarithm
base 10 of e 285
base 2 of e 284
natural 284
number value for e 281

of 10 282
of 2 283
loops

continue statement 75
do...while statement 76
for...in statement 78
new iteration, starting 75
repeating 88
terminating 74

320 Siebel eScript Language Reference

M

Math object 274

math properties, list 32
Math.abs() method 275
Math.acos() method 275
Math.asin() method 276
Math.atan() method 277
Math.atan2() method 278
Math.ceil() method 279
Math.cos() method 280
Math.E property 281
Math.exp() method 281
Math.floor() method 282
Math.LN10 property 282
Math.LN2 property 283
Math.log() method 284
Math.LOGI10E property 285
Math.LOG2E property 284
Math.max() method 286
Math.min() method 286
Math.PI property 287
Math.pow() method 287
Math.random() method 288
Math.round() method 289
Math.sin() method 290
Math.sqrt() method 290
Math.SQRT1_2 property 291
Math.SQRT2 property 291
Math.tan() method 292
MAX_VALUE constant 57
MIN_VALUE constant 57
miscellaneous methods, list 37

NaN constant 57
NaN data type 57
NEGATIVE_INFINITY constant 57
null data type 56
number constants 57
numbers
calculating integer exponent of 2
pseudo-random 288

Version 7.5, Rev. B

161

random 183
random, generating 189
rounding 289
numeric functions, list 31

0

object data type 55

Object object 293

object property

testing 255

undefining 271

object prototypes 295

objects

assigning functions 294
instantiated, syntax 16
looping through properties 78
templates, creating 293

octal notation 52

operating system interaction methods,
list 34

operators

assignment arithmetic 62
auto-decrement 63
auto-increment 63

basic arithmetic 61

bit 64

conditional 67

conditional expressions 64
logical 64

mathematical 61

order of precedence 60
string concatenation 67
typeof 66

output

writing to a string variable 188

P

parameter
converting to a buffer 263
converting to a number 267
converting to a string 268

Version 7.5, Rev. B

converting to an integer 265, 266, 269,
270
converting to an object 268
determining if it is a finite number 259
determining if it is a number 259
placing in a buffer 264
raising to a power 287
value, returning 257
parseFloat() method 260, 261
pi, number value 287
point 188
pointer, current position 151
POSITIVE_INFINITY constant 57
printing
format strings 138
processor tick count, current 144
program flow, directing 80, 83
properties, described 293
property set object methods 298
punctuation marks 173
put method, BLOB object 105

Q

question mark (?) 67
quot method 183
quotient, finding 183

random number generator 189
random numbers 183
recursive functions 72

rem method 184

return statement 247

S

scientific notation 53
searching in arrays 141
searching in strings
characters not among a group 202
first occurrence of a second string 203
first occurrence of a specified
substring 204

Siebel eScript Language Reference 321

group of specified characters 192

several characters 200

specified character 191
SEEK_CUR 163
SEEK_END 163
SEEK_SET 163
SElib object 300
SElib.dynamicLink() method 300
semicolon (;) 45
sequential data 97
setArrayLength() method 261
setDate() method 227
setFullYear() method 228
setHours() method 229
setMilliseconds() method 229
setMinutes() method 231
setMonth() method 231
setSeconds() method 232
setTime() method 232
setUTCDate() method 234
setUTCFullYear() method 234
setUTCHours() method 235
setUTCMilliseconds() method 236
setUTCMinutes() method 237
setUTCMonth() method 238
setUTCSeconds() method 239
setYear() method 239
Siebel eScript

basic concepts 42

and JavaScript 42

programming guidelines 40

this object reference 41
sine 290
size method, BLOB object 107
special characters 303, 304
special data types 56
split() method 309, 311
square root

of 1/2 291

of 2 291

parameter 290
statement blocks

assigning a default object 89

322 Siebel eScript Language Reference

described 45
statements
described 45
repeating a series 77
string concatenation 67
string data type 53
string objects 303
String.fromcharCode() static method 306
strings
appending a specified number of
characters 197
back-quote 304
from character codes 306
converting alphanumeric to a floating-
point decimal number 260, 261
copying characters between 199
copying to lowercase 313
copying to uppercase 314
creating strings of array elements 99
declaring 304
described 53
escape sequences 303
formatted 187
formatted, writing to a file 157
length stored as an integer 308
methods, list 35
as objects 305
searching for a group of characters 192
searching for characters 191, 200, 202
searching for first occurrence of a second
string 203
searching for last occurrence of a
character 201
section, retrieving 312
special characters 303
specific place in 305
splitting into arrays 309
substring, first occurrence 306
substring, last occurrence 307
substrings, searching for 204
usage 303
writing to a specified file 158
substring() method 312

Version 7.5, Rev. B

switch statement
controlling the flow 74
described 83

T

tangent 292
this object reference 294
this object reference in Siebel eScript 41
time

difference between two times 146

extracted from a Time object 141

functions, list 25

integer representation 206

stored in variables 195
Time object

converting 179

described 135
ToBoolean() method 262
ToBuffer() method 263
ToBytes() method 264
toGMTString() method 240
ToInt32() method 265
Tolnteger() method 266
toLocaleString() method 241
toLowerCase() method 313
ToNumber() method 267
ToObjec() method 268
ToString() method 268
toString() method 59, 241
ToUnitl16() method 269
ToUnit32() method 270
toUTCString() method 242
trailing parentheses () 40
trigonometric functions, list 32
try statement 86
type conversion, automatic 57

Version 7.5, Rev. B

U

undefine() method 271

undefined data type 56

unescape() method 272

Universal Coordinated Time (UTC) 212
unlocking files for multiple processes 153

vV

value
passing back to the function 247
specifying with object prototypes 295
undefining 271
valueOf() method 59
variables
about 47
array, matching 141
Boolean 53
compound 293
data in, writing to a specified file 164
declaring 40, 48
passing by reference 54
passing by value 51, 70
passing to the COM object 251
scope 48
Siebel eScript 48
storing data in 190
testing 255
undefining 271

w

web applet object methods 92
while statement 45, 88
white-space character 43, 173
with statement 89

Y
Y2K sensitivities 40, 210

Siebel eScript Language Reference 323

324 Siebel eScript Language Reference Version 7.5, Rev. B

	Contents
	Introduction
	Typographic Conventions
	Revision History
	March 2003 Bookshelf
	November 2002 Bookshelf

	Quick Reference: Methods and Properties
	Array Methods
	Buffer Methods
	Character Classification Methods
	Conversion or Casting Methods
	Data Handling Methods
	Date and Time Functions
	Disk and File Functions
	Disk and Directory Functions
	File Control Functions
	File-Manipulation Functions

	Error Handling Methods
	Math Methods
	Numeric Functions
	Trigonometric Functions
	Math Properties

	Operating System Interaction Methods
	String and Byte-Array Methods
	Miscellaneous Methods

	Siebel eScript Language Overview
	Siebel eScript Programming Guidelines
	Basic Siebel eScript Concepts
	Case Sensitivity
	White-Space Characters
	Comments
	Expressions, Statements, and Blocks
	Identifiers
	Rules for Identifiers
	Prohibited Identifiers

	Variables
	Variable Scope
	Variable Declaration

	Data Types
	Primitive Data Types
	Number
	Integer
	Hexadecimal
	Octal
	Floating Point
	Decimal
	Scientific

	Boolean
	String

	Composite Data Types
	Object
	Array

	Special Data Types
	Undefined
	Null
	NaN

	Number Constants
	Automatic Type Conversion
	Properties and Methods of Basic Data Types
	toString()
	valueOf()

	Expressions
	Operators
	Mathematical Operators
	Basic Arithmetic
	Assignment Arithmetic
	Auto-Increment (++) and Auto-Decrement (--)

	Bit Operators
	Logical Operators and Conditional Expressions
	Typeof Operator
	Conditional Operator
	String Concatenation Operator

	Functions
	Function Scope
	Passing Variables to Functions
	The Function Arguments[] Property
	Function Recursion
	Error Checking for Functions

	eScript Statements
	break Statement
	continue Statement
	do...while Statement
	for Statement
	for...in Statement
	goto Statement
	if Statement
	switch Statement
	throw Statement
	try Statement
	while Statement
	with Statement

	Siebel eScript Commands
	Applet Objects
	The Application Object
	Array Objects
	The Array Constructor
	join() Method
	length Property
	reverse() Method
	sort() Method

	BLOB Objects
	The blobDescriptor Object
	Blob.get() Method
	Blob.put() Method
	Blob.size() Method

	Buffer Objects
	The Buffer Constructor
	Properties
	Methods
	bigEndian Property
	cursor Property
	data Property
	getString() Method
	getValue() Method
	offset[] Method
	putString() Method
	putValue() Method
	size Property
	subBuffer() Method
	toString() Method
	unicode Property

	Business Component Objects
	Business Object Objects
	Business Service Objects
	The Clib Object
	Redundant Functions in the Clib Object
	File I/O Functions
	The Time Object
	Time Functions
	Character Classification
	Formatting Data
	Formatting Output
	Formatting Input

	Clib.asctime() Method
	Clib.bsearch() Method
	Clib.chdir() Method
	Clib.clearerr() Method
	Clib.clock() Method
	Clib.cosh() Method
	Clib.ctime() Method
	Clib.difftime() Method
	Clib.div() Method and Clib.ldiv() Method
	Clib.errno Property
	Clib.fclose() Method
	Clib.feof() Method
	Clib.ferror() Method
	Clib.fflush() Method
	Clib.fgetc() Method and Clib.getc() Method
	Clib.fgetpos() Method
	Clib.fgets() Method
	Clib.flock() Method
	Clib.fopen() Method
	Clib.fprintf() Method
	Clib.fputc() Method and Clib.putc() Method
	Clib.fputs() Method
	Clib.fread() Method
	Clib.freopen() Method
	Clib.frexp() Method
	Clib.fscanf() Method
	Clib.fseek() Method
	Clib.fsetpos() Method
	Clib.ftell() Method
	Clib.fwrite() Method
	Clib.getcwd() Method
	Clib.getenv() Method
	Clib.gmtime() Method
	Clib.isalnum() Method
	Clib.isalpha() Method
	Clib.isascii() Method
	Clib.iscntrl() Method
	Clib.isdigit() Method
	Clib.isgraph() Method
	Clib.islower() Method
	Clib.isprint() Method
	Clib.ispunct() Method
	Clib.isspace() Method
	Clib.isupper() Method
	Clib.isxdigit() Method
	Clib.ldexp() Method
	Clib.localtime() Method
	Clib.memchr() Method
	Clib.memcmp() Method
	Clib.memcpy() Method and Clib.memmove() Method
	Clib.memset() Method
	Clib.mkdir() Method
	Clib.mktime() Method
	Clib.modf() Method
	Clib.perror() Method
	Clib.putenv() Method
	Clib.qsort() Method
	quot Method
	Clib.rand() Method
	rem Method
	Clib.remove() Method
	Clib.rename() Method
	Clib.rewind() Method
	Clib.rmdir() Method
	Clib.rsprintf() Method
	Clib.sinh() Method
	Clib.sprintf() Method
	Clib.srand() Method
	Clib.sscanf() Method
	Clib.strchr() Method
	Clib.stricmp() Method and Clib.strcmpi() Method
	Clib.strcspn() Method
	Clib.strerror() Method
	Clib.strftime() Method
	Clib.strlwr() Method
	Clib.strncat() Method
	Clib.strncmp() Method
	Clib.strncmpi() Method and Clib.strnicmp() Method
	Clib.strncpy() Method
	Clib.strpbrk() Method
	Clib.strrchr() Method
	Clib.strspn() Method
	Clib.strstr() Method
	Clib.strstri() Method
	Clib.system() Method
	Clib.tanh() Method
	Clib.time() Method
	Clib.tmpfile() Method
	Clib.tmpnam() Method
	Clib.toascii() Method
	Clib.ungetc()Method

	The Date Object
	The Date Constructor
	Universal Time Functions
	GetDate() Method
	Date.fromSystem() Static Method
	getDay() Method
	getFullYear() Method
	getHours() Method
	getMilliseconds() Method
	getMinutes() Method
	getMonth() Method
	getSeconds() Method
	getTime() Method
	getTimezoneOffset() Method
	getUTCDate() Method
	getUTCDay() Method
	getUTCFullYear() Method
	getUTCHours() Method
	getUTCMilliseconds() Method
	getUTCMinutes() Method
	getUTCMonth() Method
	getUTCSeconds() Method
	getYear() Method
	Date.parse() Static Method
	setDate() Method
	setFullYear() Method
	setHours() Method
	setMilliseconds() Method
	setMinutes() Method
	setMonth() Method
	setSeconds() Method
	setTime() Method
	setUTCDate() Method
	setUTCFullYear() Method
	setUTCHours() Method
	setUTCMilliseconds() Method
	setUTCMinutes() Method
	setUTCMonth() Method
	setUTCSeconds() Method
	setYear() Method
	toGMTString() Method
	toLocaleString() Method and toString() Method
	Date.toSystem() Method
	toUTCString() Method
	Date.UTC() Static Method

	The Exception Object
	Properties
	Methods

	Function Objects
	length Property
	return Statement

	The Global Object
	Global Functions Unique to Siebel eScript
	Conversion or Casting Functions
	COMCreateObject() Method
	CORBACreateObject() Method
	defined() Method
	escape() Method
	eval() Method
	getArrayLength() Method
	isNaN() Method
	isFinite() Method
	parseFloat() Method
	parseInt() Method
	setArrayLength() Method
	ToBoolean() Method
	ToBuffer() Method
	ToBytes() Method
	ToInt32() Method
	ToInteger() Method
	ToNumber() Method
	ToObject() Method
	ToString() Method
	ToUint16() Method
	ToUint32() Method
	undefine() Method
	unescape(string) Method

	The Math Object
	Properties
	Methods
	Math.abs() Method
	Math.acos() Method
	Math.asin() Method
	Math.atan() Method
	Math.atan2() Method
	Math.ceil() Method
	Math.cos() Method
	Math.E Property
	Math.exp() Method
	Math.floor() Method
	Math.LN10 Property
	Math.LN2 Property
	Math.log() Method
	Math.LOG2E Property
	Math.LOG10E Property
	Math.max() Method
	Math.min() Method
	Math.PI Property
	Math.pow() Method
	Math.random() Method
	Math.round() Method
	Math.sin() Method
	Math.sqrt() Method
	Math.SQRT1_2 Property
	Math.SQRT2 Property
	Math.tan() Method

	User-Defined Objects
	Predefining Objects with Constructor Functions
	Assigning Functions to Objects
	Object Prototypes

	Property Set Objects
	The SElib Object
	SElib.dynamicLink() Method

	String Objects
	The String as Data Type
	Escape Sequences for Characters
	Single Quote Strings
	Back-Quote Strings
	The String as Object
	charAt() Method
	String.fromCharCode() Static Method
	indexOf() Method
	lastIndexOf() Method
	length Property
	split() Method
	string.replace() Method
	substring() Method
	toLowerCase() Method
	toUpperCase() Method

	Index

