Design Tools Guide

Version 2005, Rev. A
December 2005

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2005 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, UAN, Universal Application Network, Siebel CRM OnDemand,
TrickleSync, Universal Agent, and other Siebel names referenced herein are trademarks of
Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate 111 (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway,
San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel Business Applications Online
Help to be Confidential Information. Your access to and use
of this Confidential Information are subject to the terms and
conditions of: (1) the applicable Siebel Systems software
license agreement, which has been executed and with which
you agree to comply; and (2) the proprietary and restricted
rights notices included in this documentation.

1 What’s New in This Release

2 Design Tools Overview
Class Builder 9
Method Definer 9
Validation Definer 9
Session Builder 10
Design Aids and Utilities 10

Attribute Class Definer 10

Design Documentation Builder 10
Model Exporter 10

Model Validator 10

Model Comparison Tool 11

Checking of Fields for Characters That Cause Problems in the Exported XML
File 12

Refactoring 13

3 Using the Class Builder
Starting the Class Builder 15
Defining Classes 16

Creating a New Class 17
Amending a Class 18
Refactoring a Class Name 18

Deleting a Class 18
Defining Attributes 18

Adding New Attributes 20

Amending an Attribute 23

Design Tools Guide Version 2005, Rev. A .

Contents ™

Deleting an Attribute 24
Defining findBy Methods 24

Creating a Simple findBy Method 26
Creating a Complex findBy Method 26
Amending a findBy Method 27

Deleting a findBy Method 27
Defining Methods for a Class 27

4 Using the Method Definer Tool
Starting the Method Definer Tool 29
Defining Methods 30

Creating a New Method 30
Amending a Method 31
Deleting a Method 31

Refactoring a Method Name 31
Defining the Method Signature 32

Adding a Parameter 32

Deleting a Parameter 33

Defining the Method Return 34
Adding a Return 34

Deleting a Primitive or Object from the Return List 34

5 Using the Validation Definer Tool
Starting the Validation Definer 37
Creating a Validation Group 38
Creating a Validator 39
Amending a Validator 41
Renaming a Validation Group 41
Deleting a Validation Group 41
Deleting a Validator 41

Refactoring a Validator Name 42

Design Tools Guide Version 2005, Rev. A

10

11

What’s New in This Release ® Class Builder

Dragging and Dropping Validators and Validation Groups 42

Using the Session Builder Tool
Starting the Session Builder Tool 43
Defining Sessions 44

Creating a New Session 45
Amending a Session 45

Deleting a Session 45

Defining Processes 46
Using the Attribute Class Definer

Using the Design Documentation Builder
Generating Design Documentation 49

The Design Documentation that is Generated 50

Using the Model Exporter Tool
Exporting the Model 53

Using the Model Validator Tool

The Validation Properties File 55

Validations Performed by the Model Validator 55
Validating the Model 63

Running the Model Validator with the Default Properties File 63
Running the Model Validator with a Selected Properties File 64

Running the Model Validator with a Custom Rational Rose Script 64

Using the Model Comparison Tool
Comparing Models 67
Model Comparison Tool Error Messages 68

XML Parsing Error — An Invalid Character Was Found in Text Content 68

XML Parsing Error — The System Cannot Locate the Resource Specified 68

Design Tools Guide Version 2005, Rev. A

Contents ™

XML Parsing Error — The Base XML File Selected is Not of DOCTYPE
EontecModel 69

XML Parsing Error — A Duplicate Package Name Has Been Found in the Base
XML 69

Comparison Report Contents 69
Initial Section 69
The Summary Report Section 69
The Detailed Report Section 70
Banking Object Report (BankingObjects.html) 70
Banking Process Report (BankingProcesses.html) 70
Common Validations Report (CommonValidations.html) 71
Constants Report (Constants.html) 71
Parameter Objects Report (ParameterObjects.html) 72

Validator Lengths Report (ValidatorLengths.html) 72

. Design Tools Guide Version 2005, Rev. A

1 New Iin This Release

What’s New in Design Tools Guide, Version 2005, Rev A

Table 2 lists changes in the 2005 Revision A version of the document to support release 2005 of the

software.

Table 1. What's New in Design Tools Guide, Version 2005, Rev A

Topic

Creating a Simple_findBy, page 26

’ Description

Added a usage scenario for simple findBy
methods.

Creating_a_Complex_findBy, page 26

Added a usage scenario for complex findBy
methods.

What’s New in Design Tools Guide, Version 2005

Table 2 lists changes in this version of the documentation to support release 2005 of the software.

Table 2. What's New in Design Tools Guide, Version 2005

Topic

Checking of Fields for Characters That Cause
Problems in the Exported XML File

Description

New topic. Added to reflect the new functionality
that checks input fields for the entry of characters
that would cause problems when you export a
model as an XML file.

Refactoring

New topic. Describes the new refactoring
functionality, which allows you to automatically
update a model with changes to class, method, or
attribute names.

Refactoring a Class Name

New topic. Added to reflect the new refactoring
functionality.

Refactoring a Method Name

New topic. Added to reflect the new refactoring
functionality.

Creating a Validation Group

New topic. Added to reflect the new validation
categorization functionality.

Renaming a Validation Group

New topic. Added to reflect the new validation
categorization functionality.

Design Tools Guide Version 2005, Rev. A

What's New in This Release ™

Topic

Deleting a Validation Group

Description

New topic. Added to reflect the new validation
categorization functionality.

Refactoring a Validator Name

New topic. Added to reflect the new refactoring
functionality.

Dragging and Dropping Validators and Validation
Groups

New topic. Added to reflect the new validation
categorization functionality.

Design Aids and Utilities chapter

Removed and material merged into the individual
chapters for the design aids and utilities.

Using the Attribute Definer chapter

New chapter. Based on material that was
previously in the Design Aids and Utilities chapter.

Using the Design Documentation Builder

Updated to clarify the contents of the
documentation folders that are generated and to
describe the index.html files that provides links to
documents for all of the objects in the folder.

Changing the DTD Location

Removed as this functionality is not supported.

Using the Model Validator chapter.

Updated to reflect the enhanced functionality for
custom model validations and for switching off
validations.

Design Tools Guide Version 2005, Rev. A

2 s Overview

This chapter summarizes the Siebel Retail Finance Design Tools. You access the tools by navigating to
Tools > Siebel in Rational Rose. The Design Tools Palette is then displayed, as shown in Figure 1. The
Design Tools Palette.

This chapter contains the following sections:
B Class Builder

B Method Definer

B validation Definer

B session Builder
|

Design Aids and Utilities

Class Builder

The Class Builder aids the design of Siebel Retail Finance standard entity beans. The tool makes use of
already-existing attributes within the project to assist in class definition. The Class Builder also
automatically updates background properties within the Rational Rose model. These help in the
automatic code generation. You use the Class Builder from the Class Builder tab on the Design Tools
Palette, as shown in Figure 1. The Design Tools Palette.

Method Definer

The Method Definer aids the design of Siebel Retail Finance standard entity and session beans. The
tool updates the Siebel properties of the methods including the overview and behavior. The Method
Definer makes it easier to create new methods, as it is easier to add parameters to the signature of a
method and define the return types. You use the tool from the Class Builder or the Session Builder
tab on the Design Tools Palette, as shown in Figure 1. The Design Tools Palette.

Validation Definer

The Validation Definer aids in the design of Siebel Retail Finance standard entity beans. The Validation
Builder creates common validators for attributes that are held in the Rational Rose model (.mdl) file.
These common validators are then available to all designers when creating the attributes of entity
beans. This availability means that the designer can select an existing validator, which speeds up the
process. The validators are held in a single class, which is generated by the code generator. You use
the tool from the Validation Definer tab on the Design Tools Palette, as shown in Figure 1. The Design
Tools Palette.

Design Tools Guide Version 2005, Rev. A

9

10

Design Tools Overview ® Session Builder

Session Builder

The Session Builder aids in the design of standard session beans. The Session Builder also
automatically updates background properties within the Rational Rose model. These help in the
automatic code generation. You use the tool from the Session Builder tab on the Design Tools Palette,
as shown in Figure 1. The Design Tools Palette.

Design Aids and Utilities

The Design Aid and Utilities assist the job of the designers. Most of the utilities produce reports of the
models. These allow the designers to get a quick view of the dependencies and associations within the
model. They also assist in the development stage to identify all required methods and assist in
development planning and provide a method of handing over the designs to the developers by
generating both design documentation and code. You run all of the utilities from the Utilities tab on
the Design Tools Palette, as shown in Figure 1. The Design Tools Palette. The utilities are summarized
in the following sections.

Attribute Class Definer

The Attribute Class Definer makes sure that attributes defined for a particular class are made available
for use throughout the model. When you run the Attribute Class Definer, the attributes package is
updated with the details of all attributes defined in the model.

Design Documentation Builder

The Design Documentation Builder produces standard design documents. The documentation consists
of project directories that contain financial objects, sessions, parameter objects, parameter object
factories, external interfaces, and Java class documents.

Model Exporter

The Model Exporter exports XML from the Rational Rose designs. This XML is used by all other Siebel
Retail Finance tools to develop the products. The Model Exporter generates a single XML file and
outputs it to a chosen directory.

Model Validator

The Model Validator allows designers to check that their designs meet design standards. This is to
make sure that the code can be generated quickly and easily from the models when the design phase
is over. The tool performs class error checks, attribute error checks, function error checks, and
process error checks on the model.

Design Tools Guide Version 2005, Rev. A

s and Utilities

Figure 1. The Design Tools Palette

%Design Tools

[0

Model Comparison Tool

The Model Comparison Tool compares the differences between two models. The tool aids designers
and developers in the following ways:

B To facilitate handover of updated Rational Rose models to the development team

To help measure progress during the design phase

|
B To produce input to the review of design artifacts
|

To help synchronization of streams within the design process

Design Tools Guide Version 2005, Rev. A

Design Tools Overview B Checking of Fields for Characters Th
XML File

The tool produces reports in HTML format for each of the following:
Banking objects

Banking processes

Parameter objects

Common validators

Validator lengths

Constants

You use these comparison reports to identify changes to a model during the design, development, and
testing phases of a project.

Checking of Fields for Characters That
Cause Problems in the Exported XML File

There are some fields in the Design Tools into which you cannot enter certain characters because
these entries would result in an XML file that is not well formed when you export the model as an XML
file. The characters you cannot enter are:

g <>« =
If you try to enter any of these characters, a warning message is displayed.

The following lists shows, for the relevant tools, the fields in which you are not allowed to enter the
characters:

B Class Builder Tool

Class Name on the Class Information tab
Table Name on the Class Information tab
Package Name on the Class Information tab

Attribute Name on the Attribute Definer tab

Table Column on the Attribute Definer tab
B Method Definer
B Method Name
B validation Definer
B Name
B Pattern
B Session Builder Tool
B Session Name

B Package Name

Design Tools Guide Version 2005, Rev. A

Design Tools Overview ® Refactoring

B Request ID

Refactoring

If you change the name of a class, method, or attribute, you must update references to the name in
the model. This updating is known as refactoring.

Changes that are made in the model when you refactor a name include the following:

B wWhen you refactor a class name, the Attribute overview for all attributes on that class is updated
accordingly.

B References to renamed attributes in the Overview and Behavior sections are updated across the
model.

B FindBy method names for a renamed class are updated.
B The parameter lists and return values of all methods in the model are updated.
B The tree views in the Method Definer and Process Definer are updated.

When you click the Refactor button, a find and replace dialog is started. You can replace all
occurrences of the text in the Find What field with the new refactored name; however, you must
remember that this replacement could potentially cause inconsistencies if an object, attribute, or
method of the same name already exists elsewhere in the model.

In the dialog there is a Match Case check box, which allows you to perform a case-sensitive search.
There is also a Find Whole Word Only check; if you select this check box and try to replace, for
example, the word “Actor”, words like "ActorGroup" are skipped.

See the following sections for more information about refactoring specific names:
B Refactoring a Class Name on page 18

B Refactoring an Attribute Name on page 23

B Refactoring a Method Name on page 31
|

Refactoring a Validator Name on page 42

Design Tools Guide Version 2005, Rev. A

13

Design Tools Overview ® Refac

. Design Tools Guide Version 2005, Rev. A

3 3uilder

This chapter describes how to use the Class Builder tool. When you have created a new model using
the Framework, you can design the entities. The Class Builder allows you to create new class packages
in the Banking Objects (BO) section of the model. It allows you to create and delete Domain Layer
packages and classes.

This chapter contains the following topics:
B Starting the Class Builder

B Defining Classes

B Defining Attributes

B Defining findBy Methods
B Defining Methods

Starting the Class Builder

To start the Class Builder, navigate to Tools > Siebel in Rational Rose, and click the Class Builder tab
in the Design Tools Palette; see Figure 2.

On loading, all of the existing classes are shown in the Classes tree. There is only one class per
package, so the creation and maintenance of the packages are done in the background.

The elements in the Class Information section become active when you select an existing class or
create a new class. Any classes that are contained within a write-protected package appear with a lock
symbol next to them.

Design Tools Guide Version 2005, Rev. A

Using the Class Bui

Figure 2. Class Builder

Retailtccount. mdl
i (3 Charnel
- Branch
{3 Common
o] CRM-Gales
~J LineDiBusiness

com.bankframe. bo.retail. zolutionzet. impl. channel. batch

Defining Classes

You can add new classes, and amend or delete existing classes. To perform these tasks, first click the

Class Information tab.

Design Tools Guide Version 2005, Rev. A

Using the Class Builder ® Defining Classes

Creating a New Class

When you create a new class, you define the Banking Object (BO) grouping that the entity belongs to.
A new class is added to the selected BO Grouping of the Rational Rose model.

The architecture is a four-layer object architecture, of which the lowest layers are the Module Layer
and the Domain Layer. In the production release, a new class is added at the Module Layer and a new
class with the same name is also added to the associated Domain Layer package. By default, a
number of methods are added to the classes:

B The create, amend, and delete methods on the Module Layer class
B A findByPrimaryKey method on the Domain Layer class

In the delivery release, the new class is only added at the Domain Layer and all of the default
methods are added to the class.

To create a new class
1 Click the El button next to the tree view.

The Select Parent Package screen is displayed. This screen allows you to define the BO
Grouping that you want to add the Entity to.

2 Select a package and click OK.
The Class Information section becomes active at this point.

3 Enter a value in the Class Name field, and if required, in the Table Name, and Class Information
fields.

4 Select the Uses ParameterObject check box, if you want the class to use a nonfunctional
parameter object.

Selecting this check box, creates a background property that indicates to the code generator
that a parameter object containing all of the attributes of the class must be created. This
property is used in the create () and amend () methods of the object. If you do not select this
check box when you create the class, you can amend it afterwards and save it with the list of
nonfunctional parameter objects being refreshed with the class name.

5 Click the button next to the Super Class field.

A Select Super Class screen is displayed. In the production release, the list contains all of the
Sector Core Layer Classes. In the delivery release you can select the superclass from either
the Module Layer or Domain Layer.

Select a superclass and click OK.
Click Save.

The class information is also saved if you select one of the other tabs, for example,
FinderBuilder.

When the entity is saved, the Package Name field is updated with the package name that you
selected, plus the name of the entity. You can change the package name if required.

Design Tools Guide Version 2005, Rev. A

17

Using the Class Builder ® Defining Attributes

Amending a Class

You can amend all of the information for a class apart from the superclass.

To amend a class
1 Select a class in the Classes tree view.
2 Change the fields in the Class Information section as required.

3 Click Save.

Refactoring a Class Name

When you rename a class, you must make sure that all references to the class elsewhere in the model
are changed accordingly. This process is known as refactoring; for more information, see Refactoring
on page 13.

To refactor a class name

Select the class in the Classes tree view.

5 Type the required name in the Class Name field.
6 Click Refactor.
7 In the Find Replace dialog, replace occurrences of the old name with the new name as required.

This replacement updates any references to this class name in the model.

8 Wait for the refactoring process to complete, and click Save.

Deleting a Class

In the production release, both the Module Layer and Domain Layer classes are deleted. However, in
the delivery release, only the Domain Layer class is deleted.

To delete a class

1 Select a class in the Classes tree view.
2 Click the button.

3 Click Yes to confirm the deletion.

The selected class is deleted from the model.

Defining Attributes

You can add new attributes, and amend or delete existing attributes. To perform these tasks, first
click the Attribute Definer tab, as shown in Figure 3.

Design Tools Guide Version 2005, Rev. A

Using the Class Builder ® Defining Attributes

In the production release, the classes that are displayed are in the Module Layer, and the Class
Attributes List only shows attributes of the Module Layer and its parent classes.

In the delivery release, the classes that are displayed are in the Domain Layer and the Class Attributes
List shows attributes of the Domain Layer and its parent classes.

In the Class Attributes list, the attributes that are in the actual class are shown in black. The attributes

of the parent classes are shown in blue.

Figure 3. The Attribute Definer

o

4" Class Builder | ﬁﬂ Y alidation O efiner | © Seasion Builder 2 Utilities I

{J CRM-Sales
{3 Line0Business

r Classes
=2 A etaildcoount.mdl
=Y 3 Channel El
o Bl
. ~B& Branch ﬂ
{3 Comman

Refresh |

Class Information Attribute Definer | Finder Builder | Method D efiner
 Class Athibutes

comparyCode

CLIMEFICH:

numberd fH egohiablel netruments
uzerld

@
&
g documentType
e
@

a

Ll
1 [2 |2

— Attribute Details

Attribute Mame Icurrenc:_l,l

T able Colurmn ||:I_|F|FIENEY

—Data Type

Retaildcocount.mdl
-« Boolean
- Double
- Integer
-~ Shing

Selected Data Tupe |5tring

Selected Group |

" Objects € Parameter Dbjects % Standard| Data Topes
£ Java Frimitives € NonFunctional Parameter Objects

Overview

Validation ‘E Walidation Type
| " Cammon

{+ Custom
Data Size |5 Decimal Places I
Frimary F.ey [T Mandatory v
Syetem Generated ¥ Unused [

Save |

Exit |

Design Tools Guide Version 2005, Rev. A

19

Using the Class Builder ® Defining Attributes

Adding New Attributes

You can create a new attribute by defining the details of a new attribute, or by basing the new
attribute on an existing attribute. The latter approach allows you to add an existing application or
system attribute to the entity. The advantage of this approach is that the attribute definition is
complete, which makes the design quicker and the model more consistent.

The tool does not allow attributes of the same name to be defined on an entity.

To add a new attribute

1 Either click the El button to define a new attribute or click the ©# button to add an existing
attribute.

2 If you clicked the ¥* button, the Add Existing Attribute screen is displayed.
3 Select an attribute and click OK.

4 (Optional) If you clicked the EI button, making the Attribute Details section active, complete the
Attribute Details.

The fields are described in the following table.

Field Comments

Attribute Name Type the name of the attribute.

Table Column Type the name of the database column
to which the attribute maps.

Overview Type a description of the attribute.

Date Type Select a data type for the attribute by
clicking in the Data Type list. You can
change the view in the list by clicking
one of the radio buttons: Objects,
Parameter Objects, Standard Data
Types, Java Primitives, Non-Functional
Parameter Objects.

Validation Type Select the Common or Custom radio
button, then click the Validation button,
depending on whether you require a
custom or common validator.

Data Size Displays the attribute length. This field
is populated when you define a validator
for the attribute.

Decimal Places For attributes with a data type of
Double, type the number of decimal
places.

Primary Key Select this check box to define the

attribute as a primary key. In this case,

20 Design Tools Guide Version 2005, Rev. A

Using the Class Builder ® Defining Attributes

Field Comments

the attribute has mandatory validation,
and the System Generated check box is
enabled.

Mandatory Select this check box, if mandatory
validation is required. By default, the
attribute has optional validation.

System Generated Click this check box for a primary key
attribute that is to be system
generated, that is, the attribute is taken
from the system on the creation of an
entity.

Unused Select this check box, if the attribute is
not to appear in the generated XML.

5 If you selected Common, displaying the Select Common Validation for Attribute screen, select a
Common Validator from the list.

The details of the validator are displayed in the Overview section.

6 Click Save.

If the data type of the validator is not valid, you are prompted to select a validator with the
correct data type to match the attribute data type. Make sure that the data types match as
shown in the following table:

Attribute Type Validator Type Validator Value Type Validator Length
String String Any one of the Validator | Validator Length
value types required

Double Number N/A Validator Length
required

Boolean Boolean N/A Validator Length
required

Boolean String forLettersOrDigitsOnly Validator Length
required

Integer String forDigitsOnly Validator Length
required

Constant String Constant Constant Key required

ByteArray N/A N/7A Not required

7 If you selected the Custom radio button, displaying the Enter Custom Validation for Attribute
screen, complete the Overview details.

Design Tools Guide Version 2005, Rev. A 21

22

Using the Class Builder ® Defining Attributes

The fields are described in the following table.

Field Comments

Name

Type the name of the attribute. The Name field defaults to
validateAttributeName.

Type

Select the Validator Type. This type is either Boolean, Number,
or String. The other fields in the Overview section are disabled
depending on the Type chosen:

M If you select Boolean, all other fields become disabled.

& If you select Number, the Length, Max Length and Exact
Length fields are enabled.

¥ If you select String, the Value\Date, Value Type and
Length fields are enabled.

Value\Date

Select a value as follows:

B Date Or Time. You can then select Supply Pattern or
System Date Pattern from the Value Type list.

¥ Vvalue. You can then select various values from the Value
Type list.

Length

Select a validator length, or create a new length by clicking
the b button. You can also select Max Length or Exact
Length, if required.

Value Type

Select a value depending on what you selected in the
Value\Date field:

™ If you selected Date or Time in the Value\Date field:
I Supply Pattern. The Pattern field becomes enabled.

I System Date Pattern. The Pattern field defaults to
System.

In both cases, the Length, Max Length, and Exact
Length fields are disabled.

& If you selected Value in the Value\Date field:
B Constant

forDigitsOnly

forLettersOnly

forLettersOrDigitsOnly,

forLettersOrDigitsOrWhiteSpacesOnly

Constants Key

Select an existing constants key from the list, or to add a new
constant to the system, click the button beside the list.
This button is only enabled when the attribute is a constant,

Design Tools Guide Version 2005, Rev. A

Using the Class Builder ® Defining Attributes

Field Comments

and you select Constant in the Value Type list.

Pattern Type a specific date or time pattern, for example,
yyyy:mm:dd.
Max Length Select this check box if the attribute cannot exceed the defined

attribute length.

Exact Length Select this check box if the attribute cannot have a value
larger or greater than the defined attribute length.

8 Click Save.

Amending an Attribute

If an attribute is from a superclass, you can amend the following fields: Attribute Name, Overview,
and Data Type. All other parts of the Attribute Details section are editable. For an attribute in the
actual class all fields are editable.

To amend an attribute

1 Select the attribute from the Class Attributes list.
2 Change the fields in the Attribute Details section.
3 Click Save.

Refactoring an Attribute Name

When you rename an attribute, you must make sure that all references to the attribute elsewhere in
the model are changed accordingly. This process is known as refactoring; for more information, see
Refactoring on page 13.

To refactor an attribute

1 Select the attribute in the Class Attributes tree view.

2 Type the required name in the Attribute Name field.

3 Click Refactor.

4 In the Find Replace dialog, replace occurrences of the old name with the new name as required.
This replacement updates any references to this attribute name in the model.

5 Wait for the refactoring process to complete, and click Save.

Design Tools Guide Version 2005, Rev. A

23

Using the Class Builder ® Defining findBy M

Deleting an Attribute

You cannot delete superclass attributes.

To delete an attribute
1 Select an attribute in the Class Attributes list.

2 Click the 2% button.

3 Click Yes to confirm the deletion.

The selected attribute is deleted from the model.

Defining findBy Methods

You can add findBy methods, and amend or delete existing methods. To perform these tasks, first
click the Finder Builder tab, as shown in Figure 4.

Design Tools Guide Version 2005, Rev. A

Using the Class Builder = Defining findBy Methods

The Finder Builder allows you to create, amend, and delete both simple and complex findBy methods.

A findBy method can be what is called an OR finder or an AND finder:

Figure 4. The Finder Builder

(I

& Class Builder | W Validation Definer | -© Session Builder| © Utilties

— Clazzes
é Fietailtcocount mdl
Ell::l Channel

E Batch

o]
)<
{3 Common
(] CRMGales
<13 Line0fBusiness

Fefresh |

Clazz Infarmation I attribute Definer FlndElEUIlde M ethod Definerl

— FindBy Methods
B Batch -
. % findByComparyCodetndBranchCodetndCashB oxldéndB atchStatus E
% findByComparyCodetndBranchCodetndCashb oxldéndD ocument T ypedndCurencpdnd atch
% findByComparyCodetndB ranchCodedndl zerldindB atchD ateAndB atchémount @
| & findByComparwCodetnd ranchCodetndl serl dbndf atehD atedndB atchld | _ILI i|
1 3
"t‘t"ﬁ::: | AND/OR
 AND OR
Clazs Aftributes FindBu Attributes
E Batch =
--------------- < batchimount
e - batchD ate 3 |
& batchid
& batchStatus b
& branchCode = |
e o cashBoxld
--------------- & companyCode LI

T =

B An OR finder finds objects that fulfill any of the parameters passed in.

B An AND finder finds any objects that fulfill the combination of parameters.

Design Tools Guide Version 2005, Rev. A 25

Using the Class Builder ® Defining findBy Methods

Creating a Simple findBy Method

When you create a simple findBy method, you define whether the method is an AND finder or an OR
finder, and you add the attributes to the method. Simple findBy methods are used if the attribute
already exists on the Entity EJB.

To create a simple findBy method
1 click the B putton.

2 Select the AND radio button or the OR radio button, depending on whether the method is an AND
or an OR finder.

3 Select an attribute from the Class Attributes list and click the >> button.

To remove an attribute from the findBy method, select the attribute in the FindBy Attributes
list and click the << button.

4 Click Save.

Creating a Complex findBy Method

When you create a complex findBy method, you define whether the method is an AND finder, or an OR
finder, and you add the attributes to the method. In addition, you define rules for the attributes.
Complex findBy methods are used if you want custom findBys, for example, if you want to change the
name of the findBy or specify a new attribute.

To create a complex findBy method
1 Click the @ button.
2 Type a name for the finder in the Name field.

3 Select the AND radio button or the OR radio button, depending on whether the method is an AND
or an OR finder.

4 Select an attribute from the Class Attributes list and click the >> button. To remove an attribute
from the findBy method, select the attribute in the FindBy Attributes list and click the << button.

5 To amend the rules on the parameters, double-click one of the attributes in the FindBy Attributes
list.

The Define FindBy Rules screen is displayed.

6 Select one of the following rules from the drop-down list, and click OK:
B equalto =

less than <

less than or equal to <=

greater than >

greater than or equal to >=

Design Tools Guide Version 2005, Rev. A

Using the Class Builder = Defining Methods for a Class

B notequal to '=

B Range

7 Click Save.

Amending a findBy Method

In the production release, all of the Finder methods in the list are from the Module Layer and are
editable.

In the delivery release, the Module Layer methods appear in blue and are not amendable. The
Implementation Layer methods are shown in black and are amendable.

For all findBy methods, you can add or remove attributes. You can also change the finder method
from an AND method to an OR method or vice versa. In the case of complex findBy methods, you can
also amend the rules on each parameter.

To amend a findBy method
1 Select the method from the FindBy Methods list.
2 Change the details of the method, as required.

3 Click Save.

Deleting a findBy Method

You can delete a findBy method.

To delete a findBy method from a class
1 Select a method in the tree view.
2 Click the button.

The selected method is deleted from the model.

Defining Methods for a Class

When you click the Method Definer tab on the Class Builder screen, the Method Definer starts. This
allows you to define methods on the class. You define a method by giving it a name, a signature, and
a return type. The Method Definer also allows you to define a more detailed behavior for a method.
For information about the Method Definer, see the Method Definer chapter.

Design Tools Guide Version 2005, Rev. A

27

Using the Class Builder = Defini

. Design Tools Guide Version 2005, Rev. A

4 Definer Tool

This chapter describes how to use the Method Definer tool. It contains the following topics:
B Starting the Method Definer Tool

B Defining Methods

B Defining the Method Signature

|

Defining the Method Return

Starting the Method Definer Tool

You use the Method Definer from the Class Builder or the Session Builder; the functionality is the
same in both cases. To start the Method Definer you click the Method Definer tab from the Class
Builder, or the Process Definer tab from the Session Builder.

When you are using the Class Builder or Session Builder, and you select a class or session, the Method
Definer tab and Process Builder tabs respectively become active, as shown in Figure 5.

NOTE: The text (Dep) is displayed before the method name of any method that is deprecated.

Design Tools Guide Version 2005, Rev. A

Using the Method Definer Tool ® Defining Methods

Figure 5. The Method Definer Tool

(I

___:Z Design Tools
7 Class Builder | S Validation Definer I @ Session Buider | @ Utilities

— Clazzes
é Fietailtcocount mdl
S U] Charinegl

o]
B=NEaich
x4

B Branch
{3 Common

{3 CRM-Sales
{3 LineDiBusiness

Fefresh |

Class Infarmation I sttribute Definer | Finder Builder ~ Method Definer
Methods

a

create
delete
findByPrirmaryk.ey

ju]
x|

getBatchD etails
getBatchState
remover eqotiablelnstrument

H

soeeee

{ Overview ¢/ Behaviour | Signaturel Retum |

tethod Mame IgetEatchDetails Refactor |

Overview Thiz function checks a batch details ;l

Behaviour The function caries out the following: :l
Save | E it |

Defining Methods

You can create new methods, and amend or delete existing methods. To perform these tasks, first
click the Overview / Behaviour tab.

Creating a New Method

When you create a new method, the Methods list is updated with the new method.

Design Tools Guide Version 2005, Rev. A

Using the Method Definer Tool ® Defining Methods

To create a new method

1 Click the EI button in the Methods list.
The Overview/Behavior section becomes active at this point.

2 Enter a name in the Method Name field, and if required, a method overview, and an overview of
the method behavior in the relevant text fields.

3 Click Save.

Amending a Method

Methods of the actual class are shown in black, and methods of the superclasses are shown in blue.
You cannot amend methods of a superclass.

To amend a method

1 Select the method in the Methods list.
2 Change the details

3 Click Save.

Deleting a Method

You can delete a method.

To delete a method

1 Select a method in the Methods list
2 Click the button.

3 Click Yes to confirm the deletion.

The selected method is deleted from the model.

Refactoring a Method Name

When you rename a method, you must make sure that all references to the method elsewhere in the
model are changed accordingly. This process is known as refactoring.

You cannot rename inherited methods.

Design Tools Guide Version 2005, Rev. A 31

Using the Method Definer Tool ® Defining the Method Signature

To refactor a method name
1 Select the method in the Methods list.
Type the required name in the Method Name field.

Click Refactor.

A W N

In the Find Replace dialog, replace occurrences of the old name with the new name as required.

This action updates any references to this method name in the model. The Business Process
Diagram (BPD) is also renamed.

5 Wait for the refactoring process to complete, and click Save.

Defining the Method Signature

You can create, amend, and delete the parameters that constitute the signature of the selected
method. To perform these tasks, first click the Signature tab, as shown in Figure 6.

Adding a Parameter

The Method Signature Definer allows you to select parameters for the selected method. You can select
parameters from a number of lists comprising all the attributes, objects, parameter objects, primary
key classes, and nonfunctional parameter objects that are in the project. You can also specify user-
defined parameters. An example of such a parameter is a system-specific ID that is passed in from the
front end but is not modelled as part of any entities.

To add a parameter from a list

1 Select one of the radio buttons: Attributes, Objects, Parameter Objects, Primary Key Classes and
Non-Functional Parameter Objects.

Select from the Attributes list and click the >> button.

In the case of Objects, Parameter Objects, Primary Key Classes and Non-Functional Parameter
Objects, you can click the >>> button.

This action adds a collection containing these objects to the Parameter lists. When you add a
parameter object, or nonfunctional parameter object, the suffix “Impl” is added to the name of
the parameter object.

4 Click Save.

To add a user-defined parameter

1 Click the El icon beside the Parameters list.

2 The Add Parameter screen is displayed.

3 Enter a name and data type for the parameter.
4

Click Save.

Design Tools Guide Version 2005, Rev. A

the Method Definer Tool = Defining the Method Signature

Figure 6. Method Definer; defining the method signature

7 Class Buider | 50 Validation Definer | -© Session Buider| © Utiites |

— Clagzes
=% Retaildccount.mdl
Ell::l Chanrel El
E Eranch ﬂ
............... m Commaon
.......... {3 CRM-Sales

Refrezh

Class Information | Attibute Definer | Finder Builder Method Definer

— Methods
- create ﬂ
% delete Dl
% findByPrimaryk.ey
&
% removeMegotiablelnstrument j
Overview / Behaviour | | Return I
Attributes Parameters

accessLevel ;I M ame | Type
accessProviderd —l acceszProviderld Shing
accountantCompanyt ame

accountant ualification

@

@

@
- accountBalance 33 |
i

@

@

@

@

1|2

accountContributionl d
accoLntCurency
accountingCurrency
accounth ame

- accounttumber i
a1 o ‘ 5

i+ Atributes ¢ Objects Parameter Objects

" Primary Key Classes € Mon-Functional Parameter Objects

Save | Exit |

Deleting a Parameter

You can delete a parameter.

Design Tools Guide Version 2005, Rev. A 33

Using the Method Definer Tool ® Defining the Method Return

To delete a parameter from the parameter list
1 Select the parameter from the Parameters list.
2 Click the icon.

3 Click Yes to confirm the deletion.

The selected method is deleted from the model.

Defining the Method Return

You can define the primitives and objects that constitute the return of a selected method. To perform
these tasks, first click the Return tab, as shown in Figure 7.

Adding a Return

The Method Return Definer allows you to select primitives and objects as returns for the selected
method. There are a number of lists comprising all the objects, parameter objects, and primary key
classes that are in the project. You can also define the return as Void.

To add a return
1 Click one of the radio buttons: Objects, Parameter Objects, and Primary Key Classes.

2 Select a data type from the list and click either the >> button to add a single selected item, or the
>>> putton to add a collection.

This action adds a collection such as a vector or enumeration containing these objects to the
return.

3 Repeat steps 1 and 2 as required.
Click Save.

The Return Type field displays the type of object returned. If you specify only one return type,
the name of that type is displayed, if you click the >>=> button, Collection is displayed, and if
you specify more than one return type, MultiTypeCollection is displayed.

Deleting a Primitive or Object from the Return List

You can delete a primitive or object from the return list.

To delete a primitive or object from the return list
1 Select the primitive or object in the Returns list.

2 Click the button.

3 Click Yes to confirm the deletion.

The selected primitive or object is deleted from the model.

Design Tools Guide Version 2005, Rev. A

g the Method Definer Tool ® Defining the Method Return

Figure 7. Method Definer; defining the method return

o

& Class Builder | S Validation Definer | O Session Builderl 2 Utilities I

r Classes
=% Fetaildcoount.mdl
Ell:] Channel El
— ﬁl
D Cornmon
{3 CRM-Sales

{3 Line0Business

Class Informatian | Attribute Definer | Finder Builder ~ Method Definer
Methods

o

create
delete

sl
findByPrimaryk.ey J ﬂ
[

getB atchDetals
getB atchState
removel eqotiablel netrument

e e e

Ovwerview / Behaviour I Signature Return

Data Types Fieturnzs
=32 Fistailtcoount. mdl Fieturn [Type [|
e £ Boolean Boolean fangle
¢ Double }(l
e INbEOET
g Slring > |
4553
] »
= Yoid = Objects € Parameter Objects Retum Type |Enn|ean

¢ DataTypes ¢ Primamy Key Classes € Java Primitives

" Mon-Functional Parameter Objects Bari | Exit |

Design Tools Guide Version 2005, Rev. A 35

Using the Method Definer Tool =

. Design Tools Guide Version 2005, Rev. A

5 Nn Definer Tool

This chapter describes how to use the Validation Definer tool. It contains the following topics:
Starting the Validation Definer

Creating a Validation Group

Creating a Validator

Amending a Validator

Renaming a Validation Group

Deleting a Validation Group

Deleting a Validator

Refactoring a Validator Name

Dragging and Dropping Validators and Validation Groups

Starting the Validation Definer

To start the Validation Definer, navigate to Tools > Siebel in Rational Rose, and click the Validations
Definer tab in the Design Tools Palette, as shown in Figure 8.

Design Tools Guide Version 2005, Rev. A

38

Using the Validation Definer Tool ™ Creating a Validation Group

Figure 8. The Validation Definer

(I

4 Class Builder SV Walidation Definer I 2 Session Builder | @ Utilities

— Common Yalidations

3 “alidator -
EID Darnaint alidator
o] Commoralidations
A\ ' -licateCuistomer ame
&3 Solutionsetyslidatar
B B Commany' alidatians
e Gy glidatediccountt ame
validatedcoountt umber
validatedddress
validatedmericanD ate LI

— Overview
Mame |validateCustumerName Refactor |
Type Ismng j WaluehD ate IVaIue j
Length [CUSTOMER_NAME_LENGTH =] D| Value Tope fforl ettersOnly =l

Cohgtants j gl Pattern |

Ken

Max Lenath [v ExactLength [

Save | E it |

The Validation Definer allows you to create new common validators in the model, and to delete and
amend existing validators. Validators are contained within validation groups.

To view the properties of an existing validator, select it from the list. The details appear in the
Overview section. The tree view displays all the Domain Layer and Solutionset Layer validators.

Creating a Validation Group

When you create a validation group, the description is displayed when you place the cursor over the
validation group in the tree view. Within the new validation group, a class is automatically created,

Design Tools Guide Version 2005, Rev. A

Using the Validation Definer Tool ® Creating a Validator

which is merely a holder class for validators. The name of this class is <Group ID> appended with the
text “Validations”.

To create a new validation group

1

2

In the Validator tree view, right-click DomainValidator or an existing group within the
DomainValidator group.

Select New > Group.

The Validation Group Definer screen is displayed.

Enter details in the Group ID and Description fields and click OK.
The new validation group appears in the tree view.

NOTE: You cannot create a validation group with the same name as an existing validation
group at this hierarchy level in the tree view. An error message is displayed and you must
enter the Group ID again.

Creating a Validator

You create a validator from a validation holder class. The validation holder class is created when you
create a validation group.

To create a new validator

1
2

Right-click any of the validation holder classes within the DomainValidator group.
Select New > Validator.

The Overview section is enabled.

Complete the Overview details.

The fields are described in the following table.

Field Comments

Name Type the name of the validator. The Name field defaults to
validateAttributeName.

Type Select the Validator Type. This type is either Boolean, Number,
or String. The other fields in the Overview section are disabled
depending on the Type chosen:

I If you select Boolean, all other fields become disabled.

B If you select Number, the Length, Max Length, and Exact
Length fields are enabled.

M If you select String, the Value\Date, Value Type, and
Length fields are enabled.

Design Tools Guide Version 2005, Rev. A

39

Using the Validation Definer Tool ® Creating a Validator

Field Comments

Value\Date Select a value as follows:

i Date Or Time. You can then select Supply Pattern or
System Date Pattern from the Value Type list.

I Vvalue. You can then select various values from the Value

Type list.

Length Selert a validator length, or create a new length by clicking
the 21 button. You can also select Max Length or Exact Length
if required.

Value Type Select a value depending on what you selected in the

Value\Date field:
¥ If you selected Date or Time in the Value\Date field:
B Supply Pattern. The Pattern field becomes enabled.

B System Date Pattern. The Pattern field defaults to
System.

In both cases, the Length, Max Length, and Exact
Length fields are disabled.

M If you selected Value in the Value\Date field:

@ Constant

& forDigitsOnly
i forLettersOnly
B forLettersOrDigitsOnly,
i forLettersOrDigitsOrWhiteSpacesOnly
Constants Key Select an existing constants key from the list, or to add a new

constant to the system, click the El button beside the list.
This button is only enabled when the attribute is a constant,
and you select Constant in the Value Type list.

Pattern Type a specific date or time pattern, for example,
yyyy:mm:dd.
Max Length Select this check box if the attribute cannot exceed the defined

attribute length.

Exact Length Select this check box if the attribute cannot have a value
larger or greater than the defined attribute length.

4 Click Save.

40 Design Tools Guide Version 2005, Rev. A

sing the Validation Definer Tool ® Amending a Validator

Amending a Validator

Only the Domain Layer validators are amendable.

To amend a common validator
1 Select the validator from the Common Validations tree view.
2 Change the fields in the Overview section as required.

3 Click Save.

Renaming a Validation Group

You can rename validation groups.

To rename a validation group
1 Right-click the validation group within the DomainValidator group.
2 Select Rename Group.

The selected validation group name is now editable.

3 Enter the new name for the validation group.

Deleting a Validation Group

When you delete a validation group, the selected validation group, subgroups and validators are
removed from the model.

CAUTION: You must take care when deleting existing validation groups as entity attributes can
already reference validators within this validation group or subgroups.

To delete a validation group
1 Right-click the validation group within the DomainValidator group.

2 Select Delete > Group.

Deleting a Validator

CAUTION: You must take care in deleting existing validators as entity attributes can already
reference these validators.

To delete a validator

1 Right-click the validator within the DomainValidator group.

Design Tools Guide Version 2005, Rev. A

41

Using the Validation Definer Tool ® Refactoring a Validator Nam

2 Select Delete > Validator.

The selected validator is then removed from the model.

Refactoring a Validator Name

When you rename a validator, you must make sure that all references to the validator elsewhere in
the model are changed accordingly. This process is known as refactoring. For more information, see
Refactoring on page 13.

To refactor an existing validator name

1 Select the validator from the tree view and update the Name field in the Overview section.
2 Click Refactor.

3 Click Save when the refactoring process has finished.

This action updates any references to this validator in the model.

Dragging and Dropping Validators and
Validation Groups

You can drag and drop all Domain Layer validation groups, validators, and validation holder classes.
You cannot do this within the Solutionset Layer. You can move:

B A validation group into another validation group, if that validation group does not already contain
a validation group with the same name as the validation group being dragged.

B A validation holder class into another validation group, if the validation group does not already
contain a holder class with this name. Any validators defined within the holder class are also
moved.

B A validator to another holder class, if the holder class does not already contain a validator with the
same name.

Design Tools Guide Version 2005, Rev. A

N Builder Tool

This chapter describes how to use the Session Builder tool. When you have created a new model
using the Framework, you can design the session beans. The Session Builder allows you to create new
class packages in the Banking Processes section of the model. It allows you to create and delete
Domain Layer packages and classes.

The chapter contains the following topics:
B Starting the Session Builder Tool
B Defining Sessions

B Defining Processes

Starting the Session Builder Tool

To start the Session Builder, navigate to Tools > Siebel in Rational Rose, and click the Session Builder
tab in the Design Tools Palette, as shown in Figure 9.

On loading, all of the existing sessions are shown in the Sessions tree. There is only one class per
package, so the creation and maintenance of the packages occur in the background.

The elements in the Session Information section become active when you select an existing class or
create a new class. Any classes that are contained within a write-protected package appear with a lock
symbol next to them.

Design Tools Guide Version 2005, Rev. A

Using the Session

Figure 9. The Session Builder

S Channel
- =B BranchE nd0fD ay
B BranchStartOfD ay
B BusinessDayProcessing
B CashManagement
B ChieckB atching
{3 Comman
{J CRM-Sales
{3 LineQB usiness

’E

BranchEndOfDay
cam.bankframe. bp.retail solutionzet.impl.teller. charnel branchendofday

Defining Sessions

You can create new sessions, and amend and delete new sessions. To perform these tasks, first click
the Session Information tab.

Design Tools Guide Version 2005, Rev. A

Using the Session Builder Tool ® Defining Sessions

Creating a New Session

When you create a new session, you define the Banking Process (BP) grouping that the session
belongs to. A new class is added to the selected BP Grouping of the Rational Rose model.

The solution works within a two-layer session architecture. In the production release, a new session is
added at the Module Layer and a new session with the same name is also added to the associated
Domain Layer package. In the delivery release, the new session is only added at the Domain Layer.

To create a new session
1 Click the El button beside the Sessions tree view.

The Select Parent Package screen is displayed. This screen allows you to define the BP
Grouping to which you want to add the session.

2 Select a package and click OK.
The Session Information section becomes active at this point.

3 Enter a name in the Session Name field, and if required, type a description in the Session
Information field.

4 If required, enter a value in the Request Id field; this is output in the XML, and can be used later
to populate the Routes table.

5 To save the information, click Save.
The information is also saved if you select one of the other tabs, for example, Process Builder.

When the session is saved, the Package Name field is updated with the package name that
you selected, plus the name of the session. You can change the package name if required.

Amending a Session

You can amend all the fields in the Session Information, apart from the Name field.

To amend a session
1 Select a session in the tree view.
2 Change the fields in the Session Information section as required.

3 Click Save.

Deleting a Session

In the production release, both the Module and Domain Layer sessions are deleted. However, in the
delivery release only, the Domain Layer session is deleted.

Design Tools Guide Version 2005, Rev. A

45

Using the Session Builder Tool ® Defining Proc

To delete a session
1 Select a session in the tree view.

2 Click the 2% putton.

3 Click Yes to confirm the deletion.

The selected session is deleted from the model.

Defining Processes

When you click the Process Definer tab on the Session Builder screen, the Method Definer starts. This
Method Definer allows you to define processes on the session. You define a process by giving it a
name, a signature, and a return type. The Method Definer also allows you to define a more detailed
behavior for a process. For information about the Method Definer, see the Method Definer chapter.

Design Tools Guide Version 2005, Rev. A

bute Class Definer

The Attribute Class Definer makes sure that attributes defined for a particular class are made available
for use throughout the model.

To run the Attribute Class Definer, click its icon on the Utilities tab of the Design Tools Palette.

When you run the Attribute Class Definer, the Attributes package in Rational Rose is updated with the
details of all attributes defined in the model, as shown in Figure 10.

Figure 10. The Attribute Class Definer

%> Rational Rose - RetailAccount.mdl

I
a
(1'%

Eile Wiew Help
DEH| =g/ efprRpEb B @«ad®

(5 Fetailsccount il
-3 Use Caze View
E|D Logical Yiew
&-off Banking Objects
-off Business Processes
-0ff Constants
[:I Externallnterface
-7 FrontEnd
£ Groups
Elﬁ:l JavaClaszes
E-C7 Classes
EID Attributes
BREN

& accountMurnber
----- & accountCurrency
----- & accountB alance
..... & companyCode
----- & movementld
----- & movementD ate
----- & movementCurmency
----- & movementamatint
----- & foreignErchangeR ate
----- & movementT ype
----- & harative
----- & onginalCurrency
----- & originalCurrencydmount
..... & tunningB alance

H Hi. (] ht
1 | 3
[-]
For Help, press F1 |Default Language: Analysis MLk]

Design Tools Guide Version 2005, Rev. A

Using the Attribute Class Definer

. Design Tools Guide Version 2005, Rev. A

Design Documentation

When you have completed the design phase for a requirement, you can use the Design Documentation
Builder to create standard design documents. You can generate design documentation for the whole
model, for a selected model view, or for a single class. This chapter contains the following topics:

B Generating Design Documentation

B The Design Documentation that is Generated

Generating Design Documentation

When you click the Generate Design Documents icon on the Design Tools Palette, the Design
Documentation Generator is displayed as shown in Figure 11.

Figure 11. The Design Documentation Generator

Design Documentation Generator ﬂ

— Directary Detailz

Destination Directony:
C:h

— Generate Documents

¥ Al Documentation
Compan _
Documents and Settings Al Classes in Selected View
Diynasty
EE:E'I 3 " Selected Class Only
GlobalDs
Herozaft LI Generate |
— Madule:
— Mo View Selected — Model Yiews

% MoYiew Selected

" Banking Object Documentation
" Business Process Documentation
" Parameter Object Documentation
" Parameter Object Factories

" JavaClasses Documentation

" Constant Documentation

Design Tools Guide Version 2005, Rev. A 49

Using the Design Documentation Builder ® The Design Docume

To generate design documentation

1 Click Generate Design Documents on the Design Tools Palette.

2 Select the Destination Directory for the documents using the drop-down list and list box.

3 Click one of the following radio buttons according to the documentation you want to generate:
B All Documentation
B All Classes in Selected View
B Selected Class Only

4 If you clicked All Classes in Selected View, click a radio button under Model Views corresponding to
the selection of design documents that you require:

Banking Object Documentation
Business Process Documentation
Parameter Object Documentation

Parameter Object Factories

JavaClasses Documentation
B Constant Documentation

5 If you clicked Selected Class Only, make sure that one of the Model Views buttons is selected, and
select a class from the list of classes displayed in the Module list.

6 Click Generate.

NOTE: There is a Windows restriction of 256 characters for a fully-qualified filename. Overloading
operations with up to 10 parameters causes a maximum of 55 characters to be added to the name of
the operation design file; it can be more for operations with more that 10 parameters. If the fully-
qualified file name of the operation exceeds 256 characters, an error message is displayed with the
message, Path not found, and the design document generation exits at this point. To overcome this
problem, try generating the documents in a folder off the c:\ or d:\ root drive, or shorten the class or
operation names.

The Design Documentation that is
Generated

The following folders are created at the location you specify using the tool:
Constants

Externallnterfaces

FinancialObjects (banking object documentation)
ParameterObjectFactories

ParameterObjects

JavaClasses

Design Tools Guide Version 2005, Rev. A

n Documentation that is Generated

B Sessions (banking process documentation)

For each of these folders there is an index.html file that provides links to documents for all of the
objects in that folder. There is also a top-level index.html file that provides links to the index.html file

for each folder.

Design Tools Guide Version 2005, Rev. A

Using the Design Documentation

. Design Tools Guide Version 2005, Rev. A

odel Exporter Tool

This chapter describes how to use the Model Exporter tool, which you use to export your design model
as an XML file. The chapter contains the following topics:

B Exporting the Model

Exporting the Model

You use the Model Exporter when a model is completed, or a module is taken from the repository.
The tool exports the model as an XML file.

When you click the Export Model as XML icon on the Design Tools Palette, Figure 12 is displayed:

Figure 12. The Model Exporter Tool

SovexdL_ EE|
Save In: |E =l j ﬁl

@ G, Toals Demo.sml

@ SampleConstants. <m

@ S ampleP arameter0 bjects. sml
@ SimpleBranchSearch.wml

2] Uzerddminiztration. smi

File name: I Save I
Save az type: IXML Files j Cancel |

To export the model
1 Click the Model Exporter icon on the Design Tools Palette.
The Save XML screen is displayed.
2 In the Save in field list, select the location where you want to save the generated XML file.
3 Enter the name of the XML file you want to generate, or select an existing file to overwrite.

4 Click Save to generate the file.

Design Tools Guide Version 2005, Rev. A 53

Using the Model Exporter Tool =

. Design Tools Guide Version 2005, Rev. A

10 odel Validator Tool

This chapter describes how to use the Model Validator tool. It contains the following topics:
B The Validation Properties File
B validations Performed by the Model Validator

B validating the Model

The Validation Properties File

When you run the Model Validator tool, it reads a properties file to determine which validations it uses
to validate the model, and whether a custom Rational Rose script is used. The following excerpt
illustrates the format of the validation properties file:

Custom Rose Script
customModelValidations.ebx

Attribute Validations
AttributeMandatoryValidation
AttributeDataSize

AttributeDataSizeNumeric
AttributeValidatorMethodDefined

The name of any custom Rational Rose script is specified in the first uncommented line of the
properties file.

You can edit the validations properties file to determine which validations are used. To remove a
validation, insert the # symbol at the beginning of the line.

Validations Performed by the Model
Validator

Table 3 lists the standard validations performed by the Model Validator.

Table 3. Standard Validations

Section Validation Description Validation Code
General | A check that the GeneralBankingObjectCategoryDocumentation
Errors documentation field in the

BankingObject Category is

not blank.

Design Tools Guide Version 2005, Rev. A

55

56

Using the Model Validator Tool

Section

Validation Description

A check that the
BankingObject category
contains a Domain Layer.

Validations Performed by the Model Validator

Validation Code

GeneralBankingObjectCategoryDomain

A check that the
BankingObject category
contains a Module Layer.

GeneralBankingObjectCategoryModule

The documentation field in
the Domain Layer
packages (stereotype
DomainPackageObject)
must contain part of the
Java namespace.

GeneralBankingObjectDomainLayerCategoriesDocumentation

The documentation field in
the Module Layer packages
(stereotype
ModulePackageObject)
must contain part of the
Java namespace.

GeneralBankingObjectModuleLayerCategoriesDocumentation

The BusinessProcess
category documentation
must contain
com.bankframe.bp.

GeneralBusinessProcessCategoryDocumentation

The BusinessProcess
category must contain a
Domain Layer.

GeneralBusinessProcessCategoryDomain

The BusinessProcess
category must contain a
Module Layer.

GeneralBusinessProcessCategoryModule

A check that the Domain
Layer Categories contain
qualified name
documentation.

GeneralBusinessProcessDomainLayerCategoriesDocumentation

A check that the Module
Layer Categories contain
qualified name
documentation.

GeneralBusinessProcessModuleLayerCategoriesDocumentation

Validator
Errors

A check that the model
contains a Validator
category.

ValidatorCatagoryExists

The Validator category
documentation must
contain
com.bankframe.validator

ValidatorCatagoryDocumentation

Design Tools Guide Version 2005, Rev. A

Section

Using the Model Validator Tool

Validation Description

The Validator category
must contain a Domain
Layer.

Validation Code

ValidatorCatagoryDomainEXxists

Validations Performed by the Model Validator

The Domain Layer
Validator category must
contain at least one class.

ValidatorDomainClasses

The Validator category
must contain a Module
Layer.

ValidatorCatagoryModuleExists

The Module Layer Validator
category must contain
qualified name
documentation.

ValidatorCatagoryModuleDocumentation

The Module Layer Validator
category must contain at
least one class.

ValidatorModuleClasses

The class Common
Validations must have a
stereotype of
<<DomainValidator>>, if
it belongs to the
DomainValidator package.

ValidatorDomainStereotype

The class Common
Validations must have a
stereotype of
<<SolutionsetValidator>=>,
if it belongs to the
SolutionsetValidator
package.

ValidatorModuleStereotype

Constant
Class
Errors

The model must contain a
Constants category.

ConstantsCatagoryExists

The Constants category
documentation must
contain com.bankframe.co.

ConstantsCatagoryDocumentation

The Constants category
does must contain a
Constants class.

ConstantsClassExists

The Constants class must
have a stereotype of
<<Constants>>.

ConstantsClassStereotype

Design Tools Guide Version 2005, Rev. A

57

Using the Model Validator Tool ® Validations Performed by the Model Validator

Section Validation Description Validation Code
Attribute | The model must contain AttributesCategoryExists
Class an Attributes category.
Errors
The Attributes category AttributesCategoryClasses
must contain an Attributes
class.

The Attributes class must AttributesClassStereotype
belong to the Attributes

package.
Class A check that no object
. classstartslowercaseCheck
Errors starts with a small letter.

A check that no object is
misspelled or contains classillegalcharacterCheck
illegal characters.

A check that no object
inherits from multiple classMultipleInheritanceCheck
classes.

A check that no object has

. . classDuplicateAssocationCheck
duplicate associations.

A check that no
Solutionset objects exist
without corresponding
Domain Package Objects.

classdomainlayerclassCheck

A check that every
package name matches its | classdifferentpackagenamCheck
session name.

A check that
findByPrimaryKey is classFindByPKCheck
correctly spelled.

A check that the
stereotype is correct in all classSterotypeCheck
cases.

A check that every entity
has at least one primary classPrimaryKeyCheck
key attribute defined for it.

A check that every entity

. classNoAttributesCheck
has at least one attribute.

Attribute | A check that attribute data

L . attributeDataSizeCheck
Errors size is defined.

58 Design Tools Guide Version 2005, Rev. A

Section

Using the Model Validator Tool

Validation Description

A check that attribute
table column name is
defined.

Validations Performed by the Model Validator

Validation Code

attributreColumnCheck

A check that attribute data
type is defined.

attributeDataTypeCheck

A check that attribute
validation has been
defined (stereotype).

attributeMandatoryValidationCheck

A check that no attribute
validation has been
defined (nonstereotype).

attributeValidatorCheck

A check that no attribute
starts with a capital letter.

attributeLowercaseCheck

A check that no attribute is
misspelled or contains
illegal characters.

attributelllegalCharacterCheck

A check that no object has
duplicate attributes.

classDuplicateCheck

A check that attribute data
size is defined with a
numeric value.

attributeDataNumericCheck

Function
Errors

A check that every
function overview has
been completed.

functionOverviewCheck

A check that every
function behavior has been
completed.

functionBehaviourCheck

A check that every
function’s parameters have
been properly defined.

functionParameterCheck

A check that no function
starts with a capital letter.

functionLowercaseCheck

A check that no function is
misspelled or contains
illegal characters.

functionNamelllegalCharacterCheck

A check that no function
behavior contains illegal
characters.

functionBehaviourlllegalCharacterCheck

A check that no function
overview contains illegal

functionOverviewlllegalCharacterCheck

Design Tools Guide Version 2005, Rev. A

59

60

Using the Model Validator Tool

Section

Validation Description

characters.

Validations Performed by the Model Validator

Validation Code

A check to make sure that
all the parameters for a
findBy are attributes of the
object the findBy is on.

functionFindByCheck

A check that the function
has a return type specified

functionReturnTypeCheck

A check that any method
that overwrites an existing
method has the same
return type as the original
method.

functionReturnOverwriteCheck

A check that any method
that overwrites an existing
method has the same
return type as the original
method.

functionReturnOverwriteCheck

Session
Errors -
Module
Layer

A check that every session
name does not contain an
illegal character.

SessionModulelllegalCharacter

A check that the session
name starts with a lower
case letter.

SessionModuleStartsLowerCase

A check that the session
has a corresponding class
in the Domain Layer.

SessionModuleDomainLayer

A check that the session
Package Name does not
differ from the Class
name.

SessionModuleDifferentPackageName

A check that the session
has the correct stereotype.

SessionModuleStereotype

A check that every session
name does not contain an
illegal character.

SessionModulelllegalCharacter

A check that the session
contains at least one
operation.

SessionModuleOperationsExist

A check that no method is
overwriting a method with

SessionModuleMethodOverwritingDifferentReturn

Design Tools Guide Version 2005, Rev. A

Section

Using the Model Validator Tool

Validation Description

a different return type.

Validation Code

Validations Performed by the Model Validator

BPD
Errors —
Module
Layer

A check that no BPD
contains Module Layer
objects.

BPDModuleNonDomainLayerObject

A check that no BPD
contains undefined
classes.

BPDModuleUndefinedObject

A check that the BPD has a
process associated with it
on the session.

BPDModuleMethodAssociated

A check that the BPD does
not have an undefined
message.

BPDModuleUndefinedMessage

Process
Errors -
Module
Layer

A check that the process is
not named with an illegal
character.

ProcessModuleNamelllegalCharacter

A check that every process
overview has been
completed.

ProcessModuleOverviewDefined

A check that every process
overview does not contain
illegal characters.

ProcessModuleOverviewlllegalCharacter

A check that every process
behavior has been
completed.

ProcessModuleBehaviourDefined

A check that every process
behavior does not contain
illegal characters.

ProcessModuleBehaviourlllegalCharacter

A check that every process
response has been
completed.

ProcessModuleReturnDefined

A check that no function
starts with a capital.

ProcessModuleStartsLowerCase

A check that all method
arguments have a type.

ProcessModuleParameterValidType

Session
Errors -
Domain

A check that every session
name does not contain an
illegal character.

SessionDomainlllegalCharacter

Design Tools Guide Version 2005, Rev. A

61

62

Using the Model Validator Tool

Section

Layer

Validation Description

Validations Performed by the Model Validator

Validation Code

A check that the session
name starts with a lower
case letter.

SessionDomainStartsLowerCase

A check that the session is
not inherited from multiple
objects.

SessionDomainlnheritedMultiple

A check that the session
Package Name does not
differ from the class name.

SessionDomainDifferentPackageName

A check that the session
has the correct stereotype.

SessionDomainStereotype

A check that the session
contains at least one
operation.

SessionDomainOperationsExist

A check that no method is
overwriting a method with
a different return type.

SessionDomainMethodOverwritingDifferentReturn

BPD
Errors —
Domain
Layer

A check that no BPD
contains Module Layer
objects.

BPDDomainNonDomainLayerObject

A check that no BPD
contains undefined
classes.

BPDDomainUndefinedObject

A check that the BPD has a
process associated with it
on the session.

BPDDomainMethodAssociated

A check that the BPD does
not have an undefined
message.

BPDDomainUndefinedMessage

Process
Errors -
Domain
Layer

A check that the process is
not named with illegal
characters.

ProcessDomainNamelllegalCharacter

A check that every process
overview has been
completed.

ProcessDomainOverviewDefined

A check that every process
overview does not contain

ProcessDomainOverviewlllegalCharacter

Design Tools Guide Version 2005, Rev. A

Using the Model Validator Tool ™ Validating the Model

Section Validation Description Validation Code

illegal characters.

A check that every process
behavior has been ProcessDomainBehaviourDefined
completed.

A check that every process
behavior does not contain ProcessDomainBehaviourlllegalCharacter
illegal characters.

A check that every process
response has been ProcessDomainReturnDefined
completed.

A check that no function

. . ProcessDomainStartsLowerCase
starts with a capital.

A check that all method

ProcessDomainParameterValidType
arguments have a type.

Validating the Model

You validate a model by clicking one of the following icons on the Utilities tab on the Design Tools
Palette:

B Model Validator — Default. Validates the model using the default properties file.
B Model Validator — Select File. Validates the model using a specified properties file.

B Model Validator — Extended. Validates the model using a custom Rational Rose script and
associated properties file.

In each case, the tool performs validations according to the specified properties files and produces an
HTML report file.

Running the Model Validator with the Default Properties File

The default properties file is the file that was last used by the Model Validator. However, if you are
running the Model Validator for the first time, you are prompted to specify a properties file.

To run the Model Validator with the default properties file
1 Click Model Validator — Default.
2 Specify a properties file, if this is the first time you are running the tool.

3 Specify the location of the results file.

Design Tools Guide Version 2005, Rev. A

63

64

Using the Model Validator Tool ® Validating the Model

Running the Model Validator with a Selected Properties File
You can predefine multiple properties files, according to the requirements of different projects.

The file that you specify then becomes the default properties file.

To run the Model Validator with a selected properties file
1 Click Model Validator — Select File.
2 Select a properties file.

3 Specify the location of the results file.

Running the Model Validator with a Custom Rational Rose Script

To run the Model Validator with a custom Rational Rose Script, you must first create the script and a
validation properties file in the same format as the sample files (sampleCustomValidations.properties
and sampleCustomValidations.ebs) that are installed in the Design Tools installation directory.

To prepare the custom script and properties file

1 Extend the sampleCustomeValidations.ebs script, or create a new .ebs file to include the custom
validations that you require. If you create a new .ebs file, make sure it is in accordance with the
following specification:

B All validation methods must be declared as Global at the start of the file

B The code must implement the following three PUBLIC subroutines which are called from the
Design Tools:

0 main
0 setValidationToCheck(validatorMethodName As String)
0 startValidationProcess
B In the main subroutine method, the validation methods are initialized

B In the setValidationToCheck subroutine, each validation check to be carried out is set. Only
the validation names contained in the .properties file without the # are set

B The startValidationProcess subroutine starts the validation on the model

2 Edit the sampleCustomValidations.properties file, and make sure that it contains the name of the
Rational Rose script and a list of the validations to perform. For example:

Custom Validations

#define EBX file to run below

sampleCustomVal idations.ebx

#define validations to check below any that have # before them will be ignored

GeneralBankingObjectCategoryDocumentation

Design Tools Guide Version 2005, Rev. A

alidator Tool ™ Validating the Model

#GeneralBankingObjectCategoryDomain

3 Compile the ebs file into an ebx file.

4 Place both the .properties and .ebx file in the Design Tools installation directory where the Design
Tools specific .ebx files are located.

To run the Model Validator with a custom script
1 Click Model Validator — Extended.
2 Specify a properties file.

3 Specify the location of the results file.

Design Tools Guide Version 2005, Rev. A

Using the Model Validator Tool =

. Design Tools Guide Version 2005, Rev. A

1 1 2| Comparison Tool

This chapter describes how to use the Model Comparison tool, which you use to compare two Siebel
Retail Finance models. The chapter contains the following topics:

B Comparing Models
B Model Comparison Tool Error Messages

B Comparison Report Contents

Comparing Models

When you click the Model Comparison Tool icon on the Design Tools Palette, Figure 13 is displayed:

Figure 13. The Model Comparison Tool

ﬁﬁelett Eontec XML Files To Compare =10l x|

Abouk

—Select Files

Baze kodel

| = L |

Comparizon kodel

| = L |

Comparizon Reports

|| 3|
ok | LCancel |

This screen allows you to specify two XML files to be compared, and the location of the report files.

NOTE: The XML files must be valid model XML files. You must have exported the XML files, using the
Model Exporter tool, from a Rational Rose Model that adheres to all design standards as specified in
the Automated Methodology.

To compare two models

1 Click Model Comparison Tool on the Design Tools Palette.

2 Click the browse button beside the Base Model list.

Design Tools Guide Version 2005, Rev. A

68

Using the Model Comparison Tool ® Model Comparison Tool Error Messages

3 Select the XML file for the base model, that is, the old version of the model that you want to
compare against.

4 Click the browse button beside the Comparison Model list.
5 Select the XML file for the comparison model, that is, the newest version of the model.

6 Click the browse button beside the Comparison Reports list, and select the output location for the
comparison report files.

7 Click OK to generate the Comparison Reports.

When the reports have been generated, a message is displayed indicating their output
location. Depending on the size of the models being compared, the generation process can
take a few minutes to complete.

Model Comparison Tool Error Messages

The errors messages described in the following sections can be displayed when using the Model
Comparison Tool.

XML Parsing Error — An Invalid Character Was Found in Text
Content

This message indicates that an invalid XML character was found in one of the selected XML files. Make
sure that you run the Model Validator, and correct any invalid XML characters that are flagged in the
Model Validator report.

The error message indicates the line number at which the invalid character was found. You can use a
text editor to examine this line of the XML file to identify where the problem is located.

It is recommended that you update the actual Rational Rose Model to correct the problem rather than
update the XML file. If you edit the XML file manually, the changes are not reflected in the Rational
Rose Model and the problem occurs again the next time XML is exported from the model.

XML Parsing Error — The System Cannot Locate the Resource
Specified

This message indicates that the EontecModel.dtd, which the tool uses to parse a Siebel model XML file
was not found. The EontecModel.dtd file is installed in the same default location as the model XML file.
However, an XML file generated on another machine that uses an older version of the Design Tools
can have a reference to a different folder location in its DOCTYPE statement (located on the second
line of the file).

To correct this problem, edit the XML file to change the location of the EontecModel.dtd to a valid
location on your system.

CAUTION: Take great care when manually editing the XML files. If a tag is left open, or an invalid
character is inserted by accident, the tool cannot read the file.

Design Tools Guide Version 2005, Rev. A

Using the Model Comparison Tool ® Comparison Report Contents

XML Parsing Error — The Base XML File Selected is Not of
DOCTYPE EontecModel

This message indicates that an XML file was not of DOCTYPE EontecModel. It means that the file
chosen was not a valid Siebel model XML file and was not exported from the Design Tools.

XML Parsing Error — A Duplicate Package Name Has Been Found
in the Base XML

This message indicates that the XML file contains more than one object with the same package name.
According to Automated Methodology standards, all classes must have unique package names. You
must remove the duplicate package names from the design before you run the comparison tool again.

Comparison Report Contents

The following reports are produced by the Model Comparison Tool:
Banking objects report (BankingObjects.html)

Banking processes report (BankingProcesses.html)

Common validations report (CommonValidations.html)
Constants report (Constants.html)

Parameter objects report (ParameterObjects.html)

Validator lengths report (ValidatorLengths.html)

All reports can consist of an initial section, a summary section, and a detailed section. If there are no
differences found for a particular report, the report contains only the initial section, followed by the
message: No Differences Found.

Initial Section

All reports contain a header area containing the following information:
B Date of Generation. The date the model comparison report was produced.
B Base Model. The old version of the model.

B compared Model. The latest version of the model.

The Summary Report Section

All reports can contain a summary section that contains summary totals for changes, additions, and
deletions.

Design Tools Guide Version 2005, Rev. A

69

Using the Model Comparison Tool ® Comparison Report Contents

The Detailed Report Section

The following sections describe the contents of the detailed report section for each of the files.

Banking Object Report (BankingObjects.html)
The details section contains the following subsections:

B Added Objects. The name and package name of banking objects that have been added to the
model.

B Removed Objects. The name and package name of banking objects that have been removed
from the model.

B Modified Objects. Each modified object is represented as a table in the report. The object’s name
and package name are listed at the top of the table. The modifications to the object are listed in
the following subsections:

B Modified Object Details. Any properties of the banking object that have been modified.

B Modified Attributes. Any attributes that have been modified. The values of the modified
properties from both models are also listed (Value Before and Value After).

B Added Attributes. Any attributes that have been added to the object.
B Removed Attributes. Any attributes that have been removed from the object.

B Modified Methods. Any methods that have been modified. Remember that it is possible for
the same method name to exist with many signatures. Therefore, if you modify the signature
of an existing method of a class using the Design Tools, the updated method is represented as
a new method in the comparison report, while the previous version is represented as a
removed method in the comparison report.

B Added Methods. The name and signature of any methods that have been added to the
object.

B Removed Methods. The name and signature of any methods that have been removed from
the object.

NOTE: The report does not list the properties, attributes, and methods of added objects and removed
objects.

Banking Process Report (BankingProcesses.html)

The details section contains the following subsections:
B Added Sessions. The name and package name of sessions that have been added to the model.

B Removed Sessions. The name and package name of sessions that have been removed from the
model.

B Modified Sessions. Each modified session is represented as a table in the report. The sessions
name and package name are listed at the top of the table. The modifications to the session are
listed in the following subsections:

Design Tools Guide Version 2005, Rev. A

Using the Model Comparison Tool ® Comparison Report Contents

B Modified Object Details. Any properties of the session that have been modified.

B Modified Processes. Any processes that have been modified. Remember that it is possible
for the same process name to exist with many signatures. Therefore, if you modify the
signature of an existing process on a session through the Design Tools, the updated method is
represented as a new process in the comparison report, while the previous version is
represented as a removed process in the comparison report.

B Added Processes. The name and signature of any processes that have been added to the
object.

B Removed Processes. The name and signature of any processes that have been removed
from the object.

NOTE: The report does not list the properties and processes of added sessions and removed sessions.

Common Validations Report (CommonValidations.html)

The details section contains the following subsections:

B Added Objects. The name and package name of CommonValidations objects that have been
added to the model.

B Removed Objects. The name and package name of CommonValidations objects that have been
removed from the model.

B Modified Objects. Each modified CommonValidations object is represented as a table in the
report. The object’s name and package name are listed at the top of the table. The modifications
to the object are listed in the following subsections:

B Modified Validations. Any validations that have been modified.
B Added Validations. The name of any validations that have been added to the object.

B Removed Validations. The name of any validations that have been removed from the object.

NOTE: The report does not list Validation methods of added and removed CommonValidations
objects.

NOTE: The report only outlines changes to CommonValidations objects. Customized validations are
stored on an attribute. Therefore, if an attribute’s validation is customized, this appears in the banking
objects report.

Constants Report (Constants.html)

The details section contains the following subsections:

B Added Constants Classes. The name and package name of any Constant classes that have been
added to the model.

B Removed Constants Classes. The name and package name of any Constant class that has been
removed from the model. There must only be one Constants class in the model (according to

Design Tools Guide Version 2005, Rev. A

71

Using the Model Comparison Tool ® Comparison Report Contents

Automated Methodology standards). If the package name of this class is changed, the report
indicates that the class has been removed and a new one added.

B Added Constants. Any constants that have been added to the Constants class.
B Removed Constants. Any constants that have been removed from the Constants class.

B Modified Constants. Each modified constant is represented as a table in the report. The
constant’s name is listed at the top of the table. The modifications to the constant are listed in the
following subsections:

B Modified Constant Details. Information about any changes to the data type, which is the
only detail that can change.

B Added Values. The name of any constant values that have been added to the constant.

B Removed Values. The name of any constant values that have been removed from the
constant.

NOTE: Do not confuse the term Constant with the term Constants Class. A Constant represents a
value or list of values. An example of a Constant is ACCOUNT_TYPE. The ACCOUNT_TYPE constant
could contain Constant Values of Current Account and Deposit Account. The Constants Class is the
Class that stores these constants in the model.

Parameter Objects Report (ParameterObjects.html)

The details section contains the following subsections:

B Added Objects. The name and package name of parameter objects that have been added to the
model.

B Removed Objects. The name and package name of parameter objects that have been removed
from the model.

B Modified Objects. Each modified object is represented as a table in the report. The object’s
name and package name are listed at the top of the table. The modifications to the object are
listed in the following subsections:

B Modified Object Details. Any properties of the parameter object that have been modified.

B Modified Attributes. Any attributes that have been modified. The values of the modified
properties from both models are also listed (Value Before and Value After).

B Added Attributes. Any attributes that have been added to the object.
B Removed Attributes. Any attributes that have been removed from the object.

NOTE: The report does not list the Validation methods of added and removed objects.

Validator Lengths Report (ValidatorLengths.html)

The details section contains the following subsections:
B Added Vvalidator Lengths. Any validator lengths that have been added to the model.

B Removed Validator Lengths. Any validator lengths that have been removed from the model.

Design Tools Guide Version 2005, Rev. A

on Tool ® Comparison Report Contents

B Modified Validator Lengths. The name and details of each modified validator length.
NOTE: The only validator length detail that can change is the length.

NOTE: Validator lengths are stored on the Constants class in the Siebel XML representation of the
design model. If the package name of the Constants class changes, it is considered to have been
removed and a new one added. If this has happened, the Model Comparison Tool does not examine
the validator lengths for differences and only generates the initial section of the report, followed by
the message: The Constants Class has been removed or renamed.

Design Tools Guide Version 2005, Rev. A

	Contents
	What’s New in This Release
	Design Tools Overview
	Class Builder
	Method Definer
	Validation Definer
	Session Builder
	Design Aids and Utilities
	Attribute Class Definer
	Design Documentation Builder
	Model Exporter
	Model Validator
	Model Comparison Tool

	Checking of Fields for Characters That Cause Problems in the
	Refactoring

	Using the Class Builder
	Starting the Class Builder
	Defining Classes
	Creating a New Class
	Amending a Class
	Refactoring a Class Name
	Deleting a Class

	Defining Attributes
	Adding New Attributes
	Amending an Attribute
	Refactoring an Attribute Name
	Deleting an Attribute

	Defining findBy Methods
	Creating a Simple findBy Method
	Creating a Complex findBy Method
	Amending a findBy Method
	Deleting a findBy Method

	Defining Methods for a Class

	Using the Method Definer Tool
	Starting the Method Definer Tool
	Defining Methods
	Creating a New Method
	Amending a Method
	Deleting a Method
	Refactoring a Method Name

	Defining the Method Signature
	Adding a Parameter
	Deleting a Parameter

	Defining the Method Return
	Adding a Return
	Deleting a Primitive or Object from the Return List

	Using the Validation Definer Tool
	Starting the Validation Definer
	Creating a Validation Group
	Creating a Validator
	Amending a Validator
	Renaming a Validation Group
	Deleting a Validation Group
	Deleting a Validator
	Refactoring a Validator Name
	Dragging and Dropping Validators and Validation Groups

	Using the Session Builder Tool
	Starting the Session Builder Tool
	Defining Sessions
	Creating a New Session
	Amending a Session
	Deleting a Session

	Defining Processes

	Using the Attribute Class Definer
	Using the Design Documentation Builder
	Generating Design Documentation
	The Design Documentation that is Generated

	Using the Model Exporter Tool
	Exporting the Model

	Using the Model Validator Tool
	The Validation Properties File
	Validations Performed by the Model Validator
	Validating the Model
	Running the Model Validator with the Default Properties File
	Running the Model Validator with a Selected Properties File
	Running the Model Validator with a Custom Rational Rose Scri

	Using the Model Comparison Tool
	Comparing Models
	Model Comparison Tool Error Messages
	XML Parsing Error – An Invalid Character Was Found in Text C
	XML Parsing Error – The System Cannot Locate the Resource Sp
	XML Parsing Error – The Base XML File Selected is Not of DOC
	XML Parsing Error – A Duplicate Package Name Has Been Found

	Comparison Report Contents
	Initial Section
	The Summary Report Section
	The Detailed Report Section
	Banking Object Report (BankingObjects.html)
	Banking Process Report (BankingProcesses.html)
	Common Validations Report (CommonValidations.html)
	Constants Report (Constants.html)
	Parameter Objects Report (ParameterObjects.html)
	Validator Lengths Report (ValidatorLengths.html)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

